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Abstract

Let G be a finite group and C = (C1, . . . , Cr) a collection of conjugacy classes of G. The Hurwitz

space Hin(G,C) is the space of Galois covers of P1C with monodromy group G, and ramification

type C. Points of the Hurwitz space can be parameterised combinatorially by Nielsen tuples:

tuples in Gr with product one. There is a correspondence between connected components of

H(G,C) and orbits of the braid group on the set of Nielsen tuples.

In this thesis we consider the problem of determining the number of components of the

Hurwitz space for A5 and A6. For both groups we give a complete classification of the braid

orbits for all types C. We show that when there exists more than one orbit then Fried’s lifting

invariant distinguishes these orbits.
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CHAPTER 1

INTRODUCTION

Let X be a compact Riemann surface of genus g. Let φ : X → P1C be a degree n normal

cover. For all but finitely many points x ∈ P1C, the fibre φ−1(x) has cardinality n. We call

those points, whose fibre has cardinality strictly less than n, branch points of φ, and we let

B = Bφ = {b1, . . . , br} be the set of branch points of φ.

For any x ∈ P1C\B, the fundamental group π1(P 1C\B, x) acts transitively on the n elements

of the fibre. This action is known as the monodromy action, and it induces a homomorphism

φ∗ : π1(P1C \B, x)→ Sn. (1.1)

The image of φ∗ is called the monodromy group of φ. The function φ and the basepoint x

determine the monodromy group. Changing the basepoint results in a conjugate monodromy

group. For every 1 ≤ i ≤ r, let γi be the closed curve winding once around the point bi. Then

π1(P1C \B, x) is generated by the homotopy classes of the γi (which we also denote by γi), and

the γi satisfy the single relation

γ1 · · · γr = 1.

The function φ∗ takes the generators γ1, . . . , γr to non-identity elements g1, . . . , gr, which generate

G and which satisfy the product-one condition:

g1 · · · gr = 1.

If Ci denotes the conjugacy class of gi then the tuple C = (C1, . . . , Cr) is called the ramification

type (or simply type) of f .
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Consider the set of all possible monodromy homomorphisms of the form (1.1). Each homo-

morphism is determined by the images of the standard generators. Hence the set of monodromy

homomorphisms for a fixed group G is given by

Er(G) = {(g1, . . . , gr) | gi 6= 1, 1 ≤ i ≤ r, 〈g1, . . . , gr〉 = G and g1 · · · gr = 1}.

A tuple (g1, . . . , gr) ∈ Er(G) is called a Nielsen tuple (or Hurwitz tuple). If g = (g1, . . . , gr) and

g′ = (g′1, . . . , g
′
r) are two Nielsen tuples such that there exists h ∈ G satisfying ghi = g′i for all i,

then we write gh = g′. Conjugate tuples correspond to equivalent monodromy homomorphisms.

Let Br = 〈Q1, . . . , Qr−1〉 be the Artin braid group on r strands (see [2]). The braid group

acts on the set of Nielsen tuples and these orbits, called braid orbits, are known to correspond to

connected components of the Hurwitz space. The Hurwitz space Hin(G,C) is a topological space

parameterizing covers of P1C with monodromy group G and ramification type C. The study of

braid orbits and Hurwitz spaces goes back as far as Clebsch and Hurwitz.

There is renewed interest in determining the properties of braid orbits driven by connections to

the regular inverse Galois problem [29], the theory of modular towers [1], and l-adic representations

of Shimura varieties [13]. It has become clear that an understanding of the braid orbits on

Nielsen tuples may provide an understanding of these arithmetic problems.

In this thesis we consider the problem of determining the number of braid orbits on Nielsen

tuples for a fixed group G and an arbitrary tuple of conjugacy classes of G. The following is an

outline of the contents of this thesis.

Our exposition begins in Chapter 2 with a brief overview of Riemann surfaces and their

coverings. Much of this material is likely to be familiar to the reader, but is included for

completeness. The highlight of this chapter, at least for the purposes of the rest of the thesis, is

Riemann’s existence theorem which gives a correspondence between meromorphic functions on a

Riemann surface and equivalence classes of monodromy homomorphisms. This result allows us

to give a combinatorial description of Hurwitz spaces. The Hurwitz spaces are the subject of

Chapter 3.

Traditionally the Hurwitz space Hg,G is defined as the space of surface-function pairs (X,ϕ)

such that

ϕ : X → P1C

2



is a meromorphic function with associated monodromy group G. This space has a higher genus

counterpart, the space of Riemann surfaces of genus g with a group of automorphisms isomorphic

to G. When g = 0 these two notions coincide. Of course there are infinitely many such covers

and so often refinements of the Hurwitz spaces where the covers in question are ramified over a

set of points with prescribed ramification types are considered. Following Fried and Volklein, [36]

and [37], we explain how points of this space correspond to Nielsen tuples, and how braid orbits

on Nielsen tuples determine topological properties of the Hurwitz space. Finally the chapter ends

with a discussion of a selection of comparable results in the field. The result of greatest influence

on this thesis is the classification of braid orbits for 3-cycle types due to Fried [11]. Fried defined

an invariant of braid orbits. Using this invariant, which is usually called the lifting invariant

or lift invariant, he showed that the braid orbits for alternating groups, with type consisting of

3-cycles, are distinguished by said lifting invariant.

The principle theoretical achievements of this thesis are the classifications of braid orbits for

the alternating groups A5, Theorem 5.3.1, and A6, Theorem 4.3.1, found in Chapters 4 and 5

respectively. Such classifications represent the first complete descriptions of braid orbits for

all types for a nonsoluble group. The classifications themselves are satisfyingly simple: Fried’s

lifting invariant is extended to all types, and we show that, outside of a number of small length

exceptions, two Nielsen tuples with the same lifting invariant lie in the same braid orbit. Perhaps

of greater importance, is the pattern which these two classifications suggest: that, almost always,

the lifting invariant separates the braid orbits for alternating groups. Unfortunately this thesis

does not contain a more general result for an arbitrary alternating group An. However evidence

is presented, in Chapter 7 particularly, which lends itself to this conclusion.

A necessary byproduct of the work undertaken during the production of this thesis is the

creation of computational tools and techniques designed to calculate and analyse braid orbits.

Chapter 6 presents an overview of these tools, which is distributed with the computational

algebra system GAP. One hopes that improving the ease of use and performance of these tools

will encourage others to complete classifications for further groups, and to aid the development

of more general theory.
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CHAPTER 2

COVERINGS AND SYMMETRIES OF RIEMANN SURFACES

This chapter is an introduction to Riemann surfaces, their covering spaces and their symmetries.

The aim is to provide an overview of the basic results in the area. None of the material contained

in this chapter is needed to understand the proofs or techniques used in the later chapters to prove

the main results of this thesis, however it does provide motivation for the problem considered.

The material in this chapter can be found in most introductory texts on Riemann surfaces, such

as [31, 24, 7].

2.1 Definitions and Examples

To begin we define Riemann surfaces and consider some of their properties.

Definition 2.1.1. A complex chart on a topological space X is a homeomorphism ϕ : U → V ,

from an open set U ⊂ X to an open set V ⊂ C. The set U is called the domain of the chart,

and if ϕ(p) = 0 for some p ∈ U we say that the chart is centred at p.

Thus, a complex chart is merely a set of local complex coordinates for a space. Two such

sets of coordinates are compatible if the change of coordinates map is holomorphic.

Definition 2.1.2. Two charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 on a topological space X are said

to be compatible if the map

ϕ2 ◦ ϕ−1 : ϕ1(U1 ∩ U2)→ ϕ2(U1 ∩ U2)

is holomorphic. The function ϕ2 ◦ ϕ−1 is called the transition map.
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Local charts can be patched together to cover X.

Definition 2.1.3. An atlas of complex charts for X is a set A of pairwise compatible charts

that cover X.

Two atlases, A and B, are equivalent if every chart of A is compatible with every chart of B.

An equivalence class of atlases is called a complex structure.

Definition 2.1.4. A Riemann surface, X, is a second-countable Hausdorff space with an

accompanying complex structure.

2.2 Examples

This section will focus on some examples of Riemann surfaces. Note that examples are given in

terms of charts rather than their equivalence classes.

The first nontrivial example of a Riemann surface is often the Riemann sphere, also know as

the projective line, P1C. There are two ways of viewing the Riemann sphere: algebraically and

geometrically. This dichotomy is common within the study of Riemann surfaces.

The geometric approach to defining the Riemann Sphere is as follows: Define Ĉ to be the

extended complex plane C ∪ {∞}. The topology of points in C is the standard topology. The

basic neighbourhoods of ∞ are given by

DR(∞) = {z ∈ C | |z| > 1

R
} ∪ {∞}.

Define two charts on Ĉ by

U0 = C, φ0(z) = z

U∞ = Ĉ \ {0}, φ∞(z) =


1/z z 6=∞

0 z =∞

It is straightforward to see that this pair of charts forms an atlas.

Alternatively one may consider an algebraic approach. Recall that, for a given field K, the
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projective line over K is the set of all homogeneous coordinates:

P1(K) = {[x1 : x2] | x1, x2 ∈ K, x1 6= 0, or x2 6= 0},

where [x1 : x2] denotes the one-dimensional subspace of K2 containing x1 and x2. The point

[1 : 0] corresponds to the additional point ∞. Note that for any λ ∈ K

[x1 : x2] = [λx1, λx2].

Define a sequence of charts for P1C = P1(C) by

U0 = {[x1 : x2] ∈ P1C | x1 6= 0}, ϕ0([x1 : x2]) =
x2
x1

U1 = {[x1 : x2] ∈ P1C | x2 6= 0}, ϕ0([x1 : x2]) =
x1
x2
.

Again, one may easily check that this forms an atlas. It is not immediately obvious that these

two structures are equivalent. Using the stereographic projection one can verify that P1C may

be viewed as a sphere. The algebraic nature of this definition allows for easily calculation.

Another important class of examples of Riemann surfaces are complex tori. Such examples

illustrate how one may attach a complex structure to a Riemann surface acted on by a group.

Let Λ be a discrete subgroup of C. In particular

Λ = Z⊕ λZ,

for some λ ∈ C. Consider the quotient projection

π : C→ C/Λ.

This quotient can be given a complex structure, producing a Riemann surface. Observe that C/Λ

is equipped with the natural quotient topology: U ⊂ C/Λ is open if and only if its preimage,

π−1(U), is open in C.

There exists some ε such that for any z ∈ C the open ball Dε(z) and its G-translates are
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Figure 2.1: A torus realised by the identification of the edges of a square.

disjoint, i.e.,

Dε(z) ∩ g ·Dε(z) = ∅ for all g ∈ G.

A complex atlas on C/Λ is defined as follows: For each z ∈ C we let Dε(z) be the domain

of its chart. The chart map itself is the inverse function π |−1Dε(z)
. One can then verify that the

transition maps are holomorphic [31]. In fact, this process of using the charts for the domain

of a continuous function to provide charts for the codomain is the same as the one used for a

group acting on a given Riemann surface. As seen in Figure 2.1, a complex torus is a torus in

the topological sense.

2.3 Topology of Riemann surfaces

As the name suggests, Riemann surfaces, are topological surfaces. Indeed, it is clear that if X is

a Riemann surface then an atlas attached to X ensures that X is a one dimensional complex

manifold, or equivalently, a two dimensional real manifold. Moreover the insistence that the

transition functions are holomorphic ensures that the 2-manifold is orientable [24]. Therefore the

classification of compact orientable surfaces applies.

Theorem 2.3.1 ([19]). Every orientable compact Riemann surface X is homeomorphic to a

sphere with g ≥ 0 handles for some integer g. The integer g is called the genus, and is denoted

g(X).

A presentation for the fundamental group of surfaces is also well known. By the previous

result this presentation applies to Riemann surfaces.
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Figure 2.2: Generators for the fundamental group.

Theorem 2.3.2. The compact orientable surface of genus g with n punctures, has fundamental

group with presentation:

π1(S) := 〈α1, β1, · · · , αg, βg, γ1, · · · γn | [α1, β1] · · · [αg, βg]γ1 · · · γn = 1〉.

The geometric interpretation of these generators is given in Figure 2.2. In particular, if the

surface is an n-punctured sphere, then its fundamental group has presentation:

〈γ1, . . . , γn | γ1 · · · γn = 1〉.

2.4 Maps between Riemann Surfaces

Definition 2.4.1. A map F : X → Y is said to be holomorphic at a point p ∈ X if there exist

charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 for X and Y respectively, such that p ∈ U1 and F (p) ∈ U2,

and such that the composition ϕ2 ◦F ◦ϕ−11 is holomorphic at ϕ1(p) in the usual sense of complex

functions C→ C.

A function is said to be holomorphic on some domain if it is holomorphic at every point on

the given domain, and F is called holomorphic if it is holomorphic on the whole of X.

A bijective holomorphism is called an isomorphism and self-isomorphisms are, as expected,

called automorphisms. The set of automorphisms of a Riemann surface X forms a group under

composition. This group, called the automorphism group of X, is denoted Aut(X).

If Y is the Riemann sphere, P1C, then a holomorphic map F : X → Y is often called a

meromorphic function.

8



Proposition 2.4.2. Let F : X → Y and G : Y → Z be holomorphic maps. Then

• if F is holomorphic, then F is continuous;

• the composition G ◦ F : X → Z is holomorphic.

Recall that if h is holomorphic on the annulus

A = {z ∈ C | 0 < |z − c| < R}

then h can be expressed as a Laurent series, i.e.,

h(z) =
∞∑
−∞

an(z − c)n

for some constants an, which may be determined by evaluating suitable line integrals. Suppose

that p is a point in X, and that there exists a holomorphic map f : X → Y in a punctured

neighbourhood of p. Choose a chart ϕ : U → V centered at p. Then f ◦ ϕ−1 is holomorphic in a

neighbourhood of 0 = ϕ(p), therefore, letting z = φ(x),

f ◦ ϕ(z) =
∑
n=N

anz
n.

The integer N is called the order of f at p, and is denoted ordp(f). Note that the order does not

depend on the chart: if ϕ′ is a different chart then, since transition maps are biholomorphic, the

composition ϕ ◦ ϕ′−1(z) has a Laurent series whose leading term has degree 1. So

ϕ ◦ ϕ′−1(z) =
∑
n=1

bnz
n

and therefore, as

f ◦ ϕ′−1 = (f ◦ ϕ−1) ◦ (ϕ ◦ ϕ′−1)

= aN (
∑
n=1

bnz
n)N + aN+1(

∑
n=1

bnz
n)N+1 + · · · ,

the degree of the leading term of f ◦ ϕ′−1 is N .
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Definition 2.4.3. Let X and Y be Riemann surfaces, and let p ∈ X. Suppose that f : X → Y

is a holomorphism and that f(p) = q. Define the multiplicity of f at p, written multf (p), to be

ord(ϕ ◦ f) for some chart ϕ centered at q. By the above, this does not depend on the choice of

the chart ϕ.

Most points will have multiplicity 1, those points which do not are sites of unusual behaviour

for the holomorphic map.

Definition 2.4.4. Let f : X → Y be a non-constant holomorphic map. A point p ∈ X is called

a ramification point if multf (p) ≥ 2. A point y ∈ Y is called a branch point for f if it is the

image of a ramification point. Points in X which are not ramification points are called regular

points. A holomorphic map with ramification points is said to be ramified or branched.

Note that the set of branch points is discrete because these are points where the derivative of

ϕ ◦ ϕ′−1 vanishes [15].

We can give a precise description about the local behaviour of holomorphic maps between

Riemann surfaces.

Theorem 2.4.5 (Local Normal Form [31]). If f : X → Y is a nonconstant holomorphic map

and p ∈ X, then there is a unique nonnegative integer n such that f looks like z 7→ zn. To

be more precise, for every chart ϕ2 : U2 → V2 on Y centered at f(p), there exists some chart

ϕ1 : U1 → V1, and an integer n ≥ 0, such that ϕ1 is centred at p, and ϕ2(f(ϕ−11 (z))) = zn for

every z ∈ ϕ−11 (V1).

The integer n is unique, as can be seen by observing that this n is given by the topological

properties of the map. If local coordinates are chosen so that f is viewed as z 7→ zn, then there

are exactly n preimages of points in a suitably chosen neighbourhood of f(p), and this number is

independent of the coordinates chosen. In fact, the integer n coincides with the multiplicity of f

at p [31].

Definition 2.4.6. Let X and Y be Riemann surfaces and let f : X → Y be a nonconstant

holomorphic map. Then define dy(f) to be

dy(f) =
∑

p∈f−1(y)

multp(f).
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It can be shown that df (y) does not depend on the point y and depends only on f [31]. The

constant deg(f) = d(f) = dy(f) is called the degree of f .

Let f : X → Y be a holomorphic map. An important consequence of the local structure

for holomorphic maps is that, should f be unbranched, then χ(X) = χ(Y ) deg(f), where χ(X)

denotes the Euler characteristic of X. If however, f is ramified, then we must subtract a term

which takes the additional multiplicity of the branch points into account. These two facts are

captured by the celebrated Riemann-Hurwitz formula:

Theorem 2.4.7. (Riemann-Hurwitz Formula) Let f : X → Y be a nonconstant holomorphic

map between compact Riemann surfaces. Then

2g(X)− 2 = deg(f)(2g(Y )− 2) +
∑
p∈X

(multp(f)− 1).

Observe that the sum
∑

p∈X(multp(f)− 1) is finite because the set of ramification points is

discrete.

2.5 Automorphisms of Riemann Surfaces

Definition 2.5.1. Let G be a finite group acting on a Riemann surface X. We say that G acts

effectively (or faithfully) on X if for any distinct g, h ∈ X there exists some x ∈ X such that

g · x 6= h · x. An action is said to be holomorphic if for every g ∈ G the map sending x ∈ X to its

image under g is a holomorphic map from X to itself.

If G acts on a Riemann surface X then the quotient space is also a Riemann surface.

Theorem 2.5.2 ([24], [31]). Let G be a finite group acting holomorphically and effectively on a

Riemann surface X. Then we can construct a complex structure for X/G which makes X/G a

Riemann surface. Moreover, the quotient map π : X → X/G is a holomorphic map of degree |G|

and multp(π) = |Gp| for any point p ∈ X.

If a group acts on a Riemann surface then we have an alternative version of the local normal

form for this action, which says that, if g stabilises a point p in X, then the local action is linear.

Theorem 2.5.3 ([31]). Let G be a finite group acting holomorphically and effectively on a

Riemann surface, X. Fix a point, p ∈ X, with nontrivial stabilizer of order m. Choose a
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generator, g, for Gp. Then there is a local coordinate z centred at p such that the action of g is

given by g(z) = λz, for some primitive mth root of unity λ.

The element g is called the distinguished generator for Gp. The distinguished generator is

unique up to conjugation in G. We will call the conjugacy class of g the ramification type of p.

For regular points the stabilizer is trivial so the above theorem does not apply.

The following is a restatement of the Riemann-Hurwitz formula for groups acting on Riemann

surfaces which follows from the two previous results.

Corollary 2.5.4. Let G be a finite group acting holomorphically and effectively on a Riemann

surface X. Let π : X → X/G =: Y be the quotient map. Then for each branch point y ∈ Y there

exists some integer r ≥ 2 such that π−1(y) consists of exactly |G|r points, and π has multiplicity r

at each of these points. Moreover, if there are exactly k branch points, y1, . . . , yk, with π having

multiplicity ri at the points above yi then

2g(X)− 2 = |G|(2g(X/G)− 2) +

k∑
i=1

|G|
ri

(ri − 1)

= |G|[2g(X/G)− 2 +
k∑
i=1

(1− 1

ri
)]. (†)

A corollary to this version of the Riemann-Hurwitz theorem is a bound on the size of a finite

group acting on a Riemann surface in terms of only the genus.

Theorem 2.5.5. (Hurwitz’ Theorem) Let G be a finite group acting holomorphically and effec-

tively on a Riemann surface, X, of genus g ≥ 2. Then

|G| ≤ 84(g − 1).

In fact, as can be seen in [9] or [24] for example, the automorphism group Aut(X) of any

Riemann surface of genus at least 2 is a finite group and so also satisfies this bound, as the

automorphism group acts holomorphically and effectively on X.
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2.6 Ramified Covers, Monodromy, and Riemann’s Existence
Theorem

The results of the previous section demonstrate that, under certain reasonable assumptions,

holomorphic maps between Riemann surfaces are well understood. In particular it is clear that if

f : X → Y is a holomorphic map between compact Riemann surfaces, then the restriction of f

to regular points is a local homeomorphism. By restricting the domain, the map f is guaranteed

to be a covering. Such covering maps have a well-understood structure derived from the local

normal form.

This section begins with a discussion of some results from covering space theory. Proofs

and more general statements can be found in most texts on algebraic topology, such as those

by Hatcher [19] or Massey [30]. Let X and Y be topological spaces and recall the following key

definitions.

Definition 2.6.1.

• A map f : X → Y is said to be a covering map if around every point y ∈ Y there is some

open neighbourhood U such that f−1(U) is a disjoint union of open sets, each of which are

mapped homeomorphically onto U by f . The pair (X, f) is called a covering space. Often

the map is often omitted from the pair.

• Two covering maps f1 : X1 → Y and f2 : X2 → Y are said to be equivalent or isomorphic

if there is some homeomorphism γ : X1 → X2, such that γ ◦ f1 = f2. The group of

automorphisms of a cover f : X → Y is usually called the covering group of f and is

denoted Aut(X, f) or cov(X, f).

• The covering space (X, f) is said to be universal if the fundamental group of X is trivial.

Such a space, if it exists, is unique up to equivalence, and has the following universal

property: If (X ′, f ′) is also a covering space of X then there exists a covering g : X → X ′

such that f = f ′ ◦ g.

• A map f : X → Y is said to be proper if the inverse image of any compact subset of Y is

compact. Any proper local homeomorphism is a covering.

Recall that if f : X → Y is a covering and γ is a path in Y , then γ̃ is said to be a lift of γ if
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γ = f ◦ γ̃. An important property of covering spaces is that paths can always be lifted, this is

known as the path-lifting property.

Proposition 2.6.2 (Path-lifting property). Let γ : I → Y be a path in the Riemann surface Y

and f : X → Y is a covering. Suppose that γ(0) = p0 ∈ Y and that p̃0 ∈ f−1(p0). Then there is

a unique, up to homotopy, path γ̃ which lifts γ and has initial point γ̃(0) = p̃0.

The path-lifting property ensures that, if Y is path connected, then the fibres have the same

cardinality. Indeed, let p0 and p1 be distinct points in Y . Let γ be a path in Y which joins p0 to

p1. Then consider the map which takes a ∈ f−1(p0) to the endpoint of the lift of γ to a path in

X with initial point a. Clearly the end point is an element of the fibre f−1(p1). By the path

lifting property this map is a bijection.

If Y is a Riemann surface then X must also be a Riemann surface, inheriting a complex

structure so that the covering map is holomorphic [15]. Therefore all results of the previous

section concerning holomorphic functions are applicable.

Let G be a finite group, and let X be a topological surface such that G acts freely on X, i.e.,

without fixed points; and properly discontinuously, by which we shall mean that, for every x ∈ X,

there exists an open neighbourhood U of x such that the set

{g ∈ G | g(U) ∩ U 6= ∅}

is finite. The map X → Y := X/G is a covering map with covering group G [15].

The set of all covering spaces can be shown to correspond to the set of all conjugacy classes

of subgroups of π1(Y ). This correspondence is known as the classification of covering spaces.

Theorem 2.6.3 ([15]). Let Y be a connected topological surface space. Then Y has a unique

universal cover π : Ỹ → Y , and:

• The covering group Aut(Ỹ , y) is isomorphic to the fundamental group of the base space

π1(Y ).

• The covering group acts freely and properly discontinuously on Ỹ . This action permutes

elements of each fibre transitively. Such covers, which act transitively on the elements of

each fibre, are said to be normal or Galois.
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• The covering group action gives rise to a homeomorphism

Ỹ /Aut(Ỹ , π)→ Y.

In addition any covering of Y is isomorphic to the covering induced by some subgroup G of

Aut(Ỹ , π):

Ỹ /G→ Ỹ /Aut(Ỹ , π) ∼= Y.

• These coverings are holomorphic maps and any other holomorphic map is isomorphic to

one of these coverings.

Theorem 2.6.3 provides us with a complete description of covers of Riemann surfaces, and

unramified holomorphic maps between Riemann surfaces. If however we have an nonempty

branch set, then it is not the case that the holomorphic map is a cover. The following result

says that, if the branch points and ramification points are removed, then holomorphic maps are

covering spaces.

Proposition 2.6.4. Let f : X → Y be a nonconstant holomorphic map between connected

compact Riemann surfaces. Let B ⊂ Y be the set of branch points for f , and let R ⊂ X be the

set of ramified points for f . Define new surfaces X ′ = X \R and Y ′ = Y \B. Then the map

f ′ : X ′ → Y ′

is a covering.

Consider covers of the punctured disc. These determine the behaviour of holomorphic maps

local to the ramified points. The result is unsurprising given the local normal form of holomorphic

maps.

Proposition 2.6.5. Let D∗ denote the punctured unit disc, then the universal cover of D∗ is

H→ D∗

z 7→ e2πiz
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Moreover, D∗ has exactly one cover of each degree. The cover of degree n is given by

D∗ 7→ D∗

z 7→ zn.

This is the map corresponding to the action of the subgroup Z/nZ ≤ Z ∼= π1(D∗) in Theorem 2.6.3.

Example 2.6.6. The map f : P1C → P1C, defined by z 7→ zd is a proper holomorphic map

with branch point set {0,∞} and ramification point set {0,∞}. The restriction P1C \ {0,∞} →

P1C \ {0,∞} is a degree d covering.

Theorem 2.6.3 and Proposition 2.6.4 show that, if f is a holomorphic map between Riemann

surfaces then it is associated to a conjugacy class of subgroups in the fundamental group, and

in fact the degree of f equals the index of its corresponding subgroup in π1(Y ). However,

this correspondence is unhelpful because, without returning to the proof of the covering space

correspondence, determining which cover corresponds to which class of subgroups is not possible.

The monodromy representation explicitly realises this association.

Let f ′ : X ′ → Y ′ be a degree d covering as outlined above. Pick a basepoint, y0 in Y ,

for the fundamental group π1(Y
′, y0). We outline a procedure which defines a representation

ρ : π1(Y, y0)→ Sd encoding the desired information about our covering space.

• Since f is a degree d map, there are exactly d points {x1, . . . , xd} which lie above y0.

• Let γ be a loop in Y based at y0.

• For each xi, lift the path γ to a path γ̃i starting at xi.

• Each γ̃i has an endpoint xj lying above y0.

• Thus to each γ there is an associated permutation σγ which takes i to j where xj is the

endpoint of γ̃i.

The above gives a representation ρ : π1(Y, y0)→ Sd. This map is well defined and independent

of the choice of representative γ [30]. The choice of basepoint will, on the other hand, give rise

to a conjugate representation; as will a relabelling of the points of the fibre. This representation
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is called the monodromy representation and the image of such a map is called the monodromy

group of the cover. A converse to this construction exists: from a monodromy representation and

a Riemann surface, a covering space may be obtained. Variants of this result are often referred

to as Riemann’s existence theorem.

Theorem 2.6.7 (Riemann’s existence theorem). Let Y be a connected Riemann surface and ∆

a discrete subset of Y . Let ρ be a transitive permutation representation π1(Y \∆)→ Sd for some

d ≥ 1. There is a unique connected Riemann surface X, and a unique proper holomorphic map

f : X → Y such that ρ is the associated monodromy representation.

Corollary 2.6.8. Let Y be a compact Riemann surface, and let ∆ be a discrete set of points in

Y . The following are in one-to-one correspondence:

• Transitive permutation representations ρ : π1(Y \∆)→ Sd.

• Pairs (X, f) of a Riemann surface X, and a holomorphic map f : X → Y of degree d such

that the branch points lie in ∆.

The correspondence takes the representation ρ to a map whose corresponding monodromy repre-

sentation is equivalent to ρ.

This correspondence plays an important role in the rest of this thesis and can be used to give

a combinatorial description of the space of covers of the Riemann surface with a fixed genus and

type. This is the subject of the next chapter.

17



CHAPTER 3

HURWITZ SPACES

Riemann’s existence theorem, and more specifically Corollary 2.6.8, show that branched coverings

of a compact Riemann surface may be parameterized as permutation representations. Thus, a

geometric problem is transformed into an algebraic problem. In this chapter we consider the two

related questions:

• What can be said about the space of branched Galois covers of Riemann surfaces of genus

g with monodromy group G?

• What can be said about the space of Riemann surfaces of genus g whose group of automor-

phisms contains a subgroup isomorphic to G?

The spaces parameterising these collections are known as Hurwitz spaces and are the subject of

this chapter. Immediately one must ask whether such collections are indeed equivalent; this is

shown in Section 3.2. Riemann’s existence theorem can be used to give a combinatorial property

which may be used to determine the connectivity of the Hurwitz spaces.

The focus of this chapter is an exposition of the genus zero Hurwitz space following the

book by Völklein [37] and the survey by Wewers and Romagny [32]. In the process, important

subtopics, such as the mapping class groups, braid groups, and the braiding action are defined

and discussed. The final section of the chapter is a less complete discussion of the Hurwitz spaces

for higher genus. The higher genus Hurwitz spaces have fewer applications, and the key results of

the thesis concern only the genus zero Hurwitz space. Still, much of the theory remains true and

the computational techniques presented in Chapter 6 were designed to cope with calculations in

these spaces.
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3.1 The Hurwitz Space

Definition 3.1.1. Let Hin
r,G denote the set of all inner equivalence classes of Galois covers of

P1C branched over r points, with monodromy group isomorphic to G. This space is called the

(inner) Hurwitz space.

Generally when people talk of Hurwitz spaces they are usually referring to the space of Galois

covers of the Riemann sphere, as above, and do not consider, as we shall later, the space of covers

of an arbitrary genus Riemann surface.

By Corollary 2.6.8 elements of Hin
r,G correspond to equivalence classes of pairs (∆, ρ) where ∆

is a set of r points in P1C and ρ is a monodromy monomorphism into the finite group G:

ρ : π1(P1C \∆)→ G.

Pairs, (∆, ρ) and (∆′, ρ′) are equivalent if ∆ = ∆′ and ρ′ = θ ◦ ρ for some inner-automorphism

θ. We use [∆, ρ] to denote the equivalence class containing the pair (∆, ρ). This equivalence is

a sensible one because two pairs are equivalent if the monodromy maps differ by a change of

basepoint or a change of the labeling of the branch points.

Since a monodromy homomorphism is required to be surjective then it is completely deter-

mined by its action on the standard generators of the fundamental group, π1(P1C \∆). This

group, we recall, has presentation

〈γ1, . . . , γr | γ1 . . . γr〉,

and thus a monodromy homomorphism ρ is equivalent to a tuple g = (g1, . . . , gr) ∈ Gr such that:

g1 . . . gr = 1; and (3.1)

〈g1, . . . , gr〉 = G. (3.2)

Moreover, since each of the r points of ∆ should be a proper branch point, we insist that gi 6= 1.

Such tuples are called Nielsen tuples. If g and g′ = (g′1, . . . , g
′
r) correspond to equivalent pairs

then there exists some h ∈ G such that ghi = g′i for 1 ≤ i ≤ r.
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Definition 3.1.2. Denote by εr(G) the set

{(g1, . . . , gr) | gi 6= 1, 〈g1, . . . , gr〉 = G}

of generating r-tuples with product one. The (inner) Nielsen class is the set of equivalence

classes of all such Nielsen tuples:

Niin(r,G) = εr(G)/ Inn(G).

There is an obvious correspondence between elements of the Nielsen class, Niin(r,G), and

elements of the Hurwitz space.

Fix a set of r branch points ∆ = {δ1, . . . , δr} ⊂ P1C \∞. The point ∞ will play the role of

the basepoint of P1C. Let Ci be the ramification type of the branch point δi. Recall that this

means that Ci is the conjugacy class of the distinguished generator for the stabiliser at this point.

Definition 3.1.3. If ϕ : X → P1C is a cover branched over ∆ = {δ1, . . . , δr} ⊂ P1C and Ci is

the ramification type of δi then the tuple

C = (C1, . . . , Cr)

is called the ramification type (or simply type) of ϕ.

Note that some authors define the ramification type to be the tuple of orders of elements of

the conjugacy class and not the conjugacy classes themselves. In this thesis the set of orders is

called the signature.

Instead of considering all branched covers of the Riemann sphere we may want to restrict

ourselves to branched covers of a given type.

Definition 3.1.4. For a finite group G, and type C = (C1, . . . , Cr) we define Hin(G,C) to be

the set of all branched covers of P1C with ramification type C.

For a fixed ramification type C and group G, the genus of a covering surface is enforced by

the Riemann-Hurwitz formula. Thus all covering surfaces in Hin(G,C) have the same genus.

The Nielsen class for tuples of a given type is defined analogously.
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Definition 3.1.5. Let C = (C1, . . . , Cr) be a ramification type. Define the Nielsen class of type

C to be the set

Niin(G,C) = {(g1, . . . , gr) ∈ Niin(r,G) | for some σ ∈ Sr, ∀ gi ∈ Cσ(i)}

This definition allows Nielsen tuples in which the ith component does not lie in the ith conjugacy

class. However, it is sometimes advantageous to restrict ourselves to such tuples. The set of all

such tuples:

PNiin(G,C) = {(g1, . . . , gr) ∈ Niin(r,G) | gi ∈ Ci},

is called the pure Nielsen class of type C, and is denoted by PNiin(G,C).

Following [37] we argue that topological properties ofHin(G,C) are determined by computable

properties of Niin(G,C). At this moment it makes no sense to talk of “topological properties”

for the set Hin(G,C). Rectifying this we define a basis for a topology on Hin(G,C).

Choose a point [∆ = {δ1, . . . , δr}, ρ] ∈ Hin(G,C). Around each branch point δi choose an

open neighbourhood Ui ⊂ P1C of δi such that Ui lies within the interior of the standard generator

γi ∈ π1(P1C \∆,∞). Let U be the product of the open neighbourhoods U1 × · · · × Ur. For any

∆′ = (δ′1, . . . , δ
′
r) ∈ U the loop γi is homotopic to a small loop around δ′i. Thus, for each U , define

Nρ(U) to be the set of pairs [∆′, ρ′] where ∆′ ∈ U and ρ′ is equal to the composition of ρ with

the isomorphism

π1(P1C \∆′,∞)→ π1(P1C \∆,∞).

Equip Hin(G,C) with the topology with basis consisting of the sets Nρ(U) as U and ρ range

over all possibilities. This topology is well defined [12, 37]. Let Or be the set of all r-tuples of

distinct elements in P1C, equipped with the product topology. Let Ψr : Hin(G,C)→ Or be the

projection:

[∆, ρ] 7→ ∆.

This map is in fact a cover.

Proposition 3.1.6 ([37]). The projection Ψr : Hin(G,C)→ Or is a topological covering map.

It is natural to ask what the degree of the covering Ψr is. This is, by definition, the number

of equivalence classes of monodromy representation ρ. This set is finite and equal to the size of
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the Nielsen class Niin(G,C).

Proposition 3.1.7. The degree of Ψr is equal to the size of the Nielsen class Niin(G,C).

Since Or is a complex manifold of dimension r and the Hurwitz space Hin(G,C) is a covering

space of Or by Proposition 3.1.6, Hin(G,C) is also a complex manifold of dimension r.

Lemma 3.1.8. Let ∆ ∈ Or and let γ1, . . . , γr be the standard generators for the fundamental

group π1(P1C \∆). Then the map Ψ−1r (∆)→ Niin(G,C) given by

[∆, ρ] 7→ (ρ(γ1), . . . , ρ(γr))

is a bijection.

Proposition 3.1.9. Let X and Y be topological spaces, y0 a point in Y and f : X → Y a

covering. Then the components of X are in one-to-one correspondence with the orbits of the

monodromy action of the fundamental group π1(Y, y0) on the preimage f−1(y0).

