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Abstract

Van Dalen and Wattel have shown that a space is LOTS (linearly orderable topological

space) if and only if it has a T1-separating subbase consisting of two interlocking nests.

Given a collection of subsets L of a set X, van Dalen and Wattel define an order ▹L by

declaring x ▹L y if and only if there exists some L ∈ L such that x ∈ L but y /∈ L. We

examine ▹L in the light of van Dalen and Wattel’s theorem. We go on to give a topological

characterisation of ordinal spaces, including ω1, in these terms, by first observing that

the T1-separating union of more than two nests generates spaces that are not of high

order-theoretic interest. In particular, we give an example of a countable space X, with

three nests L,R,P , each T0-separating X, such that their union T1-separates X, but

does not T2-separate X. We then characterise ordinals in purely topological terms, using

neighbourhood assignments, with no mention of nest or of order. We finally introduce a

conjecture on the characterisation of ordinals via selections, which may lead into a new

external characterisation.
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Chapter 1

Introduction

1.1 Research Motivation and Structure of the Thesis

“...confusion connotes something which possesses no order,

the individual parts of which are so strangely admixed and interwined,

that it is impossible to detect where each element actually belongs...”

(Extract from The Musical Dialogue, by Nikolaus Harnoncourt, Amadeus Press, 1997.)

In this thesis we introduce set-theoretic and topological characterisations of ordered

sets. In addition, we dedicate quite a few pages on revisiting the orderability theorem and

we propose a different perspective to look at it. But, first of all, what is an orderability

theorem? In particular in S. Purisch’s account of results on orderability and suborder-

ability (see [21]), one can read the formulation and development of several orderability

theorems, starting from the beginning of the 20th century and reaching our days. By an

orderability theorem, in topology, we mean the following. Let (X, T ) be a topological

space. Under what conditions does there exist an order relation < on X such that the

topology T< induced by the order < is equal to T ? As we can see, this problem is very

fundamental as it is of the same weight as the metrizability problem, for example (let X
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be a topological space: is there a metric d, on X, such that the metric topology gener-

ated by this metric to be equal to the original topology of X?). We will come to this in

more detail in Chapter 3. For the meanwhile, let us introduce the material of this Thesis

chapter by chapter.

In Chapter 2, we give the set-theoretical and topological background that one needs

to be aware of in order to follow the material in the next chapters. In Theorem 2.50 we

give a proof of the Pressing Down Lemma; it seems that this well-known result is strongly

related to our characterisation of ω1, in Corollary 5.8. In addition, we clearly use this

result in our Example 5.14.

Chapter 3 is divided into four sections. In the first section we define an ordering ▹L

generated by a nest L. We examine properties of the ordering ▹L from a set-theoretic

perspective, and we see the close link between nests, linear orders and interlockingness. In

the second section we revisit the main characterisation theorem for GO-spaces and LOTS

of van Dalen and Wattel, and we give necessary and sufficient conditions for a space to be

LOTS, using tools that we present in the first section. We finally illustrate our ideas with

two well-known examples: the Sorgenfrey line and the Michael line. In the third section,

we give necessary conditions for a connected space to be LOTS. In the fourth section, we

view the interval topology in the light of nests (subsection 3.4.1), and we investigate some

of its order-theoretic properties which imply LOTS (subsection 3.4.2).

In Chapter 4 we argue that more than two nests “destroy” the structure that we

get from van Dalen and Wattel’s characterisations of GO-spaces and LOTS, and we get

weaker topological properties. In particular, we give an example of three nests, whose

T1-separating union generates a space which is not Hausdorff.

In Chapter 5 we characterise ordinals topologically. In the first section, we look at

the equivalent facts of a topological space X being scattered, right-separated and being

scattered by a nest of open subsets of X, and we observe that a space being scattered
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by a nest is well-ordered. We add a few extra conditions that we discuss in Chapter 3,

in sections 1 and 2, in order to examine when a space X is homeomorphic to an ordinal,

and this leads to Corollary 5.8, which characterises uncountable ordinals, like ω1, in these

terms. After examining a few properties related to subspaces of ordinals, we illustrate our

results with three particular examples. In the second section, we give a characterisation

of ordinals, which is entirely topological, with no mention of order or of nest. In the third

section, we review the most important solutions to the orderability problem via selections

and we state a conjecture on the characterisation of ordinals via selections (something

that we also mention in our Open Problems chapter).

In Chapter 6 we state open problems in our field, that appeared while researching

for this thesis, and we will hopefully attempt solving them in the near future.

1.2 A Short Historical Overview

“Order is a concept as old as the idea of number

and much of early mathematics was devoted to

constructing and studying various subsets of the

real line.” (Steve Purisch [21])

The great German mathematician Georg Cantor (1845-1918) is credited to be one

of the inventors of set theory. This fact makes him automatically one of the inventors

of order-theory as well, as he is the one who first introduced the class of cardinals and

the class of ordinal numbers, two classes of rich order-theoretic properties. We give the

definitions and we state fundamental properties of ordinals and cardinals in Chapter 2.

Cantor was not only interested in defining classes of ordered sets, and studying their

arithmetic; he also produced major results while examining order-isomorphisms, that is,

bijective order-preserving mappings between sets whose inverses are also order-preserving.

S. Purisch gives a complete list of these historic papers written by Cantor, in his article
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“A History of Results on Orderability and Suborderability” [21].

Together with set theory, the field of topology met a rapid rising in the early 20th

century and new problems, combining both fields, appeared. A topologist’s temptation

is always to examine what sort of topology can be introduced in a given set. So, a very

early question was what is the relationship between the natural topology of a set and the

topology which is induced by an ordering in this set; this question led to the formulation

of the orderability problem.

According to Purisch, one of the earliest orderability theorems was introduced by O.

Veblen and N.J. Lennes, who were both students of the American mathematician E.H.

Moore (1862-1932), and who attended his geometry seminar. This theorem stated that

every metric continuum, with exactly two non-cut points, is homeomorphic to the unit

interval. For the statement of the theorem, Veblen combined the notions of ordered

set and topology, for defining a simple arc. Lennes used up-to-date machinery to prove

Veblen’s statement, a proof that was published in 1911.

In the meanwhile, some of the greatest mathematicians of the first half of the 20th

century, like the French mathematicians R. Baire, M. Fréchet, the Dutch mathematician

L.E.J. Brouwer, the Jewish-German mathematician F. Hausdorff, the Polish mathemati-

cians S. Mazurkiewicz, W. Sierṕınski, the Russian mathematicians P. Alexandroff and

P. Urysohn and others, were devoted to constructing various subsets of the real line.

In particular, Baire used ideas of the Yugoslavian mathematician D. Kurepa and of the

Dutch mathematician A.F. Monna, on non-Archimedean spaces, in order to characterise

the set of irrational numbers. The British mathematician, A.J. Ward, found a topological

characterisation of the real line (1936), stating that the real line is homeomorphic to a

separable, connected and locally connected metric space X, such that X − {p} consists of

exactly two components, for every p ∈ X.

A more general result (1920), by Mazurkiewicz and Sierṕınski, stated that compact,
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countable metric spaces are homeomorphic to well-ordered sets; this is one of the first, if

not the first, topological characterisation of abstract ordered sets.

Having in mind that a special version of the orderability problem was solved in the

beginning of the 70s (J. van Dalen and E. Wattel), its formulation started from the

beginning of the 40s. In particular, the Polish-American mathematician S. Eilenberg,

gave in 1941 the following result: a connected space, X, is weakly orderable, if and only if

X×X minus the diagonal is not connected. This condition is also necessary and sufficient

for a connected, locally connected space to be orderable.

The British mathematician, E. Michael, extended this work, and showed, in 1951,

that a connected Hausdorff space X is a weakly orderable space, if and only if X admits

a continuous selection. In Chapter 5, Section 3, we talk about selections and orderability

in particular.

It took two more decades, for a complete topological characterisation of GO-spaces and

LOTS to appear. In 1972 J. de Groot and P.S. Schnare showed [2] that a compact T1 space

X is LOTS, if and only if there exists an open subbase S of X which is the union of two

nests, such that every cover of the space, by elements of S, has a two element subcover. J.

van Dalen and E. Wattel used the characterisation of de Groot and Schnare as a basis

for their construction, which led to a solution of the orderability problem via nests. We

revisit van Dalen and Wattel’s characterisation in Chapter 3, Section 2, and we introduce

a simpler proof of their main characterisation theorem.

The study of ordered spaces did not finish with the solution to the orderability problem

that was proposed by van Dalen and Wattel. On the contrary, many interesting and

important results have appeared since then. We will now refer to those results which have

motivated our own research in particular.

In 1986, G.M. Reed published an article with title “The Intersection Topology w.r.t.

the Real Line and the Countable Ordinals” [22]. The author constructed there a class
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which was shown to be a surprisingly useful tool in the study of abstract spaces. We

know that, if T1, T2 are topologies on a set X, then the intersection topology, with respect

to T1 and T2, is the topology T on X such that the set {U1 ∩ U2 : U1 ∈ T1 and U2 ∈ T2}

forms a base for (X, T ). Reed introduced the class C, where (X, T ) ∈ C if and only if

X = {xα : α < ω1} ⊂ R, where T1 = TR and T2 = Tω1 and T is the intersection of TR

(the subspace real line topology on X) and Tω1 (the order topology on X, of type ω1).

In particular, Reed showed that if (X, T ) ∈ C, then X has rich topological, but not very

rich order-theoretic properties. In particular, X is a completely regular, submetrizable,

pseudo-normal, collectionwise Hausdorff, countably metacompact, first countable, locally

countable space, with a base of countable order, that is neither subparacompact, met-

alindelöf, cometrizable nor locally compact. That an (X, T ) ∈ C does not necessarily

have rich order-theoretic properties comes from the fact that there exists, in ZFC, an

(X, T ) ∈ C which is not normal. As we shall see (Chapter 2), monotonically normal

spaces appear to have rich order-theoretic properties. In Section 4.3, Example 4.12, we

use Reed’s argument to support further our own argument that more than two nests,

whose union is T1-separating, do not give strong topological properties.

Eric K. van Douwen characterised in 1993 [26] the noncompact spaces, whose every

noncompact image is orderable, as the noncompact continuous images of ω1. Van Douwen

refers to a closed non-compact set as cub (corresponding to closed unbounded sets in

ordinals - we will refer to it as club, throughout the thesis), and he calls bear a space which

is noncompact and has no disjoint cubs. Here we state his result that has motivated our

research on ordinals (Chapter 5):

For a noncompact space X, the following are equivalent:

1. X is a continuous image of ω1.

2. Every noncompact continuous image of X is orderable.
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3. X is scattered first countable orderable bear.

4. X is locally countable orderable bear.

5. X has a compatible linear order, all initial closed segments of which are compact

and countable.
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Chapter 2

Preliminaries

The aim of this introductory chapter is to present the mathematical tools which will be

used in our applications in the next chapters. We aim to do this by giving definitions and

appropriate examples.

Our basic reference for set theory will be the books of Moschovakis [18] and Kunen

[14]. For theory on topological spaces we will use the classic book of Engelking [3]. The

Handbook of Set Theoretic Topology [16] is one of the best accounts in the field, and

it will be a very important reference, too. An instant helper, a sort of dictionary for

definitions on topology, will always be the Encyclopedia of General Topology [10].

The empty set will be denoted by ∅ throughout the text. The power set of a set A,

i.e. the set of all subsets of A, will be denoted either by P(A) or by 2A and any subset

of the power set will be denoted by a calligraphic Latin letter, like for example S or T .

For the set of natural numbers, the set of integers, the set of rational numbers and the

set of real numbers we will use the symbols N, Z, Q and R, respectively, but we will also

denote the set of natural numbers by ω, in some special cases. By c we will denote the

power of the continuum. The closure of a set A will be denoted by A unless otherwise

stated. The Axiom of Choice will be abbreviated as A.C. and the Zermelo Fraenkel set

theory, together with the A.C. will be abbreviated as ZFC.
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Some authors refer to T3 (respectively T4) spaces as those spaces which are both

T1 and regular (respectively normal). Some other authors define regular (respectively

normal) spaces as those which are both T1 and T3 (respectively T1 and T4). Since this is

a matter of convention, we choose that whenever we state T3 or T4 spaces, in this thesis,

we will require these spaces to be T1 plus regular or normal, respectively. Furthermore, a

topological space X is T
3
1
2
, if X is both T1 and Tychonoff.

2.1 Topological Preliminaries

In this section we present the topological machinery that will be needed for the under-

standing of our research results.

Our source for basic notions on scattered spaces will be [23].

Definition 2.1 A topological space X is scattered, if every non-empty subset A ⊂ X has

an isolated point, i.e. for every non-empty A ⊂ X, there exists a ∈ A and U open in X,

such that U ∩ A = {a}.

Therefore, a space X is scattered, if for every non-empty A ⊂ X, there exists U open

in X, such that |U ∩ A| = 1.

Definition 2.2 Let S be a family of subsets of a set X. We say that X is scattered by

S, if and only if for every A ⊂ X, there exists S ∈ S, such that |A ∩ S| = 1.

Remark 2.3 An equivalent definition for scattered spaces says that a topological space

X is scattered, if for every non-empty subset K of X, the set of isolated points of K is

dense in K. In addition, a subset A of X is scattered, if it is scattered with respect to the

subspace topology. Last, but not least, every discrete space is scattered, as every singleton

set is open and, hence, isolated.

Definition 2.4 A set A is said to be perfect, if it is equal to its set of limit points.
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The Cantor-Bendixson Theorem (see for example [9]), characterises topological spaces

with respect to their limit points.

Theorem 2.5 (Cantor-Bendixson) Every topological space can be decomposed uniquely

into the union of two disjoint sets, one of which is perfect and the other is scattered.

Definition 2.6 Let X be a nonempty topological space and let A be a subset of X. Let

A′ = {x : x is a limit point of A}. We call A′ the Cantor-Bendixson derivative of A.

We can define inductively the iterated Cantor-Bendixson derivatives of X, as follows:

X(0) = X,

X(α+1) = (X(α))′,

X(λ) =
∩
α<λ

X(α),

where λ is some limit ordinal (see section on ordinals).

Clearly, for some ordinal γ, X(γ) = X(γ+1). If this set is nonempty, then it is called

the perfect kernel and, if it is empty, then X is scattered. In the scattered case, a point

x of X has a well-defined Cantor-Bendixson rank, often called the limit type (or scattered

height) of x, denoted by lt(x) = α, if and only if x ∈ X(α) −X(α+1). The set of all points,

of limit type α, is then called the αth level of X, denoted by Lα. Clearly, Lα is the set of

all isolated points of X(α).

M.A.D. families will be needed in order to define the Mrówka Ψ-space. The latter

will be used in our characterisations of ordinals, as a counterexample. A good source

of information for almost disjoint and M.A.D. families is the Handbook of Set Theoretic

Topology [16] and for the Mrówka Ψ-space we refer to [19] and [3].

Definition 2.7 A family F , of infinite subsets of a set X, is said to be an almost disjoint

family (a.d.f.), if and only if for all distinct F,G ∈ F , F ∩G is finite.
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Definition 2.8 A family F of infinite subsets of ω, is a Maximal Almost Disjoint family

(M.A.D. family), if and only if it is an a.d.f. and, if H ⊂ ω is infinite, H /∈ F, then there

exists F ∈ F, such that F ∩H is infinite.

M.A.D. families exist by the A.C., and there are uncountably many of them.

Example 2.9 Let us consider the family g = {O,E}, where O denotes the set of all

positive odd numbers and E the set of all positive even numbers. Then, the intersection

of O and E is empty, so it is finite. Then, g is a M.A.D. family, because if we take any

infinite set of natural numbers, it will meet one of O,E infinitely many times.

Another example of a M.A.D. family is F = {ω}.

Proposition 2.10 There exists a M.A.D. family F, such that it has the same size as the

set of real numbers, i.e. |F| = |R|.

Proof. Let us consider a set Q which is dense in the real line and is indexed by the set

of natural numbers, i.e. Q = {qn : n ∈ N}. For the real number r ∈ R we choose a

subsequence from Q, namely {qnrj
: j ∈ N}, such that qnrj

tends to r, as j tends to

infinity. Let also Fr = {n : n = nrj , j ∈ N}. Then, Fr ⊂ N is infinite. We note that

qnrj
̸= qnrk

, if j ̸= k . If r ̸= s, then Fr ∩ Fs is finite. Also, |F| = |{Fr : r ∈ R}| = |R|.

Now, let A = {A : A is an almost disjoint family of subsets of N, such that F ⊂ A}.

Let B be a chain in A. Then, we claim that
∪

B ∈ A. The latter is true, because clearly

for every B ∈ B, F ⊂ B, so F ⊂
∪

B. But, it is also true that
∪

B is almost disjoint. For

let distinct B,C ∈
∪
B, such that B ∈ B and C ∈ C, some B, C ∈ B. Now, B is a chain,

so, without loss of generality, B ⊂ C. Hence, B,C ∈ C, which is almost disjoint and so

B ∩C is finite. Hence,
∪

B is almost disjoint. Thus, by Zorn’s Lemma, A has a maximal

element, which proves that A has a M.A.D. family, of size continuum. �

Definition 2.11 Let F be an uncountable M.A.D. family on ω. Then, the set X, where

X = ω ∪ F, is called the Mrówka Ψ-space.
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We note that if a ∈ F, then a is an infinite subset of ω.

