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ABSTRACT

Gamma ray zone plate holography is a new technique with applications to Nuclear

Medicine� Unlike other tomographic techniques� three�dimensional images can be recon�

structed from just one projection�

The history of zone plate holography is reviewed and the di�erences between this

technique and conventional holography are outlined� Sources of error in the recorded

hologram are reviewed and methods for the assessment of image quality are given�

Three image reconstruction techniques are described and compared� These techniques

are convolution� deconvolution and the CLEAN algorithm�

Simulated di�raction is the main image reconstruction method which has previously

been used to reconstruct images from zone plate holograms� This method is a form of

convolution reconstruction� Several variations on this technique are introduced and com�

pared� Matched �ltering is also investigated and compared with the simulated di�raction

based methods�

An approximate Fourier Wiener �lter is used to reconstruct the images by deconvolu�

tion� Several di�erent versions of this �lter are discussed and compared�

The CLEAN algorithm reconstruction is an iterative method which is based on either

convolution or deconvolution�

The three methods are tested using both computer generated and real gamma ray

zone plate holograms�
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Chapter �

INTRODUCTION

��� Background to the Thesis

Gabor zone plate holography can be used to image gamma rays emitted from radiophar�

maceuticals� A three�dimensional image of the source can be reconstructed from just one

projection� Tomography is commonly used for three�dimensional imaging� for example�

x�ray CT �Computed Tomography�� PET �Positron Emission Tomography� or SPET �Sin�

gle Photon Emission Tomography�� In tomography a large number� for example �	 �

��

readings are taken at di�erent angles around the patient� In general� readings are taken

at as many projection as there are pixels per side in the image� The patient therefore

receives a large dose of radiation and it takes a long time to reconstruct the image� As

only one reading at one angle needs to be taken for zone plate holography� this technique

could provide faster image acquisition at a reduced dose to the patient�

A zone plate is placed in front of and parallel to a gamma ray detector� The gamma ray

detector is a gamma �Anger� camera with its collimator removed� Figure ��� shows this

arrangement� Gamma rays emitted by a radiopharaceutical cast a shadow of the zone plate

on the detector� The shadow will be called a hologram as it contains three dimensional

information about the distribution of the radiopharmaceutical� �i�e� the source�� An

image of the source can then be reconstructed from the hologram�

(γ -ray) source

detector (gamma camera)

zone plate computer

Figure ���� Equipment used to record a hologram

If the hologram is reduced to an appropriate size� recorded on photographic �lm and

��
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developed� it can be reconstructed optically by shining light back through it� This re�

construction can be simulated using a computer� Computer based reconstruction has the

advantage that other techniques� not based on simulated di�raction� can be used� Zone

plate holography research has taken place at the University of Birmingham since ��
�

but the image reconstruction techniques still need improvement�

The aim of this work was to �nd new reconstruction techniques which will improve

the image quality� Techniques were applied to a range of computer generated holograms

to test their e�ectiveness for ideal error�free data� The reconstruction methods were then

tested on computer generated holograms to which di�erent types of noise were added�

Images were then �nally reconstructed from real gamma ray zone plate holograms�

In Chapter �� a short summary of the history of holography is given� from its invention

by Gabor in ��	� to the present day� The history of zone plate holography is discussed in

more detail with particular emphasis on the work that has been done at the University of

Birmingham� Reconstruction techniques used to image zone plate holograms of neutrons�

white light and infra red sources can also be used for holograms of gamma ray sources so

the work that has been done on these projects is also covered in depth�

In Chapter �� expressions are derived for hologram formation for both zone plate and

conventional holography� The similarities and di�erences between the two techniques

are discussed� Algorithms describing standard optical image reconstruction are given

and equations for the reconstructed image of a point source are derived for each type of

hologram� Issues speci�c to imaging gamma ray sources using zone plate holography are

highlighted�

In Chapter 	� other sources of error inherent in the recording and processing of zone

plate holograms of gamma ray sources are discussed� Methods for the assessment of

reconstructed image quality are listed in Chapter 
�

Three di�erent reconstruction techniques are outlined in Chapters �� 
 and �� Theo�

retical zone plate holograms of point sources are calculated using the formulae derived in

Chapter �� The quality of the images produced by each technique are assessed using the

techniques given in Chapter 
�

The three techniques are compared further in Chapters � and Chapter ��� Images

reconstructed from theoretical holograms of extended objects are shown in Chapter � and

��
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from real holograms of gamma ray sources in Chapter ���

All of this work is discussed in Chapter �� and conclusions are drawn� Suggestions for

further work are given�

��� Original Contribution

Gamma ray zone plate holography has been compared with one type of conventional

holography and the di�erences have been highlighted�

Most of the work done on zone plate holography in the past has concentrated on

reconstruction methods based on simulated di�raction�

Simulated di�raction is a convolution reconstruction method� Di�erent convolution

and matched �lter image reconstruction methods have been compared� Convolution with

a truncated Fresnel function was found to give better results than simulated di�raction for

computer generated holograms of point sources� This method was then used to reconstruct

images from a selection of computer generated and real holograms�

Fourier Wiener �ltering and the CLEAN algorithm are commonly used to recon�

struct two�dimensional images� These techniques have been used to reconstruct three�

dimensional images from zone plate holograms� Di�erent approximate Wiener �lters have

been tested on computer generated point sources and the most e�ective one has then been

used to reconstruct images from a selection of computer generated and real holograms�

These images were then compared with those obtained by convolution�

The advantages and disadvantages of the three techniques� convolution� deconvolution

and the CLEAN algorithm have been discussed�
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Chapter �

LITERATURE REVIEW

��� History of Holography

Holography is a way of recording information from a three�dimensional object in two

dimensions� The idea is based on the Huygens�Fresnel Principle which states that

Every point of a wave�front may be considered as a centre of secondary distur�

bance which gives rise to secondary wavelets� and the wave�front at any later

instance may be regarded as the envelope of those wavelets� The secondary

wavelets mutually interfere ��	��

This means that� at any point in space� a wave contains the whole of the information

about its source� If the phase and amplitude of a wave could be recorded� the source

could be reconstructed in three dimensions� Most photographic processes just record the

intensity or amplitude of a wave� Holography provides a way of recording the phase as

well�

In ��
� the British � Hungarian scientist Gabor was awarded the Nobel Prize in

Physics for his discovery of holography� It is sometimes argued that the Russian scientist

Denisyuk should have also been awarded the Nobel Prize for his invention of re�ection

holograms ���� which turned holography into a useable technique� His work will be dis�

cussed in more detail later�

Gabor had invented holography twenty�four years beforehand when he was investigat�

ing ways to improve the resolving power of electron microscopes� He built on work that

had been done by others developing two�stage microscopy techniques� for example� Boer�

sch ����� The resolution of electron microscopes was limited by the spherical aberration of

electron lenses which were provided by magnetic �elds� Gabor�s paper in Nature in ��	�

entitled �a new microscopic principle� ���� described how micrographs could be obtained

without electron lenses�
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-> hologram
detectorpoint object

plane waves (scattered from a
point object)

coherent waves

�a� Hologram formation

real imagehologramvirtual image

plane waves

�b� Hologram reconstruction

Figure ���� Gabor in�line hologram

Gabor�s method had two stages� In the �rst stage� the object was illuminated by an

electron beam� This beam was partially scattered from the object� The scattered wave

then interfered with the primary beam and the interference pattern was recorded on a

photographic plate� In the second stage� coherent light was shone through the developed

photograph� A real and a virtual image of the object were obtained� This method is

illustrated in Figure ���� As it was not possible at the time to produce suitable beams

of electrons� Gabor demonstrated the feasibility of his technique by using visible light

instead of electrons� He used a mercury�arc lamp as his source� The light produced by

this lamp was ���	�� coherent� This meant that Gabor could only use very small objects

for his holograms� An explanation of the di�erence between coherent and incoherent light

is given in Appendix A�

In his next paper ����� Gabor developed the theory behind his method� He also

discussed the impurities in the reconstructed image� The main problem was the presence

of the real image in�line with the virtual image� The real image was referred to as the

twin image� Only poor quality holograms of two�dimensional objects were produced�

Gabor later called his method �holography� after the Greek word holos meaning �whole�

and gramma meaning �message� ����� He had invented a method of recording the phase

as well as the amplitude of a wave� the whole of the wave was preserved�
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In ��
�� Rogers noticed the similarity between a Fresnel zone plate and the hologram

of a point source �
�� and said that a hologram could be considered as a zone plate with

a complex pattern�

Zone plate holography was �rst suggested in ���� by Mertz and Young ����� Fresnel

zone plate imaging was suggested as a technique for use in x�ray cameras� Neither refract�

ing nor re�ecting materials were available to provide focusing at x�ray wavelengths and

zone plate imaging provided a way round this problem� They illustrated their technique

by replacing the lens of a normal camera with a Fresnel zone plate�

�a� Gabor zone plate �b� Fresnel zone plate

Fresnel
Zone plate

Shadow

Light / x-rays
from 4 point
sources

�c� Shadow casting

Figure ���� Zone plates and shadow casting� The shade of gray indicates the transmission
of the plate� Black � �� transmission and white � ���� transmission

A Fresnel zone plate is a binary zone plate� This means that its transmission function

at any point is either zero or one� As is discussed in Chapter �� a Gabor hologram of a

point source has the following transmission function T �r�

T �r� �
�

�

�
� � cos

�
�r�

r��

��
�����

where r is the radial distance from the centre of the plate and r� is a constant�

A zone plate with the transmission function t�r� is called a Gabor zone plate� A Fresnel

zone plate is a binary approximation of a Gabor zone plate� It consists of alternating

opaque and transparent concentric rings which are called zones� The outer radii of the

transparent concentric zones are proportional to the square root of �� �� � etc��� A Fresnel
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zone plate and a Gabor zone plate of the same dimensions can be seen in Figures ����b�

and ����a�� The hologram of a point source would be as large as the detector� The Fresnel

and Gabor zone plates� however� are truncated at a maximum radius� Light or x�rays

would cast a shadow of the zone plate on the detector as is illustrated in Figure ����c��

If the light source is considered to consist of many point sources� the pattern recorded

on the photographic �lm can be seen as the superposition of the shadows from each of

these sources� The photograph would then be an approximation of a Gabor hologram

of an equivalent source� This zone plate hologram could then be reconstructed in the

same way as a Gabor hologram� by shining coherent light through it� The advantage

of this technique is that the hologram is formed by a shadow casting process and so is

independent of wavelength or coherence length�

As was explained in Chapter �� the aim of the work presented here was to �nd new

image reconstruction techniques for zone plate holograms of gamma ray sources� The

history of zone plate holography will be discussed in detail in Section ���� For the pur�

pose of this report� this general history of holography could end here� For the sake of

completeness� however� the major advances made in holography since ���� will now be

discussed�

In ����� Leith and Uptanieks �
�� saw similarities between Gabor�s technique and the

research they had been doing into radar� They described Gabor�s two�step process from

a communication theory viewpoint and saw the twin image as an aliasing problem� They

suggested that a carrier frequency in the form of an o��axis reference beam could be used

to improve image quality� The laser had been invented in ���� and in ���	� Leith and

Upatnieks made the �rst laser transmission hologram of �D objects using their o��axis

method� Laser transmission holograms produced clear images with realistic depth but

could only be viewed with laser light�

Also in ����� Denisyuk found a way to make white�light re�ection holograms ����� He

combined holography with a form of colour photography invented in ���� by the Nobel

Laureate Lippmann� He placed a sheet of photosensitive emulsion between the reference

beam and the object� The emulsion had a thickness large compared to the wavelength

of visible light� Interference between the reference beam and the beam re�ected from the

object caused standing waves inside the emulsion� When the emulsion was developed�

��
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its density followed the intensity pattern of the standing wave� Denisyuk holograms are

often termed volume holograms since they are recorded over the thickness of the emulsion

and not just in two dimensions� If monochromatic light is used to produce the hologram�

white light can be used in the reconstruction� The hologram will only re�ect the fraction

of the light with the same wavelength as the original monochromatic source to form the

holographic image� The remaining wavelengths will pass through the hologram having no

e�ect on the image� If more than one wavelength is used� colour images are obtained�

Another signi�cant advance was holographic interferometry� Powell and Stetson pub�

lished the �rst paper on this in ���
 ��
�� Small distortions between two holographic

exposures are seen as contours on the reconstructed image� Holographic interferograms

are particularly useful in non�destructive testing� �uid �ow analysis and quality control�

Benton invented the rainbow hologram in ���� �	�� This was a transmission hologram

which could be viewed with white light� Hologram formation was by a two�step o��

axis technique� The real image from a �rst hologram was used as the object for a second

hologram� The �rst hologram was� however� masked down to a narrow horizontal slit� This

resulted in a reconstructed image in one or several colours depending on the viewpoint�

The �rst moving three�dimensional images were made by Cross in ��
� ����� Cross

combined white light transmission holography with conventional cinematography� He

recorded a sequence of holograms in narrow strips along the photographic �lm� As the

hologram was viewed from left to right� di�erent images were seen giving the illusion of

movement�

In ��
	� Foster �
	� invested a way for duplicating holograms mechanically� He used an

embossing process similar to the one used to make audio�disks� Rainbow holograms were

turned into re�ection holograms by an aluminium backing and could be mass produced

at a very low cost�

Holography has many applications� Holographic lenses are now used in supermarkets

to direct laser light onto the bar codes during checkout� Holograms are also used on some

credit cards to make them di�cult to copy� Holography can be used for archival recording

of fragile museum pieces� A pulsed laser hologram was even used to record Lindow Moss�

a ���� year old Iron Age man unearthed from Lindow Moss� a peat bog in Cheshire �	���

�	
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��� History of Zone Plate Holography

����� General History

As mentioned in section ���� the �rst paper on zone plate holography was written by Mertz

and Young in ����� Incoherent radiation sources can be imaged using this technique so

it has found many applications�

In ��
�� Barret used a lead Fresnel zone plate to image gamma rays emitted from a

thyroid phantom ���� The detector he used was a gamma camera� Gamma cameras are

used in nuclear medicine and are usually �tted with a pinhole aperture or a parallel hole

collimator which only lets a tiny fraction �� ��� � ���� �� of the incident gamma rays

through� The advantage of a zone plate is that only half of the gamma rays are stopped�

The holograms were reconstructed optically�

Fresnel zone plates were again used for gamma ray imaging by Rogers et� al� in

��
� �
��� An image intensi�er was used instead of a gamma camera� Zone plate holog�

raphy is basically an on�axis method and Rogers discovered that the virtual image in line

with the real image produced artifacts in the reconstruction� He suggested that an o��axis

zone plate could be used to improve the image�

In ��

� Ceglio used zone plates to study the x�ray emission of laser�produced plas�

mas ���� and ����� Other applications have included imaging of �ssion gamma rays pro�

duced by reactor fuel and focusing x�rays in 
eV synchrotron sources�

One problem with zone plates is that Moir�e zone plate patterns are produced when

several zone plate patterns overlap� Moir�e patterns are zone plates themselves and focus

light� Jaroszewicz wrote a paper on this e�ect �		��

Jones and Kirz introduced phase zone plates �	
� �	
�� Instead of opaque zones� phase

zone plates have zones which cause a � phase shift� This meant that the intensity of the

light focussed by the plate was increased by a factor of 	 �

In ��
	� McDonald et� al� showed how gamma ray Fresnel zone plate holograms could

be reconstructed computationally �
��� He used a two�dimensional fast Fourier transform

algorithm� One of the advantages of computer reconstruction is that the image can be

processed�

��
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����� The Zone Plate Holography Project at the University of
Birmingham

Research into zone plate holography has been undertaken at the University of Birmingham

since ��
�� Projects have been completed in neutron holography� white light holography

and infra red holography� Work is now concentrated on gamma ray holography� The

work presented here concerns the computer reconstruction of gamma ray holograms� The

algorithms� however� could be applied to holograms formed by other types of radiation�

A brief description of current and completed work follows�

Neutrons

The �rst work on neutron zone plate holography was done by Pink in ��
� as part of his

MSc ���� under the supervision of Professor Beynon� Neutron holography was investigated

as an alternative to neutron tomography for use in non�destructive testing� The zone plate

was made of �mm thick aluminium� The opaque zones were made by using FeCl� to etch

grooves in the aluminium� These grooves were then �lled with a gadolinium containing

paint� Cold neutrons �with energies less than � ����
eV� from a research reactor were

scattered from test objects� The hologram was recorded using a gadolinium converter

screen with x�ray �lm behind it� The holograms were reconstructed optically by reducing

them in size and shining laser light through them� This work was published in a paper in

���� �����

Mast did further work in this �eld and submitted for his PhD in ���� �

�� He used

thermal neutrons from a radiotherapy beam but the rest of the experimental setup was

the same as that used by Pink� The holograms were digitised and reconstructed using

a computer� The �rst algorithm used was an unmodi�ed two�dimensional fast Fourier

transform ��DFFT� as described by Singleton �
��� Another single �DFFT method�

based on the Rayleigh�Sommerfeld equation was then used� Results from both com�

puter reconstruction methods were compared with those from the optical reconstruction�

The unmodi�ed �DFFT method produced a poor quality reconstruction� The Rayleigh�

Sommerfeld method� however� produced images of a similar quality to those obtained

by optical reconstruction� Mast also used the Monte�Carlo code MORSE ��
� to make

simulated holograms� This work was published in ���� �
�� Another article was written

��
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by Professor Beynon in ���� ����

The next student to work on this project was Mathews who completed his PhD in

���� �
��� The equipment he used was the same as that used by Mast� He used two

zone plates of opposite polarity to form two holograms� Opposite polarity means that

one plate had opaque zones where the other had transparent zones� One hologram was

subtracted from the other and the result was reconstructed� This improved the image� He

again used the Rayleigh�Sommerfeld �DFFT algorithm to reconstruct the holograms� He

compared a polar coordinate �r� �� version of this technique with a Cartesian coordinate

�x� y� version� He also applied zone plate holography to Positron Emission Tomography

�PET�� This is gamma ray holography and will therefore be discussed later�

�a� Moir�e zone plate pattern
produced by two overlapping
Fresnel zone plates

�b� Hampton court
�binary� Gabor zone
plate

�c� Rotated binary
Gabor zone plate

Figure ���� Binary zone plate patterns

Kirk �nished his PhD in ����� He started by analysing Moir�e zone plate patterns

which appear when Fresnel zone plates overlap� Moir�e patterns act as zone plates and

focus light themselves� A Moir�e pattern is shown in Figure ����a�� As Moir�e patterns

have a similar e�ect to zone plates themselves� Kirk investigated the possibility of making

a pure Gabor zone plate by overlapping several Fresnel zone plates�

Fresnel zone plates also contribute to noise in the image� A Gabor zone plate has one

focal point a distance f from the plate� An equivalent Fresnel zone plate would have a

series of focal points at f� f� �
f

� �
f

� etc� If the hologram was reconstructed optically� the

presence of these extra focal points would reduce the quality of the image� Fresnel zone

plates had always been used because of the di�culty of creating a Gabor zone plate with

��
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a smoothly varying transmission function�

Kirk argued that the width of the zones in a binary zone plate could be varied az�

imuthally as well as radially so that the average transmission at any radius would be

the same as for a Gabor zone plate� The result was the Hampton court zone plate� so

called because it resembled the Hampton Court clock� Mast and Mathews showed that

the binary Gabor plate only had one focal point and� hence� put much of this work on a

�rmer theoretical footing� A paper was later published on this zone plate design ���� In

this paper� the plate was called a binary Gabor zone plate� The design� which is shown

in Figure ����b�� was patented� The binary Gabor zone plate lead to artifacts in the

image like the spokes of a bicycle wheel� The rotated binary Gabor zone plate� shown in

Figure ����c�� was an attempt to solve this problem�

White Light

Woodgate researched white light zone plate holography for his PhD which he �nished

in ���� ����� Just as Gabor used light from a mercury arc lamp to demonstrate his

technique for obtaining electron micrographs� the experiments with white light were done

with the aim of �nding new techniques to improve neutron holography� Neutron zone

plate holograms contain errors due to the limited number of neutrons which form the

hologram� Such statistical errors do not apply when white light is used�

Many of the experiments were performed jointly by Woodgate and Caplan� another

PhD student who submitted her thesis in ���
 ����� At the same time� Strange� was

researching di�erent types of coded aperture imaging and antennas� In his PhD thesis�

which was completed in ����� he discussed methods for the computational reconstruction

of zone plate holograms �����

A CCD camera was placed in a light�tight box with a translucent screen at one end�

The camera was focussed on the opposite side of the screen to which the hologram was

formed� The hologram was digitised by a SUN video card and stored on a computer�

Woodgate wrote postscript programs to draw the zone plate patterns� Zone plates pat�

terns could then be laser printed and photographed onto �lm� The �nal zone plate was

produced on the developed �lm� Light was re�ected o� objects of which holograms were

formed�

��
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All the holograms were reconstructed computationally� Woodgate used Mast�s Rayleigh�

Sommerfeld simulated di�raction reconstruction technique� He pointed out the similarity

between this technique and correlating the hologram with a suitably scaled Gabor zone

plate pattern� This correlation technique was shown to produce images nearly the same

as those produced by the di�raction technique� A Welch window ���� was used with the

correlation technique to improve image quality� He also tried to reconstruct the holo�

grams by deconvolution but this gave poor results� He suggested that further work could

be to produce an iterative reconstruction algorithm such as the one used by Helstrom in

���
 ��
� or Fleming in ���	 ����� Experimental holograms were compared to simulated

holograms produced using the Monte Carlo code MCNP ��
��

Strange looked at a number of other reconstruction methods including matrix inver�

sion� matrix Wiener �ltering and single value decomposition� Single value decomposition

was used in order to remove artifacts from images by removing certain frequencies� Strange

used these techniques to reconstruct images from small simulated holograms� They could�

however� not be used for larger experimentally produced holograms because the amount

of computer memory �RAM� that would be needed to perform the reconstruction was

incredibly high� Strange also designed an approximate binary Gabor zone plate� made

from a series of lines instead of smooth curves� This was needed so that the plate could

easily be cut from a piece of metal and used for future work in gamma ray holography�

Caplan used the correlation technique to reconstruct her holograms� She investigated

the e�ects of varying the number of zones in the zone plate and the frequency of their

azimuthal variation on the quality of the reconstructed image� She also investigated the

variation of the point spread function with position� If the detector is small� not all of

the zone plate shadow is recorded� Caplan performed experiments to look at this e�ect�

Infra Red

Infra red holography could be used to image the temperature of the body in three dimen�

sions� Regions of cancerous tissue often have a higher temperature and therefore could

be located in this way� The �rst student to work on this project was Kuo who �nished

his PhD in ���
 �	��� Shen also worked on this project and �nished his PhD in ���� �

��

Zone plates for infra red holography are produced in the same way as the ones used

�
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in the white light experiments� Neutron and white light holography detected radiation

scattered from objects� Infra red holography images heat producing sources� for example

a tungsten��lament lamp or an electric heater� The hologram is recorded by using a small

detector attached to a X�Y plotter which moves it across the plane in which the hologram

is formed� The human body emits radiation in the far infra red region� A suitable detector

could� however� not be found to record far infra red so experiments were performed in the

near infra red� The detector used was a InGaAs detector of ���mm diameter� A system

was developed to read the detector at intervals so the two�dimensional hologram could be

recorded as the plotter moved across the plane�

Kuo used Mast�s di�raction algorithm to reconstruct the holograms� He reconstructed

a uniform hologram and then subtracted this from the reconstruction of the real hologram

to remove artifacts due to digitisation� He also used a modi�ed Welch window to remove

noise from the image� Thresholding was used to remove the background noise from the

image�

Shen used correlation to reconstruct the holograms� He has also reconstructed the

images by correlating it with the appropriate binary Gabor zone plate pattern� He used a

sine as well as a cosine zone plate to form two holograms which can be combined to give

a hologram produced by complex �real and imaginary� zone plate� The reconstruction of

this complex hologram showed improvement over those from a single zone plate�

Gamma Rays

Mathews applied zone plate holography to PET� In PET� two gamma rays from positron

annihilation are detected on opposite sides of the positron source by two PET cameras�

A path through the source� along which the annihilation must have taken place� can then

be constructed� Mathews imagined there were Fresnel zone plates infront of each camera

and subtracted every gamma ray count which would have hit an opaque zone of one of

the plates� The resulting holograms were then reconstructed as normal� The images

produced using this technique were of comparable quality to those produced by standard

back projection� The holography based technique produced the images in a fraction of

the time� This work was published in a paper in ���� ����

Caplan discussed the di�erence between white light and gamma ray holography in
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her PhD thesis� In order to attenuate the gamma rays� zone plates used for gamma ray

holography have to be several millimetres thick� This leads to the additional problem

of vignetting where gamma rays travel through the zone plate at an angle and are only

partially absorbed� This means that gamma ray holograms are generally of poorer quality

than those produced by white light�

Perks� project was to image gamma rays in the energy range �	�keV to 
��keV and he

submitted his thesis in ���� ��
�� He used the gamma emitting isotopes ��mTc� ��F� and

��Na which are used in nuclear medicine� The detector he used was a gamma camera with

the collimator removed� The �rst zone plate was a �cm lead approximate binary Gabor

zone plate which was commissioned by British Nuclear Fuels Ltd for studies into gamma

ray imaging� This was later replaced by a �mm sintered tungsten plate for imaging low

energy gammas ��	�keV�� An Ohio Nuclear series ��� gamma camera was �rst used to

record holograms� These holograms were then compared to ones taken using a state of

the art Toshiba GCA�
���A gamma camera at St Thomas� Hospital� London and using

an ADAC gamma camera at the Queen Elizabeth Medical Centre� Birmingham� The

Toshiba GCA�
���A camera holograms gave better images�

Experimental holograms were again compared with holograms simulated using MCNP�

The MCNP �le for the simulation was written by Dhaba�an� a research assistant in the

applied physics group� It included a representation of the approximate binary Gabor zone

plate� Perks used Mast�s di�raction algorithm for all his reconstructions�

Rew �nished her PhD in gamma ray zone plate holography in ���� �
��� She con�

centrated on gamma ray energies used in Nuclear Medicine in general and in BNCT in

particular� Research is being done into BNCT at the University of Birmingham� BNCT

is a treatment for a type of brain tumour called Glioblastoma multiforme� The patient

is injected with a boron compound� This compound concentrates to a higher degree in

brain tumour cells than in normal brain tissue� When the head is irradiated with thermal

neutrons� the following reaction occurs�

n � �	B � �Li � � � �

The alpha particles ��� produced in the reaction kill the tumour cells in which they are

concentrated� The gamma rays ��� have an energy of 	
�keV and can potentially be

��



Literature Review

imaged using zone plate holography� This would potentially provide a method to monitor

the treatment while it is taking place�

A �����mm thick sintered tungsten zone plate would be needed to e�ectively stop

	
�keV gamma rays� Rew used a series of �mm plates placed together� A 	mm plate� for

example� would have a minimum transmission of � 	��� The tungsten plate was cut by

a laser and so the original design can be accurately reproduced� She set up a gamma ray

holography lab at the University of Birmingham with a GE Maxi Camera 
�
 which has

a higher e�ciency than the Ohio camera used by Perks but a lower e�ciency than the

Toshiba GCA�
���A camera which he also used� BNCT involves beams of neutrons so the

e�ects of neutron activation in the camera and scattering o� the walls in the treatment

room were also investigated�

Takhar ��	� and George ���� are now both working on the gamma ray holography

project� They will be using an ADAC Forte gamma camera as well as the GE Maxi

Camera 
�
 to record further zone plate holograms of gamma ray sources� It is hoped

that zone plate holograms will be recorded during BNCT patient trials and that the

reconstruction techniques presented here will be tested using this data�

��� Summary

Many advances have been made in holography since Gabor�s �rst paper in ��	�� One

advance was Mertz and Young�s invention of zone plate holography in ����� Zone plate

holography is a method of imaging incoherent radiation sources in three dimensions and so

has found many applications� One application is radioisotope imaging in nuclear medicine�

It could also be used to image the 	
�keV gammas emitted during Boron Cancer Therapy�

Reconstruction algorithms developed for zone plate imaging of neutrons� light and

infra red can also be used for gamma ray imaging� All the previous PhD projects on

zone plate holography completed at the University of Birmingham have therefore been

reviewed� Although many techniques have already been tried� the reconstruction still

needs improvement�

This work suggests some new reconstruction techniques and tries them on computer

generated holograms and some of the limited number of actual gamma ray holograms

available at this point� Takhar and George will continue the work on this project using

��
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an ADAC Forte gamma camera and a GE Maxi Camera 
�
 to record more holograms�

The aim of their work will be to develop gamma ray zone plate holography to the stage

where it can be used to image patients undergoing BNCT�

��



Chapter �

COMPARISON OF ZONE PLATE
HOLOGRAPHY WITH

CONVENTIONAL HOLOGRAPHY

Holography is a very broad �eld and it is beyond the limits of this project to analyse

all di�erent types of hologram� The type of hologram which is most similar to zone

plate holograms is an in�line Gabor hologram and this is the type which will therefore be

considered�

In order to derive the equations for hologram formation and reconstruction� approxi�

mations from di�raction theory must be used� These approximations will be reviewed in

this Chapter� As in Chapter �� the starting point of this analysis will be the Huygens�

Fresnel principle� The Huygens�Fresnel principle is� as Born and Wolf ��	� state� ���� the

most powerful approximate method and is adequate for the treatment of the majority of

problems encountered in instrumental optics and can be stated as follows�

Every point on a wavefront serves as a source of spherical secondary wavelets

of the same frequency as the primary wave� The optical �eld at any point

beyond an obstruction is the superposition of all such wavelets reaching that

point� ��
�

The Kirchho��Fresnel di�raction formula is a mathematical expression of the Huygens

Fresnel principle and is the formula used to analyse a large number of holographic systems�

This formula is based on the Kirchho� boundary conditions which will be given later in

equations ���� and ����� These boundary conditions ignore edge e�ects at an aperture

and thus are only valid for apertures which are larger than a wavelength� This equation

can� therefore� not be used to describe very near �eld di�raction� In this case� the Green�s

function solution should be used�

�	
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The Kirchho��Fresnel di�raction theory can be applied to Gabor in�line holography

and so is the theory which will be discussed here� An outline of the derivation of this

formula will �rst be given to show where the approximations are made and therefore

under which conditions the formula is valid� The formation of a hologram of an opaque

pattern on a transparent sheet will then be analysed� This transparency will be assumed

to be illuminated by a planar coherent light source and that it is parallel to both the

source and the �lm on which the hologram is recorded� This system will be referred to as

a general holographic system as the speci�c cases of Gabor in�line holography and zone

plate holography can be analysed using the relationships found for this� more general

case� Both these cases will be analysed and� �nally� factors a�ecting the quality of the

reconstructed image will be discussed�

��� Derivation of the Kirchho��Fresnel Di�raction

Formula �Proof of the Huygens�Fresnel Princi�

ple�

The Huygens�Fresnel principle can be proven by showing that secondary waves from every

point on a primary wavefront give the same optical �eld as the primary wavefront would

have done� This is done in Born and Wolf by dividing the primary wave into zones�

making assumptions about the directional variation of the amplitude of the secondary

waves from each zone and approximately summing the contributions from the secondary

waves�

A more thorough proof of the Kirchho��Fresnel di�raction formula is also given by