Thus we can ask whether or not Hin(G,C) is connected by computing the orbits of the

fundamental group on fibres. This is the question we try to resolve for small alternating groups

in Chapter 4 and Chapter 5. The fundamental group of Or is well understood and is often called

the braid group on r strands. In the next subsection the braid group is discussed in more detail.

3.1.1 The Braid Group

Definition 3.1.10. The configuration space of r points in C, denoted C(C, r), is defined to be

the set of cardinality r subsets of C, i.e.,

C(C, r) = F(C, r)/Sr,

where

F(C, r) = {(c1, . . . , cr) ∈ Cr | ci 6= cj for i 6= j}

and Sr is the symmetric group acting by permuting the entries of the tuple.

Definition 3.1.11. The braid group on r strands denoted Br is the fundamental group π1(C(C, r), c0),

where c0 ∈ C(C, r).
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Choose c0 = (∞, . . . ,∞) as our basepoint and note the bijection between Or and C(C, r).

Then the following theorem holds.

Proposition 3.1.12.

π1(Or) ∼= π1(C(C, r), c0) = Br

A presentation for the braid group is well known.

Proposition 3.1.13 ([2]). The braid group on r strands has a presentation with generators

Q1, . . . , Qr and relations

QiQj = QjQi where |i− j| > 1

QiQi+1Qi = Qi+1QiQi for i 6= j

Whilst elements of the braid groups are paths in C(C, r) these paths are viewed as r distinct

strands joining two tuples of r elements in C. Such a set of strands can be represented by

diagrams as seen in Figure 3.5. Note that the generator Qi corresponds to the crossing of strand

i over strand i+ 1. With this in mind the generation of Br by the Qi is obvious.

If G is a finite group then the braid group acts on tuples g ∈ Gr. The action of the generator

Qi is given by

(g1, . . . , gr) 7→ (g1, . . . , gigi+1g
−1
i , gi, gi+2, . . . , gr). (3.3)

And in fact this action also restricts to an action on the set of Nielsen tuples. Indeed, if

g1 · · · gr = 1 then

g1 · · · gigi+1g
−1
i gigi+2 · · · gr = 1;

and if 〈g1, . . . , gr〉 = G then

〈g1, . . . , gigi+1g
−1
i , gi, gi+2, . . . , gr〉 = G.

One important subgroup of the braid group is the group of braids which do not permute

the components of the endpoints. Label the r coordinates of the basepoint c0 with the integers
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Figure 3.1: The shown braid Q has associated permutation σ(Q) = (1, 4, 2, 5, 3).

1, . . . , r. There is a natural homomorphism

σ : Br → Sr,

where σ(Q) is the permutation of the coordinates of the basepoint induced by Q. For example

consider the braid in Figure 3.1, then the associated permutation σ is (1, 2)(2, 5)(3, 1)(4, 2)(5, 3) =

(1, 4, 2, 5, 3).

Definition 3.1.14. The kernel of the homomorphism σ : Br → Sr is known as the pure braid

group on r strands.

As with the braid group the pure braid group is generated by

Pi,j = Qi · · ·Qj−2Q2
j−1Qj−2 · · ·Qi, 0 < i < j ≤ r.

and the generator Pi,j acts on tuples by

Pi,j(g) = (g1, . . . , gi−1, g
(gi···gj)−1

i , g
g−1
i
i+1 , . . . , g

g−1
i
j , gj+1, . . . , gr).

Observe that pure braids act by conjugation. This property of pure braids is exploited in later

chapters.

There is a geometric interpretation of the braid group as the mapping class group of the

punctured disc.
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Figure 3.2: The pure braid generator P2,j passing the second strand under the grey colored jth
strand and all strands in between.

3.1.2 Mapping Class Groups

Definition 3.1.15. Suppose that S is a surface with (possibly empty) boundary ∂S. Denote

by Homeo+(S, ∂S) the group of orientation-preserving homeomorphisms of the surface S which

restrict to the identity on ∂S. Let Homeo0(S, ∂S) denote the subgroup of Homeo+(S, ∂S) which

consists of those elements isotopic to the identity.

Proposition 3.1.16. Homeo0(S, ∂S) is a normal subgroup of Homeo+(S, ∂S).

Definition 3.1.17. The mapping class group of a surface, S, written Mod(S), is the group

of isotopy classes of orientation preserving homeomorphisms of S that are the identity on the

boundary ∂S, that is

Mod(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S).

If S is a punctured surface then we view the punctures as marked points. Then homeomor-

phisms, up to isotopy, may either permute these marked points, as the above definition allows,

or fix them pointwise. The group of isotopy classes of orientation preserving homeomorphisms of

S which fix the puncture set pointwise is known as the pure mapping class group of S and is

denoted PMod(S).

The mapping class groups of a surface depends entirely on the topological type of the surface.

If S is an r punctured, genus g compact Riemann surface then we write Modg,r = Mod(S). The

pure mapping class groups is denoted PModg,r.

The braid group is a mapping class group. In particular, the braid group on r strands is
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isomorphic to the mapping class group of the r punctured disc. In order to show this we first

must attempt to understand the homeomorphisms that are possible on the punctured disc. In

fact it can be shown that all such homeomorphisms correspond to the permuting of punctures [9].

Definition 3.1.18. Let D be a subsurface of a surface S that is homeomorphic to an open disc

containing exactly two punctures. Let a be a simple arc joining the two punctures. Consider the

twice-punctured plane:

X = {(r, θ) : 0 ≤ 2, 0 ≤ θ ≤ 2π} \ {(1, 0), (1, π)}

and the homeomorphism f : X → X given by

f(r, θ) =

 (r, θ) if r < 3/4 or r > 5/4

(r, θ + 4π(r − 3/4)) if 3/4 ≤ r ≤ 5/4

Let ψ : D → X be an orientation preserving homeomorphism taking punctures to punctures.

The half twist about a is the homeomorphism Ha of D defined by

Ha(x) =

 x if x ∈ S \D

ψ−1 ◦ f ◦ ψ(x) if x ∈ D

Sometimes half twists are called braid twists due to their relationship with the braid group. The

half twists generate the mapping class group of the punctured disc. This result is part of a larger

description of the mapping class groups for compact connected surfaces.

α

Figure 3.3: A half twist.

The half twist is primarily described by its action on a curve which lies between the two

punctures, as in Figure 3.4.

Proposition 3.1.19. Let Dr denote the r-punctured disc. Label the punctures in order with

p1, . . . pr. For 1 ≤ i ≤ r − 1 let hi denote the half twist permuting the two adjacent punctures pi
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a

Figure 3.4: The effect of the half twist Hα on an intersecting curve.

t C

C

Figure 3.5: A braid as a path.

and pi+1. Then the qi generate Mod(Dr, ∂Dn).

Note that it appears as though a consequence of the above proposition is that the unpunctured

disc has trivial mapping class group. This result, known as Alexander’s Theorem or Alexander’s

Trick is actually the basis for the proof of the above (see [9]).

Consider a disc D which has been punctured r times. The punctures may be viewed as

marked points and can be labelled p1, . . . , pn. Identify this disc with an open subset of C. Let φ

be an arbitrary homeomorphism of D. We sketch the correspondence between φ and an element

of the braid group Br.

Imagine filling the punctures of the disc. By Alexander’s theorem, this unpunctured disc is

now homeomorphic to the open disc and hence the homeomorphism φ is isotopic to the trivial

map. The restriction of this isotopy to the set of marked points p1, . . . , pn corresponds to a

path in the configuration space. This is the path traced by the marked points as the isotopy is

performed. By Proposition 3.1.12 this path can be viewed as a braid. This association is in fact

an isomorphism [9]. The half-twist hi corresponds to the braid generator Qi.

Theorem 3.1.20 ([2]). Let Dr be the closed disc with r punctures. Then Mod(Dr, ∂Dr) is

isomorphic to the braid group on r strands.

We now return to our discussion of the Hurwitz spaces. Our next step is to notice that the

braid action on Nielsen tuples actually corresponds to the monodromy action of the fundamental

group.
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Proposition 3.1.21 ([37]). The action of the braid group on Nielsen tuples shown in (3.3)

corresponds to the monodromy action of the fundamental group π1(P1C \∆, p) on the preimage

Ψ−1(p) via the bijection in Proposition 3.1.9.

Recall Proposition 3.1.9 which states that if F : R→ S is a covering, and s ∈ S then there is

a one-to-one correspondence between connected components of S and the orbits of f−1(s) under

the monodromy action. Therefore the correspondence from Proposition 3.1.9 yields the following

theorem.

Theorem 3.1.22. There is a one-to-one correspondence between components of the Hurwitz

space Hin(G,C) and orbits of Br on the Nielsen class Niin(G,C).

Orbits of the braid group Br on the Nielsen class Niin(G,C) are called braid orbits. The

orbits of the pure braid group on the Nielsen class PNiin(G,C) are called pure braid orbits. The

above result is the basis of the rest of the work presented in this thesis. Using this result we

determine the number of components of the Hurwitz spaces Hin(A5,C) and Hin(A6,C) for an

arbitrary type C.

3.2 Hurwitz Spaces for Positive Genus

It is fortunate that up to isomorphism there is a single compact Riemann surface of genus 0. The

approach taken in the previous section was simplified because of this fact. Unfortunately, for any

given positive integer g there are many Riemann surfaces of this genus. Therefore, should we

wish to study branched covers of Riemann surfaces of genus g then we must consider the space of

all such surfaces. This parameter space is called the moduli space of Riemann surfaces of genus

g.

Definition 3.2.1. For g a non-negative integer, write Mg to denote the space of isomorphism

classes of Riemann surfaces of genus g ≥ 0. We call this set the moduli space of Riemann surfaces

of genus g.

We may also consider the analogous space of Riemann surfaces of genus g and with r punctures.

This space is denoted by Mg,r.

The moduli space of genus zero Riemann surfaces, M0, consists of just a single point: the

Riemann sphere.
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We now consider pairs of Riemann surfaces, and subgroups of their automorphism groups.

Definition 3.2.2. Let X1 and X2 be compact, connected Riemann surfaces of genus at least 2,

and let G be a finite group. Suppose further that there exist subgroups H1 and H2 of Aut(X1)

and Aut(X2) respectively, and isomorphisms θi : G→ Hi for i = 1, 2. The pairs (X1, H1) and

(X2, H2) are equivalent if there is a holomorphic homeomorphism ϕ : X1 → X2 such that for

every g ∈ G the following diagram commutes.

X1

θ1(g)
��

ϕ // X2

θ2(g)
��

X1 ϕ
// X2

Write [X,G] for the equivalence class containing the pair (X,G) and call the set,

Hin
g,G = {[X,H] | X has genus g and H is isomorphic to G} ,

of equivalence classes of genus g pairs, the Hurwitz space for g and G.

If two pairs, (X1, H1) and (X2, H2), are equivalent if and only if there exists a biholomorphism

ϕ′ : X1/H1 → X2/H2

between the two quotient spaces (see [16]), which we recall are Riemann surfaces themselves.

Thus a viable alternative to considering surface-group pairs is to consider the space of quotient

surfaces. If the genus g is fixed and the ramification data is fixed, then the genus g0 of the

quotient surface is also fixed. As before, observe that Corollary 2.6.8 provides a parameterisation

of the set of all such Riemann surfaces. Recall the following result from the theory of covering

spaces.

Proposition 3.2.3 ([19]). Let X be a topological space and G a group acting on X such that for

each x ∈ X there is an open neighbourhood, U , such that all the G-translates of U are disjoint.

Then:

1. The quotient map p : X → X/G = Y is a Galois covering space.

2. G is the covering group of deck transformations provided that X is path-connected. (Note

that the monodromy group and the covering group coincide when the covering map is
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Galois.)

3. If X is path-connected and locally path-connected then G is isomorphic to π1(X/G)/p∗(π1(X)),

where p∗ is the map π1(X)→ π1(X/G) induced by the cover.

The second of the above items implies that Aut(X) has a subgroup which is isomorphic to G.

Recall from Chapter 2 that, if X is a Riemann surface and G ≤ Aut(X), then the map

π : X → X/G

is a holomorphic map of degree |G| and for p ∈ X then multp(π) = |Gp|. In particular if π has

ramified points then the action of G is not free and so the hypotheses of Proposition 3.2.3 are

not satisfied. As in Chapter 2 the branch points and the ramification points may be removed,

in which case the hypotheses of Proposition 3.2.3 are satisfied. Therefore if ∆ is the set of

branch points for π and R is the set of ramification points for π, and we let X ′ = X − R and

Y ′ = X/G−∆, then the map

π̂ : X ′ → Y ′

is a normal covering of degree |G| and with monodromy group and deck transformation group

isomorphic to G.

Definition 3.2.4. The pair [X,G] is said to be of (ramification) type (g0;C1, · · · , Cr) if

• The quotient space Y = X/G has genus g0.

• The quotient cover X ′ → Y ′ induces a monodromy epimorphism ρ : π1(Y
′)→ G.

• The branch points can be labelled {p1, · · · , pr} such that pi has ramification type Ci, and

Ci 6= 1. Under these conditions the monodromy epimorphism is said to be admissible.

That the branch point pi has ramification type Ci is equivalent to saying that if γpi is the

standard generator winding around pi then Ci is the conjugacy class in G of the image of γpi

under the monodromy map. The condition that the maps be admissible ensures that there

is a proper ramification over the points p1, . . . , pr. The Riemann-Hurwitz formula says that

surface-group pairs, [X,G], of ramification type (g0;C1, · · · , Cr), and with X of genus g, must
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satisfy

2g − 2 = |G|[2g0 − 2 +
∑
i

(1− 1/ci)] (†)

where ci is the common order of the elements in Ci. In particular this means that if we fix g0, G,

and C1, . . . , Cr then the orbit genus g is also determined. The redundancy of the parameter g

given the list of conjugacy classes allows us to omit the genus g from the ramification type.

∞
. . .

γp1

γp2

γpr

. . .

Figure 3.6: The loops γpi around the points p1, . . . , pr ∈ P

With the above definition of ramification type we define the Hurwitz space of surfaces with a

given type.

Definition 3.2.5. Let r ≥ 1, g0 ≥ 0 be integers, and G a finite group. Let C = (C1, . . . , Cr) be

a collection of conjugacy classes of G. Let Hin(g, g0, G,C) = Hin(g0, G,C) denote the set,

{[X,G] ∈ Hin
g,G | [X,G] is of ramification type (g0;C)},

of surface-group pairs of ramification type, (g0;C).

The space Hin(g, g0, G,C) embeds into the Hurwitz space Hin
g,G. By Riemann’s existence

theorem, the set Hin(g, g0,C) is in bijective correspondence with the set of equivalence classes of

triples of the form

[∆, ρ, Y ]

where ∆ is a set of points in Y (over which our quotient projection is ramified), ρ is the monodromy

map, and Y is an isomorphism class of Riemann surfaces of genus g0. The monodromy map

ρ : π1(Y \∆)→ G is a surjection and so is determined by the images of the standard generators
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for π1(Y \∆). Recall that the fundamental group of an R-punctured, genus g0 Riemann surface

is generated by loops α1, β1, . . . , αg−0, βg0 , γ1, . . . , γr subject to the relation

g0∏
i=1

[αi, βi]

r∏
i=1

γi = 1, (3.4)

where [αi, βi] = α−1i β−1i αiβi is the commutator of αi and βi. Therefore, the set of all monodromy

homomorphisms is in bijective correspondence with the set of all length 2g0 + r generating

G-tuples satisfying (3.4).

Definition 3.2.6. Let G be a finite group, C a ramification type, and g0, r nonnegative integers.

Let E(g0, G,C) denote the set of tuples

g = (a1, b1, . . . , ag0 , bg0 , c1, . . . , cr) ∈ G2g0+r

such that ci ∈ Cσ(i)for some permutation σ ∈ Sr and for all i; g satisfies (3.4); and the elements

of g generate G.

Let Niin(g0, G,C) denote the quotient

E(g0, G,C)/ Inn(G).

The set Niin(g0, G,C) is called the Nielsen class of type C and genus g0, its elements are called

Nielsen tuples. Note that Niin(0, G,C) = Niin(G,C) from earlier in the chapter.

With the above definitions, the two sets Hin(g0, G,C) and Niin(g0, G,C) are in one-to-one

correspondence via the map

[∆, ρ, Y ] 7→ (ρ(α1), ρ(β1), . . . , ρ(αg0), ρ(βg0), ρ(γ1), . . . , ρ(γr)) (3.5)

where αi, βi, γi are the standard generators for the fundamental group of π1(Y \∆).

In developing the correspondence between components of Hin(G,C) and orbits of the braid

group on tuples the key observation was that the map

[∆, ρ] 7→ ∆
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is a covering space. This implied that connected components corresponded to orbits of fibres

under the action of the fundamental group of base space Or. An identical argument will not

work in the general genus case. Consider the projection

Ψ : [∆, ρ, Y ] 7→ Y \∆.

This map Ψ is a cover, but the base spaceMg0,r is simply connected and so has trivial fundamental

group [9]. However, the orbifold fundamental group of Mg0,r is isomorphic to Mod(Y \∆).

Fix an r-punctured Riemann surface Y with puncture set ∆. Then a representative ho-

momorphism ϕ from a mapping class [ϕ] ∈ Mod(Y \ ∆) acts on points [∆, ρ, Y ] of the fibre

by

[∆, ρ, Y ] 7→ [∆, ρ ◦ ϕ∗, Y ],

where ϕ∗ is the map π1(Y \∆)→ π1(Y \∆) induced by ϕ. Triples which lie in the same orbit

under this action differ only up to the choice of generators for the fundamental groups. Thus

the monodromy maps are equivalent. By using the orbifold fundamental group, one is able to

show that this action classifies the components of Hin(g0, G,C) [4]. In particular we have the

following correspondence.

Theorem 3.2.7 ([4]). The following sets are in one-to-one correspondence:

• Connected components of the Hurwitz space Hin(g0, G,C, r).

• Elements of (Niin(g0, G,C)/Modg0,r)/ Inn(G)

The orbits of Niin(g0, G,C, r) under the the action of Modg0,r are called mapping class orbits.

Note that the mapping class group action and the action of conjugation commute.

Theorem 3.2.7 says that the components of the Hurwitz space are determined by the action

of the mapping class group on generators for the fundamental group. In the next section we look

at a generating set for the mapping class group and determine how these generators act on the

standard generators for the fundamental group.

3.2.1 Generating the Mapping Class Group

To begin, consider a set of simple homeomorphisms of our surface.
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γ

T (γ)

Figure 3.7: A twisted annulus as in the definition of a Dehn twist.

Definition 3.2.8. Let A = {(r, θ) ∈ R2 : 1 ≤ r ≤ 2} be an annulus in the plane and let

T : A→ A, as in Figure 3.7, be given by

T (r, θ) = (r, θ + 2πr).

Let S be a surface and let α be a simple closed curve in S. Pick a regular neighbourhood N of α

and let ψ : A → S be an orientation preserving map whose image is N . Then the Dehn twist

about α, which will be denoted by Tα, is the homeomorphism Tα : S → S given by

Tα(x) =

 x if x ∈ S\N

ψ ◦ T ◦ ψ−1(x) if x ∈ N

As indicated in Figure 3.7, a Dehn twist can be seen as the process of cutting along a curve

and then twisting one component by 2π and ‘gluing’ the two ends back together. It is clear that

a Dehn twist is a self-homeomorphism of the surface, and the isotopy class of Tα does not depend

on the choice of N nor on the homeomorphism ψ. Therefore, if a is the isotopy class of α, then

Ta is a well defined element of Mod(S).

One way to investigate Ta is to consider its behaviour with respect to curves. Clearly if b

is an isotopy class of curves and i(a, b) = 0, then Ta(b) = b. If however, i(a, b) 6= 0, then Ta twists

b. This twisting of curves is illustrated in Figure 3.8.

Proposition 3.2.9 ([9]). If a is the isotopy class of an essential curve in S then Ta is a nontrivial

mapping class.

Consider the set of 3g − 1 curves in Figure 3.9. Dehn twists about these curves are known as

the Lickorish generators or Lickorish twists. These twists generate Mod(S).
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α1

. . .

. . .

. . .. . .

Figure 3.8: A Dehn twist takes a curve, it turns right, and goes all the way around before turning
continuing along its previous path.

· · ·
a1 c1 a2

m2

ag

m1 mg

Figure 3.9: The Lickorish twists.

Theorem 3.2.10 ([9]). Let S = Sg be the closed surface of genus g ≥ 1. The Dehn twists about

the isotopy classes

a1, . . . , ag,m1 . . . ,mg, c1, . . . , cg−1

shown in Figure 3.9, generate Mod(S).

Surprisingly it can be shown that we only need twists about two of the curves around handles

to generate the mapping class group. These twists are known as the Humphries generators and

are shown in Figure 3.10. It can be shown, [9, Proposition 7.4], that we need at least 2g + 1

twists to generate Mod(S) and so, as a subset of the Lickorish twists, the Humphries generators

can be considered best possible.

Theorem 3.2.11 ([21]). Suppose S = Sg, the surface with genus g ≥ 0. Then Mod(S) is
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· · ·
a1 c1 a2

m2

ag

m1

Figure 3.10: The Humphries generators.

generated by Dehn twists about the 2g + 1 non-separating curves

a1 . . . , ag, c1, . . . , cg−1,m1,m2

shown in Figure 3.10.

If our surface is punctured then we must add in half-twists to permute the punctures. Thus

we have the following set of generators for the mapping class group of the punctured surface.

Theorem 3.2.12. Suppose S = Sg,n is the surface with n punctures and genus g ≥ 2. Then

Mod(S) is generated by Dehn twists about the 2g + n+ 1 non-separating curves

a1 . . . , ag, c1, . . . , cg−1, f1, . . . , fn,m1,m2

and half twists about the n− 1 arcs

h1, . . . , hn−1

shown in Figure 3.11.

We now consider the action of the generators for the mapping class group on the standard set

of generators for the fundamental group. Take, for example, the homeomorphism Tf0 : S → S,

which is the Dehn twist about a curve isotopic to f0, as shown in Figure 3.12. Let T∗ denote the

isomorphism π1(S \P, p)→ π1(S \P, p) induced by Tf0 . The homomorphism Tf0 clearly preserves

the puncture set. Suppose that there is a function φ : π1(S \ P, p)→ G, and its corresponding

tuple is

(a1, b1, . . . , ag0 , bg0 , c1, . . . , cr)
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· · ·

· · ·
h1

h2

f1
f2

a1

c1 a2

m2

ag

m1

fn

Figure 3.11: Generators for the mapping class group.

α1

. . .

. . .

. . .. . .
f0

Figure 3.12: Computing the action on α1.

where a1 = φ(αi), b1 = φ(βi) and ci = φ(γi). Assume that φ′ is another map such that φ′ = φ◦T∗.

Then T∗ acts on the standard generators for π1(S \ P, p) by:

α1 7→ β−11 α1,

with all other curves being left fixed (see Figure 3.12). The tuple corresponding to φ′ = φ ◦ Ta1
is the tuple

(a′1, b
′
1, . . . , a

′
g0 , b

′
g0 , c

′
1, . . . , c

′
r),

where, for j 6= 1, we have, a′j = aj , b
′
j = bj and c′j = cj , and

a′1 = φ(T∗(α1)) = φ(β−11 α1) = b−11 a1.

One can easily verify that this new tuple satisfies the single relation for the fundamental group.
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Indeed

[a′1, b
′
1] = [b−11 a1, b1] = a−11 b1b

−1
1 b−11 a1b1 = [a1, b2].

Using the above technique and the standard set of generators for the mapping class group, as

in Figure 3.13, we can determine the mapping class orbits of a tuple. The following theorem

explicitly describes this action on tuples.

· · ·

· · ·
h1

h2

f0

f1
f2

g1

k1 g2

m

gg0

fn
p

Figure 3.13: Generators for the mapping class group.

Theorem 3.2.13. Using the notation defined in the preceding section, the action of the standard

generators for the mapping class group induces the following action on tuples:

• fi action:

– a′1 = a1c
−1
r . . . c−1i+1c1 . . . cra

1−
1 b−11 a1

– a′j = aj for j > 1

– b′j = bj

– c′j = c1 . . . cra
−1
1 b−11 a1c

−1
r . . . ci+1

−1cjci+1 . . . cra
−1
1 b1a1c

−1
r . . . c−11 for i < j

– c′j = cj if j < i

• gi action:

– a′i = biai

– a′j = aj for j 6= i

– b′l = bj
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– c′j = cj

• hi action:

– a′j = aj

– b′j = bj

– c′i = ci+1

– c′i+1 = c−1i+1cici+1

– c′j = cj for j 6= i, i+ 1

• ki action:

– a′i = bia
−1
i+1b

−1
i+1ai+1ai

– a′i+1 = bi+1ai+1b
−1
i

– a′j = aj for j 6= i, i+ 1

– b′i = bia
−1
i+1b

−1
i+1ai+1bia

−1
i+1bi+1ai+1b

−1
i

– b′j = bj for j 6= i

– c′j = cj

• m

– a′2 = b−11 a2

– a′j = aj for j 6= i

– b′j = bj

– c′j = cj

Thus we now have a correspondence between components of the Hurwitz space and a

combinatorial action on Nielsen tuples.

Theorem 3.2.14. There is a one-to-one correspondence between

r Components of the Hurwitz space Hin(G,C).

r Orbits of Niin(g0, G,C) under the action described in Theorem 3.2.13.
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3.3 Variants of Hurwitz space

The name Hurwitz space is attached to many different geometric and algebraic collections. In

order to place the results in context we briefly consider some common variants and discuss their

connections to the objects which in this thesis have been called Hurwitz spaces.

Let Nitot(G,C) denote the total Nielsen class of tuples of type C:

Nitot(G,C) = {(g1, . . . , gr) ∈ Er(G) | for some σ ∈ Sr, gi ∈ Cσ(i)}.

Therefore,

Niin(G,C) = Nitot(G,C)/ Inn(G).

It is therefore clear why the space Niin(g,C) is called the inner Hurwitz space, and is denoted

Niin(G,C). If however we consider tuples up to an alternative notion of equivalence then we

have a different space classifying a different set of objects. One natural action is componentwise

application of an outer automorphism.

Definition 3.3.1. Let G be a finite group and C a type. Let Abs(G,C) denote the group of

automorphisms preserving the type, i.e.,

Abs(G,C) = {ι ∈ Aut(G) | ι(Ci) = Cπ(i) for some π ∈ Sr and all 1 ≤ i ≤ r}.

The action of the absolute group, Abs(G,C), acting componentwise on the tuples of

Nitot(G,C), commutes with the braid action. The set of equivalence classes of tuples up

to absolute equivalence is denoted by

Niabs(G,C) = Nitot(G,C)/Abs(G,C).

Whilst points in Niin(G,C) correspond to Galois covers of P1C, points of Niabs(G,C) correspond

to covers (which are not necessarily normal) of P1C with ramified points of type C, which are

points of the absolute Hurwitz space Habs(G,C). Points in the inner Hurwitz space are the

normal closures of the points of the absolute Hurwitz spaces [12].
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There is a natural embedding of the inner Nielsen class with the absolute Nielsen class

Ψ : Niin(G,C)→ Niabs(G,C)

given by the action of the Abs(G,C)/ Inn(G). Moreover this gives rise to a covering map between

the Hurwitz spaces

Φ : Hin(G,C)→ Habs(G,C).

The degree of the map Φ is | Abs(G,C) : Inn(G) |.

3.4 Known Results

The first result concerning the connectivity of Hurwitz spaces was due to Clebsch who showed the

connectivity of the space of simple covers. A cover f : Y → P1C of degree n is said to be simple

if the number of preimages of any point in P1C is either n or n− 1. Under these circumstances,

the type of the cover must consist solely of transpositions, and the monodromy group is Sn. So

C = (C1, . . . , Cr) where Ci = C is the transposition class. Clebsch showed that Niin(Sn,C) is

non-empty if and only if r is even and r ≥ 2(n − 1). This follows from the Riemann-Hurwitz

formula. Furthermore if Niin(Sn,C) is non-empty then the braid group Br acts transitively. In

order to prove this result Clebsch established a normal form for tuples, showing that every tuple

is braid equivalent to a tuple of the form

(g1, g
−1
1 , g2, g

−1
2 , . . . , gk, g

−1
k ).

Establishing a normal form for tuples is a commonly used approach, and one we use in Chapter 4

and Chapter 5. Tuples of the above form are sometimes said to be in Harbater-Mumford form.

Hurwitz used this connectivity result to establish the connectivity of the moduli space of curves.

In their 1991 paper Fried and Völklein gave a construction (very similar to the one in this

chapter) of the moduli space of covers of the Riemann sphere. An appendix in this paper gave

a detailed proof of an asymptotic result concerning the connectivity of Hurwitz space. This

result was a previously unpublished result due to Conway and Parker, and is often called the

Conway-Parker theorem or the Conway-Parker-Fried-Völklein theorem. The statement of this
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theorem is the following.

Theorem 3.4.1. Let G be a finite group and let r ≥ 3 be an integer. Suppose that the Schur-

Multiplier of G is generated by commutators. Then there exists a positive integer N such that if

each nontrivial conjugacy class C of G appears in the type C with multiplicity at least N then

the Hurwitz space Hin(G,C) is connected.

This result is very strong, however, no nontrivial bounds on N exist and so its practical uses

are limited. The results of later chapters also suggest that the condition that every conjugacy class

appears often is too strong and that only particular classes must appear in the type. Dunfield

and Thurston has proven a similar asymptotic result for g > 0 [8].

To this point all results have concluded with the Hurwitz space being connected. Fried

conjectured that there are infinitely many examples of groups and types for which the braid

group fails to act transitively on the Nielsen class. He proved his own conjecture true with the

following result:

Theorem 3.4.2 ([11]). Let C be the conjugacy class of 3-cycles in An. Let C = (C1, . . . , Cr) be

a type where, for each i, we have Ci = C. Then

• If r = n− 1 then Br acts transitively on the Nielsen class Niin(An,C).

• If r ≥ n then there are two braid orbits.

The case r = n− 1 corresponds to covers of P1C of genus 0. To establish that there are two

orbits, Fried defined an invariant of the braid orbits for alternating groups for braid orbits. The

key observation is that the alternating group An has a double cover 2 ·An. A 3-cycle in An can

be lifted to a unique element ĝ of order 3. The product of this lifted tuple lies in the centre of

2 ·An which is the group of order 2. The value of this product is an invariant of the braid orbit

called the lifting invariant. Fried demonstrated that for r ≥ n there are tuples of length r for

both possible values of the lifting invariant, and moreover those tuples with equal lift invariant

are braid equivalent.

For dihedral groups, and semidihedral groups, Sia has provided a classification for braid orbits

of all types [35]. Independently Catanese, Lönne and Perroni have also completed a classification

for mapping class orbits of dihedral groups [5]. They showed that the number of orbits depends

only on the orders of the elements of the type. In a later paper, the same authors provide the
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same classification using a generalized lifting invariant, which extends Fried’s lifting invariant

to an arbitrary group [4]. Like Fried’s invariant this invariant is closely related to the Schur

multiplier and in fact when G is An for n 6= 6, 7 the two coincide. They show that this invariant

is a fine invariant for dihedral groups, and conjecture that this invariant distinguishes all braid

orbits for tuples of sufficient length.

The evidence, namely the results contained in this thesis, the work of Fried, the Conway-

Parker theorem, the Dunfield-Thurston theorem, and the contributions from Catanese, Lönne,

and Perroni, suggests that the Schur multiplier is key to determining the number of braid orbits.

The results combine to say that the Hurwitz space is as connected as possible.

An alternative approach to the questions asked in this thesis is to fix the genus of the covering

space rather than fixing the orbit genus. Magaard, Shpectorov and Völklein considered the

problem of determining the locus of curves of genus g whose automorphism group contains a

subgroup isomorphic to a given finite group G [26]. Thus they wanted to compute within the

Hurwitz space Hin
g,G. They calculated the number of components of this locus for g ≤ 10. This

is possible because, by Hurwitz’s theorem, the order of G must be less than 84(g − 1). The

Riemann-Hurwitz theorem heavily restricts the list of possible types. Such a list of types was

computed by Breuer [3]. The orbits were computed using BRAID, a precursor to the MapClass

package.

Similarly, Liu and Osserman consider the problem of determining the connectivity of the

space Hd,r of genus 0, degree d covers of P1C, branched over r points up to absolute equivalence.

In particular they consider the problem when the type of such covers is pure cycle, i.e., consisting

purely of elements whose cycle shape is just a single cycle. Suppose that C consists of cycles of

lengths e1, . . . , er, then the Riemann-Hurwitz formula may be rewritten as

2d− 2 =
r∑
i=1

(ei − 1).

This formula is sometimes called the planarity condition. Liu and Osserman show that, given the

above conditions, the Hurwitz space is connected. The proof of this result relies on a reduction

to the case when r = 4. Fried has since considered this case for G = An using inner equivalence

rather than absolute equivalence [11].
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CHAPTER 4

A5 BRAID ORBITS

In this chapter we provide a complete classification of the braid orbits of A5 for all types. The

main result of this chapter, Theorem 4.3.1, gives a simple condition on the type C for determining

the number of components the Hurwitz space Hin(A5,C). There are very few configurations of

group and type for which such a condition is known. The contents of this chapter may also be

found in [22]

4.1 Notation

Throughout this chapter we use the following shorthand for the conjugacy classes of A5:

r 2A = (1, 2)(3, 4)A5

r 3A = (1, 2, 3)A5

r 5A = (1, 2, 3, 4, 5)A5

r 5B = (1, 2, 3, 5, 4)A5

Let C be a type and C is conjugacy class of A5 then nC(C) denotes the number of occurrences

of C within the type C.

The group A5 has a non-trivial outer automorphism which permutes the two classes of

5-cycles but fixes all other conjugacy classes. This automorphism corresponds to conjugation by

(4, 5) ∈ S5.
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4.2 Covers and Lifting Invariants

For the purposes of the classification a method of determining whether two tuples lie in different

braid orbit is required. Fried introduced an invariant of braid orbits which he used to give a

classification of braid orbits for the alternating groups where the type consists of 3-cycles. This

invariant, called the lifting invariant, uses the existence of a double cover for the alternating

groups.

Definition 4.2.1. Let G be a finite group. A group Ĝ is called a covering group of G if

Z(Ĝ) ≤ Ĝ′ and Ĝ/Z(Ĝ) ∼= G. It is not unusual to find both the covering group Ĝ and the

covering homomorphism θ : Ĝ→ G referred to as the cover of G. The index [Ĝ : Z(Ĝ)] is called

the degree of the cover.

When G is a perfect group, i.e., when G′ = G, there exists a unique maximal cover which

is universal, in the sense that all other covering groups are quotients of the maximal covering

group. The centre of the maximal covering group is called the Schur multiplier of G.

Schur showed that the alternating group An has a unique degree 2 cover, also known as a

double cover. For n 6= 6, 7 the double cover is maximal. This double cover is denoted 2 ·An. A

property of the double cover that we wish to exploit is that every odd order element g in An has

a unique odd order lift to the double cover denoted ĝ.

Lemma 4.2.2. Let G be a finite group and let Ĝ be a covering group G, and let θ : Ĝ→ G be

the corresponding covering homomorphism. Let K denote the centre Z(Ĝ). Suppose that g ∈ G

and (o(g), |K|) = 1. Then there exists a unique h ∈ Ĝ such that θ(h) = g and o(h) = o(g).

Proof. Let h be a preimage of g. Let n denote the order of g and k denote the size of K. Suppose

that hn = x ∈ K such that x is nontrivial. Since n and k are coprime, there exists a unique

y ∈ K such that yn = x. Therefore

(hy−1)n = hny−n = xx−1 = 1.

Thus hy−1 is a preimage of g with order n.

To show uniqueness let l = hy−1 and note that the preimage of g is the set lK. Since

(p, k) = 1, then o(kl) = o(k)o(l) for any k ∈ K.
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The previous result allows us to define the lifting invariant.

