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Abstract 

Functional diffuse optical tomography (fDOT) of the human brain is an emerging functional 

neuroimaging technology that allows non-invasive imaging of human brain functions by 

injecting near infrared (NIR) light into the human head and taking optical measurements on 

the human scalp. Compared with the ‘gold standard’ in functional neuroimaging, namely 

functional magnetic resonance imaging (fMRI), fDOT has the advantages of cost efficiency, 

portability, and comprehensive haemodynamic imaging capability. However widespread 

acceptance of fDOT in the functional neuroimaging community has so far been hampered by 

as yet insufficient spatial resolution, limited depth penetration, restricted field of view, and a 

lack of reliable and repeatable functional mapping. The aims of this thesis are to enhance 

current understandings and knowledge of fDOT image quality and to improve on its imaging 

performance using a model-based approach. Specifically we have established a 

computationally efficient finite element method (FEM)-based routine to conduct MRI-guided 

fDOT simulation studies. Based on this framework, we have performed the first realistically 

noise-added point spread function (PSF) analysis for the entire field of view (FOV) of a high-

density (HD) imaging system, and have demonstrated that HD-fDOT is capable of imaging 

focal haemodynamic response up to 18 mm depth below the human scalp surface at 10 mm 

image resolution and localisation accuracy, allowing distinguishability of gyri. As an 

extension of this work, we next investigated the effects of uncertainty in the background 

tissue optical property on HD-fDOT image quality, as well as the use of background 

absorption fitting schemes in minimising such effects. Our multi-model comparative study 

has concluded that the use of a homogeneous background absorption fitting scheme in HD-

fDOT can minimise the chances of obtaining sub-optimal image quality due to uncertainty in 

background tissue optical properties. Finally we have addressed and resolved a regularisation 



 

 

problem that can result in increased imaging crosstalk between the recovered parameters in 

spectral fDOT that was previously not understood. Our proposed singular-decomposition-

based (SVD-based) regularisation method has been shown to reduce imaging crosstalk 

observed in both spectral and non-spectral fDOT. 
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CHAPTER 1 

INTRODUCTION 

1. Introduction 

1.1 Functional diffuse optical imaging 

Functional neuroimaging is the imaging of human brain functions. It utilises functional 

neuroimaging technologies to reveal the spatial distribution and connectivity of localised 

brain regions that are functionally distinct or associated with performing specific tasks. Such 

information is important as it not only broadens and deepens our understanding and 

knowledge in cognitive neuroscience and the psychology of healthy humans, but also 

provides useful guidance for the diagnosis, prognosis and treatment of psychological diseases. 

Over the years various types of functional neuroimaging technologies have been developed 

based on different imaging principles and possess their own characteristics. One category 

known as functional diffuse optical imaging (fDOI) utilises near infrared (NIR) light as its 

physical mean of imaging [1] and has some unique advantages over other categories: first, 

fDOI is non-invasive and non-ionising as compared to positron emission tomography (PET), 

which ensures the health and safety of the imaging subjects and is well-suited for continuous 

daily monitoring and imaging; second, fDOI is free from ‘electromagnetic interferences’ such 

as transcranial magnetic stimulation (TMS), metallic implant or artificial pacemaker as in 

electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic 

resonance imaging (fMRI); third, fDOI instruments are generally portable, accessible, highly 

wearable and insensitive to motion artefacts, which offer great flexibility regarding the 



2 

 

subjects’ physical and medical conditions, such as for patients in the intensive care unit (ICU) 

or infants who require sedation; fourth, fDOI allows simultaneous recording of changes in 

both oxygenated haemoglobin (ΔHbO2) and deoxygenated haemoglobin (ΔHbR), providing 

more comprehensive haemodynamic imaging capability than fMRI. Until recently the most 

successful fDOI technique has been functional near infrared spectroscopy (fNIRS), which has 

found widespread applications in cognitive neuroscience and psychiatry studies [2, 3]. 

However at the same time fNIRS is also known for its insufficient lateral resolution and 

limited depth information. The need for the development of a more advanced fDOI 

technology that could provide three-dimensional (3D) tomographic imaging capability at 

improved lateral resolution and localisation accuracy is highly demanding. With decades of 

numerous efforts in instrumentation design, modelling theory and software solution, this 

vision eventually became a reality. The technique is known as functional diffuse optical 

tomography (fDOT), and is the main topic that we are going to focus on in this thesis. 

1.2 Research questions and thesis outline 

Despite having all the inherent advantages of a fDOI technique, plus 3D volumetric (or 

tomographic) image reconstruction capability, widespread acceptance of fDOT in the 

functional neuroimaging community has so far been hampered by as yet insufficient spatial 

resolution, limited depth penetration, restricted field of view, and lack of reliable and 

repeatable functional mapping. Through literature review we have identified the following 

factors that have been well-regarded as the causes of sub-optimal image quality in previous 

fDOT studies: 

 Sparsely arranged optical source and detector probes on the imaging array, resulting in 

limited spatial sampling of the underlying brain tissues [4-6]. 
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 Model mismatch in terms of the spatial distribution and numerical accuracy of tissue 

optical properties, between in vivo head anatomy (‘the ground truth’) and the 

anatomical model used for image reconstruction [6, 7]. 

 Imaging crosstalk between recovered changes in oxygenated haemoglobin (ΔHbO2) 

and deoxygenated haemoglobin (ΔHbR), which is highly dependent on the selection 

of imaging wavelengths [4, 8, 9]. In addition as demonstrated later in Chapter 7, such 

crosstalk can also be introduced by mathematical regularisation performed during 

image reconstruction. 

In regard to the above-mentioned factors, the aim of this thesis is to improve the image quality 

of fDOT by addressing and resolving these issues selectively and collectively. Specifically we 

have proposed the following solutions to achieve this aim: 

 Utilisation of a high-density imaging array, as opposed to sparse imaging arrays, 

providing higher spatial sampling of the underlying brain tissues. 

 Utilisation of MRI-guided head models, as opposed to simplified head models, 

reducing model mismatch in terms of the spatial distribution of tissue optical 

properties between in vivo head anatomy and the anatomical model used for image 

reconstruction.  

 Utilisation of subject-specific head tissue optical properties derived from 

measurements taken from the subject, as opposed to literature published generic 

values, reducing model mismatch in terms of the numerical accuracy of tissue optical 

properties between in vivo head anatomy and the anatomical model used for image 

reconstruction. 



4 

 

 Utilisation of novel regularisation method in spectrally-constrained fDOT image 

reconstruction, reducing imaging crosstalk between the recovered ΔHbO2 and ΔHbR 

images.  

These proposals have been implemented, evaluated and presented in this thesis, which is 

organised as follows:  

Chapter 2 introduces the concepts of human brain function and functional neuroimaging, 

summarises five mainstream functional neuroimaging techniques and their applications in 

cognitive neuroscience and psychiatric studies. 

Chapter 3 focuses on functional diffuse optical imaging (fDOI) and describes its imaging 

principle, system design, imaging mode and the associated image quality analysis.  

Chapter 4 is dedicated to functional diffuse optical tomography (fDOT) with a model-based 

approach. Starting with the establishment of a finite element method (FEM)-based fDOT 

workflow, the chapter then discusses specific modelling issues within the workflow in greater 

detail.  

Chapter 5 presents the first realistically noise-added point-spread-function (PSF) analysis in 

MRI-guided HD-fDOT studies and demonstrates achievable image quality throughout the 

field of view (FOV) of a realistic imaging system.  

Chapter 6 investigates the effects of uncertainty in the background tissue optical properties 

on HD-fDOT image quality, as well as the proposed use of background absorption fitting 

scheme in minimising such effects.  

Chapter 7 describes a novel regularisation scheme that reduces imaging crosstalk between 

ΔHbO2 and ΔHbR images using spectral fDOT image reconstruction.  

Finally we conclude in Chapter 8, followed by Appendices and Bibliography. 
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CHAPTER 2 

FUNCTIONAL NEUROIMAGING 

2. Functional neuroimaging 

2.1 Physiology 

The human brain is an extremely complex information processor. The cerebral cortex contains 

around 15-33 billion information processing units known as the neurons [10]. Neurons are 

electrically active cells that are primarily responsible for human brain functional activities. A 

typical neuron is composed of three parts: a cell body, dendrites and an axon. Neurons can 

create electrical membrane potentials known as the action potentials, which propagate from 

one neuron to another along the axon in the form of electrical impulses. Once the impulse 

arrives at the synapse at the axon terminal, neurotransmitter molecules are released upon 

specific receptor on the dendrite of the postsynaptic neuron. The neurotransmitter-receptor 

interaction causes membrane current flows within the dendrite or cell body of the neuron, 

which then sum up to generate the post-synaptic neuronal action potential for further 

transmission, as shown in Figure 1.  
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Figure 1 Synaptic transmission between neurons via axon [11]. 

It is worth noting that during a synaptic transmission, energy is required to be consumed at or 

around synapses. As the neurons themselves do not contain sufficient energy sources, 

neuronal activation is accompanied by increased regional cerebral blood flow (rCBF) for 

greater local deliver of oxygen and glucose. This phenomenon is known as the ‘neurovascular 

coupling effect’ [12, 13].   

2.2 Functional neuroimaging technology 

From the imaging point of view, the electrical pulse provides a direct and explicit measure of 

the underlying neuronal activities in the human brain, whereas the blood flow offers an 
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indirect and implicit yet effective indication of those activities through neurovascular 

coupling. Based on the type of physiological phenomenon to be measured, two streams of 

functional neuroimaging techniques have been developed, each possessing their own 

characteristics in terms of temporal and spatial resolution. On one hand, direct (or electro-

magnetic) techniques such as electroencephalography (EEG) or magnetoencephalography 

(MEG) allow direct measure of the electrical neural signals induced by neuronal activities in 

real time, offering millisecond imaging temporal resolution. On the other hand, indirect (or 

haemodynamic) techniques such as functional magnetic resonance imaging (fMRI), positron 

emission tomography (PET), and functional diffuse optical imaging (fDOI) detect the much 

slower vascular signals that accompany the neuronal activities (normally 2 to 5 seconds after 

the neuronal signal), but at higher spatial resolution than direct techniques. Interestingly there 

have also been attempts to use fDOI to detect a much faster type of optical signal (10 to 100 

milliseconds after the neuronal signals) known as the ‘fast signals’, which was thought to be 

induced by changes in scattering due to cell conformation and swelling during neuronal 

activities. Unfortunately the topic later became controversial when the magnitude of the signal 

was thought to be too small to be reliably detectable [14, 15]. Here we describe five 

mainstream functional neuroimaging technologies as mentioned previously in greater detail 

and summarise them in Table 1: 

 Electroencephalography (EEG) 

EEG measures excitatory postsynaptic potential (EPSP) caused by extracellular volume 

current. This is measured by multiple electrodes placed on the scalp. Figure 2 illustrates its 

signal basis and a subject wearing a standard EEG imaging cap.  

The advantages: EEG is a non-invasive and non-ionising technique. It offers high temporal 

resolution (at milliseconds) because of its direct measure of the primary electrical neural 
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signals. In addition modern EEG instruments are portable, accessible and affordable (at tens 

of thousands of pounds).  

The disadvantages: The availability of boundary-only measurements means limited depth 

penetration as signal sources located at deeper depth are measured at weaker strength. In 

addition, EEG signal is measured through intervening tissues such as meninges, cerebral 

spinal fluid (CSF) and skull, which possess low conductivity that distorts and affects the 

signal-to-noise ratio (SNR) of the measurement, thereby limiting the spatial resolution of 

scalp EEG to centimetres [16]. One approach to avoid such intervention is to remove the scalp 

and place the electrodes directly on the cortex of the brain, which is a sub-branch of EEG 

known as Electrocorticography (ECoG). However such an invasive procedure is impractical 

for most human subject studies. Furthermore, even if access to quality EEG signals can be 

obtained, it is theoretically possible that several currents produce potentials that cancel each 

other out, which suggests that reconstruction of a unique intracranial current source from a 

given EEG signal is mathematically infeasible [17].  
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Figure 2 (a) Schema of EEG signal basis: both tangentially (grey arrows) and radially 

(yellow arrows) oriented current can be picked up by EEG electrodes placed on the 

scalp; (b) a human subject wearing an EEG imaging cap. EEG signals are detected by 

the electrodes fixed at specified locations on the black imaging cap, and transmitted to 

the EEG machine via EEG leads (red wires) [18]. 

 Magnetoencephalography (MEG)  

MEG records magnetic field produced by intracellular current flowing in the dendrites of 

neurons during synaptic transmission. Figure 3 illustrates its signal basis and a subject sitting 

in an MEG scan. 

The advantages: MEG is also non-invasive and non-ionising, and offers millisecond 

temporal resolution like EEG. Since the magnetic field measured by MEG is not affected by 

the intervening tissues between the measuring probe and the brain, MEG has higher spatial 

resolution (at millimetre) than EEG [16]. 

The disadvantages: MEG signal magnitude is in the order of femtotesla (fT, 10
-15

) as 

compared to the microtesla (µT, 10
-6

) of the earth’s magnetic field. For this reason, modern 

MEG systems are equipped with arrays of highly sensitive superconducting quantum 

interference device (SQUID) magnetometers and must be operated in a magnetically shielded 
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room (MSR), thus making the cost of an entire MEG system setup stands at millions of 

pounds, which in turn constrain its availability and accessibility. Furthermore MEG 

measurement sensitivity decreases even more rapidly with source depth than EEG [16], and 

magnetic fields generated by radially oriented current cannot be picked up by MEG [19], 

which limits its field of view.  

Figure 3 (a) Schema of MEG signal basis: MEG can pick up the magnetic field (red 

ellipse) induced by tangentially (yellow arrows) oriented current, but is insensitive to 

radially (grey arrows) oriented current; (b) a human subject sitting in a MEG system 

located in a MSR [18]. 

 Functional magnetic resonance imaging (fMRI)  

fMRI utilises strong magnetic fields to measure blood magnetic susceptibility. Specifically, 

the imaging subject is placed under a strong static magnetic field generated by a magnet and a 

smaller varying gradient magnetic field generated by a gradient coil. A radiofrequency (RF) 

coil then generates a pulse and detects the resultant resonance frequency signal, as illustrated 

in Figure 4. Since oxygenated haemoglobin (HbO2) is diamagnetic while deoxygenated 

haemoglobin (HbR) is paramagnetic [12], the fMRI signal varies with local blood 

oxygenation level and owns its name as the ‘BOLD (blood oxygen level dependence) signal’. 
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However because the BOLD contrast depends on the combined effect of vascular oxygen 

level and rCBF, it does not provide a direct measure of ΔHbO2 and ΔHbR. While the 

paramagnetic nature of HbR suggests a strong correlation between ΔHbR and BOLD, 

experimental confirmation of this remains controversial as better correlations between BOLD 

and either haemoglobin have been reported (BOLD-ΔHbO2: [20, 21]; BOLD-ΔHbR: [22, 

23]).  

The advantages: fMRI is non-invasive and non-ionising, and is capable of three-dimensional 

tomographic imaging at high spatial resolution (at millimetre resolution) with large field of 

view (good depth penetration throughout the brain). For these reasons, fMRI has been widely 

regarded as the ‘gold standard’ in functional neuroimaging.  

The disadvantages: Being a haemodynamic technique means that fMRI has a compromised 

temporal resolution compared to EEG and MEG, characterised by a typical 2-5 seconds 

‘haemodynamic lag’. An fMRI instrument is also large in terms of both physical scale and 

financial cost, which limits its availability and accessibility. Magnetic interferences such as 

TMS, metallic implants and artificial pacemakers are prohibited during fMRI scans. The 

magnet in the machinery generates loud acoustic noise during operation, which is unsuited for 

subjects who require sedation. The technique is also sensitive to head motions by the imaging 

subject, which can result in significant imaging artefacts that require postprocessing for 

motion correction [12]. 
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Figure 4 (a) Schema of a fMRI scanner. The scanner consists of a magnet, a gradient coil 

and a radiofrequency (RF) coil. The magnet generates a strong static magnetic field. The 

gradient coil generates a smaller varying gradient magnetic field to provide spatial-

encoding. The RF coil generates a pulse and detects the resultant resonance frequency 

signal [12]. 

 Positron emission tomography (PET)  

PET requires a short-lived radioisotope to be injected into the human body to provide 

radioactive labelling of biologically active molecules such as fluorodeoxyglucose (FDG). The 

radioisotope undergoes positron emission decay, in which a positron is emitted. When the 

positron collides with an electron in the body, a process known as annihilation takes place, 

which produces a pair of gamma photons travelling in opposite directions. These photons are 

detected by photomultiplier tubes (PMTs) located around the imaging subject in a ring-shape 

configuration, as shown in Figure 5. Since PET images are most useful when aligned and 

displayed over the underlying anatomy, modern brain scanners often combine PET with MRI 

to build the so-called “PET/MRI” system [24, 25]. 

The advantages: PET provides high spatial resolution (at millimetre). 



13 

 

The disadvantages: PET is invasive and ionising in the sense that external material must be 

injected and ionising radiation is emitted within the human body. In addition, signal 

attenuation occurs when the emitted gamma photons are absorbed by the surrounding tissues 

with unknown absorptions before reaching the detector. The instruments are expensive 

(typically hundreds of thousands of pounds) and even more so when combined with an MRI 

machine. Due to the existence of alternative non-invasive and non-ionising technique such as 

fMRI, approvals for human subject PET studies have become increasingly difficult.   

 

Figure 5 Schema of a PET scanner as modified from [26]. When the positron emitted 

from the injected radioisotope encounters the electron in the brain, annihilation takes 

place (shown in bottom-left figure). The process produces a pair of gamma photons 

travelling in opposite directions, which are captured by the detector ring and recorded 

in the coincidence processing unit to localise the source along the straight line of 

response (LOR, shown in red in upper-left figure) and then reconstruct an image 

(bottom-right).  
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 Functional diffuse optical imaging (fDOI) 

fDOI makes use of the relatively low optical attenuation of human tissue in the near infra red 

(NIR) spectrum between 650 and 950 nm. Specifically photons are injected into the head from 

optical sources such as light-emitting diodes (LEDs) or laser diodes placed on the scalp, and a 

portion of them (known as the exit photons) would be collected by optical detectors such as 

avalanche photodiodes (APDs) or PMTs placed at other locations on the scalp, typically at a 

few centimetres away from the sources. Given that the exit photons have propagated through 

the brain tissues, they are encoded with optical information of the brain, which can be further 

interpreted into physiological and functional information. According to the ‘Handbook of 

Biomedical Optics’ [27], fDOI can be categorised into ‘dynamic’ and ‘static’ regimes. Diffuse 

correlation spectroscopy (DCS) for instance, which measures the dynamic motion of the 

flowing scatters in the brain (in this case the red blood cells, or RBCs) and provides an 

indication of the rCBF, is considered as a ‘dynamic’ method; Functional near-infrared 

spectroscopy (fNIRS) on the other hand, which measures ‘the amount of variations in tissue 

scattering and absorption’ rather than the dynamic scattering motion, and provides an 

indication of the amount of changes in oxygenated and deoxygenated haemoglobin 

concentrations during brain activities, is regarded as a ‘static’ technique. Furthermore 

indocyanine green (ICG) has been used as a standard contrast agent for fDOI signal 

enhancement [28, 29]. It is worth noting that there exists an alternative definition of the words 

‘dynamic’ and ‘static’ in diffuse optics literature. For instance in [30] the phrase ‘dynamic 

imaging’ was used to refer to techniques that measure the differential change in haemoglobin 

concentration between two functional states, and will be referred to as ‘differential imaging’ 

in this thesis; the phrase ‘static imaging’ was used to describe techniques that measure the 

absolute value of haemoglobin concentration, for instance in diffuse optical breast imaging to 
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characterise breast cancer [31], and will be referred to as ‘absolute imaging’ in this thesis. A 

more extensive review on fDOI will be given in the next chapter (Chapter 3).  

The advantages: In comparison with the four above-mentioned neuroimaging techniques, 

fDOI possesses many advantages: first of all, fDOI is non-invasive and non-ionising as 

compared to PET, which ensures the health and safety of the imaging subjects; second, fDOI 

is free from ‘electromagnetic interferences’ such as TMS [32], metallic implant or artificial 

pacemaker as in EEG, MEG and fMRI; third, fDOI instruments are portable, accessible, 

highly wearable and insensitive to motion artefacts, allowing much greater flexibility 

regarding the subjects’ physical and medical conditions, for example for patients in the 

intensive care unit (ICU), or infants who require sedation for the otherwise fMRI scans; 

fourth, fDOI allows simultaneous recording of changes in both oxygenated haemoglobin 

(HbO2) and deoxygenated haemoglobin (HbR), offering more comprehensive haemodynamic 

imaging capability than the ‘gold standard’ fMRI.  

The disadvantages: The diffuse nature of photon propagation in human tissue results in rapid 

degradation of spatial resolution with increasing depth into the brain, constraining the 

penetration depth of fDOI. Specifically the optical measurements provide limited tissue 

sampling at deeper signal locations, which results in the so-called ‘partial volume effect’, 

where the quantified haemoglobin response represents an underestimated (in image contrast) 

and broadened (in image resolution) version of the actual response [4]. In addition, the 

collected optical measurements (or exit photons) contain functional information regarding not 

only the brain but also the intervening tissues such as the scalp and the skull, therefore 

requiring postprocessing signal regression to remove the so-called ‘superficial signals’.   
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Table 1 Comparison of five functional neuroimaging techniques. All haemodynamic 

techniques have a typical 2-5 seconds temporal lag. 

Criteria Electro-magnetic Haemodynamic 

Technique EEG MEG fMRI PET fDOI 

Temporal 

resolution 

 millisecond millisecond second second hundreds of  

millisecond to 

second 

Spatial resolution centimetre millimetre millimetre millimetre milli to 

centimetre 

Invasive & 

Ionising 

No No No Yes No 

Cost scale ~£10,000 ~£1,000,000 ~£1,000,000 ~£100,000 ~£10,000 

Experimental 

flexibility 

Movement 

permitted 

Not 

permitted 

Not 

permitted 

Not 

permitted 

Movement 

permitted 

Signal index Extracellular 

(secondary) 

current 

Magnetic 

field 

generated by 

intracellular 

(primary) 

current 

Blood 

oxygenation 

level 

dependent 

(BOLD) 

Regional 

cerebral 

blood flow 

(rCBF) 

Optical 

absorption of 

haemoglobin / 

rCBF  

Signal purity Affected by 

intervening 

tissues 

Unaffected Unaffected Affected by 

intervening 

tissues 

Affected by 

intervening 

tissues 

  

2.3 Functional neuroimaging application 

The advent of functional neuroimaging technology has revolutionised a number of 

neuroscience disciplines, most notably cognitive neuroscience in healthy human beings, and 

psychiatric research in patients. To demonstrate the widespread applications of functional 

neuroimaging techniques in clinical studies, we herein review a number of selected examples 

from both cognitive neuroscience and psychiatry.  
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2.3.1 Cognitive neuroscience 

Briefly speaking cognitive neuroscience relates cognitive functions to specific regions of the 

brain. The availability of functional neuroimaging techniques has allowed neuroscientists to 

directly visualise regions that are functionally active while the subject is performing certain 

cognitive operations. A number of classic cognitive functions have been established in the 

field of cognitive neuroscience, which have been extensively investigated by various 

functional neuroimaging modalities over the past few decades. Here we review selected 

applications in some of these classic cognitive functions. Note that the phrases ‘fNIRS’, 

‘functional diffuse optical topography’ and ‘fDOT’ as mentioned below are three types of 

imaging mode within fDOI, which will be explained in greater detail in Section 3.3.   

 Vision  

Vision is mainly related to the primary visual cortex (V1), which is located in the occipital 

lobe in the back of the brain. It is found that the human visual cortex consists of four 

quadrants, which map to their respective functional quadrants in a contralaterally reversing 

manner. Retinotopic mapping of the human visual cortex has been extensively conducted in 

early evaluation of PET [33] and fMRI [34, 35], and more recently in fDOT standalone 

validation [36, 37], as shown below in Figure 6, as well as with fMRI [38]. 
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Figure 6 (a) The 4 quadrants which are colour-coded illustrate the 4 possible positions at 

which the visual stimuli can be displayed; (b) The corresponding quadrant activations 

recorded using fDOT [37]. 

 Somatosensory activity  

Somatosensory activity is mainly associated with the primary somatosensory cortex (S1) 

which is located in the lateral post-central gyrus. Its organisation is also well studied by PET 

[39] , fMRI [40], and more recent standalone fDOT validation [41] as reported in Figure 7, as 

well as with fMRI [42]. 
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Figure 7 fMRI activation maps (HbR t-value maps) for finger tapping (pink), 

vibrotactile stimulation of first (blue) and fifth (red) finger respectively, are 

superimposed on the anatomical brain [41]. The t-value provides a measure of the 

significance of the change (or difference) between one set of HbR concentration data 

measured during a baseline state (when no finger tapping or no vibrotactile stimulation 

is performed) and another set of HbR concentration data obtained during an activation 

state (when finger tapping or vibrotactile stimulation is performed). The value is 

calculated using the t-test which takes the standard deviation of each dataset into 

account. The negative t-values shown in the graph indicate negative ΔHbR, or decrease 

in HbR concentration from baseline to activation state.    

 Motor activity  

Motor activity is related to the primary motor cortex (P1) which is located in the pre-central 

gyrus. Simple motor tasks such as finger tapping are often used to stimulate motor activation 

which can be well imaged by fMRI and fNIRS [43] as illustrated in Figure 8, which shows a 

good correspondence of the measured BOLD signal with fNIRS derived data, as well as the 

advantage of quantifying the related changes in total, oxygenated and deoxygenated 

haemoglobins.  
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Figure 8 (a) Experimental setup of the fNIRS probes on the imaging subject; (b) schema 

of the probes (sources and detectors) and the patterns of recovered change in 

chromophore concentrations for each channel; (c) normalised change (averaging across 

all channels) of ΔHbO2, ΔHbR and ΔHbT (=ΔHbO2+ΔHbR) from fNIRS and ΔBOLD 

from fMRI [43]. 