Born and Wolf� The physical signi�cance of the assumptions made in this derivation is

easier to understand and so this is the method which will be discussed here� The waves

will be assumed to be monochromatic�

As described in appendix B� the amplitude of an electromagnetic wave� !�x� y� z� t��

satis�es the scalar wave equation�

r�!�x� y� z� t�� �

c�
��!�x� y� z� t�

�t�
� � �����

where c is the speed of light� !�x� y� z� t� can be separated into a time dependent and a

space dependent part� If we have monochromatic light� the time dependent part of the

��
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wave just has one frequency and !�x� y� z� t� can be written as

!�x� y� z� t� � 	�x� y� z�e�i�t �����

where 	�x� y� z� is the spatial part of the variation and 
 is the frequency of the wave�

Substituting this into equation ��� gives

r�	�x� y� z� �

�

c�
	�x� y� z� � � where c �

�p
�	�	

�����

�	 is the permeability of free space and �	 is the permittivity of free space� This is the

time independent wave equation �Helmholtz equation��

Consider a wave with space dependent part 	�x� y� z�� It will satisfy the Helmholtz

equation�

�r� � k��	 � � where k �



c
���	�

Let V be a volume bounded by a surface S and let P be a point within it� Let 	�x� y� z�

have continuous �rst and second order partial derivatives within the volume and on the

surface� If 
�x� y� z� is any other function which satis�es the same continuity requirements

as 	�x� y� z�� Green�s theorem would giveZ Z Z
V

�	r�
� 
r�	�dV � �
Z Z

S

�
	
�


�nnn
� 


�	

�nnn

�
dS ���
�

where �

�nnn
denotes di�erentiation along the inward normal to the surface S�

In particular� if 
�x� y� z� also satis�es the Helmholtz equation� i�e�

�r� � k��
 � � �����

then substituting equations ��	 and ��� into equation ��
� the left hand side of equation ��


vanishes giving Z Z
S

�
	
�


�nnn
� 


�	

�nnn

�
dS � � ���
�

One solution to the Helmholtz equation is 
�x� y� z� � eiksss

sss
where s is the distance from

point P to the point �x� y� z�� This gives a singularity at s � � so P has to be excluded

from the region of integration� This is done by surrounding P by a sphere of radius �� The

integration is then between surface S and the surface S� of the sphere� This is illustrated
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n

n
V

S

S’
P

Figure ���� Region of integration

in Figure ����

Equation ��
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and thenZ Z
S
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where d" is an element of the solid angle and � is the small radial displacement of S�

from point P � The integral over S is independent of � and so the right hand side can be

replaced by its limit as �� �� This limit is 	�	�x� y� z�� This gives

	�x� y� z� �
�

	�

Z Z
S

�
	
�

�nnn

�
eiksss

sss

�
� eiksss

sss

�	

�nnn

�
dS ������

which is one form of the integral theorem of Helmholtz and Kirchho��

Kirchho� considered the propagation of a wave from a point source P	 through an

opaque screen with an opening in it and determined the light disturbance at a point

P �x� y� z� behind the screen� This is illustrated in Figure ���� The surface in Kirchho��s

integral is formed by the opening A� a portion of the non�illuminated side of the screen

B and a large sphere of radius R centred on P � C�

	�x� y� z� �
�

	�

�Z Z
A

�

Z Z
B

�

Z Z
C

��
	
�

�nnn

�
eiksss

sss

�
� eiksss

sss

�	

�nnn

�
dS

������

Kirchho� then applied the following boundary conditions�

on A� 	 � 	i �	

�nnn
�
�	i

�nnn
������

on B� 	 � �
�	

�nnn
� � ������

��
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Figure ���� Di�raction behind an aperture � surface used to derive the Kirchho��Fresnel
di�raction formula

where 	i is the value relating to the incident �eld� These boundary conditions arise from

the continuity of the electric and magnetic �elds and the gradients of these �elds across

opening A and the opaque nature of surface B� The following expressions are known for

	i and ��i

�nnn
as the point source at P	 emits spherical waves and the distance P	Q � rrr�

	i �
Aeikrrr

rrr

�	i

�nnn
�
Aeikrrr

rrr

�
ik � �

rrr

�
cos�n� rn� rn� r� ����	�

cos�n� rn� rn� r� is the cosine of the angle between the vector rrr and the normal to the opening nnn

and A is a constant� The wave �eld on the spherical portion of the surface� C� remains

to be considered� If it is assumed that the source begins to radiate at some time t � t	�

at a time t� the light will have reached a maximum distance from the source of c�t� t	��

If the radius R is chosen to be further away from the source than this� the light will not

have reached the surface region C and the integral over this region will vanish� As the

integral over B also vanishes� only the integral over A need therefore be considered� The

integral becomes

	�x� y� z� � �iA
��

Z Z
A

eik�rrr�sss


rrrsss
�cos�n� rn� rn� r�� cos�n� sn� sn� s��dS ����
�

which is the Kirchho��Fresnel di�raction formula� � � ��
k

is the wavelength of the waves�

As the integration moves over all the points in the aperture� r � sr � sr � s will change by many

wavelengths so the factor er�sr�sr�s will oscillate rapidly� If the distances rrr and sss are� however�

large compared to the dimensions of the aperture� then the factor �cos�n� rn� rn� r� � cos�n� sn� sn� s��

will not vary appreciably� This factor may be replaced by � cos � where � is the angle

between the line P	P and the normal to the screen� If the distances between P	 and P

��
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and the origin are called r�r�r� and s�s�s� respectively� the factor �
rsrsrs

may be replaced by �
r�s�r�s�r�s� � This

gives

	�x� y� z� � �iA
�

cos �

r�s�r�s�r�s�

Z Z
A

eik�r�sr�sr�s
dS ������

Any other surface which approximately �lls the aperture could have been chosen in�

stead of A above� If a portion� W � of the incident wave front from P	 is chosen instead�

a portion C of a cone with its vertex at P	 can be used to complete the surface� If the

radius of curvature of the wave is su�ciently large� the integral over C can be neglected�

This surface is illustrated in Figure ��� On W � cos�n� r	n� r	n� r	� � �� If a new variable� �� is

P0

C
P

Q

sr
0

χ

W

Figure ���� Di�raction behind an aperture � surface used to prove the Huygens�Fresnel
principle

introduced where � � � � �r	� sr	� sr	� s�� equation ���
 becomes

	�x� y� z� � � i

��

Aeikr�

r	

Z Z
W

eiks

s
�� � cos���� dS ����
�

where r	 is the radius of curvature of the wave front� This can be written as

	�x� y� z� �
Aeikr�

r	

Z Z
W

eiks

s
K���dS where K��� � � i

��
�� � cos����

������

It can been seen that every element of the wave front W acts as a source of secondary

waves contributing to the �eld at P � The amplitude of these waves is determined by

K���� the inclination factor which describes the variation with direction of the amplitude

of the secondary waves� K��� is a maximum in the original direction of propagation and

decreases to zero when � � �
� � The factor �i included in K��� can be also written as

e
�i�
� and may be accounted for by assuming that the secondary waves oscillate a quarter

of a period out of phase with the primary wave� The other factor �
�
also included in this

�
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term may be explained if the secondary waves are assumed to have an amplitude �
�
times

that of the primary wave�

To conclude� the Huygens�Fresnel principle can be mathematically obtained from the

di�erential wave equation when some assumptions are made� These assumptions are that

Kirchho��s boundary conditions for the optical �eld behind an aperture apply and that

the dimensions of the aperture are small compared to the distance of the source and

the point where the �eld is to be calculated from the aperture� Assumptions must also

be made about the amplitude and phase of the secondary waves� The amplitude of each

secondary wave is assumed to depend upon the angle between the direction of propagation

of the primary wave and that of the secondary wave�

��� Formation of a General Hologram

L� M� Soroko ���� derived a formula for the di�raction pattern produced by a coherent

planar light source a distance p behind a transparency in a plane a distance q in front of

the transparency� The transparency is a thin sheet of material� for example photographic

�lm� with a varying transmittance function� This variation� or pattern� could take the

form of a picture or some writing and is the two�dimensional object of which the hologram

is to be made� Gabor�s early holograms were of such objects ����� Soroko�s derivation will

be summarised here�

The amplitude of the di�raction pattern� u�xxx�� will depend upon the amplitude trans�

mittance function of the transparency� t������ as well as the source amplitude distribution

function� s������ xxx�x� y�� ������ �� and ������ �� are vectors which give the position in the holo�

gram� source and transparency planes respectively� These planes are perpendicular to the

z axis� This is illustrated in Figure ��	�

The extended source can be considered as the sum of many coherent point sources�

The waves from each point source will be di�racted through the aperture as described by

the simpli�ed version of the Kirchho��Fresnel di�raction formula given in equation �����

As the waves pass through a transparency rather than an aperture� the wave amplitude

will be multiplied by the amplitude transmittance of the transparency� t������ at each point�

��
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Figure ��	� Relative positions of source� transparency and hologram

The distances r� s� r� and s� are given by�

r� � ��� ��� � �� � ��� � p� r�
�
� �� � �� � p�

s� � �� � x�� � �� � y�� � q� s�
�
� x� � y� � q�

������

For equation ���
 to hold� the distances p and q must be much greater than the distances

�� �� �� �� In this case�the following approximations can be used�

r � p�
��� ���

�p
�

�� � ���

�p
� p �

���� � �����

�p
r� � p ������

s � q �
��� x��

�q
�

�� � y��

�q
� q �

����� xxx��

�q
s� � q ������

Substituting into equation ���� and using k � ��
�
� each point in the source therefore has

the contribution

	�x� y� q� �
s�����

i�

cos �

pq
ei

���p�q�
�

Z
A

t�����ei
�
�p
��������
�ei

�
�q
�����xxx
�d��� ������

� is the angle between the line between the source point and the point in the di�raction

pattern and the normal to the transparency� Since p and q are much larger than ��� and xxx�

the approximation cos � � � can be used for all points in the source� Integration over all

points in the source gives

u�xxx� �
�

i�
ei

���p�q�
�

Z
s�����

p

Z
t�����

q
ei

�
�p
��������
�ei

�
�q
�����xxx
�d���d��� ������

and this can be rewritten as

u�xxx� �
�

i�pq
ei

���p�q�
�

���
s�xxx�� ei

�xxx�

�p

�
� t�xxx�

�
� ei

�xxx�

�q

�
����	�

where � denotes a convolution� The amplitude of the light in the hologram plane is

therefore given by the following three consecutive operations�

��
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�� Convolution of the light source amplitude distribution and a function F��xxx� � ei
�xxx�

�p �

�� Multiplication of this result by the amplitude transmittance function of the trans�

parency�

�� Convolution of the result with a second function F��xxx� � ei
�xxx�

�q �

This is illustrated in Figure ��
�

source
s(x) object detector

incident waves
s(x) x F  (x)1 1

emerging waves
[s(x) x F  (x)] x t(x)

waves recorded by the detector
{[s(x) x F  (x)] x t(x)} x F  (x)1 2

1F  (x), F  (x) = Fresnel functions2

t(x) = amplitude transmittance function of the transparency (object)

Figure ��
� Three consecutive operations forming a general hologram

��� Gabor In�Line Holography �of a Two�Dimensional

Object�

Gabor made a hologram of a transparency which had a clear background and opaque

writing� The writing was the two�dimensional object of which the hologram was made� He

illuminated the transparency with a collimated beam of monochromatic light and recorded

its Fresnel di�raction pattern on a photographic plate ��	�� The �lm was developed and

the image reconstructed by shining the monochromatic light back through it� The writing

was easily readable in the reconstructed image� Gabor won the Nobel Prize for this work

which he published in a paper in ��	� ����� The relationship between the transmittance

of a developed hologram and the intensity of light the �lm was exposed to is given in

appendix C�

In the case of Gabor in�line holography� the light source is collimated and so emits

plane waves� therefore� r � p and s����� � � over all of ���� The �
p
term can be replaced by

��
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A� the amplitude of the monochromatic plane waves� Equation ���� then becomes

u�xxx� � Aei
��p
�

�

i�q
ei

��q
�

Z
t�����ei

�
�q
�����xxx
�d��� ����
�

which can be written as

u�xxx� �
C

��i

Z
t������
�	e

i��������xxx
�d��� where C � Aei
���p�q�

� and 
�	 �
�

�q
������

The amplitude of the light in the hologram plane is therefore given by the convolution of

the amplitude transmittance function of the transparency with the Fresnel function z�xxx��

u�xxx� �
C

��i
t�xxx�� z�xxx� where z�xxx� � �
�	e

i���xxx
�

����
�

The Fresnel function has the Fourier transform ZF �


� where

ZF �


� � ��ie
�i ����

���� ������

and 


 � 


�
x� 
y�� Soroko showed that equation ���
 can be written in four forms as

follows�

u�xxx� �
C

��i
t�xxx�� z�xxx� �rst form

u�xxx� �
C

i�����

Z
T F �


�ZF �


�ei���xxxd


 second form

u�xxx� �
C

	��
Z�F ��
�	xxx�

Z
t�����z�����e�i���

�
�xxx
���d��� third form

u�xxx� �
C

	��
Z�F ��
�	xxx�

�
T F ��
�	xxx�� ZF ��
�	xxx�

�
fourth form

������

where T F �


� is the Fourier transform of t�xxx�� These di�erent expressions can be used

to analyse the di�raction pattern� First� however� some characteristic lengths need to be

introduced� The Fresnel function can be approximated as a series of concentric circles�

A Fresnel zone plate can be used to di�ract light and the size of the �rst Fresnel zone

is a measure of di�raction� A Fresnel zone plate is a series of alternating transparent

and opaque concentric rings which are called zones� Rays travelling to the focal point a

distance q behind the plate via a point on the outer edge of the mth zone will reach the

focal point a out of phase by m�

� with a ray that passed through the centre of the plate�

The radius of the mth zone� Rm� can be shown to be

Rm �
p
m�q ���� ������

��
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The radius of the central Fresnel zone� l� is therefore given by

l �
p
�q ������

The size of the �nest detail in the object� �� is related to the maximum spatial frequency�

"	� in the spatial structure of the object by

� �
�

"	
������

The following limiting cases will be considered�

�� The size of the object �opaque regions on the transparency� is much less than the

size of the central Fresnel zone�

�� The size of the central Fresnel zone is much less than the size of the smallest detail

in the object�

�� The size of the �rst Fresnel zone exceeds the size of the smallest detail in the object

but this zone is less than the object itself�

����� The Central Fresnel Zone is much larger than the Object

If the size of the object is a� the following relationship can be used�

a� l so 
�	a
� � � and z����� � �
�	 ������

The third representation of equation ���� then becomes

u�xxx� �
C

	��
�
�	Z

�F ��
�	xxx�

Z
t�����ei���

�
�xxx
���d��� ����	�

which can be written as

u�xxx� � C

�	
���

Z�F ��
�	xxx�T
F ��
�	xxx� ����
�

and as Z�F ��
�	xxx� � ���iei���xxx�� we have

u�xxx� �
C

��i
z�xxx�T F ��
�	xxx� ������

In this case� therefore� the di�raction pattern corresponds to the Fourier transform of the

transmittance function of the transparency multiplied by the Fresnel function� Another�

�	
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notably simpler method to obtain this formula is to �rst expand the terms in �� � x� � x� � x�� in

equation ���� giving�

u�xxx� �
C

��i

Z
t������
�	e

i���xxx
�
e�i��

�
����xxxei�

�
����

�
d��� ����
�

Born and Wolf ��	� state that when the size of the aperture�object is so small that

quadratic and higher order terms in ��� can be neglected� This is referred to as Fraunhofer

di�raction� Fresnel di�raction describes the case when the quadratic terms cannot be

neglected� Neglecting the quadratic terms in ��� in equation ���
 gives

u�xxx� �
C

��i
�
�	e

i���xxx
�

Z
t�����e�i��

�
����xxxd��� ������

It can be clearly seen that this is the same result as that in equation ���	� Fraunhofer

di�raction is also called far��eld di�raction and the resulting hologram is called a Fourier

hologram� Fourier holograms are mainly used to holographically store information and in

digital optical computing ��
��

����� The Central Fresnel Zone is much smaller than the Small�
est Detail in the Object

The following relationship applies here�

l� � or 
	 � "	 ������

This means that the maximum frequency in ZF �


� is much smaller than 
	 and so

ZF �


� � ��i� The second representation of equation ���� can therefore be simpli�ed�

u�xxx� � C
��i

i�����

Z
T F �


�ei���xxxd


 �

C

��

Z
T F �


�ei���xxxd


 � Ct�xxx� ���	��

The di�raction pattern is simply the amplitude transmittance function of the transparency

multiplied by a factor C which depends upon the amplitude and phase of the light source�

This is known as the geometric shadow region� Holograms recorded in this region are called

shadowgrams� As will be discussed in Section ��	� zone plate holograms are shadowgrams�

Shadowgrams are also recorded in coded mask imaging techniques �
���


�
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����� The Central Fresnel Zone is Larger than the Smallest De�
tail in the Object but Smaller than the Object Itself

The following relationship applies in this case

� � l � a ���	��

and equation ���� is still valid� This is the general Fresnel di�raction case� Gabor recorded

his holograms in this region� As was stated in section ����� this is called Fresnel di�raction

and is also called near��eld di�raction� Holograms recorded in this region are called Fres�

nel holograms� Most conventional holograms used to record and display three�dimensional

images are of this type�

Gabor also recorded his holograms in this region� The light source he used was a mer�

cury arc lamp� This lamp produces green light of wavelength 
	�nm as well as blue light

of wavelength 	�
nm �
��� If� for example� the green light was used� and the photographic

plate was placed � metre behind the transparency� the size of the central Fresnel zone

would be�

l �
p

	� � ���� � � � 
��� � ����m � ��
mm ���	��

So the smallest detail in the object would have to be less than ��
 mm and the object

itself would have to be bigger than this� If� for example� the transparency was about 
cm

square and had writing on it� it would satisfy these conditions� The exact parameters

used for Gabor�s experiment are not known here but� with this wavelength of light it can

be seen that the hologram was probably in this region�

��	 Zone Plate Holography of Two�Dimensional Sources

Figure ��	 illustrates the equipment needed for gamma ray holography if the transparency

was replaced with a sintered tungsten zone plate and the photographic �lm with a gamma

camera with the collimator removed� The source would� of course� be a gamma ray

source instead of a coherent light source� Gamma rays have frequencies between ���� and

����Hz ����� This means that the longest wavelength would be � � �	�

�	�� � ���nm� If the

gamma camera was � metre behind the zone plate� for example� the size of the central


�



Comparison of Zone Plate Holography with Conventional Holography

Fresnel zone of the waves would be�

l �
p
��� � ���� � � � � � ����m� ���m ���	��

One possible application of this technique is to nuclear medicine� Here� the gamma ray

sources would be several centimetres in size� So� even if the sources produced coherent

rays� the wavelength of gamma rays would de�nitely put any experiment in the geometric

shadow region as described in Section ������ The fact that gamma ray sources do not

produce coherent waves further ensures that no di�raction is seen�

Each point in the source casts a shadow of the zone plate on the detector� The

hologram is the sum of these shadows� First� a planar source will be considered� This

source will be a distance p behind the zone plate� as in Figure ��	� It will be assumed that

the shadow is the same size and shape for point sources at the same distance p behind the

zone plate� i�e� the shadow is shift invariant for points in the same plane� For this to be

the case� the distances p and q have to be large compared with the size of the zone plate

and the distance of the point source from the central axis of the imaging system �which

passes through the centre of the zone plate and of the detector�� The zone plate also must

be assumed to be in�nitely thin� Using the same notation as before� each shadow would

be magni�ed by a factor M where

M � � �
q

p
���		�

A point source with intensity Si��i�i�i� at position �i�i�i��i� �i� will give a shadow� the centre of

which is at xixixi�xi� yi� where

xi � �
�
q

p

�
�i � L�i yi � �

�
q

p

�
�i � L�i ���	
�

A de�nition of the intensity of a source of electromagnetic waves is given in appendix B�

If the zone plate has an intensity transmittance function T ������ the detector is of size D

wide by D high and p� q � D� the source will cast a shadow of intensity Ui�xxx� given by�

Ui�x� y� �
D�

	��p � q��
Si��i� �i�T

	 x

M
� L�i�

y

M
� L�i



���	��

The factor D�

���p�q
� is an approximation of the fraction of the radiation which is emitted

by the isotropic source which is recorded by the detector� As p� q � D� the curvature of

a sphere of radius p � q over the detector area is small enough to be neglected�


�
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If the extended source is seen as the sum of many point sources� the shadow� U�xxx��

cast by the extended source of intensity S����� is the integral over all these point sources�

U�xxx� �
D�

	��p � q��

Z
S �����T

	 xxx

M
� L���



d��� ���	
�

Two new variables� � and � will now be introduced where � � L� and � � L�� Substituting

������ �� � L������ �� into equation ��	
 gives

U�xxx� �
D�

	��p� q��

Z
S
	���
L



T
	 xxx

M
� ���



d��� ���	��

The resulting shadow is therefore a convolution between the source distribution magni�ed

by a factor L and the intensity transmittance of the zone plate magni�ed by a factor M �

U�xxx� �
D�

	��p� q��
S
	xxx
L



� T

	 xxx

M



���	��

Looking at equation ��	
� note that as p and q are both positive numbers� L is negative�

This means that the source distribution is �ipped horizontally and vertically before it is

scaled and convolved with the zone plate pattern�

��
 Comparison of Gabor and Zone Plate Holograms

of Single Points

Comparing equation ���
 to ��	�� it can be seen that the amplitude of a Gabor holo�

gram and the intensity of a zone plate hologram of two�dimensional sources can both

be approximated as the convolution between two functions� For simplicity� the constant

multiplication factors will be ignored here� The amplitude of a Gabor hologram is the

convolution between the amplitude transmittance of the transparency �the object� and

a Fresnel function whereas the intensity of a zone plate hologram is the convolution be�

tween the source distribution and the intensity transmittance of the zone plate� If the

intensity transmittance of the zone plate was also a Fresnel function� the resulting zone

plate hologram would be similar to a Gabor hologram of an equivalent coherent light

source� As is stated in appendix C� intensity transmittance is the square of the amplitude

transmittance�

If conventional holographic reconstruction techniques are to be used� the ideal zone

plate to use would give a hologram which was as similar to a conventional hologram as


�



Comparison of Zone Plate Holography with Conventional Holography

possible� It would therefore have an intensity transmittance which was a Fresnel function�

T �xxx� � �
�zpe
i��zpxxx

�
���
��

Where 
zp is a constant� This function� however� has both real and imaginary parts� The

intensity transmittance function can only be real and have a value between � �opaque�

and � �transparent�� The best possible alternative is therefore

T �xxx� �
�

�

�
� � cos

�

�zpxxx

�
��

�
�

�

h
� � 	

n
ei�

�
zpxxx

�
oi

���
��

where 	ffg is the real part of a function f � �� � cos �
zpxxx��� has zeros at xxx �
p
�

�
�
p
��
�

�
p
��
�

���

p
��n��
�

�
� r	�

p
�r	�

p

r	 ���

p
�n � �r	 and so the transmittance function can

be written as

T �xxx� �
�

�

�
� � cos

�
�xxx�

r�	

��
���
��

a zone plate with this transmittance function is called a Gabor zone plate�

����� Zone Plate Hologram of a Point Gamma Ray Source

If the source is a point source of unit intensity at point �� � �� � � ��� the source

distribution can be described by a delta function� S����� � ������� If a Gabor zone plate is

used� T �xxx� � �
�

h
� � cos

	
�xxx�

r��


i
and equation ��	
 gives the intensity of the hologram as

U�xxx� �
D�

	��p � q��
�

�

�
� � cos

�
�xxx�

M�r�	

��
���
��

This can be written as

U�xxx� �
D�M�r�	

����p � q��
�

�

�
�
�zp � �
�zp cos�


�
zpxxx

��
�

where 
zp �

p
�

Mr	 ���
	�

A zone plate hologram of a point source therefore contains a constant background term

minus the real part of a Fresnel function of spatial frequency 
zp�

����� Gabor Hologram of an Opaque Point in the Middle of an

Otherwise Transparent Transparency

In equation ����� the amplitude of the hologram was given as

u�xxx� �
C

��i

Z
t������
�	e

i��������xxx
�d��� where C � Aei
���p�q�

� and 
�	 �
�

�q
���

�
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If the transparency were completely transparent� i�e� t����� � � over all of ���� equation ��



would become

u�xxx� �
C

��i

Z
�
�	e

i��������xxx
�d��� � C � Aei
���p�q�

� ���
��

If the transparency contains a single opaque point at ��� � � the amplitude of the hologram

would no longer contain the contribution from this point� The point will be assumed to

be square and of size �p � �p and that �p is so small that the waves from one side of the

source are the same as those from the other side� This gives

u�xxx� � C

�
�� ��p


�
	

�i
ei�

�
�xxx

�

�
���

�

The intensity of the hologram is therefore

U�xxx� � u�xxx�u��xxx� �
C���p
�

�
�

��p
�
��p


�
	

�
� �
�	 sin�


�
	xxx

��

�
���
��

A Gabor hologram of a point therefore contains a constant background term plus the

imaginary part of a Fresnel function of spatial frequency w	�

��� Optical�Convolution Image Reconstruction

Both types of hologram can be reconstructed in the way in which a Gabor hologram is

formed� A Gabor hologram is already recorded on photographic �lm� the �lm then has to

be developed� The resulting amplitude transmittance function of the �lm will be assumed

to be linearly related to the intensity recorded� If # is a constant which depends upon

the way the �lm was developed� the amplitude transmittance function will be

tG����� � G� �G��

�
	 sin�


�
	���

�� where

G� � #C�

�
� �

��p

�
	

��

�
and G� � #

C���p
�

���
��

The relationship between the amplitude transmittance of photographic �lm and the in�

tensity of radiation the �lm was exposed to is discussed in appendix C� In zone plate

holography� the hologram is recorded using a gamma camera� It is then stored as two�

dimensional pixel array on a computer� This can be printed out onto a transparency�

Again� it will be assumed that the resulting amplitude transmittance function is linearly


�
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related to the intensity recorded� $ will be introduced as the constant of linearity�

tZ����� � Z� � Z��

�
zp cos�


�
zp���

�� where

Z� � $
D�

���p � q��
and Z� � $

D�M�r�	
�����p � q��

������

As was shown in Section ���� shining a beam of plane coherent light waves through a

transparency gives a pattern in the hologram plane equivalent to the convolution between

the amplitude transmittance of the transparency and a Fresnel function� The �rst form

of equation ���� gives

uG�xxx� �
Cr

��i
tG�xxx�� �
�re

i��rxxx
�

and uZ�xxx� �
Cr

��i
tZ�xxx�� �
�re

i��rxxx
�

������

where Cr and 
r are constants dependent on the wavelength of the light and the separation

of the hologram and the detector�


�r �
�

�rqr
Cr � Are

i
���pr�qr �

�r ������

�r is the wavelength of the light used to reconstruct the image� qr is the hologram to

detector distance and pr is the source to hologram distance� As plane waves are used� pr

just gives the phase of the waves as they reach the hologram and have no e�ect on the

intensity of the reconstructed image� Ar is the amplitude of the plane waves�

The convolution theorem states that the Fourier transform of the convolution of two

functions is equal to the product of their individual Fourier transforms ����� The Fresnel

function of spatial frequency 
r has the following Fourier transform�

ZF �


� � ��ie
�i ����

���r ������

where 


 � 


�
x� 
y�� From this� the following Fourier transform pairs can be deduced�

	
n
�
�re

i��rxxx
�
o

 	

�
��ie

�i ����
���r

�
therefore �
�r cos�


�
rxxx

��
 �� sin

�



�

	
�r

�

�
n
�
�re

i��rxxx
�
o

 �

�
��ie

�i ����
���r

�
therefore �
�r sin�


�
rxxx

��
 �� cos

�



�

	
�r

�
����	�

where 	ffg is the real part and �ffg the imaginary part of a function f �

To summarise� expressions for the amplitude transmittance of both Gabor and zone

plate holograms of on�axis point objects have been derived� It has been shown that� if


�
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the image is reconstructed by shining light back through the hologram� the image seen

at a given distance behind the transparency is given by the convolution of the amplitude

transmittance function of the hologram with a Fresnel function z�xxx� � �
�re
i��rxxx

�
�

The Fourier transform of the convolution of two functions is equal to the product of

their individual Fourier transforms� The Fourier transforms of the real and imaginary

parts of a Fresnel function have been found and can be used to evaluate the reconstructed

image from both types of hologram� Expressions for the reconstructed image will be found

�rst when 
r � 
	 and 
r � 
zp and then when 
r �� 
	 and 
r �� 
zp� In the �rst case�

which will be called matched convolution� an image of the point should be obtained� In

the second case� unmatched convolution� there should be no discernible image�

����� Matched Convolution

Gabor Hologram� 
r � 
	

First� a Gabor hologram of a point will be investigated� It will be assumed that the

hologram stretches to 
� in the x and y directions� The constant term will be ignored

as this will just give a constant term in the reconstructed image� An expression will be

found for the contribution to the reconstructed image from the sin term when 
r � 
	�

The aim is to �nd the amplitude of the reconstructed image� uG��xxx� �

uG��xxx� � Cg�

�
	 sin�


�
	xxx

��� �
�	e
i���xxx

�
where Cg � � Cr

��i
G� ����
�

Taking the Fourier transform of each side gives

UF
G��


� � Cg����

�

�
cos

�



�

	
�	

�
sin

�



�

	
�	

�
� i cos�

�



�

	
�	

��

� Cg����
�

�
�

�
sin

�



�

�
�	

�
� i

�

�

�
� � cos

�



�

�
�	

���
������

then� taking the inverse Fourier transform gives the following expression for the amplitude

of the reconstructed image�

uG��xxx� � Cg

�
�
�	 cos

�

�	
�
xxx�
�
� i

�
�

�
������ � �
�	 sin

�

�	
�
xxx�
���

����
�

where ��xxx� is the Dirac delta function�

The imaginary part of the reconstructed image therefore contains a point at xxx � ���

as well as the imaginary part of a Fresnel function of frequency ��p
�
� The real part just


�
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contains a real part of a Fresnel function� also of frequency ��p
�
� If an optical reconstruction

is used� only the intensity will be recorded� This is given by

UG��xxx� � C�
g



��
�	�

� cos�
�

�	
�
xxx�
�
�

�
�

�
������ � �
�	 sin

�

�	
�
xxx�
���

�
�

C�
g



��
�	�

� �

�
������

	

��
�

������

The intensity of the reconstructed image therefore contains just a point at xxx � ��� as well

as a constant background term� as would be expected�

Zone Plate Hologram� 
r � 
zp

The analysis here is very similar to that for the Gabor hologram� Again� the constant

background term will be ignored� The aim is to �nd the amplitude of the reconstructed

image� uZ��xxx��

uZ��xxx� � Cz�

�
zp cos�


�
zpxxx

��� �
�zpe
i��zpxxx

�

where Cz �
Cr

��i
Z� ������

Taking the Fourier transform of each side gives

UF
Z��


� � Cz����

�

�
sin�

�



�

	
�zp

�
� i sin

�



�

	
�zp

�
cos

�



�

	
�zp

��

� Cz����
�

�
�

�

�
� � cos

�



�

�
�zp

��
� i

�

�
sin

�



�

�
�zp

��
���
��

then� taking the inverse Fourier transform gives the following expression for the amplitude

of the reconstructed image�

uZ��xxx� � Cz

��
�

�
������� �
�zp sin

�

�zp
�
xxx�
��

� i�
�zp cos

�

�zp
�
xxx�
��

���
��

The intensity is therefore given by

UZ��xxx� �

C�
z


�
�

�
������� �
�zp sin

�

�zp
�
xxx�
���

� ��
�zp�
� cos�

�

�zp
�
xxx�
��

�

C�
z



��
�zp�

� �

�
������

	

