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Abstract  

The aim of this research has been to determine under what circumstances gold mines in Ghana are 

likely to have adverse effect on water levels and volumes in surrounding villages/farms and in 

particular to try and come up with heuristic rules that would indicate under what circumstances 

there may be derogation problems in the regional groundwater flow system. In the absence of 

adequate data, a simple semi-empirical scoping calculation has been suggested to estimate radius of 

impact (Ri, defined here as the radius to a point of 1m drawdown). This approach involves: 

assessment of local mine geometries (G); collation and examination of hydraulic conductivity (K) 

data on hard rock aquifers from around the world; assessment of recharge (R) using unsaturated 

zone flow model to account for infiltration rejection; use of simple mathematical models with G, K 

and R data to undertake scoping calculations; and use of the outcome to determine what conditions 

would result in significant derogation issues.  

Due to the sensitivity of simple models to K, the entire K dataset (Group A) was regrouped to include 

Group B (all data except those from radioactive waste studies where very low K terrains were 

targeted) and C (all data except those from radioactive waste and grouting projects where very high 

K was encountered). Most of the simple models used in conjunction with Group A mine geometries, 

recharge rates, and range of relevance predicted very close radius of impacts to the mine, less than 

few 100m with a median distance of 400m from the mine’s edge. Although it is expected that 25% of 

cases could reach up to 2km, and further if the system was anisotropic. Derogation of water level 

and volume is more of a problem for Group B and C aquifer systems of higher K. For these two 

systems, model results show that 50% of cases could reach up to 3.6km with a range of 2.7km to 

5.1km, and 3km with a range of 2km to 4.6km from mine centre respectively. However, in extreme 

cases the radius of impact could reach at least 7.6 km and further if the system was anisotropic.  

With regards to Ghana, by constraining K using water volumes produced by mines in Ghana, and 

comparing with the model output, it is tentatively suggested that the most likely Ri values are those 

calculated with the Group B dataset.  

It should, however, be noted that this results are very sensitive to K, and therefore there is the need 

in Ghana to publish K and volume data that will enable suggestions from this work to be confirmed. 

Thus, the use of simple models has proved adequate for determining the qualitative risk for 

derogation around mines in Ghana. More sophisticated models would have been useful but would 

have meant estimating even more variable values.  The technique is applicable elsewhere.  

Calculations show that where recharge is much more limited, the radius of influence for mines of 

similar geometry to those in Ghana could have much more extensive radii of impact.   
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Background    

It has long been established that surface mining operations can potentially have adverse 

effects on the quality, levels and flow characteristics of both groundwater and surface 

waters, and on associated sensitive receptors such as wetland habitats, public water supply 

boreholes and others (Heath, 1993; Canter, 1996; Veiga, and Beinhoff, 1997; Warhurst, 

1999; Morris et al, 2003; Singh, 2006; and Kuma and Younger, 2004). But major concerns are 

the effects from groundwater levels and composition. According to Siegel (1997) in 

developing a mine plan of operations, operational procedures, hydrological control 

structures and other best management practices to prevent environmental impacts require 

accurate knowledge of the variables associated with hydrological conditions at a mine. The 

most important is proper characterization of baseline hydrogeological conditions so that the 

extent of impacts to hydrologic and other related resources can be minimized or avoided.  

 

The extraction of base and precious metals from hard rock mines by surface and 

underground mining can create environmental problems and safety hazards. Owing 

primarily to their size, open pit mines are typically thought to create more significant 

impacts, where as underground mining is generally viewed as resulting in less damage to the 

environment. According to Hartma (1987) approximately 75 to 85% of all minerals 

extraction worldwide is carried out using open pit methods with much of the underground 

mining reserve for coal, using either room-and-pillar or full-face mining. With the advent of 

modern technology, surface mining operations have increased both in physical size and 

efficiency. The availability of new improved methods and machinery has led to a vast 

increase in the economic depth of extraction possible. This has resulted in surface mine 

workings extending well below the water table, consequently making groundwater and 

occasionally, surface water derogation becoming a major concern.  Lerner et al., (2009), 

mentioned three major roles that groundwater plays in the environment as;  providing base 

flow to rivers keeping them flowing all the year round, maintaining the quality of our rivers 

by diluting effluents, and serving as an excellent source of water supply providing over 75 
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per cent of the potable supply in some regions. Groundwater has a strong influence on the 

health and diversity of plant and animal species in riparian areas, lakes, wetlands, forests, 

grasslands, and cave systems. It is intimately connected with the landscape and land use 

that it underlies, and is therefore vulnerable to the anthropogenic activities on the land 

surface above.  

 

Mining operations conducted below the potentiometric surface in confined aquifers or 

below the groundwater table in an unconfined aquifer require a drawdown of the water 

table through dewatering operations (Figure 1.1). The lowering of the water table creates a 

‘’cone of depression’’ which extends radially outward from the mine workings and depends 

on:  depth of dewatering (i.e. the amount by which the water table has been lowered); the 

rate and distribution of rainfall and other forms of recharge (e.g. stream leakage), hydraulic 

conductivity and homogeneity of the aquifer which determines the zone of dewatering 

influence (Barfield et al., 1981; Warhurst, 1999). Conceptually, a dewatered mine acts as a 

large diameter well; consequently the water table in an aquifer can be drawn down for a 

relatively large radial distance creating a region around the mine, known as the radius of 

influence within which potential mining impacts may occur. The drawdown of the water 

table can potentially cause a disruption of groundwater systems, including its flow pattern. 

In this regards the direction of groundwater flow can be affected by shifting gradients and 

lines of flow toward the mine field and as a result, groundwater levels may be permanently 

or temporary lowered. Shallow aquifers may be drained or physically removed and existing 

drainage systems such as lakes, springs, wells, small streams and rivers may become 

ephemeral or completely dry (Curtis, 1971). Consequently, water yields from local wells can 

be reduced or wells may need to be drilled deeper to account for the decreased elevation of 

the water table or potentiometric surface. The effects can impact wetlands associated with 

springs and riparian zones associated with streams. A reduction in stream flows can also 

affect aquatic habitats and fish populations and moreover, a regional lowering of the water 

table can impact neighbouring water supply and irrigation wells. In areas where ground and 

surface waters interact due to varying influent and effluent conditions, mining impacts to 

ground water quality can result in impacts to surface water quality. Furthermore, the 

excavation of large tonnages of overburden from the open cut mine may also impact upon 

the local fracture systems in the hard rock aquifers. This unloading can cause fracture 
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systems to open up, and as a results increasing permeability and continuity which in turn, 

increase groundwater flows and impacts upon the surface water systems. All such impacts 

could extend for a number of kilometres outward from the mine working centre and 

therefore can potentially threaten the socio-economic activities and development of the 

inhabitants of the communities in and around where surface mining operations take place. 

From the preceding paragraphs, the radius of influence Re within which all the derogatory 

risks are experienced therefore becomes the most important parameter of this research. 

Although, mine dewatering in general affects the quality of water discharged from mines to 

surface reservoirs, however, groundwater quality is not a subject of the present research.  

 

 

 

According to Akabzaa and Darimani (2001) mining is of considerable importance in the 

economic development of Ghana. The country’s colonial name – the Gold Coast - reflects 

how important mining has long been to the country. Ghana is the second most important 

producer of gold in Africa after the Republic of South Africa, and the third largest, of Mn and 

Al, and a significant producer of diamonds and recently, oil (Coakley, 1999; Appiah, 1993; 

Figure 1.1 Dynamics of mining impacts on the groundwater flow systems (modified from Siegel, 
1997) 
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Akabzaa and Darimani, 2001). Gold dominates the mining sector in Ghana with prospective 

gold deposits localized in the three regions: Western, Ashanti and Brong Ahafo and cover 

eight municipalities/districts specifically, Wassa west, Obuasi, Amansie Central, Mpohor 

Wassa East, Amenfi East, Asutifi, Tano North and Ahafo Ano North. Gold mining companies 

with concessions in these areas include AngloGold Ashanti Iduapriem Mine, Obuasi Mine; 

Newmont Ahafo mine, AngloGold Ashanti (AGA), Golden Star Resources and Goldfields 

Ghana Limited. The Western and Ashanti regions of Ghana have varying years and 

experiences of mining whilst communities in the Brong Ahafo region are yet to experience 

the full scale effects of surface mining. In fact, the Tarkwa area in the Wassa West District of 

South Western Ghana is said to have the single largest concentration of mines and mining 

companies on the African continent (Akabzaa and Darimani, 2001) where about one-third of 

the total land area is under concession to mining companies.  

 

Despite this potential, decades of mining and the recent method of surface mining continue 

to cause destruction to the quantity and quality of surface and groundwater bodies in 

Ghana. The mine and its owners have been criticised in the past for the loss of community 

livelihood and the environment, pollution and drying up of local rivers and water sources, 

and the lack of action to combat these issues. The current high gold price has generated a 

vibrant economy in Ghana and especially, Tarkwa and its environs and has increased 

population and water use. Consequently, the water resources of the mining environments in 

Ghana are getting under pressure. For example according to Kuma and Younger (2004) 

mining activities in the Tarkwa District draw a huge amount of water from the Bonsa River, 

the main source of portable water supply to Tarkwa Township and this has resulted in lower 

water flow levels in the Bonsa River and the lower reaches of the Angonabeng River and has 

lengthened patches of dryness during the dry season. These researchers further estimated 

that about 40% of the groundwater resources in the Tarkwa area have been destroyed by 

increasing mining operations, whilst the remaining 60% is at some distance from the 

population centres. Mining is therefore considered to be one of the major industries in the 

region which consumes a large quantity of groundwater through its operations. For instance 

the annual volume of groundwater usage of some of the leading mining companies in Ghana 

from 2005 to 2008 is shown in Table 1.1. Kuma and Ewusi (2009), affirm that data on annual 

ratio of water produced by Ghana Water Company Limited at the Bonsa Treatment Plant to 
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population growth of Tarkwa from 1987 to 2008 revealed an amount of 76litres/person/day 

in 1987 decreasing to 40litres/person/day in 2008. These Figures demonstrate that the 

amount of water produced over the years has not kept pace with population growth in 

Tarkwa and its environs. More evidence of surface mining impacts on the environment is 

discussed in Chapter 2. 

 

Table 1.1  Annual volumes of freshwater usage for major mining operations in 
Ghana (Source: Anglogold Ashanti Obuasi, Tarkwa goldfields and Iduaprem Country 
report 2008) 

 

Gold mining company in Ghana 

Volume of water (m3)/Year 

2005 2006 2007 2008 

Goldfields Limited (TGL) Tarkwa 5,200,000 3,529,537 5,596,000 7,941,690 

Goldfields Limited (TGL) Tarkwa Damang 800,000 673,439 594,376 547,910 

Ghana Australia gold-fields Limited (GAG) 
Iduaprem Tarkwa 

977,466 98,000 100000 100000 

Ashanti Goldfields Limited (AGC) Obuasi 9,005,564 10, 356,870 10,621,257 9,419,952 

 

1.2 The rationale of the Research 

Over the last several decades, improved mining methods and practices have been proposed 

in order that cuttings, excavations and dewatering at high risk for impacts on the 

groundwater flow system in hard rock mining environments are identified early enough and 

preventive measures effectively prioritized (Hartma, 1987; Warhurst, 1994; Soni, 2006; 

2008; Kuma, Younger and Bowell, 2002). Anticipation and control of groundwater-related 

problems are therefore, critically important for the optimum performance of surface mining 

operation and the satisfaction of set production targets. Thus, an assessment of mining 

impacts needs to become an integral part of mine planning at the early stages of a mining 

operation, when there are few data, on which to base estimates and still more time to 

consider favorable planning and design alternatives. 

 

Kuma (2007) reported that in Ghana, the many debates which have taken place relating to 

the environmental impacts of mining include the following; de-forestation, loss of 

farmlands, surface and groundwater pollution, resettlement, community livelihood and the 
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environment, and violent conflicts and human rights violations. Although water 

contamination has been the main concern, other aspects of groundwater management have 

received little recognition, for example, mine dewatering and its effects on aquifers, 

possible changes of groundwater flow directions, reductions in stream-flow, potential loss 

of groundwater-dependent ecosystems, land subsidence, and groundwater recharge. Kuma 

(2007) contended that the importance of the mining industry to the growth of the Ghanaian 

economy necessitates a wider approach to the solution of issues relating to surface and 

groundwater.   

 

In the present context, the general desire has been to determine under what conditions 

mines derogate local villages significantly. Initially it was intended to investigate a particular 

mine in Tarkwa area of Ghana and develop a detailed model of it and thereby investigate 

how the mine affects surrounding areas. However after two visits to Ghana and discussions 

with mine companies regulators and researchers, only very limited amount of data could be 

obtained. Hence the project aim changed to attempting to determine in general if mine 

derogation impacts are likely to be significant in Ghana and other areas and if so under what 

conditions, and also could the derogation be assessed using the limited data that was likely 

to be available ahead of mine development.  

1.3 Research Aim 

The fundamental aim of this research is therefore to determine under what circumstances 

gold mines in Ghana are likely to have an adverse effect on water levels in surrounding 

villages/farms and in particular to try and come up with heuristic rules that would indicate 

under what circumstances there may be derogation problems to the regional groundwater 

flow system. Although, the study places emphasis on gold mining in Ghana, but with the 

intention that the concluding results could be used elsewhere with similar hydrogeological 

environments. Additionally, the research objectives are as follows: 

1. To determine how important the effect of surface mining on the regional 

groundwater flow system can be  

2. To investigate the circumstances under which the effect is   greatest 
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1.4 Research Application 

In view of the above mentioned objectives, it is hoped that the research will have the 

following application:  

1. providing a general evaluation of the importance of groundwater impact for African 

mining communities in general, and for Ghana in particular 

2. providing a first-hand quantitative information and guidelines for hydrogeologists 

and engineers for gold mining design purposes 

3. providing an indication of what are the most important data to collect for early 

assessment of derogation impacts 

4. providing means of informing decision-making and regulatory bodies on 

environmental implications when allocating mining concessions or giving out permits 

for mining operations. 

1.5 Research Approach 

In this study, the research approach/methodology is based on the application of scoping 

calculations using very simple numerical models. Data on hydraulic conductivity K, recharge 

R, and mine geometry G have been used as input data into the numerical models to explore 

the effect of open pit mines on the regional groundwater flow system in hard rock 

environments with specific reference to Ghana. Because the data apart from the mine 

geometry data were quite uncertain, the intention was to use as simple a model 

representation as possible. Sophisticated models would include the estimation of even more 

parameter values and would not necessarily increase the reliability of the predictions. This 

approach of course can be reviewed after the modelling results are obtained from the 

simple models.  

 

In detail, the approach adopted involves first of all, a comprehensive international literature 

search of hydraulic conductivity estimates as insufficient could be obtained from Ghana, and 

mine geometry ranges of hard rock areas in mining environments. Standard statistics have 

been employed to characterize hydraulic conductivity and to provide a statistical range of 

estimates for use in subsequent groundwater modelling activities. The HYDRUS-1D 
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Computer Code has been used to simulate direct rainfall infiltration (i.e. potential direct 

recharge) of the top soil of hard rock areas. Simple computer models have been developed 

using the MODFLOW and SEEP computer codes to enable scoping estimates to be made of 

derogatory risk. In Figure 1.4, a step-by-step process of the development of the semi-

quantitative method is summarized in a flow chart whilst, in Figure 1.5 a block diagram of 

input-output parameters for modelling simulations is shown.  

  

 

Comprehensive international literature search for data on:  

1. Hydraulic properties: [Conductivity(K), Transmissivity (T) and 
storativity (S)]  

2. Meteorology: [Rainfall, Temperature, Evapotranspiration (EVT)] 

3. Mine geometry (G) : [Shape (Lx b ) and Depth (D) ]  

 

Mine geometry G 

Evaluation of [Shape (L x b) 

and Depth (D)] of open pits 

in Ghana and elsewhere 

and their rate of 

development 

  
Development of steady state Numerical and 
Analytical simulations of groundwater flow 
models using K, R, and G, to evaluate the 
possible impacts of open pit mines on the 
regional flow systems with special reference to 

open pit mines in Ghana. 

The use of simulation results to conclude on: 
(i) impact in general and the conditions 
under which impact is significant or 
maximised. 
(ii) Methodology for initial scoping 
calculations 
 

Potential recharge R 

Simulation of rainfall 

infiltration of top soil 

using HYDRUS -1D 

computer code with 

meteo & soil texture data 

exture data as inputs  

 

Hydraulic conductivity K 
Use of Standard statistics 

to analyse and 
statistically provide a 

range of quality assured 
estimates 

Figure 1.4 A flow chart of proposed method and approach to research 
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1.6 Structure of the thesis  

The whole thesis is divided into seven chapters as outlined below: 

1. Chapter 1 presents an introduction to the research, highlighting the background, the 

aim and objectives, application, methodology and approach, and briefly outlines the 

structure of the thesis. 

2. Chapter 2 describes the dynamics of open pit mines in general with emphasis on 

mines in Ghana. The geometry [size (length x width x depth)], time of existence and 

rate of development of the mines and evidence of derogation is also discussed.  

3. Chapter 3 details the characterization of hydraulic conductivity of hard rocks in the 

mining environment. Issues relating to difficulty in estimating appropriate K values 

from field testing and factors affecting the choice of appropriate K for modelling at 

regional scale are discussed. The approach adopted and a summary of the findings 

are also presented.   

4. In Chapter 4 the characterization of Potential Direct Recharge of hard rock areas in 

the mining environments is presented. The method and approach followed and the 

use and application of the HYDRUS-1D Computer Code in the characterization 

process is discussed.  The results and conclusions drawn are also presented.     

5. Chapter 5 presents the approach and methodology adopted in the risk assessment 

of the potential surface mining impacts through the use of steady-state numerical 

modelling. Issues relating to the representation of open pit mine as conceptualized 

in chapter three are discussed.  

K 

 

G 

 

 

R 

 

 

Dw 

Radius of influence (Re) 

D

A

T

A 

     

Generator 

(NUMERICAL 

SIMULATION) 

Figure 1.5 A block diagram for input-output parameters for model simulations 
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6. Chapter 6 presents the results of the modelling work based on the models from 

Chapter five and using data on mine geometry, hydraulic conductivity and 

groundwater recharge which were obtained from Chapters two, three and four 

respectively. Chapter six then discusses the implication of the results. 

7. Chapter 7 concludes the research effort by summarizing and drawing general 

conclusions from the present study and provides recommendations for future 

research. 
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CHAPTER 2 

DYNAMICS OF GHANA OPEN PIT GOLD MINES: DEROGATION AND 
GEOMETRY 

2.1 Introduction  

Historically, the majority of gold in Ghana was mined from "placer deposits", a process 

whereby gold is obtained from accumulation of unconsolidated minerals, form by gravity 

separation at the downstream of an existing water course from its source (Hirdes and 

Nunoo, 1994). Most modern mines in Ghana are hard rock mines that directly mine the 

source, or "lode" of gold, from where it has originally been deposited by geochemical 

processes or tectonic activities. In Ghana, the majority of hard rock mines operate surface 

mining with very few of them reaching underground and are usually more environmentally 

destructive than the ancient placer mining. In the following sections, the development of 

gold mining in Ghana and its derogation effects have been discussed. Detailed description of 

geographical characteristics and the rate of development of surface mining in Ghana have 

also been discussed with specific consideration to geometry (shape and size) of open-pit 

mines.   

2.2 Brief history of gold mining in Ghana 

West Africa has been a key source of gold for almost two thousand years (Griffis, et al., 

2002). In fact, nearly all the known gold deposits in Ghana, Burkina Faso and Cote d’Ivore 

are hosted by the Proterozoic Birimian rock belt in West Africa (see Figure 2.1). It is also 

worth to note that Ghana’s economic geology (Figure 2.2) is centered on the Birimian and 

Tarkwaian rock systems (Grubaugh, 2002). Beginning from West Africa, gold reached the 

Mediterranean by camel caravan across the Sahara desert. As at 1460, the Portuguese 

navigators were shipping African gold directly back to Europe, and later the English and the 

Dutch ships also brought gold to London and Amsterdam (Griffis, et al., 2002).  Formal gold 

exploration and mining in Ghana began in the 19th century when Ghana was colonized by 

the Europeans. The first European gold concession in Ghana was issued in Tarkwa area in 

1877, and in 1897 Ashanti Goldfields Corporation Limited was founded. This is followed by 

The Ghana Chamber of Mines which is Africa’s second oldest. Other major mines that were 
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started about the same time include: Abosso (1896); Bibiani (1901); Prestea (1903); and 

Tarkwa (1909) all in the South Western part of Ghana except Bibiani. Ghana is the second 

most important producer of gold after the Republic of South Africa, and the third largest 

producer of manganese and aluminium, and a significant producer of bauxite diamonds and 

recently, oil (Coakley, 1999 and Appiah, 1993). Gold dominates the mining sector in Ghana 

with prospective gold deposits localized in the western part of the country where about 

one-third of the total land area is under concession to mining companies. In fact, as put it by 

(Akabzaa and Darimani, 2001) the Tarkwa area in the Wassa West District of South Western 

part of Ghana is said to have the single largest concentration of mines and mining 

companies on the African continent.   

 

 

 

 

 

Figure 2.1 Regional map of West Africa showing the Protozoic Birimian rock belt. (Source: 
Adapted from the summary report of Mpatasie and Asafo Mining Projects, Ghana. July 15, 2010) 
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2.3 Structure of the mining industry in Ghana 

As presented by Akabzaa and Darimani (2001), the ownership structure of the mining 

industry in Ghana is made up of some few large companies from Canada, Australia, and 

South Africa and recently the United States. There are however, lesser investors from China, 

United Kingdom and Norway. In terms of nationality of ownership, 85% of the industry is 

owned by foreign nationals and the rest by Ghana Government and several small scale 

Ghanaian operators. According to Kwesi and Kwesi (2011)  there are eleven large scale 

mining companies operating in the country currently of which eight  are gold mines. The rest 

are, bauxite, diamond and Mn mines. Excepting the Anglo Gold Ashanti mine at Obuasi 

which still operates underground mining, all the other mines operate surface mining. And 

out of the eleven large-scale mines in Ghana, seven of them are located in Tarkwa District in 

the Western region (W/R) producing a significant proportion of the country’s gold output. 

The only manganese mine in the country is also located in the Tarkwa area. Table 2.1 shows 

the location, date mining commenced and mining/processing method of large scale mining 

companies operating in the Western region (W/R), Ashanti region (A/R) and Brong Ahafo 

region (B/A). 

Table 2.1 Leading gold mines in Ghana after 1986 (Source: Ghana Chamber of Mines 
annual reports; Akabzaa, 2001) 

Mining Company Mine Location 
 

Starting 
Date 

Mining / Processing 
Method 

Goldfields Ghana Ltd. 

Of South Africa  

Tarkwa (W/R) 

Damang (W/R) 

Abosso (W/R) 

1993 

1997 

1997 

Open-Pit/Heap leach 

Open-Pit/CIL 

Open-Pit /CIL 

Anglo Gold Ashanti of 

South Africa 

(Central Africa Gold)  

Obuasi (A/R) 

Iduapriem (W/R) 

Bibiani (W/R) 

2004 

1992 

1997 

Open-Pit/Underground 

Open-Pit /Heap leach  

Open-Pit/CIL  

Golden Star Resources 

Ltd. Of Canada 

Bogosu (W/R) 

Akyempim (W/R) 

Preastea (W/R) 

1990 

2005 

1995 

Open-Pit/CIL 

Open-Pit /CIL 

Open-Pit/Underground 

Red Back Mining Inc. Of 

Canada  

Chirano (W/R) 2005 Open-Pit/Heap leach 

Newmont Ghana Gold 

Ltd. Of Denver USA.  

Ahafo ( B/A) 

Akyem ( B/A) 

2006 

2011 

Open-Pit /CIL  

Open-Pit /CIL  
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2.4 Mining methods used in Ghana 

The process of gold mining from prospecting to exploration to development to extraction 

and finally to reclamation consists of several distinct steps. Currently, there are several 

different methods used for mining gold deposits and extracting the valuable metal from the 

ground. The method used varies and depends on: the geology and topography of the area; 

location, type, size and orientation of the mineral resource (Hartman, 1987; Hoek and Bray, 

1974). In Ghana, targets of gold deposits are of two general categories; placer and ore-body 

deposits. Placer deposits are made up of minerals contained within river gravels, and beach 

sands mostly found in the Ankobra, Birim and Offin rivers and other unconsolidated 

materials. Ore-body deposits are valuable minerals found in veins, stratified layers or 

mineral grains which are generally distributed throughout the Birimian and the Tarkwaian 

rock system of the Ashanti belt (Agyapong et al., 1992). Both surface and underground 

mining methods are used in Ghana to mine both types of ore deposits. Typical surface 

mining methods include: strip and open pit mining; dredge, placer and hydraulic mining in 

riverbeds, beaches and terraces. Most of the large scale companies in Ghana operate hard-

rock open pit mining where the ore-body or lode of gold is directly mined from the source 

where it has originally been deposited by geochemical processes or tectonic activities. 

Despite its negative impacts, surface mining has been promoted in Ghana and many mining 

countries worldwide in recent years due to the following reasons:  

 

1. Location of the ore-bodies- The location of ore-bodies in most part of the country 

are close to the surface which makes it easier to be mined by surface mining 

(Agyapong et al., 1992). For instance the approximately horizontally stratified 

reserves with a thin covering of overburden in Tarkwa and Ahafo area. Similarly, the 

Obuasi deposits occur along a zone of faulting within Precambrian greenstones 

(Eisenlohr, 1989). According to Agyapong et al. (1992) and Eisenlohr (1989), two 

main types of minerals are found in the mining environments in Ghana namely; 

quartz veins containing high-grade native gold and the main sulphide ore where 

narrow veins contain gold within arsenopyrite. Both surface and underground 

mining are operated in the Obuasi area. 
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2. Low grade ore which requires processing huge quantities- Most of the ore grade in 

Ghana, particular Tarkwa and Bibiani in the western region, are very low and 

therefore require large volumes of ore to be mined and processed for a small yield. 

Hence, the only option left for a successful and profitable mining is surface mining 

which is relatively cheaper. 

 

3. Cost considerations- The operating cost of mining has gone up drastically in the last 

two decades. The price of fuel, power, chemicals and other consumables have all 

increased sharply during the last decade or two. Comparatively, surface mining is 

relatively cheaper, safer and mechanically easier to operate than underground 

mining. Also the demand for power, especially in developing countries and Ghana in 

particular, far outweighs supply. Therefore, there is always inadequate supply of 

power for mining resulting in increased cost for energy alternative. In the face of 

high cost of mining inputs and inadequate supply of power, surface mining therefore 

becomes the favourable, cost effective and  preferred option in Ghana and most 

countries worldwide. 

 

4. Safety considerations- Comparatively, there are also low number of accidents and 

fatalities in surface mining than underground mining, there is no risk of cave in or 

toxic gas. For example the Lost Day Injury Frequency Rate (LDIFR) of mining 

companies in Ghana indicate higher rate in underground mines than in surface 

mines. (Goldfields Ltd, Annual Report, 2007). Also, there are high numbers of fatal 

accidents in underground mines than in surface mines. 

 

5. Competition among gold producing countries for investors- Ghana has been the 

only most important gold producing country in west Africa for the past three 

decades until recently joined by Burkina Faso, Mali and Guinea. This situation has 

created competition among these countries as an investor destination with investors 

easily attracted to countries whose laws allow surface mining.  
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2.5 Geographical Characteristics of Tarkwa District: The hub of gold mining in Ghana   

The Tarkwa District in South Western Ghana is located at (Lat 50 18 N, Long 20 W) with 

Tarkwa as it administrative capital (Figure 2.2). The area lies along the main gold belt of 

Ghana, the Ashanti belt that stretches north-eastwards from Axim in the southwest to 

Agogo in the northeast making the area one of the main gold mining Districts of Ghana.  

 

 

 

 

Figure 2.2 Regional geological map of South-Western Ghana (modified from Kuma 2004) 
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In general, Ghana is characterized by low physical relief with the Precambrian rock system 

underlying most part of the country and worn down by erosion almost to a plain. The relief 

of Tarkwa District is moderate and decreases to the south from an altitude of 300m to 150m 

above sea level.  The population of the district is approximately 236,000 and is mainly 

composed of the indigenous Wassa tribe but with representation of all tribal entities in 

Ghana (Acquah, 1992 and Agyapong et al., 1992). Industries of the district are mining (gold, 

manganese) with gold mining being the main industrial activity in the area and subsistence 

farming. The principal crops grown are; cocoa, plantain, pineapple, maize, cassava, yam and 

some oil palm, coffee and rubber (Avotri et al. 2002; Asklund, Eldvall and Björn 2005). 

 

The rainfall pattern in Ghana generally decreases from the south to the north with the 

south-western part being the wettest and where annual rainfall is over 2,000 mm. In the 

extreme north, the annual rainfall is less than 1,100 mm (Dickson and Benneh, 1988). The 

south-eastern coastal edge is the driest area where the rainfall is about 750 mm per annum. 

Much of the rain falls in intense storms of short duration, which normally occur at the 

beginning of the season resulting in heavy runoff and erosion (Dickson and Benneh, 1988; 

Benneh and others 1990).  

 

The main vegetation formation of Ghana (Figure 2.3) as described by Benneh et al. (1990) 

are the Coastal Mangrove and Strand, the Coastal Savannah, the Closed Rain Forest and the 

Moist Semi-deciduous Forest, the Derived Savannah and the Interior Savannah. South 

western Ghana has about 75 percent of its vegetation within the high forest zone, with 

Tarkwa District located within the transition zone between the rain forest and the moist 

semi-deciduous forest (Dickson and Benneh 1988).  

 

Tarkwa Distrct in South Western Ghana has a tropical and humid climate with mean annual 

rainfall between 1500mm and 2000mm. The region is characterized by two main rainfall 

periods within each year; from May to July with a peak in June, and September to 

November with a peak in October (Dickson and Benneh 1988). Intermittent minor rains 

occur also throughout the year. Figure2.4 shows the average rainfall distribution pattern 

from 1940 to 2001.  During the dry season the dry North-East Trade winds (Harmattan) blow 

from the North to the South. The mining District of Tarkwa is very humid and warm with 



  

18 
 

mean annual rate of pan evaporation of 1500mm and the average air temperature ranges 

from 28 and 33°C. The high rainfall regime creates much moisture culminating in high 

relative humidity and ranges between 70 to 90 per cent in most parts of the region (Dickson 

and Benneh 1988).   

 

 

Figure 2.3 Vegetation map of Ghana showing the rain forest of Tarkwa District in South Western 
Ghana (Dickson and Benneh, 1988) 
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2.6 Local Geology 

The Tarkwa orebodies are located within the Tarkwaian System (Figure 2.5) which forms a 

significant portion of the stratigraphy of the Ashanti Belt (Figure 2.2) in southwest Ghana 

(Kesse, 1985; Leube and Hirdes, 1986). The Ashanti Belt strikes in a north-easterly direction 

and it is broadly synclinal in structure (Kesse, 1985). According to Leube and Hirdes (1986), 

the belt is made up of the Lower Proterozoic sediments and volcanics, and underlain by the 

metamorphosed volcanics and sediments of the Birimian System. These researchers argue 

that the contact between the Tarkwaian and the Birimian is intensely sheared with 

significant associated gold deposits, including in the mining areas of Prestea, Bogoso and 

Obuasi. The Tarkwaian unconformably overlies the Birimian and is characterized by lower 

intensity metamorphism and the predominance of coarse grained, immature sedimentary 

units (Table 2.2.) 

 

Figure 2.4 Average monthly rainfall pattern in the mining district of Tarkwa in South Western 
Ghana (From 1940 – 2001) 

Table 2.2 Division of the Tarkwaian rock system (modified from Kuma and 
Younger2001) 
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Whitelaw (1929) and Hirst (1938) describe the boundary between the Banket Series and the 

overlying Tarkwa Phyllite as marked by a deep valley which follows a sill with the Tarkwa 

Phyllite highly fractured at shallow depth. These researchers further described the Huni 

Sandstone as a fine grained quartzite with low relief. Sedimentological studies and 

modelling of the detailed stratigraphy within individual reef units have resulted in the 

recognition of a cycle of events from initial channel formation and rapid downcutting of the 

central channel (basin downwarp time units T1 and T2) through a period of uplift and 

reworking (T3) and finally a period of meandering channel bars and flow reduction leading to 

the development of low grade silty interbeds (Whitelaw, 1929). This sequence has been 

recognised in each of the main reef units with the T3 sequence recognised as the principal 

episode of gold deposition and concentration.  

 

The local geology in the Tarkwa area (Figure 2.5) is dominated by the Banket Series which 

forms the highest topographic features and is generally resistant to weathering. The beds 

are divided into three zones on the basis of their texture and mineralisation into the 

following categories (Whitelaw 1929); 

 

1. “The beds above the gold-bearing conglomerate zone consist of fine to medium grained, 

siliceous quartzites with coarse grits and bands of breccia, which are normally dense and 

hard and are almost exclusively responsible for the ridges. 

 

2. The gold-bearing conglomerate zone comprises alternating bands of quartzites, grits and 

conglomerate. This zone is dense and compact when fresh but weathers generally to 

coarse and loose material. 

 

3. The beds below the conglomerate zone also consist of quartzites, grits and 

conglomerates but these rocks are mostly soft and easily weathered and therefore, 

poorly exposed at the surface.”  
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2.7 Evidence of mine derogation in Ghana 

The environmental and health impact of mining activities in Ghana is well documented by 

researchers such as; Akosa et al., 2002; Ntibery et al., 2003; Dzigbodi-Adzimah, 1996; 

Smedley et al., 1996; Kortatsi, 2004; and Kuma, & Younger, 2004, among others. The 

principal environmental problems caused by both mining companies and artisanal miners 

are; dewatering effects and the free use of water for mining operations, chemical pollution 

of ground water and streams, siltation, increased faecal matter, deforestation, loss of 

farmlands and resettlement (Kortatsi, 2004 and Kuma, 2007).  

 

The introduction of surface mining in the 1980s had a lot of implications for fresh water 

protection in Ghana. Many writers such as; Amonoo-Neiser & Busari, 1980; Jetuah, 1997; 

Carbo and Sarfo-Armah, 1997 and Clement et al., 1997 anticipated that the development of 

Figure 2.5 Local geological map of Tarkwa District in Wassa West, South Western Ghana   
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extensive mining operations in ecologically sensitive areas such as  Obuasi in the Ashanti 

region and Tarkwa in the Western region with undulating topography would certainly give 

rise to environmental problems. They argued that the government’s intention to permit 

large scale surface mining in the country had overwhelming impact on water bodies in the 

mining environments and that mining has destroyed many communities’ sources of water 

with it accompanied untold hardships.  

 

It is a statutory requirement for EPA to demand from the mining companies, when leasing 

concession, a Baseline Environmental Study on: Climatic Conditions; Flora and Fauna; 

Hydrological Resources; Settlements; Socioeconomic and Cultural Elements; and Social 

Services, so that future damage to the environment could be assessed. In most cases these 

baseline studies indicates pristine mining environments which later become adversely 

affected by surface mining (e.g., CGML, 2010).  

 

Today, through the adoption and adaptation of modern technology, such as the heap leach 

(HL) and carbon in leach (CIL) methods in surface mining, agriculture which employs 80% of 

Ghana’s population, have suffered from mining activities (WACAM, 2011). This method of 

mining has led to the mining of fertile lands, a situation which has often initiated conflict 

over land use between farmers and mining companies. Moreover, most  mining concessions 

lie within  the few forest reserves left, for example about 60% of the concession of Chirano 

Gold Mines Limited (CGML) in the Western region, lies within the productive Tano Suraw 

and Tano Suraw Extension forest reserves (Brammer, 1956).   

 

Research work conducted by Akabzaa and Darimani (2001) on Tarkwa in the Wassa West 

District reveals that extensive areas of land have been cleared in preparation for surface 

mining activities. They opined that over 70% of the total land area of Tarkwa has been given 

out as mining concessions.  The researchers further estimated that about 40-60% of a given 

concession would have been used at the close of mining for activities such as siting of 

mines, open pits, mine camps, roads, heap leach facilities, tailings dump and resettlement 

for displaced communities. Table 2.3 shows progress of reclamation work of various mines 

on disturbed landmass in 2003. This has significant adverse impact on the land, vegetation 

and water resources which are the main sources of livelihood of the people. Although, 
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efforts are made by the mining companies to reclaim the land by reforestation, they end up 

modifying the natural ecosystem thereby destroying the biodiversity. The Wassa West 

District Assembly Medium Term Development Plan (2002-2004) also noted that this 

condition is worsened by the activities of the small scale miners who clear the forest and dig 

trenches, thereby exposing the soil to erosion and also serving as breeding grounds for 

mosquitoes.  

 

Table 2.3  Progress of reclamation work on various mines in Ghana in 2003 (Source: 
Peprah and Pappoe (2008). Environmental Statistics of Ghana)  

Mine  Area disturbed (Ha) Area reclaimed (Ha) 

Goldfields Ghana Ltd. (Tarkwa)  1654.00 260.00 

Anglo Gold Ashanti (Oboasi)  2241.00 60.17 

Anglo Gold Ashanti (Bibiani) 298.00 90.00 

Anglo Gold Ashanti (Iduapriem) 1360.00 180.00 

Aboso Goldfields Damang 645.00 257.00 

Bonte Gold Mine 698.17 424.69 

Ghana Manganese (Nsuta-Tarkwa) 2137.00 308.60 

Resolute Amansie (Sunyani) 348.00 209.50 

 

 

 In the work of Kusimi (2007), to determine land use/cover change resulting from mining 

and other anthropogenic activities such as; farming, settlements, lumbering animal grazing 

and forest reserves in the Wassa West District from the period 1980 to 2002, he concluded 

that natural land cover has been diminishing and human-induced land use increasing 

(Figures 2.6 and 2.7). He opined that the most significant force for this change had been the 

rapid growth in the mining industry attracting a lot of people leading to the expansion of 

major mining towns in and around Tarkwa and increase use of water by mining companies 

and the growing population.  
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The concentration of mining operations in Ghana has been a major source for the quality 

and availability of surface and groundwater. According to Mining watch (2000) and the 

Cyanide Investigative Committee (2002), in June 1996 a spill at Teberebie Goldfields sent 

thirty six million litres of cyanide solution into the Angonaben stream, a tributary of the 

Bonsa River in the western region of Ghana. The spillage destroyed Cocoa trees and 

fishponds while the local people complained of skin rashes. Since 1989 to 2002, Ghana 

recorded eight accidental cyanide spillages by mining companies and four of these which 

Figure 2.6 Classified landuse/cover distribution in Wassa West District as seen on (a) the TM 
imagery 1986 and (b) the TM imagery 2002. (Source: Classified Landsat TM imagery of 1986 and 
2002, Kusimi (2007)) 

Classified Landsat TM imagery of 1986). 

A B 

Figure 2.7 Comparison of the major landuse/lancover types in the Wassa West District based on 
TM imageries of 1986 and 2002 (modified from Kusimi, 2007) 
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occurred in Tarkwa in the Wassa West District affected major water bodies. According to the 

Cyanide Investigative Committee (2002), investigations conducted indicated that the 

number of officially reported cyanide spillages had increased from eight between 1989 and 

2002 to about 13 cyanide spillages as at 2006.  

 

According to Kuma and Younger (2000), surface mining operations consume a large amount 

of water which is obtained from the groundwater. Moreover, extensive excavation of large 

tracts of land and the heaping of large mounds of soil along watercourses results in the 

reduction of groundwater recharge sources and ultimately the reversal of the direction of 

groundwater flow.  It is therefore not a surprise as reported by Kortatsi (2004) that a 

number of boreholes, hand-dug wells and streams in the area have become unproductive 

and provide less water.   

 

A survey carried out by a non-governmental organisation, Wassa Associstion of 

Communities Affected by Mining (WACAM, 2008), to investigate about how water bodies 

are affected in communities affected by mining operations as well as communities with the 

potential of being affected by mining operations had the following results. The study 

targeted mining communities in three regions of Ghana namely Western, Ashanti and Brong 

Ahafo and covered eight municipalities/districts in Ghana specifically Wassa west, Obuasi, 

Amansie Central, Mpohor Wassa East, Amenfi East, Asutifi, Tano North and Ahafo Ano 

North. Mining companies with concessions in these areas include AngloGold Ashanti (AGA), 

Obuasi Mine; Newmont Ahafo mine, AngloGold Ashanti Iduapriem Mine, Golden Star 

Resources and Goldfields Ghana Limited. The areas selected for the survey have varying 

years and experiences of mining whilst others especially the communities in the Brong 

Ahafo region are yet to experience the full effects of surface mining. Whilst the Wassa West 

and Obuasi Municipalities had long history of mining, the Asutifi and Mpohor Wassa East 

areas have less than ten years of mining experience. In all about 127 communities were 

covered under the survey by the use of questionnaire and responses from community 

members under the following: List of water bodies in communities and their uses; 

Community perception of the conditions of water bodies; Alternative sources of water 

provided by mining companies and how communities perceived the alternative sources of 

water. The following are the results of their findings. 
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1. List of water bodies in communities and their uses 

From the 127 communities within the three mining environments, 622 respondents from 

the study area listed 468 water bodies in the survey. According to them, these water bodies 

run through 852 communities as shown in Table 2.4. Of the 302 respondents from Oboasi in 

the Ashanti region, 34% regarded their stream to be used for both domestic and spiritual 

functions whiles 64% were of the view that the water bodies are used for only domestic 

purposes. All the 320 respondents from communities in Kenyase (195) in the Brong/Ahafo 

region and Tarkwa (125) in the Western region regarded water bodies to be used for 

spiritual, domestic, recreational and income generating purposes. 

 

 

 

2. Community perception of the conditions of water bodies and causes of pollution  

Whilst communities in both Tarkwa and Obuasi area had many of the water bodies 

perceived to be polluted by respondents (Table 2.5), the respondents in Kenyase area 

showed very little pollution of their rivers. Out of 160 rivers listed in Obuasi area, 

respondents’ said 145 were polluted with only 15 perceived as not polluted. Respondents 

from Tarkwa area perceived all the 117 listed rivers as polluted. In the case of Kenyase 

however, Respondents said only 10 out of the 191 listed rivers were polluted. The results 

from the field study expressed in Table 2.5 could be explained that Kenyase has very short 

history of surface mining hence the small number of rivers perceived by respondents as 

polluted. It is important to note that though the study did not cover all the communities in 

the Kenyase area, the area had the highest number of listed rivers with minimal number of 

Table 2.4 Breakdown of communities in study area, number of water bodies and 
downstream communities (WACAM, 2008) 
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rivers perceived by communities as polluted. On causes of pollution of water bodies, the 

study established that greater percentage of these water bodies in both Obuasi and 

Amansie area in the Ashanti region were polluted as a result of mining activities. All the 125 

respondents in Tarkwa area believed that the 117 rivers listed were polluted by mining. 

However, 10 out the 125 respondents in Tarkwa area believed that both small and large 

scale mining destroyed rivers. In Figure 2.8 respondent’s perception of causes on causes of 

pollution of the water bodies is expressed in percentages for easy interpretation. 