 Resting state functional connectivity (RSFC) 

RSFC is the correlation of haemodynamic activities between distinct regions of the human 

brain at the resting state. PET and fMRI studies have revealed that in absence of overt tasks 

there exists spontaneous low-frequency fluctuation (sLFF<0.08 Hz) in brain activity that are 

correlated across functional related regions [44]. More recent fDOT studies have 

demonstrated the capability of reproducing the RSFC [45, 46]. Figure 9 reveals the spatial 

similarity of the fDOT and fMRI functional connectivity maps for the visual and motor cortex 

seeds [45]. 



21 

 

 

Figure 9 fDOT (upper row) and fMRI (lower row) functional connectivity map: (a) 

using left and right visual cortex seed; (b) using left and right motor cortex seed [45]. 

2.3.2 Psychiatry 

The main role of functional neuroimaging in psychiatry is to characterise the neurobiological 

features of psychiatric disorder at various stages (early to late) for the purpose of diagnosis, 

prognosis and treatment. This has been done by comparing functional neuroimaging data 

collected from healthy and patient subjects during a variety of designated tests or cognitive 

paradigms, such as the verbal fluency test (VFT) where the participants are instructed to say 

as many words as possible within a pre-specified context (a certain category or word starting 

with certain letter). Here we review selected examples of functional neuroimaging application 

in the studies of psychiatric disorder.    

 Schizophrenia  

Schizophrenia is a mental (or psychiatric) disorder characterised by disorganised locomotion, 

speech and emotion. PET, fMRI [47] as well as fNIRS [48, 49] studies have observed task-
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dependent hypo-functionality in the frontal cortex. Figure 10 shows significantly reduced 

frontal activations in schizophrenic patients during a VFT task. 

 

Figure 10 Functional response of healthy controls (left) versus schizophrenic patients 

(right) to a VFT task. The t-value provides a measure of the significance of the change 

(or difference) between one set of HbO2 concentration data measured during a baseline 

state (when the healthy control or patient is performing a control task) and another set 

of HbR concentration data obtained during an activation state (when the healthy control 

or patients is performing the VFT). The negative t-values shown in the frontal cortex of 

the patients as compared to positive t-values of the healthy controls, indicate 

significantly reduced frontal activations in the patients. [49]. 

 Alzheimer’s disease (AD)  

AD is the most common type of dementia. It is a neurodegenerative process of the brain due 

to aging, characterised by reduced activation and cognitive functional losses. Both PET [50] 

(Figure 11) and fMRI [51] reported reduced parietal activity in AD patients, and further 

fNIRS studies [52, 53] confirm reduced task-related ΔHbO2 (increase in HbO2).   
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Figure 11 Hypo-metabolic regions (shown in warm colour) found in patients with 

probable AD as compared to healthy controls. These regions include the bilateral 

posterior cingulated and media parietal cortex, temporal-parietal associated with 

occipital cortex, prefrontal cortex and temporal cortex [50]. 

 Addiction  

Addiction has been thought to relate to hyper activation within the reward system located in 

the ventral striatum. Recent fNIRS studies on alcohol dependent patients [54] observed 

reduced prefrontal activations as compared to healthy subjects (Figure 12), suggesting the 

hyper-activation of the reward system is likely to be based on reduced inhibitory control by 

the prefrontal cortex region [3].  



24 

 

 

Figure 12 Functional response of healthy controls (left) versus alcohol dependent 

patients (right) to a VFT task. The t-value provides a measure of the significance of the 

change (or difference) between one set of HbO2 concentration data measured during a 

baseline state (when the healthy control or patient is performing a control task) and 

another set of HbR concentration data obtained during an activation state (when the 

healthy control or patients is performing the VFT). The positive t-values shown in the 

prefrontal cortex of the patients are less in magnitude than the positive t-values of the 

healthy controls, indicating reduced prefrontal activations in the patients [54]. 

 Repetitive transcranial magnetic stimulation (rTMS) 

TMS is a technique that utilises an electromagnetic coil to stimulate neurons in the human 

brain. Specifically the coil is placed on the human scalp, producing rapidly changing magnetic 

pulses to generate electrical fields that can depolarise the neurons. Most notably it was found 

that such procedure when repeated on a daily basis (known as repetitive TMS or rTMS) on 

the prefrontal cortex can provide treatment for depression, making rTMS a therapeutic tool 

[55, 56]. In order to further evaluate and optimise the treatment procedure, an objective 

measure of the impact of rTMS on the functionality of the brain is required and was recently 

realised using fNIRS [57] and functional diffuse optical topography [32], as demonstrated in 

Figure 13 below.  
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Figure 13 Averaged topographic images at the prefrontal cortex: (a) ΔHbO2 and (b) 

ΔHbR in the ipsilateral hemisphere (with respect to the site of the TMS coil, indicated by 

the pink circles), as well as (c) ΔHbO2 and (d) ΔHbR in the contralateral hemisphere 

[32]. 

2.4 Summary 

This chapter has provided a background introduction for functional neuroimaging and set the 

scene for the rest of the thesis. We started by describing the physiology behind neuronal 

activation, which is fundamentally an electrical transmission process. We then brought in the 

energy perspective of this process, which requires additional energy to be supplied and 

consumed at or near the site of transmission. Physiologically this is achieved by increased 

regional cerebral blood flow (rCBF) that allows greater local delivery of oxygen and glucose 

(as the energy source), and this phenomenon is known as the ‘neurovascular coupling effect’.    



26 

 

By understanding the physiology of neuronal activation, we then described five mainstream 

functional neuroimaging technologies that have been developed by making use of these 

physiological phenomena. After illustrating their respective working principles, we discussed 

the advantages and disadvantages of each technique, and emphasised the strengths of diffuse 

optical imaging (fDOI), notably in non-invasiveness, accessibility and comprehensive 

haemodynamic imaging capability.  

To further demonstrate the usefulness of these functional neuroimaging techniques in the 

study of cognitive neuroscience and psychiatry, we then reviewed selected examples among 

their widespread applications in the monitoring of neuronal activities in both healthy and 

patient subjects, and highlighted the comprehensive haemodynamic imaging capability of 

fDOI, which could provide helpful indications and guidance for the diagnosis, prognosis and 

treatment of mental illnesses. These set the motivation for the continuous and ongoing efforts 

in the development of fDOI techniques, which are to be discussed in the next chapter.  
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CHAPTER 3 

INTRODUCTION TO fDOI 

3. Introduction to fDOI 

3.1 Principle of fDOI 

Functional diffuse optical imaging (fDOI) utilises near infra red (NIR, 650nm to 950nm) light 

to measure physiological changes in the human brain during neuronal activities. In a standard 

experimental setup, an imaging array which contains optical sources (or emitting probes) such 

as LEDs or laser diodes, and optical detectors (or detecting probes) such as APDs or PMTs, 

are placed over and in contact with the human scalp. Any blockage between the probes and 

the scalp by the human hairs should preferably be avoided as they could significantly affect 

the strength of the signal and reduce the signal to noise ratio (SNR) of the measurement. 

During the imaging session, the source probes emit photons into the head while the detecting 

probes measure any photons that exit from the head at the detector locations. The 

measurement is denoted by  , meaning light intensity (or fluence rate). Photon propagation 

in head tissues (and biological tissues in general) is predominantly characterised by two 

physical phenomena: scattering and absorption, as illustrated in Figure 14 (a). The optical 

properties (denoted by  ) that are commonly used in literature to quantify these phenomena 

are the scattering coefficient s  and the absorption coefficient a , which represent the 

average number of scattering and absorption events occurring per unit distance travelled by a 

photon, respectively. Since the injected photons undergo hundreds if not thousands of 

scattering and absorption events before being collected by the detectors, the exit photons are 
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‘encoded’ with information regarding the optical properties of the underlying imaging 

domain. In addition, because the size of an adult head (approximately 8 cm in radius) is most 

likely to be much larger than the source-detector distance (typically no longer than 5 cm [4, 

38]), fDOI measurements are mostly reflectance rather than transmittance (however on a side 

note, transmittance measurement is possible with new born babies [58-60]). This means that 

the overall shape of the optical path of the exit photons is curved backwards like a banana 

[61] as shown in Figure 14 (a), and so is the resultant measurement sensitivity as shown in 

Figure 14 (b-c). The measurement sensitivity has the notation 





, which represents the 

sensitivity of boundary measurement to change in the underlying optical property. It is also 

commonly known as the Jacobian J  [62], which will be discussed in greater detail in Section 

4.3.1.3 later. It is worth noting that the human head consists of various tissue types, which are 

sampled at different proportion by measurements of different source-detector distances: at 

shorter distance, the scalp and the skull contribute the majority of the measurement 

sensitivities, as shown in Figure 14 (b); only at sufficiently long distance does the cortex be 

sampled more substantially, as illustrated in Figure 14 (c). This implies two things in 

practice: first, source-detector distance should not be shorter than (typically) 2 cm in order to 

receive sufficient signal from the brain; and second, measurements at any source-detector 

distance would have signal contamination from the scalp and the skull. In in vivo fDOI 

experiments, two approaches have been commonly taken to attenuate the so-called 

‘superficial signals’ which include respiratory waves and cardiac signals in the scalp and the 

skull among other sources of contamination. The first and most basic approach applies a 

band-pass filter (typically between 0.01 and 0.2Hz) to remove noises that are outside the 

specified bandwidth, such as respiratory wave (>0.2 Hz), cardiac signal (>0.5 Hz) and long-

term drift (<0.01 Hz) [41, 42, 45, 46]; the second and more advanced approach makes use of 
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the short distance measurements like the one shown in Figure 14 (b), which provide a direct 

measure of the superficial signals in the scalp and skull. Thus it has become a standard in vivo 

practice to directly subtract the average of the short distance data (differential measurements) 

from all signal channel data (differential measurements) to accomplish the task of superficial 

signal filtering [37, 38, 45]. There also exist other sources of interference such as head 

motions, and as a result more sophisticated image processing techniques have been developed 

for noise reduction in optical signals. A comprehensive review on this topic can be found in 

[63].  

 

Figure 14 (a) Schema of the optical paths of injected photons illustrating tissue 

absorption (dashed arrow), and scattering (solid arrow) phenomena; (b-c) Measurement 

sensitivities (normalised to 1) of a (b) shorter (1.3 cm) and (c) longer (4 cm) source-

detector pair. The red arrow presents photons enter-in from the source, and the blue 

arrow presents photon exit-out to the detector. 

Depending on the ‘feature’ or the type of physiology information one wishes to extract, fDOI 

can be further categorised into ‘dynamic’ and ‘static’ techniques [27]. ‘Dynamic’ technique, 

such as diffuse correlation spectroscopy (DCS), focuses on measuring the motions of the 

scattering red blood cells (RBCs) in the cerebral blood flow (CBF) by looking at the 

fluctuation (or autocorrelation in mathematical sense) of the measurements [64-66]. ‘Static’ 
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techniques such as functional diffuse optical imaging (fDOI) on the other hand, focus on 

quantifying the amount of differential change in the tissue absorption between two functional 

states, i.e. a ‘baseline state’ and an ‘activation state’, by looking at the amplitude or phase 

changes of the measurements (more of these will be discussed immediately after this in 

Section 3.2.1). For the interest of this thesis we focus on the latter technique which is static 

(or differential) fDOI.  

3.2 System design for fDOI 

3.2.1 Probe type 

Over the years numerous fDOI instruments have been developed. Depending on the principle 

of operation and the type of probe (including both source and detector probe) equipped, these 

systems can be categorised into three types: continuous wave (CW), time domain (TD) and 

frequency domain (FD) [2, 67-69], which are discussed in order below. 

 Continuous wave (CW) system  

In CW systems, the source probes (LEDs or laser diodes) emit monochromatic light of 

constant intensity or modulated at a low frequency (in the order of kilohertz), and the detector 

probes (avalanche photodiodes, also known as APDs) measure transmitted light intensity 

only, Figure 15 (a-b). The idea on which CW systems are based is to extract the optical 

properties of the imaging domain by which the amplitude of light intensity gets attenuated, 

most commonly using the modified Beer-Lambert law to be discussed in Section 3.3.1.   

The advantages: CW system hardware is inexpensive to build, the data collection and 

analysis is relatively straightforward to perform, and yet useful information can be extracted 

from CW data as demonstrated in clinical applications [1]. For these reasons, CW systems 

have been the most widely used and commercialised system type in the fDOI research 
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community. In fact the system we used across our studies as presented later in Chapter 5-7 is 

a CW system [36], which reflects the mainstream approach in the community.   

The disadvantages: First, CW measurement provides poor depth localisation capability due 

to its banana-shaped measurement sensitivity distribution as shown in Figure 14 [70]. The 

ultra-high sensitivity near the source and the scalp surface often result in untruthfully 

reconstruction of a deep target at a more superficial depth, and for instance has led to the 

development of depth compensation algorithm [71]. Second, CW measurement from a single 

wavelength is unable to distinguish between the effects of tissue absorption and scattering 

[72]. This is because an increase in scattering would lengthen the average total path length of 

the exit photons, and lead to a reduction in the boundary intensity which may also appear as 

an increase in absorption. Third, the measured light intensity is highly sensitive to surface 

coupling, which can be affected by the presence of hair, local variation in skin colour and the 

firmness of the contact between the sources and the skin. However in the fDOI applications 

that we are interested in in this thesis, where the differences between two sets of 

measurements recorded at separate time instances are used, such unknown coupling effects 

can be assumed to be cancelled out [67].     

Example systems: CW4-6 (TechEn, USA) [73], DYNOT (NIRx, USA) [74], NIRO-200NX 

(Hamamatsu, Japan) [75], ETG-4000 (Hitachi, Japan) [76], INVOS 5100C (Somanetics, 

USA) [77]. 

 Time domain (TD) system 

TD systems are equipped with pulsed laser source probes that produce light pulses of 

picoseconds in duration, and detector probes (PMTs) that measure the temporal (or full time-

of-flight) distribution of the exit photons, also known as the temporal point spread function 
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(TPSF). The TPSF is a delayed, broadened and attenuated version of the light pulse, and 

normally extends over several nanoseconds, as shown in Figure 15 (c-d).  

The advantages: The lack of depth information in the CW data is resolved in the TD data, 

which contains the flight time of the exit photon that is proportional to the distance and depth 

it has travelled through the imaging medium. It has been shown that the additional temporal 

information available in TD data can result in improved lateral resolution and depth 

localisation as compared to CW data alone [78, 79]. Furthermore, knowledge of the TPSF can 

help discriminate between absorption and scattering effects [80]. Specifically, increasing 

scattering delays and broadens the TPSF, because this would cause the exit photons travel 

further on average. On the other hand, increasing absorption attenuates the signal intensity 

and steepens the trailing edge (i.e. the slope of the TPSF tail in Figure 15 (d)), because 

photons with longer path length are now more likely to be absorbed and never exit the 

boundary [81]. The system can also be used to measure and derive the differential pathlength 

(DP) as required for fNIRS analysis as discussed later in Section 3.3.1 [82].  

The disadvantages: Although recent advances in pulsed laser diode and PMT hardware have 

significantly reduced the cost as well as system complexity of TD systems, they are still 

comparably more expensive than CW and FD systems and require more sophisticated 

analysis. 

Example systems: TRS-20 (Hamamatsu, Japan) [83]. 

 Frequency domain (FD) system  

FD systems produce continuous intensity-modulated and high-frequency (a few hundred 

MHz) light via a laser diode driven by a radio-frequency (RF) oscillator, and measure the 

reduction in modulation amplitude and phase shift of the transmitted signal via APDs, as 
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illustrated in Figure 15 (e-f). The attenuation in amplitude is caused by tissue absorption (as 

in CW measurement), whereas the shift in phase is dependent on the photon pathlength.  

The advantages: FD systems utilise largely the same source and detector probes as CW 

systems (thus two systems are often combined as in [84]), which are less expensive than TD 

systems but still capable of extracting temporal information such as measuring differential 

pathlength [85]. In addition, FD systems are capable of rejecting temporally uncorrelated 

background illumination often presented in clinical environment by the use of lock-in 

amplifiers [67].  

The disadvantages: Although FD and TD measurements can be mutually translated using the 

Fourier (and its inverse) transform, one TD measurement contains information at all 

frequencies whereas one FD measurement contains information at only one frequency. 

Therefore FD measurements have to be taken at several modulation frequencies in order to 

achieve comparable amount of information to an equivalent TD measurement [2].   

Example systems: OxiplexTS (ISS, USA) [86]. 
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Figure 15 Illustration of different waveforms of incident light (from source probe) and 

transmitted light (measured by detector probe) in CW, TD and FD system.  In CW 

system, both (a) incident and (b) transmitted light have constant intensity; in TD system, 

(c) incident light pulse is injected and (d) transmitted temporal point spread function 

(TPSF) is recorded; in FD system, (e) incident amplitude modulated waveform and (f) 

transmitted waveform representing intensity reduction and phase shift from (e) [2]. 

3.2.2 Probe arrangement 

Another aspect of fDOI system design is the arrangement of imaging probes (both sources 

and detectors), which has been found to have significant effect on image quality [5, 6]. The 

arrangement of the probes has been largely related to the number of probes equipped in the 

system, which is dependent on the data acquisition capabilities (memory and speed) of the 

hardware. Over the years continuous technological advancement has allowed the single 

source-detector configuration of the early days to evolve into the sparsely-arranged imaging 

arrays that contain multiple source-detector pairs, and further into the high-density imaging 

arrays that have been popularised in recent years. This evolution also affects the imaging 

mode that can be operated in fDOI studies, from fNIRS to fDOT with increasing 

computational complexity, as discussed next in Section 3.3. Here we review three types of 

probe arrangement that have been frequently mentioned in previous literature.    
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 Square sparse imaging array  

A square sparse imaging array arranges source and detector probes in square patterns where 

each ‘square’ has two sources and detectors facing each other diagonally, Figure 16 (a). This 

geometry has been commonly used in topographic fDOI, including visual pattern study of 

awake infants [87], and visual word recognition study of adults [88]. In these studies, the 

recovered chromophore concentrations are directly displayed or interpolated on the subject’s 

scalp surface, providing spatial information that does not exceed the inter-probe distance, 

which are 2 cm [87] and 3 cm [88]. White et al. [5] further demonstrated that the resolution of 

this array, even at tomographic mode, is almost equal to its inter-probe distance (3 cm).     

 Triangular sparse imaging array  

A triangular sparse imaging array characterises an arrangement where one array of sources 

aligns between two arrays of detectors, Figure 16 (b). This has proven to be one of the most 

widely used configurations in the fDOI community, with typical source-detector distance of 3 

cm, and inter-source (detector) distance ranging from 1.84 to 2.6 cm [4, 5, 32, 43, 46, 89]. 

Again image quality analysis has shown that its resolution does not go beyond the 3 cm 

source-detector distance limit [5].  

 High-density imaging array  

High-density imaging arrays have been utilised more recently than those sparse imaging 

arrays owing to faster and larger data acquisition capability of the imaging system. This 

arrangement effectively stacks multiple triangular sparse imaging arrays at shorter inter-probe 

spacing to create high-density coverage of the underlying region. A major advantage of this 

configuration is the possibility of utilising overlapping measurements that allows a more 

uniform, comprehensive and potentially deeper sampling of the underlying brain tissue. The 
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probe arrangement chosen in our works as presented later in Chapter 5-7 is a high-density 

imaging array consisting of 24 sources and 28 detectors as shown in Figure 16 (c). This array 

has been previously tested in in vivo visual cortical mapping studies [36-38] and evaluated in 

simulation studies [5, 6] in fDOT, and demonstrated a level of image quality that was 

inaccessible with sparse imaging arrays. For systematic management of overlapping 

measurements, the concept of ‘n
th

 nearest neighbour’ has been introduced. Under this 

configuration, the first, second and third nearest neighbour measurements for a given source 

are defined for all detectors as 1.3 cm, 3 cm and 4 cm distances away from it, respectively as 

shown in Figure 16 (d). This gives rise to a total of 84, 128, and 48 first, second and third 

nearest neighbour measurements respectively. 

 

Figure 16 Schematic (sources are red squares, detectors are blue circles) of: (a) square 

sparse imaging array; (b) triangular sparse imaging array; (c) high-density imaging 

array [5]; (d) first to third nearest neighbour measurements defined by source-detector 

distance of 1.3, 3, 4 cm respectively under the configuration in (c). 
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3.3 Imaging mode of fDOI 

As mentioned previously, the phrase ‘functional diffuse optical imaging’ (‘fDOI’) actually 

refers more to an imaging category than a specific imaging technique. In fact the more 

frequently appearing phrases (or words) in the literature are functional near infrared 

spectroscopy (fNIRS), functional diffuse optical topography, and functional diffuse optical 

tomography (fDOT), which we regard as three different imaging modes (and techniques) 

under fDOI. For instance, the first fDOI study which was performed by Jobsis to measure 

blood and tissue oxygenation in a cat brain [90], was conducted in the spectroscopic mode, or 

fNIRS. The more sophisticated topographic and tomographic modes were only realised later 

when more advanced fDOI instruments, powerful computers and enhanced software solutions 

became available. Below we review each of these techniques in greater detail. 

3.3.1 Spectroscopic mode: functional near infrared spectroscopy (fNIRS)  

fNIRS is the simplest of the three modes, which only requires single source-detector probe 

configuration, and returns quantitative numbers regarding the global change of the underlying 

tissue absorption, but no image or spatial information can be revealed. This is based on the so-

called modified Beer-Lambert law of the following form [82, 91]: 

 0log aA DP G
 

    
 

  (1.1) 

which states that the total attenuation A  of incident 0  and transmitted   light is the sum of 

attenuation due to absorption aDP   and due to scattering G . Both 0  and   are light 

intensity (or fluence rate), which can be detected using a CW or FD system. DP  is the 

distance travelled by the light from the emitting source to the receiving detector known as the 

differential pathlength and can be obtained from a TD or FD system. For computational 
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convenience, literature [82] has related DP to the straight-line distance r between the source 

and the detector by publishing the so-called ‘differential pathlength factor’ (DPF), defined as 

/DPF DP r . DPF is wavelength-dependent and values have often been reported at several 

discrete wavelengths in the literature. In general it was found that the neonatal head on 

average has a lower DPF than adult’s, which is attributed to its lower scattering coefficient 

[85].  

In the context of functional neuroimaging, where we are concerned with changes rather than 

absolute values of tissue absorption, we have:  

 aA DP G      (1.2) 

Assuming attenuation due to change in scattering is negligible, i.e. 0G  , we arrive at the 

equation: 

 /a DP A     (1.3) 

Moreover, since the primary interest of functional neuroimaging are changes in 

oxyhaemoglobin (ΔHbO2) and deoxyhaemoglobin (ΔHbR) concentration rather than 

absorption, a further ‘spectral decomposition’ step is required. Although the main absorbing 

chromophores of NIR in tissue are HbO2, HbR, water and lipid (Figure 17), only the 

concentrations of the two haemoglobins are assumed to be variable during neuronal activities, 

or at least are the main contributors of the signal change. Thus the change in absorption is 

expressed as a linear summation of ΔHbO2 and ΔHbR: 

 
2 2( ) ( ) ( )a HbO HbRHbO HbR            (1.4) 

where   is the molar extinction coefficient. Since 
2HbO  and HbR  have distinct molar 

extinction coefficients in the NIR spectrum (Figure 17), measurements at two wavelengths 
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are typically sufficient to recover the changes in the concentration of both chromophores [4]. 

In the case of a dual-wavelength system, Equation (1.4) can be rewritten in matrix form [65]: 

 
2

2

1 11 2 2

2 2 2

( ) ( )( )

( ) ( ) ( )

HbO HbRa

S

a HbO HbR

HbO HbO
M

HbR HbR
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     

        
                  

  (1.5) 

where the matrix SM  is also referred as the ‘spectral prior’ to be discussed later in Section 

4.3.3. Thus the recovery of chromophore concentrations from absorption is a simple matrix 

inversion of  SM : 
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a

HbO
M

HbR

 

 


   
        

  (1.6) 

In fact most existing fDOI systems including those mentioned in Section 3.2.1 are dual-

wavelength systems, for example the CW4 and CW5 (690 and 830 nm) [14, 46, 92], Hitachi 

ETG-4000 (695 and 830 nm) [88], the DYNOT (760 and 830 nm) [41, 46, 93], Hitachi 

Medical NIR OT instrument (780 and 830 nm) [87], as well as the high-density-DOT imaging 

system at Washington University School of Medicine (750 and 850 nm) [36, 37, 45, 94] that 

we are modelling in this thesis.  

In addition it is worth mentioning that all these systems select one wavelength from each (left 

or right hand) side of the intersection point at about 795 nm (blue dot in Figure 17), i.e. one 

wavelength is longer and the other is shorter than 795 nm. This is to ensure the contribution 

from each of the two chromphores (i.e. HbO2 and HbR) to both wavelength measurements is 

as equal (or similar) as possible. Within the concept of wavelength optimisation theory [8], 

such wavelength selection would result in a much smaller condition number of matrix SM  

than if both wavelengths are longer or shorter than 795 nm. 
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The advantage of fNIRS lies in its computational simplicity, i.e. no anatomical model of the 

imaging domain is required while quantitative ΔHbO2 and ΔHbR are obtainable. Although 

such quantification is rather ‘global’ with no spatial information included, it has proven to be 

sufficiently useful in neuroscience research.   

 

Figure 17 Molar extinction coefficient (in mm
-1

/mMole) for oxyhaemoglobin (HbO2), 

deoxyhaemoglobin (HbR), water and lipid in the NIR spectrum [95, 96]. 

3.3.2 Topographic mode: functional diffuse optical topography  

Functional diffuse optical topography is more advanced than fNIRS in the sense that two-

dimensional (2D) projection images are obtained, therefore providing lateral spatial 

information. This mode utilises multiple but non-overlapping measurements to be taken from 

an imaging array such as the ones descried in Figure 16, from which ‘global’ ΔHbO2 and 

ΔHbR values can be computed for each channel using fNIRS (here a channel refers to a 

measurement taken from a specific source-detector pair). For this reason, the topographic 

mode is also known as multichannel-fNIRS [87]. Given the known or approximated position 
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of sources and detectors, and consequently of the channels (the position of a channel is 

normally approximated as the half-way point between the source-detector pair), these global 

values can be spatially interpolated and projected onto a 2D plane that is parallel to the scalp 

surface. However such linear interpolation procedures limit the spatial resolution of diffuse 

optical topography to no better than the nearest source-detector distance, which is typically no 

less than 2 cm. This is because the detector needs to be placed at sufficient distance away 

from the source in order to receive photons that have propagated deep enough to sample the 

brain tissue as already illustrated in Figure 14.   