For constructing a base for a topology, in the Mrówka Ψ-space, we consider an element

n ∈ ω, which will be by definition isolated, i.e. the set {n} will be open. A basic open

set about a ∈ F will be of the form:

Bka = {a} ∪ {n ∈ a : n ≥ k}

where k ∈ ω.

We will revisit the Mrówka Ψ-space and its one-point compactification in Chapter 5,

in Example 5.13, where we see that a space which is scattered by a nest is not necessarily

homeomorphic to an ordinal.

We will now give the definition of monotone normality, which is a basic property of

linearly orderable topological spaces. Let us recall the definition of Tychonoff space, first.

Definition 2.12 A topological space X is called Tychonoff, if for every point x ∈ X and

for every closed set C, such that C does not contain x, the sets C and {x} are separated by

a function. That is, there exists a continuous function f : X → [0, 1], such that f(x) = 0

and f(y) = 1, for every y ∈ C. Furthermore, a topological space X is T
3
1
2
, if it is both T1

and Tychonoff.

Definition 2.13 A T1-topological space X is called monotonically normal, if and only if

for every pair of disjoint closed sets H and K, there exists an open set D(H,K), such

that the following two conditions are satisfied:

1. H ⊂ D(H,K) ⊂ D(H,K) ⊂ X −K.

2. If H ⊂ H ′ and K ′ ⊂ K, then D(H,K) ⊂ D(H ′, K ′),

where H ′, K ′ are disjoint closed sets in the topology of X.

An alternative definition for monotone normality follows.
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Definition 2.14 A T1−topological space X is called monotonically normal, if for every

open set U , in X, and x ∈ U there exists an open set µ(x, U), such that x ∈ µ(x, U) ⊂ U

and if µ(x, U)∩ µ(y, V ) ̸= ∅, then either x ∈ V or y ∈ U , where V is some open set in X

and y ∈ V .

Definition 2.15 A topological space is called 0-dimensional, if it has a base of clopen

sets.

The property of a space being 0−dimensional is linked to the property of being T
3
1
2
,

in the following way.

Theorem 2.16 Let X be a T
3
1
2
space, such that 1 < |X| < c. Then, X is 0−dimensional.

Proof. Let U be an open set in X and let x ∈ U , such that U ̸= X. Then, there exists

a continuous function f : X → [0, 1], such that f(x) = 0 and f(X − U) = 1. But, since

the cardinality of X is less than the power of the continuum, there exists a ∈ [0, 1], such

that a does not belong to the range of values of f . Thus, x ∈ f−1[0, a) = f−1[0, a]. But,

f−1[0, a) = f−1[0, a] ⊂ U , too; so f−1[0, a] is clopen. �

The following definition will be fundamental for our construction of an order relation,

via arbitrary collections of sets; it is a set-theoretic version of the T0, T1 and T2 separation

axioms, as there is no mentioning of topology.

Definition 2.17 Let X be a set. We say that a collection of subsets S of X:

1. T0-separates X, if and only if for all x, y ∈ X, such that x ̸= y, there exists S ∈ S,

such that x ∈ S and y /∈ S or y ∈ S and x /∈ S,

2. T1-separates X, if and only if for all x, y ∈ X, such that x ̸= y, there exist S, T ∈ S,

such that x ∈ S and y /∈ S and also y ∈ T and x /∈ T and
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3. T2-separates X, if and only if for all x, y ∈ X, such that x ̸= y, there exist S, T ∈ S,

such that S ∩ T = ∅ and x ∈ S, y ∈ T .

The set theoretic and topological versions of the T0, T1 and T2 separation axioms are

linked as follows.

Proposition 2.18 Let (X, T ) be a topological space.

1. X is a T0 topological space, if and only if there exists a subbase S for T which

T0-separates X.

2. X is a T1 topological space, if and only if there exists a subbase S for T which

T1-separates X.

3. X is a T2 topological space, if and only if there exists a subbase S for T which

T2-separates X.

Proof. 1. Let us suppose that there exists a subbase S, for T , such that for every

x, y ∈ X, with x ̸= y, there exists U ∈ S, such that x ∈ U and y /∈ U or y ∈ U and

x /∈ U . Since S ⊂ T , we have that U ∈ T and also x ∈ U and y /∈ U or y ∈ U and

x /∈ U . Thus, (X, T ) is a T0 topological space.

Let us now consider X to be a T0 topological space and let S be a subbase for T .

Let x, y ∈ X, such that x ̸= y. Then, there exists V ∈ T , such that without loss of

generality x ∈ V and y /∈ V . But V =
∪

i∈I Vi, where Vi =
∩ni

k=1 V
i
k , V

i
k ∈ S. So,

x ∈
∪

i∈I Vi implies that there exists i ∈ I, such that x ∈ Vi. But y /∈ Vi. Thus,

there exists j, where 1 6 j 6 n, such that y /∈ V j
k . But x ∈ Vi implies that x ∈ V j

k .

Thus, there exists V j
k ∈ S, such that x ∈ V j

k and y /∈ V j
k .

The proofs for 2. and 3. are similar to the proof of 1. �

Corollary 2.19 1. A collection of sets S is T0-separating, if and only if the topology

that is generated by S is a T0 topology.
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2. A collection of sets S is T1-separating, if and only if the topology that is generated

by S is a T1 topology.

3. A collection of sets S is T2-separating, if and only if the topology that is generated

by S is a T2 topology.

2.2 Partial Orderings, Linear Orderings and Well Or-

derings

Here we highlight important order-theoretic notions which will interact with several topo-

logical ideas in the constructions that will be presented in the next chapters.

Definition 2.20 A binary relation, ≤, in a set A, is called a partial order on A, if and

only if for any a, b, c ∈ A, the following conditions are satisfied:

1. a ≤ a (reflexivity);

2. a ≤ b and b ≤ a implies that a = b (antisymmetry) and

3. a ≤ b and b ≤ c implies that a ≤ c (transitivity).

The pair (A,≤) is called a partially ordered set (or simply poset).

Definition 2.21 If a set X is equipped with a relation which is reflexive and transitive,

but not necessarily antisymmetric, then this relation on X will be called a preorder on X.

Definition 2.22 Let ≤ be a relation which defines a partial order on a set X. Then, the

reverse order, denoted by ≥, is defined by a ≥ b, if and only if b ≤ a, for any a, b ∈ X.

Lemma 2.23 If ≤ is a partial order on a set X, then ≥ is also a partial order on X.
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If for any two distinct elements a, b, in a partially ordered set X satisfying a ≤ b, we

write a < b, we will formally read this as a precedes b or as b dominates a and, informally,

simply state “a is less than b” or “b is greater than a”.

Definition 2.24 Let ≤ be a partial order, on a set X, and let p, q ∈ X. Then:

1. p, q are comparable with respect to ≤ if and only if p is greater than q, or q is greater

than p, or p = q.

2. The order ≤ satisfies Trichotomy if for any x, y ∈ X, exactly one of the following

holds: x < y, x = y or x > y.

3. The partial order ≤ is a linear order (or total order), if ≤ satisfies trichotomy.

4. C ⊂ X is a chain, if and only if for all p, q ∈ C, p and q are comparable, i.e. C is

linearly ordered by ≤.

5. A ⊂ X is an anti-chain, if and only if for all p, q ∈ A, such that p ̸= q, then p and

q are not comparable. In this case, we write p ⊥ q.

Definition 2.25 Let (X,≤) be a partially ordered set. An element a0 ≤ X is a least

element of X if and only if a0 ≤ x for all x ∈ X. An element b0 ∈ X is a greatest

element of X if and only if x ≤ b0 for all x ∈ X. In addition, an element M ∈ X is

maximal if and only if M ≤ x implies x = M for all x ∈ X and an element m ∈ X is

minimal if and only if x ≤ m implies that x = m for all x ∈ X.

Proposition 2.26 Let (X,≤) be a linearly ordered set and let A ⊂ X. Then, A has at

most one minimal and at most one maximal element.

Proof. Let (A,≤) have two different minimal elements, say 0A and 0′A. Then, 0A ≤ 0′A

and 0′A ≤ 0A, which leads into the contradiction that 0A = 0′A. A similar argument can be

applied by considering two maximal elements, which will again lead into a contradiction.�
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Definition 2.27 Let X be a linearly ordered set. Let A ⊂ X. A is said to be cofinal in

X, if and only if for every x ∈ X, there exists a ∈ A, such that x ≤ a.

Definition 2.28 A linearly ordered set A is called well-ordered, if every nonempty subset

of A has a minimal element.

Let us now introduce some notation. By (a, b) we denote the set {x ∈ X : a < x < b},

by (−∞, a) we denote the set {x : x < a} and by (a,∞) we denote the set {x : x > a}.

Also, by [a, b] we denote the set {x ∈ X : a ≤ x ≤ b}, by (−∞, a] we denote the set

{x : x ≤ a} and by [a,∞) we denote the set {x : x ≥ a}. Last, we denote by [a, b) the

set {x ∈ X : a ≤ x < b} and by (a, b] the set {x ∈ X : a < x ≤ b}. No confusion should

be made with the real line intervals, even the fact that the natural topology on the real

numbers coincides with the order topology that is induced by the natural order on R; this

interval notation will be used for any ordered space and not for R exclusively.

Definition 2.29 If (X,<) is a linearly ordered set, then we define the order topology T<

on X to be the topology that is generated by the subbase:

{(−∞, a) : a ∈ X} ∪ {(b,∞) : b ∈ X}

Definition 2.30 Let X be a set, let < be a linear order on X and let T< be the order

topology on X. Then (X, T<) is called a linearly ordered topological space or LOTS, for

abbreviation.

In the literature the term orderable corresponds to a space, with the property that

there exists a linear order on the underlying set, such that the order topology coincides

with the original topology of the space. In this thesis we will use the term LOTS, instead

of orderable space. The term suborderable is used as a synonym for GO-space, which

refers to a subspace of a LOTS. GO-spaces, LOTS and ordinals (for ordinals see next
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section) are naturally occurring topological objects, and are canonical building blocks for

topological examples.

Example 2.31 A GO-space is not necessarily LOTS, i.e. LOTS is not a hereditary

property. For example, if we consider the set of real numbers with its natural order <,

then R is LOTS and the subset X = (1, 2)∪ {3} is therefore a GO-space but not a LOTS

under the natural order, with the subspace topology inherited from R. Indeed, one can

show that no linear order on X induces this topology on X. To see this suppose that ▹

is a linear order on X that does generate this topology. Note that in the space X, the

point 3 is isolated and the set I = (1, 2) is connected. There are three cases to consider.

(1) 3 ▹ x for all x ∈ I. (2) x ▹ 3 for all x ∈ I. (3) for some a, b ∈ I, x ▹ 3 ▹ y.

Case (3) is impossible since {x ∈ I : x ▹ 3} and {x ∈ I : 3 ▹ x} are non-empty open

sets that disconnect I. Case (2) is identical to case (1), so we assume that 3 ▹ x for

all x ∈ I. In this case, since 3 is isolated, there is some a ∈ I such that the ▹-open

interval J = {x ∈ X : x ▹ a} has the property that X ∩ J = {3}. This implies that the

▹-open interval K = (3, a) contains no points of I. Hence a is the least element of I

and therefore I − {a} is connected. But this is a contradiction since (1, 2)− {a} is not a

connected subset of R.

LOTS and GO-spaces have strong topological properties. In particular, in [11], the

authors show that a LOTS is a monotonically normal space. So, since any subspace of a

monotonically normal space is monotonically normal (see [16] and [11]), we conclude that

a GO-space will be monotonically normal, too. One can find interesting discussions on the

topic, including a proof (by Henno Brandsma) that LOTS implies monotone normality,

in the webpage “Ask a Topologist”, which is linked to the Topology Atlas.

The problem of characterising arbitrary LOTS and GO-spaces topologically was solved

by van Dalen and Wattel [24]. Previously, a number of characterisations of particular

LOTS had been given. There are, for example, characterisations of Q, [0, 1], R − Q and
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compact LOTS. There is a survey of such characterisations, that we also mentioned in our

historical overview (Chapter 1), written by S. Purish [21]. David J. Lutzer has written a

survey specifically for LOTS and GO-spaces [17].

2.3 Ordinals and Some of Their Topological Proper-

ties

Our main reference here will be Kunen’s book [14].

Definition 2.32 A set, X, is transitive, if every element of X is simultaneously a subset

of X.

Examples of transitive sets are 0, {0}, {0, {0}}, where we define 0 = ∅, but {{0}} is

not transitive.

Definition 2.33 A set X is an ordinal, if and only if it is transitive and well-ordered by

∈.

From now on we will denote ordinals using lower case Greek letters, and we will divide

them into three categories:

Definition 2.34 1. the zero ordinal, denoted by 0,

2. the successor ordinals, that are of the form: α+ 1 = α ∪ {α} and

3. the limit ordinals, which are ordinals that are neither 0, nor successor ordinals.

In particular, a limit ordinal, λ, is an ordinal which satisfies the following property:

λ =
∪
α<λ

α

The set of natural numbers, ω, is extended to ∈ −well-ordered sets, the ordinals, such

that every well-ordered set is isomorphic to a unique ordinal. Furthermore, each natural
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number corresponds to an ordinal. For example, 0 = ∅, 1 = 0 + 1 = 0 ∪ {0} = ∅ ∪ {∅} =

{∅} = {0}, 2 = 1+1 = 1∪{1} = {0}∪{1} = {0, 1}, 3 = 2+1 = 2∪{2} = {0, 1}∪{2} =

{0, 1, 2} etc.

The symbol we use to denote the least infinite ordinal is ω (the set of natural numbers).

The first uncountable ordinal is denoted by ω1. As a set, ω1 consists of all countable

ordinals. In general, we denote the α-th infinite initial ordinal by ωα, for each ordinal

α, where an initial ordinal is an ordinal having strictly greater cardinality than all of its

predecessors.

Definition 2.35 Two ordered sets X and Y are said to have the same order type, if they

are order-isomorphic, i.e. there exists a bijection f , from X to Y , so that f and f−1 are

order preserving.

In the case where X is linearly ordered, the monotonicity of f implies the monotonicity

of f−1. Furthermore, every well-ordered set is order-isomorphic to a unique ordinal.

Definition 2.36 Let (α,≤) be a well-ordered set. Then, the set αξ = {x ∈ α : x ∈ ξ} is

called an initial segment of α.

The proof of the statements, of the following proposition, is technical and follows

straight from the definitions. These statements can be found in any introductory book in

set theory, and we mention them as we will assume their knowledge in the next chapters.

Proposition 2.37 1. Every element of an ordinal is an ordinal, too.

2. No ordinal is an element of itself.

3. Let α be an ordinal. Then, for every ξ ∈ α, αξ = ξ.

4. For every pair of ordinals, α and β, the following holds:

α ∈ β ⇔ α ( β
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5. Two well-ordered sets are either isomorphic to one another or the one is isomorphic

to an initial segment of the other.

6. Every well-ordered set is isomorphic to exactly one ordinal.

7. Two isomorphic ordinals are equal to each other.

Let us now have a look at some topological properties of ordinals.

First, for defining a topology on an ordinal, we consider an arbitrary ordinal, ε, as a

LOTS (ordinals are obviously linearly ordered sets, as they are well-ordered, too). We

suppose α ∈ ε and we pick β < α and γ > α, if α is not maximal and also not minimal in

ε. Then, a neighbourhood of α will be of the form (β, γ). But, α < γ. So, α + 1 will be

the least ordinal greater than α, so that α+1 ≤ γ. So, α ∈ (β, α+1), which is equivalent

to saying that α ∈ {δ : β < δ < α + 1} = {δ : β < δ ≤ α} = (β, α] (because there is

nothing between α and α+1). Finally, the family {(β, α] : β < α} forms a neighbourhood

base for α, for every non-zero α ∈ ε.

Theorem 2.38 Let ε be an ordinal, with the usual order topology. Then, the following

hold:

1. If α ∈ ε, such that α = 0 or α is a successor ordinal, then α is an isolated point.

2. ε is a scattered LOTS.

Proof. If α is a successor ordinal, then α = β + 1, for some β < α. So,

(β, α] = {δ : β < δ 6 α} = {α},

because there exists nothing between β and α. So, if α is a successor ordinal, or the zero

ordinal, then α will be an isolated point.
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In addition, if ε is any type of ordinal, and if ∅ ̸= A ⊆ ε, then A has a least element, α

say (because a subset of an ordinal is a subset of a well-ordered set). Then, either α = 0

(which is isolated) or α > 0. So, (0, α] ∩A = {α}, which is an open set. So, α is isolated

in A, which implies that ε is a scattered space. �

Proposition 2.39 A non-zero ordinal, ε, is a successor ordinal, if and only if it is com-

pact with respect to the order topology.

Proof. (⇒) We first prove that if ε is a successor ordinal, then ε is compact. For this, let

ε = {α : α < ε} be a successor ordinal, i.e. ε = β + 1, for some β. Let also U be an open

cover for ε, where U = {Ui : i ∈ I}.

Let A1 = {x ∈ ε : (x, β] is contained in some U ∈ U}. Then, A1 has a least element,

α say. That is, there exists U1 ∈ U , such that (α1, β] ⊂ U1.