 

 

 

 

 

3. Alternative sources of water provided by mining companies 

Although, Ghana government and the mining companies have provide some communities 

with potable water as a result of polluted water bodies but the study indicated that majority 

of the communities do not have access to adequate potable water. As indicated in Figure 

2.9, 84% of the 117 respondents’ in Tarkwa area, continue to use polluted water bodies 

Table 2.5  respondent’s perception of condition of listed water bodies (WACAM, 
2008) 

Figure 2.8 respondents perception on the causes of pollution of water bodies (WACAM, 2008) 
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because of the lack of potable water. Other communities in Tarkwa area had experiences 

with wells getting dried up during dry seasons and others getting muddy when it rains. They 

complain that the wells do not yield enough water for the whole population as the numbers 

of wells are not enough and easily get broken down. In Tarkwa and Obuasi areas some 

communities are provided with water in tanks which are not cleaned for many years. 

 

In conclusion, the study confirmed that many mining communities are facing water 

problems and moreover, the alternative water provided is inadequate, thus making the 

provision of sustainable water to water-stressed mining communities in Ghana an urgent 

one. Figure 2.10 presents in pictures some of the derogation of surface mining in the mining 

communities. 

  

 

 

 

Figure 2.9 Alternative water sources available for the community in Tarkwa area (WACAM, 
2008) 
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2.8 Hard-rock open pit mining in Ghana 

According to Lyon et al. (1993), open pit surface mining is the main type of mining method 

for major-scale hard-rock gold mining in Ghana and the world all over, especially when the 

shape of the ore body is in the form of a pipe, vein, irregular or steeply dipping stratified. 

They further affirm, it is the preferred method because the characteristics of the ore deposit 

(e.g. grade, size, location) make it the most cost-effective way of mining the low-grade ores 

that are located close to the surface over a wide area.  

 

F 

C B 

G 

A 
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Figure 2.10 (A) Cyanide contaminated stream (B) Flooded open pit mine at Iduaprem near 
Tarkwa (c) Dead stream due to mine dewatering (D) Deforestation of farmlands to give way to 
surface mining (E) Illegal small scale miners panning for gold in cyanide contaminated tailing dam 
(F) dry water well due to mine dewatering (G) resettlement of a mining community (Atoabo) in 
the Western region (H) Water shortage in one of the mining communities in Ghana  

 

 

E 
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The process involves the removal of the overburden after which the pits are excavated of 

the exposed ore in ever-expanding terraces to increasing depths (Figure 2.11). Depending 

on the thickness, the ore-body may be mined in a single vertical pass or in multiple benches. 

According to Hartman (1987), when the ore-body is large as in the case of gold mining the 

ore-body is mined in benches. Vertical holes are drilled from the top of the bench and then 

the ore is blasted onto the adjacent lower level.   

 

In case of less resistant materials, the ore-body is excavated with digging/scraping 

machinery without the use of explosives. Figure 2.12 shows a cross-sectional view of a 

typical open pit and the terminology used in pit design. Benches are normally excavated 

from about 2-15m in height in stacks of 3-4, in between which is a crest on which the haul 

road is positioned. The road gradient increases with increasing number of benches in the 

stack with benches having a steep face angle whilst the slope angles of the stack and overall 

slope are flatter, thereby helping to prevent slope failures (Hoek & Brown, 1980). 

 

 

 

Figure 2.11 Open pit mining sequence for a pipe-like ore-body 

Orebody Orebody 

  Initial surface 

  Open pit 

Waste rock Waste rock Waste rock Waste rock 

  Ground surface 

A. Section through an ore-body before open pit 
commences 

B. Section through an ore-body as waste stripping 
and  ore production commences 

 Bench Bench 
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2.8.1 Geometry of open pit mines: Shape and size  

Open pit mining is suitable for geometry of almost any ore-body especially when the ore-

body is typically vein-type, pipe-shaped, steeply dipping stratified or irregular and closer to 

the surface (Hartman, 1987; Hoek and Bray, 1974). Although it can be of any shape but in 

most cases the shape and size of the pit is designed to fit the geometry properties (shape, 

size and depth) of the deposit. These researchers further mentioned that the pit design is 

guided by taking into consideration results from pit optimization programs which take into 

account historical and predicted operational costs. For example, the Chirano gold deposits 

which occur in long thin dyke-like granite, at the eastern edge of the Sefwi Belt, immediately 

adjacent to the Tarkwaian wedge. According to Allibone et al. (2004), the deposits occur like 

a string of beads along a lode horizon several kilometres long and the geometry of the 

deposits ranges from tabular (Obra site), to pipe like (Tano site), to several parallel lodes 

(Paboase site). Allibone et al. (2004) assert that lode thickness ranges from a few metres to 

70 metres and most deposits dip very steeply towards the west or southwest, and also 

plunge very steeply. Figure 2.13 shows an open pit mine design of a typical pipe-shaped 

hydrothermal gold mineralisation of the Damang and Wassa mine in the Tarkwa district of 

South Western Ghana.  

Figure 2.12 Cross-sectional view of a typical open-pit bench mining terminology (Hoek and Brown, 
1980) 
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Taking into consideration the geometry properties of ore reserves in Ghana, most open pits 

are oval and rectangular in shape reaching an average depth of approximately 300m 

(Tarkwa and Damang Gold mine Technical Short Form Report, 2010). In Figure 2.14 and 2.15 

the aerial view of the various configurations of the Damang, Tarkwa and Iduapriem open 

pits are shown with most of the pits having either oval or rectangular shape at varying 

depths. Currently, narrow, tabular auriferous conglomerates ore-body is being exploited by 

Tarkwa gold mines from six open pits namely; Pepe, Atuabo, Mantraim, Teberebie, 

Akontansi and Kottraverchy (Tarkwa Gold Mine Technical Short Form Report, 2010).  

 

Sedimentological studies of detailed stratigraphy of the footwall reef units of ore-bodies of 

Damang and Tarkwa reserves reveal both the lateral and vertical facies variations of the 

area (Table 2.6) (Damang and Tarkwa Gold Mine Technical Short Form Report, 2010). 

Similaly, the Ahafo South Project of Newmont Gold Ghana Limited (NGGL) in the Brong 

Ahafo region operates four open pit mines namely; Amama, Subika, Awonsu, and Apensu, of 

various configurations and depth ranges shown in Table 2.6 (CGML, 2010).  

 

 

 

Figure 2.13 cross-sectional views of sections of gold mineralisation pit design of the Damang 
open-pit (left) and The Wassa Mine open-pit (right)   (source: Goldfields Ltd. Damang and Wassa 
Mine Technical report 2010) 
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D 

A 

C B 

Figure 2.14 Photographs of some of the  major open pit gold mines in Ghana: (A) Goldfields 
Ghana Ltd. Damang (B) Tebrebe Goldfields Ltd. Tarkwa (C) Anglogold Ashanti, Iduaprem (D) 
Goldfields Ghana Ltd. Tarkwa 

Figure 2.15 Photographs of some of the world’s largest open-pit mines. Clockwise from top left 
are: (a)The Super Pit Gold Mine of Western Australia (b) The Grasgberg Gold Mine of Indonesia (c) 
Ruby Hill Open Pit Mine, Nevada USA and (d) The Bingham Canyon Mine of Utah USA 
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Table 2.6 Geometry (Shape and size) of some  leading open pit gold mines in Ghana 
and outside Ghana 

Mining Company Mine Location 
 

Start 
Date 

Type of 
mine 

Geometry  
Length 

(m) 
Width 

(m) 
Depth 

(m) 

Goldfields Ghana 

Ltd. Of South Africa  

Tarkwa (W/R) 

Damang (W/R) 

Abosso (W/R) 

1993 

1997 

1997 

Open-Pit 

Open-Pit 

Open-Pit 

  200-

300 

70 

200 

Anglo Gold Ashanti 

of South Africa 

(Central Africa 

Gold)  

Obuasi (A/R) 

Iduapriem(W/R) 

Bibiani (W/R) 

2004 

1992 

1997 

Open-Pit 

Open-Pit 

Open-Pit 

 

 

690 

 

 

20-40 

 

200 

177 

Golden Star 

Resources Ltd. Of 

Canada 

Bogosu (W/R) 

Akyempim(W/R) 

Preastea (W/R) 

1990 

2005 

1995 

Open-Pit 

Open-Pit 

Open pit 

  200 

 

150-

200 

Red Back Mining 

Inc. Of Canada  

Chirano (W/R) 2005 Open-Pit 

. Obra 

. Tano 

. Paboase 

   

20-70 

Newmont Gold 

Ltd. Of Denver 

USA.  

Ahafo South 

project  in 

Brong-Ahafo 

Region (B/A)  

2006 

 

Open-Pit    

. Amama 

. Subika 

. Awonsu 

. Apensu 

 

36 ha. of land 

52 ha. of land 

74 ha. of land 

88 ha. of land 

 

144 

140 

285 

270 

Super pit Goldfield 

Limited, Australia 

Kalgoorlie in 

Western Aust. 

 Open- pit 3600 1600 512 

The Bingham 

Canyon Mine 

Utah, USA  Open-pit  4000  1200 

  W/R=Western region             A/R=Ashanti region           B/A=Brong-Ahafo region 
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2.9 Summary and discussion 

Assessment of mine geometries shows that generally, the layout of surface mines depends 

on the geometry (shape, size and depth) of the mineral deposit. In most cases, the shape 

and size of the pit is designed to fit the geometry of the deposit as well as the characteristics 

of the host rock, especially when the ore-body is typically of vein-type, pipe-shaped, steeply 

dipping stratified or irregular and closer to the surface. Considering the geometry properties 

of ore reserves in Ghana and elsewhere, the layout of most open pits mines are 

characterised by rectangular and oval shape with benches and spiral roads. In plan-view, the 

dimensions of the pits on the average range from 500m to 2000m and reach a maximum 

economic depth of approximately 300m. These average values have been used by the 

MODFLOW computer code in the design, simulation and assessment of mine derogation on 

domestic wells and surface water systems in Ghana (Chapters 5 and 6).   
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CHAPTER 3 

CHARACTERISATION OF HYDRAULIC PROPERTIES OF CRYSTALLINE ROCKS 

3.1 Introduction 

In this chapter a database of hydraulic property information on crystalline rocks has been 

developed, analysed and statistically evaluated. Hence, the results produced have provided 

estimates that have  been used in selecting modelling parameters for use in groundwater 

flow modelling activities in hard rock mining environments, and in particular, in the 

calculations on mine radius of influence of impacted area.  

 

The rest of the chapter is arranged as following: section 3.2 is devoted to a general 

summary of previous work by other authors; section 3.3 gives the specific aim and 

objectives for the characterisation process; in section 3.4, the methods adopted to 

characterise the hydraulic  properties of crystalline rocks are discussed; also in section 3.5, 

the issues relating to the difficulty of estimating appropriate K values for regional scale 

modelling are enumerated; in section 3.6, the factors affecting K values in a given mining 

environment have been discussed; the data analysis of the entire characterisation process 

have been presented in section 3.7, and finally, the summary and discussions of the 

characterisation process are devoted to section 3.8.  

3.2 Summary of previous work by different authors on hydraulic conductivity of crystalline 
rocks  

3.2.1 Introduction 

In general, crystalline rocks are characterised by very low primary porosity and permeability. 

These can be significantly increased by weathering and fracturing; therefore, the climate, 

topography and rock structure may be important in accounting for differences in well yield.  

In particular, thick areally extensive weathered layers can form reliable aquifers which can 

be an important source of groundwater. While in arid and semi-arid regions the weathered 

layer is usually thin (less than 1m), in humid tropical regions the thickness may reach 100m 

(Singhal & Gupta, 1999). According to these authors, coarse-grained, quartz-rich rocks such 

as granite and quartzite are more brittle than slate and schist, and have a coarse-grained 
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weathering product. Therefore, they tend to develop and preserve open joint systems and 

develop higher permeability weathered zones. Weathering products of phyllite, schist and 

slate include clay minerals that tend to fill the fractures and have lower permeability. In 

section 3.2.3, studies on the properties of weathered zone have been described separately. 

In particular, however, in the present research study, the hydraulic properties of the whole 

sequence of bedrock starting from the ground surface have been considered.   

 

3.2.2 Previous major research studies on hydraulic conductivity of crystalline rocks 

In Table 3.1 a summary of major research studies of in-situ hydraulic conductivity tests 

conducted by various research groups have been presented. Hydraulic conductivity values 

derived from in-situ well tests at various scales ranging from 10−11 to 10−4 m/s have been 

tabulated.  The most typical values are centred on log K = −8±1 m/s at up to 4 km depth.  

Apart from the above, several studies have compared published values for hydraulic 

conductivity at laboratory, borehole and regional scales (Brace, 1980, 1984; Clauser, 1992). 

These workers compiled data on hydraulic conductivity of crystalline rocks measured at a 

variety of spatial scales (see Figure 3.1). An increase in average permeability of about 3 

orders of magnitude from the laboratory scale to the borehole scale is observed. Core 

material for laboratory measurements is usually derived from non-fractured samples, and 

may be biased towards the lower end of a rock’s permeability range. Hydraulic 

conductivities measured at the borehole scale generally range between 10-7 and 10-2 m day-1 

(permeability of 10-19–10-14 m2). They also found out that the porosity of unweathered 

crystalline rock usually varies from 0.1% and 1%.  
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Table 3.1  Summary of site characterisation of hydraulic conductivity of previous 
studies 

Study Area Rock Type Depth 
(m) 

Hydraulic conductivity 
K (m/s) 

Author Reference 

Äspö, Sweden Granitic rocks  <450 
+1,680 

3x10
−10

–1x10
−8

, no depth 

dependence (ndp) 

Stanfors et al. 1999; 

Walker et al. 1997; 

Mazurek et al. 2003 

Olkiluoto, Finland Mica-rich gneisses, 
minor granite 
 

<1,000   1x10
−9

–1x10
−8

 ndp up to 

1x10
−5

 

Pitkänen et al. 1992; 

Palmén et al. 2004 

Stripa, Sweden Granite  
 

<1,232 1x10
−11

 – 1x10
−8

 
representative value (rep) 
1x 10

−9
 , K decreases with 

depth 

Gale et al. 1982, 1987; 

Nordstrom et al. 

1989a,b 

Carnmenellis, 

Cornwall, UK 

Granite  
 

<2,200 1x10
−9

–1x10
−5

 ndp to 700 
m rep 1x10

−8
–1x 10

−7
 K 

lower values at 
depth >700 m 

Pine and Ledingham 

1984; Watkins 2003 

Canadian Shield, 

-NW Territories 

Granitic rocks  
 

<550 

  

8x10
−9

–4x10
−7

 , rep  
2x 10

−7
 , K possibly 

decreases with depth 

Kuchling et al. 2000; 

Canadian Shield, 

-Manitoba 

Granitic rocks  <1,000 1x10
−13

–1x10
−4

 rep  
1x 10

−7
 

Stevenson et al. 1996; 

Gascoyne 2004 

NIAGRA, deep wells 

Northern 

Switzerland 

Granite, gneiss  <2,500 1x10
−13

–4x10
−4

 ndp, rep 

1x10
−9

 

Leech et al. 1984; 

Ostrowski and Kloska 

1989; Pearson et al. 

1989 

Unrach3, 

S. Germany 

Gneisses  <4,444 1x10
−9

 Stober and Bucher 2000 

KTB, Germany 

 

Amphibolite  <4,000 4x10
−8

 Stober 1995, 1996 

Soultz-sous-Forêts, 

France 

Granites  <5,000 3,600–3,800m: 7x10
−8

–

2x10
−6

 

Aquilina et al., 2004 

Cajon Pass in 

California, U.S.A 

Gneisses  
 

<2,077 3.8x10
−12

–1.4x10
−9

 rep 
1x10

−11
 , K 

increases with depth 

Coyle and Zoback 1988 
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3.2.3 Weathered zone properties 

The geological structure, normally encountered in hard-rock environment is characterized 

by the existence of a hard rock basement overlain by a weathered overburden of variable 

thickness. Hydro-geologically, the weathered material which constitutes the overburden has 

high porosity and contains a significant amount of water, and at the same time, it presents 

low permeability due to its relatively high clay content Barker (2001). Many research studies 

on weathered zone have been conducted by various authors; and in this section their works 

have been enumerated. A weathered zone can be defined as a near surface zone in which 

the upper exposed rock has either been chemically or physically changed due to the action 

of rain, water, and etc (Acworth, 1987). Some studies in terrains have concentrated on 

shallow depths – the top 10 to tens of metres. In many areas these shallow systems are 

largely within the weathered zone. It is generally known that a very shallow zone has much 

greater permeability than the deeper parts of hard rock systems. In Table 3.2, a summary of 

estimated permeability ranges of weathered zones from studies around the world 

conducted by Gilson (2010) is presented. 

 

Figure 3.1 The work of Clauser (1992) on permeabilities of crystalline rocks measured at different 
scales. Bars mark the permeability range when several individual values are reported; circles 
represent individual values. Hydraulic conductivity (m day-1) at 20 oC is very approximately equal 
to intrinsic permeability (m2) x 1012.    
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Table 3.2  Summary of estimated permeability ranges of weathered zones from  studies 
around the world (Gilson 2010) 

Country  
 

K (md-1)  Reference  

Malawi/Zimbabwe  
 

0.08 – 0.7  Chilton and Foster (1993)  

Zimbabwe  
 

0.02 – 4.9  Wright (1992)  

Australia  
 

0.01 – 1  Wilkes et al. (2004)  

Uganda  
 

0.04 – 0.2  Taylor and Howard (2000)  

Ghana  
 

0.22 – 2.2  Martin (2005)  

Burkina Faso  
 

0.216 – 1.152  Ouattara et al. (2007)  

Various conceptual models have also been suggested for shallow weathered systems, 

including those of Jones (1985); Acworth (1987); Gupta (2001); Chilton and Foster (1995). 

Figure 3.2 shows the conceptualization of weathered-fractured rock by Chilton and Foster 

(1995). In the work of Wright and Burgess (1992), the conceptualisation of the weathered 

zone involves the division of the geology up into a weathering series, based on their degree 

of weathering, without considering the geology of the individual series (See Table 3.3). Their 

division consist of the following; from bottom to the top, the ‘’Fresh bedrock‟ is referred to 

as zone I, the ‘’Saprock‟ zone II-III, then the ‘’Regolith‟ which is further divided into 

‘’saprolite‟ zone IV-V, and finally the ‘’residual soil‟ zone VI, where the Roman numerals I-V 

indicate the weathering grades and as defined in Table 3.3. 

 

Figure 3.2 A weathering profile developed upon crystalline basement rocks vs. depth (Chilton 
and Foster, 1995) 
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Table 3.3  Description of weathering profile based on the degree of weathering 
(modified from Wright and Burgess 1992)  

Weathering series Zone Name Description 

R
ego

lith
 

Residual soil VI Residual Soil All rocks converted into soil 

Saprolite V Completely weathered  Soil, but the fabric is still intact 
largely  

IV Highly weathered Some soil and fresh rock is only 
present as a discontinuous 
framework  

B
ed

ro
ck 

  

Saprock III Moderately weathered Discoloured and weakened rock 
material 

II Slightly weathered Discoloured but not noticeably 
weak 

Fresh bedrock I Fresh rock No visible sign of weathering 
rock material 

 

The depth of weathering in the gold-mining areas of Ghana especially in the Tarkwa rock 

system is usually in the order of 20m (Kortatsi 2004), and as such is small in comparison with 

the depth of the mines (~300m). Thus, most of the exposed mine walls are in fractured 

bedrock rather than heavily weathered material. However, this does not mean that the 

weathered zone is unimportant since most water supply wells are found in the weathered 

zone, and indeed its impact is explored in Chapter 4 of this thesis. Figure 3.3 shows a typical 

weathered profile in Ghana.  Hence, in this study it is necessary to take note of weathered 

zone properties as well as of hydraulic properties of deeper parts of the system. It should be 

noted that the studies described in the previous subsections have included data from rocks 

of various degrees of weathering, and that the database assembled and described in the 

following subsections include data from both shallow and deep depths 

 

Figure 3.3   A profile of a typical crystalline basement rock in South Western Ghana (Source: 
Technical Short Form Report on Damang Gold Mine, Ghana December 2010) 
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3.3 Specific Aim and Objectives   

Under the present scenario, the specific aim is to extract from the literature a reasonable 

range of possible permeability values for use in investigating the impacts of hard rock mines 

in Ghana. More specifically, the objectives are: 

1. to develop a conceptual model for hydraulic conductivity (K) distribution (e.g., depth 

dependence; anisotropy; fracture connectivity) 

2. to provide K distribution type and distribution parameter values (e.g., central 

tendency and spread) applicable for generic calculations of groundwater flow near 

mines 

In order to constrain the ranges for hydraulic conductivity, it is necessary to determine if it is 

affected by depth, rock type/class, climate and tectonic history. By determining the 

dependency of hydraulic conductivity on these factors, better estimates for the likely range 

for Ghana may possibly be made.   

3.4 Methods of characterisation  

3.4.1 Introduction 

In this research, in order to achieve the specific aim and objectives, the methodology 

adopted included: (1) international literature search of hydraulic-property estimates (i.e., 

hydraulic conductivity, transmissivity and storativity), concentrating on data from depths 

appropriate for large open cast mines; (2) evaluation and presentation of data; (3) the use of 

Data Thief and a Scanning Pen for the extraction of data points from graphs; and (4) 

application of statistical methods. Each of these aspects is described in the following 

subsections.   

3.4.2 International Literature Review 

3.4.2.1  Introduction 

Literature searches have been conducted for both published and unpublished data from 

various geosciences databases, technical reports and memoranda from different hydro-

geological institutions in the mining environment worldwide, using computer world wide 

web (www.), relying on formal technical literature search through the University of 
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Birmingham’s Library Services and literature search engines such as Google. These typically 

provided extensive regulatory (i.e. federal, provincial and state agencies) industry 

publications and less frequently conference proceedings. In all, about 150 papers were 

found to be relevant to the current project yielding information on hydraulic-property 

estimates (such as; hydraulic conductivity, transmissivity, specific capacity and fracture 

characteristics). The type of information found has been divided into the following 

categories: 

 

1. Refereed scientific publications or research papers specifically related to metal ore 

extraction, hard-rock geology and hydrogeology. 

2. Research publications and reports including government agencies such as the US 

Geological Survey, State of Minnesota Department of Natural Resources, and 

Environment Canada. 

3. Scientific publications not directly related to ore extraction and source water 

protection, but containing technical information relevant to the types of impacts 

that could occur through ore extraction.  

4. Information of interest found in references that aid in understanding issues related 

to ore extraction and source water protection; these including case histories, 

unpublished reports and legal or environmental assessments.  

 

3.4.2.2  Data Sources and Compilation 

Hard rock aquifer property data were collected from a variety of sources requiring varying 

degrees of pre-processing. Apart from collating existing hydraulic conductivity, 

transmissivity, and storativity data obtained from field tests, transmissivity values that had 

been obtained from specific capacity data were also collated. 

Though hydraulic property data are scarce in Ghana as already mentioned in Chapter 1, 

hence, there was the need for the current work on international literature to obtain 

hydraulic property values. Despite the lack of data in Ghana, an attempt was made to obtain 

some information from the following institutions and organisations;  
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1. Water Research Institute (WRI) at the Centre for Scientific and Industrial Research 

(CSIR) - Accra, Ghana  

2. World Vision International (WVI), Ghana 

3. Ghanaian Australian Goldfields (GAG) Limited  (Teberebie Mine) at Tarkwa, Ghana  

4. Ashanti Gold Fields Limited at Obuasi, Ghana   

5. Gold Star Resources Limited (Wassa Mine) Tarkwa, Ghana  

The following paragraphs expand on the nature and the type of data collected from these 

various institutions and organizations.  

 

3.4.2.3 The use of Data Thief / Scanning pen 

Data Thief is a Java based software application that is used to extract data points from a 

graph. Typically, a graph is scanned from a publication or a journal, and the scanned 

information is loaded into the Data Thief.  The saved resulting coordinates, are used in 

calculations or graphs that include one’s own data. The coordinates of the data points are 

then exported as text file.  

A sizable amount of conductivity data used in this study was extracted from graphs using 

data thief purchased purposely for this study. The method help in acquiring data from 

hydraulic conductivity depth relationships of works conducted by researchers including the 

following: Gale (1982) – Hydrogeological Characterisation of the Stripa Site; Zhao (1998) - 

Rock mass hydraulic conductivity of the Bukit Timah granite, Singapore; and Nastev (2008) - 

Developing conceptual hydrogeological model for post dam sandstones in southwestern 

Quebec, Canada and others.  

3.4.2.4  Depth limit for data acquisition 

According to Ugorets and Howell (2008), hydrogeological investigations must have a much 

larger area of influence than those considered in mining and geotechnical investigations. 

Mining investigations focus on the identification of ore and waste, and the radius or scale of 

the investigation is limited by the size and form of the ore body. Geotechnical investigations 

include a small distance from the boundary of the open pit or underground mine. Ugorets 
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and Howell (2008) assert that depending on the projects hydrogeological condition and 

vulnerabilities, hydrogeological investigations can include areas of up to 100s of meters 

outside of the ore body boundary in order to have reasonable estimates of inflow to the 

mine, impacts of the operation on the groundwater levels and quality, and groundwater 

discharge to the surface water bodies during the mining and post-mining conditions. These 

researchers assert that, because groundwater flow in the vicinity of an open pit or 

underground mine is three-dimensional, they recommended that vertical field 

characterisation is to be conducted to a depth, sufficient to characterise inflow to the mine 

base. Regulatory agencies in some countries recommend doing this to a depth of at least 

50m below the proposed ultimate bottom of the open pit or underground mine.   

 

3.4.3. Evaluating and presenting the data 

In the data compilation process, every effort was made to exclude duplicate site locations 

and hydraulic property measurements from the dataset. Tests that were reported by the 

published source with insufficient location or aquifer assignment information needed for 

analysis were also excluded. Data compiled came from a variety of sources, resulting in the 

aquifer transmissivity (T) or hydraulic conductivity (K) data being reported in several 

different types of unit of measurement needed to be calculated from the information 

provided by the source. To create a consistent basis for evaluating and presenting the data, 

the aquifer (T) or K-data was converted to consistent units of metres for length, and seconds 

for time. Ideally, random locations would have been sampled but many of the data were 

from either dam and tunnel regions (with higher K values than average K expected) or from 

radioactive waste region with lower K values than the average K expected. 

 

Several different methods were used by various researchers to analyze the data acquired 

from tests of constant-rate pumping; specific capacity, slug (injection and bailing), packer 

and drill stem tests. For example, constant-rate pumping and injection tests were analyzed 

by using curve-fitting methods. In rare cases, original data were available so it was assumed 

in this thesis that reported hydraulic property values have been correctly calculated. In 

addition, methods used were not of the same reliability or scale. For example as in the 

works of Theis (1963) and Brown (1963), estimated transmissivity and hydraulic conductivity 
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values derived from specific capacity and step drawdown data  were generally not as 

accurate as estimates obtained from time-drawdown data. Many of these dataset compiled 

were based on specific capacity test data. Most transmissivity data reported in this study 

were data which have been estimated from specific capacity test data by researchers from 

various analytical and empirical methods based on the Theis (1963) non-equilibrium 

approach (for example, Thomasson and others, 1960; Theis, 1963; Brown, 1963; Logan, 

1964; Razack and Huntley, 1991; Huntley and others, 1992; El-Naqa, 1994; Mace, 1997). 

 

Further discussion on reliability and validity of methods is given in Section 3.5.2.1. A 

compilation of hydraulic conductivity estimates from all data collected is combined into one 

dataset in excel format under the headings; Data source (study), Rock type (Lithology), 

Regional climate/location, Project type, Test type, Well depth, and corresponding hydraulic 

conductivity estimates.  

 

3.4.5 Statistical methods for data analysis 

3.4.5.1 Introduction 

The main goal of the statistical analyses was to determine if there was a significant 

difference between hydraulic conductivity values determined from various data sources and 

test methods and also to determine the nature of distributions (similarities and differences) 

existing among dataset. Due to the wide variation in K values over short distances and 

uneven distribution of data, a statistically based approach has been used to describe 

frequency distributions of hydraulic conductivity and to determine the likely effective 

regional values for crystalline fractured rocks. Standard statistics used include descriptive 

statistics, regression correlation analysis and comparative statistical analysis. The three main 

statistical methods used are described in the following subsections. In section 3.4.5.2 

descriptive statistics is presented; analysis of variance (ANOVA) is devoted to section 

3.4.5.3; and section 3.4.5.4 describes the Kolmogorov-Smirnov (K-S) significance test. 
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3.4.5.2 Descriptive statistics 

Descriptive statistics including the geometric and arithmetic means, median, range and 

variance of the hydraulic conductivity are reported for each data sources obtained. Hess et 

al. (1992), for example, suggest that use of box plots (also known as box-and-whiskers plot) 

is a convenient way of graphically describing data by representing the following values: 

minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and maximum (Figure 3.4). 

A box plot may also indicate which observations, if any, might be considered outliers. Bjerg 

et al. (1992) reported that differences between populations are displayed without making 

any assumptions of the underlying statistical distribution, hence they are non-parametric. 

 

In fact, hydraulic conductivity of aquifer materials is most often found to be log-normally 

distributed (e.g., Freeze 1975; Bjerg et al. 1992; Hess et al. 1992; Sudicky 1986; Woodbury 

and Sudicky 1991; Rehfeldt et al. 1992 and Neuman et al 1980). The mean, geometric mean 

(the mean value of log-transformed values of the estimates) and standard deviation of the 

values assuming a log normal distribution (see Figure 3.4) have been calculated using the 

following equations. These are:    

           
           (3.1) 

                          
              

    
   

            (3.2) 

Figure 3.4 (Left): Probability density function of a lognormal distribution comparing the mean, 
median and mode of two log-normal distributions with different skewness. (Right): Box–and–
whisker diagram  showing the six data summary where IQR is the interquartile range 
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where µ and σ are the mean and standard deviation of the log-transformed K values. 

However, the log K values are not perfectly normally distributed, and other measures that 

rely less on the assumption of normality should also be applied. A common measure of 

central tendency is the geometric mean, identical in value to the median K value if the 

values are log-normally distributed: 

                                (3.3)                                                               

In addition, the median, interquartile range and Median Absolute Deviation (MAD) of the 

untransformed data have been calculated. MAD is defined as the median of the absolute 

differences between the untransformed K data and their median value: 

                     (3.4)            

where IdI = absolute value of (measurement – median) (e.g. Helsel and Hirsch, 1992). This 

measure of spread is resistant, i.e. insensitive to outliers. A measure of skew that implies 

nothing about the parent distribution is the quartile skew coefficient (qs) as described by 

Helsel and Hirsch (1992) is written as: 

   
                     

         
              (3.5) 

where, for example P75 is the 75 percentile. This measure of skewness is resistant, i.e. 

insensitive to outliers. 

Finally, Swanson’s method for estimating the mean of skewed distributions has also been 

calculated (e.g. Hurst et al., 2000 as quoted in: http://www.mhnederlof.nl/lognormal.html): 

                                            (3.6) 

The estimate is good if 

         

         
                 (3.7) 

3.4.5.3 Analysis of Variance (ANOVA) 

ANOVA is a parametric test software package in Microsoft Excel which assumes a normal 

distribution and uses the mean, variance and a table of critical values for ‘’F’’ distributions to 



  

49 
 

calculate an ‘’F’’ value (F-test) and the probability ‘’P’’. The acceptance or rejection of the 

statistical significance of the differences in two or more means is based on a standard that 

no more than 5% (0.5 Level) of the difference is due to chance or sample error and that the 

same difference will occur at 95% of the time should the test be repeated. 

 

For an analysis of data, F and P are the variables of concern. The F value obtains from the 

programme, tests for variance of the data set and also should be used as a comparison of 

standard deviation. The F value tests whether two standard deviations differ significantly 

and is a ratio of the two sample variances: (    
 /  

 ). If the ratio between standard 

deviations is close to one, then the null hypothesis (no difference between the hydraulic 

conductivity values) should be accepted (Miller and Miller, 1993). The P value allows the 

significance of the test to be determined. If the P value is  less than 0.05 then at 95% 

confidence level, there is a statistical difference between the data sets, but if the P value is  

greater than 0.05, then there is no statistical difference between data sets. It is important to 

note that P values do not provide a yes/no answer, but rather how strong the case is against 

the null hypothesis. Therefore, the lower the P-value the stronger the case that there is a 

difference between data sets (http://www.texasoft.com/pvalue.html). The P-value is the 

probability of making a Type 1 error, which means, rejecting the null hypothesis when it is 

true. Analysis of variance can be used for several types of analysis including: One Way 

Analysis of Variance, N way Analysis of Variance, Multiple Regression and Analysis of 

Covariance.  

3.4.5.4 The Kolmogorov-Smirnov (K-S) Significance and Normality Tests  

In the work of Helsel and Hirsch (1992), the Kolmogorov-Smirnov significance and normality 

tests is described as follows. The Kolmogorov-Smirnov (K-S) test attempts to determine if 

two sets of data differ significantly or  to decide if a sample comes from a population with a 

specific statistical distribution. A useful property of the K-S test is that it makes no 

assumption about the distribution of the data, i.e. it is non-parametric / distribution free.  

Helsel and Hirsch (1992) define the K-S test as follows: If H0 (the data follow a specified 

distribution) and Ha (the data do not follow the specified distribution) then, the 

Kolmogorov-Smirnov test statistic (D statistics) is defined as: 
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                     (3.8) 

where F is the theoretical cumulative distribution of the distribution being tested.  This 

distribution must be continuous, and it must be completely specified. The hypothesis 

regarding the distributional form is rejected if the test statistics ‘’D’’ is greater than the 

critical value ‘’P’’ obtained; where the critical value allows the significance of the test to be 

determined.  

For normally distributed data, it is expected that about 68.3% of the data will be within 1 

standard deviation of the mean (i.e., in the range Xavg ± σ) and 95% of the data to be within 

1.96 standard deviations of the mean (i.e., in the range Xavg ± 1.96) (e.g. Helsel and Hirsch 

(1992)). Hurst et al. (2000) call the latter a 95% confidence interval for the sample.  

In the present study, the K–S test has been applied at 0.05 significance level (α) to test for 

significant differences and spread of K-distributions between different studies (i.e. from 

different data source), rock types and depth intervals.  Furthermore the K-S test has been 

used to determine whether a set of measurements comes from a normal distribution 

population or not.  

3.5 Difficulty of estimating appropriate K values for regional scale modelling: Anticipated 
related issues  

3.5.1 Introduction 

The K-value is subject to variation in space which means a representative value must be 

adequately assessed. In the estimation of appropriate K-values for modelling at the regional 

scale in this study, two main issues or difficulties were encountered: (1) the process of 

transforming or linking the apparent conductivity (Kapp) values obtained from field testing to 

the representative conductivity (Kreg) values appropriate for modelling at regional scale, and 

(2) the possible bias in field data resulting from the purpose for which the field 

measurements were made. In the following sections brief explanations of the above 

difficulties have been presented. 
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3.5.2 The mechanics of linking apparent field testing conductivity values to conductivity 
values appropriate for regional scale modelling    

The compiled field testing conductivity values for this study were obtained from different 

field testing methodologies and hydrogeological environments. In general, it is always 

appropriate to process all field estimates of hydraulic conductivity into conductivity values 

appropriate for regional scale modelling (Neuman, 1982).  Hence some of the encountered 

possible factors that gave rise to the difficulty in transforming field testing conductivity 

values into appropriate values for regional scale modelling include the following: 

 

1. the validity  of different types of test methods 

2. scales of measurement of different types of test where the mean value of 

hydraulic conductivity changes with measurement scale 

3. possible effect of local vs. regional connectivity of fractures 

4. the assumption that tests were properly interpreted whereas there might be 

some flaws in the methodology used 

5. use of equivalent porous medium models to interpret data from fractured 

aquifers 

6. the purpose of studies from which data extracted lead to bias. All these 

setbacks are explained in detail in the sections below 

3.5.2.1 The validity of different types of test methods 

3.5.2.1.1 Introduction 

A number of methods are available for estimating the hydraulic conductivity of hard rock 

aquifers. In the current study, four categories of aquifer property data were encountered 

and each data type varies in its reliability, validity and level of supporting documentation 

based on the method of collection by the authors. In the order of validity and reliability, the 

data collection methods used include data derived from hydraulic field tests which involve 

(i) single well and multiple well pumping tests, (ii) specific capacity tests, (iii) slug or pulse 

test, and (iv) packer/constant head injection tests and drill stem tests (DSTs). In the 

following, the general reliability and validity of the different types of test methods in order 

of the categories mentioned above are explained. 

 



  

52 
 

3.5.2.1.2 Single well and multiple well pumping tests 

Although, single-well pumping tests enable an estimation of the average aquifer hydraulic 

conductivity in the vicinity of the borehole, they do not provide any information on its 

spatial variability (Cook, 2003). Various studies have shown that single-well pumping tests 

conducted on nested piezometers or on intervals of uncased boreholes that are isolated 

using Packers give information on the vertical variation of hydraulic conductivity.  

 

Multiple-well pumping tests on the other hand, can provide information on fracture 

connectivity and aquifer anisotropy, but are much more difficult and expensive to conduct 

(Cook, 2003). Meanwhile, with these two tests methods, if the scales of heterogeneity are 

greater than the scale of the pumping test, then very irregular drawdown can occur, which 

can be difficult to interpret quantitatively. In general, pumping tests either inject or remove 

fluid from a borehole and measure the response (i.e. change in pressure) of the aquifer in 

the same or in nearby observation boreholes. In this regard, the pumping period may be on 

the order of hours to several days, resulting in a high resolution data set which may consist 

of hundreds of data points measured with automated high-precision equipment (Kruseman, 

1990). Here, it is worthy to note that the longer a well pumps, the more far-reaching its 

radius of influence, hence the greater the volume of aquifer tested and more representative 

of the bulk aquifer conditions. Consequently, potential bias due to well-bore storage 

diminishes with time.  

 

Moreover, multiple borehole tests offer a number of advantages over single borehole tests. 

In the former, fluid is pumped from (or into) one well and drawdown is observed in the 

pumped well and in one or more nearby observation wells. If the test is conducted over a 

sufficiently large scale, then it may be able to treat the rock mass as a porous medium, and 

so determine both vertical and radial anisotropy (Sahimi, 1995). In other cases, multiple 

borehole pumping tests allow the interconnection between fractures to be investigated. In 

heterogeneous systems, it is frequently observed that nearby observation wells show little 

or no drawdown, while more distant wells may show large drawdown. Yet still, in some 

cases, this may occur even though the bores lie in the same direction from the pumping 

well. Accordingly, it can be demonstrated that the system is behaving as an equivalent 

porous media; hence estimation of model parameters from multiple borehole pumping 
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tests may be difficult. According to NRC (1996), it may be tempting to analyse the response 

in each observation well separately, using methods developed for isotropic porous media. 

This approach leads to a range of hydraulic properties being estimated, which might be 

interpreted as representing the range of hydraulic properties of the rock mass. However, 

NRC (1996) suggests that the approach can be very misleading. The alternative as according 

to Hsieh (2000) is to use a numerical model to attempt to simulate pumping test results. 

Hsieh (2000) posited that this will usually require the use of geophysical and other fracture 

mapping techniques to help constrain the location of high conductivity zones in the model, 

or otherwise issues of non-uniqueness are likely to arise.  

 

Nevertheless, despite the difficulty of quantifying hydraulic parameters from multiple well 

pumping tests, such tests often provide valuable information on aquifer behaviour, and help 

constrain conceptual models than in single well and other testing methods (e.g., slug test, 

drill stem test) Belcher et al., (2001).  

 

So far, it can be conjectured that data quantity, collection and analysis methods of multiple 

pumping tests provide the highest level of certainty relative to the other types of tests 

methods. Freeze and Cherry (1979) have observed that on the whole, single well pumping 

tests are less reliable than multiple well pumping tests due to well losses and issues to do 

with well storage and seepage faces.   

 

3.5.2.1.3 Specific capacity tests 

This type of test is generally conducted after a well is completed to determine the pumping 

rate a well can sustain or it used to measure the productivity of a well; mathematically, it 

consists of the pumping rate divided by the drawdown in the pumped well (Freeze and 

Cherry, 1979). During a specific capacity test, water level measurements are generally 

collected only at the beginning and at the end of a generally shorter-duration test. Due to 

the generally shorter test duration (often 1-4 hours) the volume of aquifer tested is typically 

less than a longer-term aquifer pumping test. Specific capacity tests of longer duration 

provide data representative of the surrounding aquifer rather than of the well bore and/or 

filter pack and provide water levels which are more representative of equilibrium 
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conditions. Generally, the specific capacity is reflective of aquifer transmissivity as the well 

efficiency approaches 100 percent (Heath, 1983). In this regard, well efficiency is 

considerably less than 100 percent in screened wells and approaches 100 percent in some 

open-hole wells. In other words, specific-capacity estimates in open-hole wells is considered 

closer to actual aquifer transmissivity, and those derived from screened wells may be of 

lower or minimum transmissivity.  

 

For a porous media the relation between specific capacity of a well and the local 

transmissivity is described by the Theis nonequilibrium equation (Theis, 1935). In 

accordance to the work of Walton (1970), the Theis equation has an advantage if the 

pumping start time and the drawdown are known, but has a disadvantage if restrictive 

assumptions such as; a fully penetrating well in a homogeneous, isotropic porous medium; 

negligible well loss; and an effective radius equal to the radius of the production well. For 

these assumptions, modified measures of specific capacity have been suggested over the 

years for; adjusting head loss to account for the theoretical effects in porous media of 

partial penetration of the saturated thickness of the aquifer, well loss due to turbulent flow 

and well depth. In fractured media, the Theis equation often may be a poor representation 

of the relation between specific capacity and the other variables including transmissivity 

(Huntley et al, 1992). Other investigators (Siddiqui and Parizek, 1971; Yin and Brook, 1992) 

have shown that there are vital structural factors such as local fault zones, dip of the rock, 

fracture size and concentration, and folding patterns that affect transmissivity in fractured 

rock.   These workers claim that a generalised deterministic model linking these features to 

specific capacity or transmissivity does not exist. 

  

3.5.2.1.4 Slug or Pulse tests 

Schwartz (1975) described slug test as an aquifer testing method used to determine 

hydraulic conductivity using a single well and that the  method involves rapid addition or 

removal of a measured quantity of water from a borehole and monitoring its recovery. In 

this test, water level rise (or fall) is monitored as it returns to quasi equilibrium conditions, 

and it produces data on the basis of which numerous researchers have developed methods 

to determine hydraulic conductivity and transmissivity (Kruseman and de Ridder, 1991). The 

water level-time recovery curve has been used by numerous researchers, for example, in 
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the works of Hvorslev (1951), Bower and Rice (1976) and Cooper et al. (1967) they have 

used an analytical model that describes how the water level changes over time as a function 

of well and formation geometry, and hydraulic conductivity. A document by ASTM (1996), 

shows that by substituting recovery curve data and well geometry parameters, the hydraulic 

conductivity can be calculated. Research shows that various slug tests methods have been 

developed and each test method was made to accommodate certain features that previous 

methods overlooked or ignored (for example, Hvorslev, 1951; Cooper et al., 1967; Ferris and 

Knowles, 1963; Theis (modified), 1935; Bureau of reclamation, 1960; Nguyen-Pinder, 1984; 

and Bower and Rice, 1976). For example, the method of Cooper and others (1967) is for 

analyzing slug tests in confined aquifers, which was later extended by Bredehoeft and 

Papadopulos (1980) to very low permeability sequences. In the solution of Cooper and 

others (1967), ratios of the water-level drawdown or rise to the static water level (H/H0) are 

plotted as a function of log-time since the test was initiated. The data curve is then matched 

to a dimensionless type curve to obtain values of hydraulic properties.  