3.3.3 Tomographic mode: functional diffuse optical tomography (fDOT)  

fDOT is the most advanced imaging mode of fDOI, which utilises more rigorous 

mathematical models to describe light propagation in human tissue than the modified Beer-

Lambert law as expressed by Equation (1.1). It also requires a three-dimensional (3D) 

anatomical model of the underlying imaging domain. There are a number of other modelling 

issues surrounding fDOT which will be covered extensively in the next chapter. In return for  

such computational complexity, fDOT allows 3D volumetric optical and functional data of the 

imaging domain to be recovered at higher lateral and depth resolution than in fNIRS and 

topographic mode. Although there is no minimum requirement for the number of probes or 

probe arrangement, it is always desirable to utilise a high-density probe configuration and 

overlapping measurements to further improve the image quality [5, 97]. In our works as 

presented in Chapter 5-7, the high-density imaging array is used together with the 

tomographic imaging mode to achieve the most optimised image quality possible.  



42 

 

3.4 Image quality analysis of fDOI 

A crucial objective (if not the ultimate goal) for the development of an emerging imaging 

technology is its widespread acceptance and establishment as a reliable imaging tool in the 

clinical research community. To do that, the clinicians or users must acquire sufficient 

knowledge regarding the achievable image quality of the technique in order to make 

judgement on whether images obtained from such technique can reveal clinically meaningful 

information. Image quality analysis therefore plays an important role as it provides both 

qualitative and quantitative information regarding the image quality of the underlying 

technique, and therefore directly helps the clinicians to make the judgement. 

Based on our literature research, image quality analyses of fDOI have been mainly conducted 

in tomographic mode or fDOT. This is understandable since fNIRS does not produce an 

image, and while topographic fDOI does, its 2D topographic image has unquantifiable depth 

accuracy and lateral resolution that is known to be no better than the nearest source-detector 

distance (as discussed in Section 3.3.2). Furthermore since our main interest in this thesis is 

fDOT, our review on image quality analysis in this section has been limited to fDOT studies 

only. From these studies we have summarised previous image quality analyses into two 

categories: experiment-based analysis in which the results are evaluated against images 

obtained from another imaging modality (often the ‘gold standard’ in the field), or simulation-

based analysis in which the results are evaluated against simulated known targets, or the 

‘ground truth’. Here we review selected examples from both categories.   

3.4.1 Experiment-based analysis  

To date, the number of experiment-based image quality analysis studies of fDOT have been 

limited, due to the demanding requirement for a multi-modal imaging system or procedure 
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that allows simultaneous data recording by at least two different imaging modalities (one 

being fDOT) of the same subject in order to make a fair comparative evaluation. Recent 

literature has reflected on fDOT-fMRI as the mainstream dual-modality approach, which 

include studies of human motor [45, 98], somatosensory [42] and visual system [38, 45]. In 

one of our publications on visual cortical mapping [38], we reported an average centre-of-

mass localisation error of 5±1 mm between fDOT and fMRI, which is within the size of a 

gyral ridge. Another study on the somatosensory cortex [42], as shown in Figure 18, 

demonstrated qualitatively similar activation patterns between fDOT and fMRI, and also 

observed less than 10 mm lateral localisation error between the two modalities in seven out of 

ten subjects. These results have demonstrated gyral specificity in fDOT technique, which 

provides sufficient image quality to be useful as a surrogate for fMRI in both clinical and 

basic neuroscience study. The continuous advancement in multi-modal fDOT imaging system 

development should also encourage more frequent experiment-based image quality analysis 

studies of fDOT to be conducted in future. 
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Figure 18 fDOT and fMRI activation map (t-map) of a subject performing 1
st
 finger 

tapping (pink) and 5
th

 finger tapping (blue) [42]. The t-value provides a measure of the 

significance of the change (or difference) between one set of data (HbR data in fDOT, or 

BOLD data in fMRI) measured during a baseline state (when no finger tapping is 

performed) and another dataset obtained during an activation state (when finger 

tapping is performed). The value is calculated using the t-test which takes the standard 

deviation of each dataset into account. The negative t-values shown in the graph indicate 

negative ΔHbR, or decrease in HbR concentration from baseline to activation state. 

3.4.2 Simulation-based analysis  

Simulation-based image quality analysis of fDOT can be further divided into point-based 

analysis and region-based analysis, which have their respective advantages. In the point-based 

approach, a ‘single-pixel’ activation (or perturbation) is simulated and then reconstructed 

within a defined region of interest (ROI), which is often the field of view (FOV) of the 

imaging array, as shown in Figure 19. Since the reconstructed image for a given perturbation 

is also known as the point spread function (PSF) of that perturbation, this analysis has also 

been referred to as the PSF analysis in the literature [5]. The main advantage of the PSF 

analysis is that it allows the theoretical ‘image resolution’, namely the area or volume per 

single pixel, to be quantified and displayed across the entire imaging system FOV, along with 

localisation accuracy, as shown in Figure 20. Specifically in [5], White et al. conducted 

comparative PSF analysis between the sparse and high-density imaging arrays as mentioned 
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in Section 3.2.2, and demonstrated dramatic improvement in image quality. Quantitatively 

speaking there is a five-fold improvement in localisation accuracy, where localisation error 

reduced from 5.3±2.0 mm (square sparse) and 5.3±2.0 mm (triangular sparse) to 1.0±0.9 mm 

(high density), and two-fold improvement in lateral resolution, where FVHM reduced from 

21.6±4.6 mm (square sparse) and 20.9±4.3 mm (triangular sparse) to 12.1±1.4 mm (high 

density) [5]. Nevertheless this study has several limitations: the PSF analysis was performed 

on a simplified head geometry of spherical shape where the FOV was a smooth 2D plane 

representing a simplified version of the cortical surface. In addition, the data used for image 

reconstruction were noise-free. Therefore in order to provide more realistic image quality 

evaluation, we have extended the PSF analysis to anatomically more accurate subject-specific 

head geometries with a realistic level of noise added to the data, to be presented in Chapter 5 

and 6.  

 

Figure 19 A simulated target point activation (perturbation) and its reconstructed point 

spread function using the sparse and high-density image arrays as mentioned in Section 

3.2.2, displayed on a 2D topographic plane within a defined field of view (FOV) [5]. 
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Figure 20 Top row: schema (source as red square, detector as blue circle) of the three 

different probe arrangements as previously discussed in Section 3.2.2 (left to right): 

square sparse imaging array, triangular sparse imaging array and high-density imaging 

array; middle row: full-width half max (FVHM) map on the FOV of the three imaging 

arrays, where FWHM is a metric to measure lateral resolution; bottom row: localisation 

error map on the FOV of the three imaging arrays, where localisation error is a metric 

to measure localisation accuracy [5]. 

The region-based approach on the other hand, serves as an intermediary approach between in 

silico PSF analysis and in vivo experiment-based approach. In this case, regional activations 

are simulated in order to mimic neuronal activation patterns observed in in vivo experiments. 

Consequently the reconstructed images are also expected to be similar to those obtained from 

in vivo experiments, but have the additional advantage of knowing the exact ‘ground truth’, 

namely the simulated regional activations. This allows not only the quantification of 

localisation accuracy and image resolution, but also imaging contrast [6, 7, 70]. For instance, 
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the results shown in Figure 21 as presented by Heiskala et al. quantified a localisation error of 

2.7 mm and peak contrast of 64% for the activation on the left, and a localisation error of 2.2 

mm and peak contrast of 73.3% for the activation on the right, demonstrating good 

localisation accuracy at slightly compromised imaging contrast [6]. However there are also 

limitations associated with this approach. First of all it can be difficult to simulate regional 

activations that are rightly justifiable as ‘similar to actual activations observed at in vivo 

experiments’, especially on realistically segmented head models. This is because the brain 

activations to be imaged (at least within fDOI applications) only occur at the grey matter (or 

cerebral cortex), which is the outermost sheet of the brain that has a thin, complex and layered  

geometry, as shown later in Figure 29-30 in Chapter 5. The ‘blobs’ as presented in Figure 

21 however are spheres of 4.3 mm in radius and the existence of such activations in in vivo 

studies can be arguable. Moreover, this would add further difficulty if one seeks to extend the 

region-based approach across the entire system FOV as in the point-based approach. Thus 

region-based image quality analyses are often presented with limited cases and scenarios for 

‘proof of concept’ rather than provide a comprehensive description of image quality across 

the entire FOV. In Chapter 7 where we present our novel regularisation technique, we have 

taken the region-based approach for our ‘proof of concept’ analysis.  
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Figure 21 A pair of simulated spherical activations (left column) of 4.3 mm in radius and 

17.3 mm (centre-to-centre distance) apart with a =8×10
-3

 mm
-1

 and their fDOT 

reconstructed images (right column) [7].
 

3.5 Summary 

In comparison with Chapter 2 where we reviewed functional neuroimaging in a general and 

broad context, this chapter has provided a focused background review on optics-based 

neuroimaging techniques, namely functional diffuse optical imaging (fDOI). We started by 

describing the working principle of fDOI, which involves injecting photons into the human 

head, and measuring exit photons that are encoded with optical and functional information 

regarding the brain. Because photon propagation in head tissues is predominantly 

characterised by the physical phenomena of scattering and absorption, the primary parameters 

of optical properties are the scattering coefficient s  and the absorption coefficient a . We 

next reviewed fDOI instrumentation in terms of probe type and arrangement, and highlighted 

the cost-efficiency and wide-commercialisation of CW systems as well as the improved 

sampling coverage of the high-density imaging array. Building from these, we introduced 
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three different imaging modes of fDOI in the order of increasingly instrumental and 

computational complexity, namely spectroscopic mode (fNIRS), topographic mode 

(functional diffuse optical topography), and tomographic mode (fDOT). While in 

multichannel-fNIRS or topographic mode, 2D projection images with limited lateral spatial 

and unquantifiable depth information can be achieved with the use of modified Beer-Lambert 

law and linear interpolation, we highlighted the capability of reconstructing three-dimensional 

(3D) volumetric images with improved lateral resolution and depth localisation when 

operating in the tomographic mode. All of these have provided the justification for the 

approach we are taking in our work, namely utilising a high-density, CW imaging system and 

performing tomographic image reconstruction, as presented later in Chapter 5-7. However 

before we reach there, the workflow of fDOT needs to be introduced and comprehensively 

explained, as detailed in the next chapter.  
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CHAPTER 4 

MODELLING IN fDOT 

4. Modelling in fDOT 

4.1 Workflow of fDOT 

In the previous chapter we have reviewed the principles behind fNIRS and functional diffuse 

optical topography, which suffered from limited image resolution and non-quantified depth 

information. This chapter focuses on a more advanced fDOI mode or technique known as 

functional diffuse optical tomography (fDOT), which allows three-dimensional (3D) 

volumetric images to be reconstructed at improved image resolution and depth localisation, 

owing to the utilisation of more complex modelling theories and tools. To help illustrate 

various modelling issues arising at different stages of a standard fDOT workflow and 

understanding their relationship to each other, a block diagram that describes the fDOT 

modelling workflow is drawn below in Figure 22. A feature of this diagram is that each 

modelling issue to be discussed in a later section in this chapter is represented by a block in 

the workflow with the corresponding section number enclosed, thereby providing a more 

organised overview to the reader. As shown in Figure 22, these blocks can be grouped into 

three larger (red) blocks, namely ‘experiment’, ‘forward problem’ and ‘inverse problem’. As 

we have covered the ‘experiment’ part in the last chapter, this chapter focuses on the ‘forward 

and inverse problem’. It is also worth mentioning that this schema should be applicable to any 

imaging problems in general, which can be described as follows: Given a set of measurements 

y taken during an experiment from an imaging domain of properties x, the forward problem 
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derives y from x via a forward operator f in the form of ( )y f x , and the inverse problem 

recovers the properties x from measurements y in the form of 1( )x f y  [99]. From the 

modelling perspective, there are three types of models involved in the forward problem, 

namely the mathematical forward model, the anatomical model, and the computational model 

that implements the forward problem. These are discussed in order in Section 4.2. With 

regard to the inverse problem, there are also three models that we would like to discuss within 

the scope of this thesis, namely the mathematical inverse problem, and inclusions of structural 

prior and spectral prior, to be described in Section 4.3.  

 

Figure 22 The fDOT modelling workflow. 
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4.2 The forward problem 

4.2.1 The mathematical model 

In the previous chapter we have seen the use of the modified Beer-Lambert law in fNIRS as 

well as in topographic mode, which is a relatively simple and fast mathematical model for 

functional diffuse optical imaging but results in limited image resolution and non-quantified 

depth information. In this section we introduce two more complex mathematical forward 

models that have been used to recover 3D volumetric images in tomographic mode, namely 

the radiative transfer equation (RTE), and a more computationally efficient approximation 

(first spherical harmonic expansion) of the RTE known as the diffuse approximation (DA) at 

the expense of the requirement for certain assumptions. 

4.2.1.1 Radiative transfer equation 

The radiative transfer equation (RTE) is a mathematical model to describe the conservation of 

energy at a position r  in direction se  at time t in the medium  [62]:  
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where ( , , )sL r t e  is the energy radiance at position r  in direction se  at time t; c is the speed of 

light in the medium; s  and a  are the scattering and absorption coefficients respectively as 

introduced in the previous chapter; ( , )s sf e e   is the single scattering phase function which 

describes the probability density of a photon scattering from direction se   into direction se ; 

( , , )sq r t e  is the light source. The first term represents change of energy radiance with time, 

the second term represents change of radiance due to energy flow, the third term represents 
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radiance loss due to absorption and scattering, the fourth term represents radiance gain due to 

scattering from direction se   into direction se , and the final term represents radiance due to a 

source. Note that these terms are also wavelength dependent and the equation here assumes 

monochromatic light at a given wavelength. This is a conservation equation which describes 

the loss of radiance due to absorption and scattering, and its gain due to scattering and the 

source. Although the RTE does not model wave effects, it is generally sufficient for 

modelling light propagation in the context of diffuse optical imaging, where the wavelength 

of NIR light (650nm to 950nm) is much smaller than the imaging object.  

4.2.1.2 Diffusion approximation 

Solving the RTE is computationally expensive and not favorable for numerical modelling. 

The standard approach to simplify the RTE is to express ( , , )sL r t e  in its first spherical 

harmonics P1 approximation. Specifically: 
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where ( , )r t  is the fluence rate (or photon density), and ( , )J r t  is the flux (or photon 

current), in the following forms: 
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Similarly the P1 approximation for ( , , )sq r t e  is: 
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where ( , )oq r t  is an isotropic source of photons, and 1( , )q r t  is a linearly anisotropic source. 
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Substituting Equation (1.8) and (1.11) into (1.7): 
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Integrating Equation (1.12) over se  arrives at the continuity equation:  
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Multiplying Equation (1.12) by se  and integrating over se  gives another equation: 
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where g is average cosine of the scattering angle. (1 )s sg     is also referred to as the 

reduced scattering coefficient. Assuming an isotropic source: 

 1( , ) 0q r t    (1.15) 

And also: 
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Letting: 
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where D is also known as the diffusion coefficient, we have Fick’s law: 

 ( , ) ( , )J r t D r t     (1.18) 

Substituting Equation (1.18) into (1.13) arrives at the diffuse approximation (DA) equation:  
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Numerical and experimental results [100, 101] have demonstrated the validity of the DA 

under the condition that s a   , which limits its application to highly scattering mediums 

only, such as most human tissues. However in the application of functional neuroimaging 

there exists a 2-4 mm [102] thin non-scattering or low scattering layer known as the cerebral 

spinal fluid (CSF), which occupies the region between the skull and grey matter. While earlier 

literature proposed more complex hybrid models such as the hybrid radiosity-DA model [103, 

104] and hybrid RTE-DA [105] model to deal with the presence of such local and non-

scattering region in a largely high-scattering domain, more recent simulations [106, 107] and 

experimental studies [38] explored the idea of setting the CSF s   to any value between zero 

and the inverse of the CSF layer thickness ( CSF1/thickness = 0.3 mm
-1

 approximately)
 
under 

the DA model. Their results suggested that such an approach, although possibly not sound in 

principle, could provide a sufficiently accurate approximation for fDOT applications.   

4.2.2 The anatomical model 

Another aspect of modelling in the fDOT forward problem is the anatomical model of the 

underlying imaging domain, i.e. the human head. Such model incorporates the spatial 

distribution of different anatomical regions that are characterised by their distinctive optical 

properties  . This in turn affects the spatial distribution of the measurement sensitivity, 

denoted by 





, which is also known as the Jacobian J. Since the Jacobian J is used directly 

for image reconstruction as discussed later in Section 4.3, the accuracy of the anatomical 

model therefore has a direct impact on the image quality of the reconstructed fDOT images. 

Furthermore knowing the anatomical information would allow the incorporation of additional 
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constraint (known as structural prior, see Section 4.3.2) in solving the inverse problem, which 

has been shown to improve the accuracy of the solution [70]. In the early days of fDOT the 

lack of subject-specific anatomical data as well as modelling software solution limited the 

anatomical models used in most studies to simply-shaped and homogenous geometries. But in 

recent years the increasing accessibility of anatomical data such as CT and MRI, as well as 

the rapid development of anatomical modelling software solutions have allowed more 

complex anatomical modelling approaches to be taken. Here we review some of the most 

commonly used anatomical models in the literature.    

 Slab model 

When the true surface geometry of the human head is unknown, a common approximation is 

to assume a slab geometry. This assumption becomes even more valid when the region of 

imaging interest is relatively small as compared to the size of the head, which is similar to the 

analogy that the earth may be assumed to be flat at a small regional level. Because the slab 

geometry is relatively straightforward to generate while also allowing sophisticated 

description regarding its internal structure (Figure 23), it has proven to be suitable and very 

popular in proof-of-concept evaluation of fDOT versus back projection [97], TD-fDOT versus 

CW-fDOT [78] and validation of the depth compensation algorithm (DCA) [108], as well as 

in preliminary investigations on the effect of internal refractive index [109] and the presence 

of the CSF layer in fDOT [110].  
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Figure 23 Schema designs of four slab models for adult head. (a) smoothly three-layered 

model; (b) smoothly four-layered model (added CSF layer); (c) more realistic white 

matter layer than (b); (d) more realistic grey matter layer than (c) [110]. 

 Spherical model 

The lack of accounting for the curvature of the human head in the slab model approach has 

led to the use of another basic but more realistic head modelling geometry, which is the 

sphere (or hemisphere). The radius of the sphere should be specified such that its surface 

contour provides a close fit to the human head that it attempts to model, as illustrated in 

Figure 24 (a-b), and may vary between subjects [111]. Furthermore, a brain region and an 

outer intervening tissue layer can be specified as in Figure 24 (c) [5]. This geometry is 

considered to be much more realistic than the slab approach and it has indeed produced 

encouraging results in the tomographic mode [5, 36, 37, 45]. However without knowing the 

true head anatomy of the subject, these fDOT results are still crude estimations of the 

functional maps of the human visual cortex, and do not provide a like-for-like comparison 

with fMRI data.  
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Figure 24 (a) A realistic human head model, and (b) a sphere that provides a good 

approximation of (a) [111]; (c) cross section of a hemispherical head model (8 cm in 

radius) illustrating a two-layer internal structure: an inner brain region (yellow, 7 cm in 

radius) surrounded by an outer skin/skull layer red, 1 cm thick) [5]. 

 Realistically-segmented model 

Simple geometries as mentioned above provide an easy-to-implement yet crude 

approximation of the actual head anatomy. The use of realistically-segmented head models 

would not only improve the reconstructed image quality by contributing to a more accurately 

described forward model of light propagation in the subject, but also allow reconstructed 

functional data to be overlaid (or co-registered) on the actual geometry as in fMRI, providing 

like-for-like comparison with the gold standard. However to improve on the level of 

anatomical details at subject-specific level inevitably requires a significant amount of extra 

information and resources. Fortunately in recent years, with the increasing availability of 

subject-specific anatomical data such as CT and MRI, as well as the rapid development of 

efficient anatomical modelling software solutions (for tissue segmentation and mesh 

generation), the construction of realistically-segmented subject-specific head models that 

incorporate sub-millimetre-scale anatomical details has become a reality. Besides it is worth 

mentioning a parallel effort that has been working on the so-called atlas-based approach, 
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which makes use of realistically-segmented generic atlases (head anatomies) in subject-

specific studies with appropriate deformations. The atlas could be a standard (averaged) 

anatomy such as the Collins head dataset [112] or the Chinese visible human dataset [113]), 

or even just another subject-specific anatomy. To improve the subject-specificity of the atlas, 

surface-based (or landmark-based) co-registrations (or deformations) of the atlas are often 

used, where the landmarks can be measured on the head of the subject at the scene [7, 89]. 

The merit offered by this approach is that when the anatomical data of the imaging subject is 

unavailable, the deformed atlas could still provide a ‘second-to-best approximation’ of the 

actual anatomy. Nevertheless regardless whether a subject-specific or atlas-based approach is 

used, there are two procedures that are always required for the construction of a realistically 

segmented head model, namely tissue segmentation and mesh generation, which are discussed 

below.  

4.2.2.1 Tissue segmentation 

Tissue segmentation is the task of clustering pixels that belong to the same tissue type on the 

anatomical images. The clustered pixels of each tissue type are often highlighted with a 

unique colour (or grey scale intensity) for distinction. The level of difficulty for tissue 

segmentation is highly dependent on the number of tissue types required to be segmented out, 

as well as the number and types of anatomical data set available for use. At present the 

mainstream approach in fDOT studies is five-tissue-segmentation, namely the scalp, skull, 

CSF, grey matter and white matter, which is generally thought to be sufficient, although more 

types should always help to improve the accuracy of the model in principle [114]. In terms of 

the type of the anatomical data needed, T1-MRI has become the minimum requirement to 

perform head tissue segmentation. However T1-MRI provides high contrast between the 

scalp, grey matter and white matter but almost no contrast between the skull and CSF [115]. 
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Possible solutions include co-registering the T1-MRI dataset with a secondary anatomical 

modality, such as CT which provides high contrast for the skull, Figure 25 [116], or with T2-

MRI which provides distinctive contrast for the CSF [38], as shown later in Figure 29 . 

 

Figure 25 Left: CT image of human head with yellow mask representing the skull; 

Right: Five-tissue-segmented image from T1-MRI co-registered with CT [116]. 

However in the absence of additional imaging modalities, contrast-based (or threshold-based) 

segmentations are generally not sufficient and more sophisticated methods are required. The 

most widely used approach is known as statistical atlas-based segmentation, which utilises 

another pre-segmented head atlas anatomy to provide a statistical estimation for the spatial 

distributions of the underlying tissue types that are indistinguishable contrast-wise. A number 

of MRI-based neuroimaging software packages have incorporated this segmentation 

functionality, such as FreeSurfer (MGH, USA) [117] and SPM (UCL, UK) [118]. A brief 

tutorial on statistical atlas-based segmentation using SPM is described in Appendix A.  
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4.2.2.2 Mesh generation 

First of all it is worth noting that the mesh generation procedure as discussed in this section 

has been particularly relevant to one type of computational models named the finite element 

method (or FEM, as described later in Section 4.2.3.3). In the FEM, a finite element mesh 

that consists of a finite number of non-overlapping and small elements is required. For 3D 

realistic head models, the elements should be volumetric, i.e. three-dimensional, and the 

tetrahedron is regarded as the standard geometry element (although other geometries are also 

common). This means that each element contains 4 nodes (or vertices), and the surface of the 

mesh is represented by triangles. There exist a number of commercial mesh generation 

software packages such as Mimics (Materialise, Belgium) and Simpleware (Simpleware, UK), 

as well as open-source software such as Nirfast [119] and iso2mesh [120]. A major challenge 

in FEM-based fDOT studies is to generate these finite elements in a way that could 

adequately reflect the heterogeneity as well as the complex internal and external geometries of 

the human head. The procedure can sometimes be extremely computationally expensive, and 

there are in general two approaches for mesh generation, as described below. 

 Surface-based mesh generation  

This approach consists of two steps: surface mesh extraction and volumetric mesh generation. 

First of all, the surface mesh (consisting of triangles) of each tissue type must be specified, 

which describes the boundary between different tissue regions. The volumetric (tetrahedral) 

elements are then generated by ‘growing’ upon these surface triangles to fill the volumes in-

between the boundaries. This means that the quality of the volumetric element is highly 

dependent on the quality of the surface element. A major computational burden in this 

procedure is the refinement of the white and grey matter surface meshes due to their complex 

and micro-millimetre-scale structures [116]. For instance the automatic mesh quality 
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optimisation tools in Mimics [121] are often found to be insufficient to provide a workable 

mesh, and additional manual or semi-automatic correction is required, which further increases 

the complexity and human subjectivity of the task. A common solution in earlier studies has 

been to apply smoothing operations on the brain surface, which inevitably introduces 

anatomical modelling error [122, 123]. Figure 26 shows an example where a work-around 

approach was taken in the Collins head: the grey matter surface in Figure 26 (c) appears 

smoother than it should be, and is actually a 1-2 pixel expansion of the segmented grey matter 

surface. This is to prevent mesh creation failure caused by the so-called triple-surface (of the 

CSF, grey matter, white matter surfaces) intersection problem, which happens when the 

classified CSF, grey matter and white matter pixels appear to be inter-connected with each 

other (often at a local site) on the segmented image. In standard human brain anatomy, since 

the grey matter is the outermost layer of the brain, the white matter should not be directly 

exposed to the CSF. Therefore such scenario is often considered to be the result of 

segmentation errors.   
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Figure 26 Surface of (a) scalp; (b) CSF; (c) grey matter; (d) white matter of the ‘Collins 

head’ [112] generated by Fang [124]. 