��
�

���
��

Again� the intensity of the reconstructed image therefore contains just a point at xxx � ���

as well as a constant background term�


�
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����� Unmatched Convolution

Gabor Hologram� 
r �� 
	

The frequency of the Fresnel function in a plane a distance qr behind the transparency is

given by 
r �
q

�

�qr
� As discussed in the previous Section� when 
r � 
	 the reconstructed

image has a point in the correct position and a constant background� Here� a formula will

be derived for the reconstructed image when 
r �� 
	� that is� in a plane other than the

focal plane� As in Section ������ the aim is to calculate the amplitude of the reconstructed

image� uG��xxx��

uG��xxx� � Cg�

�
	 sin�


�
	xxx

��� �
�re
i��rxxx

�

���
��

Taking Fourier transforms of both sides gives
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Taking the inverse Fourier transform gives the following expression for the amplitude of

the reconstructed image

uG��xxx� �

Cg
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where ag �

�

�r


�
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���
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The intensity of the image is therefore given by

UG� � ���Cg�
�
�
a�g � b�g � �agbg cos

�
�ag � bg�xxx
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which� as expected� has a singularity when 
r � 
	�
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Zone Plate Hologram� 
r �� 
zp

The same method as before gives the following expression for the amplitude of the recon�

structed image� uZ��xxx��
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and the intensity is therefore
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which again has a singularity when 
zp � 
r�

To compare the variation in intensity of the reconstructed image with hologram to

detector image� an example Gabor hologram will be analysed� The hologram will be

assumed to have been recorded with a transparency to photographic �lm separation of

q ��m� The wavelength of light will be set as � � 
	�nm which is the wavelength of light

emitted by the mercury arc lamp Gabor used in his experiments� These two values give


	 � ����m��� The wavelength of light is used in the reconstruction will also be set to


	�nm� The constant Cg will be set to Cg � ����� To compare a zone plate hologram

to this� the parameters 
zp and Cz will be set equal to the equivalent parameters for the

Gabor hologram� that is� 
zp � 
	 and Cz � Cg� These may be arti�cial values for a zone

plate hologram� but the recorded hologram would have to be reduced in size to di�ract

light if the image were to be reconstructed optically� This would give the same values for

the constants a and b in both cases� i�e� a � ag � az and b � bg � bz�

Figure ��� shows the variation of the constants a and b as the hologram to detector

distance varies from �m to �m in intervals of ����m� b tends to in�nity as qr ��m�

Figure ��
 shows how the intensity at xxx � ��� varies with hologram to detector distance

for both types of hologram� The intensity tends to in�nity in both cases as qr ��m�

��
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Figure ���� Variation in the values of a and b with hologram to detector distance
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Figure ��
� Variation of on�axis intensity with hologram to detector distance for ideal
Gabor and zone plate holograms of a single point

Values have been calculated at intervals of ���m �Figure ��
�a��� ����m �Figure ��
�b��

and �����m �Figure ��
�c��� The largest values of intensity are therefore at ���m and

���m� ����m and ����m� and �����m and �����m respectively� A real hologram does not

stretch to in�nity in the x and y directions� however� so the intensity in the focal plane

would not be in�nity in this case�

��
 Comparison of Holograms of more than One Point

����� Zone Plate Hologram of two Point Gamma Ray Sources

Referring back to equations ��	
 and ��
�� a Gabor zone plate will give a hologram with

the following intensity�

U�xxx� �
D�M�r�	

����p � q��

Z
S �����
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�

�
�
�zp � �
�zp cos

�

�zp �xxx� LM�����

��
d���

���
��

��
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A hologram of two point gamma�ray sources at ��� � o�o�o� and ��� � o�o�o� and both at the same

distance p from the zone plate will be given by

U�xxx� �
D�M�r�	

����p � q��
�

�

�
	
�zp � �
�zp cos

�

�zp �xxx� LMo�o�o��

��� �
�zp cos
�

�zp �xxx� LMo�o�o��

���
������

If this hologram is again printed out onto a transparency� its transmittance function will

be

tZ����� � �Z� � Z��

�
zp cos

�

�zp ����� LMo�o�o��

��� Z��

�
zp cos

�

�zp ����� LMo�o�o��

��
������

where Z� and Z� are as in equation ����� This is simply the superposition of holograms

from each individual point�

����� Gabor Hologram of two Opaque Points

Referring back to Section ��
��� a hologram of two opaque points at ��� � o�o�o� and ��� � o�o�o�

in an otherwise transparent transparency would have the following amplitude

u�xxx� � C
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�i
ei�

�
��xxx�o�o�o�
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�
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where ��p is the size of each point as before� The corresponding intensity would be
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C�

�



� �

���p

�
	

�
� ���p


�
	 sin

�

�	 �xxx� o�o�o��

��� ���p

�
	 sin

�

�	 �xxx� o�o�o��

��

�
���p


�
	

�
cos

�

�	
�
�xxx� o�o�o��

� � �xxx� o�o�o��
���� ������

The developed �lm would therefore have the following transmittance function

tG����� � �G� �G��

�
	 sin

�

�	 ���� � o�o�o��

���G��

�
	 sin
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���
G��
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C���p
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����	�

G� and G� are as in equation ��
�� The second and third terms correspond to holograms

of the individual points but the fourth term comes from interference between the contri�

butions from both points� The relative magnitude of this contribution compared to those

from the individual points is given by

F �
G�
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#C���p
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If� as in Section ������ the wavelength of the light is set to � � 
	�nm and the distance

of the image behind the hologram to q � � m� this gives F � ���������p� Therefore� as

long as each point has �p � ��
mm� this contribution will be smaller than that from the

individual points�

The interference term has a cosine variation� The frequency of this variation is given

by �
�	 �o�o�o� � o�o�o�� m��� Using the same value for 
	� this gives ��
���� �o�o�o� � o�o�o��m��� So�

if �o�o�o� � o�o�o�� � ����m� for example� zeros in this term will be separated by ���m� The size

of the central Fresnel zone �l �
p
�q� for the terms from individual points will be 
	��m�

Unlike a zone plate hologram� which is simply the superposition of the holograms

from each point in the source� a Gabor hologram also contains terms from the mutual

interference of waves from di�erent points in the source� This Section showed the terms for

two points but holograms of more than two points or extended objects will contain further

terms� The magnitude and frequency of these contributions compared to the magnitudes

of the Fresnel functions from the individual points will depend upon the separation of the

points as well as the frequency of light used and the distance of the transparency from

the photographic plate�

Investigations could be made to determine whether adding some of the mutual inter�

ference terms to a zone plate hologram to make it more like an equivalent conventional

hologram would improve the image reconstruction� As these terms depend upon the ob�

ject of which the hologram was made� this would have to be an iterative procedure� A �rst

approximation of the object would have to be found initially� the corresponding mutual

interference terms could then be calculated and used to improve the image� This process

could then be repeated until the image quality reached an acceptable level�

��� Hologram of a Three�Dimensional Object

��	�� Zone Plate Holography

The factorsM and L which were given in equations ��		 and ��	
 depend upon the source

to zone plate distance p as well as the �xed zone plate to detector distance q� A zone plate

hologram of a source extended in the z direction as well as in directions perpendicular

to this axis� ��� ��� will have varying values of M and L� Instead of M and L� M�p� and

��
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L�p� will be used as these values are functions of p�

An extra complication is that a gamma�ray from a point which is not on the surface

nearest to the zone plate will have to travel through the rest of the source before travelling

through the air to the zone plate� The attenuation of this gamma�ray by the source must

therefore be considered� The linear attenuation coe�cient� �l for gamma�rays is de�ned

by

I � I	e
�	lt ������

where I is the number of transmitted photons� I	 is the number without an absorber and t

is the thickness of the absorber� This can also be given as the mass attenuation coe�cient

�m or the mean free path �mf where

�m �
�l
�

and �mf �
�

�l
����
�

and � is the density of the medium� Intensity of radiation is the rate of transfer of energy

across unit areas by the radiation� For a monoenergetic source� this is proportional to the

number of photons being emitted per second� I in equation ���� can therefore be replaced

by s�����a� the intensity after travelling through the source and I	 by s�����b� the intensity

before travelling through the source�

One commonly used radiopharmaceutical is ��mTc ��	�keV gamma�rays� �

�� The

e�ect of this attenuation can be estimated using this example� ��mTc is usually obtained

from a Mo�Tc generator as a salt dissolved in water� In nuclear medicine� this is then

injected into a person for imaging purposes� Mass attenuation coe�cients �
�� for �	�keV

gamma�rays in tissue as well as in water are therefore given in Table ���� The density of

water is ����kgm��� of air ����kgm�� ���� ���� and the density of tissue will be assumed

to be the same as that of water� Linear attenuation coe�cients were calculated using

these values and can be seen in Table ����

Radioisotope ��mTc
Gamma�ray energy �	�keV
Air �����	
H�O ����	�
Tissue ����		

Table ���� Mass attenuation coe�cients �m�kg���

�
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Radioisotope ��mTc
Gamma�ray energy �	�keV
Air ����
�
H�O �	��
Tissue �	�	

Table ���� Linear attenuation coe�cients �m���

If a phantom contains ��mTc and is ����m thick� for example� �	�keV gamma�rays will

be attenuated to a factor e���
��	
	� � ���� times the original intensity in travelling from

the back to the front of the phantom� This means that �	� of the gamma�ray intensity

will be lost� If the phantom is 
cm thick� 
�� is lost� If �	�keV gamma�rays travel

through �m of air� only ��
� will be lost�

An expression for the resulting hologram is given by equation ��	
 but integrated

over all distances p in the z�direction of sources from the zone plate� The attenuation of

gamma�rays which pass through the source also need to be considered and this will be rep�

resented by a factor ���� �� p� S��� �� p�� which depends upon the entire source distribution�

S��� �� p�� as well as the position of the point� ��� �� p��

U�xxx� �
D�

	�

Z
�

�p � q��

Z
������ p� S����� p��S ����� p�T

�
xxx

M�p�
� L�p����

�
d���dp

������

The attenuation term adds an extra degree of complexity to the problem of reconstructing

an image of the source� It implies that the whole of the source distribution needs to be

known before an expression for the contribution from one point in the source can be found�

In practice� an image of the source could be calculated �rst� neglecting attenuation� so

the location of the source could be found� The attenuation could be included in a second

stage to correct the amplitude of the image� This approach is often used in SPECT which

is a well established imaging technique for nuclear medicine �

��

Another factor to consider is the scaling of images from zone plate holograms in the z

direction if they are reconstructed optically� As was shown in Section ������ 
r should be

set equal to 
zp for an image of a point to be obtained� If a Gabor zone plate is used 
r

and 
zp are given by


r �

r
�

�rqr
and 
zp �

p
p
�

�p� q�r	
������

��
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where �r is the wavelength of the light used in the reconstruction� r	 is the �rst zone

radius of the zone plate and qr is the point where the reconstructed image will be found�

So� when 
r � 
zp� qr is given by

qr �
�p� q��r�	

�rp�
������

qr is therefore not a linear function of q� This will produce an undesirable scaling e�ect

in the z direction in the reconstructed image�

��	�� Gabor In�Line Holography

Gabor used the experimental arrangement described in Section ��� to make holograms of

two�dimensional objects� In order to compare this technique to zone plate holography for

three�dimensional imaging� a series of transparencies will have to be used as the model of

the object to be imaged� The transparencies will be assumed not to refract or attenuate

the light waves travelling through it and the opaque regions will completely absorb any

light incident on them�

The hologram from a series of N thin transparencies will be considered� Each trans�

parency will be separated a distance %q from its neighbours with the closest one a

distance qmin from a sheet of photographic �lm and the furthest one at a distance

qmax � qmin � %q�N � �� � The transparencies are illuminated by coherent plane waves�

This is illustrated in Figure ���� In Section ���� the amplitude of the light in the hologram

plane for a general hologram was shown to be given by the convolution of the light source

distribution with one Fresnel function� multiplication of this by the amplitude transmit�

tance function of the transparency and then convolution of this with a second Fresnel

function� Consider the case when N��� i�e� there are only two transparencies� If the

amplitude of the plane waves at the �rst transparency is given by Aei
��p
� and the waves

emerging from the �rst transparency are seen as a source for a hologram of the second

transparency� referring back to equation ���	� the amplitude of the light in the hologram

plane will be given by

u�xxx� � Aei
��p
�

�

i�%qqmin

ei
���	q�qmin�

�

���
t�xxx� qmin �%q�� ei

�xxx�

�	q

�
� t�xxx� qmin�

�
� e

i �xxx�

�qmin

�
������

��
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its neighbours by distance qΔ

qΔ
qΔ

qΔ

u

y

z

plane waves

β

α

x

qmin

N transparencies each separated from

Figure ���� Relative positions of the transparencies and the hologram

For N transparencies� this becomes

u�xxx� � Aei
��p
�

�

i�

�

qmin�%q�N��
ei

���qmin�	q�N����
�

�����
� � �
�����

t�xxx� qmin �%q�N � ����

ei
�xxx�

�	q

�
� t�xxx� qmin �%q�N � ���

�
� ei

�xxx�

�	q

�
� t�xxx� qmin �%q�N � ���

�
� ei

�xxx�

�	q

�
� � �

� t�xxx� qmin �%q�

�
� ei

�xxx�

�	q

�
� t�xxx� qmin�

�
� e

i �xxx�

�qmin

��
������

It would be interesting to see what happens as %q �� � and N ��� but in this case�

Kirchho��s di�raction formula would no longer be valid� The intensity which will be

recorded on the photographic �lm is� again� given by U�xxx� � 	fu�xxx�g� � �fu�xxx�g�� It is

obvious that� unlike zone plate holography� this is not simply the sum of the contributions

from each plane parallel to the detector�

As mentioned before� however� this is not a type of hologram which has been used� It

is impractical as light would be stopped by the object pattern on one transparency before

it reached the next transparency and little detail about the side nearest the detector

would be obtained� Leith and Upatnieks o��axis holograms �
��� which give good quality

images� involved scattering an object beam and an angled reference beam o� the front

of a solid object� Information from the side of the object viewed from the direction of

the photographic plate is then recorded� This technique� however� only gives holograms

which contain information about the surface of the object� Zone plate holography is truly

three�dimensional with points throughout the volume of a three�dimensional radiation

source contributing to the hologram�

��
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��� Summary

In this Chapter� zone plate and conventional holography were discussed� Born and Wolf�s

derivation of the Kirchho��Fresnel di�raction formula was summarised and Soroko�s deriva�

tion of the amplitude of a general hologram was reviewed� Using these formulae� a par�

ticular type of conventional holography� Gabor in�line holography� was analysed in detail

and compared to zone plate holography� Holograms of single points were shown to be

similar� Equations for the optical image reconstruction of holograms of single points were

derived and the origins of the signal and noise terms were shown� The similarities and

di�erences between zone plate and Gabor holograms of two points were derived and an

attempt was made to quantify these di�erences� It was concluded that these di�erences

will have an even greater e�ect in holograms of extended objects�sources� Holograms of

three�dimensional objects�sources were compared and the di�erences were indicated� The

e�ect of attenuation of gamma�rays by the source material was discussed and an attempt

was made to �nd the magnitude of this e�ect� An undesirable scaling e�ect in the z

direction of an optically reconstructed zone plate hologram was found�

��



Chapter �

INHERENT ERRORS
ASSOCIATED WITH GAMMA

RAY ZONE PLATE
HOLOGRAPHY

The equipment used for zone plate holography was described in Section ��	� A gamma

camera is used to record the hologram and this a�ects the quality of the hologram� The

pixel size must also be small enough for the frequencies in the hologram to be correctly

recorded� The image is reconstructed using a computer� The accuracy of the digitisation

and of the �oating point arithmetic will also have an e�ect� Radioactive decay is a random

process and� therefore� the quality of the hologram will improve with the time for which

it is recorded� In this Chapter an attempt will be made to analyse and quantify the e�ect

of each of these factors on the quality of a hologram�

	�� Gamma Camera

The components of a gamma camera detector head can be seen in Figure 	��� A lead

collimator is usually attached� The most common type of collimator is a parallel hole

�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������

collimator

X Y Z

sodium iodide [Na(Tl)] crystal

transparent light guide

array of photomultiplier tubes

pulse arithmetic circuit

protective shield or bowl

X -> x-coordinate
Y -> y-coordinate
Z -> pulse height logic signal

Figure 	��� Diagram of a gamma camera detector head
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collimator and this ensures that only gamma rays incident at right angles to the detector

head will reach the crystal� The crystal is thallium activated sodium iodide NaI�Tl��

When a gamma ray is absorbed by the crystal� molecules in the crystal are excited and

then decay back to their ground state by emitting visible light� The total light emitted

by NaI�Tl� depends upon the gamma ray energy absorbed� This relationship is close to

linear over most of the signi�cant energy range�

The crystal is optically coupled to an array of photomultiplier �PM� tubes� Each PM

tube converts the scintillation light from the crystal into an electrical pulse� The total

charge in the pulse is proportional to the mean number of photons incident on the tube�

A pulse arithmetic circuit then calculates the position �X�Y� and energy �Z� of the gamma

ray which caused the pulse using the signals from all the photomultiplier tubes�

The Ohio�nuclear inc� series ��� radioisotope camera� for example� contains �
 pho�

tomultiplier tubes and has a ���
cm diameter crystal which is ���
cm thick� Despite the

small number of photomultiplier tubes� the pulse arithmetic circuit can calculate the po�

sition of a gamma ray hitting the crystal to a high degree of accuracy� The FWHM of the

line spread function at the surface of the crystal is ��
cm for �	�keV gammas ����� The

spatial resolution for the cameras which have been used in work on gamma�ray holography

at the University of Birmingham are shown in Table 	���

manufacturer model spatial resolution �FWHM�m�
Ohio�Nuclear inc� Series ��� radioisotope camera 
����� ����
GE Maxicamera 
�
 
����� ��
�
ADAC Vertex gamma camera ��
����� ��
�

Forte gamma camera ��	����� �
��
Toshiba GCA�
���A �������� ��
�

Table 	��� Spatial resolution of example gamma cameras

Gamma rays react with the crystal molecules in two main ways� photoelectric absorp�

tion and Compton scattering� Photoelectric absorption results in the whole of the gamma

ray energy being absorbed by the crystal� The emitted light and hence the pulse amplitude

will be proportional to the gamma ray energy� Pulses from this interaction contribute to

a photopeak in the pulse height spectrum as can be seen in Figure 	��� Compton scat�

tering results in the partial absorption of gamma ray energy depending upon the angle

of scatter� The pulse amplitude in this case will depend upon the fraction of the energy

��
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absorbed� This gives rise to the Compton continuum in the pulse height spectrum� The

positions at which the photons which were absorbed directly depend upon the position of

the source� The positions at which photons were scattered and the fraction of energy that

was absorbed in each case provides little useful information� The gamma camera allows

a window to be placed over the photopeak� Only the pulses within this window are then

accepted and recorded� Rew �
�� studied the e�ect of this window on reconstructed image

quality in her PhD thesis�
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Figure 	��� Example pulse height spectrum from a NaI�Tl� scintillation detector

The pulses from the photopeak are output as a list of �X�Y� positions� The data

is stored in a square pixel array which usually contains between �	��	 and ���	����	
pixels� When a gamma ray is detected� the closest pixel to its calculated position is

incremented by one� Each array element therefore contains the number of gamma rays

which hit the detector crystal at that pixel position� The pixel array forms an image of

the gamma ray intensity incident on the detector�

	�� Floating Point Arithmetic

A digital computer is only capable of representing a �nite set of numbers� The computers

used in this project are Sun Solaris SPARC Ultra � and use the IEEE 

	 binary standard

to store real numbers� This standard speci�es �oating point representations for single and

��
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double precision numbers� In general� the �oating point representation can be written as

follows


 �d	 � d��
�� � � � �� dp���

��p��
��e� �� � di � �� �	���

d	� d�� � � � � dp�� is called the signi�cand and has p digits� � is the base and is assumed

to be even and e is the exponent� The values of these parameters for single and double

precision IEEE 

	 binary standard numbers are shown in Table 	��� The number of bits

required to store each part of the number are also shown� An extra bit is needed to store

the sign �positive or negative� of the number� The exponent is biased� In the case of

single precision� this means that the exponent is given by the stored number minus ����

In double precision numbers� ���� is subtracted �	��� Floating point numbers are usually

normalised� This means that the most signi�cant bit of the signi�cand� d	� is non�zero�

The IEEE binary standard has � �� so d	 is � for normalised numbers and there is no

need to waste a bit of memory storing it� Only p � � bits are therefore needed to store

the signi�cand� not p�

Parameter Single precision Double precision
� � �
p �	 
�
emax ���
 �����
emin ���� �����
Exponent width �bits� � ��
Signi�cand width �bits� �� 
�
Format width �bits� �� �	

Table 	��� IEEE standard for single and double precision �oating point numbers

The C header �les �oat�h and limits�h were used to acquire speci�c information about

the limiting values of real and integer numbers using Sun workstations� These values can

be seen in Table 	��� It can be seen that the values for �oating�point numbers correspond

to the IEEE standard�

The minimum and maximum positive normalised �oating�point numbers for given

values of �� p and e are respectively

minimum �
�
� � ���� � � � �� ����p��


�
�e � �e and

maximum �
�
�� � �� � �� � ����� � � � �� �� � �����p��


�
�e � �e�� �	���

��
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min value max value
Single precision ��oat� ���

	�e��� ������� ��	����e��� ������
Double precision �double� ����
�
e���� ����	��� ��
�
��e���� ���	���
Character �char� ���� ��

Integer �int� ���	
	���	� ��	
	���	

Long �long� ���	
	���	� ��	
	���	

Unsigned integer �unsigned� � 	��	��
��


Table 	��� Limiting values of di�erent number formats

When a real number is rounded to one of these numbers� the maximumpossible di�erence

between the real number and the �oating�point number is
�
�

�

�
��p�e� A way of measuring

the error is to �nd the di�erence between the real number and the �oating point number

divided by the real number� This is called the relative error� This error therefore lies in

the following range �
�

�

�
��p � relative error �

�
�

�

�
��p �	���

The maximum value of the error�
�
�

�

�
��p is called the machine precision� �� � �� and

p ��	 for single precision so � �
����	�	e��� For double precision� � �� and p �
� so

� � ��������e����

NAG routines ���� are a useful tool for manipulating data� These routines can� for

example� perform fast Fourier transforms� invert matrices and solve sets of simultaneous

equations� NAG fortran double precision numerical library mark ��A was the version in�

stalled on the computers used in this project so it was decided to perform all computations

using double precision numbers�

To investigate the errors involved in arithmetic operations� i�e� addition� subtraction�

multiplication and division� two square arrays of size N � N were �lled with random

double precision numbers� The numbers had the largest possible number of signi�cant

�gures� Each number in the second array was added to the corresponding number in

the �rst array and then was subtracted from it� The di�erences between the resulting

numbers and the numbers in the �rst array were found� These errors were then divided

by the corresponding numbers from the �rst array to give relative errors� The sum of

the magnitudes &m was found for array sizes from N �� to N ����	� &m was found

to be the same when a NAG routine was used as when the program was written in C�

The average relative error should be the same for each array size so the sum of the errors

��
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would be expected to increase as N�� The operations needed to calculate &m from the

relative errors will introduce errors into its value�

This procedure was also performed for multiplication and division� That is� random

numbers were �rst multiplied and then divided by other random numbers and then the

relative errors in the results were found� Functions of the form y � AxB were �tted to

the data using DWPOL ����� where y is &m and x is N � This can be seen in Figure 	���
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Figure 	��� Errors associated with basic arithmetic operations
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	 ���������� ������

Table 	�	� Equations �t to errors from basic arithmetic operations

The values of B given in Table 	�	 are very close to �� so the errors vary as N�

as predicted� Using the �tted functions to predict the relative errors involved in one

addition and one subtraction� the error of for an addition followed by a subtraction was

calculated to be ���
����e��� and the error for a multiplication followed by a division was

�������
e��� � As stated before� the machine precision for double precision numbers is

����������
e���� These results show that arithmetic operations reduce this accuracy�

Two NAG routines which are used in this project are two�dimensional fast Fourier

transforms ��D FFT� and matrix inversion� If the two�dimensional array of which the

Fourier transform is to be found has size N �N and the matrix also has size N �N � the

errors in these operations could� again� be expected to vary as N�� The array and matrix

were again �lled with random numbers� The Fourier transform of the array was found

�
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and then the inverse Fourier transform� The di�erence between the result and the original

array was then calculated� The matrix was inverted and the result and the original matrix

multiplied� The di�erence between this and an identity matrix was found� The results

can be seen in Figure 	�	�
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Figure 	�	� Errors in example calculations performed using NAG routines
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����		 �

���

Table 	�
� Equations �t to errors from Fourier transforms and matrix inversion

As can be seen from Table 	�
� &m due to �D FFTs increases as N� �

 whereas &m due

to a matrix inversion followed by a matrix multiplication increases as N�� With both of

these operations� therefore� the relative error per number will increase as the size of the

array or matrix increases�

Hologram pixel values are often stored as integers between � and �

� In this case�

the accuracy of the pixel values is much less than double precision so double precision

arithmetic will not noticeably decrease the accuracy� Expected holograms for given source

distributions are used in the reconstruction algorithms� however� and these can be calcu�

lated to double precision� It is here that the accuracy of �oating point arithmetic should

be considered�

��
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	�� Radioactive Decay

The fundamental law of radioactive decay �	�� gives the activity of a radioactive source

A�t� with half life T �
�
as

A�t� � �dN�t�

dt

����
decay

� �N�t� �
ln���

T �
�

N�t� �	�	�

where N�t� is the number of radioactive atoms at time t and � is called the decay constant�

If N��� is the number of atoms at time t � �� N�t� is given by

N�t� � N���e��t �	�
�

The probability� p� that a single atom will decay in a time interval t � � to t � %t is

therefore

p � � � e���t �	���

Each atom has the same probability of decay� The expected counts in time %t is given by

the number of atoms in the source multiplied by the probability p� The number of atoms

at t � �� N��� can be calculated using equation 	�	�

Expected count in %t � N�t��N�t�%t� �
A�t�

�

�
�� e���t

�
� N�t �	�
�

Usually� the counting interval %t is much shorter than the half life of the radioactive

source� In this case� p � � and the Poisson distribution can be used to describe the

number of counts recorded experimentally �	��� The probability P �Nactual� that a number

of counts Nactual are recorded is given by

P �Nactual� �

�
N�t

�Nactual
e�N	t


Nactual'
�	���

The standard deviation of this distribution� �� is given by

� �

q
N�t �	���

The higher the number of counts recorded� the less the e�ect these statistical �uctuations

will have on a hologram�

��
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	�	 Sampling Theory

A signal is called bandlimited if its Fourier transform is zero outside a bounded region in

the frequency plane� If the Fourier transform is F �
x� 
y�� it is bandlimited if

F �
x� 
y� � � for j
xj � 
	x j
yj � 
	y �	����

The Nyquist theory states that if you sample a signal at a rate 
sx in the x�direction and

a rate 
sy in the y�direction� the signal will be undersampled if these frequencies are less

than twice the maximum frequency in the signal �	��� i�e�


sx � �
	x 
sy � �
	y �	����

In this Section� a more thorough investigation of the e�ects of sampling will be given�

The e�ects of sampling and undersampling on the Fourier transform of the data stored

in a hologram will be demonstrated�

The gamma camera is used to record the hologram as an array of N �N pixels� This

process can be thought of as sampling the hologram at a series of points separated by

a distance %p� equal to the pixel size� If the intensity of the radiation incident on the

detector is given by h�x� y�� the series of values which would ideally be recorded would be

hjhx jhy where

hjhx jhy � h�x� y���x� jhx%p� y � jhy%p� � h�jhx%p� j
h
y%p� �	����

where jhx and jhy vary between �N

� and N

� � �� The sampled signal (h�x� y� can therefore

be described by

(h�x� y� �

N
� ��X

jhy��N
�

N
� ��X

jhx��N
�

h�x� y���x� jhx%p� y � jhy%p� �	����

The two�dimensional comb or shah x�x� y� a� b� function is given by

x�x� y� a� b� � jajjbj
�X

jhy���

�X
jhx���

�
�
x� jhxa� y � jhy b

�
���� �	��	�

In the region �N�p

� � x � �N� � �
�
%p and �N�p

� � y � �N� � �
�
%p� (h�x� y� is therefore

described by

(h�x� y� � %�
ph�x� y�x �x� y�%p�%p� �	��
�

��
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A two�dimensional Fourier transform ��D FT� can be used to �nd the spatial frequencies

in the hologram and to discover if it is under sampled or not� The �D FT of x�x� y� a� b��

X
�

x� 
y�

��
a
� ��
b

�
� is given by

X

�

x� 
y�

��

a
�
��

b

�
� Ffx�x� y� a� b�g �

�X
	y���

�X
	x���

�

�

x � ���x

a
� 
y � ���y

b

�
��
�

�	����

Taking the limit as N ��� the Fourier transform of the sampled hologram� (H��
x� 
y�

will be given by

(H��
x� 
y� � H�
x� 
y��X
�

x� 
y�

��

%p

�
��

%p

�
�	��
�

where � denotes a convolution� The Fourier transform of the sampled signal is therefore

equivalent to the sum of a series of Fourier transform patterns each shifted by a distance

��
�p

in the 
x or 
y direction with respect to each other� If the hologram is under sampled�

these spectra overlap� For this to happen� the highest frequency in the x or y direction

in the hologram� 
max� would have to be greater than �

�p
� This is called the Nyquist

limit �
���

The continuous two�dimensional Fourier transform ��D FT�F �
x� 
y� of a function

f�x� y� is given by

F �
x� 
y� �

Z �

��

Z �

��
f�x� y�e�i��xx��yy
dxdy �	����

The discrete Fourier transform of the N �N array of hologram pixels can be calculated

using a NAG routine� The two�dimensional discrete Fourier transform Dkxky ��D DFT�

of the hologram pixels hjxjy is given by

Dkxky �
�

N

N��X
jy�	

N��X
jx�	

h�jx�N
� ��jy�

N
� �
e

h
���i

�
jxkx
N

�
jyky

N

�i
�	����

where kx� ky� jx and jy vary between � and N ��� The NAG routine calculates this using

the Fast Fourier Transform method ����� As can be seen in equation 	���� the continuous

Fourier transform is given by an integral over all space ��� � x � �� �� � y � ���

Equation 	��� can be re�arranged so it can be compared with the �D FT� kx� ky � jx and

jy need to vary between �N
� and N

� � � as in equation 	���� Using this range of indices

re�ects the fact that x� y� 
x and 
y can be negative as well as positive� Substituting