 

As with other testing methods slug tests also have their unique advantages and 

disadvantages. Cooper et al. (1967) enumerated some of the advantages of slug tests to 

include the following: relatively cost effective; requires little time to conduct; the amount of 

water extracted or added is insignificant. Cooper et al. (1967) also observed that 

transmissivity and hydraulic conductivity values obtained are not particularly sensitive to 

the technique used for analysis. Also, Faust and Mercer (1984) have mentioned that the 

reliability of the calculated storage coefficient may be limited. Furthermore, these 

researchers contend that in certain geologic formations data obtained from slug tests may 

be sometimes difficult to interpret especially when there is reduced permeability in the 

zone around the borehole (a ‘skin’ effect).  To this end, Faust and Mercer, (1984) suggested 

the use of proper well installation techniques and development in order to reduce drilling 

effects.  Because slug tests are of short duration a small portion of the aquifer adjacent to 

the well bore is evaluated, however, this does not provide an evaluation of portions of the 

aquifer not screened by the well being tested. Therefore, slug test is both less valid and less 

reliable as a test method compared to single and multiple pumping tests methods.  
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3.5.2.1.5 Packer/constant head injection tests  

Bliss and Rushton (1984) describe a packer as an expanding plug which can be used to seal 

off sections of the open or cased well to isolate them for testing. They also define packer 

tests as consisting of isolating specific sections (usually around 3m) of a bedrock borehole, 

as it intersects various hydrogeological units, with inflatable packers so that aquifer tests 

can be conducted. A series of such tests allows characterization of the vertical distribution 

of hydraulic conductivity to be determined.  However, Rushston (1984) contended that 

open-hole pumping tests can give misleading results in such environments.  

 

According to Bliss and Rushton (1984) one of the major drawbacks of packer test is that the 

test is affected by only a limited volume of rock around the well bore. For instance they 

estimated that a packer test interval of length 3m will affect approximately a radius of 10m 

around the borehole although this could go further in sparsely fractured aquifers with a very 

low permeability.  

 

3.5.2.1.6 The drill-stem test 

The drill-stem test is yet another standard method of estimating hydraulic properties of 

potential oil and gas reservoirs in the petroleum industry (Bredehoeft, 1965). The test 

involves the measurement of pressure behaviour at the drill stem and is a valuable way to 

obtain important sampling information on the formation fluid and conductivity to establish 

the probability of commercial production. Research has shown that the drill-stem tests have 

similar drawbacks as packer test methods. 

 

Optimally, drill-stem tests, packer tests and slug tests determine hydraulic properties in the 

near-borehole environment, but the accuracy can be decreased by convergence of flow 

lines and related head losses as water flows into or out of sections of perforated casing, and 

between the test-interval depth and the pump-intake depth. As with the analysis of any 

aquifer test data, the accuracy of the results depends upon the validity of the assumptions 

invoked in the model and the relative importance of extraneous effects in the field data. 
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3.5.2.2 Scales of measurement of different test types  

It has been observed that hydraulic conductivity has an apparent dependency on the scale 

of the measurement (e.g., laboratory, field and regional). The usual pattern is for the mean 

value of hydraulic conductivity to get larger with scale of measurement up to the scale 

defined by the minimum representative volume (MRV). At greater scales of measurement 

the hydraulic conductivity often becomes approximately constant for several orders of 

magnitude or more (Dagan, 1986; Neuman, 1990; Clauser, 1992; Rovey, 1998). A few 

authors (for example, Butler and Healey, 1998) have considered this scale dependence to be 

linked to artefacts and bias in field measurements. Interestingly, Clauser (1992), Neuman 

(1994) and Sanchez-Villa et al. (1996) have linked this scale dependence to heterogeneity.  

 

According to Neuman (1994), this scale dependence is attributable to the fact that large 

scale hydraulic tests are more likely to intercept preferential groundwater flow zones. Small 

scale measurements could measure higher conductivity values, but it would be unlikely for 

the test to be located in a high permeability zone. This condition holds so as far as the 

volume of the higher permeability zones within the aquifer is much smaller than that of 

lower permeability zones. In other way round it is likely that small scale hydraulic tests will 

result in higher conductivity values.  Thus, given a similar number of tests of small and large 

size, it would be expected that the large scale test would have the higher average, but that 

the small scale test would have the higher maximum. The scale of the test is extremely 

important when assessing the quality and quantity of the data for the intended purpose, 

especially for fractured hydrogeological units (HGUs)  Clauser (1992).  

 

Belcher et al. (2001, 2002) grouped the following test types according to their scales from 

largest to smallest: Multiple-well constant-rate pumping tests, Single-well constant-rate 

pumping tests, Specific-capacity and Drill stem tests (DST's), Slug, Packer, and Step-

drawdown tests, and Permeameter tests. In other words, the scale-effect can be regarded 

as a result of the aquifer heterogeneity, of the scale and of the spatial distribution of the 

field measurements. Belcher et al. (2002) have indicated that hydraulic-conductivity and 

transmissivity estimates are functions of test scale and as the volume of the testing media 

increases, the more aquifer heterogeneity is encountered and influences the test results.  
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Consequently, because of this 'scale effect' values of hydraulic parameters are typically 

influenced by methods used in their determination. For example, the possibility exists to 

involve a larger network of fractures in the aquifer response to the imposed stress. In fact, 

in laboratory permeameter tests of core samples for determining rock matrix properties, 

the core samples needed for successful results must be unfractured. Laboratory analyses of 

core samples are limited by (1) very small sample size relative to field conditions, and (2) 

bias toward more competent rock samples because core from fractured, solution-riddled, 

and friable rocks typically are only partially recovered or not recovered at all. Because of 

these limitations, core data may not be comparable to field tests, and results of core 

analyses may be biased toward the lower values that reflect matrix permeability rather than 

secondary permeability features. Thus, only matrix rock properties are determined from 

permeameter tests, and the estimates generally are not useful for regional-scale ground-

water flow models of fractured-rock aquifer systems. Hence, results for permeameter tests 

of core samples are not utilized in the descriptive statistical calculations of the hydraulic 

parameters in the current study.  

 

Constant-head injection tests, and drill stem tests, with a radius of influence of only several 

metres, examine very restrained aquifer volumes around the vertical interval delimited by 

the packers. Similarly, slug or pulse tests, with a radius of influence of only tens or hundreds 

of centimetres examine a relatively small amount of aquifer material adjacent to the 

borehole and its vicinity. Because of this, hydraulic-property estimates from slug and pulse 

tests might not be representative of an entire aquifer unit although they manifest the 

influence of field-scale features but in a smaller amount. Due to the relatively low duration 

of the specific capacity tests and the single-well aquifer tests (including the pumping or 

injection well in multiple-well tests), the corresponding radius of influence is most probably 

several tens to hundreds of metres. As such, for the same set of wells transmissivity 

estimates derived from single-well tests tend to be less than those of multiple-well tests. 

Although, this depends on the correction methods used. Similarly, estimates of storage 

coefficients from single-hole tests are less reliable than those from multiple-well tests.  

 

Kruseman and de Ridder (1991) have explained that, depending on the rate of extraction 

and the duration of pumping, multi-well pumping tests may have radii of influences of 
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several hundreds of metres or more and therefore multiple-well pumping tests record the 

highest hydraulic conductivity values.   These researchers therefore suggest that results 

from these tests could be biased towards larger values. Furthermore, these researchers 

argue that multiple-well pumping tests tend to be more reliable because they manifest the 

influence of field-scale features, such as fractures and faults, as well as the water-

transmitting properties of the rock matrix. Because of the inherent nature of variability, 

typical longer-term aquifer tests will produce more representative hydraulic-property 

estimates than shorter-term aquifer tests or tests with shorter screened intervals such as 

packer tests. Thus, while the different testing methods may complement each other, 

inherent biases such as this one must be considered when comparing and integrating data 

measured at different scales for regional modelling activities. Hydraulic property estimates 

presented in this study are based on the results of mostly field-scale tests involving wells but 

majority of these tests include only a small amount of the volume of aquifer material within 

the hydrogeological unit (HGU) and thus test only a very small part.  
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3.5.2.3 Possible effects of local vs. regional connectivity 

The degree of interconnection of a network of fractures greatly affects its hydraulic 

conductivity and the ability of fractures to act as conduits for groundwater flow (e.g. Long 

and Witherspoon (1995)). Fracture connectivity can affect the results of an aquifer test. In 

this study most of the tests researchers used are packer and drill-stem tests of short radius 

of influence. Connectivity of fracture sets are such that if connection extends only a little 

way beyond the radius of influence, one can interpret a value for K that is larger than the 

regional value. One way in which this might happen is if the aquifer has a number of large 

fractures, largely unconnected, and a network of smaller fractures (or matrix permeability). 

The major fractures, being unconnected, may not be very important for the regional 

permeability. However, if a borehole passes through one of these fractures, it may act as an 

efficient collector of water, thus, indicating a locally much higher apparent permeability.  

 

Again, with longer pumping tests, there may be a point when the lower, regional 

permeability is ‘seen’, but this may not be the case with packer tests. One could also have a 

system where despite very low background ‘matrix’ or ‘micro-fracture’ K; fractures could 

collect enough water from the matrix such that the radius of influence never reaches the 

end of the fracture. In such systems, the fractures may not connect regionally and the 

regional K would be approximately the matrix value. Thus, the fracture system exhibited by 

the entire dataset could be represented conceptually using two models of fractured aquifer 

systems, namely; locally connected fracture aquifer system or a regionally connected 

fracture aquifer system as shown in Figures 3.5a and 3.5b, respectively. At this juncture, it 

can be inferred that if this model is correct, then measured K values may be in excess of 

those that are appropriate for use in regional flow studies. 
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3.5.2.4 Assumption that tests were properly interpreted – an account 

There are a number of reasons why field tests are unlikely to provide useful continuum 

estimates of hydraulic conductivity for regional groundwater flow modelling. The main 

reasons identified in the course of this study are human error in measurement resolution of 

field instrumentation, well conditions and construction, and analysis of aquifer property 

values, and the ignoring of possible conditions that violate the assumptions of the method 

of analysis (e.g. Hoek and Bray (1974). But however, an assumption was made here that in 

most cases various aquifer tests were properly conducted and interpreted by the respective 

researchers.  

 

Further to the above, it is important to mention that most models for interpreting pumping 

tests represent the aquifer as a homogeneous, isotropic porous medium, and adopt one of 

the three basic geometries (spherical, radial and linear flow models) as shown in Figure 3.6.  

First, spherical flow models describe fluid flow toward a spherical cavity in a homogeneous 

porous medium of infinite extent in all directions (Figure 3.6a). Flow is three-dimensional, 

and equipotential surfaces are concentric spheres around the spherical cavity. This 

geometry might be used where the length of the test interval is not very different from the 

well radius. Second, radial flow geometry (Figure 3.6b) describes flow toward a well that 

pumps from a homogeneous layer of infinite lateral extent (bounded above and below by 

impervious materials). In this, flow is two-dimensional and equipotential surfaces are 

cylinders centred about the well axis. This geometry might also represent a horizontal 
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Figure 3.5 (a) Regionally connected fracture network, and   (b) Locally connected fracture 
network 
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fracture zone or a single horizontal fracture bounded by impermeable rock. Third, linear 

flow geometry describes flow that is unidirectional, such as linear flow towards a highly 

transmissive vertical fracture that intersects a well (Figure 3.6c). According to NRC (1996), 

combinations of these three basic geometries are also possible. Methods for interpreting 

single well pumping tests using these various models are described in a number of texts. 

 

 

In order for pumping tests to provide useful continuum estimates of aquifer hydraulic 

conductivity in fractured rocks, the estimate of hydraulic conductivity should be highly 

sensitive to the model chosen to analyse the data. Most often none of the simplistic models 

represented in Figure 3.6 are appropriate, yet this may not be obvious from test results. 

Observed hydraulic head data may still superficially resemble one of these models but 

because hydraulic conductivity is highly spatially variable in fractured rock systems, the 

hydraulic conductivity of the test interval is likely to change during a hydraulic test as the 

area of influence of the test increases. It is also common for the model that most closely 

approximates the test data to change throughout the test (e.g., from radial flow at short 

time to spherical flow at later time). The above deliberations are taken care of in the 

concept of flow dimension in hydraulic testing which reflects the fact that flow to a borehole 

during pumping may change from one to three dimensional with time, i.e. that the flow 

system may assume various values, including non-integer values, of flow system geometry. 

This idea has been quantified in Barker’s (1988) paper on generalised pumping test analysis. 

 

Furthermore, most techniques commonly used in the interpretation of aquifer test, 

disregard anisotropy of the tested formation. Although, the pioneering work by Hvorslev 

Figure 3.6 Contrasting models of groundwater flow to wells use for interpreting single well 
hydraulic tests. (a) Flow to a short test interval in a borehole that approximates spherical 
geometry. (b) Radial flow to a cylinder. (c) Linear flow to a well that intersects a highly 
transmissive vertical fracture. (Modified from NRC, 1996) 
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(1951) considered anisotropic hydraulic conductivity, anisotropy was not included in more 

general treatment by Bouwer and Rice (1976) and Dagan (1978). Many researchers use the 

Bouwer-Rice method and ignore anisotropy. Chirlin (1990) concludes that anisotropy is not 

easily addressed in aquifer test interpretation and Dawson and Istok (1991) recommended 

Bouwer and Rice’s method (1976) only for isotropic conditions. Several numerical methods 

used by (eg., Braester and Thunvik, 1984; Widdowson et al., 1990; and Melville et al., 1991) 

account for anisotropy, but there exist no analytical techniques for interpreting slug test and 

packer test data in general case of fully or partially penetrating wells in a confined or 

unconfined anisotropic aquifer. For the above reasons, Sidle and Lee (1995) have indicated 

that hydraulic conductivity values determined using different methods may sometimes 

differ substantially in terms of validity and reliability. 

 

3.5.2.5 Using equivalent porous medium models to interpret data from fractured aquifers 

Most of the analytical methods used in the processing of the aquifer tests results assume 

that an aquifer is a porous medium. Though, the influence of fractures is fundamental to the 

flow of water in fractured crystalline rocks. In order to apply these aquifer test methods to 

fractured rocks it is necessary to assume that the rocks are sufficiently homogeneously 

fractured and interconnected such that the rock being tested can be considered “an 

equivalent porous medium”. This is because the aquifer test can be affected by the spacing 

of fractures, as well as their interconnectivity. In areas where fractures are closely spaced 

and interconnected, values of transmissivities are generally higher than in areas where the 

fractures are widely spaced and not interconnected. Although some workers (e.g., Shapiro 

and Hsieh, 1998) have conducted studies on transmissivity in crystalline rock using either 

porous or fractured media methods and provided estimates of transmissivity within an 

order of magnitude of each other. Moreover, fractured rock has a “dual-permeability” 

response that comes from the immediate de-watering of fractures (being the most 

permeable), and then followed by the delayed response of de-watering from the smaller 

fractures.  

 

In fractured hydrogeologic media, the contribution of fluid to the system can be either from 

fractures or the smaller fractures. This “dual-permeability” concept involves the exchange of 
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water between the fractures and the smaller fractures and therefore can also be another 

source of variation of conductivity values. Sampling variability can also arise in fractured 

rocks as a result of a borehole failing to penetrate rock fractures especially for vertical 

boreholes penetrating rocks with steeply dipping (sub-vertical) fractures.  Because of the 

inherent nature of variability, it is expected that typical longer-term aquifer tests will 

produce more representative hydraulic-property estimates than shorter-term aquifer tests 

or tests with shorter screened intervals such as Packer tests. 

 

3.5.3 Purpose of studies from which data extracted lead to bias 

In the present study, two main purposes which are the choice of very low conductivity site 

for nuclear waste disposal and much high K data from dam and tunnel sites for grouting 

purposes have been identified. 

On the basis of the above, spatial bias could be significant for the hydraulic property 

estimates compiled in this thesis. For example, some workers drilled wells and boreholes to 

meet the original goals of their respective studies, but not to collect data to determine 

statistically representative regional-scale hydraulic properties. Also, many workers installed 

wells in relatively shallow formations because of the difficulties and cost associated with 

drilling deep wells. In this work, data obtained from the studies of Gale and Witherspoon 

(1979) and Miguel et al. (2009) account for more than half (about 416 of the K values) of the 

total data collected have the lowest conductivity values. This is simply because they 

conducted their studies with the main aim of identifying a very low conductivity geological 

formation for nuclear waste repository. This represents the low modal distribution of the 

data set. About 178 conductivity measurements of the rest of the data most of which have 

high K values were obtained from studies conducted by Snow (1979). Snow (1979) 

conducted his studies in drilled holes in fractured rocks at dam and tunnel sites for grouting 

purposes at near surface depth and therefore recorded high K values representing the 

higher modal point of the distribution. These measurements would not have been done 

except in the highest K parts of the systems investigated. The rest of the data are for water 

supply purposes 
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3.6 Factors affecting K values in a given mining area 

3.6.1 Introduction 

In this section, four local conditions have been considered to affect the estimation of 

appropriate representative hydraulic conductivity values for regional groundwater flow 

modelling in mining areas. Notably of these conditions are; depth, rock type, climate, and 

tectonic history. The basic question is: do these factors have a sufficiently large effect that 

they have to be taken into account in choice of hydraulic properties when using the full, 

international data set, covering many rock types, climates, tectonic settings, and depths, to 

obtain estimates for these properties at a given location, e.g. Ghana? In the following 

sections, the background and previous work on each of these four factors is reviewed.  

 

3.6.2 Effect of depth in the estimation of hydraulic conductivity for regional groundwater 
flow modelling around mines 

Ignoring any upper layer dominated by weathering, many published studies have indicated a 

decrease in permeability with depth for both porous media (e.g., Neuzil 1986; Whittemore 

et al. 1993; Hart and Hammon 2002; Wang et al. 2009) and fractured media (e.g., Davis and 

Turk, 1964; Snow 1968a; Louis 1974; Carlsson et al. 1983; Zhao 1998; Jiang et al. 2009), but 

a considerable scatter is generally detected for the rock mass. On the other hand, some 

investigators argue that it is not reasonable to expect any regular trend below an upper 

layer of the bedrock (e.g. Voss and Andersson, 1993). However Wei et al. (1995) have 

observed that in order to effectively model subsurface flow a quantitative description of the 

permeability-depth relationship is indispensable. And as observed by Louis (1974), 

conventionally, empirical equations which are based on statistical analysis of permeability 

measurements are used to ascertain the permeability-depth relationship. In particular, he 

noted that the most frequently model used is the log (permeability)-depth relationship, 

which assumes permeability to decrease exponentially with depth. Louis (1974) advocated 

the use of exponential relationships and later this was accepted by most researchers. 

 

 Several authors have discussed the observed decrease in conductivity with depth in relation 

to a measured rock stress increase with depth. For example, Carlsson and Olsson (1977) 

compared in-situ measured conductivity within the upper five hundred metres of crystalline 
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bedrock in Sweden with theoretical stress-conductivity relationships and suggested a power 

function of the type given below to describe the depth dependence. 

 

     
                     (3.9) 

where K is the hydraulic conductivity, K0 is a reference value of conductivity at the surface, Z 

is the vertical depth below ground surface and b is a constant. As an alternative approach, 

Gustafson et al. (1989), when evaluating data from the Aspo area in Sweden also assumed a 

logarithmic function of the form; 

      
      (3.10) 

where c is a constant. The above two equations have been used by many other investigators 

as well for curve fitting. Although it is well known that there is a strong relationship between 

effective rock stress and fracture conductivity, it is likely that other mechanisms and 

processes such the tectonic regime also affect the variation of hydraulic conductivity over a 

depth range of hundreds of metres (Raven and Gale, 1985; Dershowitz et al., 1991).  

More complex models of permeability variation with depth than the above two equations 

have been proposed by Oda et al. (1989) and Wei et al. (1995). These two models are 

similar and they are based on the assumption that the magnitude of permeability to a great 

extent is governed by the rock stress magnitude, but also influenced by the fracture 

properties. The underlying assumption is that fracture apertures in bedrocks decrease with 

increasing depth and stress in accordance with a hyperbolic relationship as suggested by 

Bandis et al. (1983) on the basis of laboratory tests on rock joints. The model by Oda et al. 

(1989) is expressed as; 

     
   

   
  

 
 

       
   

 

  
 

   

 

 

                        (3.11) 

where λ is the connectivity, to is the fracture aperture at the surface (z=0), h is the fracture 

stiffness, c is an aspect ratio (a measure of the fracture shape) and ý is the effective unit 

weight of the rock. (Nq/h) is the number of fractures crossed by a unit length of a scanline 

with a direction parallel to q, and         is a correction factor with respect to the selected 
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direction q and n a normal vector perpendicular to the direction of q. δij is the Kronecker 

delta and Nij the crack tensor describing the geometry of joints.  

 

In an attempt to provide empirical equations to describe rock mass permeability with depth 

Cheng-Yu et al. (2009) noted that the following researchers; Snow (1970); Louis (1974); 

Burgess (1977); Carlsson & Olsson (1977); Black (1987); and  Wei et al. (1995) all provided 

empirical equations that attempted to describe rock mass hydraulic conductivity variation 

with depth as indicated in Table 3.4. Ceng-Yu et al. (2009) further observed that although 

the equations provided give a quicker means of characterizing hydraulic properties of rock 

mass, the applicability however is limited since depth is not the only important factor. For 

instance rock mass hydraulic properties may as well vary with geostatic stress, rock type and 

fracture characteristics. These fracture properties have been extensively dealt with by the 

following authors; Lee & Farmer (1993); Sahimi (1995); Foyo et al. (2005); Hamm et al. 

(2007). It is therefore suggested that a more applicable empirical equation for estimating 

hydraulic conductivity of rock mass possibly must include the aforementioned factors. From 

the above discussion, depth is seen as a very important factor to be considered when 

estimating K values appropriate for regional groundwater flow modelling around mines. A 

depth dependent analysis has been carried out using empirical relationships of Snow (1970); 

Carlsson & Olsson (1977); and Wei et al. (1995) to compare with the current studies. The 

results are presented in subsection 3.7.5.2.2.  

 

In many cases a weathered zone will occur above the relatively unweathered deeper rock. 

In general, the permeability of this layer will be greater than that of the deeper fractured 

rock (Section 3.2.3). Within this layer, permeability will change with depth, reflecting for 

example in a granitic terrain the progression of weathering from deeper weakly weathered 

zones through the initial stages of weathering that produce granular material through to 

almost completely weathered clayey material (Acworth, 1987). The thickness of the 

weathering zone will vary from location to location, thus influencing the groundwater flow 

to varying extents. In the data set considered, K data are available from ground surface, and 

consideration is given to K variation from zero depth. 
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Table 3.4 Diverse approximations for estimating rock mass hydraulic conductivity  
(source: Cheng-Yu (2009) 

Equation  
 

Reference 

 

       

Black (1987) 
a and b are constants. z is the vertical depth below 
the groundwater surface. 

 
                    

Snow (1970) 
K (ft2) is the permeability. z (ft) is the depth. 
 

 

                 

Carlson and Olsson (1977) 
K (m/s) is the hydraulic conductivity. z (m) is the 
depth. 

 
 

     
      

Louis (1974) 
K (m/s) is the hydraulic conductivity. Ks is the 
hydraulic conductivity near ground surface. H (m) is 
the depth. A is the hydraulic gradient. 

 
                                 

             

Burgess (1977) 
K (m/s) is the hydraulic conductivity. Z (m) is the 
depth. 

 
                       

Wei et al. (1995) 
Z is the depth. K is the hydraulic conductivity. Ki 
(m/s) is the hydraulic conductivity near ground 
surface. 

 

 

3.6.3 Effect of climate in the estimation of hydraulic conductivity for regional groundwater 
flow modelling around mines  

Climate affects rocks and soil exposed to these elements. The amount of daily temperature, 

precipitation, and the variation in temperatures over a period of time affect the rate of 

weathering of rocks. Weathering processes cause important changes in rock porosity and 

the distribution of pore sizes and it is influenced by so many factors that it is difficult to 

make a meaningful generalization concerning the weathering of specific rock types. 

Limestone, for example, may weather and erode into a soil-covered valley in a humid 

climate, whereas the same formation forms a cliff in an arid climate. Similarly, well-

cemented quartz sandstone may be extremely resistant to weathering, whereas sandstone 

with high clay content is likely to be soft and weak and weather rapidly.  
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Climate affects both chemical and mechanical weathering rates and it is therefore clear that 

the processes of weathering cause a substantial increase in the porosity and hydraulic 

conductivity of the source rock (Ollier, 1975). Despite these complications, there may be a 

general relationship between the permeability of hard rock sequences and climate, both in 

terms of the shallow weathering zone and also the deeper fracture network. In this study, 

therefore, the hydraulic conductivity data set obtained from the literature has been 

examined to determine if there is any observable relationship between permeability and 

climate zone (Semi-Arid, Tropical, Mediterranean, Temperate, and Sub-Arctic). 

 

3.6.4 Effect of tectonic history in the estimation of hydraulic conductivity for regional 
groundwater flow modelling around mines  

The tectonic history of the study area may have an effect on the hydraulic properties. 

Fracture permeability in crystalline rocks is the result of the cooling and deformation of 

igneous and metamorphic rocks, faulting, jointing and weathering. Also, the sedimentary 

facies and architecture, the tectonic settings, and the genesis of the aquifer have a greater 

influence on the distribution and estimation of hydraulic properties. Many groundwater 

pathways through rocks are related to tectonic features. Fractures, fissures, and joints 

determine hydrogeological properties and enable or limit the groundwater flow. Studies 

have shown that virtually all movement of water in crystalline rocks is through fractures or 

joints in the rocks.  

 

In this study, most of the study areas where hydraulic property data have been obtained 

from have active geologic history, including large-scale plutonism, volcanism, compressive 

deformation, and extensional tectonics. Most of the mining environments in Ghana 

especially Tarkwa in Western region have experienced tectonic activities in the late 

Proterozoic, and combinations of strike-slip faulting, normal, reverse, and and folding 

episodes which have resulted in a complex distribution of rocks (Leube and Hirdes, 1986). 

Consequently, various rock types, ages, and deformational structures of most of the areas 

under study are often juxtaposed and subsurface conditions are variable and complex.  
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3.6.5 Effect of rock type/rock class in the estimation of hydraulic conductivity for regional 
groundwater flow modelling around mines  

Crystalline rocks include intrusive igneous rocks (e.g., granite, diorite, granodiorite, gabbro, 

dolerite, and pegmatite) and metamorphic rocks (e.g., gneiss, quartzite, marble, schist, 

slate, phyllite and meta-sandstone). Many of the intrusive igneous rocks (e.g., granite, 

diorite, granodiorite, gabbro) form large intrusive bodies (plutons) while others (e.g., 

dolerite, pegmatite) tend to occur as linear features of restricted extent, such as dykes and 

sills. The fundamental characteristic of crystalline rock aquifers is extreme spatial variability 

in hydraulic conductivity, and hence groundwater flow rate. Hydraulic properties can also be 

highly anisotropic, so that hydraulic properties must be defined in conjunction with 

directional information. Water velocities through individual fractures can be extremely high, 

but the fractures usually occupy only a very small fraction of the aquifer. Thus, even when 

water velocities through individual fractures may be high, average volumetric flow rates 

through the aquifer can be quite low. In volcanic rocks, a characteristic change from lava 

flows to welded tuffs and then ultimately, non-welded and bedded tuffs with increasing 

distance from eruptive centres can cause hydraulic properties of the stratigraphic unit to 

exhibit great spatial variability (Chilton and Foster, 1984)  

Particular attention in the present study has been paid to the characterization of the 

hydraulic properties of the fractured aquifers composed of fifteen main lithologic rock types 

namely: granite ; mica-schist/phyllite; quartzite; sandstone/meta sandstone;  porphyry; tuff-

breccia, tuff-siltstone;  diabase; greenstone; meta-andesite/meta-rhyollite; metavolcanics, 

amphibolite; sandstone and shale; sandstone/ tuff and conglomerate; quartz, porphyry / 

granodiorite; slate/talc schist/serpentinite; and gneiss. For the purpose of analysis, these 

rock types have further been grouped into igneous, metamorphic and sedimentary as 

follows: 

Igneous - granite;  diabase; porphyry; quartz porphyry/ granodiorite: Metamorphic - gneiss; 

sandstone/meta-sandstone; mica schist/ phyllite; slate/ talc schist/ serpentine; greenstone; 

meta-andesite/rhyolite; metavolcanic amphibolite; primary/secondary/tertiary quartzite; 

Sedimentary - sandstone and shale; tuff-breccia/siltstone; sandstone/ conglomerate/ tuff 
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3.7 Data Analysis 

3.7.1 Introduction 
Section 3.7 is divided into five main subsections. Subsection 3.7.2 provides the presentation 

and overview of the data and data sources. Subsection 3.7.3 statistically discusses the data 

as one dataset irrespective of source, geological, or climatic context. Subsection 3.7.4 

describes the general characteristics of dataset of individual study. Subsection 3.7.5 

considers the four possible factors influencing K values introduced in Subsections 3.7.2 to 

3.7.5 namely: depth below ground surface; rock type; climate; and tectonic regime. 

Subsection 3.7.6 concludes.  

3.7.2   Presentation and overview of data and data sources  

The entire database includes 768 hydraulic property estimates (hydraulic conductivity (K), 

transmissivity (T) and specific capacity (Sc)) collected from 17 different studies and about 20 

published reports worldwide. Of the total number of estimates, 27 were compiled from 

pumping tests, 13 from specific capacity tests, 90 from slug/pulse tests, and 645 from 

packer/injection and drill stem tests. Published reports used in the data compilation include: 

Snow (1979); Merecel et al. (2004); Akaha et al. (2008); Ali-El Naqa (1994); Walker (1962); 

Muguel et al. (2009); Stober and Bucher (2004, 2005); Gale and Witherspoon (1979); Zhao 

(1998); Nastev (2008), and others. A summary of the entire dataset is presented in Table 

3.5. The table entry shows aquifer property data points of the entire dataset by data source, 

project type and test type.  Analyses of aquifer property were performed after combining all 

data derived from aquifer pumping tests, specific capacity tests, slug or pulse tests, 

packer/injection and drill stem tests into one dataset, though the types of data are recorded 

and taken into consideration when discussing the dataset. Standard statistics and graphical 

plots are used to summarize hydraulic conductivity data of different studies, different 

lithological groupings (rock type/rock class), climate zones and depth intervals. Standard 

statistics used include descriptive statistics and regression correlation analysis. Descriptive 

statistics, including the geometric and arithmetic means, median, range, variance of the 

hydraulic conductivity values are reported for each study. Statistical significance tests have 

also been conducted to determine the nature of distributions (similarities and differences) 

existing among dataset. Comparative statistical analyses tests (e.g. Kolmogorov-Smirnov 

test (KS-test) and Analysis of variance (ANOVA)) are performed to determine if there is a 
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significant difference between hydraulic conductivity values of different data sources, depth 

intervals, rock types and climate zones.   

Table 3.5 Aquifer property data points by data source, rock type, project 
type/country and test type (see table 3.8 for further relevant factors)  

 
 

Data Source 
(Study) 

 

 
 

Rock type 

 
 

Project Type/Country 

Test type  
 

Total Aquifer  
Pumping 

Test 

Specific 
Capacity 

test 

Slug/ 
Pulse 
Test 

Packer/ 
Drill 
stem 
test 

K Sc T K K 

WRI, CSIR Accra 
Ghana 
(Anglogold Obuasi 
Mines) 

Metamorphic/ig
neous 

Mine inflow 
Studies, Ghana 

 9    9 

Ghana- Australia 
Goldfield 
(GAG) Tarkwa, Ghana  

Metamorphic/ig
neous 

Mine inflow 
Studies, Ghana 

     16 16 

World Vision 
International. Ghana 

Metamorphic Water supply, Ghana 
  13   13 

Snow (1979) and 
other published 
reports. 

Igneous/metam
orphic/sediment

ary 

Grouting at dam & tunnel 
sites, USA, Australia and 

South Korea     178 178 

 
Merecel et al., (2004) 

igneous  
Water resources, India   

 
31  31 

 
Akaha et al., (2008) 

igneous  
Water resources, Nigeria 

12  

 

  12 

 
Ali-El Naqa (1994) 

sedimentary  
Water resources, Jordan     26 26 

Larry Cook and 
Associates (2008) 

igneous Mine inflow quarry 
project , Australia    7  7 

Cheng-Yu Ku et al, 
 (2009) 

sedimentary  
Water resources, Taiwan     27 27 

 
Moore (1962, p. 31-
34) 

Igneous/sedime
ntary 

 
Water resources, USA 

   1  1 

 
Hood (1961) USGS 
file 

Igneous/sedime
ntary 

 
Water resources, USA 

   3  3 

 
Plume (1996) 

Igneous/sedime
ntary 

 
Water resources, USA    4  4 

 
Walker (1962) 

Igneous/sedime
ntary 

 
Water resources, USA    3  3 

Price(1960); 
Houser & 
Poole(1959) 

Igneous/sedime
ntary  

 
Water resources, USA 

   1  1 

 
Ken kuchling et al., 

Igneous  
Hydraulic testing, Canada     5 5 

 
Muguel et al., (2009) 

Igneous  
Hydraulic testing, Spain    40  40 

Gale and 
Witherspoon (1979); 
Stober and Bucher 
(2004, 2005)  

Igneous  
Radioactive waste 

disposal site, Stripa in 
Sweden     392 392  

 

Total 
  

12 9 13 90 645 768 
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3.7.3 Descriptive statistics of the combined dataset 

Descriptive statistics is used to describe the dataset irrespective of source, geological, or 

climatic context. Because quantities of hydraulic parameters in fractured and 

heterogeneous crystalline rocks do not usually follow a normal distribution, but instead are 

often strongly skewed to the right, the arithmetic mean is hardly a useful parameter to 

describe the hydraulic characteristics of crystalline rock formation. As shown in Table 3.6 

the arithmetic mean is much larger than the corresponding median and therefore cannot be 

considered a good representative measure of hydraulic conductivity for the combined data. 

Instead, the median in combination with the inter-quartile range (IQR) data in the 

boundaries of the 25th and 75th percentile provides a much better representation of 

hydraulic conductivity for the combined dataset.  

 

Also, by definition, 50% of all K values observed fall within the inter-quartile range 

represented by the dimensions of the ‘’box’’. Figures 3.7, 3.8 and Table 3.6 show a 

histogram, box-and-whisker plot and a summary statistics of the combined dataset 

respectively. On a very close examination, the overall distribution appears asymmetric, 

spread and skewed to lower conductivity values on the natural scale (Figure 3.7b). The 

skewing of the distribution to lower conductivity values is probably in part due to the scales 

of measurements of the different types of tests and the collection methods used. However, 

the log-transformed frequency distribution appears more normally distributed but exhibits a 

bi-modal character consisting of two apparently approximately log-normal distributions 

(Figure 3.7a). The bi-modality of the distribution is also probably due to differences in 

weathering of the shallow rock system as well as studies from which the data have been 

extracted (e.g., choice of very low conductivity sites for nuclear waste disposal and much 

high conductivity data from water supply, dam and tunnel sites). The effect of low 

conductivity data of radioactive waste and high conductivity data of grouting at dam and 

tunnel sites on the entire database has been dealt with in chapter six by regrouping the data 

for further analysis. The box-and-whisker plot of Figure 3.8 shows the median and the 

characteristic percentiles for the combined dataset. By definition, 50% of all K values 

observed fall within the inter-quartile range in the boundaries of 9.94E-07 and 1.10E-10 m/s 

represented by the dimensions of the ‘’box’’. At 95% confidence interval for actual mean, 

most of the data are estimated to lie within the range of 7.71x10-06 to 2.18x10-05 m/s. 
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Summary statistics of K-parameter values (Table 3.6 in Appendix A-1 ) ranges from the 

lowest value of 1.40x10-13 m/s to the highest value of 1.45x10-03 m/s with an overall mean, 

median and standard deviation of 1.48x10-05 m/s, 3.80x10-09 m/s, and 9.74x10-05 m/s 

respectively. The geometric mean of 1.57x10-08 m/s is three orders lower than the 

arithmetic mean. The difference between the mean and median reflects the non-normal 

nature of the distribution. In section 3.2, previous work conducted by various researchers 

on crystalline rocks indicated in-situ hydraulic conductivity values to range from 10−11 to 

10−4 ms−1 with the most typical values centre on a geometric mean of (−8±1) ms−1. Similar 

studies conducted by Brace (1980, 1984) and Clauser (1992) and measured at the borehole 

scale generally range between 10-7 and 10-2 m day-1 (10-12 and 10-7 m/s). Thus from statistical 

point of view, the geometric mean of 1.57x10-08 m/s obtained for current study appear to 

agree with the results of previous work on the characterisation of hard rocks.  

 

 

a 

Figure 3.7     (a) Frequency histogram of Log transformed K for all data sources                                                                           
           (b) Frequency histogram of K for all data sources on the natural scale 

  

b 
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3.7.4 Descriptive statistics of individual study  

The general characteristics of the individual datasets have been described. Figures 3.9a, 

3.9b, 3.9c and Table 3.7 (in Appendix A-2) show a histogram, box-and-whisker plot and a 

summary statistics of K parameter values of each study respectively. It is generally observed, 

on the natural scale, that the frequency distributions are mostly skewed to lower 

conductivity values (Figure 3.9b). However, the log-transformed frequency distributions 

appear normally distributed especially in the cases where a significant number of 

measurements are available (Figure 3.9a).  

 

By definition, 50% of all K values of individual study observed fall within the boundaries of 

the 25th and 75th percentile represented by the dimensions of the ‘’box’’ (Figure 3.9c). 

Plots of central tendency measures against spread measures of conductivity values (Figure 

3.10) show a change in the averages with variance as you move from the surface to deeper 

depths. The change depicts the gradual decrease in K (z) from the surface to deeper depths. 

Also the non-normal nature of the distributions indicates that the application of Analysis of 

variance (ANOVA) is less appropriate to use since ANOVA assumes normal distribution of 

the dataset.  

 

On a very close examination it is observed that sufficient number of values (i.e. population 

size) for statistical analysis is available for the studies of Witherspoon and Gale (1979) and 

Snow (1979) and to a lesser extent for the studies of Merecel et al. (2004) and Miguel et al. 

(2009) and the rest. Hydraulic conductivity values from studies of Witherspoon and Gale 

Figure 3.8 Box-and-whisker plot summary statistics of Log K for all dataset 
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(1979), Miguel et al. (2009), Ghana Australia Goldfields (GAG) and Cheng-Yu Ku et al, (2009) 

appear to be comparable (with median < 10-7m/s). Similarly the rest of the studies including 

the few data from Ghana (with median > 10-7m/s) show similar hydraulic characteristics and 

therefore associated with each other. Thus for the sake of an improved statistical analysis, 

two main aquifer groups are said to be formed by combining studies with median < 10-7m/s 

as “basement rock formations” on the one hand and studies with median > 10-7m/s on the 

other hand. The datasets are mainly distributed with the following observations: 

 

1. A total of 376 K values of granite were recorded from studies of Gale and 

Witherspoon (1979). This forms the largest number of data points and the highest 

concentration of data available for any of the studies. Statistically, hydraulic 

conductivity ranges from 1.40E-13 m/s to 6.80E-06 m/s, and the data are very 

heterogeneous and spread, asymmetric about a mean value of 4.50E-08 m/s and 

with a standard deviation of 4.36E-07 m/s. The geometric mean of 2.05E-10 m/s is 

two orders of magnitude below the arithmetic mean.   

2.  From the studies of Snow (1979), a total of 178 K values of various rock types were 

collected. This collection forms the second largest number of data points. Hydraulic 

conductivity ranges from 4.65E-09 m/s to 1.45E-03 m/s with high variability and 

asymmetric about the mean value of 3.79E-05 m/s. It has a standard deviation of 

4.36E-07 m/s and a geometric mean of 1.52E-06 m/s which is 20 times smaller than 

the arithmetic mean. 

3. A total of 40 K values of granite were recorded from the studies of Miguel et al. 

(2009), the third largest number of data points. Hydraulic conductivity ranges from 

2.80E-12 m/s to 3.20E-07 m/s, with a mean value of 1.22E-08 m/s and a standard 

deviation of 5.22E-08 m/s.  Again the geometric mean of 5.33E-10 m/s is much lower 

than the arithmetic mean by two orders of magnitude.  

4. A total of 31 K values of granite were recorded from studies of Merecel et al. (2004), 

the fourth largest number of data points. Hydraulic conductivity ranges from 2.00E-

08 m/s to 5.10E-04 m/s, with respect to a mean value of 3.15E-05 m/s. It has a 

standard deviation of 9.14E-05 m/s and a geometric mean of 4.58E-06 m/s which is 

again lower than the arithmetic mean by two orders of magnitude. 
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5. The remaining datasets were fewer in comparison to those described above, and 

they add up to 111 K values and altogether the K values range from 2.86E-10 m/s to 

5.60E-04 m/s.  
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Figure 3.9a Histogram of log-transformed hydraulic conductivity for each study  

 



  

79 
 

 

 

 

Figure 3.9b Histogram of hydraulic conductivity for each study on the natural scale. (Note that 
there are a small number of values even for the largest bin.) 
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Figure 3.10 Plots of central tendency measures against spread measures  

A- Snow, (1979) E- Larry Cook & Associates 
(2008) 

I- Miguel M et al,(2009) 

B- Merecel et al., (2004) F- Cheng-Yu Ku et al, (2009) J- Witherspoon and Gale (1979)  

C- Akaha et al., (2008) G- City of Goldfield; Plume 
(1996) 

K- Anglogold Obuasi  Ghana (AGC) 

D- Ali-El Naqa, (1994) H- Ken Kuchling et al, (2009) L- Ghana Australia Goldfields  (GAG) 

Figure 3.9c Box-and-whisker plot summary statistics of log-transformed hydraulic conductivity 
for each study, M is all dataset together.  
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3.7.5 The sensitivity of K values to depth, rock type, rock class and climate 

3.7.5.1 Introduction 

The estimation of appropriate representative hydraulic conductivity values for regional 

groundwater flow modelling in mining areas is considered to be affected by local factors 

including: depth, rock types/class, climate, test type and tectonic history. Statistically, these 

factors have been used to constrain the estimation of site specific parameters (K 

parameters) in the mining environments, to try and determine the importance of these 

factors. If these factors come out to be important, then application of global ‘’average’’ 

values (combined dataset, Section 3.7.3) may not be appropriate, or at least most useful, for 

a given location. Table 3.8 shows how the dataset obtained maps out in terms of three of 

these factors: depth, rock type/class and climate. Because, there are too few datasets to 

separate out the effects of each factor statistically one-by-one, a step-wise approach has 

been adopted. Each factor has been assessed as far as possible using all the data, and then, 

where possible, by limiting the data used to within a certain range of parameter values for 

the other variables (Table 3.9). The investigation is carried out keeping in mind that many of 

these combinations are not possible because there are very few data to look at. The results 

of investigation are discussed in subsections 3.7.5.2 to 3.7.5.5 for each of the factors (depth, 

rock type, rock class and climate) respectively. 
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Table 3.8 Factors relevant to individual datasets  

 
 Study 

Factors 

Purpose for K 
Studies 

Test type Rock type Depth 
interval (m) 

Climate 

WRI, CSIR Accra 
Ghana (Anglogold 
Obuasi Mines) 

 
Mine inflow 

studies 
Pumping 

Test Phyllite 41 - 62 

 
Tropical 

Ghana- Australia 
Goldfield 
(GAG) Tarkwa, Ghana  

 
Mine inflow 

studies 
Packer/Drill stem 

test Quartzite 21 - 165 

 
Tropical 

World Vision 
International. Ghana 

 
Water supply 

Specific Capacity 
test Quartz diorite 14 - 50 

 
Tropical 

Snow (1979)  

 
Grouting at dam  
and tunnel sites 

Packer/Drill stem 
test 

Granite, gneis, 
schist, 

amphibolites etc 2 - 168 

 
Semiarid 

Merecel et al., (2004) 
 

Water resources 
Slug/Pulse 

test Granite 27 - 60 
 

Semiarid 

Akaha et al., (2008) 
 

Water resources 
Pumping 

Test Granite 42 - 88 
 

Tropical 

Ali-El Naqa (1994) 
 

Water resources 
Packer/Drill stem 

test Sandstone 4 - 38 
 

Semiarid 

Larry Cook and 
Associates (2008) 

Mine inflow 
quarry project  

Slug/Pulse 
test  porphyry 11 - 28 

 
Semiarid 

Cheng-Yu Ku et al, 
 (2009) 

 
Water resources 

Packer/Drill stem 
test Sandstone 26 - 250 

 
Tropical 

Moore (1962, p. 31-
34) 

 
Water resources 

Slug/Pulse 
test Basalt and tuff 0 - 406 

 
Semiarid 

Hood (1961) USGS 
file 

 
Water resources Slug/Pulse 

test 

Sandstone, 
conglomerate, 

and tuff 0 - 549 

 
Semiarid 

Plume (1996) 

 
Water resources Slug/Pulse 

test 

Sandstone with 
interbedded 

claystone  0 - 126  

 
Semiarid 

Walker (1962) 

 
Water resources Slug/Pulse 

test 

Quartz  
porphyry & 
granodiorite 246 - 549 

 
Semiarid 

Price(1960); 
Houser & 
Poole(1959) 

 
Water resources Slug/Pulse 

test 

Argillized, and 
chloritized 

granodiorite 0 - 366 

 
Semiarid 

Ken kuchling et al., 
(2009) 

Hydraulic testing Packer/Drill stem 
test Granite 45 - 300 

 
Subarctic 

Muguel et al., (2009) 
Hydraulic testing Slug/Pulse 

test Granite 32 - 200 
 

Mediterranean 

Gale and 
Witherspoon (1979 

Radioactive waste 
disposal site 

Packer/Drill stem 
test Granite 3 - 382 

 
Temperate 
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Table 3.9 The order of investigation and sections showing where investigation is 
either possible, not possible or lacks data.  