 Non-surface-based mesh generation  

This approach consists of two steps: volumetric mesh generation and region labelling. In this 

case, volumetric tetrahedral elements are first generated by growing inwards upon the 

triangular surface mesh of the scalp, regardless of the internal heterogeneity of other tissue 

types. The 3D finite element head model is then co-registered with the segmented head 

anatomy, and each node or element within the model is assigned to a unique tissue type based 

on a ‘look up’ on the segmented anatomy. This procedure effectively eliminates the 

computational burden for the refinement of high quality surface meshes for each tissue while 

maintaining the capability of describing heterogeneity within the head model. Although such 

description may not be as accurate as the surface-based approach, especially when the mesh 
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resolution is low, it was found that a mesh resolution of 1-2 mm was sufficient for fDOT 

studies [38]. Furthermore this procedure can be fully automatic without hand corrections. 

Brief tutorials on non-surface-based mesh generation using Mimics and Nirfast are given in 

Appendix B.  

4.2.3 The computational model 

The role of the computational model is to implement the mathematical forward model on the 

anatomical model, so as to provide a model-specific description of photon propagation in the 

underlying imaging subject. In general there are three types of computational modelling 

approaches to be taken, namely analytical modelling, statistical (or stochastic) modelling, and 

deterministic modelling. For the scope of this thesis we review one selected example from 

each approach as described below.  

4.2.3.1 Analytical model: Green's function 

Green’s function can be used as a numerical as well as analytical tool to solve partial 

differential equations (PDE) such as the RTE and DA, which involves a source condition: the 

solution is Green’s function when the source is a dirac delta function. Since the pulsed laser 

source equipped in time-domain (TD) systems provides a sufficient approximation to the 

dirac delta function, the application of Green’s function is therefore valid in this case [99]. 

The solution for any other types of sources could then be computed using convolution. While 

analytical solutions for the RTE as well as heterogeneous and irregularly shaped geometries 

remain scarce, solutions that use the Green’s function to solve the DA for homogeneous and 

simple geometries such as slab, cylinder and sphere geometry have been published [125], and 

are often chosen as the benchmarks to validate statistical and deterministic models [126-128].  
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4.2.3.2 Statistical model: Monte Carlo method 

The Monte Carlo (MC) method is the most well-known and widely used statistical model in 

fDOI literature, and has been generally regarded as the ‘gold standard’ for the validations of 

other computational methods in heterogeneous and irregularly shaped geometries. In MC 

simulation, an individual photon is injected into the region of interest and its trajectory is 

modelled and recorded until it escapes from the object or is absorbed. This process is repeated 

until the required counting statistics are obtained, which allows the probability density 

function of photon propagation to be estimated. This method tolerates heterogeneity and 

flexible shape for the medium and allows reasonably low level of statistical error when 

executed in a controlled manner. A Monte Carlo code for planar multi-layered tissue (known 

as the ‘MCML’) was developed by Wang et al. [128]. Later Boas et al. released a more 

advanced code (known as ‘tMCimg’) that deals with arbitrary boundaries and spatial variation 

in the optical properties of the imaging medium, including applications to the human head 

[127]. More recently the MC approach has been used in the investigations of anatomical atlas-

based fDOT for both in silico [7] and in vivo studies [89]. Although historically MC was 

known for its high computational time and cost, recent advancement in parallel computing 

[129] as well as mesh-based MC (‘MMCM’) [124] have dramatically reduced the 

computational burden it once posed. For instance, Fang [124] reported that it takes MMCM 

40 minutes to simulate 3×10
7
 photons for a time-window of 0-3 nanosecond on a head mesh 

that consists of 69,865 nodes and 425,224 elements using 4 CPU cores.  

4.2.3.3 Deterministic model: Finite element method 

The finite element method (FEM) is a numerical technique for the solution of partial 

differential equations (PDE) such as the RTE and DA, and is the most commonly used 

deterministic model in the diffuse optical imaging literature. In principle, FEM discretises the 
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original continuous imaging domain into a finite number of non-overlapping and small 

elements based on some basis functions, with the most commonly used one being the 

simplest, namely piecewise linear basis function. The problem can then be described in matrix 

form and solved using matrix algebra. Similar to Monte Carlo, FEM is also capable of dealing 

with heterogeneity in arbitrary geometries, at higher speed but compromised solution 

accuracy. Arridge et al. [126] introduced the application of FEM in solving the forward 

problem using the DA, and demonstrated good agreement with both analytical and MC 

model, especially when the mesh resolution is high. Since then several FEM package have 

been developed, including Nirfast [119] and TOAST [126, 130]. It is worth noting that we 

have selected FEM as our choice of computational model and used the Nirfast package to 

compute our forward models for our work to be presented later in Chapter 5-7. The Nirfast 

package has also been used in numerous diffuse optical imaging studies including prostate 

[131], breast [132-134], and brain function imaging [5, 36, 37, 45, 94, 123].  

4.3 The inverse problem 

As seen from the DA, Equation (1.19), the relationship between the measurement of absolute 

light intensity (or fluence rate)   and the optical property   is nonlinear. However, in the 

application of fDOT where we are concerned with relatively small differential changes in both 

fluence rate   and optical property  , the problem can assumed to be linear [62]. In this 

section, we first review the nonlinear optimisation method [31] that is commonly used to 

reconstruct   from   in traditional nonlinear (or absolute) DOT inverse problems, and then 

its linearised version [5, 37, 45, 123] that recovers   from   in the linear (or differential) 

fDOT inverse problem.    
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4.3.1 The mathematical model 

4.3.1.1 The Levenberg-Marquardt nonlinear optimisation 

The problem of recovering optical property   from measured fluence rate   is not linear 

and can be solved using nonlinear optimisation method. An optimisation problem is to search 

for the ‘most appropriate’ solution out of all possible answers. The ‘appropriateness’ is called 

the objective function, and ‘all possible answers’ define the feasible space of the solutions. In 

the context of nonlinear optimisation, the objective of the nonlinear image reconstruction 

problem is to search (or recover) for   such that the difference between measured (observed) 

fluence rate M  at the tissue surface, and the calculated data C  from the forward solver, is 

minimised. Thus the objective function is given by:  

  
2

2

1

NM
M C

i i

i

min





 
   

 
   (1.20) 

One way to derive the solution is called the Tikhonov approach, where an additional penalty 

term is added to the objective function in Equation (1.20):  

    
2 2
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1 1

( ) ( )
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M C

i i j j

i j

min


   
 

 
     

 
    (1.21) 

where   is a damping factor that tends to minimise the difference between the current and 

the initial estimate of optical properties,   and 0 , thereby reducing the oscillations during 

convergence. Since minimisation of   with respect to   means that its first derivative equals 

to zero, we want to find   such that:  

 0








  (1.22) 

From Newton’s method, we have the iterative update equation: 
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  (1.23) 

Calculating the first and second derivative of Equation (1.21): 

   02 2 ( )
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Substituting Equation (1.24) and (1.25) into (1.23): 
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  (1.26) 

The contribution of the second derivative term  2

T
C

M C



 
  

 
 is considered small and 

therefore discarded: 
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  (1.27) 

Assuming 1 0i i         : 
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  (1.28) 

Using standard terminology Jacobian 
C

J






: 

  2T TJ J J       (1.29) 
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Letting 2  , we arrive at the familiar form of the Levenberg-Marquardt (LM) method:  

  
1

T TJ J I J  


     (1.30) 

Or equivalently: 

  
1

T TJ JJ I  


     (1.31) 

where I is the identity matrix, and   is chosen to be arbitrarily large at the first iteration to 

stabilise potential oscillations due to poor initial estimate 0 , and will either decrease 

iteratively along with the objective function   to accelerate convergence, or increase 

iteratively along with   to further reduce oscillations. 

4.3.1.2 Tikhonov linear inverse  

The nonlinear problem as describe above can be linearised if   and   is small, which is 

assumed to be the case in the application of functional diffuse optical tomography (fDOT). 

Therefore by letting    ,     and replacing   with the Tikhonov regularisation 

parameter 2

 , we arrive at the linearised Tikhonov version of Equation (1.31) for single-

wavelength   [135]: 

 2 1( )T TJ J J I             (1.32) 

The role of Tikhonov regularisation parameter 2

  will be discussed in detail in Section 

4.3.1.4. 

4.3.1.3 The Jacobian 

From Equation (1.32) it can be seen that solving the inverse problem requires the 

computation of the Jacobian 
C

J






, or measurement sensitivity, which has the dimension 

of NM (number of measurements) by NN (number of nodes), and represents the sensitivity of 
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measurements to changes in the underlying optical properties. In general there are three ways 

of calculating the Jacobian J. The first is the perturbation method, in which separate sets of 

measurements   are calculated before and after a perturbation   occurs in the imaging 

domain in order to derive 
C






, and to do so for each of the NN total number of nodes in the 

FEM mesh requires (NN+1) number of forward calculations (given CW measurement and 

absorption a  only); the second is the direct method, which involves the differentiation of the 

DA, or Equation (1.19) with respect to a , and again to do for the entire mesh would result 

NN number of forward calculations; the third and quickest is the adjoint method [136], which 

makes use of the reciprocity theorem that states that the measurement of the flux at location x 

that is due to a source at location y is equivalent to the measurement of the fluence rate at 

location y that is attributed to a source at location x. This allows only (NS+ND) number of 

forward calculations to be computed in order to derive the Jacobian, where NS and ND stand 

for the number of sources and detectors respectively [62]. 

Given the imaging application that we are mostly concerned with in this thesis, namely 

intensity-only measurements, absorption-only reconstruction problem, and finite element 

modelling, the Jacobian (or measurement sensitivity) at single wavelength   has the 

following matrix form: 
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where i

j






 defines the change in amplitude of the i

th
 measurement among NM measurements 

arising from a small change in  (  represents a  from this point onwards) at the j
th

 node 

among NN nodes in the mesh. Equation (1.33) is also known as the Born approximation 

form, as compared to the Rytov approximation of the following form: 
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  (1.34) 

Literature suggested the use of logarithmic intensity ln( )  as in the Rytov form allows for a 

larger dynamic range of measurements and was found to provide considerable improvement 

in imaging performance as compared to the use of absolute intensity   as in Born form [137-

139]. For this reason, the Rytov form has been used throughout our studies as presented later 

in Chapter 5-7. 

4.3.1.4 Ill-condition and regularisation methods 

As mentioned previously, in nonlinear optimisation problems the damping parameter   in 

Equation (1.31) is utilised to reduce the oscillations during convergence. Similarly in linear 

problems (such as fDOT), the Tikhonov regularisation parameter 2

  is used to stabilise the 

Jacobian matrix inversion by reducing the condition number of the problem. The inverse 

problem (Equation (1.32)) is said to be ill-conditioned if the solution   is not stable, i.e. a 

small error in   would propagate to or result in a large error in  , suggesting that the 

reconstructed images are extremely sensitive to noise in the measurements. The scale of such 



72 

 

error propagation can be characterised by the singular value decomposition (SVD) of the 

Jacobian matrix J  which yields a triplet of matrices: 

 ( ) , 1: ( )T T

iJ USV Udiag V i rank J      (1.35) 

Where U and V are orthonormal matrices containing the singular vectors of J , and S is a 

diagonal matrix that contains the singular values of J , i.e. i . The ratio of the maximum and 

minimum (also the first and last) singular values, denoted by 1

( )rank J




 and also known as the 

condition number  , provides an indication of error propagation from   to  . The 

higher the condition number is, the more severe the error propagation, and the inverse 

problem is said to be more ill-conditioned. 

As shown in Equation (1.32), the Tikhonov regularisation parameter 2

  is added to the 

TJ J   term. If we apply SVD on TJ J  , we have: 

 2( )T T T T TJ J USV USV US U      (1.36) 

After Tikhonov regularisation is applied, the relationship becomes: 

 2 2 2 2 2[ ]T T T TJ J I US U U IU U S I U             (1.37) 

From Equation (1.36) and (1.37), effectively by adding 2I  to the TJ J   term, the singular 

values of J  change from i  to 
2 2

i   . Consequently the condition number of J  

reduces from 1

( )rank J




 to

2 2

1

2 2

( )rank J





 

 




, thus the inverse solution   becomes more stable 

and the reconstructed images are more robust against noise in the measurements.  
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A similar technique to improve the ill-condition-ness of the problem is the SVD based 

truncation method [140]. This method reduces the condition number of J  by setting all i  

below a predetermined threshold to zero. An illustrative example of the effect of Tikhonov 

regularisation and SVD based truncation on the singular value spectra of the original matrix 

are shown below in Figure 27.  

 

Figure 27 Singular value spectra of an example Jacobian matrix of size 256 (number of 

measurements) by 1,087,223 (number of nodes), showing the original matrix (green), its 

Tikhonov regularised version (red), and SVD truncated version (blue) respectively. The 

rank of the original matrix is 256, which is the same as the number of measurements, 

meaning each of the 256 measurements carries some unique information regarding the 

imaging domain.   

Although the use of Tikhonov regularisation parameter 2

  improves the robustness of the 

recovered images against measurement noise, on the other hand it has been shown that the 
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value of 2

  is inversely proportional to the reconstructed image resolution, i.e. higher 2

  

yields lower resolution and vice versa [141]. Therefore the selections of 2

  require a good 

balance between image resolution and image sensitivity to noise, which have shown to be 

empirically determined and application-dependent in in vivo literature [5, 142-144].  

4.3.1.5 Back projection method 

In addition to the Tikhonov linear inverse, a back projection method has also been mentioned 

in previous fDOT literature [4, 97], with the following reconstruction equation: 

 ( )TJ C      (1.38) 

where C is a diagonal matrix that performs column normalisation on J. In this case the inverse 

of J has been approximated by ( )TJ C , namely 1 ( )TJ J C  , which is valid if J is an 

orthogonal matrix. This means that J  or J C  needs to be a square matrix whose columns 

and rows are orthogonal unit vectors. However under current fDOT applications, first, the 

number of measurements are far less than the number of nodes, and second, all measurement 

sets are unlikely to be orthogonal to each other. Therefore J is not an orthogonal matrix, and 

this method was found to only serve as a fast solution to provide qualitative images [145], as 

compared to the more accurate Tikhonov linear inverse which offers better image quality 

[98].  

4.3.2 Structural prior 

The utilisation of structural priors in fDOT was first described by Boas [70]. The idea is that 

based on the internal structural information regarding the distribution of different tissues in 

the head, one can constrain the image reconstruction problem to a smaller region of interest, 

i.e. the cortex (or grey matter), where functional activations are expected to be recovered but 
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not in elsewhere. This not only imposes a meaningful constraint to the inverse problem that 

could potentially lead to more accurate solution, but also simplifies the problem by reducing 

its computational complexity. Specifically the sensitivity matrix J  is ‘segmented’ into two 

parts: cortexJ  which contains the sensitivity values of all the nodes in the cortex (grey matter), 

and noncortexJ  which includes the sensitivities of all the nodes in the rest of the head mesh 

(white matter, CSF, skull and scalp). By using cortexJ  instead of J  in the image 

reconstruction step as expressed by Equation (1.32), the image recovery problem is 

effectively constrained to the cortex (or grey matter), therefore this is also known as 

‘cortically constrained’ image reconstruction. It is worth noting that the application of such a 

constraint is only applicable when the sources of the signal are known to be located within the 

constrained region, i.e. the cortex. However as we discussed in Chapter 3, the raw boundary 

measurements would always contain superficial noises from various sources of 

contamination, therefore the importance of noise filtering and the integrity (or purity) of the 

signal becomes even more critical in this type of application. In addition, the utilisation of a 

‘cortical constraint’ requires accurate tissue segmentation as well as mesh representation of 

the white matter, which is highly dependent on segmentation and mesh generation methods. 

In Chapter 5-7 we present a ‘whole brain constraint’ that allows for more tolerance of tissue 

segmentation error, and evaluate its image performance on realistic subject-specific head 

geometries.  
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Figure 28 Coronal slice of (a) a simulated cortical activation and its fDOT reconstructed 

image (b) without and (c) with cortical constraint [70].    

4.3.3 Spectral prior 

The spectrally constrained image reconstruction method was first described by Corlu et al. in 

nonlinear (or absolute) DOT [8, 146], and later extended to linear (or differential) DOT [142]. 

Prior to their works, DOT image reconstruction was performed in ‘non-spectral’ mode which 

consists of two steps: the first step is expressed by Equation (1.32), which is the recovery of 

absorptions from measurements; the second step is expressed by Equation (1.6), which 

recovers chromophore concentrations from absorptions. Spectrally constrained image 

reconstruction is simply to incorporate or merge the ‘spectral prior’, or SM  in Equation (1.5) 

into the wavelength dependent Jacobian in Equation (1.32) to form a ‘multi-spectral 

Jacobian’ matrix SJ  of the following form: 
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  (1.39) 

By doing so, the forward problem can be described as: 
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  (1.40) 

and the spectral image reconstruction using conventional Tikhonov regularisation becomes: 
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where 2

S  is the spectral Tikhonov regularisation parameter. Here it is worth noting that the 

weight of regularisation is directly associated with image resolution [141]. Previous works 

have found that 2

S  (in Equation (1.41)) must be smaller than 2

  (in Equation (1.32)) in 

order to achieve equivalent image resolution between non-spectral and spectral methods 

[143]. The spectral method allows a direct mapping between changes in measurements and 

changes in chromophore concentrations, bypassing the absorption-based transition step in the 

non-spectral method. Furthermore, measurements at multiple wavelengths are utilised 

simultaneously and absorption coefficients are correlated across these wavelengths within the 

image reconstruction. However, as our work in Chapter 7 later points out, the regularisation 

technique utilised here regularises not only the underlying wavelength dependent Jacobian 

matrices J  but also the spectral prior information SM  (Equation (1.5)) incorporated within 

the spectral Jacobian matrix SJ , which results in numerical error in the form of crosstalk on 

the reconstructed images. In Chapter 7 we present a singular value decomposition based 

regularisation method for spectral fDOT that dramatically reduces such crosstalk effect.  

4.4 Summary 

In Chapter 3 we reviewed functional diffuse optical imaging (fDOI), which includes three 

operating modes: spectroscopic mode (fNIRS), topographic mode, and tomographic mode 

(fDOT). In this chapter we have further constrained our scope of literature review into 

functional diffuse optical tomography (fDOT) only. We started by establishing the entire 

workflow of fDOT (Figure 22), specifying various modelling issues arising throughout the 
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workflow, and grouping them into the forward problem and the inverse problem, which were 

then discussed separately in Section 3.2 and 3.3.    

The forward problem can be further broken down into the mathematical model, anatomical 

model and computational model. We first described the two most well known mathematical 

models for fDOT, which are the radiative transfer equation (RTE) and its first spherical 

expansion known as the diffusion approximation (DA). We highlighted the advantage of the 

DA as being its computational simplicity over the RTE at the cost of certain assumptions, 

most notably that s a   , but reassured its validity in the application of fDOT of human 

brain, which mostly deals with highly scattering human tissues. For the exceptional non-

scattering or low scattering cerebrospinal fluid (CSF) which occupies the void region between 

the skull and grey matter, we have reviewed literature that supports the use of DA with a 
s   

lower than 0.3 mm
-1

 as sufficient approximation for in vivo fDOT studies.  

Next we moved into the anatomical model and reviewed its historical trend of utilising 

increasingly complex and realistic head models owing to the greater accessibility of subject-

specific anatomical data such as CT and MRI, as well as the rapid development of efficient 

anatomical modelling software solutions. We described two current approaches in building 

realistically-segmented head models, namely subject-specific and atlas-based approaches, and 

also two major challenges to build such models, namely tissue segmentation and mesh 

generation, in greater detail.   

Building from these, we discussed the last model in the forward problem, which is the 

computational model that implements the mathematical model on the anatomical model. We 

described three of the most cited models in fDOT literature, namely the analytical approach 

using Green's function, the statistical approach using Monte Carlo simulation, and the 
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deterministic approach using Finite Element Modelling. We highlighted the advantages of 

FEM in geometry flexibility as well as computational efficiency, which also justified our use 

of Nirfast (a FEM package) for our studies to be discussed in Chapter 5-7.     

After explaining the forward problem, we moved into the second part of the workflow, which 

is the inverse problem. We started by describing the mathematical aspect of the model, which 

is fundamentally a nonlinear optimisation problem, and derived the Levenberg-Marquardt 

(LM) equation (Equation (1.30) or (1.31)) as the solution. Then, given the application of 

fDOT where we are interested in relatively small changes of fluence rate   and optical 

property  , the LM equation can be linearised and we arrived at the Tikhonov linear inverse 

equation, Equation (1.32), which is the standard inverse equation appearing in most fDOT 

literature. Building from this, we further discussed the inclusion of structural and spectral 

prior in the inverse problem through additional manipulations of Equation (1.32).   

This chapter should have provided sufficient background knowledge and mathematical 

foundation for the reader to understand the entire fDOT workflow, upon which our work to be 

presented in the next three chapters have been built.   
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CHAPTER 5 

POINT-SPREAD-FUNCTION ANALYSIS 

FOR MRI-GUIDED HD-fDOT 

5. Point-spread-function analysis for MRI-guided HD-fDOT 

5.1 Introduction 

As introduced in Chapter 3, a recent advancement in fDOT system design is the development 

of high-density (HD) imaging arrays, also known as HD-fDOT. This configuration 

encourages the utilisation of overlapping measurements, which improves the spatial sampling 

of brain tissue. Initial efficacy of HD-fDOT has been demonstrated through in vivo studies 

including retinotopic mapping of adult human visual cortex [36, 94], somatotopic mapping of 

the sensor motor cortex [41], resting-state mapping of functional connectivity [45], and phase-

encoded retinotopic mapping [37]. In these studies HD-fDOT images have shown a level of 

detail that was previously inaccessible via sparsely arranged imaging arrays [5, 6]. On another 

front following the trend in diffuse optical tomography of breast cancer imaging [62, 147], 

more recent fDOT studies of the human brain have taken an MRI-guided approach in which a  

realistically-segmented subject-specific head model is constructed [70]. The realistic 

representation of the anatomical model provides not only the external and internal structure 

necessary for an accurate description of light propagation within the imaging subject, but also 

the possibility of incorporating anatomically derived spatial constraints into the image 

reconstruction algorithm [70]. Literature review has shown that the performance of HD-fDOT 
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was evaluated by Dehghani et al. [123] and Heiskala et al. [7] with anatomically realistic head 

models. However both studies only considered a limited number of simulated focal 

activations and neither provided a quantitative evaluation of the point-spread-function (PSF) 

analysis throughout a defined field of view (FOV), as conducted by Boas et al. [97] and White 

et al. [5] whom themselves were limited to simplified head models and noise-free analysis. In 

this work, we provide a realistic-noise-added PSF analysis of HD-fDOT on six anatomically 

realistic head models derived from their corresponding MRI datasets, with and without an 

anatomically based ‘whole brain’ spatial constraint for image recovery. Specifically the PSF 

analysis is performed throughout the visual cortex within a specified region of interest (ROI), 

corresponding to the total FOV of an experimental HD-fDOT system for the visual cortex 

[36].  

5.2 Method 

5.2.1 Dataset 

For this study we use the anatomical MRI datasets from five healthy adults (Subject 1-5, aged 

21-30). For each subject, T1-weighted MPRAGE (echo time (TE) = 3.13 ms, repetition time 

(TR) = 2400 ms, flip angle = 8°, 1 × 1 × 1 mm isotropic voxels, 176 slices) and T2-weighted 

(TE = 84 ms, flip angle = 120°, 1 × 1 × 4 mm voxels, 32 slices) scans are collected on a 

Siemens Trio (Erlagen, Germany) 3T scanner. For simplicity we refer them as T1 and T2 in 

the rest of this thesis. The scan session is approved by the Human Research Protection Office 

at Washington University School of Medicine [38].  

5.2.2 Head tissue segmentation 

An in-house automated algorithm is developed to perform five-tissue-segmentation, namely 

the scalp, skull, CSF, grey matter and white matter. The algorithm performs a series of 
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iterative thresholding, region grow, and masking operations that rely on the high contrast 

specificity of the scalp, grey matter and white matter on the T1 dataset and the CSF on the T2 

dataset, as shown in Figure 29. The algorithm outputs 176 segmented slices (same as the 

number of T1 slices) of the head for each subject in .bmp format. An observation we made on 

these auto-segmented results is the false-negative errors of the CSF accompanied by the true-

negative of the grey matter, i.e. regions that belong to the CSF are classified as the grey 

matter, as shown in Figure 30 (a-b). This is potentially due to the lower resolution of the T2 

than the T1, which are used for CSF segmentation. Therefore in a separate case, we hand-

corrected the auto-segmented results from Subject 1 for a more accurate modelling of the 

CSF, Figure 30 (c). Consequently we have obtained six segmented datasets from five sets of 

subject-specific MRIs.    

 

Figure 29 Sagittal (left column), axial (middle column) and coronal (right column) slice 

of T1 (upper row), T2 (lower row) scan and auto-segmented anatomy of Subject 1. 
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Figure 30  An example showing an axial slice of Subject 1: (a) original grey-scale MRI; 

(b) auto-segmented and (c) ‘auto-segmented + hand-corrected’ anatomy showing colour-

coded: white matter (red), grey matter (yellow), CSF (green), skull (cyan) and scalp 

(blue). Note the expanded region of CSF (green) and reduced area of grey matter 

(yellow) in (c) as compared to (b).  

5.2.3 Head mesh generation 

Two different mesh generation software packages have been used for head mesh generation. 

While both packages implement the non-surface-based mesh generation as described in 

Section 4.2.2.2, Mimics [121] produces voxel-based (cube-based) tetrahedral elements of 

uniform size and shape (each voxel or cube consists of six tetrahedral elements), whereas 

Nirfast [119] generates non-uniform tetrahedral elements that satisfy a specified shape quality 

(e.g. minimum facet angle of 25 degrees). Tutorials for both software packages are given in 

Appendix B. Affected by the different availabilities of our mesh generation and tissue 

segmentation tools during the course of the study, we have used Mimics to perform mesh 

generation on the hand-corrected dataset of Subject 1 and named it ‘Subject 1a’, and used 

Nirfast for the other five auto-segmented datasets and named them ‘Subject 1b’ to ‘5b’ 

respectively. We have imposed the same 1-mm-mesh-resolution constraint (as part of the 
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mesh generation parameter settings) when using both software packages in order to ensure the 

size of the tetrahedral element generated by them are comparable. Since our imaging region of 

interest is the visual cortex located at the back of the brain, we crop the anterior part of head 

and only use the posterior part for mesh generation. Table 2 summarises the number of nodes 

and elements as well as total volume contained in each of the six subject head meshes. Once 

the volumetric mesh generation is completed, both software packages then perform region 

labelling based on a ‘look up’ of the segmented anatomy, which turn the homogeneous model 

into five-region, heterogeneous finite element mesh that provides realistic description of 

tissue distribution in the human head.   

 

Figure 31 Percentage of each tissue type in the segmented head mesh across six subjects. 

The decreased percentage in grey matter and increased percentage in CSF between 

Subject 1a and 1b are in good agreement with our observations made in Figure 30.  
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Table 2  Mesh information for each of the six subject meshes. 

Subject  Number of nodes Number element Total volume (cm
3
) 

1a 1,087,223 6,289,566 1047.7 

1b 684,367 4,075,648 946.5 

2b 661,025 3,932,397 913.3 

3b 675,530 4,019,166 933.0 

4b 657,131 3,910,566 908.1 

5b 647,954 3,863,967 894.7 

 

On a side note, it would also be interesting to consider ‘Subject 1a’ (Figure 30 (c)) as an 

‘aged version’ of ‘Subject 1b’ (Figure 30 (b)). This is because earlier studies have reported a 

strong positive correlation between the human age and the corresponding CSF thickness, 

revealing that aged human brains are characterised by expanded layer of the CSF due to brain 

shrinkage [102].  

5.2.4 Optical description 

Tissue optical properties assigned to the head model were values estimated at 750 nm (Table 

3), which is one of the primary wavelengths used in our current system [5] and can be adapted 

to other wavelengths. These values were estimated by applying a linear line-fitting scheme on 

values published at other available wavelengths [106, 148, 149].  

Table 3 Tissue optical properties used for 750 nm. 

Tissue 
a  (mm

-1
) / s   (mm

-1
) 

Scalp 0.0170 / 0.74 

Skull 0.0116 / 0.94 

CSF 0.004 / 0.3 

Grey Matter 0.0180 / 0.8359 

White Matter 0.0167 / 1.1908 
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5.2.5 Probe arrangement 

The high-density (HD) imaging array used for the data simulation consists of 24 sources and 

28 detectors, which has been previously described in Section 3.2.2. The HD imaging array is 

modelled on the scalp surface over the visual cortex, and a region of interest (ROI) is defined 

as the volume up to 40 mm under the posterior FOV of the HD imaging array, as shown in 

Figure 32. The posterior FOV has been selected to focus on the visual cortex region under the 

array with the highest sensitivities and lowest image artefacts [5]. In this study all 

measurements detected within 4 cm from each source, i.e. first, second, and third nearest 

neighbours are taken, which give rise to a total of 260 independent measurements. It is 

assumed that only intensity data (as available from a CW system) measured at 750 nm are 

used to provide maps of optical absorption related changes only.  

 

Figure 32 (a) Posterior and (b) lateral schematic view showing the placement of the 

high-density imaging array over the visual cortex of Subject 1a with 24 sources (red 

squares) and 28 detectors (blue circles). 

5.2.6 Forward light modelling 

Forward modelling of light propagation within the head model is performed using Nirfast 

[119] which is a modelling and image reconstruction toolbox based on the Diffusion 

Approximation. Nirfast is used to generate the wavelength dependent Jacobian matrix J  in 

its Rytov approximation form as presented by Equation (1.34) in Section 4.3.1.3. It takes 
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approximately 28 minutes on average to generate the Jacobian matrix for one head mesh 

across all six subject models on a quad-core CPU, which is still much faster than the 40 

minutes time that took MMCM [124] to simulate 3×10
7
 photons for a time-window of 0-3 

nanosecond on a coarser head mesh that consists of 69,865 nodes and 425,224 elements (~one 

tenth of the number of nodes and elements of our meshes) using 4 CPU cores, as mentioned in 

Section 4.2.3.2.   

5.2.7 Image reconstruction 

Image reconstruction is performed based on the Tikhonov inverse formula described by 

Equation (1.32) in Section 4.3.1.2. However instead of using the original J , we have 

applied additional spatial regularisation to regularise the hyper sensitivities often observed in 

regions near the probes [70, 114], allowing a more homogenous spatial distribution of the 

measurement sensitivity. The spatially-regularised J , denoted by J , has the following 

form: 

 
(max( ( )))T T

J
J

J J diag J J




   



  (1.42) 

where   is the spatial regularisation factor. The optimal values chosen in this work are 

=10
-2

×the maximum singular value of J , and  =10
-2

, which are found to provide a good 

balance between image resolution and robustness to measurement noise in our previous 

human [5] and animal [144] fDOT studies.  

Furthermore we also include a scenario where structural prior is applied in image 

reconstruction. Here we apply a ‘whole brain constraint’ bJ  which limits the image recovery 

to both grey and white matter, allowing more degrees of freedom than the ‘cortical constraint’ 

cortexJ  as described in Section 4.3.2. A key issue with the cortical constraint is that it requires 
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accurate subject-specific grey matter segmentation. In comparison, the whole brain constraint 

as applied in this work should in principle be more robust with respect to tissue segmentation 

inaccuracy, most notably false-negative errors of the grey matter.  

5.2.8 Total spatially-regularised sensitivity 

The total spatially-regularised sensitivity totalJ  (for either J  or bJ ) is calculated as the sum 

of the spatially-regularised sensitivity over all measurement pairs at each node within the 

model. This is effectively the sum of the elements in each column of the spatially-regularised 

sensitivity matrix J : 

 
,

1

NM
total

j i j

i

J J


   (1.43) 

where total

jJ  is the total spatially-regularised sensitivity at node j,  and 
,i jJ  is the spatially-

regularised sensitivity at node j due to source-detector pair measurement i for a total number 

of NM measurements. This provides a measure of the system’s sensitivity profile throughout 

the imaging domain.  

5.2.9 Point-spread-functional analysis 

The image quality of HD-fDOT is evaluated by performing point-spread-function (PSF) 

analysis at each grey matter (visual cortex) nodes within the ROI as defined in Figure 32. The 

simulated absorptive perturbation,  , is assumed to come from a small (a single node) focal 

haemodynamic visual response located within the visual cortex. The magnitude of the 

perturbation is determined such that a perturbation at 10 mm below the scalp would give a 

maximum ln( )   of ~0.05 (or 5%), which was observed in the acquired measurements in in 

vivo studies [36]. This magnitude is kept constant for all perturbations, therefore ln( )   

reduces accordingly as the perturbation locates at deeper depths. For each simulated focal 
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activation, the equation ln( )( )noiseless J      is used to compute the noiseless 

differential measurements. In line with our current in vivo performance, 0.1%, 0.14% and 1% 

Gaussian random noise is added to first, second and third nearest neighbours to provide 

realistic-noise-added differential measurements, ln( )  . Specifically our noise model 

consists of two components: first, a constant noise floor, 1n , due to detector hardware (also 

known as the ‘dark noise’), which are modelled as 0.001%, 0.1% and 1% of the first, second 

and third nearest neighbour measurement intensity   respectively based on our in vivo data 

[36]. The reason that such constant noise floor is accounted in ascending percentage of the 

first to third nearest neighbours, is because the measured absolute intensity   decreases as 

the source-detector distance increases; second, there is another 0.1% signal level dependent 

noise (the ‘shot noise’), 2n , which is empirically determined from our in vivo data. Since the 

sources of these two noise components are independent, they are added in quadrature, i.e. 

2 2

1 2totaln n n  , to provide the total noise level. It can be seen that the shot noise is the 

dominant source of noise in the first nearest neighbour measurements, but the dark noise takes 

over gradually as source-detector increases. In order to mimic our current data collection 

strategy (whereby data is collected from each patient at a sampling rate of 10 Hz and then 

appropriately block averaged), ten sets of noise added data are generated for each perturbation 

activation. These are then appropriately block averaged and images are reconstructed with and 

without the application of whole brain constraint to produce the final point spread function 

images. 

5.2.10 Metrics of image quality 

Consider an example perturbation target and two reconstructed activations as shown in 

Figure 33. It is clearly evident that in Case A, whereby a single activation has been recovered 
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using full head reconstruction, the use of localisation error (displacement between actual and 

recovered peak value) is an intuitive and common image quality metric. Additionally for Case 

A, the use of full volume half maximum (FVHM) is an appropriate evaluation of the spread 

(size) of the recovered activation. There exists however scenarios, such as demonstrated in 

Case B, whereby multiple activations are reconstructed instead of the expected single 

activation, using whole brain constrained reconstruction. As such the use of localisation error 

and FVHM alone is not straightforward because it is not clear which recovered activation 

should be used for accurate analysis. To this end, we will next define and clearly state the 

specific image quality metrics utilised in this work, which aims to minimise the uncertainty 

due to multiple recovered activations. 

 

Figure 33 An example of a ‘target’ focal activation on the cortical surface and two 

examples of reconstructed activations: Case A where a single activation is recovered 

using full head reconstruction, and Case B where multiple activations are recovered 

using whole brain constrained reconstruction.  

Following from above, three metrics are utilised to provide a quantitative measure of the 

imaging performance. First the localised full volume half maximum (LVHM) is defined as the 
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single volume enclosing the peak-response node in the PSF as well as other contiguous nodes 

having a value above half of the peak response. In case A of Figure 33, this would correspond 

to the FVHM of the single recovered activation, whereas in Case B, it corresponds to the 

single volume that contains the peak-response node. Second, the localisation error is defined 

as the Euclidian difference between the peak-response node in the LVHM (which is 

considered as the PSF) and the target node: 

 localisation error = 2 2 2

arg arg arg( ) ( ) ( )peak t et peak t et peak t etx x y y z z       (1.44) 

where (x, y, z) represents the nodal coordinate in the standard x-y-z 3D coordinate system. By 

such definitions it is assumed that the LVHM reveals useful localisation information about the 

actual target, which may not be valid when multi-regional artefacts are reconstructed due to 

low sensitivity and/or poor signal to noise ratio (SNR). Since the presence of imaging 

artefacts could affect the integrity of the localisation error and LVHM as quantified above, we 

introduce the third metric named ‘focality’, given by: 

 
LVHM

focality=
FVHM

  (1.45) 

where full volume half maximum (FVHM) is defined as the total (sum) volume enclosing all 

nodes having a value above half of the maximum reconstructed response. The ‘focality’ 

metric serves for two purposes: one is to reflect on the level of integrity of the corresponding 

localisation error and FVHM, and the other is to reflect on the SNR and the effect of noise on 

the image quality. While 1 indicates a single-regional PSF, a focality value above 0.5 

describes a reconstructed activation well separated from the background artefacts, assuring a 

good level of integrity in the corresponding localisation error and LVHM and also reflecting a 

signal-dominating-over-noise situation; inversely a focality value below 0.5 suggesting a 

noise-dominating-over-signal scenario. As in Case A of Figure 33, the focality value is 
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clearly equal to 1, whereas in Case B, it would correspond to a value of less than 1. It is also 

important to note that the 0.5 minimum focality tolerance may not be directly applicable for 

the whole brain constrained PSF, since in cases where the focal activation lies within a fold of 

the visual cortex, the recovered activation using the whole brain constraint may be ‘split’ 

across this fold, thereby decreasing the calculated ‘focality’ metric (see Y in Figure 40 

(Brain) for an example). Since a reasonable objective within the field of functional 

neuroimaging is 10 mm resolution, we set the maximum tolerance for localisation error at 10 

mm, and 1000 mm
3
 for LVHM [5]. 

5.3 Results 

5.3.1 Total spatially-regularised sensitivity 

Figure 34 shows the spatial distribution of the total spatially-regularised sensitivity (from 

Equation (1.42) and (1.43)) of Subject 1a of the full head (left column ‘Head’) and of the 

whole brain constraint (right column ‘Brain’) at three different axial slices with different 

positions relative to sources and detectors. Since the spatial distribution of sensitivity is highly 

dependent on the probe placements, variations are expected between the slices when utilising 

sparsely arranged imaging arrays. In Figure 34 however the three sensitivity distributions 

within the same column show similar spatial coverage owing to the high spatial sampling of 

tissue by a large number of overlapping measurements and the spatial regularisation scheme 

applied in Equation (1.42). Without using the whole brain constraint, the regions with larger 

than 50% sensitivity (indicated by warm colour in Figure 34) reside mainly within the scalp, 

skull and CSF, which is a distribution not ideally suitable for imaging visual cortex 

activations that take place in the grey matter. While the gyri are also well covered by high 

sensitivity, sulcal folds show a significant decrease in sensitivity. 
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On the other hand the use of the whole brain constraint produces a more gradual decay of 

sensitivity in the brain region as depth increases. The sensitivity profile throughout the grey 

matter is more uniform with the whole brain constraint, potentially indicating a better 

recovery of focal activations within the visual cortex both in the sulcal folds and gyri. These 

observations are also consistent in Subject 1b-5b. 

 

Figure 34 Total spatially regularised sensitivity (normalised to 1) 
total

headJ  (left column) and 

total

brainJ  (right column) of Subject 1a are shown at three axial MR slice (1,2 and 3) with 

different positions relative to sources and detectors, and also at posterior view on the 3D 

cortical surface (bottom row). 
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5.3.2 Subject 1a vs. Subject 1b 

Figure 35 and 36 show the colour-coded scatter plots of the three defined imaging 

performance metrics (localisation error, LVHM and focality) versus imaging depth using the 

unconstrained (Head) and structurally constrained (Brain) reconstruction methods for Subject 

1a and 1b respectively. The colour-coded plots have been utilised to identify cases whereby 

the localisation error is either less than 10 mm (green) or greater than 10 mm (red). We also 

introduce the concept of ‘high image quality zone’, which is defined by imaging depths at 

which the quantified ‘mean ± standard deviation’ boundary of the image quality metric is 

within the specified tolerance. From these figures, we can see that the localisation errors 

between the two subjects are broadly similar: under ‘Head’ reconstruction, a ‘high image 

quality zone’ between 9 mm and 13 mm imaging depth can be identified where localisation 

error increases from (0.70±0.62) mm to (3.84±6.10) mm for Subject 1a, and (1.17±0.74) mm 

to (4.43±6.36) mm for Subject 1b; under ‘Brain’ reconstruction, the ‘high image quality zone’ 

reaches up to 13 mm imaging depth where localisation error increases from (0.54±0.67) mm 

to (3.84±5.97) mm for Subject 1a, and (1.46±1.06) mm to (3.22±8.02) mm for Subject 1b. 

The integrity of these data is ensured by the focality plots, which are also comparable and 

consistently above 0.5. 

With regard to LVHM:  under ‘Head’ reconstruction, LVHM increases from (563±59) mm
3
 to 

(897±215) mm
3
 for Subject 1a, and (461±59) mm

3
 to (515±114) mm

3
 for Subject 1b in the 

high quality zone; under ‘Brain’ reconstruction, LVHM increases from (95±42) mm
3
 to 

(286±119) mm
3
 for Subject 1a, and (49±30) mm

3
 to (158±89) mm

3
 for Subject 1b. Although 

in this metric, the numerical values obtained from Subject 1b (as well as Subject 2b-5b, see 

Appendix C for more details) are significantly smaller than those from Subject 1a, it is worth 

noting that these values are in the ‘mm
3
’ unit. Specifically if we approximate the PSF under 
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‘Head’ reconstruction as a sphere (see Figure 40 and 41), then we can convert LVHM into 

the more conventional full-width-half-max (FWHM) based on the equation for calculating the 

volume of a sphere: 

 

3
4 FWHM

LVHM
3 2

 

  
 

  (1.46) 

After conversion, under ‘Head’ reconstruction, FWHM increases from (10.24.±0.35) mm to 

(11.9±0.9) mm for Subject 1a, and (9.6±0.4) mm to (9.9±0.7) mm for Subject 1b, revealing an 

average difference of less than 2 mm in FWHM between the two subjects. We believe this 

scale of differences can be well expected, given the additional hand-correction procedure on 

tissue segmentation for Subject 1a, as well as the distinctive mesh generation routine used for 

Subject 1a and 1b. A summary of the above quantified image metrics of the two subjects is 

provided in Table 4 below.  

Table 4 Summary of HD-fDOT image quality at the two boundary depths of the ‘high 

image quality zone’ (i.e. 9 mm and 14 mm for Head reconstruction; 9 mm and 13 mm 

for Brain reconstruction) for subjects 1a and 1b respectively. 

Recon. 

method 

Imaging 

depth 

(mm) 

Subject 1a Subject 1b 

Localisation 

(mm) 

FVHM 

(mm
3
) 

Focality Localisation 

(mm) 

FVHM 

(mm
3
) 

Focality 

Head 9 0.70±0.62 563±59 1.00±0.00 1.17±0.74 461±59 1.00±0.00 

14 3.84±6.10 897±215 0.98±0.09 4.43±6.36 515±114 0.97±0.12 

Brain 9 0.54±0.67 95±42 0.99±0.05 1.46±1.06 49±30 1.00±0.00 

13 3.84±5.97 286±119 0.76±0.21 3.22±8.02 158±89 0.86±0.21 

 



96 

 

 

Figure 35 Scatter plots of localisation error, LVHM and focality versus imaging depth 

(up to 20 mm) for all PSFs of Subject 1a reconstructed with full head [column (Head)] 

and whole brain constraint [column (Brain)]. Each dot, which represents a 

reconstructed PSF, is colour-coded in green if its localisation error is less than 10 mm or 

otherwise in red. The mean plus/minus standard deviations are reported at 1 mm 

imaging depth interval (black solid plot) up to 15 mm. The blue dashed line in each 

figure represents tolerance level for each metric as stated in Section 5.2.10 “Metrics of 

Image Quality”. In all cases the x-axis has been limited to 20 mm for conciseness. 
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Figure 36 Same as the last figure, but of Subject 1b. 

5.3.3 Head vs. Brain 

In Figure 37, the scatter plots of metrics of image quality of the six subjects are combined to 

provide an averaged statistical analysis of image quality across all available subjects. It can be 

seen that similar to our individual subject plots in Figure 35 and 36, within the ‘high image 

quality zone’, that is from the cortical surface (from 7 mm imaging depth) up to 13 mm 

imaging depth, localisation error increases from (1.18±0.77) mm to (3.30±5.37) using ‘Head’ 

reconstruction, and from (0.89±0.91) mm to (3.65±8.71) mm using ‘Brain’ reconstruction. 

The cortical surface of this figure starts from approximately 7 mm rather than 9 mm as in 

Figure 35-36, because we have included four other subjects (Subject 2b-5b) into the graphs, 
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which all have different starting depths of the cortical surface. Specifically, the depth from 

which grey matter node begins to appear for Subject 1a, 1b-5b are 8.8 mm, 8.7 mm, 8.2 mm, 

7.1 mm, 7 mm and 8.5 mm respectively (see Appendix C for more details). Beyond the 13 

mm depth there is a growing number of poor quality PSFs (red dots) appearing in the form of 

high localisation error, low LVHM and more crucially lower focality, indicating a gradual 

takeover by imaging artefacts due to poor signal to noise ratio at deeper depths. A summary of 

the quantified image metrics is provided in Table 5 below. 

Table 5 Summary of HD-fDOT image quality at the two boundary depths of the ‘high 

image quality zone’ (i.e. 7 mm and 13 mm for both Head and Brain reconstructions) of 

all six subjects combined.  

Reconstruction 

Method 

7 mm 13 mm 

Localisation 

(mm) 

FVHM 

(mm
3
) 

Focality Localisation 

(mm) 

FVHM 

(mm
3
) 

Focality 

Head 1.19±0.78 410±65 1.00±0.00 3.30±5.37 564±171 0.88±0.24 

Brain 0.89±0.92 35±25 0.99±0.06 3.65±8.71 215±113 0.62±0.28 
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Figure 37 Same as the last figure, but plotting the PSFs of all six subjects on the same 

graph. Therefore the mean plus/minus standard deviations statistics quantified in this 

graph can be considered as the ‘average’ image quality across all six subjects. 

As an illustrative example, Figure 38 (Head) displays the spatial distribution of localisation 

errors over the corresponding MRI for Subject 1a, where the white solid and dashed lines 

represents a depth of 13 mm and 18 mm respectively below the scalp. These data points have 

high integrity because all of the displayed results have a focality value above 0.5 as evident in 

Figure 35 (Head). A key observation in both Figure 35 (Head) and 38 (Head) is that the 

localisation error is low and constant for depths up to 13 mm, but increases linearly beyond 

this depth. This reflects a depth related imaging error, which is also qualitatively 

demonstrated by selected examples in Figure 40 and discussed later. 
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Figure 38 (Brain) shows that localisation error of less than 10 mm covers up to 18 mm below 

the scalp surface with better and more uniform localisation accuracy beyond the 13 mm 

contour as compared to Figure 38 (Head), owing to the improved depth sensitivity. It is 

worth noting the existence of minor variations in localisation accuracy between spatial 

locations of the same depth, as revealed in Figure 38 (Brain), which is likely to be due to the 

complicated surface geometry (folds) of the brain (and hence of the applied constraint). 

Figure 39 shows the spatial distribution of LVHM of Subject 1a up to 1000 mm
3
 on top of 

the corresponding MRI, where the white solid and dashed lines represent a depth of 13 mm 

and 18 mm below the scalp respectively. It can be seen that when compared with non-

constrained reconstruction, the utilisation of the whole brain constraint dramatically reduces 

the magnitude of the LVHM throughout the visual cortex. This is substantially evident in the 

3D cortical surface maps (Figure 39, bottom row), which is in line with the scatter plots 

shown in Figure 35. 
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Figure 38 Spatial distribution of localisation error of Subject 1a with full head (left 

column) and whole brain constrained (right column) reconstruction. Three axial MRI 

slices (1, 2 and 3) with different positions relative to sources and detectors are shown, as 

well as a posterior view on the 3D cortical surface (bottom row). The white solid contour 

on each MRI slices represents imaging depth of 13 mm below the scalp while the white 

dashed contour represents imaging depth of 18 mm below the scalp. 
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Figure 39 Same as the last figure but for spatial distribution of localised volume half 

maximum of Subject 1a. 
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5.4 Discussions 

In this work we have presented a FEM-based routine for conducting subject-specific HD-

fDOT studies, and quantitatively evaluated the corresponding image performance throughout 

the FOV of a realistic imaging system on the visual cortex across six subject head models. 

The first step of the routine is to construct a high-resolution 3D finite element head model that 

incorporates realistically segmented tissue spatial information, which requires both T1 and T2 

(MRI datasets) from the subject and an appropriate tissue segmentation procedure, as shown 

in Figure 29-30. Comparing with using simplified generic head models [5, 36, 37, 45], this 

approach reduces the systematic imaging error due to model mismatch between the in vivo 

anatomy and the anatomical model used for image reconstruction. After a spatial 

regularisation scheme is applied, the full head total sensitivity is shown to have high 

sensitivities (larger than 50% of maximum value) covering non-brain regions and no further 

than superficial regions of the cortex (Figure 34 (Head)). This reveals a deeper sensitivity 

coverage than the Dehghani et al. study which reported total sensitivity on the cortical surface 

at 10% of maximum value [123]. However the head model used in that study was based on 

fewer segmented regions, which were also less complex in structure. 

The reconstructed PSF for each grey matter node within the FOV is evaluated by three 

metrics of image quality. Traditionally FVHM and localisation error have been the standard 

metrics for evaluating imaging quality. We have demonstrated that in presence of noise where 

multi-regional activations are reconstructed, the FVHM may not be the best metric as it is not 

trivial to isolate the true recovered activation from background noise and artefacts. Therefore 

we have introduced two other metrics, namely LVHM and focality, which aim to provide a 

more comprehensive and systematic approach in the evaluation of the image quality. We have 

found that in presence of noise these parameters provide a more consistent evaluation of 
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image quality when used in conjunction with localisation error, as compared to FVHM and 

localisation error only.   

Across all six subjects we have reported a ‘high quality region’ down to 13 mm imaging 

depth below the scalp (Figure 37), based on defined thresholds of each image quality metric. 

Localisation error and FWHM (as derived from LVHM using Equation (1.45)) at 10 mm 

imaging depth are (1.31±0.76) mm and (9.92±0.6) mm respectively, which are within good 

agreement with White et al.’s findings on a simplified head model [5].  

When a whole brain constraint is applied within the image recovery algorithm, the total 

sensitivity yields a more homogenous spread of sensitivities on the 3D cortical FOV (Figure 

34 (Brain)). Consequently focal activation up to 18 mm below the scalp can be better 

localised as shown quantitatively by metrics of image quality in Figure 38 (Brain). This 

improvement in localisation depth has not been evaluated in any other previous study, 

highlighting the utility and benefit of this approach. 

If an image quality goal is set at better than 10 mm in localisation accuracy and image 

resolution, these comprehensive simulations suggest that HD-fDOT is capable of imaging 

focal activations within the visual cortex up to 13 mm below the scalp using full head 

reconstruction (Figure 38-39 (Head)), and up to 18 mm using whole brain constrained 

reconstruction (Figure 38-39 (Brain)). Both depths roughly correspond to the 30% contour in 

their respective total spatially-regularised sensitivity as illustrated in Figure 34. 

It can also be observed that the lack of spatial constraint pulls the activations towards the 

scalp surface where the measurement sensitivities are higher, sacrificing 5 mm imaging depth 

capability and image resolution which is also in line with previous study [70]. Such 

phenomena can be qualitatively demonstrated in Figure 40 (Head): while a perturbation 
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moves from location X to Z, its recovered location stops moving beyond the 13 mm contour. 

Effectively at location Z the PSF is pulled towards the skull/scalp region where the 

sensitivities are much higher (see Figure 34 (Head)). Thus the degradation in localisation 

accuracy after 13 mm imaging depth as observed in Figure 35 (Head) and 38 (Head) 

represents a stronger effect on the depth accuracy than the lateral localisation accuracy. On 

the other hand, localisation error at given depths (regardless of lateral locations), shows good 

consistency in Figure 38 (Head). Figure 41 (Head) confirms this finding by showing the 

recovered activations at three similar depths but different lateral location (I, J, K). Specifically 

Figure 41 (Brain) demonstrates that while the whole brain constraint biases the recovery of 

activations towards a deeper depth, their localisation errors are 5.8 mm (I), 2.8 mm (J) and 3.0 

mm (K) respectively, all below the 10 mm tolerance.  

In terms of imaging resolution, when using the whole brain constraint for image recovery, a 

more homogenous distribution of LVHM at lower than 1000 mm
3
 up to 18 mm imaging 

depth, as evident in Figure 35 (Brain) and 39 (Brain), provides the capability to distinguish 

between gyri as shown by activation X in Figure 40 (Brain), and between gyrus and sulcus 

as shown by activation K in Figure 41 (Brain). Finally the 3D cortical surface maps of 

localisation error and LVHM in Figure 38-39 (Brain) also illustrate a much more 

homogeneous distribution of image accuracy and resolution throughout the FOV on the visual 

cortex as compared with Figure 38-39 (Head).  
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Figure 40 Image of three target perturbations located along the same cortical fold but 

different depth in Subject 1a: 10.22 mm (X), 13.14 mm (Y), and 18.13 mm (Z), and the 

corresponding PSFs shown at FVHM using full head [column (Head)] and ‘whole brain 

constraint’ (column [Brain]) reconstruction. The white contour on each MRI slice 

represents the 13 mm imaging depth. 
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Figure 41 Image of three target perturbations located at different lateral positions but 

similar depth in Subject 1a: 13.14 mm (I), 13.01 mm (J), and 13.07 mm (K), and the 

corresponding PSFs shown at FVHM using full head [column (Brain)] and whole brain 

constrained [column (Head)] reconstruction. The white contour on each MRI slice 

represents the 13 mm imaging depth. 

The work presented in this study, for conciseness, is limited to a single NIR wavelength, and 

parameters relating to errors such as probe placements and variations to underlying optical 

properties are ignored. The choice of using single wavelength (750 nm in the presented work) 

is appropriate, since most systems rely on single wavelength measurements for the recovery 

of optical parameters and the methods and findings can easily be expanded to other 

wavelengths (for example, to 800 nm and 850 nm in later Chapter 6 and 7 respectively). In 



108 

 

addition, the image performances (i.e. all three image quality metrics) as reported herein, are 

directly associated with the values of the spatial and Tikhonov regularisation parameters 

being used as stated in Section 5.2.7. Therefore we expect the image performance to vary 

should these regularisation parameters change. Although the assumptions regarding the probe 

placements, and underlying tissue optical properties (which will be investigated in the next 

chapter), are important when relating any findings to clinical applications, it is critically 

important to understand the underlying physical limits of optical parameters recovery when 

utilising HD-fDOT for functional neuroimaging studies, as presented in this study. 

5.5 Conclusions 

Our multi-subject simulation studies have shown that HD-fDOT methods that incorporate 

realistically-segmented subject-specific head models are capable of imaging focal 

haemodynamic response up to 18 mm below an adult human scalp using whole brain 

constrained reconstruction within 10 mm localisation accuracy and image resolution, which 

would allow the distinguish-ability of gyri. Yet further yield in image quality can be expected 

via the utility of more overlapping measurements, for instance up to fourth and fifth nearest 

neighbours, as the dynamic range of future HD-fDOT systems increases, or imaging on 

subjects with less optically absorptive head tissues, e.g. neonates and young children. The 

results presented herein provide the first comprehensive study in evaluating the image 

resolution and localisation accuracy of HD-fDOT with subject-specific head models and the 

use of whole brain constrained reconstruction. This work can serve as guidance on what 

image quality to expect throughout the cortical folds and approaches that might be taken to 

validate with fMRI.  
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CHAPTER 6 

EFFECT OF UNCERTAINTY IN TISSUE 

OPTICAL PROPERTY – BACKGROUND 

ABSORPTION FITTING SCHEME 

6. Effect of uncertainty in tissue optical property – background absorption 

fitting scheme 

6.1 Introduction 

fDOT image reconstruction accuracy depends on multiple factors, such as system design, data 

processing, computational model and inverse formula, which have been comprehensively 

discussed in Chapter 4. One of the concerning issues is the anatomical model of the human 

head, which has evolved from the homogeneous slab geometry of the early days into the 

increasingly popular realistically-segmented subject-specific head model, as reviewed in 

Section 4.2.2. Specifically in magnetic resonance imaging (MRI)-guided HD-fDOT as 

described in the last chapter, where both T1 and T2-weighted datasets are available, three-

dimensional (3D) anatomical head models containing up to five segmented tissue types can be 

utilised as the underlying anatomical model for image reconstruction. With disregard to 

misclassification of head tissues, or assuming that perfect tissue segmentation is possible, the 

uncertainty in the numerical value of tissue optical property becomes the dominant cause of 

systematic error in the predicted measurement sensitivity and the reconstructed images.  
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Current practice as documented in in vivo fDOT literature, which selects or derives numerical 

value of tissue optical property from other literature-based data, does not account for the 

following three aspects of uncertainty or variability. First of all, literature-published values 

are derived by interpreting measurements obtained through specific experimental procedures 

and based on certain photon transport models. Consequently there is an inherent degree of 

uncertainty in the value being derived, which is highly dependent on specific model 

assumptions, measurement techniques, experimental apparatus, calibration scheme, and 

biological heterogeneity [150]. This means that optical properties obtained through different 

procedures, even from the same subject, could vary. Secondly, variation between subjects is 

also expected (due for examples to demographics), and the direct use of literature-based data 

in subject-specific studies does not account for subject variability. Third, literature often 

reports data at limited choices of wavelengths [148, 149], and linear interpolation has been 

utilised to approximate values at other wavelengths [5, 36], which inevitably introduces 

another degree of uncertainty to the final numerical values used for image reconstruction. In 

this work we propose the use of background absorption fitting schemes with measurements 

obtained directly from the imaging subject during a typical fDOT scan and at no extra cost on 

data collection, which provides a procedure-specific, subject-specific and wavelength-specific 

approach that effectively eliminates the three uncertainty issues surrounding the current 

literature-based practice.  

The effect of uncertainty in the optical properties of background media in the linear (or 

differential) DOT problem was initially investigated by Cheng and Boas [151], who focused 

on the imaging error in the recovered image contrast rather than image resolution and 

localisation accuracy. Pei et al. [30] further demonstrated a robust variation tolerance of 

(nearly) ±100% in either background absorption a  or scattering 
s   that would still allow 
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qualitatively similar images to be produced in linear (or differential) DOT simulations. 

However the study was limited to a two-dimensional simple circular model, and both 

transmittance and reflectance measurements were used for noise-free image reconstruction. 

More recently Heiskala et al. [6] investigated the topic more purposefully for the application 

of fDOT of the human brain, but only considered a limited number of simulated focal 

activations. More importantly, none of these studies include the scenario of structural-

constrained image reconstruction, which has been shown to demonstrate improved 

localisation accuracy and image resolution in HD-fDOT from our findings in the last chapter.    

In this work we extend the realistic-noise-added PSF analysis in Chapter 5 to a multi-model 

comparative study that provides a more comprehensive investigation in the effect of 

uncertainty in background optical properties on HD-fDOT image quality, with and without 

the inclusion of whole brain constraint in image reconstruction. In additional, we are also 

interested in validating our hypothesis for the use of background absorption fitting schemes, 

which hypothesizes that the schemes can be applied to derive tissue optical properties that 

result in better HD-fDOT image quality than literature-based approaches. There are five 

models included in this comparative study, which represent the following scenarios: (A) 

precisely correct background optical properties (‘ground truth’), (B) homogeneous optical 

properties derived from our homogeneous background absorption fitting scheme, (C) 

heterogeneous optical properties derived from our heterogeneous background absorption 

fitting scheme, (D) homogeneous optical properties cited from literature [42], (E) 

heterogeneous optical properties cited from literature [152]. Each scenario is evaluated using 

the three image quality metrics described in the last chapter to provide comprehensive and 

systematic comparison of image quality between each other. 
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6.2 Method 

6.2.1 Homogeneous background absorption fitting scheme 

The homogeneous absorption fitting scheme was originally described in nonlinear (absolute) 

DOT of breast imaging in [31]. The role of the scheme was to provide a ‘good homogeneous 

initial guess’ 0  of the underlying tissue optical properties for the Levenberg-Marquardt 

nonlinear optimisation procedure (as reviewed in Section 4.3.1.1) so that the minimisation 

function is likely to converge quickly in fewer iterations. In fDOT application of human brain, 

we propose the use of homogeneous background absorption fitting scheme to provide a fast 

yet subject-specific approximation of the underlying head tissue optical properties to 

minimise the uncertainty in literature-based background optical properties and the resulting 

systematic imaging error . 

Specifically the scheme is applied to fit a homogeneous background absorption value for the 

underlying imaging subject based on a single set of measurements from the subject, that is, 

one data per measurement channel across all available channels. In order to improve the 

robustness of this scheme against measurement noise, this single dataset is often computed as 

the averaged data across multiple sets of measurements in diffuse optical breast imaging [31, 

153]. In our case where a participant is sitting for a visual stimulation experiment while all 

data channels of the fDOT imaging system are taking continuously data recording throughout 

the time course of the experiment, we have proposed a similar procedure that computes this 

dataset as the averaged data over the recorded time trace at each channel, which potentially 

implies averaging over thousands sets of data, given a data collection rate of 10 Hz and an 

imaging session of 10 minutes, for instance. 
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For our simulation study, we have modelled the same high-density imaging system as used in 

Chapter 5 except changing the measuring wavelength from 750 nm to 800 nm. This is 

because one set of literature-based data as used later in our multi-model comparative study 

(model E in Table 7) are values at 800 nm, which constrains our selection to this wavelength 

only. The corresponding head tissue optical properties used for 800 nm wavelength are listed 

in Table 6 under ‘Ground truth’, which are linearly interpolated values from [38]. To generate 

realistic-noise-added measurements for our background absorption fitting scheme, we have 

taken the following steps: first, the noiseless boundary measurements ln( )( )noiseless  are 

generated using the forward solver (‘femdata’ function) in Nirfast [119]. Next, 0.1%, 0.14% 

and 1% Gaussian random noise are added to first, second, and third nearest neighbours in 

ln( )( )noiseless  to produce ln( )( )baseline , which represent the data collected from a 

realistic imaging system at a ‘baseline’ functional state, that is, when no visual stimulus is 

shown to the participant. We then compute the realistic-noise-added differential measurement 

ln( )   as described previously in Section 5.2.9, which represent the differential change in 

the measured data between the ‘baseline’, and an ‘activation’ functional state, which could be 

when visual stimuli are displayed and perceived by the participant. Therefore by combining 

ln( )   with ln( )( )baseline  we can derive ln( )( )activation , which is the noise-added 

boundary data collected at certain ‘activation’ functional state. We repeat this for all 

simulated perturbations within the system FOV on the visual cortex (as in the last chapter), 

which should reflect on all possible sets of measurements contained within the recorded data 

time trace during a standard in vivo visual stimulation experiment. Finally we compute the 

average of the ‘baseline’ dataset ln( )( )baseline  and all available ‘activation’ datasets 

ln( )( )activation  as the single set of measurements to be used for background absorption 
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fitting scheme. Figure 42 (a) and (b) ‘Original’ show the averaged dataset derived from 

Subject 1b, and the procedures are repeated for all six subjects (Subject 1a, 1b-5b). 

After this, the homogeneous background absorption fitting scheme is performed. In this case 

we assume a constant global background reduced scattering coefficient 
s   of 1.0 mm

-1
, 

which was commonly applied in human tissue optics studies [42, 98, 151]. In principle, the 

scheme derives the global absorption coefficient a  by fitting for the slope of the log of 

intensity times distance ln( * )r  with respect to the straight-line source-detector distance r,  

denoted by  
ln( * )d r

dr



 , as shown in Figure 42 (a). This is based on the following 

analytical expression derived for infinite medium and CW measurements, which suggests that 

a  is proportional to   given a constant 
s   [153]: 

 
ln( * ) ad r

dr D





    (1.47) 

where D is the diffusion coefficient as described in Chapter 4. In practice, the scheme 

consists of two stages. The first stage fits for a  based on the analytical solution as expressed 

by Equation (1.47). This value is then taken as an initial guess into the second stage, which is 

an iterative fitting process where   is calculated through linear regression to boundary data 

generated from our subject-specific head model using the Nirfast forward solver, as shown in 

Figure 42 (b) ‘Fitted’. This iterative fitting utilises Newton’s method of the following form: 
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where ,( )a i

a

 






 is approximated numerically by 

, ,( ) ( )a i a i    



 
 and   is set to be 

0.0001. This two-stage fitting scheme is implemented in the ‘fit_data_cw’ function in Nirfast 

and the iteration terminates when the change in the fitted a  between two iterations is less 

than 0.1%. This takes approximately 1 hour on average for each subject and the results are 

summarised in Table 6. We can see that the fitted background absorption coefficients across 

all subjects are closely comparable, with a mean value of 0.0122 mm
-1

 and standard deviation 

of 1.2%. 

Table 6  Homogeneous background absorption fitting assuming s   of 1.0 mm
-1

. 

a  (mm
-1

)/ 

s   (mm
-1

) 

Ground 

truth 

1a 1b 2b 3b 4b 5b Mean±Std 

Scalp 0.018/ 

0.69 

 

 

 

 

0.0119/ 

1.0 

 

 

 

 

0.0121/ 

1.0 

 

 

 

 

0.0122/ 

1.0 

 

 

 

 

0.0122/ 

1.0 

 

 

 

 

0.0123/ 

1.0 

 

 

 

 

0.0123/ 

1.0 

 

 

 

 

0.0122±1.2%/ 

1.0 

Skull 0.01275/ 

0.89 

CSF 0.004/ 

0.3 

Grey 

Matter 

0.0186/ 

0.75425 

White 

Matter 

0.01875/ 

1.1 
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Figure 42 Subject 1b: (a) Scatter plot of log of source-detector distance times intensity 

versus source-detector distance; (b) simulated noise-added average log intensity for each 

of the 260 measurements (‘Original’) and corresponding homogeneous fitted 

measurements (‘Fitted’).   

6.2.2 Heterogeneous background absorption fitting scheme 

In addition to the homogenous background absorption fitting scheme, we have also tested a 

heterogeneous background absorption fitting scheme using the ‘reconstruct_stnd_cw_region’ 

function in Nirfast. This is also known as the ‘hard prior’ image reconstruction in nonlinear 

DOT (such as breast imaging), where a region-based approach is taken to reduce the 

recovered parameter space to the number of specified regions in the imaging domain [154]. 

Specifically, tissue absorptions are still recovered iteratively using the LM method given by 

Equation (1.30) or (1.31) but with a new, region-based Jacobian J  having the dimension of 

NM by NR (number of regions) instead of NM by NN as J  in Equation (1.33) or (1.34). 

This is achieved by multiplying J  with a region mapping matrix R: 

 J J R    (1.49) 
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where R  has the dimension of NN by NR. Effectively R  adds the sensitivity of all the nodes 

that belong to each specific region in J  to produce J . In our application of MRI-guided HD-

fDOT study, this scheme would fit an absorption value for each of the five head tissue regions 

iteratively until the change in projection error (projection error is defined by the difference 

between the fitted measurements, Figure 42 (b) ‘Fitted’, and the original measurements, 

Figure 42 (b) ‘Original’) between two iterations is less than 2%. We first validate the 

scheme with the correct 
s   in each tissue region, which takes on average 5 hours per subject. 

Although this takes significantly longer time than the homogeneous fitting scheme, the fitted 

absorption values are within 2.5% variation of the ground truth across all subjects as shown in 

Table 7, which are promising. The largest variation of 2.5% comes from the fitted CSF of 

Subject 3b, where the correct value is 0.004 mm
-1

 and the fitted value is 0.0039 mm
-1

. 

Table 7 Heterogeneous background absorption fitting assuming correct s   in each 

region. 

a  (mm
-1

)/ 

s   (mm
-1

) 

Ground 

truth 

1a 1b 2b 3b 4b 5b 

Scalp 0.018/ 

0.69 

0.018/ 

0.69 

0.018/ 

0.69 

0.018/ 

0.69 

0.018/ 

0.69 

0.018/ 

0.69 

0.018/ 

0.69 

Skull 0.01275/ 

0.89 

0.0128/ 

0.89 

0.0128/ 

0.89 

0.0128/ 

0.89 

0.0128/ 

0.89 

0.0128/ 

0.89 

0.0128/ 

0.89 

CSF 0.004/ 

0.3 

0.004/ 

0.3 

0.004/ 

0.3 

0.004/ 

0.3 

0.0039/ 

0.3 

0.004/ 

0.3 

0.004/ 

0.3 

Grey 

Matter 

0.0186/ 

0.75425 

0.0186/ 

0.75425 

0.0186/ 

0.75425 

0.0186/ 

0.75425 

0.0186/ 

0.75425 

0.0186/ 

0.75425 

0.0186/ 

0.75425 

White 

Matter 

0.01875/ 

1.1 

0.0188/ 

1.1 

0.0188/ 

1.1 

0.0188/ 

1.1 

0.0188/ 

1.1 

0.0188/ 

1.1 

0.0188/ 

1.1 

 

However it is important to realise that under in vivo experimental circumstances, the correct 

value of 
s   for each tissue type in the imaging subject is unlikely to be available. Therefore 

we further test the heterogeneous fitting scheme with the generic global 
s   of 1.0 mm

-1
 used 
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previously for the homogeneous fitting scheme. In this case it takes less time (approximately 

3 hours on average) but the fitted a  values are significantly different from the ground truths 

as shown in Table 8. Specifically, the largest mismatch between the correct value and the 

average fitted value across all subjects comes from the scalp at -43% (the correct value is 

0.018 mm
-1

 and the average fitted value is 0.0102 mm
-1

). However it is worth noting that such 

variation in the fitted absorption values should be well expected, since the precondition of 

setting a global 
s   of 1.0 mm

-1
 has posed a mismatch in the scattering parameter. In the case 

of the scalp, the mismatch in 
s   is greater than +75% (the correct value is 0.69 mm

-1
 and the 

assumed generic value is 1.0 mm
-1

), which explains the variation in absorption. It can also be 

seen that the standard deviation across all subjects increases with tissue depth, from 3% for 

the scalp to 37% for the white matter, except the CSF which has ultra low absorption and 

scattering properties compared to other tissue types and therefore more difficult to recover 

anyway. These suggest that the derived absorption parameters have lower cross-subject 

variation for the superficial tissues (standard deviation: scalp: 3%; skull: 8%) where the 

measurement sensitivity is higher, than the deeper tissues (standard deviation: grey matter: 

12%; white matter: 37%) where the measurement sensitivity is lower, which is intuitive.     
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Table 8 Heterogeneous background absorption fitting assuming homogeneous 
s   of 1.0 

mm
-1

. 

a  (mm
-1

)/ 

s   (mm
-1

) 

Ground 

truth 

1a 1b 2b 3b 4b 5b Mean±Std 

Scalp 0.018/ 

0.69 

0.0098/ 

1.0 

0.01/ 

1.0 

0.0107/ 

1.0 

0.0102/ 

1.0 

0.0104/ 

1.0 

0.0102/ 

1.0 

0.0102±3%/ 

1.0 

Skull 0.01275/ 

0.89 

0.0122/ 

1.0 

0.0119/ 

1.0 

0.0096/ 

1.0 

0.0116/ 

1.0 

0.0106/ 

1.0 

0.0113/ 

1.0 

0.0112±8%/ 

1.0 

CSF 0.004/ 

0.3 

0.0006/ 

1.0 

0.0083/ 

1.0 

0.0092/ 

1.0 

0.0067/ 

1.0 

0.0077/ 

1.0 

0.0003/ 

1.0 

0.0055±73/ 

1.0 

Grey 

Matter 

0.0186/ 

0.75425 

0.0169/ 

1.0 

0.0162/ 

1.0 

0.0164/ 

1.0 

0.0123/ 

1.0 

0.0167/ 

1.0 

0.018/ 

1.0 

0.016±12%/

1.0 

White 

Matter 

0.01875/ 

1.1 

0.0114/ 

1.0 

0.0157/ 

1.0 

0.0161/ 

1.0 

0.0293/ 

1.0 

0.0133/ 

1.0 

0.0164/ 

1.0 

0.017±37%/ 

1.0 

 

6.2.3 Model description  

As briefly described in the Introduction, there are five models to be presented in this work and 

the tissue optical properties used for each model are listed in Table 9 below. Specifically, 

model A is a heterogeneous model that represents the ground truth with optical properties 

derived from [38] at 800 nm wavelength; model B is a homogeneous model with optical 

properties derived using the homogeneous background absorption fitting scheme from model 

A, Table 6; model C is a heterogeneous model with optical properties derived using the 

heterogeneous background absorption fitting scheme from model A, Table 8; model D is a 

homogeneous model with optical properties cited from literature [42]; model E is a 

heterogeneous model with optical properties cited from literature [152]. Here it is worth 

noting that model D represents a case in which tissue absorptions (except CSF) have been 

severely underestimated, as compared to the ground truth (model A). On the other hand, 

model E represents a scenario where both absorption and scattering (except CSF absorption 

and scattering, and white matter absorption) have been significantly overestimated against 
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model A. Nevertheless all three datasets can be rightly justified based on their respective 

literature, which provides further evidence of the uncertainty issues in background tissue 

optical properties that surround current literature-based approaches. 

Table 9 The five hypothetical models presented with optical properties at 800 nm. 

a  (mm
-1

)/ 

s   (mm
-1

) 

A 

(Ground truth 

[38]) 

B 

(Homog 

1) 

C 

(Heterog 1) 

D 

(Homog 2 

[42]) 

E 

(Heterog 2 

[110]) 

Scalp 0.018/ 

0.69 

 

 

 

 

0.0122/ 

1.0  

(From 

Table 6) 

 

 

 

 

(Depending 

on subject 

as shown in 

Table 8) 

 

 

 

 

0.006/ 

1.0 

0.04/ 

2.0 

Skull 0.01275/ 

0.89 

0.04/ 

2.0 

CSF 0.004/ 

0.3 

0.001/  

0.01 

Grey 

Matter 

0.0186/ 

0.75425 

0.025/ 

2.5 

White 

Matter 

0.01875/ 

1.1 

0.005/ 

6.0 

 

6.2.4 Comparative point-spread-functional analysis  

Detailed procedures of performing our realistic-noise-added PSF analysis on a single model 

have been described in Chapter 5. However in this five-model comparative study, since the 

aim is to investigate the effect of uncertainty (or inaccurate) in background tissue optical 

properties on the resultant image quality, we need to mimic the scenario where the differential 

data ln( )   and the measurement sensitivity matrix J  to be used for image reconstruction 

come from mismatched models. Specifically in this study, we let ln( )   used in the PSF 

analysis for all five models (model A-E) to be the same, which is generated from model A 

(the ‘ground truth’). In this case, the reconstructed result from model A is also known as the 

‘inverse crime’.  
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6.3 Results 

6.3.1 Head reconstruction 

In Figure 43, the scatter plots of metrics of image quality of the six subjects are combined to 

provide an average statistical analysis of image quality for model A-E (See Appendix D.1 for 

individual Subject 1a, 1b-5b). Similar to the last chapter, we define ‘high image quality zone’ 

as imaging depths up to which the quantified ‘mean ± standard deviation’ boundary of the 

image quality metric is within the specified tolerance. Across all three image quality metrics, 

we have observed extremely similar imaging performance among models A, B and C. 

Specifically, a ‘high  image quality zone’ up to 13 mm imaging depth can be defined among 

models A to C, where the localisation error at 13 mm image depth is (3.45±5.67) mm for 

model A, (3.30±5.42) mm for model B, and (3.75±6.06) mm for model C; the FVHM at 13 

mm image depth is (569±178) mm
3
 for model A, (596±182) mm

3
 for model B, and (410±234) 

mm
3
 for model C; the focality at 13 mm image depth is (0.86±0.25) for model A, (0.86±0.26) 

for model B, and (0.88±0.22) for model C, which are all within their respective tolerance 

levels (blue dotted lines). These are also evident in Figure 44-46, A-C, where the three image 

quality metrics are plotted spatially over the corresponding MRI slices, and the graphs 

between model A, B and C in these figures are visually difficult to distinguish. 

Model D, as compared to model A-C, demonstrate improved localisation accuracy but worsen 

image resolution. Quantitatively, the localisation error at 13 mm image depth is (2.67±5.28) 

mm for model D, which is lower than model A-C, but the FVHM is (711±187) mm
3
 ,which is 

higher than model A-C. Focality-wise, model D is (0.86±0.26) at 13 mm image depth, which 

is the same as model B, and comparable to model A and C. These findings are also in 

agreement with Figure 44-46, where model D shows more extensive and deeper coverage of 

the cortical surface by the blue colour (representing low localisation accuracy) than Model A-
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C in Figure 44 (localisation error), less colour-coded regions in Figure 45 (FVHM), and 

visually indistinguishable patterns in Figure 46 (focality).  

While model A-D have demonstrated a depth related variation across all image quality 

metrics, model E on the other hand, reveals a non-depth related spatial distribution of imaging 

performance throughout the imaging FOV as qualitatively illustrated in Figure 44-46, E. This 

is also reflected in Figure 43, E, where at as early as 7 mm image depth, the localisation error 

for model E is (6.65±3.38) mm, the FVHM is (277±210) mm
3
, and the focality is (0.94±0.11), 

which all have a significantly larger standard deviation than the metrics of model A-D at the 

same depth. Given that the PSF analysis are performed across all models with the same level 

of measurement noise, these results have shown that model E is more sensitive to noise and 

the resultant imaging artefacts. This is further confirmed by three example perturbations I, J, 

K and their reconstructed PSFs in Figure 47, where model A-D show PSFs that are 

qualitatively similar in both size and location, but model E produces imaging artefacts 

appearing in the scalp (Figure 47, model E, perturbation I), and the shapes of the PSFs are 

also strongly distorted (Figure 47, model E, perturbation J-K). A summary of the 

quantified image metrics for models A-E using Head reconstruction is provided in Table 10 

below. 
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Table 10 Summary of HD-fDOT image quality at the two boundary depths of the ‘high 

image quality zone’ (i.e. 7 mm and 13 mm) of all six subjects combined for models A-E 

using Head reconstruction. 

Model 7 mm 13 mm 

Localisation 

(mm) 

FVHM 

(mm
3
) 

Focality Localisation 

(mm) 

FVHM 

(mm
3
) 

Focality 

A 1.32±0.88 426±73 1.00±0.00 3.45±5.67 569±178 0.86±0.25 

B 1.54±1.03 451±63 1.00±0.00 3.30±5.42 596±182 0.86±0.26 

C 1.12±0.77 284±37 0.99±0.00 3.75±6.06 410±234 0.88±0.22 

D 1.72±1.17 529±80 0.99±0.00 2.67±5.28 711±187 0.86±0.26 

E 6.65±3.38 277±210 0.94±0.11 6.82±5.54 428±261 0.79±0.24 
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Figure 43 Scatter plots of localisation error, LVHM and focality versus imaging depth 

(up to 20 mm) of all six subjects using full head reconstruction in model A-E.  
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Figure 44 Spatial distribution of localisation error of Subject 1a using full head 

reconstruction in model A-E. Three axial MRI slices (1, 2 and 3) with different positions 

relative to sources and detectors are shown. 
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Figure 45 Same as the last figure, but of FVHM. 
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Figure 46 Same as the last figure, but of focality. 
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Figure 47 Image of three target perturbations located at different lateral positions but 

similar depth in Subject 1a: 13.14 mm (I), 13.01 mm (J), and 13.07 mm (K), and the 

corresponding PSFs shown at FVHM using full head reconstruction in Model A-E.  
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6.3.2 Brain reconstruction 

The scatter plots of metrics of image quality of the six subjects using whole brain constrained 

reconstruction are shown in Figure 48 (See Appendix D.2 for individual Subject 1a, 1b-5b). 

Similar to our observations in the full head reconstruction, the image quality between model 

A-C are comparable. Specifically, a ‘high  image quality zone’ up to 12 mm imaging depth 

can be defined among model A to C, where the localisation error at 12 mm image depth is 

(2.70±6.00) mm for model A, (3.22±6.96) mm for model B, and (2.66±6.04) mm for model 

C; the FVHM at 12 mm image depth is (178±103) mm
3
 for model A, (205±120) mm

3
 for 

model B, and (163±100) mm
3
 for model C; the focality at 12 mm image depth is (0.68±0.27) 

for model A, (0.70±0.28) for model B, and (0.71±0.27) for model C, which are all within their 

respective tolerance except slightly not true for the focality. However as discussed before, the 

0.5 focality tolerance may not always be applicable under the whole brain constrained 

reconstruction because the PSF may ‘split’ across folds (Figure 40, Brain, Y). These results 

are also in line with the spatially plots of image quality metrics over the corresponding MRI 

slices in Figure 49-51, A-C, where the distribution patterns between model A, B and C in 

these figures are qualitatively similar. 

Model D, as compared to model A-C, demonstrates worse localisation accuracy and image 

resolution, but slightly more robustness to image artefacts. Quantitatively, the localisation 

error at 12 mm image depth is (4.86±4.93) mm for model D, which has a mean value higher 

than model A-C, and the FVHM is (477±146) mm
3
, which is significantly higher than model 

A-C. However focality-wise, model D is (0.84±0.25) at 12 mm image depth, which is more 

robust than model A-C. These findings are also in agreement with Figure 49-51, where model 

D shows more extensive coverage of the cortical surface by warm colour (representing 

relatively high value) than Model A-C in Figure 49 (localisation error) and Figure 50 
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(FVHM), and deeper coverage of the cortical surface by the blue colour (representing 

relatively high value) than Model A-C in Figure 51 (focality). 

Also similar to our observations in the full head reconstruction, Model E under whole brain 

constrained reconstruction reveals higher level of imaging error throughout the FOV than 

model A-D, but at even more severe magnitude than in the full head reconstruction. Most 

notably, the focality metric of model D at as early as 7 mm image depth is (0.83±0.23), 

reflecting dramatic sensitivity of its image quality to noise. The ultra low (as compared to 

model A-D) FVHMs as quantified in this case, for instance (84±121) mm
3
 at 12 mm, are 

more likely to represent the resolution of the imaging artefacts due to noise rather than of the 

PSFs. This is further investigated by showing three example perturbations I, J, K and their 

reconstructed PSFs in Figure 52. While model A-C produce PSFs that are qualitatively 

similar in both size and location, model D recovers all three targets towards deeper location 

with a larger spread of PSF, which are in good agreement with our previous findings from 

Figure 48-51. For model E, the PSF is either reconstructed completely off the correct axial 

slice (Figure 52, model E, perturbation I), or severely dislocated towards deeper locations 

with reduced spread (Figure 52, model E, perturbation J-K). A summary of the quantified 

image metrics for models A-E using Brain reconstruction is provided in Table 11 below. 
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Table 11 Summary of HD-fDOT image quality at the two boundary depths of the ‘high 

image quality zone’ (i.e. 7 mm and 12 mm) of all six subjects combined for models A-E 

using Brain reconstruction. 

Model 7 mm 12 mm 

Localisation 

(mm) 

FVHM 

(mm
3
) 

Focality Localisation 

(mm) 

FVHM 

(mm
3
) 

Focality 

A 0.93±0.98 36±25 0.99±0.07 2.70±6.00 178±103 0.68±0.27 

B 0.98±0.95 33±22 0.99±0.06 3.22±6.96 205±120 0.70±0.28 

C 0.92±0.96 29±22 0.96±0.11 2.66±6.04 163±100 0.71±0.27 

D 1.22±1.12 49±35 0.98±0.07 4.86±4.93 477±146 0.84±0.25 

E 2.86±2.74 31±37 0.83±0.23 6.75±5.16 85±121 0.79±0.27 
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Figure 48 Scatter plots of localisation error, LVHM and focality versus imaging depth 

(up to 20 mm) of all six subjects using whole brain constrained reconstruction in model 

A-E. 
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Figure 49  Spatial distribution of localisation error of Subject 1a using whole brain 

constrained reconstruction in model A-E. Three axial MRI slices (1, 2 and 3) with 

different positions relative to sources and detectors are shown. 
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Figure 50 Same as the last figure, but of FVHM. 
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Figure 51 Same as the last figure, but of focality. 
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Figure 52 Image of three target perturbations located at different lateral positions but 

similar depth in Subject 1a: 13.14 mm (I), 13.01 mm (J), and 13.07 mm (K), and the 

corresponding PSFs shown at FVHM using whole brain constrained reconstruction in 

Model A-E.  
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6.4 Discussions  

In this work, we have presented a multi-model comparative study to investigate the effect of 

uncertainty in background tissue optical properties within the context of HD-fDOT of human 

brain, and for the first time analysing its effect in structurally-constrained image 

reconstruction. This topic is important, since current practice as documented in in vivo fDOT 

literature relies on background tissue optical properties published or used in other literature, 

which contain three degrees of uncertainty in terms of procedure-specificity, subject-

specificity, and wavelength-specificity. This is also evident in three of our tested models 

(model A, D and E), which have distinctive optical properties yet are all justifiable from their 

respective literature. In addition, we have also validated our hypothesis for the use of 

background absorption fitting schemes by including two more hypothetical models (model B 

and C). The purpose of proposing the schemes is to provide a fast, reliable and most 

importantly procedure-specific, subject-specific and wavelength-specific approximation of the 

underlying head tissue optical properties that effectively eliminates the uncertainty issues 

surrounding current literature-based approach, and at no extra cost of data collection. 

We first test the homogeneous background absorption fitting scheme using realistic-noise-

added intensity measurements generated from model A (the ground truth) across six subject 

head models (Subject 1a, 1b-5b), assuming a commonly-used generic global 
s   of 1.0 mm

-1
. 

The fitted background absorption coefficients from these subjects have a standard deviation of 

1.2%, demonstrating reliable cross-subject consistency. We further test a heterogeneous 

background absorption fitting scheme with the same global 
s  , and find low cross-subject 

variation in the superficial tissue (scalp: 3%; skull: 8%), but higher uncertainty in the deeper 

tissues (grey matter: 12%; white matter: 37%), which are acceptable and intuitive results. It is 
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worth noting that given the validation of using a generic 
s  =0.3 mm

-1
 for the CSF in fDOT 

studies (Section 4.2.1.2), it may be more intuitive to apply this value instead of 1.0 mm
-1

 as 

used in our heterogeneous background absorption fitting scheme. While this matter requires 

further analysis and investigation, we expect the improvement in the fitted a  values to be 

dependent on the accuracy of the spatial distribution of the CSF (from tissue segmentation), 

and the resultant improvement in image quality to be incremental.   

Further from these, we established the five models to be evaluated by the PSF analysis, where 

model B uses the fitted absorption values from the homogeneous background fitting scheme, 

and model C uses the fitted absorptions from the heterogeneous background fitting scheme.    

In the case of full head reconstruction, namely no structural constraint is applied, the imaging 

performances from our background absorption fitting schemes (model B-C) demonstrate 

consistently comparable imaging performance with the inverse crime (model A). It is also 

interesting to note that the optically underestimated homogeneous model (model D) reveals 

better localisation accuracy even than the inverse crime albeit at worse image resolution. A 

similar phenomenon was also reported in one of our publications with noise-less simulations 

and different regularisation parameters in the inverse equation [155]. Our explanation for this 

is actually intuitive: the underestimation of tissue optical properties has allowed deeper-than-

expected coverage of high measurement sensitivity throughout the imaging domain, thereby 

resulting a better-than-inverse-crime localisation accuracy at deeper imaging depth but not 

necessarily for the image resolution. On the other hand, when a significantly overestimated 

heterogeneous model (model E) is used, the image quality becomes sensitive to noise in the 

measurements, specifically in the form of imaging artefacts (Figure 47, model E, 

perturbation I), or activation distortion but within acceptable localisation accuracy (Figure 
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47, model E, perturbation J-K). We believe the reason is that the overestimation of tissue 

optical properties effectively attenuates the measurement sensitivity within the superficial 

tissues such as the scalp, and therefore less-than-expected measurement sensitivity on the 

brain, which results in a higher sensitivity of image quality to noise. 

In the case of whole brain constrained reconstruction, similar results are found for the use of 

our background absorption fitting schemes (model B-C), which provide consistently similar 

imaging performance with the inverse crime (model A). However, the underestimated 

homogeneous model (model D) now underperforms in both localisation accuracy and image 

resolution. Specifically the localisation error mainly comes from a deeper-than-expected 

reconstruction location rather than error of lateral resolution. This could be explained by the 

combined effect of the deeper-than-expected measurement sensitivity distribution as 

discussed in the last paragraph, and the application of the whole brain constraint, which turns 

to bias the activation towards a slightly deeper location, as shown in Figure 41, Brain in 

Chapter 5. Finally when using a significantly overestimated heterogeneous model (model E) 

for image reconstruction, the results demonstrate hyper-sensitivity of image quality to noise in 

the measurements even at superficial imaging depths (<10 mm). As a result, the activation is 

either failed to be picked up (Figure 52, model E, perturbation I), or appears in a location 

that is beyond our localisation accuracy tolerance (Figure 52, model E, perturbation J-K), 

and thus does not provide clinically useful information regarding the activation.  

Overall, we have shown that in non-structurally-constrained HD-fDOT image reconstruction, 

it is possible to achieve comparable image quality to the ‘inverse crime’, even with another 

model (model B-D) that has distinctive optical properties than the ‘ground truth’ (model A). 

This is in good agreement with Heiskala et al. [6] who reported a ~1 mm difference in 

localisation error between the ground truth and a homogeneous model (which is neither an 
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underestimation nor an overestimation of the ground truth, and similar to our model A and 

model B here) in a simulated spherical activation reconstruction study. In additional, we have 

demonstrated compromised image quality in the form of increasing imaging artefacts, 

activation distortions and dislocations when using a significantly overestimated model (model 

E). While the scenario of overestimation of optical property was not included in [6], it was 

comprehensively evaluated by Pei et al. [30] but only in noise-free simulations using 2D 

simplified geometry, and is therefore not comparable with our findings here. 

In the case of whole brain constrained reconstruction, the models (model B and C) derived 

from our background absorption fitting schemes perform consistently comparable with the 

‘inverse crime’ (model A). On the other hand, both underestimated model (model D) and 

overestimated model (model E) underperform in localisation accuracy, especially in model E 

where imaging artefacts and severe activation dislocations are observed across the entire 

FOV. These results have provided full validation for our hypothesis for the use of background 

absorption fitting schemes in HD-fDOT studies.      

6.5 Conclusions 

Our multi-model multi-subject comparative studies have shown that uncertainty in 

background tissue optical properties arisen from current literature-based approaches, can 

affect the reconstructed image quality significantly in the application of HD-fDOT of human 

brain, especially when whole brain constrained reconstruction is performed. In response, we 

have proposed the use of a homogeneous or a heterogeneous background absorption fitting 

scheme that effectively eliminates such uncertainty, and both have shown to provide 

consistently comparable image quality to the ‘inverse crime’ scenario. Given that the 

homogeneous fitting scheme takes less time (1 hour) to perform than the heterogeneous 

scheme (3 hours), our analysis suggests that future in vivo HD-fDOT studies should highly 
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consider the use of homogeneous background absorption fitting scheme in order to ensure 

optimal image quality.  
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CHAPTER 7 

SINGULAR-VALUE-DECOMPOSITION 

BASED SPECTRAL HD-fDOT 

7. Singular-value-decomposition based spectral HD-fDOT 

7.1 Introduction 

The spectrally constrained image reconstruction method was first documented by Corlu [8] in 

nonlinear (or absolute) DOT, wherein absolute concentrations of chromophores are solved 

iteratively with a minimisation function [62] as described in Section 4.3.1.1. When compared 

with non-spectral methods, whereby images of absorption and scattering coefficients are first 

recovered and then un-mixed to provide chromophore concentrations, spectrally constrained 

reconstruction techniques are found to suppress artefacts in water and scattering power 

images, and also reduce crosstalk between chromophores and scatter parameters in breast 

imaging [133, 156, 157]. However the success of spectral method in nonlinear DOT studies 

has concealed an underlying numerical operation that in fact increases (rather than reduce) 

crosstalk between chromophores, but the issue was not known prior to our study. This was 

evident in literature where Li et al. [142] originally claimed that the use of spectral method in 

linear (or differential) DOT had led to crosstalk reduction between reconstructed ΔHbO2 and 

ΔHbR, but later [143] reported an increase in crosstalk between the two chromophores that 

could not be explained. In fact, as we now know, such crosstalk is partially due to the sub-

optimal regularisation and update of the Jacobian matrix as pointed out by Eames et al. [96], 



143 

 

who proposed a Jacobian normalisation technique in nonlinear DOT that allows for more 

uniform regularisation and parameter update in image reconstruction, hence reducing imaging 

crosstalk. However in fDOT of brain function where the imaging problem is linear and 

measurements are mostly reflectance rather than transmittance, such normalisation techniques 

would inappropriately bias the measurement sensitivities towards deeper regions in the brain 

and cause significant imaging error.   

In this work we address and resolve this crosstalk issue by proposing a novel regularisation 

technique based on the singular value decomposition (SVD). While previous DOT literature 

has focused on using the SVD as a tool to understand the relationship between DOT 

measurements (in terms of probe number and location) and image quality [158] in order to 

guide optimisation of detector placement [109, 141], the approach we are taking is to integrate 

the SVD directly into the image reconstruction algorithm. Previous applications in the use of 

SVD-based truncation methods for Jacobian inversion are well documented [140], however 

our approach are different in that we are not using the SVD approach to achieve a pseudo-

inverse of the spectral Jacobian, but instead using it to regularise the wavelength dependent 

Jacobian, and then calculate the pseudo-inverse of its spectral counterpart. 

Qualitative and quantitative evaluations are conducted among non-spectral method and 

spectral method (using conventional and SVD-based regularisation respectively) first on a two 

dimensional (2D) circular model and then on a three dimensional (3D) subject-specific head 

geometry. The 2D model provides an initial proof-of-concept analysis whereas the 3D model 

has more degrees of freedom, is highly ill-determined and more realistic to in vivo diffuse 

optical tomography of human brain studies.  
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7.2 Spectral method using SVD based regularisation 

Instead of constructing the spectral Jacobian matrix sJ  first and performing the regularisation 

second as mentioned in Equation (1.41), we propose an alternative regularisation technique 

that reverses the order of these two operations. This is achieved by utilising the relationship 

described in Equation (1.37): since applying Tikhonov regularisation of weight 2  changes 

the singular values of J  from ,i  to 2 2

,i  , we can recompose the regularised J , 

denoted by Ĵ  as: 

 2ˆ ( ) TJ U S S diag V      (1.50) 

We can then construct the regularised SJ , denoted by ˆ
SJ  as: 
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The inverse problem therefore becomes: 
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  (1.52) 

The advantage here is that regularisation is applied to the Jacobian matrix while the spectral 

prior information SM  is exactly preserved and therefore contains all information needed for 

the wavelength unmixing operation. In addition, 2

  in the non-spectral method is now 

directly used in the spectral method, avoiding the operation to find an equivalent 2

S  for 

comparative studies which can be problematic due to its subjective choice [142, 143].  
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7.3 Method and results 

7.3.1 Two-dimensional circular model 

To compare the image performance on crosstalk among non-spectral, conventional spectral, 

and our newly proposed SVD-based spectral methods, a set of proof-of-concept simulations 

are carried out on a 2D circular model. Using a well defined numerical model has the benefit 

of knowing the exact location and magnitude of the targets, allowing accurate analysis of the 

reconstructed images. The simulated 2D model consists of a uniform circular mesh of radius 

43 mm with 1785 nodes corresponding to 3418 linear triangular elements. Sixteen co-located 

source/detector fibres are modelled equidistant on the external boundary and are used for 

continuous-wave data collection, giving rise 240 (1615 where the source fibre is not used 

for detection) differential measurements per wavelength (Figure 53). The model is assumed 

to be homogeneous with a = 0.017 mm
-1

, 
s  = 0.74 mm

-1
 at 750 nm, and a = 0.019 mm

-1
, 

s = 0.64 mm
-1

 at 850 nm. The background chromophore concentrations of HbO2 and HbR 

are both 0.5 mM. The molar extinction coefficients used are 0.1193 mm
-1

/mM and 0.3236 

mm
-1

/mM for HbO2 and HbR respectively at 750 nm, and 0.2436 mm
-1

/mM and 0.1592 mm
-

1
/mM for HbO2 and HbR respectively at 850 nm from Figure 17. A target of 5 mm in radius 

is located at three different depths, i.e. 13 mm, 28 mm and 43 mm, corresponding to a 

modelled ΔHbO2 = +0.05mM (Figure 54 (a-c), Target). Forward data is generated using 

Nirfast [119]. For regularisation, we find that in order to achieve comparable image resolution 

and contrast between these three methods, a lower value of   is required for the conventional 

spectral method ( S  in Equation (1.41)) as compared to the non-spectral method (   in 

Equation (1.32)) and the proposed SVD approach (   in Equation (1.50)), which is in line 

with previous findings [143]. Specifically we chose  =10
-2

×the maximum singular value of 
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J  and S =5×10
-3

×the maximum singular value of sJ , which are found to provide a good 

balance between image resolution and robustness to measurement noise in this comparative 

study. 

 

Figure 53 Schematic view showing the placement of 16 co-located sources (red squares) 

and 16 detectors (blue cross) on the boundary of a 2D circular model. Note for each 

source excitation, the same fibre is not used as detector, giving rise to 240 differential 

measurements in total. 

Linear, single-step (as in fDOT) reconstructed images of haemodynamic changes using non-

spectral (denoted as ‘Non-Spec’), spectral with conventional regularisation (‘Conv-Spec’), 

and spectral with SVD-based regularisation (‘Svd-Spec’) are shown in Figure 54-56 with 0%, 

0.2% and 0.5% added Gaussian random noise respectively. Within each figure, three 

scenarios/locations (a-c) having the ΔHbO2 target moving towards the centre of the circular 

model are presented, emulating a gradual decrease in signal-to-noise ratio (SNR) in the 

measurement; that is as the target moves deeper within the domain, the magnitude of the 

detected differential signal decreases. It is evident from Figure 54 that in the case of 0% 

noise, a region of crosstalk can be easily identified in the recovered ΔHbR images along with 

some imaging artefacts due to the measurement sensitivity distribution in all three methods, 

with ‘Svd-Spec’ demonstrating the least magnitude of crosstalk and imaging artefacts while 

‘Conv-Spec’ produces the most. As noise increases to 0.2% (Figure 55), imaging artefacts 
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due to noise appear although at smaller magnitudes as compared to the crosstalk. At 0.5% the 

noise artefacts begin to dominate the ΔHbR concentration images for both the ‘Svd-Spec’ and 

‘Non-Spec’ as shown in Figure 56. Specifically when the target is at the centre of the model 

(43 mm from boundary, Figure 56 (c)), the recovered images from ‘Svd-Spec’ and ‘Non-

Spec’ become indistinguishable. In comparison, crosstalk and imaging artefacts in ‘Conv-

Spec’ still dominate the ΔHbR concentration images even at 0.5% noise level.   

 

Figure 54 Reconstructed images of ΔHbO2 (upper row) and ΔHbR (lower row) 

concentration at three different locations (a-c) using methods ‘Svd-Spec’, ‘Non-Spec’ 

and ‘Conv-Spec’ with 0% noise. Note that for comparative displaying purpose, the 

range of the colour bar has been set by the maximum and minimum values of the images 

from the ‘Non-Spec’ method. This causes colour saturation in parts of the images from 

the ‘Conv-Spec’ method, which has a colour scale of -0.001 to 0.003 (mM). 
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Figure 55 Same as the last figure, but with 0.2% added noise. 

 

Figure 56 Same as the last figure, but with 0.5% added noise. 
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For quantitative analysis of image crosstalk, we have defined the crosstalk from ΔHbO2 into 

ΔHbR as the mean concentration value in the ‘region of crosstalk’ in the ΔHbR image divided 

by the mean concentration value of the known ‘region of target’ in the ΔHbO2 image, where 

the ‘region of crosstalk’ and ‘region of target’ refer to effectively the same physical region in 

the imaging domain. This metric measures the amount of ΔHbO2 being ‘cross-talked’ into the 

ΔHbR image as a percentage of the amount of ΔHbO2 (the target) in its own image. In Figure 

57 the plotted crosstalk versus depth of target is shown for all cases presented in Figure 54-

56. Again it can be seen that crosstalk increases along with depth of target due to decreasing 

magnitude of the differential signal and/or SNR. As summarised in Table 12, crosstalk levels 

at 0.23% on average for ‘Svd-Spec’, representing a 59% reduction from 0.55% level of 

crosstalk for ‘Non-Spec’, and a 98% reduction from 11.7% level of crosstalk for ‘Conv-Spec’. 

At 0.5% noise the imaging artefacts dominate over the crosstalk for both ‘Svd-Spec’ and 

‘Non-Spec’, particularly when the target is located at the centre of the model (Figure 56 (c)), 

where crosstalk for both methods are approximately 0.5%, indicating little difference between 

the two methods, however still much better as compared to conventional spectral 

reconstruction, ‘Conv-Spec’. These simulations were repeated with a ΔHbR target and similar 

results were obtained.  

Table 12 Summary of quantified crosstalk at locations (a-c) with 0%, 0.2% and 0.5% 

added noise in data respectively. 

Recon. 

method 

Location (a) Location (b) Location (c) Average 

Noise 

free 

0.2% 

noise 

0.5% 

noise 

Noise 

free 

0.2% 

noise 

0.5% 

noise 

Noise 

free 

0.2% 

noise 

0.5% 

noise 

Svd-

Spec 

0.19% 0.21% 0.23% 0.20% 0.25% 0.15% 0.21% 0.26% 0.38% 0.23% 

Non-

Spec 

0.55% 0.54% 0.52% 0.57% 0.52% 0.61% 0.61% 0.62% 0.45% 0.55% 

Conv-

Spec 

9.33% 9.32% 9.28% 12.2% 12.2% 12.2% 13.7% 13.7% 13.6% 11.7% 
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Figure 57 Bar chart illustrating image crosstalk at locations (a-c) and 0%, 0.2% and 

0.5% noise level from Table 12. 

7.3.2 Three-dimensional head model 

Next we extend our analysis to a more realistic, three-dimensional finite element head model. 

Here we use the hand-corrected voxel-based head mesh ‘Subject 1a’ as described in Chapter 

5. Tissue optical properties assigned to this heterogeneous head model are values used in 

previous in vivo study [94] at 750 nm and 850 nm (Table 13), which are the two wavelengths 

equipped in the current HD-DOT system at Washington University School of Medicine [5] 

and can be adapted to other and more wavelengths.  
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Table 13 Head tissue optical properties used for 750 nm and 850 nm. 

a (mm
-1

) / s   (mm
-1

) 
750 nm 850 nm 

Scalp 0.0170 / 0.74 0.0190 / 0.64 

Skull 0.0116 / 0.94 0.0139 / 0.84 

CSF 0.004 / 0.3 0.004 / 0.3 

Grey Matter 0.0180 / 0.8359 0.0192 / 0.6726 

White Matter 0.0167 / 1.1908 0.0208 / 1.0107 

 

Instead of presenting a ΔHbO2 concentration target as in the 2D circular model, here we 

model a ΔHbR concentration target for the 3D head model. To generate the forward data, we 

simulate a focal activation of ΔHbR=-0.01mM and 1 cm in radius on the right hemisphere of 

the visual cortex (Figure 58 (a-b)) as the type of brain activation one would expect from a 

retinotopic mapping study [5]. Similar to our practice in Chapter 5, Gaussian random noise 

of 0.1%, 0.14% and 1% in amplitude is added to first, second and third nearest neighbour 

measurements respectively to mimic our current in vivo performance [123] and ten sets of 

noise added data are generated and averaged to produce the final image. Image reconstruction 

is performed with the ‘whole brain’ structural constraint as described in Chapter 5 which 

limits the recovered activation on the grey and white matter only [89, 159]. The optimal value 

of regularisation is  =10
-2

×the maximum singular value of J , which is found to provide 

good imaging quality based on our previous human [5] and animal [144] DOT studies. The 

conventional spectral method is excluded in this part of the study due to severe crosstalk 

between chromophores as already demonstrated on the 2D model. 

Reconstructed chromophore concentration images of simulated brain activation using non-

spectral (‘Non-Spec’) and spectral method with SVD-based regularisation (‘Svd-Spec’), with 

noise free and noise added data, are displayed on the surface rendered FEM model of the 
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brain in Figure 58. Similar to our finding with the 2D model, a region of crosstalk of ΔHbR 

into ΔHbO2 is identified when noiseless data are used for image reconstruction, with the 

magnitude of crosstalk from ‘Svd-Spec’ significantly smaller than ‘Non-Spec’. The crosstalk 

(same definition as in the 2D case) in Figure 58 (c) is 0.005% for ‘Svd-Spec’, representing a 

95% reduction from 0.11% for ‘Non-Spec’. When measurement noise based on a current 

imaging system specification is added, the two methods produce images that are qualitatively 

similar, with quantitative crosstalk both at 0.20% (Figure 58 (d)), showing little difference 

between non-spectral and spectral reconstruction techniques. A summary of the quantified 

crosstalk using the two methods is provided in Table 14 below. 

Table 14 Summary of quantified crosstalk using ‘Svd-Spec’ and ‘Non-Spec’ 

reconstruction methods, without and with realistically added noise in measurements 

respectively. 

Reconstruction method Noise-free Noise-added 

Svd-Spec 0.005% 0.20% 

Non-Spec 0.11% 0.20% 
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Figure 58 (a) Posterior surface rendered view of the 3D FEM brain model, (b) a regional 

FOV focused on the right hemisphere of visual cortex enclosed within the black window 

in (a), showing simulated chromophore target, (c) reconstructed images of ΔHbO2 

(upper row) and ΔHbR (lower row) concentration for ‘Svd-Spec’ and ‘Non-Spec’ 

method using noise free data, and (d) using noise added data. 

7.4 Discussions 

In this study we have presented a new regularisation technique for linear image reconstruction 

in spectral diffuse optical tomography. This technique utilises the singular value 

decomposition (SVD), allowing regularisation on the spectral Jacobian matrix to be applied 

without altering the underlying spectral prior information. Specifically, this is achieved by 

regularising the wavelength dependant Jacobian matrix prior to mixing with the spectral 

coefficients, a completely new method where the regularisation does not affect the mapping 

of absorption changes onto chromophore concentrations, thereby providing a much more 

accurate spectral inversion technique. This method is different to previously published work, 

whereby the Jacobian is first spectrally mixed and then regularised and inverted. 
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Through a series of proof-of-concept analyses using a 2D circular model, we have shown that 

the SVD-based regularisation technique followed by spectral unmixing dramatically reduces 

the crosstalk between chromophores. While the conventional spectral method has 

demonstrated an average level of crosstalk at 11.7%, which could potentially lead to clinically 

significant mis-interpretation in in vivo studies, SVD-based technique has shown to reduce 

this metric by 98%, demonstrating only 0.23% level of crosstalk between ΔHbO2 and ΔHbR 

images. When compared with non-spectral method, this technique also demonstrates 59% 

crosstalk reduction and demonstrated consistently robust performance against crosstalk as 

noise increases, before the image is dominated by imaging artefacts due to poor SNR (Figure 

56 (c)). We extended our evaluation analysis on a 3D subject-specific head model with a 

simulated regional activation on the visual cortex, showing 95% reduction in crosstalk from 

0.11% to 0.005% when comparing the proposed algorithm with the non-spectral method using 

noiseless data. When mimicking realistic image system noise, both methods demonstrate 

0.2% level of image crosstalk, which should have very limited impact on the significance of 

clinical interpretation.   

In conventional spectral technique as expressed by Equation (1.41) where the Tikhonov  

parameter 2

s  is operated directly on the spectral Jacobian sJ  (one that relates a small change 

in measurements to a change of either oxyhaemoglobin or deoxyhaemoglobin concentrations), 

the regularisation or smoothing applied will also have an effect on the spectral mixing. 

However, using the proposed SVD-based spectral method as expressed by Equation (1.52), 

the spectral Jacobian ˆ
sJ  is a pre-regularised matrix (which only relates a small change in 

measurements to change in absorption) and the spectral mixing is unaffected by this 

regularisation, implying that the latter method should provide better accuracy in parameter 

recovery. When comparing with the non-spectral method which consists of three matrix 
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inversion operations, namely applying Equation (1.32) twice for the recovery of absorption at 

wavelength 1  and 2 , and Equation (1.6) once for the recovery of chromophore 

concentration from absorption, our SVD-based spectral method requires only one inversion in 

Equation (1.52), consequently reducing the numerical error associated with the computation 

of matrix inversion. In the case of noise-added data, it is possible to expand Equation (1.52) 

by adding a noise term:    1 1

2 2

1 1
2 ˆ ˆ ˆ ˆ

T TT

T T T T

S S S S S ST T T

noiseHbO
J J J J J J

HbR noise

 

 

      
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Therefore as the level of noise increases up to a point where   1

2

1
ˆ ˆ

T

T T

S S S T

noise
J J J
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


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S S S T
J J J





  
 
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 over 

the other two methods, it would appear on the recovered images that the effect of crosstalk 

reduction by the SVD-based spectral method is gradually minimised, and eventually 

diminished as the imaging artefacts due to noise become dominant, as demonstrated in Figure 

56 (c) and 58 (d). 

Validation of the SVD-based method as presented in this paper has been limited at a specific 

wavelength pair, i.e. 750 and 850 nm. In this case the crosstalk between ΔHbR and ΔHbO2 is 

systematically small, owing to the large and opposite difference between their molar 

extinction coefficients at 750 and 850 nm (Figure 17). In the concept of wavelength 

optimisation [8], this means that the condition number of their spectral composition matrix 

SM  is relatively low as compared to other wavelength pairs. Nevertheless since the crosstalk 

improvement by our SVD-based method relies on no assumption on either specific spectral 

range or specific combinations of the molar extinction coefficients, we expect the 
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improvement to be consistent when using other pairs of wavelengths. A full validation of this 

could be carried out over an extensive range of wavelength pairs as an extension of this work.  

When compared with the linear spectral fDOT as presented here, nonlinear spectral DOT 

reconstruction has the added benefit of iteratively updating the recovered chromophore 

concentrations simultaneously with a minimisation function until the solution converges to a 

predefined threshold, as described by the Levenberg-Marquardt nonlinear optimisation in 

Section 4.3.1.1. It is also worth mentioning that the regularisation parameter would decrease 

over the iterations, resulting a gradual reduction in the imaging crosstalk due to conventional 

spectral regularisation method (as appeared in Figure 54-56, Conv-Spec), or a ‘crosstalk 

correction’ process over the iterations. However in the case of single-step, differential spectral 

fDOT as described in this work, appropriate regularisation method has shown to be critical to 

minimise crosstalk while maintaining the benefits of spectral constraints. We expect that in 

the presence of larger magnitude differential measurements and lower noise levels, this 

proposed reconstruction algorithm to be superior to non-spectral techniques.  

7.5 Conclusions 

The use of conventional regularisation techniques can result in additional crosstalk between 

chromophores. A novel regularisation technique that regularises the Jacobian using the 

singular value decomposition (SVD) prior to spectral mixing has been presented in an attempt 

to reduce such crosstalk effects. Simulations have shown that using SVD-based regularisation 

can dramatically reduce the crosstalk presented in images recovered using conventional 

regularisation technique in linear, single-step spectral DOT. Although our analysis has shown 

that given the current HD-fDOT imaging system specification, such improvement in crosstalk 

over the non-spectral method may not be substantial, it is evident that future instruments with 

higher SNR measurements would only yield better image quality for the spectral method over 
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the non-spectral method. The use of SVD in matrix regularisation as described in this study is 

also potentially applicable to other one-step linear imaging problems, offering an alternative 

approach to the conventional Tikhonov regularisation and should also play an important part 

in nonlinear spectral imaging techniques in DOT.  
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORKS 

8. Conclusions and future works 

8.1 Conclusions 

The keyword in this thesis is fDOT image quality. At the beginning of the thesis (Chapter 1), 

we have identified several factors that caused sub-optimal image quality in previous fDOT 

studies and aimed to address and resolve these issues. This section summarises the 

contributions of this thesis as our solutions for improving fDOT image quality. Our main 

contributions include the first realistic-noise-added point-spread-function (PSF) analysis of 

MRI-guided HD-fDOT, the validation for the use of homogeneous background absorption 

fitting scheme in HD-fDOT, and the validation for the use of singular-value-decomposition-

based (SVD-based) regularisation method for spectral fDOT. From our overall results it 

follows that: (1) HD-fDOT is capable of imaging focal haemodynamic response up to 18 mm 

depth below the human scalp surface at 10 mm image resolution and localisation accuracy, 

allowing distinguishability of gyri; (2) the use of homogeneous background absorption fitting 

scheme in HD-fDOT can minimise the chances of obtaining sub-optimal image quality due to 

uncertainty in background tissue optical property; (3) the SVD-based regularisation scheme is 

capable of reducing imaging crosstalk observed in both conventional spectral and non-spectral 

fDOT. The details of our main contributions and findings are expanded below.  



159 

 

8.1.1 PSF analysis of HD-fDOT 

A recent advancement in fDOT system design is the development of high-density (HD) image 

array, also known as HD-fDOT (Section 3.2.2). This configuration allows the utilisation of 

overlapping measurements, providing more intensive spatial sampling of the underlying brain 

tissues than traditional sparse imaging arrays. The initial efficacy of HD-fDOT has been 

demonstrated through in vivo studies [36, 41, 42, 94] but there has been a lack of image 

quality analysis studies to demonstrate the achievable imaging performance of HD-fDOT in a 

realistic experimental setting. In Chapter 5, we have provided, to the best of our knowledge, 

the first realistic-noise-added point-spread-function (PSF) analysis of HD-fDOT on MRI-

guided subject-specific head models, with and without the inclusion of an anatomically 

derived whole brain constraint. Our contributions and findings include: 

 We have described and established a finite-element-method-based (FEM-based) 

routine to conduct MRI-guided fDOT simulation studies, which allows the 

construction of 1-mm high resolution (same resolution as T1-MRI, 1 × 1 × 1 mm 

voxels) finite element head model that provides realistic anatomical description of the 

underlying subject and also faster computation of the Jacobian matrix (20-30 minuses 

on average) than mesh-based Monte Carlo (MMCM) [124].   

 We have introduced two novel image quality metrics, namely localised volume half 

maximum (LVHM) and focality, as compared to the conventional and standalone full 

volume half maximum (FVHM), in order to provide a more comprehensive and 

objective measure of image quality in situations where the FVHM contains multiple 

regions. The focality metric is mainly to assess the integrity of the other two metrics, 

namely whether the associated localisation error and LVHM reflect on the PSF of the 

target activation or the noise artefact. Therefore the focality itself also provides a 
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measure of the overall image quality, i.e. how ‘focal’ or ‘spread’ the recovered 

responses look like, and consequently an indication for the effect of noise on image 

quality (in the form of imaging artefacts).  

 Through our realistic-noise-added point-spread-function (PSF) analysis across six 

subject head models and the utilisation of our novel image quality metrics, we have 

concluded that HD-fDOT is capable of imaging focal haemodynamic response up to 

13 mm depth below the human scalp surface with no structural constrained image 

reconstruction, and up to 18 mm depth with the whole brain (both white matter and 

grey matter) constrained image reconstruction, given 10 mm localisation accuracy and 

image resolution that allows distinguishability of gyri.  

8.1.2 Background absorption fitting scheme 

The HD-fDOT image reconstruction accuracy depends on multiple modelling issues arising at 

different stages of the fDOT workflow (Figure 22). One of the concerning issues is the 

anatomical model of the human head, which has evolved from the homogeneous slab 

geometry of the early days into the increasingly popular realistic-five-tissue-segmented 

subject-specific head model (Section 4.2.2). The anatomical model affects the image 

reconstruction accuracy in that different anatomical regions are characterised by tissue types 

with distinct optical properties  , which in turn determine the spatial distribution of the 

measurement sensitivity 





 or the Jacobian J  that will be used in image reconstruction 

(Section 4.3). With disregard to misclassification of head tissues, or assuming that perfect 

tissue segmentation is possible, the uncertainty in the numerical value of tissue optical 

property becomes the dominant cause of systematic error in the predicted optical 

measurement sensitivity and the reconstructed images. However current practice as 
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documented in in vivo fDOT literature, which selects or derives numerical values of tissue 

optical property from other literature-based data, do not account for such uncertainty, 

possibility because earlier literature has demonstrated the insensitivity of linear DOT image 

quality to mismatches in background optical properties [30]. However the study was limited 

to noise-less analysis and generic two-dimensional simple geometry, and is therefore not 

helpful in understanding the issue in more realistic fDOT image problem. In Chapter 6, we 

have presented a multi-model comparative study to investigate the effect of uncertainty in 

background tissue optical properties within the context of HD-fDOT of human brain, and for 

the first time analysing its effect in structurally-constrained image reconstruction. We have 

also proposed the use of a homogeneous background absorption fitting scheme and validated 

its application in minimising sub-optimal image quality resulting from uncertainty in 

literature-based background optical properties. Our contributions and findings include: 

 We have investigated the utilisation of background absorption fitting schemes in 

providing procedure-specific, subject-specific and wavelength-specific approximation 

of the underlying head tissue optical properties at no extra cost of data collection 

within the context of HD-fDOT of human brain. The homogenous background 

absorption fitting scheme takes on average 1 hour to complete and the fitted numerical 

values across six subjects are closely comparable (standard deviation of 1.2%). The 

heterogeneous background absorption fitting scheme takes on average 3 hours and the 

fitted numerical values are relatively consistent for the superficial tissues (standard 

deviation: 3% for scalp, 8% for skull, 12% for grey matter). Overall both fitting 

schemes have demonstrated reasonable levels of cross-subject consistency in the 

values they have derived.   
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 We have found that in non-structurally constrained HD-fDOT, when using a model 

that represents an underestimation of the actual tissue optical properties, the 

localisation accuracy outperforms the ‘inverse crime’ at deeper depth, owing to the 

deeper-than-expected coverage of high measurement sensitivity. On the other hand 

when using a model that represents an overestimation of the actual tissue optical 

properties, the image quality demonstrates high sensitivity to measurement noise in 

the form of image artefacts, activation distortions and dislocations because of the 

higher attenuation of measurement sensitivity within the non-brain tissues and 

therefore less-than-expected measurement sensitivity on the brain. 

 We have also found that in whole-brain constrained HD-fDOT, which has fewer 

degrees of freedom than non-structurally constrained HD-fDOT, both underestimated 

and overestimated models show underperformed image quality. Specifically, the 

underestimated model demonstrates dislocation of activation towards deeper depth, 

while the overestimated model demonstrates hyper sensitivity of image quality to 

measurement noise in the form of severe imaging artefacts and activation dislocations, 

and in this case does not provide distinguishability of gyri. 

 We have demonstrated that in both non-structurally constrained and whole-brain 

constrained HD-fDOT, when using a model that has optical properties derived from 

either homogeneous or heterogeneous background absorption fitting scheme, the 

image quality is consistently comparable with the ‘inverse crime’. Therefore we have 

successfully validated our hypothesis for the use of background absorption fitting 

schemes in HD-fDOT, which hypothesizes that optical properties derived from the 

scheme can provide better HD-fDOT image quality than literature-based approach that 

is likely to result either an overestimation or underestimation of the ‘ground truth’. 
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8.1.3 SVD-based spectral fDOT 

The inclusion of spectral prior in nonlinear DOT image reconstruction has been shown to 

reduce crosstalk between chromophores. However such success has concealed the underlying 

Tikhonov regularisation operation that actually introduces (rather than reduces) crosstalk 

between chromophores, and the problem was not known prior to our study in Chapter 7. In 

response to this, we have proposed, implemented and validated a novel singular-value-

decomposition-based (SVD-based) regularisation method for spectral fDOT that aims to 

resolve such crosstalk issue. Our contributions and findings include: 

 We have provided the theoretical explanation for the increased crosstalk between 

ΔHbO2 and ΔHbR observed in [143] where the authors could not justify. The 

explanation is that the applied Tikhonov regularisation has modified the underlying 

spectral prior information, therefore introducing numerical errors in the form of 

imaging crosstalk (Section 4.3.3). This also means that the results and conclusions 

given in [142] are strongly misleading.  

 We have proposed a novel SVD-based regularisation that operates on individual 

wavelength dependent sensitivity matrix independently (Section 7.2), thereby 

preventing the modification of the underlying spectral relationship between 

chromophores. We have provided an initial validation for the SVD-based spectral 

method on a two-dimensional simple model, which demonstrates 60% and 98% 

crosstalk reduction as compared to the non-spectral and conventional spectral method 

respectively in noise-less simulation.  

 We have further validated the efficacy of the SVD-based spectral method in the 

context of HD-fDOT of human brain and reported 95% crosstalk reduction as 

compared to the non-spectral method in noise-less simulation. When realistic-noise 
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based on a current HD-fDOT imaging system is added to the analysis, we have found 

the effect of crosstalk reduction is overwhelmed by imaging artefacts due to the noise. 

Therefore we have concluded that the benefit of SVD-based spectral method will be 

more substantial when the signal-to-noise ratio (SNR) improves in future HD-fDOT 

instruments. 

8.2 Future work 

Possible directions of future work include: 

 Full head point-spread-function analysis. The analyses as presented in this thesis 

have been limited to the primary visual cortex due to the size of the high-density 

imaging array [36]. However there has been an on-going effort at Washington 

University in St Louis to design a larger imaging pad that allows more extensive 

coverage of other functional regions, such as the motor cortex, and ultimately a full 

head imaging cap. Our point spread functional analysis as conducted in Chapter 5 and 

6 can be easily extended along with the coverage (FOV) of the imaging array, 

therefore providing more comprehensive fDOT image quality mapping of the human 

brain function. 

 Atlas-based image quality evaluation using inflated brain. Admittedly the MRI-

guided routine as represented in Chapter 5 still relies on subject-specific structural 

MRI datasets prior to HD-fDOT analysis, which could severely limit the chance of 

HD-fDOT as an alternative and standalone functional neuroimaging technique over 

fMRI. However as mentioned in Chapter 4, the development of atlas-based approach 

have shown promises in both in silico [7] and in vivo [89] studies. Therefore a future 

direction would be to evaluate the imaging performance of atlas-based HD-fDOT 

methods. However one major challenge that is worth mentioning in this case is the 
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evaluation method, which may require the transformation (or mapping) function from 

one (presumably inflated) cortical surface to the other in order to provide a more 

clinically meaning evaluation. 

 Singular value decomposition-based regularisation in nonlinear spectral diffuse 

optical tomography image reconstruction. We have shown that conventional 

spectral techniques could cause significant crosstalk in linear imaging and this will 

inevitably be the same in nonlinear imaging. Therefore the inclusion of SVD-based 

regularisation in nonlinear DOT problems such as breast imaging should also help 

reducing crosstalk between the recovered chromophores as compared to conventional 

nonlinear spectral DOT method.   
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Appendix A  

Additional Tutorials on Segmentation 

Appendix A: Additional Tutorials on Segmentation 

A.1 SPM 

SPM is a Matlab-based package developed for the analysis of neuroimaging data sequence at 

UCL. It includes an atlas-based head segmentation tool which allows the segmentation of five 

tissue types to be performed on T1 dataset alone. The version used in this work is SPM8. 

Since the segmentation tool in SPM does not read DICOM images directly, first we need to 

convert the images from ‘.DICOM’ format into SPM readable ‘.hdr’ and ‘.img’. To do this, 

click the ‘DICOM Import’ button and select the 176 slices of .DICOM images. The loading 

will be started, and finished by generating a ‘.hdr’ and a ‘.img’ file.  
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Figure 59 SPM user interface for loading .DICOM images.  

Click ‘BatchSPMToolsNew Segment’. Select the generated ‘.img’ file in 

‘Data/Volumes’. The choice of atlas used is shown and can be changed in ‘Warping & 

MRF/Affine Regularisation’. We use the default ‘*ICBM space template – European brains’. 

Once the settings are ready, click the green arrow Run bottom and the segmentation starts 

automatically. An animated window plotting ‘Iteration versus Log-likelihood’ are displayed 

during the segmentation, showing the likelihood between subject and atlas converges as 

iteration increases, and the algorithm terminates when a threshold is reached.    
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Figure 60 SPM user interface for performing atlas-based head tissue segmentation. 

The end products of the segmentation are five ‘.nii’ files each containing the probability map 

of each tissue type. The probability map contains values ranging from 0 to 1, representing the 

probability (or confident level) of a given pixel to be a certain tissue type. Combining these 

five sets of data allows us to produce a segmented head anatomy.  
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Figure 61 SPM atlas-based segmentation outputs: segmented images for each of the five 

tissue types, namely (from a-e) white matter, grey matter, CSF, skull and scalp 

respectively, and the combination of them gives (f). 
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Appendix B 

Additional Tutorials on Mesh Generation 

Appendix B: Additional Tutorials on Mesh Generation 

B.1 Mimics 

Mimics is a commercial 3D image processing and model generation software developed by 

Materialise [121]. The version used in this work is Mimics x64 15.01. First we load 176 slices 

of segmented images into Mimics, which automatically display the entire dataset in 4 views, 

namely coronal (top left), axial (top right), 3D (bottom right), and sagittal (bottom left) as 

shown in Figure 29. We then click ‘Segmentation  Thresholding’ on the toolbar to represent 

each tissue type with a colour mask. Although generating a finite element mesh for the entire 

head region is certainly practical, for our visual cortical mapping study we would like to focus 

on the posterior part of the head only. To do so, we click ‘Segmentation  Crop Mask’ to 

specify a region of our meshing interest.   



171 

 

 

Figure 62 Mimics user interface for cropping specific part of the head model. 

Next we generate a 1.0-mm voxel-based volume mesh for the defined region of interest. 

Select ‘FEA/CFD  Create Voxel Mesh’, there is a smaller window named ‘Calculate Mesh’ 

popping up which allows you to set a number of parameters. Follow the settings as shown in 

Figure 53. Mimics will then automatically generate a homogeneous volume mesh as shown 

in the 3D view window.   
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Figure 63 Mimics user interface for performing volumetric mesh generation. 

To assign each node in the voxel mesh with their respective tissue type (represented by 

distinctive colour mask), click ‘FEA/CFD  Material’ and select the five colour masks, 

Mimics will automatically perform the assignment and complete with a colour-coded volume 

mesh displayed in the 3D view window.   
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Figure 64 Mimics user interface for performing tissue region labelling. 

Finally to export the mesh as description files, select ‘FEA/CFD  Export’, and export as 

‘Ansys Preprocessor files’. This would output a ‘.cdb’ file containing node coordinates and 

element connectivity, and a ‘.txt’file containing nodal region information. Running a Matlab 

script named ‘Mimics2Nirfast’ would further translate these two files into Nirfast readable 

file formats.   

B.2 NIRView+Nirfast 

NIRView is a free 3D image processing software developed by Kitware and jointly released 

with Nirfast [119], which is a Matlab-based open source, finite element meshing and analysis 

package developed at Dartmouth College. The two combined [160] provides a seamless 

workflow from segmented anatomical image dataset to finite element based imaging 

reconstruction and analysis. Similarly we first load 176 slices of segmented images into 

NIRView, which also display the entire dataset in 4 views. We then click ‘Image 

Processing/Segmentation  K-Means+Markov Random Field (ITK)’. Set the ‘Number of 
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Classes’ to 6 as there are in total six regions in the entire image space, i.e. five tissues and 

background. Click ‘Apply’ and the dataset will be colour-coded as shown in Figure 55. This 

is known as ‘label map’ in NIRView and must be saved as a .mhd file before mesh 

generation. 

 

Figure 65 NIRView user interface for loading segmented anatomical dataset. 

Go to ‘File  Create Mesh’ on the NIRView toolbar, this should start the Nirfast software 

with its mesh interface ‘image2mesh_gui’. There are a number of parameters you can set 

regarding mesh generation. Under ‘Image/Segmentation File name’, load the ‘.mhd’ file 

generated from NIRView. Follow the settings as shown in Figure 56. Nirfast will then 

automatically generate a Nirfast compatible segmented volume mesh that is ready for FEM 

analysis.  
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Figure 66 Nirfast user interface for performing surface-based mesh generation. 
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Appendix C 

Additional Figures for Chapter 5 

Appendix C: Additional Figures for Chapter 5 

This appendix provides the scatter plots of metrics of image quality for Subject 2b-5b as 

described in Chapter 5. 

 

Figure 67 Scatter plots of localisation error, LVHM and focality versus imaging depth 

(up to 20 mm) for all PSFs of Subject 2b. 
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Figure 68 Same as the last figure, but of Subject 3b. 
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Figure 69 Same as the last figure, but of Subject 4b. 
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Figure 70 Same as the last figure, but of Subject 5b. 
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Appendix D 

Additional Figures for Chapter 6 

Appendix D: Additional Figures for Chapter 6 

This appendix provides the scatter plots of metrics of image quality for Case A-E of Subject 

1a, 1b-5b as described in Chapter 6. 
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D.1 Head reconstruction 

 

Figure 71 Scatter plots of localisation error, LVHM and focality versus imaging depth 

(up to 20 mm) of Subject 1a using full head reconstruction in model A-E. 
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Figure 72 Same as the last figure, but of Subject 1b. 
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Figure 73 Same as the last figure, but of Subject 2b. 
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Figure 74 Same as the last figure, but of Subject 3b. 
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Figure 75 Same as the last figure, but of Subject 4b. 
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Figure 76 Same as the last figure, but of Subject 5b. 
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D.2 Brain reconstruction 

Figure 77 Scatter plots of localisation error, LVHM and focality versus imaging depth 

(up to 20 mm) of Subject 1a using whole brain constrained reconstruction in model A-E. 
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Figure 78 Same as the last figure, but of Subject 1b. 
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Figure 79 Same as the last figure, but of Subject 2b. 
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Figure 80 Same as the last figure, but of Subject 3b. 
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Figure 81 Same as the last figure, but of Subject 4b. 
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Figure 82 Same as the last figure, but of Subject 5b. 
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