��
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k�x � kx � N

� � k
�
y � ky � N

� and j �x � jx � N

� � j
�
y � jy � N

� into equation 	��� gives

D�k�x�N
� ��k�y�

N
� �

�
�

N
e�i��k

�
x�k

�
y


N
� ��X

j�y��N
�

N
� ��X

j�x��N
�

e�i��j
�
x�j

�
y
hj�xj�ye

�
���i

�
j�xk�x
N

�
j�yk�y
N

��

�	����

The size of a side of the detector� P � is given by P � N%p� The �D DFT above can be

written as

D�k�x� k
�
y� �

%p

P
����k�x�k�y

N
� ��X

j�y��N
�

N
� ��X

j�x��N
�

����j�x�j�yhj�xj�ye
�
���i

�
j�xk�x	p

P
�
j�yk�y	p

P

��

�	����

If the size of the detector� P � remains constant� As N � �� the above equation will

become

D�k�x� k
�
y� �

%p

P
����k�x�k�y

�X
j�y���

�X
j�x���

����j�x�j�yhj�xj�ye
�
���i

�
j�xk�x	p

P
�
j�yk�y	p

P

��

�	����

Comparing this to equation 	��� and noting that x � j�x%p and y � j�y%p� the following

sequence for calculating the two�dimensional Fourier transform can be devised�

Algorithm for calculating �D Fourier transform

�� Multiply the hologram array values hj�xj�y by ����j�x�j�y where �N

� � j �x �
�
N

� � �
�

and �N

�
� j�y �

�
N

�
� �

�
�

�� Calculate the �D DFT�

�� Multiply the result by ����k�x�k�y where �N

� � k�x �
�
N

� � �
�
and �N

� � k�y ��
N

�
� �
�
�

	� The result D�k�x� k
�
y� tends to F

�
��
P
k�x�

��
P
k�y
�
convolved withX

	
��
P
k�x�

��
P
k�y�

��
�p
� ���p



as N �� where F �
x� 
y� is the �D FT of a function f�x� y� and

f�x� y� �

�
h�x� y� if � P

� � x � P
� �%p and � P

� � y � P
� �%p

� if x � �P

�
� x � P

�
�%p� y � �P

�
� or y � P

�
�%p �	����


� As the �D FT is convolved with the shah function� it will be repeated at ��
P
k�x � �x

��
�p

and ��
P
k�y � �y

��
�p

where �x and �y are integers� This means that the separation

of adjacent copies of the �D FT in both directions� %k will be N � Aliasing will

therefore occur if F
�
��
P
k�x�

��
P
k�y
�
has non�zero values when jk�xj or jk�yj is greater

than N
�

�	
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As discussed in Section ���� a Gabor zone plate hologram of an on�axis point source has

the following variation

v�x� y� � �
�zp cos�

�
zp�x

� � y��� where 
zp �
p
p
�

r	�p � q�
�	��	�

and r	 is the �rst zone radius� p is the separation of the source and zone plate and q is

the separation of the zone plate and detector� We aim to discover when a hologram is

under sampled� The exact magnitude of this function in the hologram and the constant

term which is also present can be neglected for the purpose of this analysis�

Referring back to equation ���	� v�x� y� has the following Fourier transform�

V �
x� 
y� � �� sin

�

�x � 
�y
	
�zp

�
�	��
�

As in equation 	���� only the part of v�x� y� which is incident on the detector is recorded�

This is similar to multiplying v�x� y� by a �box� function which truncates it at the edges

of the detector� The Fourier transform of a box function is a sinc function� The Fourier

transform of v�x� y� is therefore convolved with this sinc function� An expression for the

resulting Fourier transform will be derived here� This e�ect is often called �ringing� and

can be lessened by using a window function� Kuo �	�� investigated the application of

several di�erent windows to images from zone plate holograms as part of his PhD�

This part of v�x� y� recorded by the detector is f�x� y�� The Fourier transform of

f�x� y� is given by

F �
x� 
y� � V �
x� 
y�
�

	
E�
x� 
y� �

�� sin

�

�x � 
�y
	
�zp

�
�

	

�
Erf

�
�

�
zp

��
P

�
�%p

�
�
�zp � 
x

�
�� ip

�

�
�

Erf

�
�

�
zp

��
�P

�

�
�
�zp � 
x

�
�� ip

�

���
Erf

�
�

�
zp

��
P

�
�%p

�
�
�zp � 
x

�
�� ip

�

�
�

Erf

�
�

�
zp

��
�P

�

�
�
�zp � 
y

�
�� ip

�

��
���� �	����

where Erf�x� is the error function and

Erf

�
K

�
�� ip

�

��
�

�p
�

Z K

�
��ip
�

�

	

e�t
�
dt � ��� i�

Z p �
�
K

	

ei
�
� u

�
du

�

Z p �
�
K

	

cos
	�
�
u�


� sin

	�
�
u�


du� i

Z p �
�
K

	

sin
	�
�
u�


� cos

	�
�
u�


du

�



FresnelC

�r
�

�
K

�
� FresnelS

�r
�

�
K

��
�i



FresnelS

�r
�

�
K

�
� FresnelC

�r
�

�
K

��
�	��
�

��
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FresnelC�x� and FresnelS�x� are the cosine and sine Fresnel integrals and can be calculated

using NAG routines� Using the relationship in equation 	��
� the real and imaginary parts

of E�
x� 
y� can be calculated� As before� 
x � ��
P
k�x and 
y � ��

P
k�y� Figure 	�
 shows

the real part of E�
x� 
y� for N � ���� %p � ��	���� p � ��� q � ��� and r	 � �����

�a� ��
x��
 pixel ar�
ray� black��
���

��e����
white���������e���

�b� x�y�pixel number� z�amplitude

Figure 	�
� Calculated Fourier transform of the e�ect of having a �nite detector area
�E
�
��
P
k�x�

��
P
k�y
�
� � real part� for ��	� k�x ��� and ��	� k�y ���

Figure 	�� on page 
� shows the corresponding values of V
�
��
P
k�x�

��
P
k�y
�
and the real

part of F
�
��
P
k�x�

��
P
k�y
�
� In this case� E

�
��
P
k�x�

��
P
k�y
�
becomes zero when jk�xj and jk�yj are

less than N

� so the pixel size is su�ciently small for the frequencies in the hologram to be

correctly recorded�

Figure 	�
 on page 
� shows the real and imaginary parts of E���
P
k�x� �� over values

of k�x from ��
� to �

� This function is shown for the above values and also when %p is

increased by a factor �� The �gure illustrates that� when %p ����
��� the hologram is

under sampled�

The zone plates used experimentally� however� have a varying transmission up to a

maximum radius R� after which the transmission has a minimum value� Considering the

case where the minimum transmission is zero� the hologram will have a variation vR�x� y�

��
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�a� ��
x��
 pixel ar�
ray� black�������
��e����
white������
��e���

�b� x�y�pixel number� z�amplitude

�c� ��
x��
 pixel ar�
ray� black������

��e����
white���������e���

�d� x�y�pixel number� z�amplitude

Figure 	��� Calculated Fourier transform of an in�nite Gabor zone plate �V
�
��
P
k�x�

��
P
k�y
�
�

and calculated Fourier transform of the portion of the zone plate recorded by the detector
�F
�
��
P
k�x�

��
P
k�y
�
� for ��	� k�x ��� and ��	� k�y ���

��
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where

vR�x� y� �

�
v�x� y�

p
x� � y� � R

�
p
x� � y� � R

�	����

Considering vR�x� y� to be f�x� y� multiplied by a circular aperture function a�x� y��

vR�x� y�� f�x� y� and a�x� y� are all radially symmetric so they can be written as func�

tions of the radius r�

vR�r� � f�r�a�r� �where� a�r� �

�
� r � R

� r � R
�	����

The �DFT F �s� of a radially symmetric function f�r� can be written in terms of r rather

than x and y as follows�

F �s� � ��

Z �

	

f�r�J	�sr�rdr ���� �	����

J	�x� is a zeroth order Bessel function of the �rst kind� This way of writing the �DFT is

called a Fourier�Bessel Transform or Hankel Transform� The Hankel transform of a�r��

A�s�� is given by

A�s� �
R

s
J��Rs� where s �

q

�x � 
�y ���� �	����

and J��x� is a �rst order Bessel function of the �rst kind� This function can be calculated

using a NAG routine� The Fourier transform of vR�x� y�� VR�
x� 
y� is therefore given by

VR�
x� 
y� � F �
x� 
y��A�
x
y� �	����

��
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�a� ��
x��
 pixel array�
black�����
����e����
white�������
�e���

�b� x�y�pixel number� z�amplitude

�c� ��
x��
 pixel ar�
ray� black��������
�e����
white��������
e���

�d� x�y�pixel number� z�amplitude

Figure 	��� Fourier transform of a circular aperture of radius equal to the maximumradius
of the zone plate �A

�
��
P
k�x�

��
P
k�y
�
� and of the truncated Gabor zone plate �VR

�
��
P
k�x�

��
P
k�y
�
�

� real part� for ��	� k�x ��� and ��	� k�y ���

�
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With the parameters used for Figure 	�� and R � �� �%p� the values for A
�
��
P
k�x�

��
P
k�y
�

and VR
�
��
P
k�x�

��
P
k�y
�
are as shown in Figure 	���

In this case� convolution with the circular aperture� A
�
��
P
k�x�

��
P
k�y
�
� makes the Fourier

transform of the hologram decrease to near zero at an even lower frequency�

In summary� the Fourier transform of a zone plate hologram of a single on�axis point

source can be analysed to see whether the pixel size is su�ciently small for the frequencies

to be correctly recorded� Using equations 	���� 	��
� 	��� and 	���� the expected Fourier

transform for a hologram sampled at a high enough frequency can be calculated� The

Fourier transform obtained using the algorithm outlined on page �� can then be compared

with the calculated transform� If the hologram is under sampled� the two transforms

will be obviously di�erent� To illustrate this� the Fourier transforms calculated using

the equations and the algorithm are compared in Figures 	�� and 	���� The hologram

in Figure 	�� has the parameters used in Figure 	�
�a� and Figure 	��� those used in

Figure 	�
�b��

	�
 Summary

In this Chapter� sources of error due to the equipment used to detect� store and process

zone plate holograms of gamma ray sources have been listed� The way that the gamma

camera� �oating point arithmetic and the statistics of radioactive decay contribute to

errors in the recorded hologram have been explained�

The di�erence between continuous and discrete Fourier transforms has been outlined

and an expression for the calculation of the discrete Fourier transform from the equivalent

continuous transform has been derived� Formulae describing the e�ect of the limited

detector size and the truncation of the zone plate pattern at a maximum radius have also

been found� These expressions can be used to test if the hologram is under sampled�

��
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Chapter �

ASSESSMENT OF
RECONSTRUCTED IMAGE

QUALITY

The aim of this work is to discover and evaluate methods for reconstruction of images

from zone plate holograms� Reconstruction of a perfect image is made di�cult by the

sources of error outlined in Chapter 	 and these errors will result in di�erent artifacts in

the reconstructed image for each method� Subjective judgement of image quality� that

is� �I think image A looks better than image B � may give a reasonable assessment of

the e�ectiveness of a reconstruction method but is subject to the personal preferences

of the human observer� A method for measurement of image quality is needed so the

reconstruction methods can be compared�

ICRU report 
	 entitled �Medical Imaging � The Assessment of Image Quality ��	�

states that there are three kinds of physical parameters which are fundamental to image

system speci�cation�

�� Large�scale �macro� system transfer function �characteristic curve� which

measures the relationship between system input� e�g�� exposure quanta�

and the output image� e�g�� optical density�

�� Spatial resolution properties�

�� Noise properties�

Each of these parameters will be considered in turn�


�� System Transfer Function

This gives a measure of the response of the imaging system to source distributions con�

taining di�erent spatial frequencies�

��



Assessment of Reconstructed Image Quality

����� Relationship between the Source Distribution and the Out�
put Image

How is the input signal determined so the output signal can be compared with it) To

answer this question� the equations which describe the formation of zone plate holograms

will �rst be reviewed�

Equation ��	� gave the relationship between source distribution� S����� p�� and hologram

intensity U�xxx� as

U�xxx� �
D�

	�

Z
�

�p � q��

Z
������ p� S����� p��S ����� p�T

�
xxx

M�p�
� L�p����

�
d���dp

�
���

where T ����� is the intensity transmittance of the zone plate� ������ p� S����� p�� is a factor which

depends upon the source distribution� and as was explained in Chapter �� the other factors

and constants depend upon the arrangement of the equipment�

To simplify matters� a simple two�dimensional source will be used to illustrate the

relationship between the source distribution and the output image� The source will be a

distance p	 from the zone plate� As the source is two�dimensional� the emitted gamma�

rays will not have to travel through other parts of the source� If gamma�ray attenuation

due to air is assumed to be negligible� the approximation ������ p	� S����� p	�� � � can be

used� If S��xxx� � S� xxx

L�p�

� p	� and T ��xxx� � T �M�p	�xxx� are scaled versions of the source

distribution and zone plate pattern respectively� the hologram intensity� U�xxx�� can be

written as a convolution�

U�x�x�x�� � C�p	� q�D�S��x�x�x��� T ��x�x�x�� �
���

C�p	� q�D� is a constant containing the factors in equation 
���

The four sources of error discussed in Chapter 	 were the gamma camera� �oating

point numbers� the �uctuations due to radioactive decay and under sampling� The �uc�

tuations due to radioactive decay can be considered as noise added to the source strength

term� this noise will be called Ns� The gamma camera and �oating point numbers con�

tribute to errors� or noise� in the recorded hologram intensity� this noise will be called Na�

Equation 
�� then becomes

U�x�x�x�� � C�p	� q�D�
�
S��x�x�x�� �Ns�x

�x�x��
�� T ��x�x�x�� �Na�x

�x�x�� �
���

�	
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If the hologram is under sampled� this will lead to artifacts in the reconstructed image�

This e�ect is di�erent from a random �uctuation� however� and so cannot be included in

a noise term�

This work does not involve the improvement of zone plate holograms by changing the

equipment used� The aim of this project is to �nd and compare di�erent reconstruction

methods� This can be done using real zone plate holograms or computer generated holo�

grams� Computer�generated holograms can be used to test if a reconstruction method

would work if no noise was present and� if so� if it still works when di�erent types of noise

are added� In this case� the size� shape and position of the source are precisely known and

so reconstructed images can be compared with a theoretical perfect image of the source�

It is� however� extremely di�cult� if not impossible� to accurately simulate all of the

e�ects described above� Future and current work on the zone plate holography project

must aim to produce an imaging system that can be used clinically and� therefore� methods

must work for zone plate holograms of sources in�vivo� The quality of an image from a real

hologram can not be compared with a theoretical perfect image as this is unknown� The

hologram which would have been generated by the reconstructed source can� however� be

estimated using equation 
��� This estimated hologram can then be compared with the

actual hologram�

If a method does not work for a computer�generated hologram� it most probably will

not work for a real one� This work will� therefore� �rst concentrate on computer�generated

holograms� Techniques which are seen to work well will then be applied to the few real

holograms that are presently available�

����� Optical and Modulation Transfer Functions 
OTF�MTF�

If a reconstruction technique reconstructs a point source S�xxx� p� � ��x	x	x	� p	� as a spot

H�x	x	x	� p	� and the spot has the same shape no matter where the point source is� i�e�

what �x	x	x	� p	� is� the system is spatially invariant� In zone plate holography� the spot is

approximately the same for a constant value of p	 and any value of x	x	x	�

A commonly used measure of the relationship between system input and the output

image for a spatially invariant imaging system is the optical transfer function �OTF�

��
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and its magnitude� the modulation transfer function �MTF�� The MTF gives the relative

amplitude of the output signal as a function of the spatial frequency of a sinusoidal

input� IfHF
p�
�


� is the two�dimensional Fourier transform ofH�x	x	x	� p	�� the optical transfer

function is the normalised frequency response �	��

OTF�


� �
HF
p�
�


�

HF
p�
�����

�
�	�

The modulation transfer function is therefore

MTF�


� �
jHF

p�
�


�j

jHF
p�
�����j �
�
�


�� Spatial Resolution

The spatial resolution can be investigated by �nding the output image when the source

is a known� simple object� This information can then be used to predict the resolution

for more complex sources�

����� Point Spread Function 
PSF�

As was mentioned in Section 
����� a point source S�xxx� p� � ��x	x	x	� p	� at point �x	x	x	� p	� will

have a contribution H�x	x	x	� p	� to the reconstructed image� If the reconstruction technique

works well� H�x	x	x	� p	� should be located at �x	x	x	� p	� but will have probably been blurred

by the imaging and reconstruction processes� The degree of blurring may vary between

di�erent positions and di�erent reconstruction techniques� The reconstruction techniques

used in this work assume that the shadow of the zone plate is the same size and shape for

point sources in the same plane �same value of p�� It could therefore be assumed that the

point spread function is the same for sources in the same plane� Indeed� the work done

by Caplan ���� showed that this was a good approximation�

The degree of blurring can be measured by �tting a function to the point spread func�

tion� The central limit theorem states that the mean Xn of n measurements follows a

Gaussian distribution� whatever the distribution of the individual measurements� A Gaus�

sian curve is� therefore� often �tted to experimental measurements to �nd the variance of

the measurements about their mean� The point spread function is a result of a non�ideal

imaging system and is due to many factors� Random measurement errors play their part

��



Assessment of Reconstructed Image Quality

but so does the image reconstruction technique used� In fact� this work is concerned with

the di�erences in blurring between image reconstruction techniques�

It is di�cult to decide on a better function to �t to the point spread functions so�

Gaussian functions will be used� A Gaussian curve can be �tted to a line of data through

the middle of the reconstructed point in each of the three directions �x� y� p� separately�

A one�dimensional Gaussian curve is given by

p�x� �
�p
����

exp

��jx� �j�
���

�
�
���

where p�x� is the amplitude of the point at position x� � is the position of the centre of

the point and �� is the variance� The variance of this �tted curve is a measure of the

spatial resolution�

����� Line Spread Function 
LSF� and Edge Spread Function

ESF�

The line spread function and the edge spread function are the responses of the system to

a line and an edge respectively� The LSF could be investigated by placing a line source in

a plane parallel to the detector but the ESF would be more di�cult to determine because

an uniform source which entirely �lled a portion of the �eld of view would be needed�

The edge would be the edge of this extended source�


�� Noise

For simplicity� the di�erence between a reconstructed image and the ideal image will be

referred to as �noise � As discussed before� noise comes from three main sources� statistical

�uctuations of radioactive decay� the spatial resolution of the gamma camera and errors

intrinsic to the reconstruction process and storage of the hologram using a computer�

����� Variance of an Image of a Uniform Source

The image of a uniform source should be uniform� The variance of the intensity of this

image gives a measure of output noise� This� however� does not take the spatial correlation

of the noise into account� As was shown in equation 
��� there are two types of noise�

source noise Ns and recording noise Na� The variance of an image of a uniform source

gives no indication of the relative e�ects of these two di�erent types of noise�

��
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����� Wiener Spectrum 
W�

The Wiener spectrum measures the noise power as a function of spatial frequency� It

is given by the Fourier transform of the noise autocorrelation function� The total noise

Nt�x�x
�x�� is given by the image minus the ideal image� If Rfg is a function describing the

reconstruction process� the total noise for the simpli�ed case in equation 
�� will be

Nt�x
�x�x�� � R�C�p	� q�D�

�
S��x�x�x�� �Ns�x

�x�x��
�� T ��x�x�x�� �Na�x

�x�x��
�� S��x�x�x�� �
�
�

The noise autocorrelation function�AN�x�x
�x��� is given by

AN�x
�x�x�� �

Z
Nt���� �Nt�x

� � �x� � �x� � � �d��� �
���

The Wiener�Khintchine theorem states that the autocorrelation of a function F �xxx� is

simply given by the Fourier transform of the absolute square of F F �
� where F F �


� is the

Fourier transform of F �xxx� ����� If NF
t �


� is the Fourier transform of Nt�x�x

�x��� equation 
��

can be written as

AN�x
�x�x�� � F �jNF

t �


�j�
�

�
���

where Ffg denotes a Fourier transform� The Wiener spectrum W�


� is simply given by

W�


� � jNF
t �


�j� �
����

The amount of noise at di�erent frequencies can be seen� This spectrum is easy to calculate

when the exact source distribution and therefore the ideal image is known� Noise due to

statistical �uctuations as well as that due to the gamma camera can be simulated and

added to a computer generated hologram� The relative contribution of the two types of

noise can therefore be compared for images reconstructed using di�erent methods�

����� Di
erence Metrics

Mean Squared Error �MSE� and Signal to Noise Ratio �SNR�

A commonly used measure of the error between an output image and the ideal image

is given by the mean squared error� If the ideal image is S��x�x�x��� as before� and the

reconstructed image of the source is SR�x�x
�x��� the mean squared error is given by

MSE �
�

Np

X��SR�x�x�x��� S��x�x�x��
��� �
����

��
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where Np is the total number of pixels and the sum is over all of them� This metric

depends upon the scale of S��x�x�x��� you will get a larger error for a larger source activity�

It is therefore better to use a normalised error NMSE�

NMSE �

P jSR�x�x�x��� S��x�x�x��j�P jS��x�x�x��j� �
����

this is called the normalised mean�square error metric� Its square root� E is called the

normalised root�mean�square error �NRMSE��

The signal to noise ratio �SNR� is de�ned in decibels as

SNR � �� log�	

�
�

NMSE

�
�
����

Fienup Error Metric �FEM�

If the reconstructed image is shifted by a few pixels with respect to the ideal image or

is multiplied by a constant factor� the image will look good but the MSE will be huge�

This is a major limitation of mean�squared error metrics� they fail to di�erentiate between

di�erent types of error�

Fienup ��
� derived an expression for a metric which is invariant to a shift and mul�

tiplication by a constant factor� This error metric will be referred to as the Fienup error

metric �FEM��

FEM� � �� maxxsxsxs jrS�SR�xsxsxs�j�
rS�S������rSRSR�����

�
��	�

rS�SR�xsxsxs� is the cross correlation of S��x�x�x�� and SR�x�x
�x��� rS�S��xsxsxs� is the autocorrelation of

S��x�x�x�� and rSRSR�xsxsxs� is the autocorrelation of SR�x�x
�x��� maxxsxsxs jrS�SR�xsxsxs�j is the maximum

value of rS�SR�xsxsxs� for all values of xsxsxs�


�	 Summary

In this Chapter� methods for assessing image quality were reviewed� Measures of image

quality based on the system transfer function as well as spatial resolution and signal to

noise ratios were given� These methods depend upon having an ideal reference image with

which the reconstructed image can be compared� It is therefore easier to �rst assess the

e�ectiveness of image reconstruction methods by using computer generated holograms�

�
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The OTF�MTF can be calculated to investigate the frequency response of zone plate

holography using theoretical point sources� The PSF can be calculated to compare the

resolution of the di�erent reconstruction techniques� It is felt that LSF and ESF are more

suited to experimental measurement� MSE� NMSE and FEM error metrics can be used

to measure the amount of error in the images�

When images are reconstructed from real holograms� an ideal reference image is not

available� The reason for recording the hologram is to determine the distribution of

gamma�ray sources from the reconstructed image� An estimation of the hologram that

would have been generated by a reconstructed source distribution can� however� be cal�

culated and this can be compared with the recorded hologram�

��



Chapter �

IMAGE RECONSTRUCTION BY
CONVOLUTION

In this Chapter the method of reconstruction by convolution will be discussed� Recon�

struction by convolution with a Gabor zone plate pattern has been used by many people

at the University of Birmingham to reconstruct images from binary Gabor zone plate

holograms� Mast �

�� Mathews �
��� Kirk �	��� Woodgate ����� Strange ����� Kuo �	���

Caplan ����� Perks ��
�� Rew �
�� and Shen �

� have all used this technique and they

referred to it as the correlation reconstruction method� This method involved correlating

the hologram with an appropriately scaled zone plate pattern to reconstruct the image

in one plane parallel to the zone plate� The same e�ect is obtained if the hologram is

convolved with a version of the same zone plate pattern which has been �ipped about lines

through the centre in both the x and y directions� As the zone plate is symmetrical in

both the x and y directions� the �ipped plate is identical to the original plate� Correlation

and convolution� therefore� produce the same result� Thinking of the technique as con�

volution rather than correlation makes the relationship between the Fourier transforms

of the hologram� zone plate and image more straightforward� The form of convolution

reconstruction which has been used the most is simulated di�raction� This method will

be outlined and di�erent convolution reconstruction techniques will be suggested� An

improvement to the convolution technique� which will be called Normalised Convolution

Reconstruction� will also be presented here�

An expression for the relationship between source distribution� S����� p�� and hologram

intensity� U�xxx�� was given in equation ��	� as follows�

U�xxx� �
D�

	�

Z
�

�p � q��

Z
������ p� S����� p��S ����� p�T

�
xxx

M�p� q�
� L�p� q����

�
d���dp

�����

T �xxx� was the intensity transmittance of the zone plate� As was explained in Chapter ��

��
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������ p� S����� p�� is a factor which depends upon the position of a point in the source distri�

bution� ���� p� as well as the rest of the source distribution in relation to it� This work will

concentrate on methods that do not include this factor� That is� it will be assumed that

������ p� S����� p�� � � over all of ���� p� This approximation can be used if the source is two di�

mensional or su�ciently small so that the gamma rays do not have to pass through other

parts of the source to reach the detector� This factor can also be neglected if the source

has a low linear attenuation coe�cient� Linear attenuation coe�cients were discussed in

Section ������ If a large� dense� source was used� this factor would have to be consid�

ered� Equally� if this technique was used in nuclear medicine to image brain tumours� the

gamma rays would have to pass through the brain tissue and the skull before reaching the

detector and this would also have to be accounted for� For the simple computer generated

sources and real sources which have been used in this work� however� this approximation

is su�cient�

The gamma camera records the hologram as a square array of N � N pixels where

N is usually a power of �� that is� �	� ���� �
�� 
�� or ���	� The hologram is also to be

reconstructed in a series of Np planes at distances p	� p�� p����pNp�� from the zone plate

and parallel to the zone plate and gamma camera� The space in which the object lies

can be thought of not only as a series of planes but also as voxels which increase in size

with distance from the camera� Each voxel corresponds to a region of space from which a

gamma ray passing through the centre of the zone plate will be detected in one particular

pixel by the gamma camera� The source distribution can be represented by average values

for each voxel and the zone plate transmission function can be represented by pixels of

the appropriate size� This is illustrated in Figure ����

The images generally have ������� pixels in each �x�y� plane� To reconstruct a truly

three dimensional image� the voxels would have to have a similar size in the z direction

as in each �x�y� plane� This would mean reconstructing ��� planes in the z direction� or

some other similar number� and would require a lot of computation� In the work presented

here� the image is reconstructed in a small number of parallel planes rather than a set of

voxels which completely �ll the �eld of view of the detector� This is a sensible approach

as most of the sources which will be used are two dimensional and placed parallel to the

detector� We can then see if the image just appears in the correct plane or if there are

��
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artifacts in the surrounding planes�

plate

Shadow from
second source

Shadow from
first source

Central
axis

Zone

Plane containing
first source

Plane containing
second source

(records superposition
of shadows)

Detector

z1

z2

b

z1
,

Figure ���� Illustration of �eld of view of detector with zone plate attached

Equation ��� can be written as a summation rather than a continuous integral� This

helps us to understand the value stored in each hologram pixel�

Ui�j� �

Np��X
k�	

Ck

N
�
��X

i�j��N
�

Sk
ijT

k
�i��i
�j��j
 where Uij � U�i%p� j%p� Ck �

D�

	�

�

�pk � q��

Sk
ij � S�i

%p

L�pk� q�
� j

%p

L�pk� q�
� pk� and T k

ij � T �i
%p

M�pk� q�
� j

%p

M�pk� q�
� �����

The factors D� q� L�p� q� and M�p� q� are as de�ned in Chapter �� As �N
� � i�� j � � N

� ���

values of T k
ij outside �N

� � i� j � N

� �� are needed� This problem is overcome by padding

T k
ij with zeros to twice its original size� that is

padded T k
ij �

���
��
T k
ij �N

� � i� j � N
� � �

� �N � i� j � �N

�
� �

� N

� � i� j � N � �

�����

In practice� three fast Fourier transforms are used to perform a convolution� The Fourier

transforms are performed in the way described in Section 	�	� When a theoretical holo�

gram is calculated� both T k
ij and Sk

ij are padded as above� If this is not done� the convolu�

tion becomes circular� In this case� if i � �N

� � �� for example� this value does not exist

so the value at i � N

� � � is taken instead�

��
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��� Optical Reconstruction � how Convolution Algo�

rithms can be used to Simulate Di�raction

In Section ������ the di�raction pattern produced when plane waves are shone through a

transparency with transmittance t�xxx� was given as

u�xxx� qr� �
Cq
r

��i
t�xxx�� zqr�xxx� where

zqr�xxx� � �
�re
i��rxxx

�
Cr � Are

i
���pr�qr �

�r and 
�r �
�

�rqr
���	�

when � � l � a� As was stated before� � � �

�

where "	 is the maximum spatial frequency

in t�xxx�� l �
p
�rqr is the size of the central Fresnel zone� and a is the total size of the

pattern represented by t�xxx�� As before� qr is the distance from the transparency to the

detector� �r is the wavelength of the light used in the reconstruction and Ar and pr are

constants representing the amplitude and phase of the light�

If the hologram were recorded using an ideal Gabor zone plate� it will contain a

constant term plus a Fresnel function of frequency 
zp �
p
�M�p� q�r	� As was shown in

Section ������ if � � l � a� the object distribution that was in plane p will be reconstructed

a distance qr behind the hologram where

qr �
�p� q��r�	

�rp�
���
�

If the image was reconstructed using a ruby laser� the wavelength of light would be

�r ����nm �
��� Values which are commonly used for gamma�ray zone plate holograms

are p ����m� q ����m and r	 �����m� If the hologram was printed out on �lm the same

size as the detector� the distance of the image behind the �lm would be qr ����m and

the radius of the central Fresnel zone would be l �����m� The hologram would have to

be reduced in size to focus the image in a more reasonable position� If the hologram was

reduced by a factor Rs� this would give

qr �
�p� q��r�	
�rp�R�

s

�����

If di�raction is simulated using a computer by convolving the hologram with the appropri�

ate zqr�xxx� pattern for one �x� y� plane at a time� the value of �r is not important� In this

case� 
r is set equal to the expected value of 
zp for an object in the appropriate image

�	
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plane� Equations for the calculation of 
zp were given in Section ��
��� As in equation ����

we can write the equation for the reconstructed image in plane qr� V
qr
ij � as a summation�

V qr
i�j� �

N
� ��X

i�j��N
�

UijZ
qr
�i��i
�j��j
 ���
�

Uij represents the hologram pixel values and Zqr
ij represents the Fresnel function �zqr�xxx��

used for the reconstruction� Both Uij and Zqr
ij are padded as in equation ����

To illustrate reconstruction be simulated di�raction� a computer generated hologram

of a point source with unit strength per unit area will be used� The zone plate hologram

values will be those in Table ���� These are typical parameters for a zone plate hologram�

The parameters of the appropriate reconstructing Fresnel function can be calculated the

using the equations given in Section ������

First zone radius �r�� ����e���m Source � zone plate distance �z� ����m
Detector pixel size �%� ���
	e���m Zone plate � detector distance �b� ����m