Definition 4.2.3. Let g = (g1, . . . , gr) be a Nielsen tuple in An consisting of odd order elements.

Let ĝ = (ĝ1, . . . , ĝr) be the lifted tuple in 2 · An. The lifting invariant of g, written LI(g), is

given by

LI(t) = ĝ1 · · · ĝr.

The lifting invariant is a lift of 1 and is hence central in Ĝ. For convenience we identify the

centre with the multiplicative group {1,−1}. The lifting invariant takes values in this set. The

lifting invariant is an invariant of the braid orbit [11], and is not defined for types involving

classes of elements of even order.

4.3 Discussion of Main Results

In this remainder of this chapter a classification of the braid orbits for G = A5 and all types is

proven. We show that the double transposition class plays a key role in ensuring connectivity of

the Hurwitz space. The results in the chapter can also be found in [22]. The main result of this

chapter is the following.

Theorem 4.3.1. For G = A5 and a type C = (C1, . . . , Cr), r ≥ 3, the Nielsen class Niin(G,C)

is non-empty if and only if C is not listed in Table 4.1. Furthermore, given that C is not in

Table 4.1,

r if n2A(C) > 0 the Br acts transitively on Niin(G,C);

r if n2A(C) = 0 then there are two braid orbits on Niin(G,C) if and only if C is not listed

in Table 4.2; moreover, the two orbits are distinguished by the lifting invariant.

Note that the tables shown are in condensed form. The actual list of exceptional types are

obtained from Table 4.1 and Table 4.2 by permutations and the outer automorphism.

The following is a translation of Theorem 4.3.1 into the language of Hurwitz spaces.

Theorem 4.3.2. For G = A5 and a type C of length at least 3, the Hurwitz space Hin(A5,C)

is nonempty if and only if C is not in Table 4.1. Furthermore, if nonempty, Hin(A5,C) is

connected if and only if C is in Table 4.2 or n2A(C) > 0. In all other cases, Hin(A5,C) has

exactly two components, which are distinguished by the lifting invariant.
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Type Genus

(2A, 2A, 2A) -1
(2A, 2A, 3A) -1
(2A, 2A, 5A) 0
(2A, 3A, 3A) -1
(2A, 5A, 5A) 1
(3A, 3A, 3A) -1
(5A, 5A, 5B) 2

(2A, 2A, 2A, 2A) 0

Table 4.1: Types C, up to permutation and outer automorphism, for which the Nielsen class
Niin(A5,C) is empty.

Type LI

(3A, 3A, 5A) -1
(3A, 5A, 5A) -1
(3A, 5A, 5B) 1
(5A, 5A, 5A) -1
(3A, 3A, 3A, 3A) 1
(3A, 5A, 5A, 5A) 1
(5A, 5A, 5A, 5A) 1
(5A, 5A, 5A, 5B) -1
(5A, 5A, 5A, 5A, 5A) -1

Table 4.2: Odd types, also up to permutation and outer automorphism, for which only one braid
orbit on Niin(A5,C) exists; the right column shows the lifting invariant of the orbit.

4.4 Braids and Partitions

The proof of Theorem 4.3.1 requires us to consider subgroups of the braid group which fix a

partition in a particular way. This section discusses such subgroups. The material in this section

is a special case of the theory of mixed braids, in which, in the language of [17], all interior braids

are trivial.

Definition 4.4.1. A partition of {1, . . . , r} will be called admissible if each block consists of a

consecutive subsequence of the integers 1, . . . , r. Thus an admissible partition will have the form

{{1, . . . , n1}, {n1 + 1, . . . , n2}, . . . , {nk−1 + 1, . . . , r}},

for some 1 ≤ n1 < n2 < · · · < nk−1 < r. The notation [a1, a2, . . . , al] will be used to denote an

admissible partition of {1, . . . , r} as above, where block i has size ai. In particular, the above

partition can be written as

[n1, n2 − n1, . . . , r − nk−1].
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Figure 4.1: Ribbon braids.

(a) The ribbon generator Ri,j . The elements of
block i are braided under block j and all interme-
diate blocks.

Ti
. . .

Tj

. . .

(b) Ribbon braids can be seen as braidings of blocks
of braids. Strands in the same block all lie in
embedded cylinders.

Fix an admissible partition P of {1 . . . , r}, with k blocks T1, . . . , Tk. We say that a pure braid

Q ∈ PBr is tubular with respect to P if for each 1 ≤ i ≤ k we can embed a cylinder Di
∼= D× [0, 1]

into C× [0, 1] such that any two cylinders are disjoint and every every strand corresponding to a

point in Ti lies in the interior of Di (see Figure 4.1b; a more thorough description can be found

in [17]). To each cylinder Di we can associate a braid in B|Ti| by restricting to the interior of

Di. Such a braid is called an interior braid. If a tubular braid with respect to P is such that all

interior braids are trivial then we call this braid a ribbon braid. Define PRr,P to be the subgroup

of PBr consisting of all ribbon braids, for the partition P . We call PRr,P the ribbon braid group

with respect to P .

Remark 4.4.2.

r Ribbon braids preserve the partition P . In fact they do more than that. The order of the

strands within a block is preserved, since the braids are pure, and the order is preserved

throughout time (see Figure 4.2b). The name ribbon braid is sometimes used to include

the possibility that we rotate the strands in a cylinder by some multiple of 2π [10]. Our

definition excludes such braids.

r We think of ribbon braids as those braids obtained by combining all the strands in a

partition block into a single strand. For 1 ≤ i < j ≤ r, define RPi,j to be the ribbon braid

which braids block i under block j, in analogy with the pure braid generator Pi,j (see

Figure 4.1a).
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Figure 4.2: Examples of partition preserving braids which are not ribbon braids.

Ti
. . .

Tj

. . .

(a) All braids from a single block must “stay to-
gether” throughout time. This is not an example
of a ribbon braid.

. . .

. . .

(b) Strands in the same block must also maintain
their ordering throughout time. If we restrict the
braids to our partition Pj then the sub-braid must
be trivial. The pictured braid is not a ribbon.

The ribbon braid group PRr,P depends only on the number of blocks in the associated

partition. The next proposition makes this relationship clear.

Proposition 4.4.3. Suppose that P is an admissible partition of {1, . . . , r}, and that P has k

blocks. Then there is an isomorphism φP : PRr,P → PBk.

Proof. To show the claim we appeal to a result of Gonzàlez-Meneses and Wiest from [17]. Let

MBP denote the group of all braids fixing the partition P . In particular MPB is defined as

the ribbon braid group except that we drop the condition that interior braids must be trivial.

Consider the homomorphism MBP → PBk taking the mixed braid to its corresponding tubular

braid. Then Gonzàlez-Meneses and Wiest show that the kernel of this map is set of all mixed

braids where the interior braids are non-trivial. Therefore restricting this map gives

PRr,P → PBk

is a bijection.

The presentation for mixed braid groups in [17] encapsulates the above proposition.

For the remainder of this section we want to examine ribbon braids and their action on tuples

of length r. This action will be used later to reduce the size of tuples to a more manageable

length.
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Definition 4.4.4. Suppose that P = [n1, . . . , nk] is an admissible partition of {1. . . . , r}. Given

a tuple g = (g1, . . . , gr) of elements from a finite group G we denote by gP the tuple:

gP = (g1 · · · gn1 , gn1+1 · · · gn1+n2 , . . . , gn1+···+nk−1+1 · · · gr).

We call such a tuple a coalesced tuple.

For example, if we have a tuple, (g1, g2, g3, g4, g5) with five elements, and an admissible

partition P = [2, 1, 2]. Then

gP = (g1g2, g3, g4g5)

and gP is a tuple with three elements. Coalescing reduces the size of the tuple whilst maintaining

the product one condition. Note that we do not allow the identity element in Nielsen tuples, so

implicit in our definition is that none of the products in the coalesced tuple are allowed to be the

identity.

The following observation does not require proof.

Lemma 4.4.5. Suppose that P is an admissible partition of {1 . . . , r}, with k blocks. Let

R ∈ PRr,P , Q = φP (R) ∈ PBk, and g = (g1, . . . , gr) be a Nielsen tuple of length r. Then

(R(g))P = Q(gP ).

It is clear that ribbon braids, as pure braids, act on the elements of the tuple by conjugation.

Furthermore, the action on elements of the same partition block is identical.

Lemma 4.4.6. Let P = [n1, . . . , nk] be an admissible partition of {1, . . . , r}. If g is a Nielsen

tuple and R ∈ PRr,P then

R(g) = (gs11 , . . . , g
s1
m1
, gs2m1+1, . . . , g

s2
m2
, . . . , gskmk−1+1, . . . , g

sk
r )

for some si ∈ G and where mi = n1 + · · ·+ ni.

Proof. It suffices to consider the case where R = RPi,j is one of the generators of PRr,P , and then

the claim is clear.
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Under certain circumstances we may undo the coalescing in a unique way as the following

proposition suggests.

Proposition 4.4.7. Let G be a finite group, m a natural number, and g ∈ G such that (m, o(g)) =

1. Suppose that P = [1, . . . , 1︸ ︷︷ ︸
i

,m, 1, . . . , 1] is an admissible partition of {1, . . . , r} into k = r−m+1

blocks and that

g = (g1, . . . , gi, g, . . . , g︸ ︷︷ ︸
m

, gi+m+1, . . . , gr)

g′ = (g′1, . . . , g
′
i, g
′, . . . , g′︸ ︷︷ ︸

m

, g′i+m+1, . . . , g
′
r)

are two Nielsen tuples of the same type with Q(gP ) = g′P for some Q ∈ PBk. Then R(g) = g′,

where R = φ−1P (Q) ∈ PRr,P .

Proof. By Lemma 4.4.6, R(g) = (h1, . . . , hi, h, . . . , h, hi+m+1, . . . , hr) for suitable elements hi, h ∈

G. Since R(g)P = Q(gP ) = g′P by Lemma 4.4.5, it follows that hj = g′j for 1 ≤ j ≤ i and

i+m+ 1 ≤ j ≤ r, and hence also that hm = (g′)m. Since o(g′) = o(g) = o(h) and (m, o(g)) = 1,

we have that h = g′ and so R(g) = g′.

4.5 A5 Braid Orbits

In this section we aim to provide a complete description of braid orbits for A5. For the rest of

this article we will call an r-tuple which contains a class of double transpositions an even tuple.

Tuples containing no class of double transpositions will be called odd tuples. By parity of a tuple

we refer to whether the tuple is even or odd. The same terminology also applies to types.

The proof will consider the action of PBr instead of Br. Every braid Q ∈ Br acting on a

tuple of type C produces a tuple of type CσQ , where σQ ∈ Sr is the permutation associated with

Q. Consequently, we have:

Lemma 4.5.1. The action of Q ∈ Br on Niin(G,C) is a bijection between this class and the

class PNiin(G,CσQ). This bijection takes pure braid orbits to pure braid orbits and, for odd types,

it preserves the lifting invariant.

Clearly, this observation implies the following reduction.
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Proposition 4.5.2. The number of braid orbits on Niin(G,C) is at most the number of pure

braid orbits on PNiin(G,C) (and this is true whether or not the conjugation is included in the

actions). If the pure braid orbits are distinguished by the lifting invariant then the same is true

for the braid orbits and the number of braid orbits and pure braid orbits is the same.

In turn, this proposition allows us to deduce our Theorem 4.3.1 from the following “pure

braid” equivalent.

Theorem 4.5.3. For G = A5 and a type C = (C1, . . . , Cr), r ≥ 3, the pure Nielsen class

PNiin(G,C) is non-empty if and only if C is not a permutation of a type from Table 4.1.

Furthermore, if PNiin(G,C) is non-empty then:

r for even types C, PBr acts transitively on PNiin(G,C);

r for odd types C, there are two pure braid orbits on PNiin(G,C) if and only if C, up to

permutation, is not listed in Table 4.2; moreover, the two orbits are distinguished by the

lifting invariant.

We now commence proving Theorem 4.5.3.

4.5.1 Basis for Induction.

The proof is by induction on r, the length of C. The following lemma anchors the induction.

Lemma 4.5.4. If C is a type of length 3 ≤ r ≤ 7 then the conclusion of Theorem 4.5.3 holds.

The lemma is established by explicit calculation of all orbits for all types of length 3 ≤ r ≤ 7.

Note that in view of Lemma 4.5.1, we only need to consider lexicographically ordered types.

For these types, the computation was done using our MapClass package [23] for the gap

computational algebra system [14]. Data for this computation can be found in Appendix A.

More details about how such a computation is performed can be found in Chapter 6 or in [27].

In particular, all exceptional cases were found in this computation.

4.5.2 A Normal Form for Tuples

Definition 4.5.5. We say that a tuple

(g1, . . . , gi−1, g, g, gi+2, . . . , gr)
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is in odd repetitive form if g is an odd-order element. If the position of the repeated element is

important then we shall say that the tuple is in odd repetitive form at position i. A tuple

(g1, . . . , gi−1, g, g, g, gi+3, . . . , gr),

where g is a double transposition, is said to be in even repetitive form at position i.

For a tuple g in repetitive form at position i, define Pg to be the partition [1, . . . , 1︸ ︷︷ ︸
i−1

, 2, 1, . . . , 1]

or [1, . . . , 1︸ ︷︷ ︸
i−1

, 3, 1, . . . , 1], depending on the parity of the form.

Similarly, we will talk about types in odd or even repetitive form at position i. In the first

case, this means that Ci = Ci+1 is an odd-order class; in the second, Ci = Ci+1 = Ci+2 is the

double-transposition class.

The tuples in repetitive form are useful for our induction because coalescing such tuples with

respect to P = Pg preserves all the salient properties. The following lemma makes this precise.

Note, first of all, that the coalesced element g2 or g3 in the respective cases is not identity and

so coalescing makes sense.

Recall that, for every odd order element g ∈ A5, the unique odd order lift of g to 2 · A5 is

denoted by ĝ.

Lemma 4.5.6. Suppose g is a tuple in a repetitive form, P = Pg, and h = gP . Then

• g and h generate the same subgroup of G;

• g and h have the same parity; and

• if they are odd then LI(g) = LI(h).

Proof. The second statement is obvious. For the first claim, if g is in odd repetitive form at

position i then, since gi = gi+1 is of odd order, 〈gi, gi+1〉 = 〈gigi+1〉, and this yields the claim.

If g is in even repetitive form then g and h contain the same elements and so again the claim

follows.

Now suppose g is odd and in particular it is in odd repetitive form at position i. Let
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g = gi = gi+1. Note that ĝ2 = (ĝ)2. Therefore,

LI(g) = ĝ1 · · · ĝi−1(ĝĝ)ĝi+2 · · · ĝr

= ĝ1 · · · ĝi−1(̂g2)ĝi+2 · · · ĝr

= LI(h),

completing the proof.

In the remainder of this subsection we prove the following.

Proposition 4.5.7. Let C = (C1, . . . , Cr), r ≥ 6, be a type in a repetitive form at position i.

Then

• either every pure braid orbit on PNiin(G,C) contains a tuple in repetitive form at position

i,

• or r = 6 and either

– C = (2A, 2A, 2A, 2A, 2A, 2A), or

– C = (5A, 5A, 5A, 5A, 5B, 5B) or (5A, 5A, 5B, 5B, 5B, 5B) up to permutation and,

furthermore, Ci = Ci+1 = 5B or 5A, respectively.

The proof of this proposition will be given in three lemmas. Throughout the proof we assume

the hypotheses of Proposition 4.5.7 and each lemma establishes the conclusion of the proposition

for different values of r and i.

Lemma 4.5.8. The claim holds if r ≤ 7.

Proof. Consider a pure braid orbit Ω on PNiin(G,C).

Suppose first that C = Ci = Ci+1 is an odd order class. Define the type

D = (C1, . . . , Ci−1, C
2, Ci+2, . . . , Cr),

where C2 is the class containing the squares of elements from C. Hence, if C = 3A then also

C2 = 3A. If C = 5A (respectively, 5B) then C2 = 5B (respectively, 5A).

Note that the types C and D have the same parity. If they are even then there is only one

orbit on PNiin(G,C) by Lemma 4.5.4. Thus, Ω = PNiin(G,C). Since D has length r−1 ≥ 5, the
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pure Nielsen class PNiin(G,D) is not empty. Select any tuple g = (g1, . . . , gi−1, g, gi+2, . . . , gr)

from this class. Since g has odd order, there is a unique h ∈ 〈g〉 such that g = h2. Note that

this h is contained in C and so the tuple h = (g1, . . . , gi−1, h, h, gi+2, . . . , gr) is of type C. By

Lemma 4.5.6, since g is generating, h must also be generating and so it is a Nielsen tuple. Hence

h is in Ω and it is evidently in odd repetitive form at position i.

Now suppose that C and D are odd. By Lemma 4.5.4, Ω is one of two pure braid orbits

on PNiin(G,C), and let ε be the lifting invariant of Ω. Note that D is in Table 4.2 only if

it is (5A, 5A, 5A, 5A, 5A) (or its S5-conjugate (5B, 5B, 5B, 5B, 5B)). This leads to the second

exceptional case above. Otherwise, the same Lemma 4.5.4 implies that there is a pure braid orbit

on PNiin(G,D) with lifting invariant ε. Let g = (g1, . . . , gi−1, g, gi+2, . . . , gr) be a tuple from

that orbit. As above, select h ∈ 〈g〉 such that g = h2 and set h = (g1, . . . , gi−1, h, h, gi+2, . . . , gr).

Again, we note that h is a Nielsen tuple of type C. Furthermore, by Lemma 4.5.6, it has lifting

invariant ε. Therefore, h is in Ω and it is in the required repetitive form.

Finally, suppose C is the double-transposition class. Let

D = (C1, . . . , Ci−1, C, Ci+3, . . . , Cr).

Then D is an even type of length at least four. If it is in Table 4.1 , it must be (2A, 2A, 2A, 2A),

leading to the first exceptional case above. Otherwise, PNiin(G,D) is nonempty. Select g =

(g1, . . . , gi−1, g, gi+3, . . . , gr) ∈ PNiin(G,D) and set h = (g1, . . . , gi−1, g, g, g, gi+3, . . . , gr). Clearly,

h is a Nielsen tuple of type C. Since C is even, Ω = PNiin(G,C) by Lemma 4.5.4, and so g is

in Ω.

We note that all exceptions in this lemma are bona fide, that is, for each of these types there

exists a pure braid orbit containing no tuple in repetitive form at position i.

Next, let us consider the case where the repeated classes are at the end of the type.

Lemma 4.5.9. Let r ≥ 8 and suppose that i = r− 1 in the odd repetitive form case and i = r− 2

in the even repetitive form case. Then the claim holds.

Proof. We are proving this by induction on r, with r = 6 and 7 serving as base cases. Let

Ω be a pure braid orbit of type C. Select a tuple g = (g1, . . . , gr) ∈ Ω. We first claim that

g can be chosen so that gr−1 and gr do not commute. Indeed, if this is not the case then
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gr−1 ∈ C = CG(gr). Since g is generating, there is gj that does not normalize C. Applying the

pure braid Pj,r−1, we obtain a new tuple from Ω, where in position r − 1 we find g
g−1
j

r−1, which

is not in C. Here we use the property of G = A5 that Cg is either equal to C or intersects C

trivially.

From now on we assume that gr−1 and gr do not commute. In particular, 〈gr−1, gr〉 is either

a maximal subgroup of G or it is all of G. (This is again a property of G = A5.) We will call the

repeated positions, [i, . . . , r], at the end the special positions and all others general.

We will first try to coalesce g using two adjacent general positions, j and j + 1. Hence

j < i− 1 and the partition used is P = [1, . . . , 1︸ ︷︷ ︸
j−1

, 2, 1, . . . , 1]. Suppose that the resulting tuple

h = (g1, . . . , gj−1, gjgj+1, gj+2, . . . , gr) is a Nielsen tuple. Since r − 1 ≥ 7, by induction, there

exists a pure braid Q ∈ PBr−1 such that Q(h) is in repetitive form at position i − 1. Let

R ∈ PRr,P be the ribbon braid such that φP (R) = Q. By Lemma 4.4.5, (R(g))P = Q(h). This

means that R(g) is in repetitive form at position i, and so the claim holds.

We will now see that if this trick does not work for g for any j then this tuple has a very

restricted shape.

In view of our choice, since g is generating, there is a general position k such that gk and the

elements in the special positions generate G. By the above, we can assume now that gjgj+1 = 1

for any two adjacent general positions disjoint from k. Indeed, if gjgj+1 6= 1 then the coalesced

tuple h is a Nielsen tuple, as it clearly contains generating elements for G. Hence, gj+1 = g−1j

for all j as above. Since r ≥ 8, there are at least five general positions. This means that either in

front of gk or after gk there are at least two general positions. The proof is symmetric for these

two possibilities, so let us assume the former. Hence k ≥ 3.

We know that gj+1 = g−1j for all j < k−1. We claim that the same holds for j = k−1. If not,

the tuple h does not contain the identity element and it is generating, since 〈gk−2, gk−1, gk〉 =

〈x, x−1, gk〉 = 〈x, x−1gk〉 = 〈gk−2, gk−1gk〉. Thus, gk = g−1k−1. Therefore, in g we have the sequence

x, x−1, x, x−1, . . . in positions 1 through k. In particular, g1 = gk or g−1k . This means that we

could have chosen k = 1. Now applying the symmetric argument (for the general positions after

g1), we conclude the all elements in the general positions obey the same pattern x, x−1, x, x−1, . . ..

Now we try another trick, namely, we coalesce with respect to P = [3, 1, . . . , 1]. The gives

h = (x, g4, . . . , gr), which is clearly a Nielsen tuple. Note that this time h has length r − 2 ≥ 6.
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The above inductive argument with the pure braid Q and the corresponding ribbon braid R

works whenever h does not fall into one of the exceptional cases from Proposition 4.5.7. In all

these cases r − 2 = 6 and so r = 8.

We deal with the two exceptional cases in turn. Suppose that h is of type (2A, 2A, 2A, 2A, 2A, 2A)

and so g is of type (2A, 2A, 2A, 2A, 2A, 2A, 2A, 2A). By the above, g = (x, x, x, x, x, g6, g7, g8).

This implies that the tuple (x, g6, g7, g8) is a generating tuple, with product 1 and of type

(2A, 2A, 2A, 2A). However, this is impossible, since this type is on Table 4.1 and so the corre-

sponding pure Nielsen class is empty.

In the second exceptional case h is odd and so g is odd, too. By the above, g =

(x, x−1, x, x−1, x, x−1, g7, g8). Now the product-one condition implies that g7g8 = 1, which

is a contradiction, since g7 and g8 do not commute. This completes the proof.

Finally, we can do the general case.

Lemma 4.5.10. If r ≥ 8 then the claim holds.

Proof. Consider Q = Q1 · · ·Qr−1 ∈ Br. This braid rotates each tuple, sending (g1, . . . , gr) to

(gr, g1, . . . , gr−1).

Now suppose that Ω is a pure braid orbit of type C and let g = (g1, . . . , gr) ∈ Ω. Let j be

the final position of our repeated classes in C. So j = i + 1 in the odd repetitive form case

and j = i + 2 in the even repetitive form case. Note that Qr−j(g) is of type Cσr−j
, where

σ = σQ is the cycle (1, 2, . . . , r) ∈ Sr. Hence the repeated classes are now at the end of the tuple

and so Lemma 4.5.9 applies. Therefore, there exists a pure braid R such that RQr−j(g) has

the repeated elements in the last two or three positions depending on the form parity. Finally,

Q−(r−j)RQr−j(g) is again of type C and it is in the required repetitive form at position i.

It remains to notice that Q−(r−j)RQr−j = RQ
r−j

is a conjugate of R and hence it is a pure

braid.

This completes the proof of Proposition 4.5.7.

4.5.3 Proof of Theorem 4.5.3

Let r ≥ 8. In view of Lemma 4.5.1 we can assume that C = (C1, . . . , Cr) is lexicographically

ordered.
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To begin, we consider the question of existence.

Lemma 4.5.11. There exists a Nielsen tuple of type C. Moreover, if the type is odd then there

are Nielsen tuples for both possible values of the lifting invariant.

Proof. We use induction on r. Since r ≥ 8, C must contain some conjugacy class twice. Since C is

lexicographically ordered, we can assume that Ci = Ci+1. The type D = (C1, . . . , Ci−1, Ci+2, . . . , Cr)

is of length at least r−2 ≥ 6 and lexicographically ordered. Hence by induction (and since Table 4.1

contains no type of such length) there exists a Nielsen tuple (g1, . . . , gi−1, gi+2, . . . , gr) of type D.

Pick g ∈ Ci and note that g−1 ∈ Ci = Ci+1. Therefore the tuple (g1, . . . , gi−1, g, g
−1, gi+2, . . . , gr)

is a Nielsen tuple of type C.

Suppose now that C is odd and let ε ∈ {1,−1}. We proceed in exactly the same way

as above. By induction (and since Table 4.2 contains no type of length r − 2 ≥ 6) we

can select (g1, . . . , gi−1, gi+2, . . . , gr) with lifting invariant ε, in which case the extended tu-

ple (g1, . . . , gi−1, g, g
−1, gi+2, . . . , gr) also has lifting invariant ε, since ĝ−1 = (ĝ)−1.

We can now complete the proof of Theorem 4.5.3.

Proof of Theorem 4.5.3. Let g = (g1, . . . , gr) and g′ = (g′1, . . . , g
′
r) be two Nielsen tuples of type

C. If the type is odd let us assume that they have the same lifting invariant. We need to show

that there exists a pure braid R ∈ PBr such that R(g) = g′.

If C has the same odd class twice then, since C is lexicographically ordered, it is in odd

repetitive form at some position i. Otherwise, C contains no more than three odd classes and

hence it contains the double-transposition class at least five times. In particular, C in this case

is in even repetitive form at position i = 1. In either case, by Proposition 4.5.7, each of g and

g′ are conjugate by pure braids to some Nielsen tuples in repetitive form at position i. Hence,

without loss of generality we can assume that g and g′ are themselves in this form.

Let P = Pg = [1, . . . , 1︸ ︷︷ ︸
i−1

, 2, 1, . . . , 1] or [3, 1, . . . , 1] depending on the case. Let h = gP and

h′ = (g′)P . By Lemma 4.5.6, h and h′ are Nielsen tuples and if they are odd then they have the

same lifting invariant. Clearly, h and h′ are of the same type. Note that in the odd form case

the new type may not be lexicographically ordered! This does not matter since the statement of

Theorem 4.5.3 does not require this. We also note that by a more careful choice of i we could in

fact ensure that the coalesced type be lexicographically ordered.
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By induction and since r − 2 ≥ 6, h and h′ lie in the same pure braid orbit and hence there

exists a pure braid Q ∈ PBr−1 or PBr−2, respectively, such that Q(h) = h′. Let R ∈ PRr,P
such that φP (R) = Q. By Proposition 4.4.7, R(g) = g′.

It remains to discuss how Theorem 4.5.3 implies the Theorem 4.3.1. For each type C, the

Nielsen class Niin(G,C) (when non-empty) is the union of the pure Nielsen classes PNiin(G,Cσ)

for all σ ∈ Sr. If C is even then PBr acts transitively on each of these pure Nielsen classes,

while Br also fuses them together into a single orbit (see Lemma 4.5.1), since Br maps to Sr

surjectively.

Similarly, if C is odd and ε ∈ {1,−1} then Br fuses the pure braid orbits with lifting invariant

ε (when such orbits exist) into a single braid orbit with lifting invariant ε. Again, this follows

from Lemma 4.5.1.

This completes the proof of Theorem 4.3.1.

59



CHAPTER 5

A6 BRAID ORBITS

In this chapter we extend our classification of braid orbits to A6. This case is of particular interest

because the structure of the covers of An is exceptional for n = 6 or 7. In these exceptional cases

then An has a six-fold cover, and this will be reflected in the classification of braid orbits. It is

hoped that by extending the classification to A6 the nature of those exceptional types which do

not fit within our classification will become clear. The classification of A6 braid orbits is more

complicated than that of A5 but the general pattern is maintained.

Throughout this chapter we will label the six nontrivial conjugacy classes of A6, as in [6], by:

r 2A = (1, 2)(3, 4)A6 ;

r 3A = (1, 2, 3)A6 ;

r 3B = (1, 2, 3)(4, 5, 6)A6 ;

r 4A = (1, 2, 3, 4)(5, 6)A6 ;

r 5A = (1, 2, 3, 4, 5)A6 ;

r 5B = (1, 2, 3, 5, 4)A6 .

If C is a conjugacy class of A6 then we let nC(C) denote the number of occurences of C within

the type C. Additionally, let n3(C) denote the sum n3A(C) + n3B(C); and n5(C) denote the

sum n5A(C) + n5B(C).
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5.1 Covers of A6 and the Lift Invariant

The structure of the covering groups for An is well known [38]. For n 6= 6, 7, An has a single

isomorphism class of covers, and these covers have degree 2 [33][34]. For n = 6 and n = 7

there are further exceptional covers of higher degrees. In particular, A6 has a universal central

extension 6 ·A6:

1→ C6 → 6 ·A6
θ6→ A6 → 1.

of degree 6. The action of the subgroups Z2,Z3 ≤ Z6
∼= Z(6 · A6) gives rise to the covers of

degree 3 and 2 respectively [34]. Denote the isomorphism classes of the covering homomorphisms

corresponding to the covering groups 2 ·A6, 3 ·A6 and 6 ·A6 by

θ2 : 2 ·A6 → A6,

θ3 : 3 ·A6 → A6, and

θ6 : 6 ·A6 → A6,

respectively. To simplify statements θ1 is used to denote the trivial cover of A6 by itself.

Recall that lifting invariant, introduced in Chapter 4, was defined only for odd order elements.

This was due to the fact that an element of order 2 cannot be uniquely lifted to the double cover

2 ·A5. An examination of the orders of the preimages of an element under the respective covers

shows that this problem also occurs for A6, and is in fact more severe. However, by Lemma 4.2.2,

an element of order 2 can be lifted uniquely to the cover 3 ·A6 and so the definition of the lifting

invariant must be extended to admit the possibility. In particular, the lifts of an element of order

4 must be treated carefully. By Lemma 4.2.2 an element of order 4 has a unique lift of order 4 to

the covering group 3 ·A6. However when lifting to the double cover then this is not so.

Proposition 5.1.1. Let g ∈ 4A, then θ−12 (g) contains two nonconjugate elements ĝ1, ĝ2 of order

8. Furthermore, if h ∈ θ−12 (g) then either h is conjugate to ĝ1 or h is conjugate to ĝ2.

This follows from a more general result classifying the splitting of conjugacy classes upon

lifting.

Theorem 5.1.2 ([20] Theorem 3.9). Let C be a conjugacy class of An. Then C splits in 2 ·An
if:
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• elements of C can be decomposed into disjoint cycles such that all cycles are of odd length;

or

• elements of C can be decomposed into disjoint cycles such that no two cycles have the same

length (including 1), and there is at least one cycle of even length.

The lifting invariant can now be defined. By appealing to Proposition 5.1.1 and Lemma 4.2.2

we can ensure that the lift invariant is well-defined.

Definition 5.1.3. Let C be a type. Define

θ(C) =



θ1, n2A(C) > 0 and n3(C) > 0

θ2, n2A(C) = 0 and n3(C) > 0

θ3, n2A(C) > 0 and n3(C) = 0

θ6, n2A(C) = 0 and n3(C) = 0.

We call θ(C) the covering for type C. The covering of a given type is defined in this way, so as

to be the maximal cover for which a unique lifting can be defined.

Definition 5.1.4. Let g ∈ A6and let θ : H → A6 be a covering homomorphism of A6 with

kernel K.

• If (|K|, o(g)) = 1 then there exists a unique h ∈ H such that o(h) = o(g) and θ(h) = g. Let

ĝ denote this unique element h.

• If o(g) = 4 and n = (4, |K|) 6= 1 then by Proposition 5.1.1 the preimage θ−1(4A) splits into

two conjugacy classes denoted C1 and C2. Define ĝ to be the element h ∈ θ−1(g) such that

h ∈ C1 and o(h) = 4n.

• If neither of the above occur then ĝ is undefined for this cover.

The above definition relies on the chosen cover. In particular, we lift an element of type g ∈ 4A

using the first rule if the cover in question is of degree 3; however, if the cover in question is

of degree 2 or 6 then we lift using the second rule. The elements of order 4 are particularly

troublesome in this respect.
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Conjugacy Class θ2 θ3 θ6
2A {4, 4} {2, 6, 6} {4, 4, 12, 12, 12, 12}
3A {3, 6} {3, 3, 3} {3, 3, 3, 6, 6, 6}
3B {3, 6} {3, 3, 3} {3, 3, 3, 6, 6, 6}
4A {8, 8} {4, 12, 12} {8, 8, 24, 24, 24, 24}
5A {5, 10} {5, 15, 15} {5, 10, 15, 15, 30, 30}
5B {5, 10} {5, 15, 15} {5, 10, 15, 15, 30, 30}

Table 5.1: For each cover θ of A6 and each conjugacy class C we list the orders of the elements
in the preimage of a member of said class.

Let g = (g1, . . . , gn) be a tuple of type C. Let θ = θ(C) be the cover for type C. The lifting

invariant of g is defined by

LI(g) = LIθ(g) = ĝ1ĝ2 · · · ĝr.

When g is a Nielsen tuple, such that the lifting invariant is defined, then the lifting invariant is

an element of the kernel of the corresponding cover.

Lemma 5.1.5. Let θ be a covering homomorphism of A6, let K denote the kernel of θ, and let

g ∈ A6be such that ĝ is defined for θ. Assume that (o(g), |K|) = 1. Then

ĝn = ĝn.

Proof. Let h = ĝn, let m = o(g) and let k = |K|. Clearly h = aĝn for some a ∈ K. Since

(o(g), |K|) = 1,

1 6= hk = (aĝk) = akĝn
k

= ĝn
k
,

and therefore ĝn = h = ĝn.

The above statement is not true when lifting an element of order 4A to the double cover. In

fact ((1, 2, 3, 4)(5, 6))2 = (1, 3)(2, 4) and therefore (1, 2, 3, 4)(5, 6) cannot be lifted. Inverses, on

the other hand, do behave nicely.

Lemma 5.1.6. Let θ be a covering homomorphism of A6, let K denote the kernel of θ, and let

g ∈ A6be such that ĝ is defined for θ. Then

ĝ−1 = ĝ−1.
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Type Genus

(2A, 2A, 2A, 2A) −1
(2A, 2A, 2A, 3A) −1
(2A, 2A, 3A, 3A) −1
(2A, 3A, 3A, 3A) −1
(3A, 3A, 3A, 3A) −1

Table 5.2: Types C, up to permutation and outer automorphism, for which the Nielsen class
Niin(A6,C) is empty. All such cases then the Riemann-Hurwitz formula predicts that the genus
of the corresponding cover is negative. Of course, this cannot occur. This is in contrast to the
A5 exceptions in Table 4.1.

Type Number of orbits Expected Genus

(2A, 2A, 2A, 5A) 2 3 0
(3A, 3A, 3A, 3B) 1 2 0
(3A, 3A, 3A, 5A) 1 2 0
(3A, 3A, 4A, 4A) 3 2 1
(3A, 3A, 5A, 5B) 3 2 1
(4A, 4A, 5A, 5A) 9 6 3
(4A, 4A, 5A, 5B) 8 6 3
(5A, 5A, 5A, 5A) 12 6 3
(5A, 5A, 5A, 5B) 5 6 3
(5A, 5A, 5B, 5B) 9 6 3
(2A, 2A, 2A, 2A, 2A) 2 3 0
(3A, 3A, 3A, 3A, 3A) 1 2 0

Table 5.3: Types for which the lifting invariant does not entirely determine the pure braid orbits
on PNiin(A6,C). The third column indicates how many orbits we might expect there to be.