Investigate Fix: 

 Nothing Depth Rock type Rock class Climate zone 

Depth Done Not possible Done Done Done 

Rock type Done Lacks data Not possible Not possible Lacks data 

Rock class Done Lacks data Not possible Not possible Lacks data  

Climate zone Done Lacks data Lacks data Lacks data Not possible 

 

3.7.5.2 The dependence on depth of K  

3.7.5.2.1 Introduction 

In this section, the spatial variability of all datasets with respect to depth and also for a 

couple of sites for which good depth data with similar geology and climate exist has been 

analysed. Conclusions are then drawn as to the importance of K(z) relationship in general 

and to what conceptual model can be derived from the K(z) analysis (e.g., the trend of 

constant K with depth, exponentially decreasing K with depth or high K upper layer with K 

approaching zero at the lower layer). Implications for looking at other factors, if we should 

compare only data from tests at certain depth ranges are also considered. Detailed analysis 

of spatial variability of depth dependence of K distribution of datasets is given in sub-

sections 3.7.5.2.2 - 3.7.5.2.4.  

3.7.5.2.2 The variation of K with depth: for whole dataset     

Intuitively, hydraulic conductivity is expected to decrease with depth as confining pressures 

seal fractures and faults, and compress sedimentary units. A plot of log-transformed 

hydraulic conductivity values and the mid-point depth of the tested interval starting from 

the top of the rock surface for all the different data sources are shown in Figure 3.11. Visual 

examination of these plots shows an apparent K-depth relationship, but with high data 

scatter due to the fact that most of the data are obtained from small scale test 

measurements (section 3.5.2.2.).  

 

A moving average and exponential relationship are fitted to determine the true changes of 

slope from the scattered data (Figure 3.12). Although data shown suggest a relatively large 

scatter, the moving average and exponential fits suggest a decreasing K with depth with the 

exponential fit significant at greater than 99% confidence. Model fitting curves with the 
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dataset compiled in the present study is carried out using empirical relationships in 

literature from studies conducted by Snow (1970), Carlsson & Olsson (1977) and Wei et al. 

(1995) to see how much K is expected to vary down to and beyond the base of mines.  

 

Depending on the variability of the study area (geostatic stress, lithology, and fracture 

properties), the plots show different ranges of conductivity values for different studies 

(Figures 3.13). The three relationships show variation of K with depth for the sites 

investigated in the original studies: the relationship of Wei et al. (1995) shows the least 

variation of K with depth about two orders of magnitude from the surface to 600m depth. 

Both relationship of Olsson and Carlson (1997) and Snow (1970) show a wider range of K 

variation with depth, about four orders of magnitude. In these two latter studies, K 

decreases rapidly to about a depth of 100-200m where it more gently decreases to a depth 

of 600m.  

 

Although, mean values of all three relationships are less than that of the current dataset (-

8+-1) m/s, they could be used to analyse the current dataset with the relation of Wei et al. 

(1995) which seems to yield the best result. These relationships have therefore been 

adopted for future interpretations of conductivity-depth relationship of database in mining 

environments. 

 

 

Figure 3.11 Variation of hydraulic conductivity with depth for the whole dataset 
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Figure 3.13 Comparison of empirical K(z) relations  of various studies (Snow, Olsson and Wei) 
with K database 

 

 

Figure 3.12 Log-transformed hydraulic conductivity distributions with depth for whole dataset.  
Thicker blue line is a 2-point moving average of the values; thinner black line is a least squares fit 
of the exponential relationship indicated  



  

86 
 

Because hydraulic conductivity values and depth from different studies are determined to 

be significant factors for change of conductivity values, the depth data are combined into 

depth intervals of 100m to investigate further whether there are any detectable differences 

in K distribution. Investigations are conducted first for the first 0-100m at 20m depth 

intervals, followed by the entire 0-500m depth range by applying the Kolmogorov-Smirnov (K-

S) statistical test (Sheskin, 2007) at 95% significance level. The statistical summary of the 

results in the form of tables, histogram and box-and-whisker plots are presented in Tables 

3.10 and 3.11 and Figures 3.14 and Figure 3.15 respectively. 

 

Results from K-S test show that at 95% confidence level there is a significant difference in 

depth intervals between the first 100m depth and between the first and second 200m depth 

range as indicated in Table 3.11 and 3.12 respectively. The spread (inter-quartile ranges) of 

Figure 3.14 and frequency distribution plots of Figure 3.15 of K distribution, decreases with 

depth from the surface.  In Figure 3.14, a plot of log K against depth interval shows a 

decrease in K with depth to about 300m over a scale of three orders of magnitude after 

which there seems to be no significant difference in K distribution up to the 400m depth. 

This indicates that by ignoring different study sites permeable fractures are present at 

shallow depths but reduce in frequency with depth as expected. 

 

Table 3.10 K-S Test results for the first 100m depth range at 20m depth intervals  

 

Depth intervals (m) D statistics P value Significant at the 95% 
confidence level 

(0-20) and (20-40) 0.26 0.00 Yes 

(20-40) and (40-60) 0.30 0.00 Yes 

(40-60) and (60-80)  0.35 0.00 Yes 

(60-80) and (80-100)  0.43 0.00 Yes 
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Table 3.11 K-S Test results for the entire 500m depth range at 100m depth intervals  
  

Depth intervals (m) D statistics P value Significant at the 95% 
confidence level 

(0-100) and (100-200) 0.42 0.00 Yes 

(100-200) and (200-300) 0.30 0.00 Yes 

(200-300) and (300-400)  0.14 0.67 No 

(300-400) and (400-500)  0.28 0.56 No 

 

Table 3.12  Summary statistics of log K (m/s) distribution within 100m depth intervals 
of the entire 0-500m depth range 

 
Sections of depth 

intervals 
(m) 

 
Count 

 
Descriptive statistics for different test sections (log K) 

 

Significant 
at the 95% 
confidence 

level 
Min Max Mean Median St dev. 

A 0 – 100 
 

500 -12.85 -2.840 -7.39 -6.85 2.14  Yes 

B 100 – 200 
 

123 -11.72 -4.140 -8.99 -9.09 1.64  Yes 

C 200 – 300 
 

73 -11.66 -4.790 -9.73  -10.14 1.30  No 

D 300 – 400 
 

39 -11.38 -4.290  -9.86  -10.27 1.46  No 

E Total Depth  
 

736 -12.85 -2.840 -8.02  -8.42 2.18  - 

 

 

 

Figure 3.14 Variation of Log of mean K with depth intervals (left) and corresponding box-and-
whisker plot of log K distribution at constant depth interval of 100m from A-E  

 



  

88 
 

 

 

3.7.5.2.3 The variation of K with depth: for sites with similar geology, climate and other 

variables  

The variations of conductivity and log (conductivity) values with depth have been examined 

for sites with similar geology, climate and other variables of studies for which most data are 

available (Figures 3.16 and 3.17). The results show a general decrease in hydraulic 

conductivity with depth for all the different studies with an apparent great deal of scatter. It 

is observed that depth variation is poorly developed at any specific site but with higher K at 

shallow depths. The high data scatter may be due to the fact that most of the data are 

obtained from small scale test measurements. The main factors likely to affect K, including 

rock type, climate and tectonic regime, are likely to be constant at each site. Thus, the 

relationship between depth and K should be strongest for individual sites.  

In general the Pearson correlation coefficients (r2) for power relationships of the form Log 

K=m (e) CZ are low for individual studies. This may be attributed to small depth range of 

sample numbers in some cases and also for the fact that most of the sites are of similar 

Figure 3.15 Log of hydraulic conductivity frequency distribution with depth for test interval of 
100m from 0-400 m for all dataset   
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climate and geology. Data from studies conducted by Cook (2008) and Anglogold Obuasi 

(2010) in Ghana have the maximum and the minimum (r2) values of 0.47 and 0.002 

respectively for depth / K relationships. Although K-S tests conducted on the top 100m 

depth interval show some significant differences in K distribution at shallow depths, in 

general by limiting K (z) relationship to sites of similar geology and climate resulted in a poor 

variation in K distribution.  

  

A- Snow, (1979) E- Larry Cook & Associates (2008) I- Muguel M et al, (2009) 

B- Merecel et al., 
(2004) 

F- Cheng-Yu Ku et al, (2009) J- Witherspoon and Gale (1979)  

C- Akaha et al., (2008) G- City of Goldfield; Plume (1996) K- Anglogold Obuasi  Ghana 
(AGC)(2010) 

D- Ali-El Naqa, (1994) H- Ken Kuchling et al, (2009) L- Ghana Australia Goldfields 
(GAG)(2010) 

Figure 3.16 Variation of hydraulic conductivity with depth for all studies yet in a section that 
is dealing with studies from sites with similar geology, climate and other variables 
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Figure 3.17a Variation of log-transformed hydraulic conductivity with depth for each study 
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Figure 3.17b Variation of hydraulic conductivity with depth for each study on the natural scale  
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3.7.5.2.4 Conclusion on the dependence on depth of K 

 

As expected in a fractured aquifer system, visual examination of a plot of log K against depth 

(Figure 3.11) for combined dataset shows an apparent K-depth relationship, but relatively 

high data scatter. A moving average analysis (Figure 3.12 and 13) provides a reasonable 

visualization of the variability of K with depth, with the rate of decrease in K with depth 

decreases with depth.  

 

The application of K-S tests at 95% confidence level on depth intervals show that there is 

significant difference in K distribution with depth between the top 100m and the first and 

second 200m depth intervals (Table 10, and 11).  

 

Also, a plot of mean log K values against depth (Figure 3.14) shows a decrease in K with 

depth to about 300m over a scale of three orders of magnitude after which there seems to 

be no significant difference in K distribution up to 400m depth. Such a decrease of K values 

with depth may be used as an indication that the extent of variation and interconnection of 

fractures in these crystalline rocks is most abundant in the upper 200-300 metres. From the 

above investigations conclusions can be drawn that generally, by ignoring different study 

sites K decreases approximately exponentially with depth in hard rock aquifer systems with 

permeable fractures present at shallow depths but reduce in frequency with depth as 

expected. 

However, it must be emphasized that locally, by limiting the investigation to sites of similar 

geology and climate, the relationship with depth may be very different, and that the dataset 

is characterized by a great deal of scatter. It is observed that depth variation is poorly 

developed at any specific site but with higher K at shallow depths. The high data scatter may 

be due to the fact that most of the data are obtained from small scale test measurements 

and also due to weathering differences of rock types. The main factors likely to affect K, 

including rock type, climate and tectonic regime, are likely to be constant at each site. Thus, 

the relationship between depth and K should be strongest for individual sites. Although K-S 

tests conducted on the top 100m depth interval show differences in K distribution at 

shallow depths, in general results doesn’t show any good variations by limiting the dataset 

to sites of similar geology and climate.   
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3.7.5.3 The dependence on rock type of K   

3.7.5.3.1 Introduction 

In this section, the dependence on rock type of K has been analysed by first of all 

considering variation of K values for all rock types and then limiting the analysis to rock 

types at sites with the same depth and climate. 

 

3.7.5.3.2 The variation of K with rock type: for whole dataset 

Before conducting statistical evaluation on the general characteristics of the rock types, 

variations existing between studies of different and the same rock types are investigated. 

Most of the rocks for which data are available are granites. Out of the 736 measurements 

collated, 489 are from granites of Gale and Witherspoon (1979), Muguel (2009), Merecel 

(2004) and Snow (1979). Results of Kolmogorov–Smirnov significance tests conducted at 

95% confidence level on the 489 conductivity values of the granitic rocks from different 

studies and different rock types show that at 0.05 significance level the population mean is 

significantly different among the different studies and the different rock types (Table 3.13 

and 3.14).  

 

Statistically, the relative frequency distribution of K and log K parameters of rock type(s) in 

the entire dataset is illustrated in Figure 3.18a. The box-and-whisker plots of Figure 3.18b 

and the descriptive statistics of Table 3.15 (in Appendix A-3) summarize and compare 

statistics obtained for each rock type(s) in terms of their central tendencies and spread. The 

following observations can be accounted to indicate the variation in K trend among the 

various rock types: 

 

1. A total of 489 conductivity values of granitic rocks were recorded from six different 

studies from different climates. This is the largest number of data points and the 

highest concentration of data available for any of the rock types. K values for 

granites ranges from 1.40E-13m/s to 6.80E-06m/s and show a bi-modal distribution. 

The distribution is spread but asymmetric with respect to geometric mean value of 

3.92E-09 m/s and standard deviation of 4.71E-05 m/s. K-S test conducted on the 
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granitic rocks from different studies show that K values are all different from each 

study (see Table 3.15). 

2.  56 conductivity values of sandstone/meta-sandstone were recorded, and this is the 

second largest number of data points. Distribution of K values ranges from 2.86E-10 

to 5.60E-04 m/s. The distribution varies and it is asymmetric to the geometric mean 

value of 5.91E-07 m/s and has a standard deviation of 1.48E-04m/s.  

3. Quartzite with 35 K values, were recorded and has the third largest number of data 

points. Hydraulic conductivity ranges from 1.70E-08 to 6.73E-06m/s, being spread 

but asymmetric with respect to the mean value of 9.16E-07 m/s and has a standard 

deviation of 1.7E-06m/s.   

4. A total of 32 K values of gneiss were recorded and has the fourth largest number of 

data points. Hydraulic conductivity ranges from 4.65E-09 to 1.74E-04m/s, and 

asymmetric with respect to the mean value of 9.05E-06m/s and has a standard 

deviation of 9.14E-05m/s.  

5. The rest of the data sets show low data points, and their distribution characteristics 

are as shown in Figures 3.18a, 3.18b and Table 3.15. 

 

In general with the K parameter values the standard deviation (stdev) values are very large 

in comparison with the means – in most cases the stdev is greater than the mean and in the 

case of granites about 10 times. Given that negative values cannot occur, this is a strong 

indicator of the non-normal nature of the distributions. Similarly with Log K parameters, 

with the exception of the median and the spread (inter quartile ranges) measures which 

appear to show very little variations (r2
~1), plots of central tendency measures against 

spread measures (Figure 3.19) show changes in the averages with variance. The change in 

the averages with variance depicts the non-normal nature of the distributions and therefore 

application of Analysis of variance (ANOVA) is less appropriate as a test method to use to 

distinguish between differences and similarities of rock types since ANOVA assumes normal 

distribution of the dataset. It can be concluded that differences among K distribution of 

different rock types of different studies are influenced not only by differences in the 

weathering processes of rock formation but also differences in the methods used to 

measure K in the different studies examined, and the purposes for which the studies were 

conducted. In general rock type is not a major factor influencing variation in K distribution.  
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Table 3.13  K-S Test for differences in granitic rocks for different studies  

Studies D statistics P values Significance at 95% 
confidence level 

(Gale and Witherspoon, 1979) and (Miguel 
et al., 2009)  

1.0000 0.000 Yes 

(Gale and Witherspoon, 1979) and (Snow, 
1979) 

1.0000 0.000 Yes 

(Gale and Witherspoon, 1979) and 
(Merecel et al.,2004) 

1.0000 0.000 Yes 

 

 

Table 3.14  K-S Test for differences in granitic rocks and different rock types  

Studies D statistics P values Significance at 95% 
confidence level 

Granites and  (sandstone/meta sandstone) 0.6822  0.000 Yes 

Granites and  quartzite 0.8078 0.000 Yes 

Granites and gneiss 0.7908 0.000 Yes 

Granite and greenstone 0.8315  0.000 Yes 

Granite and mica schist and phyllite 0.8031  0.000 Yes 
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Figure 3.18a Histogram of log of hydraulic conductivity (K) for each rock type 
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Figure 3.19 Plots of Log N-parameters showing the relationship between central tendency 
measures and spread measures  

 

A = Granite B = Mica schist & phyllite C = Quartzite 

D = Sandstone , meta sandstone E = Porphyry F = Tuff-breccia, 

 tuff-siltstone  

G =  diabase H = Greenstone I = Meta andesite, 

meta-rhyollite 

J = Metavolcanic amphibolite K = Sandstone and shale  L = Sandstone, tuff  & 

conglomerate,  

M = Quartz  porphyry & granodiorite N = Slate, talc- schist,  

talc- Serpentine 

O = Gneiss 

Figure 3.18b Box plot summary statistics of hydraulic conductivity (K) for each rock type 
(lithology) 
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3.7.5.3.3 The variation of K with rock type: depth limited 

 

Regression analysis of conductivity values with depth on both the natural and logarithm 

scale for each of the 15 different rock types have been conducted and presented in Figures 

3.20a, 3.20b and 3.20c. The results show a general decrease in hydraulic conductivity with 

depth for all the different rock types. Analysis of exponential change in Log K with depth (z)          

(Log K=m e C Z) conducted on (tuff-breccia/siltstone) and (sandstone, conglomerate and tuff) 

gave the maximum and minimum coefficient of determination (r2) of 0.80 and 0.006, 

respectively. In most cases the correlation coefficients are low, and the lines fitted are not 

very good guides to the change in measured K values with depth.  It is observed that depth 

variation is poorly developed at any specific site but with higher K at shallow depths. The 

high data scatter may be due to the fact that most of the data are obtained from small scale 

test measurements. The results show that in general the correlation between hydraulic 

conductivity and rock type is not improved by limiting the investigation to depth.  

 

 

A = Granite B = Mica schist & phyllite C = Quartzite 

D = Sandstone , meta sandstone E =  Porphyry F = Tuff-breccia, 

 tuff-siltstone  

G =  diabase H = Greenstone I = Meta andesite, 

meta-rhyollite 

J = Metavolcanic amphibolite K = Sandstone and shale  L = Sandstone, tuff  & conglomerate,  

M = Quartz  porphyry & granodiorite N = Slate, talc- schist,  

talc- Serpentine 

O = Gneiss 

Figure 3.20a Log-transformed hydraulic conductivity distributions with depth for all rock types 
yet in a section that is dealing with studies from sites with similar depth intervals 
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Figure 3.20b Variation of Log transformed of K distribution with depth for each rock type     
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Figure 3.20c Variation of hydraulic conductivity with depth for each rock type   
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3.7.5.4 The dependence on rock class of K   

3.7.5.4.1 Introduction 

In this section, the dependence on rock class of conductivity values has been analysed by 

first of all considering the variation of K values for all rock classes and then limiting the 

investigation to same depth and climate.   

3.7.5.4.2 The variation of K with rock class: for whole dataset 

The various rock types are grouped under the three major rock groups or classes; igneous, 

metamorphic and meta-sedimentary. Figure3.21a presents the relative frequency histogram 

of K values for each rock class on the logarithmic scale and Table 3.17 and Figure 3.21b 

summarize and compare statistics obtained for each rock group. Table 3.16 indicates factors 

relevant to individual rock classes whiles Table 3.18 (in Appendix A-4) show results of 

summary statistics conducted on the rock classes. Evaluation of plots and Figures indicate 

variations in K values on the logarithmic scale between the rock groups with the following 

observations made: 

1. The K distribution of igneous rocks has the highest range of values from 1.40E-13 to 

8.16E-04 m/s. The distribution is asymmetric with respect to the geometric mean 

value of 4.55E-09 m/s. The distributions appear to be of bi-modal character and this 

might due to the fact that the rock formations come from sources of different 

hydrogeological environments. For instance, some were from sites particularly 

investigated for deep radioactive waste disposal and other factors which have 

already been explained in previous sections of this chapter. From Table 3.16 igneous 

is obtained from different sources and dominated by granite and granite by 

radioactive waste sites. K-S test conducted on the granitic rocks indicated differences 

between granites from different studies. 

2. Estimates from metamorphic rocks have the least range of K values, from 1.74E-09 

to 1.45E-03 m/s; the log K distribution appears almost normally distributed and 

symmetric with respect to a geometric mean value of 1.49E-06 m/s.  

3. The Meta-Sedimentary rocks provide data ranging from 2.86E-10 to 5.60E-04 m/s; 

they are spread and almost symmetric with respect to a geometirc mean value of 

8.69E-07 m/s. 
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In Table 3.17, results of K-S tests conducted on the rock classes show that at 95% confidence 

level there is a significant differences between Igneous  and Metamorphic, and Igneous and 

meta-sedimentary rocks whereas there is not much significant difference between Meta-

sedimentary and Metamorphic rocks. It should be noted that differences among K 

distribution of different rock classes of different studies are influence not only by 

differences in the weathering processes but also differences in the methods used to 

measure K in the different studies examined, and the purposes for which the studies were 

conducted. Also there is not much change in the measurements of spread and central 

tendencies indicating weak relationship between rock classes. Thus from above analysis we 

can conclude that rock classes are seen not to be a major factor influencing variation in K 

distribution.  

Table 3.16 Factors relevant to individual rock classes  

 
Rock class 

Factors 

Purpose for K 
Studies 

Test type Depth 
interval (m) 

Climate 

Igneous 

Water resources, 
Mine inflow Studies, 
Grouting at dam  
and tunnel sites, 
Hydrauli testing, 
Rad waste  

Pumping test, 
Specific Capacity 
test, packer/drill 
stem test, 
slug/pulse test, 

1 -549 

Temperate, 
Mediterranean, 

Tropical and 
Semi arid 

Metamorphic 

 
Mine inflow, Water 
resources studies 

Specific Capacity, 
slug/pulse 
Packer/Drill stem 
test 

2 - 165 

Semiarid, 
Tropical and 
Temperate 

Meta-
Sedimentary  

 
Water supply, 
Water resources 
studies 

packer/drillstem, 
slug/pulse, Specific 
capacity test 

2 - 549 

Semiarid and 
Tropical 

 

Table 3.17  K-S Test for differences in rock classes  

Rock Classes D statistics P values Significance at 95% 
confidence level 

Igneous and Metamorphic 0.76 0.00 Yes 

Igneous and Meta-Sedimentary 0.68 0.00 Yes 

Meta-Sedimentary and Metamorphic 0.14 0.23 No 
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Figure 3.21a Histogram of log of hydraulic conductivity (K) for each rock class (I M & S)  

 

Figure 3.21b Box plot summary statistics of hydraulic 
conductivity for each rock class (I M S) 
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3.7.5.4.3 The variation of K with rock class: depth limited 

 

K-S Test results of rock classes (Igneous, metamorphic and meta-sedimentary) for the top 

100m depth range at 20m depth intervals is shown in Table 3.19. Although, at 95% 

confidence level almost all the different rock classes are different in the top 100m depth 

interval, very close examination of the D-statistics (0.30-0.82) reveals that there isn’t much 

variations in K distribution with the rock classes.  Thus the observed variations in rock 

classes might have come from weathering differences between different classes of rocks.  

 

Regression analysis of conductivity values with depth for all rock classes, and on both the 

natural and logarithm scale for each of the three different rock classes have been conducted 

and presented in Figures 3.22a, 3.22b and 3.22c respectively. Analysis of exponential change 

in Log K with depth (z) in the form Log K=m e C Z conducted on metamorphic/depth and 

igneous/depth relationships gave the maximum and minimum coefficient of determination 

(r2) of 0.44 and 0.06, respectively. In most cases the correlation coefficients are low, and the 

lines fitted are not very good guides to the change in measured K values with depth.  It is 

observed that depth variation is poorly developed at any specific site but with higher K at 

shallow depths. The high data scatter may be due to the fact that most of the data are 

obtained from small scale test measurements and weathering difference between rock 

classes. The results show that in general the correlation between hydraulic conductivity and 

rock type is not improved by limiting the investigation to depth.   
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Table 3.19 K-S Test results of the rock classes (Igneous vs. metamorphic vs. meta-
sedimentary) for the top 100m depth range at 20m depth intervals  

Rock classes Depth intervals (m) 
D 

statistics 

P  

value 

Significant at the 
95% confidence 

level 

Igneous vs. metamorphic   

Igneous vs. meta-sedim   

Metamorphic vs. meta-sedim 

 

(0-20) 

0.81 0.00 Yes 

0.82 0.00 Yes 

0.17 0.52 No 

Igneous vs. metamorphic   

Igneous vs. meta-sedim   

Metamorphic vs. meta-sedim 

 

(0-20) and (20-40) 

0.65 0.00 Yes 

0.68 0.00 Yes 

0.64 0.00 Yes 

Igneous vs. metamorphic   

Igneous vs. meta-sedim   

Metamorphic vs. meta-sedim 

 

(20-40) and (40-60) 

0.31 0.12 Yes 

0.40 0.1 Yes 

0.33 0.28 Yes 

Igneous vs. metamorphic   

Igneous vs. meta-sedim   

Metamorphic vs. meta-sedim  

 

(40-60) and (60-80) 

0.74 0.00 Yes 

0.49 0.03 Yes 

0.31 0.57 No 

 

 

  

Figure 3.22a Hydraulic conductivity distributions with depth for all rock classes yet in a section 
that is dealing with studies from sites with similar depth intervals 
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Figure 3.22b Variation of Log of hydraulic conductivity with depth for each rock class   

 

Figure 3.22c Variation of hydraulic conductivity with depth for each rock class   
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3.7.5.5 The dependence on climate of K   

3.7.5.5.1 Introduction 

In this section we have analysed spatial variability of K (central tendency and spread) in 

different climatic conditions (Tropical, Temperate, Mediterranean, Semi-arid and Sub-

arctic). The analyses have been conducted by first of all considering the variation in K values 

of all dataset and then limiting to depth, rock type and, rock type and climate where 

possible. 

3.7.5.5.2 The dependence on climate of K: for whole dataset  

The variability of hydraulic conductivity in five climatic regions of the world has been 

analysed. Evaluation of plots and Figures of hydraulic conductivity values indicate variation 

in K trend among the different climates. Figure 3.23a reports the relative frequency 

histogram of K values for each climate on the logarithmic scale. Figure 3.23b and Table 3.20 

(in Appendix A-5) summarize and compare statistics of K values obtained for each climate. 

The following are some general observations made from the tables and Figures as 

mentioned above: 

 

1. The Semi-arid climatic region has distribution of K values which ranges from 4.65E-09 

to 1.45E-03 m/s.  The distribution is symmetric with respect to a geometric mean 

value of 2.56E-06 m/s  

2. The K distribution of the Tropical climate ranges from 2.86E-10 to 4.73E-05 m/s. It is 

spread and symmetric with respect to the geo-mean of 1.66E-07 m/s) 

3. The K distribution of the temperate climate ranges from 1.40E-13 to 6.80E-06 m/s. It 

is asymmetric and skewed to higher conductivity values with respect to the geo-

mean value of 5.54E-10 m/s  

4. The distribution from Sub-Arctic climatic region ranges from 2.60E-08 to 3.60E-07 

m/s. It is asymmetric with respect to the geo-mean value of 1.27E-07 m/s and it has 

the least sample values. 

5. The Mediterranean climatic region has distribution of K values, ranging from 4.65E-

09 to 1.45E-03 m/s.  The distribution is symmetric with respect to geo-mean value of 

6.12E-10 m/s  
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Figure 3.23a Histogram of log of hydraulic conductivity (K) for each climate  

Figure 3.23b Box-and-whisker plots of summary statistics of log hydraulic conductivity (K) for 
each climate  
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3.7.5.5.3 The variation of K with climate: depth limited 

In this study, regression analysis of conductivity values with depth for all climates zones and 

each of the five climate zones on both the natural and logarithm scale are presented in 

Figures 3.24a, 3.24b and 3.24c. The results show a general decrease in hydraulic 

conductivity with depth for all the different climates with a great deal of scatter. However, it 

must be emphasized that by limiting the investigation to local sites of similar climate and 

geology, the relationship with depth appear different, and that the dataset is characterized 

by a great deal of scatter (Figures 3.24b and 3.24c). Pearson regression analysis for power 

relationships of the form Log K=m (e) CZ conducted in the Tropics and in the Temperate 

climates gave a maximum and the minimum coefficient of determination (r2) of 0.44 and 

0.06, respectively. It is observed that depth variation is poorly developed at any specific site 

but with higher K at shallow depths. The high data scatter may be due to the fact that most 

of the data are obtained from small scale test measurements and also weathering 

differences of the different climates zones. The main factors likely to affects K, including 

geology and tectonic regime, are likely to be constant at each site. Thus, the relationship 

between depth and K should be strongest for individual sites. However, in general by 

limiting K (z) relationship to sites of similar geology and depth did not improve variation in K 

distribution. 

 

Figure 3.24a Variation of Log transformed hydraulic conductivity with depth for all climates yet in 
a section that is dealing with studies from sites with similar depths 
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Figure 3.24c Variation of hydraulic conductivity with depth for each climate 

 

Figure 3.24b Variation of Log transformed hydraulic conductivity with depth for each climate    
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3.8 Summary and discussion of findings 

3.8.1 Introduction 

In this summary, we focus on the characterisation of hydraulic conductivities estimated 

from more than 768 aquifer tests from 12 different studies conducted by various groups of 

researchers on hard rock aquifer worldwide, as has been presented so far in this study. The 

purpose for the estimates was to determine distributions of hydraulic conductivity of hard 

rock aquifers for use in the simulation of regional groundwater flow, as part of the 

investigation of potential impacts of open cast mine on the regional groundwater flow 

system. The summary presented for this chapter is based on the following themes: 

1. Conceptual model for K distribution at a site :  

(a) K(z) relationship and (b) Fracture connectivity 

2. K values based on whole dataset (global average). 

3. Constraining universal K distribution and distribution parameters for site-specific 

purpose by the following factors: depth, rock type, rock class and climate. 

3.8.2 Conceptual model for K distribution at a site: K(z) relationship and fracture 
connectivity 

The spatial variability of all dataset and a couple of sites for which good depth data with 

similar geology and climate exist was characterised and analysed. As expected in a fractured 

aquifer system, K decreases with depth (Figure 3.11 and 3.12), though the scatter is often 

very large, even when data from an individual site is considered (Figure 3.17). An 

exponential relationship between K and depth appears to be as good as any.  

 

Results from K-S tests on the whole data set (Table 3.10 and 3.11) show that at a 95% 

confidence level there is a significant difference in the mean value of K distribution with 

depth between the first and second 200m depth interval. Also, a plot of mean log K (m/s) 

values against depth interval (m) (Figure 3.14a) shows a decrease in K with depth to about 

300m over a scale of three orders of magnitude after which there seems to be no significant 

difference in K distribution up to 400m depth. The decrease of permeability with depth may 

be used as indication measure of the extent of fracture variation and connection in hard 

rock aquifer systems. In the current study it is observed from the data analysis that fractures 

and connectivity are most abundant in the upper 300m. Hence, conclusions can be drawn 
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from the analysis that conceptually, K decreases exponentially with depth from the surface 

of the aquifer up to 300m. Beyond this depth, K remains approximately constant at this 

scale for at least the next 100m.  

 

At the shallowest levels K is affected by weathering, with often greater K values being 

recorded (Table 3.2), at least in the moderately weathered, middle depth section of the 

weathered zone (e.g. Acworth, 1981). In Ghana, especially in the Tarkwaian rock system 

(Figure 3.2) the weathering zone depth is typically of around 20m (Kortatsi 2004), though it 

can vary from less than 1m to at least 100m (Singhal & Gupta, 1999). Typically at open pit 

mines, the least stable material at the top of the opening will be removed so that the slope 

in the weathered material is set back from the main face.  

 

Section 3.5.2.3 discusses the effect on apparent borehole K measurements of fractures with 

limited regional connectivity, and suggested that measured K values may be greater than 

the regional K (patchy aquifer concept). This model of limited distance connectivity could 

also affect the flows around a mine, i.e. the borehole in Figure 3.5 could as easily represent 

a mine. In addition, the local permeability around a mine may be increased by blasting. 

Figure 3.25 illustrates an extreme version of this effect. The impact of this phenomenon is 

uncertain, but is unlikely to extend far beyond the pit and might be taken into account 

simply by considering an effective pit radius.  

 

 

Figure 3.25 Two possible flow configurations of the dewatering effect in a regionally connected 
flow model (left) and a locally connected flow model (right) in a double layer (weathered zone 
over fractured bedrock) aquifer system. In this extreme case, K for the connected zone is much 
greater than K for the regional flow in the bedrock, and all flow from the weathered zone passes 
down through the bedrock to the pit.   
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Based on the considerations discussed above, Figure 3.26 summarises a conceptual model 

for the system and a number of possible flow systems.  

The weathered zone is of limited thickness, and its most permeable levels have been 

removed and taken back from the main slope face. The pit induces a drawdown, typically 

with a base elevation at up to several 100 m. The water level in the bedrock is drawn down 

by the low elevation of the pit base. This induces leakage from the weathered zone, if 

present with the following flow characteristics: 

• Greatest leakage will occur from the weathered zone.  

• In some cases, as shown, the WZ will develop a perched water table. This may reach 

 the pit slope, and in this case a seepage face will develop 

• In other cases leakage will be enough so that the water table does not reach the 

 slope face 

• In yet other cases (not illustrated), the piezometric surface for the bedrock may lie 

 within the WZ 

Hydraulic conductivity varies with depth (see graph in figure) at the topmost levels, but 

below the soil, in the weathered zone complete weathering to clay may have resulted in 

moderate K with higher K in the deeper zone. In the bedrock, K decreases roughly 

exponentially, and has reached very low levels by the base of typical pits. This means that 

flow is greater in the upper part of the bedrock, and probably is very limited into the base of 

a typical pit. To this end it is reckoned that K anisotropy may be important, and could be at 

any angle. 

In all cases (Figures 3.25 and 3.26), recharge will occur across the area, including directly 

into the pit. The amount of recharge entering the bedrock will depend on the head 

difference between the WZ and the bedrock, though the rate will reach a maximum if the 

bedrock piezometric surface falls below the base of the WZ.  

Figure 3.27 includes a representation of a possible zone of connection of fractures around 

the pit. This may have the effect of slightly extending the effective diameter of the pit. In an 
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extreme case, water may be able to flow from the WZ down through the higher K connected 

zone and into the pit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26 Vertical cross sectional profile of conceptual model showing the three 
possible water tables in the weathered zone (WZ) and two possible piezometric 
surfaces in the bedrock.   
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Figure 3.27 Vertical cross section of Figure 3.26, but with “connected zone” around 
pit included. WZ is weathered zone.  
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3.8.3 K values based on whole dataset 

The main aim of this chapter has been to collate data from literature that would help in 

determining values for K for a given hard rock system. The first step in doing this has been to 

consider all the data available, irrespective of rock type, climate, tectonic regime, depth or 

purpose for which the K values have been obtained, or method of K measurement.  

 

The K frequency distribution for the whole dataset has the following characteristics: 

asymmetric, spread and skewed to lower conductivity values, as shown in Figure 3.7b. 

Transformation to log K values makes the distributions much more normally distributed, but 

in the case of the whole dataset together, exhibits a bi-modal character consisting of two 

log-normal distributions (see Figure 3.7a). To this end, we conjecture that the bi-modality is 

probably due to differences in weathering degree of the rocks and the dominance of the 

two main types of studies from which data extracted may have contributed to such biasing 

(e.g., choice of very low conductivity sites for nuclear waste disposal and much high 

conductivity from dam and tunnel sites for grouting and water supply purposes).  

 

Also, we reckon that estimates of universal hydraulic conductivities on the natural scale that 

could be used in generic calculations around mines, range from 1.40E-13m/s to 1.45E-

03m/s. At 95% confidence interval for the actual mean, most of the data are estimated to lie 

within the range of 7.71x10-06 to 2.18x10-05 m/s. The representative geo-mean, median and 

the standard deviation are estimated to be 1.57x10-08 m/s, 3.80x10-09 m/s, and 9.74x10-05 

m/s respectively (Table 3.6).  The geometric mean is three orders lower than the arithmetic 

mean. The difference between the mean and median reflects the non-normal nature of the 

distribution. 

3.8.4 Constraining universal K distribution for site-specific purpose  

However, by limiting the investigation to sites of similar geology and climate, the 

relationship with depth was found to be variable and characterized by a great deal of 

scatter. It was observed that depth variation is poorly developed at any specific site but with 

higher K at shallow depths. The high data scatter may be due to the fact that most of the 

data were obtained from small scale test measurements and also due to weathering 

differences of rock types. The main factors likely to affect K, including rock type, climate and 
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tectonic regime, were also investigated to see if they could be used to limit the range of 

possible K values at any given site. It was found that limiting data to similar rock type, 

similar climate, or similar tectonic regime did not constrain K ranges.. Hence the combined 

dataset was used to represent international dataset and also used for all the calculations.  
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CHAPTER 4 

CHARACTERISATION OF POTENTIAL DIRECT RECHARGE 

4.1 Introduction 

Rushton and Ward (1979) define groundwater recharge as the amount of surface water that 

reaches the permanent water table.  In order to determine the impact of surface mining on 

the regional groundwater flow systems, a value for recharge is required. This chapter 

therefore aims at determining the potential recharge rate for use in subsequent numerical 

modelling experiments. Potential recharge here is defined as the likely recharge in cases 

where the water table is deep enough that it no longer has an influence on the recharge 

rate. This is interpreted to mean that the recharge process can be estimated assuming that 

the flow in the unsaturated zone is freely draining (see Section 4.4). This rate is effectively a 

maximum rate, as in some cases the inability of groundwater to flow away fast enough will 

mean that recharge will be rejected. This is further discussed under groundwater flow 

modelling (Chapter 5). Recharge is a region-specific property, and thus work will 

concentrate on the Tarkwa mining district of South western Ghana, though the approach 

should also be applicable elsewhere. In addition, it is also aimed to establish an empirical 

relationship between potential groundwater recharge and precipitation that could be used 

for future predictions.  

Since data for the study are limited, the HYDRUS-1D computer code has been used to 

analyze variability of precipitation recharge for the various soil types in the study area in 

response to rainfall and evapotranspiration. HYDRUS-1D computer code is chosen for this 

analysis because of its advantage of dealing with hydrological complexities, and the 

derivation and estimation of water budgets and fluxes. HYDRUS-1D is widely accepted to 

represent the soil water physics in both research and engineering communities and 

extensively verified by comparing model results with available field data, analytical 

solutions, and with other numerical models for water flow (e.g., Hernandez et al., 2003; 

Simunek and van Genuchten, 1999; Shah et al., 2007). In the following sections, the 

materials and methods used, the physical modelling process, the modelling results and 

discussion, and the summary and conclusion have been discussed in section 4.2, 4.3, 4.4, 

and 4.5 respectively.  
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4.2 Method and Approach 

4.2.1 Introduction 

Reviews of potential recharge assessment include (Rushton, 1988; Gee and Hillel, 1988; 

Allison et al., 1994; Scanlon et al., 2002; de Vries and Simmers, 2002). According to these 

researchers, recharge assessment can be based on a wide variety of models which are 

designed to represent the actual physical processes. The suitability of an approach or 

method depends on the scale and conceptualisation of the flow system as well as the level 

of accuracy required and crucially, on the available data. The various approaches that are 

usually used to estimate natural groundwater recharge include:  

1. Inflow estimation (soil moisture budgets, unsaturated zone modelling, direct 

measurement; lysimeters). 

2. Aquifer response analysis (analysis of groundwater level hydrographs; through-flow 

analysis). 

3. Outflow estimation (baseflow analysis from suitable located gauging stations; 

concurrent flow gaugings). 

4. Catchment water balance method (groundwater flow modelling)  

5. Groundwater chemistry trends (isotope and solute profile techniques). 

In the current study, considering approach 1, annual potential recharge has been forecasted 

through the modelling of the soil system. The basic approach is to perform numerical 

simulation with HYDRUS-1D computer software package (Šimunek et al., 2005) on a 

conceptual one-dimensional column from the surface to the watertable. The bottom flux is 

then used as a potential recharge for the regional groundwater flow modelling process with 

the MODFLOW Computer Code in Chapter 5.  

 

4.2.2 The HYDRUS-1D Computer Code   

HYDRUS is a software program for solving the Richards’s equation for water flow and the 

advection-dispersion equation for heat and solute transport in variably saturated subsurface 

media (Simunek et al. 2005). HYDRUS comes with a graphical user interface that runs under 

the Microsoft Windows operating system and uses the finite-element method to simulate 

movement of water, heat, and multiple solutes in partially or fully saturated porous media. 



  

120 
 

In this study, a one dimensional version of the HYDRUS computer software program, 

HYDRUS-1D, has been used to simulate changes in soil water content under 

saturated/unsaturated one dimensional vertical groundwater flow. 

HYDRUS-1D accommodates user-defined flow and head boundary conditions into a 

numerical solution of the Richard’s equation for unsaturated and saturated flows. The 

model makes use of the Galerkin-type linear finite element method for space discretization 

(Simunek et al. 2005) and a finite-difference method for temporal discretization. The user 

interface includes pre-processing of data and graphical presentation of the output results in 

Microsoft Windows environment. The data pre-processing involves specification of all 

necessary parameters to run the FORTRAN source code successfully, discretization of the 

soil profile into finite elements, and the definition of the vertical distribution of hydraulic 

and other parameters characterizing the soil profile van Genuchten and Mualem (1980)  

First of all, the processes to be simulated are selected (water flow, chemical transport, heat 

transport, root growth, and/or root water uptake). Length units, depth and inclination of 

the soil profile to be analyzed, as well as the number of materials to be used, are specified. 