Number of pixels �nx � ny� ��� � ��� Number of zones �n �
q

R

r�
� ��

Table ���� Hologram parameters used for the theoretical hologram used in most of this
Chapter

These parameters are typical for actual gamma ray zone plate holograms� R is the

maximum radius of the zone plate� it is totally opaque outside this radius� Although

the detector stores data in a 
���
�� pixel array� it is only the central ������� which

represent the active region of the detector� A real experimental hologram is shown in

Figure ��� to illustrate this� The point can be reconstructed by convolving the zone plate

pattern with the Fresnel function� For simplicity� the parameters of the reconstructing

light are set so C
q
r

��i
�
�r � �� The reconstructed point can be seen in Figure ����

��� Using the Zone Plate Pattern as a Matched Filter

A pure Gabor zone plate �GZP� is not used to record zone plate holograms� a binary plate

is used instead� As was mentioned in Chapter �� this plate has the same average intensity

transmittance at each radius as the pure Gabor plate but the plate is either transparent

or opaque at each point� The advantage that this has over the pure plate is that it is much

easier to manufacture� Holes just have to be cut in a metal sheet of constant thickness�

	�
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�a� a hologram as
recorded by the
gamma camera

�b� the central
������� pixels

max

min

Figure ���� Illustration of the useful hologram area

�a� simulated holo�
gram of point
source ��pixel
value����
��e���

�b� Fresnel function
� real part ���pixel
value��

�c� Fresnel function
� imaginary part �
��pixel value��

�d� reconstructed
point � real part
����
��e����pixel
value���
�
�e���

�e� reconstructed
point � intensity
������e��
�pixel
value������
e��


max

min

Figure ���� Theoretical reconstruction of a point source by simulated di�raction
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Another advantage of a binary Gabor zone plate over a pure Gabor zone plate is that

it transmits more light if it is used as a lens� If the zone plate patterns are recorded on

photographic �lm so that the amplitude transmittance of the �lm is the same as the zone

plate� the total intensity transmittance will be greater for the binary plate than for the

pure Gabor plate lens�

The amplitude transmittance of a pure Gabor zone plate� t�r�GZP is

t�r�GZP �
�

�

�
� � cos

�
�r�

r�	

��
�����

where� as in Chapter �� r is the radial distance from the centre of the plate and r	 is a

constant� A binary Gabor zone plate �BGZP� has the same average transmittance for

each radius as the the pure plate� The amplitude transmittance for a binary Gabor zone

plate is either zero or one at any one position� Whether it is zero or one depends upon the

number of sectors in the plate� This is illustrated in Figure ��	� The average amplitude

and intensity transmittance of the plate is una�ected by the number of zones� To simplify

matters� a binary plate with just one zone will be considered� In this case� the amplitude

transmittance of a binary Gabor zone plate� t�r� ��BGZP is

t�r� ��BGZP �

�
� � � ��t�r�GZP

� � � ��t�r�GZP
�����

The average intensity transmittance �AIT� of a pure Gabor zone plate is given by

AITGZP �

R R
	

R ��
	

t�r��GZPrd�dr

�R�
�

R R
	

R ��
	

h
�
�

h
� � cos

	
�r�

r��


ii�
rd�dr

�R�

�
��
R R
	

h
�
�

h
� � cos

	
�r�

r��


ii�
rdr

�R�

������

where R is the maximum radius of the lens� The average intensity transmittance of a

binary Gabor zone plate is given by

AITBGZP �

R R
	

R ��
	 t�r� ���BGZPrd�dr

�R�
�

R R
	

R ��t�r
GZP
	 rd�dr

�R�

�
��
R R
	

�
�

h
� � cos

	
�r�

r��


i
rdr

�R�

������

If the maximum radius of the lens� R� is set to R �
p
nr	 where n is an integer� the

integrals in equations ���� and ���� simplify to the following numbers

AITGZP �
�

�
AITBGZP �

�

�
������
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Both zone plate patterns would focus light at the same position� As the binary zone plate

pattern has a higher average intensity transmittance� the intensity of light at the focal

point could be expected to be brighter than the intensity if a pure Gabor plate was used�

Further properties of binary zone plates are discussed by Beynon and Strange �����

A linear �lter� L�xxx�� can be used to reconstruct an image from the hologram by

convolving the hologram with the �lter� Objects which were at di�erent distances �p�

behind in front of the zone plate can be reconstructed by using a zone plate pattern

scaled to the size of the shadow cast by a point at a distance p�

V p

i�j� �

N
� ��X

i�j��N
�

UijL
p

�i��i
�j��j
 ������

Again� Uij represents the hologram values and V p

ij the reconstructed image values at a

distance p in front of the zone plate� The similarity of this equation to equation ��
 may

be noted� As Jain �	�� proves� the linear �lter which will produce an image with the

highest signal to noise ratio is simply the hologram of a single point� In this case� this will

be a magni�ed version of the binary plate pattern� Jain calls the optimum linear �lter a

matched �lter�

If the binary plate pattern is to be used in a reconstruction algorithm� it needs to

be generated using an algorithm� An example of a binary zone plate can be seen in

Figure ���� Figure ��	 illustrates how the pattern is generated� If the expected hologram

(12 in this case)
zone plate divided into s sectors

if θ/α <= 1-t(r), pixel is opaque.

angle = θ
radius = r

R = r*(n^(1/2))
maximum radius

centre of sector which pixel is in

pixel

angle of half a sector

required intensity transmittance at radius r = t(r)

otherwise, pixel is transparent.

α = π/s

Figure ��	� Calculation of the binary zone plate pattern

of a point source is convolved with itself� the point should be reconstructed� The hologram

	�
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from Figure ��� was reconstructed using a matched �lter and the result can be seen in

Figure ��
� The reconstructed point in Figure ��
�c� sits on top of an error term which

�a� simulated holo�
gram of point
source ��pixel
value����
��e���

�b� matched �lter
��pixel value��

�c� recon�
structed point
��
�

e����pixel
value������
e���

max

min

Figure ��
� Theoretical reconstruction of a point source using a matched �lter

steadily increases towards the centre of the image� Fenimore and Cannon ���� discovered a

similar e�ect when using a matched �lter to reconstruct images generated using uniformly

redundant arrays �URAs�� URAs are binary patterns which� like zone plates� can be

used to obtain extra information about light sources by detecting the shadow cast by a

source through the pattern� Again� like zone plates� they have an autocorrelation which

approximates a delta function� Fenimore and Cannon removed the �pyramid� error term

from their images by changing the values assigned to white and black pixels in their

matched �lter� This new �lter was said to be �balanced�� The balanced �lter �new Lp

ij�

can be calculated from the old �lter �old Lp
ij� in the following way�

new Lp
ij �

�
� if old Lp

ij � �

� 


��
 if old Lp
ij � �

����	�

� is the ratio of transparent �white� pixels to total pixels� Fenimore and Cannon compared

this to Brown�s mismatchmethod where the new value of Lp
ij is set to � �� if its old value

was zero� Fenimore and Cannon�s method is the same as this if the number of white and

black pixels are equal� A binary zone plate has approximately equal numbers of white and

black pixels for
p
x� � y� � R but all the pixels are opaque �black� outside this region�

A modi�ed mismatch method is� therefore� suggested� This method uses Brown�s method

	




Image Reconstruction by Convolution

for
p
x� � y� � R� but� outside R� all pixels are set to zero� That is�

new Lp
ij �

���
��
�
� if old Lp

ij � �

�� if old Lp
ij � �

if
p
x� � y� � R

� if
p
x� � y� � R

����
�

Reconstructed points using both these methods are shown in Figure ���� Values taken in a

�a� simulated holo�
gram of point
source ��pixel
value����
��e���

�b� �lter for bal�
anced convolution
���������pixel
value��

�c� �lter for modi�ed
mismatch ���pixel
value��

�d� reconstructed
point using bal�
anced convolution
������
e����pixel
value������
e���

�e� reconstructed
point using mod�
i�ed mismatch
������
e����pixel
value������
e���

max

min

Figure ���� Theoretical reconstruction of a point source using balanced convolution and
modi�ed mismatch methods

diagonal line through the centre of points reconstructed using the matched �lter� balanced

convolution and modi�ed mismatch methods are compared in Figure ��
� The modi�ed

mismatch method is closest to zero around the point and� therefore� appears to be the

best one of these �lters� These methods will be compared using the image assessment

methods from Chapter 
 in Sections ��
� ��� ��
 and ����

	�
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Figure ��
� Diagonal line taken through images of points reconstructed using �lters based
upon the binary zone plate pattern

��� Hybrid Method � using R to improve Simulated

Di�raction

As the zone plate pattern is truncated at a maximum radius R� it makes sense to trun�

cate the Fresnel function used in simulated di�raction at the same radius� The results

are shown in Figure ���� A diagonal line of data taken through the real part of the

reconstructed point is shown together with the same data from the standard simulated

di�raction reconstruction in Figure ��� Looking at this �gure� it appears that the e�ect

is negligible for a point source� Again� these methods will be compared using the image

assessment methods from Chapter 
 in Sections ��
� ��� ��


��	 Normalised Convolution

If a point is reconstructed in one plane using a linear �lter� the value of the convolution

where the point is reconstructed depends upon the portion of the zone plate shadow which

is actually �seen� by the detector�

In Section ��	 the term D�

���p�q
� was used to approximate the fraction of the emitted

radiation which was recorded by the detector� As before� D� is the area of the detector� If

the detector had N�N pixels� and the hologram was recorded in each of these pixels� the

count in each pixel would be D�

���p�q
�N�S
p

ij� where Sp

ij is the appropriate source intensity

and � is the data acquisition time� However� the size of the pixels varies with the source

to zone plate distance p� It� therefore� makes sense to calculate source strength per unit

area instead of total source strength in each pixel� That is� the value reconstructed in

	�
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�a� simulated holo�
gram of point
source ��pixel
value����
��e���

�b� Fresnel function
� real part ���pixel
value��

�c� Fresnel function
� imaginary part �
��pixel value��

�d� reconstructed
point � real part
�����
�e����pixel
value���
�
�e���

�e� reconstructed
point � intensity

���
�e����pixel
value������
e��


max
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Figure ���� Theoretical reconstruction of a point source by convolution with a truncated
Fresnel function
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Figure ���� Diagonal line taken through images of points reconstructed using �lters based
upon the binary zone plate pattern
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each pixel will be
S
p
ij�

��
p

where %p is the size of a pixel in plane p�

If the point is reconstructed using a �lter based upon the binary zone plate pattern�

the value of the convolution at the point �V p

ij� will be the number of the pixels which

recorded a value �i�e� the number of transparent pixels in the correctly scaled zone plate

pattern� times the count in each pixel� The aim is to recover Sp
ij� from this information�

The hologram is� however� only recorded in pixels corresponding to holes in the zone plate

pattern� The zone plate pattern could be totally recorded by the detector� overlap in the

x or y direction or both� This is illustrated in Figure ����� We will assume that p and q

have been chosen so that the whole shadow �ts on the detector when it is in the centre� i�e�

that it can�t overlap two opposite edges of the detector at once� If x and y are distances

1

�a� all the shadow is
recorded

2

�b� the shadow overlaps
in one direction

3

2x

2y

y

x
x’

y’

�c� the shadow overlaps
in both directions

Figure ����� Illustration of the zone plate pattern overlapping the edge of the detector

from the centre of the detector� x� and y�� which are shown in Figure ����� are given by

x� �

s
R� �

�
D

�
� y

��

� D

�
� x y� �

s
R� �

�
D

�
� x

��

� D

�
� y

������

The areas ➀� ➁x� ➁y and ➂ can be calculated as follows

➀ � �R�

➁x � R� arccos

�
D

� � x

R

�
�
�
D

�
� x

�s
R� �

�
D

�
� x

��

➁y � R� arccos

�
D

�
� y

R

�
�
�
D

�
� y

�s
R� �

�
D

�
� y

��

➂ � R� arcsin

�q
x�� � y��

�
�
p
x�� � y��

	

q
	R� � x�� � y�� �

x�y�

�

����
�
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The area of the zone plate shadow seen by the detector� Ap

ij� is then calculated as follows

Ap

ij �

��������
�������

➀�➁x �➁y � ➂ if x� and y� are both real and positive

➀�➁x �➁y if x� and y� are both real and negative

➀�➁x if x� is a complex number and y� is real and negative

➀�➁y if y� is a complex number and x� is real and negative

➀ if x� and y� are both complex numbers

������

A hologram generated using a binary plate has approximately the same number of �white�

as �black� pixels inside the maximum radius of the plate shadow so will assume that the

area of the detector which the radiation hits is approximately half the above value� Using

this approximation� the value of the convolution for the reconstructed point can be written

as

V p

ij �
Ap
ij

���p� q��
Sp

ij� and so
Sp
ij�

%�
p

�
���p� q��V p

ij

Ap

ij%
�
p

������

The above equation depends upon p and therefore corrects for di�erent distances in the z

�p� direction� Figure ���� shows the e�ect of the normalisation in the z as well as the �x� y�

direction� As before� holograms were simulated for point source with
S
p
ij�

��
p

� � and the

points were reconstructed using the modi�ed mismatchmethod� When the reconstruction

was not normalised� the reconstructed points had varying amplitude� Normalisation made

the amplitude of each point � � within a small margin of error� The errors result from

the number of black and white pixels in the zone plate shadow not being exactly equal

for all positions� Normalisation of simulated di�raction or convolution with a truncated

Fresnel function is� however� more complicated� Simulated di�raction relies upon the

Fresnel function extending to in�nity in the x and y directions� As it is truncated by

either the size of the detector or the maximum radius of the zone plate� the calculated

amplitudes are a�ected� As the Fresnel function is smoothly varying between �� and

��� so we would expect a reconstructed point to have a smaller amplitude than if it were

reconstructed using a binary �lter� What this amplitude would be is� however� di�cult

to calculate�

To overcome this problem� the theoretical reconstructed image amplitude of an on�

axis point will �rst be calculated� This will be done in the appropriate plane using the

appropriate reconstruction method� This amplitude� V p�sd
		 � will be used to calibrate the

method� Using this value� Ap
ij can be replaced with a correctly scaled version for this
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Figure ����� Magnitudes of theoretical reconstructed points in di�erent positions for both
unnormalised and normalised convolution

method� A�pij as follows�

A�
p

ij �
V p�sd
		

V p
		

Ap
ij �

��p � q��V p�sd
		

R�
Ap
ij ������

��
 Comparison of Reconstructed Points using Error

Metrics

The values of the di�erence metrics MSE� NMSE and FEM� which were de�ned in Chap�

ter 
� are be given in Table ��� for points with
S
p
ij�

��
p

� � reconstructed using techniques

in this Chapter� The parameters for the theoretical hologram are those given in Ta�

ble ���� The ideal reconstructed image would be a single point with amplitude � ��

The sum of squares of expected image values is therefore also � �� This means that

���
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NMSE���������MSE in this case� As only a single point has been reconstructed� the

signal depends upon this single value whereas any non�zero value in another pixel will

contribute to the noise� For this reason� the errors are high� The signal to noise ratio

�SNR� is negative as the errors are so high and� therefore� will not be considered here�

Normalisation increases the error for two reasons� First� it increases all the values in the

MSE NMSE FEM
simulated di�raction �real part� 
�
���e��� ������ ������

simulated di�raction �real part� � normalised ���
��e��	 �
��
� ���	
��
simulated di�raction �intensity� 
�
���e��� ������ ���

	�
simulated di�raction �intensity� � normalised ������e��
 ������ ���
�
�
matched �lter 
�
���e��� ������ ������

matched �lter � normalised ���

��	 ������ �������
balanced convolution 
�
���e��� ������ ������	
balanced convolution � normalised �������� �	�	�� �������
modi�ed mismatch 
�
���e��� ������ ����

�
modi�ed mismatch � normalised ������
��
 	��
�� ���
��	
truncated Fresnel �real part� 
�
���e��� ������ ������

truncated Fresnel �real part� � normalised ��������
� ���	�� ���	���
truncated Fresnel �intensity� 
�
���e��� ������ ���
���
truncated Fresnel �intensity� � normalised ��	

�e��
 ����
� ���
��


Table ���� Error metric values for the di�erent convolution reconstruction techniques

reconstructed image and second� it increases the values towards the edges more than those

in the centre� Giving the reconstructed point the correct amplitude improves the signal

but it also increases the unwanted error values in the other pixels� As the number of pixels

containing the signal is much less than those only containing only errors� this increases

the MSE and NMSE values� FEM should be constant when the image is multiplied by a

constant value but the normalisation is not constant� As the values in the unnormalised

images are so low� they are practically zero in comparison to the expected value which is

equal to one� This is why the NMSE values are all equal to one and the MSE values are all

� �
��	���	 for the unnormalised images� The central point signal is multiplied by a smaller

number than the edges and so FEM also decreases when the image is normalised� Despite

all of this� convolution with a truncated Fresnel function appears to be the best method

for point sources and� if the intensity is taken rather than the real part� this provides an

obvious improvement� Later results in Chapter �� however� show that the real part gives

better results than the intensity for other source objects� Woodgate ���� also found this

���
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to be the case�

��� Comparison of Modulation Transfer Functions

The modulation transfer functions �MTF� for the images of point sources from Section ��


are shown in Figure ����� The MTFs are only shown for the unnormalised images as there

is little visible di�erence between the normalised and unnormalised cases�

�a� simulated
di�raction
�real part�

�
���e����pixel
value����
��

�b� simulated
di�raction
�intensity�
������e����pixel
value�������

�c� matched �lter
����
�e����pixel
value�������

�d� balanced
convolution

���
�e����pixel
value�������

�e� modi�
�ed mismatch

���
�e��
�pixel
value�����
�

�f� truncated
Fresnel �real part�
���
��e��
�pixel
value�
�����

�g� truncated
Fresnel �intensity�
������e����pixel
value�������

max

min

Figure ����� Modulation transfer functions

The MTF for an ideal image of a point would be uniform and equal to one for all fre�

quencies� Finding the error metric for the di�erence between the MTFs and this uniform

array is another measure of the quality of each image� The greater the error� the worse

the image is� As the MTF depends only on the frequencies in the reconstructed image

and not on its amplitude� the di�erence between the normalised and unnormalised cases is

���
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small� The unnormalised images have slightly lower error metric values� As in Section ��
�

convolution with the truncated Fresnel function appears to be the most e�ective method

overall� Modi�ed mismatch is the best matched �lter method�

NMSE FEM
simulated di�raction �real part� ������� ���	�


simulated di�raction �real part� � normalised ������� ���	
��
simulated di�raction �intensity� ���
�	� ���

��
simulated di�raction �intensity� � normalised �����	� ���


�
matched �lter ������� �������
matched �lter � normalised ������	 �������
balanced convolution �����
� ������

balanced convolution � normalised ������� �������
modi�ed mismatch ������� �������
modi�ed mismatch � normalised ������� ����
��
truncated Fresnel �real part� ������� ����		�
truncated Fresnel �real part� � normalised ������ �����
�
truncated Fresnel �intensity� ����
�� ���
���
truncated Fresnel �intensity� � normalised ������� ���
���

Table ���� Comparison of modulation transfer function error metric values for the di�erent
convolution reconstruction techniques

���
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��
 Comparison of Point Spread Functions

In Chapter 
� it was suggested that a point spread function could be measured by �tting

a one�dimensional Gaussian function to the reconstructed point in each of the three di�

rections separately� As usual� the theoretical hologram used had the parameters given in

Table ��� The function to be �tted in direction x�� p�x��� is given by

p�x�� � A exp

��jx� � �j�
���

�
������

As modi�ed mismatch �ltering and convolution with the truncated Fresnel function are

the best binary and di�raction�like methods respectively� it was decided to just analyse

these two techniques� The point spread function �PSF� should be the same for both

x and y directions so it was decided to just �t the function along the diagonal of the

reconstructed image plane� � for the point spread function in the x and y directions will

be the same as � for the diagonal if it is assumed that the PSF is circularly symmetric�

The reconstructed points are normalised and examples can be seen in Figure ����� The
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Figure ����� Comparison of modi�ed mismatch reconstruction with reconstruction by
convolution with a truncated Fresnel function

Gaussian was �tted to the peaks using the nonlinear regression routine from the statistical

package SPSS� The goodness of �t is indicated by the R�squared value� R�squared is the

ratio of the variation predicted by the �tted equation to the total variation� An ideal �t

would� therefore� have an R�squared value of one and� if the equation did not predict the

variation at all� the R�squared value would be zero� The values of A� �� � and R�squared

��
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can be seen in Table ��	� Modi�ed mismatch and the real part of the truncated Fresnel

A � � R�squared
�x� y� diagonal
truncated Fresnel �real part� ����� ����� �����e��	 ���
	

truncated Fresnel �intensity� ����� ����� �����e��	 �����

modi�ed mismatch ��
��e��� ����� ��	��e��	 ���
��
z direction
truncated Fresnel �real part� ���	� �����e��� �����e��� ����	�
truncated Fresnel �intensity� �����e��� �����e��� 	��	�e��� ������
modi�ed mismatch ����
e��� �����e��� �����e��� ���

�

Table ��	� Point spread functions for the modi�ed mismatch and truncated Fresnel tech�
niques

reconstruction have similar values of �� with � � ���mm in the x and y directions and

� � �mm in the z direction� Taking the intensity rather than the real part of the truncated

Fresnel reconstruction improves the resolution in the x and y directions but makes it worse

in the z direction� The values of the resolution will� obviously� be di�erent for di�erent

hologram parameters� For example� as the �eld of view of the detector decreases for

distances closer to the zone plate� the resolution increases� This technique will be tried

for di�erent sources in Chapters � and ��� From these data� the indication is that the z

resolution is worse than the x and y resolution�

��� Comparison of Images of Uniform Sources

In Section ��
 images of point sources were compared� In Chapter 
 the variance of

an image of an uniform source was given as a measure of the quality of an imaging

system� A hologram of a two dimensional uniform source with unit strength per unit area

and the parameters from Table ��� was generated� The image from this hologram was

then reconstructed in the correct plane using all the di�erent convolution reconstruction

techniques� The unnormalised images can be seen in Figure ���	 and the normalised

images in Figure ���
�

As the Fienup Error Metric �FEM� is invariant to a multiplication by a constant factor�

the FEM value for images of uniform source is directly related to the variance� The FEM

values are given in Table ��
� The NMSE values have been included for completeness�

The NMSE values for the unnormalised images are� again� mostly equal to one� This

���
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Figure ���	� Unnormalised images of uniform sources

is because the amplitudes of the unnormalised images are much lower than the expected

amplitudes� The FEM value for matched �ltering is very low compared to the other values

but this is because the image does not have a negative minimum pixel value whereas all

the other images do� Looking at the FEM values for the other methods� the matched �lter

methods give a better reconstruction than either the real part of the simulated di�raction

or the truncated Fresnel function reconstructions�

���
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�a� simulated
di�raction
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��
����pixel
value���
���
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���
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value�������e���

�c� matched �lter
������e����pixel
value����

�e���
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�
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value�������
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�������pixel
value���
�
�e���

max

min

Figure ���
� Normalised images of uniform sources

NMSE FEM
simulated di�raction �real part� ������� ������

simulated di�raction �real part� � normalised ���	�	e��	 ���	��

simulated di�raction �intensity� ������� ���	���
simulated di�raction �intensity� � normalised ���
��e��� ���	���

matched �lter ������� �����	�
matched �lter � normalised 	�
���e��� ����
�

�
balanced convolution ������
 ����
�

balanced convolution � normalised ����

e��
 �����
	
modi�ed mismatch ������ ����
��
modi�ed mismatch � normalised ������e��
 ���
���
truncated Fresnel �real part� ������� ����



truncated Fresnel �real part� � normalised ����
�e��	 ����
��
truncated Fresnel �intensity� ������� ���
	�

truncated Fresnel �intensity� � normalised 
��
	�e��� �������

Table ��
� Comparison of error metric values for images of uniform sources for the di�erent
convolution reconstruction techniques

���
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��� Summary

Methods to perform simulated di�raction using convolution and reconstruction using lin�

ear �lters have been outlined� Three di�erent �lters based on the binary zone plate pattern

were given and tested on a computer generated hologram of a point source� Modi�ed mis�

match was found to be the best method for this hologram but the matched �lter method

gave better results for a hologram of a two dimensional uniform source�

A hybrid method� combining the maximum radius of the zone plate pattern with

simulated di�raction was introduced� This method was found to give the best results for

the hologram of a point source�

A method for normalising the reconstructed image was also derived� enabling points

to be reconstructed with the correct amplitude�

Although convolution with the actual zone plate pattern could be expected to give

better images than convolution with a di�erent� ideal zone plate� simulated di�raction

produced better results for a point in a single plane than convolution with the binary

plate pattern�

���



Chapter �

IMAGE RECONSTRUCTION BY
DECONVOLUTION

In this Chapter the method of reconstruction by deconvolution using Fourier transforms

will be discussed� Reconstruction by deconvolution was used by Woodgate ���� but as he

did not use a Wiener �lter� his reconstructed images were of poor quality� Deconvolution

using a matrix Wiener �lter was used by Strange ���� on holograms generated using

MCNP ��
�� The reconstructed images were good but the technique could only be used

on holograms with a maximum of �	��	 pixels due to the limitations of the computers

available� The use of a parametric Wiener �lter will be explained here and techniques for

optimising the output will be given� As in the Chapter on reconstruction by convolution

�Chapter ��� an attempt will be made to normalise the reconstructed image�


�� Expression of the hologram formation process us�

ing Fourier transforms and using matrix notation

The equation for hologram formation was written as the following summation in Chap�

ter ��

Ui�j� �

Np��X
k�	

Ck

N
� ��X

i�j��N
�

Sk
ijT

k
�i��i
�j��j
 where Uij � U�i%p� j%p� Ck �

D�

	�

�

�pk � q��

Sk
ij � S�i

%p

L�pk� q�
� j

%p

L�pk� q�
� pk� and T k

ij � T �i
%p

M�pk� q�
� j

%p

M�pk� q�
� �
���

S����� p� represented the source distribution and T �xxx� the intensity transmittance of the

zone plate pattern� Ui�j� are pixel values and �N

� � i�� j � � N

� � �� The contribution of

objects in a single plane at a distance p from the zone plate� Up� to the hologram is given

by the convolution of Sp with T p multiplied by a constant� Cp�

Up � Cp �Sp � T p� � Hp � Sp where Hp � CpT p �
���

��	
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From the convolution theorem ���� states that the Fourier transforms of Up� Hp and T p

are related in the following way

UpF � HpFSpF �
���

where AF is the Fourier transform of a variable A�

If Up and Sp were written as column vectors instead of two�dimensional arrays� the

hologram formation process could be written in matrix form� This will be explained

using the following simple example� A ��� source distribution and a ��� zone plate

transmittance function will be used�

Cp �
�

	
T p �

� �
� 	

Sp �

 �

 �

so Hp �
���
 ��

��

 �

and Up �
�
 ��
�� �

�
�	�

If Up and Sp are written as column vectors� the convolution by T p and multiplication by

Cp can be combined into a �hologram formation matrix� �Hp��

UpUpUp � �Hp�SpSpSp

�
BB�
�

��
��
�

�
CCA �

�
BB�
� ��
 ��

 ���

� � � ��


� � � ��

� � � �

�
CCA
�
BB�




�
�

�
CCA �
�
�


�� Deconvolution using Fourier and standard �ma�

trix� Wiener �lters

Deconvolution involves the inversion of the convolution equation� it tries to undo the

action of convolution� If Fourier transforms were used� equation 
�� could be inverted and

Sp could be calculated in the following way�

Sp � inverse Fourier transform of SpF �
UpF

HpF
�
���

Similarly� if matrix notation were used� �Hp� could be inverted to calculate SpSpSp�

SpSpSp � �Hp���UpUpUp �
�
�

This will only work� however� for an ideal� noise free imaging system� As both reconstruc�

tion techniques involve division of one set of data by another� small errors in the data

will lead to large errors in the output� This is particulary the case when the problem is

ill�conditioned� Ill�conditioning means that small perturbations in Hp or Up lead to large

���
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di�erences in Sp� This was been shown to be the case for zone plate holography when

Woodgate ���� used deconvolution without a Wiener �lter and obtained poor results� A

Wiener �lter is used to optimise the output for a noisy imaging system�

Andrews and Hunt ��� state that there are two di�erent types of Wiener �lter� the

Fourier Wiener Filter� which uses Fourier transforms� and the standard Wiener �lter

which uses the matrix representation� Each method assumes that the signal is not perfect

but has noise added to it and that the signal �hologram� and noise are uncorrelated� The

sources of error in a zone plate hologram were discussed in Chapter 	� In Chapter 
 these

errors were classi�ed as source noise Ns and recording noise Na� The signal recorded from

object plane p is not Up but a noisy version (Up given by

(Up � Cp ��Sp �Np
s �� T p� �Np

a � Hp � Sp �Hp �Np
s �Np

a �
���

As the Wiener �lter assumes that the signal and noise are uncorrelated� we have to replace

this by a single error term Ep�

(Up � Hp � Sp � Ep �
���

The reconstructed image� (Sp� should be as close to Sp as possible� Fourier transforms

and a �lter can be used to achieve this� The �lter� *� is designed to minimise the sum of

squared di�erences between (Sp and Sp in the following way�

(Sp
F
�

(Up
F
*p

HpF
�
����

The Fourier Wiener �lter is the �lter which optimises (Sp� It is derived in appendix D�

Fourier Wiener �lter *p �

��UpF
�����UpF

��� � ��EpF
��� �
����

Inserting this into equation 
��� gives

(Sp
F
�

(Up
F

HpF

��UpF
�����UpF

��� � ��EpF
��� �

(Up
F
HpF ���HpF

��� � ���EpF

SpF

���� �
����

HpF � is the complex conjugate of the Fourier transform of Hp� The parametric Fourier

Wiener �lter includes a parameter � which can be varied to increase or decrease the e�ect

of �ltering�

parametric Fourier Wiener �lter *p �

��UpF
�����UpF

��� � �
��EpF

��� �
����

���
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The standard �matrix� Wiener �lter� �*p�� is the �lter which minimises the sum of squared

di�erences between (Sp(Sp(Sp and SpSpSp when it is calculated using the inverse of matrix �Hp��

(Sp(Sp(Sp � �*p��Hp��� (Up(Up(Up �
��	�

Using a similar derivation to that used for the Fourier Wiener �lter� �*p� is found to be