If α1 ̸= 0, let A2 = {x ∈ ε : (x, α1] is contained in some U ∈ U}. Then, A2 has a least

element. That is, there exists α2 ∈ ε and U2 ∈ U , such that (α2, α1] ⊂ U2.

Continuing like this, there will be a Un ∈ U , such that αn = 0, for some n, since,

otherwise, we would have formed a sequence α1 > α2 > . . ., which would contradict the

well-ordering of ε.

So, {U1, U2, · · · , Un} is a subfamily of U , which covers ε except, possibly, zero. Thus,

a subfamily of U , with n+ 1 elements, covers ε, and so ε is compact.

(⇐) For proving the converse, i.e. that if ε is compact, then ε is a successor ordinal,

we prove that the negation of this statement is false. More specifically, we consider

U = {[0, α] : α < λ} to be an open cover for a limit ordinal, λ.

Suppose U has a finite subcover:

[0, α1], [0, α2], · · · , [0, αn]

Let max{α1, · · · , αn} = γ < λ. Then, [0, αi] ⊆ [0, γ], ∀ i. So, ∪i6n[0, αi] = [0, γ]. But,
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[0, γ] ̸= λ, which leads to a contradiction. �

2.4 Club-sets, Stationary Sets and the Pressing Down

Lemma

Our main reference here will be Kunen [14] and the Handbook of Set Theoretic Topology

[16].

Definition 2.40 The cardinality of a set X is defined to be the least ordinal α, such that

there exists a one-to-one and onto mapping between X and α.

Ordinals, generally speaking, show the order, the position of an element, in a list of

elements, and cardinals show how many elements there are in a set.

Definition 2.41 The cofinality of an ordinal β, denoted by cf(β), is the least α, such

that there exists a mapping f : α→ β, such that β = sup{f(γ) : γ ∈ α}.

In other words, the cofinality of an ordinal β is the least ordinal α, which is the order

type of a cofinal subset of β.

Since a set, κ, is a cardinal, if and only if κ is the smallest ordinal of this size, we can

clearly see the connection between ordinals and cardinals. In particular, if α is an ordinal,

such that |α| = |κ|, then α > κ. Thus, for any ordinal, β, the cofinality of β is a cardinal

and is always less than or equal to β.

Definition 2.42 A cardinal, κ, is said to be regular, if and only if κ =cf(κ).

Remark 2.43 If A ⊆ λ, where λ is a limit ordinal, then A is cofinal in λ, if and only

if λ =
∪
A = supA, if and only if A is unbounded in λ, if and only if for every α ∈ λ,

there exists δ ∈ A, such that δ > α.
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Definition 2.44 Let λ be a limit ordinal. A set C ⊂ λ is closed in λ, if and only if it is

closed with respect to the order topology in λ.

Definition 2.45 A subset C, of a limit ordinal λ, is called club, if it is closed and

unbounded in λ.

As we have also mentioned in Chapter 1, Section 2, in van Douwen’s paper [26] club

sets are referred to as cubs. In addition, an ordered topological space X is called bear,

if it is noncompact, and has no disjoint cubs. So, an ordinal α = [0, α), in the order

topology, is bear, if the cofinality of α is greater than or equal to ω1 (see [26]).

Definition 2.46 Let κ be a regular cardinal. A subset, A, of κ, is said to be stationary,

if and only if A ∩ C ̸= ∅, for any club set C, of κ.

Lemma 2.47 Let λ be a limit ordinal. If f : λ → λ is a function, such that if β < µ

then f(β) ≤ f(µ), β, µ ∈ λ, i.e. f is non-decreasing, then f is continuous with respect to

the order topology, if and only if for every limit ordinal µ, f(µ) = sup{f(β) : β < µ}.

Proof. “⇒” Suppose f is continuous and f(µ) ≥ sup{f(β) : β < µ}. If β < µ, then

f(β) ≤ f(µ). Suppose f(µ) > σ = sup{f(β) : β < µ}. Then, (σ, f(µ)] is open in

the ordinal topology, so f−1(σ, f(µ)] is open, by continuity, and µ ∈ f−1(σ, f(µ)]. But

U ∩ (0, µ) = ∅, some open neighbourhood U , of µ; a contradiction, because µ is a limit

ordinal.

“⇐′′ Let f be not continuous. Then, there exists an open set U , such that f−1(U) is

not open. So, there must be a µ ∈ f−1(U), such that for every β < µ, (β, µ] * f−1(U).

Also, µ must be a limit ordinal and f is non-decreasing. So, there exists β < µ, such that

(β, µ] ∩ f−1(U) = {µ}. So, f(β, µ) ∩ U = ∅ and, finally, sup f(β, µ) < µ. �

Lemma 2.48 Let κ be an uncountable regular cardinal. Let Cα be a club in κ, under the

order topology in κ, for each α ∈ κ. Let also g : κ→ κ, be 1-1 and non-decreasing in the
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sense that f is non-decreasing in Lemma 2.47, where g is defined by g(γ) = inf
∩

α6γ Cα,

for any γ ∈ κ. Then, g is continuous, with respect to the usual order topology for κ.

Proof. Suppose that γ = sup{γi : i ∈ λ, λ ≤ κ}. Suppose also that δ = sup{g(γi) : i ∈ λ}.

Then,

g(γi) ∈
∩
α≤γi

Cα

and

δ ∈
∩
α≤γi

Cα

gives that

δ ∈
∩
α≤γ

Cα ;

so, δ > g(γ).

Suppose that δ > g(γ). Then, there exists an i, such that g(γ) 6 g(γi) < δ.

Since:

g(γi) /∈
∩

α≤γi+1

Cα

and

δ = inf
∩
α≤γ

Cα,

we have that

δ = g(γ),

which gives continuity, according to Lemma 2.47. �

Lemma 2.49 Let κ be an uncountable regular cardinal. Then, every increasing and con-

tinuous function, f : κ → κ, that is f(a) > a, for all a ∈ κ, has a club set of fixed

points.
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Proof. Let f be a continuous map (with respect to the usual order topology on κ) and

let f(a) > a, for all a ∈ κ. If we choose a0 ∈ κ, then a1 > f(a0), a2 > f(a1), etc. So, by

continuity, if a = limi∈ω ai, f(a) = lim f(ai). But ai ≤ f(ai) ≤ ai+1. So, the limit of f(ai)

is equal to a, i.e. a is a fixed point. Since a0 was chosen arbitrarily, the set of fixed points

of κ will be unbounded. But the set of fixed points of any continuous function (at least

for T2−spaces), is closed. So, we get a club set of fixed points. �

We will make a clear use of the Pressing Down Lemma, that we state and prove below,

in Example5.14, and we will link it to our Corollary 5.8 in the final section where we state

open problems.

Theorem 2.50 (Pressing Down Lemma) Let κ be an uncountable regular cardinal. If

f is a strictly decreasing function on a stationary set S ⊂ κ, then there exists a stationary

subset S ′ ⊂ S, with f constant on S ′.

(Note that this theorem is known as the Pressing Down Lemma, because it says that if

we map each a ∈ κ to something smaller than it, βa say, then a whole stationary set will

be mapped into one particular β. So, the whole stationary set presses down onto this β.)

Proof. Let f be a strictly decreasing function on S, where S is stationary in κ. Let us

also suppose that the statement of the theorem is not true. Then, we have the negation

of the logical sentence: there exists a stationary subset S ′ ⊂ S, with f constant in S ′.

Thus, for every α ∈ κ, f−1(α) is non-stationary, i.e. for all α ∈ κ, there exists a club set

Cα, such that Cα ∩ f−1(α) = ∅.

Let:

C = {β : ∀α ≤ β, β ∈ Cα}

We show that C contains a club set.

We define a map:

g : κ→ κ,
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with

g(γ) = inf
∩
α≤γ

Cα.

Then, g is continuous, as we have already seen in Lemma 2.48. But, according to Lemma

2.49, every increasing and continuous function has a club set of fixed points. Let D be

such a club set for g. Then, D ⊂ C, and since C contains a club set and S is stationary,

there is a nonzero β, such that β ∈ C ∩ S. But, since β ∈ Cα, ∀α ≤ β, we get that

f(β) > β, which leads into a contradiction. �
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Chapter 3

A Topological Solution to the

Orderability Problem

In 1973, J. van Dalen and E. Wattel (see [24]) gave complete topological characterisa-

tions of orderable and generalised ordered spaces, by the existence of special subbases

consisting of the union of nests. In this chapter we look again at van Dalen and Wattel’s

characterisation, from a more order-theoretic point of view. The results of the first two

sections appear in [7].

3.1 An Ordering Relation via Nests

The notion of nest will play a dominant role in our characterisations of LOTS and ordinals,

that will follow in the next chapters, as there is obviously a close link between nests and

linear orders. Here we present a few results that appear in article [7], as a preliminary

section to the characterisations of ordered spaces that will follow.

Definition 3.1 Let X be a set and let L ⊂ P(X). We call L a nest, if and only if L is

linearly ordered by inclusion.

Definition 3.2 Let X be a set and let L ⊂ P(X). We define ▹L on X by declaring that

x ▹L y, if and only if there exists some L ∈ L, such that x ∈ L and y /∈ L.
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The close link between nests and linear orders can be seen in Theorem 3.3, as follows.

Theorem 3.3 Let X be a set and let L ⊂ P(X). Then, the following hold:

1. If L is a nest, then ▹L is a transitive relation.

2. L is a nest, if and only if for every x, y ∈ X, either x = y or x 6L y or y 6L x.

3. L is T0-separating, if and only if for every x, y ∈ X, either x = y or x▹L y or y ▹L x.

4. L is a T0-separating nest, if and only if ▹L is a linear order.

Proof. 1. is immediate from the definition of ▹L.

For 2., suppose first that L is a nest. If x ̸= y and both x ▹L y and y ▹L x, then there

are M and N , in L, such that x ∈ M and y /∈ M and also y ∈ N and x /∈ N , so that

M is not a subset of N and N is not a subset of M , contradicting to the fact that L is

a nest. Conversely, suppose that M and N are elements of L. If M is not a subset of N

and if N is not a subset of M , then there are x ∈ M −N and y ∈ N −M , so that both

x ▹L y and y ▹L x.

For 3., if L is T0-separating and if x ̸= y, then there is N ∈ L, such that either x ∈ N

and y /∈ N , so that x ▹L y, or y ∈ N and x /∈ N , so that y ▹L x. Conversely, if x ̸= y, then

without loss of generality x ▹L y, so that there exists N ∈ L, such that x ∈ N and y /∈ N .

4. follows from 1., 2. and 3. �

Theorem 3.4 Let X be a set. Suppose that L and R are two nests on X. Then, L ∪R

is T1-separating, if and only if L and R are both T0-separating and ▹L = ◃R.

Proof. Suppose that L ∪ R is T1-separating. If x, y ∈ X, x ̸= y, then there are N and

M , in L ∪ R, such that x ∈ N and y /∈ N and also y ∈ M and x /∈ M . Without loss of

generality, let N ∈ L. Since L is a nest, we have that M /∈ L and so M ∈ R. Hence,
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x▹L y and x▹R y. Since x and y were arbitrary, it follows that L and R are T0-separating,

respectively, and ▹L = ◃R.

Conversely, suppose that L and R are two T0-separating nests, such that ▹L = ◃R. If

x, y ∈ X, x ̸= y, then there is L ∈ L, such that, without loss of generality, x ∈ L and

y /∈ L. Hence, x ▹L y, so that y ▹R x, which implies that there is some R ∈ R, such that

y ∈ R and x /∈ R. Hence, L ∪R is T1-separating. �

Having in mind what we have discussed in this Chapter so far, we introduce two nests

L and R, on a set X, whose union is T1-separating. Then, topologically speaking, if the

elements of L andR are open sets in the topology that is generated by L∪R, it is relatively

simple to show that the order topology generated by ▹L is coarser than the topology on

X, which is generated by L ∪ R. As we shall see in Theorem 3.11, the following notion

of interlocking, due to van Dalen and Wattel [24], is the key idea in ensuring that the

topology induced by the order ▹L coincides with the topology generated by the subbase

L ∪R.

Definition 3.5 Let X be a set and let S ⊂ P(X). We say that S is interlocking, if and

only if for each T ∈ S, such that:

T =
∩

{S : T ⊂ S, S ∈ S − {T}}

we have that:

T =
∪

{S : S ⊂ T, S ∈ S − {T}}.

By Lemma 3.6 that follows, we clarify the relationship between an interlocking nest

and the properties of its induced order.

Lemma 3.6 Let X be a set and let L be a T0-separating nest on X. Then, the following

hold for L ∈ L:
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1. L =
∩
{M ∈ L : L (M}, if and only if X − L has no ▹L-minimal element.

2. L =
∪
{M ∈ L :M ( L}, if and only if L has no ▹L-maximal element.

Proof. By Theorem 3.3, we get that ▹L is a linear order, on X.

For 1., if x is the ▹L-minimal element of X−L, then for all M ∈ L, such that L (M ,

we have that x ∈ M , so that L ̸=
∩
{M ∈ L : L ( M}. Conversely, if X − L has no

▹L-minimal element, then for all x /∈ L, there is some y ▹L x, such that y /∈ L. Since L is a

T0-separating nest, there is some M ∈ L, such that y ∈M and x /∈M . Since y ∈M −L,

we have that L ( M , so that x /∈
∩
{M ∈ L : L ( M} and L =

∩
{M ∈ L : L ( M}.

Then, 1. follows easily.

The proof of 2. is similar to the proof of 1. �

It is immediate, from Definition 3.5, that a collection L is interlocking, if and only if

for all L ∈ L, either L =
∪
{N ∈ L : N ( L} or L ̸=

∩
{N ∈ L : L ( N}. Theorem 3.3

and Lemma 3.6 therefore imply the following.

Theorem 3.7 Let X be a set and let L be a T0-separating nest on X. The following are

equivalent:

1. L is interlocking;

2. for each L ∈ L, if L has a ▹L-maximal element, then X − L has a ▹L-minimal

element;

3. for all L ∈ L, either L has no ▹L-maximal element or X − L has a ▹L-minimal

element.

Lemma 3.8 Let < be a linear order on X. Let L< = {(−∞, a) : a ∈ X} and R< =

{(a,∞) : a ∈ X}. Then, L< and R< are T0-separating, interlocking nests, such that

L< ∪R< is T1-separating and ▹L = ◃R =<. Moreover, L< ∪R< forms a subbase of order

open sets, for the order topology on X.
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Proof. Clearly, L and R are T0-separating nests, whose union is T1-separating. By The-

orem 3.4, ▹L = ◃R. If x < y, then L = (−∞, y) ∈ L and also x ∈ L and y /∈ L; so that

x ▹L y.

On the other hand, if x ▹L y, then for some z ∈ X, x ∈ (−∞, z) and y /∈ (−∞, z), so

that x < z and z 6 y, which implies that x < y.

It remains to show that L and R are interlocking. Suppose L = (−∞, a) ∈ L have

a <-maximal element, m. Then, m < a and, if m < x ≤ a, x = a, so that a is the <-

minimal element of X −L. By Theorem 3.7, L is interlocking. Using a similar argument,

we find that R is interlocking, too. Finally, from the definition of the order topology that

is induced from <, on X, L ∪R forms a subbase of order open sets. �

The definition, below, will help us add a few more comments on the properties of nests

and their relation to order theory.

Definition 3.9 Let X be a set and L ⊂ P(X). Then,

1. L is closed under (finite, countable, etc.) unions, if and only if for all (finite,

countable, etc.) M ⊂ L,
∪

M ∈ L.

2. L is closed under (finite, countable, etc.) intersections, if and only if for all (finite,

countable, etc.) M ⊂ L,
∩

M ∈ L.

Suppose that L and N are two nests, on X, such that ▹L = ▹N . How do L and N

relate?

Proposition 3.10 Let X be a set and let L ⊂ P(X). Then, the following are true:

1. If L ⊂ L∪ and each element of L∪ is a union of elements from L, in particular if

L∪ is the closure of L under arbitrary unions, then ▹L = ▹L∪.

2. If L ⊂ L∩ and each element of L∩ is an intersection of elements from L, in particular

if L∩ is the closure of L under arbitrary intersections, then ▹L = ▹L∩.
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3. If L is an interlocking nest, L ⊂ L∪ and each element of L∪ is a union of elements

from L, then L∪ is an interlocking nest.

4. If L is a T0-separating nest and L′ = {(−∞, a) : a ∈ X} is a nest of left-infinite

▹L-intervals, then L′ is an interlocking nest and ▹L = ▹L′.

Proof. For 1. and 2., we note first that, if L ∈ L, then L is in both L∪ and L∩, so that

x ▹L∪ y and x ▹L∩ y, whenever x ▹L y. If x ▹L∪ y, then for some M ⊂ L, x ∈
∪

M and

y /∈
∪
M, so that for any M ∈ M, x ∈ M and y /∈ M and so x ▹L y. If x ▹L∩ y, then for

some M ⊂ L, x ∈
∩
M and y /∈

∩
M, so that for some M ∈ M, x ∈ M and y /∈ M

and so x ▹L y. 3. is immediate from Definition 3.5 of interlocking. This is because, if

every element in the nest is the union of strictly smaller elements of the nest, then the

whole nest will be interlocking. 4. is straightforward, given the proof of Lemma 3.8; the

elements of L′ are the elements of the nest L< of 3.8. �

3.2 A Characterisation of LOTS via Nests: van Dalen

and Wattel revisited

In their paper [24], van Dalen and Wattel do not mention anything about T0-separating

nests in their characterisations. In particular, they use the notation Sx,−y, in order to

say that x belongs to an open set S ∈ S and y does not belong to S, where S is a nest.