After selecting the time and space scales, the boundary conditions are entered among many 

other operations. A catalogue of soil hydraulic parameters based on soil texture is part of 

the pre-processing unit. Parameter optimization can be carried out either by direct 

simulation or inverse solution. 

The post-processing unit allows graphical presentation of the soil hydraulic properties, 

changes of a particular variable at selectable locations in the profile through time, and 

cumulative water fluxes across the upper and the lower boundaries. Moreover, water 

content and pressure head profiles can be obtained. 

The profile module is matched by the discretization of the flow domain in a graphical mode 

and specification of domain properties. This is an external module which may be used to 

discretize a one-dimensional soil profile into finite difference cells. The module also allows a 

user to specify the initial conditions in the pressure head and the water content, as well as 

the spatial distribution of other parameters characterizing the soil profile (e.g., spatial 

distribution of soil materials and root water uptake parameter) and/or observation nodes.  
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4.2.2.1 Governing equations-Richards’ equation  

The vertical movement of water in the unsaturated zone is described by the Richards’ 

equation. Depending on the selection of the dependent variable: the θ-based (moisture 

content-based), the h-based (head-based), and the mixed forms, the Richards’ equation can 

be written in different forms (Celia et al., 1990; Miller et al., 1998). In a situation where the 

air phase of a homogeneous and isotropic soil does not affect the liquid flow processes and 

has negligible water flow resulting from thermal gradients, Celia et al., (1990) and Miller et 

al., (1998) formulated the one dimensional mixed form of Richards equation as follows: 

       

  
 

 

  
      

     

  
                     (4-1) 

This is subject to the initial and boundary conditions; 

  

  
         (4-2) 

Or 

                      (4-3)          

where the parameters are defined by van Genuchten and Mualem (1980) as; h[L]=soil water 

pressure head; θ[L3L−3]=volumetric water content; t[T]=time; z[L]=is the vertical distance; 

K[LT−1]=unsaturated hydraulic conductivity, a function of saturated hydraulic conductivity Ks 

and water content; and S[L3L−3T−1] represents the sink term to account for root water 

uptake.  h0 [z] is the initial condition, and q0(t) [LT−1] is the fluid flux across the soil surface 

boundary.  

It should be noted that the classical Richards-flow theory functions for only stable flow 

conditions, with the assumptions that the air phase does not play any significant role in the 

liquid flow process (Richards 1931). It is also assumed that water flow due to thermal 

gradients can be neglected. However, flow instability (which is non-Richard’s) has been 

observed under a wide variety of circumstances such as sudden and gradual increases of 

hydraulic conductivity with depth, water repellence of the solid phase, compression of air 

ahead of the wetting front, and preferential flow through non-capillary macro pores.  
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4.2.2.2 Soil hydraulic properties 

HYDRUS-1D solves the Richard’s equation by establishing relationships between soil water 

retention θ(h) and hydraulic conductivity K(h) which are nonlinear functions of pressure 

head and water content respectively. However, HYDRUS-1D permits the use of four 

alternative analytical models for determining soil hydraulic properties (Brooks and Corey, 

1964; van Genuchten, 1980; Vogel and Císlerová, 1988; Kosugi, 1996; and Durner, 1994). In 

modelling the unsaturated flow in the study area, the van Genuchten and Mualem (1980) 

analytical model (equation 4-4) was used to describe the soil water retention parameters. 

The equation is expressed as follows: 

 

      
   

     

                  

                                        

                     (4-4)            

The relationships between water retention and pressure head as expressed above have five 

parameters that define the shape of the function, θs saturated porosity of the soil, θr 

residual moisture content, Ks saturated hydraulic conductivity, α the inverse of the air entry 

value (or bubbling potential), and n pore size distribution index.  

The hydraulic conductivity function in HYDRUS-1D is also described by the van Genuchten-

Mualem (1980) pore size distribution model, with the relationship expressed as follows: 

      
    

           
           

                                                     
           (4-5)    

where, 

    
 

 
                

       

       
      (4-6) 

Se is the effective saturation, and Ɩ is pore-connectivity parameter estimated to an average 

of 0.5 for most soils. 

4.2.2.3 Initial and boundary condition determinations 

4.2.2.3.1 Initial conditions 

In order to model the transient soil water flow using the HYDRUS-1D, the initial soil moisture 

contents should be defined at each nodal point within the soil profile. The values of soil 
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water content (and hence the matric head) at each nodal point within the soil profile are 

required. However, when these data are not available, it is usual to define the water 

contents to be at field capacity or such that steady-state flow is occurring. Thus, the initial 

head distribution is defined  

 

                               (4-7) 

 

where hi [L] is a prescribed function of x, and to is the time when the simulation begins. 

The above arbitrary starting condition has been dealt with in section 4.4 by running 

preparatory simulations to produce the same cyclic pattern.   

 

4.2.2.3.2 Boundary conditions 

The two main boundary conditions for the unsaturated zone are the upper (atmospheric) 

and lower boundary conditions. The upper boundary condition is the Neuman type 

(Neuman et al., 1974) which can change from a fixed flux to a fixed head when limiting 

pressure heads are exceeded and depends on precipitation and potential evaporation. The 

actual flux through the soil surface is limited by the ability of the soil to transmit water. And 

again, if the potential infiltration rate exceeds the infiltration capacity of the soil, part of the 

water will run off (van Genuchten, 1980).  

Three different types of conditions can be defined at the lower boundary: (1) Dirichlet 

condition in which the pressure head is specified, (2) Neumann condition in which the flux is 

specified, and (3) the mixed boundary condition or Cauchy condition where flux normal to a 

boundary can be expressed in terms of the head along the boundary and a known constant. 

The phreatic surface is usually taken as the lower boundary in the situation where recorded 

watertable fluctuations are already known. In such a situation the flux through the bottom 

of the system can be calculated. A flux at lower boundary condition is usually applied in 

situations where one can identify a free drainage or no flow boundary (i.e., an impermeable 

layer). In regions with a very deep groundwater table, a Neumann type of boundary 

condition is often used as in the case of the current study. 
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4.2.2.4 Required input data  

According to Šimunek et al. (2005), the required input data for the simulation of water 

dynamics in the unsaturated zones includes; model parameters, geometry of the system, 

boundary conditions and, initial conditions for transient flow simulation. The dimensions of 

the problem domain are defined via the geometry parameters. The physical properties of 

the system under consideration are described via the physical parameters. With respect to 

the unsaturated zone, these include the soil water characteristic, θ(h), and the hydraulic 

conductivity, K(h). For a proper description of the unsaturated flow, a proper description of 

the two hydraulic functions, K(h) and θ(h) is important. All these have been fully dealt with 

in the subsequent sections. 

4.3 Development and representation of the conceptual model  

4.3.1 Site and data description  

As previously mentioned, recharge is a region-specific property and therefore work will 

concentrate on the Tarkwa mining district of South Western Ghana. The geographical 

characteristics of the area have already been discussed in Chapter 2 of the thesis. The study 

area is located in the Ankobra Basin bordered to the west by the Ankobra River which flows 

towards the south. Bordering the area to the north and south respectively are the Huni and 

Bonsa Rivers, major tributaries of the Ankobra (Kuma, 2007). The area is highly dissected 

and has moderate relief with a general decrease in elevation southwards (Kuma, 2007).  

 

Stratigraphically, the Tarkwaian rock system in the direction of oldest to youngest, consists 

of the Kawere Group, the Banket-Series, the Tarkwa-Phyllite, and the Huni-Sandstone with 

weathered quartzites forming most of the surface rocks (Whitelaw, 1929). The landscape is 

defined by a series of parallel ridges and valleys orientated parallel to the NE/SW strike of 

the rocks (Kuma, 2007). Kuma (2007) further asserts that this geomorphology results from 

the inclined folds and dip-and-scarp slopes of the Banket Series and the Tarkwa Phyllites. 

Also, smaller tributary valleys cross the ridges being controlled by faulting and jointing.  

 

Kuma and Younger (2000) and Kortatsi (2004) contend that vertical groundwater recharge 

from precipitation and evapotranspiration are the main components of the water cycle in 
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the study area, with the unsaturated zone playing an important role. Using the water 

budget method, Kuma (2007) estimated recharge rate of (299±72) mm/yr for the area. 

According to these workers, the humid climate of Tarkwa District is characterized by a 

surplus of precipitation over soil evaporation and plant transpiration, with no distinct 

monsoon. And therefore precipitation is the primary source of recharge, whereas seepage 

from other surface bodies, watercourses, terrain depressions, fractures, and diversion from 

denser soil contribute indirectly with a trivial volume, especially in the environments of new 

surface mine development.  Once infiltrated and reduced by evapotranspiration, the rest of 

the moisture percolates down through the vadose zone to the watertable as a potential 

recharge to the groundwater. The shallow areas however, allow for some moisture to be 

driven back by a capillary rise in response to evapotranspiration demand. 

 

4.3.2 Soil physical properties  

The two main types of soil in the Tarkwa area are the forest oxysols in the south and the 

forest ochrosol-oxysol in the north (Asklund & Eldvall, 2005). The soil consists of mostly silty-

sands with minor patches of laterite mainly on hilly areas and underlain by the Banket Series 

and the Tarkwa Phyllite rocks (Kuma & Younger, 2001; Kortatsi 2004). According to these 

researchers, soil thickness in the area is about 50m and varies from one place to the other 

with an average of 20m. A typical soil profile in the area consists of a relatively thin surficial 

unit of thickness 0-0.15m, enriched with organic matter. These researchers further argue 

that this unit form part of the A-horizon and normally has a dark brown colour. Below this 

unit is the B-horizon, the zone of infiltration which extends on average to 1.50m and 

exhibits a red to yellowish-brown colour. The unconsolidated parent rock is the C-horizon, 

located below the B-horizon which is much more variable in thickness compared to the A 

and B-horizons with much lighter colour (Kuma and Younger (2001).  

 

Results of infiltration tests (Table 4.1) conducted by Kuma and Younger (2001) on the four 

main soil types; Huni, Tarkwa Phyllite, Banket and the Kawere at 56 sites in the study area 

show that the saturated hydraulic conductivity (Ks) of the soils falls within the range of 10-5 

to 10-8 ms-1 with the majority in the 10-6 to 10-7 ms-1 bracket. Kuma and Younger (2001) 

further contended that in terms of both particle size distribution and saturated hydraulic 
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conductivity values the Banket soils were identified to display the best textural 

characteristics for groundwater percolation and are therefore the best medium for 

recharge.   

 

Table 4.1 Soil textural properties in the mining district of Tarkwa in South Western 
Ghana   (modified from Kuma and Younger, 2001)   

 
Soil type 

 
Soil Texture 

Textural fractions 

Gravel (%) 
 

Sand (%) Silt (%) Clay (%) Gs 
(Specific gravity) 

Huni 
 

Silty  Sand 2 55 33 10 2.65 

Tarkwa 
Phyllite 

Laterite 69 
 

9 13 16 2.74 

Banket 
 

Silty Sand 
Laterite 

2 
69 

59 
14 

20 
10 

10 
7 

2.66 
2.67 

Kawere 
 

Silty Sand 0 47 40 13 2.65 
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4.3.3 Meteorological data 

Meteorological data for South Western Ghana used for this study were obtained from the 

Ghana Meteorological Service weather station at Tarkwa (Appendix B). The dataset span for 

almost a quarter of a century, from 1977 to 2001 and include: Average monthly summary of 

rainfall data with total rain days,  Average monthly summary of potential 

evapotranspiration, solar radiation, maximum and minimum temperature (air and dew 

point) relative humidity at 06:00 and 15:00 hours and 2x per day wind speed. Data obtained 

was statistically processed and analysed, and appropriate graphs (Figure 4.1) generated 

using Microsoft Excel. Analysed data were used as input into the Hydrus Computer Code for 

modelling of bottom fluxes in the estimation of the potential recharge. 

 

 

Figure 4.1 Daily (Top), monthly (middle) and annual (bottom) temporal variation of Precipitation 
and Potential Evapotranspiration of South Western Ghana averaged over 25yrs period  
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4.3.3.1 Spatial rainfall variation distribution pattern 

The amount of groundwater recharge depends on rainfall intensity and temporal 

distribution, and calculations for recharge should be undertaken at least as frequently as 

daily (Howard and Lloyd, 1979). As only monthly data were available, monthly rainfall and 

evapotranspiration data were converted into daily time series in excel format by dividing 

the monthly totals by the number of rain days within each month. Four spatial rainfall 

variation distribution patterns D1, D2, D3, and D4 were defined based on rain day number 

data, with an intention to choose the suitable distribution pattern for the study area. On this 

basis, the relationship between distribution patterns and their corresponding recharge 

values were initially investigated to inform the choice of distribution for the groundwater 

modelling (Chapter 5). 

  

4.3.3.2 Representative rainfall distribution 

Due to variability of precipitation and evapotranspiration as well as soil and aquifer 

properties, recharge processes have a non-linear relationship with time and space. In view 

of this, the amount of rainfall over a period of time may result in no recharge due to high 

rate of evapotranspiration, but the same amount of rainfall spread over a shorter time 

period could be sufficient to saturate the soil and cause some recharge. In view of this, four 

different representative rainfall distributions were defined for the area and one of them 

chosen for the subsequent groundwater modelling (the reason for making a choice out of 

the four is explained below). The spatial daily variation within a month of each of the four 

models D1, D2, D3, and D4 are shown in Figure 4.2 and defined as follows: 

1. D1: A lump distribution spread the full month rainfall for each of the number of days 

in the month i.e. the monthly total divided by the number of days in the month. 

2. D2: A lumped distribution of the full month rainfall applied for only the first day of 

the month. 

3. D3: A lumped distribution applied the full month rainfall in only two days at even 

intervals throughout the month, e.g. on the 1st and 15th day.  

4. D4: A lumped distribution applied the full month rainfall in four days at even 

intervals throughout the month, e.g. 7th, 14th, 21st and 28th days. 
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Based on the above distribution pattern, a preliminary run of Hydrus-1D for the study area 

was carried out for a 5 year period (1997–2001) of rainfall and evapotranspiration to 

determine the appropriate rainfall distribution model for the area. The bottom water flux of 

the simulation was assumed to be equal to the potential recharge to the groundwater. For 

example in April 1997 the average monthly rainfall recorded for 12 rain days is 236mm/yr 

which is equivalent to 1.97cm/day and the corresponding distribution pattern for the four 

models is shown in Table 4.2. This is repeated for the rest of the time series.  

Table 4.2 Different models showing daily rainfall distribution pattern of South 
Western Ghana for the month of April 1997  

Time  

(Days) 

 Models  

D2 D1 D3 D4 

1 1.97 1.97 1.97 1.97 

2 1.97 0 1.97 1.97 

3 1.97 1.97 1.97 1.97 

4 1.97 0 1.97 0 

5 1.97 1.97 1.97 0 

6 1.97 0 1.97 0 

7 1.97 1.97 0 1.97 

8 1.97 0 0 1.97 

9 1.97 1.97 0 1.97 

10 1.97 0 0 0 

11 1.97 1.97 0 0 

12 1.97 0 0 o 

Continue in the next page 

Figure 4.2 Representation of daily rainfall distribution models of monthly totals 
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13 0 1.97 0 0 

14 0 0 0 0 

15 0 1.97 0 1.97 

16 0 0 1.97 1.97 

17 0 1.97 1.97 1.97 

18 0 0 1.97 0 

19 0 1.97 1.97 0 

20 0 0 1.97 0 

21 0 1.97 1.97 0 

22 0 0 0 1.97 

23 0 0 0 1.97 

24 0 1.97 0 1.97 

25 0 0 0 0 

26 0 0 0 0 

27 0 1.97 0 0 

28 0 0 0 0 

29 0 0 0 0 

30 0 0 0 0 

 

Given the potential evapotranspiration (PET) and precipitation (P) as input parameters the 

Hydrus computer code was run and got it to calculate recharge (R) and surface run-off (RO) 

for each distribution pattern based on equation 4.8, with the results shown in Table 4.3.  

 

                   (4-8) 

 

It is observed that different rainfall distribution models resulted in variation in recharge and 

run-off. A plot of recharge against daily rainfall of the four distribution pattern is shown in 

Figure 4.3. A lump distribution of rainfall at the beginning of the month (D2) yielded the 

maximum recharge, whilst a lump distribution of rainfall spread equally for each day of the 

month (D1) resulted in a minimum recharge.  

 

Thus, less recharge means that the radius of influence has to increase to capture the 

amount of water discharged from the mine. Hence, in order to obtain a maximum areal 

extent of mine impact in the study area, rainfall distribution pattern D1 with the smallest 
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recharge value was chosen for the numerical modelling of potential recharge using the 

HYDRUS computer code (section 4.4).    

 

In the current study, Table 4.4 represents input values of daily precipitation and 

evapotranspiration rates, for the first month of the time series (1997 to 2001), for the 

implementation of the upper boundary condition for the Hydrus computer code using the 

distribution pattern of D1. The rest of the series follow the same trend. 

 

Table 4.3  Water balance model for rainfall distribution pattern  

Rainfall 

Distribution Model 

PET 

(mm/5yr) 

PET 

(mm/yr) 

Recharge-R   

(mm/yr) 

Rainfall-P  

(mm/yr) 

PET + R 

(mm/yr) 

Run-off 

(mm/yr) 

D2 6280 897 500 1408 1397 11 

D3 7000 1000 400 1408 1400 8 

D4 7160 1022 376 1408 1398 10 

D1 7230 1032 368 1408 1400 8 

 

  

 

 

 

 

Figure 4.3 Relationship between recharge and rainfall distribution pattern  
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Table 4.4 Time variable atmospheric Boundary Conditions of precipitation (Precip) and 
evapotranspiration (EvapoT) for the period 1977 -2001, using the distribution pattern 
of D1 

Time 
Series 

Time 
 (days) 

EvapT  
(mm/m) 

No. of 
Days 

Precip. 
(mm/m) 

Rain   
days 

Precip 
(mm/d) 

Precip/sp 
(mm/d) 

EvapT  
(mm/d) 

hcritA 

1 01/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

2 02/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

3 03/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

4 04/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

5 05/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

6 06/01/1977 97.9 31 3.6 5 0.72 0.72 3.16 100000 

7 07/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

8 08/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

9 09/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

10 10/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

11 11/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

12 12/01/1977 97.9 31 3.6 5 0.72 0.72 3.16 100000 

13 13/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

14 14/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

15 15/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

16 16/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

17 17/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

18 18/01/1977 97.9 31 3.6 5 0.72 0.72 3.16 100000 

19 19/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

20 20/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

21 21/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

22 22/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

23 23/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

24 24/01/1977 97.9 31 3.6 5 0.72 0.72 3.16 100000 

25 25/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

26 26/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

27 27/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

28 28/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

29 29/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 

30 30/01/1977 97.9 31 3.6 5 0.72 0.72 3.16 100000 

31 31/01/1977 97.9 31 3.6 5 0.72 0.00 3.16 100000 
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4.4 Numerical model design using Hydrus-1D Computer code 

4.4.1 Conceptual infiltration model  

A conceptual model for the flow processes following precipitation occurring on the soil 

surface is shown in Figure 4.4. A steady state finite element infiltration model is developed 

with Hydrus-1D computer code to deal with the flow process by taking into consideration 

the following processes; infiltration and surface ponding of precipitation at the surface of 

the soil profile, evapo(transpi)ration, and unsaturated flow in the unsaturated zone 

governed by the Richards’ equation. The structure of vegetation reveals that the area under 

consideration has undergone and continues to undergo various degrees of degradation due 

to surface mining. The multi-storey structure representation of the South West rain forest 

and other similar forest types is lost. The resultant plant cover is a mixture of vegetation and 

open ground that reflects the various stages of land use. Precipitation was therefore 

assumed to reach the soil surface uninterrupted by any vegetation canopy. Time series data 

of precipitation and evaporation is introduced to the surface of the model grid system as a 

source term. As described by Simunek et al. (2005), when the top layer becomes saturated 

as a result of heavy downpour precipitation rate exceeds infiltration rate. Precipitation then 

begins to accumulate in the surface and the ponded water is assumed to be immediately 

removed by runoff whiles the model automatically converts the pressure head of the top 

layer to zero. The bottom water flux is assumed to be equal to the potential groundwater 

recharge. 

 

Figure 4.4 Schematic diagram of the implementation of the conceptual infiltration model on the 
left  
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4.4.2 Soil hydraulic properties  

To run the hydrus computer numerical model requires specifying the number of layers in 

the soil profile, boundary conditions and the soil hydraulic parameters θr, θs, α, Ks and L. 

Homogeneous vertical conceptual soil column of average depth 600cm from ground surface 

was set up. The simulation was made with incorporation of the processes of precipitation 

and potential evapotranspiration as defined in previous sections.  

Soil properties representing the four main soil types in the study area (Huni, Tarkwa Phyllite, 

Banket and the Kawere), were determined for each of the profile components in describing 

the soil profile, from results of infiltration tests conducted by Kuma and Younger (2001). The 

soil hydraulic parameters were estimated using a pedotransfer function model, Rosetta 

(Schaap et al., 2001) that predicts hydraulic parameters from soil texture and related data as 

implemented in HYDRUS-1D. The van Genuchten parameters were estimated using Rosetta, 

the latter based on the soils data collected by Carsel and Parrish (1988). Rosetta contains a 

hierarchy of pedotransfer functions that can be used depending on the available data. In 

this study, the hydraulic parameters were predicted and the results presented in Table 4.5) 

by using data for bulk density (Bd) and percentages of sand, silt, and clay of the four soil 

profiles from the results of infiltration tests conducted by Kuma and Younger (2001) on 

different soil types at 56 sites in the study area (Table 4.1).   

 
Table 4.5    Estimated Van Genuchten hydrauli c parameters by Rosetta (Schaap et al., 
2001) 

 
 

Soil 
Type 

 
Soil 

Texture 

Hydraulic parameters 

Bd 
(gmm-3) 

θr 
(m3m-3) 

θs 
(mm-3) 

α 
(mm-1) 

N 
( - ) 

Ks 
(mm/d) 

L 
( - ) 

Huni 
 

Silty Sand 26.5 0.0414 0.3889 0.00208 1.4186 336 0.5 

Tarkwa 
Phyllite 

Laterite 
 

27.4 0.0537 0.3789 0.00313 1.394 320 0.5 

Banket 
 

Silty Sand 
Laterite 

26.7 0.0404 0.3854 0.00372 1.4556 530 0.5 

Kawere 
 

Silty Sand 26.5 0.0485 0.3935 0.00114 1.4856 177 0.5 

Where: Bd=bulk density; θr= residual soil water content; θs=saturated soil water content; α, N and L 
are empirical coefficients that determine the shape of the hydraulic functions 
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4.4.3 Setting the Boundary and initial conditions  

4.4.3.1 Upper boundary conditions  

The upper boundary condition is specified as an atmospheric boundary condition with 

surface runoff. And with this condition the potential flux across the boundary is controlled 

by precipitation and potential evapotranspiration. Implementation of the atmospheric 

boundary condition requires specifying daily precipitation and evapotranspiration rates and 

therefore a twenty five year daily time steps series (01/01/1977 to 31/12/2001) of 

precipitation and potential evapotranspiration (Figure 4.5) were defined in excel format 

(Table 4.4) and input into the Hydrus 1D computer code.  

 

 

Simunek et al. (2005) observed that as long as the pressure head at the surface remains 

above a threshold value hcrit, evaporation of water from the soil surface continues at the 

potential rate Ep. These researchers further explain that if the soil surface dries out as a 

result of evaporation to the point that the surface pressure head reaches hcrit, the 

boundary switches to a constant pressure head condition (=hcrit). This generally leads to a 

computed actual evaporation rate that is well below the potential rate. In this study, hcrit 

value is assumed to be minus 1000000mm. However, because the surface soil remained 

relatively wet due to regular precipitation and remained above the hcrit threshold the 

simulation results obtained were insensitive to this parameter value when specified in the 

range minus 1500000mm to minus 1000000mm (Simunek et al. 2005). 

Figure 4.5 Input values of Precipitation and Potential Evapotranspiration rates of South Western 
Ghana averaged over the period of 1977-2001.  
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 4.4.3.2 Lower boundary conditions 

Neuman et al. (1974) have observed that most studies that use unsaturated zone models to 

estimate groundwater recharge normally assume the unit gradient flow at the lower 

boundary (e.g. Nolan et al., 2003, 2007; Small, 2005; and Keese et al., 2005). However, 

because groundwater may return to the atmosphere through either capillary rise or 

groundwater evapotranspiration this boundary condition may not be valid for regions where 

water tables are shallow. (e.g. Gillham, 1984; Wu et al., 1996; Batelaan et al., 2003). 

Similarly, in regions with a ‘deep’ groundwater table, a Neumann type of boundary 

condition is used whereby the flux is specified to be fixed. In this study we decided to look at 

the maximum potential recharge hence the use of a deep water table and a fixed maximum 

boundary condition. The bottom water flux is taken to be equal to the potential 

groundwater recharge. 

4.4.3.3 Initial conditions 

Anderson and Woussner (1992) have observed that in order to get the resulting solutions to 

produce the same initial cyclic pattern, the initial conditions of the model have to be 

generated by running a certain period of preliminary cyclic simulation earlier to the time of 

interest. . Thus, in the current study three-year preliminary simulations were performed by 

a multiple-year precipitation and evapotranspiration sequence having a cyclic pattern of the 

first-year (Y1) meteo sequence such that Y2=Y3. Figure 4.6 shows the temporal changes of 

water fluxes at the lower boundary showing the cyclic pattern of the peaks representing Y1, 

Y1, Y1, Y2, Y3, Y4, Y5. 

 

 

 

 

 

 

 

 

 Figure 4.6 Temporal changes of water fluxes at the bottom of the lower boundary  
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4.5 Results and discussion 

4.5.1 General comments on results 

As already stated, the bottom water flux of the infiltration model was taken to be equal to 

the potential groundwater recharge. Figure 4.7 show breakthrough plots of the elevation, 

pressure and the total head in order to check whether the system was behaving properly, 

and in particular that the flow has reach the base of the model. The first 180 days was taken 

by the system’s initial conditions to adjust to the temporal changes. The system became 

stable by 635 days, i.e. within the three year, year 1 cycling, with infiltration reaching the 

water table.  

 

Figure 4.7 Water infiltrations in the unsaturated zone showing the 
elevation head, pressure head and the total head for the periods 
180 days, 635 days and 1096 days. 
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Figure 4.8 show plots of temporal changes in actual and cumulative water fluxes and 

pressure heads across the upper and the lower boundaries of the infiltration model. The 

cumulative bottom flux was used in the calculations of the potential recharge estimates to 

the groundwater system for the period 1977 to 2001. 

 

Data summary of the entire results of the various soil types in the study area are shown in 

Table 4.6. The annual percentage contribution of precipitation to recharge was also 

calculated.  A preliminary investigation into the relationship between precipitation and 

recharge indicated that there is significant variation in the data and this might have resulted 

from a number of reasons, most notably different antecedent conditions. Depending on the 

soil types, the average potential annual recharge rates ranges from 355 mm/yr to 411 

mm/yr and corresponds to 25.4% to 29.4% of the annual precipitation for the entire period 

(25yrs).  

 

Figure 4.8 Graphs of temporal changes in actual and cumulative water fluxes and pressure heads 
across the upper and lower boundaries  
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Table 4.6  Predicted potential recharge values of Tarkwa District i n South Western 
Ghana for a range of rainfall distribution spanning for the period 1977 -2001 

 

Time 

(Years) 

 

Precip. 

(mm/yr) 

Annual recharge (mm/yr) 

Soil  
1 

Banket 

%
 P

recip
 

Soil 
2 

Huni 

%
 P

recip
 

Soil  
3 

Kawere 

%
 P

recip
 

Soil  
4 

Tarkwa 
%

 P
recip

 

Study 
Area  

% of 
Ann. 

precip 

1977 1085 223 21 192 18 165 15 217 20 199 18 

1978 1383 516 37 459 33 403 29 511 37 472 34 

1979 1554 530 34 506 33 480 31 558 36 519 33 

1980 1827 796 44 763 42 821 45 730 40 778 43 

1981 1216 450 37 434 36 341 28 471 39 424 35 

1982 1225 405 33 375 31 350 29 398 33 382 31 

1983 1071 269 25 242 23 221 21 265 25 249 23 

1984 1459 246 17 215 15 185 13 249 17 224 15 

1985 1385 380 27 364 26 338 24 375 27 364 26 

1986 1158 232 20 216 19 215 19 218 19 220 19 

1987 1507 379 25 423 28 381 25 479 32 416 28 

1988 1255 351 28 231 18 204 16 231 18 254 20 

1989 1368 440 32 415 30 375 27 466 34 424 31 

1990 1351 290 21 265 20 273 20 261 19 272 20 

1991 1284 426 33 367 29 302 24 419 33 379 29 

1992 1502 279 19 260 17 257 17 281 19 269 18 

1993 1692 489 29 435 26 380 22 486 29 448 26 

1994 1389 447 32 426 31 411 30 470 34 439 32 

1995 1594 594 37 555 35 527 33 559 35 559 35 

1996 1598 453 28 436 27 422 26 448 28 440 28 

1997 1352 428 32 394 29 372 28 417 31 403 30 

1998 1429 181 13 172 12 171 12 191 13 179 13 

1999 1686 721 43 680 40 640 38 403 24 611 36 

2000 1320 469 36 440 33 414 31 460 35 446 34 

2001 1253 270 22 235 19 222 18 263 21 247 20 

Mean 1398 411  380  355  393  385 27% 
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4.5.2 Recharge- Precipitation relationships 

Figure 4.9 and 4.10 shows the effect of rainfall pattern and distribution on the potential 

infiltration recharge over the period from 1977 to 2001 of the entire study area consisting of 

the four main soil types respectively. Although there is variation in precipitation recharge to 

the groundwater system in the study area, generally, the plots look similar which is an 

indication that there isn’t much difference in precipitation recharge for the four main soil 

types. High recharge rates were observed from 1977 to 1984 and remain almost in dynamic 

equilibrium from 1984 to 2001 with the exception of 1998 where we had the minimum rate 

over the entire period. This is due to the corresponding variations in rainfall pattern and 

distribution in the area. 

 

 

Figure 4.9 Data summary of mean annual precipitation, percentage of precipitation and 
groundwater recharge in Tarkwa District of South Western Ghana 
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The overall results presented so far clearly suggest that there is a strong dependence 

between annual rainfall and observed recharge. Therefore, to further investigate the 

relationship, an attempt was made to relate the dependent parameter (recharge) to the 

independent parameter (precipitation) by linear regression analysis of the form:  

 

                     (4-9) 

 

where R is the annual recharge rate (mm), P is the annual precipitation (mm), and m and C 

are calibration coefficients. Figure 4.11 and 4.12 show the linear variation between annual 

recharge and precipitation of the study area as well as the four main soil types in the area 

where (R2), the standard coefficient of determination or correlation indicate the strength of 

the relationships.  

Figure 4.10 Mean annual precipitation, % of precipitation and groundwater recharge of soil type 
1 (R-soil 1), (R-soil 2), (R-soil 3), and (R-soil 4) in Tarkwa District of S. W Ghana 
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Figure 4.12 Variations of mean annual recharge with precipitation rate for soils 1 to 4 of Tarkwa 
District in South Western Ghana. 

Figure 4.11 Variations of mean annual recharge with precipitation of Tarkwa 
District in South Western Ghana. 
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Results of the linear regression analysis of the above recharge-precipitation relationships 

are tabulated in Table 4.7 for the entire study area consisting of the four main soil types. 

Close observation of the results show that the coefficient of correlation of the linear 

relations is 0.72 for the study area and for the four main soil type the coefficient of 

correlation from the lowest, ranges from 0.39 to 0.55 with respect to soil 4, 1, 2 and 3.   

 

 It should be noted that negative c means that there is a threshold rainfall needed before 

recharge occurs, and that this threshold is quite large, from -222 to -470 making %P less 

meaningless when taken into consideration the low correlation between recharge and 

precipitation. Thus the high value of c may simply be that the relationship is not linear 

really, and therefore we should not extrapolate to P values below the lowest as seen in the 

data sets.   

 

Table 4.7  linear regression analysis of recharge-precipitation relationships of study 
area for the period, 1977-2001  

 
Soil Type 

Mean 
annual 

recharge 
R 

Mean 
annual 

precipitation 
P 

% of Ann. 
Precip. 

 
m 

 
c 

 
R2 

Soil 1- Banket 411 1398 29.40 0.54 -346 0.47 

Soil 2 - Huni 380 1398 27.18 0.55 -393 0.50 

Soil 3- Kawere 355 1398 25.39 0.59 -470 0.55 

Soil 4 -Tarkwa 393 1398 28.11 0.44 -222 0.39 

Study Area  406 1398 29.04 0.58 -399 0.72 

R2=regression coefficient   m and c are calibration constants 

 

4.6 Summary and conclusions 

Using the Hydrus infiltration model, the mean potential annual recharge to the groundwater 

system in the Tarkwa District of South Western Ghana has been estimated for the period 

1977 to 2001.   The estimated recharge rate will be used as an input parameter to the 

MODFLOW computer code to design a conceptual model and simulate the impact of surface 

mining on the groundwater flow systems in Ghana (chapter 5).   
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The recharge estimation was conducted by analysing precipitation recharge for the four 

main soil types in response to rainfall pattern and distribution of the study area. Simulation 

results of infiltration recharge rates show linear relationship over the range of precipitation 

with pretty low correlation coefficient ranging from 0.39 to at least 0.72, with the selected 

soil type in this study. The variability of annual recharge in the study area may be caused by 

various reasons including variation in the weather pattern (rainfall, temperature, 

evapotranspiration etc), topography and hydraulic properties of the aquifer system.    

 

In conclusion, the potential direct recharge rate was estimated to range from 269mm/yr to 

611mm/yr (with an average value of 385mm/yr). This is as a result of infiltration of about 

18% to 36% (average 27%) of the mean annual precipitation. This high value (385mm/yr) is 

reasonable on the basis that it represents the potential maximum value of the actual 

recharge value of 299±72 mm/yr as reported by Kuma et al., (2007).   

  



  

145 
 

CHAPTER 5 

ASSESSMENT OF POTENTIAL DEROGATION IMPACTS OF MINE DEWATERING 
ON THE REGIONAL GROUNDWATER FLOW SYSTEM 

5.1 Introduction 

The main approach in this thesis is to use scoping calculations based on the poorly 

constrained data sets developed in the previous chapters to determine the likely 

importance of mines on derogating surrounding areas. As the data are so uncertain and 

even the detailed conceptual models will vary from site to site, the approach is scoping with 

the aim to see if generalisations can be made and general rules devised. Hence the 

emphasis will be on the development and use of the simplest reasonable representation. A 

previous model for this approach is that taken by Oakes and Wilkinson (1972) when 

investigating river augmentation (see also Downing et al., 1974). 

The main aim of this chapter is to develop and evaluate the simple numerical model which 

will then be applied in chapter 6 to investigate the possible derogation impacts of open pit 

mines on regional groundwater flow systems.  

The approach in this chapter is therefore to set up a basic model, and investigate the 

impacts of its various assumptions on its predictions. The basic model is based on the 

conceptualization shown in Figure 5.1. In this basic model, the pit is located in an infinite 

homogeneous and isotropic aquifer with uniform recharge and a steady state flow system. 

The importance of the following factors is then investigated; steady-state, flow below the 

mine base, seepage faces, variation of K with depth and K anisotropy.   

The main variable is radius of impact and two measures of this have been considered (see 

Figure 5.1): (i) radius of influence (Re) as estimated by the locus of a drawdown of variable X 

cm (see below), and (ii) radius of impact (Ri) as defined by the locus of a drawdown of 1m, 

this being an amount of drawdown likely to be noted by users of wells as well as the impact 

on surface water systems. The choice of 1m is rather arbitrary, but probably on the 

conservative side. Measurement of radius of impact is taken from the centre of mine in the 

horizontal direction at a metre drawdown unless otherwise indicated.  
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The chapter has been scheduled as follows; 

1. The numerical codes used are briefly discussed in section 5.2  

2.  Section 5.3 describes the base numerical MODFLOW model and sets the scene by 

presenting some preliminary results. 

3. Section 5.4 investigates the main assumptions of the model of section 5.3: 

4. Section 5.5 compares the numerical model with an analytical model  

5. Section 5.6 summarises and concludes.  

5.2 Computer Codes Used  

5.2.1 Introduction 

Two numerical codes have been used, the MODFLOW finite-difference and SEEP/W finite-

element computer codes.  

In the following subsections the description of the capabilities and weaknesses of the two 

numerical codes are discussed. 

 

5.2.2 The MODFLOW 2000 Computer Code 

The MODFLOW finite-difference numerical computer code is one of the most common 

simulation codes that have been widely used in simulating local and regional groundwater 

∆s=0m    ∆s=1m 
▼ 

Static water level 

Re 

Ri 

Figure 5.1 A diagram showing the basic conceptual model used. 
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flow phenomena. In recent times, the MODFLOW numerical modelling code has been 

shown to be reliable and versatile in simulating aquifer systems in which; (1) saturated flow 

conditions exist, (2) Darcy's Law applies, (3) the density and the viscosity of the groundwater 

does not vary, and (4) the principal directions of horizontal hydraulic conductivity or 

transmissivity do not vary significantly within the system (McDonald and Harbaugh, 2000).  

The above conditions are appropriate for many aquifers for groundwater flow analysis is 

being undertaken, of which the current study is not an exemption. MODFLOW has the 

capability of simulating a wide range of hydrogeological processes and conditions 

(McDonald and Harbaugh, 2000). These features include drains, streams, lakes, springs, 

wells, and evapotranspiration, and recharge from precipitation and irrigation can also be 

simulated. MODFLOW has not less than four solution methods for solving the finite-

difference equations that it constructs (McDonald and Harbaugh, 2000). The availability of 

different solution methods allows a user to select the most efficient for their particular 

problem. According to McDonald and Harbaugh (2000), the major limitations of MODFLOW 

are that the model cannot provide a water budget for the full hydrologic cycle because the 

unsaturated zone and overland flow are not simulated. Moreover, MODFLOW does not 

calculate evapotranspiration, infiltration, unsaturated zone flow or recharge (which is 

calculated separately). Also with certain model geometries and property values, including 

some which are relevant to the current project, modelling convergence issues arise 

especially with low K-values and three dimensional models.  

With regards to the present study, Groundwater Vistas 6.20 Build 5, a model-independent 

graphical design system for MODFLOW and other models, has been used. A unique aspect 

of Groundwater Vistas is its use of grid independent boundary conditions which do not 

change position as the grid is modified. This allows for major changes to the meshing to be 

made without wasting time repairing the location of boundaries. In the current studies 

Groundwater Vistas has been used to display the model design in both plan and cross-

sectional views using a split window. Model results are presented using contours, velocity 

vectors and detailed mass balance analyses. 

  



  

148 
 

5.2.3 The SEEP/W Computer Code 2007   

The SEEP/W finite-element numerical computer code is part of a GEO-STUDIO package, a 

suite of commercial software used for geotechnical and geo-environmental engineering - 

SLOPE applications (GEO International Limited, 2007).  According to the SEEP/W manual, 

this computer code can be applied to the analysis and design of geotechnical, civil, 

hydrogeological, and mining engineering projects by utilising the finite element method to 

solve the relevant boundary value problem. SEEP/W is used for analyzing groundwater 

seepage and pore-water pressures within soil and rock. It is capable of dealing with 

saturated-unsaturated time-dependent problems as well as saturated steady state 

problems.  

Apart from conventional steady-state saturated flow analysis, the saturated/unsaturated 

formulation of SEEP/W makes possible the analysis of transient seepage and infiltration of 

precipitation (GEO International Limited, 2007). The transient feature allows the analysis of 

problems such as the migration of a wetting front and the dissipation of excess pore-water 

pressure (GEO International Limited, 2007). Furthermore, the SEEP/W can simulate 

heterogeneous hydraulic properties in anisotropic and heterogeneous flow systems, as 

observed by Ardejani and Singh (2004). SEEP/W allows the generation of finite element 

meshes by drawing regions on the screen and interactively applies boundary conditions and 

specifies material properties. SEEP/W offers various viewing options, once the task under 

investigation is solved. These include the plotting of contours of any computed parameter, 

e.g. pressure, head, velocity, gradient and permeability. SEEP/W shows transient conditions 

as the changing water table position over time (GEO International Limited, 2007) and the 

final can then be exported into other applications, such as Microsoft Excel or Word, for 

further analysis  

Despite the preceding capabilities, the SEEP/W computer code has its own limitations, since 

it was developed to consider specific conditions. For instance, SEEP/W is formulated only for 

flow that is consistence with Darcy’s Law and it is best suited for vertical cross-sectional 

models and lacks flexibility in recharge input. Also, vapour movement is not included (GEO 

International Limited, 2007).  
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5.3 Design of base numerical MODFLOW model 

5.3.1 Introduction  

This section describes the basic MODFLOW representation used to investigate the effect of 

a mine in a regional aquifer. Not all assumptions are discussed as some will be investigated 

in more detail in section 5.4. This section also presents a few example results.  

5.3.2 Model and Model Assumptions 

In the current study, some of the many assumptions made in the design process are due to 

the nature and limitations of the flow models themselves. Other assumptions regarding the 

geology and mining history have also been made due to data limitations. For instance, the 

deeper aquifer sequences in hard rock environments in Ghana are dominated by fracture 

flow (Kuma; 2007), but the modelling of fractures is beyond the scope of the present study 

because the geology of the Birimian and the Tarkwaian systems in Ghana are complex and 

detailed field data on fracture geometry and geo-hydrological characteristics is non-existent.  

The model structure adopted is therefore based on a very simplified conceptualization of 

the groundwater flow system in the mining environments in Ghana. The weathered and 

fractured rock formations were modelled as equivalent porous media with any shallow 

weathered zone simply being represented as a more permeable part of the same system. 

Thus, it is assumed that groundwater flow can be described by use of a three-dimensional 

flow equation based on Darcy’s Law. In this approach, the hydraulic conductivity used in the 

model represents the bulk property of the fractured rock formation. Flux of water through 

fractures of the rock mass is simulated as distributed throughout the formation. The model 

is approximated to represent regional flow controlled by a large density of fractures. This is 

because the model is not capable of simulating localized groundwater flow controlled by 

permeable fractures. More also, the aquifer is assumed to be unconfined in nature and 

groundwater occurs under water table conditions.  

Potential recharge to the model is assumed to be spatially uniform because no detailed 

spatial information is available in the mining environments of Ghana. On the average, 

potential recharge to the water table was calculated as precipitation minus surface runoff 

and evapotranspiration in chapter 4. Surface run off was due only to rejection of rainfall due 
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to the permeability of the near surface soils, and any rejection of recharge due to filling up 

of the aquifer from below was not considered and needs to be considered in the numerical 

model. Areal recharge enters through the top model layer.  

Unfortunately in this study, it has not been possible to develop a transient model due to 

general scarcity of hydrologic information, for example lack of historical water level data 

against which to calibrate any model developed. Moreover, no groundwater flow models 

are known to exist in the area as indicated by Kuma (2006) and Lutz et al. (2007) and for this 

reason, steady state groundwater flow conditions are assumed, but this assumption is 

investigated in section 5.4.  