Wiener �lter �*p� �
�
�Hp��T �Hp� � ��Sp�

����Ep�
���

�Hp��T �Hp� �
��
�

��Sp� and ��Ep� are the signal and noise covariance matrices� If each pixel value in the

signal is assumed to be uncorrelated with other values in the signal and the same can

be said for the noise� the o��diagonal elements in these matrices can be ignored� The

diagonal elements are the expected variances of each pixel value�

There is also a parametric Wiener �lter which is given by

parametric Wiener �lter �*p� �
�
�Hp��T �Hp� � ���Sp�

����Ep�
���

�Hp��T �Hp�
�
����

where� again� � is a variable which can be changed to increase or decrease the e�ect of

the �lter�

The matrix Wiener �lter has the advantage that more than one plane of data could

be included in the matrix equation� If a Fourier Wiener �lter is used� the image planes

have to be reconstructed one at a time and information from sources in other planes is

just treated as a contribution to the noise term� The following simple example shows how

two planes could be reconstructed simultaneously using a matrix Wiener �lter� One of

the sets of data is the one which was used in equation 
�	�

Sp� �

 �

 �

Hp� �
���
 ��

��

 �

Sp� �
� �
� 	

Hp� �
��
 �
� ��


Up� �
�
 ��
�� �

Up� �
�� ��

�
 �

Up��p� �
�
 ��
���
 ��

�
��
�

This can be written in matrix form�

�
BB�
� ��
 ��

 ���
 ��
 � � ��

� � � ��

 � ��
 � �
� � � ��
 � � ��
 �
� � � � � � � ��


�
CCA

�
BBBBBBBBBB�





�
�
�
�
�
	

�
CCCCCCCCCCA

�

�
BB�

�

���

��
��

�
CCA �
����
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The two planes could be reconstructed by simply inverting the matrix� In the example

above� the matrix happens to be singular but this is due to the numbers which were used�

The matrix Wiener �lter provides a way to use a singular matrix for reconstruction� �H�

may be singular� but �H��T �H� � ���S�����E� can be inverted if � is large enough�


�� Application of Wiener �lters to zone plate holog�

raphy

If the hologram parameters given in Table ��� are used� the hologram is a ������� pixel

array� If matrix representation were used� this would require inversion of a ���������

matrix or larger� As the Fourier Wiener �lter is far more practical� it is the one which

will be investigated in this Chapter�

The Fourier Wiener �lter relies upon knowing the magnitude of the ratio of the Fourier

transform of the error term to the Fourier transform of the signal from the source�
���EpF

UpF

����
for all frequency values� Two possible ways of estimating this will be presented�

����� Using the power spectral density

Press et� al� ���� suggest that the power spectral density�
��� (Up

F
���� should be plotted to give

an indication of the relative contribution of errors to the hologram� This can be done by

assuming that the power spectral density of the hologram is approximately equal to the

power spectral density of the signal from the source plus the power spectral density of the

noise�

��� (Up
F
���� � ��UpF

��� � ��EpF
��� �
����

The power spectral density of the noise is also called the Wiener spectrum� The Wiener

spectrum was mentioned as a tool for analysing the errors in an image in Chapter
� Press

et� al� illustrate how
���EpF

UpF

��� is found using the graph which is shown in Figure 
��� The

contribution of the signal to the power spectrum should �rst be estimated� A mathemat�

ical model should then be �tted to this contribution� Subtracting this from the power

spectrum will give an estimation of the noise term�

Figure 
�� shows a theoretical ideal hologram with the parameters given in Table ���

and the same hologram with 
�� additive random noise taken from an uniform distri�

���
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Figure 
��� Fitting a �signal model� and a �noise model� to the power spectrum � taken
from Numerical Recipes by Press et� al�

bution� This is arti�cial a hologram would not have negative pixel values but it is just

designed to illustrate the e�ect of adding noise� The power spectra� which were taken

as lines at y � � out from the centre of the two�dimensional Fourier transforms of the

holograms� are shown� The e�ect of adding noise to the hologram can be clearly seen

but it would be very di�cult to �nd a function which �tted the spectrum of the ideal

hologram� It would therefore be impractical to apply this method for �nding
���EpF

UpF

��� to
zone plate holography�

�a� ideal holo�
gram ��pixel
value����
��e���

�b� hologram
with ��� noise
���
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����� Finding a constant which gives the minimum error

As it is not obvious how to separate the signal from the noise� an approximate Wiener

�lter must be found� Two possibilities are given below�

Assuming
��EpF

��� is constant
One kind of noise in recorded signals is band�limited white Gaussian noise ����� It has equal

power per hertz in some band of frequencies and a Gaussian distribution of amplitudes if

a large number of measurements of its amplitude are made� In the discussion of sources

of �noise in the hologram in Chapter 	� some sources of error were listed which de�nitely

could not be described as white noise� However� assuming
��EpF

��� is constant for all

frequencies is a useful approximation� If it is assumed that equation 
��� can be used�

equation 
��� for the reconstructed signal (Sp
F
becomes

(Sp
F
�

(Up
F

HpF

�
B�
��� (Up

F
���� �K���� (Up
F
����

�
CA �
����

where K� �
��EpF

��� is a constant� K� can be varied between zero and the maximum

value of
��� (Up

F
����� If ��� (Up

F
�����K� becomes negative for any frequency� SpF should be set to

zero for that frequency� The e�ect of this �lter is illustrated in Figure 
��� The hologram

used had the parameters given in Table ��� and ��� additive random noise taken from an

uniform distribution� The variation of the NMSE and FEM values withK� are also shown

in Figure 
��� These error metric values were de�ned in Chapter 
 and are a measure of

the di�erence between the reconstructed image and the source object� This Wiener �lter

will be referred to as a K� Wiener �lter�

Assuming
���EpF

SpF

���� is constant
If
���EpF

SpF

���� were constant� this would mean that the errors would be highly correlated with

the source term� As a large proportion of the errors arise from statistical �uctuations

due to radioactive decay� this is a sensible approximation� Substituting
���EpF

SpF

���� � K� into

equation 
��� gives

(Sp
F
�

(Up
F
HpF ���HpF
��� �K�

�
����

���
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Figure 
��� E�ect of varying K� on the reconstructed image from a theoretical noisy
hologram

K� is a constant which can be varied between zero and in�nity� However� it only makes

sense to increase it up to the maximum value of
��HpF

���� The e�ect of this �lter is

illustrated in Figure 
�	� Again� the hologram used had the parameters given in Table ���

and ��� additive random noise taken from an uniform distribution� The variation of the

NMSE and FEM values with K� is also shown in Figure 
�	�

Comparing Figures 
�� and 
�	� it can be seen that this method gives lower error values

than the previous method� This method will be referred to as K� Wiener �ltering�
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Figure 
�	� E�ect of varying K� on the reconstructed image from a theoretical noisy
holograms


�	 Normalisation

����� To Account for the E
ect of K��K� on the Magnitude of
the Reconstructed Point

If the image from an ideal hologram of a point source was reconstructed using deconvolu�

tion� a Wiener �lter would not be needed as there would be no errors� As Hp is equivalent

to the hologram of a central point source with unit magnitude in plane p� reconstructing

a hologram of such a source would involve dividing the Fourier transform of Hp by itself�

This will produce an array full of ones� Depending upon the way that the inverse discrete

���
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Fourier transform is de�ned in the subroutine used� taking the inverse Fourier transform

of an array full of ones will reconstruct the point source with either unit amplitude or

with amplitude � N � So� in this one case� the amplitude will either be correct or can be

corrected by dividing the output pixel values by N �

If a Wiener �lter is used� the �lter value will have a large e�ect on the amplitude�

For example� if an ideal hologram with the parameters given in Table ��� is reconstructed

without using a Wiener �lter� the reconstructed point has an amplitude ��� If a K�

Wiener �lter is used and withK� � �� the reconstructed point has an amplitude �������e�

���

A way to normalise the reconstructed images to the correct amplitude is to calculate

the ideal hologram from a unit source in the centre of the reconstruction plane and then

reconstruct this using the same Wiener �lter as was used to reconstruct the image from

the hologram� The pixel values in the reconstructed image can then be normalised by

dividing them by the amplitude of the point reconstructed from the ideal hologram� The

two Wiener �lters are then given by the following equations�

normalised (Sp �

F��
�

�UpFHpF �

jHpF j�
� ��� �UpF

�����K���� �UpF
����
��

maximum of F��
� jHpF j��K�

jHpF j�
�

or normalised (Sp �

F��
�

�UpFHpF �

jHpF j��K�

�

maximum of F��
�

jHpF j�
jHpF j��K�

�
�
����

where F�� denotes an inverse Fourier transform�

����� To account for part of the zone plate hologram falling
outside the detector

Equation ���� in Chapter � gave normalisation constants Ap

ij which accounted for the fact

that� for points sources in some positions� the zone plate shadow is not wholly recorded by

the detector but overlaps the edge� This means that� for some frequencies� the amplitude

of the Fourier transform is reduced� This� in turn� decreases the amplitude of the recon�

structed point� Although the relationship between reconstructed amplitude and overlap

���
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is not as straightforward as that for convolution� it has been found that multiplying the

image amplitude by
A
p
��

A
p
ij

is an e�ective way to normalise the output�

If the image from an ideal� noiseless hologram of a point source is reconstructed using

deconvolution� no Wiener �lter will be needed to reconstruct the plane containing the

source� However� if the image is reconstructed in di�erent planes� the errors due to the

di�erence between the hologram and the theoretical shadow used for the reconstruction

will give rise to large errors in the image� For this reason� a theoretical hologram with

�� additive noise taken from a uniform distribution was used to investigate the e�ect of

normalisation� Again� the hologram had the parameters given in Table ���� The optimum

K� Wiener �lter was found for the plane containing the source and then this was used

for all the planes�

Multiplying the image amplitude by
A
p
��

A
p
ij

does help normalise the image amplitude for

di�erent �x� y� positions� However� by comparing Figure 
�
 to Figure ����� it can be seen

that the normalisation method used in convolution is more e�ective� The normalised K�

Wiener �lter appears to have better z resolution than the unnormalised �lter but this may

be because it had a higher optimal value of K�� The values for the normalised case were

found to be K� �
���e��	 for the point at z �����m and K� �	��
e��	 for the point at

z �����m� For the unnormalised case� these values were K� �	�	
e��
 and K� �	���e��	

respectively� Better results may have been obtained by �nding the optimal Wiener �lter

for each plane individually but this would have been very time consuming�


�
 E�ect of a mis�aligned zone plate

In this Chapter� so far� only methods using the binary zone plate pattern have been

discussed� In Chapter �� techniques using both the binary plate and Fresnel functions

were discussed� The techniques which used the binary plates were not found to work as

well as the ones which used Fresnel functions� Although the binary plate is the obvious

pattern to use for deconvolution� other possibilities should also be investigated�

One disadvantage of using the binary zone plate pattern is that it needs to be aligned

correctly� When a zone plate hologram is recorded� it is possible that the zone plate may

not be correctly aligned with the detector� The zone plate may be rotated by an angle

up to that of half a sector with respect to the expected alignment� This is illustrated

��	
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Figure 
�
� Magnitudes of theoretical reconstructed points in di�erent positions for both
unnormalised and normalised K� Wiener �ltering of a hologram containing �� additive
noise taken from a uniform distribution

in Figure 
��� The hologram with �� noise used in the previous Section is aligned with

Figure 
���a�� It was reconstructed using a optimal K� Wiener �lter and the zone plate

shadows in each of Figures 
���a�� 
���b� and 
���c�� A line of data was then taken

across the diagonal of each reconstructed image and this can be seen in Figure 
�
� From

this Figure� it is clear that the zone plate being mis�aligned has a large e�ect on the

reconstructed image�

���



Image Reconstruction by Deconvolution

�a� alignment of holo�
gram

�b� zone plate pattern
rotated by a quarter of
a sector

�c� zone plate pattern
rotated by half a sec�
tor

Figure 
��� How the expected zone plate can be mis�aligned with the actual zone plate
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Figure 
�
� E�ect of a mis�aligned zone plate on the point spread function
�


�� Using a truncated Gabor zone plate with aWiener

�lter

Pure Gabor zone plates were discussed in Chapter �� They are the type of zone plate

which would make a zone plate hologram as much like a conventional optical hologram as

possible� Binary zone plates are an approximation of this type of plate� Gabor zone plates

are radially symmetric so the alignment of the plate is not an issue� For this reason� it is

suggested that a Gabor plate could be used for the reconstruction as well as the binary

plate pattern� If poor results were obtained when the binary plate was used� this could

be used to check that this was not due to mis�alignment of the zone plate� The zone

plate should be truncated at the same radius as the binary plate and have all the same

parameters� This method will be referred to as Gabor Wiener �ltering� As before� the
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optimal �lter could be a K� or a K� �lter� Again� a K� Wiener �lter is used here as it

was found to produce better results�

Point spread functions for this method and a hologram with �� additive noise and

the parameters in Table ��� are shown in Figure 
���
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Figure 
��� Point spread functions for both unnormalised and normalised K� Gabor
Wiener �ltering of a hologram containing �� additive noise taken from a uniform distri�
bution


�
 Comparison of reconstructed points using error

metrics

This Section can be compared with Section ��
 for convolution reconstruction� For a single

point source� the MSE value is just a constant multiple of the NMSE value� Therefore�

only the NMSE and FEM values are given here� The image from the hologram with ��

noise used in the previous Sections was reconstructed using an optimal K� Wiener �lter

and an optimalK� Gabor Wiener �lter� The NMSE and FEM values for both normalised

and unnormalised reconstructions can be seen in Table 
��� Comparing this to Table ���

for the convolution reconstruction� the K� and K� binary Wiener �lter methods have

far better FEM and NMSE values than any of the convolution methods� The Gabor K�

Wiener �lter has better FEM values than all the matched �lter methods but the Gabor

K� Wiener �lter has worse FEM values than most of the convolution techniques�
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NMSE FEM
K� Wiener �lter ���

��	 ������
�
K� Wiener �lter � normalised ���	��� ����
��
K� Wiener �lter �����
�
 �����	�

K� Wiener �lter � normalised �������� �����	
�
Gabor K� Wiener �lter ������� �������
Gabor K� Wiener �lter � normalised �
	
�� �������
Gabor K� Wiener �lter ����	�� �����
�
Gabor K� Wiener �lter � normalised ��
��� ���
�
�

Table 
��� Error metric values for the di�erent Wiener �lter reconstruction techniques


�� Comparison of Modulation Transfer Functions

This Section can be compare with Section ��� for the convolution methods� The modu�

lation transfer functions �MTF� are shown in Figure 
�� for the di�erent deconvolution

reconstruction methods� As in Section ���� the NMSE and FEM values for the di�erence

between the MTFs and an array �lled with ones have been calculated� Again� the K�

binary Wiener �lter has the lowest NMSE and FEM values� The values are lower for the

unnormalised images than for the normalised images� All the NMSE and FEM values

for the binary Wiener �lters are lower than those for all the convolution techniques� The

Gabor K� Wiener �lter has lower values than most of the convolution methods and the

K� Wiener �lter has higher values than most�

�a� K�
Wiener �lter
����������pixel
value�����
�

�b� K�
Wiener �lter
�����
���pixel
value�����
�

�c� Gabor K�
Wiener �lter
������e����pixel
value�������

�d� Gabor K�
Wiener �lter
������e����pixel
value������


max

min

Figure 
��� Modulation transfer functions
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NMSE FEM
K� Wiener �lter �����
�� ���
�
��
K� Wiener �lter � normalised ������� �������
K� Wiener �lter ������
� ������
�	
K� Wiener �lter � normalised ����	��
 �������

Gabor K� Wiener �lter ������� �����
�
Gabor K� Wiener �lter � normalised ������
 �������
Gabor K� Wiener �lter ��
���	 ��
����
Gabor K� Wiener �lter � normalised ��
�	
� ��
�
��

Table 
��� Comparison of modulation transfer function error metric values for the di�erent
deconvolution reconstruction techniques

��
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�� Comparison of point spread functions

As in Section ��
 for the convolution methods� one�dimensional Gaussian functions were

�tted to the reconstructed points� The function �tted in direction x�� p�x��� was given by

p�x�� � A exp

��jx� � �j�
���

�
�
����

This was �tted along the �x� y� diagonal of the plane containing the image of the point

source and also in the z direction� The points which were analysed were reconstructed by

using an optimal normalised K� Wiener �lter and Gabor Wiener �lter� The images have

to be reconstructed in a series of planes to �nd the z resolution and it would have been

very time consuming to do this for each deconvolution method� The results can be seen

in Table 
��� Comparing these results to the equivalent ones for the convolution methods

given in Table ��	� both Wiener �lter methods appear to have better resolution in both

the �x� y� and z directions� This will be investigated later with di�erent holograms�

A � � R�squared
�x� y� diagonal
K� Wiener �lter ����� ����� ��		�e��	 �����
Gabor K� Wiener �lter ����
 ����� �����e��	 ������
z direction
K� Wiener �lter ���	
e��� �����e��� ��	��e��	 ����
�
Gabor K� Wiener �lter ����� �����e��� ��
��e��� ������

Table 
��� Point spread functions for the di�erent Wiener �lter techniques


��� Comparison of Images of Uniform Sources

Images of two dimensional uniform sources were reconstructed using the deconvolution

methods� This was done for the convolution methods in Section ���� The same hologram

was used here as in Section ���� Unlike the hologram of the point source� no noise was

added� Part of the shadow cast by a two dimensional uniform source would not have been

recorded by the hologram� The hologram� therefore� already contained inherent errors

and required Wiener �ltering�

The unnormalised images can be seen in Figure 
��� and the normalised images in

Figure 
���� The NMSE and FEM values are given in Table 
�	� The K� Wiener �lter

has lower values than th K� Wiener �lter and� unexpectedly� the Gabor K� Wiener �lter

���
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has lower values than the standard K� Wiener �lter� In general� the NMSE and FEM

values are comparable to those for the convolution methods�

�a� K� Wiener �l�
ter ��
��
��pixel
value�������

�b� K� Wiener �l�
ter ��������pixel
value����

�

�c� Gabor K�
Wiener �lter
��������pixel
value�������

�d� Gabor K�
Wiener �lter
����
���pixel
value���
���

max

min

Figure 
���� Unnormalised images of uniform sources

�a� K�
Wiener �lter �
���
�
e����pixel
value����
��e���

�b� K� Wiener �l�
ter ��������pixel
value�������

�c� Gabor K�
Wiener �lter
��������pixel
value��

���

�d� Gabor K�
Wiener �lter
�
������pixel
value�������

max

min

Figure 
���� Normalised images of uniform sources

NMSE FEM
K� Wiener �lter ���	��e��
 �������
K� Wiener �lter � normalised ������e��� �������
K� Wiener �lter ��
��
 ���
���
K� Wiener �lter � normalised ������e��
 ����		

Gabor K� Wiener �lter �����	e��
 ������

Gabor K� Wiener �lter � normalised �����
e��
 �������
Gabor K� Wiener �lter ����
� ��
����
Gabor K� Wiener �lter � normalised ������e��� ����	
�

Table 
�	� Comparison of error metric values for images of uniform sources for the di�erent
deconvolution reconstruction techniques

���



Image Reconstruction by Deconvolution


��� Summary

Methods of reconstruction by deconvolution have been outlined� The need for a Wiener

�lter has been explained and di�erent methods for �nding the optimal �lter have been

given� A way to normalise the image amplitude has also been given� A method using a

Gabor zone plate pattern has been introduced to overcome e�ects caused bymis�alignment

of the zone plate� Error metric values� modulation transfer functions and point spread

functions have been calculated and shown to be better than those for convolution method�

This technique� however� has the disadvantage of having to �nd an optimal value of K�

or K�� The method giving the most favourable results for theoretical point sources was

the K� Wiener �lter�

���
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IMAGE RECONSTRUCTION
USING THE CLEAN ALGORITHM

The CLEAN algorithm was invented by H+ogbom in ��
	 for use in high�resolution radio

interferometry ����� The CLEAN algorithm was one of a number of techniques which

H+ogbom presented in his paper� To quote H+ogbom

The procedure that appears to work the best at the time of writing has become

known as �CLEAN � It is an iterative procedure that operates in the map plane

and which uses the known shape of the dirty beam to distinguish between real

structure and sidelobe disturbances in the dirty map���

No explanation is given for the procedure being called �CLEAN � In this case� the dirty

map would be the hologram and the dirty beam would be the zone plate pattern� that is�

the shadow cast by a point source� The method works by subtracting the contribution of

each point to the hologram a point at a time until very little remains�

The CLEAN algorithm has been used in microscopy ����� ����� and radioastronomy ����� �

�

for image reconstruction� There are many variations on this basic algorithm and these

are outlined on the �Mathworld� web site ����� This algorithm is� however� usually used

to reconstruct two�dimensional images in one plane� The version of the algorithm used

here performs the following iteration procedure to reconstruct an image in any number of

planes in the z direction�

�� Set all pixel values in the reconstructed image planes to zero�

�� Reconstruct the image in all the planes by normalised convolution� The resulting

image will be referred to as the hologram image� As the reconstruction is normalised�

the hologram image pixel values should roughly correspond to the source intensity

per unit area for each position�

���
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�� Find the maximumhologram image pixel value and then increment the correspond�

ing reconstructed image pixel by a given amount %c�

	� Subtract the contribution that a source in this position with strength %c would have

had from the hologram data�


� Go back to step number � and repeat this process until the maximum value of the

hologram image is less than %c�

An alternative to this sequence would be to replace the word convolution by deconvolution

in the above sequence� Potentially� any of the methods outlined in Chapters � and 
 could

be used� As the truncated Fresnel function and K� Wiener �lter methods were found to

be the most promising� these are the ones that will be used in this work�

The convolution or deconvolution reconstruction may not reconstruct all the image

pixels with the correct amplitude� If it did� this technique would not be needed� What is

important� however� is that the image pixel with the maximum amplitude corresponds to

a position where there is a source� If %c is too high� there is a risk that the pixel will be

given too high an amplitude and too much will be subtracted from the hologram for that

position� If this happens� the behaviour of the algorithm will be unpredictable� A higher

value of %c will mean the image is reconstructed in less time but a lower value should

give a more accurate image�

��� Assessment of Image Quality

To compare this technique with convolution and deconvolution� holograms of point sources

with the same parameters as those in Chapters � and 
 were reconstructed using both

the convolution based and the deconvolution based CLEAN algorithms� In each case� the

reconstructed points were in the correct pixels and all the other pixel values were still

zero� This was still the case when the reconstruction planes were placed ������m apart�

The accuracy of the amplitude of the reconstructed point depended on the value of %c

with a lower value of %c giving a more accurate value� Finding the FEM and NMSE error

metric values is therefore meaningless here� A Gaussian can also not be �tted to a single

pixel value surrounded by zeros�

��	
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As only one pixel value is changed by each iteration� the time this reconstruction

method takes is much longer than convolution and deconvolution methods� The time it

takes is the number of iterations multiplied by the time for one iteration� The number

of iterations depends upon the value of %c and the size and strength of the source� The

time taken for one iteration is slightly more than the time taken to reconstruct the same

image by either convolution or deconvolution� whichever one is used�

��� Summary

The application of the CLEAN algorithm to the reconstruction of three�dimensional im�

ages has been explained� This algorithm can be based on either a convolution or a decon�

volution reconstruction method� The results for theoretical point sources are incredibly

good but the CLEAN algorithm reconstruction takes many times longer to run than con�

volution or deconvolution reconstruction� The time needed depends upon the size and

strength of the source as well as the number of pixels in the hologram� the number of

image planes and the amount by which an image pixel is incremented by one iteration�

This algorithm appears to work well for point sources� This could have been expected

as it was originally designed to image point sources� It has only be shown to work well for

extended sources when given a reasonable starting model ���� but no a priori knowledge

is used to reconstruct the images in Chapters � and ��� The algorithm used in this work

is similar to the basic H+ogbom CLEAN algorithm but is used for images in more than

one plane� There are many variations of the CLEAN algorithm which have been shown

to achieve greater speed and produce more realistic images ���� but investigating all these

di�erent possibilities is beyond the scope of the work presented here�

���
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RECONSTRUCTION OF
COMPUTER GENERATED

HOLOGRAMS

In this Chapter some more theoretical holograms will be reconstructed using the three

reconstruction methods which were explained in Chapters �� 
 and �� The convolution

method which will be used is convolution with a truncated Gabor zone plate as this was

found to give the best results for the point sources in Chapter �� K� Wiener �ltering

will be the deconvolution method used here as this was the best method for point sources

in Chapter 
� First� the reconstruction techniques will be tested on images from an

ideal theoretical hologram of a simple� one pixel thick cross source� The parameters of

this hologram will� again� be those given in Table ���� The zone plate dimensions and

the pixel size in this table are the same as those of the real experimental holograms in

Chapter ���

The theoretical holograms will be calculated using the relationship between source

distribution given by equation ���� As in equation ����� this relationship assumes that

the source to zone plate �p� and zone plate to detector �q� distances are much larger than

the dimensions of the detector� In this case� the distance a gamma ray travels from a

point in the source to the detector is approximately equal to �p � q� no matter where

the point is is the �eld of view� In practise� for the parameters commonly used for zone

plate holography� p and q would be too small for this to be a good approximation� The

work in this Chapter� however� will just attempt to give an indication of whether the

methods should work or not and will not include all of the factors which a�ect a zone

plate hologram� The e�ciency of the gamma camera and the fact that the zone plate is

several millimetres thick� for example� are other factors which will not be included here�

The e�ect of adding other sorts of errors to an ideal hologram will� however� be investi�
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gated� These are the errors which were mentioned in Chapter 	 and they will be measured

using the error metrics given in Chapter 
� Images from a hologram of two di�erent cross

sources in two di�erent planes will then be reconstructed� Next� the reconstruction meth�

ods will be used to reconstruct images from ideal computer generated holograms of the

same object but where the size of the object is di�erent in di�erent holograms� Finally�

the methods will be used to reconstruct images from holograms of the same object but

with di�erent parameters�

��� Hologram of a Simple Two�Dimensional Cross

Source Placed Parallel to the Zone Plate

����� Reconstruction of Images from an Ideal Hologram

An ideal hologram of the cross source shown in Figure ����a� was calculated using the

parameters in Table ���� This hologram was reconstructed using the di�erent meth�

ods in �ve planes each separated by �cm where the image should appear in the middle

plane� First� the image was reconstructed using normalised convolution and normalised

K� Wiener �ltering� As was explained in Chapter �� the CLEAN algorithm needs to be

based on another image reconstruction technique� As reconstruction using the CLEAN

algorithm takes many times longer� it seemed sensible to reconstruct the image using the

other methods and then decide which one of these methods the CLEAN algorithm should

be based on�

convolution � real part convolution � intensity K� Wiener �lter
FEM ���

�e��� ����

e��� ��	���e���
NMSE 
�����e��� ���
�
e��
 ���
	�e���

Table ���� Error metrics for the normalised image reconstruction of a hologram of the
cross source

To �nd the optimum value of K�� K� was �rst set equal to the maximum value of the

square of the magnitude of the Fourier transforms of ideal holograms of points in each

plane� This was used as a starting point as we can be fairly certain that the errors do

not have a greater contribution than the maximum frequency contribution of the signal�

The image was reconstructed using this value of K�� The hologram that would have been

generated by this reconstructed image was then calculated� The FEM error metric for

���



Reconstruction of Computer Generated Holograms

�a� source object
��pixel value��

�b� theoreti�
cal hologram �
���
��e����pixel
value�������e���

�c� convolution � real
part ���

���pixel
value���
���

�d� convolu�
tion � intensity
����
�e����pixel
value�������

�e� K� Wiener �l�
ter ����������pixel
value�������

max

min

Figure ���� Normalised reconstruction by convolution and K� Wiener �lter

the di�erence between this calculated hologram and the actual hologram were then found�

Next� K� was divided by ten and the whole process was repeated and the new FEM value

was found� K� continued to be divided by ten until the FEM value stopped decreasing

and increased� The previous value of K� was then assumed to be the optimal value�

First� images were reconstructed using normalised convolution and deconvolution� The

images reconstructed in the middle plane can be seen in Figure ��� and all the recon�

structed image planes can be seen in Figures ��� and ���� Table ��� gives the FEM and

NMSE error metric values for the di�erence between the source object and the image

over all �ve planes� The error metric values con�rm what is obvious from looking at the

Figures� K� Wiener �ltering gives a better image than convolution� In the calculations

performed in Chapter �� it was predicted that the intensity of a pure Gabor zone plate

���
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hologram of a point source should give a point image but that the real part would have

other terms in the background� The intensity was also found to give a better reconstruc�

tion for binary Gabor zone plate holograms of point sources in Chapter �� For this cross

source� however� the real part gives a better reconstruction�

convolution � real part convolution � intensity K� Wiener �lter
FEM ��
���e��� ������e��� ������e���
NMSE ��	���e��� ��
�	�e��	 ��
�
�e���

Table ���� Error metrics for the partially normalised image reconstruction of a hologram
of the cross source

As was explained in Chapter �� for some points� the whole of the zone plate pattern is

not recorded by the gamma camera� This was accounted for in the normalisation of the

convolution reconstruction� Although this helps points towards the edge of the hologram

have the correct magnitude� it also ampli�es errors increasing with distance from the

centre� In Chapter 
� an attempt was also made to account for this �overlap� problem

in the Wiener �ltering methods� The results were� however� not as satisfactory as it was

more di�cult to assess the e�ect that overlapping has in this case� Partially normalised

reconstructions where the overlap factor was not included were therefore calculated�

The images reconstructed in the middle plane can be seen in Figure ��	 and all the

reconstructed image planes can be seen in Figures ��
 and ���� Table ��� gives the FEM

and NMSE error metric values for the di�erence between the source object and the image

over all �ve planes� The Figures show an obvious di�erence for the intensity of the

convolution but the real part of the convolution and the K� Wiener �lter look very

similar� The FEM and NMSE error metric values are� however� all lower than those for

the fully normalised reconstruction� The partial normalisation method� therefore� appears

to be better�

CLEAN �convolution � real part� CLEAN �K� Wiener �lter�
FEM ���
�	e��� 
�	�	�e���
NMSE ������e��� 
�����e���

Table ���� Error metrics for the partially normalised image reconstruction of a hologram
of the cross source using the CLEAN algorithm

The partially normalised convolution �real part� and K� Wiener �lter methods were

used as the basis for the CLEAN algorithm� %� the increment by which a pixel value

��
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is increased by one iteration� was set to the maximum value of the image reconstructed

by convolution or deconvolution divided by ten� % for convolution was greater than that

for deconvolution so more iterations would have been needed� Deconvolution also takes

longer because there are more arithmetic operations involved� The convolution based

CLEAN algorithm reconstruction ran overnight and was �nished by the morning� When

the reconstruction using the deconvolution based CLEAN algorithm had not �nished two

days later� % was decreased to half of the maximum value of the image reconstructed by

deconvolution�

The results for the object plane can be seen in Figure ��
 and in all �ve planes in

Figure ���� The CLEAN algorithms mainly reconstructed points in the correct plane�

most of the values in the other three planes remained equal to zero� When straightforward

convolution and deconvolution were used� this was not the case� The corresponding FEM

and NMSE error metric values are given in Table ����
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�a� real part

�b� intensity

Figure ���� Normalised reconstruction by convolution
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Figure ���� Normalised reconstruction by K� Wiener �lter

�a� convolution � real
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���pixel
value���
���
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tion � intensity

��
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max
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Figure ��	� Partially normalised reconstruction by convolution and K� Wiener �lter
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�a� real part

�b� intensity

Figure ��
� Partially normalised reconstruction by convolution
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Figure ���� Partially normalised reconstruction by K� Wiener �lter

�a� CLEAN algorithm
�convolution� ��pixel
value ����
��

�b� CLEAN algo�
rithm �deconvolution�
��pixel value �����



max

min

Figure ��
� Partially normalised reconstruction using the CLEAN algorithm
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�a� algorithm based on convolution

�b� algorithm based on deconvolution

Figure ���� Partially normalised reconstruction using the CLEAN algorithm

�
�
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����� Reconstruction of Images from Holograms with Added Er�
rors