Using the tools that we introduced in Chapter 2, and using the notation that we have

introduced so far, we are now in position to give a slightly different and more direct proof

of van Dalen and Wattel’s characterisation of GO-spaces and LOTS. These results appear

in [7].

Theorem 3.11 (van Dalen & Wattel) Let (X, T ) be a topological space. Then:

1. If L and R are two nests of open sets, whose union is T1-separating, then every

▹L-order open set is open, in X.
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2. X is a GO space, if and only if there are two nests, L and R, of open sets, whose

union is T1-separating and forms a subbase for T .

3. X is a LOTS, if and only if there are two interlocking nests L and R, of open sets,

whose union is T1-separating and forms a subbase for T .

Proof. 1. Clearly, for any a ∈ X, the ▹L-interval (−∞, a) =
∪
{L ∈ L : a /∈ L} and the

▹R-interval (a,∞) =
∪
{R ∈ R : a /∈ R}. It follows immediately that, if the sets in L and

R are open in X, then every order-open set is open in X, so that 1. holds.

For 3., if X is a LOTS, with linear order <, then the existence of such two nests

follows by Lemma 3.8. Conversely, suppose that there are two interlocking nests L and

R, of open sets, whose union is T1-separating, and forms a subbase for the topology on

X. By Theorem 3.3, ▹L is a linear order on X and, by 1., every order open set is open. It

remains to show that every open set is order-open. Since L ∪ R forms a subbase for the

topology T , on X, and since L and R are both nests, then every U ∈ T can be written

as a union of sets of the form L ∩ R, where L ∈ L and R ∈ R. It suffices, then, to show

that each L ∈ L and each R ∈ R is order-open. So, suppose that L ∈ L. If L has no

▹L-maximal element, then there is some A ⊂ L that is cofinal in L, with respect to the

order ▹L. But then, L =
∪

a∈A(−∞, a), so that L is order open. On the other hand, if L

does have a ▹L-maximal element, m, then since L is interlocking, X−L has a ▹L-minimal

element, m′, and L = (−∞,m] = (−∞,m′) is also order open. That each R ∈ R is order

open follows in exactly the same way.

To see 2., we should have in mind that X is a GO-space, if X ⊂ Y , for some LOTS

Y . Since Y is a LOTS, it has two interlocking nests of open sets, L and R, whose union

forms a T1-separating subbase for the topology on Y . Setting L′ = {L ∩X : L ∈ L} and

R′ = {R ∩X : R ∈ R}, we obtain two nests of sets open in X, whose union forms a T1-

separating subbase for the topology on X. For the converse, suppose that the space X has

two nests L and R, whose union forms a T1-separating subbase for X. We will construct
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a LOTS Y , such that X is a subspace of Y . Let L∗ be the set of all L, in L, such that L

has a ▹L-maximal element, but X − L has no ▹L-minimal element. Let R∗ be the set of

all R ∈ R, such that R has a ▹R-maximal element (i.e. a ▹L-minimal element), but X−R

has no ▹R-minimal element (i.e. no ▹L−maximal element). For each L ∈ L∗, let xL denote

the ▹L-maximal element of L and, for each R ∈ R∗, let yR denote the ▹L-minimal element

of R. For each L ∈ L∗ and R ∈ R∗ choose two distinct points x+L and y−R , respectively,

such that they both do not belong to X. Let Y = X ∪ {x+L : L ∈ L∗} ∪ {y−R : R ∈ R∗}.

Define π : Y → X, by:

π(x) =


x if x ∈ X,

xL if x = x+L ,

yR if x = y−R .

Define also the linear order <, on Y , by declaring x < y, if and only if either π(x) ̸= π(y)

and π(x) ▹L π(y) or x = xL and y = x+L or x = y−R and y = yR. Clearly, X ⊂ Y , and

the restriction of <, to X, is equal to ▹L. It remains to show that the topology T , on X,

coincides with the subspace topology on X, that is inherited from the order topology on

Y . As in the argument for 3., since L ∪ R is a subbase for T , consisting of two nests,

every U , in T , can be written as a union of sets of the form L ∩ R, where L ∈ L and

R ∈ R. It suffices, therefore, to show that every L ∈ L and R ∈ R can be written as

the intersection between an order-open set and X. If L /∈ L∗, then L = X ∩ π−1(L) and

π−1(L) is order-open. On the other hand, if L is in L∗, with L∗-maximal element xL, then

L = X ∩ (−∞, x+L). The argument for R ∈ R is the same. �

As van Dalen and Wattel point out ([24], Corollary 2.9), if X is a compact space and

if the two nests L and R form a T1-separating subbase for X, then both L and R are

interlocking, corresponding to the fact that a compact GO-space is a LOTS. In fact, more

is true.
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Theorem 3.12 Let X be a space and let L and R be two nests of open sets, whose union

forms a T1-separating subbase for X. Suppose L has the property that for all L ∈ L, there

is a compact set C, such that L ⊂ C. Then, the following are true:

1. L is interlocking.

2. If R is not interlocking, then this is only because there is a singleton R0 ∈ R, such

that R0 =
∩
{R ∈ R : R0 ( R}.

Proof. 1. Suppose that L is not interlocking, for a contradiction. By Theorem 3.7, there is

some L ∈ L, such that L has a ▹L-maximal element, say xL, but L =
∩
{M ∈ L : L (M}.

Choose some N ∈ L and a compact set C, such that L ( N ⊂ C. Then, there is an

infinite decreasing subset M (“decreasing”: M is a nest, so it is a family of sets, which

is linearly ordered via inclusion ⊂ and Mj ⊂ Mi, i < j) of {M ∈ L : L ( M ⊂ N ⊂ C},

such that
∩
M = L. Since L ∪R is T1-separating, for each M and M ′, in M, such that

M (M ′, there is xM ∈M , yM ∈M ′ and R ∈ R, such that xM /∈ R∩M and yM ∈ R∩M ′.

But then, there exists an infinite increasing subset S (“increasing”: M is a nest, so it is

a family of sets, which is linearly ordered via inclusion ⊂ and Mi ⊂Mj, i < j), of R, that

covers X−L. It follows that {L}∪S is an open cover of C, with no finite subcover. This

contradiction proves 1.

2. Suppose now that R is not interlocking, so that for some R ∈ R, R has a ▹L-

minimal element xR, but R = ∩{S ∈ R : R ( S}. If R is not a singleton (and thus R is

not the least element of R), then there is some y ∈ R, such that xR ▹L y. Let M ∈ L be

such that xR ∈M and y /∈M . Let also C be a compact set, such that M ⊂ C. Then, as

for 1., {R} ∪ {L ∈ L : L ∩ R = ∅} is a cover of C by sets open in X, that has no finite

subcover. �

Remark 3.13 Let X = [0, 1) ∪ {2}, L′ = {(−∞, a) : a ∈ R} and L = {L ∩X : L ∈ L′}.

We remark that the set X, together with its subspace topology inherited from the topology of
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the real line, is a non-compact GO-space, but the ordering ▹L cannot “spot” the difference

between X and the space Y = [0, 2], because the order cannot tell whether there is a gap

between [0, 1) and 2 or not. The property of interlocking (Lemma 3.6) comes to the rescue,

as we shall see in the example that follows.

Example 3.14 Let < be the usual order on R. We recall that the Sorgenfrey line is

R, together with the topology generated by the base of half-open <-intervals {(a, b] : a <

b}. Clearly, the two nests L = {(−∞, a] : a ∈ R} and R = {(a,∞) : a ∈ R} form

a T1-separating subbase for the Sorgenfrey line. Also, R is interlocking, but L is not

interlocking. On the other hand, <= ▹L.

The Michael line is formed from the real line, by defining the topology of the set of

real numbers declaring each irrational number to be an isolated point on the real line. The

nests:

N = {(−∞, q) : q ∈ Q} ∪ {(−∞, r] : r /∈ Q}

and

M = {(q,∞) : q ∈ Q} ∪ {[r,∞) : r /∈ Q}

form a T1-separating subbase for the Michael line. We notice that the nests L, N and

Q = {(−∞, q) : q ∈ Q} are all distinct. Indeed, L and Q are disjoint, yet all three

generate the usual order on R.

3.3 Connectedness and Orderability

In this section we give a characterisation of interlockingness via connectedness. This will

give a condition for a connected space to be LOTS.

Definition 3.15 A partial order <, on a set X, is said to be dense if, for all x and y in

X for which x < y, there exists some z in X, such that x < z < y.
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So, given Definition 3.15, the next lemma follows naturally.

Lemma 3.16 Let X be a set and let L be a nest on X. Then, the ordering ▹L is dense

in X, if and only if for every x, y ∈ X, x ̸= y, there exist L,M ∈ L, L ( M , such that

x ∈ L and y /∈M or y ∈ L and x /∈M .

Proposition 3.17 Let X be a set and let L,R be two nests of open sets on X, such that

L∪R creates a T1-separating subbase for a topology on X. If X is connected, with respect

to the topology that is induced by the union of L and R, then ▹L is dense in X.

Proof. Suppose ▹L is not dense. Then, there exist x, y ∈ X, such that (x, y) = ∅. So,

there exists L ∈ L, such that x ∈ L and y /∈ L and there also exists R ∈ R, such that

x /∈ R and y ∈ R and also L ∩R = ∅ and L ∪R = X. So, X is not connected.

In Theorem 3.7 we described interlocking nests, in terms of maximal and minimal

elements. Here we use this result, in order to give a characterisation of connected spaces

via nests.

Theorem 3.18 Let X be a set and let L,R be two nests of open sets on X, such that

L∪R creates a T1-separating subbase for a topology on X. If X is connected, with respect

to the topology with subbase L ∪R, then L and R are interlocking nests.

Proof. If L is not interlocking then, according to Theorem 3.7, there exists L ∈ L, such

that L = (−∞, x], but X − L has no minimal element. The set L is open, as a subbasic

element for the topology that is generated by L∪R. So, for every z ∈ X−L, there exists

z′, such that x ▹L z
′ ▹L z. But, there exists Rz ∈ R, such that z′ /∈ Rz and z ∈ Rz. So,

X − L =
∪

z /∈LRz, i.e. Rz ∩ L = ∅. Thus, X − L is open and L is open, hence X is not

connected. In a similar way, R is interlocking, too. �

Theorem 3.18 permits us now to view LOTS, in the light of connectedness.
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Corollary 3.19 Let X be a set and let L,R be two nests of open sets on X, such that

L∪R creates a T1-separating subbase for a topology on X. If X is connected with respect

to the topology with subbase L ∪R, then X is a LOTS.

Proof. The proof follows immediately from the statements of Theorem 3.11 and Theorem

3.18. �

3.4 Some Order Theoretic Implications stemming from

the Interval Topology

In this section we use properties of nests in order to examine order-theoretic properties

of linearly ordered sets via the interval topology.

3.4.1 A Close Up to the Interval Topology via EL, when L is

T0-separating.

Definition 3.20 Let (X,<) be a partially ordered set and A ⊂ X. We define ↑ A ⊂ X,

to be the set:

↑ A = {x : x ∈ X and there exists y ∈ A, such that y ≤ x}.

We also define ↓ A ⊂ X, to be the set:

↓ A = {x : x ∈ X and there exists y ∈ A, such that x ≤ y}.

We remind that the upper topology TU is generated by the subbase S = {X− ↓ x : x ∈

X} and the lower topology Tl is generated by the subbase S = {X− ↑ x : x ∈ X}. The

interval topology Tin is defined as Tin = TU ∨ Tl, where ∨ stands for supremum.
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We will now construct the interval topology in terms of nests, and use our observations

in the next subsection, in order to examine more closely properties of the line via the

interval topology. Let X be a set and let L,R be two nests on X, such that L ∪ R

T1-separates X. According to Theorem 3.4 each of L and R is T0-separating, so ▹L = ◃R

is a linear order.

Construction 3.21 We consider the lower topology on X, with respect to EL. We denote

this topology by T EL
l . Then, for each y ∈ X, ↑ y = {x ∈ X : y EL x}. So, X− ↑ y =

{x ∈ X : x ▹L y}. This happens, because L is a T0-separating nest. Thus, a subbase for

the lower topology on X, which is generated by EL, will be of the form:

S(T EL
l ) = {X− ↑ y : y ∈ X}.

We now consider the upper topology on X, with respect to EL. We denote this topology

by T EL
U . Then, for each y ∈ X, ↓ y = {x ∈ X : x EL y}. So, X− ↓ y = {x ∈ X : y ▹L x}.

Thus, a subbase for the upper topology on X, that is generated by EL, is of the form:

S(T EL
U ) = {X− ↓ y : y ∈ X}

We construct the interval topology which is generated by L, denoted by T L
in , as follows:

T L
in = T EL

U ∨ T EL
l .

A subbase for this topology will be:

Sin = S(T EL
U ) ∪ S(T EL

l ).

Remark 3.22 (We remind that L, throughout this subsection, T0-separates X.)
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1. In our construction of the interval topology we used a reflexive order EL, rather

than a non-reflexive one ▹L. This is because the non-reflexive ▹L will generate an

interval topology equal to the discrete topology on X (a trivial case to study). Indeed,

↓ a = {x ∈ X : x ▹L a} and so X− ↓ a = {x ∈ X : a EL x} = (−∞, a]. In a similar

fashion, x− ↑ a = [a,∞) and so (−∞, a] ∩ [a,∞) = {a}.

2. The sets in T EL
U form a nest and the sets in T EL

l also form a nest. It will be

particularly useful to remember this, whenever we compare T L
in with TL∪R, in the

next subsection. It will be also useful to bear in mind that in the set of real numbers,

equipped with its usual topology, T L
in = TL∪R = T▹L, where L = {(−∞, a) : a ∈ R}

and ▹L = ◃R.

3.4.2 Order Theoretic Properties of the Line via the Interval

Topology.

Consider the set of real numbers R, equipped with its usual topology. Let L = {(−∞, a) :

a ∈ R}. We remark that for each (−∞, a) ∈ L, supL = a /∈ L. We also remark that for

each k ∈ R, there exists L = (−∞, k) ∈ L, such that supL = k. We will now generalise

this remark to arbitrary sets. In particular, we will use the following three conditions,

namely (C1), (C2), (C3), in order to investigate the relationship between the topologies

TL∪R and T L
in ; this relationship will be a measure of linearity, that is, it will show how

close -or not- is a space from a LOTS, regarding its structure. From now on, sup will be

used for abbreviating the term supremum and inf will abbreviate the term infimum.

Let L be a nest on a set X. We introduce the following three conditions:

(C1) For each L ∈ L, there exists supL with respect EL.

(C2) For each L ∈ L, there exists supL with respect to EL, such that supL ∈ X − L.
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(C3) For each x, there exists L ∈ L, such that there exists supL = x ∈ X − L and also

property (C2) holds.

We deduce the following relations between (C1), (C2) and (C3).

Proposition 3.23

1. (C3) implies (C2).

2. (C2) implies (C1).

3. (C1) does not always imply (C2).

4. (C2) does not always imply (C3).

5. (C3) implies that L is T0-separating.

6. L T0-separating implies neither (C1) nor (C2) nor (C3).

7. Neither (C1) nor (C2) imply that L is T0-separating.

Proof. The statement that (C3) implies (C2) follows immediately from the definition of

(C3). Similarly, (C2) implies (C1) by the definition of (C2). Example 3.24 shows that

(C1) does not always imply (C2) or T0-separation. Example 3.25 shows that (C2) does

not always imply (C3) or T0-separation. Proposition 3.30 shows that (C3) implies T0-

separation. Examples 3.29, 3.28 and 3.27 show that the T0-separation of L does not

necessarily imply property (C1) or (C2) or (C3). �

Example 3.24 Let X = (0, 1) and consider the nest L = {(0, a] : a ∈ R, 1
2
≤ a < 1}, on

X. We remark that condition (C1) is satisfied, but (C2) is not satisfied. This is because

for each L ∈ L, supL = a ∈ L. This counterexample shows that (C1) does not always

imply (C2). We also see that L is not T0-separating, because there does not exist L ∈ L

that T0-separates, say,
1
4
and 1

8
. This shows that condition (C1) does not always imply

T0-separation.
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Example 3.25 Let X = (0, 1) and consider the nest L = {(0, a) : a ∈ R, 1
2
≤ a < 1}, on

X. We remark that condition (C2) is satisfied, but condition (C3) is not satisfied. This

is because for each L ∈ L, supL = a /∈ L; this shows that (C2) is satisfied. But we also

see that there does not exist L ∈ L, such that supL = 1
4
∈ X − L. This counterexample

shows that (C2) does not always imply (C3) and also (C2) does not always imply that L

is T0-separating. Indeed, there does not exist L ∈ L that T0-separates
1
4
and 1

8
.