5.2 Discussion of Main Result

The main theorem of this chapter is the following:

Theorem 5.2.1. For G = A6 and a type C = (C1, . . . , Cr), r ≥ 4, the Nielsen class Niin(G,C)

is non-empty if and only if C is not listed in Table 5.2. Furthermore, given that C is not in

Table 5.3,

r for the appropriate cover θ = θ(C) and lifting invariant ε, there exists a Nielsen tuple of

type C and lifting invariant ε.

r Any two tuples in PNiin(A6,C) with the same lifting invariant are pure braid equivalent.

Note that the lists shown are in condensed form. The complete lists of exceptional types are

obtained from Table 5.2 and Table 5.3 by permutations and outer automorphisms. The orbits of

length 3 have also been calculated and may be found in Appendix B. We also remark that the
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Type Number of orbits Expected Genus

(2A, 2A, 2A, 5A) 2 3 0
(3A, 3A, 3A, 3B) 1 2 0
(3A, 3A, 3A, 5A) 1 2 0
(3A, 3A, 4A, 4A) 3 2 1
(3A, 3A, 5A, 5B) 3 2 1
(4A, 4A, 5A, 5A) 9 6 3
(4A, 4A, 5A, 5B) 8 6 3
(5A, 5A, 5A, 5B) 5 6 3
(5A, 5A, 5B, 5B) 7 6 3
(2A, 2A, 2A, 2A, 2A) 2 3 0
(3A, 3A, 3A, 3A, 3A) 1 2 0

Table 5.4: Types for which the lifting invariant does not entirely determine the braid orbits on
Ni(A6,C). The ‘Expected’ column indicates how many orbits we might expect there to be.

above are exceptions for the pure braid orbits and not necessarily the braid orbits. For example,

the type (5A, 5A, 5A, 5A) has twelve orbits under the pure braid action and just six under the

regular braid action, and these six orbits are distinguished by the lifting invariant. Therefore

this type should no longer be considered exceptional with respect to the braid action.

In many cases where there are more orbits than expected then any two orbits with the

same lifting invariant differ by an outer automorphism. Therefore, up to the action of the full

automorphism group these types maynot be considered exceptional. Recall that Fried’s 3-cycle

classification showed that there are two braid orbits on Niin(An,C) except when C has length

n = r−1 in which case braid group acts transitively. These cases correspond to genus 0 coverings.

Looking at the types in Table 5.3 we observe that the types with fewer than the expected number

of orbits all have genus 0 except for the type (5A, 5A, 5A, 5B). Thus Fried’s condition is not

sufficient for determining when there are fewer orbits than expected.

The pure braid result is much stronger and so this is proven. However for applications the

regular braid action is usually preferred, and so statements are given in terms of the regular braid

group action. Table 5.4 lists those types which are exceptional for the regular braid action. We

see that only the type (5A, 5A, 5A, 5A) appears in Table 5.3 but not in Table 5.4. We also note

that the type (5A, 5A, 5B, 5B) has 9 orbits under the pure braid action, but only 7 orbits under

the regular braid action. It is clearly true that Niin(A6,C) is empty if and only if PNiin(A6,C)

is empty so there is no need for us to have an alternative version of Table 5.2 for regular braid

orbits.

As with A5 we can translate the main result into a statement concerning the connectivity of

65



the corresponding Hurwitz spaces.

Theorem 5.2.2. For G = A6 and a type C of length r ≥ 3, the Hurwitz space H(G,C) is

nonempty if and only if C is not in Table 5.2. Furthermore if C is not in Table 5.4 then:

r If n2A(C) > 0 and n3(C) > 0 then H(G,C) is connected.

r If n2A(C) > 0 and n3 = 0 then H(G,C) has three components.

r If n2A(C) = 0 and n3 > 0 then H(G,C) has two components.

r If n2A(C) = 0 and n3 = 0 then H(G,C) has six components.

If there is more than one components then separated components are distinguished by the lifting

invariant for the appropriate cover.

5.3 A6 Braid Orbits

Instead of proving Theorem 5.2.1 we prove a pure braid analogue. This simplifies the argument

and gives a stronger result.

Theorem 5.3.1. For G = A6 and a type C = (C1, . . . , Cr), r ≥ 3, the pure Nielsen class

PNiin(G,C) is non-empty if and only if C is not a permutation of a type from Table 5.2.

Furthermore, if PNiin(G,C) is non-empty and C does not appear in Table 5.3 then the pure

braid orbits are distinguished by the lifting invariant appropriate for the given type. Moreover,

for every value the lifting invariant might possibly take there exists a tuple of type C realizing

this value.

The above theorem can be broken down into the following classification: Suppose that C is a

type not listed in Table 5.2 or Table 5.3. Then

r if n2A(C) > 0 and n3(C) > 0 then there is exactly one pure braid orbit;

r if n2A(C) = 0 and n3(C) > 0 then there are two pure braid orbits;

r if n2A(C) > 0 and n3(C) = 0 then there are three pure braid orbits;

r if n2A(C) = 0 and n3(C) = 0 then there are six pure braid orbits.
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Type Orbits

(2A, 2A, 3A, 4A, 4A, 5A, 5B) 1
(2A, 2A, 3A, 3B, 4A, 4A, 5A) 1

(2A, 2A, 2A, 2A,X, Y, Z)
(3A, 3A, 3A, 3A, 3A, Y, Z)

(2A, 2A, 2A, 2A, 2A, 2A, 2A, 2A) 3

Table 5.5: A list of longer types computed with MapClass. For the generic types
(2A, 2A, 2A, 2A,X, Y, Z) and (3A, 3A, 3A, 3A, 3A,X, Y ) we allow X,Y and Z to range over
all conjugacy classes.

In all of the above cases the lifting invariant distinguishes orbits. In the exceptional cases either

there is no tuple of the length, in which case the tuple appears in Table 5.2, or there are either

too many or too few pure braid orbits; these exceptional types appear in Table 5.3. Notice

that we never obtain the correct number orbits but find two of these orbits share the same lift

invariant.

5.3.1 Basis for induction.

The proof is by induction on r, the length of C. The following lemma anchors the induction.

Lemma 5.3.2. If C is a type of length 3 ≤ r ≤ 6, or C is in Table 5.5 then the conclusion of

Theorem 5.3.1 holds.

The lemma is established by explicit calculation of all orbits for all types of length 3 ≤ r ≤ 6.

Note that in view of Lemma 4.5.1, we only need to consider lexicographically ordered types.

However we do frequently reorder types and so it is not a condition of any of the arguments

that the type shall be ordered. For these lexiographically ordered types, the computation was

completed using the MapClass package [23] for the gap computational algebra system [14].

Data for this computation is included in Appendix B. It was unfeasible for us to calculate braid

orbits for all types of length 7 but our induction requires some longer types. These were computed

using the splitting method discussed in Chapter 6.

5.3.2 A Normal Form for Tuples

The normal form introduced in Chapter 4 is extended to tuples in A6.

Definition 5.3.3. Let g = (g1, . . . , gr) be a Nielsen tuple. The tuple g is said to be:
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• In odd normal form at position i if gi = gi+1 = g for some element g of odd order.

• In even normal form at position i if gi = g, gi+1 = g−1, and gi+2 = g for some element g

of even order. Note that if g is an even order element in A6 then g−1 and g lie in the same

conjugacy class.

• In (2, 2, 4)-form at position i if gi = gi+1 = g2 and gi+2 = g for some element g of order 4.

The odd normal form and even normal form are collectively called the repetitive normal forms.

For each of the normal forms, a normal partition, denoted Pg is defined. Coalescing with

respect to the normal partition preserves generation and the lifting invariant. The normal

partitions for tuples in odd, even and (2, 2, 4)-form are given by

[1, . . . , 1︸ ︷︷ ︸
i−1

, 2, 1, . . . , 1],

[1, . . . , 1︸ ︷︷ ︸
i−1

, 3, 1, . . . , 1] and,

[1, . . . , 1︸ ︷︷ ︸
i−1

, 2, 1, . . . , 1],

respectively. The elements in position i, i+ 1 and i+ 2 play an important role and so are called

the distinguished elements of the tuple.

The three definitions of normal form can also be applied to types. A type C = (C1, . . . , Cr)

is said to be:

• In even normal form at position i, if Ci = Ci+1 = Ci+2 = C for conjugacy class C whose

elements have even order;

• In odd normal form at position i, if Ci = Ci+1 = C for conjugacy class C whose elements

have odd order;

• In (2, 2, 4)-form at position i, if Ci = Ci+1 = 2A and Ci+2 = 4A.

Often we are not concerned about the order of the conjugacy classes in the type only that

each conjugacy class appears often enough. If a type C is in normal form up to permuting the

components of the type, then it is said to be in unordered normal form. Note that a type C of
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length r ≥ 7 must be in one of the above normal forms, possibly unordered, or

C = (2A, 4A, 4A, 3A, 3B, 5A, 5B).

Our main result, Theorem 5.2.2, says that the number of components of the Hurwitz space,

or alternatively, the number of braid orbits, is controlled by the pair of integers (n2A(C), n3(C)).

We say that

• C has (2, 3)-shape if n2A(C) > 0 and n3(C) > 0.

• C has 2-shape if n2A(C) > 0 and n3(C) = 0.

• C has 3-shape if n2A(C) = 0 and n3(C) > 0.

The tuples in one of the above normal forms are useful for our induction because coalescing

such tuples with respect to P = Pg gives shorter tuples whilst preserving all the salient properties.

The following lemma makes this precise. In all cases the coalescing produces a tuple which does

not contain trivial elements.

Lemma 5.3.4. Suppose g is a tuple in a normal form, P = Pg, and h = gP . Then

r g and h generate the same subgroup of G;

r If h and g have the same shape then LIθ(g) = LI(h) for the appropriate cover θ.

When discussing braid orbits for A5 the analogue of the above lemma also claimed that

coalescing with respect to the normal partition gives tuples of the same shape. This is not

necessarily so here; coalesced tuples in (2, 2, 4) form may no longer contain an element of order

2. However, if such a type is not in repetitive form (possibly unordered) then it has a very

limited structure: nC(C) ≤ 1 for every odd conjugacy class, and nC(C) ≤ 2 for every even order

conjugacy class. These types are small enough that they may be dealt with separately.

Proof. For the first claim we consider each of the possible forms:

r g is in odd repetitive form, then 〈g2〉 = 〈g, g〉 for odd g, therefore 〈gP 〉 = 〈g〉.

r g is in even repetitive form, then 〈g〉 = 〈g, g−1, g〉 for even g, therefore 〈gP 〉 = 〈g〉.

r g is in (2, 2, 4)-form, then 〈g2, g2, g〉 = 〈g〉 for g of order 4, therefore 〈gP 〉 = 〈g〉.
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For the above forms it is obvious that LI(g) = LI(gPg). This follows from Lemma 5.1.5. We

demonstrate for elements in (2, 2, 4)-form. The other cases are similar.

LI(g) = ĝ1 · · · ĝi−1(ĝ2ĝ2ĝ)ĝi+3 · · · ĝr

= ĝ1 · · · ĝi−1ĝĝi+3 · · · ĝr

= LI(gPg),

completing the proof.

We wish to establish that, outside of a small list of exceptional types, a tuple of type C may

be placed in one of the normal forms listed previously. We shall be considering subtypes of C

and thus introduce the following definition.

Definition 5.3.5. Let C = (C1, . . . , Cr) be a type of length r, and let 1 ≤ k ≤ r be an integer.

Then a subtype of the form D = (Ck, . . . , Cr) is called a suffix-subtype of C. A subtype of the

form D = (C1, . . . , Ck) is called a prefix-subtype of C.

The argument used is one which will be repeated throughout this chapter, and is encapsulated

by the following lemma.

Lemma 5.3.6. Let C = (C1, . . . , Cr) be a type, and suppose that the pure braid orbits of

PNiin(A6,C) are distinguished entirely by the lifting invariant for the appropriate cover θ. Let

D = (Ck, . . . , Cr) be a suffix-subtype of C; suppose that C and D are of the same shape and that

there exists a Nielsen tuple h = (hk, . . . , hr) of type D with lifting invariant ε. If there exists

g1, . . . , gk−1 such that LI((g1, . . . , gk−1)) = 1 and g1 · · · gk−1 = 1 then every tuple of type C and

lifting invariant ε is pure braid equivalent to

(g1, . . . , gk−1, hk, . . . , hr).

Proof. The tuple g = (g1, . . . , gk−1, hk, . . . , hr) is clearly a Nielsen tuple. The lifting invariant of

g is equal to LI((g1, . . . , gk−1))LI(h) = ε. Therefore, as the pure braid orbits are distinguished

by the lifting invariant, we are done.

This process of building a larger type from a suffix-subtype is repeated frequently. The
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following lemma shows Lemma 5.3.6 in action. It shows that types in repetitive form almost

always contain a tuple in repetitive form.

Lemma 5.3.7. Let C = (C1, . . . , Cr) be type of length r = 6 and assume that C is in repetitive

form at position i and assume that C is not, up to permutation and automorphism, one of the

following exceptional types:

r (3A, 3A, 3A, 3A, 3A, 3A);

r (2A, 2A, 2A, 2A, 2A, 3A);

r (2A, 2A, 2A, 2A, 2A, 5A); or

r (2A, 2A, 2A, 2A, 2A, 2A).

Then every pure braid orbit of PNiin(G,C) contains a tuple in repetitive normal form at position

i.

Proof. Let C = (C1, . . . , Cr) and assume that C is in odd repetitive form at position i, therefore

Ci = Ci+1 = C is of odd type. Let C2 denote the conjugacy class of the squares of elements

in class C. In particular, if C = 5A (respectively 5B) then C2 = 5B (respectively 5A) and if

C = 3A (respectively 3B) then C2 = 3A (respectively 3B). Let D denote the coalesced type

(C1, . . . , Ci−1, C
2, Ci+2, . . . , Cr)

which we know is of length 5 and hence not in Table 5.3 unless C is the type (3A, 3A, 3A, 3A, 3A, 3A)

(or C = (3B, 3B, 3B, 3B, 3B, 3B)). Leaving these exceptions aside, for each possible value ε

that the lifting invariant may take there exists a single pure braid orbit Ω with the property

that a tuple lies in Ω if and only if it has lifting invariant ε. Choose a Nielsen tuple h =

(h1, . . . , hi−1, h, hi+1, . . . , hr−1) lying in Ω. So in particular h has lifting invariant ε. Since h is of

odd order then there exists a unique g such that g2 = h. Let g = (h1, . . . , hi−1, g, g, hi+1, . . . , hr−1).

Then g is a Nielsen tuple of lifting invariant ε and the claim holds by Lemma 5.3.6.

Now assume that C contains no repeated odd conjugacy class and that C, is of even

repetitive type at position i. Therefore Ci = Ci+1 = Ci+2 = C and C = 2A or C = 4A. As in the

previous argument we consider the smaller type D = (C1, . . . , Ci−1, C, Ci+3, . . . , Cr) of length

4. Note that it could well be the case that C and D are in Table 5.2 or Table 5.3. However
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when this occurs there is almost always a repeated class of odd order elements, contradicting

our assumption that there is no repeated odd conjugacy class. The only true exceptions are

when D = (2A, 2A, 2A, 2A), (2A, 2A, 2A, 3A), or (2A, 2A, 2A, 5A) (up to permutation and

automorphism), i.e., C = (2A, 2A, 2A, 2A, 2A, 2A) or C = (2A, 2A, 2A, 2A, 2A, 3A), or C =

(2A, 2A, 2A, 2A, 2A, 5A). These are remaining exceptional cases from the statement of the lemma,

so let us assume that D is not in Table 5.2 or Table 5.3.

Again we observe that for all possible values the lifting invariant may take there is a single

non-empty pure braid orbit Ω of type D. Pick a tuple

h = (h1, . . . , hi−1, h, hi+1, . . . , hr−2)

in Ω, where h ∈ C. Consider the length r tuple

g = (h1, . . . , hi−1, h, h
−1, h, hi+1, . . . , hr−2).

Note that this tuple is of type C, has lifting invariant ε, is generating, and has product one.

Hence, by Lemma 5.3.6 the pure braid orbit of Niin(G,C) with lifting ε contains g: a tuple in

even repetitive form at position i.

The following lemma is a similar result to Lemma 5.3.7 but for types in (2, 2, 4)-form.

Lemma 5.3.8. Let C be a type of length r = 6 in (2, 2, 4)-form at position i. Furthermore,

suppose that C is not in unordered repetitive form. Then either

r C = (2A, 2A, 4A, 4A, 5A, 5B); or

r every pure braid orbit Ω of PNiin(A6,C) contains a tuple in (2, 2, 4)-form at position i.

Proof. First assume that n3(C) = 0. Then either C contains a repeated odd class, C contains a

triple of repeated even classes – both of which would mean the type is in repetitive normal form –

or C = (4A, 4A, 2A, 2A, 5A, 5B), the exceptional case.

Now suppose that C is in (2, 2, 4)-form at the first position, that C = (2A, 2A, 4A,C4, C5, C6),

and n3(C) > 0. In particular PBr acts transitively on PNiin(G,C) by Lemma 5.3.2. Let

D = (4A,C4, C5, C6). There are no types in Table 5.2 such that n4A > 0, therefore Niin(G,D)

is nonempty. Moreover, n3(D) > 0 and so does D does not appear in Table 5.3. Let h = (h =
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h1, h2, h3, h4) be a tuple in Niin(G,D). Then apply Lemma 5.3.6 to the tuple (h2, h2, h, h2, h3, h4)

which is of type C. Therefore every pure braid orbit of PNiin(A6,C) must contain a tuple in

(2, 2, 4)-form at position 1, and hence by Lemma 5.3.22, position i.

At this point we summarise our progress: if C is a type of length 6 in normal form then every

pure braid orbit of PNiin(G,C) contains a tuple in normal form except for the following types:

• (2A, 2A, 2A, 2A, 2A, 2A)

• (2A, 2A, 2A, 2A, 2A, 3A)

• (2A, 2A, 2A, 2A, 2A, 5A)

• (2A, 2A, 4A, 4A, 5A, 5B)

• (3A, 3A, 3A, 3A, 3A, 3A)

These types are genuine exceptions. Consider, for example, the type

C = (2A, 2A, 2A, 2A, 2A, 5A).

Suppose that for each of its three orbits, Ω1,Ω2 and Ω3, corresponding to the three values

the lifting invariant takes, there exists a tuple in even repetitive form. Label the three tuples.

Coalescing with respect to the normal partitions gives three tuples of type (2A, 2A, 2A, 5A), and

each with a different lifting invariant. However we know that there are just two pure braid orbits

of PNiin(G, (2A, 2A, 2A, 5A)).

5.3.3 Generating Subtuples

In order to extend the results of the previous chapter to types of greater length we want to

coalesce with respect to a partition whilst still maintaining key properties such as the shape

and generation. This subsection deals with these concerns. To begin, we comment generally on

how we can generate A6. The approach taken is to consider chains of maximal subgroups of G,

showing that by appropriately braiding we can always ensure the inclusions in such chains are

proper and that the length of such chains is small. This approach does not rely on properties of

A6, other than for the calculation of lengths of chains, and so can be applied more generally. No

claims are made concerning the optimality of these results.
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S4

S3 D8 A4

C3 C2 C4 V4 C2 V4

C2
C2

Figure 5.1: Chains of isomorphism classes of subgroups for the maximal subgroup S4

Lemma 5.3.9. Suppose that H1, . . . ,Hk are proper subgroups of G = A6 and that

H1 � H2 � · · · � Hk.

Then k ≤ 4. Moreover, if H1 is cyclic and of order 4 then k ≤ 3.

Proof. This follows by considering the longest possible chains of maximal subgroups in G. The

maximal subgroups of A6 can be found in [6]. Figure 5.1, Figure 5.3 and 5.2 show the maximal

subgroup chains for the three isomorphism classes of maximal subgroups of A6: A5, S4 and

(C3 × C3)o C4.

Using the previous lemma we argue that it is always possible, via a sequence of braid moves,

to transform our tuple into one in which the initial elements generate.

Definition 5.3.10. A tuple g = (g1, . . . , gr) is said to have a generating n-head if the initial n

elements g1, . . . , gn generate G. Of course a Nielsen tuple of length r always has a generating

(r − 1)-head.

To avoid overusing chains of complex braid moves we describe two useful sequences which

are used repeatedly. We recall from Chapter 4 that the pure braids act by conjugation. Recall

Lemma 4.4.6:
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A5

S3 D10 A4

C3 C2 C2 C5 C2 V4

C2

Figure 5.2: Chain of isomorphism classes of subgroups for the maximal subgroup A5

Lemma 5.3.11 (Lemma 4.4.6). Let P = [n1, . . . , nk] be an admissible partition of {1, . . . , r}. If

g is a Nielsen tuple and R ∈ PRr,P then

R(g) = (gs11 , . . . , g
s1
m1
, gs2m1+1, . . . , g

s2
m2
, . . . , gskmk−1+1, . . . , g

sk
r )

for some si ∈ G and where mi = n1 + · · ·+ ni.

If a pure braid is used to conjugate a component of the tuple as described by the lemma, then

we say that we have conjugated via pure braids. In addition to being able to act via conjugation

we can also choose our braid moves so that we can shift a component of our tuple.

Proposition 5.3.12. Let g = (g1, . . . , gr) be a Nielsen tuple. Then there exists Q ∈ Br such

that the j-th component of Q(g) is gi. Moreover Q(gk) = gk for all gk not lying between gi and

gj.

Proof. Suppose that i < j, and let

Q = QiQi+1 · · ·Qj−1.

This braid behaves as required.

The invariance of those elements that lie outside of the range of permutation is important. It
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C4 (C3 × C3) ⋊ C2

(C3 ×C3) ⋊ C4

C6 C3 × C3

C3

Figure 5.3: Chains of isomorphism classes of subgroups for the maximal subgroup (C3×C3)oC4

is easy to see that in fact we may move blocks of adjacent components in a similar manner by

using the ribbon braid equivalents of the braid in the proof of Proposition 5.3.12.

Definition 5.3.13. Let Q ∈ Br, let A ⊂ {1, . . . , r}, and let σ ∈ Sr be the permutation

associated to Q. The braid Q is said to act purely on A if σ(a) = a for all a ∈ A. Moreover, if

Ag = {ga ∈ G | a ∈ A} then Q is said to act purely on Ag.

Lemma 5.3.14. Let g = (g1, . . . , gr) be a Nielsen tuple and let g1, g2, g3 ∈ 2A. There exists a

pure braid P ∈ PBr such that P (g) = (g′1, . . . , g
′
r), K = 〈g1, g′2, g′3〉, and either K = G or there

exist proper subgroups K1,K2 of K such that

1 � K1 � K2 � K.

Proof. The following claim is shown first.

Claim. There exists a pure braid W ∈ PBr such that, if W (g) = (w1, . . . , wr), then 〈w1〉 6= 〈w2〉,

〈w1〉 6= 〈w3〉, 〈w2〉 6= 〈w3〉.

To prove the claim observe that we may assume g2 6∈ 〈g1〉. Otherwise g2
gs 6∈ 〈g1〉 for some

s ≥ 3. Therefore, by Lemma 5.3.11, there exists a pure braid which conjugates g2 out of 〈g1〉.

Similarly we may also assume that g3 6∈ 〈g1〉. Therefore g1 6= g2 and g1 6= g3. If g3 6= g2 then the

claim holds, so assume that g3 = g2.

Let H denote the initial subgroup 〈g1, g2〉. Since g1 · · · gr = 1 then any r − 1 cardinality

subset of {g1, . . . , gr} generates G. In particular S = {g2, . . . , gr} also generates G. Since 〈g2〉 is

76



not normal in G, and S generates then there exists s ≥ 4 such that g3
gs 6∈ 〈g2〉. Without loss of

generality assume that s = 4. If g3
g4 6∈ H then the conclusion of the lemma holds, as applying

the braid Q2
2 gives a new tuple whose initial three elements are (g1, g2, g3

g4) and

〈g1〉 � 〈g1, g2〉 � 〈g1, g2, g3g4〉.

If, however, g3
g4 ∈ H then the claim holds unless 〈gg43 〉 = 〈g1〉. Therefore assume g1 = g3

g4 .

The set S′ = {g1, g2, g3, g5, . . . , gr} generates G and ggs3 = ggs2 ∈ H for all gs ∈ S′. However,

H = 〈g1, g2〉 is not normal in G and so there exists some t ≥ 5 such that ggt1 6∈ H. Therefore

g3
g4gt = g1

gt 6∈ H.

The pure braid Q−13 Q4 · · ·Qt−1Q−1t · · ·Q−14 Q3 transforms the initial three elements

(g1, g2, g3) 7→ (g1, g2, g
g4gt
3 ) = (g1, g2, g

gt
1 ).

and therefore

〈g1〉 � 〈g1, g2〉 � 〈g1, g2, ggt1 〉.

This concludes the proof of the claim. Therefore assume that g1 6= g2, g1 6= g3 and g2 6= g3. Then

the conclusion of the lemma holds unless 〈g1, g2〉 = 〈g1, g2, g3〉 and similarly

〈g1, g3〉 = 〈g1, g2, g3〉, (5.1)

〈g2, g3〉 = 〈g1, g2, g3〉. (5.2)

Let K = 〈g1, g2, g3〉 and suppose that ggs3 ∈ K for all s ≥ 5. If not then there exists some

s ≥ 5 such that ggs3 6∈ K and so by Lemma 5.3.11 there exists a pure braid transforming the

initial three elements of the tuple:

(g1, g2, g3) 7→ (g1, g2, g
gs
3 ),

giving

〈g1〉 � 〈g1, g2〉 = K � 〈g1, g2, ggs3 〉,
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and the conclusion of the lemma holds.

However K = 〈g2, g3〉 = 〈g3, gg32 〉. So as g3 and gg32 generate K, and K is not normal

in G, then there must exist some s ≥ 5 such that (gg32 )gS 6∈ K. Applying the braid Q =

Q−12 Q3 · · ·Qs−1Q2
sQ
−1
s1 · · ·Q−13 transforms the initial three elements of the tuple in the following

way:

(g1, g2, g3) 7→ (g1, g3, g
g3gs
2 ).

Therefore we have

〈g1〉 � 〈g1, g3〉 = K � 〈g1, g3, gg3gs2 〉.

Finally applying the braid Q2 makes the braiding pure and does so without altering the group

that the initial three elements generate.

Lemma 5.3.15. Let C = (C1, . . . , Cr) be a type of length r ≥ 7 in normal form in the first

position, and let g be a Nielsen tuple of type C. Then there exists Q ∈ Br such that Q(g) =

(g′1, . . . , g
′
r) has a generating head of length 5. Furthermore, Q may be chosen so that it acts purely

on the initial distinguished elements of g (two if g is in odd normal form and three otherwise).

Proof. By Lemma 5.3.9 it suffices to show that there exists a braid P ∈ PBr such that, if

P (g) = (g′1, . . . , g
′
5), and K = 〈g′1, . . . , g′5〉, then one of the following holds

• There exists a chain of proper subgroups

1 6= H1 � · · · � H5 = K

• There exists a chain of proper subgroups

1 6= H1 � · · · � H4 = K

and H1 is cyclic of order 4.

First suppose that C = (C1, . . . , Cr) is in even normal form and C1 = C2 = C3 = 2A. Then

by Lemma 5.3.14 we may assume that K = 〈g1, g2, g3〉 is equal to the whole group K or there

exists proper subgroups K1,K2 � K such that

1 6= K1 � K2 � K.
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By Lemma 5.3.9 it suffices to show that this chain can be extended to a chain of length 5 using

braids acting purely on the three initial elements. If K 6= G then there exists some gj such that

gj 6∈ K. By Proposition 5.3.12 there exists braid Q′ such that gj is in the fourth position of the

tuple, Q′ acts purely on the three initial elements and

K � 〈g1, g2, g3, gj〉.

Repeat this process to find a braid W ∈ Br, such that W (g) = (g1, g2, g3, gj , h5, . . . , hr), h5 6∈

〈g1, . . . , gj〉 and therefore

K � 〈g1, g2, g3, gj〉 � 〈g1, g2, g3, gj , h5〉

as required.

The second case considered is when C = (C1, . . . , Cr) is in even normal form and C1 = C2 =

C3 = 4A. Then we may assume that 〈g1〉 � 〈g1, g2〉 by conjugating g2 out of 〈g1〉. Therefore

C4
∼= 〈g1〉 � 〈g1, g2〉 = K. Assume that g3 ∈ K, if not then we have a chain of proper subgroups

of length 3:

〈g1〉 � 〈g1, g2〉 � g1, g2, g3〉,

and so argue as in the previous paragraph. Thus 〈g1, g2, g3〉 = K. As before, note that if K 6= G

then there exist gj 6∈ H. By Proposition 5.3.12 there exists a braid Q1 ∈ Br, acting purely on the

initial elements of the tuple, such that gj is moved into the fourth position of the tuple. Repeat

if necessary producing a new tuple

(g′1, . . . , g
′
r)

such that there is the following chain of subgroups

〈g′1〉 � 〈g′1, g′2〉 � 〈g′1, g′2, g′4〉 � 〈g′1, g′2, g′4, g′5〉

However, 〈g1〉 is cyclic of order 4 and so we are done.

The third case considered is when C is in (2, 2, 4)-form. Apply the braid Q2Q1 transforming

the tuple:

(g1, g2, g3, . . . , gr) 7→ 〈g3, gg31 , gg32 , g4, . . . , gr) = g′.
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This is a tuple whose first element generates a cyclic subgroup of order 4. Argue as in the

previous paragraph to find a braid W ∈ Br, acting purely on the first three elements of the tuple,

such that, if W (g′) = (w1, . . . , wr) and K = 〈w1, . . . , w5〉 = G. Therefore, the conjugate of W

by (Q2Q1)
−1 acts purely on the initial elements of g′ and the first 5 elements of WQ−1

1 Q−1
2 (g)

generate G.

Finally suppose that C is in odd normal form. In this case then it is necessary to act purely

only on the two initial elements of g. As before, assume that 〈g1〉 6= 〈g2〉. Let H = 〈g1, g2〉 and

note that because g generates G then there exists some gj such that gj 6∈ H. Therefore, there is

some braid, acting purely on the initial two elements, which moves gj into the third position,

giving

〈g1〉 � 〈g1, g2〉 � 〈g1, g2, g3〉.

Repeat this process if necessary to find a pure braid Q whose action on g gives a generating head

of length 5.

Using the above lemma we may always argue that a tuple has a generating head of length

5. If one were to coalesce with respect to the partition [1, . . . , 1, r − 5] then the coalesced tuple

may not be a Nielsen tuple because the coalesced tail has product one (recall that we require

all elements of a Nielsen tuple be nontrivial). The following lemma demonstrates that such

occurrences can always be avoided.

Lemma 5.3.16. Suppose that g = (g1, . . . , gr) is a Nielsen tuple and that g1, . . . , gk generate

G. If gk+1gk+2 · · · gr = 1 then there exists P ∈ PBr such that, if P (g) = (g′1 . . . , g
′
k), then

g′1, . . . , g
′
k, g
′
k+1g

′
k+2 · · · g′r generate G and g′k+1 · · · g′r 6= 1. In particular coalescing P (g) with

respect to the partition [1, . . . , 1, r − k] yields a Nielsen tuple.

Proof. Since g1, . . . , gk generate G and G is simple, there must be some 1 ≤ l < m ≤ r such that

ggml 6= gl. Without loss of generality assume that l = k and m = k+ 1. Applying the square Q−2k

transforms g:

(g1, . . . , gr) 7→ (g1, . . . , gk−1, g
gk+1

k , g
gkgk+1

k+1 , gk+2, . . . , gr)

Since g
gk+1

k 6= gk then

g
gkgk+1

k+1 gk+2 · · · gr 6= 1,
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and

g
gk+1

k g
gkgk+1

k+1 gk+2 · · · gr = gk.

Therefore, since {g1, . . . , gk} is a generating set, the set

{g1, . . . , ggk+1

k , g
gkgk+1

k+1 · · · gr}

also generates G. Thus coalescing with respect to [1, . . . , 1, r − k] gives a Nielsen tuple.

5.3.4 Longer Tuples

Lemma 5.3.7 and Lemma 5.3.8 form the basis for our proof that tuples of a given length may

always be placed in normal form. In this section we prove this result. We are required to consider

longer types in order to ensure that all types have tuples in normal form, because, as we have

already seen there are some types of length six for which we can guarantee that there is not a

tuple of normal form.

Lemma 5.3.17. Let g be a tuple of length 7 whose type, C, is in normal form at position i.

Further suppose that C 6= (2A)7; then every pure braid orbit of g contains a tuple in normal

form at position i.

Proof. Without loss of generality assume that the type C is in normal form in the first position.

It follows from Proposition 5.3.12 that we may argue in this fashion. By Lemma 5.3.15, there

exists some braid Q ∈ Br such that the initial 5 elements of Q(g) generate G = A6. Currently

there is no guarantee that Q is a pure braid; however Lemma 5.3.15 says that the action on

distinguished positions has been pure, i.e., subject only to pure braid moves. Coalesce with

respect to the partition P = [1, . . . , 1, 2] obtaining a new tuple g′ = (g′1, . . . , g
′
6) of length 6. Note

that g′ generates G. Suppose that upon coalescing g′6 = 1, in which case g′ is not a Nielsen tuple.

Then by Lemma 5.3.16, there exists S ∈ PBr such that (S(g))P contains no trivial elements.

Therefore, assume that g′6 is nontrivial and g′ is a Nielsen tuple. Let D denote the type of the

coalesced tuple. Since care was taken to maintain the distinguished classes at the front of the

tuple, D is in normal form in the first position. Consider a case distinction.

First suppose that C is in odd normal form in the first position. Also suppose that D 6=

(3A, 3A, 3A, 3A, 3A), then by Lemma 5.3.7, there exists some pure braid S′ such that S′(g′) is in
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repetitive form. Therefore, by Proposition 4.4.7, there is some ribbon braid R ∈ PR7,P such

that R(g′) is in repetitive form in the first position.

If, on the other hand, D = (3A)6, then

C = (3A, 3A, 3A, 3A, 3A,X, Y )

for conjugacy classes X and Y . Lemma 5.3.20 says that in such cases every braid orbit of

Niin(G,C) contains a tuple in odd normal form as required.

Next, consider the case when C is in even repetitve form in the first position. And suppose

that D is not one of the following types:

(2A, 2A, 2A, 2A, 2A, 2A)

(2A, 2A, 2A, 2A, 2A, 3A)

(2A, 2A, 2A, 2A, 2A, 5A).

These cases are treated separately by Lemma 5.3.18. Then there are two possibilites:

1. The coalesced type D is not in (unordered) odd repetitive form. Therefore nC(D) ≤ 1 for

every odd conjugacy class C.

2. The coalesced type D is in odd repetitive form. Thus D contains an odd conjugate pair.

Suppose that the first of these possibilities is true. By Lemma 5.3.7 there exists some pure

braid Q ∈ PB6 such that Q(g′) is in even repetitive form in the first position and hence, by

Proposition 4.4.7, there is some ribbon braid R ∈ PR7,P such that R(g) is in repetitive even

form in the first posiiton as required.

If the second possibility occurs then arguing as in the previous paragraph fails because D is

in odd repetitive form but Lemma 5.3.7 only asserts that there is a Nielsen tuple in odd repetitive

form in every orbit; it says nothing about the existence of tuples in even normal form if the type

is in odd repetitive form. Consider the length 4 suffix-subtype E of D, which consists of the

final four conjugacy classes of C, then E may be appear in Table 5.2 or Table 5.3. This occurs

when E, which we recall must have at least one even order class andexactly one repeated odd
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classes, is one of the following possible types (up to permutation/automorphism):

(2A, 2A, 3A, 3A),

(4A, 4A, 3A, 3A),

(4A, 4A, 5A, 5A).

Therefore C must be in one of the following forms:

(2A, 2A, 2A, 2A, 3A,X, Y ),

(4A, 4A, 4A, 4A, 4A,X, Y ),

(4A, 4A, 4A, 4A, 5A,X, Y ),

where X and Y are types such that C is not in odd repetitive form. Notice that these length 7

types are amongst those for which we initially computed the length in Lemma 5.3.2. Lemma 5.3.18

and Lemma 5.3.19 show that the conclusion of the current lemma holds in these cases.

Finally suppose that C is in (2, 2, 4)-form at the first position and that C is not in either of

the repetitive form. Then in fact there is just the one possibility for C:

C = (2A, 2A, 4A, 3A, 3B, 5A, 5B).

The conclusion of Theorem 5.3.1 holds for this type as stated in Lemma 5.3.2. Let D be the

suffix-subtype (4A, 3A, 3B, 5A, 5B). Choose any tuple k = (g1, . . . , g5) in Niin(G,D). Let h

be the tuple (g21, g
2
1, g1, g2, g3, g4, g5) ∈ Niin(G,C). This tuple is in (2, 2, 4)-form and since the

braid group acts transitively on Niin(G,C), there exists some braid Q such that Q(g) = h as

required.

The three following lemmas complete the above proof. We begin by considering length 7 types

which, upon coalescing, may become a length 6 tuple of the form (2A)6 or may find themselves

in odd normal form.
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Lemma 5.3.18. Suppose C is a type of the form:

(2A, 2A, 2A, 2A,X, Y, Z)

for conjugacy classes X,Y and Z, such that C 6= (2A)7. Then every braid orbit of PNiin(A6,C)

contains a tuple in repetitive normal form in the first position.

Furthermore, every pure braid orbit of type PNiin(A6, (2A)8)contains a tuple in repetitive

normal form in the first position.

Proof. We repeat the process used previously. Consider the suffix-subtype

D = (2A, 2A,X, Y, Z).

This is a type of length 5, and one of X,Y and Z is not 2A. Therefore, D does not appear in

Table 5.2 or Table 5.3. Thus for every value of lifting invariant ε there is a tuple h = (h1, . . . , h5)

of length 5 with lifting invariant ε. The tuple

g = (h1, h1, h1, h2, . . . , h5)

is a Nielsen tuple of type C, has lifting invariant ε, and is in even repetitive form in the first

position. Thus by Lemma 5.3.2 each pure braid orbit contains a tuple in repetitive normal form.

A similar argument applies for the type

C = (2A, 2A, 2A, 2A, 2A, 2A, 2A, 2A).

The suffix-subtype type now has length 6 and so is not exceptional. It is necessary for us to

consider length 8 tuples because the claim of the lemma does not apply for the type

(2A, 2A, 2A, 2A, 2A, 2A, 2A).

The same method of proof also works for types of the form (4A, 4A, 4A, 4A, 4A,X, Y )
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Lemma 5.3.19. Suppose C is a type of the form:

(4A, 4A, 4A, 4A, 4A,X, Y )

for conjugacy classes X,Y . Then every braid orbit of PNiin(A6,C) contains a tuple in repetitive

normal form in the first position.

Next, consider the case where there are many classes of three cycles.

Lemma 5.3.20. Suppose C is a type of the form:

(3A, 3A, 3A, 3A, 3A,X, Y )

Then every braid orbit of PNiin(A6,C) contains a tuple in repetitive normal form in the first

position.

Proof. Consider the suffix-subtype D = (3A, 3A, 3A, 3A,X, Y ). This is a type of length 6, and

hence does not appear in Table 5.3. Thus for every possible value ε the lifting invariant may take

there is a tuple h = (h1, . . . , h6) of length 6 with lifting invariant ε. Choose the unique g ∈ 3A

such that g2 = h1. Then

g = (g, g, h2, . . . , h6)

is a Nielsen tuple of type C, has lifting invariant ε and so by Lemma 5.3.6 every pure braid orbit

of PNiin(A6,C) contains a tuple in repetitive normal form in the first position.

In the statement of Lemma 5.3.17 there is no requirement that our braid be pure. In fact it

can be shown that we may insist the braid is pure as the next result demonstrates.

Lemma 5.3.21. Let g be a Nielsen tuple whose type C = (C1, . . . , Cr) is in normal form at the

first position, and there exists Q ∈ Br such that Q(g) is in normal form in the first position.

Furthermore suppose that Q acts purely on the initial distinguished positions. Then there exists a

pure braid S ∈ PBr such that S(g) is in normal form in the first position.

Proof. Let T ∈ Br be a braid which reorders the tuple Q(g) into its original order, so that

S = T ◦Q ∈ PBr. There are many such braids. Since Q acts purely on the initial distinguished

positions then S can be chosen so that it acts trivially on the inital positions of Q(g). Thus

T ◦Q is a pure braid and S(g) = T (Q(g)) is in normal form in the first position.
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The following makes it clear that our decision to restrict types to being in normal form in

the first position was inconsequential.

Lemma 5.3.22. Let g be a tuple in normal form in the first position. There exists Q ∈ Br such

that Q(g) is in normal form in the ith position.

Proof. This follows from Proposition 5.3.12.

Any sufficiently large tuple whose type is in normal form can be placed into normal form.

Lemma 5.3.23. Let C be a type, of length at least 8, and in normal form at position i. Let g be

a tuple of type C. Then the pure braid orbit of g contains a tuple in normal from in position i.

Proof. Without loss of generality assume that i = 1. Proceed by induction using Lemma 5.3.17

as the basis for the induction. By Lemma 5.3.15 there exists Q ∈ Br such that Q(g) = g′ has a

generating head of length 5. Coalesce with respect to the partition, P = [1, . . . , 1, 2] to obtain a

tuple h of length r − 1 ≥ 7 and type D. Since the initial 5 elements of g′ generate G then h is

a generating tuple; and by Lemma 5.3.16, we can assume that coalescing produces no trivial

elements. Therefore h is a Nielsen tuple. Suppose that D 6= (2A)7, then by inductive hypothesis

there exists some pure braid P ∈ Br such that P (h) is in normal form in the first position.

Therefore, by Proposition 4.4.7 there exists a ribbon braid R ∈ RBr such that R(g′) is in normal

form in the first position.

If, on the other hand, D = (2A)7, then

C = (2A, 2A, 2A, 2A, 2A, 2A,X, Y ).

Therefore, either X = Y , or, X 6= Y and one of the two conjugacy classes is not equal to 2A. In

the first of these possibilities and C = (2A)8, in which case Lemma 5.3.18 says that every pure

braid orbit of Niin(G,C) contains a tuple in even repetitve normal form in the first position.

So suppose that there X 6= Y and without loss of generality assume that Y 6= 2A. Instead of

coalescing g′ with respect to the partition [1, . . . , 1, 2] we coalesce with respect to the partition

P ′ = [1, . . . , 1, 2, 1]. The resulting tuple h′ again generates G as the initial 5 elements of g′, which

are also the initial 5 elements of h′, generate G. Moreover, h′ is not of type (2A)7 and therefore,

by Lemma 5.3.17, there is a pure braid S ∈ PB7 such that S(h′) is in repetitive normal form

86



in the first position. Therefore there exists a ribbon braid R ∈ PR8,P ′ such that R(g′) is in

repetitive normal form.

The proof so far only demonstrates that there exists a braid B ∈ Br, acting purely on the

initial positions, such that B(g) is in normal form. However by Lemma 5.3.21 we see that in fact

a pure braid suffices.

For any type of large enough length the classes can always be permuted to give a tuple in

normal form in some position. Together with Lemma 5.3.23 this observation says that any tuple

of large enough type is braid equivalent to a tuple in normal form. This argument forms the

basis of our proof of Theorem 5.3.1.

5.3.5 Proof of Theorem 5.3.1

First consider the question of existence. We remark that a result due to Guralnick and Tiep

actually establishes the existence of tuples with all possible lifting invariant values in great

generality [18]. However, it is not applicable in all of the cases needed here so existence is

established independently of their result.

Lemma 5.3.24. For all types C of length r ≥ 7 there exists a Nielsen tuple of type C. Moreover,

for the appropriate cover θ there are Nielsen tuples for all possible values the lifting invariant

LIθ may take.

Proof. The proof is by induction on the length of the type r using Lemma 5.3.2 as the basis for

the argument.

Consider the shape of the type. Suppose that C has (2, 3)-shape, i.e., n2A(C) > 0 and

n3(C) > 0. Then Theorem 5.3.1 claims that there is a single braid orbit. Since r ≥ 7 there is

a repeated conjugacy class C. Since the order of the conjugacy classes within the type can be

permuted with braids assume that C1 = C2 = C. Then let D be the type

D = (C3, . . . , Cr).

This has length r − 2 ≥ 5. Table 5.3 contains no types of length 5; therefore by our inductive

hypothesis there exists a tuple h = (h1, . . . , hr−2) of type D. Pick g ∈ C and note that g−1 ∈ C,
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therefore

g = (g, g−1, h1, . . . , hr−2)

is a Nielsen tuple of length r and type C.

In the remaining cases then there is an additional obstacle the existence of tuples of type C

and with lifting invariant ε for every possible value that the lifting invariant for the appropriate

cover may take. If the repeated conjugacy class, C, of C, contains elements of order 5 or 4 then

proceed as above. Let D be the suffix-subtype of C of length r − 2 ≥ 5. Note that C and D

have the same shape. Assume that D is not in Table 5.3. Therefore there is a tuple

h = (h1, . . . , hr−2)

of length r − 2 ≥ 5 with lifting invariant ε. As before, let

h = (g, g−1, h1, . . . , hr−2)

and observe that since ĝ−1 = ĝ−1 then LI(g) = LI(h) = ε.

On the other hand suppose that n5A(C) < 2; n5B(C) < 2; and n4A(C) < 2 and either

n2A(C) = 0; or

n3A(C) = 0.

Then n2A(C) ≥ 3 or n3A(C) ≥ 3 or n3B(C) ≥ 3. In any of these eventualities choose C = C1 =

C2 = C3 to be thrice repeated class, and as before let D be the suffix-subtype type (C3, . . . , Cr).

The types C and D have the same shape. Therefore proceed as in the previous paragraph.

Finally let us suppose that D does appear in Table 5.3. If D = (2A)5 then C must be a type

of the form:

(X,X, 2A, 2A, 2A, 2A, 2A)

where X is conjugacy class whose elements have order not equal to 3. If X 6= 2A we may instead

let D = (X,X, 2A, 2A, 2A, 2A) and argue as before. The final case C = (2A)7 was previously

calculated in Lemma 5.3.18. We may argue similarly for the type D = (3A)5. This time noting

that the case C = (3A)7 does not require extra computation because of the result of Fried which
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says that if r > n and C = (3A)r then there are two braid orbits which are distnguished by the

lifting invariant.

The proof of Theorem 5.3.1 can now be completed.

Proof of Theorem 5.3.1. Let g = (g1, . . . gr) and g′ = (g′1, . . . , g
′
r) be two Nielsen tuples of type

C, length r ≥ 7 and assume that they have the same lifting invariant. Furthermore suppose that

C is not one of the following types for which the result has already been established:

r (2A, 2A, 2A, 2A, 2A, 2A, 2A)

r (2A, 2A, 2A, 2A, 2A, 2A, 3A)

r (2A, 2A, 2A, 2A, 2A, 2A, 5A)

r (2A, 2A, 3A, 3B, 5A, 5B, 4A)

Then C has must be in (possibly unordered) normal form. Since we may reorder the tuple by

braiding then we can assume that C is in normal form in the first position. By Lemma 5.3.23

there exists pure braids Q,Q′ ∈ PBr such that h = Q(g) and h′ = Q(g′) are in normal form at

the first position. If the type is in more than one unordered normal form then we choose which

normal form to use based on the following preference: odd repetitive form, even repetitive form,

(2, 2, 4)-form.

Note that we may conjugate our tuples so that the first elements of h and h′ are equal.

Coalesce h and h′ with respect to the normal partitions Ph and Ph′ . Let k and k′ denote the

coalesced tuples, and let their common type be denoted D. The tuples k and k′ are Nielsen

tuples and by Lemma 5.3.4 they have the same lifting invariant. If D is not in Table 5.3 then by

our inductive hypothesis the tuples h and h′ are pure braid equivalent. Thus there is a ribbon

braid R such that R(h) = h′. Therefore there exists a pure braid S ∈ PBr such that S(g) = g′

as required.

Alternatively D may be in Table 5.3. Then D has length 5 and C must have length r = 7.

Furthermore D 6= (3A)5 since otherwise, by our earlier choice of precedence of the normal forms,

we would have placed our tuples in odd repetitive form. Therefore we must have coalesced a

triple of even order elements. Thus

C = (2A, 2A, 2A, 2A, 2A, 2A, 2A)
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or

C = (4A, 4A, 4A, 2A, 2A, 2A, 2A).

Both of these possibilities are resolved by Lemma 5.3.18.

Thus we have competed our proof of Theorem 5.3.1 and hence Theorem 5.2.2.
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CHAPTER 6

THE MAPCLASS PACKAGE FOR GAP

The results of the previous chapters rely on the calculation of braid orbits for all types. This

calculation used a package for Gap written for this purpose. This package, called MapClass, is

now distributed with Gap, for versions ≥ 4.5.

For the remainder of the chapter fix the following data:

• A group G.

• An integer g0, which corresponds to the orbit genus.

• A tuple C = (C1, · · · , Cr) of conjugacy classes in G.

Using this information the MapClass package computes the corresponding mapping class orbit.

This chapter describes the key functionality and implementation details.

The package is derived from the package Braid [27]. Braid was limited to computing braid

orbits, and so the new package has more functionality. Additionally, MapClass also differs in a

number of ways in its implementation, and its efficiency. In particular the problem of determining

whether two tuples are conjugate is dealt with more effectively. The computations required for

the calculation of the results contained in this thesis were made feasible by the performance

increases gained.

6.1 Overview of Main Functions

The MapClass package has two main functions:

• AllMCOrbits(group, genus, tuple)
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• GeneratingMCOrbits(group, genus, tuple)

where tuple is in fact a tuple of conjugacy class representatives.

Both functions compute mapping class orbits, but in the case of AllMCOrbits we drop the

condition that the tuples must generate G. The following sample session demonstates how one

can use the package.

gap>group :=AlternatingGroup (5) ;

Alt ( [ 1 . . 5 ] )

gap> tup l e :=[ (1 , 2 ) ( 3 , 4 ) , ( 1 , 2 ) ( 3 , 4 ) , ( 1 , 2 ) (3 , 4 ) ]

[ ( 1 , 2 ) (3 , 4 ) , ( 1 , 2 ) (3 , 4 ) , ( 1 , 2 ) (3 , 4 ) ]

gap> o r b i t s :=AllMCOrbits ( group , 1 , tup l e ) ; ;

Total Number o f Tuples : 189120

Co l l e c t i n g 20 random tup l e s . . . done

Cleaning done ; 20 random tup l e s remaining

Orbit 1 :

Length=3072

Generating Tuple =[ ( 1 , 2 , 4 , 5 , 3 ) , ( 1 , 4 , 5 , 2 , 3 ) , ( 1 , 2 ) ( 4 , 5 ) ,

( 1 , 4 ) (2 , 3 ) , ( 2 , 5 ) (3 , 4 ) ]

Generated subgroup s i z e=60

Cen t r a l i z e r s i z e=1

4800 tup l e s remaining

Cleaning cur rent o rb i t . . .

Cleaning a l i s t o f 20 tup l e s

Random Tuples Remaining : 0

Cleaning done ; 0 random tup l e s remaining

Co l l e c t i n g 20 random tup l e s . . . done
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Cleaning o rb i t 1

Cleaning a l i s t o f 20 tup l e s

Random Tuples Remaining : 0

Cleaning done ; 0 random tup l e s remaining

Co l l e c t i n g 40 random tup l e s . . . done

Cleaning o rb i t 1

Cleaning a l i s t o f 40 tup l e s

Random Tuples Remaining : 3

Cleaning done ; 3 random tup l e s remaining

Orbit 2 :

Length=32

Generating Tuple =[ (1 , 4 ) ( 2 , 3 ) , ( 1 , 2 ) (3 , 4 ) , ( 1 , 4 ) (2 , 3 ) , ( 1 , 2 ) (3 , 4 ) ,

( 1 , 3 ) (2 , 4 ) ]

Generated subgroup s i z e=4

Cen t r a l i z e r s i z e=4

4320 tup l e s remaining

Cleaning cur rent o rb i t . . .

Cleaning a l i s t o f 3 tup l e s

Random Tuples Remaining : 2

Cleaning done ; 2 random tup l e s remaining

Orbit 3 :

Length=72

Generating Tuple =[ (1 , 5 , 2 ) , ( 1 , 3 , 2 ) , ( 1 , 2 ) ( 3 , 5 ) , ( 1 , 3 ) ( 2 , 5 ) ,

( 1 , 3 ) (2 , 5 ) ]

Generated subgroup s i z e=12

Cen t r a l i z e r s i z e=1
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0 tup l e s remaining

Cleaning cur rent o rb i t . . .

Cleaning a l i s t o f 2 tup l e s

Random Tuples Remaining : 0

Cleaning done ; 0 random tup l e s remaining

A sample session

We refer the reader to the documentation provided on the package website for more details and

documentation of other functions [23].

6.2 Overview of Routine

In this section the behaviour of GeneratingMCOrbits when called on a group G, with r conjugacy

classes C1, · · · , Cr and genus g0 is described.

The first step the program takes is to compute the total number of tuples it has to account

for. It must calculate this number beforehand otherwise the routine will not count the number

of orbits correctly or it will enter an infinite loop. To calculate this we use two formulae due

to Frobenius, which calculate the number of ways in which an element of G can be written as

a product of r elements g1, · · · , gr with gi ∈ Ci, and calculate the number of ways in which an

element of G can be written as a product of g0 commutators. We discuss these formulae in

Section 6.4.

After computing the number of tuples and observing that it is positive, we select a number

of random tuples of length 2g0 + r where the elements at index 2g0 + 1, · · · , 2gr + r lie in the

conjugacy classes C1, · · · , Cr. Also, at this point all tuples chosen generate G, because we are

using the generating version of the algorithm.

Take the first random tuple, and begin applying the generators for the mapping class action,

recording new tuples in a table. When no new tuples can be found for this orbit we stop and

record the orbit. Taking the next random tuple we repeat this process (first checking the tuple

is not in a preexisting orbit) until all orbits are accounted for. Note that this is done up to

conjugacy in G and in particular this makes the routine for calculating whether two tuples are

conjugate the most frequently accessed routine of the program.

A tuple minimisation routine is used to speed up the process of determining whether two
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tuples are conjugate in G. This routine takes a tuple and calculates the minimal conjugate

tuple. This minimal tuple is unique in a given orbit. This technique supercedes the previous

fingerprinting technique used in the BRAID package, largely because of its superior performace on

p-groups and Frobenius groups. The fingerprinting technique can outperform the new technique

on certain classes of groups and so is available for use within the package.

6.3 Tuple Minimization

In the previous section we noted that the routine uses tuple minimisation to detect duplicate

tuples appearing withing the orbit. In this section we describe this process in more detail. The

tuple minimisation routines aim to solve the following problem: given two tuples τ = (t1, . . . , tn)

and τ ′ = (t′1, . . . , t
′
n) does there exist a g such that tgi = t′i for all i = 1, . . . , n.

The process that we outline has two parts: a preprocessing function dependent on G, and

function called on each tuple we want to minimise.

6.3.1 Preprocessing

For this section we fix a group G and a sequence of conjugacy classes C1, . . . , Cr. A tree of

groups and minimums is constructed recursively. The root of the tree is a pair (G, x), where x

is the minimal element of our final conjugacy class Cr. Suppose we have a node (H, y) in the

tree at level k − 1. The children of (H, y) are pairs (CH(y),mi) where the mi are the minima of

the orbits of CH(x) on the conjugacy class Ck. Then for each element of the conjugacy class we

keep track of the minimal element which lies in the same orbit. We continue until all groups are

trivial or until we run out of conjugacy classes. The tree looks as follows:
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G, m1

Orbit of CG(m1) on Cr−1

G2 = CG(m1), m2,1

Orbit of CG2(m2,1) on Cr−2

G3 = CG2(m2,1), m3,1

...

. . .
G3 = CG2(m2,1), m3,k3

...

. . .
G2, m2,k3

...

6.3.2 Minimisation Process

Given the minimisation tree as described in the previous section, and a tuple t we minimise as

follows:

• For ti we select the corresponding minimal element, mi using the preprocessed tree.

• Conjugate the whole tuple by the hi taking ti to mi.

• Continue the minimisation on the new tuple. Note that all further conjugation will fix the

preceding subtuple because we are conjugating by an element of the intersection of the

centralizers.

This process is equivalent to finding a path through the minimisation tree.

Consider the case when g = 0, r = 3 and G = A5. The tuple we aim to minimize is

[(1, 2)(3, 4), (1, 4)(2, 3), (1, 4, 5)].

The routine works as follows:
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• The minimal element of the third conjugacy class C3 is (3, 4, 5) (where by minimal we

order by where the points on which our group acts are moved – GAP’s default ordering of

permutations).

• The element (1, 4, 5) is taken to (3, 4, 5) by (1, 3, 2). Let G2 be the centralizer CG((3, 4, 5)).

We conjugate the whole tuple by (1, 3, 2):

[(1, 2)(3, 4), (1, 4)(2, 3), (1, 4, 5)] 7→ [(1, 3)(2, 4), (1, 2)(3, 4), (3, 4, 5)]

• Then we continue by calculating the orbits of G2 on the conjugacy class C2 containing

(1, 4)(2, 3). We take the minimal element in the orbit containing (1, 2)(3, 4). This is

(1, 2)(4, 5). We now conjugate the tuple by the element (3, 4, 5) taking (1, 2)(3, 4) to

(1, 2)(4, 5).

[(1, 3)(2, 4), (1, 2)(3, 4), (3, 4, 5)] 7→ [(1, 4)(2, 5), (1, 2)(4, 5), (3, 4, 5)].

Finally we have to consider the centralizer of (1, 2)(4, 5) in G2, which is just trivial, and so

in fact this tuple is our minimum.

Note that the program actually does the minimisation and the comparison term-by-term which

significantly reduces the amount of time taken.

6.4 How Many Tuples are There?

The routine needs to know exactly how many tuples there are in total in order for it to determine

when to stop looking for new orbits. The question then is: For a finite group G and conjugacy

classes C1, . . . , Cr, in how many different ways can we write 1 as a product

[a1, b1] . . . [ag0 , bg0 ]c1 . . . cr

of elements of G, where ci ∈ Ci? We shall denote this number by Λ(G; g0;C1, . . . , Cr), and we

note that we are actually counting homomorphisms from a Fuchsian group (and particularly
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surface groups) to G. This question was answered by Frobenius, although the statement we give

is due to Liebeck and Shalev [25]

Proposition 6.4.1.

Λ(G; g0;C1, . . . , Cr) = |G|2g0−1|C1| . . . |Cr|
∑

χ∈Irr(G)

χ(C1) . . . χ(Cr)

χ(1)r−2+2g0

This formula can be used for calculating the total number of tuples; if we are only concerned

with the generating case then we have to use inclusion-exclusion on subgroups of G which can be

generated by some tuple.

At this point it would be remiss not to draw attention to the |G|2g0−1 term in the above

theorem. This term dominates the growth of Λ. This means that for large g0, and without a

drastic change in our method of calculation, the number of total tuples to account for becomes

prohibitively large.

6.5 The Splitting Routine

The previous section showed that the growth of orbits is exponential in the length of the tuple.

Typically one would approach the problem of an algorithm having exponential search space with

a “divide-and-conquer” style algorithm which divides the process into smaller subprocess, which

upon iteration reduces the algorithmic complexity of the problem. In this section we explain

a process introduced by Magaard, Shpectorov and Wang which does just this [28]. Finally

we discuss how this approach can be used alongside an invariant of braid orbits and give an

application.

We now outline this splitting process. For a given type C = (C1, . . . , Cr) define C l and Cr

to be the subtypes (C1, . . . , Ck) and (Ck+1, . . . , Cr) for some 1 ≤ k ≤ r chosen to be roughly

the middle. For each conjugacy class C of G we pick a representative elements xC , and we

compute all braid orbits (including non-generating orbits) for the types (C l, C) and (C−1,C l).

Where C−1 means the conjugacy class containing x−1C . We call these the left and right orbits

respectively. Note that every element of the left orbit of type (C l, C) can be written, possibly

after conjugation, in the form

(g1, . . . , gr, xC),
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and every element of the left orbit of type (C−1,Cr) can be written in the form

(x−1C , gk+1, . . . , gr).

Thus these two tuples have product one and the tuple (g1, . . . , gr) is a Nielsen tuple provided it

generates G. The aim therefore is to match the smaller left and right orbits to get orbits of type

C.

Let us suppose that Ol is an orbit of type (C l, C) and Or is a orbit of type (C−1,Cr).

Choose representative tuples gl = (g1, . . . , gk, xC) and gr = (x−1C , gk+1, . . . , gr) which are are in

the forms specified in the previous paragraph. We say that this pair of tuples, is matched by h if

h ∈ CG(xC) and the tuple

(gh1 , . . . , g
h
k , gk+1, . . . , gr)

generates G. The pair (Ol,Or) along with the element h are stored for later use. Such pairs are

called matching pairs in the literature.

We form a graph G whose vertices are the matching pairs. Two vertices are connected if

their corresponding matching pairs lie within the same large braid orbit. Thus, components

of the graph correspond to braid orbits. To determine the connectivity of the graph the edges

of G must be computed. This edge finding process is implemented incrementally. For each of

the components of our graph we collect a set representative tuples. Missing generators of the

braid group, i.e., those which braid across the partition, are applied to g, generating a set N of

neighbours of our representative tuples. It is then checked whether these neighbours lie within

another component. If so we merge the components of the graph. If the graph is connected the

process terminates. Therefore this routine can only determine if the braid group acts transitively.

Additionally, if a large number of the missing braidings must be applied in order to establish

connectivity then this process is less efficient than direct calculation of the orbits. At first glance

it appears as though this routine is not of great use when we have more than one orbit. However,

using an invariant of our braid orbits, such as the lifting invariant, we call tell the routine to

stop trying to connect the graph once our invariant separates the orbits.

The splitting routine played an important role in our classification of A6. The braid orbits

for G = A6 types of length at least 7 become so large that they can be problematic to calculate.

For example the Nielsen class for the type C = (2A)8 contains 46116604800 generating tuples in
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total and 128101680 tuples up to conjugation. In this case we do not want to calculate the whole

orbit as doing so may take many weeks. For the calculations found in Table 5.5 we used the

splitting routine described above. In many of these cases then there is more than one orbit. In

our routine we allow the user to suggest how many braid orbits there might be and to provide a

function to distinguish between these orbits. In particular we provide a function that calculates

the lifting invariant. Thus for type C = (2A)7 then we predict that there will be exactly three

orbits. We allow the routine to run until it has ascertained that there are at most three orbits.

We then calculate the lifting invariant for a representative tuple from each orbit. If the lift

invariants are distinct then we have guaranteed that there are exactly three orbits.
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CHAPTER 7

EXPERIMENTS AND EXTENSIONS

In the chapter we look back over the work in the previous chapters, assess the results contained,

consider extensions of this work, and present some experimental data.

7.1 Experiments

Given the results of the previous chapter the immediate question to ask is: Can the results of

Chapters 4 and 5 be extended to larger alternating groups? We state a conjecture and then

consider the evidence for and against this conjecture. It is unlikely that said conjecture has

not been made before; Catanese, Lönne and Perroni have suggested a generalization of this

conjecture for their own generalized lifting invariant [4].

Conjecture 7.1.1. For G = An, n ≥ 5 then there exists k ∈ Z such that for all types C of

length r ≥ k the Hurwitz space Hin(G,C) is non-empty and the components are distinguished by

lifting invariants.

First observe that the Conway-Parker-Fried-Völklein Theorem says that there exists some N

such that if the Schur multiplier is generated by commutators, and every conjugacy class appears

at least N times within C, then the braid group acts transitively on tuples [12]. Therefore,

should each conjugacy class appear often enough then the conclusion of the conjecture holds.

This seems to match our intuition; it is expected that two very long tuples be braid equivalent

simply because the extra length gives us a greater degree of freedom when making braid moves.

On the other hand, Fried 3-cycle resultsays that it is not simply enough for the tuples to be long.

The conjecture takes this into account.
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We now consider further experimental evidence for the truth of Conjecture 7.1.1. The first

step towards a complete classification would of course be to consider the G = A7 case. Since

the Schur multiplier is also exceptional in this case then weexpect a result similar to that

of Theorem 5.2.1. When G = A7 has 8 nontrival conjugacy classes:

• 2A = (1, 2)(3, 4)A7

• 3A = (1, 2, 3)A7

• 3B = (1, 2, 3)(4, 5, 6)A7

• 4A = (1, 2, 3, 4)(5, 6)A7

• 5A = (1, 2, 3, 4, 5)A7

• 6A = (1, 2, 3)(4, 5)(6, 7)A7

• 7A = (1, 2, 3, 4, 5, 6, 7)A7

• 7B = (1, 2, 3, 4, 5, 7, 6)A7

If C is a type and C is a conjugacy class of G then we define, as in Chapter 5, nC(C) to be the

number of occurences of C within C. Let n3(C) be the sum n3A(C) + n3B(C). Additionally

define

n2,6(C) = n2A(C) + n6A(C).

Then we make the following conjecture.

Conjecture 7.1.2. There exists an integer k such that for all types C of length r ≥ k the

Hurwitz space Hin(G,C) is nonempty. Furthermore

r If n2,6(C) > 0 and n3(C) > 0 then Hin(G,C) is connected.

r If n2,6(C) > 0 and n3(C) = 0 then Hin(G,C) has three components.

r If n2,6(C) = 0 and n3(C) > 0 then Hin(G,C) has two components.

r If n2,6(C) = 0 and n3(C) = 0 then Hin(G,C) has six components.

If there is more than one component then these components are distinguished by lift invariants.
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Type Genus

(2A, 2A, 2A, 2A, 2A) 0
(2A, 2A, 2A, 2A, 3A) 0
(2A, 2A, 2A, 3A, 3A) 0
(2A, 2A, 3A, 3A, 3A) 0
(2A, 3A, 3A, 3A, 3A) 0
(3A, 3A, 3A, 3A, 3A) 0

Table 7.1: Types of length 5 for which Niin(A7,C) is empty.

Initial calculations show that k ≥ 6. Indeed, the orbits for all types of lengths r = 4 and

r = 5 were computed using MapClass. Table 7.1 and Table 7.2 show the types of length r = 5

which types which do not adhere to the classification suggested by Conjecture 7.1.2. Note that

Fried’s 3-cycle result says that Hin(A7, (3A)n) is connected for n ≤ 6 and has two components

for n ≥ 7. Therefore the k in the conjecture must be at least 7.

It is evident that in trying to prove this result we may argue as we have in Chapter 5, the

only obstacle currently is a computational one. The largest length tuples it is feasible to consider

are those of length at most 6. However A7, with its 8 nontrivial conjugacy classes, would require

us to compute all types of a larger length to proceed as before.

The group A7 is also of further interest because, unlike A7, both A5 and A6 are both

isomorphic to PSL2(q) for some q. Perhaps then the conjecture should not concern alternating

groups but groups of the form PSL2(q)?

7.2 Extensions

We can now consider other questions which have arisen but are not directly related to Conjec-

ture 7.1.1. The first question arises from our treatment of mapping class groups and the higher

genus Hurwitz spaces.

Question 7.2.1. Can we classify the components of Hin(g0, An,C) for nonzero g0? Perhaps

even for just for G = A5 or G = A6?

Type Number of Orbits Expected Genus

(3A, 3A, 3A, 3A, 3B) 1 2 -
(3A, 3A, 3A, 3A, 5A) 1 2 -

Table 7.2: Types C of length 5 for which the number of components of Hin(G,C) is not as
predicted by Conjecture 7.1.2.
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As we mentioned in Chapter 3 a result of Dunfield and Thurston shows that if G is a simple

group and g0 >> 0 then the space of unramified covers is connected. However using MapClass

a short calculation shows that for g0 = 1, G = A5 and for odd types of length 4, there are two

orbits as in our classification.

7.3 Conclusions

Our classifications for A5 and A6 relied on us being able to establish a base case for our induction.

Our approach relied on the explicit computation of braid orbits for short types. This of course is

a limitation of the approach taken. For n ≥ 9 it is unlikely that it will be possible to establish a

similar base case with the current computational techniques. Still there is value in the analysis

of small cases. In particular:

• We hope to be able to establish a pattern for exceptional cases. Fried’s 3-cycle theorem

gives a very simple pattern for those exceptionalcases: they appear when the genus of the

covering space is 0. Unfortunately the data we have suggests that this pattern does not

continue to hold nor is there an immediately obvious common property of those types

found in Table 4.2 and Table 5.3. The covering genus can not solely be responsible for

exceptional types. It may well be too much to hope that there is such a nice reason for

types to be exceptional.

• The A6 case is a particularly interesting example. We have already noted that this is

one of the two special cases for which the Schur cover is of degree 6 not degree 2. Thus

providing evidence for the general role that the covering group plays. We also note that

this establishes an infinte set of examples for which we have more than 2 orbits. This is

the first nontrivial set of examples known to the author.

• Our explicit computations provide actual data. In particular during the production of this

thesis every orbit computed has been saved and is made available. Thus for those small

exceptional types we can actually inspect these orbits to try and explain these hypotheses.

In fact in trying to establish that all tuples can be placed in a normal form it was first

established computationally by an anlysis of the stored orbits.
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APPENDIX A

A5 RESULTS

In this appendix we collect the data for our calculations of pure braid orbits for A5. The results

also happen to coincide with the braid orbits.

Table A.1: Pure braid orbits for types of length 4, their respective lengths and lifting invariants.

Tuple Orbits Lengths

(2A, 2A, 2A) 0

(2A, 2A, 3A) 0

(2A, 2A, 5A) 0

(2A, 2A, 5B) 0

(2A, 3A, 3A) 0

(2A, 3A, 5A) 1 1

(2A, 3A, 5B) 1 1

(2A, 5A, 5A) 0

(2A, 5A, 5B) 1 1

(2A, 5B, 5B) 0

(3A, 3A, 3A) 0

(3A, 3A, 5A) 1 1 (−1)

(3A, 3A, 5B) 1 1 (−1)

(3A, 5A, 5A) 1 1 (−1)

(3A, 5A, 5B) 1 1 (1)

(3A, 5B, 5B) 1 1 (−1)

(5A, 5A, 5A) 1 1 (−1)
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(5A, 5A, 5B) 0

(5A, 5B, 5B) 0

(5B, 5B, 5B) 1 1 (−1)

Table A.2: Pure braid orbits for types of length 4, their respective lengths and lifting invariants.

Tuple Orbits Lengths

(2A, 2A, 2A, 2A) 0

(2A, 2A, 2A, 3A) 1 18

(2A, 2A, 2A, 5A) 1 10

(2A, 2A, 2A, 5B) 1 10

(2A, 2A, 3A, 3A) 1 18

(2A, 2A, 3A, 5A) 1 15

(2A, 2A, 3A, 5B) 1 15

(2A, 2A, 5A, 5A) 1 10

(2A, 2A, 5A, 5B) 1 5

(2A, 2A, 5B, 5B) 1 10

(2A, 3A, 3A, 3A) 1 24

(2A, 3A, 3A, 5A) 1 20

(2A, 3A, 3A, 5B) 1 20

(2A, 3A, 5A, 5A) 1 12

(2A, 3A, 5A, 5B) 1 12

(2A, 3A, 5B, 5B) 1 12

(2A, 5A, 5A, 5A) 1 4

(2A, 5A, 5A, 5B) 1 8

(2A, 5A, 5B, 5B) 1 8

(2A, 5B, 5B, 5B) 1 4

(3A, 3A, 3A, 3A) 1 18 (1)

(3A, 3A, 3A, 5A) 2 15 (1) 10 (−1)

(3A, 3A, 3A, 5B) 2 15 (1) 10 (−1)

(3A, 3A, 5A, 5A) 2 15 (1) 2 (−1)
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(3A, 3A, 5A, 5B) 2 5 (1) 12 (−1)

(3A, 3A, 5B, 5B) 2 15 (1) 2 (−1)

(3A, 5A, 5A, 5A) 1 9 (1)

(3A, 5A, 5A, 5B) 2 6 (−1) 3 (1)

(3A, 5A, 5B, 5B) 2 3 (1) 6 (−1)

(3A, 5B, 5B, 5B) 1 9 (1)

(5A, 5A, 5A, 5A) 1 10 (1)

(5A, 5A, 5A, 5B) 1 4 (−1)

(5A, 5A, 5B, 5B) 2 5 (1) 2 (−1)

(5A, 5B, 5B, 5B) 1 4 (−1)

(5B, 5B, 5B, 5B) 1 10 (1)

Table A.3: Pure braid orbits for types of length 4, their respective lengths and lifting invariants.

Tuple Orbits Lengths

(2A, 2A, 2A, 2A, 2A) 1 192

(2A, 2A, 2A, 2A, 3A) 1 270

(2A, 2A, 2A, 2A, 5A) 1 150

(2A, 2A, 2A, 2A, 5B) 1 150

(2A, 2A, 2A, 3A, 3A) 1 360

(2A, 2A, 2A, 3A, 5A) 1 225

(2A, 2A, 2A, 3A, 5B) 1 225

(2A, 2A, 2A, 5A, 5A) 1 120

(2A, 2A, 2A, 5A, 5B) 1 145

(2A, 2A, 2A, 5B, 5B) 1 120

(2A, 2A, 3A, 3A, 3A) 1 468

(2A, 2A, 3A, 3A, 5A) 1 300

(2A, 2A, 3A, 3A, 5B) 1 300

(2A, 2A, 3A, 5A, 5A) 1 180

(2A, 2A, 3A, 5A, 5B) 1 180

(2A, 2A, 3A, 5B, 5B) 1 180
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(2A, 2A, 5A, 5A, 5A) 1 120

(2A, 2A, 5A, 5A, 5B) 1 100

(2A, 2A, 5A, 5B, 5B) 1 100

(2A, 2A, 5B, 5B, 5B) 1 120

(2A, 3A, 3A, 3A, 3A) 1 576

(2A, 3A, 3A, 3A, 5A) 1 400

(2A, 3A, 3A, 3A, 5B) 1 400

(2A, 3A, 3A, 5A, 5A) 1 240

(2A, 3A, 3A, 5A, 5B) 1 240

(2A, 3A, 3A, 5B, 5B) 1 240

(2A, 3A, 5A, 5A, 5A) 1 144

(2A, 3A, 5A, 5A, 5B) 1 144

(2A, 3A, 5A, 5B, 5B) 1 144

(2A, 3A, 5B, 5B, 5B) 1 144

(2A, 5A, 5A, 5A, 5A) 1 64

(2A, 5A, 5A, 5A, 5B) 1 96

(2A, 5A, 5A, 5B, 5B) 1 80

(2A, 5A, 5B, 5B, 5B) 1 96

(2A, 5B, 5B, 5B, 5B) 1 64

(3A, 3A, 3A, 3A, 3A) 2 432 (−1) 252 (1)

(3A, 3A, 3A, 3A, 5A) 2 300 (−1) 225 (1)

(3A, 3A, 3A, 3A, 5B) 2 225 (1) 300 (−1)

(3A, 3A, 3A, 5A, 5A) 2 220 (−1) 105 (1)

(3A, 3A, 3A, 5A, 5B) 2 205 (1) 120 (−1)

(3A, 3A, 3A, 5B, 5B) 2 220 (−1) 105 (1)

(3A, 3A, 5A, 5A, 5A) 2 144 (−1) 45 (1)

(3A, 3A, 5A, 5A, 5B) 2 105 (1) 84 (−1)

(3A, 3A, 5A, 5B, 5B) 2 84 (−1) 105 (1)

(3A, 3A, 5B, 5B, 5B) 2 144 (−1) 45 (1)

(3A, 5A, 5A, 5A, 5A) 2 108 (−1) 9 (1)
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(3A, 5A, 5A, 5A, 5B) 2 81 (1) 36 (−1)

(3A, 5A, 5A, 5B, 5B) 2 72 (−1) 45 (1)

(3A, 5A, 5B, 5B, 5B) 2 81 (1) 36 (−1)

(3A, 5B, 5B, 5B, 5B) 2 108 (−1) 9 (1)

(5A, 5A, 5A, 5A, 5A) 1 96 (−1)

(5A, 5A, 5A, 5A, 5B) 2 45 (1) 12 (−1)

(5A, 5A, 5A, 5B, 5B) 2 40 (−1) 30 (1)

(5A, 5A, 5B, 5B, 5B) 2 30 (1) 40 (−1)

(5A, 5B, 5B, 5B, 5B) 2 45 (1) 12 (−1)

(5B, 5B, 5B, 5B, 5B) 1 96 (−1)

Table A.4: Pure braid orbits for types of length 4, their respective lengths and lifting invariants.

Tuple Orbits Lengths

(2A, 2A, 2A, 2A, 2A, 2A) 1 2880

(2A, 2A, 2A, 2A, 2A, 3A) 1 4212

(2A, 2A, 2A, 2A, 2A, 5A) 1 2500

(2A, 2A, 2A, 2A, 2A, 5B) 1 2500

(2A, 2A, 2A, 2A, 3A, 3A) 1 5562

(2A, 2A, 2A, 2A, 3A, 5A) 1 3375

(2A, 2A, 2A, 2A, 3A, 5B) 1 3375

(2A, 2A, 2A, 2A, 5A, 5A) 1 2050

(2A, 2A, 2A, 2A, 5A, 5B) 1 1925

(2A, 2A, 2A, 2A, 5B, 5B) 1 2050

(2A, 2A, 2A, 3A, 3A, 3A) 1 7416

(2A, 2A, 2A, 3A, 3A, 5A) 1 4500

(2A, 2A, 2A, 3A, 3A, 5B) 1 4500

(2A, 2A, 2A, 3A, 5A, 5A) 1 2700

(2A, 2A, 2A, 3A, 5A, 5B) 1 2700

(2A, 2A, 2A, 3A, 5B, 5B) 1 2700

(2A, 2A, 2A, 5A, 5A, 5A) 1 1540
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(2A, 2A, 2A, 5A, 5A, 5B) 1 1640

(2A, 2A, 2A, 5A, 5B, 5B) 1 1640

(2A, 2A, 2A, 5B, 5B, 5B) 1 1540

(2A, 2A, 3A, 3A, 3A, 3A) 1 9720

(2A, 2A, 3A, 3A, 3A, 5A) 1 6000

(2A, 2A, 3A, 3A, 3A, 5B) 1 6000

(2A, 2A, 3A, 3A, 5A, 5A) 1 3600

(2A, 2A, 3A, 3A, 5A, 5B) 1 3600

(2A, 2A, 3A, 3A, 5B, 5B) 1 3600

(2A, 2A, 3A, 5A, 5A, 5A) 1 2160

(2A, 2A, 3A, 5A, 5A, 5B) 1 2160

(2A, 2A, 3A, 5A, 5B, 5B) 1 2160

(2A, 2A, 3A, 5B, 5B, 5B) 1 2160

(2A, 2A, 5A, 5A, 5A, 5A) 1 1400

(2A, 2A, 5A, 5A, 5A, 5B) 1 1240

(2A, 2A, 5A, 5A, 5B, 5B) 1 1320

(2A, 2A, 5A, 5B, 5B, 5B) 1 1240

(2A, 2A, 5B, 5B, 5B, 5B) 1 1400

(2A, 3A, 3A, 3A, 3A, 3A) 1 12672

(2A, 3A, 3A, 3A, 3A, 5A) 1 8000

(2A, 3A, 3A, 3A, 3A, 5B) 1 8000

(2A, 3A, 3A, 3A, 5A, 5A) 1 4800

(2A, 3A, 3A, 3A, 5A, 5B) 1 4800

(2A, 3A, 3A, 3A, 5B, 5B) 1 4800

(2A, 3A, 3A, 5A, 5A, 5A) 1 2880

(2A, 3A, 3A, 5A, 5A, 5B) 1 2880

(2A, 3A, 3A, 5A, 5B, 5B) 1 2880

(2A, 3A, 3A, 5B, 5B, 5B) 1 2880

(2A, 3A, 5A, 5A, 5A, 5A) 1 1728

(2A, 3A, 5A, 5A, 5A, 5B) 1 1728
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(2A, 3A, 5A, 5A, 5B, 5B) 1 1728

(2A, 3A, 5A, 5B, 5B, 5B) 1 1728

(2A, 3A, 5B, 5B, 5B, 5B) 1 1728

(2A, 5A, 5A, 5A, 5A, 5A) 1 896

(2A, 5A, 5A, 5A, 5A, 5B) 1 1088

(2A, 5A, 5A, 5A, 5B, 5B) 1 1024

(2A, 5A, 5A, 5B, 5B, 5B) 1 1024

(2A, 5A, 5B, 5B, 5B, 5B) 1 1088

(2A, 5B, 5B, 5B, 5B, 5B) 1 896

(3A, 3A, 3A, 3A, 3A, 3A) 2 6912 (−1) 9090 (1)

(3A, 3A, 3A, 3A, 3A, 5A) 2 5625 (1) 5000 (−1)

(3A, 3A, 3A, 3A, 3A, 5B) 2 5000 (−1) 5625 (1)

(3A, 3A, 3A, 3A, 5A, 5A) 2 3825 (1) 2600 (−1)

(3A, 3A, 3A, 3A, 5A, 5B) 2 3600 (−1) 2825 (1)

(3A, 3A, 3A, 3A, 5B, 5B) 2 3825 (1) 2600 (−1)

(3A, 3A, 3A, 5A, 5A, 5A) 2 2385 (1) 1440 (−1)

(3A, 3A, 3A, 5A, 5A, 5B) 2 2040 (−1) 1785 (1)

(3A, 3A, 3A, 5A, 5B, 5B) 2 2040 (−1) 1785 (1)

(3A, 3A, 3A, 5B, 5B, 5B) 2 2385 (1) 1440 (−1)

(3A, 3A, 5A, 5A, 5A, 5A) 2 1665 (1) 648 (−1)

(3A, 3A, 5A, 5A, 5A, 5B) 2 1368 (−1) 945 (1)

(3A, 3A, 5A, 5A, 5B, 5B) 2 1008 (−1) 1305 (1)

(3A, 3A, 5A, 5B, 5B, 5B) 2 945 (1) 1368 (−1)

(3A, 3A, 5B, 5B, 5B, 5B) 2 1665 (1) 648 (−1)

(3A, 5A, 5A, 5A, 5A, 5A) 2 1161 (1) 216 (−1)

(3A, 5A, 5A, 5A, 5A, 5B) 2 864 (−1) 513 (1)

(3A, 5A, 5A, 5A, 5B, 5B) 2 729 (1) 648 (−1)

(3A, 5A, 5A, 5B, 5B, 5B) 2 648 (−1) 729 (1)

(3A, 5A, 5B, 5B, 5B, 5B) 2 864 (−1) 513 (1)

(3A, 5B, 5B, 5B, 5B, 5B) 2 1161 (1) 216 (−1)
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(5A, 5A, 5A, 5A, 5A, 5A) 2 975 (1) 40 (−1)

(5A, 5A, 5A, 5A, 5A, 5B) 2 560 (−1) 200 (1)

(5A, 5A, 5A, 5A, 5B, 5B) 2 352 (−1) 510 (1)

(5A, 5A, 5A, 5B, 5B, 5B) 2 456 (−1) 355 (1)

(5A, 5A, 5B, 5B, 5B, 5B) 2 352 (−1) 510 (1)

(5A, 5B, 5B, 5B, 5B, 5B) 2 200 (1) 560 (−1)

(5B, 5B, 5B, 5B, 5B, 5B) 2 975 (1) 40 (−1)

Table A.5: Pure braid orbits for types of length 4, their respective lengths and lifting invariants.

Tuple Orbits Lengths

(2A, 2A, 2A, 2A, 2A, 2A, 2A) 1 47040

(2A, 2A, 2A, 2A, 2A, 2A, 3A) 1 63180

(2A, 2A, 2A, 2A, 2A, 2A, 5A) 1 37500

(2A, 2A, 2A, 2A, 2A, 2A, 5B) 1 37500

(2A, 2A, 2A, 2A, 2A, 3A, 3A) 1 84240

(2A, 2A, 2A, 2A, 2A, 3A, 5A) 1 50625

(2A, 2A, 2A, 2A, 2A, 3A, 5B) 1 50625

(2A, 2A, 2A, 2A, 2A, 5A, 5A) 1 30000

(2A, 2A, 2A, 2A, 2A, 5A, 5B) 1 30625

(2A, 2A, 2A, 2A, 2A, 5B, 5B) 1 30000

(2A, 2A, 2A, 2A, 3A, 3A, 3A) 1 112212

(2A, 2A, 2A, 2A, 3A, 3A, 5A) 1 67500

(2A, 2A, 2A, 2A, 3A, 3A, 5B) 1 67500

(2A, 2A, 2A, 2A, 3A, 5A, 5A) 1 40500

(2A, 2A, 2A, 2A, 3A, 5A, 5B) 1 40500

(2A, 2A, 2A, 2A, 3A, 5B, 5B) 1 40500

(2A, 2A, 2A, 2A, 5A, 5A, 5A) 1 24600

(2A, 2A, 2A, 2A, 5A, 5A, 5B) 1 24100

(2A, 2A, 2A, 2A, 5A, 5B, 5B) 1 24100

(2A, 2A, 2A, 2A, 5B, 5B, 5B) 1 24600
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(2A, 2A, 2A, 3A, 3A, 3A, 3A) 1 149184

(2A, 2A, 2A, 3A, 3A, 3A, 5A) 1 90000

(2A, 2A, 2A, 3A, 3A, 3A, 5B) 1 90000

(2A, 2A, 2A, 3A, 3A, 5A, 5A) 1 54000

(2A, 2A, 2A, 3A, 3A, 5A, 5B) 1 54000

(2A, 2A, 2A, 3A, 3A, 5B, 5B) 1 54000

(2A, 2A, 2A, 3A, 5A, 5A, 5A) 1 32400

(2A, 2A, 2A, 3A, 5A, 5A, 5B) 1 32400

(2A, 2A, 2A, 3A, 5A, 5B, 5B) 1 32400

(2A, 2A, 2A, 3A, 5B, 5B, 5B) 1 32400

(2A, 2A, 2A, 5A, 5A, 5A, 5A) 1 18880

(2A, 2A, 2A, 5A, 5A, 5A, 5B) 1 19680

(2A, 2A, 2A, 5A, 5A, 5B, 5B) 1 19280

(2A, 2A, 2A, 5A, 5B, 5B, 5B) 1 19680

(2A, 2A, 2A, 5B, 5B, 5B, 5B) 1 18880

(2A, 2A, 3A, 3A, 3A, 3A, 3A) 1 198000

(2A, 2A, 3A, 3A, 3A, 3A, 5A) 1 120000

(2A, 2A, 3A, 3A, 3A, 3A, 5B) 1 120000

(2A, 2A, 3A, 3A, 3A, 5A, 5A) 1 72000

(2A, 2A, 3A, 3A, 3A, 5A, 5B) 1 72000

(2A, 2A, 3A, 3A, 3A, 5B, 5B) 1 72000

(2A, 2A, 3A, 3A, 5A, 5A, 5A) 1 43200

(2A, 2A, 3A, 3A, 5A, 5A, 5B) 1 43200

(2A, 2A, 3A, 3A, 5A, 5B, 5B) 1 43200

(2A, 2A, 3A, 3A, 5B, 5B, 5B) 1 43200

(2A, 2A, 3A, 5A, 5A, 5A, 5A) 1 25920

(2A, 2A, 3A, 5A, 5A, 5A, 5B) 1 25920

(2A, 2A, 3A, 5A, 5A, 5B, 5B) 1 25920

(2A, 2A, 3A, 5A, 5B, 5B, 5B) 1 25920

(2A, 2A, 3A, 5B, 5B, 5B, 5B) 1 25920
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(2A, 2A, 5A, 5A, 5A, 5A, 5A) 1 16240

(2A, 2A, 5A, 5A, 5A, 5A, 5B) 1 15280

(2A, 2A, 5A, 5A, 5A, 5B, 5B) 1 15600

(2A, 2A, 5A, 5A, 5B, 5B, 5B) 1 15600

(2A, 2A, 5A, 5B, 5B, 5B, 5B) 1 15280

(2A, 2A, 5B, 5B, 5B, 5B, 5B) 1 16240

(2A, 3A, 3A, 3A, 3A, 3A, 3A) 1 261120

(2A, 3A, 3A, 3A, 3A, 3A, 5A) 1 160000

(2A, 3A, 3A, 3A, 3A, 3A, 5B) 1 160000

(2A, 3A, 3A, 3A, 3A, 5A, 5A) 1 96000

(2A, 3A, 3A, 3A, 3A, 5A, 5B) 1 96000

(2A, 3A, 3A, 3A, 3A, 5B, 5B) 1 96000

(2A, 3A, 3A, 3A, 5A, 5A, 5A) 1 57600

(2A, 3A, 3A, 3A, 5A, 5A, 5B) 1 57600

(2A, 3A, 3A, 3A, 5A, 5B, 5B) 1 57600

(2A, 3A, 3A, 3A, 5B, 5B, 5B) 1 57600

(2A, 3A, 3A, 5A, 5A, 5A, 5A) 1 34560

(2A, 3A, 3A, 5A, 5A, 5A, 5B) 1 34560

(2A, 3A, 3A, 5A, 5A, 5B, 5B) 1 34560

(2A, 3A, 3A, 5A, 5B, 5B, 5B) 1 34560

(2A, 3A, 3A, 5B, 5B, 5B, 5B) 1 34560

(2A, 3A, 5A, 5A, 5A, 5A, 5A) 1 20736

(2A, 3A, 5A, 5A, 5A, 5A, 5B) 1 20736

(2A, 3A, 5A, 5A, 5A, 5B, 5B) 1 20736

(2A, 3A, 5A, 5A, 5B, 5B, 5B) 1 20736

(2A, 3A, 5A, 5B, 5B, 5B, 5B) 1 20736

(2A, 3A, 5B, 5B, 5B, 5B, 5B) 1 20736

(2A, 5A, 5A, 5A, 5A, 5A, 5A) 1 11520

(2A, 5A, 5A, 5A, 5A, 5A, 5B) 1 12800

(2A, 5A, 5A, 5A, 5A, 5B, 5B) 1 12288
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(2A, 5A, 5A, 5A, 5B, 5B, 5B) 1 12544

(2A, 5A, 5A, 5B, 5B, 5B, 5B) 1 12288

(2A, 5A, 5B, 5B, 5B, 5B, 5B) 1 12800

(2A, 5B, 5B, 5B, 5B, 5B, 5B) 1 11520

(3A, 3A, 3A, 3A, 3A, 3A, 3A) 2 181440 (−1) 160020 (1)

(3A, 3A, 3A, 3A, 3A, 3A, 5A) 2 103125 (1) 110000 (−1)

(3A, 3A, 3A, 3A, 3A, 3A, 5B) 2 110000 (−1) 103125 (1)

(3A, 3A, 3A, 3A, 3A, 5A, 5A) 2 58125 (1) 70000 (−1)

(3A, 3A, 3A, 3A, 3A, 5A, 5B) 2 68125 (1) 60000 (−1)

(3A, 3A, 3A, 3A, 3A, 5B, 5B) 2 58125 (1) 70000 (−1)

(3A, 3A, 3A, 3A, 5A, 5A, 5A) 2 33525 (1) 43200 (−1)

(3A, 3A, 3A, 3A, 5A, 5A, 5B) 2 37200 (−1) 39525 (1)

(3A, 3A, 3A, 3A, 5A, 5B, 5B) 2 37200 (−1) 39525 (1)

(3A, 3A, 3A, 3A, 5B, 5B, 5B) 2 43200 (−1) 33525 (1)

(3A, 3A, 3A, 5A, 5A, 5A, 5A) 2 28080 (−1) 18045 (1)

(3A, 3A, 3A, 5A, 5A, 5A, 5B) 2 20880 (−1) 25245 (1)

(3A, 3A, 3A, 5A, 5A, 5B, 5B) 2 24480 (−1) 21645 (1)

(3A, 3A, 3A, 5A, 5B, 5B, 5B) 2 20880 (−1) 25245 (1)

(3A, 3A, 3A, 5B, 5B, 5B, 5B) 2 28080 (−1) 18045 (1)

(3A, 3A, 5A, 5A, 5A, 5A, 5A) 2 9045 (1) 18576 (−1)

(3A, 3A, 5A, 5A, 5A, 5A, 5B) 2 15525 (1) 12096 (−1)

(3A, 3A, 5A, 5A, 5A, 5B, 5B) 2 13365 (1) 14256 (−1)

(3A, 3A, 5A, 5A, 5B, 5B, 5B) 2 13365 (1) 14256 (−1)

(3A, 3A, 5A, 5B, 5B, 5B, 5B) 2 15525 (1) 12096 (−1)

(3A, 3A, 5B, 5B, 5B, 5B, 5B) 2 18576 (−1) 9045 (1)

(3A, 5A, 5A, 5A, 5A, 5A, 5A) 2 12960 (−1) 3645 (1)

(3A, 5A, 5A, 5A, 5A, 5A, 5B) 2 10125 (1) 6480 (−1)

(3A, 5A, 5A, 5A, 5A, 5B, 5B) 2 9072 (−1) 7533 (1)

(3A, 5A, 5A, 5A, 5B, 5B, 5B) 2 8829 (1) 7776 (−1)

(3A, 5A, 5A, 5B, 5B, 5B, 5B) 2 7533 (1) 9072 (−1)
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(3A, 5A, 5B, 5B, 5B, 5B, 5B) 2 6480 (−1) 10125 (1)

(3A, 5B, 5B, 5B, 5B, 5B, 5B) 2 12960 (−1) 3645 (1)

(5A, 5A, 5A, 5A, 5A, 5A, 5A) 2 10080 (−1) 1050 (1)

(5A, 5A, 5A, 5A, 5A, 5A, 5B) 2 3040 (−1) 6450 (1)

(5A, 5A, 5A, 5A, 5A, 5B, 5B) 2 4425 (1) 5680 (−1)

(5A, 5A, 5A, 5A, 5B, 5B, 5B) 2 5100 (1) 4800 (−1)

(5A, 5A, 5A, 5B, 5B, 5B, 5B) 2 5100 (1) 4800 (−1)

(5A, 5A, 5B, 5B, 5B, 5B, 5B) 2 5680 (−1) 4425 (1)

(5A, 5B, 5B, 5B, 5B, 5B, 5B) 2 6450 (1) 3040 (−1)

(5B, 5B, 5B, 5B, 5B, 5B, 5B) 2 10080 (−1) 1050 (1)
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APPENDIX B

A6 RESULTS

In this appendix we collect the data for our calculations on pure braid orbits for A6. In particular

it lists orbits of length 3. These orbits were not included in our classification. For the types of

length 3 ≤ r ≤ 5 we also list the lifting invariant as a member of 〈(1, 2, 3, 4, 5, 6)〉.

Table B.1: Pure braid orbits for types of length 3, their respective lengths, and lifting invariants

Tuple Orbits Lengths

(2A, 2A, 2A) 0

(2A, 2A, 3A) 0

(2A, 2A, 3B) 0

(2A, 2A, 4A) 0

(2A, 2A, 5A) 0

(2A, 2A, 5B) 0

(2A, 3A, 3A) 0

(2A, 3A, 3B) 0

(2A, 3A, 4A) 0

(2A, 3A, 5A) 0

(2A, 3A, 5B) 0

(2A, 3B, 3B) 0

(2A, 3B, 4A) 0

(2A, 3B, 5A) 0

(2A, 3B, 5B) 0

(2A, 4A, 4A) 0
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(2A, 4A, 5A) 2 1 (()) 1 ((1, 3, 2))

(2A, 4A, 5B) 2 1 ((1, 3, 2)) 1 (())

(2A, 5A, 5A) 2 1 ((1, 3, 2)) 1 ((1, 2, 3))

(2A, 5A, 5B) 0

(2A, 5B, 5B) 2 1 ((1, 2, 3)) 1 ((1, 3, 2))

(3A, 3A, 3A) 0

(3A, 3A, 3B) 0

(3A, 3A, 4A) 0

(3A, 3A, 5A) 0

(3A, 3A, 5B) 0

(3A, 3B, 3B) 0

(3A, 3B, 4A) 2 1 (()) 1 ((1, 2))

(3A, 3B, 5A) 1 1 (())

(3A, 3B, 5B) 1 1 (())

(3A, 4A, 4A) 0

(3A, 4A, 5A) 2 1 ((1, 2)) 1 (())

(3A, 4A, 5B) 2 1 ((1, 2)) 1 (())

(3A, 5A, 5A) 0

(3A, 5A, 5B) 1 1 ((1, 2))

(3A, 5B, 5B) 0

(3B, 3B, 3B) 0

(3B, 3B, 4A) 0

(3B, 3B, 5A) 0

(3B, 3B, 5B) 0

(3B, 4A, 4A) 0

(3B, 4A, 5A) 2 1 (()) 1 ((1, 2))

(3B, 4A, 5B) 2 1 (()) 1 ((1, 2))

(3B, 5A, 5A) 0

(3B, 5A, 5B) 1 1 ((1, 2))

(3B, 5B, 5B) 0
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(4A, 4A, 4A) 4 1 (()) 1 ((1, 4)(2, 5)(3, 6)) 1 (()) 1 ((1, 4)(2, 5)(3, 6))

(4A, 4A, 5A) 4 1 (()) 1 (()) 1 ((1, 6, 5, 4, 3, 2)) 1 ((1, 2, 3, 4, 5, 6))

(4A, 4A, 5B) 4 1 ((1, 2, 3, 4, 5, 6)) 1 ((1, 6, 5, 4, 3, 2)) 1 (()) 1 (())

(4A, 5A, 5A) 4 1 ((1, 4)(2, 5)(3, 6)) 1 (()) 1 (()) 1 ((1, 4)(2, 5)(3, 6))

(4A, 5A, 5B) 4 1 ((1, 6, 5, 4, 3, 2)) 1 ((1, 3, 5)(2, 4, 6)) 1 ((1, 5, 3)(2, 6, 4)) 1 ((1, 2, 3, 4, 5, 6))

(4A, 5B, 5B) 4 1 (()) 1 ((1, 4)(2, 5)(3, 6)) 1 ((1, 4)(2, 5)(3, 6)) 1 (())

(5A, 5A, 5A) 2 1 (()) 1 (())

(5A, 5A, 5B) 2 1 ((1, 2, 3, 4, 5, 6)) 1 ((1, 6, 5, 4, 3, 2))

(5A, 5B, 5B) 2 1 ((1, 6, 5, 4, 3, 2)) 1 ((1, 2, 3, 4, 5, 6))

(5B, 5B, 5B) 2 1 (()) 1 (())

Table B.2: Length 4 braid orbits.

Tuple Orbits Lengths

(2A, 2A, 2A, 2A) 0

(2A, 2A, 2A, 3A) 0

(2A, 2A, 2A, 3B) 0

(2A, 2A, 2A, 4A) 2 24 ((1, 3, 2)) 24 (())

(2A, 2A, 2A, 5A) 2 15 ((1, 2, 3)) 15 ((1, 3, 2))

(2A, 2A, 2A, 5B) 2 15 ((1, 3, 2)) 15 ((1, 2, 3))

(2A, 2A, 3A, 3A) 0

(2A, 2A, 3A, 3B) 1 18 (0)

(2A, 2A, 3A, 4A) 1 48 (0)

(2A, 2A, 3A, 5A) 1 30 (0)

(2A, 2A, 3A, 5B) 1 30 (0)

(2A, 2A, 3B, 3B) 0

(2A, 2A, 3B, 4A) 1 48 (0)

(2A, 2A, 3B, 5A) 1 30 (0)

(2A, 2A, 3B, 5B) 1 30 (0)

(2A, 2A, 4A, 4A) 3 24 (()) 40 ((1, 3, 2)) 24 ((1, 2, 3))

(2A, 2A, 4A, 5A) 3 30 ((1, 3, 2)) 30 (()) 40 ((1, 2, 3))
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(2A, 2A, 4A, 5B) 3 30 ((1, 3, 2)) 40 ((1, 2, 3)) 30 (())

(2A, 2A, 5A, 5A) 3 15 ((1, 3, 2)) 30 (()) 15 ((1, 2, 3))

(2A, 2A, 5A, 5B) 3 30 ((1, 3, 2)) 10 (()) 30 ((1, 2, 3))

(2A, 2A, 5B, 5B) 3 30 (()) 15 ((1, 2, 3)) 15 ((1, 3, 2))

(2A, 3A, 3A, 3A) 0

(2A, 3A, 3A, 3B) 1 20 (0)

(2A, 3A, 3A, 4A) 1 32 (0)

(2A, 3A, 3A, 5A) 1 20 (0)

(2A, 3A, 3A, 5B) 1 20 (0)

(2A, 3A, 3B, 3B) 1 20 (0)

(2A, 3A, 3B, 4A) 1 58 (0)

(2A, 3A, 3B, 5A) 1 40 (0)

(2A, 3A, 3B, 5B) 1 40 (0)

(2A, 3A, 4A, 4A) 1 96 (0)

(2A, 3A, 4A, 5A) 1 90 (0)

(2A, 3A, 4A, 5B) 1 90 (0)

(2A, 3A, 5A, 5A) 1 60 (0)

(2A, 3A, 5A, 5B) 1 60 (0)

(2A, 3A, 5B, 5B) 1 60 (0)

(2A, 3B, 3B, 3B) 0

(2A, 3B, 3B, 4A) 1 32 (0)

(2A, 3B, 3B, 5A) 1 20 (0)

(2A, 3B, 3B, 5B) 1 20 (0)

(2A, 3B, 4A, 4A) 1 96 (0)

(2A, 3B, 4A, 5A) 1 90 (0)

(2A, 3B, 4A, 5B) 1 90 (0)

(2A, 3B, 5A, 5A) 1 60 (0)

(2A, 3B, 5A, 5B) 1 60 (0)

(2A, 3B, 5B, 5B) 1 60 (0)

(2A, 4A, 4A, 4A) 3 36 (()) 96 ((1, 3, 2)) 96 ((1, 2, 3))
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(2A, 4A, 4A, 5A) 3 75 (()) 75 ((1, 2, 3)) 50 ((1, 3, 2))

(2A, 4A, 4A, 5B) 3 50 ((1, 3, 2)) 75 (()) 75 ((1, 2, 3))

(2A, 4A, 5A, 5A) 3 20 ((1, 2, 3)) 72 (()) 72 ((1, 3, 2))

(2A, 4A, 5A, 5B) 3 80 ((1, 2, 3)) 42 ((1, 3, 2)) 42 (())

(2A, 4A, 5B, 5B) 3 72 (()) 72 ((1, 3, 2)) 20 ((1, 2, 3))

(2A, 5A, 5A, 5A) 2 60 ((1, 3, 2)) 60 ((1, 2, 3))

(2A, 5A, 5A, 5B) 3 36 ((1, 3, 2)) 40 (()) 36 ((1, 2, 3))

(2A, 5A, 5B, 5B) 3 36 ((1, 2, 3)) 40 (()) 36 ((1, 3, 2))

(2A, 5B, 5B, 5B) 2 60 ((1, 3, 2)) 60 ((1, 2, 3))

(3A, 3A, 3A, 3A) 0

(3A, 3A, 3A, 3B) 1 12 ((1, 2))

(3A, 3A, 3A, 4A) 2 16 ((1, 2)) 16 (())

(3A, 3A, 3A, 5A) 1 10 (())

(3A, 3A, 3A, 5B) 1 10 (())

(3A, 3A, 3B, 3B) 2 18 (()) 8 ((1, 2))

(3A, 3A, 3B, 4A) 2 24 (()) 24 ((1, 2))

(3A, 3A, 3B, 5A) 2 15 (()) 20 ((1, 2))

(3A, 3A, 3B, 5B) 2 20 ((1, 2)) 15 (())

(3A, 3A, 4A, 4A) 3 48 ((1, 2)) 48 (()) 8 ((1, 2))

(3A, 3A, 4A, 5A) 2 40 (()) 40 ((1, 2))

(3A, 3A, 4A, 5B) 2 40 (()) 40 ((1, 2))

(3A, 3A, 5A, 5A) 2 30 (()) 20 ((1, 2))

(3A, 3A, 5A, 5B) 3 10 ((1, 2)) 30 (()) 5 (())

(3A, 3A, 5B, 5B) 2 20 ((1, 2)) 30 (())

(3A, 3B, 3B, 3B) 1 12 ((1, 2))

(3A, 3B, 3B, 4A) 2 24 (()) 24 ((1, 2))

(3A, 3B, 3B, 5A) 2 20 ((1, 2)) 15 (())

(3A, 3B, 3B, 5B) 2 20 ((1, 2)) 15 (())

(3A, 3B, 4A, 4A) 2 36 (()) 40 ((1, 2))

(3A, 3B, 4A, 5A) 2 40 (()) 40 ((1, 2))
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(3A, 3B, 4A, 5B) 2 40 (()) 40 ((1, 2))

(3A, 3B, 5A, 5A) 2 40 ((1, 2)) 27 (())

(3A, 3B, 5A, 5B) 2 22 (()) 40 ((1, 2))

(3A, 3B, 5B, 5B) 2 27 (()) 40 ((1, 2))

(3A, 4A, 4A, 4A) 2 108 ((1, 2)) 108 (())

(3A, 4A, 4A, 5A) 2 90 (()) 90 ((1, 2))

(3A, 4A, 4A, 5B) 2 90 (()) 90 ((1, 2))

(3A, 4A, 5A, 5A) 2 72 ((1, 2)) 72 (())

(3A, 4A, 5A, 5B) 2 72 ((1, 2)) 72 (())

(3A, 4A, 5B, 5B) 2 72 ((1, 2)) 72 (())

(3A, 5A, 5A, 5A) 2 54 ((1, 2)) 45 (())

(3A, 5A, 5A, 5B) 2 60 (()) 48 ((1, 2))

(3A, 5A, 5B, 5B) 2 60 (()) 48 ((1, 2))

(3A, 5B, 5B, 5B) 2 45 (()) 54 ((1, 2))

(3B, 3B, 3B, 3B) 0

(3B, 3B, 3B, 4A) 2 16 (()) 16 ((1, 2))

(3B, 3B, 3B, 5A) 1 10 (())

(3B, 3B, 3B, 5B) 1 10 (())

(3B, 3B, 4A, 4A) 3 48 (()) 48 ((1, 2)) 8 ((1, 2))

(3B, 3B, 4A, 5A) 2 40 (()) 40 ((1, 2))

(3B, 3B, 4A, 5B) 2 40 (()) 40 ((1, 2))

(3B, 3B, 5A, 5A) 2 30 (()) 20 ((1, 2))

(3B, 3B, 5A, 5B) 3 30 (()) 10 ((1, 2)) 5 (())

(3B, 3B, 5B, 5B) 2 30 (()) 20 ((1, 2))

(3B, 4A, 4A, 4A) 2 108 ((1, 2)) 108 (())

(3B, 4A, 4A, 5A) 2 90 ((1, 2)) 90 (())

(3B, 4A, 4A, 5B) 2 90 (()) 90 ((1, 2))

(3B, 4A, 5A, 5A) 2 72 (()) 72 ((1, 2))

(3B, 4A, 5A, 5B) 2 72 ((1, 2)) 72 (())

(3B, 4A, 5B, 5B) 2 72 ((1, 2)) 72 (())
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(3B, 5A, 5A, 5A) 2 45 (()) 54 ((1, 2))

(3B, 5A, 5A, 5B) 2 48 ((1, 2)) 60 (())

(3B, 5A, 5B, 5B) 2 48 ((1, 2)) 60 (())

(3B, 5B, 5B, 5B) 2 54 ((1, 2)) 45 (())

(4A, 4A, 4A, 4A) 10 24 ((1, 4)(2, 5)(3, 6)) 72 ((1, 6, 5, 4, 3, 2)) 72 ((1, 2, 3, 4, 5, 6))

