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Abstract

This thesis presents a comparative computational study of the performance of two di�erent pricing mech-

anisms in a day-ahead wholesale electricity market, where performance is measured as the average level of

payments made by the system operator to the generators. It focusses on two key pricing mechanisms: a

uniform price based buy-back pricing model, de�ned as a short run approximation to the market design in

Great Britain, and a nodal pricing model based on Locational Marginal Pricing rules. The research uses a

game theory based approach for modelling themarket, allowing multiple rounds of the game to be played

and statistically reliable results to be obtained.

The research develops an agent based simulation of the day ahead markets for both of the pricing

mechanisms, and is simulated on a constrained electricity grid. The agents developed for the simulation

each represent a generator and are designed to be pro�t maximising with respect to a parent generation

company. Agents employ an evolutionary algorithm in order to create optimised bids for the generation of

electricity based on the current market state. Simulations of the market are performed using a styalised

29-Node transmission grid.

A series of experiments are performed comparing the performance of the nodal and buy-back pricing

mechanisms, under a series of di�erent operating conditions. It is seen in all of the observed cases that the

nodal market design averages a higher level of payments to its participants, and the indication is that the

agents in a nodal market are able to explore the higher risk strategies more pro�tably than their buy-back

counterparts. This work also highlights the value of creating evolutionary agents that are robust and �exible

in analysing market designs.

This research demonstrates that the greater the level of competition in a market the more e�ciently

market participants act. In addition to this the agents competing with a uniform based Buy Back pricing

system appears far more restricted by higher levels of competition than their Nodal counterparts.
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Chapter 1

Introduction

In recent years a major focus has been placed on almost every aspect concerning electricity, from the clean

production and sustainability of the generation sources to the cost to an individual to 'light' their house.

This research aims to look in depth at one of the intermediate stages in the supply of electricity, the wholesale

electricity market.

1.1 Electricity Markets

Across the world there are a number of di�erent wholesale electricity market designs implemented, using a

variety of di�erent bidding processes, market rules, regulations and pricing mechanisms. The interest in this

subject area is in the way that these markets operate and the way those who participate in the market are

able to make pro�t, especially as an electricity market is more constrained on it's production and delivery

than most conventional markets. The major constraints that needs to be addressed concern the physical

limitations of both the transmission grid and the capacities of the generators supplying to the network.

Although there are many di�erent aspects of a wholesale electricity market that can be studied, the one

that is focussed on here is the pricing mechanism. The pricing mechanism as referenced throughout this

research is the way that the market decides how much each generator is paid for each MW of electricity that

they produce.

For this research the base of the market in consideration is a wholesale electricity market using bilateral

trading arrangements, where two di�erent pricing mechanisms have been selected to be studied:

The �rst is the pricing mechanism used in Great Britain, called for reference in this research the Buy
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Back market, which operates by selling back electricity that can not be supported from an initial schedule, to

which all of those that are initially scheduled are paid at a single uniform price per unit (MW) produced. In

the event of the system not being able to support the initial schedule, the generators buy back the generation

at their bid price and this is replaced in the schedule by generation from an alternative source at the newly

selected generator's bid price.

The second pricing mechanism, is a nodal based system and is referred to as the nodal mechanism,

which pays for generation based on the cost to supply the electricity to each given location on the physical

transmission grid, where each of these nodes has it's own price.

1.2 Historical Overview of Market Designs

With the move in many countries away from state run centralised electricity provision to liberalized electricity

markets that allow for a number of di�erent participants to actively compete for the supply of electricity

markets, there are many issues that arise in creating the new markets. Prior to these changes Joskow[27]

noted that "For nearly a century, the electricity sector in all countries has been thought of as a 'natural'

monopoly industry, where e�cient production of electricity required reliance on public or private monopoly

suppliers subject to government regulation".

1.2.1 Previous Systems

The pool based market is centered around a day-ahead market that sets the price for a given period the next

day. A pool operates by generators o�ering price and quantity bids for the supply of electricity. These bids

are collated for all the generators and organised by the system operator to create the supply curve for the

market based on merit order. This is used to create an unconstrained schedule based on the optimal dispatch,

that can later be adjusted. The former England and Wales pool employs 48 half hourly bid schedule, where

a bid consists of up to three levels of output.

In addition to the day-ahead market, a system of forward contracting was implemented that allowed

for the trading of bilateral contracts between consumers and producers. Any forward contracts made were

subject to price settlement through the mandatory day-ahead market.

Joskow)[28] identi�es the key component of the e�ective monopolies that existed in the US, where the

providers have a 'franchise' to provide electricity to retail customers (residential, commercial and industrial

consumers) subject to pricing and reliability regulations imposed by the state. The provision of electricity is
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only a single part of a vertically integrated utility company that incorporates the generation, transmission

and distribution of the generated electricity. The pricing of the electricity generated is de�ned by state

regulations as the chargeable rate such that "both operating costs and capital costs are covered", with an

aim to ensure that the revenue per unit is equal to the cost of provision. It should be noted that the author

also comments by stating that "most state commissions act under fairly vague statutes", which reduces the

e�ciency and e�ectiveness of the charged rates to re�ect the real costs.

1.2.2 Failures in the Previous Systems

After the privatisation of the electricity market in England and Wales that implemented a pool based market

design, there was a number of problems that arose from this market design, most notable of these was that

the pool based system o�ers prices that are too high and are e�ectively misleading in the signals that they

are sending about the market. The case presented in a review of the pool covered by Newbery [40] states

that "abolishing the present Pool as the price-setting mechanism would in fact itself reduce market power

and hence lower prices", this is noted in the argument that a pool based system is too transparent and that

the price is widely available to analysts and it is possible to create bids that are better pro�t maximising.

By moving towards a less transparent system the intention as noted by Newbery, is to create increased

competition in the market and a reduction in the possible co-operative strategies and with this lower the

price of electricity in the market.

An argument outlined by Joskow[28] highlights that the public interest rationale for electricity markets

will cause the creation of a natural monopoly where the generation of electricity was typically integrated

with the transmission and distribution. Further to this point it is noted that "regulated integrated monopoly

distribution utilities are the e�cient institutional response to obtain the cost savings of single-�rm production

without incurring the costs of monopoly pricing".

Having discussed the shortcomings of the pool based market previously implemented in England and

Wales as well as the vertically integrated market design in the US, the main issue is how best to replace

these markets.

1.2.3 Designing Electricity Markets

Green [23] presents a paper that identi�es the shortcoming of two di�erent market, the pool based market

that existed in England and Wales prior to 2001 and the Bilateral Trading arrangements designed for the

deregulated Californian market.
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Green's paper on electricity market failure outlines some requirements for electricity market design. There

are two distinct categories for these requirements 'needs' and 'wants', the needs are requirements for the

electricity market to operate in a correct manner. The �rst need of an electricity market is that the supply

and demand of electricity is equal; this point is reiterated often during the course of this thesis. The second

need is that the all generation that is consumed is paid for, this means that no-one is receiving free electricity

and those producers are being repaid for the service they provide.

The paper suggests that the price at which the generation is paid should be at a stable so as to ensure

that participants can plan their generation and consumption accurately, which is in line with another desire

for an e�ective market, that the prices paid in the market should re�ect the costs of their respective market

participants. The dispatch of the system should be e�cient, which means that the generators who are able

to produce electricity cheapest while ful�lling any constraints should be dispatched in order to minimise the

short-run costs. In addition, the long-run costs of the market should be minimised by ensuring that adequate

information should be available for investment. The �nal 'want' as described in the paper is that the market

itself should be stable for those competing, which means that the market should not be subject to frequent

rules changes that mean that the participants are not able to e�ectively plan for the future.

The needs describe the basic requirements of an e�ective electricity market, such that those who are

generating are given the adequate incentive to produce electricity as well and that the laws of electricity

transmission are maintained. The wants however are devices that are desired as a way to enhance the

operation of the market that is used to promote e�cient behaviour from the current market participants and

to generate incentives for future investments.

Green[22] later de�nes a list of principles for e�ective electricity market design based on an updated

version of work performed by Bruenkreeft et al.[9] that wholesale electricity markets should include:

1. The market needs to "ensure the e�cient day-to-day operation of the generation sector", where the

potential pitfall with a system that does not promote e�cient operation in the market design is that

it doesnâ��t have an alternative method to provide the stability of pricing.

2. The market needs to "Signal the need for investment in generation and demand-side management",

where the investors need to be able to identify their potential future revenues in order to generate

stable investment in the market.

3. The market should "Promote e�cient locational choices for these investments"; this is speci�cally in

respect to transmission constraints, where new generators should be placed on the side of a transmission
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constraint such that they can be dispatched more frequently.

4. There is a requirement to "Compensate (su�ciently) the owners of existing generation assets", where

the main point is that the generators are given a fair price for the service that they are providing.

5. The market should "Be as simple, transparent and stable as possible", which de�nes that the manner in

which the market operates in terms of dispatch and pricing need to be easily understood by participants

as well as investors.

6. The market should "Be Politically Implementable", where any new implementation of a market design

needs to be acceptable to politicians and other stakeholders.

The key themes common across these design approaches is that the market should be designed such that

it allows for each participant to be rewarded for acting in an optimal manner; it is this optimal manner

of the participants' behaviour that this thesis is concerned with. The reasoning for this is that the most

e�cient methodology for a given participant is to maximise their pro�ts, which where possible may require

the exploitation of market power that a well-designed market should limit. This is noted in point one of

Green's list, such that since there is no alternative method for price stabilisation outside of ensuring e�cient

basic operation, and consistent exploitation of market power will cause prices to �uctuate and the overall

price stability to be greatly reduced.

1.2.4 Reasons for Bilateral Trading

Bower and Bunn [7] state that there were three key components of the bilateral model proposed for use in

Great Britain in 2000:

1. A voluntary over-the-counter forward market power exchange as required by consumers and generators.

2. A voluntary, half-hourly balancing market operated by the ISO from 3.5 hours before the particular

half hour in question.

3. A mandatory settlement Process for imbalances.

These arrangements make the consumer and generators responsible for dispatching those contracts and a

noti�cation to the ISO of their expected generation or demand. It is the responsibility of the ISO to ensure

system security and contracting that might be required to ful�l this responsibility.
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The 2001 Ofgem report [42] supporting the reforms to the trading arrangement in Great Britain, where the

main consideration is that the move to NETA is on the basis that electricity is treated as a single system-wide

tradable commodity, where one of the major contributing factors is that the pricing of the forward contracts

made for electricity are as transparent as possible. This transparency of the contractual arrangements is

designed to promote liquidity and promote e�ciency. In addition to increasing the transparency of the

forward contracting market, the locational market power that can be exploited should also become more

apparent under these conditions.

One of the main considerations made in the design is that in creating a market where the con�guration

of the transmission network is driven by the long term planning of the companies, which will "facilitate

competition in generation and supply". The major factor to note is that bilateral trading arrangements

should encourage e�cient short term use of the transmission network and better planning for long term

investment.

1.2.5 Reasons for Nodal Markets

Hogan [25] presents an argument for the desire to e�ciently use the transmission system in a market, o�ering

the concept that a "Contract Network" for transmission should be a fundamental part of the market design.

The reason presented for the use of transmission contracting is that unlike other markets, the electricity

market is bound by Kircho�'s Law, which divides the path taken by the electricity when distributed according

to the resistance of all paths that the electricity can take. The criteria of following Kircho�'s laws for

electricity transmission requires that the thermal limits and voltage tolerances are taken into consideration

when contracting electricity.

Hogan notes that with the rise in the long distance power generation and transmission the requirement

to have an economy focussed on the transmission grid is imperative to ensure the e�ciency of the market.

Central to the discussion on long term investment in an electricity network, Hogan argues that the in-

vestors in high cost long term facilities such as power plants would require more than short term transmission

access rights to make the investment feasible. This is given that without being able to provide the option to

stabilise their income, the risk could potentially be too large for many to reasonably take. While contracting

is an important part of generating electricity all the contracts must comply with the day-to-day operation of

the market and as such not violate the thermal and voltage constraints of the transmission grid. One of the

key aspects of ensuring price e�ciency is that those with long term contracts should not be at a disadvantage

when considering the short term congestion of a network.
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The two main criteria Hogan considers with the de�nition of a contract network based design for trans-

mission of electricity are 'Price E�ciency' and 'Capacity Rights'.

Price E�ciency as termed by Hogan should be represented by the generating of Spot Prices as de�ned

by Schweppe et. al.(1988) [20], where the generators should be dispatched in order of economic merit, where

those with the lowest marginal costs should be dispatched �rst. In a bid based system this will equate to

those o�ering the lowest bid, which in an e�cient market should optimally be at the marginal cost level.

However it is by allowing a bid based system, there is room for market power to be employed by the market

participants, which will a�ect the spot price of electricity in the market.

Capacity Rights are described as the means by which a market participant can state that their electricity

has been transmitted to the location where it is required without the requirement that it is their electricity

that has been delivered. By creating an implicit transfer system, the problem of congestion and loop �ows

are hidden within the market. In order to ensure this Hogan suggests the need for a central operator to

organise the markets, this is to ensure that at all times the transmission rights are held by the correct parties

at the time of dispatch. This is such that while the dispatched electricity may not be physically transmitted

to the contracted location, the market operates in a manner that assumes it has.

1.3 Hypothesis

There are three principal market designs that have been considered across Europe and the US, which are

Bilateral Contracts with countertrading (the GB market model), Locational Marginal Pricing (one of the

US market models) and a Zonal Pricing System (implemented in parts of Europe).

A further study undertaken by Harvey and Hogan [53] aimed to tackle the comparison of two of the

markets, being the Nodal and Zonal designs, where the authors argue that a Zonal design should never

perform better than a representative Nodal market when attempting to exploit market power, taking the

Californian market as a case study.

Harvey and Hogan o�ers a concise overview of the major points concerning the nodal-zonal debate, where

the main issue concerning market power is that the expectation that zonal systems will be able to mitigate

the issue of market power. The opinion o�ered by Hogan is that the dominant generators in zones will be

able to exploit as much if not more market power, however the market power will be hidden as "favored

generators could take advantage of the real physical constraints, but their higher charges would be socialized

and averaged over all system users". One of the key points considerations that is noted in the rationale for
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design of the Californian market is over the problem of exercising local market power. The main argument

presented is that if a generator is able to exercise locational market power, then they are able to raise the

price above the normally competitive levels regardless of the pricing mechanism used (in the comparison case

zonal, inter-zonal and nodal). The paper o�ers a number of scenarios designed to give as full a spectrum

of possible market states as possible in order to e�ectively refute the claims made by CAISO (California

Independent System Operator).

Having identi�ed the case that the market design for Nodal model is functionally better than the Zonal

model with regards to the exploitation of locational market power, the question still remains as to whether the

bilateral trading arrangements with countertrading or the analogy of such a system is capable of performing

better than a nodal system.

The hypothesis put forward in this research is that "a nodal pricing mechanism is more susceptible to

the in�uence of market gaming than a buy back mechanism in a constrained electricity market".

Where a nodal market is a short run representation of the nodal systems described previously, and the

buy back market is an analogy to a bilateral contract market operating e�ciently in the short term(Section

1.6.5). Explanations of the operations of these markets are presented later in this chapter.

Within the scope of this research this means that, under equal market conditions, the nodal pricing

mechanism will o�er on average a higher level of system payments than it's buy back counterpart.

The issue is, why would a nodal market be more susceptible to gaming in the market than a buy back

market? The expectationis that a market using a global value to set the price that an agent is paid will

perform worse than one that uses a locationally sensitive method. This is a reasonable expectation that for

every higher price o�ered in a global pricing structure, the impact of a higher price will a�ect the payments

of more agents. However, this is only the case if the participants are bidding at a similar level in both

mechanisms, which the in�uence of gaming and strategic bidding may cause to be di�erent.

The thinking behind the proposed hypothesis is against the stated expectation, and is based on the

reasoning that while the conditions of the market are the same, the market participants in the nodal market

will on average bid higher than their buy back counterparts. This is to say that in the case of a buy

back market most of the pricing in�uence is on the initial load, which requires a large number of market

participants to push beyond a normal level to raise the price. As such there is little incentive for the

participants to attempt to push the price high as the risk versus reward is potentially too high, it would

take a large enough percentage of the generators to bid in excess of a normal market level to have any e�ect

on the initial price. However with the nodal pricing mechanism, there is no initial level of payments, but
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the price paid for the generation at each node is in�uenced by the bids selected and that a requirement to

change the generation schedule can cause more electricity to be sold at a higher price.

It is this potential in�uence that every nodal participant has over the price at every node as well as the

limited individual in�uence that a single participant has over the initial global price in a buy back market,

that leads to the proposed hypothesis.

1.4 Simulation

In order to see where this research �ts in within the scope of work in the related �eld it is necessary to give an

overview of the simulation that has been developed. Given that there are a number of di�erent approaches

that have been taken in this �eld which are covered in Chapter 2, it is important to be able to understand

where there are similarities and di�erences in these approaches to understand where this research �ts.

This research presents an agent based approach to simulating an electricity market using evolutionary

algorithms for price determination. The Simulation presented in this research consists of a set of agents

competing in a simulated single round wholesale electricity market.

1.4.1 Market Simulation

In looking at a complex real life system such as an electricity market, it is often very di�cult to obtain real

working data surrounding the operation of the market. In the market used in Great Britain the bids for

the balancing mechanism are published, the strategic decision making processes the companies competing

in the market implement are not readilly available. As such in order to understand these markets without

being directly involved, as either a competitor or regulator, requires an alternative approach. One of the

best approaches is to create a simulation of the market applying the rules and regulations, but in an arti�cial

environment. By simulating a market, it is possible to see not only how a market works, but attempt di�erent

approaches to design and operation, which are vital in analysing the two pricing mechanisms.

It is di�cult to compare two market models directly based upon the available empirical data as there

are a large number of unseen factors that can potentially in�uence the outcome of the market and skew the

comparison. As such a simulation with a �xed model is preferred as it reduces the number of inconsistencies

that may exist between two real markets.
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1.4.2 Agents

In addition to the simulating the market with a single �xed model, the bidding needs to be performed in

a similar unbiased manner. The proposed method for this is an agent based system, where every agent is

programmed to operate in an identical manner, with the aim of maximising their pro�ts.

In order to adequately explain why an agent based system is useful, the �rst aspect that needs to be

understood, is what exactly is meant by an 'agent'. Franklin and Graesser (1996) [19], "Workers involved

in agent research have o�ered a variety of de�nitions, each hoping to explicate his or her use of the word

'agent'", after studying a variety of di�erent de�nitions given by di�erent project, they create their own

de�nition:

"An autonomous agent is a system situated within and a part of an environment that senses that envi-

ronment and acts on it, over time, in pursuit of its own agenda and so as to e�ect[sic] what it senses in the

future." Franklin and Grasser(1996)

This is a clear and concise de�nition of what an agent is, and is expected to do. Although the reference

to time is not as relevant within this work, this description of an agent stands as the base de�nition for the

purposes of this work.

Part of the reason for wanting to use agents is that they are autonomous, such that they are able to act

and interact with the environment, in this case a market, without the requirement of a person giving them

information and instructions, that could in�uence their behaviour.

The agents within this research are as important as the results obtained, since we hope to obtain an

additional insight into how agents act in similar complex environments. Although the agents themselves will

be the same, the market that they are operating on in each case is slightly di�erent giving a slightly di�erent

method of calculating payments, causing a change in the way the �tness is calculated.

While the change in behaviour that may be seen in a single agent as a result of a change in the market

rules is of interest, however it is equally interesting to note the change in behaviour of the collective of agents.

Due to the fact that market rules are often changed, with additional regulations added and removed, it

istherefore imperative for the research �eld of agent based computational economics, that a set of agents

are able to e�ectively respond to a series of new scenarios in a given market without the need for speci�ed

tailoring and modi�cation in order to be able to draw clear comparison.

As such this research additionally aims to show that, "agents using an evolutionary search methodology

are ideally suited as tools for market analysis".
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1.4.3 Validation

In addition to evaluating the results of the simulation with respect to the experimental questions and the

proposed hypothesis, a look needs to be taken at how valid the simulation and the model used are for

drawing relevant conclusions. Part of the problem is how to e�ectively establish the relationship between

the simulation and the real world, stating that the real world data is "not only standard empirical evidence

(e.g. datasets, stylized facts), but also qualitative and quantitative evidence regarding the setup of the

economy and agents' cognitive repertoires gathered from laboratory experiments, case studies and inductive

analyses"[17]. The following considers the main factors that will pose the main questions for discussing the

success of the agent based model presented in this research:

1. How closely does the data set used re�ect the real world?

2. How closely does the market set-up re�ect the re�ect the real world?

3. How e�ective are the agents in their role within the simulated environment?

The �rst two questions de�ne the critical components of the whole model that is used in running the

experiments, where the emphasis is on how this relates to the real world. The third question is a qualititive

assessment of the way that the agents operate, this is mainly due to the alternative approach taken in the

design of the agents. Due to the evolutionary based design there is no requirement for the agents to act with

the same rationale as a human bidder, meaning that a direct comparison of strategy is not possible. It is

with this view that a slightly broader approach needs to be taken, examining the extent to which the agents

are able to perform their task of exploring di�erent strategies within the market.

1.5 Experimentation

In order to test the hypothesis, three di�erent comparative experiments have been devised. The �rst ex-

periment is the direct comparison between the two di�erent market mechanisms when operating with no

restrictions. This is designed to be the main experiment for drawing the conclusions about how well each of

the pricing mechanisms perform in the simulation when considering di�erent market demand scenarios. By

identifying how the operation of the market changes at di�erent demand levels a more indepth study of the

market dynamics can be performed.

The remaining experiments introduce some di�erent operating conditions in order to further explore the

market and augment the �ndings of the primary results. The �rst of these conditions is based on a more
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realistic scenario, where the smaller or conventionally less competitive agents do not attempt to in�uence

the market, but instead bid just above cost price. This is performed to see if under a di�erent strategy those

agents that are still acting competitively are capable of generating the same market outcomes and in what

sense they di�er from the initial experiment.

The second of the conditions placed on the agents is that instead of acting as part of a collective repre-

senting one of the generation companies where they are trying to maximise the pro�ts of the whole company

by their actions, they attempt to only maximise their own pro�ts. Since the experimentation proposed

by this research, not only aims to test the market rules, the �nal experiment is performed to further the

understanding of how the agents operate under di�erent conditions, despite no direct change to the agents

themselves.

In order to perform this study, a model has been developed based on the Great Britain's National grid,

taking into account as much of the real world data that is available, although for processing reasons some

aspects have been simpli�ed. The aim of developing such a model is to test the techniques in a more

stretching environment. This is done in order to question in greater detail the way that the agents operate

in the market and the e�ectiveness of the market rules as opposed to whether the market design is relevant

or not.

1.6 Market Overview

The following section outlines the basic operation of a constrained wholesale electricity market, with a focus

on the technical challenges that are central to the operation of an electricity market.

A wholesale electricity market is the market in which the generators of electricity sell their capacity

to satisfy the demand across the geographical region that the market represents. In the case of a con-

strained electricity market, the sale and distribution of electricity is restricted by the physical limitations of

a transmission grid.

1.6.1 Market Basics

The basis of a wholesale electricity market operates similar to most other markets, in that the generators

(suppliers) o�er to supply a certain quantity of electricity at a given unit cost and Load Serving Entities

(the e�ective consumers in this market) state the amount they are willing to pay for certain quantities. In

this case the unit considered is megawatt hours (MWh), which is the supply of a megawatt of electricity for
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the duration of one hour.

This research often refers to the bids made by the generators, a bid in this case is an o�er to supply

electricity at a certain price. In this work a bid is represented as stepped supply function. A stepped supply

function is a supply function in which a series of stepped price quantity pairings are o�ered as opposed to a

single supply function. Figure 1.1 shows a two step supply function.

Figure 1.1: A Bid in the form of a Stepped Supply Function

The example in �gure 1.1 relates to the way in which bids are represented in this research. This represents

a bid made by a generator to supply Q1 MWh of electricity at a price P1 and the rest of their electricity (Q2

- Q1) at a price P2. In this case the number of steps is limited to two, di�erent markets allow for di�erent

numbers of steps in bids.

The bids supplied by each of the generators are collated to give the supply curve for the market. Similarly

all bids from the Load Serving Entities (LSE) are compiled to form the demand curve. The Equilibrium point

gives the predicted demand in the system given the bids made by the generators. Functionally this creates

an initial generation schedule, where all the generators left of the equilibrium point form this schedule. The

demand left of the equilibrium point shows the location and amount of electricity to be served.
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Figure 1.2: Sample Market State with Stepped Supply and Demand Functions

Figure 1.2 shows an example of a simple supply and demand graph representative of an electricity market,

where all the bids from the generators have been aggregated and the demand from the LSE also represented

by stepped bids. In this research the LSEs do not individually o�er bids, as such their demand curve is

represented as a �xed minimum (baseload) and an inelastic slope (peak demand), this is shown in �gure 1.3.

Figure 1.3: Sample Market State with a Stepped Supply Function and a Simpli�ed Demand Function

In an electricity market the equilibrium point is critical, as a system operator has to make sure that

supply is equal to demand in order to ensure system stability. System instability that results from a loss

of voltage on the system can result in blackouts, as such this supply and demand equilibrium is maintained

within a stated tolerance. For a day ahead market the demand value used is only a predicted demand, and
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so the supply can exactly match the demand, it is at the point of delivery that this tolerance is critical.

1.6.2 Transmission Overview

With an electricity market, the electricity that is generated has to be transported from the location that it

is generated to the location that its is demanded at the time of production. The transportation of electricity

is the sending of electric current along power lines from a source to a destination. The collective of all these

lines in termed here as the 'Transmission Grid'.

The transmission grid consists of a number of power lines that connect the locations where where elec-

tricity is supplied or demanded, termed 'Nodes'.

When dispatching electricity, the load placed on the network has to follow the laws that govern electrical

transmission. There are two important aspects to consider:

The electricity that �ows down a line is inversely proportional to the resistance of the lines that it travels

down to reach the destination.

The �ow of electricity along a line is directional.

Figure 1.4: Sample 3 Node Network

Figure 1.4 shows a sample three node network and identi�es the �ows that each of the line would have

on them should electricity be generated at node 0 and be required at node 1. Given that every line has

the same resistance, the �ows on line 0 will consist of two thirds of the total generation and the remaining

load that must travel along lines 1 and 2 will consist of the other third. This split is due to the ratio of the

relative resistances, which are 2:1

The directionality of the lines is such that on both lines 0 and 1, since they are �owing from the designated

start point to the end point. In the case of the proposed �ow on line 2, the value is negative to signify that

the �ow on the line is �owing from the end node to the start node. The negative value has no functional

impact on the operation of the transmission system and serves only as signal to those operating a balancing
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mechanism.

1.6.3 Constraints and Rebalancing

When scheduling the generation of electricity, the physical transmission lines may not be able to physically

support the proposed load without the risk of causing long term damage to that line. In this case the schedule

needs to be rebalanced such that the lines are capable of supporting the loads placed on the network.

Using the same sample three node network as �gure 1.4, a capacity of Cmax MW has been placed on line

0. For the �ows to be valid, the �ow on line 0 (X) must not exceed Cmax MW.

−Cmax <= X <= Cmax (1.1)

If X is greater than Cmax, then the total inputs onto the grid must be adjusted such that the inequality

in equation 1.1 is true. In the example shown the minimum required reduction in output at Node 0 is equal

to:

3

2
(X − Cmax) (1.2)

.

The stated reduction in this case is equal to the overload on the line multiplied by the inverse of the

proportion of �ow from the generator along the line.

In addition to reducing the generation, the excess demand must be met from alternative sources. In the

example, either all excess generation can be made up from generators at node 1 or node 2. In the case that

generators at node 2 are selected to rebalance the system there will be a further requirement for the output

at Node 0 to be reduced; This id due to the case that a third of the electricity generated at node 2 will be

transferred along line 0 in a positive direction.

The process of rebalancing is the reduction of output at one location and the increase in generation in

response at another location. The result of a rebalance should have two e�ects:

The �rst e�ect should be that the demand should still be �lled as required at each of the nodes. This is

to maintain the equilibrium of supply and demand.

The second e�ect is that the resultant change in supply should impact a constrained line in order to

reduce the proposed �ow of electricity on the given line.

A number of changes to the schedule may be required in order to create the required stable equilibrium,
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as each change will likely impact a number of transmission lines.

1.6.4 Payments and Pricing

In this research, the market mechanism studied is based on the day ahead market, where a day ahead market

is the arrangements for electricity production made during the day prior to delivery.

The buy back market described in this research is based on the British Electricity Trading and Trans-

mission Arrangements (BETTA) [35]. A buy back market o�ers a uniform price across the market for all

of the initial load, where initially scheduled electricity capacity can be bought back by the system operator

in rebalancing at bid price. Following the buying back of capacity addition electricity required in the new

scheduled is then paid for at bid price.

The nodal pricing system pays each generator based on the cost of generation as given at each node.

A Locational Marginal Pricing system that calculates a price for each of the nodes based on the cost of

generation for the last MW of electricity at that node. An overview of the operation of a Nodal Market is

given in Lesieutre and Eto (2003)[32].

This section will give an overview of the di�erent markets as well as the considerations made for their

implementation and operation.

1.6.5 Buy Back Pricing Mechanism

The Buy Back market designed for this simulation is an analogy to of the bilateral trading arrangements

set out in 2005 in the BETTA policy implemented in the Great Britain, based on the original 2001 NETA

policy.

The Buy Back market design presented here can be seen in many ways as a short run approximation

to the Bilateral Contract based system seen in Great Britain under NETA. In a Bilateral Contract based

market, the contracts for production are traded between various competing entities up to the point of market

closure, at which point those contracts are then used to form the initial schedule. The assumption made

is that the market will reach an optimal level as given by the uniform price paid for the initial schedule to

those contracted to produce. The bids in the market can then be used to de�ne the price that generators

are willing to buy back their generation in the case of those scheduled for production or the price at which

a generator is willing to sell.

The rationale for the assumption that the uniform price being a stable contract price level, is that the

long term trading of these contracts for a single production window will initially be valued at a wide range
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of prices for di�erent generators, however closer to the scheduled time, contracts will have been exchanged,

where the contracts for production should become more balanced due to the increase in information about

the markets. The changing prices for these contracts should theoretically create a uniform or close to uniform

price for the generation for a time period.

The buy back market process involves the scheduling of the full requirement of electricity that is de-

manded, in the cheapest manner possible. Where the price that everyone is paid is decided at the price of

the last MW supplied in the initial schedule. Should it be required for the purposes of balancing the line

loads, the System Operator can sell back any electricity to the supplier at the value stated in the bid.

The process works by �rst calculating the single global price as a form of the System Operator's initial

schedule, where the bids are searched for the highest price o�er, which will be the cost of supplying the �nal

MW of the demand; This value become the initial global price, for which all generators are paid the same

per MW produced.

Figure 1.5: Example of the Bids and Payments made at an Exporting node in a Buy Back Market
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Figure 1.6: Example of the Bids and Payments made at an Importing node in a Buy Back Market

Figures 1.5 and 1.6 show the supply and demand on a sample two node network. Node A has three

comparatively cheap generators, each o�ering to supply electricity to Node B at a price less than each of the

generators at Node B. In this example, the initial schedule is comprised of all the generation of the three

generators at Node A and a partial load of the cheapest generator at Node B. In this case the uniform system

price for each MW is calculated to be the maximum price of all the bids that form the schedule. In the

example, the uniform price will be set at PB1 and each of the generators at both nodes A and B.

The Buy Back aspect of the market only comes into consideration should it become necessary to adjust

the schedule from the cheapest possible supply schedule to an alternative schedule due to line constraints. It

is in this case, that the System Operator will sell back a generator's capacity at the price bid and will then

replace that with the electricity supplied from a di�erent generator, who will be paid at their bid price.

Within the simulation this process is broken down into three stages. The �rst stages is to purchase the

initial load at the agreed global market price. The next stage is to calculate the di�erence in supply for each

each of the bids, this is to calculate not only where supply has decreased, but also where it has increased, this

relates not just to new bids brought in, but the increase in supply from other currently utilised generators.

The �nal stage is to process the additional payments, where the System Operator is refunded money from

the generators not used and pays for the additional required generation.

In more detail, the process of buying back electricity requires a calculation of the di�erence between the

bids used initially and the bids in the revised schedule. By calculating the di�erence, the amount to be

bought back is calculated, where the price that the electricity is bought back at is the di�erence between

the initial global price and the original bid price. The new generation brought in to the schedule to replace
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the generation removed in the rebalancing process is paid at the price that the generator bid.

Returning to the examples in �gures 1.5 and 1.6, in the case that a constraint becomes binding, such that

the electricity generated at Node A that is to be exported to Node B is greater than the capacity of the line,

then the system needs to be rebalanced. In the example, the rebalancing causes a shift from QA1 to QA2

and QB1 to QB3. In �gure 1.5, the Quantity is bought back at the bid price of the Generator C, which is at

price PA1, giving that generator a payment of PB1 - PA1 for not generating electricity they were scheduled

to. Given the reduction in generation, Generator C is still producing QA2 - QA3 MWh of electricity in this

schedule at the price PB1.

In �gure 1.6, Generator D is now producing the remainder of it's capacity, up to BQ2, this is paid at it's

bid price, which is PB1. In the revised schedule Generator E is now required to generate, and since they

o�ered a price at PB2 they are paid at that price for producing PQ3 - PQ2 MWh of electricity.

1.6.6 Nodal Pricing Mechanism

The second pricing mechanism design being considered in this research is the nodal pricing mechanism. The

nodal mechanism uses a vastly di�erent method of calculating the pay that a generator receives for supplying

electricity than the buy back mechanism, however the system operator process and rescheduling mechanism

remain the same.

The nodal mechanism operates by calculating calculating a price for supplying electricity to each node on

the network. This price is calculated based on which generators are used to supply each of the nodes, where

the price is the cost of the most expensive MW of electricity used to ful�l the demand at that particular

node.

In this system, if all of the electricity for a node is supplied at a high price, then the price per MW will be

relatively low and if all of the electricity is supplied at a high price, then the price will also be high. However

if most of the generation is supplied at a low price, but in order to �ll the demand the node needs more

expensive generation, then the price per MW at that node will increase to the level of that more expensive

generation. Figures 1.7 and 1.8 show an overview of how the nodal pricing mechanism works.
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Figure 1.7: Example of the Bids and Payments made at an Exporting node in a Nodal Market

Figure 1.8: Example of the Bids and Payments made at an Importing node in a Nodal Market

Figures 1.7 and 1.8 show the supply and demand on a sample two node network. Node A has three com-

paratively cheap generators, each o�ering to supply electricity to Node B at a price less than the generation

at Node B. Under a condition where there is no binding constraint on a line between Nodes A and B, all of

the generators would be paid at the price PA1. This price is the highest price o�ered by all generators at

Node A, that is selected for use, additionally no generation is scheduled at Node B.

If the constraint on the line becomes binding, then a change in output is required in order to balance the

system. In the example shown in Figures 1.7 and 1.8, the quantity produced at Node A falls from QA1 to

QA2, and the quantity at Node B rises from QB1 to QB2. This results in a fall in price of generation at
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Node A from PA1 to PA2 and a rise in price at Node B from PB1 to PB2.

In this case, despite the new nodal price at Node B being higher than previously seen, a rise from PA1

to PB2, the Nodal price at A falls to PA2. For the purposes of this research, the prices that the generators

are paid is the key aspect, where despite the higher price at Node B, only the generation at Node B is paid

at this price (PB2). The remainder of the electricity, which is generated at Node A is paid at the price PA2.

Within the market simulation, the payments to the generators are derived from the highest cost of

production for a given node, where the most expensive generator scheduled gives the price paid for all of the

generation at that node. This action is performed for each of the nodes on the network.

There are two considerations made with the nodal pricing mechanism to simplify the process as handled

by the computer. Firstly, the distribution is always ordered such that cheapest generation is supplied �rst,

and proceeds in increasing price up to the most expensive generation required to complete the schedule. The

second factor is that the generation is allocated geographically based on the minimum distance needed to be

traveled where there is still demand that needs to be supplied.

This process ensures that the cheapest generation is supplied to the nodes surrounding the cheapest

generators and the more expensive generation is e�ectively used to top up nodes that otherwise would lack

supply needed to ful�l demand.

1.7 Summary

This chapter presented an overview of the workings of a constrained wholesale electricity market, displaying

the basic market operation.

A wholesale electricity market should maintain an equilibrium of supply and demand. In addition, the

generation schedule should be set such that for every line the predicted load of electricity does not exceed

the stated maximum capacity. In the case that the schedule would cause a line capacity to be exceeded, then

a rebalancing procedure is performed to reduce the predicted load on a given line to below the operational

capacity.

Payments are made according to the market rules, this research covers two di�erent pricing mechanisms

for operation with a day ahead market, these are buy back and nodal pricing mechanisms.

The remainder of this research is divided as follows, Chapter 2 denti�es relevant research in the related

�eld of electricity market based computational economics, with a focus on agent based systems in whole sale

energy markets. Chapters 3 and 4 cover the design of the simulation and the agents respectively. Chapter
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5 details a small scale example of the simulation that was used for the purposes of testing the operation of

the agents and simulation, where some basic results are taken to provide an insight into the expectations of

operation on the larger scale. Chapter 6 notes the process undertaken in de�ning the model to be used in the

main experiments. Chapter 7 outlines the experiments that were performed, with the results and discussion.

This work is closed in Chapter 8 with the conclusions drawn from the preceding research.
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Chapter 2

Background

The use of agents to e�ectively recreate human behaviour is one of the key features of most agent based

economics, as it gives a clear insight into the operation of a market. There have been a number of di�erent

approaches that have looked at the behaviour of the agents as related to their real world counterparts.

Although there is a disparity between the proposed agents and those reported on in this section, the success

of such systems has quite clearly been established, especially in the longevity of the �eld and has become an

integral part of Electricity Market Analysis.

This section aims to look at not only electricity market research, but also models that have been created

large systems capable of analysing these markets in greater detail. In addition, other aspects of non-electricity

market related game theory aspects are considered along with other relevant work for this research.

2.1 Agent Based Approaches to Analysing Electricity Markets

The concept of Agent Based Computer Economics (ACE) has developed into a relatively large area of

research, with an increasing interest in modeling and simulating electricity markets. While much of the

early work was based simply around modeling the markets, it became imperative to model the physical

systems as well as the market. A paper by Widergren et al. (2004) [61] approaches the problem of designing

ACE simulations across di�erent levels of the market. Of note for wholesale electricity market, the di�culty

highlighted is the development of the decision making process, given that even agents that appear to have a

similar pro�le may have di�erent "functions and responsibilities". This is one of the key factors that drives

the preference for a form of adaptive system in these simulations and one of the contributing factors towards
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using a Genetic Algorithm to create the agents presented in this research.

Bower and Bunn (2001)[8], proposed an agent based approach to analysing market power in an oligopolis-

tic electricity market. The approach uses agents that analyse their previous market state to modify their

bids by either raising or lowering the bid price in order to better achieve their objective, where the portfolio

utilisation is to achieve at least their target rate of utilisation for their whole plant portfolio and they achieve

a higher pro�t on their own plant portfolio, than for the previous trading day. One of the key outcomes that

this paper gives for this research concerns the information available to bidders, where they state that: "the

case study presented here, it seem that more transparent publication of competitors' prices would increase

competition in the bilateral model while not make any di�erence in the Pool". This conclusion is interesting

as the agents proposed in this work are given a high level of competitor information and so the expectation

would be that the competitiveness of these agents will rise and that the prices will be impacted accordingly.

In addition to this work, Bunn and Oliveira (2001)[10] developed an agent based simulation of the newly

proposed trading arrangements that a version of is implemented in this research. The key outcome of this

work was to identify potential strategic bidding behaviour that could be seen in advance of the system's

introduction. The companies with a diverse portfolio are able to create a dominant position are obtain

higher pro�ts than others, as such the paper concludes that the market for generation capital is going to rise

such that each company will actively be striving to improve their portfolio diversity and market position is

order to improve their pro�tability.

The di�culties of trying to build a realistic energy market simulation are highlighted by Bernal-Agustin

et al. (2007) [5], with the requirement of creating a useful training tool for those working with the market.

The paper is not looking to scienti�cally prove a speci�c hypothesis beyond veri�cation of the system's

operation. This is done by creating "su�ciently complex" case-studies to test that the results obtained by

simulation are in line with those found in the relevant real market (Spanish Mainland Day-Ahead Market).

Camerer and Ho (1999)[11] use Experience Weighted Attraction (EWA) by utilising what the agents hold

as their 'belief' of the expected situation to formulate their pro�t-maximising bids. The paper combines

the belief-based methodology with a reinforcement approach, which prior to the time of the paper were

considered "fundamentally di�erent". However the EWA model utilises the common feature of one time

learning combined with the given knowledge that thee information they require is di�erent, reinforcement

looks at itself while belief looks at their opponents. They conclude that the EWA model better �ts the class

of problems tested than either of the generic cases, with speci�c note of it's superior performance against

reinforcement learning.
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A number of papers written by Cau have involved looking at collusion between participants in markets.

The papers present a number of di�erent scenarios in which the tacit collusion, information garnered through

multiple interactions, of more than one agents can be used in an attempt to in�uence the system price. Work

with Anderson (2002)[12], uses a co-evolutionary approach to create the tacit collusion in an representation

of the New Zealand electricity market. The �nding show that the stable outcome to a collusive game seems

to be a Nash Equilibrium, with no agent able to make a better move from the best solution even if purely

in self interest. A follow-up paper (2011) [1] look at the constraints of an electricity market more and

speci�cally the spare capacity. They �nd that with a high excess of supply the price is forced into being

lower by competition, even if the agents are acting in a collusive manner.

Peter Cramton (2003) [14] covers competitive bidding behaviour in uniform price electricity auctions,

stating that it is expected that "suppliers should be bidding to maximize their pro�ts, which, as this paper

explains, will inevitably involve bidding above marginal cost". The key conclusions drawn in his study is

that although the agents are pro�t maximising and achieving above marginal cost levels of pro�t, they are

doing so with their own individual actions and are not colluding to get these results, but these prices that

are o�ered do have a natural limit, which is determined by the actions of the other participants in the

market. Both of these conclusions are instrumental in the rationale of this work, since this work is not

only interested in pushing the boundaries of the market to the limit, but is also interested in the way in

which di�erent agents interact. It should be noted that Cramton's paper only re�ects a uniform market

(represented in this research by the Buy-Back Market) and not a discriminatory pricing system (as seen in

the Nodal Market presented in this work), however it can be expected that although the actual behaviour of

each individual market participant is di�erent, the conclusions about the overarching form of the collective

of market participants will still hold true.

Work undertaken by Ernst et. al. studies a simplistic electricity market model and agent based interac-

tions within this environment. Their focus is on the development of the agents' behaviour rather than the

actual market equilibrium. The agents that are considered are: consumers, producers and the ISO. A de-

tailed representation is created for both the producers and ISO to maximise the understanding of behaviour,

additionally a static inelastic demand is used to represent the consumer agents. They show that under

limited transmission capacities that their agents are not able to make as large a pro�t as the unconstrained

case. They conclude that the agents can not produce as much electricity as in the unconstrained case without

entering into direct competition with other generators competing for use of the limited transmission. Sur-

mising that, "the limited transmission capacity prevents the portfolio from using the bids of the generators
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it owns at the di�erent locations of the system to exercise its market power"; identifying a key point, that

at least in this simpli�ed system the constraints on an electricity market seem to be directly able to reduce

the market power that a collection of generators at a number of locations (the aforementioned portfolio) is

able to e�ectively excerpt on that market.

The component agents de�ned in Ernst et.al.'s paper (2004)[39] re�ect the decisions taken in this research,

taking a simplistic view of the consumer stance in order to focus on the producers and their interaction with

the ISO. They include not only the producers, consumers and ISO, but the transmission owners in their

model, showing that with "an active transmission constraint" the agents on the export side of the constraint

are unable to achieve the same levels of pro�t as opposed to a market running a simple Locational Marginal

Pricing (LMP) system. By adding in a new actor into the market (in the form of the transmission company),

the dynamic of the market are a�ected such that the previously more pro�table agents are not able to exert

the same market pressure.

2.2 Alternative Arti�cial Intelligent Approaches

One of the alternative approaches when using arti�cial intelligence in simulating electricity markets is put

forward by Cincotti et al (2005) [13] uses a simulation centred on learning in games, as opposed to the

evolutionary methods used for this work. The paper looks at two di�erent algorithms to simulate a day-

ahead auction. Of note is the result that in a Nash Equilibrium strategy setting, the sellers are able to

obtain a higher pro�t in a uniform pricing setting over a discriminatory pricing auction, stating that "it is

easier to learn to collude in the uniform rather than in the discriminatory auction context", a point that is

fundamental to this research.

A comparative study into di�erent approaches to the analysis of equilibria in a constrained pool based

electricity market was undertaken by Krause et al. [30], who use both a Nash Equilibrium Analysis and Agent

Based Modelling approach. The simulation operates a matrix based game and implements a Q-Learning

system for the agents. The study looks at two di�erent cases, one with a single equilibrium and a case with

two equilibria. The results of this study show that with a single equilibrium the system converges upon this

point, but it is in the case where there are two equilibrium points that an interesting result is found. In the

two equilibria market, the agents behaviour causes the game to cycle between the two points. Even in a

simplistic setting, the cyclical nature of the results is an important feature to note, and with a larger system,

this behaviour could potentially not only be repeated, but with the inclusion of more equilibria, such as
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present in a real market, there could be even more unpredictable behaviour.

Bakirtzis [4] o�er a Q-learning based approach to creating bidding behaviour in their agents, this is done

by using a simulated annealing (SA) approach created by Guo et al. The approach uses the reduction in

'temperature' to work towards convergence, within the structure of the algorithm this is used to reach an

optimum strategy. The application of this strategy in the paper is to look at the comparison of pay-as-you-

bid and uniform pricing systems to clearly identify the e�ects of market power, pay-as-you-bid systems take

the exact value that is bid and that is the value that is paid, whereas a uniform pricing system pays at the

market clearing price. The paper demonstrates that high pricing is common to both pricing system when

market power can be exercised, but when there is only minor market power available uniform pricing seems

to achieve lower overall prices.

Another similar project using Q-Learning based agents in an electricity market was undertaken by Ly-Fie

Sugianto (2010) [33]. Sugianto takes a look at the Java-Bali region of Indonesia as a case study, taking a

particular look at how generators interact in the market, when they are able to o�er less than maximum

capacity. The author concludes that in this scenario there is often a trade-o� that the agents have to make

between o�ering a substantial quantity of electricity at a lower price versus o�ering less electricity but at

a much higher price. At any given time, it is imperative to identify which of these strategies is the best,

however for the research proposed here, the concept of a two step bid is implemented, that allows for a

great depth of strategy to be implemented, including the e�ective removal of supply that can be obtained

by pricing some of the electricity beyond a normally reasonable range.

Xiong et al. [64], also implement the popular Q-Learning approach to agent design, in order to test

uniform versus pay-as-you-bid market designs. Using a system of ten generator agents, and a single merit

based ISO, the system runs over a number of repeated trading days. The conclusions drawn from this

simulation show that a pay-as-you-bid pricing rule is vastly less volatile in the distribution of the price,

although on average from the sample given the average price of the uniform system is lower (Figures 2.1 and

2.2). Despite not using a constrained electricity market, the results of Xiong et al's study give an important

insight into the expectations of the results that will be obtained in this research.
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Figure 2.1: An example of market prices and bid prices of an agent at a given hour under the pay-as-bid
pricing rule. Xiong 2004 [64] Figure 4

Figure 2.2: An example of market prices and bid prices of an agent at a given hour under the uniform pricing
rule. Xiong 2004 [64] Figure 5

Before the introduction of the new electricity market regulations in California, Richter and Sheble [47]
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studied the proposed market and built an adaptive agent system with the aim that it could be used by those

with an interest in the new market. The Genetic Algorithm based agents used for their system implement

a very similar basic process, as can be seen in �gure 2.3.

Figure 2.3: The GA agent evolution process. Richter 1998 [47] Figure 2

Most noticeably di�erent from the market design that is present in Richter and Sheble's work and the one

described for this research is the actual market design being used. While their paper implements an auction

based system, the proposed approach uses the bilateral trading arrangements, that have been introduced

in Great Britain since the publication of Richter and Sheble's paper. The authors do note the success of

the developed system and note that not only has it succeeded in it's primary operation, but would also be

relevant as a tool for future use in the electricity market. It is with this the success of Genetic Algorithm

based agents, in earlier systems such as theirs, that con�dence can be gained that such systems are a useful

tool for analysing electricity markets.

2.3 Additional Electricity Market Considerations

One major factor that is important in studying electricity markets, is the fact that although each individual

instance of the market is a 'one-shot' deal, the real systems happen hour to hour and day to day. Rothkopf

[48] o�ers a look at the daily repetition process that is often overlooked, noting that the repetition of the
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auctions is imperative to gain a true perspective of the real workings of the market. Although at one point

a perpetual market state was considered to view the progress of agents across a year of operation, which

would follow Rothkopf's desire for the daily repetition of the market, the scope of error or inaccuracy that

could come from a single event could propagate and possibly invalidate many future results. Knowing the

possibility that a look at a one-shot event could not be conclusive and using states resulting from previous

runs could prove unreliable, the decision was taken to have a number of test cases and perform multiple runs

taking the average and noting where the runs di�er and by how much. This is increasingly important given

the use of evolutionary based agents that have randomised initial states.

In relation to the problem that is considered by Rothkopf at the heart of electricity market simulation

and analysis, that of repeated daily events not being represented, Ilic and Vishudiphan (1999) [58] developed

a system that aims to have generators learn the behaviour of daily repeatable events in order to obtain higher

levels of pro�t in subsequent iterations of the market. The market used is a pool based system, in which

the generators repeatedly attempt to sell their electricity on either an hourly or daily basis. The generators

are able to use one of two di�erent strategies, Estimated Pro�t Maximisation (EPM) or Competition to

a Base-Load Generator (CBG), The two di�erent methods are desingned based on the uncertainty that a

generator might have over it's own classi�cation, base, mid or peak load generators, with each calculating

between the two methods so as to optimise it's own strategy at any given time.

This work is extended into a more complex model that Vishudiphan presents in his thesis [59], applying it

to the study of the New England Electricity market. The thesis o�ers a di�erent set of agent strategies from

those in the previous work, focussing on a more generalised case. The major issue raised with the strategies

is the problem of imperfect information, which is a major factor in economic analysis and games. The main

focus of the thesis is on developing a simulation with the potential use in the real world, stating that it serves

speci�c roles for both regulators and planners, but much like other tools, is wary of the validation required

before serious market participants would want to use it, although this validation method is clearly identi�ed

for those wishing to take the approach.

The multiple strategy approach that is o�ered is one that was considered during the development of

the agents in this research. As an approach it can o�er a wide range of options for a variety of classes of

generator, which would be imperative to show a true re�ection of the operation of the electricity market.

Juselius and Stenbacka [29] have produced a study on the Nordic market, undertaking a long term study

of the pricing areas, it could be seen that some areas create e�ective markets on their own, while others seem

to integrate to form larger connected markets. Of particular interest is the consideration of the transmission
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capacity bottlenecks, which cause substantial problems in keeping competition available in all countries (With

Finland-Sweden acting as their main case study). It is important to note that there are some considerations

made about market power when considering the bottlenecks and transmission constraints.

Foroud et al. [18] have identi�ed a similar approach to the one proposed by this research, splitting the task

of a generator into two sub-problems identifying the maximisation of generator pro�t and the minimisation of

System Operator cost as the primary operation. The approach is similar in working, but takes into account

distribution companies as well as generation companies. The system uses a constrained 8-bus grid and seems

to achieve success in reaching a Nash Equilibrium in favour of the distribution companies.

A similar study has been undertaken by Pozo et al.[44] into the Nash Equilibrium of electricity markets,

however this has a focus on the long term equilibrium over the short term equilibriums considered in many

other approaches. Although the model used is capable of working on a short term basis, the duration is

considered in the long term, as such it is by iterating through the equivalent of a year's worth of short term

cycles that the long term is calculated.

Boonchuay and Ongsakul [6] have produced an approach to look at risky bidding strategies using a

particle swarm optimisation algorithm. By taking risk into account the added factor of how well the bid is

likely to perform is made part of the deciding factor. A reliability aspect is an interesting addition to the

work and although has been considered in the simulation created for this research as an extension of simply

taking the average of results of various System Operator runs, no advantage has been seen t including it

thus far.

A paper presented by Singhal and Swarup [52], looks at how to forecast electricity prices using an arti�cial

neural network. The system works very well for the majority of cases, but su�ers when the demand spikes

beyond the normal level. The system uses historical data (for up to four weeks) as inputs in order to get

the best results, the use of such historical data could be incorporated into this work should time need to be

factored into the simulation at any point.

When looking at equilibria strategies in repeated games, Roth and Erev [16] performed a study of three

di�erent games, using a variety of learning algorithms. Through experimentation they show that their 'Best-

Shot' and 'Market' games conform to predictable and observable equilibrium, where-as the 'Ultimatum' game,

in which two players are attempting to �nd an agreeable level of demand, where the maximum amount of

production an agent will allow of it's competitors directly re�ects their own payments.

The ultimatum case that is presented is of particular interest when considering the interactions between

agents. This kind of game is helpful in looking at constrained electricity markets, as there can often be a level
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of payo� that is directly attributed to the required actions of competitors. An Ultimatum Game is expected

to be a more marginal case within this research, however there is signi�cant room to acknowledge that

allowing an opponent access to the 'limited' demand they want, might allow for more pro�table strategies.

The best measure of how this kind of game is played within a larger simulation is to identify the di�erent

strategies that are played between high and low demand levels, trying to identify where if at all an Ultimatum

Style Game is played within this work

Work by Viet, Weidlich et al. [15] into simulated electricity markets, their �rst paper de�nes a simulation

that looks at both the forward contracting and spot market for a two settlement electricity market. The

simulation uses a reinforcement based learning methodology in their agent based system and is modeled

on a stylised version of the Belgian high-voltage transmission grid. The authors note in this paper that

the inclusion of forward contracts as a market to create signi�cant incentives for the agents to compete in

advance so as to in�uence their behaviour in the spot market, which they ultimately report lowers the energy

price.

A follow-up work by Viet and Weidlich[57], looks at two di�erent aspects of the market, the �rst is

using a day-ahead system, similar to the system used in this research, with the second being the market

for supplying the reserve power. They take the same approach to the agents as in the previously reported

paper, using a reinforcement learning technique. They look at two di�erent market mechanisms, a 'pay as

you bid' mechanism and a uniform pricing mechanism. The outcome generated using these di�erent systems

is dependent on the order in which the markets are prioritised, where the scenario in which agents must

o�er reserve capacity �rst yields higher prices in a uniform pricing market, where in the reverse case both

mechanisms obtain lower prices than the previous order.

In addition to their other work, one of the best overview of related research available was produced by

Weidlich and Viet (2008) [60]. The review shows the wide range or research and approaches taken, with a

note that at the time the �eld was beginning to really take shape and so a few conclusions were drawn across

all of the considered approaches at the time, these conclusions can be used to see how the �eld has moved

on since the 2008 review and speci�cally what is relevant to the work presented in this thesis.

The 2008 review considers that not much of the work carried out had considered transmission constraints,

however now a greater amount of the work is considering the need to include transmission constraints to see

the e�ect of many simulations on the markets. The work presented in this thesis also considers transmission

constraints in order to better understand the e�ect on a market under more realistic conditions.
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2.4 Large Scale Elcetricity Market Models

One of the major systems that has been developed in recent years concerning the simulation and operation of

an electricity market on a constrained transmission grid, is the AMES (Agent Based Modelling of Electricity

Markets) platform that was created by Tesfatsion et al [56].

The model set out in a 2005 paper [31] was developed with regards to a set of proposed new guidelines

made by the US Federal Energy Regulation Commission (FERC), where the aim was to in the long term

test the economic reliability of these new designs. The main focus of this work was to address the proposed

Locational Marginal Pricing (LMP) system, a nodal pricing variant, that was a key component of the

proposal.

From this initial outline of the platform, the AMES model was developed and the components and

algorithms that formed the platform were compiled in a 2007 paper [54]. where the process is a daily

repeated two stage process, where both a day ahead and real time market are run concurrently, the process

of which can be seen in Figure 2.4.

Figure 2.4: AMES Time Constrained Market Operation [56]

The AMES platform was test in a 2008 paper [34], where demand sensitivity and price caps were both

considered while looking at the LMP system. One of the key aspects of this was looking at how the generators

adapted their bids over time in this complex environment as a reaction to the market dynamics. The results

show that the competing generators when they are able to learn about the market are able to push the

system price up even at the potential loss of demand and thus increased competition.

There are a number of notable aspect with relation to this research, is that the test platform has become

a very well documented open source system, that was considered as the platform for this research. Details
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of the decision making process surrounding the consideration for using the AMES system can be seen in

Chapter 4.

Along with the AMES project, the EMCAS (Electricity Market Complex Adaptive System) project is

one of the major research platforms used to date in the use of Agent based systems for electricity market

analysis. A large amount of detailed study has gone into the development the detailed commercial system

[36]]. The system aims to emulate the market at all the di�erent levels of interaction and has beed primarily

used "to study restructuring issues in the U.S., Europe, and Asia".

The agent system developed for EMCAS re�ects the decision process made by a Genco and combines

three approaches in order to make it's decisions, each of which is based on a perception of time. Initially the

agents look back at it's own previous behaviour to see which bids were accepted, including pro�t levels and

utilisation, in both the short and long term. Then the system analyses the current market, noting which

generators it is competing against, and �nally it attempts to predict the market round that it is bidding

in. Taking into account each of these analyses, it then process them in order to create it's o�ers, Figure 2.5

shows the overall agent decision making process for a day ahead market.

Figure 2.5: EMCAS - Generation Company Agent Decision Process (North 2002 [36] Figure 4)

One of the major considerations for this work is the validation of the agents, the three conditions de�ned

in this work for agent validation as adapted from Fagiolo's work are a concise and easily understood set of

guidelines, however there has been work that goes to a greater depth. Macal and North [37] take an approach

to validating the EMCAS model that has limited access to real world comparable data, such that it is able
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to hold up to the scrutiny of interested parties within the industry along with policy makers. In order to

validate the model, without empirical data they create a seven point process (�gure 2.6) to minimise the

possibility that any given aspect is invalid.

Figure 2.6: EMCAS - Model Validation Framework (North 2005[37] Table 1)

Testing the EMACS system against this criteria, they draw a number of conclusions concerning the

agents, the main point of interest is that they found it 'easy' to convince policy makers of the use of agents,

primarily due to the way they act in correspondence to the real world. This clear conveyance of the real

world becomes one of the major challenges in the agents proposed in Chapter 4 of this research, since there

is a clear strategic di�erence given that the agents are acting in a less 'realistic' manner.

2.5 Game Theory and General Market Research

In a paper by Nicolas Jennings [26] the complexities of developing simulations to address real world problems

are identi�ed, primarily taking a software engineering approach to the development. Although a number

of approaches are considered, one of the most critical aspects of the paper is his base de�nition for creat-

ing agents for these simulations, basing the de�nition on sections of the 1997 text "Agent-based software

engineering" by Michael Wooldridge [63].

1. Clearly identi�able problem solving entities with well-de�ned boundaries and interfaces

2. Situated (embedded) in a particular environmentâ��they receive inputs related to the state of their

environment through sensors and they act on the environment through e�ectors

3. Designed to ful�ll a speci�c purposeâ��they have particular objectives (goals) to achieve
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4. Autonomousâ��they have control both over their internal state and over their own behaviour

5. Capable of exhibiting �exible problem solving behaviour in pursuit of their design objectivesâ��they

need to be both reactive (able to respond in a timely fashion to changes that occur in their environment)

and reactive (able to act in anticipation of future goals)

This de�nition create a useful metric by which the development of the agents in a system, something that

was further taken into consideration during the design of the agents in this work. The work does highlight

two di�erent pitfalls that are symptomatic with agent based systems:

1. Runtime Instability - The interactions are unpredictable and thus accurate timing can not be ensured

for the operation.

2. Emergent Behaviour - The behaviour of individuals can be uncertain due to the complex interactions

between di�erent agents.

Both of these points were considered during the development of the agents, the expected impact can

only be identi�ed to a degree prior to the completion of much of the experimentation, however both of these

points are best covered when evaluating the operation of the system as opposed to de�ning key decisions in

the development.

A paper by Arifovic and Ledyard (2004)[2] identi�es the use of learning models in games centred around

public goods, this takes the idea of scaling up learning models that work on small scale games in order to see

what happens on a larger scale. The paper points out a key aspect, which is the quick convergence on good

solution spaces, as described by desiring the "quick discarding of 'bad' strategies" and the ability "to focus

on good ones when you �nd them". The use of history as the driving factor for controlling these aspects,

by keeping relevant solutions is a central feature of the evolutionary nature that underpins the best strategy

(Individual Evolutionary Learning) and the �ndings are naturally helpful in the work this thesis presents.

The concept of exploitation vs exploration is an interesting study when looking at search spaces, especially

complicated ones. Exploitation is termed in a paper by Auer et al.[3] as picking a strategy that seems to gain

some success without looking into a large number of possibilities, whereas exploration tries a high number

of available strategies in order to 'gather statistics'. The paper looks at an algorithm that aims to maximise

the payo� by balancing out the exploitation and explorations, this is done by modifying the weighting of

probabilities within the system. One of the major issues that arises is that due to a number of factors the

comparisons cannot be directly made to real markets because there is insu�cient information to perform an

adequate validation.
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The evolutionary approach to Game Theory is an important area of research, as it relates directly to

key parts of the simulation designed to analyse an electricity market in this research. Sabourian and Juang

(2008) [49] produced an insight into this subject, looking at two major questions, can we expect agents in

this kind of game to react in a way to eventually �nd an equilibrium state and by extension, which of the

equilibria that exist will they reach. The paper splits the topic into two major approaches, imitation and

best response, where imitation aims to maximise pro�t from a strategy that repeats the actions of other

successful agents, where as best response acts in such a way as to take advantage of the single best possible

move available. It is this kind of response based actions that are focussed on in this research over the

imitation strategy, for the expressed reasoning that (as de�ned in the paper), a response based system will

tend towards the higher reward risky strategy, which can be overlooked by an imitation based system. With

the expressed requirement to attempt to push the market as far as possible, it is with these 'risky moves'

that more stable market states may be found that achieve this. Schipper (2009) [51] studies both imitators

and responders and draws very much the same conclusion that Sabourian and Juang, which is that imitators

achieve superior pro�t. Much of the work covered is based round a conceptual market as opposed to a more

complex real market such as an electricity market, where the set of constraints that in�uence the market

cause an asymmetry between companies, which would likely reduce the e�ectiveness of an imitation based

approach, although without thorough testing this is speculative.

2.6 Modeling and Validation

In an extension to the work by Fagiolo cited as the metric for guiding the success of the system at it's task,

Windrum, Fagiolo and Moneta (2007)[62] try to address the main problems face by those creating models and

o�er an number of solutions. This paper o�ers three di�erent calibration approaches to validation without

the requirement of strict empirical validation, two of which are relevant for use with this research:

Indirect Calibration: The user validates the system based on a set of stylised facts, they are interested in

and wish to maintain, with the aim of restricting the analysis to those cases (or using limited parameters)

where the initial hypothesis of these facts is upheld. This allows the user to look in more depth at the

mechanisms in order to ascertain how and why the cases that work work and more speci�cally, why some

cases fail, which in turn should lead to the rede�nition of the styalised facts and a more valid system.

Wenker-Brenner: The Wenker-Brenner approach is an extended form of empirical validation, which aims

to use limited relevant empirical data in order to initially de�ne the working parameters, where the scope of
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the parameters should be based on the information available, increasing the value range where there is limited

reliable data. The system proposes using "Bayesian inference procedures" in order to gauge the probability

that any given tested parameter model is valid against limited empirical results. These probabilities are then

used to rede�ne the parameters, intending to create a more accurate simulation.

These approaches o�er a way to create more accurately re�ected simulations given a lack of empirical

data, althoug the authors do raise issues with each of the methods. With some of the initially considered data

sets for the large scale simulations in this research, these approaches would have proven useful. However due

to the decision to formulate much of the data model on the National grid, the reasoning for implementing

such a validation structure becomes less important.

Despite the widespread success of agent based systems in economics, Richiardi (2003) [45] de�nes what

he considers to be the three major pitfalls of these systems:

1. Interpretation of the simulation dynamics

2. Estimation of the simulation model

3. Generalisation of the results

These three pitfalls cover the broad subject of how accurate the simulated environment is in relation to

it's real world counterpart. While each of the parts is important to consider, the third pitfall, generalisation

of the results, is one that can be overlooked. While the focus on getting the initial simulation as accurate as

possible is integral to the working of the system, the same careful analysis needs to be extended beyond the

design into de�ning how much can be taken away from the work. This is especially relevant given the focus

of this research.

Richiardi et al. (2006) [46] followed this by extending the base study and calling for a single protocol

for creating agent based social simulations, citing the lack of publication penetration that many simulations

seemed to have. Although the reasoning may not be as sound with a large number of relevant simulations

being published, the desire for a standardised platform for creating social based simulations would greatly

bene�t those who research in the area.

As has been noted, the validation and veri�cation of a model has been paramount, with this as a clear

motivation for the continued development of simulations and model, Robert Sargent (2010) [50] o�ers an

insight into the di�erent methods available to achieve this. Figure 2.7, shows Sargent's view of the interaction

between the real world and the simulated world (as de�ned by him), identifying the actions that he considers

need either validation or veri�cation.
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Figure 2.7: Real World and Simulation World Relationships with Veri�cation and Validation (Sargent 2010
[50] Figure 3)

Sargent outlines the basics of �fteen di�erent techniques for validating a model, a number of which are

useful for validation in this research, such as 'Internal Validity', however some of these are either not relevant

or achievable given the design and requirements of the simulation, for example 'the use of historical data'.

Despite this idealised scenario and detailed explanations for validating and verifying the model, Sargent

is very clear about potential of spiraling costs needed to completely validate a model, also stating that "there

is no set of speci�c tests that can easily be applied to determine the 'correctness' of a model" and that "Every

simulation project presents a new and unique challenge to the model development team".

2.7 Summary

This chapter identi�es the previous research that has been performed that is relevant to this research.

The previously performed research has shown that arti�cial agents using a variety of learning algorithms

are capable of accurately replicating the operations in an electricity market. Where this research di�ers from
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much of the research covered is that the agents are operating on a simulation that are able to explore all of

the possible search space.

The AMES system provides a detailed look at a sample electricity market with full coverage of the

electrical engineering principles that can a�ect a transmission grid. This research is concerned to a more

with the operation of the market as opposed to the transmission grid that it operates on. Additionally the

EMCAS project covered shows clearly that large scale models of electricity market interactions are possible,

and that detailed studies can be performed and the results can be used to in�uence policy.

The �eld of Agent Based Computational Economics is a �eld that has been explored in a number of

di�erent ways concerning many di�erent aspects of the wider subject area. The research presented here is

focussed on a single aspect of market design, which is the short run price e�ciency of a market.

One of the main reasons stated for performing this research is to attempt to stretch di�erent market

designs, in this case pricing mechanisms, by creating an environment where those agents competing are

actively doing so in a purely pro�t maximising manner. The concept under investigation here is that while

evolutionary agents are highly adaptive in the environment that they operate, they are consistently able to

exploit the rules under which they operate to give novel solutions to problems.

The work by Xiong et. al. presents a comparison of two di�erent market designs, however this comparison

did not use a constrained electricity market. This is one of the major di�erences that this research presents

in the comparison of di�erent market design, which would be expected to result in di�erent behaviour by

those competing in the market. By comparing market designs with the consideration of constraints, it is

possible to get a more speci�c idea of how resilient and under what conditions the di�ernt markets are to

the potential gaming of the system. While evolutionary based algorithms have been applied to the area of

computational economics of electricity markets (such as Richter and Shebel's work), they have not been used

in a comparative manner to explore the use of market power within these markets.

Where much of the literature o�ers learning based agents to test a market design with a level of rationale to

the portfolio choices and actions, the evolutionary system proposed for this research is creating a simulation,

where each agent is able to best explore all possibilities available to them. This use of an evolutionary agents

for the creation of short run prices in a constrained electricity market allows for the potential of exploring

the way that market power can be exploited that is not represented in the previous work presented here.
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Chapter 3

Electricity Market Model

In order to create the best understanding of not only how a realistic electricity market works, but how it

can be pushed to it's limits, a detailed simulation has been proposed to act as the operational framework in

order to achieve this objective.

A proposed simulation for this research needs to cover all relevant aspects of a real market, including not

only the expected trading regulations, but other aspects such as those of physical constraints (in the form

of the power transmission network) and operational constraints (regulations), although the latter features

more prominently in those who operate on the market (the Agents).

There are two main constraints that need to be addressed before the design of the simulation can be

discussed, as they are crucial for the success of the simulation. The �rst is that the electricity delivery system

must have a balance of supply and demand. The main reason for this is that an excess or a shortfall of

supply can lead to an overload or underload of supply on the network, which can in cases lead to system

blackouts. The National Grid in Great Britain has a small range on it's system load which allow it to be

within it's safe operational bounds before it needs to be corrected. With regards to this research, much of

the concern surrounding the exact load of the system is handled at the time of delivery where exact supply

and demand is known, whereas a day ahead market, such as the one used in this paper, is based o� of

predicted demand, that doesn't operate at the time of delivery. While there isn't this perfect requirement

in the proposed market structure to ensure that supply and demand equalise, due to this predicted nature

of the data used and additional real-time balancing, the desire is still to balance a proposed level of supply

and demand in the system.

The second aspect that needs to be addressed is that of the power network and electricity delivery system.
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A number of studies in this �eld assume that the electricity is e�ectively generated in a limitless transport

system, however the desire for completeness of simulations and the model used has generated the desire for

representing a transport system. The importance of being able to identify a valid movement of electricity in

the network is especially important when concerned with evaluating market rules with regards to realistic

operation. The basis of the importance of the transmission system is that each power line that the electricity

is transferred along has a standard maximum operating capacity, which in order to protect the line from

damage should not be repeatedly exceeded. With regards to not wanting to damage the lines by repeated

overloading, the simulation needs to have build in a measure to regulate exactly how much electricity can

�ow down a single line. Although the standard operating capacities on the lines can be broken within reason,

it is desirable to minimise the amount of times this occurs, such that if there is a feasible way to rebalance the

system without overloading any line then that is preferable. However in the case that a suitable alternative

is not obtainable within a reasonable time frame, small overloads will be permitted.

The remainder of this chapter is concerned with the details of the design and implementation of the

simulated power transmission system and electricity market. This is achieved �rst by looking at the AMES

platform as an alternative to the developed system, followed by the design of the transmission system and

rebalancing mechanism. The chapter follows by looking at validating the implementation of two di�erent

pricing rules that are used and the balancing mechanism.

3.1 Alternative Transmission Platform

One of the earliest considerations for this research was to implement a design using the open source AMES

Model that has been developed by Tesfatsion et al [56]. The AMES model is a power �ow test bed which

emulates to a very high precision the the electrical engineering principles that are at the centre of an electricity

transmission system's operation.

There are two main bene�ts to implementing the AMES test platform as the basis for this simulation.

The major bene�t of implementing the system is the precision of the results, since a high level of emphasis

has been placed on emulating as closely as possible the electrical engineering aspects required for the power

grid. This would instill a high level of con�dence that the underlying aspects are less contestable, making

the results achieved above it more reliable.

The other major advantage is that the system is that the AMES platform is open source, which meant

that during development there was an available implementation that had been tested and had been veri�ed
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as stable. This would save time and resources spent on developing a new platform. However in order to

make the most e�ective use of the advantages the platform o�ers, a complete understanding of the operation

and the code is needed.

It is this level of understanding that causes one of the main issues with developing on the AMES platform.

In order to achieve the stated aim of this research, a number of modi�cations would have had to be made to

the code to allow for the required interactions of the planned agents and market, which could have jeopardised

the integrity and performance of the underlying system.

The other concern with the AMES platform was that at the time of development, the platform had not

been tested on an network the size desired for the experimentation. The literature available on the project

had identi�ed the potential for developing on a larger system, however to that point the results had been

based on a 5-Node network.

Although the AMES platform does have some signi�cant advantages, the number of unknown factors

that could a�ect the development and results of the simulation and the results were considered to be too

high in this case. As such an alternate design was proposed using an approximation to the power �ow model,

which allows for a far more simplistic structure for development and integration, while maintaining enough

of the complexity of a real transmission network to give con�dence in the results.

3.2 Simulation Overview

The simulation used in this research is split into two main sections, the power transmission system and the

day-ahead electricity market. The power transmission system is a representation of the physical attributes of

the system, where the market governs the process by which the �nancial calculations for the simulation are

handled. Figure 3.1 shows an overview of the design of the simulation, including the basic �ow of information.

Figure 3.1: Overview of Simulation Interactions
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The System Operator represented in �gure 3.1 is designed as a central control for the various di�erent

aspects of the simulation. The primary function of the System Operator is to maintain the current 'best'

state for the supply of electricity in the simulation. This is achieved by �rst creating an initial state, where

all demand is �lled as cheaply as possible from the bids supplied to it, which in the case of the research

consists of those generated by the agents. At this stage no line constraints have been considered, in order to

ascertain if the initially generated solution is passed to the balancing mechanism where it is tested in order

to see if any line constraints are exceeded. This test is performed by calculating the �ow along each line

such that the generation schedule and nodal demand would result in, which is done using the Direct Current

Optimal Power Flow (DC OPF) algorithm. The values calculated correspond to the amount of electricity

that will �ow down each line, this is checked against the operating capacity stored for each of the lines,

where a valid state in this case is considered to be a load �ow pro�le in which no line exceeds it's operating

capacity.

Once validated by the balancing mechanism, the generation state is returned to the System Operator,

which then submits the generation pro�le and bids to the market in order to calculate pay for each generator.

If however during the balancing mechanism's validation process, the predicted load for any line exceeds the

pre-de�ned maximum, then the state is considered invalid and the balancing mechanism will attempt to

create a valid state by modifying the output of di�erent generators in order to manipulate the �ows along

di�erent lines. Once a new valid state has been found, then this new state is returned to the System Operator

to calculate the pay levels for each generator.

3.3 Balancing Mechanism

One of the fundamental parts of the proposed simulation is the balancing mechanism, which is a function

that is designed to ensure that a completely valid generation schedule (or in severe cases a minimally invalid

schedule) is found, where a valid generation schedule is a set of generator outputs, such that supply equals

demand and that the load on any given line does not exceed it's standard operating capacity.

A diagrammatic representation of the balancing process can be seen in Figure 3.2, following which each

of the six stages represented in the �ow chart will be covered in more detail.
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Figure 3.2: Balancing Mechanism Process

3.3.1 Calculating Line Flows

The initial stage of the balancing mechanism is to calculate the network injections (physical input of electricity

onto the network) of the current generation schedule, referred to as a solution in regards to the balancing

mechanism, which is either the initial solution from the System Operator or a revised schedule from a

solution in the balancing mechanism. The network injections are performed by subtracting the total amount

of electricity demanded at a node from the total generation at that node. These values are then converted

into a vector, which represents the available supply (positive values) and remaining demand (negative values)

in the network. This vector forms half of the Approximate DC OPF equation, where the other half of the

equation is a transfer pro�le, which identi�es how the electricity is e�ectively transferred, the basis of which

is set out in Schweppe et at. (1988) [20]. The version displayed here is a matrix form presented in Green

(2004) [21].

z = y(R−1A(ATR−1A)−1) (3.1)

Equation 3.1 shows the approximate DC OPF algorithm in matrix form, Where matrix A is the admit-

tance Matrix, a reference matrix of size m x n, where m is the number of lines and n is one less than the
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number of nodes. Matrix R is a diagonal matrix of size m x m, where m is also the number of lines, and the

values held in the matrix are the resistances of each line de�ned in respect to each other. Vector y is the set

of network injections as previously calculated and the output vector z is the calculated �ow along each line.

A working of the algorithm in a simplistic case study can be seen in Appendix A.

In the development of this component of the balancing mechanism, the JAMA [38] open source matrix

package was used for all applicable matrix operations.

3.3.2 Calculating Line Excesses

The line excesses are the di�erences between the standard operating capacity of the line and the actual or

predicted load for the line. Equation 3.2 gives the simple form of calculating the line excesses.

a =| z | −c (3.2)

Where z is the set of load �ows calculated according to equation 3.1, c is the set of standard operating

capacities for each of the lines and a is the resultant excesses. Since the DC OPF algorithm gives each

line's �ow in terms of a directionality, where a positive value in z indicates a start-end directional �ow and

a negative value indicates an end-start �ow, the load �ow values must be taken as absolute values for this

calculation.

A check is then performed on each of the values in a in order to �nd out if each line has a valid load

level. A positive score for a line indicates that the predicted load for a line exceeds the maximum capacity

of the line and will invalidate the solution and result in the requirement for (further) rebalancing, subject

to the remaining number or rebalancing attempts available. If all values in a are less than or equal to zero,

then the solution is validated and can be returned to the system operator.

In the case that the maximum number or rebalancing attempts has been exceeded, then the last solution

tested is returned, in place of a completely valid solution.

3.3.3 Identifying the Worst Line

In the case that there is more than a single line that has a predicted load that exceeds it's standard operating

capacity; then the system must identify which line it will prioritise in rebalancing the system.

There are two main approaches that can were considered for creating priority in rebalancing lines. The

�rst method is to order the the lines by the absolute value that a predicted load exceeds the standard
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operating capacity, where the second method orders the lines by the percentage value that the load exceeds

the capacity. An alternative to taking into consideration the actual imbalance of loads, is to order based on

the line capacities, or on a prede�ned order, despite this method highlighting the major lines �rst, it has

the potential to waste resources solving a minor line imbalance, albeit on a line with greater capacity, in

preference to a line that needs

Of the two approaches based on the predicted loads, prioritising by absolute value was chosen in preference

to the percentage method. The reasoning for this is similar to the reasoning of not predetermining the order

to rebalance, in that there could be a minor line that is overloaded by a signi�cant percentage of itâ��s

capacity, but has a lower absolute level of load than one of the major lines. As such, the aim in taking the

largest imbalance �rst, is that a number of the smaller imbalances are corrected as a result of the adjustments

made to the generation schedule. Although not guaranteed in all cases, the expectation is that this method

will result in fewer iterations required to rebalance the generation schedule.

In the simulation's implementation, the values of vector a in equation 3.2 gives the di�erences in load

against the capacity and the simulation selects the highest vale from amongst these for the rebalancing

process.

3.3.4 Calculating the 'E�ect' on a Line

One of the key attributes in rebalancing the loads on the system, is to know how the change in output of a

given generator will a�ect the load on the target line. This process is performed to help later identify the

key generators that will cause the required impact on the load pro�le such that the load does not exceed the

capacity on the given line.

To calculate the e�ect on a given line, is a process to determine the impact that a single MW of generation

has on the target line. This is done by simulating a single MW of generation at each node and calculating

how much of the generated MW will �ow down the line. To get a complete view the MW of generation is

simulated to be required at each end of the line independently, this is so as to identify both the potential

positive and negative impact on the line. Figure 3.3 shows a simple network and the relative e�ect that a

single MW of generation has on a given line.

59



Figure 3.3: Diagram of the E�ect of a Single MW of Generation on a line

In the example shown in �gure 3.3, the imbalance being corrected is on the line between nodes 1 and 3,

with the directionality of the �ow from 1 to 3. The table shows how a single MW injected into the network

at each node will a�ect the �ow on the line.

3.3.5 Identifying the Key Generators

With a de�ned set of 'e�ects' based on a change in generation at each node in the network, the next step

is to identify the �nancial impact that a change in output for any given generator will have on the target

line. This is done by taking each of the bids supplied by the generators and scaling the price that a MW is

supplied at in relation to the e�ect on the line, such that for each bid, there is a monetary value that can be

attributed to increasing or decreasing a single MW of �ow along the target line.

The bids are sorted into two arrays, based on the e�ect they have on the line, the �rst array contains

all of the generation that is currently available, that will reduce the load along the line (in relation to the

current direction of �ow). Currently available generation is de�ned here as any generation that has not been

utilised in the current generation schedule, either from an unused generator or additional generation from

a generator that is scheduled, but is not scheduled to produce at capacity. The second array consists of all

currently scheduled generation, that can be removed from the generation schedule, such that the net e�ect

will be a reduction of the load on the line (in relation to the current direction of �ow).

The two arrays are sorted by their �nancial impact per MW adjusted. The array that contains the
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available generation is sorted, such that it minimises the cost per MW �xed, where the scheduled generation

array is sorted so as to maximise the savings per MW adjusted.

3.3.6 Rebalancing Loop

With a complete set of bids that impact the line and the extent to which they impact it, the loads can

be adjusted to reduce the load on the target line. The rebalancing loop consists of multiple iterations of

increasing the generation selected from bids in the available generation array and reducing the generation

from the bids in the currently scheduled array.

The process works by taking the cheapest impact MW from the available generation to replace the most

expensive impact MW on the surplus side and repeating until the load on the line no longer exceeds the

de�ned capacity. Once this process has been completed for the current line, the generation schedule is

updated to re�ect these changes and is returned to the �rst step of the balancing mechanism to attempt to

validate the new schedule.

3.4 Market Validation

It was noted in Chapter 1 that in creating a simulation there is a great importance in validating the model

so as to better draw reliable conclusions from the experimentation presented later in this chapter and for

the large scale study in Chapter 7.

As was noted in Chapter 2 when discussing validation and veri�cation, it was noted by Sargent that

de�ning the method and success of any such veri�cation or validation is a challenge that is presented to the

development team of the model. In Chapter 1, one of the main attributes of this research is that the agents

are developed in such a way that they are aiming to explore weaknesses in the market design, the main

point of validation that needs to be considered is the correct application of the market rules such that the

evolutionary agents are not exploiting issues with the programming.

To validate the model, two di�erent tests are performed identifying critical aspects of the simulation.

The �rst aspect that needs to be validated is the operation of the two pricing mechanisms, where the main

issue is ensuring that the deterministic aspects of the balancing mechanism are correct. Whereas the second

aspect is the validation of the line constraint calculations, ensuring that when bids are submitted they are

handled correctly by the market operation.
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3.4.1 Validation of Market Mechanisms

The initial validation being performed is concerning the operation of the payment mechanism, this is achieved

by considering a simple case where we can calculate the pay for each agent and compare it to the simulated

result.

By modelling the interactions of the market in a pseudo 2-node network, it is possible to clearly identify

if the model is performing the correct calculations that are expected. To perform this test a number of post

balancing mechanism states for 5 bids split across two nodes are constructed where the pay for each of the

generators can be calculated in each case. For two alternative 2-node scenario, 4 di�erent dispatch schedules

need to be considered, a constrained and an unconstrained version for each of the market designs.

Bid P(¿) Q (MWh)
A1 10 100
B1 20 100
C1 30 100
D2 40 100
E2 50 100

Table 3.1: Market State A Bid O�ers

Bid P(¿) Q (MWh)
A1 10 100
B1 20 100
C1 40 100
D2 30 100
E2 50 100

Table 3.2: Market State B Bid O�ers

Tables 3.1 and 3.2 shows the bids o�ered to the market in the two cases for this validation, where bids A,

B and C are o�ered from Node 1 and bids D and E are o�ered from Node 2. The two situations considered

are an unconstrained case (a demand of 300MW) and a constrained case (a demand of 400MW).

Buy Back Unconstrained

The unconstrained Buy Back scenario de�nes a situation, where no rebalancing was needed in order to

create a valid load �ow. This means that all market participants scheduled to produce should be paid at the

uniform market price.

For a quantity of 300MWh, the uniform price should be ¿30/MWh in both states, where A1 and B2
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should be paid a total of ¿3000 each and then in State A C1 will be paid ¿3000, but in State B D2 will

receive the payment instead of C1.

Nodal Unconstrained

Under Nodal unconstrained conditions, the market should create a scenario, where the price paid at each

node for generation is equal and set at the price of the most expensive generation scheduled. In either state

the most expensive generation scheduled is the For a quantity of 300MWh, the nodal price at both nodes

should be ¿30/MWh in both states, where A1 and B2 should be paid a total of v 3000 each and then in

State A C1 will be paid ¿3000, but in State B D2 will receive the payment instead of C1.

Buy Back Constrained

The Buy Back constrained scenario is designed to test at a simple level that should a schedule require

rebalancing that the payments made to each individual are correct based on the market rules.

In this scenario the demand of 400MWh would in both cases initially be scheduled by A1, B1, C1 and

D2. However if a constraint is considered that requires the reduction of generator output at Node 1 from

bid C1 of 100MWh and an increase in output at node 2 from bid E2 of 100MWh. This should see that A1,

B1 and D2 are paid at the uniform price level of ¿40/MWh, C1 should be paid at the uniform price minus

the bid price and E2 will be paid at its bid price of ¿50/MWh. In State A, the price C1 will be paid should

be ¿10/MWH and in State B should be paid ¿0/MWh as the uniform price is equal to the price bid by C1.

Nodal Constrained

The Nodal constrained scenario is designed to test at a simple level that should a schedule require rebalancing

that the payments made to each individual are correct based on the market rules.

In this scenario the demand of 400MWh would in both cases initially be scheduled by A1, B1, C1 and

D2. However if a constraint is considered that requires the reduction of generator output at Node 1 from

bid C1 of 100MWh and an increase in output at node 2 from bid E2 of 100MWh. The constraint should see

two nodal prices being calculated that relate to the respective bids for the generation. In both States A and

B, the nodal prices should be ¿20/MWh for Node 1 and ¿50/MWh for Node 2.

An extension to this case can be considered where there is a reduction of only 50MWh from C1 (and

increase of 50MWh from E2), will cause no change in nodal price at node 2, however at node 1 the nodal

prices will be ¿30/MWh in State A and ¿40/MWh in State B.
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Results

The results presented here show the outcome of the payment and balancing mechanisms within the simu-

lation. In both states, the results come out to those predicted in the scenarios as described above. The

results presented here show the total payments made to each of the generators rather than the price per

MWh produced as it more useful in clarifying the basic operation of the market within the simulation.

Case A1 B1 C1 D2 E2
Buy Back (Unconstrained) 3000 3000 3000 0 0
Buy Back (Constrained) 4000 4000 1000 4000 5000
Nodal (Unconstrained) 3000 3000 3000 0 0
Nodal (Constrained) 2000 2000 0 5000 5000

Table 3.3: Market State A Payments

Case A1 B1 C1 D2 E2
Buy Back (Unconstrained) 3000 3000 0 3000 0
Buy Back (Constrained) 4000 4000 0 4000 5000
Nodal (Unconstrained) 3000 3000 0 3000 0
Nodal (Constrained) 2000 2000 0 5000 5000

Table 3.4: Market State B Payments

As noted in Chapter 1 the pricing mechanisms act as analogies to the long run contracting process, so

the outcome of this validation, is not to state that these pricing mechanisms work exactly as the market

documentation states, but to identify that when the experiments are run there is con�dence that the mech-

anisms are operating in a predictable manner. From the results presented, both pricing mechanisms appear

to operate correctly under constrained and unconstrained conditions.

3.4.2 Validation of Load Flow Equations

The second consideration that needs to be made is that the line �ow calculations are acting correctly and

restricting the generation of the agents where necessary. While the previous validation method appears

to show to some degree that the rebalancing method appears to be operating correctly, the focus of this

section is in ensuring that generation is constrained correctly when the load is being transfered between

intermediatry nodes.

In order to test for the validity of the line constraint calculations, 3 di�erent small scale scenarios have

been developed that represent cases that could be potentially experienced by a market.
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Each of these test cases uses a simple 5 node network, each with their own characteristic generation and

demand schedules that create the desired scenario.

Figure 3.4: A Simplistic 5 Node Network Design

Line ID Start Node End Node Capacity(MW)
0 0 1 500
1 1 2 500
2 2 3 500
3 3 4 500

Table 3.5: 5 Node Test Case Line Data

Never Constrained

The never constrained case is a speci�c case that under marginal cost conditions there should be no binding

constraints even at the highest demand level. The demand and generation is split evenly amongst the

generators and the only determining factor in deciding generation is the price.

The expected outcome from this should show that no lines are congested under any case with marginal

cost bids. The lowest cost generators should be dispatched in full up until all demand has been �lled.

Node Generation Capacity (MW) Cost per Unit (Â£) Proportion of Demand
0 320 5 0.2
1 320 6 0.2
2 320 9 0.2
3 320 11 0.2
4 320 13 0.2

Table 3.6: Never Constrained Test Case Generator Data
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Highly Constrained

The highly constrained case is designed to ensure that under all demand levels above the initial 30% demand

level the line between nodes 0 and 1 will be constrained under marginal cost conditions.

The expected outcome in this scenario is that at the 30 level the lines will not be constrained, however at

the higher demand levels the output of the generator at node 0 will be restricted to the nodal demand plus

the 500MW line constraint. The 60 and 70 demand levels will also cause the constraint between nodes 1 and

2 to become binding, and will require dispatch from the generator at node 2 in order to ful�l the required

demand, while the output from generator at node 1 is restricted due to the large excess of supply at node 0.

Node Generation Capacity (MW) Cost per Unit (Â£) Proportion of Demand
0 650 5 0.1
1 355 6 0.3
2 200 9 0.2
3 200 11 0.2
4 200 13 0.2

Table 3.7: Highly Constrained Test Case Generator Data

High Demand Must Run

The high demand must run case creates a scenario, where under marginal cost conditions no lines are

constrained, however in the 50 demand cases and above, the generator at node 0 must run. Under marginal

cost conditions, this e�ect is not-relevant as there is no attempt made at exploiting the market.

The expectation in this case is that no lines should have a binding constraint and so the generators with

the lowest cost should be dispatched to meet the demand.

Node Generation Capacity (MW) Cost per Unit (Â£) Proportion of Demand
0 850 5 0.4
1 350 6 0.2
2 200 9 0.2
3 100 11 0.1
4 100 13 0.1

Table 3.8: High Demand Must Run Test Case Generator Data

Results

The results presented here show the generation of each of the generators, while the Never Constrained and

High Demand Must Run cases are interesting as case studies and are revisited in the next chapter. The
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main results come from the Highly Constrained case, which demonstrates the rebalancing method operating

to ensure that no generator produces more electricity than they can exported given the line constraints.

System Demand
Generator 30 40 50 60 70

0 320 320 320 320 320
1 160 320 320 320 320
2 0 0 160 320 320
3 0 0 0 0 160
4 0 0 0 0 0

Table 3.9: Never Constrained Test Case Generation with Demand as a Percentage of Total System Generation

The never Constrained case shows a simple scenario, in which generators are scheduled in merit order up

to capacity, at which point the next generator in the merit order is selected to produce. Given that there

are no constraints that can be breached there is no revised schedule, as the initial schedule does not breach

any constraints.

System Demand
Generator 30 40 50 60 70

0 480 564 580 546 612
1 0 116 220 288 336
2 0 0 0 76 172
3 0 0 0 0 0
4 0 0 0 0 0

Table 3.10: Highly Constrained Test Case Generation with Demand as a Percentage of Total System Gen-
eration

The results in the Highly Constrained case show that while a generator may have spare capacity available,

if they are not able to transmit electricity because the lines are constrained by other generation, then the

system creates a more optimal schedule.

In each of the 60 and 70 percent demand cases the generator at Node 0 produces enough electricity to

�ll demand at their own node and �ood the lines going south. This means that while the generator at Node

1 is able to produce electricity, it cannot produce more than the demand of the node it is based at. The

remainder of the demand is then produced at the next cheapest node, in this case Node 2.
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System Demand
Generator 30 40 50 60 70

0 480 640 800 850 850
1 0 0 0 110 270
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

Table 3.11: High Demand Must Run Test Case Generation with Demand as a Percentage of Total System
Generation

The high demand must run case is a less interesting veri�cation scenario when operating at marginal

price, because there is no gaming of the markets for pro�t. In this case the Large generator generates up to

capacity and then the smaller generators �ll the remaining capacity.

The results shown identify that in a simplistic case, the rebalancing mechanism is able to identify if a

schedule is valid and rebalance it in an e�ccient manner if required. Much like the validation of the pricing

mechanisms, this serves as a means by which to measure the operation of the simulated balancing mechanism

and that a real world rebalancing mechanism may operated di�erently according to market procedures.

3.5 Summary

This chapter creates a method of simulating a day ahead wholesale electricity market with two di�erent

pricing mechanisms.

The simulation creates the initially cheapest schedule available and attempts to validate it using the

DC OPF algorithm. Invalid schedules are rebalanced by reducing the generation on the most expensive

generators that impact the given line and increase generation at the cheapest available generators that will

help reduce the load on a selected line.

The payments for valid schedules are calculated by the two pricing mechanisms. The buy back mechanism

calculates an initial uniform price for generation and calculates payments for rebalance scheduling based on

bid prices. Nodal pricing calculates a price at each node on a network and generators are paid based on the

price at their node.

At the close of this chapter, two simple tests are performed to identify if the aspects of the simulation

that form the market are operating as expected. The methods verify that both the pricing mechanisms and

the rebalancing mechanism operate in a manner that give results consistent with the expected outcomes in

a number of di�erent scenarios.
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Chapter 4

Agent Design

One of the major components of the simulation are the bids that are used to formulate the generation

schedule, these bids de�ne how much electricity a generator is willing to supply at di�erent prices. Although

a simplistic system could be de�ned to generate bids for each of the generators, this research is focused on

the strategic games that can be played in the market and by the individuals that make these decisions, as

such a more intricate method for de�ning how the bids are created is desired.

This chapter identi�es the process taken behind designing the agent based system for operation with the

simulation, �rst looking at the reason for using agents and what they are expected to do in this system,

followed by a number of di�erent designs considered for the agents, with an explanation as to what aspects

made the implemented design preferable over the alternatives. The chapter then outlines the components

of each of the agents, followed by a discussion of the assumptions and limitations made in the design of the

agents. The chapter closes by identifying how the agents and simulation interact to perform the experiments

described in chapters 5 and 7.

4.1 Rationale For Arti�cial Agents

With a real electricity market, the decision making process on the bids supplied is a job given to one or more

people at a generating company or at a single generator. An agent, in the sense of this research and many

other similar projects, is de�ned as a simulated representation of either the single person or collective people

whose job it is to make the decision on the course of action that will maximise their objective welfare. Which

in this case means that they are creating bids for generators that they control such that they maximise their
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pro�ts.

The bids that are created have to be created in such a way, that they are carefully reasoned to re�ect the

interests of the generator owners. As such in the real market these decisions are taken to create bids that

maximise pro�t and potentially minimise risk. It is with this line of requirement that a way of simulating

not just the creation of a bid, but a process to make the best possible bid. A.I. based systems have a large

and varied tool-kit, that makes them ideal for a number of di�erent approaches in creating bids for market

based simulations.

As previously stated, this system aims to replace each of the generators' operators with an arti�cial

representation, it needs to be considered that this is not intended to be done in a way to directly replicate

their behaviour. When looking at real market scenarios, the main focus tends to be towards the general

operation of the market and is often conducted in a manner directed towards understanding how exactly the

market will operate under normal conditions, which requires an approach that is characteristic of how an

individual would act and react to create the realism of the market environment. However, this research aims

to use the versatility of an agent based system to explore di�erent strategies, that although their aim is to

act and react with the market, they will not have the same burdens that the real operators of the generators

have that potentially limit the risks taken, even when a potentially much greater payo� is available.

4.2 Alternative Designs

While developing the AI to govern the bid creation system, a number of di�erent approaches were consid-

ered. These approaches are all centred around an agent acting to create a single bid for themselves, the

following identi�es the di�erent ways in which these bids can be created. The three approaches considered

are individual strategies, collective strategies and search agents.

The individual strategies consist of each agent generating a set of di�erent possible bids for use in all

cases for the market, which should cover enough of the search space to account for a variety of di�erent

scenarios. For any scenario all the di�erent possible bids would be tested in the market, with the one with

the best predicted result being selected for use. The selected bid would then be tested again with minor

modi�cations being made to attempted to further improve the results achieved in the market, with the best

of these being submitted to the market as the agent's bid. The set of initial bids to choose from would

consist of a selection of speci�c cases (such as marginal cost and price cap values) as well as a set of bids

created by testing low medium and high demand scenarios, where several iterations of testing the di�erent
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strategies are used to create the set of bids for the agent to use.

The collective strategies approach is similar to the individual strategies approach, but instead of each

individual agent generating it's own set of strategies, a single pool of di�erent relative bids is created. The

bids provided in this case contain less speci�c information for each generator, such as "bid 50MW at ¿25",

and contain a more generalised form, such as "bid 25% of maximum capacity at marginal cost + 15%". The

collective pool would be generated by testing a variety of low, medium and high demand scenarios, taking a

sample of di�erent generators making modi�cations across a number of iterations to give the �nal set of bids

o�ered in the collective pool. Also much like the individual strategies method, after each agent has selected

it's bid from the collective pool, through the same manner of trying each one to see it's relative payo�, they

can make modi�cations to the bid in an attempt to create a better �tting strategy for the current market

state.

An alternate version of the collective strategies would be to categorise each of the generators into several

small groups by generator size or company and create a pool of strategies that each of these can select from.

This could potentially create more relevant strategies for each of the generators than the collective pool, and

reduce the number of semi-redundant strategies that would exist at an individual level.

The �nal method is the search based approach, rather than having pre-de�ned strategies for agents, the

agent instead develops the bid at the time that it is required and tailors it to the current market state. For

this approach two di�erent search algorithms were considered, the �rst was a simple search algorithm that

uses a single solution, in the case of this system a single bid, and checks neighbouring solutions in the current

search space in order to �nd a better solution. This process is repeated a �xed number of times, allowing

for the process to be restarted if no better neighbouring solutions can be found, with the best result seen

throughout the process being selected as the �nal bid.

The alternative search algorithm considered was an evolutionary algorithm, that uses the dynamics of

a population of di�erent solutions in order to �nd the best result. The dynamics involved in this process

involve the population of solutions interacting to create new solutions by trading critical aspects of their

solutions amongst themselves to create o�spring that share characteristics of the two solutions used in

generating. These solutions are then modi�ed to see if a small change is able to help improve the newly

generated solution and make it better than any of the existing solutions, if it is an improvement then the

best performing solutions replace the worst performing solutions currently being used.

With a total of four di�erent approaches considered that were viable for use with the proposed simulation,

a single method from these four was going to be used, the following outlines the choice of agent design and
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the reasoning behind it's selection.

The primary point for choosing which method to implement was, "how optimal is the bid made?". The

optimality of a bid comes down to the overall process that the bid generation is going to be the outcome of

a multi round game between all of the agents, where each market participant is aiming to move the market

state into a most desirable position for themselves in the form of pro�ts earned. By identifying these desirable

positions, which will be the optimal position at any given stage of the game for the market participants,

as such it will give the observer the opportunity to see if gaming within the market is enough to achieve

abnormal levels of pro�t

By looking at the di�erent methods highlighted, the two approaches that select from a pool of strategies,

either individually or collectively, are less likely to produce an optimal result against the search based

algorithms in a general case. Given a su�ciently large pool of strategies, both cases would be able to create

highly optimised bids, however the time taken to create and search these pools would also increase. Both

of these approaches would create an e�ective way of simulating a real market environment since they would

allow for a viable set of di�erent options that a human could reasonably estimate the e�ectiveness of in

deciding on a bid to o�er. However for this research, the algorithms that are designed for searching for the

optimal result are preferred over the strategy pool approach.

In order to decide which of the two search algorithms is best suited to the requirements of the proposed

simulation, the search space of the market for each agent needs to be considered. The main complication that

exists, is that every transmission grid layout, set of market rules, trading arrangements and regulations will

result in the formation of a di�erent game and for each market state in a given game, there will be a di�erent

search space that an agent needs to traverse in order to �nd the globally optimal bid. In order to decide

which of the search algorithms was best suited, a main use case needed to be considered, which was centred

around a market with a large number of agents with a transmission grid and demand of proportionate size.

Although not reasonably testable prior to implementation, the search space that was hypothetically

expected would be similar to the one shown in �gure 4.1.
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Figure 4.1: Possible Search Space

Figure 4.1 shows a number of di�erent optima within a search space for a given market state, denoted

by the darker areas as regions that o�er a higher �tness score, this includes a prominent local optimum

centred close to the marginal cost value. However the expectation is there are numerous other optima in the

outlying cases. If the global optimum bid is frequently the prominent local optimum then the simple search

algorithm is a more suitable approach. However if the outlying optima contain values superior to the large

optimum, then they would be preferable and are more easily explored by an evolutionary based system.

With regards to this research, the interest is in the potential that the outlying cases have to in�uence

the market, and the best method to explore these cases is the evolutionary algorithm, it is for this reason

that an evolutionary algorithm was selected for the agent implementation. Although it should be noted that

given su�cient resources the simple search algorithm would also be able to fully explore the search space in

order to test the outlying cases, however during development the requirements for this were unknown.

4.3 Final Agent Design

The method for generating and analysing strategies is similar to the methods used by Richter and Shebel,

where the strategies are developed using a Genetic Algorithm and the �tness function used for evaluation is

based o� of a market price prediction using those values.

In using an evolutionary search algorithm as the foundation of the agents, there are a number of important
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design decisions that need to be made regarding the operation of these agents. The diagram in Figure 4.2

shows the system �ow for the bid generation for an agent.

Figure 4.2: Bid Generation Procedure

This method breaks down the process into an iterative sequence that is repeated for a �nite number

of times, where the �nite number is a prede�ned maximum number of repetitions or a point where the

population of solutions has converged onto a single successful operational point.

In order to understand how this process works, the four key algorithms: parent selection, crossover,

mutation and the �tness function must be de�ned. In order to understand the four key algorithms much of

the process, the structure and generation of the population must �rst be de�ned.

4.3.1 Population

The population as referred to in evolutionary computing is a working collection of di�erent potential solutions

to the problem that the algorithm is trying to solve. In the case of the agents within the proposed simulation

framework, a solution is a two step bid that could be supplied to the market in order to represent the

willingness of the generator to supply it's electricity at one of two prices. Therefore the population in this

case is a set of these bids, any of which could be supplied to the system operator.

Within the operation of the agents, the population is a constantly maintained as the set of the best

solutions evaluated for the market state so far. A major part of this process involves the addition of of new

solutions generated by the evolutionary algorithm to the population post evaluation, before the results are

sorted based on their �tness and the population truncated to a de�ned maximum size.
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In the case of these agents their �tness is de�ned as the total pro�tability of all related generators to the

parent generation company. In the case that only a single generator is owned by a generation company, then

it is their own pro�tability that is considered to be their �tness function.

The initial population that is used for each agent is a series of randomly generated two step bids that

are created based on the physical limits of the generator that it represents, in addition to the rules of the

market that the agent is a participant in. Although these restriction don't need to be adhered to in order

to allow for operation of the simulation, in most cases, however it aids in ensuring that a valid schedule is

always available to the system operator and that the strategies being used by the generators are at the very

least valid.

An initial bid is formed of three randomly generated numbers, one each for the two di�erent price levels

that de�ne the two steps of the bid and a single value for the quantity that that denotes how much of the

total generation capacity will be available at the lower of the two bid prices.

0 ≤ P1 ≤ P2 ≤ Pcap (4.1)

0 ≤ Q ≤ Gcap (4.2)

The two prices can have a value in the range of 0 to a maximum price cap and the quantity can range

from 0 to the maximum output capacity of the generator.

4.3.2 Fitness Testing

The way any individual is tested, either for the initial population or one of the o�spring, is to submit it as on

o�er to a simulated market with the other currently used bids for each of the agents. the simulated market

will give an expected payment for each of the generators given the currently submitted bids.

The predicted pay that is generated as a result of the simulated market is passed to an algorithm that

calculates the pro�t for the current generator as well as any other other generators that share a parent

company. The sum total of the pro�ts of each of the generators is the �tness score for that agent.

The total company pro�t was selected as the �tness metric as it best represents the way that a generation

company would operate. This is due to the idea that the sum total of the pro�ts of all generators owned by

a single company would be preferable to the pro�ts of each individual generator. the aim of this metric is to

impact the way the agents operate, such that the e�ect is to create a di�erent search space that the agents
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are traversing, that may under identical market states have alternative outcomes to a more conventional

search of an agent's individual search space. This aspect of the agent design is one that will be investigated

as a part of this research, allowing for a look at how changing an agent's �tness function in order to boost

the welfare of the collective impacts on the market state.

4.3.3 Selection

The process of generating a new solution from the population of current solutions, �rst needs to de�ne the

parents who will supply the initial genetic material to form the basis of the new o�spring. In the case of this

research, the genetic material referred to it is a bid.

The selection process used is a system called tournament selection. Under this selection scheme, each

member of the current population, and possible parent, is assigned a weight, which refers to the probability

that a given solution will be selected as a parent. In tournament selection, these weights are assigned

according to the individual's current ranking within the population, such that the solutions with the highest

�tness are the most likely to be selected.

Figure 4.3: Basic Tournament Selection Ranking

Figure 4.3 outlines a sample of tournament selection using the form p((1-p)n) as the basis for calculating

the probability, where n is the position of the solution in the ordered population and p is a base probability

of selection, which in this case is 0.25.

Two parents are selected for each pair of o�spring that are to be created, where each member of the
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population can only be selected once. After selection an individual in the population is removed from the

selection pool and the weights adjusted to maintain the sum total of all weights equal to 1.

4.3.4 Crossover

For each of the two parent pairs that are created during the selection process, they will create two o�spring.

The process of creating o�spring consists of two parts, the �rst of which is called crossover. Crossover with

respect to this research, revolves around swapping aspects of the solution between the two parents to create

two 'new' solutions.

In the case of the agents presented here, the two parents can have between 0 and 2 of the attributes (P1,

P2 and Q) swapped, since swapping all three attributes would have the same result as not swapping any,

and would lead to a bias in the crossover towards not swapping any attributes. Within the implementation,

the two parents are cloned prior to the crossover and the process is performed on the clones maintaining the

integrity of the original solutions.

Figure 4.4: Sample Crossover

The diagram in �gure 4.4 shows a two attribute crossover with sample parents based on the outlined agent

design. As has been previously noted P1 must be less than or equal to P2, which might not be maintained as

a result of the crossover; in this case, the values for P1 and P2 for that member of the o�spring are swapped,

so as to maintain the integrity of the solution as de�ned by the population.

4.3.5 Mutation

Having generated the basis of the two new o�spring, the �nal step in creating the new solutions is to slightly

modify their characteristics so as to potentially explore new areas of the search space or improve slightly

on the exploration of the current region of search space. This is done by mutating between none of and all

three of the attributes.
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If an attribute is selected to be mutated, then the current value is taken and has a modi�er applied

to it to give a new value. The modi�er is normally distributed around 0 and scaled in accordance with a

pre-de�ned parameter, which gives the e�ective likelihood of the mutations being relatively large or small

with respect to the system.

Figure 4.5: Sample Mutation

Figure 4.5 shows the possible mutation of a price variable for a sample o�spring. The mutation is also

bound by the same rules as stated previously, so if a value of P1 is mutated above P2 or P2 below P1 they

will be swapped at the end of the mutation, in the case that they still breach the inequality. The other

condition of the constraint is that they can not o�er a price above the price cap or below 0, and likewise for

the quantity, that can not go below 0 or above the maximum allowed generation, in either of these cases,

the value is truncated to either 0 or the maximum allowed value.

4.3.6 Limitations

The main limitation that can be seen here is the use of perfect information in each agent's decision process,

meaning that an agent receives an exact version of the current market state including all the competitors

bids. The main consideration with this was that although the accuracy of the other generators' bids could

be masked by applying some margin of error to the bids passed to an agent, this would require the agents to

repeat the �tness process a number of times to reduce the margin of error in their decision making, which

would lengthen the time taken to run the simulation process considerably.

4.4 Complete System Overview

Having identi�ed the key component of the electricity market model and the agents, it is important to

identify how these di�erent components interact when performing the experiments.
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Figure 4.6: Overview of Data Flow in the Simulated Environment

Figure 4.8 shows the data �ow within the simulated environment, where the data interactions between

the Agents and the System Operator have been noted earlier in this chapter, however there are two new

components in Simulation Controller and Run Controller that need to be covered in order to bring the entire

simulation together.

4.4.1 Simulation Controller

The System Controller is the container from which the simulated game is run. This controller maintains two

major roles, the creation of the initial market state and the operations that need to be performed after each

call of the Run Operator.

The initialisation process involves creating a set of bids for each of the generators that creates a market

state that is used as the initial starting point of the simulated game. The bids created are always a valid bit
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that a competitive agent would be able to supply it to the market and as such are constrained by equations

4.1 and 4.2.

This initial state acts much like a normal market state, with the only di�erence being that no agent has

performed a move.

Following a single call of the Run Controller, a �nal evaluation of the market needs to be made with the

new market state. This process is much the same as the evaluation of a bid made by an agent, involving a

System Operator call with the market state, however the payments, generation, and pro�ts are calculated

and stored for each of the generators for each of the agents as opposed to calculating the total company

scores for optimisation purposes. Following the end of turn calculations, the market state that was used is

then passed to the run controller for the start of the next turn.

Once a prede�ned number of calls to the Run Controller have been made and the results calculated for

the �nal run, the system outputs the collated results from each of the �nal market states.

4.4.2 Run Controller

The Run Controller is the container that contains the processing for a single cycle of a game, where a single

cycle in this case is de�ned as a turn of the game in which every agent makes a move within the game. The

Run Controller has two main functions, the �rst is to create a randomised order for each of the agents to

take their turns and the second is to maintain the current market state of the game.

The randomisation of the play order amongst agents is aimed at removing bias from those agents that

are able to operate later in a turn. If the game always reached a Nash-Equilibrium then this would not be a

requirement, however it will later be seen in Chapter 6 that when the game is played by the intelligent agents

shown in this chapter, the game cycles between a number of di�erent market-states. Having identi�ed this

requirement, it can be argued that since the Simulation Controller calculates the market state at the end of

a single cycle, the bene�ts for those agents who would be able to repeatedly o�er bids late in a turn would

bias the results in their favour. To reduce this bias for individual agents, the position in the turn order is

randomised at the beginning of each cycle.

The results for the experiments performed in this research are taken as the average result across each of

the cycles for a game, this is given the fact that we frequently do not see a single equilibrium state reached

and taking only the �nal result could potentially give a result that represents any number of intermediary

states. This means that across all runs the likelihood that any agent can be seen to be pro�ting from

consistently acting later is much lower than a non-randomised order.
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In the Run Controller an agent is called to calculate their move, characterised by the bids that they make

as a result of the optimisation process. In order to do this an agent needs to take the most up-to-date state

that exists within the market, where the most up-to-date state contains all of the most recent actions of

preceding agents. In the case of the �rst agent acting in a run, they have the state that is passed by the

Simulation Controller, which in the case of the very �rst cycle is the initial state generated by the Simulation

Controller. Once an agent has decided on their most optimal action, the agent returns that action in the

form of a bid, which is then used to update the current market state by replacing the previously stored bid

with the new one. This updated Market State is then made available for the next agent that is called.

Once every agent has made a move, the turn is complete and the market state that was last updated

from the �nal agent's action is then returned to the Simulation Controller.

4.5 Summary

This chapter outlines the arti�cial agents that are used to compete in a simulated wholesale electricity

market, identifying potential alternative design and justi�cation for the �nal selection.

The agents use an evolutionary process for creating a bid that is to be o�ered in a market. Each agent

creates a set of possible bids called a population, from this a number of generations of o�spring are created

in an attempt to �nd the most optimal bid possible for the current market condition. Every bid that is

created is tested using the simulated market given the current market state in order to give the solution it's

�tness.
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Chapter 5

Small Scale Experimentation

In order to create an accurate simulation of a real market, in this case an electricity market, a certain

level of testing needs to be performed on the system in order to ascertain if the simulation is operating

correctly. Although most of the individual component can be tested independently to identify if there are

any operational errors, however testing the operation of the entire system to ensure it is correct is slightly

more di�cult.

The way the agents are designed is such that they should be able to identify any �aw in the the market

or the programming in order to maximise their �tness. To ensure that the simulation works as accurately in

terms of market replication as can be expected a small scale model has been designed and implemented for

the purpose of testing, such that a reasonable level of con�dence can be placed on the operation, that any

exploitable �aws are in the market and not the coding.

In addition to testing the simulation, there are other reasons for wanting to perform experiments on a

reduced size model. The �rst of these reasons is to be able to give us an insight into the behaviour of the

agents and how this relates to the proposed hypothesis. It is because of the limited size of the model, that

the actions of the agents can be studied closely and aspects of their interactions in the simulation can be

better understood than on a large scale. Although there is a limit to what can be extracted as behaviour

that will be relevant when the simulation operates with a large scale model, since many of the interactions

will be symptomatic of the model. This however comes back to the key questions of "What does the agent

do?", a look at the more speci�c actions taken and is more representative of the data used, whereas the

other important question "Why would the agent do that?", is more relevant as it gives the characteristics of

the decision process that the agent e�ectively takes and is more likely to be re�ected in the outcomes of the
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large scale models.

5.1 Set-Up

Having de�ned the need for a small scale experiment, the design of a small scale model must re�ect the

requirements for the desired outcomes of understanding the basic market dynamics and agent behaviour.

As such there are two main aspects that need to be decided upon, transmission grid layout and generation

capabilities.

For a simple set-up there are a number of di�erent network layouts that could be used, given that

the model wants to be simple enough to understand the dynamics of the market and the agents and yet

complicated enough to not consider it too trivial to draw anything meaningful from. The decision was taken

to create a 5-node model, that consists of a transmission grid with �ve di�erent generators, one at each of

the nodes, with electricity also demanded at each of the nodes. The AMES project uses an intricate 5-node

network that would work appropriately in running the basic simulations. Although the AMES network

works well for experimentation, it was felt that the network layout could potentially mask some of the base

level interactions that the experiment was designed to identify. For this reason, the most simplistic 5-node

network was designed, a linear con�guration, where every node is linked in series to the next, but not joined

into a loop. This was done in part to ensure that the line constraints for every line could be monitored easily

during testing of the simulation.

Figure 5.1: Small Scale Network Design
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Node Generation Capacity (MW) Cost per Unit (Â£) Proportion of Demand
0 275 5 0.1
1 275 6 0.15
2 550 9 0.175
3 250 11 0.275
4 250 13 0.3

Table 5.1: Small Scale Case Study Generator Data

Line ID Start Node End Node Capacity(MW)
0 0 1 500
1 1 2 500
2 2 3 500
3 3 4 500

Table 5.2: Small Scale Case Study Line Data

The distribution of the generation and demand were designed such that there would be a surplus of

supply in the north and a de�cit in the south; this would require the movement of electricity from North

to South; This would require the movement of electricity from North to South. The costs and scale of

generation, e�ectively create a boundary between nodes 2 and 3, with the aim, that during peak hours

the cheap electricity available in the north is not su�cient to cover all the demand in the south due to

the operational capacity on the line between nodes 2 and 3. In addition to this, the generators south of

the boundary between nodes 2 and 3 are incapable of ful�lling their demand with the combined generation

available at both nodes 3 and 4. This e�ect could be achieved with a 2 or 3 node network, the additional

nodes allow for the potential of extra complexity in the agents.

5.2 De�ning the Experiment

There are two experiments that will be run on the small scale model, both of which are similar to the

experiments that are also run on the larger scale later in this thesis.

The �rst experiment is designed speci�cally to look at the di�erence in results achieved when using the

Buy Back Market as opposed to the alternative Nodal Market design. The reason for doing this is to gain

an initial insight into how the system operates using both of these di�erent markets, with the aim of this

being to create a more detailed revision of the initial hypothesis.

To second set of experiments will be run looking at how the interactions of the agents are able to

in�uence the market, where it is not only the market design, but these interatctions being tested. This will
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be performed by running the simulation with a base case, where each generator bids marginal cost, to give

the underlying value of the market for that time step. Then this will be compared to a case where every

generator acts independently and a case where the agents 0 and 1, and 2 and 3, act together in an attempt

to replicate the operation of a larger GenCo, where agent 4 still acts independently.

For each agent there are only three di�erent variables that are being optimised. With only a small

number of parameters being evolved, the requirement to have a long evolutionary process is not necessary.

One of the main considerations made with the parameter settings is the run-time of the simulation, where the

evolutionary parameters are set such that for a given agent the strategy converges on an optimum strategy.

Both experiments will take the average of 5 runs, where each of the runs is performed for a number of

di�erent demand levels across the system. The demand is decided as a percentage of the total generation

capacity of the model, where the lowest value tested will be a 30% demand level and will be incremented by

10% until a 70% demand level is reached.

Table 5.3

Parameter Value
Run Cycles 100
Generations 100
Population 40
O�spring 20
p (Selection) 0.25
p (Crossover) 0.33
p (Mutation) 0.33
Price Cap 1000

Table 5.3: Small Scale Experiment Parameters

5.3 Results and Evaluation

The results presented look initially at the overall payouts of the system operator under di�erent con�gura-

tions and as increasing note is made of the strategy, where a brief mention of how three di�erent GenCos

(Companies 1, 2 and 3) pro�ts are a�ected when co-operation is allowed as opposed to when each individual

is only interested in maximising their own pro�t.

The results aimed at comparing the nodal to the buy back market, consist of identifying the outcome

of several runs, Figures 5.2, 5.3 and 5.4 show the average payment made by the System Operator to the

generators across 5 runs.
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Figure 5.2: Average System Payments on a simulated 5-Node Network for Agents Co-Operating With the
aim of maximising their Generator Companies Total Pro�ts

Figure 5.3: Average System Payments on a simulated 5-Node Network for Agents Acting to Maximise their
Individual pro�ts, not the Generation Company's Pro�ts
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Figure 5.4: Average System Payments on a simulated 5-Node Network for Agents Bidding Marginal Cost

The lines in �gures 5.2 - 5.4 show the trends of the di�erent con�gurations, for theare three key operational

pairings that explain the dynamics of the market; These are the Co-Operative, Individual and Marginal Cost

pairings, since the Nodal and Buy Back con�gurations are directly comparable in these cases.

The value for the co-operative pair, shows the most interesting result, since the Nodal market o�ers on

average a similar level of system payments as the Buy Back except for the 50% demand level, at which point

the market creates a signi�cantly di�erent gap (t(8)=6.98 p = 0.0001). The trend in the graph shows a more

consistent growth for the Buy Back market, as opposed to the Nodal Market, which shows a more rapid

icrease in price after the 50% level.

In the Individual case, there is no signi�cant di�erence in the average system payments made by the

System Operator up to the 50% level. At the 60% level the Nodal Pricing Mechanism creates payments that

are signi�cantly above those of Buy Back Market (t(8)=-5.74 p = 0.0004), this gap is smaller at the 70%,

but still maintains a signi�cantly di�erence(t(8)=-5.9 p = 0.00036).

This change in the market behaviour can be categorised as the point at which the generators on the high

demand side of the constraint are required to generate electricity to �ll the system demand. This requirement

to generate on the supply side pushes the price at which the generation is o�ered up higher, where the

generators that are working in collaboration with each other appear to increase their bids disproportionately

to the increase seen before.

Figures 5.5 - 5.7 shows the average price that is paid per MW produced in the simulation.
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Figure 5.5: Average Price Paid per MW on a simulated 5-Node Network for Agents Co-Operating Within a
Company

Figure 5.6: Average Price Paid per MW on a simulated 5-Node Network for Agents Acting Individualy
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Figure 5.7: Average Price Paid per MW on a simulated 5-Node Network for Agents Bidding Marginal Cost

The general trend in the average price per MW shows that in the corporate case mirrors the results seen

with the Average System Payments. At the 70% level, the two di�erent pricing mechanisms both create an

average price at more than Â£750 per MWh.

In the Individual case, the average price per MWh shows little growth up to the 50% level for both pricing

mechanisms with rapid growth in the price after this level. This seems to indicate, that the price holds a

stable consistent price for both mechanisms while the system is not constrained, but under a constrained

environment the agents are able to game the market creating these high prices.

The marginal cost shows a much lower growth, as the price per MWh is only a�ected by the demand

and will only increase due to network constraints

This can be seen in Figure 5.8, displaying the percentage increase in the system payments for both the

Buy Back and Nodal Markets when allowing direct co-operation over individual pro�t maximisation.
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Figure 5.8: Percentage Di�erence in System Payments Between Co-Operative and Individual Agent Be-
haviour

The percentage increase in system payments when co-operation as a company, is larger in the Buy Back

Market than the Nodal market at all demand exept for the 40% level. It is the change in behaviour available

to the agents that is able to in�uence this, where those competing in a buy back market are seemingly able

to in�uence the price to a greater degree, this is primarily due to the e�ect that a change in a bid might

have on the initial global price of a buy back market against the rise in a nodal price in a nodal market.

In terms of the change in pro�ts of the three companies, the percentage di�erence are shown in Figure

5.9 for the Buy Back and 5.10 for the Nodal:
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Figure 5.9: Percentage Increase in Pro�ts per Company Co-Operative Versus Individual Strategy using the
Buy Back Pricing Mechanism

Figure 5.10: Percentage Increase in Pro�ts per Company Co-Operative Versus Individual Strategy using the
Nodal Pricing Mechanism

With the exception of a single reduction in pro�ts for Company 2 at the 40% demand level using the Buy

Back market, all of the other cases produce a positive increase in the average pro�t levels of the companies.

Overall this is an expected result, since the co-operation of the generators reduces the level of competition,

meaning that where their competitive actions when bidding individually might take away from the pro�t that

the other generator they are paired with, the co-operative generators are aware of how a pro�t maximising

bid on their part might actually reduce the genco's pro�ts. The exception in this scenario is Company
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3, which consists of only the generator at Node 4, which is not paired and even with no additional direct

support, the indirect market dynamics of the reduced competition are able to increase their average pro�t,

in some cases performing better than either of the two other companies.

5.4 Validation of Hypothesis

Having introduced a small scale case study, it was discovered that under the corporate case, the buy back

market on average achieved a higher average price per MWh than the Nodal Market, however only at

two price points was this a signi�cant di�erence. However this same trend was not seen when there was

direct competition between the agents, where the nodal market was able to on average achieve a higher

price per MWh than the buy back Market. The hypothesis stated at the start of this work identi�es that

Nodal markets are better able to exploit market power in competitive electricity markets, where the more

competitive the electricity market the lower the price that the buy back market design will be able to achieve

and in more monopolistic designs, the results should show a signi�cant gap between the price per MWh of

the two di�erent market designs.

In order to assert that this is a valid conclusion and not a speci�c result of this case study the e�ect

needs to be replicated under di�erent conditions. This will be done by revisiting the three alternative load

�ow test scenarios discussed in this chapter, looking at both the Corporate and Individual cases to identify

if the case that a more competitive market favours the e�ciency of a buy back market is a valid assertion.

5.4.1 Load Flow Validation Cases

By revisiting the load �ow validation cases we can see that there are components that can be used to help

de�ne if this is a realistic result. In case 1 where there is no binding constraint at marginal cost levels the

outcome should remain at a level where the market does not favour the buy back mechanism as the compe.

In case 2 there is at a number of constraints that will become binding, which should result in an increase

in the average price paid per MWh of electricity at these levels for the buy back market under the less

competitive corporate case.

Potentially the most interesting scenario is case 3, where there is no binding constraints, but a must run

generator. The must run generator should cause the average price per MWh to increase towards the price

cap for both of the pricing mechanisms (where generator 0 is bidding at the price cap), however it is the

e�ect that this change in viable bidding behaviour without the requirement of constraints that is of interest.
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While the prediction stated above de�nes that there should be no statistical di�erence in the price per MWh

of electricity supplied when there is no binding line constraint this scenario o�ers a case that there is an

alternative constraint which will reduce the competition in the market and allow the buy back market to

create a higher price.

Never Constrained

In the never constrained case, we can see in �gure 5.11 is that against the prediction, the results of the

corporate based market is that the buy back market creates a signi�cantly higher price per MWh than the

Nodal market.

Figure 5.11: Average Price Paid per MW on a simulated 5-Node Network for Agents Co-Operating Within
a Company for the Never Constrained Test Case

The possible reason for these results is that without the presence of a required binding constraint, the

companies are e�ectively withholding part of their generating resources by o�ering very high prices. In the

case where both companies 1 and 2 perform this, they are able to greater in�uence the initial global price of

the buy back market than they are in the Nodal market.
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Figure 5.12: Average Price Paid per MW on a simulated 5-Node Network for Agents Acting Individually for
the Never Constrained Test Case

The results for the individual case shown in �gure 5.12, show that both mechanisms show no signi�cant

di�erence at the low demand levels(40% t(8)=-1.26 p = 0.243), however at the high demand levels the

generators in the Nodal market are able to start in�uencing the price in such a way that the results are

signi�cantly above those of the buy back market( 70% t(8)=-1.26 p < 0.0001). If the example of withholding

demand is taken to be the cause of the high prices when there is less economic pressure from line constraints.

Highly Constrained

Figure 5.13 shows the average price per MWh for the two market designs under high levels of line constraints.

On the low demand cases, the Nodal market creates a higher average price per MWh than the buy back

market, however at the higher demand level this trend is reversed and the buy back market averages a

higher price per MWh. With the Nodal market able to create individual nodal prices, these prices for the

constrained nodes will often be higher as they can e�ectively create their own price, and for the lower demand

reach a level that causes the average price to rise above that of the buy back market. However at the higher

demand levels, where the generators have less spare capacity, they can force the price higher than the average

of the nodal prices.
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Figure 5.13: Average Price Paid per MW on a simulated 5-Node Network for Agents Co-Operating Within
a Company for the Highly Constrained Test Case

In the Individual operation case shown in �gure 5.14, the nodal market design is able to achieve a

signi�cantly higher price per MWh than the buy back market for the 40-60% demand cases (50% t(8)=-7.17

p < 0.0001). Taking the increase in competition as the di�erentiating factor, the generators are still acting

competitively in the market at the higher demand levels where a must run price can be enforced in the

corporate market.
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Figure 5.14: Average Price Paid per MW on a simulated 5-Node Network for Agents Acting Individually for
the Highly Constrained Test Case

The most interesting aspect of both cases is that the results begin to converge at the highest demand

levels. With the more prevalent binding constraints, the prices were able to be forced more consistently to

the same level.

High Demand Must Run

In a scenario that creates a must run generator at higher demand levels, the results in �gure 5.15 clearly

show that there is a signi�cantly higher price per MW in all cases for the buy back market against the Nodal

market (50% t(8)=6.98 p < 0.0001). The buy back market creates an average price of Â£956.84/MWh,

which is approaching the price cap of Â£1000/MWh, which in many cases means that the generator was

o�er
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Figure 5.15: Average Price Paid per MW on a simulated 5-Node Network for Agents Co-Operating Within
a Company for the High Demand Must Run Test Case

In the Individual case, shown in �gure 5.16, both market designs show a similar rise in the average price

per MWh, but unlike in the other cases where the increased competition has caused a lower price for the buy

back market, the price in this case is higher. Similar to the Corporate case, the single must run generator is

able to bid at a higher price because there is a guarentee of production and that the uniform price is �xed at

a high level. In contrast the greater competition amongst the remaining generators leads to a lower average

price.
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Figure 5.16: Average Price Paid per MW on a simulated 5-Node Network for Agents Acting Individually for
the High Demand Must Run Test Case

5.4.2 Line Capacities

The main conclusion seen to this point is that the more competitive Individual case results have followed

more closely with the predictions and the less competitive Corporate case results have not followed those

predictions.

In addition to the four test cases, the initial validation case was revisited so as to identify if changing the

capacities on each of the lines is capable of di�erentiating between the two market designs. To do this the

four lines are each set to have new capacities, with the aim of trying to identify if this can create a better

understanding of why the results to this point have not shown the trends expected from the previous results.
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Figure 5.17: Average Price Paid per MW on a simulated 5-Node Network for Agents Co-Operating Within
a Company for With Line Capacities of 600MW

Figure 5.18: Average Price Paid per MW on a simulated 5-Node Network for Agents Co-Operating Within
a Company for With Line Capacities of 700MW
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Figure 5.17 and Figure 5.18, show the results in the corporate case for increasing the capacities on each

of the lines from the initial level of 500MW to 600MW and 700MW respectively. In both cases there is a

di�erence in the average price per MWh of between 20 and 50 Â£/MWh, with the exception of the 70%

demand level with the line capacities set at 600MW, where the di�erence is Â£100/MWh. At these higher

levels and the initial 500 MW level, the prices at each demand level tend to be similar to those seen in the

other demand cases, where the price at the 70% demand level is consistently averaging Â£800/MWh, this is

with the exception of the 50% demand level in the initial constraint. This seems to indicate that the actions

performed by the generators are acting independently of the line constraints in forming their bids.

Figure 5.19: Average Price Paid per MW on a simulated 5-Node Network for Agents Acting Individually
with Line Capacities of 600MW
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Figure 5.20: Average Price Paid per MW on a simulated 5-Node Network for Agents Acting Individually
with Line Capacities of 700MW

Figures 5.19 and 5.20 show the same increase in line capacities but in the case of each generator acting

Individually. The results show that when the lines are not constrained, then the two market designs perform

fairly evenly, however once the constraints become binding the Nodal market is able to consistently average

a higher price than the buy back market.

The intuition would be that if in the corporate case the agents are able to act independently of the line

constraints then the results for reducing the line capacities would re�ect those of increasing them to show a

consistent pattern across all of the results. In the individual case, the expectation of the results would be

that reducing the line capacities will cause the constraints to bind earlier and cause an earlier divergence of

the prices o�ered by the two di�erent market designs.
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Figure 5.21: Average Price Paid per MW on a simulated 5-Node Network for Agents Co-Operating Within
a Company with Line Capacities of 300MW

Figure 5.22: Average Price Paid per MW on a simulated 5-Node Network for Agents Co-Operating Within
a Company with Line Capacities of 400MW
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Figures 5.21 show that with low line capacities the results tend towards those seen with the must run

generator case, where the Nodal market is able to create a higher price at lower demand levels, but once the

must run generators are able to a�ect the price, then the buy back market averages a higher price. However,

in Figures 5.22 this is not seen as the Nodal market reaches a higher price than the buy back market up to

the 60% level, however the opposite is then seen at the 70% level.

Figure 5.23: Average Price Paid per MW on a simulated 5-Node Network for Agents Acting Individually
with Line Capacities of 300MW
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Figure 5.24: Average Price Paid per MW on a simulated 5-Node Network for Agents Acting Individually
with Line Capacities of 400MW

Figures 5.23 and 5.24 show the results in the individual case, where the di�erence between the two market

designs is more predictable, where in the 400MW Line Constraint case the results are similar to those in the

initial 500MW case. In the 300MW case however, there is a signi�cant gap at all price levels (50% t(8)=-8.78

p < 0.0001), which indicates that there is some ability for agents to game the Nodal market with lower line

capacities that isn't possible for agents in a buy back market.

5.4.3 Alternative Networks Designs

To identify if the results observed on the simple network are consistent with a more complex transmission

grid design two new grid layouts have been developed to test if the assertion that the competition between the

agents is more critical than the network layout and the constraints in determining the price. The alternative

network designs presented here are designed to represent the meshed nature that comprise realistic networks,

which may help identify if the initial network was representative or if the over simpli�cation causes unrealistic

market power to be created from a forced congestion.

The two alternative networks use the same generation and demand data as the initial case study, in order

to determine if the network design itself is a determining factor in the market. The network design presented

in this case is a network that has a ring network connecting four of the �ve nodes, with the cheapest node
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connected to the top two nodes in the ring. Figure 5.25 shows the network con�guration of the network and

the transmission capacities on each line are shown in table 5.4.

Figure 5.25: Alternative Network Con�guration A Network Design

Line ID Start Node End Node Capacity(MW)
0 0 1 250
1 0 2 250
2 1 2 250
3 1 3 400
4 2 4 400
5 3 4 250

Table 5.4: Alternative Network Con�guration A Line Data

The two major lines between nodes 1 and 3, and 2 and 4 are present to ensure that the demand can be

�lled at the higher demand nodes by electricity from the cheaper nodes, so as not to create a de-facto must

run generator as present in some of the other cases presented in these results.
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Figure 5.26: Average Price Paid per MW on a simulated 5-Node Network for Agents Co-Operating Within
a Company with Alternative Network Con�guration A

Figure 5.27: Average Price Paid per MW on a simulated 5-Node Network for Agents Acting Individually
with Alternative Network Con�guration A

106



The results shown in both the Corporate (�gure 5.26) and the Individual (�gure 5.27) cases both seem

to follow the trend of the high capacity line scenario. The price in the Corporate scenario in the buy back

market sees a rises to around Â£800/MWh with a 70% demand level, which is consistent with the high line

capacity scenario. Additionally the two market designs share similar results to each other, which is consistent

with the results seen in the results for the 700MW Line Capacity scenario.

Figure 5.28: Alternative Network Con�guration B Network Design

Line ID Start Node End Node Capacity(MW)
0 0 1 250
1 0 2 250
2 1 2 250
3 1 3 250
4 2 3 250
5 2 4 250
6 3 4 250

Table 5.5: Alternative Network Con�guration B Line Data

The design in the second alternative is similar to that of the previous design, but reduces the maximum

line constraint between nodes 1 and 3, and 2 and 4, but adds a line between nodes 2 and 3 to compensate

for the reduction in dispatch. Of particular note is that Node 2 is the most connected node on the network

and also has the largest amount of generating capability, which may in�uence the market operation as they

are in a strong location. The network con�guration and line transmission capacities for this example are

shown in �gure 5.28 and table 5.5.

From the previous network design, the results seemed to indicate that the results presented are similar
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to results seen in the 700MW Line Capacity scenario. Figure 5.29 show the results of the Corporate case,

where the two pricing mechanisms again follow the same trend seen in both the high capacity and the other

alternative network design scenarios. The two mechanisms create prices in a similar

Figure 5.29: Average Price Paid per MW on a simulated 5-Node Network for Agents Co-Operating Within
a Company with Alternative Network Con�guration B
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Figure 5.30: Average Price Paid per MW on a simulated 5-Node Network for Agents Acting Individually
with Alternative Network Con�guration B

In �gure 5.30, the results of the two mechanisms show no statistical di�erence at any demand level, this

is in contrast to the two similar scenarios seen in the Corporate case, such that both those designs only have

statistically similar results for the 40, 50 and 60% levels despite showing the same trends.

5.4.4 Higher Competition

If the generalisation of the results seen so far is that in the corporate cases the buy back market agents are

able to in�uence the price in a manner that allows it to create higher prices in general than the Nodal market,

but when acting with increased competition they aren't able to exploit the same market vulnerabilities, then

increasing the competition further should further decrease the market power of each individual and there

should be a noticeable di�erence in the results. To test this a new scenario has been created using the initial

test grid design of 5 nodes connected in a line, with the same demand and total generating capacities at

each node. The di�erence in this scenario is that there are now two generators at each node, where the

generators have approximately half the generation capacity each and equal costs. Figure HCGen shows the

new network design.
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Node Generation Capacity (MW) Cost per Unit (Â£)
0A 150 5
0Bv 125 5
1A 150 6
1B 125 6
2A 275 9
2B 275 9
3A 125 11
3B 125 11
4A 125 13
4B 125 13

Table 5.6: Increased Competition Case Study Generator Data

Figure 5.31: Average Price Paid per MW on a simulated 5-Node Network for Agents Acting Individually
with 10 Di�erent Agents

The results shown in �gure 5.31, show that much like the original test scenario, when acting individually,

there is little di�erence between the two pricing mechanisms at low demand levels. However once the

constraints become binding in the market, the Nodal Market is able to exploit some market power, which

the Buy Back agents are not able to in a slarge a manner causing a rise in price.

The most interesting aspect, is that the increased competition has reduced the average price paid per

MW drops to a much lower level than seen previously. In the corporate case using the same market the price
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per MWh at the 30% demand level is larger than the price per MWh at the 60% demand level seen in this

case for the buy back pricing mechanisms. Although the Nodal market price does reach a lower level than

previously seen, the pricing mechanism can still exploit some market power in order to bring the price up

signi�cantly higher than the levels in the buy back market (70% t(8)=-11.85 p < 0.0001).

5.5 Discussion

The key �nding from these small scale results seems to be that the amount of competition that is present

in a market is a key factor is de�ning the amount an electricity market can be gamed by agents in both

markets. The di�erence appears to exist, that while the nodal market is still able to maintain a relatively

high price, the buy back market is unable to maintain such a high price. The hypothesis indicates that the

amount of in�uence that an individual generator has in controlling the price of a market would be much

lower under a buy back market than a nodal market. As such the results suggest that this is the case, given

the high prices seen by the agents in a buy back market with three competing companies against the much

lower price seen when there are ten competing companies.

One of the questions raised earlier in this chapter, that was de�ned as one of the key reasons for wanting

to run detailed small scale experiments is "Why would the agent do that?", and this is especially relevant

given that the bids made by all of the agents under a competitive scenario are in general all vastly above

the marginal cost and yet are not all bidding at the price cap, although in some scenarios there are bids

accepted at the price cap.

This behaviour is possibly the most interesting factor of these experiments, as it shows that the agents

are able to clearly identify a place in the market, where they manage to perform suitably well given their

competitors behaviour, this is especially true in the lower demand cases where the expected outcome would

be close to marginal cost because of the level of competition

The possible reasoning for this, is that despite not actively implementing a risk verses reward scenario,

the agents have implicitly found a market location that balances out the risk of putting in a high o�er versus

the payments obtainable.

As such in many cases placing a signi�cantly lower bid than the ones o�ered in the simulation will on

average increase their output, but the lower price will yield less pro�t, and much higher bids will cause the

average generation to drop to near zero levels causing pro�t again to be much lower. These kinds of bids

potentially leave the generators at the risk of higher levels of �uctuations in terms of pro�ts, due to the fact
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that they are o�ering electricity at a price that does not force anyone out of the market.

5.6 Summary

This chapter presents a 5-Node network that is used to test the operation of the simulation and the agents.

Where a series of experiments have been performed comparing di�erent levels of competition between agents

across the two di�rent market designs using a variety of di�erent market con�gurations.

The results presented here indicate that with lower levels of competition, agents operating in a buy back

market are able to create prices that are at least as high if not higher than those in a nodal market. However

as the level of competition increases the ability for agents in a buy back market to be able to create higher

prices seems to fall much greater than those in a nodal environment.

When competition amongst the agents is increased, the in�uence that each buy back generator has on

the market is not su�cient to push the price of electricity higher than the nodal market participants at any

price level.
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Chapter 6

Large Scale Model

During the design process of the simulation and the agents, it was always considered that there would be

a requirement to make observations with a larger model. In the context of this research a the requirement

of a large model is such that the size and complexity allows for a reasonable comparison to be drawn to a

realistic scenario. This chapter aims to identify and explain the requirements and steps taken in designing

a suitable large model.

The chapter proceeds to outline the requirements of the model, followed by the considerations made

for designing the data set, followed by a look at the �nalised model that is to be used, with a note of the

assumptions made in design and known limitations.

6.1 Requirements

While designing the model, a number of initial conditions were set out, that were required in order to ensure

that any experimentation performed using the simulation had some realistic market pertinence.

6.1.1 Use of Appropriate Data

During the testing and for initial observations, the use of a �ve node network with arbitrary data was

adequate to ensure the correct operation of both the simulation and agents, and to gain some insight into

the operation of the markets. However in order to fully explore the impact that di�erent market rules have

on a market, the data used had to be more detailed.

The reasoning behind this requirement is that although more simpli�ed data allows for a clearer picture
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of the possible processes and applications of the agent behaviour to the market, it would be incapable of

showing if those aspects were replicable in a realistic system, even if only from a hypothetical standpoint.

Although it is by using a more complex data set that we can tell if the hypothetical behaviours of the agents

can be seen in these markets, it is by the same admission that the use of realistic data could cause any

speci�c behaviour to become lost due to the over-complication of the model.

In balance, it is better in this speci�c market-related case to see the realities of the market results and try

to infer the behaviour that caused it than to identify the behaviour and try to imply the resultant realistic

market state. More information can be collected or generated, within the simulation, concerning the process

by which the agents make their decisions in order to reduce any possible gap in reasoning that might occur

surrounding the bids that they make.

While the complexity of the real network layouts would make the computational feasibility of the sim-

ulation too high to be e�ectively simulated. For this reason, a large scale model ideally wants to represent

aspects of the real market, for this research we are interested in representing a stylised transmission grid.

6.1.2 Minimal Operation Time

One of the key aspects of this work is to ensure that any results found are as accurate as possible in order

to ensure that the conclusions drawn can be considered valid within a level of reasonable doubt. In order to

ensure that this is the case a number of di�erent runs of the simulation need to be performed and the time

taken to run each simulation needs to be taken into account.

If the resources available for this work were limitless, then it would be feasible to use a full and com-

prehensive data set as the basis of the model. However in reality, this is not possible. Also considering the

other requirement, to use a appropriately detailed data set, it is of importance that the model needs to be

balanced with this requirement to minimise the operating time for any given action. As such part of the

discussion into designing the model is the size of the computational process. There are two aspects within

the simulation that will a�ect how long the process takes to run, the �rst as stated above is the size and

complexity of the data set used in the model and the other is the con�guration of the maximum length of

computational processes, such as the maximum number of cycles an agent is allowed to attempt and converge

on a bid.
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6.2 Design Considerations

During the development of the model, there were two main factors that had to be de�ned in order to complete

the model. The �rst was the network layout, this is the number of nodes and how they are connected. The

other factor is the data source for deciding generator capacity, demand, line capacities and company data.

6.2.1 Representation of a Larger Electricity Network

Initially there was no �rm requirement for the model to represent a realistic electricity network. There were

two di�erent approaches that could be taken in selecting a basis for the model, a real world market or an

IEEE standard grid design.

The IEEE Models are designed for computational problems, there have been a number of grid layouts

designed for various sizes of problems. The major problem that exists with the IEEE Models is not in the

details of the grid data, but in creating an e�ective market that runs on top of the grid, with two overlapping

issues, the source and validity of the market data.

Although it is possible to collect generation data concerning a wide range of real world generation capacity,

this could not be done in such a way as to ensure that there is no arbitrary assignment of supply and demand.

It is this arbitrary nature of data being assigned to nodes that could cause the observations made to be more

trivialised.

The primary advantage in using a styalised realistic market in the development of a model and simulation

is the availability of the data. This help to solve the problem of arbitrary data assignment, since everything

being represented has a real basis there would be no ambiguity in the decision making process. This is of

greatest importance when considering generator ownership within the system, the dynamics of the market

are such that a change in generator ownership would likely change the behaviour of the agents that control

them.

6.2.2 Potential Real Grid Designs

In selecting a real market to base the styalised data mode on, there was a number of di�erent grid layouts that

were considered, considering not only the size of the market, complexity of the potential market interactions

but also the availability of relevant information in order to accurately design and build the model. There were

three di�erent grids initially investigated, which were chosen because of the access to relevant information

concerning not only the grid, but the other aspects of the market. The grids considered were The Great
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Britain's National Grid, Nordpool and Yao et al's[65] Belgian Market Model.

Both Great Britain's National Grid and Nordpool markets covers a large geographical area with a variety

of di�erent generating capacity, which made them both suitable candidates for this study. However it is

the geopolitical boundaries and interactions that make this a potentially di�cult case study to work with.

It is especially notable that although the simulation is capable of handling some regulations concerning

price and generation, the political complexities of multinational generations and trade could cause too much

complexity to see value in the results computed by the simulation. Unlike the Nordpool network, where the

boundaries have the ability to directly and independently in�uence the market, the Great Britain's national

boundaries have little impact on the electricity market.

While the basis for implementing a grid based on markets where the information is more openly accessible,

an alternative consideration was taken based on the work carried out by North et al [41] for the EMCAS

simulation tool, which was focussed around using a stylised version of the Belgian Market and transmission

grid, having a basis presented in a work by Yao et al. The main concern with using this stylised market is

that although based on a real system, the data set given in terms of generation and demand does not allow

for as in-depth a study as can be created from either of the others.

Having considered the di�erent designs, a �nal decision was taken to use a grid layout based on the UK.

Although each of the di�erent markets have their own merits for study, it is because there is a large scope

for clear and justi�ed understanding amongst a highly competitive market that the UK was chosen.

With the simulation being built on the design of the Great Britain's electricity trading arrangements

(BETTA), it is therefore a reasonable decision to develop a model based on the GB grid and market. It

would be reasonable to want to test these arrangements in di�erent markets to see it's e�ectiveness.

Two di�erent data sets were used in creating this model, the �rst is a data model of the Great British

transmission system under development at Strathclyde by Bell et al. and the second is the data published

by the National Grid in their Seven Year Statement.

6.2.3 Strathclyde Data Set

The data set that was initially considered was a working data set being developed at Strathclyde [55] [43] ,

which was aiming to replicate Great Britain on a computationally reasonable scale. The data set consisted

of 29-Nodes and 34 generators that give an overall view of the UK market in terms of representative scale.

However there are two identi�able problems that occurred when considering this data set for the purposes

of this research, the �rst is that there is a lack of clear demand data. More speci�cally there is a lack of
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nodal demand data available that means that and demand data has to be generated. Although demand data

could be generated based on the relative size and scale of the UK, the process can't be guaranteed to be

correct.

Additionally the generation data was not designed to be re�ective of the intricaciescies of the market

process, while some care had been taken to identify the kinds of generation available at each of the nodes,

they were considered by type and so the relevant supplier information was lost. Much like the demand some

estimate can be made to roughly identify who owns each generator in order to create the required portfolios,

in order to complete the model

6.2.4 National Grid Data

The National Grid posts a regular report called the Seven Year Statement [24]. This report covers the

current trends in the electricity industry for the Uk, as well as forecasting the next seven years in the

industry. Within the report there is information regarding the supply and demand of electricity inside the

UK that is highly relevant in designing a model for the UK electricity market.

One of the major aspects of having access to the data supplied by the National Grid in their seven year

statement, is that there is a complete set of generators listed for the UK. This data is provides a set of all of

the generators, their capacity, location and the company that owns them. The National Grid data set could

be used in its complete form or if necessary simpli�ed to a �t in with an alternative grid design.

Most of the major companies have their generation labeled under their umbrella companies there are

number of generators that although owned by a major company, they are reported under a subsidiary

company or previous owner. To ensure that the generator ownership data used is as correct as possible each

of the major seven companied had it's portfolio veri�ed by their own company reporting.

Another of the key features of the National Grid Seven Year statement is that there is complete peak

demand data available for every node on the grid. Although there is often more than a single supply at a

given node, the data is such that the summation of each of these values gives the total peak demand for any

given node. Much like the generation data this is useful in being able to formulate an accurate picture of

not only the total demand at maximum for the network, a scenario that is at the heart of this research, but

more importantly the distribution of this demand by region, which is important in giving one of the major

dynamics of a constrained electricity market

Although the data set is fully comprehensive it does have one major problem in it's usability for the

complete simulation, which is that it is too large to be computed within the simulation. The main issue
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would not be in completing single runs of the simulation using this data, but in performing enough runs on

the data in order to explore in detail the market designs such that adequate conclusions can be drawn to the

proposed experimentation. The biggest issue with the time is due to the complex nature of balancing the grid

subject to the grid constraints, despite there being scenarios where there is no requirement for rebalancing

the cases where the system is pushed to it's limits are expected to require rebalancing.

6.3 Model Data Set

The following section outlines the model that has been developed and identi�es the data that the various

components are based upon.

Having considered the various data sources the following decisions were made in order to create a com-

prehensive model based on Great Britain's National Grid, while ensuring that the expected computational

time would be reasonable enough to allow a multitude of experiments to be run on the simulation with these

model.

6.3.1 Network Layout

The 29 Node Model developed by Bell et al. [55] [43] is substantial enough in size to be able to re�ect

an approximation to the geographical layout of the Great Britain's National Grid. Not only is the size of

the grid a computationally manageable size, but any results obtained from the simulation can be clearly

represented without a considerable amount of reduction, something that would not be possible with the full

National Grid data.

The organisation of the real Great Britain Transmission Grid is such that there are many small nodes,

these re�ect the high voltage electricity entry and exit points across the country. Since one of the considera-

tions is that the National Grid data is too large to be reliably computable, these nodes have been condensed

down to �t in with the 29 Node Strathclyde grid layout. In using the grid layout, there is a set of lines and

capacities that are associated with them. The following Diagram outlines the nodes and line connections,

the capacities for each of the lines are given in the complete data model given in Appendix B.
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Figure 6.1: Grid Layout for 29-Nodel Model

The diagram is laid out in a manner so as to re�ect the intended realistic grid, as such the nodes at the

top of the diagram represent the nodes in Scotland and the nodes at the bottom represent the southern costal

region of England. Of particular note in the layout is that node 24 represents London, which is expected to

be a node of particular interest during much of the experimentation.

The generation in this system is designed such that not only is the output per generator as accurate to the

National Grid data as possible, but also that the locations of the generation is also as accurate as possible.

However with a reduction in the number of nodes, there has to be some assumptions made regarding the

assignment of a node, this was done by taking the overview of the grid and sectioning it by the 29 nodes,

and assigning them according to the map. In certain cases where there were generators on the predicted

boundaries or better connected to other nodes in a di�erent section, they were assigned to the node that
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would best re�ect a central location for them.

6.3.2 Generation and Demand

The following section gives a brief overview of each of the major companies that are represented in this

model, full details of the generation and location for each of the generators in the model are presented in

Appendix B.

There are seven companies that are considered as 'major companies' in this data model, which accounts

for approximately 80% of the total generating capacity of the market.

Company A

Company A controls 7 di�erent generators with a total output of 7994 MWh, the majority of the capacity

is located in the northern regions of the grid, with the remainder of the capacity located in the south-east.

Company A has a portfolio of 5 di�erent generator types, which allows for some resilience in cases where

there is volatility in the variable prices of di�erent technologies.

Company B

Company B controls 13 di�erent generators with a total output of 10961 MWh, the capacity for this company

is spread across the transmission grid, with more capacity located in the middle and the south than in the

north. This spread of generation allows for some resilience against congested lines, since the generation

allows for generation either side of a constraint.

Company C

Company C controls 11 di�erent generators with a total output of 10438 MWh, the capacity of this company

is spread amongst the middle and south of the transmission network. Most notably this company has 3

generators located at node 24, which is the point of highest demand on the network, and 5 generators

at nodes with lines connected to node 24. This portfolio might perform best in scenarios where the lines

surrounding node 24 are constrained or where possible constraining the lines into the node themselves to

push up the local cost as they control approximately a third of the generation at node 24.
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Company D

Company D controls 13 di�erent generators with a total output of 12778 MWh, with the capacity spread in

the east and south of the transmission network. This company controls the largest capacity of the companies

in this model. The company has a portfolio containing 6 di�erent kinds of technologies, where the company

does not own two generators of the same kind at any given node. Additionally there is only a single node

where the company owns two generators with capacity over 1000 MWh.

Company E

Company E controls 7 di�erent generators with a total output of 3994 MWh, the capacity of the company is

located primarily in the middle of the network. This company has a portfolio consisting entirely of one kind

of technology, this gives it less resilience against potential price �uctuations on the fuels for this technology.

In addition to the main portfolio of Type 4 generators, Company E has a 20% share of the six must run

Type 6 generators, which gives them some stable income against a relatively in�exible portfolio.

Company F

Company F controls 7 di�erent generators with a total output of 6612 MWh, the capacity of the company

is located primarily at the west and south west nodes on the transmission grid, with one large Type 4

generator located at node 14. Of particular note Company F controls 2 di�erent Type 8 generators that are

the cheapest to run, but are not must run generators and as such are able to compete within the market.

Company G

Company G controls 3 di�erent generators with a total output of 4806 MWh, the company controls 2

generators at node 15 and one at node 20. However in addition to the three generators Company G owns,

their portfolio comprises of an 80% share in the six must run generators co-owned with Company E. While

this limits the number of generators that they are able to compete in the market with, each of the three

competitive generators have a capacity greater than 800MW, however the extent that they are able to game

with these generators may be limited given that the largest amount of generation for any given node is at

node 15.
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Others

The remaining 25 generators are not owned by any of the other 7 companies and are acting independently

of each of the other generators. The generators in this category account for 20.7% of the total available

generation in the market.

In order to completely represent a market, there needs to be a cost associated with each generator. The

costs of production used in this research may not re�ect those in the real market, however they are suitable

for understanding the market dynamics within a complex environment. The costs of generation are presented

in table 6.1.

Generator Type Cost per MW (¿)
Type 0 115
Type 1 125
Type 2 105
Type 3 88
Type 4 124
Type 5 125
Type 6 64
Type 7 25
Type 8 90
Type 9 160
Type 10 136
Type 11 64

Table 6.1: Cost per Unit for Di�erent Generator Types

The data used for setting the demand is taken as the nodal winter peak values as de�ned by the National

Grid Seven Year Statement, these values to give the maximum expected demand and then two alternative

cases were created for Summer Baseline and Average Day in order to better explore the market dynamics.

Although individual nodes in the National Grid may have a wide variation of demand between summer

and winter, and some will not vary much at all, the expectation is that in condensing the data down to a

relatively small number of nodes these variations will be evened out and a single scale factor can be applied

to each nodal demand to create the new demand forecasts.

The demand for the system uses the same system as the locating of the generation, where the nodal

references given in the National Grid data apply the same to both generation and demand. This ensures

that the demand and generation are consistent in their accuracy and that although assumptions have been

made in the process of deciding which node each generator is assigned to, there is no relative loss in accuracy

between supply and demand.
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Node ID Node Peak Demand (MW) Total Generation at Node (MW)
0 341 1527
1 717 1108
2 62 364
3 431 0
4 202 844
5 2234 4248
6 2244 3631
7 193 1416
8 222 0
9 1749 420
10 317 2987
11 781 0
12 2557 4902
13 3421 7832
14 1596 1934
15 1533 10545
16 2504 0
17 2435 2964
18 2399 1700
19 1291 1942
20 2262 3674
21 7100 4632
22 2436 5733
23 3958 2884
24 9738 3657
25 1323 6958
26 1307 1501
27 2446 2289
28 1852 2306

Table 6.2: Peak Nodal Demand

Table 6.2 gives a single set of peak demand �gures that are de�ned for each of the nodes. In order to use

these �gures in other demand cases, they are scaled evenly based on the predicted demand level. although

this does not completely identify the distribution of growth in demand across the country, the relative scale

of the model incorporates this variety as a function of reducing multiple real nodes into a single simulated

node.

6.4 Assumption and Limitations

While creating this model, a number of operational assumptions have been made in order to ensure a correct

and realistic, it is important that these issues have been considered and there is reasoning behind why they

are limiting and the impact they will have on the experiments.
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The nuclear capacity of a market has a few important criteria that cause some limitations in operation.

Based on the start-up and cool-o� times of a nuclear generator, the output is rarely ever changed and as such

they are considered to be required to run at all times. Within this research, Type 6 generators are given the

analogy of being a nuclear generator, with low costs. While this assumption is not too limiting in itself, it is

the potential market implications that are of greater consequence. If they are required to run, then an agent

will naturally bid the maximum they are able to bid before a regulator takes action to endure they aren't

abusing their market position. In the simulation, this has to be taken into account, so the nuclear generators

o�er a bid of 0, this is to ensure that not only are they always the �rst generators selected, but in the

rebalancing mechanism, there is no inherent �nancial reason to reduce their output; Although there might

be reason to reduce the output, due to the e�ect attribute in the rebalancing calculations being positive, the

cost multiplier will be zero, thus negating any e�ect.

One of the biggest di�culties was selecting the nodal boundaries, although an attempt was made to

ensure that the nodal boundaries lined up in such a way as to not only �t the 29-Node Grid layout that was

used, but to ensure some reality to the major lines within the National Grid's actual layout. As such some

generation and some demand could have been placed at several di�erent nodes, but this was always going

to be part of the challenge in condensing the data down to a useable level, without losing the integrity of

the market.

6.5 Summary

This chapter presents a new data model of an electricity market that is designed as a large scale model that is

built using an analogous representation of the geographic layout for the National Grid in Great Britain, with

a number of generators representing large energy companies allong with a number of individual generators.
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Chapter 7

Experimentation

This chapter presents an outline of the three experiments that have been conducted to test the hypothesis "A

nodal pricing mechanism is more susceptible to the in�uence of market gaming than a buy back mechanism

in a constrained electricity market" and the experimental parameters of the simulation. This chapter also

presents the results of each of these experiments as well as a discussion of how the results corrolate with

those seen on the small scale.

In order to appropriately test not only the hypothesis that "A nodal pricing mechanism is more susceptible

to the in�uence of market gaming than a buy back mechanism in a constrained electricity market", but also

various aspects of the operation and dynamics of the large scale model that could have some bearing on the

relevance and impact of the results obtained in the comparison of the pricing mechanisms.

In order to approach this task of understanding the hypothesis, three experiments have been proposed,

each focussed on a di�erent attribute of the simulation. The �rst is the direct comparison of the Nodal

and Buy Back markets, which aims to cover the major points of the research's hypothesis. The second

experiment is looking at the behaviour of the agents in respect to how they behave when interested in either

only themselves or the parent company. The �nal experiment aims to look at a more rational scenario in

the market to see if the results are still relevant, where the case is made that not every generator is in a

position to attempt to play games in the market, but instead only some generators actively play the game

while others bid at a level just above marginal cost.

After identifying the simulation's operational parameters that each of the experiments will be performed

by, the remainder of this chapter will go into speci�c detail regarding each of the experiments, outlining the

reasoning behind performing the experiment, as well as what is expected as a result.
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7.1 Experimental Con�guration

Each of the experimental con�gurations will consist of a 15 round game, where each agent has a population

size of 40 and generates 20 o�spring per generation, from 10 pairs of parents. Should an agent not be able

to converge on a single solution, the process is concluded after 100 cycles, where the best solution found to

that point is selected as the bid. This is similar to the small scale, since the size of the search space is the

same despite being potentially more di�cult to explore given the increased number of agents.

The major consideration in not running the game for more than the described 15 rounds is primarily

due to the fact that the increased time taken to obtain the results does not appear to obtain any increased

value in the results obtained. Where one of the initial expectation for this research, was that the agents

would be able to locate a single equilibrium point in the game and enough time would be allocated to ensure

that this equilibrium was found. However under testing on the small scale, after 200 rounds there was no

single equilibrium point obtained and that the market cycled between a number of states. As such to reduce

the already large processing time, required given the magnitude of the model implemented, the number of

rounds the game is played has been reduced

Having seen that the market price on the small scale cycles between at least two values, repetition of the

experiments is necessary to reduce the apparent variance that can be seen in the average prices. Owing to

the run time required to optimise the behaviour of all the agents, a minimum of �ve runs allows for some

generalisations to be made about the results.

The maximum number of allowable attempted rebalances is 40, this is to allow for an attempt to be made

to rebalance each line should it be required, or more intricate rebalancing to be performed. At the same

time it is not excessive in the amount of processing time it is willing to dedicate to attempting to create a

new schedule for an overly complicated market state.

Parameter Value
Run Cycles 15
Generations 100
Population 40
O�spring 20
p (Selection) 0.25
p (Crossover) 0.33
p (Mutation) 0.33
Price Cap 1000

Table 7.1: Large Scale Experiment Parameters
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7.1.1 Nodal vs Buy Back

In order to answer the primary question at the centre of this research, a study of the operation of the Nodal

and Buy Back markets needs to be undertaken. The experiment consists of looking across the average of

a number of di�erent runs of the simulation at di�erent levels of system demand using both of the pricing

mechanisms independently.

The results of the simulation can then be compared at each level to see which market mechanism averages

the lowest total system payments, which from the point of view of the system operator would be the more

successful pricing mechanism.

It is important to look beyond just the results obtained in the market to look at aspects such as �uctu-

ations and reliability of the results obtained in order to de�nitively explain if one pricing mechanism design

is signi�cantly better than the other.

The small scale results presented in Chapter 5, showed that within this simulation, when competition was

low, then the Buy Back market reached on average a higher level of system payments than a Nodal based

system using the same model, however under a greater competition, the nodal system began to average

higher payments than the buy back market. Given the small scale results, it is expected that the nodal

market should reach on average a higher level of market payments than the buy back market based on the

increased level of competition.

7.1.2 All Generators vs Selected Generators

As has been mentioned previously, not all generators are in a position where they would realistically consider

themselves able to complete in the market such as to drive and in�uence the price. The reason for this is

the generator owners might not be willing to take unnecessary risks with their production schedule so as to

attempt to earn at times limited extra pro�t.

While the previous experiments have dealt with more idealised scenarios where every agent is capable

of attempting to play the market. This experiment aims to look at a case where only a limited number

of agents attempt to in�uence the price, as a re�ection of a more realistic scenario. As such only a select

number of agents will be attempting to game the market, where all the other agents will bid at a level of

their marginal cost plus 15%.

Of the 92 generators there are 67 are controlled by the major companies, 6 of which are the joint owned

Must Run (Type 6) Plants, these as stated have to run, and o�er a minimal price to do so. A further 16

generators owned by the major seven companies have a capacity of less than 400MW, although some of these
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generators may not be entirely insigni�cant, their contribution to the market dynamic is minimal and in

order to minimise the run time, they will not be using the intelligent bidding mechanism.

The proposed selection of generators accounts for only 49% of the generators, but these generators hold

66% of the total generating capacity of the model. However, due to the 'must run' requirement of the nuclear

generators, this equates to 73% of the generation available to those that could bid strategically.

All non-nuclear generators that aren't using an intelligent agent are bidding a marginal cost value, of

absolute cost with a mark up of 15%. This is to re�ect the nature of small entities within the market,

although they would ideally like to make as much pro�t as possible; They can only achieve that by running,

however running at a loss would not be considered acceptable.

A side e�ect of these �xed plans is that there are a number of power stations that could potentially have

an impact on the market dynamic, however over the course of the experimentation it could be of interest to

allow a smaller or independent generator to be able to use the intelligent bidding system.

The predicted results for this should see a signi�cant reduction in the total system payments made, since

the generators that are attempting to in�uence the market will be competing against agents that are using

a more stable bidding pattern, the bids that they make must re�ect this. While a reduction in system

payments is expected from the Selected Generators case, the extra stability that comes from �xing the value

of some bids might increase the number of opportunities that the pro�t seeking generators have to in�uence

the market.

Of speci�c interest in this case is the change in output of those competing in the market between the

two cases as well as the change in the amount of money those generators average for each MW. An expected

outcome would see a fall in generation for the actively competing generators, but a rise in the average price

they are paid per MWh produced.

7.1.3 Individual vs Corporate

One of the key points noted on the small scale was how the agents acted di�erently in a market where there

was more competition, while the large scale model has been designed with the generator ownership in mind,

it is important in understanding more about the agents and their interactions with the market to look at a

scenario, where each agent is out for themselves.

In order to achieve this, the agents that were part of the seven large generation companies will act

although they belong to a company consisting only of themselves, much like the independent generators.

The results they achieve will be compared to those of their corporate counterparts to not only see how the
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market is impacted, but what the e�ect is on the generation companies.

The expected result of this, based on the e�ects seen on the small scale is that the average system

payments should fall. In the case of the small scale this was on a level of approximately 10% between the

two cases, so given the number of extra generators competing, this gap would be expected to be wider in

most if not all cases.

7.2 Results

For each of the experiments identi�ed in the previous chapter, the con�gurations were run 5 times, and the

results presented in this section are the average of those 5 runs. This chapter presents the key results for

the experiments and explains what the results show and how they relate to the relevant hypotheses.

The remainder of this chapter is divided into three sections, each one dedicated to one of the experiments,

starting with the Nodal vs Buy Back followed by the Individual vs Corporate and �nally All vs Selected

Generators.

7.2.1 Nodal vs Buy Back

The experiment de�ned in the previous chapter, called for the Nodal and Buy Back pricing mechanisms to

be tested against each other on the large scale. This experiment is aimed at studying how the market acts

at di�erent demand levels under normal operating conditions.

Figure 7.1: Average System Payments for a Buy Back and Nodal Markets on a 29 Node Network with Agents
Bidding Marginal Cost
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Figure 7.1 shows the outcome of the simulation for both of the pricing mechanisms, where all generators

bid marginal cost for all of their capacity. The results show that the Buy Back market achieves a lower

average level of market payments than the Nodal market. A lower level of Buy Back market payments was

not seen on the small scale in chapter 5 under Marginal Cost conditions for any demand level.

Figure 7.2: Average System Payments for Buy Back and Nodal Markets on a 29 Node Network

Figure 7.3: Average Price Paid per MW for a Buy Back and Nodal Markets on a 29 Node Network

The results displayed in �gure 7.2 show a clear trend that the total system payments obtained in the

nodal market and signi�cantly higher at all time steps than in the buy back market. This trend can also

clearly be seen when applied to the average price per MWh, and the percentage changes between each of the
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states shown in �gure 7.3 displays that the system payments in both cases seem to have a fairly consistent

growth level until the �nal 10% rise in demand where both payments have an above average increase.

While the hypothesis appear to be accurate, in that the system payments for the nodal system are higher

than the buy back market, it is that the scale of the eventual gap between the system payment made in

both cases is greater than expected. While the hypothesis stated that the di�erence was expected to be

"signi�cant", a move to 173% on the large scale is beyond expectation.

In comparison to the small scale results of the nodal vs buy back pricing mechanism, it is clear that there

is a de�nitive case that the results are not re�ected when scaled up to a larger model. At no stage does the

nodal system o�er a lower cost schedule than the buy back mechanism. Even considering the predicted error

in each of these cases, the two sets of results are su�ciently spaced even at the lowest level tested, such that

there is no reasonable case that the scenario in which the nodal market performs better than the buy back

market.

Although the small and large scale models are not perfectly comparable in terms of the exact values, the

trend that occurs with the results is and it shows clearly that where the Nodal mechanism is allowing the

agents to in�ate their prices, under the buy back mechanism they are not able to do this.

An explanation for the inability for the agents of the buy back market to push the price per MWh higher

comes from the level of competition in the market and can be best explained by comparing it to the speci�c

case of the Buy Back mechanism when relating it to a set of base cases. By comparing the results of the

market when allowing competition and a scenario where all the agents bid uniformly at marginal cost or at

marginal cost plus either 5 or 15 percent, gives an interesting insight into how the agents operate under this

mechanism on the large scale. Figure 7.4 shows a comparison of the results in this scenario:
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Figure 7.4: Average System Payments for a Buy Back Market between competing agents and those bidding
Marginal Cost on a 29 Node Network

For this scenario, the results identify that the agents are only able to push past the marginal cost plus

15% level in the cases of high demand. The reason for this is the same as the reason that the small scale

results under competition achieved lower levels of pro�t, in that there is less stability in any agent o�ering

a higher price, as such the e�ective stable level that agents found within the system was on a level only just

above the marginal cost plus 15% strategy. As such the same e�ective conclusion can be drawn such that:

In many cases placing a signi�cantly lower bid than the ones o�ered in the simulation will on average

increase their output, but the lower price will yield less pro�t, and much higher bids will cause the average

generation to drop to near zero levels causing pro�t again to be much lower.

In this case the lower levels of pro�t could be 0 or negative if the bids are su�ciently low, which for

a pro�t maximising agent are not desired outcomes and there are enough generators that the probability

of being selected when o�ering a higher price is extremely low as there are a lot more generators that are

capable of ful�lling the same role, something that was not as well represented on the small scale.

However unlike the small scale conclusion, where no-one was being forced out of the market due to the

higher prices being o�ered, the price levels presented here are su�ciently low enough to cause many of the

more expensive generators to have been priced out of the market, as such minimising the risk to the cheaper

generators of not being selected.

In the case of the nodal system, the big question is "Why can it push the price so high?", to answer this

question the key factor of what is causing this price to be so high needs to �rst be addressed. In order to do
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this, the range of prices that are accepted in the nodal market need to be observed. Figure 7.5, shows the

average prices that is achieved by agents for di�erent nodes at the highest demand level:

Figure 7.5: Average Price per MW Paid to Generators based on Location in a Nodal market

Figure 7.6: Average Percentage di�erence in Price per MW Paid to Generators based on Location in a Nodal
market over the Global average

There is some variance in the prices paid to the generators based on the node they are at, where the 0

values are nodes which have no generation. The resultant price paid on average only deviates away from the
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average by up to ¿80 per MWh at some nodes, with the majority of nodes achieving a higher prices than

the mean. Each of the nodes that report a below average nodal price have a must run generator (Type 6)

located at that node. With the nuclear generators bidding zero, the other generators at the node have to

bid more competitively than those at other nodes to be selected for the schedule.

The results show that it is not simply the generators at a minority of nodes pushing the price up, but a

high price bid by the majority of generators across the system. In the majority of cases, those that achieve

a system price vastly lower than the average, the lowest price paid to a generator was ¿349 per MWh and

the highest price paid was the pre-de�ned price cap of ¿1000 per MWh.

Despite using the same agent process, the two pricing mechanisms cause the agents to act in completely

di�erent ways, with the agents using a market with the buy back mechanism, they are forced to bid low

to protect their generation and seem willing to accept the price that the market o�ers them, however those

using the nodal pricing mechanism are less willing to accept a lower price and instead push for a higher

price.

7.2.2 All Generators vs Selected Generators

The second experiment is concerned with taking into account the reality of market participation, in that not

every generator is willing to attempt to play strategically on the market in an attempt to try and obtain high

levels of pro�t. The smaller generators owned by the major generators and all of the indepdent generators,

termed cost-based generators, are concerned only with ensuring that they have their generation scheduled

and that it is at a marginally pro�table price. The agents acting using the evoultionary procedure outline

in Chapter 4 are termed stratgic generators in this section.
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Figure 7.7: Average System Payments for a Buy Back Market on a 29 Node Network with All Generators
Actively Competing and Selected Generators Actively Competing

Figure 7.8: Average System Payments for a Nodal Market on a 29 Node Network with All Generators
Actively Competing and Selected Generators Actively Competing

Both cases in �gures 7.7 and 7.8 show that when all the agents are allowed to compete that the system

payments made will be signi�cantly higher than if only some of the agents are allowed to compete. However

at no point does the buy back market achieve a higher level of system payments or generator pro�ts than

the nodal market.
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Figure 7.9: Average System Payments for a Buy Back and Nodal Market on a 29 Node Network with Selected
Generators Actively Competing

The results seem to indicate that for every action that an agent takes in this market framework, there is

an increased risk, since there are not as many competitive generators, the risk associated in trying to push

the price higher is greater. As such the approximate level at which the agents �nd stability is much lower

than in the case of the fully competitive results.

The main question is not concerning the actual results obtained, since they act in line with convention

and expectation, but what is causing this disparity. By analysing the two groups, the competitive and non-

competitive agents, it is possible to tell where the in�uence on the system is. Taking a single case at the

70% level, the trends can clearly be seen. Figures 7.10 and 7.11 show the percentage of generation share by

the competitive generators and their non-competitive counterparts.
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Figure 7.10: Distribution of Output between Competitive and Non-Competitive Agents - Buy Back Case

Figure 7.11: Distribution of Output between Competitive and Non-Competitive Agents - Nodal Case

The change in distribution can be most clearly seen in the case of the nodal market, where there is a

relatively even split between the two groups in the case where they all compete, however this drops by 15%

for the competitive agents when the second group starts bidding at just above marginal cost. However,
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with the buy back mechanism this �gure is appreciably di�erent, with an initial 60-40 split in favour of the

strategic generators, this rises to a 65-35 split in their favour after enforcing a cost-based strategy on the

other group

Having noted two very di�erent results between the two mechanisms in terms of the distribution of

output, by looking at the average price per MWh that the agents are paid in each case, a clearer picture of

what is happening in the market so as to get these results can be obtained.

Figure 7.12: Average Price paid per MWh between Competitive and Non-Competitive Agents - Buy Back
Case
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Figure 7.13: Average Price paid per MWh between Competitive and Non-Competitive Agents - Nodal Case

Figure 7.13 shows clearly that the average price obtained by the competitive agents has only fallen

slightly between the two cases at a value of approximately 10%, however the average price obtained by the

non competitive agents has fallen by approximately 75%.

In the case of the buy back market in �gure 7.12, the competitive generators are bidding at a level below

their non-competitive counterparts in both cases. The competitive agents drop their price su�ciently to

ensure that they are frequently selected and in this case where they are the only ones who can in�uence the

market, they are only able to use that in�uence to increase their generation.