Remark 3.26 The results in both Examples 3.25 and 3.24 permit us to make some con-

clusions on the connection between T0-separating nests and linear orders. It follows from

the definition of nest and T0-separation that a nest is T0-separating, if and only if EL is a

linear order. In addition, in Lemma 9 from [7], we get that if < is a linear order on a set

X, and L< = {(−∞, a) : a ∈ X}, then L< is T0-separating. Why isn’t the nest L, in both

of the above examples 3.25 and 3.24, T0-separating? The answer lies on the fact that in

the mentioned lemma from [7], the elements of the nest L< satisfy an 1-1 correspondence

with the elements of the set X, something that does not happen in our examples. So, the

set X, in Examples 3.25 and 3.24 is not linearly ordered via EL.

Example 3.27 Let X = {a, b} and consider the nest L = {{a}}, on X. We remark that

L is T0-separating. Indeed, since a ̸= b, there exists L = {a} ∈ L, such that a ∈ {a} and

b /∈ {a}. We remark that (C3) is not satisfied though. Indeed, for b ∈ X, there does not

exist L ∈ L, such that supL = b. We observe that L = {a} ∈ L and that supL = a.

Example 3.28 Consider X = R and the nest L = {(−∞, a] : a ∈ R}, on R. One can

easily see that L T0-separates R. But, for each L ∈ L, we have that sup(−∞, a] = a ∈ L.

So, property (C2) is not satisfied. With this example we see that the T0-separation property

of L does not necessarily imply property (C2).
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Example 3.29 Let X = Q. For each r ∈ R, let Lr = (−∞, r)∩X and let L = {Lr : r ∈

R}. Certainly L is T0-separating and L generates the usual order on Q. But L√
2 does

not have a supremum in X.

We will now prove that property (C3) implies the T0-separation of L.

Proposition 3.30 Let X be a set and let L be a nest on X that satisfies property (C3).

Then, L T0-separates X.

Proof. Let x ̸= y ∈ X. By (C3), there exists Lx ∈ L, such that supLx = x and there also

exists Ly ∈ L, such that supLy = y. Since L is a nest on X, we have that either Lx ⊂ Ly

or Ly ⊂ Lx. If Lx ⊂ Ly, then supLx EL supLy, which implies that x ▹L y. If Ly ⊂ Lx, we

have that supLy EL supLx, which implies that y ▹L x. So, either x ▹L y or y ▹L x, proving

that L T0-separates X. �

Lemma 3.31 Let X be a set and let L ⊂ P(X) be a nest.

1. If condition (C1) is satisfied and supL = k, then L ⊃ X− ↑ k.

2. If condition (C2) is satisfied and supL = k, then L ⊂ X− ↑ k.

Proof. 1. Let L ∈ L and let k = supL ∈ X. Then, for each x ∈ L, x EL k. Let y ∈ X−L.

Since x ∈ L and y /∈ L, we have that x ▹L y, for each x. So, k EL y, and so y ∈↑ k. Thus,

for each y ∈ X−L, we have that y ∈↑ k. The latter gives that X−L ⊂↑ k, which implies

that L ⊃ X− ↑ k.

2. For each x ∈ L, we have x ▹L k, so k 5 x 1, which implies that x ∈ X− ↑ k. Thus,

L ⊂ X− ↑ k. �
1Indeed, if k = x we get a contradiction. If x ▹L k, then there exists L1 ∈ L, such that x ∈ L1 and

k /∈ L1. If k ▹L x, then there exists L2 ∈ L, such that k ∈ L2 and x /∈ L2. But L is a nest. If L1 ⊂ L2,
then x /∈ L1 and x ∈ L1, a contradiction. If L2 ⊂ L1 we get a contradiction in a similar way.
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From now on, TL will denote the topology generated by the nest L, on X, and Tl the

lower topology on X.

Proposition 3.32 Let X be a set and let L ⊂ P(X) be a nest. If condition (C2) is

satisfied, then:

1. L = X− ↑ k, where k = supL, with respect to ▹L, for each L ∈ L.

2. TL ⊂ Tl.

Proof. 1. follows by Lemma 3.31.

2. As we have seen in section 3, a subbase for Tl is of the form S = {X− ↑ k : k ∈ X}.

Let L ∈ L. Part 1. gives that L = X− ↑ k, so L ∈ Tl and the result follows. �

Theorem 3.33 Let X be a set and let L ⊂ P(X) be a nest on X, such that condition

(C3) is satisfied. Then, TL = Tl.

Proof. Proposition 3.32 gives that TL ⊂ Tl. We now consider a subbasic open set of Tl

of the form X− ↑ x. Then, there exists L ∈ L, such that supL = x. But, according to

Proposition 3.32, L = X− ↑ x. So, TL ⊂ Tl and the statement of the theorem follows. �

Remark 3.34 Let L be a nest on a set X. Let R be another nest on X, such that there

exists a mapping from L to R, so that x ▹L y, if and only if y ▹R x. So, x ▹L y, if and only

if there exists L ∈ L, such that x ∈ L and y /∈ L, if and only if there exists R ∈ R, such

that y ∈ R and x /∈ R.

Note that Theorem 3.4, from [7] requests L ∪ R to form a T1-separating subbase for

X; here we do not demand this, so neither L nor R will necessarily T0-separate X. We

keep only the dual order-theoretic properties of these two nests, but we do not necessarily

keep the property that restricts them on a line. So, we are now able to rewrite for R, in

a dual way, the properties that hold for L.
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Definition 3.35 Let X be a set and let L and R be two nests on X, that satisfy the

properties of Remark 3.34. We call such nests dual nests. L will be called dual to R and

R dual to L.

LetX be a set and letR be dual to the nest L, where L satisfies properties (C1),(C2),(C3).

In a similar fashion, we define the following properties for R:

(C1)* For each R ∈ R, there exists supR with respect to DR.

(Equivalently, for each R ∈ R, there exists inf R with respect to EL.)

(C2)* For each R ∈ R, there exists supR with respect to DR, such that supR ∈ X −R.

(Equivalently, for each R ∈ R there exists inf R with respect to EL, such that

inf R ∈ X −R).

(C3)* For each x ∈ X, there exists R ∈ R, such that there exists supR ∈ X − R with

respect to DR and also property (C2)* holds.

(Equivalently, for each x ∈ X, there exists R ∈ R, such that there exists inf R ∈

X −R, with respect to EL and also property (C2)* holds).

One easily observes that Proposition 3.23 holds, too, if we substitute (C1)*, (C2)*,

(C3)* in the place of (C1), (C2),(C3), respectively.

Proposition 3.32 can be also stated with respect to R in a dual way.

Proposition 3.36 Let X be a set and let R ⊂ P(X) be a nest. If condition (C2)* is

satisfied, then:

1. R = X− ↑ k, where k = supR with respect to DR for each R ∈ R (or, equivalently,

R = X− ↓ k, where k = inf R with respect to EL).

2. TR ⊂ TU .

In a similar way, we can restate Theorem 3.33, with respect to R.

46



Theorem 3.37 Let X be a set and let R ⊂ P(X) be a nest on X, such that condition

(C3)* is satisfied. Then TR = TU .

We can now sum up Theorems 3.33 and 3.37, in the following theorem.

Theorem 3.38 Let X be a set and let L and R be two dual nests on X.

1. If L satisfies (C2) and if R satisfies (C2)*, then TL∪R ⊂ T L
in .

2. If L satisfies (C3) and if R satisfies (C3)*, then TL∪R = T L
in .

As we can see in the two examples that follow, the conditions of statements 1. and 2.

from Theorem 3.38 are sufficient but not necessary.

Example 3.39 Let X = {x1, x2} and let L = {{x1}}. Then, TL = {{x1}, {x1, x2}, ∅}

is the topology on X which is generated by L. We observe that x1 ▹L x2. Then, ↑ x1 =

{x1, x2}, X− ↑ x1 = ∅, ↑ x2 = {x2} and X− ↑ x2 = {x1}. So, the lower topology

Tl = {∅, {x1}, {x1, x2}} = TL. Now, we define R = {{x2}} and x2 ◃R x1, if and only

if there exists R ∈ R, such that x2 ∈ R and x1 /∈ R. So, x1 ▹L x2 if and only if

x2 ◃R x1. Then, TR = {{x2}, {x1, x2}} is the topology on X which is induced by R. Also,

↓ x1 = {x1}, ↓ x2 = {x1, x2}, X− ↓ x1 = {x2} and X− ↓ x2 = ∅. So, the upper topology

TU = {∅, {x2}, {x1, x2}} = TR.

From the above, we conclude that TL∪R = T L
in is equal to the discrete topology, although

property (C3) is not satisfied. This is because x2 is not the supremum of any element of

L.

Example 3.40 Let X = {x1, x2, x3, x4} and let L = {{x1, x2}, {x1, x2, x3, x4}}. Then,

one can easily see that x2▹Lx3, x2▹Lx4, x1▹Lx3 and x1▹Lx4. Also, ↑ x1 = {y ∈ X : x1 EL

y} = {x1, x3, x4} and X− ↑ x1 = {x2}. Similarly, ↑ x2 = {x2, x3, x4} and X− ↑ x2 =

{x1}; ↑ x3 = {x3} and X− ↑ x3 = {x1, x2, x4}; ↑ x4 = {x4} and X− ↑ x4 = {x1, x2, x3}.
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The lower topology now takes the form Tl = {∅, {x1}, {x2}, {x1, x2}, {x1, x2, x3}, {x1, x2, x4},

{x1, x2, x3, x4}} and TL = {∅, {x1, x2}, {x1, x2, x3, x4}}. So, TL ⊂ Tl, but L is not T0-

separating, because x3 ̸= x4 and there is no L ∈ L that T0-separates x3 and x4. Also, L

does not satisfy property (C2), because sup{x1, x2} does not exist.

Now, we consider R = {{x3, x4}, {x1, x2, x3, x4}}, and we observe that x3 ◃R x1, x3 ◃R

x2, x4 ◃Rx2 and x4 ◃Rx3. So, there exists a mapping between the nests L and R, and their

duality can be seen from the fact that x3◃Rx1 iff x1▹Lx3, x3◃Rx2 iff x2▹Lx3, x4◃Rx2 iff x2▹L

x4 and x4◃Rx1 iff x1▹Lx4. It can be easily deduced that TR = {∅, {x3, x4}, {x1, x2, x3, x4}}

and that the upper topology is TU = {∅, {x2, x3, x4}, {x1, x3, x4}, {x3}, {x4},

{x3, x4}, {x1, x2, x3, x4}}. Also, R is not T0-separating, neither satisfies property (C2)*

and we deduce that TR ⊂ TU . Last, but not least, we see that T L
in is the discrete topology,

thus TL∪R ⊂ T L
in .

In Remark 3.22 we stated that a non-reflexive order that is induced by a nest L makes

T L
in equal to the discrete topology, so it will automatically be finer than TL∪R. If the order

is reflexive, then Theorem 3.38 shows that there is a case where T L
in is equal to TL∪R, and

this is when properties (C3) and (C3)* are both satisfied. But (C3) (resp. (C3)*) implies

that L (resp. R) is T0-separating, while in Example 3.27 (and Proposition 3.23) we see

that L can be T0-separating, without (C3) being satisfied. So, the two topologies coincide

in certain type of spaces that are T0-separating under properties (C3) and (C3)*.

The real line, with its natural topology that is generated by the nests L = {(−∞, a) :

a ∈ R} and R = {(a,∞) : a ∈ R} is a specific example of a space of the type that

is described in Theorem 3.38 2. Question: are there other LOTS, apart from the real

line with its natural order, such that 2. from Theorem 3.38 is satisfied? The answer is

positive. Consider, for example, sum of copies of the real line. Other spaces admitting

such nests are connected orderable spaces with no minimal and maximal elements (for

instance the long line).
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Furthermore, we remark that if property (C2) alone is satisfied, then for each L ∈ L we

have that supL ∈ X − L, so that supL /∈ L. So, for each L ∈ L there is no EL-maximal

element in L, because for each L ∈ L there exists k ∈ L, x EL k, for each x ∈ L, so that

k = supL. In a similar fashion, we can obtain a dual property for the dual nest R, with

the ordering DR. We will use this remark in order to find conditions which imply the

orderability problem that was introduced by J. van Dalen and E. Wattel, in [24].

Theorem 3.41 Let X be a set and let L,R be two nests on X, such that ▹L = ◃R. Let

also properties (C3) and (C3)* be satisfied. Then, X is a LOTS.

Proof. In section 1. we stated the characterization of LOTS that was introduced by van

Dalen and Wattel. We observe that property (C3) (similarly (C3)*) implies T0-separation

and interlocking (see Theorem ??), so that the conditions of van Dalen and Wattel follow

immediately and so X is a LOTS. �

Property (C3) (resp. (C3)*) implies naturally T0-separation and interlocking. Prop-

erty (C2) (resp. (C2)*) implies interlocking, if we add T0-separation. So, we can restate

Theorem 3.41 as follows:

Theorem 3.42 Let X be a set and let L,R be two nests on X, such that ▹L = ◃R and

each of L and R T0-separates X, respectively. Let also properties (C2) and (C2)* be

satisfied. Then, X is a LOTS.

Question: what is the difference between LOTS that are implied by Theorem 3.41

from LOTS being implied by Theorem 3.42? The answer is that the two theorems claim

the same result. Namely, for a nest L of subsets of X, (C3) follows by (C2), provided

that EL is a linear order on X. Indeed, suppose EL is a linear order on X and L satisfies

(C2). Then, the nest H = {{x ∈ X : x ▹L y} : y ∈ X} satisfies (C3) and ▹H = ▹L. To see

this, take a point y ∈ X. If y is the EL-first element of X, then it is the EL-supremum of
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the empty set. Suppose there exists x ∈ X, with x▹L y and let H = {x ∈ X : x▹L y} ∈ H.

If y is not the EL-supremum of H, then H has a EL-maximal element, namely z. Since

z ▹L y, there exists Lz ∈ L, such that z ∈ Lz and y /∈ Lz. If x ∈ H and x ̸= z, it follows

that x ▹L z and, by the same reason, x ∈ Lx, for some Lx ∈ L for which z /∈ Lx. Since L

is a nest, x ∈ Lx ⊂ Lz. Thus, H ⊂ Lz and, in fact, H = Lz, because y /∈ Lz. By (C2),

the ▹L-supremum of H = Lz does not belong to H, a contradiction, because z ∈ H and

x ▹L z, for every x ∈ H.

The following example shows that both properties (C2) and (C2)* do not necessarily

imply T0-separation. So, Theorem 3.42 without the T0-separation property of L and

R generates spaces that are not necessarily linearly ordered, but carry analogous order

theoretic properties to linearly ordered sets.

Example 3.43 Consider the set of real numbers R and the nests L = {(−∞, n) : n ∈ N}

and R = {(n,∞) : n ∈ N} on R. Then, L and R satisfy conditions (C2) and (C2)*,

respectively. Indeed, for each L = (−∞, n) ∈ L, supL = n /∈ L and for each R ∈ R,

inf(n,∞) = n /∈ R. We also remark, from the definition of T0-separation, that neither L

nor R is T0-separating.
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Chapter 4

FUN-Spaces

Motivated by van Dalen and Wattel’s topological characterisation of LOTS, we used two

nests (Chapter 3) in order to characterise LOTS in simpler, more order-theoretic terms. In

this chapter, we observe that a subbase, which is given by a union of more than two nests,

generates spaces that are not of high order-theoretic interest. In particular, we give an

example of a countable space, X, which is generated by the union of three nests L,R,P,

each T0-separating X, such that their union T1-separates X, but does not T2-separate X.

4.1 Neight and Dimension

Looking at the example of particular vector spaces X, e.g. X = R2, we see that the

natural product topology X2 can be given by four nests which intersect in basic-open

squares, but it can be also given by three nests, intersecting in basic-open triangles. Is

there a pattern, for more abstract spaces, which gives the minimum number of nests, that

generate the natural product topology? This question has been answered by Will Brian,

from the University of Oxford, who is working independently in these ideas, and he is

producing results of high interest. In particular, W.B. is currently examining properties

of the neight of a topological space X, that is, the nested weight of X.
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Definition 4.1 The neight (nested weight), of a topological space X, is the smallest num-

ber of nests, on X, whose union provides a subbase for the topology on X.

Obviously, for every open set A, of a topological space X, the set {A} is a nest, so

one can easily conclude that for every topological space there exists a subbase which can

be written as a union of nests. So, for every topological space there is a least cardinal, κ,

so that the topology on X is generated by a subbase which can be written as the union

of κ nests on X. This cardinal is called the neight of X, denoted by n(X). The neight

cardinal function was first introduced by A.M. Yurovetskĭı, in [29].

Following Theorem 3.11, we see that if X is LOTS, then n = 2. The fact that GO-

spaces are subspaces of LOTS permits us to say that any GO-space has at most dimension

one. A large part of W.B.’s work, on nests, is examining the extent to which subbases

consisting of nests generalise the concept of GO-space and the extent to which the n-

function, or rather the function X 7→ n(X)− 1, acts like a measure of dimension. In both

cases, the focus is on spaces of finite neight, which are called FUN-spaces (Finite Union

of Nests - Spaces).

Definition 4.2 If the neight of a topological space X is finite, then the space is called a

FUN-space.

We will now recall the definition of the small inductive dimension, in order to give a

summary of some basic results of W. Brian’s work.

Definition 4.3 A space X is said to be n-dimensional, if it admits a base of sets with

(n− 1)-dimensional boundaries.