 

5.3.3 Model hydraulic and recharge parameters used 

The model parameters used for the model design were estimates of mine geometry, 

hydraulic conductivity and potential groundwater recharge obtained from summary results 

of chapters 2, 3 and 4 of this thesis.  The results of research conducted in Chapter 2 on the 

geometry of open-pit mines in Ghana indicated that on the average, depth of most open 

pits hovers around 300m. It was also realised that on the average, most open pits in Ghana 

and elsewhere in the mining environments assume a rectangular shape in plan-view of 

dimensions which range from 500 to 2000m.  

Statistical characterisation of hydraulic conductivity values in chapter 3 table 3.6 gave 

distribution parameter values for the combined international dataset (e.g., central 

tendencies and spread) applicable for the calculations of groundwater flow near mines. 

Summary statistics of K-parameter values range from 1.40x10-13 m/s to 1.45x10-03 m/s with 

an overall mean, median, standard deviation and a geometrical mean of 1.48x10-05 m/s, 

3.80x10-09 m/s, 9.74x10-05 m/s, and  1.57x10-08 m/s respectively. The K values used in the 

modelling process have been chosen bearing these figures in mind.  In chapter 4, potential 

groundwater recharge is estimated to range between 18% and 36% (an average of 27%) of 

the mean annual precipitation in south western Ghana where there is greater concentration 

of open pit mines. This translates to an average annual potential recharge rates ranging 

from (269 - 611) mm/yr with an average rate of 385mm/yr. This high value is on the basis 

only of considering the soil system and the actual value of recharge may be much lower. 
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Recharge is input as an areally distributed value across the model. In general a value of 300 

mm/y has been used. This is lower than the mean value obtained in chapter 4, but is close 

to the value suggested for actual recharge by Kuma et al. (2007).  A lower value in general 

leads to a conservative estimate of radius of impact. However, the sensitivity to potential 

recharge rate is investigated in chapter 6 and it is shown that the difference between 300 

and 385 mm/y is negligible in the present context.   

 

5.3.4 Numerical model design using MODFLOW 2000 computer code 

The numerical model has been set up using the Environmental Simulations International 

(ESI) modelling package, Groundwater Vistas 6.20 Build 5. MODFLOW-2000 was initialized 

and a grid system was developed. A model domain of size 25km by 25km area was 

discretized into 2500 cells with 50 cells in the x-direction (∆y=500m) and 50 cells in the y-

direction (∆x=500m). Decreasing cell dimensions affects heads close to the mine as 

expected, but makes little practical difference to the estimate of radius of impact. The 

bottom and top elevations of the model domain were usually taken to be 0m and 500m, 

respectively. All horizontal grid boundaries were initially taken to be no-flow boundaries and 

located to be far enough from the main areas of interest in the middle of the domain to 

have no effect on drawdowns. The effects of boundaries has been investigated and 

discussed in chapter 6. Also, the bottom boundary was assumed to be a no-flow boundary 

because it is assumed that at such depth, hydraulic conductivity had decreased significantly, 

compared with the values in the upper aquifer. For the basic model, an open pit of 

dimensions measuring 2000 x 1000m in plan-view and 300m deep is placed at the centre of 

the model domain (see Figure 5.2).  

An average annual potential recharge rate (R) of 300 mm/y was input as areally distributed 

values across the model. In order to keep the flow heads below the surface of the modelled 

domain, the evapotranspiration package was used. A notional value of evapotranspiration 

(0.009m/d (or sometimes 0.0009 m/d) with extinction depth at 498m and ET surface at 

groundlevel) was chosen to be more than the recharge value (0.000819m/d). The concept is 

that when all the recharge cannot enter the aquifer, the rest runs off, the ET package being 

used to remove the excess water. When recharge is in excess, as it is expected to be in this 

system, the water level remote from the mine will be held at the elevation of between the 
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extinction depth and the ET surface, the exact location depending on the 

‘evapotranspiration’ rate / recharge rate ratio. The choice of extinction depth and ET rate 

affect the final water level and the recharge rate, and therefore potentially the radius of 

influence and accordingly this variable is investigated along with total recharge rate. 

MODFLOW was then simulated for steady state conditions to assess the area of impact (the 

radius of influence) in the presence of the mine. The various solvers (Preconditioned 

Conjugate Gradient Package (PCG2), Slice Successive Over-relaxation Package (SOR), and 

Strong Implicit Procedure Package (SIP)) available within the computer code were used in 

running the model; the default solver did not converged on several occasions, whereas 

PCG2 gave good results comparatively.  

 

Figure 5.2 (Top): Plan and cross-sectional view of model domain and head contour profile, and 
(Bottom): Sectional profile of heads through the mine.  
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5.3.5 Example calculations of impact assessment with single-layer MODFLOW models 

In this section a few example calculations are provided to illustrate the results from this 

simple model. The bottom and top elevations of the example model domain were taken to 

be 0m and 500m, respectively with head of water in mine fixed at 300m from the bottom. In 

order to keep the flow heads below the surface of modelled domain, the value of 

evapotranspiration (0.0009m/d with extinction depth at 498m) was chosen to be more than 

the recharge value of 0.000819m/d so that any excess water can be removed from the 

system as soon as there is surface ponding. A hydraulic conductivity value of 3.8x10-04m/d 

(4.4 x 10-9 m/s) was used. The results are given in table 5.1 (model 1).  

 

Table 5.1  The effect of varying K by about a factor of 5 and 10, respectively on the 
radius of impact in a mining environment  

 Model 1 (base model) Model 2 Model 3 

K (m/d) 3.8x10-04 1.9x10-03 3.8x10-03 

R (m/d) 8.19x10-04 8.19x10-04 8.19x10-04  

ET(m/d) 9x10-04 9x10-04 9x10-04  

Ri (m)  1130 1412 1638 

 

To illustrate the system further, the hydraulic conductivity has been varied to see the 

general effect on the radius of influence. It was observed that in general, the radius of 

influence increases with increasing hydraulic conductivity values. As permeability increases, 

hydraulic heads drop and increase outwardly from mine and this indicates an increasing 

effect of radius of influence. For example in Table 5.1, an increase in the radius of impact of 

approximately 282m to about 508m is observed for an increment of 5 to 10 times the value 

of hydraulic conductivity. These runs of the model are illustrative only, as this chapter is 

concerned with setting up the models and looking at their assumptions. The results of 

applying the models will be mainly considered in chapter 6.  
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5.4 Assessment of the main assumptions of the basic numerical model 

5.4.1 Introduction 

Before using the models of section 5.3, the importance of the following assumptions of 

these models is investigated: 

1. whether flows at all times can be considered as steady-state 

2. whether a fully-penetrating constant head at the mine is appropriate 

3. whether seepage faces affect the radius of influence significantly 

4. how significant variation in hydraulic conductivity with depth is 

5. how important hydraulic conductivity anisotropy is, in the vertical plane (the 

horizontal effect is examined as part of the examination of the model in chapter 6)  

The aim of this section will be to determine whether these assumptions affect the results 

significantly and whether the base model is likely to over or under predict the radius of 

influence. The assumptions will be examined as listed above in sections 5.4.2 to 5.4.6.  

5.4.2 Assumption of steady-state flow 

In the present study, the assumption that whether flows at all times can be considered as 

steady-state in the mining environments in Ghana has been investigated by considering the 

time it may take for a system to adjust to a new mine base after dewatering. The steady-

state assumption implies that uniform recharge to the water table and discharge to mine 

pits are in equilibrium and that hydraulic head is not changing in time. In the case of mine 

dewatering, the radius of impact Ri (cone of depression) does not expand under steady-

state conditions since recharge rate equates discharge. Hydraulic conductivity and storage 

are the two main aquifer properties that allow quantitative time-variant prediction of the 

hydraulic response of the aquifer to recharge and discharge to be made. For example, 

storage coefficient is important for understanding hydraulic response to transient stresses 

on aquifers and indicates how fast a dewatered aquifer system recovers to steady state 

conditions. These parameters may vary spatially because of geologic heterogeneity, for 

instance decreasing with depth for a fractured aquifer system. For unconfined aquifers, 

specific yield is taken often to be 1-10% while the elastic storage coefficient ranges often 

from 10-5 to 10-4 (Lohman 1972).  To determine reasonable inputs for the construction of 

models for the current investigation, aquifer parameters of hydraulic conductivity and 

storativity are considered. Storativity value of 10 percent (0.1) and one percent (0.01) for 
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the top weathered zone and the fractured zone respectively which according to Driscoll 

(1986) is a reasonable value for fractured bedrock aquifers are assumed. Based on the 

MODFLOW computer model described in section 5.3, four different models were 

constructed to simulate the time taken for a mine base to stabilise to steady state 

conditions when the mine is dewatered and the base is suddenly dropped to a new mine 

base. Modflow is initiated from a constant head everywhere and the changes in head with 

time simulated for monitoring wells placed at distances from the mine (Figures 5.3 and 5.4). 

In Table 5.2, aquifer parameters used and measurements of time taken for system to 

stabilise to steady state conditions are recorded. It is observed that generally, the time 

taken for the system to stabilise to a new mine base after dewatering increases with 

increasing distance from mine for both weathered and fractured zone but with longer 

duration for the weathered zone due to the higher storage coefficient, as expected. For 

instance, within a distance of 5km from mine, it took the top weathered zone of the aquifer 

system almost 10 years to recover to steady state conditions whereas it took just a year for 

the fractured zone. Following the above observation and taking into consideration the 

period of development of a typical mine in Ghana (at least 30yrs), it can be concluded that 

steady state flow conditions could be assumed for the mining environments in Ghana and 

therefore the current impact assessment. Errors will tend to be such to lead to 

overestimation of radius of impact. 

Table 5.2 Measurements of time taken for a new mine base to stabilise to steady state 
conditions after mine dewatering for monitoring wells placed at various distances 
from mine 

 Model 1 Model 2 Model 3 Model 4 

Bulk layer hydraulic 
conductivity  K (m/d) 

1.57x10-3 1.57x10-3 1.57x10-3 1.57x10-3  

Horizontal distance/m  of 
monitoring well from mine  

2000 3000 4000 5000 

Time taken for system to 
stabilise for a weathered 
zone (StorageS=Sy=0.1) 

2000 days 

(5.5 years) 

2500 days 

(6.8years) 

3000 days 

(8.2 years) 

3500 days 

(9.6 years) 

Time taken for system to 
stabilise for a fractured 
zone (storageS=Sy=0.01)   

200 days 

(6.3 months) 

250 days 

(8.3 months) 

300 days 

(10 months) 

350 days 

(12 months) 
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Figure 5.3 Time-drawdown plots (in days) assuming weathered zone properties (storage 
S=Sy=0.1) showing time (days) taken for heads to stabilise from an initial head of 120m to 30m 
(mine depth of 90m), measurements taken at various horizontal distances; A (400m), B (600m), 
C (800m) and D (1000m) from mine. The kink most clearly shown in C and D results from the ET 
extinction depth control  

A B 

C D 
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5.4.3 Assumption of a fully-penetrating constant head to represent the mine 

The MODFLOW model does not take into account the flow of the water below the constant 

head. One simple way of investigating if this may be of significance is to use a drain node in 

place of the constant head. This has been done for a few example models of an aquifer of 

thickness 500m, recharge 0.000819m/d and ET of 0.0009m/d and the results are shown in 

Figure 5.4 Time-drawdown plots (in days) assuming fractured zone properties (storage 
S=Sy=0.01) showing time (days) taken for heads to stabilise from an initial head of 120m to 30m 
(mine depth of 90m), measurements taken at various horizontal distances; A (400m), B (600m), C 
(800m) and D (1000m) from mine  

 from mine  

  

A B 

C D 
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table 5.3. The drain conductance were calculated with K = rock K, thickness =nominal, small 

distance of 1m. Table 5.3 indicates that representing the mine with the drain conductance 

affect the calculated radius of influence by reducing it. This reduction is significant at very 

high conductivity systems but not significant at low conductivity systems for the geometry 

investigated. This suggests that the basic model over-estimates the radius of influence. 

Though this means the basic model is probably less accurate, the estimates of radius of 

influence will include some degree of safety.  

Table 5.3.  Simulation results of the effect on the radius of influence of 
assumption of a fully penetrating constant head (drain) to represent the mine 
(partially penetrating constant head of 200m) by varying the hydra ulic 
conductivity of base model by 20%.  

Input 

parameters 

Base Model 1 Base Model Model 2 

Drain Fixed 
Head 

Drain Fixed 
Head 

Drain Fixed 
Head 

Stage (m) 200  200  200  

Width (m) 500  500  500  

Length (m) 500  500  500  

Thickness (m) 1  1  1  

K (m/d) 

X 100, 10, 1 

 

0.38 

 

0.38 

 

0.038 

 

0.038 

 

0.0038 

 

0.0038 

Radius of 
impact  Ri (m) 

5989 6959 3080 3137 1654 1825 

 

5.4.4 Impact assessment of assumption of no seepage face 

The occurrence of a seepage surface above the water level in a dewatered open-cast mine 

may have an impact on the groundwater flow regime and hence the radius of influence of 

the mining operations. Seepage surfaces frequently occur in dewatered mines in unconfined 

aquifers. In the report of Sakthivadivel & Rushton (1989) the presence of a seepage surface 

can be identified visually in the slope sides of large diameter wells or mine-pits with water 

entering slowly from the wet aquifer and moving down the mine surface to the dewatered 

water level.  Seepage face is a less efficient means of drawing water into an open pit than 

when the water column extends over the full depth of the aquifer (Babbitt and Caldmine, 

1948; Rushton, 2006).  
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The problem of seepage faces is connected to the Dupuit assumption for modelling 

groundwater flow (e.g. Raudkiwi and Callandar, 1976; Rushton, 2006). This assumption is 

that the velocity is constant throughout the flow depth with the flow horizontal. This 

assumption produces good estimates of flow rates to pumping wells but the heads are not 

well predicted close to the well. For larger systems such as open pit mines the errors for 

water table may be less pronounced unless water table gradients are particularly steep that 

may be the case near the pits. But at distance the heads obtained using the Dupuit 

assumptions (e.g. in one layer models such as used here) are close to those predicted by 

multi-layer models where vertical flow variations are taken into account (Rushton, 2006).  

In the current study, the importance of seepage surface under steady state condition of flow 

in unconfined aquifers in the mining environments in Ghana has been investigated. The 

SEEP/W computer code which has the functionality to model seepage surfaces has been 

used to determine whether seepage surfaces could be developed at the side slope of open 

pits aquifer systems. The model shown in Figure 5.5 has been used to create the 

simulations. Important to this type of analysis, is the hydraulic boundary condition on the 

seepage surface. The boundary condition is set to be a no-flow boundary condition (Q=0) 

with a potential seepage surface. This means, the boundary condition does allow water out 

of the system if the pressures are positive or zero, but does not allow water to exit the 

aquifer if the rock has negative pressures. It is important to note that although flow around 

mine pits is approximately radial, linear flow geometry has been simulated and this is 

because the SEEP/W computer code is best suited for vertical 2-dimension cross-section 

models (GEO International Limited; 2007).  Moreover, the adjacent boundary conditions do 

not allow quantitative measurements of the radius of influence to be made. The effects of 

the mine on the radius of influence have therefore been qualitatively assessed through 

changes in water level.  

The model design represents a partially penetrated open-pit of vertical cross sectional area 

of dimensions L x H = 2000m x 300m in a single layer unconfined aquifer of thickness 600m. 

The model domain is discretized using predominantly quadrilateral and triangular mesh of 

3229 nodes and 3055 elements with a global element size parameter (a numerically robust 

default discretization system that controls the meshing size) of 30. A uniform hydraulic 

conductivity within the upper permeability zone of 1.48×10−8m/s is used for the unconfined 
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aquifer. The hydraulic conductivity is represented as a function of the pore water pressure 

in order that unsaturated conditions can be simulated. In fact, SEEP/W has an in-built 

predictive method that is used to estimate the hydraulic conductivity function by specifying 

the volumetric water content function and the K saturation value and for the current 

simulation the result is shown in figure 5.6. This representation is more likely to be correct 

in weathered material than fractured material, so more correct for shallow water tables. 

The following boundary conditions have been assigned to the model: no-flow boundary 

condition at the outer ends and bottom boundaries to represent impermeable boundaries 

in the aquifer. A fixed-head boundary condition of value 300m is specified at the pit’s 

bottom. A surface flux boundary condition of a steady-state infiltration rate of 300mm/yr 

(9.5x10-9m/s) net infiltration is specified along the top of the aquifer. In fact, SEEP/W is 

formulated for saturated-unsaturated flow, making it possible to deal with infiltration, 

evaporation and runoff at the ground surface and hence recharge can be rejected. Along the 

side slope of the mine the boundary condition is set to be a no-flow boundary condition 

with a potential seepage face as described above. A two-dimensional vertical flow 

simulation was then performed under steady-state condition. The results obtained to 

analyse include; total head contours, velocity vectors, the location of the water table (the 

zero contour pressure head) and the total inflow rate to mine. 

In Figure 5.7, simulation results of models constructed with and without seepage 

representation are shown. Model 1 and model 2 represent simulations with and without 

seepage surface respectively whiles models 1a and 2a are the magnified representation of 

model 1 (with seepage surface) and model 2 (without seepage surface). Comparison of 

simulated models revealed that seepage face has no significant effect on the flow and the 

extent of impact of the free water surface. The zero pressure contours meet the surface 

very close to the bottom of the mine for both representations and also there is no 

significant change in flux within the aquifer system and inflows (within 1%) into the mine 

between the two representations. Moreover, the head contours for both representations 

are at the same distance from the mine indicating that groundwater seepage has no 

significant effect on the flow regime, and hence the radius of mine impacted area.  
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This has not been a comprehensive investigation of seepage face effects as a wide range of 

properties have not been varied and the flow to the mine has been assumed to be linear. 

However, further models constructed using SEEP/W during the investigation of hydraulic 

conductivity anisotropy and change with depth have also not shown any significant effect 

when seepage faces have been used. Examination of the work on seepage faces in wells 

(Rushton, 2006), where the small surface area of inflow increases the chance of seepage 

faces, indicates that seepage faces would decrease drawdown close to the mines but make 

little effect on drawdown at distance. It is tentatively suggested that seepage faces will have 

limited effect on the predicted radius of influence.  
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Figure 5.5 Configuration set up of model geometry, meshing, and boundary conditions for 
seepage analysis 
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5.4.5 Impact assessment of variation of K with Depth  

The characterisation of hydraulic conductivity of hard rock aquifer systems has been 

extensively dealt with in Chapter 3 of this study. Results show that hydraulic conductivity 

decreases approximately exponentially with depth from the surface to a depth of about 

300m after which there seems to be no significant difference in K-distribution up to 400m 

depth and beyond (see Figure 5.8).  

 

Model 1 

Model 2 

Model 1a Model 2a 

Figure 5.7 Simulation results of impact of assumption of seepage surface (Model 1 and 1a) and 
impact of assumption of no seepage surface (model 2,2a)  
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Based on the above conceptual model of the aquifer system, the SEEP/W computer code 

has been used to develop four simple steady state models with varying hydraulic 

conductivity values in order to investigate the effect of K-distribution with depth on the flow 

rates, water level and the radius of influence (Re). The models are developed based on the 

geometry and parameter values of the SEEP/W numerical model described in section 5.4.4. 

The configuration and set up of the model geometry, mesh, and boundary conditions are 

shown in Figure 5.9.  

 

A surface flux boundary condition of a steady-state infiltration rate of 9.5x10-9m/s 

(300mm/yr net infiltration) is specified on top of each model. Input parameters of hydraulic 

conductivity and layer thickness used for the various regions are shown in Table 5.4. Steady 

state K(z) simulation results of total head contours, flow paths, location of the water table 

(the zero contour pressure head) are presented in Figure 5.10. Simulated mine inflow rates 

are per metre width of pit margin for each model is measured and recorded in table 5.4. In 

order to compare the various models run, the overall transmissivity (Kb) of each model is 

calculated to be approximately the same so as to observe the effect as K distribution 

changes assuming the whole system is saturated. However there will be possibly important 

changes in transmissivity in the region near the mine that mean that the models may not be 

precisely comparable as saturated depth changes. The flows in table 5.4 are specific to the 

locations indicated in figure 5.10. These locations have been chosen to allow approximate 

comparison from one model to another, but as the geometry changes this cannot be a 

  K1  

 K2    

A B 

Figure 5.8 Representation of K distributions of hard rock aquifer in the mining environment. (a) 
general depth trend indicated by international dataset (see Chapter 3); (b) a very simple initial 
representation of (a).  
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precise comparison.  Flow in each layer varies along its length. In particular the flow at the 

toe of the mine side wall varies considerably with location (see figure 5.7) and the flows 

indicated at this location are the most uncertain to quantify. Finally, the flows are for the 

linear flow system modelled and do not take into account convergence in flow towards the 

mine. Consequently the following discussion relies mainly on the predicted heads. 

 

It is observed that in all four models water infiltrates at the ground surface from 

precipitation recharge and travels vertically downward toward the water table. The water 

then travels laterally, primarily in the saturated zone, and discharges into the mine. 

Although, the total head contours (and consequently the pressure head contours) are very 

different between the four simulations, the effect on the flow system in the bottom layer 

(region 1 of each model) is minimal and gradually increases to the surface with increasing K. 

The water table level of model 1 is the lowest of the models as might be expected as it has 

high hydraulic conductivity throughout. The water table level of models 2, 3 and 4 is almost 

the same at the far left boundary suggesting little effect in these cases.  

Table 5.4 Input parameter values of K-distribution, layer thickness and s imulated 
flow rates 

Model Number 
of  

Layers 

Layer 
conductivity 

(m/s) 

Layer 
thickness 

(m) 

Flow in each layer per 
metre width at location 
indicated in figure 5.10 

(m3/s/m) 

Mine inflow rate 
per metre width at 
toe of mine slope  

(m3/s/m) 
 

1 
 

1 K1=1.0x10-6 600 2.32x10-5 2.75x10-5 

2 2 K2=1.3x10-6 

K1=1.0x10-12 

450 

150 

3.47x10-5 

2.74x10-12 

2.17x10-5 

3 3 K3=2.0x10-6 

K2=1.0x10-8 

 K1=1.0x10-12 

300 

150 

150 

2.75x10-5 

1.07x10-7 

3.00x10-12 

3.75x10-5 

4 4 K4=3.9x10-6 

K3=1.0x10-7 

K2=1.0x10-8 

K1=1.0x10-12 

150 

150 

150 

150 

2.84 x10-5 

2.94x10-6 

3.42x10-7 

2.18x10-12 

3.75x10-5 
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Model 3 

Model 4 

Model 2 

Model 1 

Figure 5.9 A vertical plane configuration and set up of model geometry showing model layers 
for the K (z) analysis. A fixed-head boundary condition of value 300m is specified at the pit’s 
bottom with no flow boundary condition at the outer ends and bottom. No flow boundary 
condition with potential seepage face is specified at the side slope of the mine and a surface 
flux boundary condition of a steady-state infiltration rate of 300mm/yr (9.5x10-9m/s) net 
infiltration specified along the top of the aquifer. 
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Model 3 

Model 4 

Model 1 

Model 2 

Figure 5.10 Steady-state simulation results showing total head contours, flow paths and flow 
rates for the K (z) impact analysis.  
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These results suggest that the distribution of hydraulic conductivity with depth can affect, as 

might be expected, the radius of influence in some cases for example model 1 compared 

with models 2 to 4. A constant hydraulic conductivity throughout to depths greater than the 

base of the mine appears to increase the radius of influence and this may be mostly because 

the change in K probably affects the zone immediately around the mine most. If this is a 

general result, then the base model used will tend to overestimate the radius of influence. 

The decrease of K-values with depth as indicated in figure 5.10 is probably an indication of 

the extent of variation and interconnection of fractures in the first 300m of aquifer 

thickness. To this end, the simplest way that the aquifer system can be represented is as a 

two-layer model with the upper 300m layer having a higher average K (K1) and the bottom 

layer having a lower average K (K2, which approaches zero). However, in further 

computations in this study 500m depth range has been considered as the average aquifer 

thickness.  

The results of the research conducted in Chapter 2 on the geometry of open-pit mines in 

Ghana indicated that on the average most open pits do not go beyond a depth of 300m and 

therefore almost all open-pits in Ghana are assumed to lie within the first upper layer of the 

simple model of Figure 5.10. Although, the characterisation process in Chapter 3 indicated 

strong variations in K values within the upper layer, there was much scatter. Taking this into 

account with the results of the SEEP/W calculations above, it is suggested that the 

transmissivity will be over-estimated and that predicted radius of influences will also be 

overestimated. The predictions should therefore be on the safe side. 

 

5.4.6 Assessment of vertical plane anisotropy of hydraulic conductivity   

Aquifer anisotropy and heterogeneity, inherent in hard-rock aquifer systems, can affect 

both the direction and velocity of groundwater flow and hence the extent of impacted area 

in the mining environments. In this section the effects of K-anisotropy in the vertical plane 

on hydraulic heads have been investigated by use of SEEP/W. Conclusions are then drawn 

on the effects on the radius of influence impacted by the mine. An investigation of 

anisotropy in the horizontal plane will be undertaken in chapter 6 as part of the application 

of the MODFLOW model. 
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A model based on the geometry of the SEEP/W numerical model described in section 5.4.4 

(figure 5.5) is used to create the simulations. Four scenarios of K-anisotropy ratios (Ky/Kx) = 

0.1, 1.0, 10 and 100 are simulated, where Kx and Ky are K-values parallel and perpendicular 

to a plane dipping at an angle of either 160 degrees (clockwise) or 20 degrees (clockwise). Ky 

is varied by a factor of 10 keeping (Kx) constant and hence the overall permeability of the 

sequence changes in most but not all cases. Table 5.5 shows the input parameter values of K 

anisotropy ratios and input K values. Figures 5.11a and b, present the steady-state 

simulation results of the effects of anisotropy on the total head contours, flow paths, 

location of the water table (the zero contour pressure head) and the total flow and mine 

inflow rates of each of the four models. 

Table 5.5 Input parameter values of K-anisotropy ratios and simulated mine inflow 
rates at 160 and 20 degrees dip in direction clockwise and counter clockwise to the 
horizontal.  

Model Input K-function (m/s) K-anisotropy ratio 

Kx Ky (Kx/Ky) 

1 1x10-6 1x10-5
  0.1 

2 1x10-6 1x10-6 1.0 

3 1x10-6 1x10-7
 10 

4 1x10-6 1x10-8  100 
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Figure 5.11a Models 1 to 4 represent simulation results of saturated flow through a vertical 
plane anisotropic system of K ratios (Ky/Kx); 0.1, 1, 10 and 100 respectively, at 160 degrees dip in 
direction clockwise to the horizontal.   

 

Model 1 

Model 2 

Model 3 

Model 4 
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Figure 5.11b models 1 to 4 represents simulation results of saturated flow through a vertical 
plane anisotropic system of K ratios (Ky/Kx); 0.1, 1, 10 and 100 of models 1 to 4 respectively, at 
20 degrees dip in direction clockwise to the horizontal.   

 

Model 1 

Model 2 

Model 3 

Model 4 
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The following have been designed to explain some general concept of anisotropy and the 

assessment of the vertical plane anisotropy of above results. The K in the direction of flow 

can be calculated using the following expression (e.g. Harr, 1962): 

  
    

                     
            (5.1) 

where α is the angle between the flow direction and the x axis (direction of Kx)(figure 5.12).  

 

 

 

Figure 5.13 shows this equation plotted out for the models M1 to M4 of Table 5.5. Figure 

5.13 indicates that the regional K increases in these models in the order M4, M3, and M2. At 

first glance this would suggest that one might expect that there would be an increase in Ri in 

the same order, however, model results suggest lowest water levels, i.e. greatest impact at 

the far left boundary in the order M4~M3 (lowest water level), M2 (highest water level).  

With the opposite order however, the largest differences in K occur for water flow in 

this is mainly when flow is close to vertical, including at recharge. This means that recharge 

rates are less, even though the horizontal K in all cases is very similar, the system cannot 

accept recharge at such a high rate when the vertical K is lower, but can transmit at almost 

Figure 5.12 The hydraulic conductivity ellipse showing the x and y directions (blue) and example 
of flow directions (vertical, 45 degrees and horizontal). 
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as high a rate in the saturated zone. The response of the system is to increase the area of 

recharge, thus extending the apparent radius of influence, with the greatest effect when the 

anisotropy is most restricted in the y direction. In the case of Model 1, vertical K is much 

increased, and a greater recharge rate is possible, hence Ro is reduced. 

To explain why water levels in equivalent models for the 160o and 20o dip cases (Figure 

5.11a and 5.11b) differ: It should be noted that an important zone is the discharge area 

where increase in K will not be partly countered by decrease in saturated thickness and for 

the case of figure 5.11a (160o dip), K in this zone will be greater (flow is nearer to parallel 

with the x direction) than for figure 55.11b (20o )dip, thus allowing more flow and therefore 

a greater radius of influence. 

 

 

 

 

 

 

 

 

 

The above concept is now used as Inferences for the MODFLOW model representation. 

Though, the SEEP/W results are not easy to interpret but they do highlight a couple of 

important points: K anisotropy in the vertical plane can make significant differences in water 

levels through (a) changing the K value for horizontal flow – decreases will lead to decreased 

Ri and (b) changing recharge acceptance rates – decreases will lead to increases in Ri. The 

relationship between K anisotropy and water levels is not straightforwardly predictable 

without explicit modelling. The orientation of the K anisotropy is significant as it determines 

the K values at different points in the flow system (e.g. the ~ horizontal flow over most of 

Figure 5.13    Plot of the K equation values for models 1, 2, 3 and 4 of figures 5.11a and 5.11b 



  

173 
 

the catchment or the mainly upward inclined flow at the end just before the mine) and also 

on recharge rates, thus prediction is not straightforward without explicit modelling. 

With regard to the latter point, the flow towards a mine in an anisotropic system on 

different sides of the mine will affect the water levels in different ways; the plots of figure 

5.11a and figure 11b could be interpreted as the flows on either side of a mine – just reverse 

11b for example, and the anisotropy directions is now the same as for 11a and the flow is 

now directed right to left as it would be on the right of the mine. Therefore matching 11a 

and 11b indicates the effects on both sides of the mine. 

Where anisotropy is caused by large well-separated fractures, the flows will not be 

represented by the anisotropy calculations here – in the extreme case permeable fractures 

may be parallel to the mine walls so flow is negligible and Ro is tiny. Finally, the effect of 

anisotropy, because of the competing effects of change in overall transmissivity and change 

in recharge, could result in either over or underestimation of Ri, and therefore vertical plane 

anisotropy must be borne in mind when considering the mine Ri estimates. 

 Similarly, the above inferences for the MODFLOW model representation can also be 

presented by highlighting a couple of important points as follows: K anisotropy in the 

vertical plane can make significant differences in water levels through increasing the Kx 

where x has a shallow dip. Firstly, this will increase the transmission of the water 

horizontally (though this will reduce head losses) thus tending to increase Ri. Secondly, this 

will reduce the vertical flow, especially recharge, thus decreasing the recharge rate and thus 

tend to increase Ri. Thirdly, depending on direction – upwards or downwards – may increase 

or decrease K in the discharge zone – a zone with limited space where there is little change 

in saturated thickness so the only way of changing flow is by change in K – so flow is directly 

related to K here 

However, decreasing the Kx where x has a steep dip will cause the opposite effects 

(decrease horizontal flow rate, increase recharge rate, and decrease or increase K in the 

discharge zone). Accordingly, the relationship between K anisotropy and water levels is not 

straightforwardly predictable without explicit modeling 
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5.5 Analytical approach of estimating radius of influence by iteration method 

The use of simple analytical tools can be of great importance to mine feasibility and 

environmental evaluations, for instance the use of analytical solutions for predicting the 

radius of influence of mine dewatering impacts on the natural static hydraulic conditions of 

the flow system. In this section an analytical solution by iteration method is looked at to see 

how it compares with the numerical results; the results are used in chapter 6 to develop an 

empirical relationship to estimate Ri. The analytical methods of Thiem-Dupuit (after 

Kruseman and de Ridder, 1994) and Marinelli & Nicolli (2000) for predicting groundwater 

inflows into wells have been adopted. Although the Thiem-Dupuit equation is usually used 

for abstraction boreholes in unconfined aquifers, it can also be applied to open excavations 

by equating the excavated void to a large diameter well. In the work of Marinelli & Nicolli 

(2000), inflows into surface mining excavations below the groundwater table may originate 

from local precipitation as well as from a deeper groundwater system that is treated as 

isolated. Thus the flow regime is divided into two zones with separate analytical equations 

applying to each (Figure 5.14). Inflows from the sides of the pit are calculated in Zone 1 

which is located above the base. Zone 2 has an infinite depth below pit’s base and 

represents inflow to pit’s bottom. The total groundwater inflow to the excavated void (QT) 

therefore is the sum of the inflows calculated from Zones 1 and 2. Although in the current 

calculations of the radius of influence, only zone 1 has been used as this corresponds more 

closely with the numerical model. 

 

rw

Q2

Zone 2

W

Kh1

hp

Kh2

H0

Zone 1 Q1

R0

hw

Static Water Table

Approximation 
of Pit Geometry

Seepage Face

Figure 5.14 Analytical model of a steady-state flow towards an excavated mine in an unconfined 
aquifer (after Marinelli & Nicolli, 2000) 



  

175 
 

The symbols in figure 5.14 are as follows; 

 Q = groundwater inflow rate/mine discharge (m3/s) 

 K = hydraulic conductivity (m/s) 

 H0  = head of static water table above base of pit (m)  

 hw = Head of water in the mine (m) 

 hp = saturated aquifer thickness at the pit wall (m)  

 R0 (Re) = radius of influence of the mine (m) 

 rw (rp) = effective radius of the mine (m) 

 Q1 = inflow from the pit walls (approximated as a right circular cylinder) (m3/s) 

 W = distributed recharge flux (m/s) 

 Q2 = inflow through base of pit (m3/s) 

 Kh1  = horizontal hydraulic conductivity of Zone 1 rock formation (m/s) 

 Kh2  = horizontal hydraulic conductivity of Zone 2 rock formation (m/s) 

 

5.5.1 Calculation of the radius of influence (Re)  

In the calculation of the radius of influence, the following assumptions (after Kruseman & de 

Ridder, 1994 and Marinelli & Niccoli, 2000) were made in the derivation of the equation for 

the solution of the above analytical model: 

Zone 1 

 the solution considers an infinite unconfined aquifer, homogeneous, isotropic, and 

of uniform thickness over the area influenced by the mine with equally distributed 

recharge at the water table; 

 the pit is represented as a cylinder 

 the initial water table is approximately horizontal, as the pre-mining water table;  
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 and the flow to the mine is in steady state and axially symmetric horizontal radial 

flow occurs at any vertical cross-section.  

 the pit is fully penetrating and therefore pit receives water from the entire saturated 

thickness of the aquifer.  

 there is no seepage face discharges and no groundwater flow occurs between Zones 

1 and 2 

 

Zone 2 

 groundwater flows in a steady-state to one side of a circular disk sink of constant and 

homogeneous drawdown. Flow is axially symmetric and three dimensional. 

 initial hydraulic heads are uniform throughout Zone 2 

 the initial water table in Zone 1 equals the initial head in Zone 2 

 the hydraulic head of the disk sink is constant and equals the head of the pit lake 

surface 

 the aquifer materials are anisotropic with K being defined in the horizontal and 

vertical directions 

 

Here only zone 1 will be considered.  

The radius of influence is calculated from the analytical model of zone 1. Taking into 

consideration the assumptions made in zone 1, the flow rate across the pit’s cylindrical 

surface of radius r is given by: 

       
  

  
                       (5.2) 

 Assuming flow to be derived from recharge within the radius of influence (Ro) then the flow 

rate at radius r is 

       
                     (5.3) 

where W is the recharge rate. Elimination of Q from equations 5.2 and 5.3, separating the 

variables and integrating gives 
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          (5.4) 

Completing the integration gives 

        
  

 

 
   

    
 

  
  

        

 
                     (5.5) 

At r=Ro and the initial saturated thickness (Ho)  

      
  

 

 
   

    
  

  
  

   
      

 
                    (5.6) 

making the radius of influence (Ro) the subject of the equation gives 

    
 

 
   

    
   

  
 

 

   
  
  

  
 

 

                  (5.7) 

Equation 5.7 is a non-linear equation and has to be solved by iteration, and this has been 

done using Microsoft Excel. The convergence of the iteration is very sensitive to the choice 

of the initial guess when K is low and obtaining a correct answer can take quite a lot of 

experimentation with initial values. 

Table 5.6 provides an example calculation. An initial static ground water level of 500m A.D 

and a sump of head 450m A.D are used to represent the heads for the flow system prior to 

dewatering. The pit has an approximate area of L x W = 2000m x 1000m = 2x106 m2 and an 

average depth of 300m. Because the pit area is not a perfect circle, the effective pit radius 

(rp) was worked out from [A = π(rp)2] to be approximately 798m (equating perimeters gives 

slightly greater Ri values by < 100m for K = 0.1 m/d). The rest of the parameters used are 

shown in Table 5.6.  
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Table 5.6  Input parameter values for analytical models 
by iteration method 

Parameter Value 

Static initial ground water level Ho (m A.D) 500 

Base of formation (m A.D) 0 

Base of mine H (m A.D) 450 

Radius of mine rp (m) 798 

hydraulic conductivity K (m/d) 1.49 

Recharge rate W (m/d) 0.000819 

Iteration 

Final value for Rmax (m) 5526 

 

5.5.2 Correlation between radius of influence by numerical and analytical approaches 

In Figure 5.15 values of radius of influence obtained by the MODFLOW numerical method 

are plotted against the Analytical method results. A perfect agreement between the two 

methods is not expected. There are several differences between the Modflow model and 

the analytical model, including a different mine size and shape, the purely radial geometry 

of the analytical model and the recharge for the analytical model is uniform whereas that 

for the Modflow model changes with amount of drawdown. For the latter point, the change 

in recharge only happens between a range of drawdown of about 0.1 m, but this is at the 

extreme edge of the cone of depression where areas are large. If the radius of influence had 

been measured in the y direction rather than the x-direction in the Modflow model, the 

radius of influence would have been around 15% less for the Modflow model. 

From Figure 5.15, the Ri from the two methods correlate well overall, but the fit includes an 

intercept and a slope of < 1 that reflects that the agreement at small distances is less good. 

Now, forcing a fit through the mine centre results in a 1:1 fit, though at large distances 

Modflow values are slightly less than the analytical ones. The divergence for small distances 

might be expected as the way the mine geometries are represented is rather different in the 

two cases as discussed above. At small distances the numerical model would be the safes to 

use as it indicates greater Ri, but the converse is true for larger Ri values.  
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5.6 Summary and discussion of results 

The main aim of this chapter was to develop and evaluate a simple numerical tool which will 

then be applied in chapter 6 to investigate the possible derogation impacts of open pit 

mines on regional groundwater flow systems. The model has been made as simple as 

possible as its application will depend on uncertain K and R data (chapters 3 and 4) and will 

be used only as a scoping tool. 

The Modflow model was based on a very simple steady-state one layer set up with a 

constant head representing the mine. The main assumptions of this model were examined.  

It was found that  

1. flows can reasonably be considered as steady-state 

2. the fully-penetrating constant head at the mine probably results in a slight over 

estimation of the radius of influence, i.e. a safe inaccuracy 

3. seepage faces appear to have limited effect on the radius of influence though will 

affect heads very close to the mines 

Figure 5.15  Relationship between Ri values of steady state analytical model  and 
Modflow numerical model results showing a 1:1 fit and an intercept fit with the 
vertical axis (hp =300m; W = 300 mm/y; rp = 789m; Ho = 500m).  
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4. it was found that not including reduction in hydraulic conductivity with depth in the 

model probably results in the predicted radius of influences being overestimated, 

again an inaccuracy on the safe side.  

5. hydraulic conductivity anisotropy in the vertical plane and its orientation leads to 

some complicated results through both affecting flows and recharge acceptance 

rates. These effects require explicit modelling to predict. Flow to different sides of 

the same mine with constant anisotropy properties will be different. If the 

anisotropy is formed by discrete fractures and these are widely spaced then there 

could be further significant effects resulting from the relative orientation of the mine 

slopes and the fractures; for example there may be very little flow into one side of a 

mine if the fractures are oriented parallel to the slopes. 

 

In addition an analytical model based on similar principles to the numerical model was 

examined and compared with the numerical model. It was found that the analytical model’s 

radius of influences predictions were slightly larger than the numerical model’s values. This 

was thought to be due mainly to the different ways in which the mine geometry was 

included in the models.  

In conclusion it is concluded that provided that care is taken the Modflow model should 

provide a reasonable first pass means of investigating the size of the cones of depression 

formed by the mines. Errors will tend to be on the safe side with the model overestimating 

the radius of influence. If however the result from this first pass assessment (chapter 6) is 

uncertain, much more sophisticated models will need to be used and because of the lack of 

data to feed such models with many variables this would entail an extensive sensitivity 

exercise. These sophisticated models will need to include anisotropy, vertical variation in K 

and much more detailed investigation of the effects of drawdown on recharge.  
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CHAPTER 6 

ASSESSMENT OF LIKELY RANGES OF MINE RADIUS OF INFLUENCE 

6.1 Introduction 

The radius of influence of an open pit mine is a function of the geometry of the mine (G), 

the hydraulic conductivity of the rock (K) and the recharge (R). It is also dependent on the 

conceptual model of the system including distributions of properties in time and space. Here 

K and R are very uncertain and so the approach is to take a very simple conceptual and 

mathematical model and test it to see what the main variables are and whether there is 

likely to be a problem with derogation. The mathematical model has been set up and 

investigated in chapter 5, and in this chapter the model is used. If it is found that the model 

provides a clear indication as to the importance of derogation then no more detailed work 

will be necessary. But if the conclusions from it are uncertain then it will be necessary to set 

up a much more sophisticated model. A more sophisticated model will have more variables 

to estimate values for and this will probably need more collection of data as the data 

available even for the simple model are not complete. In section 6.2 the basic relationships 

predicted by the mathematical model between G, K and R are presented and discussed for a 

fixed potential R of 300 mm/y. In section 6.3 the importance of R is assessed. In section 6.4 

the effects of x-y K anisotropy and boundary conditions are looked at to see if they affect 

the conclusions from section 6.2 and 6.3. Section 6.5 discusses all the above results and 

section 6.6 describes the proposed method for applying findings 

6.2 The importance of mine geometry and rock hydraulic conductivity on radius of 
influence 

The MODFLOW computer model described in section 5.3 above has been used to 

investigate the sensitivity of the radius of influence to hydraulic conductivity (K) and 

elevation of mine depth (D). At a constant layer thickness of 500m and mine depths ranging 

from 50 to 450 metres above datum (base of aquifer)(m A.D.), in steps of 50 m A.D. for a 

range of hydraulic conductivity values, the radius of influence of simulation results were 

measured for 1m drawdown (radius of impact Ri) and recorded in Table 6.1. Following from 

these results, the general observation is that the radius of influence/impact of the mine 
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increases with increasing mine depth and increasing hydraulic conductivity as expected, but 

with a less pronounced effect as K values increase. This is shown graphically in Figure 6.1. 

Table 6.1  Measurements of radii of impact (R i) for range of mine depth (D) and 
hydraulic conductivity K(m/s) of a simulated numerical models with MODFLOW. The 

shaded area represents R i corresponding to the inter quartile range (brown), and R i  
corresponding approximately to the median K (black).    