24 ((1, 3, 5)(2, 4, 6)) 24 ((1, 5, 3)(2, 6, 4)) 40 (()) 24

((1, 4)(2, 5)(3, 6)) 40 (()) 40 (()) 24 ((1, 4)(2, 5)(3, 6))

(4A, 4A, 4A, 5A) 6 80 ((1, 4)(2, 5)(3, 6)) 60 ((1, 6, 5, 4, 3, 2)) 80 (()) 60

((1, 2, 3, 4, 5, 6)) 60 ((1, 5, 3)(2, 6, 4)) 60 ((1, 3, 5)(2, 4, 6))

(4A, 4A, 4A, 5B) 6 80 (()) 80 ((1, 4)(2, 5)(3, 6)) 60 ((1, 6, 5, 4, 3, 2)) 60

((1, 2, 3, 4, 5, 6)) 60 ((1, 5, 3)(2, 6, 4)) 60 ((1, 3, 5)(2, 4, 6))

(4A, 4A, 5A, 5A) 9 64 (()) 40 (()) 30 ((1, 3, 5)(2, 4, 6)) 30 ((1, 5, 3)(2, 6, 4)) 40

((1, 6, 5, 4, 3, 2)) 40 ((1, 2, 3, 4, 5, 6)) 80 ((1, 4)(2, 5)(3, 6)) 2

((1, 6, 5, 4, 3, 2)) 2 ((1, 2, 3, 4, 5, 6))

(4A, 4A, 5A, 5B) 8 72 ((1, 6, 5, 4, 3, 2)) 60 ((1, 3, 5)(2, 4, 6)) 72 ((1, 2, 3, 4, 5, 6))

24 (()) 60 ((1, 5, 3)(2, 6, 4)) 20 (()) 10 ((1, 4)(2, 5)(3, 6)) 10

((1, 4)(2, 5)(3, 6))

(4A, 4A, 5B, 5B) 9 40 ((1, 2, 3, 4, 5, 6)) 64 (()) 80 ((1, 4)(2, 5)(3, 6))

30 ((1, 5, 3)(2, 6, 4)) 30 ((1, 3, 5)(2, 4, 6)) 40 (()) 40

((1, 6, 5, 4, 3, 2)) 2 ((1, 6, 5, 4, 3, 2)) 2 ((1, 2, 3, 4, 5, 6))

(4A, 5A, 5A, 5A) 6 80 (()) 24 ((1, 3, 5)(2, 4, 6)) 24 ((1, 6, 5, 4, 3, 2)) 80

((1, 4)(2, 5)(3, 6)) 24 ((1, 2, 3, 4, 5, 6)) 24 ((1, 5, 3)(2, 6, 4))

(4A, 5A, 5A, 5B) 6 48 ((1, 6, 5, 4, 3, 2)) 48 ((1, 2, 3, 4, 5, 6)) 48 ((1, 5, 3)(2, 6, 4))

48 ((1, 3, 5)(2, 4, 6)) 32 (()) 32 ((1, 4)(2, 5)(3, 6))

(4A, 5A, 5B, 5B) 6 48 ((1, 6, 5, 4, 3, 2)) 32 (()) 32 ((1, 4)(2, 5)(3, 6)) 48

((1, 3, 5)(2, 4, 6)) 48 ((1, 5, 3)(2, 6, 4)) 48 ((1, 2, 3, 4, 5, 6))

(4A, 5B, 5B, 5B) 6 24 ((1, 3, 5)(2, 4, 6)) 80 (()) 24 ((1, 6, 5, 4, 3, 2)) 80

((1, 4)(2, 5)(3, 6)) 24 ((1, 2, 3, 4, 5, 6)) 24 ((1, 5, 3)(2, 6, 4))
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(5A, 5A, 5A, 5A) 12 80 ((1, 4)(2, 5)(3, 6)) 30 (()) 30 (()) 2 ((1, 2, 3, 4, 5, 6))

2 ((1, 2, 3, 4, 5, 6)) 30 (()) 15 ((1, 3, 5)(2, 4, 6)) 15

((1, 5, 3)(2, 6, 4)) 2 ((1, 2, 3, 4, 5, 6)) 2 ((1, 6, 5, 4, 3, 2)) 2

((1, 6, 5, 4, 3, 2)) 2 ((1, 6, 5, 4, 3, 2))

(5A, 5A, 5A, 5B) 5 42 ((1, 2, 3, 4, 5, 6)) 45 ((1, 3, 5)(2, 4, 6)) 18 (()) 42

((1, 6, 5, 4, 3, 2)) 45 ((1, 5, 3)(2, 6, 4))

(5A, 5A, 5B, 5B) 9 24 ((1, 6, 5, 4, 3, 2)) 24 ((1, 2, 3, 4, 5, 6)) 20 ((1, 4)(2, 5)(3, 6))

44 (()) 30 ((1, 5, 3)(2, 6, 4)) 20 ((1, 4)(2, 5)(3, 6)) 30

((1, 3, 5)(2, 4, 6)) 5 (()) 5 (())

(5A, 5B, 5B, 5B) 5 42 ((1, 6, 5, 4, 3, 2)) 45 ((1, 3, 5)(2, 4, 6)) 42 ((1, 2, 3, 4, 5, 6))

45 ((1, 5, 3)(2, 6, 4)) 18 (())

(5B, 5B, 5B, 5B, ) 12 30 (()) 2 ((1, 2, 3, 4, 5, 6)) 80 ((1, 4)(2, 5)(3, 6)) 15

((1, 5, 3)(2, 6, 4)) 30 (()) 30 (()) 15 ((1, 3, 5)(2, 4, 6)) 2

((1, 2, 3, 4, 5, 6)) 2 ((1, 6, 5, 4, 3, 2)) 2 ((1, 6, 5, 4, 3, 2)) 2

((1, 2, 3, 4, 5, 6)) 2 ((1, 6, 5, 4, 3, 2))

Table B.3: Pure braid orbits for types of length 5, their respective lengths, and lifting invariants

Tuple Orbits Lengths

(2A, 2A, 2A, 2A, 2A) 2 432 ((1, 3, 2)) 432 ((1, 2, 3))

(2A, 2A, 2A, 2A, 3A) 1 864 (0)

(2A, 2A, 2A, 2A, 3B) 1 864 (0)

(2A, 2A, 2A, 2A, 4A) 3 960 ((1, 2, 3)) 864 (()) 864 ((1, 3, 2))

(2A, 2A, 2A, 2A, 5A) 3 675 ((1, 3, 2)) 600 (()) 675 ((1, 2, 3))

(2A, 2A, 2A, 2A, 5B) 3 675 ((1, 2, 3)) 600 (()) 675 ((1, 3, 2))

(2A, 2A, 2A, 3A, 3A) 1 720 (0)

(2A, 2A, 2A, 3A, 3B) 1 1080 (0)

(2A, 2A, 2A, 3A, 4A) 1 2448 (0)

(2A, 2A, 2A, 3A, 5A) 1 1800 (0)

(2A, 2A, 2A, 3A, 5B) 1 1800 (0)

(2A, 2A, 2A, 3B, 3B) 1 720 (0)
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(2A, 2A, 2A, 3B, 4A) 1 2448 (0)

(2A, 2A, 2A, 3B, 5A) 1 1800 (0)

(2A, 2A, 2A, 3B, 5B) 1 1800 (0)

(2A, 2A, 2A, 4A, 4A) 3 1944 (()) 1944 ((1, 2, 3)) 1464 ((1, 3, 2))

(2A, 2A, 2A, 4A, 5A) 3 1575 (()) 1575 ((1, 3, 2)) 1400 ((1, 2, 3))

(2A, 2A, 2A, 4A, 5B) 3 1575 (()) 1575 ((1, 3, 2)) 1400 ((1, 2, 3))

(2A, 2A, 2A, 5A, 5A) 3 800 (()) 1305 ((1, 2, 3)) 1305 ((1, 3, 2))

(2A, 2A, 2A, 5A, 5B) 3 1080 ((1, 2, 3)) 1200 (()) 1080 ((1, 3, 2))

(2A, 2A, 2A, 5B, 5B) 3 1305 ((1, 2, 3)) 800 (()) 1305 ((1, 3, 2))

(2A, 2A, 3A, 3A, 3A) 1 504 (0)

(2A, 2A, 3A, 3A, 3B) 1 972 (0)

(2A, 2A, 3A, 3A, 4A) 1 2112 (0)

(2A, 2A, 3A, 3A, 5A) 1 1500 (0)

(2A, 2A, 3A, 3A, 5B) 1 1500 (0)

(2A, 2A, 3A, 3B, 3B) 1 972 (0)

(2A, 2A, 3A, 3B, 4A) 1 2322 (0)

(2A, 2A, 3A, 3B, 5A) 1 1800 (0)

(2A, 2A, 3A, 3B, 5B) 1 1800 (0)

(2A, 2A, 3A, 4A, 4A) 1 4896 (0)

(2A, 2A, 3A, 4A, 5A) 1 4050 (0)

(2A, 2A, 3A, 4A, 5B) 1 4050 (0)

(2A, 2A, 3A, 5A, 5A) 1 3060 (0)

(2A, 2A, 3A, 5A, 5B) 1 3060 (0)

(2A, 2A, 3A, 5B, 5B) 1 3060 (0)

(2A, 2A, 3B, 3B, 3B) 1 504 (0)

(2A, 2A, 3B, 3B, 4A) 1 2112 (0)

(2A, 2A, 3B, 3B, 5A) 1 1500 (0)

(2A, 2A, 3B, 3B, 5B) 1 1500 (0)

(2A, 2A, 3B, 4A, 4A) 1 4896 (0)

(2A, 2A, 3B, 4A, 5A) 1 4050 (0)
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(2A, 2A, 3B, 4A, 5B) 1 4050 (0)

(2A, 2A, 3B, 5A, 5A) 1 3060 (0)

(2A, 2A, 3B, 5A, 5B) 1 3060 (0)

(2A, 2A, 3B, 5B, 5B) 1 3060 (0)

(2A, 2A, 4A, 4A, 4A) 3 3456 ((1, 2, 3)) 3456 ((1, 3, 2)) 4260 (())

(2A, 2A, 4A, 4A, 5A) 3 2925 ((1, 2, 3)) 2925 (()) 3250 ((1, 3, 2))

(2A, 2A, 4A, 4A, 5B) 3 3250 ((1, 3, 2)) 2925 ((1, 2, 3)) 2925 (())

(2A, 2A, 4A, 5A, 5A) 3 2980 ((1, 2, 3)) 2160 (()) 2160 ((1, 3, 2))

(2A, 2A, 4A, 5A, 5B) 3 2610 (()) 2610 ((1, 3, 2)) 2080 ((1, 2, 3))

(2A, 2A, 4A, 5B, 5B) 3 2160 ((1, 3, 2)) 2980 ((1, 2, 3)) 2160 (())

(2A, 2A, 5A, 5A, 5A) 3 1620 ((1, 2, 3)) 1620 ((1, 3, 2)) 2340 (())

(2A, 2A, 5A, 5A, 5B) 3 1660 (()) 1980 ((1, 2, 3)) 1980 ((1, 3, 2))

(2A, 2A, 5A, 5B, 5B) 3 1980 ((1, 3, 2)) 1980 ((1, 2, 3)) 1660 (())

(2A, 2A, 5B, 5B, 5B) 3 2340 (()) 1620 ((1, 2, 3)) 1620 ((1, 3, 2))

(2A, 3A, 3A, 3A, 3A) 1 384 (0)

(2A, 3A, 3A, 3A, 3B) 1 816 (0)

(2A, 3A, 3A, 3A, 4A) 1 1824 (0)

(2A, 3A, 3A, 3A, 5A) 1 1200 (0)

(2A, 3A, 3A, 3A, 5B) 1 1200 (0)

(2A, 3A, 3A, 3B, 3B) 1 944 (0)

(2A, 3A, 3A, 3B, 4A) 1 2032 (0)

(2A, 3A, 3A, 3B, 5A) 1 1600 (0)

(2A, 3A, 3A, 3B, 5B) 1 1600 (0)

(2A, 3A, 3A, 4A, 4A) 1 4584 (0)

(2A, 3A, 3A, 4A, 5A) 1 3600 (0)

(2A, 3A, 3A, 4A, 5B) 1 3600 (0)

(2A, 3A, 3A, 5A, 5A) 1 2640 (0)

(2A, 3A, 3A, 5A, 5B) 1 2640 (0)

(2A, 3A, 3A, 5B, 5B) 1 2640 (0)

(2A, 3A, 3B, 3B, 3B) 1 816 (0)
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(2A, 3A, 3B, 3B, 4A) 1 2032 (0)

(2A, 3A, 3B, 3B, 5A) 1 1600 (0)

(2A, 3A, 3B, 3B, 5B) 1 1600 (0)

(2A, 3A, 3B, 4A, 4A) 1 4284 (0)

(2A, 3A, 3B, 4A, 5A) 1 3600 (0)

(2A, 3A, 3B, 4A, 5B) 1 3600 (0)

(2A, 3A, 3B, 5A, 5A) 1 2880 (0)

(2A, 3A, 3B, 5A, 5B) 1 2880 (0)

(2A, 3A, 3B, 5B, 5B) 1 2880 (0)

(2A, 3A, 4A, 4A, 4A) 1 10008 (0)

(2A, 3A, 4A, 4A, 5A) 1 8100 (0)

(2A, 3A, 4A, 4A, 5B) 1 8100 (0)

(2A, 3A, 4A, 5A, 5A) 1 6480 (0)

(2A, 3A, 4A, 5A, 5B) 1 6480 (0)

(2A, 3A, 4A, 5B, 5B) 1 6480 (0)

(2A, 3A, 5A, 5A, 5A) 1 5040 (0)

(2A, 3A, 5A, 5A, 5B) 1 5040 (0)

(2A, 3A, 5A, 5B, 5B) 1 5040 (0)

(2A, 3A, 5B, 5B, 5B) 1 5040 (0)

(2A, 3B, 3B, 3B, 3B) 1 384 (0)

(2A, 3B, 3B, 3B, 4A) 1 1824 (0)

(2A, 3B, 3B, 3B, 5A) 1 1200 (0)

(2A, 3B, 3B, 3B, 5B) 1 1200 (0)

(2A, 3B, 3B, 4A, 4A) 1 4584 (0)

(2A, 3B, 3B, 4A, 5A) 1 3600 (0)

(2A, 3B, 3B, 4A, 5B) 1 3600 (0)

(2A, 3B, 3B, 5A, 5A) 1 2640 (0)

(2A, 3B, 3B, 5A, 5B) 1 2640 (0)

(2A, 3B, 3B, 5B, 5B) 1 2640 (0)

(2A, 3B, 4A, 4A, 4A) 1 10008 (0)
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(2A, 3B, 4A, 4A, 5A) 1 8100 (0)

(2A, 3B, 4A, 4A, 5B) 1 8100 (0)

(2A, 3B, 4A, 5A, 5A) 1 6480 (0)

(2A, 3B, 4A, 5A, 5B) 1 6480 (0)

(2A, 3B, 4A, 5B, 5B) 1 6480 (0)

(2A, 3B, 5A, 5A, 5A) 1 5040 (0)

(2A, 3B, 5A, 5A, 5B) 1 5040 (0)

(2A, 3B, 5A, 5B, 5B) 1 5040 (0)

(2A, 3B, 5B, 5B, 5B) 1 5040 (0)

(2A, 4A, 4A, 4A, 4A) 3 6144 ((1, 2, 3)) 7776 (()) 7776 ((1, 3, 2))

(2A, 4A, 4A, 4A, 5A) 3 5600 (()) 6300 ((1, 3, 2)) 6300 ((1, 2, 3))

(2A, 4A, 4A, 4A, 5B) 3 6300 ((1, 3, 2)) 6300 ((1, 2, 3)) 5600 (())

(2A, 4A, 4A, 5A, 5A) 3 5400 (()) 3800 ((1, 3, 2)) 5400 ((1, 2, 3))

(2A, 4A, 4A, 5A, 5B) 3 5600 ((1, 3, 2)) 4500 ((1, 2, 3)) 4500 (())

(2A, 4A, 4A, 5B, 5B) 3 5400 ((1, 2, 3)) 3800 ((1, 3, 2)) 5400 (())

(2A, 4A, 5A, 5A, 5A) 3 4464 (()) 2720 ((1, 2, 3)) 4464 ((1, 3, 2))

(2A, 4A, 5A, 5A, 5B) 3 3744 ((1, 3, 2)) 3744 (()) 4160 ((1, 2, 3))

(2A, 4A, 5A, 5B, 5B) 3 3744 ((1, 3, 2)) 3744 (()) 4160 ((1, 2, 3))

(2A, 4A, 5B, 5B, 5B) 3 4464 (()) 4464 ((1, 3, 2)) 2720 ((1, 2, 3))

(2A, 5A, 5A, 5A, 5A) 3 1440 (()) 3888 ((1, 3, 2)) 3888 ((1, 2, 3))

(2A, 5A, 5A, 5A, 5B) 3 2736 ((1, 3, 2)) 3680 (()) 2736 ((1, 2, 3))

(2A, 5A, 5A, 5B, 5B) 3 3312 ((1, 3, 2)) 2560 (()) 3312 ((1, 2, 3))

(2A, 5A, 5B, 5B, 5B) 3 2736 ((1, 2, 3)) 2736 ((1, 3, 2)) 3680 (())

(2A, 5B, 5B, 5B, 5B) 3 3888 ((1, 2, 3)) 3888 ((1, 3, 2)) 1440 (())

(3A, 3A, 3A, 3A, 3A) 1 192 ((1, 2))

(3A, 3A, 3A, 3A, 3B) 2 432 (()) 264 ((1, 2))

(3A, 3A, 3A, 3A, 4A) 2 768 (()) 768 ((1, 2))

(3A, 3A, 3A, 3A, 5A) 2 600 ((1, 2)) 300 (())

(3A, 3A, 3A, 3A, 5B) 2 600 ((1, 2)) 300 (())

(3A, 3A, 3A, 3B, 3B) 2 432 ((1, 2)) 378 (())
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(3A, 3A, 3A, 3B, 4A) 2 960 (()) 960 ((1, 2))

(3A, 3A, 3A, 3B, 5A) 2 825 (()) 600 ((1, 2))

(3A, 3A, 3A, 3B, 5B) 2 825 (()) 600 ((1, 2))

(3A, 3A, 3A, 4A, 4A) 2 2064 (()) 2064 ((1, 2))

(3A, 3A, 3A, 4A, 5A) 2 1600 ((1, 2)) 1600 (())

(3A, 3A, 3A, 4A, 5B) 2 1600 ((1, 2)) 1600 (())

(3A, 3A, 3A, 5A, 5A) 2 1020 (()) 1200 ((1, 2))

(3A, 3A, 3A, 5A, 5B) 2 945 (()) 1300 ((1, 2))

(3A, 3A, 3A, 5B, 5B) 2 1200 ((1, 2)) 1020 (())

(3A, 3A, 3B, 3B, 3B) 2 378 (()) 432 ((1, 2))

(3A, 3A, 3B, 3B, 4A) 2 832 ((1, 2)) 832 (())

(3A, 3A, 3B, 3B, 5A) 2 625 (()) 800 ((1, 2))

(3A, 3A, 3B, 3B, 5B) 2 625 (()) 800 ((1, 2))

(3A, 3A, 3B, 4A, 4A) 2 1944 (()) 1960 ((1, 2))

(3A, 3A, 3B, 4A, 5A) 2 1600 (()) 1600 ((1, 2))

(3A, 3A, 3B, 4A, 5B) 2 1600 (()) 1600 ((1, 2))

(3A, 3A, 3B, 5A, 5A) 2 1305 (()) 1240 ((1, 2))

(3A, 3A, 3B, 5A, 5B) 2 1240 ((1, 2)) 1330 (())

(3A, 3A, 3B, 5B, 5B) 2 1240 ((1, 2)) 1305 (())

(3A, 3A, 4A, 4A, 4A) 2 4320 ((1, 2)) 4320 (())

(3A, 3A, 4A, 4A, 5A) 2 3600 ((1, 2)) 3600 (())

(3A, 3A, 4A, 4A, 5B) 2 3600 (()) 3600 ((1, 2))

(3A, 3A, 4A, 5A, 5A) 2 2880 ((1, 2)) 2880 (())

(3A, 3A, 4A, 5A, 5B) 2 2880 ((1, 2)) 2880 (())

(3A, 3A, 4A, 5B, 5B) 2 2880 ((1, 2)) 2880 (())

(3A, 3A, 5A, 5A, 5A) 2 2115 (()) 2340 ((1, 2))

(3A, 3A, 5A, 5A, 5B) 2 2010 (()) 2400 ((1, 2))

(3A, 3A, 5A, 5B, 5B) 2 2400 ((1, 2)) 2010 (())

(3A, 3A, 5B, 5B, 5B) 2 2340 ((1, 2)) 2115 (())

(3A, 3B, 3B, 3B, 3B) 2 432 (()) 264 ((1, 2))
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(3A, 3B, 3B, 3B, 4A) 2 960 ((1, 2)) 960 (())

(3A, 3B, 3B, 3B, 5A) 2 600 ((1, 2)) 825 (())

(3A, 3B, 3B, 3B, 5B) 2 825 (()) 600 ((1, 2))

(3A, 3B, 3B, 4A, 4A) 2 1944 (()) 1960 ((1, 2))

(3A, 3B, 3B, 4A, 5A) 2 1600 (()) 1600 ((1, 2))

(3A, 3B, 3B, 4A, 5B) 2 1600 ((1, 2)) 1600 (())

(3A, 3B, 3B, 5A, 5A) 2 1305 (()) 1240 ((1, 2))

(3A, 3B, 3B, 5A, 5B) 2 1330 (()) 1240 ((1, 2))

(3A, 3B, 3B, 5B, 5B) 2 1240 ((1, 2)) 1305 (())

(3A, 3B, 4A, 4A, 4A) 2 4644 (()) 4644 ((1, 2))

(3A, 3B, 4A, 4A, 5A) 2 3600 ((1, 2)) 3600 (())

(3A, 3B, 4A, 4A, 5B) 2 3600 (()) 3600 ((1, 2))

(3A, 3B, 4A, 5A, 5A) 2 2880 (()) 2880 ((1, 2))

(3A, 3B, 4A, 5A, 5B) 2 2880 (()) 2880 ((1, 2))

(3A, 3B, 4A, 5B, 5B) 2 2880 (()) 2880 ((1, 2))

(3A, 3B, 5A, 5A, 5A) 2 2160 ((1, 2)) 2484 (())

(3A, 3B, 5A, 5A, 5B) 2 2160 ((1, 2)) 2439 (())

(3A, 3B, 5A, 5B, 5B) 2 2160 ((1, 2)) 2439 (())

(3A, 3B, 5B, 5B, 5B) 2 2484 (()) 2160 ((1, 2))

(3A, 4A, 4A, 4A, 4A) 2 9936 ((1, 2)) 9792 (())

(3A, 4A, 4A, 4A, 5A) 2 8100 ((1, 2)) 8100 (())

(3A, 4A, 4A, 4A, 5B) 2 8100 ((1, 2)) 8100 (())

(3A, 4A, 4A, 5A, 5A) 2 6480 ((1, 2)) 6480 (())

(3A, 4A, 4A, 5A, 5B) 2 6480 ((1, 2)) 6480 (())

(3A, 4A, 4A, 5B, 5B) 2 6480 ((1, 2)) 6480 (())

(3A, 4A, 5A, 5A, 5A) 2 5184 ((1, 2)) 5184 (())

(3A, 4A, 5A, 5A, 5B) 2 5184 (()) 5184 ((1, 2))

(3A, 4A, 5A, 5B, 5B) 2 5184 (()) 5184 ((1, 2))

(3A, 4A, 5B, 5B, 5B) 2 5184 (()) 5184 ((1, 2))

(3A, 5A, 5A, 5A, 5A) 2 3960 (()) 4104 ((1, 2))
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(3A, 5A, 5A, 5A, 5B) 2 4176 ((1, 2)) 4050 (())

(3A, 5A, 5A, 5B, 5B) 2 4005 (()) 4140 ((1, 2))

(3A, 5A, 5B, 5B, 5B) 2 4050 (()) 4176 ((1, 2))

(3A, 5B, 5B, 5B, 5B) 2 3960 (()) 4104 ((1, 2))

(3B, 3B, 3B, 3B, 3B) 1 192 ((1, 2))

(3B, 3B, 3B, 3B, 4A) 2 768 (()) 768 ((1, 2))

(3B, 3B, 3B, 3B, 5A) 2 600 ((1, 2)) 300 (())

(3B, 3B, 3B, 3B, 5B) 2 600 ((1, 2)) 300 (())

(3B, 3B, 3B, 4A, 4A) 2 2064 (()) 2064 ((1, 2))

(3B, 3B, 3B, 4A, 5A) 2 1600 (()) 1600 ((1, 2))

(3B, 3B, 3B, 4A, 5B) 2 1600 ((1, 2)) 1600 (())

(3B, 3B, 3B, 5A, 5A) 2 1200 ((1, 2)) 1020 (())

(3B, 3B, 3B, 5A, 5B) 2 1300 ((1, 2)) 945 (())

(3B, 3B, 3B, 5B, 5B) 2 1200 ((1, 2)) 1020 (())

(3B, 3B, 4A, 4A, 4A) 2 4320 (()) 4320 ((1, 2))

(3B, 3B, 4A, 4A, 5A) 2 3600 (()) 3600 ((1, 2))

(3B, 3B, 4A, 4A, 5B) 2 3600 (()) 3600 ((1, 2))

(3B, 3B, 4A, 5A, 5A) 2 2880 (()) 2880 ((1, 2))

(3B, 3B, 4A, 5A, 5B) 2 2880 ((1, 2)) 2880 (())

(3B, 3B, 4A, 5B, 5B) 2 2880 ((1, 2)) 2880 (())

(3B, 3B, 5A, 5A, 5A) 2 2115 (()) 2340 ((1, 2))

(3B, 3B, 5A, 5A, 5B) 2 2400 ((1, 2)) 2010 (())

(3B, 3B, 5A, 5B, 5B) 2 2010 (()) 2400 ((1, 2))

(3B, 3B, 5B, 5B, 5B) 2 2340 ((1, 2)) 2115 (())

(3B, 4A, 4A, 4A, 4A) 2 9792 (()) 9936 ((1, 2))

(3B, 4A, 4A, 4A, 5A) 2 8100 ((1, 2)) 8100 (())

(3B, 4A, 4A, 4A, 5B) 2 8100 ((1, 2)) 8100 (())

(3B, 4A, 4A, 5A, 5A) 2 6480 (()) 6480 ((1, 2))

(3B, 4A, 4A, 5A, 5B) 2 6480 ((1, 2)) 6480 (())

(3B, 4A, 4A, 5B, 5B) 2 6480 ((1, 2)) 6480 (())
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(3B, 4A, 5A, 5A, 5A) 2 5184 (()) 5184 ((1, 2))

(3B, 4A, 5A, 5A, 5B) 2 5184 (()) 5184 ((1, 2))

(3B, 4A, 5A, 5B, 5B) 2 5184 (()) 5184 ((1, 2))

(3B, 4A, 5B, 5B, 5B) 2 5184 (()) 5184 ((1, 2))

(3B, 5A, 5A, 5A, 5A) 2 4104 ((1, 2)) 3960 (())

(3B, 5A, 5A, 5A, 5B) 2 4176 ((1, 2)) 4050 (())

(3B, 5A, 5A, 5B, 5B) 2 4005 (()) 4140 ((1, 2))

(3B, 5A, 5B, 5B, 5B) 2 4050 (()) 4176 ((1, 2))

(3B, 5B, 5B, 5B, 5B) 2 4104 ((1, 2)) 3960 (())

(4A, 4A, 4A, 4A, 4A) 6 8624 (()) 6912 ((1, 3, 5)(2, 4, 6)) 6912 ((1, 5, 3)(2, 6, 4))

8624 ((1, 4)(2, 5)(3, 6)) 6912 ((1, 2, 3, 4, 5, 6)) 6912

((1, 6, 5, 4, 3, 2))

(4A, 4A, 4A, 4A, 5A) 6 6950 (()) 6050 ((1, 4)(2, 5)(3, 6)) 5625 ((1, 3, 5)(2, 4, 6))

6075 ((1, 6, 5, 4, 3, 2)) 6075 ((1, 2, 3, 4, 5, 6)) 5625

((1, 5, 3)(2, 6, 4))

(4A, 4A, 4A, 4A, 5B) 6 6075 ((1, 2, 3, 4, 5, 6)) 5625 ((1, 3, 5)(2, 4, 6)) 6950 (())

6075 ((1, 6, 5, 4, 3, 2)) 6050 ((1, 4)(2, 5)(3, 6)) 5625

((1, 5, 3)(2, 6, 4))

(4A, 4A, 4A, 5A, 5A) 6 4320 ((1, 6, 5, 4, 3, 2)) 4320 ((1, 5, 3)(2, 6, 4)) 4320

((1, 3, 5)(2, 4, 6)) 5960 ((1, 4)(2, 5)(3, 6)) 5960 (()) 4320

((1, 2, 3, 4, 5, 6))

(4A, 4A, 4A, 5A, 5B) 6 4160 ((1, 4)(2, 5)(3, 6)) 5220 ((1, 5, 3)(2, 6, 4)) 5220

((1, 3, 5)(2, 4, 6)) 4160 (()) 5220 ((1, 6, 5, 4, 3, 2)) 5220

((1, 2, 3, 4, 5, 6))

(4A, 4A, 4A, 5B, 5B) 6 5960 (()) 5960 ((1, 4)(2, 5)(3, 6)) 4320 ((1, 3, 5)(2, 4, 6))

4320 ((1, 5, 3)(2, 6, 4)) 4320 ((1, 6, 5, 4, 3, 2)) 4320

((1, 2, 3, 4, 5, 6))

(4A, 4A, 5A, 5A, 5A) 6 4880 ((1, 4)(2, 5)(3, 6)) 5168 (()) 3240 ((1, 5, 3)(2, 6, 4))

3384 ((1, 6, 5, 4, 3, 2)) 3240 ((1, 3, 5)(2, 4, 6)) 3384

((1, 2, 3, 4, 5, 6))
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(4A, 4A, 5A, 5A, 5B) 6 3960 ((1, 3, 5)(2, 4, 6)) 4104 ((1, 2, 3, 4, 5, 6)) 4104

((1, 6, 5, 4, 3, 2)) 3960 ((1, 5, 3)(2, 6, 4)) 3728 (()) 3440

((1, 4)(2, 5)(3, 6))

(4A, 4A, 5A, 5B, 5B) 6 3960 ((1, 5, 3)(2, 6, 4)) 3440 ((1, 4)(2, 5)(3, 6)) 4104

((1, 6, 5, 4, 3, 2)) 4104 ((1, 2, 3, 4, 5, 6)) 3728 (()) 3960

((1, 3, 5)(2, 4, 6))

(4A, 4A, 5B, 5B, 5B) 6 3384 ((1, 2, 3, 4, 5, 6)) 3240 ((1, 5, 3)(2, 6, 4)) 4880

((1, 4)(2, 5)(3, 6)) 5168 (()) 3384 ((1, 6, 5, 4, 3, 2)) 3240

((1, 3, 5)(2, 4, 6))

(4A, 5A, 5A, 5A, 5A) 6 2304 ((1, 3, 5)(2, 4, 6)) 4736 (()) 2304 ((1, 6, 5, 4, 3, 2))

2304 ((1, 2, 3, 4, 5, 6)) 2304 ((1, 5, 3)(2, 6, 4)) 4736

((1, 4)(2, 5)(3, 6))

(4A, 5A, 5A, 5A, 5B) 6 2432 (()) 3456 ((1, 2, 3, 4, 5, 6)) 3456 ((1, 6, 5, 4, 3, 2))

2432 ((1, 4)(2, 5)(3, 6)) 3456 ((1, 3, 5)(2, 4, 6)) 3456

((1, 5, 3)(2, 6, 4))

(4A, 5A, 5A, 5B, 5B) 6 2880 ((1, 6, 5, 4, 3, 2)) 3584 (()) 2880 ((1, 5, 3)(2, 6, 4))

3584 ((1, 4)(2, 5)(3, 6)) 2880 ((1, 2, 3, 4, 5, 6)) 2880

((1, 3, 5)(2, 4, 6))

(4A, 5A, 5B, 5B, 5B) 6 3456 ((1, 5, 3)(2, 6, 4)) 3456 ((1, 3, 5)(2, 4, 6)) 3456

((1, 6, 5, 4, 3, 2)) 2432 ((1, 4)(2, 5)(3, 6)) 2432 (()) 3456

((1, 2, 3, 4, 5, 6))

(4A, 5B, 5B, 5B, 5B) 6 2304 ((1, 6, 5, 4, 3, 2)) 2304 ((1, 3, 5)(2, 4, 6)) 4736

(()) 2304 ((1, 5, 3)(2, 6, 4)) 2304 ((1, 2, 3, 4, 5, 6)) 4736

((1, 4)(2, 5)(3, 6))

(5A, 5A, 5A, 5A, 5A) 6 4572 (()) 4400 ((1, 4)(2, 5)(3, 6)) 1548 ((1, 2, 3, 4, 5, 6))

1548 ((1, 6, 5, 4, 3, 2)) 1485 ((1, 3, 5)(2, 4, 6)) 1485

((1, 5, 3)(2, 6, 4))

(5A, 5A, 5A, 5A, 5B) 6 2700 ((1, 3, 5)(2, 4, 6)) 2700 ((1, 5, 3)(2, 6, 4)) 2952

((1, 6, 5, 4, 3, 2)) 1760 ((1, 4)(2, 5)(3, 6)) 1614 (()) 2952

((1, 2, 3, 4, 5, 6))
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(5A, 5A, 5A, 5B, 5B) 6 2600 (()) 2295 ((1, 5, 3)(2, 6, 4)) 2640 ((1, 4)(2, 5)(3, 6))

2295 ((1, 3, 5)(2, 4, 6)) 2484 ((1, 6, 5, 4, 3, 2)) 2484

((1, 2, 3, 4, 5, 6))

(5A, 5A, 5B, 5B, 5B) 6 2600 (()) 2484 ((1, 2, 3, 4, 5, 6)) 2295 ((1, 3, 5)(2, 4, 6))

2295 ((1, 5, 3)(2, 6, 4)) 2484 ((1, 6, 5, 4, 3, 2)) 2640

((1, 4)(2, 5)(3, 6))

(5A, 5B, 5B, 5B, 5B) 6 2700 ((1, 5, 3)(2, 6, 4)) 1760 ((1, 4)(2, 5)(3, 6))

2952 ((1, 2, 3, 4, 5, 6)) 2952 ((1, 6, 5, 4, 3, 2)) 2700

((1, 3, 5)(2, 4, 6)) 1614 (())

(5B, 5B, 5B, 5B, 5B) 6 4400 ((1, 4)(2, 5)(3, 6)) 4572 (()) 1485 ((1, 3, 5)(2, 4, 6))

1485 ((1, 5, 3)(2, 6, 4)) 1548 ((1, 2, 3, 4, 5, 6)) 1548

((1, 6, 5, 4, 3, 2))

Table B.4: For each type of length 6 we state the number of braid orbits and their respective
lengths.