Formally, one starts with ind(∅) = −1. A space X satisfies ind(X)≤ n, if and only if

there exists a base B, of X, such that each B ∈ B satisfies ind(∂B) ≤ n− 1. We say that

the small inductive dimension of X is equal to n, whenever it is true that ind(X) ≤ n, but
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it is not true that ind(X) ≤ m, for m < n. If, for any n, it is not true that ind(X) ≤ n,

we then write ind(X) = ∞.

W. Brian is dealing only with spaces for which ind(X) ̸= ∞, i.e. with spaces of finite

small inductive dimension. Here we highlight some of his results, recalling that the Sum

Theorem holds for a space X if, whenever A,B are closed subsets of X:

ind(A ∪B) = max{ind(A), ind(B)}

Theorem 4.4 (W.B.) If X is a FUN separable metric space, then ind(X) ≤ n(X)− 1.

Corollary 4.5 (W.B.) For every n ∈ N, n(Rn)− 1 = n.

The proof of Corollary 4.5 is interesting: for every n ∈ N, the union of a collection of n+1

nests forms a subbase for Rn. Denoting such a collection by V , where |V | = n + 1, one

can observe that the points of V are vertices of an n-dimensional polyhedron, whose faces

are, respectively, (n − 1)-dimensional hypersurfaces: each of these n + 1 hypersurfaces

defines a nest in Rn.

Corollary 4.6 (W.B.) Let X be a regular FUN space, and suppose that the sum theorem

holds in X. Then, ind(X) ≤ n(X).

Lemma 4.7 (Yurovetskĭı) Let X and Y be topological spaces and let X be a FUN-space.

Then:

n(X × Y )− 1 ≤ [n(X)− 1] + [n(Y )− 1] + 1.

Theorem 4.8 (W.B.) There are compact LOTS X and Y , such that n(X × Y ) − 1 =

[n(X)− 1] + [n(Y )− 1] + 1.

Theorem 4.8 states that n − 1 is pathological as a measure of dimension, at least for

compact LOTS, because it shows that the inequality in Lemma 4.7 cannot be sharpened,
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by omitting the “+1”. The particular example that W. Brian gives, is the following:

X = {0} × (ω + 1) ∪ {1} × ω1 is a space, which is ordered as (i, α) < (j, β), if and only

if i < j, or i = j = 0 and α < β, or i = j = 1 and β < α, and its topology is induced by

<, i.e. X is the ordered space obtained by concatenating a copy of ω + 1 with a reversed

copy of ω1. Similarly, define Y = {0} × (ω + 2) ∪ {1} × ω3. It is then easy to see that

both X and Y are compact LOTS. Therefore, as LOTS, both X and Y have neight 2, so

that n(X)− 1 = n(Y )− 1 = 1. W. Brian shows that n(X × Y )− 1 = 3.

4.2 Two Nests Give Strong Topological Properties

As we have seen in Chapter 3, two nests whose union generates a T1-separating subbase,

for a space X, give very strong topological properties. For example, they generate GO-

spaces and LOTS. What if we had more than two nests, whose union is T1-separating?

Will the space X still carry strong topological properties?

Theorem 4.9 Suppose X be a space, with a subbase L∪M∪N consisting of three nests

L,M,N of open sets, such that L∪M, L∪N and M∪N are T1-separating, respectively.

Let x ∼L y, if and only if {L ∈ L : x ∈ L} = {L ∈ L : y ∈ L}. Then:

1. ∼L is an equivalence relation.

2. The quotient space X/ ∼L, of the equivalence classes, is linearly ordered by ▹L,

where [x] ▹L [y], if and only if x ∈ L and y /∈ L, for some L ∈ L.

3. For each x ∈ X, the ∼L equivalence class, [x], is a GO-space.

Proof. 1. Obvious.

2. For each L ∈ L, let L′ = {[x] : x ∈ L}. Then, L′ = {L′ : L ∈ L} is clearly a

T0-separating nest, on X/ ∼L. Also, x ∈ L and y /∈ L, if and only if [x] ∈ L′ and

[y] /∈ L′. So, the results follows by Theorem 3.3 (4).
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3. The nests Mx = {M ∩ [x] :M ∈ M} and Nx = {N ∩ [x] : N ∈ N} form a subspace

topology on [x]. Also, Mx and Nx have a T1-separating union. So, the result follows

from Theorem 3.11 (2).

Proposition 4.10 Let X be a space, which has a subbase that is formed from the union

of n nests N1,N2, · · · ,Nn, of open sets. Suppose, further, that for each i ≤ n, there exist

some ji ≤ n, such that Ni ∪Nji is T1-separating. Then, X is T3.

Proof. Let, for each i, there exist some ji, such that Ni ∪Nji is T1-separating. Therefore,

Ni ∪Nji generates a GO-space topology on X; let us call it Ti. The induced topology by

Ni ∪ · · · ∪Nn is the same as T1 ∪ · · · ∪ Tn. Each Ti is T3, so T1 ∪ · · · ∪ Tn will be T3, too.�

Before we move on, we recall the definition of intersection topology.

Definition 4.11 If T1, T2 are topologies on a set X, then the intersection topology, with

respect to T1 and T2, is the topology T , on X, such that the set {U1∩U2 : U1 ∈ T1 and U2 ∈

T2} forms a base for (X, T ).

Example 4.12 Let X ⊂ R, |X| = ω1 and let f : X → ω1 be a bijection. Let T be the

subspace topology on X, inherited from R. Let T ′ be the topology on X, which makes

f a homeomorphism. Let S be the intersection topology, generated by T ∪ T ′. Then,

since X ⊂ R and ω1 are GO-spaces, there are nests L1,L2, whose union is T1-separating,

and which generates T , and nests L3 and L4, whose union is T1-separating, and which

generates T ′. S, therefore, has a subbase of nests L1,L2,L3 and L4, each of which has a

twin, together with they form a T1-separating union. So, S is T3. But, S may or may not

be T4. That S may or may not be T4 comes from [15] (Theorems 1,2,3), where the author

considers the intersection topology formed by the ordinal topology, on ω1, and a separable

metric topology. Such a space can never be perfectly normal, but it can be either normal

or perfect, depending on the model of set theory and the choice of the metric topology.
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Example 4.13 Consider Z× Z. For each n ∈ Z and k ∈ Z, let:

Ln = {(i, j) ∈ Z2 : i+ j < n},

Ln,k = Ln ∪ {(i, j) : i+ j = n, j < k}

and

Rn = {(i, j) ∈ Z2 : j − i < n},

Rn,k = Rn ∪ {(i, j) : j − i = n+ 1, j > k}

So, Ln,k, for example, looks like:

The little arrow, in the picture above, which is placed on a particular set of the nest (con-

taining points of Z2), shows the direction of the nests, which “move” upwards, as an

increasing sequence of sets, ordered via inclusion.

We note that, L = {Ln : n ∈ Z} ∪ {Ln,k : n ∈ Z, k ∈ Z} and R = {Rn : n ∈

Z} ∪ {Rn,k : n ∈ Z, k ∈ Z} are T0-separating nests, such that L ∪R is T1-separating.

Hence, L ∪ R makes Z × Z a GO-space (not homeomorphic to Z, with the discrete

topology). But, we remark that the (canonical) projection of any L ∈ L or R ∈ R, to the

first or second factor, is equal to Z.
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4.3 More than Two Nests Degenerate van Dalen and

Wattel’s Construction

We will now defend our argument, that more than two nests “destroy” the structure that

we got from van Dalen and Wattel’s characterisation of GO-spaces and LOTS, and carry

weaker topological properties. In particular, we will give a counterexample, introducing

a case where three nests, whose union is T1-separating, generate a space which is not

Hausdorff.

Proposition 4.14 There is a countable set, X, with three T0-separating nests, whose

union is T1-separating, but which do not generate a T2 topology.

Proof. Consider the subset

S = {[(0,∞)× (−∞,−1)] ∪ [(0,∞)× (1,∞)] ∪ {(0,−1), (0, 1)},

of R2. For r > 0, s > 1, 0 < θ < π/2, let:

Lr = {(x, y) ∈ S : 0 < x < r} :
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Rs = {(x, y) ∈ S : s < y} :

Ps = {(x, y) ∈ S : y < −s} :
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Rθ = {(x, y) ∈ S : s < y} ∪ {(x, y) ∈ S : −1− x tanθ < y} ∪ {(0, 1)} :

Pθ = {(x, y) ∈ S : y < −s} ∪ {(x, y) ∈ S : y < 1 + x tanθ} ∪ {(0,−1)} :
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Note that y = x tanθ+ 1 is the equation of the line passing through (0, 1), making an

angle θ with the x-axis and y = −x tanθ − 1 is the line passing through (0,−1), making

an angle −θ with the x-axis.

Now, let X = {(0, 1), (0,−1)} ∪ {xn : n ∈ N}, where xn is chosen as follows: let

{Bn : n ∈ N} be a base for the usual topology on [(0,∞)× (1,∞)]∪ [(0,∞)× (−∞,−1)].

Given x1, x2, · · · , xn ∈ X, let x1 be in B1. Let Sn denote the set of straight lines, that

are either:

1. horizontal, and pass through xi, for some i < n;

2. vertical, and pass through xi, for some i < n;

3. pass through (0, 1) and xi, for some i < n or

4. pass through (0,−1) and xi, for some i < n.

Note that Sn is a finite set of lines. Now, choose xn ∈ Bn, such that xn does not lie

on any line in Sn. Let:

L = {Ls ∩X : 0 < r},

R = {Rs ∩X : 1 < s} ∪ {Rθ ∩X : 0 < θ < π/2},

P = {Ps ∩X : 1 > s} ∪ {Pθ ∩X : 0 < θ < π/2}. �

Clearly, L,R,P are nests. Also, each of L,R,P is clearly T0-separating.

For example, suppose x, y ∈ X. Suppose x = (0,−1). Then, any R ∈ R, containing

y, will T0-separate x and y.

Suppose x = (0, 1). If y = (y1, y2), with y2 > 1, then Ry2/2 T0-separates x and y.

If, on the other hand, y2 < −1, then there is an angle θ, such that y /∈ Rθ, but x ∈ Rθ,

for all 0 < θ < π/2.
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Now, assume neither x nor y is equal to (0, 1) or (0,−1). Hence, x = xn and y = xm,

for some n,m ∈ N.

If x = (x1, x2), y = (y1, y2), without loss of generality we have three cases:

1. 1 < x2 < y2. Note that x2 ̸= y2, since x and y do not lie on the same horizontal

line.

2. 1 < x2, y2 < −1

3. x lies on the line y = −1− x tanθ, y lies on the line y = −1− x tanϕ and 0 < θ <

ϕ < π/2.

Note that θ ̸= ϕ, because x, y do not lie on the same line passing through (0,−1). The

points x and y are now separated by the sets Rx2+y2
2

in case 1., Rx1+y1
2

in case 2. and

R θ+ϕ
2
, in case 3. Similar proofs hold for L and P .

To see that L ∪R ∪ P is T1-separating, let x = (x1, x2) and y = (y1, y2). It is enough

(by symmetry), to consider the following cases:

1. x = (0, 1), y = (0,−1);

2. x = (0, 1), y2 > 1;

3. x = (0, 1), y2 < −1;

4. 1 < x2 < y2: a) x1 > y1, b) x1 < y1 (note: the equality of x2 and y2 is not possible,

by choice of the points in X);

5. 1 < x2, y2 < −1: a) x1 > y1, b) x1 < y1.

Given the nests L,R,P , one can show T1-separation. In particular, for 1. there exists

Rθ ∈ R, such that x ∈ Rθ and y /∈ Rθ and also there exists Pθ ∈ P , such that y ∈ Pθ

and x /∈ Pθ. For 2. there exists Rs ∈ R, such that y ∈ Rs and (0, 1) /∈ Rs and also there
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exists Ps ∈ P , such that (0, 1) ∈ Ps and y /∈ Ps. For 3. there exists Rθ ∈ R, such that

(0, 1) ∈ Rθ and y /∈ Rθ and also there exists Pθ ∈ P , such that y ∈ Pθ and (0, 1) /∈ Pθ.

For 4. a) and b), there exists, for both cases respectively, Rs ∈ R, containing (y1, y2)

but not (x1, y1) and there also exists Ps ∈ P , containing (x1, x2), but not (y1, y2). For 5.

a) and b), there exists, for both cases respectively, Rθ ∈ R, such that (x1, x2) ∈ Rθ but

(y1, y2) /∈ Rθ and there also exists Pθ ∈ P , such that (y1, y2) ∈ Pθ, but (x1, x2) /∈ Pθ.

X is not T2-separating, since (0, 1) and (0,−1) cannot be T2-separated by L,R and

P .

We note that the nests in the above example are T0-separating, but the space is not

T2.

On the other hand, consider the three nests consisting of subsets of R2, P , L, and R

defined as follows. For each r ∈ R let Pr = {(x, y) : x− y < r}, Lr = {(x, y) : y < r} and

Rr = {(x, y) : x > r}. In other words, Pr is the set of points above the line y = x − r,

Lr is the set of points below the line y = r and Rr is the set of points to the right of

the line x = r. Then let P = {Pr : r ∈ R}, L = {Lr : r ∈ R}, and R = {Rr : r ∈ R}.

These generate the usual Euclidean topology on R2, but none of them is T0-separating.

For example R cannot separate points on the same vertical line.
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Chapter 5

Characterisations of Ordinals

5.1 Ordinals and Scattered Spaces

In this chapter we turn our attention to ordinal spaces. The results of the first section

appear in [7].

Motivated, in particular, by Reed’s “misnamed intersection topology” (see Section 1.2

and [22] and also [25], [8] and [13]), we ask whether it is possible to characterise ordinal

spaces in purely topological terms. There are other essentially internal characterisations

of certain ordinals, and subspaces of ordinals, due to Baker [1], van Douwen [26], Purisch

[20], for example. However, these characterisations tend not to be as general or so simply

stated as our own one. There are also external characterisations in terms of selections:

see for example Section 5.3 and [12], [5] and [4].

We have already stated, in Definition 2.2, what it means for a family S ⊂ P(X) to

scatter a set X. We will make use of this definition for the characterisations that will

follow. We will also need to define when a set X is right-separated.

Definition 5.1 A topological space X is right-separated, if and only if there exists a

well-order <, on X, such that {y ∈ X : y < x} is open, for every x ∈ X.

In other words, X is said to be right-separated, if and only if there is a well-order on
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X, for which the initial segments are open (see [23]).

The following lemma is now obvious.

Lemma 5.2 Let X be a topological space. Then, the following are equivalent:

1. X is scattered.

2. X is right-separated.

3. X is scattered by a nest of open subsets of X.

Proof. “2. ⇒ 3.” Let X be right-separated. Then, there exists a well-order <, on X, such

that the set Lx = {y : y < x} is open, for all x ∈ X. We claim that the set {Lx : x ∈ X}

scatters X. Indeed, pick A ⊂ X, such that A ̸= ∅. Let a be the <-least element in A. Let

a+ be the <-least element in A− {a}. Then, La+ ∩A = {a}. Thus, X is right-separated

implies that X is scattered by a nest of open sets.

“3. ⇒ 1.” Obviously, if X is scattered by a nest of open sets, then X is scattered.

“1. ⇒ 2.” Let X be scattered and let x0 be an isolated point of X. At stage α, if

X − {xξ : ξ < α} ̸= ∅, let xα be an isolated point of X − {xξ : ξ < α} ̸= ∅. For some η,

X − {xξ : ξ ∈ η} = ∅, which gives that X = {xξ : ξ ∈ η} is right-separated. �

Theorem 5.3 Let X be a set and let L be a nest on X. Then, the following are equivalent:

1. L scatters X.

2. ▹L is a well-ordering on X.

3. L is T0-separating and well-ordered by ⊂.

4. L is T0-separating and, for every non-empty subset A of X, there is an a ∈ A, such

that for any x ∈ A and any L ∈ L, if x ∈ L, then a ∈ L.
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Proof. 1. implies 2., because if A ⊂ X and L ∩ A = {a}, then a is clearly the ▹L-least

element of A.

2. implies 3., because if ▹L is a well-order on X, then it is also a linear order on X.

Hence, L is a T0-separating nest on X, by Theorem 3.3. Suppose that L1 ) L2 ) L3 ) · · ·

be an infinite decreasing chain in L. Then, there are points xi ∈ Li − Li+1, which form

an infinite decreasing ▹L-chain, contradicting statement 2.

3. implies 4.: to see this, suppose that A ⊂ X, where A ̸= ∅. Let L be the ⊂-least

element of L, such that L∩A is non-empty. Since L is T0-separating and well-ordered by

⊂, we have that L ∩ A = {a}, for some a. Then, if M ∈ L and a ̸= x ∈ A ∩M , L ⊂ M ,

so that a ∈M .

4. implies 1.: for proving this, consider A ⊂ X, where A ̸= ∅. Let a be the point

furnished by 4., for A, and let b be the point furnished by 4., for A − {a}. Since L is

T0-separating, there is L ∈ L, which T0-separates a and b. By 4., we have that a ∈ L, if

b ∈ L. So, a ∈ L and b /∈ L. If x ̸= a and x ∈ L, then b ∈ L. So, L ∩ A = {a}. �

Theorem 5.4 Let X be a set. Let also L and R be two nests, on X, that are each

T0-separating. Then, the following statements are true:

1. Suppose that for all non-empty A ⊂ X, there is some a ∈ A, such that if a ∈ R ∈ R,

then A ⊂ R. Then, ◃R is a well-order, on X, and R is well-ordered by ⊃.