Layer thickness 
B (m A.D) 

500 
 

500 500 500 500 500 500 500 500 

Mine  depth  
D (m A.D) 

50 
 

100 150 200 250 300 350 400 450 

Head in mine  
H (m A.D) 

450 
 

400 350 300 250 200 150 100 50 

K (m/s)                                                        Radius of impact (Ri) 

1.40E-13 1000 
 

1020 1043 1065 1072 1089 1090 1095 1100 

4.80E-12 1030 
 

1045 1076 1100 1135 1150 1178 1194 1216 

4.22E-11 1055 
 

1100 1150 1173 1227 1258 1271 1298 1320 

4.43E-10 1100 
 

1145 1224 1285 1325 1350 1375 1390 1400 

9.50E-09 1165 
 

1225 1264 1340 1348 1448 1484 1516 1527 

2.70E-08 1252 
 

1390 
 

1473 
 

1515 
 

1599 
 

1641 
 

1641 
 

1641 
 

1557 
 

5.82E-08 1562 
 

1557 
 

1683 
 

1809 
 

1850 
 

1891 
 

1933 
 

1933 
 

1891 
 

1.20E-07 1560 
 

1808 
 

1975 
 

2100 
 

2142 
 

2226 
 

2268 
 

2268 
 

2226 
 

2.51E-07 1766 
 

2100 
 

2311 
 

2476 
 

2602 
 

2685 
 

2769 
 

2810 
 

2727 
 

3.62E-07 1901 
 

2309 
 

2560 
 

2727 
 

2852 
 

2978 
 

3061 
 

3104 
 

3103 
 

5.86E-07 2142 
 

2602 
 

2894 
 

3145 
 

3312 
 

3437 
 

3563 
 

3605 
 

3605 
 

8.63E-07 2351 
 

2894 
 

3270 
 

3521 
 

3730 
 

3897 
 

4022 
 

4064 
 

4065 
 

1.30E-06 2560 
 

3270 
 

3688 
 

4022 
 

4273 
 

4482 
 

4607 
 

4681 
 

4691 
 

1.90E-06 2852 
 

3646 
 

4190 
 

4566 
 

4858 
 

5109 
 

5244 
 

5337 
 

5340 
 

2.48E-06 3103 
 

3981 4566 5025 5359 5610 5777 5871 5871 

3.32E-06 3396 
 

4398 5067 5568 5944 6237 6446 6529 6529 

5.07E-06 3897 
 

5067 5861 6488 6947 7281 7532 7616 7616 

7.55E-06 4398 
 

5819 6780 7156 8075 8460 8743 8827 8839 

1.72E-05 5861 
 

7825 
 

9200 
 

10500 
 

11100 
 

11900 
 

12100 
 

12500 
 

12918 
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Though the focus is on derogation due to groundwater level drawdown, for first 

approximation, volume derogation due to groundwater abstraction and precipitation 

interception of a typical mine of radius 798m (see section 5.51) can be estimated from Ri 

values of Table 6.1 using the relation: 

       
                                    

Figure 6.1 Plots showing variation of radius of impact with hydraulic conductivity at 
constant mine depths of 50, 100, 150, 200, 250, 300, 350 and 400m, respectively. 
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where W is groundwater recharge (300 mm/yr=300x10-3m/yr) and P is precipitation  

(1467mm/yr=1467x10-3m/yr). Note that the total volume is greater than this, as the radius 

of influence is larger than the radius of impact (but the recharge rate in the model falls as 

the water level rise higher than the ‘evapotranspiration’ extinction level): however, sample 

calculations suggest that the error is less than a few percent. Table 6.2 shows the calculated 

annual volume of groundwater abstraction of a typical mine. 

 

  

Table 6.2  Annual volume (Mm3/yr) of groundwater abstraction of a typical mine for a 
range of mine depth (D/ m), hydraulic conductivity K (m/s) for simulated R i values of 
Table 6.1.    
  

Mine Geometry  

Layer thickness 
B (m A.D) 

500 
 

500 500 500 500 500 500 500 500 

Mine  depth  
D (m A.D) 

50 
 

100 150 200 250 300 350 400 450 

Head in mine  
H (m A.D) 

450 
 

400 350 300 250 200 150 100 50 

K (m/s)                                                         Volume (Mm3/yr)  

1.40E-13 3.28 3.32 3.36 3.41 3.42 3.46 3.46 3.47 3.48 

4.80E-12 3.34 3.37 3.43 3.48 3.55 3.59 3.65 3.68 3.73 

4.22E-11 3.39 3.48 3.59 3.64 3.76 3.83 3.86 3.93 3.98 

4.43E-10 3.48 3.57 3.75 3.89 3.99 4.06 4.12 4.16 4.19 

9.50E-09 3.62 3.75 3.84 4.03 4.05 4.31 4.41 4.50 4.54 

2.70E-08 3.82 4.16 4.38 4.50 4.75 4.88 4.88 4.88 4.62 

5.82E-08 4.64 4.62 5.01 5.42 5.56 5.71 5.86 5.86 5.71 

1.20E-07 4.63 5.42 6.01 6.49 6.66 7.01 7.18 7.18 7.01 

2.51E-07 5.28 6.49 7.37 8.11 8.72 9.13 9.56 9.78 9.34 

3.62E-07 5.74 7.36 8.51 9.34 10.00 10.69 11.17 11.42 11.41 

5.86E-07 6.66 8.72 10.23 11.66 12.67 13.47 14.30 14.58 14.58 

8.63E-07 7.55 10.23 12.41 14.02 15.45 16.65 17.58 17.90 17.91 

1.30E-06 8.51 12.41 15.15 17.58 19.54 21.26 22.33 22.98 23.07 

1.90E-06 10.00 14.86 18.88 21.98 24.57 26.93 28.24 29.17 29.20 

2.48E-06 11.41 17.27 21.98 26.13 29.39 31.99 33.78 34.81 34.81 

3.32E-06 13.20 20.56 26.52 31.54 35.62 38.98 41.48 42.49 42.49 

5.07E-06 16.65 26.52 34.70 41.99 47.80 52.28 55.78 56.98 56.98 

7.55E-06 20.56 34.24 45.64 50.58 63.76 69.76 74.35 75.74 75.94 

1.72E-05 34.70 60.02 82.07 106.19 118.40 135.74 140.26 149.53 159.54 
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The statistical analysis of hydraulic conductivity of the combined dataset and its 

dependence with depth (K(z)) has already been examined in chapter 3. And to put this in 

context table 6.3 and figure 6.2 repeats the summary statistical description of the data and 

K(z) distribution from chapter 3’s literature survey respectively. 

Table 6.3  Summary statistics of conductivity values (m/s) for the combined 
dataset (N means normal distribution)  

Count  736 

Min  1.20E-13 

Max  1.25E-03 

N Parameters Mean 1.48E-05 

 Stdev 9.74E-05 

LogN Parameters Mean (Geom Mean) -7.80 (1.57E-08) 

 Stdev 61.0 

Undefined Distribution 
Parameters 

Median 3.80E-09 

 IQR (q3 to q1) 9.94E-07 & 1.10E-10 

 

 

Figure 6.2 K variation with depth from literature survey of chapter 3 

 



  

186 
 

The dependence of the radius of impact on hydraulic conductivity and mine depth is shown 

for calculations of the whole dataset in Figure 6.3 on both the non transformed scale (Top) 

and the logarithm scale (Bottom).  

 

 

It is observed that, the radius of impact increases with increasing hydraulic conductivity and 

increasing mine depth with the relations trending to a constant radius of approximately 1km 

Figure 6.3 Relationship between estimated radius of impact and hydraulic conductivity 
at constant mine depths: (Top) on the natural scale (Bottom) on log scale. NB: 1m/d is 
approximately equal to 1x10-5 m/s 

NB  (1 m/d) =   ( 
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from mine centre at a K value of 10-8m/s. Thus at hydraulic conductivities below 10-8m/s 

there will be a negligible derogation zone. The radius of impact is very close to the mine for 

K values less than 10-8m/s and this value corresponds approximately to the geometric mean 

of the international data set and is higher than the median value. Hence if R is set at 300 

mm/y then derogation is only expected at significant distances if the mine is in an aquifer 

with K value in the upper 25%. 

To further investigate the potential for derogation due to groundwater level drawdown and 

volume of groundwater abstraction, descriptive statistics were used to describe the 

measured Ri values of Table 6.1. Table 6.4 shows the summary statistics obtained. It is 

accepted that the data set is not randomly chosen and includes a range of mine depths but 

the data do systematically cover the range of input parameter values. The range of the 

distribution is from 1km to 13km with an inter quartile range of 2km and a median value of 

1.4km. Therefore, given that the mine size modelled is 1km in the direction measured to get 

Ri, in many of the conditions derogation will not be much of a problem except distances 

lower than the median and very close indeed to the mine as shown in the shaded portion of 

Table 1.6. At such close distances to the mine there may be other problems too from dust, 

stability, noise and especially loss of land. A range of major impacts on village life would also 

be expected.  However, Ri could reach up to 3km in some circumstances. 

Table 6.4  Summary statistics of measured radius of impact R i (m) of simulation 

results and the corresponding volume of water abstraction.  

Data Source Count Min 
IQR 

(q1) 
Median 

IQR 

(q3) 
Max Mean Standev 

 

Ri (m) from MODFLOW 
Numerical Model  

81 1,000 1158 1,400 3141 12,918 2,941 3,105 
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It should be mentioned here that discussions made so far are based on the whole dataset 

(Group A). However, a significant concern is the dominant influence of the dataset obtained 
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by Gale and Witherspoon (1979) from Stripa mine site that was targeted for its low fracture 

occurrence in its original development work. Also of concern is the dataset obtained by 

Snow (1979) from grouting at dam and tunnel sites, as these sites are unusually permeable. 

The whole dataset has therefore been further analyzed and conclusions drawn to include 

the following groupings: 

(i) Combined dataset, less dataset on radioactive waste of low fracture occurrence 

from Gale and Witherspoon (Group B).  

(ii) Combined dataset, less dataset on radioactive waste of low fracture occurrence 

from Gale and Witherspoon and dataset of Snow from grouting at dam and tunnel 

sites of high fracture occurrence (Group C).  

Table 6.5 and figure 6.4 below show summary statistics and box plot representation of K 

values for these groupings. It should be noted that the IQR (inter quartile range) ignores 

data below the 25th percentile or above the 75th, which may contain outliers that could 

inflate the measurement of variability of the entire dataset and hence the inter quartile 

range has been used here for the current analysis. However, there will be unusual cases 

where high K values may produce very large Ri values.   

 

 

 

Table 6.5  Summary statistics of K values (m/s) for (Group A) (Group B) and (Group C) 

(N means normal distribution)  

 A B C 

Count  736 360 182 

Min  1.40E-13 2.80E-12 2.80E-12 

Max  1.45E-03 1.45E-03  5.60E-04 

N Parameters Mean 1.48E-05 3.01E-05 2.25E-05 

 Stdev 9.74E-05 1.38E-04  9.12E-05  

LogN Parameters Geom Mean 
  

1.57E-08 
(-7.80) 

2.62E-07 
(-6.58) 

1.12E-07 
(-6.95) 

 Multiplicative Stdev 61.0 51.10 65.8 

Undefined Dist. 

Parameters 

Median 3.80E-09 
(-8.42) 

9.88E-07 
(-6.01) 

4.47E-07 
(-6.35) 

  Interquartile range 

IQR (q3 to q1) 

9.94E-07 
To 1.10E-10 

4.41E-06  
To  9.61E-08 

4.62E-06  
To 8.69E-09 
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It is observed that the median values of groups A, B and C (3.80E-09, 9.88E-07 and 4.47E-07 

m/s) are lower than the corresponding mean values (1.48E-05, 3.01E-05 and 2.25E-05 m/s), 

a function of the distribution for the three groups being skewed/spread to the right towards 

higher K. Variability in dataset (inter quartile range) is highest in group A (9.94E-07 to 1.10E-

10 m/s) as expected, followed by group C (4.62E-06 to 8.69E-09 m/s) and then group B 

(4.41E-06 to 9.61E-08 m/s). The higher the values of K the higher the flow rate into mine 

and therefore the larger the radius of the impacted area Ri. By taking into consideration 

differences in inter quartile ranges and median values of various groups, the shaded 

portions of Tables 6.6 and 6.7 below represent the corresponding mine impacted area (Ri) 

for Groups B and C. The Ri values shaded in black represent approximately the values 

associated with the median K. 

 

 

Figure 6.4 Box-and-whisker plot of K values for the various 
groupings (A, B and C) of the whole database 
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Table 6.6  Measurements of radius of impact (R i) for range of mine depth (D) and Group B 
hydraulic conductivity K (m/s) of simulated numerical models with MODFLOW. The shaded 
area represents R i corresponding to the inter quartile range (green), and R i corresponding 
approximately to the median K (black)    
 

Mine Geometry  

Layer thickness 
B (m A.D) 

500 
 

500 500 500 500 500 500 500 500 

Mine  depth  
D (m A.D) 

50 
 

100 150 200 250 300 350 400 450 

Head in mine  
H (m A.D) 

450 
 

400 350 300 250 200 150 100 50 

K (m/s)                                                        Radius of impact (Ri) 
 

1.40E-13 1000 
 

1020 1043 1065 1072 1089 1090 1095 1100 

4.80E-12 1030 
 

1045 1076 1100 1135 1150 1178 1194 1216 

4.22E-11 1055 
 

1100 1150 1173 1227 1258 1271 1298 1320 

4.43E-10 1100 
 

1145 1224 1285 1325 1350 1375 1390 1400 

9.50E-09 1165 
 

1225 1264 1340 1348 1448 1484 1516 1527 

2.70E-08 1252 
 

1390 
 

1473 
 

1515 
 

1599 
 

1641 
 

1641 
 

1641 
 

1557 
 

5.82E-08 1562 
 

1557 
 

1683 
 

1809 
 

1850 
 

1891 
 

1933 
 

1933 
 

1891 
 

1.20E-07 1560 
 

1808 
 

1975 
 

2100 
 

2142 
 

2226 
 

2268 
 

2268 
 

2226 
 

2.51E-07 1766 
 

2100 
 

2311 
 

2476 
 

2602 
 

2685 
 

2769 
 

2810 
 

2727 
 

3.62E-07 1901 
 

2309 
 

2560 
 

2727 
 

2852 
 

2978 
 

3061 
 

3104 
 

3103 
 

5.86E-07 1560 
 

1808 
 

1975 
 

2100 
 

2142 
 

2226 
 

2268 
 

2268 
 

2226 
 

8.63E-07 1766 
 

2100 
 

2311 
 

2476 
 

2602 
 

2685 
 

2769 
 

2810 
 

2727 
 

1.30E-06 1901 
 

2309 
 

2560 
 

2727 
 

2852 
 

2978 
 

3061 
 

3104 
 

3103 
 

1.90E-06 2852 
 

3646 
 

4190 
 

4566 
 

4858 
 

5109 
 

5244 
 

5337 
 

5340 
 

2.48E-06 3103 
 

3981 4566 5025 5359 5610 5777 5871 5871 

3.32E-06 3396 
 

4398 5067 5568 5944 6237 6446 6529 6529 

5.07E-06 3897 
 

5067 5861 6488 6947 7281 7532 7616 7616 

7.55E-06 4398 
 

5819 6780 7156 8075 8460 8743 8827 8839 

1.72E-05 5861 7825 9200 10500 11100 11900 12100 12500 12918 
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Table 6.7  Measurements of radius of impact (R i) for range of mine depth (D) and Group C 
hydraulic conductivity K (m/s) of a simulated numerical models with MODFLOW. The shaded 
area represents R i corresponding to the inter quartile range (blue), and R i corresponding 
approximately to the median K (black )    

 

Mine Geometry  

Layer thickness 
B (m A.D) 

500 
 

500 500 500 500 500 500 500 500 

Mine  depth  
D (m A.D) 
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100 150 200 250 300 350 400 450 

Head in mine  
H (m A.D) 

450 
 

400 350 300 250 200 150 100 50 

K (m/s)                                                       Radius of impact (Ri) 
 

1.40E-13 1000 
 

1020 1043 1065 1072 1089 1090 1095 1100 

4.80E-12 1030 
 

1045 1076 1100 1135 1150 1178 1194 1216 

4.22E-11 1055 
 

1100 1150 1173 1227 1258 1271 1298 1320 

4.43E-10 1100 
 

1145 1224 1285 1325 1350 1375 1390 1400 

9.50E-09 1165 
 

1225 1264 1340 1348 1448 1484 1516 1527 

2.70E-08 1252 
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1515 
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3.32E-06 3396 
 

4398 5067 5568 5944 6237 6446 6529 6529 

5.07E-06 3897 
 

5067 5861 6488 6947 7281 7532 7616 7616 

7.55E-06 4398 
 

5819 6780 7156 8075 8460 8743 8827 8839 

1.72E-05 5861 7825 9200 10500 11100 11900 12100 12500 12918 
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To further investigate the potential for derogation due to groundwater level drawdown and 

volume of groundwater abstraction for these groups of K datasets, descriptive statistics were 

used to describe the Ri values of Tables 6.6 and 6.7. Table 6.8 shows summary statistics of Ri 

values and corresponding water volumes for the three groups. Again it is accepted that the 

data set is not randomly chosen but the data do systematically cover the range of input 

parameter values.  

Table 6.8  Summary statistics of measured radius of impact R i (m) for the main 

groups (A, B and C) of K values and their corresponding volume of water of a 

typical mine in Ghana.  

Data Source Count Min Max Median 
IQR  

(q3-q1) 
Mean 

Radius of mine impacted area Ri (m) 

Group A  

 
90 1100 4691 2184 

3103 To 

1550 
2394.8 

Group B 

 
90 1560 7616 3626 

5078 To 

2717 
3961.5 

Group C 

 
117 1165 7616 3061 

4587 To 

1917 
3407.4 

Corresponding volume of groundwater abstraction  (Mm3/yr) 

Group A 
 

3.48 23.10 6.84 
11.41 To 

4.60 
7.75 

Group B 
 

4.63 57.01 14.74 
26.64 To 

9.30 
17.14 

Group C 
 

3.62 57.01 11.17 
22.17 To 

5.80 
13.28 

 

The range of Ri distribution for Group B is approximately from 1.5km to 7.6km with the most 

representative distance in the range of 3.6km from mine centre. 50% of cases would be 
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expected to have a radius of impact lying between 1 and 4.1km from the mine edge, but in 

extreme cases the radius of impact could reach at least 6.6 km from the mine, and further if 

the system was anisotropic.    

Similarly for Group C, Ri values range from 1.2km to 7.6km with the most representative 

distance in the range of 3km from mine centre. 50% of cases would be expected to have 

radius of impact lying between 1 and 3.6km from the mine edge, but in extreme cases the 

radius of impact could reach at least 6.6 km from the mine, and further if the system was 

anisotropic.  

Therefore, given that the mine size modelled is 1km in the direction measured to get Ri, in 

many of the conditions, unlike Group A where impact is limited, derogation of groundwater 

level drawdown and water volume will much more often be a problem for aquifer systems 

of Groups B and C.  

Annual volumes of about 15 Mm3 and 11 Mm3 of water is likely to be abstracted from 

aquifer systems of Groups B and C respectively. And this is about 3 times and 2 times the 

volume of water likely to be extracted from Group A aquifer systems. This would have much 

more impact on the water system. 

Thus for systems like Groups B and C, villages within a distance of a few km from mine edge, 

as represented in the shaded portions of Table 6.1, 6.6 and 6.7, are most likely to be 

affected. For a system characterized by Group A, the impact radii are rather less, with in 

many cases the impact being only within a few hundred metres, a zone where other mining-

related impacts would be severe too. With regard to Ghana, it is uncertain what hydraulic 

conductivity group is most appropriate, and therefore what the impact would be. However, 

there are some annual mine abstraction volumes available, and these can be used to 

indicate the likely Group to which the Ghana mines belong.  

Table 6.9 shows some data on annual rates of freshwater usage from 2005 to 2008 for the 

two major mining districts in Ghana, Tarkwa and Obuasi. It is not known whether these 

abstraction volumes include surface inflow as well as groundwater inflow. It is therefore not 

easy to compare the field measured volumes with the statistically estimated volumes of 

groundwater abstractions of Groups A, B and C (Table 6.8) but because as a first 
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approximation we tentatively want to establish which rock group is appropriate for Ghana, a 

comparison has been made. On the average the annual total volume of freshwater usage by 

mines in Ghana is about 17Mm3/y and this falls within the annual range of 15Mm3/y to 

19Mm3/y (Table 6.9). This would suggest that the appropriate K Group for Ghana mines is B, 

having a range of Ri values of about 2.7km to 5.1km from mine centre and reaching a radius 

of about 7.6km in extreme cases, a potentially significant problem for nearby villages in 

Ghana.  

Table 6.9  Annual volume of freshwater usage for gold mining operations in Ghana by 
the Tarkwa Goldfields Limited (Tarkwa) and Asha nti Goldfields Limited (Oboasi) 
(Source: Anglogold Ashanti Obuasi, Tarkwa goldfields and Iduaprem Country report 
2008) 

 

Gold mining company 

Volume of water (m3/Year) 

2005 2006 2007 2008 

Goldfields Limited (TGL) Tarkwa 5,200,000 3,529,537 5,596,000 7,941,690 

Goldfields Limited (TGL) Tarkwa 
Damang 

800,000 673,439 594,376 547,910 

Ghana Australia gold-fields Limited 
(GAG);  Iduaprem Tarkwa 

977,466 98,000 1,000,000 1,000,000 

 Ashanti Goldfields Limited (AGC) 
Obuasi district 

9,005,564 10, 356,870 10,621,257 9,419,952 

Total annual volume of water (m3/y) 15983030 14657846 17811633 18909552 

6.3 The importance of recharge on radius of influence 

The results of section 6.2 indicate that derogation may not be a problem in most mines for 

Group A aquifer system mines but could be more of a problem for Groups B and C assuming 

a potential R of 300 mm/y. However, it is possible that recharge may be less or possibly 

more and this will change the estimated radius of influence. For example Table 6.10 shows 

simulation results of the effect of recharge on radius of impact by decreasing recharge from 

360mm/yr down to 30mm/yr for a mine of depth 200m. As recharge decreases, hydraulic 

heads drop and increase outwardly from mine and this indicates an increasing effect of 

radius of impact of about 500m for a change in recharge from 300mm/yr to 30mm/yr. Thus, 

in arid regions where recharge is very minimal as compared to humid climatic regions of the 

current research, mine derogation is expected to affect a larger area.  
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It is noted that increasing recharge from 300mm/yr to 360mm/yr did not result in much 

difference in the radius of impact, about 30m as indicated in Table 6.10 Model 5. Though 

the choice of a potential recharge value of 300mm/yr close to the actual recharge value of 

Kuma (2007) has erred on the safe side since lower recharge means greater radius of 

impact, it is clear that the difference between Kuma’s (2007) estimate and that obtained in 

chapter 4 (385mm/y) makes no significant difference to the estimated radius of impact.  

 

In the MODFLOW models recharge will be 300 mm/yr over most of the cone of depression, 

but if the water level rises enough it will drop rapidly over the interval from the 

‘evapotranspiration’ (‘ET’) extinction depth to ground surface. Applying ‘ET’ is just a means 

of setting a maximum water level. If ‘ET’ is ten times the recharge rate then the maximum 

water level will be held at a tenth of the distance between the extinction depth and ground 

surface. This means that water levels will be at most about 1.9m below ground level and 

then above this there is no recharge. This assumption is investigated here by changing the 

‘ET’ rate and then investigating the sensitivity of radius of impact. Simulation results of 

Table 6.11 indicate that an increase in evapotranspiration by a factor of 5, and 10 results in 

reduction in recharge and hence an increment of up to about 10% of the radius of impact, 

about 100m. This change is not very significant in comparison with the sensitivity of the 

radius of impact to the value of potential Recharge.  

Thus recharge rate affects radius of impact, but unless the potential recharge rate is much 

less than estimated in chapter 4 the effect is very much less important than the effect of 

having changes in hydraulic conductivity. Very low potential recharge may occur in Ghana if 

there is a low permeability layer at shallow depths. In this case drawdowns would be larger 

but the shallow subsurface would be supplied by recharge at a much greater rate than the 

deeper aquifer uses and a perched system would happen. This perched system would then 

potentially support shallow wells. 
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Table 6.10  The effect of varying recharge from 360mm/yr down to 30mm/yr on the 
radius of impact in a mining environment for a mine depth of 200m, b ase of aquifer at 
500m depth. 

 
Model 5 

 
Model 1 

(base model) 
Model 2 Model 3 Model 4 

K (m/s) 3.8x10-09 3.8x10-09 3.8x10-09 3.8x10-09 3.8x10-09 

ET (m/s) 9x10-09 9x10-09 9x10-09 9x10-09  9x10-09 

R (m/s) 9.86 x10-9 8.19x10-09 5.48x10-09 2.73x10-09  8.22x10-10 

R (mm/y) 360 300 200 100 30 

Ri (m) 1162 1130 1184  1408  1685  

 

 

Table 6.11  The effect of varying evapotranspiration by about a factor of 5, 10 and 15 
respectively on the radius of impact in a mining environment for a mine depth of 
200m 

  
Model 1 

(base model) 
Model 2 Model 3 

K (m/s) 3.8x10-09 3.8x10-09 3.8x10-09 

R (m/s) 8.19x10-09 8.19x10-09 8.19x10-09 

ET (m/s) 9x10-09 4.5x10-08 9x10-08 

Ri (m) 1130 1186 1243 
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6.4 Effect of x-y K anisotropy and boundary conditions 

6.4.1 Introduction 

The previous sections have indicated that the radius of influence under many though not all 

circumstances will be very limited when there is an isotropic infinite aquifer. Here in section 

6.4.2 the effect of K anisotropy in the horizontal direction will be investigated. In section 

6.4.3 the effect of boundaries will be investigated.  

 

6.4.2 Impact assessment of K-anisotropy  

The MODFLOW computer model has been used to simulate the impact of horizontal K-

anisotropy on the groundwater flow regime and the radius of impact (Ri) measured along 

both the x and y axis. It should be noted that MODFLOW can only consider horizontal 

anisotropy with the principal axes of the conductivity tensor parallel to the x- and y-axis of 

the model grid.  

A model domain of size 25km by 25km area was discretized into 2500 cells with 50 cells in 

the x-direction (∆y=500m) and 50 cells in the y-direction (∆x=500m), a coarse discretization. 

The bottom and top elevations of the model domain were taken to be 0m and 500m, 

respectively. All the horizontal grid boundaries of the model were initially taken to be no-

flow boundaries because they were assumed to be far enough from the main areas of 

interest in the middle of the domain. An open pit of dimensions 2000m by 1000m in plan-

view and a depth of 300m with a lake/sump of 200m constant head is placed at the centre 

of the model domain. The condition [R<ET] was maintained in order to keep hydraulic heads 

below the surface of the aquifer.  A range of horizontal K-anisotropy ratio values (Kx/Ky) 

were used as inputs into MODFLOW whilst keeping recharge (R) and ‘evapotranspiration’ 

(‘ET’) constant.  

 

Table 6.7 shows the input parameters used and the estimated radius of impacts as 

measured from the MODFLOW simulation results of Figure 6.5. The term radius will be used 

here for convenience even though the affected area is not circular. Measurement of radius 

of impact is taken in the direction of the axes of the ellipsoidal impacted area, with the 

biggest change in Ri occurring along the direction of high K (x-direction).  
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Table 6.12  Effect of horizontal anisotropy on the radius of impact (R i) by varying K x of 
the base model by a factor of 10, 50 and 100.  

 Base model Model 1 Model 2 Model 3 

Kx (m/s) 

Ky (m/s) 

6.8x10-8 

6.8x10-8 

6.8x10-7 

6.8x10-8 

3.4x10-6 

6.8x10-8  

6.8x10-6 

6.8x10-8 

K-anisotropy  

ratio  (Kx/Ky) 

1.0 2.0 3.0 4.0 

R (m/s) 8.2x10-9 8.2x10-9 8.2x10-9 8.2x10-9 

ET (m/s) 9x10-9 9x10-9 9x10-9 9x10-9 

Rix  ( X-axis) 

Riy  (Y-axis) 

1768 

1483 

4278 

1312 

8442 

1198 

11750 

1147 

Ratio, Rix/Riy 1.2 3.3 7.1 10.2 

 

Simulation results of Figure 6.5 show the effect of changing horizontal anisotropy ratio on 

the flow pattern and subsequently the radius of impact. Note that the regional K of the 

aquifer is increased at the same time as the change in anisotropy ratio. Simulation results of 

the first model show an isotropic and homogeneous flow with values of hydraulic 

conductivity the same in all directions. With increments in anisotropy ratio the models show 

a corresponding increase in radius of impact in the direction of increasing K. The radius 

increases from about 2 km in isotropic conditions to about 11.75 km in the direction of 

enhanced K for an increase in K in that direction of 100 times. If the aquifer had been 

isotropic with the higher value of K the radius of impact would have been about 8.5 km. The 

values used here include some very high K values for this environment but do show that 

anisotropy can be important. Thus within the constraint of the parameter values within the 

mining environments in Ghana hard rock anisotropy, in general, has an effect on the 

impacted area of surface mining with increasing horizontal anisotropy of the aquifer system. 

Hence greater drawdowns even than expected from isotropic aquifers with K values the 

same as the K in the maximum K direction should be expected in the direction of greatest K 
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direction in the aquifer. This direction may be indicated by the main fracture or bedding 

orientations observed in the field or by remote sensing. Analytically, the values in table 6.12 

can be approximated by considering the following: The contours of equal drawdown around 

a pumping well lie on an ellipse described by the following parametric equation  

      
 

  
       

  
    

   

                  (6.2)   

       
  

  
        

  
  
       

   

          (6.3) 

where K’ = (KxKy)
0.5 is the geometrical mean of permeability and x and y are the Cartesian 

coordinates (e.g. Huisman, 1972).  It is observed that the radius of impact lies on one of 

these ellipses with the axis of the ellipse in the x direction equal to (Kx/Ky)
0.25 times the value 

for the isotropic case where K = K’. Similarly, in the y-direction Ri lies on one of these ellipses 

with the axis of the ellipse equal to (Ky/Kx)
0.25 times the value for the isotropic case. Thus the 

effect of anisotropy can be estimated by taking the following few steps: 

1. take the isotropic case (K = K’= (KxKy)
0.5) and calculate the radius of impact Rik’ (look 

up in Table 6.1, or use the equation developed later in Chapter 6) 

2. calculate the Ri in the x direction from (Kx/Ky)
0.25 x Rik’ 

3. calculate the Ri in the y direction from (Ky/Kx)
0.25 x Rik’  

Taking Model 3 in Table 6.12 as an example;  

1. K=K’=(KxKy)
0.5=(0.684x0.00684)0.5=0.0684m/d and from Table 6.1 above this value 

corresponds to an Rik’ value approximately equal 3500m for a mine depth of 300m. 

2. Therefore radius of impact in the X-direction due to anisotropy:  

Ri = (Kx/Ky)
0.25 x Rik’) = (0.684/0.00684)0.25 x 3500 =11067m 

3. Similarly in the Y-direction the radius of impact die to anisotropy: 

Ri = (Ky/Kx)
0.25 x Rik’) = (0.00684/0.0684)0.25 x 3500 =1107m 

Thus by comparing these results with those in Table 6.12, the radius of impact Ri in the X-

direction is given by 11067m and 11750m whilst in the Y-direction gave 1107 and 1147m 

respectively. This is an error of about 6% in the X-direction and 3.5% in the Y-direction in 

estimation of the radius of impact. 



  

200 
 

 

 

Figure 6.5 Simulation results showing the effect of horizontal 
anisotropy on Ri by varying Kx of base model (1 from top) by a 
factor of 10, 50 and 100 to obtained models 2, 3 and 4 
respectively.  
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6.4.3 Impact assessment of aquifer boundaries  

The effect of boundaries is an issue in the mining environment of Ghana, taking into 

consideration the topography and drainage systems. The mining environments are 

characterised by gentle topography of low hills with rivers and streams meandering through 

them. The rivers and streams serve as recharge and discharge centres and the hills acting as 

groundwater divide. In addition there are often faults some of which may have low 

permeability or bring lower permeability rocks into contact with the aquifer.  

 

This assessment demonstrates the effects of different lateral constant heads and no flow 

boundary conditions on the radius of influence of a steady state aquifer system. In the 

current study, the boundaries were placed in the model domain within the radius of 

influence. Simulations of five different combinations of boundary geometries were 

developed to illustrate this effect (Figure 6.6, Models 2 to 5). The head values and their 

separations were chosen to be consistent with major boundaries, for instance, the 

separation between major rivers and lakes within the mining environments in Ghana.  

 

Comparison of results of models 2 to 5 with the base reference model (model 1) shows the 

effect of respective boundary conditions on the response of these systems. Model 1 is the 

base reference model of the mine in an effectively infinite aquifer system. In the presence 

of an impermeable boundary, water can no more be drawn from recharge beyond the 

boundary. The mine therefore exhibits more drawdown (model 4 and 5). Depending on 

head difference, constant head boundaries however, serve as either recharge or discharge 

points competing with the mine centre for groundwater flow and thereby can reduce or 

augment groundwater flow to the mine (model 3, 4 and 5).  

 

If a village is between the mine and impermeable boundary (village B) then, by image theory 

drawdown will be increased at a proportion that increases as the village approaches the 

boundary, reaching a maximum of twice that is expected in the absence of the boundary 

when the village is at the boundary.  

Similarly, if a village (village A) is between the mine and a constant head boundary, 

drawdown will be decreased at a proportion that increases as the village approaches the 
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boundary and reaching a maximum of zero drawdown at the boundary itself. If either 

boundary is partial, then the effect is diminished. However, if the village is on the opposite 

side of the mine from an impermeable or constant head boundary then drawdowns is 

unlikely to be affected much by that boundary as they are so far away.  

Furthermore, the results obtained show that by placing constant heads as boundary 

conditions, groundwater flow divides can be formed. The constant heads serve as discharge 

points competing with the mine centre for groundwater flow and thereby reducing 

groundwater flow to the mine and rivers. However, the mine may increase total recharge by 

lowering water level and increasing the vertical head gradients, thereby maximizing 

recharge (possibly to values that may exceed soil infiltration rates). 

 

Model 1 The base reference model of aquifer thickness 500m and mine depth of 300m 

Model 2   Reference model with constant head of 300m placed in the western boundary 

boundary.   
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Model 5 Constant head of 300m, 200m, and 100m in the west, north and south 

boundaries respectively and no flow boundary in the eastern boundary. 

 

Model 4 Constant head of 100m in the west, and 50m in the east boundaries 

 

Figure 6.6 The sensitivity of hydraulic heads and the radius of influence to different 
boundary conditions in the presence of a typical mine and settlements (village A and B) 
in the mining environment  

 

A B 

A B 

A B 

Model 3 Constant head of 300m in the western boundary with mine at the centre  
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6.5 Discussion 

For most of the G, R and K and range of relevance, the simple models used here indicate 

that for Group A aquifer systems, the radius of impact will be so close (less than few 100m) 

to the mine that inhabitants may decide to move as a result of other issues. Table 6.1 has 

conditions where the radius of impact is predicted to be within 300m of the mine and shows 

that even at values of K equal to the median (3.8 x 10-9 m/s) found in the international 

literature survey, only the deepest mines will have any effect beyond 400m from mine’s 

edge although in some cases the radius of impact is expected to reach 2km at the upper 

quartile K value. Uncertainties in estimates of radius of impact at such close distances are 

probably significant, but this has little practical importance as within a few 100 m various 

adverse impacts unrelated to derogation would be expected and really there is no practical 

need to know the precise radius of impact. For instance there may be other problems too 

from dust, stability, noise and especially loss of land. At such distances a range of major 

impacts on village life would also be expected. 

Unlike Group A with its low K influence and hence less impact, derogation of groundwater 

level drawdown and water volume will be more of a problem for aquifer systems of Groups 

B and C of higher K values. The Ri corresponding to the median K is 3.6km for Group B and 

3km for Group C from mine centre with 50% of cases occurring in the range of 2.7km to 

5.1km and 2km to 4.6km, respectively. However, in extreme cases the radius of impact 

could reach at least 7.6 km from the mine for both Groups and further if the system was 

anisotropic.  

Calculation shows that median annual volumes of water likely to be abstracted from Group 

A, B and C aquifer systems are about 7 Mm3, 15 Mm3 and 11 Mm3, respectively. Thus the 

volume of water that could be extracted from Group B and Group C aquifer systems is about 

thrice and twice that of Group A respectively. Because there are very few data in Ghana, it is 

uncertain what hydraulic conductivity group is most appropriate, and therefore what the 

impact would be. However, the few available annual mine abstraction volumes were used to 

indicate the likely Group to which the Ghana mines belong. Preliminary calculations of the 

average annual field volume of water discharge by mines in Ghana (see Table 6.9) is about 

17Mm3/y, i.e. in the range of 15Mm3/y to 19Mm3/y, indicating that the most appropriate 
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Group of K data for Ghana is that of Group B of interquartile range of 2.7km to 5.1km and a 

median value of 3.6km. The radius of influence might also extend to significant distances if R 

is limited by some process (section 6.3). One possibility might be low vertical hydraulic 

conductivity in a weathered sequence. However if this were to happen then the shallow 

aquifer would be effectively perched and hence protected from derogation. 

Aquifer anisotropy and heterogeneity, inherent in hard-rock aquifer systems, can affect 

both the flow direction and velocity of groundwater and hence the extent of impacted area 

in the mining environments. For instance, investigations on the effect of anisotropy (section 

6.4.2) show that K anisotropy in the vertical plane and its orientation both affect flows and 

recharge acceptance rates, though such systems require explicit modelling to predict. The 

orientation of K anisotropy is significant as it determines the K values at different points in 

the flow system. In particular, flow to different sides of the same mine in an anisotropic K 

aquifer are not the same. In the extreme case, if the anisotropy is formed by widely spaced 

discrete fractures with little interconnection then there may be very little flow into one side 

of a mine if the fractures are oriented parallel to the slopes. More also, villages lying along 

the strike of fractures from the mine will be most vulnerable. It is noted that radius of 

impact in the direction of fracture strike can be much greater than expected from an 

isotropic case with the same K as the maximum K in the anisotropic case. Hence greater 

drawdowns even than expected from isotropic aquifers with K values the same as the K in 

the maximum K direction should be expected in the direction of greatest K direction in the 

aquifer. 

 

Hydraulic boundaries within the region near the mine will also affect water levels especially 

in the case where the village lies between an impermeable boundary and the mine. 

Drawdown will be increased at a proportion that increases as the village approaches the 

boundary, reaching a maximum of twice that is expected in the absence of the boundary 

when the village is at the boundary. In other cases the effects are expected to be limited.  

For any mine that is located in an unusually permeable aquifer where Ri values are greatest, 

there will be higher inflow rates and hence more possibilities for supplying surplus water to 

any villages affected. However, more data on K and volume from Ghana are needed to 

confirm. 
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6.6 Proposed method for applying findings  

Returning to the analytical model discussed in chapter 5, and in particular equation 5.7, the 

relationship between radius of impact and (K/W) 0.5 has been investigated to see if this could 

be used as a rough indication of radius of impact. Using Ri data from MODFLOW and the 

analytical model, plots of Ri’ against (K/W) 0.5 have found to be approximately linear (figure 

6.7) where Ri’ is the distance to 1 m drawdown measured from the edge of the mine; i.e. Ri’ 

= A(K/W) 0.5 where A is a constant of proportionality. The constant of proportionality 

calculated for each mine depth is recorded in Table 6.8 and figure 6.8 shows the relationship 

between A and mine depth D. From figure 6.8 the relationship between mine base level (D) 

and the constant of proportionality (A) is given by the relation: 

                       (6.4) 

The predictions are not accurate at small radius of impacts but are within about 15% at high 

radiuses. Thus, it is proposed that for assessing possible derogation of a village the following 

scoping calculations and heuristic rules could be followed: 

1. estimate the radius of impact as measured from the mine edge using Ri’ = A(K/W) 0.5 

where A is given by equation 6.3 for mines of typical radius in Ghana, K is the 

hydraulic conductivity and W is the recharge rate 

a. K values can be based on the results from chapter 3, for instance for group A, 

with a median value of 3.28x10-04m/d and interquartile range from 8.59E-02 

to 9.50E-06 m/d 

b. W values can be based on proportions of recharge or on estimates using 

Hydrus or equivalent methods (chapter 4) 

2. if the village lies along the strike of the fractures impacts may be expected to 

possibly twice the Ri’ distance;  alternatively the effects can be estimated by the 

method outlined in section 6.4.2  

3. if the village lies between the mine and a possible impermeable boundary then the 

drawdowns may be up to twice that expected from the calculation in point  

4. if the village lies between the mine and a permanent water body then the drawdown 

will be less than predicted from the calculation in point 1. 
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If no calculations are possible then in general in Ghana derogation distances are expected to 

be within a few hundred metres for Group A aquifer system but much greater for Groups B 

and C aquifer systems. In other regions of the world where there is much less recharge 

there may be greater effects.  

 

 

 

Figure 6.7 Plots of radius of impact (Ri’) as measured from mine edge against (K/W) 0.5 for 
different mine depths D (m).  
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Table 6.13  Constant of proportionality (A) of plots from Figure 6.7 for various mine 
depths (D) 

Mine Depth 

D(m) 

50 100 150 200 250 300 350 400 

Constant of 

proportionality 

A (m) 

122 172 206 232 252 269 277 284 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Relationship between constant of proportionality (A) and mine depth (D) 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

The aim of this research has been to determine under what circumstances gold mines in 

Ghana are likely to have an adverse effect on water levels in surrounding villages/farms and 

in particular to try and come up with heuristic rules that would indicate under what 

circumstances there may be derogation problems in the regional groundwater flow system.  

Because adequate data were not available to this study to investigate particular mines, this 

study has adopted a scoping approach involving; 

1. assessment of mine geometries in Ghana (G) 

2. collation and examination of hydraulic conductivity (K) data on hard rock aquifers 

from around the world  

3. assessment of recharge (R) using an unsaturated zone flow model to account for 

infiltration rejection 

4. use of simple mathematical models with G, K and R data from the previous sub 

studies to undertake scoping calculations 

5. use of the results from 4 to determine what conditions would result in significant 

derogation issues. 

7.1 Mine geometry 

Mine geometry is needed to build simple conceptual and numerical models of open pit 

mines to undertake simple scoping calculations on the effects of mine derogation on the 

regional groundwater flow system. Assessment of mine geometries shows that generally, 

the layout of surface mines depends on the geometry (shape, size and depth) of the mineral 

deposit. In most cases, the shape and size of the pit is designed to fit the geometry of the 

deposit as well as the characteristics of the host rock, especially when the ore-body is 

typically of vein-type, pipe-shaped, steeply dipping stratified or irregular and closer to the 

surface. Considering the geometry properties of ore reserves in Ghana, the layout of most 

open pits mines are characterised by rectangular and oval shape with benches and spiral 
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roads. In plan-view, the dimensions of the pits on the average range between 500m to 

2000m and reach a maximum economic depth of approximately 300m.  

7.2 Hydraulic conductivity  

The entire database includes about 768 hydraulic property estimates (hydraulic conductivity 

(K), transmissivity (T) and specific capacity (Sc)) collected from 17 different studies and 

about 20 published reports worldwide. Of the total number of estimates, 27 were compiled 

from pumping tests, 13 from specific capacity tests, 90 from slug/pulse tests, and 645 from 

packer/injection and drill stem tests. Due to variation of K in space the following two main 

difficulties were encountered in the estimation of appropriate K for modelling at the 

regional scale level: (1) the process of transforming or linking the apparent conductivity 

(Kapp) values obtained from field testing to the representative conductivity (Kreg) values 

appropriate for modelling at regional scale, and (2) the possible bias in field data resulting 

from the purpose for which the field measurements were made. 