Four di�erent types of error were added to the ideal hologram of the cross source to see

the e�ect it had on the image� These errors will be numbered ➀� ➁� ➂ and ➃� The errors

included in each one are listed below�

➀ The source magnitude was replaced by a number taken from a Poisson distribution

with a mean of ��� for each pixel containing the source� As a Poisson distribution has

a standard deviation equal to the square root of the mean� the standard deviation of

this distribution would have been �� ��	�� This was intended to simulate a source of

magnitude ��� with ten percent noise due to statistical �uctuations� The theoretical

hologram was then calculated using this source�

➁ The ideal hologram was convolved with a two�dimensional Gaussian function with

FWHM equal to ����cm which is the spatial resolution of a Toshiba GCA�
���A

gamma camera given in Table 	��� This was in order to simulate the fact that the

gamma camera stores the data in pixels which are smaller than the resolution of the

camera�

➂ Noise taken from a uniform distribution between zero and ten percent of the maxi�

mum ideal hologram value was added to the ideal hologram� This was to simulate

errors due to �oating point arithmetic and counts from background radiation� The

minimum value of the noise was zero so that none of the hologram values would

become negative� This is sensible because the output of the gamma camera does

not contain negative values�

➃ The thickness of the cross source was increased from one to �ve pixels� This was

to see if the reconstruction techniques worked as well for a source which covered a

larger number of pixels next to each other�

Images were reconstructed from these holograms in the same �ve planes as for the ideal

hologram �Section ������ using convolution� deconvolution and the CLEAN algorithm�

Corresponding error metric values to those given for the ideal hologram can be seen

�
�
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in Tables ��	 and ��
� Values for the intensity of the convolution reconstruction are not

included as this was found to give a worse reconstruction than the real part in Section ������

All of the reconstructed images will not be shown here as those from holograms ➀ and

➂ do not vary noticeably from those for the ideal hologram� In these cases� the CLEAN

reconstructions also only reconstructed points in the correct plane� When images were

reconstructed from holograms ➁ and ➃ using the CLEAN algorithms� points were also

reconstructed in the planes next to the image plane� The partially normalised recon�

structed image in all �ve planes can be seen in Figures ��� and ���� for hologram ➁ and

Figures ���� and ���� for hologram ➃�

convolution � real part K� Wiener �lter
➀ FEM ��
���e��� ������e���

NMSE ��	���e��� ��
	��e���
➁ FEM �����	e��� ��
��	e���

NMSE ����
�e��� 
���	�
➂ FEM ��
���e��� ��	�
�e���

NMSE ��
��	e��� ����
�e���
➃ FEM ���	��e��� ���
�
e���

NMSE ���
��e��� ���		
e���

Table ��	� Error metrics for the partially normalised image reconstruction of noisy holo�
grams of the cross source using convolution and deconvolution

CLEAN �convolution � real part� CLEAN �K� Wiener �lter�
➀ FEM ���
�	e��� �����	e���

NMSE ������e��� 	�	�	�e���
➁ FEM ����	�e��� 
��
��e���

NMSE ���
��e��� 
���	�e���
➂ FEM ������e��� �����	e���

NMSE ������e��� 	�
��	e���
➃ FEM ������e��� ������e���

NMSE ���

� ���
��e���

Table ��
� Error metrics for the partially normalised image reconstruction of noisy holo�
grams of the cross source using CLEAN algorithms

�
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�a� convolution � real part

�b� K� Wiener �lter

Figure ���� Partially normalised reconstruction for hologram ➁ by convolution and K�
Wiener �lter

�
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�a� algorithm based on convolution

�b� algorithm based on deconvolution

Figure ����� Partially normalised reconstruction for hologram ➁ using CLEAN algorithms

�
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�a� convolution � real part

�b� K� Wiener �lter

Figure ����� Partially normalised reconstruction for hologram ➃ by convolution and K�
Wiener �lter

�
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In summary� errors representing statistical �uctuations in the source strength �holo�

gram ➀� and recording noise or counts due to background radiation �hologram ➂� had

less of an e�ect on the reconstructed image than the limited spatial resolution of the

gamma camera �hologram ➁�� This was just done for one set of hologram parameters and

one theoretical source object� The magnitudes of each of these errors would depend upon

the exact details of the experiment� for example� source strength� These images� however�

give an indication of the sort of e�ect these errors have�

In the case of K� Wiener �ltering� this e�ect can be lessened by deconvolving the

hologram with a zone plate pattern which is also blurred by the same Gaussian function

instead of an ideal zone plate pattern� For a partially normalised reconstruction� this

reduced the FEM error metric value to ��
���e��� but� strangely� increases the NMSE

error to ���
		e���� If convolution is used� the blurred zone plate pattern can be used

to calculate the magnitude of the reconstruction of an ideal point source instead of the

pure zone plate pattern and can hence improve the normalisation� Again� this reduces

the FEM error value to ����
�e��� but increases the NMSE value to ��	�
�e����

From Table ��
 it can be seen that the CLEAN algorithm based on deconvolution gave

consistently lower error metric values than the CLEAN algorithm based on convolution�

The algorithm based on deconvolution will� therefore� be used for the rest of the holograms

in this Chapter�

��� Reconstruction of Images from Holograms of Ob�

jects of Di�erent Sizes with the Same Parameters

The same object was used for each of these four holograms� It was some text �CEJ� in the

centre on the central plane� This was chosen because it is only slightly more complicated

than a cross source and because its size can easily be changed by changing the font size�

The parameters for the hologram were� again� those in Table ���� Four holograms were

generated with increasing font size and will be represented by � � � � � and � � The

size of the object of which the holograms were calculated increase from hologram � to

hologram � �

Figures ���� and ���	 show the images from hologram � in �ve planes each separated

by �cm� The object should appear in the middle plane� Figures ���� and ���
 show the

�
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images from hologram � � Figures ���
 and ���� those from hologram � and Figures ����

and ���� show the image from hologram � � The corresponding error metric values are

given in Table ����

The error metric values for images reconstructed using the CLEAN algorithm increase

as the size of the object increases� The NMSE values also increase with object size

for convolution and deconvolution� There is no obvious trend in the FEM values for

convolution and the FEM values decrease with object size for deconvolution�

�
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�a� algorithm based on convolution

�b� algorithm based on deconvolution

Figure ����� Partially normalised reconstruction for hologram ➃ using CLEAN algorithms

�
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�a� convolution � real part

�b� K� Wiener �lter

Figure ����� Partially normalised reconstruction of hologram � by convolution and K�
Wiener �lter

�
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Figure ���	� Partially normalised reconstruction of hologram � using the deconvolution
based CLEAN algorithm

Figure ���
� Partially normalised reconstruction of hologram � using the deconvolution
based CLEAN algorithm
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�a� convolution � real part

�b� K� Wiener �lter

Figure ����� Partially normalised reconstruction of hologram � by convolution and K�
Wiener �lter
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�a� convolution � real part

�b� K� Wiener �lter

Figure ���
� Partially normalised reconstruction of hologram � by convolution and K�
Wiener �lter

���



Reconstruction of Computer Generated Holograms

Figure ����� Partially normalised reconstruction of hologram � using the deconvolution
based CLEAN algorithm

Figure ����� Partially normalised reconstruction of hologram � using the deconvolution
based CLEAN algorithm
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convolution � real part K� Wiener �lter CLEAN algorithm
� FEM ���	
�e��� ����
�e��� 	�		��e���

NMSE 	����
e��� ���
	�e��� �����	e��

� FEM ��
�	�e��� ����
�e��� 	�����e��	

NMSE 
����	e��� ����
�e��� ������e���
� FEM ������e��� ���
�	e��� 	�
���e���

NMSE ����
�e��� 
��
��e��� 
���
	e���
� FEM �����
e��� ���


e��� ������e���

NMSE ������e��� ��
�	�e��� ������e���

Table ���� Error metrics for the partially normalised image reconstruction of holograms
of the text source object using convolution� deconvolution and the CLEAN algorithm
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�a� convolution � real part

�b� K� Wiener �lter

Figure ����� Partially normalised reconstruction of hologram � by convolution and K�
Wiener �lter
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��� Reconstruction of Images from Holograms of the

Same Object with Di�erent Parameters

A �ve pointed star with a hole in the middle was used here� This was chosen as it is a

more extended object than the ones used in the previous sections� Five holograms were

generated of the object� The �rst hologram had the parameters from Table ��� in the

other four holograms either the zone plate to detector distance or the source to zone plate

distance was changed� The hologram parameters for each of the �ve holograms are given

in Table ��
�

Parameter holograms value Parameter holograms value
First zone radius all ����e��m Detector pixel size all ���
	e��m
Source�zone plate ➊➍➎ ����m Zone plate�detector ➊➋➌ ����m

➋ ����m ➍ ����m
➌ ����m ➎ ��		m

Number of pixels all ������� Number of zones all ��

Table ��
� Hologram parameters used for the holograms of the star object

Figures ���� and ���� show the images reconstructed from hologram ➊ and Figures ���	

and ���� those from hologram ➋� Figures ���
 and ���� show the images from hologram

➌� Figures ���� and ���
 those from hologram ➍ and Figures ���� and ���� those from

hologram ➎� The NMSE and FEM values are given in Table ����

The only conclusion that can be drawn from these results is that the images look

better when the object is smaller in the �eld of view of the detector �holograms ➌ and

➎� than when it is larger �holograms ➋ and ➍�� Holograms ➌ and ➎ have lower error

metric values for the images reconstructed using the CLEAN algorithm� However� there

is no obvious trend in the results for convolution or deconvolution�

���
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�a� convolution � real part

�b� K� Wiener �lter

Figure ����� Partially normalised reconstruction of hologram ➊ by convolution and K�
Wiener �lter
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Figure ����� Partially normalised reconstruction of hologram ➊ using the deconvolution
based CLEAN algorithm

Figure ����� Partially normalised reconstruction of hologram ➋ using the deconvolution
based CLEAN algorithm
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�a� convolution � real part

�b� K� Wiener �lter

Figure ���	� Partially normalised reconstruction of hologram ➋ by convolution and K�
Wiener �lter
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�a� convolution � real part

�b� K� Wiener �lter

Figure ���
� Partially normalised reconstruction of hologram ➌ by convolution and K�
Wiener �lter
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Figure ����� Partially normalised reconstruction of hologram ➌ using the deconvolution
based CLEAN algorithm

Figure ���
� Partially normalised reconstruction of hologram ➍ using the deconvolution
based CLEAN algorithm
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�a� convolution � real part

�b� K� Wiener �lter

Figure ����� Partially normalised reconstruction of hologram ➍ by convolution and K�
Wiener �lter
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�a� convolution � real part

�b� K� Wiener �lter

Figure ����� Partially normalised reconstruction of hologram ➎ by convolution and K�
Wiener �lter
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Figure ����� Partially normalised reconstruction of hologram ➎ using the deconvolution
based CLEAN algorithm

convolution � real part K� Wiener �lter CLEAN algorithm
➊ FEM ������e��� ��
���e��� �����
e���

NMSE ����	�e��� �����
e��� 
�
��
e���
➋ FEM ��	�

e��� ��		

e��� �����
e���

NMSE ��
	�
e��	 ������e��� ����
�e���
➌ FEM ����	�e��� ��
	�
e��� ������e���

NMSE ������e��� ��
�
�e��� ��

��e���
➍ FEM �����
e��� ������e��� ������e���

NMSE ������e��� ���	�	e��� ����

e���
➎ FEM ����	�e��� ���

�e��� ��

		e���

NMSE 	�
�
	e��� ����	
e��� ������e���

Table ���� Error metrics for the partially normalised image reconstruction of holograms
of the star shaped source using convolution� deconvolution and the CLEAN algorithm

��	 Reconstruction of Two Cross Sources in Di�erent

Planes

The �rst one of the two cross sources used here is the same as the one in Section �����

and has the same parameters� it is positioned at ����m behind the zone plate� The other

��




Reconstruction of Computer Generated Holograms

cross is a diagonal one and is positioned ����m from the zone plate� Image planes were

reconstructed at ����m� ����m� ����m and ����m� The reconstructed images in all �ve

planes can be seen in Figures ���� and ���� and the corresponding error metric values are

in Table ����

The image from the CLEAN algorithm showed the two crosses mainly in the correct

planes� Very little was reconstructed in the surrounding planes� Convolution and decon�

volution gave almost as much in the surrounding planes as in the planes which actually

contained the sources�

���
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�a� convolution � real part

�b� K� Wiener �lter

Figure ����� Partially normalised reconstruction for hologram of two cross sources by
convolution and K� Wiener �lter
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Figure ����� Partially normalised reconstruction for hologram of two cross sources using
the CLEAN algorithm

convolution deconvolution CLEAN �deconvolution�
FEM �����	e��� ���
��e��� ����
�e���
NMSE �����
e��� ��
��
e��� ���
�
e���

Table ���� Error metrics for the partially normalised image reconstruction of a hologram
of two cross sources

��
 Summary

The three reconstruction techniques have been tested for a variety of computer generated

holograms� Thee reconstructed images had lower error metric values when the overlap

factor �described in Section ��	� was not included� These partially normalised reconstruc�

tion methods were then used to reconstruct the rest of the images in the Chapter� The

CLEAN algorithm was found to work better when it was based on deconvolution than

when it was based on convolution so this method was used�

The e�ect of di�erent types of error� increasing object size and di�erent hologram

parameters were investigated� Although a more thorough investigation would be required

to draw de�nite conclusions� these results gave some indications of the sources of error in

���
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the reconstructed images� These results suggest that the �nite resolution of the gamma

camera is a major contributing factor to errors in the reconstructed image for these

reconstruction methods� They also indicate that the errors in the image are generally

larger for objects which are larger in the �eld of view of the detector�

���



Chapter ��

RECONSTRUCTION OF REAL
HOLOGRAMS

The zone plate holograms which will be used in this Chapter were recorded by Perks

as part of his PhD project ��
�� Perks recorded holograms using a Toshiba GCA�
���A

gamma camera at St Thomas� hospital� London� Since then� Rew �
�� has recorded many

holograms using a GE Maxicamera 
�
 in the Physics and Astronomy department of the

University of Birmingham� The holograms recorded using the GE camera are� however�

of poorer quality than those recorded on the Toshiba camera� The spatial resolution was

given in Table 	�� for all these cameras� The GE camera has a spatial resolution of 
mm

and the Toshiba camera has a spatial resolution of ���mm� Although the spatial resolution

of the GE camera is only slightly worse than that of the Toshiba camera� the GE camera

needs to re�adjusted and this has made the images worse than could be expected�

Takhar ��	� and George���� are now working on their PhDs on this project and have

started taking images using an ADAC Forte gamma camera which is also in the Physics

and Astronomy department� The images from this camera are comparable to those from

the Toshiba camera� It will be left to them to test these reconstruction techniques further

on real holograms taken using the ADAC camera� Suggestions for further work they can

do to test the reconstruction techniques are given in Chapter ���

���� Cross Source Placed Parallel to the Zone Plate

Perks recorded two holograms of a cross source made of four capillary tubes �lled with

technicium ��m� The bungs holding the Technicium in the tubes were all placed together

in the centre of the cross so there was a region of no activity here� The two holograms

had the same source to zone plate distance �����m� but di�erent zone plate to detector

distances �����m and ��		m�� The other parameters can be seen in Tables ���� and �����

��	
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Note that the pixel size� �rst zone radius and number of zones in the zone plate are all

the same as those used for the computer generated holograms�

Figure ����� Cross source recorded using the collimator �taken from Perks� thesis�

Figure ���� shows an image of the cross source taken using the gamma camera with

the collimator still attached� This picture was taken from Perks� thesis� The region of no

activity in the centre of the cross can not be seen here�

First zone radius �r�� ����e���m Source � zone plate distance �z� ����m
Detector pixel size �%� ���
	e���m Zone plate � detector distance �b� ��		m

Number of pixels �nx � ny� 
�� � 
�� Number of zones �n �
q

R

r�
� ��

Table ����� Parameters for the �rst hologram of the cross source

�a� convolution
� real part �
��

��e����pixel
value�������e���

�b� K�
Wiener �lter
�������e����pixel
value �������e���

�c� CLEAN
algorithm
�convolution���pixel
value �������e���

�d� CLEAN
algorithm
�deconvolution���pixel
value �
��
��e���

Figure ����� Partially normalised reconstruction for the �rst real hologram of the cross
source in the object plane� white � minimum� black � maximum pixel value

Figures ����� ���� and ���� show the partially normalised reconstructions of the image

of the cross for the �rst hologram� This technique was shown to be better than the fully

normalised reconstruction in Chapter �� The deconvolution based CLEAN algorithm gave

better results than the convolution based CLEAN algorithm in Chapter �� This method

was then used for the remaining computer generated holograms� It takes a long time to

���
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reconstruct images using the CLEAN algorithm so it did not seem sensible to try both

techniques for all the computer generated holograms� However� as there are only a limited

number of real holograms available� both techniques will be tried here�

Figure ���� shows the image in the object plane and Figures ���� and ���	 show

the image in all �ve planes� Table ���� gives the corresponding error metric values�

As the object is not exactly know the error values were calculated by comparing the

actual hologram to the theoretical hologram which would have been produced by the

reconstructed source� The deconvolution reconstruction gives the best FEM error metric

value and the convolution based CLEAN reconstruction gives the best NMSE error metric

value in this case� The convolution based CLEAN reconstruction only reconstructed

points in the images plane but the points were incremented by a large value in each

iteration to make the reconstruction be completed in a reasonable amount of time� The

points were incremented by the maximumvalue of the image reconstructed by convolution

or deconvolution divided by ten� If a smaller value had been chosen� the reconstruction

would have taken longer but the image may have been better�

���



Reconstruction of Real Holograms

�a� convolution � real part

�b� K� Wiener �lter

Figure ����� Reconstruction by convolution andK� Wiener �lter of the �rst real hologram
of the cross source in all �ve planes
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�a� algorithm based on convolution

�b� algorithm based on deconvolution

Figure ���	� Reconstruction using the CLEAN algorithm of the �rst real hologram of the
cross source in all �ve planes
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convolution deconvolution CLEAN �convolution� CLEAN �deconvolution�
FEM ���

	e��� ���
��e��� �����e��� 
��
�e���
NMSE �����
e��� �����
e��� ���
	e��� ��
�
�e���

Table ����� Error metrics for the partially normalised image reconstruction of the �rst
real hologram of the cross source

The second hologram of this source has a larger zone plate to detector distance �see

Table ����� This means that the �eld of view of the camera through the zone plate is

smaller for any given distance� This is why the cross appears to be larger in the image

planes� Figure ���
 shows the image in the object plane and Figures ���� and ���
 show

the image in all �ve planes� Table ���	 gives the corresponding error metric values�

The convolution based CLEAN method again only reconstructed the image in the

correct plane whereas the deconvolution based CLEAN method gave a few stray points

in other planes� For this hologram� both CLEAN methods gave almost equally low error

values which were better than either the straight convolution or deconvolution�

First zone radius �r�� ����e���m Source � zone plate distance �z� ����m
Detector pixel size �%� ���
	e���m Zone plate � detector distance �b� ����m

Number of pixels �nx � ny� 
�� � 
�� Number of zones �n �
q

R

r�
� ��

Table ����� Parameters for the second hologram of the cross source

�a� convolution
� real part �
��
���e����pixel
value�������e���

�b� K�
Wiener �lter
�������e����pixel
value �
�����e���

�c� CLEAN
algorithm
�convolution��pixel
value
�����
�
e���

�d� CLEAN
algorithm
�deconvolution��pixel
value
��
�����e���

Figure ���
� Partially normalised reconstruction for the second real hologram of the cross
source in the object plane� white � minimum� black � maximum pixel value

��
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�a� convolution � real part

�b� K� Wiener �lter

Figure ����� Reconstruction by convolution and K� Wiener �lter for the second real
hologram of the cross source in all �ve planes
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�a� algorithm based on convolution

�b� algorithm based on deconvolution

Figure ���
� Reconstruction using the CLEAN algorithm for the second real hologram of
the cross source in all �ve planes
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convolution deconvolution CLEAN �convolution� CLEAN �deconvolution�
FEM ����

e��� ����
�e��� ������e��� �����
e���
NMSE ���	��e��	 
��	��e��� ��
�

e��� 	�
���e���

Table ���	� Error metrics for the partially normalised image reconstruction of the second
real hologram of the cross source

���� Three�Dimensional Heart Phantom

Figure ���� shows a diagram of the heart phantom� This� again� is taken from Perks�

thesis� The phantom is a cylinder which is joined at one end� Its walls are hollow and

were �lled with Technicium ��m via a hole in the joined end which was then plugged�

60mm

8mm

42mm

3.5mm

Perspex inner

  and walls

Screw for

filling 

Water and 

  Tc 99m

Figure ����� Heart phantom �taken from Perks� thesis�

Holograms of this phantom were recorded from two directions� an end view and a side

view� The parameters are given in Table ���
�

First zone radius �r�� ����e���m Source � zone plate distance �z� ���
m�����m
Detector pixel size �%� ���
	e���m Zone plate � detector distance �b� ����m

Number of pixels �nx � ny� 
�� � 
�� Number of zones �n �
q

R

r�
� ��

Table ���
� Parameters for the holograms of the heart phantom �both end and side views�

Figures ���� and ����� show the reconstructed images from the end view hologram in

planes at ����m ����m ����m ����m and ���	m� Both CLEAN reconstructions gave points

in the planes at ����m and ����m but only the occasional point in the other planes� As

the phantom was present in these planes� this is good� but it should have also appeared in

the plane at ����m� As usual� the straight convolution and deconvolution methods gave

���
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an image in all the planes� Lines have been drawn on the reconstructed images to indicate

where the heart phantom should be� The error metric values are given in Table ����� As

with the �rst hologram of the cross source� deconvolution gave the best FEM value but

the CLEAN algorithms gave the best NMSE values�
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�a� convolution � real part

�b� K� Wiener �lter

Figure ����� Reconstruction by convolution and K� Wiener �lter of the end view of the
heart phantom
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�a� algorithm based on convolution

�b� algorithm based on deconvolution

Figure ������ Reconstruction using the CLEAN algorithm of the end view of the heart
phantom
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convolution deconvolution CLEAN �convolution� CLEAN �deconvolution�
FEM ���
��e��� ������e��� ����
�e��� ���	��e���
NMSE ������e��� �����	e��
 
�	���e��� 	����	e���

Table ����� Error metrics for the partially normalised image reconstruction of the end
view of the heart phantom

Figures ����� and ����� show the reconstructed images from the side view hologram

in planes at ���
m ����m ����m and ����m� Again� lines have been drawn on the recon�

structed image to indicate where the heart phantom should be� Both CLEAN algorithms

give the image in just the plane at ���
m but this is not where the heart phantom is� The

FEM values are worse for the CLEAN algorithms than for the straight deconvolution but

the NMSE values are� surprisingly� better�
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�a� convolution � real part

�b� K� Wiener �lter

Figure ������ Reconstruction by convolution and K� Wiener �lter of the side view of the
heart phantom
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�a� algorithm based on convolution

�b� algorithm based on deconvolution

Figure ������ Reconstruction using the CLEAN algorithm of the side view of the heart
phantom
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convolution deconvolution CLEAN �convolution� CLEAN �deconvolution�
FEM �����
e��� ���

�e��� ����	�e��� ����
�e���
NMSE ��
���e��� ���	��e��� ��


�e��� ��
�	�e���

Table ���
� Error metrics for the partially normalised image reconstruction of the side
view of the heart phantom

���� Summary

The K� Wiener �lter �deconvolution� method and the CLEAN reconstruction method

have been shown to work better for real holograms than convolution which is the method

which has been used previously� The methods� however� work much better for a simple

two�dimensional cross than for a three�dimensional heart phantom�

The CLEAN algorithm may be improved by improving the model for hologram forma�

tion� This theoretical work should be combined with experimental work to ensure that the

normalisation is correct� A point source should be reconstructed with the same amplitude

no matter where it is placed in the �eld of view of the detector� The CLEAN algorithm

relies upon being able to accurately predict the hologram which would be recorded from

a point source in any position� This predicted hologram is subtracted from the actual

hologram when the corresponding point is added to the image� E�ects such as vignetting

due to the �nite thickness of the zone plate �i�e� it is not in�nitely thin� could prove to

be important� If holograms of point sources in all possible positions can be accurately

predicted� the CLEAN algorithm may work better for real three�dimensional sources�

��




Chapter ��

DISCUSSION� CONCLUSIONS
AND FURTHER WORK

���� Discussion of Results

Holography is a technique where information from a three�dimensional object is recorded

using a two�dimensional detector� A three�dimensional image can then be reconstructed

from this information� The history behind this technique has been summarised in this

report� The history of zone plate holography has been discussed in more detail�

Zone plate holography was compared and contrasted with Gabor in�line holography�

Expressions for the hologram formation were found for each technique� It was shown that�

if a pure Gabor zone plate were used� the resulting hologram would contain similar terms

to a Gabor in�line hologram of an equivalent coherent light source� Gabor in�line holo�

grams were shown to contain extra self�interference terms� If images were reconstructed

optically from both types of hologram� these di�erences would result in di�erences in the

images�

Other sources of error in a gamma ray zone plate hologram were discussed� These

include errors due to the limited resolution of the gamma camera� statistical �uctuations

in the activity of the gamma ray source� �oating point arithmetic and under sampling�

Methods for the assessment of reconstructed image quality were listed�

Image reconstruction methods based on convolution were outlined� These techniques

included simulated di�raction and convolution with a matched �lter� A combination

of these two methods� convolution with a truncated Fresnel function� was introduced�

This technique was based on simulated di�raction and� hence� the Fresnel function was

complex� The reconstructed images� therefore� had both real and imaginary parts� The

sum of the squares of these two parts gave the intensity of the image� The matched �lter

���
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methods produced images with just a real part as both the �lter and the hologram only

had real parts�

Holograms of point sources were compared using the image assessment methods men�

tioned before� Modi�ed mismatch was found to be the best matched �lter method and

convolution with a truncated Fresnel function the best overall method for computer gener�

ated holograms of point sources� Convolution with a truncated Fresnel function produced

good results when either the real part or the intensity was used� It was decided to use

this method as the convolution reconstruction method for the rest of the work presented

here� One�dimensional Gaussian curves were �tted to the image which was reconstructed

from the hologram of a point source with the parameters given in Table ���� The standard

deviation� �� of the Gaussian was ����mm for the real part and ����mm for the intensity

in the x and y directions� In the z direction� � was ���
mm for the real part and �	��mm

for the intensity�

Methods of reconstruction based on deconvolution using Wiener �lters were then in�

vestigated� These techniques attempted to reverse the hologram formation process to

recover the source object� A Wiener �lter was needed to reduce the e�ect of errors in

the hologram� Two di�erent approximate Wiener �lters were given� These were called

K� and K� Wiener �lters� These �lters were based on the binary zone plate pattern�

The image quality was shown to decrease dramatically if the zone plate was misaligned�

Deconvolution with a pure Gabor zone plate pattern was introduced as a way to check if

the zone plate was aligned correctly� Deconvolution using the binary zone plate pattern

with a K� Wiener �lter was found to be the most promising method� It was decided

to use this method as the deconvolution reconstruction method for the rest of the work

presented here� One�dimensional Gaussian curves were �tted to the image which was re�

constructed from the hologram of a point source with the parameters given in Table ����

The standard deviation� �� of the Gaussian was ����mm in the x and y directions and

��mm in the z direction�

The third reconstruction method which was used was the CLEAN algorithm which

was an iterative technique and could be based on convolution or deconvolution� The

same computer generated holograms were used as for the convolution and deconvolution

methods� Even when planes were placed ����mm either side of the image plane� the

���



Discussion
 Conclusions and Further Work

image was still reconstructed in a single pixel in the correct place in the correct plane

with both versions of the method� For point sources� therefore� this technique seemed

very good although it took many times longer to perform the reconstruction than for

straightforward convolution or deconvolution�

All three techniques were tested further using theoretical holograms of extended ob�

jects� The real part of the convolution reconstruction proved to be of superior quality to

the intensity so only the real part was then used� In general� deconvolution gave a better

reconstruction to convolution� The CLEAN algorithm gave better results than either of

the other two techniques for holograms of simple objects but did not work so well for

larger or more complicated objects� Although a gamma camera can produce images in

�mm��mm pixels� the intrinsic spatial resolution of the camera is approximately 
mm�

This limited resolution of the gamma camera was found to degrade the image more than

statistical �uctuations of the activity of the source or counts due to background radiation�

When images were reconstructed from real gamma ray zone plate holograms� a similar

e�ect was seen to that for the theoretical holograms� Images of the simple two�dimensional

cross source were reconstructed well but images of the extended three�dimensional heart

phantom were not�

Other reconstruction techniques were investigated but these proved to be imprac�

tical for reconstructing real zone plate holograms� These techniques are discussed in

appendix F�

���� Conclusions

Di�erent forms of reconstruction by convolution and deconvolution have been given� The

method of convolution to be used was chosen as convolution with a truncated Fresnel

function� The method of deconvolution was chosen as K� Wiener �ltering with the

binary zone plate pattern�

Reconstruction by convolution� deconvolution and using the CLEAN algorithm give

images of varying quality� Partial normalisation gave better results than full normalisa�

tion� If the images are fully normalised� they are normalised in each �x� y� plane as well

as in the z direction� Partial normalisation just normalises the images in the z direc�

tion� Partial normalisation was therefore the method which was used� Reconstruction by

���
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deconvolution takes longer than that by convolution as the optimum Wiener �lter value

needs to �rst be found� The CLEAN algorithm takes many times longer than either of

the other two methods�

Deconvolution gives a better reconstruction� that is a lower Fienup error metric �FEM�

value� for the majority of the theoretical holograms and for all the real holograms which

were investigated� The CLEAN algorithms gave lower FEM error metric values for some

holograms but not others� Theoretical and real holograms of two�dimensional cross sources

were reconstructed mainly in the image plane by the CLEAN algorithm and not in planes

placed �cm either side� The more complicated and the larger the object was� the more

likely the CLEAN algorithm was to reconstruct the image in the wrong plane� This was

not totally unexpected as this technique is known to work well for point objects but not

for extended objects unless a priori knowledge about the source in incorporated into the

algorithm �����

When some of the possible errors in gamma ray zone plate holograms were simulated�

errors due to the limited resolution of the gamma camera were found to have the largest

e�ect on the reconstructed image� This e�ect can be lessened by using a binary zone plate

pattern which has been blurred by the same point spread function for the deconvolution

reconstruction� For the simple theoretical holograms which were investigated� the resolu�

tion of the gamma camera did not appear to have as much of a detrimental e�ect on the

image as increasing the size of the object in the �eld of view of the camera or complexity

�thickness� of the object in pixels� Further investigations would� however� be needed to

prove this�

Images reconstructed using the CLEAN algorithm improve if the images are incre�

mented by a smaller amount �%� by each iteration� The algorithm has to run overnight

with a large value of % to obtain images of cross sources� It took several days to obtain

the images of the star object in Chapter �� This number of results that could be generated

has been limited by this�

In summary� the achievements of this project have been as follows�

The formation of zone plate holograms has been studied in depth and compared to

an example of conventional holography� The similarities and di�erences have been high�

lighted� Other sources of error in gamma ray holography have been listed and methods