The results seen in this experiments highlight the di�erence in the strategies that the agents are able to

put into place within the simulated market. The nodal agents seek the potentially more risky higher paying

strategies and with the e�ective co-ordination of the market states are consistently able to �nd these pro�ts,

even in a case where half of the market participants are not attempting the same bidding strategy as the

other. Conversely the same agents on the buy back market actively seek the stability of a higher proportional

market share, given the likelihood that a su�ciently pro�table risky strategy is not available.
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7.2.3 Individual vs Corporate

One of the major questions that needs to be analysed is "How much does the market power of the generating

companies impact the operation of the market?". To do this, a scenario has been developed where the agents

for each of the generation companies are unaware of the other generators that are owned by that company

and so are not bidding in a manner to directly increase the collective's pro�ts, but only their own. However

the results of the study are directed not at looking at the individuals, but still at the generation companies

to see how much the market power impact on their pro�ts versus the standard co-operative measure.

Figure 7.14: Average System Payments for a Buy Back Market on a 29 Node Network with Company and
Individual Pro�t Maximisation

140



Figure 7.15: Average System Payments for a Nodal Market on a 29 Node Network with Company and
Individual Pro�t Maximisation

The results shown in �gures 7.14 and 7.15 show two di�erent scenarios, the �rst is the case of the buy

back market, where the co-operative generators always perform better in pushing for a higher price and

eventual payments. This case is exactly as expected since the generators are competing more, and as has

been shown with agents using the buy back mechanism, that when the competition increases the price per

MW achieved drops.

However the same can not be said for the nodal mechanism, where although the results are close, average

within 15%, the individual generators actually appear to perform better than their co-operative counterparts,

up until the peak demand level where the co-operative ages are able to push the market slightly further.

Taking into consideration in the case of the nodal mechanism, that there is some error associated by

taking the average of the results, the standard error in the individual case would account for an expected

variance of 2%, which only does not result in a statistically signi�cant margin of di�erence in the 50% and

the 60% cases (50% t(8)= 1.028 p < 0.334).

However taking the case of the generator operation proposed in the selected generator case, shown in

�gure 7.16, then the results show that the co-operative generators are able to obtain a marginally higher

level of system payments than the individual generators. these results are more in line with the predicted

outcomes.
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Figure 7.16: Average System Payments for a Nodal Market on a 29 Node Network with Company and
Individual Pro�t Maximisation using Cost-Based and Strategic Generators

In order to understand what is happening, a closer look needs to be made at the distribution of the

pro�ts generators receive in these cases in these cases. Figures 7.17 - 7.19 give the average pro�t levels of

each company at three crucial levels in the Nodal market, 40, 50 and 70% demand levels respectively.

Figure 7.17: Average Pro�t per Generation Company on a Nodal Market with a Demand Level of 40 Percent
of System Generation Capacity
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Figure 7.18: Average Pro�t per Generation Company on a Nodal Market with a Demand Level of 50 Percent
of System Generation Capacity

Figure 7.19: Average Pro�t per Generation Company on a Nodal Market with a Demand Level of 70 Percent
of System Generation Capacity
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In the 40 percent case, the pro�ts attained by the generators average at 27% lower in the co-operative

case than in the individual case, this falls to approximately 2% less pro�t in the 50% case and then the

co-operative obtains 11% more pro�t at the 70% demand level. The buy back case shown in �gures 7.20 -

7.22, shows on average the pro�ts obtained by each of the generators in the 40% demand case is more than

100% higher, however this is not re�ected at the 50 and 70 % demand cases.

Figure 7.20: Average Pro�t per Generation Company on a Buy Back Market with a Demand Level of 40
Percent of System Generation Capacity
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Figure 7.21: Average Pro�t per Generation Company on a Buy Back Market with a Demand Level of 50
Percent of System Generation Capacity

Figure 7.22: Average Pro�t per Generation Company on a Buy Back Market with a Demand Level of 70
Percent of System Generation Capacity
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Even by looking at the revenue and output shares of each of the major companies between the two cases,

there is little to obtain in terms of explaining the di�erence in these results. The proportion of generation

by the minor generators, those not part of one of the major companies even seems to increase (Figures 7.23

- 7.25).

Figure 7.23: Output Distribution by Generation Company on a Nodal Market with a Demand Level of 40
Percent of System Generation Capacity
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Figure 7.24: Output Distribution by Generation Company on a Nodal Market with a Demand Level of 50
Percent of System Generation Capacity
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Figure 7.25: Output Distribution by Generation Company on a Nodal Market with a Demand Level of 70
Percent of System Generation Capacity

The reason for this unexpected behaviour comes back to the conceptual thoughts on the agents when

explaining why the nodal prices were so much higher than those using the buy back mechanism. From the

appearance of the results, it is predicted that the agents act in two slightly di�erent ways. The consistent

strand of behaviour appears to be pushing for a higher price, such that the bids are a long way above the

levels of marginal cost associated with each generator. However as has been noted previously the market

states that are created in every di�erent scenario give a di�erent search space for each of the agents to

optimise over, which in this case causes the individual agents to �nd a stable price above the level of the

co-operative generators.

The standard error on the outputs of the average levels of generation in both the corporate and individual

cases are 17% and 18% respectively, showing that although there is risk involved in the strategy, often

swinging between no generation and high generation, there is little increased risk of the strategies used.

Having looked at a variety of factors that could cause the individual agents to achieve higher pro�ts than

the nodal agents in some cases is reasonable to conclude that the strategies that the co-operative agents

create form a stable equilibrium at a lower price, where the risk versus reward aspect is perhaps not able to

be utilised in as pro�table a way that an agent acting for themselves is able to achieve. This is enhanced by
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the selected generator case, where each action carries a higher risk and so where the individual agents were

able to exploit aspects of risk in order to obtain higher levels of pro�t in the fully competitive case, those

same features of the market and search space are no longer present.

The results indicate an interesting position, because the buy back mechanism follows closely with the

predictions, showing that not only does the total system payments for the corporate generators exceed those

of the individually competing counterparts, but the same is not true for the nodal market, where the agents

in the case of acting individually perform better in some cases.

7.3 Discussion

On the small scale there was little evidence to promote the hypothesis that the Nodal market design created

higher prices than those in a buy back market, with the opposite holding true when the market contained

very little competition. The large scale case study, which was designed to creates a more realistic market

environment, shows that the buy back market with the large level of competition creates prices that are

comparable to bidding at their cost level plus some percentage of pro�t, often 10 to 15%. Conversely the

Nodal Market is able to reach a market state, where it can consistently average prices in line with the less

corporate cases on the small scale.

7.3.1 Constraint Ine�ciency in the Nodal Market

There are two hypotheses that can be considered for the results that have been obtained through this work,

the �rst is that the Nodal Market acts ine�ciently in a constrained environment due to locational pricing,

the second is that the Nodal pricing mechanism e�ectively creates several small locational markets.

The small scale experimentation results showed that when the lines were constrained they were actively

able to push the price up to a level above the buy back mechanism, a trend that is also identi�able on the

large scale. An argument could be made that having more constrained lines that are becoming constrained

earlier is the cause for the rise in ine�ciency of the market. By having a greater number of constrained lines,

the number of adjustments that are required to rebalance the market are larger, meaning that there is going

to be an increase in price because of the change in generation.

The main criticism with this as an explanation of why the Nodal market is ine�cient, is that although the

line constraints allow the participants to create higher locational prices than those under similar conditions,

the small scale indicated that although there was greater room to game the market than a buy back market,
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the actual results tended towards a more e�cient price for both markets. Under these conditions, it would

be expected from the small scale results that the Nodal Market would also tend towards an e�cient price,

however this is not the case, as the Nodal Market acts in a manner equivalent to having very little competition.

When designing the small scale test cases one aspect that was considered that on a large scale the whole

market could act similar to multiple small markets following their interactions. The expectation here is that

once a line has become constrained by the cheapest generation results in those generators on the demand

side of that constraint creating their own smaller electricity market. These electricity markets then have

participation limited to those on the demand side of the constraint that is isolating a particular node or set

of nodes.

The question still remains, that if there is the possibility of creating multiple small markets that e�ectively

minimise competition, then why are the high average prices only seen with the Nodal Pricing Mechanism

and not with the buy back Mechanism?

7.3.2 E�ciencies of a Uniform Price

In Chapter 1, one of the principle reasons for considering that a buy back pricing mechanism might be more

e�cient than a nodal Market, was the consideration of how much impact is required to a�ect the average

price per MWh with a Uniform Pricing Structure.

Having shown that on the small scale, when there is a very low level of competition the uniform price

appears to be highly exploitable. The reason for this is that the relatively few generators are able to have

more of an individual impact on the uniform price than those in a competitive market. Since the uniform

price is determined by the price of the last scheduled MW for the initial dispatch, the amount of gaming that

is capable in the system is determined by the number of participants. On the small scale, the more agents

present, the more more e�cient the system price seems to hold true on the large scale, where the average

system price is close to the optimal level of marginal cost. Only once the demand has risen above the 60%

level do the agents have the opportunity to game the system.

While the Nodal Pricing Mechanism may create lots of small markets as a result of the constraints that

allow the agents to force a higher price, the buy back Mechanism still schedules as much generation as

possible at the uniform price. The main condition that this creates is that a change in generation in the

Nodal market can a�ect the price of all generation at a node, whereas only the extra generation purchased

will be paid at the higher price.

Bakirtzis et. al. conclude in their work that when "no supplier takes advantage of his position , the price
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under uniform pricing are lower compared to the ones under pay-as-bid". While in this research the agents

are actively trying to take advantage of the position that they have, the large scale model shows that there

are conditions that allow for the agents to behave in di�erent ways.

It is not possible to state that for all cases the level of competition seen with a large number of agents

causes the generators to be restricted in their ability to take advantage of their position. While the Buy

Back market appears limited by the level of competition, the Nodal market in some cases is not.

7.4 Summary

The three experiments identify di�erent features that relate to the operation of a wholesale electricity market.

The �rst experiments o�er a direct comparison of market operation with no restrictions on operational

behaviour. The remaining two experiments propose alternate scenarios in which either some generators act

in non-competitive manner or act with concern for their own individual pro�t over that of a parent company.

Notably the experimental results identify that the hypothesis "A nodal pricing mechanism is more suscep-

tible to the in�uence of market gaming than a buy back mechanism in a constrained electricity market" seems

to be true under these experimental conditions. Under di�erent experimental conditions, the hypothesis also

remained true when tested with restrictions on the behaviours of some agents.

151



Chapter 8

Conclusions

Having completed a study of a simulated electricity market using an evolutionary agent based approach,

there are a number of topics that need to be addressed. This chapter will in sections 2 and 3 identify the key

�ndings of the research, section 4 will discuss the limitations of the simulation, with section 5 highlighting

aspects that could have been done di�erently. The chapter closes with a brief summary of future work that

could be performed using the simulation as it's basis.

8.1 Market Lessons

The results have shown that both pricing mechanisms can be su�ciently gamed by the agents so as to raise

the system price and generate higher pro�t for the generation companies above marginal cost level.

While both pricing mechanisms show that the market can be gamed by the competing agents, it is

the di�erence in the system payments made and the pro�ts achieved that is most fundamental. Where

the uniform based Buy Back system has less exploitable market power when there is a large number of

competitors in the market than the Nodal system.

The hypothesis of this research stated that:

"A nodal pricing mechanism is more susceptible to the in�uence of market gaming than a buy back

mechanism in a constrained electricity market"

The results of the experiment clearly back this claim, where in all cases tested by the large scale experi-

ments, the nodal pricing mechanism reached a higher average price per MWh. The main question this raises

is, why are the results presented here di�erent from those in other papers on the subject?
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The answer to this question comes down to the initial requirements of the agent design, in which the agents

were designed to optimise their actions across the entirety of their search space, with minimal constraints

on their actions. In doing this they have within the con�nes of the nodal market been able to consistently

push beyond a stable low price in the market to a higher price. At the same time the agents in the Buy

Back Market are able to achieve a higher than marginal cost price level for the market participants, but are

not able to enforce as high a price as their Nodal counterparts.

8.2 Agent Lessons

While the main focus of this research has been on the market outcomes, the work presented here has also

shown how genetic algorithm based agents can be utilised in the analysis of a market.

At the start of this work, three questions were posed of the simulation:

1. How closely does the data set used re�ect the real world?

2. How closely does the market set-up re�ect the re�ect the real world?

3. How e�ective are the agents in their role within the simulated environment?

By revisiting these questions, it is possible to identify the success of the agents. The development of

the large scale data model, and the design of the balancing mechanism and market rules, were both done

to answer questions 1 and 2 respectively. By designing the aspects of the simulation to be as accurate as

possible, the agents are able to perform their task where the results can be considered reliable.

The interesting aspect of the third question, is that the described role of the agents was to maximise

their pro�ts. The results indicate that they were reliably able to achieve this, and thus achieve the third of

the stated aims.

Having identi�ed that the simulation and agents performed as expected, it is possible to answer the

question:

"Are agents using an evolutionary search methodology ideally suited as tools for market analysis?"

A study into the dynamics and operation of a market should consist of a number of di�erent aspects. This

research focuses on attempting to push the operational bounds of the market environment and succeeds in

doing so, and the evolutionary agents' ability to search through a greater amount of the potential strategies

is key to this. This ability to identify strategies and scenarios that would not otherwise be considered or

tested ideally suits them to the task of market analysis.
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Despite being well suited to the task, basing the whole of a market analysis on the outcomes of boundary

stretching evolutionary would not be advised. An evolutionary based analysis of the potential impact of

market power, such as the one shown in this research, should be used in conjunction with a more standardised

behavioural based analysis.

8.3 Discussion of Limitations

During each chapter of design, a number of limitations were identi�ed, this section will identify what impact

these limitations have had on the research.

The biggest limitation placed on the simulation is the agent's requirement for perfect knowledge to

operate. As was stated at the end of chapter 4, without using perfect knowledge the agents would have

to estimate the strategies of other generators. Where the estimation of strategies creates a more realistic

market setting, the design requirements for the agents to su�ciently overcome the limitation would not only

require more processing time. This creates an issue that becomes more prevalent as the model size increases,

but more importantly, the loss of optimality in the actions taken by the agents.

The biggest impact this has on the research is that it more speci�cally de�nes each agents behaviour,

where the reality of the markets would have participants hedging themselves against inherent risk. The

results that the nodal market showed are unlikely to be full replicable in a real market environment, however

it is still possible that even with a limited knowledge would be able to force the price signi�cantly higher

than marginal cost levels.

The other major limiting factor was the enforcement of strategy for the must run generators, while in an

actual market they would be able to bid, albeit heavily regulated. It was considered that given a must run

schedule for these generators, that if they were allowed to bid, that they would bid at the pice cap, since no

matter what they bid they would be run at capacity.

In order to counteract this, they were forced to bid ¿0 per MWh, which although in some cases might

be a realistic bid for a nuclear generator, a value of ¿0 as a bid can have a knock on e�ect in the market.

This e�ect was seen in the large scale while analysing the nodal pricing mechanism, where the average of

each MWh supplied ended up lower at nodes with nuclear generators than those without.
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8.4 Alternative Methods

In considering the limitations and assumptions made during the development of a detailed simulation, there

are often other contributing factors that are overlooked and while only minor could a�ect the outcome.

In addition to the additional generation detail, one of the key simpli�cations is a lack of demand side

control. The simulation does implement a uniform demand reduction system as price rises, however other

models such as the AMES project have demand side agents, which are able to better and more accurately

control the demand side of the market. By creating demand side agents it might be possible to shift some

of the market power away from the generators and onto the demand side agents, potentially reducing the

system wide prices.

Despite being more of an imposed limitation, the data for the generators was designed to be fairly

simplistic. This is in a way that real generators have a more complex cost calculating structure than the

model presented here.

There are two di�erent factors that could be considered when looking at the pricing structures of genera-

tors. The main factor is the use of real cost data, where as in all of the experiments presented in this research

no realistic cost data was attributed to the generators. Having more realistic cost data would allow for a

better comparison with the real market in the UK, which would aid the future application of this research.

The second is locational costing, data used in the model is a predicted cost it makes reference to the

technologies and fuel di�cult, and in particular there is no notion of the location of the generator a�ecting

price. Given that across Great Britain di�erent regions have di�erent cost this will impact each generator's

marginal cost level, where a generator in a more expensive region will have a higher marginal cost to an

identical generator in a cheaper region. In some cases a small rise in cost may not impact their strategy,

a large increase in price across a relatively small number of generators is capable of changing the market

dynamic owing to a change in strategies required.

8.5 Future Work

While this research has provided an in depth study of one factor in the �eld of electricity markets, there are

a number of possible further studies that would be relevant.
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8.5.1 Market Extensions

Within the currently implemented simulation and model, there are a number of di�erent questions that can

be studied.

Taking a single market design, one of the critical aspects is how does the repeated playing of the game

impact the behaviour of the agents. In taking into consideration a longer time period of the market, possibly

over a year, a number of additional factors need to be considered.

In the previous section the start-up costs of generators are mentioned as one factor that could have been

included to further complete the realism of the simulation. By taking the concept that generators that are

not operational need to be started up, a new functionality of the system operator could be implemented to

ensure that as much of the capacity of the market is available at all times. This would be a way of studying

market power in scenarios such as the Californian Electricity Crisis of 2000.

Along similar lines, other aspects of the market could be tested, such as the potential change that take-

overs or mergers might have on the competition in a market. While a merger of two of the large market

participants would make for an interesting topic of study, the plans for any such merger is unlikely to be

allowed without close scrutiny. While not including the mergers of the major companies, there could be

the potential for the acquisition of independent generators by the larger companies that would impact the

market dynamic.

8.5.2 Market Designs

The research presented here has produced an insight into two di�erent pricing mechanisms using bilateral

trading arrangements. A possible extension to this work would involve looking at additional market rules

and regulations for comparative purposes.

An alternative pricing mechanism that was considered during the early stages of this research, was a

zonal pricing structure. Rather than the price being decided across the individual nodes of the transmission

grid, the grid is divided into zones, where the price is de�ned by the cost of supplying electricity in that

zone.

In addition to the pricing mechanism, an alternative market design such as a pool based system could

be developed, this would allow for a direct comparison between the previous implemented market design in

Great Britain and the currently implemented one. This would allow for a closer look at the decisions behind

the reason to change the market design.
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8.5.3 Market Models

During the development of the large market model that was used in the experimentation of this research,

a number of di�erent market designs were considered. These could be used either as a method of further

studying the impact of the tested market mechanisms, but also the alternatives proposed above.

In Chapter 6, several di�erent designs were considered, including the Nordpool and Belgian models. In

addition to these, the Californian model, which has experienced problems with electricity market manipula-

tion in the past would also make for a possible case study.
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Appendix A

Sample DC OPF Equation

A test of a three node network with a network layout as shown in Figure A.1 with network injections of

30MW at Node 0 and a demand of 30MW at Node 1. The expected �ows for this sample are 20MW on line

0, 10MW on line 1 and -10MW on line 2.

Figure A.1: Sample 3 Node Network

z = y(R−1A(ATR−1A)−1) (A.1)

Where:

R =


1 0 0

0 1 0

0 0 1

 (A.2)
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A =


−1 0

0 −1

1 −1

 (A.3)

y =


30

−30

0

 (A.4)

Each step of the matrix calculation used to calculate the line �ows in this example is shown below.

R−1A =


−1 0

0 −1

1 −1

 (A.5)

ATR−1A =

 2 −1

−1 2

 (A.6)

(ATR−1A)−1 =

0.666 0.333

0.333 0.666

 (A.7)

A(ATR−1A)−1 =


−0.666 −0.333

−0.333 −0.666

0.333 0.333

 (A.8)

y(R−1A(ATR−1A)−1) =


20

10

−10

 (A.9)
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Appendix B

29-Node Data Model

Figure B.1: Grid Layout for 29-Nodel Model
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Node ID Node Peak Demand (MW) Total Generation at Node (MW)
0 341 1527
1 717 1108
2 62 364
3 431 0
4 202 844
5 2234 4248
6 2244 3631
7 193 1416
8 222 0
9 1749 420
10 317 2987
11 781 0
12 2557 4902
13 3421 7832
14 1596 1934
15 1533 10545
16 2504 0
17 2435 2964
18 2399 1700
19 1291 1942
20 2262 3674
21 7100 4632
22 2436 5733
23 3958 2884
24 9738 3657
25 1323 6958
26 1307 1501
27 2446 2289
28 1852 2306

Table B.1: Peak Nodal Demand
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Line ID Start Node End Node Capacity(MW)
0 0 1 1050
1 0 2 264
2 1 2 652
3 1 3 1520
4 2 3 1296
5 3 4 2000
6 3 5 2620
7 3 6 2180
8 4 5 2780
9 5 6 1900
10 5 8 4200
11 6 7 4680
12 7 9 6140
13 8 9 1605
14 8 10 2780
15 9 14 8460
16 10 14 5040
17 10 11 6640
18 10 12 4380
19 14 13 10000
20 14 15 8310
21 11 12 6200
22 12 13 2080
23 13 15 3205
24 11 17 4800
25 12 17 4800
26 15 16 4040
27 15 20 5560
28 15 18 8600
29 16 17 6560

Table B.2: 29-Node Line Data A
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Line ID Start Node End Node Capacity(MW)
30 17 22 3960
31 16 21 4200
32 18 20 5810
33 18 19 3180
34 20 19 4560
35 20 21 4560
36 15 21 4200
37 21 22 4560
38 21 24 6550
39 20 24 4560
40 19 25 4560
41 22 23 7180
42 23 24 2480
43 24 25 12500
44 22 28 4020
45 23 27 4420
46 25 26 6200
47 26 27 6140
48 27 28 4560

Table B.3: 29-Node Line Data B

Generator Type Cost per MW (¿)
Type 0 115
Type 1 125
Type 2 105
Type 3 88
Type 4 124
Type 5 125
Type 6 64
Type 7 25
Type 8 90
Type 9 160
Type 10 136
Type 11 64

Table B.4: Cost per Unit for Di�erent Generator Types
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Node ID Type Maximum Output(MW)
4 Type 7 440
5 Type 5 2028
5 Type 8 933
6 Type 2 2286
6 Type 2 1102
25 Type 3 805
26 Type 3 420

Table B.5: Company A Generators

Node ID Type Maximum Output(MW)
0 Type 8 965
1 Type 3 1108
2 Type 8 261
4 Type 8 281
6 Type 2 123
12 Type 1 1987
13 Type 1 1986
15 Type 3 735
21 Type 2 228
22 Type 2 363
23 Type 3 1234
25 Type 3 700
27 Type 3 900

Table B.6: Company B Generators

Node ID Type Maximum Output(MW)
5 Type 10 45
12 Type 3 1380
15 Type 3 395
15 Type 3 900
21 Type 1 964
21 Type 1 2021
25 Type 1 1966
25 Type 0 1355
24 Type 3 408
24 Type 3 860
24 Type 4 144

Table B.7: Company C Generators
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Node ID Type Maximum Output(MW)
18 Type 3 1700
19 Type 3 420
20 Type 3 665
22 Type 2 2058
22 Type 1 1665
23 Type 3 1550
23 Type 4 100
25 Type 1 1131
27 Type 2 158
27 Type 4 145
27 Type 0 1036
28 Type 3 905
24 Type 0 1245

Table B.8: Company D Generators

Node ID Type Maximum Output(MW)
10 Type 3 229
15 Type 3 260
15 Type 3 665
15 Type 3 1285
20 Type 3 905
20 Type 3 405
22 Type 3 245

Table B.9: Company E Generators

Node ID Type Maximum Output(MW)
12 Type 3 515
14 Type 3 1835
15 Type 3 1100
17 Type 7 1644
17 Type 7 360
21 Type 1 1018
28 Type 4 140

Table B.10: Company F Generators

Node ID Type Maximum Output(MW)
15 Type 1 2000
15 Type 1 1987
20 Type 3 819

Table B.11: Company G Generators
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Node ID Type Maximum Output(MW)
5 Type 6 515
7 Type 6 1835
10 Type 6 1100
19 Type 6 1644
26 Type 6 360
28 Type 6 1018

Table B.12: Company H Generators

Node ID Type Maximum Output(MW)
0 Type 8 562
2 Type 8 103
4 Type 8 123
5 Type 8 168
6 Type 2 120
7 Type 8 201
9 Type 2 420
10 Type 2 155
10 Type 9 105
12 Type 2 210
12 Type 3 810
13 Type 1 3906
13 Type 1 1940
14 Type 3 99
15 Type 2 1218
17 Type 11 960
19 Type 9 315
20 Type 3 880
21 Type 3 401
22 Type 3 552
22 Type 3 850
25 Type 3 800
25 Type 9 201
27 Type 4 50
24 Type 3 1000

Table B.13: Other Generators
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