In view of the above difficulties, a simple statistical method was used to characterize the 

range of K values required for the construction of the numerical models of the groundwater 

flow system in the mining environments. And because the distribution of quantities of 

hydraulic parameters in fractured and heterogeneous crystalline rocks is often strongly 

skewed to the right, the median in combination with the inter-quartile range (IQR) of the 

data provided a much better representation of hydraulic conductivity for the combined 

dataset. Summary statistics of K-parameter values ranges from 1.40x10-13 m/s to 1.45x10-03 

m/s with an overall mean, median, standard deviation and a geometrical mean of 1.48x10-05 

m/s, 3.80x10-09 m/s, 9.74x10-05 m/s, and 1.57x10-08 m/s respectively.  

The overall distribution exhibited a bi-modality which was thought to be due to the 

influence of dataset obtained by Gale and Witherspoon (1979) from Stripa mine site that 

was targeted for its low fracture occurrence in its original development work. And more also 

the dataset obtained by Snow (1979) from grouting at dam and tunnel sites with its high 

fracture occurrence. Therefore, in order to have a fair K distribution in the assessment 

process the whole dataset has been further analyzed to include the following groupings: 
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(i) The whole dataset, less dataset on radioactive waste of low fracture occurrence 

from Gale and Witherspoon (Group B).  

(ii) The whole dataset, less dataset on radioactive waste of low fracture occurrence 

from Gale and Witherspoon and dataset of Snow from grouting at dam and tunnel 

sites of high fracture occurrence (Group C).   

Variability in dataset (inter quartile range) is highest in group A (9.94E-07 to 1.10E-10 m/s) 

followed by group C (4.62E-06 to 8.69E-09 m/s) and then group B (4.41E-06 to 9.61E-08 

m/s) with corresponding median values of 3.80E-09, 9.88E-07 and 4.47E-07 m/s 

respectively.   

 

Generally, taking all the data together, K decreases approximately exponentially with depth 

in hard rock aquifer systems with permeable fractures present at shallow depths but reduce 

in frequency with depth as expected. K was found to decrease with depth from the surface 

of the aquifer up to 300m, beyond which K remains approximately constant at this scale for 

at least the next 100m. At the shallowest levels K is affected by weathering, with often 

greater K values being recorded, at least in the moderately weathered, middle depth section 

of the weathered zone. In Ghana, especially in the Tarkwaian rock system the weathering 

zone depth is typically of around 20m (Kortatsi 2004), though it can vary from less than 1m 

to at least 100m (Singhal & Gupta, 1999).  

 

However, by limiting the investigation to sites of similar geology and climate, the 

relationship with depth was found to be variable and characterized by a great deal of 

scatter. It was observed that depth variation is poorly developed at any specific site but with 

higher K at shallow depths. The high data scatter may be due to the fact that most of the 

data were obtained from small scale test measurements and also due to weathering 

differences of rock types. The main factors likely to affect K, including rock type, climate and 

tectonic regime, were also investigated to see if they could be used to limit the range of 

possible K values at any given site. It was found that limiting data to similar rock type, 

similar climate, or similar tectonic regime did not constrain K ranges. Hence the combined 

dataset was used to represent international dataset and also used for all the calculations 

but took into consideration the influence of the dataset obtained by Gale and Witherspoon 

(1979) from Stripa mine site that was targeted for its low fracture occurrence in its original 
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development work and also the dataset obtained by Snow (1979) from grouting at dam and 

tunnel sites with its high fracture occurrence. Thus three groups of hardrock systems were 

identified: Group A including all the data obtained in the study; Group B including all the 

data except those from the Stripa site;  Group C including all the data except those from 

Stripa and those from grouting at dam sites. Group A data are biased to low K; Group B to 

high K, and Group C are possibly the least biased.  Which group is most relevant to Ghana is 

uncertain, but is discussed below.  

7.3 Potential direct recharge 

A study was conducted to estimate the potential direct recharge rate to be used in the 

assessment of likely impacts of mine derogation on the regional groundwater flow system in 

South Western Ghana, where the greatest concentration of open pit mines are found. The 

basic approach was to perform numerical simulation of direct infiltration of the unsaturated 

zone, of the top soil of hard rock areas using HYDRUS-1D computer software package 

(Šimunek et al., 1999). The bottom flux was then used as a potential recharge for the 

regional groundwater flow modelling process with the MODFLOW Computer Code (Chapter 

5). Recharge was input as an areally distributed value across the model.    

 

The potential direct recharge rate was estimated to range between 18% and 36% (an 

average of 27%) of the mean annual precipitation rates. This translates to an average annual 

potential recharge rate ranging from 269 to 611 mm/yr with an average annual rate of 

385mm/y. This high value (385mm/yr) is reasonable on the basis that it represents the 

potential maximum value of the actual recharge and compares with an estimate of 299±72 

mm/yr for actual recharge as reported by Kuma et al. (2007).  Regression analysis between 

the calculated recharge rate and the measured precipitation rate showed that annual 

predicted recharge rate is proportional to annual precipitation rate but with a low 

correlation coefficient, ranging from 0.39 to at least 0.72, for the selected soil types. The 

limited correlation suggests that estimating recharge as a proportion of precipitation may 

not be a good method for Ghana.  
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7.4 Assessment of radius of impact 

7.4.1 Approach 

The radius of influence/impact is the main variable of this assessment process and by 

definition two measures of this were considered when using numerical models: (i) radius of 

influence (Re) as estimated by the locus of a drawdown of an amount X cm, and (ii) radius of 

impact (Ri) as defined by the locus of a drawdown of 1m, this being an amount of drawdown 

likely to be noted by users of wells as well as the impact on surface water systems. 

Measurement of radius of impact was taken from the centre of mine in the x direction, the 

direction of the long axis of the mines modelled.  

Because the data available were so uncertain and of limited types, the approach taken was 

to use very simple numerical models with few parameters and to determine the sensitivity 

to assumptions and the likely direction in which errors would change Ri. More sophisticated 

models would be needed if greater accuracy is required for a particular mine but this would 

require much greater data availability that would only come as the mine investigation 

proceeded.  

7.4.2 Results of model calculations 

Using the Group A (entire) K data set, most of the simple models used in conjunction with 

mine geometries, recharge rates, conductivity and range of relevance predicted very close 

radius of impacts to the mine, less than few 100m with a median distance of 400m from 

mine’s edge although, though it is expected that 25% of cases could reach up to 2km and 

further if the system was anisotropic. For distances from the mines of only a few 100m as 

Group A predicts for many conditions, there may be other problems too from dust, stability, 

noise and especially loss of land. At such close distances a range of major impacts on village 

life would also be expected. 

Unlike Group A with low K influence and hence less mining impact, derogation of 

groundwater level drawdown and water volume is more of a problem for Group B and C 

aquifer systems of higher K values. For these systems, model results show that 50% of cases 

could reach up to 3.6km for Group B and 3km for Group C from the mine centre respectively 

and occurring within the range of 2.7km to 5.1km and 2km to 4.6km for the two groups. 
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However, in extreme cases the radius of impact could reach at least 7.6 km from the mine 

centre, and further if the system was anisotropic.   

 

Corresponding calculations of mine derogation (Table 6.8) of water volumes for the three 

Groups (A, B and C) show that annual volume of about 7 Mm3, 15 Mm3 and 11 Mm3 

respectively are likely to be abstracted. Preliminary estimates of average annual field 

volume of water discharge by mines in Ghana, about 17Mm3/y with a range of 15Mm3/y to 

19Mm3/y, suggest that the appropriate K dataset for the Ghana mines is that of Group B 

implying that derogation of water volume and water level are likely to occur to significant 

distances from mines in Ghana. It should however, be noted that the results are very 

sensitive to K, and therefore there is the need in Ghana to publish K and/or volume data 

that will enable suggestions from this work to be confirmed.  

 

The radius of influence might also extend to greater distances if R is limited by some 

process, e.g. low vertical hydraulic conductivity in a weathered sequence. However if this 

were to happen in Ghana then the shallow aquifer would be protected from derogation as 

the relatively high potential recharge rate would be able to maintain shallow and deep 

aquifers.  

 

Anisotropy can affect the radius of impact significantly (section 6.4.2) and hence villages 

lying along the fracture strike from the mine will be more vulnerable than those lying in the 

dip direction. However, the hydraulic conductivity still needs to be high to affect at distance. 

The orientation of K anisotropy is significant as it determines the K values and hence flows in 

different directions away from the mine. It is established that flow to different sides of the 

same mine with constant anisotropy properties are different. For the extreme case where 

the anisotropy is formed by widely spaced largely unconnected fractures then there could 

be very little flow into the sides of a mine oriented parallel to the fractures but much from 

the sides intercepting the fractures.  

 

Hydraulic boundaries will also affect water levels and hence the impacted area significantly 

especially in the case where the village lies between an impermeable boundary and the 

mine. In other cases the effects are expected to be limited. Model results show that, by 



  

215 
 

image theory, if a village is between a mine and impermeable boundary then, drawdown 

will be increased by an amount that increases as the village approaches the boundary, 

reaching a maximum of twice that is expected in the absence of the boundary when the 

village is at the boundary.  

Similarly, if a village is between the mine and a constant head boundary, drawdown will be 

decreased at a proportion that increases as the village approaches the boundary and 

reaching a maximum of approximately zero drawdown at the boundary itself. If either 

boundary is partial, then the effect is diminished. However, if the village is on the opposite 

side of the mine from an impermeable or constant head boundary then drawdowns are 

unlikely to be affected much by that boundary. For any mine that is located in an unusually 

permeable aquifer there will be higher inflow rates and hence more possibilities for 

supplying surplus water to any villages affected.  

 

In conclusion, simple models have allowed estimates of Ri but are very sensitive to K. By 

constraining K using water volumes produced by mines in Ghana, and comparing with the 

model output, it is tentatively suggested that for Ghana the most likely Ri values are the 

Group B dataset in the range of 2.7km and 5.1km from mine centre.  To confirm this there is 

a need for more K or volume data for Ghana. 

7.5 Applications of findings 

7.5.1 Overview of implications for Ghana  

As indicated by Kuma (2006) and Lutz et al. (2007), no groundwater flow model is known to 

exist in the study area. The research findings therefore have the implication of first and 

foremost providing first-pass qualitative information for hydrogeologists and engineers for 

gold mining design purposes.   

It will also serve as guidelines for the most important data to collect for early assessment of 

derogation impacts. And finally, it will provide a means of informing decision-making and 

regulatory bodies on environmental implications when allocating mining concessions or 

giving out permits for mining operations in Ghana. 
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7.5.2 Specific application in Ghana  

Specifically, the semi-quantitative approach discussed in the last section of chapter six could 

be used to assess possible derogation of domestic wells and surface water systems in 

nearby villages and settlements in the mining environments. 

In instances whereby villages and settlements lie along the strike from the mine, horizontal 

anisotropy is expected to be significant and therefore radius of impact of derogation effects 

could be estimated by the use of the analytical formulation of anisotropic systems 

developed in section 6.4.2. 

7.5.3 Application elsewhere 

The research effort could be applied elsewhere apart from Ghana. 

1. Local assessment of mine geometry (G) which is a function of the geometry of ore 

reserves in the location of interest. 

2. Because recharge is region specific it should be locally assessed, but could take the same 

approach as the current use of Hydrus. 

3. The K dataset, if none locally, could be used elsewhere due to its international 

characteristics. 

4. The model calculations and correlation approach could be adapted simply to other 

systems, e.g. other mine geometries.  

7.6 Recommendations  

This thesis has attempted to assess the likely distances to which open pit hard rock mining 

operations of the type common in Ghana are likely to derogate village wells and surface 

water bodies. As indicated by Kuma (2006) and Lutz et al. (2007), no groundwater flow 

model is known to exist in the study area. Therefore, arising from the detailed findings 

presented and the conclusions drawn, the following recommendations can be made: 

1. despite clear results in general, no substitute for representing local conditions, 

therefore suggest testing out the validity of the empirical results against mine data 

though getting such data, even if it existed, proved impossible in the present 

investigation  
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2. conduct much fuller investigation of the weathered zone, and how it interacts with 

the deeper system   

3. investigate into details the issue of seepage face 

4. more data collection should be undertake especially on K  

5. use mine discharges to further calibrate models 

6. more work to confirm high potential recharge rates 

7. investigate the importance of non-Darcian flows 

8. collate more international data on hard rock K 

9. look at how measured K values using small scale testing relates to regional flow 

systems 

10. confirm that equivalent porous media are an appropriate way to represent flow near 

mines 

11. Put together a tool including the proposed methods in the thesis and the K data base 

(and a similar one for R) 

12. To release, publish and collate K and volume data for Ghana and other countries. 
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Appendix A – Summary statistics of hydraulic conductivity values 

 

Appendix A-1  

 

  

Table 3.6  Summary statistics of conductivity values (m/s) for combined dataset  

 

Data Source 

(Study) Count Min Max N Parameters LogN Parameters Median IQR 
(q3-q1) 

MAD qs 
Swanson's 

Mean 

  
 

  

Mean Stdev 
Mean 

(Geom Mean) 

Stdev 

(Geom Stdev) Undefined Distribution Parameters 
  

M 
All dataset 736 1.40E-13 1.45E-03 1.48E-05 9.74E-05 

-7.80 

1.57E-08 

1.79 

61.0E+00 3.80E-09 

9.94E-07  

1.10E-10 1.48E-05 7.25E-01 7.18E-06 
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Appendix A-2 

  

Table 3.7  Summary statistics of conductivity values (m/s) for individual studies  

 

Data Source (Study) Count Min Max N Parameters LogN Parameters Median 
IQR 

(q3-q1) 
MAD qs 

Swanson’s 

Mean 

     

Mean Stdev Mean 
(Geom mean) 

Stdev 

(Geom Stdev) 

Undefined Distribution Parameters 

 

A Snow, (1979) 178 4.65E-09 1.45E-03 3.79E-05 1.73E-04 

 
-5.82 

1.52E-06 

 
0.98 

9.43E+00 1.43E-06 

4.26E-06 

3.72E-07  1.21E-06 7.25E-01 7.18E-06 

B Merecel et al., (2004) 31 2.00E-08 5.10E-04 3.15E-05 9.14E-05 

 
-5.34 

4.58E-06 

 
1.02 

1.04E+01 6.50E-06 

2.60E-05 

1.10E-06 6.06E-06 7.74E-01 2.13E-05 

C Akaha et al., (2008) 12 5.65E-07 2.51E-05 3.89E-06 6.76E-06 

 
-5.67 

2.12E-06 

 
0.41 

2.60E+00 1.62E-06 

3.48E-06  

1.20E-06  6.07E-07 9.10E-01 2.08E-06 

D Ali-El Naqa, (1994) 23 2.86E-07 5.60E-04 1.14E-04 2.12E-04 

 
-5.02 

9.58E-06 

 
1.01 

1.02E+01 5.30E-06 

1.44E-05  

2.60E-06  4.20E-06 7.62E-01 1.52E-04 

E 

Larry Cook & 

Associates (2008) 7 2.31E-07 9.49E-06 2.91E-06 4.30E-06 

 
-6.03 

9.37E-07 

 
0.69 

4.88E+00 4.63E-07 

8.91E-06  

3.47E-07  1.16E-07 9.74E-01 3.02E-06 

F 

Cheng-Yu Ku et al, 

(2009) 27 2.86E-10 1.64E-06 2.50E-07 4.38E-07 

 
-7.44 

3.67E-08 

 
1.04 

1.09E+01 4.68E-08 

1.56E-07  

9.08E-09  4.45E-08 7.04E-01 3.16E-07 

G Plume (1996) 12 7.51E-09 7.25E-05 2.66E-05 3.09E-05 

 
-5.34 

4.54E-06 

 
1.31 

2.03E+01 1.02E-05 

6.50E-05  

1.63E-06  1.02E-05 8.45E-01 2.58E-05 

H 

Ken Kuchling et al, 

(2009) 5 2.60E-08 3.60E-07 1.88E-07 1.48E-07 

 
-6.88 

1.31E-07 

 
0.47 

2.92E+00 1.30E-07 

3.45E-07  

6.05E-08  1.04E-07 8.51E-01 1.72E-07 

I Miguel M et al, (2009) 40 2.80E-12 3.20E-07 1.22E-08 5.22E-08 

 
-9.27 

5.33E-10 

 
1.08 

1.21E+01 8.55E-10 

2.48E-09  

7.55E-11  8.30E-10 6.69E-01 1.88E-09 

J 

Witherspoon and Gale 

(1979)  376 1.40E-13 6.80E-06 4.50E-08 4.36E-07 

 
-9.69 

2.05E-10 

 
1.13 

1.34E+01 1.65E-10 

8.38E-10  

3.30E-11  1.59E-10 8.35E-01 1.70E-09 

K 

Anglogold Obuasi  

Ghana (AGC) 9 1.74E-09 4.73E-05 1.16E-05 1.44E-05 

 
-5.46 

3.45E-06 

 
1.29 

1.93E+01 5.54E-06 

1.54E-05  

3.84E-06  2.56E-06 8.39E-01 1.00E-05 

L 

Ghana Australia 

Goldfields  (GAG) 16 1.70E-08 3.00E-06 3.91E-07 7.84E-07 

 
-6.98 

1.05E-07 

 
0.68 

4.74E+00 7.40E-08 

3.03E-07  

3.43E-08  4.20E-08 8.45E-01 3.53E-07 
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Appendix A-3 
 

Table 3.15  Summary statistics of conductivity values (m/s) for all rock types.  

 

Data Source (Study) Count Min Max N Parameters LogN Parameters Median 

IQR 

(q3-q1) MAD qs 

Swanson's 

Mean 

  

   Mean 

  

Stdev. Mean  

(Geo mean) 

Stdev.           

(Geom Stdev) 

Undefined Distribution Parameters 

 A Granite 
489 1.40E-13 8.16E-04 4.79E-06 4.71E-05 

-8.41 

3.92E-09 

1.69 

4.92E+01 3.00E-10 
4.15E-09  
4.70E-11  4.79E-06 

 

7.18E-06 

B 

Mica -schist/Phyllite 23 1.74E-09 1.33E-03 6.39E-05 2.76E-04 

-5.67 

2.16E-06 

1.52 

3.30E+01 1.91E-06 

8.10E-06  

3.44E-07  6.33E-05 

 

2.13E-05 

C 

Quartzite 35 1.70E-08 6.73E-06 9.16E-07 1.70E-06 

-6.60 

2.53E-07 

0.75 

5.63E+00 1.67E-07 

8.55E-07  

4.80E-08  8.56E-07 
 

2.08E-06 

D 

Sandstone/meta sandstone 56 2.86E-10 5.60E-04 5.25E-05 1.48E-04 

-6.23 

5.91E-07 

1.63 

4.24E+01 9.93E-07 

5.56E-06  

4.84E-08  5.23E-05 

 

1.52E-04 

E Bindook Porphyry 
 8 1.16E-07 9.49E-06 2.56E-06 4.10E-06 

-5.46 

3.50E-06 

0.87 

7.39E+00 4.05E-07 

6.83E-06 

2.60E-07  2.30E-06 

 

3.02E-06 

F Tuff-Breccia, 
Tuff-Siltstone 7 8.18E-07 5.07E-06 2.29E-06 1.95E-06 

-5.74 

1.82E-06 

0.42 

2.64E+00 1.09E-06 

5.07E-06  

8.64E-07  1.33E-06 

 

3.16E-07 

G 

Curtain diabase 11 7.58E-08 8.55E-06 2.89E-06 2.81E-06 

-5.85 

1.40E-06 

0.80 

6.36E+00 2.43E-06 

4.58E-06  

5.20E-07  2.07E-06 
 

2.58E-05 

H Greenstone 
 24 3.07E-08 1.45E-03 8.83E-05 2.97E-04 

-5.21 

6.21E-06 

1.23 

1.68E+01 2.26E-06 

2.27E-05  

1.01E-06  8.72E-05 

 

1.72E-07 

I 

Meta-andesite/rhyollite 9 4.69E-08 2.42E-05 3.31E-06 7.85E-06 

-6.06 

8.63E-07 

0.97 

9.28E+00 7.34E-07 

1.41E-06  

3.72E-07  2.94E-06 

 

1.88E-09 

J 

Metavolcanics  Amphibolite 7 1.49E-07 7.71E-07 4.38E-07 2.26E-07 

-6.42 

3.76E-07 

0.33 

2.15E+00 3.72E-07 

6.22E-07  

2.32E-07  1.80E-07 
 

1.70E-09 

K 

Sandstone and Shale 

14 

 1.67E-07 2.88E-04 3.57E-05 8.28E-05 

-5.38 

4.14E-06 

1.12 

1.31E+01 1.86E-06 

1.66E-05  

7.38E-07  3.49E-05 

 

1.00E-05 

L Sandstone/ Tuff & 
Conglomerate 9 4.37E-07 7.25E-05 3.33E-05 3.31E-05 

-5.00 

9.89E-06 

1.08 

1.20E+01 2.75E-05 

7.11E-05  

1.75E-06  2.88E-05 

 

3.53E-07 

M 
Quartz, Porphry granodiorite 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

  N 

Slate/talc schist/Serpentine 8 5.68E-08 7.29E-04 9.34E-05 2.57E-04 

-5.32 

4.82E-06 

1.61 

4.08E+01 2.99E-06 

4.17E-06 

2.16E-06  9.15E-05 

  O Gneiss 
 32 4.65E-09 1.74E-04 9.05E-06 3.10E-05 

-5.90 

1.26E-06 

1.12 

1.33E+01 1.70E-06 

4.03E-06  

4.18E-07  8.52E-06 

   

 All rock type 736 1.40E-13 1.45E-03 1.48E-05 9.74E-05 

-7.80 

1.57E-08 

1.79 

6.10E+01 3.80E-09 

9.94E-07  

1.10E-10  1.47E-05 
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Appendix A-4 
 

Table 3.18  Summary statistics of conductivity values (m/s) for rock class  

 

Data Source (Study) Count Min Max N Parameters Log N Parameters Median 
IQR 

(q3-q1) MAD qs 
Swanson's 

Mean 

  

   Mean Stdev. Mean 

(Geom mean) 

Stdev 

(Geom Stdev) 
Undefined Distribution Parameters 

 

A IGNEOUS 512 1.40E-13 8.16E-04 4.72E-06 4.60E-05 

-8.34 

4.55E-09 

1.7 

49.7 3.65E-10 

8.20E-09  

5.03E-11  4.72E-06 

  

B METAMORPHIC 145 1.74E-09 1.45E-03 3.45E-05 1.76E-04 

-5.83 

1.49E-06 

1.14 

13.9 1.00E-06 
4.07E-06  
2.60E-07  3.42E-05 

  

C Meta-SEDIMENTARY   79 2.86E-10 5.60E-04 4.36E-05 1.27E-04 

-6.06 

8.69E-07 

1.54 

34.3 1.30E-06 

6.79E-06  

1.56E-07  4.32E-05 

  

D All rock classes 736 1.40E-13 1.45E-03 1.48E-05 9.74E-05 

-7.80 

1.57E-08  

1.79 

6.1  3.80E-09 

9.94E-07  

1.10E-10 1.47E-05 
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Appendix A-5 

Table 3.20  Summary statistics of conductivity values (m/s) for specific regional climate  

 

Climate Count Min Max N Parameters Log N Parameters Median 
IQR 

(q3-q1) MAD qs 
Swanson's 

Mean 

  

   
Mean  

 

Stdev  

Mean 

(Geom Mean) 

Stdev 

(Geom Stdev) 
Undefined Distribution Parameters 

 

A 

 

Semi-Arid 248 4.65E-09 1.45E-03 4.30E-05 1.64E-04 

-5.59 

2.56E-06 

1.07 

11.7 2.00E-06 
7.07E-06  
4.50E-07  4.24E-05 

 

7.18E-06 

B Tropical 63 2.86E-10 4.73E-05 2.61E-06 7.12E-06 

-6.78 

1.66E-07 

1.27 

18.7 1.56E-07 
1.62E-06  
3.00E-08  2.57E-06 

 

2.13E-05 

C Temperate 380 1.40E-13 6.80E-06 5.94E-08 4.59E-07 

-9.26 

5.54E-10 

1.29 

19.4 1.70E-10 
8.93E-10  
3.30E-11  5.94E-08 

 

2.08E-06 

D Sub-Arctic 4 2.60E-08 3.60E-07 1.88E-07 1.48E-07 

-6.90 

1.27E-07 

0.66 

4.60 1.30E-07 
3.45E-07  
6.05E-08  1.14E-07 

 

1.52E-04 

E 

 

Mediterranean 40 2.80E-12 3.20E-07 1.22E-08 5.22E-08 

-9.21 

6.12E-10 

1.21 

16.1 8.55E-10 

2.48E-09  

7.55E-11  1.20E-08 

 

3.02E-06 

F All rock classes 736 1.40E-13 1.45E-03 1.48E-05 9.74E-05 

-7.80 

1.57E-08 

1.79 

6.1 3.80E-09 

9.94E-07  

1.10E-10 1.47E-05 

All rock 

classes 3.16E-07 
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Appendix B-Meteorological data of South Western Ghana (SWGH) from 1964 
to 2001 

Appendix B-1 

Monthly rainfall chart (mm) of SWGH from 1964 to 2001 
YEAR JAN FEB MAR APR  MAY JUN JUL AUG SEP OCT NOV DEC Annual 

1964 71.1 69.9 111.3 142.7 143.3 294.4 111.3 66.8 44.5 138.2 75.2 17.5 1286 

1965 3.6 92.5 96.8 73.7 170.9 346.5 214.9 115.6 201.7 163.8 81 14.5 1576 

1966 35.3 41.4 178.8 172 149.4 170.2 229.4 114.8 162.1 231.4 85.3 36.1 1606 

1967 6.3 43.9 94.7 204 318.5 381.8 98.3 35.8 188.7 172.7 108.7 9.7 1663 

1968 47 106.4 169.4 314.7 242.6 479.5 179.8 563.1 392.7 248.1 91.2 16.5 2851 

1969 26.2 93.7 34 277.4 140.2 198.4 165.9 29.7 29 135.6 202.9 46 1379 

1970 5.1 51.3 105.7 306.3 239 150.9 45.2 95.5 189.5 229.6 115.1 0 1533 

1971 7.9 102.4 200.4 185.9 181.1 268 73.7 62.5 197.6 173.7 81.5 1.5 1536 

1972 28.7 33.8 148.1 183.4 139.4 241.8 100.3 18.5 99.3 153.2 42.4 71.4 1260 

1973 0 148.8 117.9 129.5 75.4 249.7 17 224.5 204.7 132.1 65.3 12.5 1377 

1974 47 39.4 214.9 241.5 107.7 271 129.8 127 348.5 82.3 61.7 31.7 1703 

1975 0.0 188.2 125.7 143.3 186.9 166.6 243.8 71.9 114.5 160 117.6 59.9 1578 

1976 10.2 52.1 165 142.2 237.7 271.7 73.2 81.3 35.8 159.1 227.8 2.8 1459 

1977 3.6 33.8 32.2 195.3 149.9 152.6 61.6 40.1 192.5 192.5 13.9 17 1085 

1978 0.0 96.5 206 136.1 235.6 264.3 60 9.8 130.3 130.4 56.8 57.6 1383 

1979 26.3 53.5 45.4 99.7 239.4 209.2 245.5 81.3 254.7 224.8 73.7 0 1554 

1980 12 151.6 128.2 57.9 326.8 278.2 153.6 89.2 286.6 227.6 104.4 10.4 1827 

1981 0.5 28.7 173.6 64.4 321.4 133 134.6 66.2 150.3 98.6 22.8 21.9 1216 

1982 0.0 64.8 192.3 50.8 227.6 259.9 152.9 57.6 2.5 138.9 67.1 10.2 1225 

1983 0.0 30.1 14.8 123.2 262.7 269.8 15.1 7.9 128.5 128.0 54.3 36.6 1071 

1984 15.5 58.2 154.1 60.7 182.7 223.1 74.5 193.3 175.2 214.5 55.1 52.3 1459 

1985 69.3 58.9 144.4 159.2 116.6 136.1 202.8 154.1 142.9 131.8 69.0 0.3 1385 

1986 0.0 54.9 150.0 120.5 125 138.7 108.4 45.5 243.8 88.7 82.9 0.0 1158 

1987 8.4 79.3 110.0 46.2 122.5 144.3 184.1 178.2 353.3 233.4 25.7 21.3 1507 

1988 0.0 6.8 176.5 93.6 117.8 292.5 132.6 37.1 131.7 173.8 72.2 20.4 1255 

1989 0.0 1.8 76.7 154.6 61.1 278.3 178.4 138.5 221.4 198.5 49.3 9.1 1368 

1990 24.1 148.1 44.2 127.0 114.9 220.7 37.0 25.1 128.8 193.8 51.5 236 1351 

1991 32.2 50.3 116.0 158.5 177.1 133.0 160.9 255.1 74.0 63.3 63.3 0.7 1284 

1992 0.6 95.3 138.9 206.5 212.7 132.9 80.1 9.2 208.5 177.0 76.2 164.0 1502 

1993 0.7 91.4 191.4 75.5 126.1 187.3 174.2 133.6 196.0 233.1 125.1 158.0 1692 

1994 15.4 22.5 142.0 151.1 220.5 161.3 74.4 28.5 116.5 396.5 58.5 2.2 1389 

1995 0.0 7.9 122.6 369.9 154.9 211.9 135.8 195.6 86.9 123.3 128.6 56.7 1594 

1996 13.7 125.8 163.7 188.2 264.7 191.0 189.9 137.5 54.8 159.7 96.9 12.2 1598 

1997 16.8 34.5 140.1 236.6 188.1 265.7 48.1 39.5 92.0 169.1 74.3 47.5 1352 

1998 52.0 26.7 61.1 88.9 196.4 257.3 61.3 127.1 127.1 231.3 112.4 86.9 1429 

1999 21.3 91.5 162.7 179.7 82.0 418.5 312.8 77.0 136.8 130.1 65.7 7.6 1686 

2000 19.2 28.5 141.8 200.5 222.6 265.7 83.7 112.3 141.5 24.4 78.1 1.7 1320 

2001 0.0 22.5 138.2 234.6 102.0 293.1 101.0 120.8 97.7 83.1 29.2 30.7 1253 

Mean  16.3 66.52 129.73 160.42 181.14 237.08 127.52 104.40 160.08 167.00 80.60 36.35 1467.14 
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Appendix B-2 

Total number of rain days of SWGH from 1964 -2001 
             

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

             

1964 3 6 9 15 17 21 13 17 12 12 13 7 

1965 1 9 10 10 17 21 23 16 18 16 10 2 

1966 2 4 12 10 15 17 23 22 21 25 12 6 

1967 1 4 6 15 15 20 16 18 16 17 8 4 

1968 2 7 8 12 14 24 21 24 23 20 13 4 

1969 3 7 6 16 15 21 19 17 13 16 12 2 

1970 2 6 13 9 16 16 12 16 23 15 10 0 

1971 2 7 13 15 11 20 15 17 18 13 12 1 

1972 3 7 11 13 17 22 16 10 15 16 11 4 

1973 0 6 7 11 9 19 7 19 23 13 7 2 

1974 2 2 15 14 14 23 17 14 21 12 7 3 

1975 0 10 6 12 16 15 15 15 15 15 11 6 

1976 1 6 14 8 15 29 16 12 11 14 17 1 

1977 5 2 5 12 15 17 16 15 16 16 3 2 

1978 0 10 14 13 16 22 16 12 15 17 8 4 

1979 3 3 9 10 15 22 18 20 24 24 6 0 

1980 3 9 14 8 16 19 15 20 23 17 13 3 

1981 1 5 11 7 17 15 19 15 15 15 6 4 

1982 0 4 11 9 14 21 14 15 1 16 8 2 

1983 0 6 4 15 11 21 5 9 14 16 7 6 

1984 1 5 11 9 14 16 14 14 18 14 4 2 

1985 4 2 8 9 10 14 15 20 16 13 12 1 

1986 0 7 12 10 12 13 18 8 10 12 10 0 

1987 1 8 8 11 13 10 16 23 20 16 5 1 

1988 0 4 9 12 9 17 19 17 17 19 5 1 

1989 0 1 12 11 10 19 18 16 20 15 6 2 

1990 3 6 6 10 13 16 15 9 16 17 9 6 

1991 3 4 10 9 21 16 15 24 13 9 12 1 

1992 1 4 8 17 13 15 13 6 19 17 9 2 

1993 1 4 14 11 17 21 21 13 18 16 7 3 

1994 2 3 9 10 12 14 13 12 15 20 7 1 

1995 0 2 9 19 20 14 17 20 16 14 6 5 

1996 2 10 11 15 16 20 16 23 14 12 5 1 

1997 2 2 7 12 12 23 12 13 11 16 8 4 

1998 2 4 15 10 14 14 13 16 14 18 13 8 

1999 1 5 14 12 14 18 21 13 19 16 10 1 

2000 4 2 7 11 11 18 10 15 19 8 8 1 

2001 0 2 12 12 9 19 14 14 11 9 4 2 
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Appendix B-3 

 

 

Mean Daily Temperature (oC) of SWGH from 1964 - 2001 
             

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

             

1964 25.4 27.6 28.1 27.5 26.5 25.9 24.6 24.4 25.1 25.4 26.1 25.4 

1965 25.9 26.9 27.5 27.4 26.9 25.8 25.2 24.9 25.4 26.6 26.9 25.3 

1966 26.2 27.6 28.2 27.6 27.5 26.3 26.1 25.2 25.7 26.7 26.9 26.6 

1967 24.9 27.5 27.8 27.8 27.2 26.1 25.2 24.7 25.4 26.3 26.9 26.6 

1968 25.7 27.5 27.4 27.1 27.3 26.4 25.8 25.6 25.8 26.6 26.5 26.8 

1969 26.6 27.9 28.6 28.2 27.9 26.6 24.2 25.3 25.7 26.6 26.6 27.2 

1970 21.7 28.4 28.2 27.9 27.1 26.6 25.3 25 25.7 26.6 26.6 26.3 

1971 26.3 26.8 27.4 27.1 25.9 25.6 24.8 25.4 26.3 26.5 26.5 25.5 

1972 26.7 28.1 27.4 27.2 27.3 26.1 25.7 24.9 26.1 26.7 27.1 26.5 

1973 26.8 28.6 28.5 28.1 28.0 26.9 26.6 25.9 26.2 26.9 26.9 26.5 

1974 25.7 28.2 27.9 27.7 26.9 26.5 25.4 25.7 25.7 26.8 26.9 26.3 

1975 25.4 27.8 28.1 27.7 27.0 26.5 25.7 24.9 25.7 26.5 27.1 26.4 

1976 26.2 27.9 28.2 27.7 27.5 26.3 25.4 25.1 25.7 26.2 26.5 26.4 

1977 27.5 28.9 29.0 28.8 28.1 26.8 25.7 24.8 26.7 27.1 27.8 26.1 

1978 28.6 28.8 28.1 27.9 27.9 26.5 25.1 25.3 26.1 26.9 27.5 27.2 

1979 28.4 29.2 29.2 29.1 27.6 26.9 26.3 26.3 26.9 27.5 27.5 26.4 

1980 28.3 28.2 28.0 28.9 27.7 27.3 25.9 25.9 26.5 27.1 27.1 25.5 

1981 26.5 29.1 28.7 28.5 27.4 27.1 25.5 25.5 26.7 27.5 27.3 27.4 

1982 27.3 29.4 28.9 28.3 27.3 26.5 25.7 24.8 26.1 27.3 27.3 26.9 

1983 25.9 29.3 30.7 29.5 28.9 26.7 26.3 25.7 26.3. 27.1 26.6 27.0 

1984 27.9 28.8 28.4 28.5 27.8 27.1 26.7 26.7 26.7 26.9 27.7 25.7 

1985 26.9 28.2 28.3 28.2 27.8 27.0 25.9 26.3 26.3 .27.0 27.4 25.8 

1986 26.8 29.1 27.8 28.5 27.6 26.8 25.7 25.7 26.5 26.4 27.5 26.5 

1987 28.7 29.0 28.7 29.3 28.5 27.7 27.4 26.9 27.3 27.5 28.5 27.1 

1988 27.2 30.3 29.1 29.1 28.9 27.2 26.4 25.9 26.7 27.3 27.7 26.5 

1989 26.9 29.5 29.1 28.5 28.2 27.0 26.7 26.3 26.4 26.9 28.1 27.5 

1990 27.7 28.1 30.1 28.9 28.3 28.6 26.1 25.5 26.7 27.3 27.7 26.7 

1991 27.3 29.1 28.9 28.6 28.1 28.1 27.1 25.9 27.1 26.6 27.2 27.3 

1992 27.5 29.7 29.0 28.7 28.2 26.6 25.7 25.7 26.7 27.5 27.1 27.5 

1993 27.1 29.9 27.8 28.3 28.9 27.4 26.3 25.9 26.9 27.4 27.1 26.4 

1994 26.8 29.1 28.7 28.6 27.9 27.4 26.3 26.3 26.9 27.5 27.7 27.1 

1995 27.1 30.4 29.1 28.6 28.3 27.3 26.5 26.5 26.7 27.0 27.5 26.6 

1996 26.6 28.3 28.3 28.3 28.4 26.8 26.3 25.9 26.2 26.5 27.6 27.1 

1997 27.5 28.9 28.9 28.0 28.2 27.0 25.8 25.5 27.0 27.5 27.3 27.1 

1998 26.5 29.3 30.5 29.7 28.7 27.3 26.5 25.5 26.5 27.0 27.5 27.1 

1999 27.9 27.4 27.8 27.8 27.8 27.2 26.3 26.2 26.7 26.9 27.7 27.6 

2000 27.9 27.8 29.6 29.2 28.7 27.5 26.3 26.1 26.5 27.7 28.1 27.3 

2001 28.2 29.8 28.8 28.5 29.0 27.6 26.6 25.7 26.0 28.1 28.8 28.9 
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Appendix B-4 

Mean Daily Potential Evapotranspiration (mm)  
Year Jan Feb March April May June July Aug Sept Oct Nov Dec Ave 

1964 104.1 129.5 116.8 114.3 96.5 88.9 76.2 68.6 78.7 91.4 94.0 96.5 96.3 

1965 121.9 104.1 114.3 109.2 109.2 81.3 83.8 73.7 76.2 94.0 94.0 101.6 96.9 

1966 104.1 129.5 116.8 114.3 96.5 88.9 81.3 68.6 83.8 96.5 101.6 96.5 98.2 

1967 124.5 134.6 132.1 121.9 104.1 81.3 76.2 66.0 76.2 76.2 99.1 104.1 99.7 

1968 111.8 116.8 114.3 109.2 109.2 86.4 73.7 66.0 83.8 99.1 91.4 96.5 96.5 

1969 104.1 129.5 137.2 127.0 111.8 88.9 68.6 71.1 81.3 96.5 96.5 94.0 100.5 

1970 104.1 129.5 116.8 114.3 96.5 88.9 76.2 68.6 78.7 91.4 94.0 96.5 96.3 

1971 121.9 104.1 114.3 109.2 109.2 81.3 83.8 73.7 76.2 94.0 94.0 101.6 96.9 

1972 109.2 137.2 121.9 106.7 101.6 83.8 73.7 73.7 86.4 94.0 83.8 101.6 97.8 

1973 129.5 129.5 137.2 119.4 127.0 94.0 96.5 76.2 81.3 96.5 104.1 109.2 108.4 

1974 139.7 134.6 129.5 116.8 99.1 88.9 81.3 83.8 83.8 101.6 104.1 111.8 106.3 

1975 152.4 137.2 134.6 119.4 101.6 94.0 81.3 73.7 91.4 99.1 104.1 96.5 107.1 

1976 146.3 145.7 141.8 122.6 113.1 84.4 77.1 79.9 86.6 86.1 104.1 107.4 107.9 

1977 97.9 160.3 159.2 145.1 123.1 95.0 75.9 68.6 91.1 97.3 122.6 117.0 112.8 

1978 143.4 145.7 130.5 99.5 95.0 87.1 76.5 76.2 91.6 93.9 101.6 96.5 103.1 

1979 119.8 160.3 163.7 151.3 108.5 87.7 78.1 78.1 89.4 97.9 104.0 103.5 111.9 

1980 126.6 136.7 118.7 132.7 108.0 90.0 74.3 75.9 84.4 92.8 99.0 120.9 105.0 

1981 163.1 133.3 140.6 126.6 102.4 95.6 63.0 69.2 91.1 112.5 118.1 104.6 110.0 

1982 190.7 173.3 154.7 121.5 102.4 80.4 73.1 63.0 84.9 109.1 101.8 118.7 114.5 

1983 160.9 208.7 155.3 135.6 128.8 101.8 104.6 80.4 99.0 102.4 120.9 128.8 127.3 

1984 109.2 137.2 177.8 138.4 133.3 92.3 98.4 81.0 99.0 115.3 119.3 113.6 117.9 

1985 135.6 161.4 155.3 138.9 63.0 104.6 80.4 73.1 100.7 109.7 121.5 111.4 113.0 

1986 175.5 173.3 144.6 142.3 116.4 85.5 82.1 76.5 100.1 119.3 118.1 127.1 121.7 

1987 147.9 144.0 149.7 145.1 127.1 119.8 96.2 90.6 96.8 109.1 129.4 125.4 123.4 

1988 199.1 177.8 177.8 136.7 118.7 100.7 87.8 85.5 92.3 102.9 113.1 127.7 126.7 

1989 152.4 137.2 134.6 119.4 101.6 94.0 81.3 73.7 91.4 99.1 104.1 96.5 107.1 

1990 146.3 145.7 141.8 122.6 113.1 84.4 77.1 79.9 86.6 86.1 104.1 107.4 107.9 

1991 124.9 148.5 135.0 134.4 110.8 104.6 99.6 70.3 89.4 94.5 101.3 123.2 111.4 

1992 197.4 158.6 142.9 127.7 113.1 81.6 72.0 85.5 97.3 109.7 110.8 109.7 117.2 

1993 189.6 183.4 136.7 126.0 126.0 100.1 78.8 75.4 92.3 110.8 112.5 111.9 120.3 

1994 148.5 180.6 161.4 135.6 111.9 105.2 82.7 86.6 88.3 109.7 115.9 145.1 122.6 

1995 207.0 217.7 153.6 125.4 123.2 112.5 92.8 87.2 95.1 108.0 120.9 116.4 130.0 

1996 109.1 151.9 135.6 131.6 124.9 98.4 91.7 82.1 89.4 99.0 122.1 102.4 111.5 

1997 124.3 195.8 154.1 122.6 121.5 92.3 84.4 81.0 107.4 110.3 115.3 118.1 118.9 

1998 154.7 166.5 185.1 151.3 126.6 102.4 91.1 78.2 91.7 102.9 119.8 111.9 123.5 

1999 141.8 154.1 140.1 127.7 127.7 105.2 90.0 97.3 86.6 99.8 115.0 128.0 117.8 

2000 88.4 210.4 174.9 64.2 124.9 93.9 87.2 82.7 81.6 112.8 123.2 126.0 114.2 

2001 171.0 217.1 147.9 128.2 128.3 108.6 96.8 72.6 79.3 113.6 133.3 128.3 127.1 

 

 