Tuple Orbits Lengths

(2A, 2A, 2A, 2A, 2A, 2A) 3 19440 19440 16560

(2A, 2A, 2A, 2A, 2A, 3A) 1 51840

(2A, 2A, 2A, 2A, 2A, 3B) 1 51840

(2A, 2A, 2A, 2A, 2A, 4A) 3 43632 43632 39360

(2A, 2A, 2A, 2A, 2A, 5A) 3 30000 33750 33750

(2A, 2A, 2A, 2A, 2A, 5B) 3 30000 33750 33750

(2A, 2A, 2A, 2A, 3A, 3A) 1 44496

(2A, 2A, 2A, 2A, 3A, 3B) 1 50058

(2A, 2A, 2A, 2A, 3A, 4A) 1 113184

(2A, 2A, 2A, 2A, 3A, 5A) 1 87750

(2A, 2A, 2A, 2A, 3A, 5B) 1 87750

(2A, 2A, 2A, 2A, 3B, 3B) 1 44496

(2A, 2A, 2A, 2A, 3B, 4A) 1 113184

(2A, 2A, 2A, 2A, 3B, 5A) 1 87750

(2A, 2A, 2A, 2A, 3B, 5B) 1 87750
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(2A, 2A, 2A, 2A, 4A, 4A) 3 82512 88048 82512

(2A, 2A, 2A, 2A, 4A, 5A) 3 67500 67500 70000

(2A, 2A, 2A, 2A, 4A, 5B) 3 70000 67500 67500

(2A, 2A, 2A, 2A, 5A, 5A) 3 51975 55950 51975

(2A, 2A, 2A, 2A, 5A, 5B) 3 55350 55350 49450

(2A, 2A, 2A, 2A, 5B, 5B) 3 51975 55950 51975

(2A, 2A, 2A, 3A, 3A, 3A) 1 37440

(2A, 2A, 2A, 3A, 3A, 3B) 1 44820

(2A, 2A, 2A, 3A, 3A, 4A) 1 99936

(2A, 2A, 2A, 3A, 3A, 5A) 1 76500

(2A, 2A, 2A, 3A, 3A, 5B) 1 76500

(2A, 2A, 2A, 3A, 3B, 3B) 1 44820

(2A, 2A, 2A, 3A, 3B, 4A) 1 101898

(2A, 2A, 2A, 3A, 3B, 5A) 1 81000

(2A, 2A, 2A, 3A, 3B, 5B) 1 81000

(2A, 2A, 2A, 3A, 4A, 4A) 1 226368

(2A, 2A, 2A, 3A, 4A, 5A) 1 182250

(2A, 2A, 2A, 3A, 4A, 5B) 1 182250

(2A, 2A, 2A, 3A, 5A, 5A) 1 143100

(2A, 2A, 2A, 3A, 5A, 5B) 1 143100

(2A, 2A, 2A, 3A, 5B, 5B) 1 143100

(2A, 2A, 2A, 3B, 3B, 3B) 1 37440

(2A, 2A, 2A, 3B, 3B, 4A) 1 99936

(2A, 2A, 2A, 3B, 3B, 5A) 1 76500

(2A, 2A, 2A, 3B, 3B, 5B) 1 76500

(2A, 2A, 2A, 3B, 4A, 4A) 1 226368

(2A, 2A, 2A, 3B, 4A, 5A) 1 182250

(2A, 2A, 2A, 3B, 4A, 5B) 1 182250

(2A, 2A, 2A, 3B, 5A, 5A) 1 143100

(2A, 2A, 2A, 3B, 5A, 5B) 1 143100
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(2A, 2A, 2A, 3B, 5B, 5B) 1 143100

(2A, 2A, 2A, 4A, 4A, 4A) 3 161412 174528 174528

(2A, 2A, 2A, 4A, 4A, 5A) 3 138375 133250 138375

(2A, 2A, 2A, 4A, 4A, 5B) 3 138375 138375 133250

(2A, 2A, 2A, 4A, 5A, 5A) 3 113400 113400 101300

(2A, 2A, 2A, 4A, 5A, 5B) 3 114800 106650 106650

(2A, 2A, 2A, 4A, 5B, 5B) 3 113400 101300 113400

(2A, 2A, 2A, 5A, 5A, 5A) 3 76800 91260 91260

(2A, 2A, 2A, 5A, 5A, 5B) 3 87400 85860 85860

(2A, 2A, 2A, 5A, 5B, 5B) 3 85860 87400 85860

(2A, 2A, 2A, 5B, 5B, 5B) 3 76800 91260 91260

(2A, 2A, 3A, 3A, 3A, 3A) 1 30672

(2A, 2A, 3A, 3A, 3A, 3B) 1 39312

(2A, 2A, 3A, 3A, 3A, 4A) 1 88608

(2A, 2A, 3A, 3A, 3A, 5A) 1 66000

(2A, 2A, 3A, 3A, 3A, 5B) 1 66000

(2A, 2A, 3A, 3A, 3B, 3B) 1 40464

(2A, 2A, 3A, 3A, 3B, 4A) 1 90288

(2A, 2A, 3A, 3A, 3B, 5A) 1 72000

(2A, 2A, 3A, 3A, 3B, 5B) 1 72000

(2A, 2A, 3A, 3A, 4A, 4A) 1 203112

(2A, 2A, 3A, 3A, 4A, 5A) 1 162000

(2A, 2A, 3A, 3A, 4A, 5B) 1 162000

(2A, 2A, 3A, 3A, 5A, 5A) 1 126000

(2A, 2A, 3A, 3A, 5A, 5B) 1 126000

(2A, 2A, 3A, 3A, 5B, 5B) 1 126000

(2A, 2A, 3A, 3B, 3B, 3B) 1 39312

(2A, 2A, 3A, 3B, 3B, 4A) 1 90288

(2A, 2A, 3A, 3B, 3B, 5A) 1 72000

(2A, 2A, 3A, 3B, 3B, 5B) 1 72000
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(2A, 2A, 3A, 3B, 4A, 4A) 1 200556

(2A, 2A, 3A, 3B, 4A, 5A) 1 162000

(2A, 2A, 3A, 3B, 4A, 5B) 1 162000

(2A, 2A, 3A, 3B, 5A, 5A) 1 129600

(2A, 2A, 3A, 3B, 5A, 5B) 1 129600

(2A, 2A, 3A, 3B, 5B, 5B) 1 129600

(2A, 2A, 3A, 4A, 4A, 4A) 1 454680

(2A, 2A, 3A, 4A, 4A, 5A) 1 364500

(2A, 2A, 3A, 4A, 4A, 5B) 1 364500

(2A, 2A, 3A, 4A, 5A, 5A) 1 291600

(2A, 2A, 3A, 4A, 5A, 5B) 1 291600

(2A, 2A, 3A, 4A, 5B, 5B) 1 291600

(2A, 2A, 3A, 5A, 5A, 5A) 1 231120

(2A, 2A, 3A, 5A, 5A, 5B) 1 231120

(2A, 2A, 3A, 5A, 5B, 5B) 1 231120

(2A, 2A, 3A, 5B, 5B, 5B) 1 231120

(2A, 2A, 3B, 3B, 3B, 3B) 1 30672

(2A, 2A, 3B, 3B, 3B, 4A) 1 88608

(2A, 2A, 3B, 3B, 3B, 5A) 1 66000

(2A, 2A, 3B, 3B, 3B, 5B) 1 66000

(2A, 2A, 3B, 3B, 4A, 4A) 1 203112

(2A, 2A, 3B, 3B, 4A, 5A) 1 162000

(2A, 2A, 3B, 3B, 4A, 5B) 1 162000

(2A, 2A, 3B, 3B, 5A, 5A) 1 126000

(2A, 2A, 3B, 3B, 5A, 5B) 1 126000

(2A, 2A, 3B, 3B, 5B, 5B) 1 126000

(2A, 2A, 3B, 4A, 4A, 4A) 1 454680

(2A, 2A, 3B, 4A, 4A, 5A) 1 364500

(2A, 2A, 3B, 4A, 4A, 5B) 1 364500

(2A, 2A, 3B, 4A, 5A, 5A) 1 291600
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(2A, 2A, 3B, 4A, 5A, 5B) 1 291600

(2A, 2A, 3B, 4A, 5B, 5B) 1 291600

(2A, 2A, 3B, 5A, 5A, 5A) 1 231120

(2A, 2A, 3B, 5A, 5A, 5B) 1 231120

(2A, 2A, 3B, 5A, 5B, 5B) 1 231120

(2A, 2A, 3B, 5B, 5B, 5B) 1 231120

(2A, 2A, 4A, 4A, 4A, 4A) 3 330048 354976 330048

(2A, 2A, 4A, 4A, 4A, 5A) 3 280000 270000 270000

(2A, 2A, 4A, 4A, 4A, 5B) 3 270000 270000 280000

(2A, 2A, 4A, 4A, 5A, 5A) 3 210600 235000 210600

(2A, 2A, 4A, 4A, 5A, 5B) 3 224100 224100 208000

(2A, 2A, 4A, 4A, 5B, 5B) 3 210600 210600 235000

(2A, 2A, 4A, 5A, 5A, 5A) 3 166320 192160 166320

(2A, 2A, 4A, 5A, 5A, 5B) 3 170560 177120 177120

(2A, 2A, 4A, 5A, 5B, 5B) 3 177120 170560 177120

(2A, 2A, 4A, 5B, 5B, 5B) 3 166320 192160 166320

(2A, 2A, 5A, 5A, 5A, 5A) 3 127440 162280 127440

(2A, 2A, 5A, 5A, 5A, 5B) 3 144720 128040 144720

(2A, 2A, 5A, 5A, 5B, 5B) 3 145160 136080 136080

(2A, 2A, 5A, 5B, 5B, 5B) 3 128040 144720 144720

(2A, 2A, 5B, 5B, 5B, 5B) 3 127440 127440 162280

(2A, 3A, 3A, 3A, 3A, 3A) 1 24320

(2A, 3A, 3A, 3A, 3A, 3B) 1 34752

(2A, 3A, 3A, 3A, 3A, 4A) 1 77312

(2A, 3A, 3A, 3A, 3A, 5A) 1 56000

(2A, 3A, 3A, 3A, 3A, 5B) 1 56000

(2A, 3A, 3A, 3A, 3B, 3B) 1 35776

(2A, 3A, 3A, 3A, 3B, 4A) 1 81280

(2A, 3A, 3A, 3A, 3B, 5A) 1 64000

(2A, 3A, 3A, 3A, 3B, 5B) 1 64000
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(2A, 3A, 3A, 3A, 4A, 4A) 1 181536

(2A, 3A, 3A, 3A, 4A, 5A) 1 144000

(2A, 3A, 3A, 3A, 4A, 5B) 1 144000

(2A, 3A, 3A, 3A, 5A, 5A) 1 110400

(2A, 3A, 3A, 3A, 5A, 5B) 1 110400

(2A, 3A, 3A, 3A, 5B, 5B) 1 110400

(2A, 3A, 3A, 3B, 3B, 3B) 1 35776

(2A, 3A, 3A, 3B, 3B, 4A) 1 78976

(2A, 3A, 3A, 3B, 3B, 5A) 1 64000

(2A, 3A, 3A, 3B, 3B, 5B) 1 64000

(2A, 3A, 3A, 3B, 4A, 4A) 1 179136

(2A, 3A, 3A, 3B, 4A, 5A) 1 144000

(2A, 3A, 3A, 3B, 4A, 5B) 1 144000

(2A, 3A, 3A, 3B, 5A, 5A) 1 115200

(2A, 3A, 3A, 3B, 5A, 5B) 1 115200

(2A, 3A, 3A, 3B, 5B, 5B) 1 115200

(2A, 3A, 3A, 4A, 4A, 4A) 1 401472

(2A, 3A, 3A, 4A, 4A, 5A) 1 324000

(2A, 3A, 3A, 4A, 4A, 5B) 1 324000

(2A, 3A, 3A, 4A, 5A, 5A) 1 259200

(2A, 3A, 3A, 4A, 5A, 5B) 1 259200

(2A, 3A, 3A, 4A, 5B, 5B) 1 259200

(2A, 3A, 3A, 5A, 5A, 5A) 1 204480

(2A, 3A, 3A, 5A, 5A, 5B) 1 204480

(2A, 3A, 3A, 5A, 5B, 5B) 1 204480

(2A, 3A, 3A, 5B, 5B, 5B) 1 204480

(2A, 3A, 3B, 3B, 3B, 3B) 1 34752

(2A, 3A, 3B, 3B, 3B, 4A) 1 81280

(2A, 3A, 3B, 3B, 3B, 5A) 1 64000

(2A, 3A, 3B, 3B, 3B, 5B) 1 64000
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(2A, 3A, 3B, 3B, 4A, 4A) 1 179136

(2A, 3A, 3B, 3B, 4A, 5A) 1 144000

(2A, 3A, 3B, 3B, 4A, 5B) 1 144000

(2A, 3A, 3B, 3B, 5A, 5A) 1 115200

(2A, 3A, 3B, 3B, 5A, 5B) 1 115200

(2A, 3A, 3B, 3B, 5B, 5B) 1 115200

(2A, 3A, 3B, 4A, 4A, 4A) 1 407592

(2A, 3A, 3B, 4A, 4A, 5A) 1 324000

(2A, 3A, 3B, 4A, 4A, 5B) 1 324000

(2A, 3A, 3B, 4A, 5A, 5A) 1 259200

(2A, 3A, 3B, 4A, 5A, 5B) 1 259200

(2A, 3A, 3B, 4A, 5B, 5B) 1 259200

(2A, 3A, 3B, 5A, 5A, 5A) 1 207360

(2A, 3A, 3B, 5A, 5A, 5B) 1 207360

(2A, 3A, 3B, 5A, 5B, 5B) 1 207360

(2A, 3A, 3B, 5B, 5B, 5B) 1 207360

(2A, 3A, 4A, 4A, 4A, 4A) 1 906768

(2A, 3A, 4A, 4A, 4A, 5A) 1 729000

(2A, 3A, 4A, 4A, 4A, 5B) 1 729000

(2A, 3A, 4A, 4A, 5A, 5A) 1 583200

(2A, 3A, 4A, 4A, 5A, 5B) 1 583200

(2A, 3A, 4A, 4A, 5B, 5B) 1 583200

(2A, 3A, 4A, 5A, 5A, 5A) 1 466560

(2A, 3A, 4A, 5A, 5A, 5B) 1 466560

(2A, 3A, 4A, 5A, 5B, 5B) 1 466560

(2A, 3A, 4A, 5B, 5B, 5B) 1 466560

(2A, 3A, 5A, 5A, 5A, 5A) 1 371520

(2A, 3A, 5A, 5A, 5A, 5B) 1 371520

(2A, 3A, 5A, 5A, 5B, 5B) 1 371520

(2A, 3A, 5A, 5B, 5B, 5B) 1 371520
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(2A, 3A, 5B, 5B, 5B, 5B) 1 371520

(2A, 3B, 3B, 3B, 3B, 3B) 1 24320

(2A, 3B, 3B, 3B, 3B, 4A) 1 77312

(2A, 3B, 3B, 3B, 3B, 5A) 1 56000

(2A, 3B, 3B, 3B, 3B, 5B) 1 56000

(2A, 3B, 3B, 3B, 4A, 4A) 1 181536

(2A, 3B, 3B, 3B, 4A, 5A) 1 144000

(2A, 3B, 3B, 3B, 4A, 5B) 1 144000

(2A, 3B, 3B, 3B, 5A, 5A) 1 110400

(2A, 3B, 3B, 3B, 5A, 5B) 1 110400

(2A, 3B, 3B, 3B, 5B, 5B) 1 110400

(2A, 3B, 3B, 4A, 4A, 4A) 1 401472

(2A, 3B, 3B, 4A, 4A, 5A) 1 324000

(2A, 3B, 3B, 4A, 4A, 5B) 1 324000

(2A, 3B, 3B, 4A, 5A, 5A) 1 259200

(2A, 3B, 3B, 4A, 5A, 5B) 1 259200

(2A, 3B, 3B, 4A, 5B, 5B) 1 259200

(2A, 3B, 3B, 5A, 5A, 5A) 1 204480

(2A, 3B, 3B, 5A, 5A, 5B) 1 204480

(2A, 3B, 3B, 5A, 5B, 5B) 1 204480

(2A, 3B, 3B, 5B, 5B, 5B) 1 204480

(2A, 3B, 4A, 4A, 4A, 4A) 1 906768

(2A, 3B, 4A, 4A, 4A, 5A) 1 729000

(2A, 3B, 4A, 4A, 4A, 5B) 1 729000

(2A, 3B, 4A, 4A, 5A, 5A) 1 583200

(2A, 3B, 4A, 4A, 5A, 5B) 1 583200

(2A, 3B, 4A, 4A, 5B, 5B) 1 583200

(2A, 3B, 4A, 5A, 5A, 5A) 1 466560

(2A, 3B, 4A, 5A, 5A, 5B) 1 466560

(2A, 3B, 4A, 5A, 5B, 5B) 1 466560
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(2A, 3B, 4A, 5B, 5B, 5B) 1 466560

(2A, 3B, 5A, 5A, 5A, 5A) 1 371520

(2A, 3B, 5A, 5A, 5A, 5B) 1 371520

(2A, 3B, 5A, 5A, 5B, 5B) 1 371520

(2A, 3B, 5A, 5B, 5B, 5B) 1 371520

(2A, 3B, 5B, 5B, 5B, 5B) 1 371520

(2A, 4A, 4A, 4A, 4A, 4A) 3 647520 698112 698112

(2A, 4A, 4A, 4A, 4A, 5A) 3 533000 553500 553500

(2A, 4A, 4A, 4A, 4A, 5B) 3 533000 553500 553500

(2A, 4A, 4A, 4A, 5A, 5A) 3 453600 453600 405200

(2A, 4A, 4A, 4A, 5A, 5B) 3 426600 459200 426600

(2A, 4A, 4A, 4A, 5B, 5B) 3 453600 405200 453600

(2A, 4A, 4A, 5A, 5A, 5A) 3 367200 367200 315200

(2A, 4A, 4A, 5A, 5A, 5B) 3 345600 345600 358400

(2A, 4A, 4A, 5A, 5B, 5B) 3 345600 358400 345600

(2A, 4A, 4A, 5B, 5B, 5B) 3 367200 367200 315200

(2A, 4A, 5A, 5A, 5A, 5A) 3 231680 304128 304128

(2A, 4A, 5A, 5A, 5A, 5B) 3 269568 300800 269568

(2A, 4A, 5A, 5A, 5B, 5B) 3 286848 286848 266240

(2A, 4A, 5A, 5B, 5B, 5B) 3 269568 300800 269568

(2A, 4A, 5B, 5B, 5B, 5B) 3 231680 304128 304128

(2A, 5A, 5A, 5A, 5A, 5A) 3 161920 254016 254016

(2A, 5A, 5A, 5A, 5A, 5B) 3 212544 212544 244480

(2A, 5A, 5A, 5A, 5B, 5B) 3 216960 226368 226368

(2A, 5A, 5A, 5B, 5B, 5B) 3 226368 216960 226368

(2A, 5A, 5B, 5B, 5B, 5B) 3 212544 244480 212544

(2A, 5B, 5B, 5B, 5B, 5B) 3 254016 161920 254016

(3A, 3A, 3A, 3A, 3A, 3A) 2 11880 6080

(3A, 3A, 3A, 3A, 3A, 3B) 2 12852 17040

(3A, 3A, 3A, 3A, 3A, 4A) 2 33792 33792
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(3A, 3A, 3A, 3A, 3A, 5A) 2 26250 20000

(3A, 3A, 3A, 3A, 3A, 5B) 2 26250 20000

(3A, 3A, 3A, 3A, 3B, 3B) 2 17550 15072

(3A, 3A, 3A, 3A, 3B, 4A) 2 36352 36352

(3A, 3A, 3A, 3A, 3B, 5A) 2 26875 30000

(3A, 3A, 3A, 3A, 3B, 5B) 2 26875 30000

(3A, 3A, 3A, 3A, 4A, 4A) 2 81792 81920

(3A, 3A, 3A, 3A, 4A, 5A) 2 64000 64000

(3A, 3A, 3A, 3A, 4A, 5B) 2 64000 64000

(3A, 3A, 3A, 3A, 5A, 5A) 2 45200 50850

(3A, 3A, 3A, 3A, 5A, 5B) 2 44200 51725

(3A, 3A, 3A, 3A, 5B, 5B) 2 45200 50850

(3A, 3A, 3A, 3B, 3B, 3B) 2 14418 16384

(3A, 3A, 3A, 3B, 3B, 4A) 2 35328 35328

(3A, 3A, 3A, 3B, 3B, 5A) 2 28000 28875

(3A, 3A, 3A, 3B, 3B, 5B) 2 28000 28875

(3A, 3A, 3A, 3B, 4A, 4A) 2 78624 78688

(3A, 3A, 3A, 3B, 4A, 5A) 2 64000 64000

(3A, 3A, 3A, 3B, 4A, 5B) 2 64000 64000

(3A, 3A, 3A, 3B, 5A, 5A) 2 53200 49275

(3A, 3A, 3A, 3B, 5A, 5B) 2 53200 49150

(3A, 3A, 3A, 3B, 5B, 5B) 2 49275 53200

(3A, 3A, 3A, 4A, 4A, 4A) 2 177984 177984

(3A, 3A, 3A, 4A, 4A, 5A) 2 144000 144000

(3A, 3A, 3A, 4A, 4A, 5B) 2 144000 144000

(3A, 3A, 3A, 4A, 5A, 5A) 2 115200 115200

(3A, 3A, 3A, 4A, 5A, 5B) 2 115200 115200

(3A, 3A, 3A, 4A, 5B, 5B) 2 115200 115200

(3A, 3A, 3A, 5A, 5A, 5A) 2 88200 92115

(3A, 3A, 3A, 5A, 5A, 5B) 2 92940 87600
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(3A, 3A, 3A, 5A, 5B, 5B) 2 87600 92940

(3A, 3A, 3A, 5B, 5B, 5B) 2 92115 88200

(3A, 3A, 3B, 3B, 3B, 3B) 2 17550 15072

(3A, 3A, 3B, 3B, 3B, 4A) 2 35328 35328

(3A, 3A, 3B, 3B, 3B, 5A) 2 28875 28000

(3A, 3A, 3B, 3B, 3B, 5B) 2 28875 28000

(3A, 3A, 3B, 3B, 4A, 4A) 2 80992 80928

(3A, 3A, 3B, 3B, 4A, 5A) 2 64000 64000

(3A, 3A, 3B, 3B, 4A, 5B) 2 64000 64000

(3A, 3A, 3B, 3B, 5A, 5A) 2 52875 49600

(3A, 3A, 3B, 3B, 5A, 5B) 2 49600 52750

(3A, 3A, 3B, 3B, 5B, 5B) 2 49600 52875

(3A, 3A, 3B, 4A, 4A, 4A) 2 180576 180576

(3A, 3A, 3B, 4A, 4A, 5A) 2 144000 144000

(3A, 3A, 3B, 4A, 4A, 5B) 2 144000 144000

(3A, 3A, 3B, 4A, 5A, 5A) 2 115200 115200

(3A, 3A, 3B, 4A, 5A, 5B) 2 115200 115200

(3A, 3A, 3B, 4A, 5B, 5B) 2 115200 115200

(3A, 3A, 3B, 5A, 5A, 5A) 2 91260 92880

(3A, 3A, 3B, 5A, 5A, 5B) 2 91485 92880

(3A, 3A, 3B, 5A, 5B, 5B) 2 91485 92880

(3A, 3A, 3B, 5B, 5B, 5B) 2 91260 92880

(3A, 3A, 4A, 4A, 4A, 4A) 2 407160 406440

(3A, 3A, 4A, 4A, 4A, 5A) 2 324000 324000

(3A, 3A, 4A, 4A, 4A, 5B) 2 324000 324000

(3A, 3A, 4A, 4A, 5A, 5A) 2 259200 259200

(3A, 3A, 4A, 4A, 5A, 5B) 2 259200 259200

(3A, 3A, 4A, 4A, 5B, 5B) 2 259200 259200

(3A, 3A, 4A, 5A, 5A, 5A) 2 207360 207360

(3A, 3A, 4A, 5A, 5A, 5B) 2 207360 207360
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(3A, 3A, 4A, 5A, 5B, 5B) 2 207360 207360

(3A, 3A, 4A, 5B, 5B, 5B) 2 207360 207360

(3A, 3A, 5A, 5A, 5A, 5A) 2 162000 168030

(3A, 3A, 5A, 5A, 5A, 5B) 2 161280 167940

(3A, 3A, 5A, 5A, 5B, 5B) 2 167985 161640

(3A, 3A, 5A, 5B, 5B, 5B) 2 167940 161280

(3A, 3A, 5B, 5B, 5B, 5B) 2 162000 168030

(3A, 3B, 3B, 3B, 3B, 3B) 2 17040 12852

(3A, 3B, 3B, 3B, 3B, 4A) 2 36352 36352

(3A, 3B, 3B, 3B, 3B, 5A) 2 26875 30000

(3A, 3B, 3B, 3B, 3B, 5B) 2 26875 30000

(3A, 3B, 3B, 3B, 4A, 4A) 2 78624 78688

(3A, 3B, 3B, 3B, 4A, 5A) 2 64000 64000

(3A, 3B, 3B, 3B, 4A, 5B) 2 64000 64000

(3A, 3B, 3B, 3B, 5A, 5A) 2 49275 53200

(3A, 3B, 3B, 3B, 5A, 5B) 2 49150 53200

(3A, 3B, 3B, 3B, 5B, 5B) 2 49275 53200

(3A, 3B, 3B, 4A, 4A, 4A) 2 180576 180576

(3A, 3B, 3B, 4A, 4A, 5A) 2 144000 144000

(3A, 3B, 3B, 4A, 4A, 5B) 2 144000 144000

(3A, 3B, 3B, 4A, 5A, 5A) 2 115200 115200

(3A, 3B, 3B, 4A, 5A, 5B) 2 115200 115200

(3A, 3B, 3B, 4A, 5B, 5B) 2 115200 115200

(3A, 3B, 3B, 5A, 5A, 5A) 2 91260 92880

(3A, 3B, 3B, 5A, 5A, 5B) 2 91485 92880

(3A, 3B, 3B, 5A, 5B, 5B) 2 92880 91485

(3A, 3B, 3B, 5B, 5B, 5B) 2 91260 92880

(3A, 3B, 4A, 4A, 4A, 4A) 2 400788 401436

(3A, 3B, 4A, 4A, 4A, 5A) 2 324000 324000

(3A, 3B, 4A, 4A, 4A, 5B) 2 324000 324000
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(3A, 3B, 4A, 4A, 5A, 5A) 2 259200 259200

(3A, 3B, 4A, 4A, 5A, 5B) 2 259200 259200

(3A, 3B, 4A, 4A, 5B, 5B) 2 259200 259200

(3A, 3B, 4A, 5A, 5A, 5A) 2 207360 207360

(3A, 3B, 4A, 5A, 5A, 5B) 2 207360 207360

(3A, 3B, 4A, 5A, 5B, 5B) 2 207360 207360

(3A, 3B, 4A, 5B, 5B, 5B) 2 207360 207360

(3A, 3B, 5A, 5A, 5A, 5A) 2 163863 168480

(3A, 3B, 5A, 5A, 5A, 5B) 2 163053 168480

(3A, 3B, 5A, 5A, 5B, 5B) 2 168480 163458

(3A, 3B, 5A, 5B, 5B, 5B) 2 168480 163053

(3A, 3B, 5B, 5B, 5B, 5B) 2 163863 168480

(3A, 4A, 4A, 4A, 4A, 4A) 2 909792 909792

(3A, 4A, 4A, 4A, 4A, 5A) 2 729000 729000

(3A, 4A, 4A, 4A, 4A, 5B) 2 729000 729000

(3A, 4A, 4A, 4A, 5A, 5A) 2 583200 583200

(3A, 4A, 4A, 4A, 5A, 5B) 2 583200 583200

(3A, 4A, 4A, 4A, 5B, 5B) 2 583200 583200

(3A, 4A, 4A, 5A, 5A, 5A) 2 466560 466560

(3A, 4A, 4A, 5A, 5A, 5B) 2 466560 466560

(3A, 4A, 4A, 5A, 5B, 5B) 2 466560 466560

(3A, 4A, 4A, 5B, 5B, 5B) 2 466560 466560

(3A, 4A, 5A, 5A, 5A, 5A) 2 373248 373248

(3A, 4A, 5A, 5A, 5A, 5B) 2 373248 373248

(3A, 4A, 5A, 5A, 5B, 5B) 2 373248 373248

(3A, 4A, 5A, 5B, 5B, 5B) 2 373248 373248

(3A, 4A, 5B, 5B, 5B, 5B) 2 373248 373248

(3A, 5A, 5A, 5A, 5A, 5A) 2 297000 297216

(3A, 5A, 5A, 5A, 5A, 5B) 2 296568 299835

(3A, 5A, 5A, 5A, 5B, 5B) 2 298890 296784
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(3A, 5A, 5A, 5B, 5B, 5B) 2 296784 298890

(3A, 5A, 5B, 5B, 5B, 5B) 2 299835 296568

(3A, 5B, 5B, 5B, 5B, 5B) 2 297000 297216

(3B, 3B, 3B, 3B, 3B, 3B) 2 11880 6080

(3B, 3B, 3B, 3B, 3B, 4A) 2 33792 33792

(3B, 3B, 3B, 3B, 3B, 5A) 2 26250 20000

(3B, 3B, 3B, 3B, 3B, 5B) 2 26250 20000

(3B, 3B, 3B, 3B, 4A, 4A) 2 81792 81920

(3B, 3B, 3B, 3B, 4A, 5A) 2 64000 64000

(3B, 3B, 3B, 3B, 4A, 5B) 2 64000 64000

(3B, 3B, 3B, 3B, 5A, 5A) 2 45200 50850

(3B, 3B, 3B, 3B, 5A, 5B) 2 51725 44200

(3B, 3B, 3B, 3B, 5B, 5B) 2 50850 45200

(3B, 3B, 3B, 4A, 4A, 4A) 2 177984 177984

(3B, 3B, 3B, 4A, 4A, 5A) 2 144000 144000

(3B, 3B, 3B, 4A, 4A, 5B) 2 144000 144000

(3B, 3B, 3B, 4A, 5A, 5A) 2 115200 115200

(3B, 3B, 3B, 4A, 5A, 5B) 2 115200 115200

(3B, 3B, 3B, 4A, 5B, 5B) 2 115200 115200

(3B, 3B, 3B, 5A, 5A, 5A) 2 92115 88200

(3B, 3B, 3B, 5A, 5A, 5B) 2 92940 87600

(3B, 3B, 3B, 5A, 5B, 5B) 2 87600 92940

(3B, 3B, 3B, 5B, 5B, 5B) 2 92115 88200

(3B, 3B, 4A, 4A, 4A, 4A) 2 406440 407160

(3B, 3B, 4A, 4A, 4A, 5A) 2 324000 324000

(3B, 3B, 4A, 4A, 4A, 5B) 2 324000 324000

(3B, 3B, 4A, 4A, 5A, 5A) 2 259200 259200

(3B, 3B, 4A, 4A, 5A, 5B) 2 259200 259200

(3B, 3B, 4A, 4A, 5B, 5B) 2 259200 259200

(3B, 3B, 4A, 5A, 5A, 5A) 2 207360 207360
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(3B, 3B, 4A, 5A, 5A, 5B) 2 207360 207360

(3B, 3B, 4A, 5A, 5B, 5B) 2 207360 207360

(3B, 3B, 4A, 5B, 5B, 5B) 2 207360 207360

(3B, 3B, 5A, 5A, 5A, 5A) 2 162000 168030

(3B, 3B, 5A, 5A, 5A, 5B) 2 167940 161280

(3B, 3B, 5A, 5A, 5B, 5B) 2 161640 167985

(3B, 3B, 5A, 5B, 5B, 5B) 2 161280 167940

(3B, 3B, 5B, 5B, 5B, 5B) 2 162000 168030

(3B, 4A, 4A, 4A, 4A, 4A) 2 909792 909792

(3B, 4A, 4A, 4A, 4A, 5A) 2 729000 729000

(3B, 4A, 4A, 4A, 4A, 5B) 2 729000 729000

(3B, 4A, 4A, 4A, 5A, 5A) 2 583200 583200

(3B, 4A, 4A, 4A, 5A, 5B) 2 583200 583200

(3B, 4A, 4A, 4A, 5B, 5B) 2 583200 583200

(3B, 4A, 4A, 5A, 5A, 5A) 2 466560 466560

(3B, 4A, 4A, 5A, 5A, 5B) 2 466560 466560

(3B, 4A, 4A, 5A, 5B, 5B) 2 466560 466560

(3B, 4A, 4A, 5B, 5B, 5B) 2 466560 466560

(3B, 4A, 5A, 5A, 5A, 5A) 2 373248 373248

(3B, 4A, 5A, 5A, 5A, 5B) 2 373248 373248

(3B, 4A, 5A, 5A, 5B, 5B) 2 373248 373248

(3B, 4A, 5A, 5B, 5B, 5B) 2 373248 373248

(3B, 4A, 5B, 5B, 5B, 5B) 2 373248 373248

(3B, 5A, 5A, 5A, 5A, 5A) 2 297000 297216

(3B, 5A, 5A, 5A, 5A, 5B) 2 296568 299835

(3B, 5A, 5A, 5A, 5B, 5B) 2 298890 296784

(3B, 5A, 5A, 5B, 5B, 5B) 2 298890 296784

(3B, 5A, 5B, 5B, 5B, 5B) 2 296568 299835

(3B, 5B, 5B, 5B, 5B, 5B) 2 297000 297216

(4A, 4A, 4A, 4A, 4A, 4A) 6 650592 726240 650592 669600 694944 669600

148



(4A, 4A, 4A, 4A, 4A, 5A) 6 560000 540000 560000 540000 540000 540000

(4A, 4A, 4A, 4A, 4A, 5B) 6 540000 560000 540000 540000 540000 560000

(4A, 4A, 4A, 4A, 5A, 5A) 6 475400 418500 418500 464600 423900 423900

(4A, 4A, 4A, 4A, 5A, 5B) 6 445500 450900 445500 421400 450900 410600

(4A, 4A, 4A, 4A, 5B, 5B) 6 423900 418500 464600 423900 418500 475400

(4A, 4A, 4A, 5A, 5A, 5A) 6 332640 332640 384320 332640 332640 384320

(4A, 4A, 4A, 5A, 5A, 5B) 6 354240 354240 341120 354240 354240 341120

(4A, 4A, 4A, 5A, 5B, 5B) 6 341120 354240 341120 354240 354240 354240

(4A, 4A, 4A, 5B, 5B, 5B) 6 332640 332640 332640 384320 332640 384320

(4A, 4A, 5A, 5A, 5A, 5A) 6 254880 326720 330176 256608 256608 254880

(4A, 4A, 5A, 5A, 5A, 5B) 6 289440 291168 261056 257600 291168 289440

(4A, 4A, 5A, 5A, 5B, 5B) 6 273888 273888 272160 295616 272160 292160

(4A, 4A, 5A, 5B, 5B, 5B) 6 289440 261056 291168 291168 257600 289440

(4A, 4A, 5B, 5B, 5B, 5B) 6 256608 254880 330176 326720 256608 254880

(4A, 5A, 5A, 5A, 5A, 5A) 6 193536 284672 193536 284672 193536 193536

(4A, 5A, 5A, 5A, 5A, 5B) 6 235008 235008 201728 235008 235008 201728

(4A, 5A, 5A, 5A, 5B, 5B) 6 221184 221184 221184 221184 229376 229376

(4A, 5A, 5A, 5B, 5B, 5B) 6 221184 221184 221184 229376 229376 221184

(4A, 5A, 5B, 5B, 5B, 5B) 6 235008 235008 201728 235008 235008 201728

(4A, 5B, 5B, 5B, 5B, 5B) 6 284672 193536 284672 193536 193536 193536

(5A, 5A, 5A, 5A, 5A, 5A) 6 138240 261030 138240 141750 256800 141750

(5A, 5A, 5A, 5A, 5A, 5B) 6 149370 193320 193320 195075 145600 195075

(5A, 5A, 5A, 5A, 5B, 5B) 6 190080 173745 173745 171288 194034 171288

(5A, 5A, 5A, 5B, 5B, 5B) 6 171702 167840 182304 182304 184410 184410

(5A, 5A, 5B, 5B, 5B, 5B) 6 173745 190080 171288 173745 194034 171288

(5A, 5B, 5B, 5B, 5B, 5B) 6 193320 145600 195075 195075 193320 149370

(5B, 5B, 5B, 5B, 5B, 5B) 6 138240 261030 141750 256800 141750 138240
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