2. Let L ∪ R T1-separates X. L is well-ordered by ⊂, if and only if R is well-ordered

by ⊃.

Proof. Clearly, if A ⊂ X, where A ̸= ∅ and if a is as in the statement 1. of the Theorem,

then a is the ▹R-maximal element of A. Hence, it is the ◃R-minimal element of A, and so

1. holds.

2. is an immediate consequence of Theorem 3.4 and Theorem 5.3. �
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Lemma 5.5 Let X be a set and let L and R be subsets of P(X). Suppose that the nest

L scatters X, i.e. for every A ⊂ X, there exists L ∈ L, such that |A ∩ L| = 1.

1. The collection L is T0-separating.

2. If L is a nest, then L is interlocking.

3. If L and R are nests, such that L ∪ R forms a T1-separating subbase for X, then

there is a subset M, of L, that T0-separates and scatters X, consisting of clopen

sets.

Proof. For 1., given x ̸= y, there is L ∈ L such that L ∩ {x, y} is a singleton.

For 2., pick L ∈ L. Since L scatters X, there is someM ∈ L such thatM ∩ (X−L) =

{x}. Since L is a nest, L ( M = L ∪ {x} and, whenever L ( M ′ ∈ L, M ⊆ M ′. Hence

L ̸=
∩
{M ∈ L : L (M}, so that L is interlocking.

To see that 3. holds, note first by Theorem 5.3 that ▹L is a well-order. Let x ̸= y and

let x+ denote the immediate ▹L-successor of x, so that x+ EL y. Since L∪R T1-separates

X, there are L ∈ L and R ∈ R such that x ∈ L ̸∋ x+ and x /∈ R ∋ x+. Since the interval

(x, x+) is empty, we have that X − L = R. Since R is open, L is clopen, x ∈ L ̸∋ y and

y ∈ R ̸∋ x. �

Lemma 5.6 Let L be a nest of subsets of a set X and let R be the nest R = {X − L :

L ∈ L}.

1. The nest R is interlocking if and only if, for all L ∈ L, L =
∩
{M ∈ L : L ( M}

whenever L =
∪
{M ∈ L :M ( L}.

2. If X is a topological space and each L ∈ L is compact and open, then R is inter-

locking.

3. If L is T0-separating, in particular if L scatters X, then L ∪R is T1-separating.
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Proof. That 1. holds is an immediate consequence of the de Morgan’s Laws. For 2.,

suppose that L =
∪
{M ∈ L :M ( L}. Since L is compact, we have L =M1 ∪ · · · ∪Mk,

for some Mi ( L. But L is a nest, so we have L = Mj for some Mj ∈ L, such that

Mj ( L, which is impossible. So the condition in 1. holds vacuously. Given Theorem 5.4,

3. follows immediately. �

Theorem 5.7 Let X be a space. The following are equivalent:

1. X is homeomorphic to an ordinal.

2. X has two interlocking nests L and R, of open sets, whose union is a T1-separating

subbase, such that L scatters X.

3. X has two interlocking nests L and R, of open sets, whose union is a T1-separating

subbase, one of which is well-ordered by ⊂ or ⊃.

4. X is scattered by a nest L, of clopen sets, such that:

(a) L ̸=
∪
{M :M ( L}, for any L ∈ L and

(b) {L−M : L,M ∈ L} is a base for X.

5. X is scattered by a nest of compact clopen sets.

Proof. The equivalence of statements 1., 2. and 3. follows immediately from Theorem

5.3, Theorem 3.11 and Lemma 5.5.

1. implies both 4. and 5., because if α is an ordinal, then {[0, β] : β < α} is a nest of

compact clopen subsets that scatters α, and satisfies conditions 4.(a) and 4.(b).

Lemmas 5.5 and 5.6 imply that, if either 4. or 5. holds, then both L and R = {X−L :

L ∈ L} are interlocking nests of open sets, whose union T1-separates X.

If 4.(b) holds, then L ∪R is a subbase for X, and we see that 4. implies 2.
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To see that 5. implies 1., we argue as follows. We have that ▹L is a well-order on

X and that the order topology induced by ▹L is coarser than the topology on X, by

Theorem 3.11. If X is compact, then we note that the order topology is Hausdorff and

coarser than the compact topology on X. Hence, the two topologies coincide. If X is not

compact, then since the elements of L are clopen and compact, X is locally compact, and

we may form the one-point compactification X∗, of X. But then, L ∪ {X∗} is a nest of

compact clopen sets that scatters X∗, so it is homeomorphic to an ordinal. Clearly, X is

a ▹L-initial segment of X∗, so that X is also homeomorphic to an ordinal. �

The following corollary is now immediate.

Corollary 5.8 X is homeomorphic to a cardinal, if and only if X is scattered by a nest

L, of compact clopen sets, such that |L| < |X|, for each L ∈ L.

In particular, X is homeomorphic to ω1, if and only if X is uncountable and is scattered

by a nest of compact, clopen, countable sets.

As in Theorem 3.11, we observe the following.

Proposition 5.9 Let X be a space. Then, the following statements are true:

1. X admits a continuous bijection onto an ordinal, if and only if it is scattered by a

nest of clopen sets.

2. X is homeomorphic to a subspace of an ordinal, if and only if it is scattered by a

nest of clopen sets L, and {L−M : L,M ∈ L} forms a subbase for X.

Proof. The one direction is obvious, in each case.

For 1., we note that the order ▹L is a well-order and that every order-open set is open

in X, by Theorem 3.11.

For 2., if L is a nest of clopen sets that scatters X, then ▹L is a well-order and is

T0-separating and interlocking, by Lemma 5.5. Let R = {X − L : L ∈ L}. Then, as L is
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T0-separating, L ∪R is T1-separating, so that the result follows by the proof of Theorem

3.11, statement 2. To see this, note that, by Lemma 5.6, interlocking fails in R, for

elements X − L, where L =
∪
{M ∈ L : M ( L}, but L ̸=

∩
{M ∈ L : L ( M}. Let

L′ be the set of all such L. For each such L, we introduce a new point xL /∈ X, and we

define an order <, on X∗ = X ∪ {xL : L ∈ L′}, by declaring:

x < y ⇔



x, y ∈ X and x ▹L y,

x = xL, y ∈ X and y /∈ L,

x ∈ X, y = xL and x ∈ L,

x = xL, y = yM and L (M.

Then, it is easy to see that < is a well-order on X∗ that agrees with ▹L, on X, and

that X is a subspace of X∗. �

Lemma 5.2 shows that the existence of a nest of open sets, that scatters a space, is

equivalent to right-separation. We exploit this in the following theorem.

Definition 5.10 Let X be a space and let < be a well-order on X. We say that < left-

separates X, if and only if {y : y < x} is closed, for all x ∈ X. In addition, < weakly

left-separates X, if and only if {y ∈ X : y ≤ x} is closed, for every x ∈ X.

Theorem 5.11 Let X be a space. Then, the following statements hold:

1. X admits a continuous bijection onto an ordinal, if and only if it is right-separated

and weakly left-separated, by the same well-order.

2. X is homeomorphic to a subspace of an ordinal, if and only if it is right-separated

and weakly-left separated by a well-order, whose order-open intervals form a subbase

for X.
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3. X is homeomorphic to an ordinal, if and only if it is right-separated and weakly left-

separated by the order <, so that if C = {xα : α ∈ λ} is an <-increasing sequence

indexed by a limit ordinal λ, and C is closed, then C is <-cofinal in X.

Proof. 1. and 2. follow easily from Proposition 5.9.

For 3., note first that the order topology induced by < is coarser than the topology

on X. But then, if the topology of X is strictly finer than the order topology on X, there

is some order limit point x that is not a limit point in X, which contradicts the condition

of the theorem. �

We finish this chapter by giving a few supporting examples, where the above results

are applied.

Example 5.12 The space ω1 + 1 + ω∗, where ω∗ denotes ω with the reverse order, is a

compact scattered LOTS, that is not scattered by a nest of clopen sets. S. Purish, has

shown, in [20], that every scattered GO-space is LOTS. Hence, the isolated points of ω1

form a locally compact LOTS, and this space has a subbase consisting of two interlocking

nests, whose union is T1-separating. In particular, there is no nest of clopen countable sets

that scatters the space, but there is a nest of compact clopen sets but it does not scatter

the set. This nest consists of all sets of the form [0, β] for β < ω1 and all sets of the form

[0, ω1] ∪ {k ∈ ω∗ : n ≤ k}, n ∈ ω∗. This nest does not scatter the space, because -for

example- there is no one of these sets that picks a single element of ω∗.

Example 5.13 Let Ψ = ω ∪ {xα : α ∈ κ} denote Mrowka’s Ψ-space and Ψ∗ denote

its one point compactification. Consider Lα = ω ∪ {xβ : β < α} and let L = {[0, n] :

n ∈ ω} ∪ {Lα : α ∈ κ} be a T0-separating nest of open sets that scatters Ψ∗. Note that

L0 =
∩
{M ∈ L : L0 (M}, but L0 ̸=

∪
{M ∈ L :M ( L0}, so that L is not interlocking.

It follows that there need to be two nests whose union is T1-separating, for the conclusion
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of Theorem 3.12, to hold. We conclude that Ψ∗ is both right-separated and left-separated,

but not by the same order.

Example 5.14 Let X = ω1 ∪ {(α, n) : n ∈ ω, α ∈ ω1 a limit}. Let < be the usual order

on ω1, and define a linear order ▹, on X, by declaring α▹β, if and only if α < β; α▹(β, n),

if and only if α ≤ β; (β, n) ▹ α, if and only if β < α; (α, n) ▹ (β,m), if and only if α < β

or α = β and m < n. Then, with the order topology, which is generated by ▹, X is

a locally countable, locally compact scattered LOTS, which has a nest of compact clopen

countable sets, that T0-separates X, but X is not homeomorphic to an ordinal space. In

particular, the nest is all sets of the form [0, α] where α is not a limit and all sets of the

form [0, (α, n)] where α is a limit and n ∈ ω. These are all compact clopen countable

sets that T0-separate X. But X is not homeomorphic to an ordinal. To see this, (α, n)

converges to α as n tends to infinity so if X is homeomorphic to an ordinal there must be

some order < that well orders X. But then, there is kα, for each α, such that (α, n) < α

for each n ≥ kα. Define f(α) = (α, kα). Then, by the Pressing Down Lemma, there is

some stationary set S and an α0, such that for each α ∈ S, f(α) = (α0, kα0). But this is

a contradiction as if α ̸= β, then f(α) ̸= f(β).

5.2 A Characterisation of Ordinals via Neighbour-

hood Assignments

Here we give a characterisation of ordinals, which is entirely topological, with no mention

of order, using neighbourhood assignments as a primary tool.

Definition 5.15 A neighbourhood assignment, for a space X, is a collection of neigh-

bourhoods U = {Ux : x ∈ X}, such that x ∈ Ux.

Definition 5.16 A collection of sets A is linked, if for every A,B ∈ A, there is some

C ∈ A, which meets both A and B.
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Let U be a neighbourhood assignment for a space X. An element x is said to be a

linking point of U , if the set {Uy : y ∈ Ux − {x}} is not linked.

We recall that a set A is a strong Gδ, if it is an intersection of countably many clopen

sets.

Theorem 5.17 A space X is homeomorphic to an ordinal, if and only if there exists a

neighbourhood assignment U = {Ux : x ∈ X}, which satisfies the following conditions:

1. Ux is compact, clopen, for every Ux ∈ U ;

2. for every non-empty A ⊂ X, there exists x ∈ X, such that A ∩ Ux = {x};

3. U is of rank-1, i.e. if Ux ∩ Uy ̸= ∅, then either Ux ⊂ Uy or Uy ⊂ Ux;

4. If x is a linking point of U , then {x} is a strong Gδ;

5. there exists a pairwise disjoint collection V, of open sets, such that the set Λ, of

linking points, is covered by V and, for each V ∈ V, V ∩ Λ is countable;

6. U = {Ux : x ∈ X} either has a countable subcover or a subcover of the form U1∪U2,

where U1 is finite and U2 is a nest.

Proof. “⇒” Suppose X is homeomorphic to an ordinal, with order <. For each x, let:

yx =


sup{y < x : lt(x) ≤ lt(y)}, if ∃ y < x, lt(y) ≥ lt(x),

0 otherwise.

Consider Ux = (yx, x]. Then, properties 1. to 6. follow trivially. In particular, for an

ordinal α, define Uβ = [0, β], for all β < α. Then, there are no linking points; so 4. and

5. hold vacuously. As for 6. the collection of such Uβ forms a nest.

“⇐” Conversely, first note that a countable union of compact ordinals is homeomorphic

to an ordinal and a union of a finite number of compact ordinals, with any ordinal, is also
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homeomorphic to an ordinal. Therefore, we may assume that either Ux = {x}, for some

x, or that U has a subcover U ′, which is a nest.

Define x E y, if and only if x ∈ Uy. Pick z, such that Uz ∩ {x} = {x}. Consider

{y : z EL y} = ΓU . Then, ΓU is well-ordered by EL and is EL-cofinal in X. We use

induction on the order type of ΓU ; we call the order type of ΓU the height of U .

Suppose that W ⊂ U is a neighbourhood assignment of rank-1, for some subset Y , of

X. Define x ∼W y, if and only if there exists z, such that x, y ∈ Uz. Then, ∼W is an

equivalence relation, whose equivalence classes are unions of elements from W , and they

partition Y .

1. Suppose that ΓU has order type α+ 1 (a successor ordinal), for some α. Then, ΓU

has a maximal element, x′, and Ux′ = X.

If x′ is not a linking point, then U −{Ux′} satisfies the conditions of the theorem, with

height α, so X − {x′} is homeomorphic to an ordinal, γ. X is then homeomorphic to

γ + 1, by making x′ ≥ y, for all y ∈ X.

If x′ is a linking point, then X −{x′} is partitioned into disjoint sets, by ∼Ux′
; we call

these sets Xi, i ∈ I. Note that {Ux : x ∈ Xi} satisfies the conditions of the theorem,

with height less than or equal to α. Hence, each Xi is homeomorphic to an ordinal, αi.

Since x′ is a strong Gδ, there are countably many clopen sets Dn, such that {x′} =
∩
Dn.

Since Ux′ is compact clopen, we can assume D0 = Ux and Dn+1 ⊂ Dn. Since Dn −Dn+1

is compact clopen, there can be only finitely many Xi, with Xin = Xi ∩ (Dn−Dn+1) ̸= ∅.

Hence, I is countable. So, without loss of generality, I = N.

Since Xi is homeomorphic to an ordinal, each Xin is clopen and compact, so it is

homeomorphic to an ordinal αin , with order <in . Define a well order on X, by declaring

y < x′, for all y ̸= x′, x < y, if x, y ∈ Xin and x <in y, x < y, if x ∈ Xin , y ∈ Xjm and

m > n or m = n and i < j. Then, < well orders X, and the order topology agrees with

the topology on X, since Ux is compact.
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2. Now, suppose that U has height λ, a limit ordinal. Consider L = {x ∈ ΓU :

x is a linking point}. In this case, X is scattered in the sense of property 2. of the

theorem, in height λ, by the neighbourhood assignment U = {Ux : x ∈ X}, with the

properties of the statement of the theorem. X is partitioned into a co-tree, without “top

point”. We consider x0 ∈ X and we look at its cofinal numbers, S(x0).

Since U satisfies condition 5. of the Theorem, the set of linking points, L, can be

covered by a pairwise disjoint collection of open sets, V , such that V ∩L is countable, for

every V ∈ V . So, L ∩ V ∩ S(x0) = (aα, bα] will be countable, aα, bα ∈ S(x0), i.e. in each

(aα, bα] there are countably many linking points. We look at neighbourhoods (aα, aα+1),

which obviously contain countably many linking points, too.

We observe that Uaα+1−Uaα is compact, so there exists a finite subcover homeomorphic

to an ordinal. We look at {Uy : y ∈ Uaα+1 − {aα+1}, y /∈ Uaα}, following the same process

for aα+2, · · · , aα+n, and observing that the sup aα+n = a cannot be a linking point, but

an ordinal; if it were a linking point, it would then belong to a set Va ∈ V , but this

cannot happen, because the sets Va are disjoint. So, we stop, and apply case 1.. We then

continue the same process for ordinals greater than a.

Now, we define an ordering ▹ in X, such that x ▹ y, if and only if x ∈ Uy, which gives

a well ordering in X: x1 ▹ x2 ▹ · · · ▹ xn ▹ xn+1 ▹ · · · ▹ xω ▹ · · · , where xi is homeomorphic to

aα+1, so that xω is homeomorphic to L.

It now remains to glue the ordinal-like sticks, that we considered in cases 1. and 2. in

order to construct ordinals. For this, we define the ordering:

x ▹ y =


x ∈ Xi, y ∈ Xj, i < j if we have finitely many sticks (compact ordinal),

x <i y, x <ω y if we have infinitely many sticks (limit ordinal),

x ∈ Xi, y ∈ Xω if at most one of the sticks is a limit ordinal.

�
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5.3 Selections and Orderability

5.3.1 LOTS and Ordinals via Selections: An Account of Results

In this section we state, without proof, the most important results, which lead to charac-

terisations of LOTS and ordinals via selections. In the next section, we talk particularly

about weakly orderable spaces, via weak selections. The notation in the literature differs

from author to author, so we will stick to the notation of van Mill and Wattel (see [27]).

Let X be a space. Let F(X) denote the hyperspace of nonempty closed subsets of X,

endowed with the Vietoris topology. A base for the Vietoris topology consists of sets:

< V0, V1, · · · , Vn >= {F ∈ F(X) : F ⊂
∪
i≤n

Vi and F ∩ Vi ̸= ∅, ∀ i ≤ n},

where Vi are open subsets of X.

Definition 5.18 A selection, for X, is a continuous mapping F : F(X) → X, such that

F (A) ∈ A, for all A ∈ F(X).

Definition 5.19 A weak selection, for X, is a continuous mapping s : X2 → X, such

that for every x, y ∈ X:

1. s(x, y) = s(y, x) and

2. s(x, y) ∈ {x, y}.

Definition 5.20 A weak selection s : X2 → X is called locally uniform, provided that

for all x ∈ X and for each neighbourhood U , of x, there is a neighbourhood V , of x, which

is contained in U , such that for all p ∈ X − U and y ∈ V , s(p, y) = p, if and only if

s(p, x) = p.
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In other words, the definition of locally uniform selection says that the behaviour of a

weak selection s, at a point x, determines the behaviour of s in some small neighbourhood

of x.

The theorem that follows characterises LOTS via selections and was introduced in

1981 by J. van Mill and E. Wattel, in [27].

Theorem 5.21 (van Mill and Wattel) Let X be a compact space. Then, the following

statements are equivalent:

1. X is LOTS.

2. X has a weak selection.

3. X has a selection.

That 1. implies 3. follows trivially, if we consider a mapping F : F(X) → X, defined

by F (A) = min(A). That 3. implies 2. is again a trivial statement, following from the

definitions of selection and weak selection. For proving that 2. implies 1., the authors

of Theorem 5.21 construct, in a quite lengthy and inspired proof, two nests of open sets,

leading to a similar statement to the characterisation of Theorem 3.11.

J. van Mill and E. Wattel introduced another paper in 1981, a few months later

than the paper we have just mentioned, where they presented another solution to the

orderability problem, using again selections (see [28]). In particular, they characterised

GO-spaces via locally uniform weak selections, without mentioning compactness. We

state their main theorem, without proof.

Theorem 5.22 (van Mill and Wattel) Let X be a space. Then, the following state-

ments are equivalent:

1. X has a locally uniform weak selection.
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2. X is a GO-space.

In 1997, S. Fujii and T. Nogura introduced a characterisation of compact ordinal

spaces, via continuous selections (see [4]). Their main theorem is the following:

Theorem 5.23 (Fujii and Nogura) Let X be a compact Hausdorff space. The follow-

ing are equivalent:

1. X is homeomorphic to an ordinal space.

2. There exists a continuous selection F : 2X → X, such that F (A) is an isolated point

of A, for every A ∈ 2X .

We can easily see the relationship between Theorem 5.23 and Theorem 5.7; they are

both topological characterisations, where isolated points correspond to minimal elements.

In Theorem 3.4, we linked well-ordering in a space with a nest scattering it. In Theorem

5.23, the authors describe this “scattering” in the space, via continuous selections.

S. Fujii generalised the above theorem to the case of local compactness of X, stating

the following:

Theorem 5.24 (Fujii) Let X be a Hausdorff space. The following are equivalent:

1. X is homeomorphic to an ordinal space.

2. There exists a continuous selection F : 2X → X, such that (i) F (A) is an isolated

point of A, for every A ∈ 2X and (ii) X is locally compact and F is continuously

extendable to X∗, if X is not compact.

ByX∗ the author denotes the one-point compactification αX = X∪{∞}, ofX. By F ∗,

the author denotes a selection on X∗, such that for every A ∈ F(X∗), F ∗(A) = F (A∩X),

if A ∩ X ̸= ∅ and F ∗(A) = ∞, if A = {∞}. He calls F ∗ the extension of F to X∗.
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If a continuous selection F , on X, admits a continuous extension F ∗, then F is called

continuously extendable to X∗.

We believe that the following statement, which is a variation of Fujii’s just mentioned

characterisation, is true.

Conjecture A space X is homeomorphic to an ordinal, if and only if:

1. there exists a continuous selection F : 2X → X, such that F (A) is isolated in A, for

each A, and

2. either X is σ-compact or, if A and B are disjoint closed sets, then at least one of

them is compact.
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Chapter 6

Open Problems

In this final Chapter, we will propose a few open problems, which are based on some

research results that we have introduced in this thesis. We will hopefully work on these

problems in the near future.

6.1 The Suslin Line

Suslin’s problem (Souslin, M. (1920). “Probléme 3”. Fundamenta Mathematicae 1: 223))

refers to linearly ordered sets, and it has been shown to be independent of ZFC. Let X

be a linearly ordered set, with the properties:

1. X has neither maximal nor minimal elements;

2. the order on X is dense (between any two comparable elements there exists another

element);

3. the order on X is complete (every nonempty bounded subset of X has a supremum

and an infimum in X) and

4. every collection of mutually disjoint nonempty open intervals, in X, is countable

(this property is also known as the Countable Chain Condition, abbreviated as

CCC).
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Is X order-isomorphic to R? If condition 4. is replaced by the condition that X

contains a countable dense subset (i.e. X is separable), then the answer is positive.

On the other hand, any linearly ordered set, which is not isomorphic to R, but satisfies

properties 1.-4. is known as the Suslin line.

An interesting problem will be to characterise the Suslin line exclusively via nests. For

such a characterisation one will need to rewrite each property 1.-4., in the language of

nests, given a T0-separating nest L, onX, and the ordering ▹L, which we defined in Section

3.1. By such a characterisation we expect that properties 1.-4. will lead to a topological

characterisation, referring to the subsets of X and not immediately to its elements. This

might reduce the number of properties needed to describe the Suslin line and it will give

a shorter and more dense characterisation.

6.2 The Pressing Down Lemma

We have stated and have given a proof for the Pressing Down Lemma (Theorem 2.50),

and have noticed a relationship of this statement with our theorem which characterises

ω1 via nests (Corollary 5.8). Is there a simpler proof of the Pressing Down Lemma, given

a characterisation of it via nests? In other words, one should characterise club sets and

stationary sets via nests, and apply properties of nests in order to simplify the statement

and, perhaps, the proof of this theorem.

6.3 Selections

Here we propose three problems:

1. Jan Mill and and E. Wattel’s characterisation of LOTS via selections (Theorem

5.21) is restricted to compact spaces X; how can this problem be extended to any

space X?

2. Our Conjecture, at the end of Section 5.3.1, will hopefully lead into a new external
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characterisation of ordinals.

6.4 Nests and Sets with a Given Structure

Proposition 3.10 refers to arbitrary families of sets which are not necessarily nests. A

question that arises is the following: when do the notions of nested family and family

closed with respect to unions coincide? We believe that this question has a definite

answer in the case of sets with some given structure, for example in the case of groups.

We will now have a look at an example of a family L, which is closed under unions, but

is not a nest, and then an example of a group, where we observe that the group structure

gives a positive answer to the connection between being closed under unions and being a

nested family.

Example 6.1 Let (X, d) be a metric space and let L = {L : L ⊂ X, δ(L) < ∞}, where

δ(L) is the diameter of the set L, δ(L) = sup{d(x, y) : x, y ∈ L}. If L1, L2 ∈ L, then

L1∪L2 ∈ L, too, but this does not imply that L1 ⊂ L2 or L2 ⊂ L1. For example, let X = R

and L ⊂ P(X). Let L1 = (1, 2) and L2 = (3, 4). Then, L1 ∪ L2 = (1, 2) ∪ (3, 4) ∈ L, but

neither L1 ⊂ L2, nor L2 ⊂ L1.

Proposition 6.2 Let (G, ∗) be a group and let L = {H : H is a subgroup of G}. If L is

closed under unions, then L is a nest.

Proof. Let us assume that L is closed under unions. Let L1 ∈ L and L2 ∈ L. Then,

L1 ∪ L2 ∈ L. We will prove that either L1 ⊂ L2 or L2 ⊂ L1. Indeed, let L1 * L2 and

L2 * L1. Then, there exists ϕ ∈ L1, such that ϕ /∈ L2 and there exists ψ ∈ L2, such that

ψ /∈ L1. But then, ϕ ∈ L1 ⊂ L1∪L2 and ψ ∈ L2 ⊂ L1∪L2 imply that ϕ, ψ ∈ L1∪L2. But

L1∪L2 is a subgroup, under the operation ∗, so ϕ∗ψ ∈ L1∪L2, implying that ϕ∗ψ ∈ L1

or ϕ ∗ ψ ∈ L2.
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When ϕ ∗ ψ ∈ L1, we get that ϕ−1 ∈ L1 Thus, ϕ−1(ϕ ∗ ψ) = ψ ∈ L1, which is a

contradiction.

When ϕ ∗ ψ ∈ L2, then ψ ∈ L2 implies that (ϕ ∗ ψ) ∗ ψ−1 = ϕ ∈ L2, which is again a

contradiction.

Thus, either L1 ⊂ L2 or L2 ⊂ L1. �

6.4.1 Order Theoretic Properties of the Line and Topological

Implications

In Chapter 3, Section 4, we have introduced (see Theorem 3.38) spaces which satisfy

order-theoretic properties very similar to those ones of the real line. Question: are there

other LOTS, apart from the real line with its natural order, such that 2. from Theorem

3.38 is satisfied?

Question: What is the difference between LOTS that are implied by Theorem 3.41

from LOTS being implied by Theorem 3.42? Are there distinct examples of such spaces,

spotting the difference between these properties?

6.4.2 Nests, Groups and Topological Groups

We consider the ordering ▹L, on a group (G, ∗), which is generated by a T0-separating

nest of sets, in G, and we give conditions which will make the order compatible with the

group operation, ∗.

Let (G, ∗) be a group, with operation ∗, and let L be a T0-separating nest, on G. For

every x, y ∈ G, x ▹L y, if and only if there exists L ∈ L, such that x ∈ L and y /∈ L. The

ordering ▹L is said to be compatible with the group operation ∗, if and only if for every

a, b and g, in G, the following hold:

a ▹L b⇔

a ∗ g ▹L b ∗ g
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and

g ∗ a ▹L g ∗ b.

Proposition 6.3 Let (G, ∗) be a group and let L be a T0-separating nest on G. If for

every g ∈ G, for every L ∈ L:

g ∗ L ∈ L

and

L ∗ g ∈ L;

equivalently, if the maps:

t : L ×G→ L, where t(L, g) = L ∗ g

and

s : G× L → L, where s(g, L) = g ∗ L

are well-defined, then ▹L is compatible with ∗.

Proof. Let e ∈ G denote the identity element of G, with respect to ∗. Let, for every g ∈ G

and for every L ∈ L, g ∗ L ∈ L and L ∗ g ∈ L. Let a, b ∈ G, such that a ▹L b, and let

also g ∈ G. We prove that a ∗ g ▹L b ∗ g. But, since a ▹L b, there exists L ∈ L, such that

a ∈ L and b /∈ L. Furthermore, a ∈ L implies that a ∗ g ∈ L ∗ g and b /∈ L implies that

b ∗ g /∈ L ∗ g, because if b ∗ g belonged to L ∗ g, then (b ∗ g) ∗ g−1 ∈ (L ∗ g) ∗ g−1, which

would imply that b ∗ e ∈ L, which would then imply that b ∈ L, a contradiction. Finally,

a ∗ g ▹L b ∗ g. In a similar way we prove that g ∗ a ▹L g ∗ b. �

Example 6.4 Let (R,+) be the group of the real numbers, under addition. Then, L =

{(−∞, a) : a ∈ R} is obviously a T0-separating nest on R, and we observe that for every

b ∈ R, b+ (−∞, a) = (−∞, a+ b) ∈ L. So, ▹L is compatible, with respect to +.
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Example 6.5 Consider the abelian group (R − {0},×), of the non-zero real numbers,

endowed with the operation of multiplication. Obviously, L = {(−∞, a) : a ∈ R} is a

T0-separating nest, on R. We remark that if b ∈ R, such that b ◃L 0, then (−∞, a)× b =

(−∞, a×b) ∈ L, but if b▹L0, then (−∞, a)×b = (a×b,∞) /∈ L. So, ▹L is not compatible,

with respect to ×.

Suggestion 1: It might be interesting to investigate more complex examples, preferably

of non-abelian groups, and see what topological properties does ▹L bring to the structure

of the group.

We will now make the problem a bit more difficult.

Proposition 6.6 Let (G, ∗) be a group. Let also L and R be families of subsets of G.

Suppose that the following two conditions are satisfied:

1. For every L ∈ L, L−1 ∈ R.

2. For every R ∈ R, R−1 ∈ L.

If we consider the topology generated by L ∪ R, then the map f : G → G, where

f(x) = x−1, will be continuous.

Proof. Let L ∈ L. Then:

f−1(L) = {x ∈ G : f(x) ∈ L}

= {x ∈ G : x−1 ∈ L}

= L−1 ∈ R.

Similarly, if R ∈ R, then f(R) = R−1 ∈ L. �

Proposition 6.7 Let (G, ∗) be a group. Let also L and R be families of subsets of G.

Suppose that the following two conditions are satisfied:
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1. If x ∗ y ∈ L ∈ L, then there exist Lx, Ly ∈ L, such that x ∈ Lx, y ∈ Ly and

Lx ∗ Ly ⊂ L.

2. If x ∗ y ∈ R ∈ R, then there exist Rx, Ry ∈ R, such that x ∈ Rx, y ∈ Ry and

Rx ∗Ry ⊂ R.

If we consider the topology generated by L ∪ R,then the map f : G × G → G, where

f(x, y) = x ∗ y, will be continuous.

Proof. Let L ∈ L. Then, f−1(L) = {(x, y) ∈ G×G : x ∗ y ∈ L}. Statement 1. gives that

for every (x, y) ∈ G × G, such that x ∗ y ∈ L, there exist Lx, Ly ∈ L, such that x ∈ Lx,

y ∈ Ly and Lx ∗ Ly ⊂ L, which implies that:

Lx × Ly ⊂ f−1(L). (1)

Indeed:

(a, b) ∈ Lx × Ly ⇒

a ∈ Lx, b ∈ Ly ⇒

a ∗ b ∈ Lx ∗ Ly ⇒

a ∗ b ∈ L.

It is also true that:

π−1
1 (Lx) ∩ π−1

2 (Ly) ⊂ Lx × Ly (2),

where π−1
1 (Lx) and π−1

2 (Ly) are the inverse projections, which give the usual product

topology, in G×G.
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Indeed:

(a, b) ∈ π−1
1 (Lx) ∩ π−1

2 (Ly) ⇒

a ∈ Lx, b ∈ Ly ⇒

(a, b) ∈ Lx × Ly

So, (1) and (2) give that π−1
1 (Lx) ∩ π−1

2 (Ly) ⊂ f−1(L). The latter implies that:

∪
x∗y∈L

[π−1
1 (Lx) ∩ π−1

2 (Ly) ⊂ f−1(L)] (3).

But, it also holds that:

f−1(L) ⊂
∪

x∗y∈L

π−1
1 (Lx) ∩ π−1

2 (Ly) (4).

Indeed:

(a, b) ∈ f−1(L) ⇒

f(a, b) ∈ L ⇒

a ∗ b ∈ L ⇒

∃La, Lb ∈ L, a ∈ La, b ∈ Lb, La ∗ Lb ⊂ L ⇒

(a, b) ∈ π−1
1 (La) ∩ π−1

2 (Lb) ⊂
∪

x∗y∈L

[π−1
1 (Lx) ∩ π−1

2 (Ly).]

So, (3) and (4) finally give that:

f−1(L) =
∪

x∗y∈L

[π−1
1 (Lx) ∩ π−1

2 (Ly)].

and we conclude that f−1(L) is open in G×G. In a similar way, f−1(R) is open in G×G,
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too. �

Suggestion 2 Proposition 6.7 refers to any family of subsets of a set X. Will it be

possible to prove it by considering properties of nests? This will hopefully give a charac-

terisation of topological groups, with the involvement of order-theoretic and topological

properties nests.

Suggestion 3 We will finally summarise a list of problems worth looking at, concerning

ordered groups. The author of this thesis would like to thank Dr. Rolf Suabedissen

(University of Oxford) for kindly offering these interesting ideas, during our BOATS

(Birmingham-Oxford Analytic Topology Seminar).

1. Suppose (X, τ) be a topological space. If (and only if) τ satisfies a condition P

then there is a group operation ∗ on X such that (X, ∗, τ) is a topological group.

2. Suppose (X, τ) be a topological space. If (and only if) τ satisfies P then there is

a group operation ∗, on X, and an order <, on X, such that (X, ∗, <, τ) is an ordered

topological group with < inducing τ .

3. Suppose X be a set, ∗ a group operation on X and τ a topology (coming from an

order?) on X. Are there “easy” conditions to see that ∗ is continuous with respect to τ?
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