���



Discussion
 Conclusions and Further Work

for image quality assessment have been discussed�

Three reconstruction methods have been described� Images produced using these

methods have been compared using the quality assessment methods� The errors in gamma

ray holography have been simulated and their relative e�ects measured�

The existing convolution reconstruction method has been improved by introducing

normalisation� Modi�ed mismatch has been shown to give a better point spread function

for the matched �lter method�

Reconstruction by deconvolution using Fourier transforms has been shown to be ef�

fective for real holograms� A method for �nding the optimum �lter value automatically

has been introduced�

The CLEAN algorithm has been used to reconstruct images in three dimensions� A

version of this algorithm based on deconvolution rather than convolution has also been

used�

���� Suggestions for Further Work

This work has focussed on the development of new image reconstruction techniques� For

most of the time during which this work was being done� very few gamma ray zone plate

holograms were available� The holograms recorded by Rew �
�� were of poorer quality

than the ones previously recorded by Perks ��
� which have been used here� This work

has therefore concentrated on reconstructing computer generated holograms� This has

shown that many of the artifacts in the images are due to the reconstruction methods

themselves rather than errors in the experimental holograms�

Takhar ��	� and George are now recording holograms of comparable quality to those

recorded by Perks� The techniques which have been developed here need to now be tested

and improved using real holograms� The normalisation needs to be checked� Holograms

of point gamma ray sources should be recorded� These sources should have a long half

life so that the activity does not decrease appreciably over the period during which the

measurements are taken� The amplitude of the reconstructed point should be the same

no matter where the source is placed�

The versions of the CLEAN algorithm used in this work were based upon convolution

with a truncated Fresnel function and K� deconvolution with the binary zone plate pat�

��	
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tern� The algorithm may work better when it is based upon a di�erent convolution or

deconvolution technique�

If the convolution or deconvolution could be speeded up� lower values of % could be

used for the CLEAN algorithm� In Chapter 	� a method for calculating the discrete Fourier

transform of a Fresnel function was derived� This Fourier transform could be calculated

directly instead of being performed by a NAG routine to speed it up� Alternatively�

the possibility of performing Fourier transforms electronically instead of computationally

could be investigated as a way to speed the process up�

The optimum Wiener �lter was found automatically using the method given in Sec�

tion ������ Work could be done to discover if the optimum values were� in fact� found or

if another value would have produced better results� If the values were not the optimum

ones� the technique for �nding the value could� perhaps� be improved�

Holograms of simple objects could be recorded where the exact position and size of

the object are known� This was not known exactly for Perks� holograms� The expected

hologram could then be calculated for an equivalent theoretical source object� This could

then be compared with the actual hologram using error metrics� Errors� for example the

limited resolution of the gamma camera� could then be added to the calculated hologram

to make it more like the actual hologram� When all the major e�ects had been accounted

for� the two holograms would be very similar� Once all the properties and amplitudes

of the errors were known� methods could be developed for removing the e�ects of these

errors from the reconstructed image�

In Chapter �� formulae were derived for the optically reconstructed image from an

ideal pure Gabor zone plate hologram of a point source� The same could be done for a

hologram which contained errors taken from a certain statistical distribution� The e�ect

of� say� detection noise would then be better understood�

Random noise may be removed from a real hologram by recording two holograms of

the same source� one after the other� If the �rst hologram is correlated with the second�

only the parts of the signal which are the same in both holograms will remain� This means

that any random noise will be minimised as the correlation between the two sets of noise

will be small �if not zero��

To summarise� this work has introduced some new reconstruction techniques and has

�	�
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tried to investigate their e�ectiveness using computer generated holograms� These tech�

niques need to now be tested on real data� The results obtained from real holograms can

then be used to further improve these methods by improving the model of hologram for�

mation� Once the model of hologram formation has been improved� the CLEAN algorithm

may work better for real three�dimensional sources�
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COHERENT AND INCOHERENT
LIGHT

This explanation is based on lecture notes from a short course on imaging and digital

processing which was given in September ���� at De Montfort University �	���

Consider an object which is illuminated by perfectly spatially coherent light � in the

form of a plane or spherical wave� If uin�x� y� represents the complex amplitude of the

wave emerging from the object and uout�x� y� is the complex amplitude of the wave in the

image plane� the two are related by

uout�x� y� �

Z �

��

Z �

��
uin�x

�� y��p�x� y,x�� y��dx�dy� �A���

where p�x� y,x�� y�� represents the complex amplitude at �x� y� in the output due to a unit

strength point at �x�� y�� in the input�

If the optical system is isoplantic� i�e� a simple shift in the object results in a simple

shift in the image �scaled by the magni�cation of the optical system�� this reduces to

uout�x� y� �

Z �

��

Z �

��
uin�x

�� y��p�x� x�� y � y��dx�dy� �A���

If we consider the case of narrowband light� its complex amplitude varies with time�

Equation A�� then becomes

uout�x� y� t� �

Z �

��

Z �

��
uin�x

�� y�� t�p�x� y,x�� y��dx�dy� �A���

The instantaneous intensity is de�ned as

I�x� y� t� � ju�x� y� t�j� �A�	�

whereas the time averaged intensity� -I�x� y�� which would be recorded by an optical de�

tector is equal to

-I�x� y� � lim
T��

�

�T

Z T

�T
I�x� y� t�dt� lim

T��

�

�T

Z T

�T
ju�x� y� t�j�dt �A�
�
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The intensity of the image is given by

-Iout�x� y� � lim
T��

�

�T

Z T

�T
juout�x� y� t�j�dt

�

Z �

��

Z �

��
p�x� y,x�� y��p��x� y,x�� y��

�
�
lim
T��

�

�T

Z T

�T
uin�x

�� y�� t�u�in�x
��� y��� t�

�
dt �A���

The term in � � is called the mutual intensity of the narrowband light� J�x�� y�� x��� y���

Incoherent light is de�ned to be such that

J�x�� y�� x��� y��� � -I�x�� y����x� � x��� y� � y��� �A�
�

That is� two neighbouring points at �x�� y�� and �x��� y��� have uncorrelated �elds for any

�x�� y�� �� �x��� y���� Equation A�� then becomes

-Iout�x� y� �

Z �

��

Z �

��
jp�x� y,x�� y��j�-Iin�x�� y��dx�dy� �A���

The quantity jp�x� y,x�� y��j� is the intensity point spread function�

For perfectly incoherent illumination� an optical system is linear in intensity and� if

isoplanicity holds� the output �image� intensity is equal to the input �object� intensity

convolved with the intensity point spread function� This simpli�cation cannot be made

for coherent light and the mutual intensity term is still important�
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ELECTROMAGNETIC WAVES

Maxwell�s equations can be simpli�ed for an in�nite vacuum �containing no charges or

currents� to the following ����

r�EEE � ��	�HHH
�t

Faraday�s induction law �B���

r�HHH � �	
�EEE

�t
Amp.ere�s circuital law �B���

r �EEE � � Gauss�s law � electric �B���

r �HHH � � Gauss�s law � magnetic �B�	�

where � denotes a cross product� � a dot product� EEE is the electric �eld�HHH is the magnetic

�eld� �	 is the permeability of free space and �	 is the permittivity of free space� These

equations can be re�arranged to give the following vector wave equations for EEE and HHH

r�EEE � �

c�
��EEE

�t�
� � r�HHH � �

c�
��HHH

�t�
� � �B�
�

where c is the speed of light and

c �
�p
�	�	

�B���

These equations are valid for each rectangular component of EEE � Ex/x � Ey/y � Ez/z and

HHH � Hx/x�Hy /y �Hz/z� Therefore� the scalar wave equation

r�V � �

c�
��V

�t�
� � �B�
�

is valid for V � Ex� Ey� Ez�Hx�Hy or Hz �

For a plane wave travelling in the /z direction� appropriate solutions to the vector wave

equations are

EEE � E	E	E	e
i��t�kz
 HHH �H	H	H	e

i��t�kz
 where



k
�

�p
�	�	

� c �B���

�	
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and E	E	E	 � E	x/x � E	y/y � E	z/z and H	H	H	 � H	x/x � H	y/y � H	z/z� These solutions must

also satisfy equations B�� and B�	� Substituting equation B�� into these equations gives

E	z � � and H	z � � and

EEE � E	xe
i��t�kz
/x� E	ye

i��t�kz
/y HHH � H	xe
i��t�kz
/x�H	ye

i��t�kz
/y
�B���

substituting this into equation B�� gives

H	x � �
r

�	
�	
E	y and H	y �

r
�	
�	
E	x �B����

The time averaged Poynting vector � SSS � gives the time averaged power �ow due to the

wave per unit area and also gives the direction of this �ow ����� In this case� it can be

shown that

� SSS �� EEE �HHH� �

r
�	
�	

�
E�
	x � E�

	y

�
/z �

r
�	
�	

�
H�
	x �H�

	y

�
/z �B����

In his book entitled �Optics ����� Welford states that

It is found that all kinds of waves have to be characterised by two di�erent

quantities� These are of widely di�ering physical natures� depending upon the

kind of wave� but in all cases there is an amplitude� which varies in time and

space and gives interference e�ects� and an intensity� which represents the rate

of energy transport� With suitable interpretations the complex amplitude and

its squared modulus� the intensity� can be used in all cases� All interference

experiments and many di�raction experiments can be described in these terms�

Intensity of waves �radiation� is de�ned as the rate of transfer of energy across unit areas

by the radiation ����� This is given by the magnitude of the time averaged Poynting

vector� Intensity� I� is therefore given by

I �

r
�	
�	

�
E�
	x � E�

	y

�
�

r
�	
�	

�
H�
	x �H�

	y

�
�

r
�	
�	
jEEEj� �

r
�	
�	
jHHHj�

�B����

The wave amplitude� 	� is given by

	 �
p
I �

�
�	
�	

��
�

jEEEj �
�
�	
�	

� �
�

jHHHj �B����
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Appendix C

PHOTOGRAPHIC FILM

The intensity transmittance of a developed photographic �lm� T � depends upon the inten�

sity of light the �lm was exposed to� An illustration of the characteristic Hurter�Dri�eld

curve relating intensity transmittance to exposure is shown in �gure C�� �����

ln I

ln T

ln Tmin

gradient of line = −γ0

Figure C��� Characteristic Hurter�Dri�eld curve� plotted using coordinates convenient in
holography� I � exposure �energy incident per unit area�� T � intensity transmittance

When the transmittance has its maximum value �� ��� i�e� the photographic �lm is

transparent� ln�Tmax� � �� The curve is not linear for low exposures� At high exposures�

the curve is also not linear as the �lm reaches a maximum optical density which corre�

sponds to a minimum transmittance Tmin� The linear part of the curve can be described

by the following relationship�

T � I�� �C���

It is convenient if the transmittance of a hologram recorded of photographic �lm increases

as the exposure increases and therefore � must be negative� This is achieved by taking a

positive print of the negative hologram� If � � �� this simpli�es matters considerably as

T � I� and t�x� y� �
p
T �x� y� � I�x� y� �C���

where t�x� y� is the amplitude transmittance of the hologram�
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DERIVATION OF THE OPTIMAL

WIENER� FILTER FOR
DECONVOLUTION

This derivation is taken from Numerical Recipes by Press et� al� ����� Equation ��� gave

the equation for hologram formation as

Ui�j� �

Np��X
k�	

CkUk
i�j� �

Np��X
k�	

Ck

N
� ��X

i�j��N
�

Sk
ijT

k
�i��i
�j��j
 �D���

The contribution of objects in a single plane a distance p from the zone plate� Up� to the

hologram is given by the convolution of Sp with T p multiplied by a constant� Cp�

Up � Cp �Sp � T p� �D���

Taking Fourier transforms of both sides and rearranging gives

SpF �
�

Cp

UpF

T pF
�D���

The imaging process is� however� not perfect for the reasons outlined in chapter 	� Instead

of Up� a �noisy� version (Up is recorded which includes the error term Ep� For simplicity�Ep

will be considered to be an additive error�

(Up � Up � Ep � Cp �Sp � T p� � Ep �D�	�

The convolution theorem gives the following relationship between the Fourier transforms

of Up� Sp and T p�

(Up
F
� CpSpFT pF � EpF �D�
�

Where AF is the Fourier transform of variable A� The aim is to �nd an optimal �lter *p

that will give a reconstructed image� (Sp� as close to Sp as possible�

(Sp
F
�

�

Ck

(Up
F
*p

T pF
�D���
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Derivation of the Optimal �Wiener� Filter for Deconvolution

*p must minimise the sum of squared di�erences between (Sp and Sp� From Parseval�s

theorem�

X
k

��� (Sp � Sp

���� �X
k

��� (Sp
F � SpF

���� �D�
�

this gives

X
k

��� (Sp � Sp

���� �X
k

�

Ck

�����
�
UpF � EpF

�
*p

T pF
� UpF

T pF

�����
�

�D���

The Wiener �lter assumes that the signal and noise are uncorrelated� In this case� ex�

panding the above formula gives

X
k

�

Cp

��T pF
���� n��UpF

��� j�� *pj� � ��EpF
��� j*pj�

o
�D���

Di�erentiating with respect to *p and setting the result equal to zero gives

*p �

��UpF
�����UpF

��� � ��EpF
��� �D����
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Appendix E

OTHER RECONSTRUCTION
METHODS

E�� Matrix Wiener Filtering

This method was described in chapter 
� The standard �matrix� Wiener �lter was given

by equation 
��
 as

Wiener �lter �*p� �
�
�Hp��T �Hp� � ��Sp�

����Ep�
���

�Hp��T �Hp� �E���

�Hp� is the hologram formation matrix and ��Sp� and ��Ep� are the signal and noise co�

variance matrices� The parametric Wiener �lter was given by equation 
��� as

parametric Wiener �lter �*p� �
�
�Hp��T �Hp� � ���Sp�

����Ep�
���

�Hp��T �Hp�
�E���

Poisson noise was added to simulated holograms so that the matrix Wiener �lter could

be tested for holograms with known amounts of noise� For a Poisson distribution� the

probability of obtaining r events if the mean expected number is �� is given by

P �r� �� �
�re��

r'
�E���

Using a NAG routine to generate random numbers in a Poisson distribution� each pixel

value gij in the hologram was replaced by a random number from a Poisson distribution

with � � gij �

Figures E�� and E�� show the reconstruction by parametric Wiener �ltering with

di�erent values of � for two holograms of the same object� The hologram in �gure E��

has ����� pixels and the hologram in �gure E�� ������ Before the Poisson noise was

added� each hologram was scaled so all the values lay between ��� and ���e��	� When

� ����� equation 
��� becomes a matrix inversion� It can be seen from �gure E�� that

matrix Wiener �ltering provides an improvement over matrix inversion�

�		



GLOSSARY

D length of one size of the detector� 	�

E�
x� 
y� di�erence between Fourier transform of f�x� y� and Fourier transform of v�x� y��


�

K� constant used in �rst approximate Wiener �lter� ��


K� constant used in second approximate Wiener �lter� ���

L factor source distribution is magni�ed by� 	�

L�xxx� a linear �lter� ��

M factor zone plate shadow is magni�ed by� 	�

S����� intensity of incoherent gamma ray source� 	�

T �r� Intensity transmittance function of the zone plate� �


T F �


� Fourier transform of t�xxx�� ��

U�xxx� intensity of shadow cast by an incoherent gamma ray source� 	�

Uij hologram pixel values� ��

V p
ij reconstructed image values at a distance p in front of the zone plate� ��

ZF �


� Fourier transform of the Fresnel function� ��

# constant relating the amplitude transmittance of photographic �lm to the total intensity

it was exposed to� 	


�ffg imaginary part of a function f � 	�

"	 maximum spatial frequency in the object� ��

���



Glossary

!�x� y� z� t� amplitude of an electromagnetic wave� ��

	ffg real part of a function f � 	�

$ constant relating the amplitude transmittance of photographic �lm to the total inten�

sity recorded by the gamma camera� 	�

� size of the �nest detail in the object� ��

� �D convolution operation� ��

	�x� y� z� spatial variation of the amplitude of an electromagnetic wave� ��

a size of the object� ��

a�x� y� circular aperture function� 
�

f�x� y� part of v�x� y� recorded by the detector� 
�

h�x� y� perfect recorded signal� �


l radius of the central Fresnel zone� ��

p source to object�zone plate distance� �


q object�zone plate to detector distance� �


s����� source amplitude distribution function� �


t����� amplitude transmittance function of the transparency� �


u�xxx� amplitude of the waves incident on the detector� �


v�x� y� signal from Gabor zone plate hologram of an on�axis point source� 
�

z�xxx� Fresnel function� ��

�D DFT discrete two�dimensional Fourier transform� ��

�D FFT two�dimensional fast Fourier transform� �	

�D FT continuous two�dimensional Fourier transform� ��

���



Glossary

BGZP binary Gabor zone plate� ��

BNCT Boron Neutron Capture Therapy� ��

CT Computed Tomography� ��

ESF edge spread function� ��

FEM Fienup error metric� �	

GZP pure Gabor zone plate� ��

LSF line spread function� ��

MSE mean squared error� ��

MTF modulation transfer function� ��

NMSE normalised mean squared error� �	

OTF optical transfer function� ��

PET Positron Emission Tomography� ��

PM tube photomultiplier tube� ��

PSF point spread function� ��

SNR signal to noise ratio� ��

SPET Single Photon Emission Tomography� ��

W Wiener spectrum� ��

X
�

x� 
y�

��
a
� ��
b

�
�D FT of x�x� y� a� b�� ��

x�x� y� a� b� sampling function� �


���



Appendix F – this conference paper has been removed from the electronic version of this thesis due to 
copyright restrictions. 



REFERENCES

��� H� C� Andrews and B� R� Hunt� Digital Image Restoration� Prentice�Hall� Inc�� ��

�

��� E� Bacary� LastWave signal and image processing environment� Freeware�

http���wave�cmap�polytechnique�fr�soft�LastWave� �����

��� H� H� Barret� Fresnel zone plate imaging in nuclear medicine� Journal of Nuclear

Medicine� ������0��
� ��
��

�	� S� A� Benton� Hologram reconstructions with extended incoherent sources� Journal

of the Optical Society of America� 
���
	
0�
	�� �����

�
� G� Beylkin� Wavelets� multiresolution analysis and fast numerical algorithms� A

draft of INRIA lectures� �����

��� T� D� Beynon� Neutron holography� Physics Bulletin� The Institute of Physics�

�
����0���� �����

�
� T� D� Beynon� V� S� Crocker� and H� U� Mast� Zone plate encoded neutron hologra�

phy� Neutron Radiography� pages �	
0�
�� �����

��� T� D� Beynon� M� R� Hawkesworth� T� R� Mathews� and M� A� Odwyer� Positron

emission holography � a new method of creating positron camera images� Nuclear

Instruments and Methods in Physics Research Section A � Accelerators� Spectrometers

and Associated Equipment� �
���0������0���� �����

��� T� D� Beynon� I� Kirk� and T� R� Mathews� Gabor zone plate with binary transmit�

tance values� Optics Letters� �
�
��
		0
	�� �����

���� T� D� Beynon and A� G� Pink� Neutron holography using fresnel zone plate encoding�

Nature� ����
	�0

�� �����

���



References

���� T� D� Beynon and R� M� R� Strange� Computational study of di�raction patterns for

near��eld fresnel and gabor zone plates� Journal of the Optical Society of America

A� �
�������0���� �����

���� Y� J� Bo Peng and X� Zhang� Noise suppression with wavelets in image reconstruction

for aperture synthesis� In Astronomical Data Analysis Software and Systems V�

volume ��� of ASF Conference Series� pages ���0���� �����

���� H� Boersch� Zur Bilderzeugung im Mikroskop� Zeitschrift f�ur Technische Physik� ���

�����

��	� M� Born and E� Wolf� Principles of Optics� Permagon Press� � �corrected� edition�

�����

��
� J� F� Briesmeister� editor� MCNP � A General Monto Carlo N � Particle Transport

Code� Version �B� Los Alamos National Laboratory� USA� ���
�

���� S� T� Caplan� Optimisation of Binary Gabor Zone Plate Encoded Holography Tech�

niques with Visible Wavelengths� PhD thesis� School of Physics and Astronomy� The

University of Birmingham� December ���
�

��
� V� Carus� Correspondance using email� February �����

���� H� J� Caul�eld� editor� Handbook of Optical Holography� Academic Press� ��
��

���� N� M� Ceglio� Zone plate coded imaging on a microscopic scale� Journal of Applied

Physics� 	��	���
��0�
�
� ��

�

���� N� M� Ceglio� D� T� Attwood� and E� V� George� Zone plate encoded imaging of

laser�produced plasmas� Journal of Applied Physics� 	��	���
��0�
��� ��

�

���� H� Cember� Introduction to Health Physics� McGraw�Hill� �����

���� T� J� Cornwell� A method of stabilising the CLEAN algorithm� Astronomy and

Astrophysics� �������0��
� �����

���� Yu� N� Denisyuk� Photographic reconstruction of the optical properties of an object

in its own scattered radiation �eld� Soviet Physics Doklady� 
�
	�� �����

��




References

��	� E� R� Dougherty� Probability and Statistics for the engineering� computing and phys�

ical sciences� Prentice Hall� �����

��
� M� B� Emmett� The MORSE monte carlo radiation transport code system� Oak

Ridge National Laboratory� ORNL�	�
�� ��

�

���� E� E� Fenimore and T� M� Cannon� Coded aperture imaging with uniformly redun�

dant arrays� Applied Optics� �
���� ��
��

��
� J� R� Fienup� Invariant error metrics for image reconstruction� Applied Optics�

���������
�0��

� ���
�

���� J� S� Fleming and B� A� Goddard� An evaluation of techniques for stationary coded

aperture three dimensional imaging in nuclear medicine� Nuclear Instruments and

Methods in Physics Research� �����	�0�	�� ���	�

���� D� L� Fried� Analysis of the CLEAN algorithm and implications for superresolu�

tion� Journal of the Optical Society of America A�Optics Image Science and Vision�

���
���
�0���� ���
�

���� D� Gabor� A new microscopic principle� Nature� ����


0

�� ��	��

���� D� Gabor� Microscopy by reconstructed wave�fronts� Proceedings of the Royal Society

of Biology� A��
�	
	0	�
� ��	��

���� D� Gabor� Holography of the �whole picture � New Scientist� ���	��
	0
�� �����

���� S� George� Developments in gamma ray holography for medical imaging� Course

	 project report� School of Physics and Astronomy� The University of Birmingham�

March �����

��	� P� Hariharan� Optical Holography � Principles� techniques and applications� Cam�

bridge University Press� � edition� �����

��
� E� Hecht� Schaum	s theory and problems of optics� McGraw�Hill� ��

�

���� E� Hecht� Optics� Addison�Wesley� � edition� �����

���



References

��
� C� W� Helstrom� Image restoration by the method of least squares� Journal of the

Optical Society of America� 

���
0���� ���
�

���� J� A� H+ogbom� Aperture synthesis with a non�regular distribution of interferometer

baselines� Astronomy and Astophysics Supplement Series� �
�	�
0	��� ��
	�

���� P� Horowitz and W� Hill� The Art of Electronics� Cambridge University Press� �����

�	�� Holophile Inc� History of holography� Web page�

http���www�holophile�com�history�htm� �����

�	�� Sun Microsystems Inc� What every computer scientist should know about 
oating�

point arithmetic� Sun Microsystems Inc�� ���	�

�	�� Institute of Mathematical and Simulation Sciences� De Montfort University� Intro�

duction to Fourier Optics and Optical Processing� �����

�	�� A� K� Jain� Fundamentals of Digital Image Processing� Prentice�Hall International�

Inc� University of California� Davis� �����

�		� Z� Jaroszewicz� A review of fresnel zone plate moir.e patterns obtained by translations�

Optical Engineering� ������ �����

�	
� A� R� Jones� The focal properties of phase zone plates� British Journal of Applied

Physics� ���
��0�
��� �����

�	�� I� Kirk� An Investigation into Aspects of the Behaviour of Overlapping Fresnel Zone

Plate Systems� A New Concept in Zone Plate Design� PhD thesis� Department of

Physics� University of Birmingham� April �����

�	
� J� Kirz� Phase zone plates for x�ays and the extreme ultra�violet� Journal of the

Optical Society of America� �	�������0���� ��
	�

�	�� G� F� Knoll� Radiation Detection and Measurement� John Wiley 1 Sons� Inc�� �����

�	�� M� K� Kuo� Binary Gabor Zone Plate Encoded Holography in the Near�Infrared

Region� PhD thesis� School of Physics and Astronomy� The University of Birmingham�

September ���
�

���



References

�
�� Argonne National Laboratory� Reactor Physics Constants� United States Atomic

Energy Commission� � edition� �����

�
�� National High Magnetic Field Laboratory� Molecular expressions microscopy primer�

Web page� http���www�micro�magnet�fsu�edu�primer�anatomy�sources�html� �����

�
�� E� N� Leith and J� Upatniecks� Reconstructed wavefronts and communication theory�

Journal of the Optical Society of America� 
������� �����

�
�� B� MacDonald� L� T� Chang� V� Perez�Mendez� and L� Shirashi� Gamma�ray imaging

using a fresnel zone plate aperture� multi�wire proportional chamber detector and

computer reconstruction� IEEE Transactions on Nuclear Science� NS0����
�0��	�

��
	�

�
	� S� Mallat� A Wavelet tour of Signal Processing� Academic Press� �����

�

� K� A� Marsh and J� M� Richardson� The objective function implicit in the CLEAN

algorithm� Astronomy and Astrophysics� �����
	0�
�� ���
�

�
�� A� G� Marshall and F� R� Verdun� Fourier Transforms in NMR� Optical and Mass

Spectrometry� Elsevier� �����

�

� H� U� Mast� Zone Plate Encoded Neutron Holography� PhD thesis� Department of

Physics� The University of Birmingham� November �����

�
�� T� R� Mathews� Studies in Fresnel Zone Plate Encoded Neutron Holography and Syn�

thesised Holographic Encoding� PhD thesis� Department of Physics� The University

of Birmingham� February �����

�
�� J� L� Matteson� D� E� Gruber� W� A� Heindl� M� A� Pelling� L� E� Peterson� R� E�

Rothschild� R� T� Skelton� P� L� Hink� K� R� Slavis� W� R� Binns� T� Tumer� and

G� Visser� Recent advances in czt strip detectors and coded mask imagers� Astronomy

and Astrophysics Supplement Series� ����


0

�� �����

���� L� Mertz and N� O� Young� Fresnel transformations of images� In Proceedings of

the International Conference on Optical Instruments� pages ��
0���� London� �����

Chapman and Hall�

���



References

���� P� D� Nellist and S� J� Pennycook� Accurate structure determination from image

reconstruction in ADF STEM� Journal of Microscopy� �����
�0�
�� �����

���� Numerical Algorithms Group Limited� Oxford� UK� The NAG Fortran Library Man�

ual� Mark ��� �����

���� Ohio�nuclear inc� Series �

 radioisotope camera manual�

��	� International Commission on Radiation Units and Measurements� Medical imaging

� the assessment of image quality� Technical Report 
	� ICRU� ���
�

��
� J� R� Perks� Gamma Ray Imaging using Binary Gabor Zone Plate Holography� PhD

thesis� School of Physics and Astronomy� The University of Birmingham� January

�����

���� A� G� Pink� Production of fresnel zone plate encoded neutron holograms and their

optical reconstruction� Master�s thesis� Department of Physics� The University of

Birmingham� October ��
��

��
� R� L� Powell and K� A� Stetson� Interferometric vibration analysis of three�

dimensional objects by wavefront reconstruction� Journal of the Optical Society of

America� 

����� ���
�

���� W� H� Press� S� A� Teukolsky� W� T� Vetterling� and B� P� Flannery� Numerical

Recipes in Fortran� Second Edition� Cambridge University Press� �����

���� Wolfram Research� Eric weisstein�s world of mathematics� Web page�

http���www�mathworld�wolfram�com� �����

�
�� G� A� A� Rew� Studies in Zone Plate Encoded Holography with High Energy Gamma

Rays� PhD thesis� School of Physics and Astronomy� The University of Birmingham�

December �����

�
�� G� L� Rogers� Gabor di�raction microscopy� the hologram as a generalised zone

plate� Nature� ����	��	����
� ��
��

���



References

�
�� W� L� Rogers� K� S� Han� L� W� Jones� and W� H� Beierwalter� Application of a

fresnel zone plate to gamma ray imaging� Journal of Nuclear Medicine� ������0��
�

��
��

�
�� J� W� Rohlf� Modern Physics from � to Z	� John Wiley and Sons� Inc� ���	�

�
	� G� Saxby� Practical Holography� Prentice Hall� � edition� ���	�

�

� P� F� Sharp� H� G� Gemmell� and F� W� Smith� editors� Practical Nuclear Medicine�

IRL Press� �����

�
�� Y� Shen� Binary gabor zone plate encoded holography in middle and far infrared

region� Paper for the Third International Conference on Optical Information Pro�

cessing� May �����

�

� Y� Shen� Investigation of Binary Gabor Zone Plate Encoded Holography Technique

with Infrared� PhD thesis� School of Physics and Astronomy� The University of

Birmingham� June �����

�
�� K� Sinclair� Conversation on telephone� January �����

�
�� R� C� Singleton� An algorithm for computing the mixed radix fast fourier transform�

IEEE Transactions on Audio and Electroacoustics� AU0�
������0���� �����

���� Waterloo Maple Software and the University of Waterloo� Maple V release �� ���	�

���� L� M� Soroko� Holography and Coherent Optics� Plenum Press� �����

���� D� H� Staelin� A� W� Morgenthaler� and J� A� Kong� Electromagnetic waves� Prentice�

Hall International� Inc�� ���	�

���� R� M� R� Strange� Studies in Zone Plate Encoded Holography and Antennas� PhD

thesis� School of Physics and Space Research� The University of Birmingham� �����

��	� P� S� Takhar� Development of gamma ray holography for imaging in nuclear medicine�

Mid�term report� School of Physics and Astronomy� The University of Birmingham�

January �����

��	



References

��
� J� Turunen� A� Vasara� H� Ichikawa� E� Noponen� J� Westerholm� M� R� Taghizadeh�

and J� M� Miller� Storage of multiple images in a thin synthetic fourier hologram�

Optics Communications� �	�
�������0���� �����

���� C� E� Unwin� G� A� A� Rew� J� R� Perks� T� D� Beynon� and M� C� Scott� Reconstruc�

tion of images from gabor zone plate gamma�ray holography� In �rd International

Conference on Optical Information Processing� volume ���� of Proc SPIE� pages

�	
0�
�� �����

��
� V� 2C�i2zek� Discrete Fourier Transforms and their Applications� Adam Hilger Ltd�

�����

���� M� Wax and T� Kailath� E�cient inversion of toeplitz�block toeplitz matrix� IEEE

Transactions on Acoustics� Speech and Signal Processing� ASSP����
������0�����

�����

���� R� C� Weast� editor� CRC Handbook of Chemistry and Physics� CRC Press� Inc��

���	�

���� D� R� Weaver� Dwpol polynomial �tting program� ���
�

���� W� T� Welford� Optics� Oxford University Press� � edition� �����

���� I� K� Woodgate� Zone Plate Encoded Holography in the Optical Region� PhD thesis�

School of Physics and Space Research� The University of Birmingham� June �����

���� H� D� Young and R� A� Freedman� University Physics� Addison�Wesley� � edition�

�����

���




