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Abstract

In this thesis, we take a fresh look at the error variance estimation in nonparametric regres-

sion models. The requirement for a suitable estimator of error variance in nonparametric

regression models is well known and hence several estimators are suggested in the litera-

ture. We review these estimators and classify them into two types. Of these two types,

one is difference-based estimators, whereas the other is obtained by smoothing the residual

squares. We propose a new class of estimators which, in contrast to the existing estimators,

is obtained by smoothing the product of residual and response variable. The properties of

the new estimator are then studied in the settings of homoscedastic (variance is a constant)

and heteroscedastic (variance is a function of x ) nonparametric regression models.

In the current thesis, definitions of the new error variance estimators are provided in these

two different settings. For these two proposed estimators, we carry out the mean square anal-

ysis and we then find their MSE-optimal bandwidth. We also study the asymptotic behaviour

of the proposed estimators and we show that the asymptotic distributions in both settings are

asymptotically normal distributions. We then conduct simulation studies to exhibit their fi-

nite sample performances.
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Chapter 1

Introduction

1.1 Introduction

Regression analysis is one of the most widely used methodological tools in applied statistics.

The main aim of regression analysis is to find a general relationship between a response

variable and one or more predictor variables. For example, in the regression analysis with

one predictor variable, the aim is to estimate the unknown mean of the response variable for

a given value of the independent variable. For given data (xi , Yi) i = 1, 2, ...n , which

represent n values observed on the response Y , corresponding to the n values of the

independent variable x , one can model the relation between x and Y as

Yi = m(xi) + εi, for i = 1, 2, · · · , n, (1.1)

where εis denote the errors, which are assumed to be independent and identically distributed

random variables while m(xi) represents the mean function, E[Yi|xi] .

The two most commonly used approaches to estimate the mean function in (1.1) are

parametric and nonparametric methods. In the parametric approach, a specific functional

form is assumed for the mean function. For instance, if we assume m(xi) to be a linear
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function, the model becomes

Yi = β0 + β1 xi + εi for i = 1, 2, · · · , n

where β0 and β1 are unknown parameters. The task here is to estimate these parameters.

Theory for this model and for linear parametric models in general is well developed, and

there are several text books one can refer to, such as Draper and Smith (1981) and Neter,

Kutner, Nachtsheim and Wasserman (1996). In general, when the functional form of the

relationship between the response and predictor variables complies with parametric assump-

tions, efficient inferential procedures are available. In addition, there are various software

packages that facilitate the use of these data analytical tools. However, the important draw-

back of the parametric regression model is that, when the assumption of the functional form

is not met, it can produce a high model bias for the mean function.

An alternative approach is to use nonparametric techniques to estimate the mean func-

tion. When functional form can not be assumed, this method can estimate the relationship

between the response variable and the predictor variables. This approach is used often, be-

cause nonparametric techniques allow a regression curve to be estimated without making

strong assumptions about the true shape of a regression function. In fact, the nonparametric

regression models can be used to explore the nature of the functional form that one can use

in parametric regression models. In other words, in nonparametric regression, we do not as-

sume a functional form for the shape of the regression function. In nonparametric regression,

although the first task is to estimate the mean function, estimation of error variance is also

equally crucial because of the central role it plays in confidence bands for the mean function

or tests of the hypothesis about the mean function. For the mean function estimation, several

researchers have described ways to estimate it in nonparametric models, e.g. Gasser and

Müller (1984), Müller (1987), Fan (1993) and Fan and Gijbels (1996). In this thesis, the
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focus will be on estimation of the error variance.

In this chapter, in section 1.2, we review the importance of the error variance estimation in

regression models and briefly discuss the error variance estimation in parametric regression

models. Since we will be addressing the issue of error variance estimation in two different

settings of nonparametric regression, we first describe the two regression models in section

1.3. In the first setting, we assume error variance to be a constant, while in the other, error

variance is assumed to vary with design points. For the former model, the literature review of

the error variance estimation is given in section 1.4; for the latter model the relevant literature

review is in section 1.5. It is observed that, in general, current procedures of error variance

or variance function estimation in either settings use either residual-based or difference-

based approach. In section 1.6, we propose a third approach to estimate the error variance,

which uses some of the advantages of both residual- and difference-based approaches. In

this section, we also point out the way in which the new estimator possesses the advantages

of residual- and difference-based estimators. Finally, an outline of thesis is given in section

1.7.

1.2 Error Variance Estimation

Error variance estimation is one of the most important issues in regression models. The es-

timation of the error variance is essential to assess the variability of the estimated mean of

Yi given xi . Therefore, the error variance plays an important role in regression analysis. For

example, in the model (1.1), it is essential to know σ2 to draw inferences about mean of

Yi and about regression coefficients; to assess the goodness of fit for the estimated mean

function; to obtain a 95 % confidence interval for m(xi); and to predict a new Y for a

given x . To sum up, almost in every inferential aspects, the knowledge of the error variance

is essential.
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In parametric regression models, the error variance can be a constant or a function of

the independent variables. When the error variance is constant, it can be estimated by the

ordinary least squared approach as follows. Suppose that

Y = X β + ε

where X is an (n × p) matrix of the independent variables, β is an (p × 1) vector of

the unknown parameters, which represent the regression coefficients, Y denotes an (n ×

1) vector of the observations of the response variable and ε represents an (n × 1) matrix

of random errors with zero mean and common variance σ2 . Then, the most commonly used

estimator of the error variance based on the sum of squares of the residuals is given by

σ̂2
1 =

Y T Y − B̂T XT Y

n− p
, (1.2)

where B̂ = (XTX)−1XTY . Note that if one denotes the fitted values by Ŷ = X B̂ , then

Y − Ŷ = e is a vector of residuals and σ̂2
1 = eT e

n−p .

In contrast, when the error variance is not a constant and varies with the levels of inde-

pendent variables, the weighted least squares approach can be applied. The procedure of

this approach is explained well in several text books such as Draper and Smith (1981). But

before using a regression model with non-constant variance, one may assess the constancy of

the variance using, for example, tests proposed by Levene (1960) or Breusch-Pagan (1979).

From the discussion related to the estimator σ̂2
1 in (1.2), it is clear that the basic idea in

devising an estimator for error variance is to obtain residuals and then construct an estimator

based on the sum of squares of the residuals. In nonparametric regression, a similar approach

can be followed but first one needs to estimate the mean function to obtain residuals. The
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error variance estimation in nonparametric regression models is discussed in the following

sections.

1.3 Error Variance Estimation in Nonparametric Regression Models

In nonparametric regression models, the error variance can be a constant or a function of

independent variables as in the case of parametric regression models. In the case of constant

error variance, all data points have the same error variance. We define the homoscedactic

nonparametric regression model as

Yi = m(xi) + εi, for i = 1, 2, · · · , n, (1.3)

where Yi denotes the response variable, εis represent the errors, which are independent

and identically distributed random variables with zero mean, E(εi) = 0, and constant error

variance σ2. In this model, m (xi) represents the mean function E[Yi|xi] and xi s denotes

the design points.

In contrast, when the variance of errors is a function of xis, the variance changes as the

xis change. In other words, as the data points change, so does the error variance. In this case,

we define the nonparametric regression model as

Yi = m(xi) +
√
v(xi) εi , for i = 1, 2, · · · , n, (1.4)

where Yi , xi and m (xi) are the same as in the previous model (1.3), εis are indepen-

dent random variables with zero mean and unit variance, while v(xi) denotes the variance

function. Note that the above model is known as a heteroscedastic nonparametric regression

model. In the next two sections, we review the literature on the error variance estimation in

these two models.
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1.4 Constant Error Variance Estimators in Nonparametric regression

Models

In the literature, there are several estimators for the variance in the homoscedastic nonpara-

metric regression model. In broad terms, these estimators can be classified into two classes:

difference-based and residual-based estimators. For residual-based estimators, as noted ear-

lier, one needs to estimate the mean function first. There are several approaches for esti-

mating the mean function non-parametrically. However, the attention will be restricted to

residual-based estimators, where mean function is estimated using either spline smoothing

or kernel smoothing. At the end of this section, a comparison between the mean squared

error of these estimators is drawn.

1.4.1 Residual-based Estimators Using Kernel Smoothing Method

As the name suggests, one is required to estimate the mean function first in order to obtain

the residuals, and the residuals are then used to estimate the error variance. Hall and Marron

(1990) have estimated the mean function by using a weighted average
n∑
j=1

wij Yj where

wijs are such that
n∑
j=1

wij = 1 for each i . Thus, the ith residual is

êi = Yi −
n∑
j=1

wij Yj for i = 1, 2, ...n.

Then, their proposed residual-based estimator for the constant error variance is

σ̂2
HM =

n∑
i=1

(
Yi −

n∑
j=1

wijYj

)2

(
n− 2

n∑
i=1

wii +
n∑
i=1

n∑
j=1

w2
ij

) . (1.5)
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Observe that it is very similar to the standard error variance estimator,
n∑
i=1

(Yi− Ŷi)
2

n−2 , in

the simple linear regression model with fitted value Ŷi =
n∑
j=1

wij Yj and divider n − 2

replaced by n− 2
n∑
i=1

wii +
n∑
i=1

n∑
j=1

w2
ij . The simplest form of wij is

wij =
K(

Xi−Xj

h
)

n∑
k=1

K(Xi−Xk

h
)
, for 1 ≤ i, j ≤ n,

where K is a kernel function and h is the parameter that controls the bandwidth of the

kernel. If K is a function such that K(u) > 0 ,
∫
K(u) du = 1 and

∫
u2K(u) du 6= 0 ,

K is a density function and is referred to as a second order kernel. The mean squared error

or the integrated mean squared error of m̂(xi) =
n∑
j=1

wij Yj is heavily influenced by h .

If h is large, the contribution of bias in the mean squared error becomes large, and if h is

small, the contribution of variance becomes large in the second order. Thus, it is referred

to as a smoothing parameter. Note that, the mean squared error of the estimates of the type

m̂(xi) =
n∑
j=1

wij Yj can be improved by selecting a kernel function of rth order. The rth

order kernel is defined as
∫
K(u) du = 1 ,

∫
uiK(u) du = 0 for i = 1, 2, ...r − 1 and∫

urK(u) du 6= 0 . For the detailed analysis of kernel-based estimators of mean regression

function, see Hardle (1991). Hall and Marron showed that if the rth order kernel is used to

estimate m(xi), then the mean squared error of the estimator in (1.5) is

MSE(σ̂2
HM) = n−1 var (ε2) + C1 (n2 h)−1 + C2 h

4r + o(n2 h)−1 + o(h4r)

where C1 andC2 are constants.

1.4.2 Residual-based Estimators Using The Spline Smoothing Method

There are several residual-based error variance estimators that use the spline smoothing

method to estimate the mean function. In this subsection, we discuss some of the more
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important of these estimators as well as the concept of spline smoothing.

To estimate the mean function m(xi), Reinsch (1967) suggests estimating m(xi) by us-

ing the minimizer of the following least squared problem

1

n

n∑
i=1

(Yi −m(xi))
2 + λ

∫ 1

0

(m′′(xi))
2 dx

where λ is a parameter. This estimate of m(xi) is known as a cubic spline estimator. It is

obvious that the performance of this estimator depends on the parameter λ , referred to as a

smoothing parameter, and hence it is important to select λ appropriately. For the selection of

λ , Wahba and Craven (1979) established the generalized cross-validation method. Further,

Wahba (1990) proposed to select λ as the minimizer of

1

n

n∑
i=1

(Yi − m̂(xi))
2 +

2σ2

n
tr A(λ)

where A(λ) is a (n×n) symmetric non-negative definite matrix and is such that (m̂(x))T =

A(λ) Y T . For a detailed discussion of this choice of λ and other properties, see Wahba

(1990), Carter and Eagleson (1992) and Tong, Liu and Wang (2008). After finding the esti-

mate of m(xi), the fitted values are

Ŷ = A(λ) Y.

Therefore, the residual sum of square is

RSS = Y T (I − A(λ))2 Y.

Then an estimator of σ2 is

σ̂2
2 =

Y T (I − A(λ))2 Y

tr (I − A(λ))
=

RSS

tr (I − A(λ))
.
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As before, this estimator consists of the residual sum of squares divided by a normalizing

factor. For details, see Wahba (1978). An alternative estimator has been considered by

Buckley, Eagleson and Silverman (1988) and is defined as

σ̂2
3 =

Y T [I − A(λ)]2 Y

tr [(I − A(λ))2]
.

Carter and Eagleson (1992) have shown that σ̂2
3 is an unbiased estimator for all λ . Another

variant of Wahba estimator is defined by

σ̂2
4 =

Y T [I − A(λ)]r Y

tr [(I − A(λ))r]

and is studied by Thompson, Key and Titterington (1991). Here r is any integer instead

of being two. When r = 1, this estimator has been studied by Ansely, Khon and Tharm

(1990). When r = 1, the estimator is easier to find than other estimators of this type.

1.4.3 The Difference-based Estimators

The main advantage of the difference-based method is that the mean function estimation is

not required. In this subsections, we describe some of the error variance estimators that use

difference-based method.

The idea of the difference-based estimators is based on the the fact that if X1 and X2

are independent with same means and variances, then

E

[
(X1 − X2)

2

2

]
= σ2. (1.6)

Thus, if the regression function is assumed to be smooth, then for two consecutive obser-

vations in a small neighbourhood say, Yi and Yi−1 , one expects E
[
(Yi−Yi−1)

2

2

]
≈ σ2 .
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Using this concept Rice (1984) has proposed the following estimator

σ̂2
R =

1

2(n− 1)

n∑
i=2

(Yi − Yi−1)
2. (1.7)

This is referred to as first-order difference-based estimator. By extending the idea of difference-

based estimators to the second ordered differences, Gasser, Sroka and Jennen-Steinmetz

(1986) proposed the following estimator

σ̂2
GSJ =

1

n− 2

n−1∑
i=2

C2
i ê

2
i (1.8)

where êi represents the difference between Yi and the value at xi of the line, which joins

the two points (xi−1, Yi−1) and (xi+1, Yi+1), C2
i s are selected such that E(C2

i ê
2
i ) = σ2

for all i when the mean function m is linear. When xi’s are equally spaced, Gasser

et al. (1986) show that the above estimator is reduced to

σ̂2
GSJ =

2

3(n− 2)

n−1∑
i=2

(
1

2
Yi−1 − Yi +

1

2
Yi+1)

2,

which is essentially the sum of squares of second ordered differences. Further, Buckley

et al. (1998) have shown that this estimator is essentially the Rice estimator of the second

order. Gasser et al. (1986) have also applied this estimator in nonlinear regression model.

Lu (2012) extended the Gasser et al. estimator to be used in complex surveys. For more

details, see Lu (2012).

A difference-based estimator of rth order has been proposed by Hall, Kay and Tittering-

ton (1990). To estimate the error variance, they first order xis such that x1 ≤ x2 ≤ ...... ≤

xn and construct a sequence {dk}rk=0 of real numbers such that

r∑
k=0

dk = 0 ,
r∑

k=0

d2k = 1. (1.9)
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This sequence is referred to as sequence of the differences. Then, their error variance esti-

mator is defined as

σ̂2
HKT = (n− r)−1

n−r∑
j=1

(
r∑

k=0

dkYk+j

)2

.

This estimator can be written as a quadratic form Y TDY/tr(D) where D = DT
1 D1 and

D1 =



d0 . . . dr 0 . . . 0

. . . . . .
. . . . . .

0 . . . 0 d0 . . . dr


.

The condition in (1.9) is required to ensure that the above estimator is an unbiased esti-

mator for σ2. For more details, see for example Brown and Levine (2007).

If the mean function is smooth of pth order, Seifert, Gasser and Wolf (1993) have proved

that it is not possible to find a difference-based estimator of pth order or less, which has a

better mean squared error than σ̂2
GSJ . Therefore, they suggest an alternative estimator for

the error variance. If we let ith pseudo-residual of order r to be

ei =
r∑

k=0

dik Yi+k (1.10)

where

r∑
k=0

d2ik =
1

(n− r)
for i = 1, ....., n− r. (1.11)
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Then, the pseudo-residuals are e = C y, where matrix C is defined as

C =



d1,0 . . . d1,r 0 . . . 0

0 d2,0 . . . d2,r
. . . ...

... . . . . . . . . . 0

0 . . . 0 d(n−r),0 . . . d(n−r),r


.

Under the assumptions that xis are equally spaced and that the mean function is smooth of

pth order, the idea of Seifert, Gasser and Wolf estimator is to divide the differences of order

r into some partition. To find these partitions, Seifert et al. (1993) have defined the general

divided differences of order r = p+ 1 such that

∆(m,p)y = ∆D(p)B(p).....D(1)B(1)y = ∆∆(p)y,

where ∆ is (n− r)× (n− r + 1) a bi-diagonal smoothing matrix such that

∆ =


1 δ1

. . . . . .

1 δ1

 ,

D(k) is a (n− k)× (n− k) diagonal weight matrix such that

D(k) = diag

(
1

xi+k − xi

)
i=1,(n−k)

and B(k) is (n− k)× (n− k + 1) a bi-diagonal matrix

B(k) =


−1 1

. . . . . .

−1 1

 .

It should be noted that δ1 is a weight and its optimal choice depends on the mean function,
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design points and sample size. After that, Seifert et al. (1993) redefined the ith pseudo-

residual by using weighted general divided differences as

ei = wi ∆
(m,p)
i y

where ∆
(m,p)
i denotes the ith row of ∆(m,p), wi is a weight which is given to the ith row

and the constraint (1.11) is satisfied. Then, the error variance estimator is

σ̂2
SGW = eT e = yTC TCy = yTAy

where A = C TC .

Müller, Schick and Wefelmeyer (2003) propose another estimator for error variance. This

estimator is a weighted estimator and it uses differences between any two different observa-

tions. First, xis are assumed to be continuous and have a positive probability density func-

tion. The errors are assumed to have a finite fourth moment. Additionally, the mean function

m(x) is assumed to satisfy the Holder condition

| m(s)−m(t) |≤ C | s− t |β , s, t ∈ [0, 1]

where C is a constant and β is a positive number less than one. Then, consider a symmetric

and non-negative weight function wij such that

wij =
1

2h
(

1

ĝi
+

1

ĝj
)K

(
Xi −Xj

h

)
and

1

n(n− 1)

∑∑
i 6=j

wij = 1,

where K(.) is a kernel function and

ĝk =
1

(n− 1)h

∑
k 6=j

K

(
Xk −Xj

h

)
, k = 1, 2, .....n.
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Assume that the kernel function K(.) is bounded, compactly supported in the interval

[−1, 1], symmetric and satisfies the conditions of the probability density function, and h is a

suitable bandwidth. The drawback of this weight function is that it is not well defined when

ĝi = 0 . To solve this problem, Müller et al. (2003) have suggested taking a bandwidth for

which all ĝis are all positive. Then, Müller et al. (2003) defined their estimator for the error

variance as

σ̂2
MSW =

1

n(n− 1)

∑∑
i 6=j

1

2
(Yi − Yj)2wij =

1

2
∑∑
i 6=j

wij

∑∑
i 6=j

wij(Yi − Yj)2.

Tong and Wang (2005) have proposed another estimator for the error variance. This

estimator is developed by using the expectation of the Rice’s estimator. First, Tong and

Wang (2005) have shown that the Rice’s estimator always has a positive bias. They suggest

that a lag-k estimator of the Rice’s estimator is defined as

σ̂2
R(k) =

1

2(n− k)

n∑
i=k+1

(Yi − Yi−k)2, k = 1, ....n− 1.

Then, one can show that

E(σ̂2
R(k)) = σ2 + Jdk, 1 ≤ k ≤ l (1.12)

where l is a fixed number such that l = o(n), J is the slope and dk equals to k2

n2 . Note

that when k = 1, we can show that J =
1∫
0

{g′(x)}2 dx. Therefore, Tong and Wang (2005)

propose to estimate σ2 by the intercept of the line described in (1.12). The equation (1.12)

represents a simple linear regression model, where dk is the independent variable. Let us

define Sk as

Sk =
n∑

i=k+1

(Yi − Yi−k)2

2(n− k)
, 1 ≤ k ≤ l,

and a weight wk = (n − k)/N , which is computed for an observation Sk where N =
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nl − l(l+1)
2

. Then, the following linear regression model is fitted

Sk = α + β dk + ek, k = 1, 2, ....l.

Then, σ̂2
TW is the estimate of α obtained by minimising of the following weighted sum of

squares with respect to α and β

l∑
k=1

wk(Sk − α− βdk)2. (1.13)

Thus, we obtain

σ̂2
TW = α̂ = S̄w − β̂d̄w,

where S̄w =
l∑

k=1

wkSk , d̄w =
l∑

k=1

wkdk and

β̂ =

l∑
k=1

wkSk(dk − d̄w)

l∑
k=1

wk(dk − d̄w)2
.

Park et al. (2009) have used a local quadratic approximation approach to determine wk

and dk in equation (1.13). Then, they estimated σ2 using the same way of the Tong and

Wang estimator (2005). For details, see Park et al. (2009).

In the event min {ĝi = 0}, the Müller et al. (2003) estimator is not well defined. To

solve this problem, Tong et al. (2008) have suggested another weight function of the form
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Y TDY/tr(D) where

D =



∑
j 6=1

w1j −w21 . . . −w1n

−w21

∑
j 6=2

w2j . . . −w1n

...
...

...
...

−wn1 −wn2 . . .
∑
j 6=n

wnj


and wij are such that wij = 1

h
K
(
xi−Xj

h

)
where K is rth ordered kernel and satisfies the

following conditions 

∫ 1

−1K(u)du = 1∫ 1

−1 u
iK(u)du = 0 i = 1, ...., r − 1∫ 1

−1 u
rK(u)du 6= 0 i = r∫ 1

−1K
2(u)du < +∞

.

This estimator could be used when xis are equally spaced on [0,1] or when xis are inde-

pendent and identically distributed random variables with a density g on [0,1].

1.4.4 The Comparison of The Error Variance Estimators in Terms of The Mean

Squared Error

Before comparing the mean squared error of the estimators discussed in the last three sub-

sections, it should be noted that the mean squared error of the Hall and Marron estimator

(1990) is

n−1 var (ε2) + C1 n
−2 h−1 + C2 h

4r + o(n2 h)−1 + o(h4r)

where C1 andC2 are constants. For all other estimators, one can show that the mean squared

error has the form

n−1C3 + n−2h−1C4 + h2 r C5 + o(n−1) + o
(
n2h
)−1

+ o(h2 r)
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where C3,C4 andC5 are constants. It should be noted the constants Cis depend on the ker-

nel and mean functions. From the above, it is clear that the Hall and Marron estimator (1990)

has the smallest relative error. To define relative error, we suppose the optimal bandwidth to

be h ∼ n−α where 0 < α < 1 . Then, the size of relative error is defined as nα−1 in the

following equality

MSE = n−1
[

constant + constant · nα−1
]
.

So, the size of the relative error of the Hall and Marron estimator is of order n−(4r−1)/(4r+1) when

the optimal bandwidth is chosen as O (n−2/(4r+1) ). In contrast, none of the difference-based

estimators achieves this size for their relative errors. Tong, Liu and Wang (2008) argue that

this may be because the difference-based estimators do not require the estimation of the

mean function. They have also noted that the size of relative errors do not imply a better per-

formance in the finite sample properties. The residual-based estimators with their optimal

bandwidths, such as Hall and Marron estimator, have achieved the following optimal rate in

the first order

MSE(σ2) = n−1 var(ε2) + o(n−1). (1.14)

Dette et al. (1998) have shown that none of the fixed order difference-based estimators

achieves this optimal rate. In contrast, estimators proposed by Müller et al. (2003), Tong

and Wang (2005) and Tong et al. (2008) are not fixed order difference estimators, so they

do achieve the optimal rate in (1.14).

1.5 Functional Variance Error Estimators

In this section, we review the literature on the error variance function estimators. As before,

we classify the estimators of the error variance function into two classes: residual-based and

difference-based estimators. The residual-based estimators of the error variance function
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are discussed in the next subsection and the difference-based estimators are discussed in the

following subsection.

1.5.1 The Residual-Based Estimator for the Error Variance Function

The main idea behind these estimators is the same as the idea behind the residual-based

estimators in the constant error variance model, except that now one has to account for the

changes in variance as the design points xis change. Thus, in this case, the interest is in

the estimation of the function v(xi) ( or v(i/n) , if xis are equispaced design points in

[0 , 1] ). Hall and Carroll (1989) defined one of the first estimators for the error variance

function v . To see how it works, assume that m and v are bounded functions, xis are

equidistant design points in the interval [0,1], the fourth moment of εi s are bounded and the

mean function m has s1 derivatives, whereas the variance function v has s2 derivatives.

So, the model (1.4) can be written as

Yi = m(i/n) +
√
v(i/n) εi , 1 ≤ i ≤ n.

Also, assume that 0 < h ≤ 1 , γ ≥ 0 is an integer and cj = cj(h, n), −∞ ≤ j ≤ +∞

are constants, which satisfy the following constraints

| cj | ≤ Ch, cj = 0 for | j |≥ Ch−1,
∑
j

cj = 1

and
∑
j

jicj = 0 for 1 ≤ i ≤ γ (1.15)

where the constant C does not depend on h. The cjs could be found for a smooth kernel

function such that cj = hK(hj) where the function K satisfy

∫
K(u)du = 1,

∫
ujK(u)du = 0 for 1 ≤ j ≤ γ
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and is compactly supported on [-1,1]. To estimate the mean function, select a series of

constants aj ≡ cj(h1, s1) such that the condition (1.15) is satisfied. Then, we can estimate

the mean function at the point i/n by

m̂(i/n) =
∑
j

ajYi+j, 0 ≤ i ≤ n, (1.16)

where Yj is zero if j < 0 or j > n. So, the residual can be written as ei = Yi −

m̂i(i/n) for i = 1, 2, ...n, where m̂i(i/n) is defined in (1.16). Then, construct m̂(x) for

general x ∈ [0, 1] by using linear interpolation technique on m̂(i/n). Now set ri =

Yi − m(i/n) , then

r2i = v(i/n) + v(i/n)δi, 1 ≤ i ≤ n

where δ2i = ε2i−1, which has zero mean and δ2i s are independent and identically distributed

random variables. Furthermore, set ri = 0 if i < 1 or i > n . Now, to estimate the error

variance function, find a sequence bj ≡ cj(h2, s2) so that the condition (1.15) holds. Then,

we can define an estimate of v(i/n) to be

ṽ(i/n) =
∑
j

bjr
2
i+j, 1 ≤ i ≤ n.

Finally, construct ṽ(x) by using a linear interpolation technique on ṽ(i/n) . Clearly, ṽ(x)

is not a realistic estimator, since ris are not known. Therefore, Hall and Carroll (1989)

propose to estimate v(x) by the following procedure. First, obtain v̂(i/n) by

v̂(i/n) =
∑
j

bje
2
i+j, 1 ≤ i ≤ n

and then we can define an estimate of v(x) to be v̂1(x) as a linear interpolation of v̂(i/n) .

The properties of this estimator are discussed in Hall and Carroll (1989).

Ruppert, Wand, Holst and Hössjer (1997) and Fan and Yao (1998) have used local polyno-
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mial smoothing approach to estimate the error variance function. To define their estimators,

let Xp(x) be

Xp(x) =



1 X1 − x . . . (X1 − x)p

...
... . . . ...

...
...

...

1 Xn − x . . . (Xn − x)p


and

Wh(x) = diag

{
K

(
X1 − x
h1

)
, ......, K

(
Xn − x
h1

)}
,

be the weight matrix where K(.) is a kernel function that satisfies the condition of the prob-

ability density function and h1 is a smoothing parameter. To estimate the mean function,

we can define the p1th degree local polynomial smoother matrix , Sp1,h1 whose (i, j)th

entry such that

(Sp1,h1)ij = ζT1 {XT
p1(Xi)Wh1(Xi)Xp1(Xi)}−1XT

p1(Xi)Wh1(Xi)ζj

where ζk is a column vector with zero everywhere except the kth position, which is one.

Thus, the residuals are, e = (I − Sp1,h1)Y . Then, Fan and Yao (1998) use local linear

smoothing to estimate the error variance function, where v̂2(x) = α̂ and α̂ is obtained by

solving the following minimising problem with respect to α and β

(α̂, β̂) = arg min
α,β

n∑
i=1

{e2i − α− β(Xi − x)}2 K

(
Xi − x
h2

)

where K(.) is a kernel function with bandwidth h2.

Ruppert, Wand, Holst and Hössjer (1997) find the estimation of the conditional error
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variance function using local polynomial regression, such that

v̂3(x) = v̂(x; p1, h1, p2, h3) =
ζT1 {XT

p2(Xi)Wh3(Xi)Xp2(Xi)}−1XT
p2(Xi)Wh3(Xi)e

2

1 + ζT1 {XT
p2(Xi)Wh3(Xi)Xp2(Xi)}−1XT

p2(Xi)Wh3(Xi)∆

where ∆ = diag(Sp1,h1 STp1,h1 − 2Sp1,h1), h3 is an appropriate bandwidth for the kernel

function and p2 is the degree of the local polynomial, which is used in the estimation of the

error variance function. Ruppert et al. (1997) have shown that this estimator can be defined

as

v̂3(x) =
Sp2,h3 e

2

1 + Sp2,h3∆
.

However, Fan and Yao (1998) have proven that their estimator is asymptotically normal and

when second-order kernel function is used, its mean squared error is

MSE(v̂2(x) ) = n−1 h−12 C1(x) + h42C2(x) + o(n−1 h−12 ) + o(h42) (1.17)

where C1(x) and C2(x) are deterministic functions and v̂2(x) represents the Fan and

Yao estimator. The Ruppert et al. estimator has the same form of the mean squared error

in (1.17), but the deterministic functions might be different than that of the Fan and Yao

estimator.

One of the drawbacks of using local polynomial regression in the estimation of the vari-

ance function is that the estimated variance function can be negative when the bandwidths

are not selected appropriately. To avoid this drawback, Yu and Jones (2004) have proposed a

local linear estimator such that the estimated variance function is always positive. For more

details, see Yu and Jones (2004).

1.5.2 The Difference-Based Estimator for the Error Variance Function

As for the constant error variance estimators, when the variance is a function of xis, the

mean function is not required to be estimated in the difference-based estimators for the error
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variance function. The first estimator has been developed by Müller and Stadtmüller (1987).

To see how it works, first, assume that in the model (1.4 ) xis are equally spaced on [0, 1] , the

fourth moment of εis is bounded and v(x) is Lipschitz continuous function with Lipschitz

constant γ ∈ (0, 1] . Thus, the error variance varies smoothly when the design points

change. Then, we can estimate the local variance function v(x) by using

ṽ(xi) = σ̃2
i =

(
j2∑
j=j1

wjYj+i

)2

where xi ∈ (0, 1), j1 = −dk/2e , j2 = dk/2 − 1/4e and k ≥ 2 is a fixed integer.

dbe denotes the largest integer number ≤ b . To ensure asymptotic unbiasedness of this

estimator, it is necessary to have

j2∑
j=j1

wj = 0 and
j2∑
j=j1

w2
j = 1.

However, Müller and Stadtmüller have shown that this estimator is not consistent. There-

fore, Müller and Stadtmüller (1987) proposed modification to the above estimator; more

specifically they used smoothing in the neighbourhood of ṽ(xj)

v̂4(x) =
1

h

n∑
j=1

∫ Sj

Sj−1
K

(
x− u
h

)
du ṽ(xj)

where Sj =
xj+xj+1

2
for 1 ≤ j ≤ n, So = 0 and Sn = 1, K denotes a kernel function

and the bandwidth h satisfies the following constraint

h −→ 0 , nh −→ +∞ as n −→ +∞.

Müller and Stadtmüller (1987) have shown that the above estimator is uniformly consistent.

Brown and Levine (2007) have used a class of difference-based estimators for estimating
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the error variance function in the heteroscedastic nonparametric regression model. Here, xis

are equidistant points on [0, 1] . To estimate the error variance function, first, define a

pseudo-residual of order r to be

∆i = ∆r,i =
r∑

k=0

dk Yi+k−br/2c, i = br/2c+ 1, ...., n+ br/2c − r

where bac represents the largest integer number that is less than a and the weight djs are

such that
r∑
i=0

di = 0 and
r∑
i=0

d2i = 1.

Then, we can obtain the error variance function estimator v̂5(x) using local polynomial

smoothing of the squared pseudo-residual where v̂5(x) = b̂0 and b̂0 is such that

(b̂0, b̂1, ....., b̂p) = arg min
b̂0,b̂1,.....,b̂p

n+br/2c−r∑
i=br/2c+1

[
∆2
r,i − b̂0 − b̂1(x− xi)− ...− b̂p(x− xi)p

]2
×K

(
x− xi
h

)
.

K is a kernel function that satisfies the standard conditions. That is, it is bounded, com-

pactly supported and not identically equal to zero. Note that the kernel function in this esti-

mator is used to account for variation in the variance when xis change. Brown and Levine

(2007) have shown that when a constant mean function has been used in the constant vari-

ance model, this estimator is unbiased and its mean squared error is stated in (1.17) where the

deterministic functions C1(x) and C2(x) are different from that of Fan and Yao’s estimator.

Wang, Brown, Cai and Levine (2008) have proposed an alternative estimator for the error

variance function. First, assume that the mean function has α derivatives and the error

variance function has β derivatives. Then, set Di = Yi − Yi+1 for i = 1, 2, ..., n − 1 .

Thus,

Di = Yi − Yi+1 = m(xi)−m(xi+1) + v1/2(xi)εi − v1/2(xi+1)εi+1 = δi +
√

2v
1/2
i zi
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where δi = m(xi)−m(xi+1) , v1/2i =
√

1
2

( v(xi)− v(xi+1)) and

zi = (v(xi) + v(xi+1))
−1/2 (v1/2(xi)εi − v1/2(xi+1)εi+1

)
.

Note that zis have zero mean and unit variance. Then, assume that there is a kernel function

K(.) that satisfies

∫ 1

−1
K(t) dt = 1,

∫ 1

−1
tiK(t) dt = 0 for i = 1, 2, ...., bβc,

∫ 1

−1
K2(t) dt < +∞,(1.18)

which is bounded and compactly supported on [−1, 1] . To avoid the boundary effect, define

another kernel function Ku(x) that satisfies the condition (1.18) for all u ∈ [0, 1] and

is compactly supported on [−1, u] . After that, for i = 2, 3, ...., n − 2 and for any x ∈

[0, 1] , 0 < h < 1/2, define the following weighted kernel function

Kh
i (x) =



∫ (xi+xi+1)/2

(xi+xi−1)/2
1
h
K
(
x−t
h

)
dt when x ∈ (h, 1− h)

∫ (xi+xi+1)/2

(xi+xi−1)/2
1
h
Ku

(
x−t
h

)
dt when x = uh for some u ∈ [0, 1]

∫ (xi+xi+1)/2

(xi+xi−1)/2
1
h
Ku

(
− x−t

h

)
dt when x = 1− uh for some u ∈ [0, 1]

.

For i = 1, the integral is taken from 0 to (x1 + x2)/2 . For i = n − 1, the integral is

taken from (xn−1 +xn−2)/2 to 1. Then, the error variance function v̂ is estimated for any

0 ≤ x ≤ 1 as

v̂6(x) =
1

2

n−1∑
i=1

Kh
i D

2
i

where
n−1∑
i=1

Kh
i = 1. Wang, Brown, Cai and Levine (2008) provided numerical results, that

show that when the mean function is very smooth, the discrete mean squared error of their

estimator is smaller than that of the Fan and Yao estimator.
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1.6 A New Class of The Error Variance Estimators

In this section, we propose a new class of the error variance estimators for nonparametric

regression models in two settings. These settings are designed for constant variance and

function variance models. Before we propose alternative estimators for the error variance

or the error variance function, we make a note of variance estimation, when one has inde-

pendent and identically distributed random variables X1, X2, · · · , Xn with mean µ and

variance σ2 with the fourth moment <∞ .

1.6.1 Estimation of Variance in Independent and Identically Distributed Random Sam-

ple

Let X1, X2, · · · , Xn be independent and identically distributed random variables with

mean µ and varianceσ2 with a bounded fourth moment. The variance of this population

can be estimated at least in the following three different ways

1) σ̂2
d1 =

1

n− 1

n∑
i=1

(Xi − X̄)2; (1.19)

2) σ̂2
d2 =

n−1∑
i=1

(Xi −Xi+1)
2

2(n− 1)
; (1.20)

3) σ̂2
d3 =

1

n

n∑
i=1

X2
i −

1

n(n− 1)

∑∑
j 6=i

XiXj =
1

n

n∑
i=1

(
Xi −

1

n− 1

∑
j 6=i

Xj

)
Xi. (1.21)

Furthermore, all of the above estimators are unbiased estimators for σ2 . The variance of the

above estimators, var(σ̂2), is 2
n−1 σ

4 when the population is normally distributed.
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1.6.2 Estimation of The Error Variance in Nonparametric Regression Models

In nonparametric regression models, all existing estimators for error variance belong to one

of the following two classes. The first class is known as residual-based estimators, because

of its dependence on the residual sums obtained from a nonparametric regression fit for the

mean function. The idea of residual-based error variance estimators has been developed from

the definitions (1.19) for the variance. Thus, in the constant error variance setting, the error

variance can be defined as

σ̂2 =
1

n− 1

n∑
i=1

(Yi − m̂(xi))
2 .

As discussed in section 1.4, in this class of estimators, the estimation of the mean function is

required. In its estimation using one of the nonparametric methods such as spline smoothing

or kernel smoothing, all observations are used. Similarly, when the variance is a function of

xis, the form of the residual-based estimators for the error variance function is

v̂(x) =
n∑
i=1

wi(x) (Yi − m̂(xi))
2 (1.22)

where wi(x)s are weight functions and m̂(xi) is estimated as in the residual-based estima-

tors for the constant error variance.

The second class of estimators is known as the difference-based estimators. The idea for

these estimators comes from the definition (1.20). In the regression setting, the constant error

variance can be estimated as

σ̂2 =
n∑
i=2

(Yi − Yi−1)2

2(n− 1)
.

Thus, the idea behind these estimators is the same as the difference idea in the time series

analysis. That is, a trend is removed by the operation of differencing. This class of estimators
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is used widely because it is easy to implement and it does not require the estimation of the

mean function. Furthermore, it often has small biases for small sample sizes as Dette, Munk

and Wanger (1998) have noted. When the variance is a function of xis, the above definition

of the estimator is modified as

v̂(x) =
n∑
i=2

wi(x) (Yi − Yi−1)2.

where wi(x) is as in equation (1.22). It should be noted that the above discussion is for

the simplest difference-based estimator. The ideas can be extended easily for the other

difference-based estimators for the error variance.

The basic idea behind the estimators proposed below comes from a definition for the

variance given in (1.21). Using this definition, a new class for the error variance estimators

can be defined in the two different settings that are mentioned earlier. In the first setting of

constant variance model in (1.3), where xis are equidistant design points, ei = Yi−m̂(xi)

and the errors are independent and identically distributed random variables with zero mean

and common variance σ2, then the error variance can be estimated as

σ̂2 =
1

n

n∑
i=1

ei Yi. (1.23)

In the above class of the error variance estimators, ei Yis are averaged to estimate the error

variance as opposed to averaging of e2i s as used in the residual-based estimators. To estimate

error variance function v(x) in the model in (1.4), a simple modification to (1.23) leads to

estimators

v̂(x) =
n∑
i=1

wi(x) ei Yi. (1.24)

Again, note that we are smoothing ei Yi as opposed to smoothing e2i which is used in the
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standard residual-based estimators of v(x) .

Clearly, the advantage difference-based estimators have over the residual-based estima-

tors is that the estimation of the mean function is not required. However, at the same time,

in difference-based estimators, order of the differences plays an important role and hence

one needs to decide the order of difference. Also, the higher the order of differences, the

more the lack of information on function v(x) near the boundary which is not the case of

the residual-based estimators.

Also, note that in estimators of the type defined in (1.23) and (1.24) or in any other

residual-based estimators, to estimate the error variance function at point xi , one uses the

observation at xi for both in order- to estimate the mean function and again through resid-

ual in order to estimate variance or variance function. Thus, our interest is to consider an

estimator that does not use ith observation to estimate the mean function and is used only

to estimate variance or variance function, and to investigate its properties. Therefore, rather

than studying estimators defined in (1.23) and (1.24), we define, in the constant variance

model in (1.3),

σ̂2 =
1

n

n∑
i=1

(Yi − m̂−i(xi))Yi (1.25)

and in the variance function model in (1.4),

v̂(x) =
n∑
i=1

wi(x) (Yi − m̂−i(xi))Yi (1.26)

where m̂−i(xi) denotes the estimate of mean function without using the ith observation

and wis are weight functions. To seek the answers to the questions of whether smoothing

of eiYi has any advantage over smoothing e2i , and whether not using observation Yi in

the estimation of m(xi) has any advantage over using it − we study estimators of the types
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in (1.25) and (1.26). Now, to estimate the mean function, we define the following weight

function wi j

wij =
K
(xi−xj

h

)∑
i 6=j
K
(xi−xj

h

) , 1 ≤ i , j ≤ n (1.27)

where h refers to a bandwidth parameter and K(.) is a kernel function, satisfying the

following assumptions

A1:

∫
uiK(u)du =


1 for i = 0;

0 for i = 1, ...r − 1;

6= 0 for i = r.

A2: It is bounded, symmetric around 0 and compactly supported on [−1, 1] .

We note that the weight function satisfies the constraint
n∑
j 6=i

wi j = 1 for each i . So, the

mean function is estimated by m̂−i(xi) =
∑
j 6=i

wi j Yj . It is clear that the ith observation is

not used in the estimation of the mean function at point xi. From (1.21) and (1.25), the new

estimator of the constant error variance can be written as

σ̂2 =
1

n

n∑
i=1

Y 2
i −

1

n

n∑
i=1

∑
j 6=i

wi j Yi Yj. (1.28)

In the variance function setting, assume the model in (1.4) where xis are fixed design

points and εis are independent and identically distributed with zero mean and unit variance.

Thus, a new estimator for the error variance function can be defined as

v̂(x) =
1

n

n∑
i=1

1

h2
K

(
x− xi
h2

){
Yi −

1

(n− 1)h1

∑
j 6=i

K

(
xi − xj
h1

)
Yj

}
Yi (1.29)

where K(.) is as in equation (1.28) and h1 and h2 are two different bandwidths. The

bandwidthh1 is used to estimate the mean function, while the other bandwidth is used to

estimate the variance function. In the above estimator, to account for the changes in the

variance as the design points xis change, we use a kernel weight function.
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1.7 Outlines of The Thesis

In this thesis, we first discuss the properties of variance estimator in (1.28) proposed in the

setting of the constant variance regression model in (1.3). The similar investigation is then

carried out for the variance function estimator in (1.29) where the regression model is given

by (1.4). This thesis is organised as follows.

The theoretical properties of the estimator in (1.28) are studied in the second chapter.

That is, the asymptotic mean square analysis for this estimator is carried out, and precise

asymptotic expressions for mean and variance are obtained. A comparison between the

mean squared error for the estimator in (1.28) and other estimators is also provided. We

also note the effect of the bandwidth h on the mean squared error of this estimator. Then,

the asymptotic distribution of the estimator in (1.28) is studied and shown to have asymp-

totically normal distribution. In the third chapter, the simulation studies are considered to

exhibit the finite sample performance of the estimator in (1.28). In particular, the effects of

the bandwidth selection and the different forms of the mean functions on the finite sample

performance of the estimator in (1.28) are investigated.

In view of the advantages mentioned in section 1.6, the asymptotic properties of the esti-

mator in (1.29) are investigated. Clearly, the estimator in (1.29) has two different bandwidths.

The first one h1 is used to estimate the mean function, whereas the other h2 is used to

estimate the variance function. Therefore, in chapter 4, we investigate the effect of the band-

widths h1 and h2 on the mean square analysis of the estimator in (1.29). In chapter 5, the

asymptotic distribution of this estimator is studied and shown to be asymptotically normal

distribution. As noted in section 1.6, one of the advantages of the estimator in (1.29) over

the difference-based estimators is that it estimates the boundary of the variance function with

smaller bias compared with that of the difference-based estimators. Hence, the finite sam-
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ple properties of estimator in (1.29) are studied along with the difference-based estimators.

Thus, we investigate the effect of the mean and variance functions and bandwidth selections

on the finite sample performance of the estimator (1.29) in chapter 6. In the last chapter, the

conclusion is drawn and future work is suggested.
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Chapter 2

The Theoretical Properties of a New

Estimator in the Setting Of

Homoscedastic Nonparametric

Regression Model

2.1 Introduction

In this chapter, the mean square analysis of the new estimator, proposed in section 1.6, is

considered in the settings of the constant error variance model. We start with the following

homoscedastic nonparametric regression model

Yi = m(xi) + εi, for i = 1, 2, · · · , n, (2.1)

where m(xi) is the mean function E(Yi|xi), Yis represent the response variable and xis

denote the design points. The errors εis are assumed to be independent, identically dis-

tributed and random with zero mean and variance σ2 and the fourth moment is bounded

( E(ε4) < ∞).
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Recall that the new estimator for the constant error variance is defined as

σ̂2 =
1

n

n∑
i=1

Y 2
i −

1

n

n∑
i=1

∑
j 6=i

wi j Yi Yj (2.2)

where K(.) is a kernel function and wi js are defined in (1.27). If xis are random with a

density function f(x), then we obtain

wij =
K
(xi−xj

h

)∑
i 6=j
K
(xi−xj

h

) ≈ K

(
xi − xj
h

)
/(n− 1)h f(xi).

Further, when f(x) is the density function of the uniform distribution and xis ∈ [0, 1],

wij ≈ K
(xi−xj

h

)
/(n− 1)h . So, the estimator in (2.2) can be written as

σ̂2 =
1

n

n∑
i=1

Y 2
i −

1

n (n− 1)h

n∑
i=1

∑
j 6=i

K

(
xi − xj
h

)
Yi Yj . (2.3)

Another aim of this chapter is to derive the asymptotic distribution for the new estimator

defined in (2.3).

This chapter is organised as follows. In section 2.2, the main results are stated, which

provide the bias and variance of the estimator in (2.3) and its asymptotic distribution. Lem-

mas, which are later used to prove the main results of section 2.2, are stated in section 2.3.

An outline of proof of the bias and the variance of the estimator in (2.3) is given in section

2.4, whereas a sketch of the proof of its asymptotic distribution is provided in section 2.5. As

expected the bias and variance of the estimator in (2.3) depends on the bandwidth selection

and thus the optimal bandwidth and its choice is discussed in section 2.6.

33



2.2 The Main Results

The following assumptions are made in addition to the assumptions A1 and A2 in section

1.6:

B1: K ′(u) exists for u ∈ [−1, 1].

B2: xis are equispaced design points in the interval [0,1] such that xi = i/n for i =

1, 2, · · · , n .

B2′: The design points xis are randomly chosen from the U [0, 1] distribution.

B3: The mean function m(x) is bounded, differentiable and has r-continuous derivatives

where r ≥ 2.

B4:h→ 0 such that nh→∞ as n→ +∞.

Then the following theorem provides the bias and variance formulae of σ̂2.

Theorem 2.2.1. Suppose A1, A2, B1, B2, B3 and B4 are true and h ∼ n−α , where α is

positive number such that 1/3 < α < 1 , then for σ̂2 in (2.3)

(i)E(σ̂2) − σ2 = hr · C1 + o(hr) +O(n−1),

(ii)V ar ( σ̂2 ) = n−1C2 + n−2 h−1C3 + o(n2 h)−1,

where

C1 = (−1)r
r!

1∫
0

K(y)yr dy
1∫
0

m(t)m(r)(t)dt,

C2 = µ4 − σ4, & µr = E[(Yi −m(xi))
r] and

C3 = 2σ4
1∫
0

K2(y)dy + 4σ2
1∫
0

K2(y)dy
1∫
0

m2(x)dx.
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Remark:

1) By using the results in the above theorem, the mean squared error can be written as

MSE(σ̂2) =
(
E(σ̂2) − σ2

)2
+ V ar (σ̂2)

=n−1C2 + n−2 h−1C3 + h2 r C2
1 + o

(
n2h
)−1

+ o(h2 r).
(2.4)

Note that the bias is contributed by C1, whereas the variance is contributed by C2 and

C3. Clearly, when the bandwidth h is selected as stated in the above theorem,

MSE( σ̂2 ) ∼ n−1 · var(ε2)

Thus, the estimator in (2.3) achieves the same minimum mean squared error in the first

order like some other estimators discussed in the literature for error variance, such as

the estimators of Hall and Marron (1990), Müller, Schick and Wefelmeyer (2003) and

Tong, Liu and Wang (2008).

2) In the second order, when the bandwidth of the estimator in (2.3) is chosen appropriately,

it is expected to have a similar behaviour to that of the Hall and Marron estimator. Note

that the detailed discussion is a referred to section 2.6.

Now, to find the asymptotic distribution of the new estimator, first note that the estimator in

(2.3) can be expressed as

σ̂2 =
1

n

n∑
i=1

Zi −
1

n (n− 1)h

n∑
i=1

∑
j 6=i

K

(
xi − xj
h

)
UiUj

− 1

n (n− 1)h

n∑
i=1

∑
j 6=i

K

(
xi − xj
h

)
m(xi)m(xj) (2.5)

where Zi = Y 2
i − bi [Yi − m(xi) ], Ui = Yi−m(xi) and bi = 2

(n−1)h
∑
j 6=i
K
(xi−xj

h

)
m(xj) .

The equation (2.5) consists of three terms, of which the first term is the sum of indepen-
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dent random variables, the second is a quadratic form and the third term is deterministic. The

first term is Z̄ = 1
n

n∑
i=1

Zi . Since Zis are independent, the Lindeberg-Feller central limit

theorem is used to derive its asymptotic distribution. The second term is a quadratic form in

Uis. We note that E[Ui] = 0 and E[Ui Uj|Ui] = 0 . Therefore, theorem 2.1 developed by

De Jong (1987) is applied to derive its asymptotic distribution, which is given in the follow-

ing theorem. Therefore, set Tn(h) =
∑∑

1≤i<j≤n
Tij and Tij = 2

n (n−1)h K
(xi−xj

h

)
Ui Uj .

Theorem 2.2.2. Under the assumptions A1, A2, B1, B2, B3 and B4

n
√
h Tn(h)

d−→ N

 0 , 2σ4

1∫
0

K2 (v) dv

 .

The following corollary, which establishes the asymptotic normality of σ̂2 , follows from

the above theorem and the normality of the first term on the right hand side of equation (2.5).

Corollary 2.2.1. Under the assumptions A1, A2, B1, B2, B3 and B4 and h ∼ n−α , where

α is positive number such that α < 1

√
n
(
σ̂2 − σ2

) d−→ N
(

0 , µ4 − σ4
)
.

Remark:

1) Note that µ4 − σ4 = Var(ε2) and so that the asymptotic distribution of the σ̂2 is

exactly the same as the asymptotic distribution of the Hall and Marron estimator.

2) Note that if the assumption B2′ is used instead of the assumption B2, the results of

Theorems 2.2.1 and 2.2.2 and Corollary 2.2.1 still hold true.

A sketch of the proof of Theorem 2.2.1 is given in section 2.4, whereas an outline of

proofs of Theorem 2.2.2 and Corollary 2.2.1 are provided in section 2.5. In the following

section, lemmas, that are used in the proofs of the above theorems and corollary, are stated.
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2.3 Lemmas

All proofs of the following lemmas are given in Alharbi (2011).

Lemma 2.3.1.

Suppose the assumptions A1,A2, B1, B2, B3 and B4 are satisfied. Let z be a fixed number

in the interval [0,1], then

1

n

n∑
i=1

K2

(
z − ti
h

)
m(ti) = h

∫ 1

0

K2 (y) m(z − h y) du+O(n−1).

Lemma 2.3.2.

Suppose the assumptions A1,A2, B1, B2, B3 and B4 are satisfied. Then,

1

n2

∑∑
i 6=j

K

(
ti − tj
h

)
m(ti) m(tj) = h

∫ 1

0

∫ 1

0

K(y)m(t)m(t− hy) dt dy +O(n−1 h).

Lemma 2.3.3.

Suppose the assumptions A1, A2, B1, B2, B3 and B4 hold. Then,

1

n3

∑∑∑
i 6=j 6=k

K2

(
ti − tj
h

)
K2

(
ti − tk
h

)
m(ti) m(tk) = h2

∫ 1

0

m2(x) (u) dx+O(h2 n−1).

2.4 Proof of Theorem 2.2.1

First, to calculate the bias,

E(σ̂2) =
1

n

n∑
i=1

E(Y 2
i )− 1

n(n− 1)h

n∑
i=1

∑
j 6=i

K

(
xi − xj
h

)
E(Yi)E(Yj)

=
1

n

n∑
i=1

{(m(xi))
2 + σ2} − 1

n(n− 1)h

n∑
i=1

∑
j 6=i

K

(
xi − xj
h

)
m(xi)m(xj).
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Therefore, we get

E(σ̂2) = σ2 +
1

n

n∑
i=1

(m(xi))
2 − 1

n(n− 1)h

n∑
i=1

∑
j 6=i

K

(
xi − xj
h

)
m(xi)m(xj). (2.6)

Using the definition of Riemann integral, the second term is approximated by

1

n

n∑
i=1

(m(xi))
2 =

1∫
0

m2(t) dt+O(n−1). (2.7)

For the third term, since m(x) is bounded and by applying Lemma 2.3.2, we obtain

1

n(n− 1)h

n∑
i=1

∑
j 6=i

K

(
xi − xj
h

)
m(xi)m(xj)

=

1∫
0

1∫
0

K(y)m(t)m(t− hy) dt dy +O(n−1). (2.8)

Using Taylor series expansion, the right hand side of equation (2.8) can be written as,

1∫
0

1∫
0

K(y)m(t)m(t− hy) dt dy +O(n−1)

=

1∫
0

1∫
0

K(y)m(t){m(t)− hym′(t) + ...+
hr (−1)r

r!
yr m(r)(t) + o(hr)} dt dy

+ O(n−1)

=

1∫
0

m2(t)dt+
hr (−1)r

r!

1∫
0

K(y)yr dy

1∫
0

m(t)m(r)(t)dt

+ o(hr) + O(n−1) (2.9)
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where m(r)(x) is the rth derivative of m(x). By substituting (2.7) and (2.9) in equation

(2.6), we obtain

E(σ̂2) = σ2 +
hr (−1)r

r!

1∫
0

K(y)yr dy

1∫
0

m(t)m(r)(t)dt+ o(hr) + O(n−1)

= σ2 + hr.C1 + o(hr) +O(n−1)

where C1 = (−1)r
r!

1∫
0

K(y)yr dy
1∫
0

m(t)m(r)(t)dt . This completes the proof of part (i) of

Theorem 2.2.1.

In the view of the above theorem, the squared bias can be written as

(
E(σ̂2) − σ2

)2
= h2 r.C2

1 + o(h2 r) + o(n−2 h−1). (2.10)

By computing E(σ̂2)2 and (E(σ̂2))2, we get

V ar(σ̂2) = E(σ̂2)2 − (E(σ̂2))2

=
1

n2

n∑
i=1

[
µ4 − σ4 + 4µ3m(xi) + 4σ2m2(xi)

]
− 2

n2(n− 1)h

∑∑
i 6=j

K

(
xi − xj
h

)[
µ3m(xj) + µ3m(xi) + 4σ2m(xi)m(xj)

]
+

2

n2(n− 1)2h2

∑∑
i 6=j

K2

(
xi − xj
h

)[
σ4 + σ2m2(xi) + σ2m2(xj)

]
+

σ2

n2(n− 1)2h2

∑∑∑
i 6=j 6=k

K

(
xi − xj
h

)
K

(
xi − xk
h

)
m(xj)m(xk)

+
σ2

n2(n− 1)2h2

∑∑∑
i 6=j 6=k

K

(
xi − xj
h

)
K

(
xk − xi
h

)
m(xj)m(xk)

+
σ2

n2(n− 1)2h2

∑∑∑
i 6=k 6=d

K

(
xi − xk
h

)
K

(
xk − xd

h

)
m(xi)m(xd)

+
σ2

n2(n− 1)2h2

∑∑∑
i 6=j 6=k

K

(
xi − xj
h

)
K

(
xk − xj

h

)
m(xi)m(xk) (2.11)
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For details of computing E(σ̂2)2 and (E(σ̂2))2, see Alharbi (2011). Now, the summations

in the above equation will be approximated by the integration as follows. Using the defi-

nition of Riemann integral, the first term on the right hand side of equation (2.11) can be

approximated as

1

n2

n∑
i=1

[
µ4 − σ4 + 4µ3m(xi) + 4σ2m2(xi)

]
=

1

n

µ4 − σ4 + 4µ3

1∫
0

m(u)du+ 4σ2

1∫
0

m2(u)du

+ o(n−2 h−1). (2.12)

Since m(x) is bounded, the lemmas in section 2.3 can be used to approximate the re-

maining terms on the right hand side of equation (2.11). By applying Lemma 2.3.2 and from

the approximation of equation (2.8), the approximation of the second term on the right hand

side of (2.11) may be written as follows,

−2

n2(n− 1)h

∑∑
i 6=j

K

(
xi − xj
h

)[
µ3m(xj) + µ3m(xi) + 4σ2m(xi)m(xj)

]
=
−2

nh

1∫
0

1∫
0

K

(
u− t
h

)[
µ3m(u) + µ3m(t) + 4σ2m(u)m(t)

]
du dt+O(n−2)

=
−4

n

µ3

1∫
0

m(x) dx + 2σ2

1∫
0

m2(x) dx

+ o(n−2 h−1). (2.13)

For the third term on the right hand side of equation (2.11), again using Lemma 2.3.2, we

obtain

2

n2 h

σ4

1∫
0

K2(y)dy + σ2

1∫
0

K2(y)dy

1∫
0

m2(x)dx


+

2

n2 h
σ2

1∫
0

K2(y)dy

1∫
0

m2(x)dx+ o(n−2 h−1) + O(n−3 h−2).
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=
2

n2 h

σ4

1∫
0

K2(y)dy + 2σ2

1∫
0

K2(y)dy

1∫
0

m2(x)dx

+ o
(
n2 h

)−1
. (2.14)

The 4th, 5th, 6th and 7th terms on the right hand side of equation (2.11) are approxi-

mated by using Lemma 2.3.3. The approximation of these terms are exactly the same. The

approximation of each one of these terms is as follows

σ2

n

1∫
0

m2(x)dx+O(n−1h2) +O(n−2).

The approximation of the last four terms on the right hand side of equation (2.11) is

4σ2

n

1∫
0

m2(x)dx+ o(n−2 h−1). (2.15)

From the combination of equations (2.12)-(2.15), the variance of σ̂2 is

V ar(σ̂2) =
1

n

[
µ4 − σ4

]
+

2

n2 h

σ4

1∫
0

K2(y)dy + 2σ2

1∫
0

K2(y)dy

1∫
0

m2(x)dx


+ o

(
n2 h

)−1
= n−1C2 + n−2 h−1C3 + o(n2 h)−1 (2.16)

where

C2 = µ4 − σ4, and

C3 = 2σ4

1∫
0

K2(y)dy + 4σ2

1∫
0

K2(y)dy

1∫
0

m2(x)dx. (2.17)

Thus, the proof of Theorem 2.2.1 is completed. For more details, see Alharbi (2011).
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2.5 Proofs of Theorem 2.2.2 and Corollary 2.2.1

Our main goal here is to find the asymptotic distribution of the estimator in (2.3). To prove

Corollary 2.2.1, in subsection 2.5.1, we establish the asymptotic normality of the first term

on the right hand side of equation (2.5 ) using the Lindeberg-Feller central limit theorem. An

outline of the proof of Theorem 2.2.2 is presented in subsection 2.5.2, whereas the proof of

Corollary 2.2.1 is given in subsection 2.5.3.

2.5.1 The Asymptotic Distribution of the First Term in Equation (2.5)

The aim in this subsection is to derive the asymptotic distribution of the first term on the

right hand side of equation (2.5). First, observe that

Z̄ =
1

n

n∑
i=1

Zi =
1

n

n∑
i=1

Y 2
i − bi [Yi − m(xi)]

=
1

n

n∑
i=1

Wi −
1

n

n∑
i=1

Vi (2.18)

where Wi = Y 2
i , W̄ = 1

n

n∑
i=1

Wi, Vi = bi [Yi −m(xi)] and bi = 2
(n−1)h

∑
j 6=i
K
(xi−xj

h

)
m(xj) .

Note that Wis are independent random variables as are Vis. From the definition of Wi, it

is not difficult to prove that

E
(
W̄
)

= σ2 +
1

n

n∑
i=1

m2(xi)

= σ2 +

1∫
0

m2(u) du+ O(n−1)

−→ σ2 +

1∫
0

m2(u) du, as n→∞. (2.19)
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It is clear from the definition of Vi that E(Vi) = 0. So, we obtain

E
(
Z̄
)

= E
(
W̄
)

= σ2 +

1∫
0

m2(u) du + O(n−1). (2.20)

To find the variance of the Z̄, first note that

Var (Wi ) = µ4 − σ4 + 4µ3m(xi) + 4σ2m2(xi), (2.21)

Var (Vi ) = b2i σ
2 = 4 σ2m2(xi) + O(n−1 h−1) (2.22)

and

Cov (Wi , Vi ) = 2µ3m(xi) + 4σ2m2(xi) + O(n−1) + O(h2). (2.23)

Then by computing E

(
1
n

n∑
i=1

Wi

)2

and
[
E

(
1
n

n∑
i=1

Wi

)]2
, we obtain

Var
(
W̄
)

=
1

n2

n∑
i=1

[
µ4 + 4µ3m(xi) + 4σ2m2(xi)

]
− σ4

n
.

Using the definition of Riemann integral, we get

Var
(
W̄
)

=
1

n

µ4 − σ4 + 4µ3

1∫
0

m(u) du+ 4σ2

1∫
0

m2(u) du

+ o(n−1). (2.24)

Using a similar calculation, we can show that

Var

(
1

n

n∑
i=1

Vi

)
=

σ2

n2

n∑
i=1

b2i (2.25)
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Thus, the right hand side of equation in (2.25) can be written as

=
4σ2

n2 (n− 1)2 h2

∑∑
i 6=j

K2

(
xi − xj
h

)
m2(xj)

+
4σ2

n2 (n− 1)2 h2

∑∑∑
i 6=j 6=k

K

(
xi − xj
h

)
K

(
xi − xk
h

)
m(xj)m(xk).

Using Lemmas 2.3.2 and 2.3.3, respectively, the approximation of the last two terms on the

right hand side of the above equation is

Var

(
1

n

n∑
i=1

Vi

)
=

4σ2

n (n− 1)h

1∫
0

K2(y) dy

1∫
0

m2(x) dx + o(n−2 h−1)

+
4σ2

n

1∫
0

m2(x) dx + o(n−1)

=
4σ2

n

1∫
0

m2(x) dx + o(n−1). (2.26)

For the covariance between
(

1
n

n∑
i=1

Wi

)
and

(
1
n

n∑
i=1

Vi

)
, one can show that

Cov

(
1

n

n∑
i=1

Wi ,
1

n

n∑
i=1

Vi

)
=

1

n2

n∑
i=1

bi
[
µ3 + 2σ2m(xi)

]
=

2

n2 (n− 1)h

∑∑
i 6=j

K

(
xi − xj
h

)
×

[
µ3m(xj) + 2σ2m(xi)m(xj)

]
.

Since m(x) is bounded and using Lemma 2.3.2, we obtain

Cov

(
1

n

n∑
i=1

Wi,
1

n

n∑
i=1

Vi

)
=

2µ3

n

1∫
0

m(x) dx+
4σ2

n

1∫
0

m2(x) dx+ o(n−1). (2.27)
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By using equations (2.24), (2.26) and (2.27), we can prove that

Var
(
Z̄
)

= Var

(
1

n

n∑
i=1

Wi

)
+ Var

(
1

n

n∑
i=1

Vi

)
− 2 Cov

(
1

n

n∑
i=1

Wi ,
1

n

n∑
i=1

Vi

)
=

1

n

[
µ4 − σ4

]
+ o(n−1). (2.28)

For the details of the calculation of the variance of Z̄, see Alharbi (2011).

To use the Lindeberg-Feller central limit theorem, it is required to show that the following

condition holds,

lim
n→∞

1

B2
n

n∑
i=1

E
[
(Zi − E[Zi] )2 I [ | Zi − E[Zi] |> τ Bn ]

]
= 0 (2.29)

where B2
n =

n∑
i=1

σ2
Zi

, σ2
Zi

is the variance of Zi and τ is a positive number. To verify the

above condition, observe that

E [Zi ] = σ2 + m2(xi), (2.30)

Using equations (2.21), (2.22) and (2.23), we can show that

Var (Zi ) = σ2
Zi

= µ4 − σ4 + O(n−1 h−1) + O(h2)

→ µ4 − σ4 as h→ 0 and nh → ∞. (2.31)

Clearly from the above equation, the variance of Zi does not depend on i . So, we get

B2
n =

n∑
i=1

σ2
Zi

= n (µ4 − σ4 ) + O(h−1) + O(nh2)

→ n (µ4 − σ4 ) as h→ 0 and n → ∞. (2.32)
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Also note that

Zi − E[Zi] = Y 2
i − bi (Yi − m(xi) ) − σ2 − m2(xi)

=

(
Yi −

bi
2

)2

− b2i
4

+ bim(xi) − σ2 − m2(xi)

=

(
Yi − m(xi) + m(xi) −

bi
2

)2

− b2i
4

+ bim(xi) − σ2 − m2(xi)

= (Yi − m(xi) )2 − 2 (Yi − m(xi) )

(
m(xi) −

bi
2

)
+

(
m(xi) −

bi
2

)2

− b2i
4

+ bim(xi) − σ2 − m2(xi). (2.33)

In the last equability on the right hand side of (2.33), the first term is independent and identi-

cally distributed random variables. This term is clearly bounded, because its expected value

is σ2 and its variance is µ4 − σ4. The second term on the right hand side of (2.33) con-

verges to zero as n → ∞ , because
(
m(xi) − bi

2

)
→ 0 as n → ∞ . The remaining

terms on the right hand side of (2.33) are constants and depend on the mean function. Since

the mean function is bounded, these terms are also bounded. Using equation (2.32), it is

obvious that

τ Bn → ∞, as n→ ∞.

Thus, I [ | Z − E[Zi] |> τ Bn ] will be always zero as n→ ∞. This implies that

1

B2
n

n∑
i=1

E
[
(Zi − E[Zi] )2 I [ | Z − µZ |> τ Bn ]

]
−→ 0 .

Therefore, the condition (2.29 ) is satisfied. Therefore, using Lindeberg-Feller central limit

theorem and equations (2.20) and (2.28 ), we obtain

√
n
(
Z̄ − C1

)
√
C2

d−→ N(0, 1)
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where d−→ means convergence in distribution,

C1 = σ2 +

1∫
0

m2(u) du and

C2 = µ4 − σ4.

That is,

√
n
(
Z̄ − C1

) d−→ N (0, C2) . (2.34)

2.5.2 Proof of Theorem 2.2.2

The aim of this subsection is to prove Theorem 2.2.2. Recall that

Tn(h) =
1

n (n− 1)h

∑∑
i 6=j

K

(
xi − xj
h

)
UiUj

=
∑∑
1≤i<j≤n

Tij

where Ui = Yi − m(xi) and Tij = 2
n (n−1)h K

(xi−xj
h

)
Ui Uj .

To prove the asymptotic normality of Tn(h) , we will use theorem 2.1 developed by De

Jong (1987). Below is the statement and its explanation of a statistics being ‘clean’.

Let X1, X2, ...Xn be independent random variables and W (n) =
n∑
i=1

n∑
j=1

Wij(Xi, Xj)

where Wij(Xi, Xj) is a Borel function such that var [Wij(Xi, Xj)] = σ2
ij is finite and

E(Wij(Xi, Xj)|Xi) = E(Wij(Xi, Xj)|Xj) = 0.

Definition 2.1 W (n) is called ‘clean’, if the conditional expectation of Wij vanish:

E [Wij|Xi ] = 0 a.s. for all i, j ≤ n.
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Theorem 2.1 Let W (n) be ‘clean’ with variance σ(n)2 . Assume

a) σ(n)−2 max
1≤i≤n

∑
1≤j≤n

σ2
ij → 0, asn→ ∞ ,

b) σ(n)−4E [W (n)4 ] → 3, asn→ ∞ .

Then

σ(n)−1W (n)
d−→ N(0, 1) as n→ ∞.

For 1 ≤ i < j ≤ n and using the above definition, we obtain

E [Tij|Ui ] = E

[
2

n (n− 1)h
K

(
xi − xj
h

)
Ui Uj |Ui

]
=

2

n (n− 1)h
K

(
xi − xj
h

)
(Yi − m(xi) )E [Yj − m(xj)]

= 0.

Using similar arguments, it can be shown that E [Tij|Uj ] = 0 . Hence, Tn(h) is ‘clean’.

Therefore, the proof of Theorem 2.2.2 will be completed if the following conditions are

satisfied

(D1)
(
σ2
Tn

)−2
E [T 4

n(h) ] → 3, asn→ ∞ ,

(D2)
(
σ2
Tn

)
)−1 max

1≤i≤n

∑
1≤j≤n

σ2
ij → 0, asn→ ∞ ,

where σ2
ij is the variance of Tij . It should be noted that the diagonal elements are not

included in the definition of Tn(h), but we can write

Tn(h) =
1

n (n− 1)h

∑∑
i 6=j

K

(
xi − xj
h

)
UiUj

=
1

n (n− 1)h

n∑
i=1

n∑
j=1

K

(
xi − xj
h

)
UiUj

− 1

n (n− 1)h

n∑
i=1

K (0) U2
i (2.35)
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Note that K(0) is a constant and 1
n

n∑
i=1

U2
i

p−→ σ2. Thus, 1
n (n−1)h

n∑
i=1

U2
i

p−→ 0. There-

fore, the right hand side of equation (2.35) can be written as

Tn(h) =
1

n (n− 1)h

n∑
i=1

n∑
j=1

K

(
xi − xj
h

)
UiUj + op ( 1 ).

So, the effect of not using the diagonal elements is of smaller order and Theorem 2.1 in De

Jong (1986) can be used to show normality of Tn(h). Also note that

σ2
ij = E[Tij ]2 − (E[Tij ] )2

=
4

n2 (n− 1)2 h2
K2

(
xi − xj
h

)
E [U2

i ]E [U2
j ]

=
4σ4

n2 (n− 1)2 h2
K2

(
xi − xj
h

)
. (2.36)

Now, to verify the conditions D1 and D2, first, second and fourth moments of Tn(h) are

needed. In Alharbi (2011), it is shown that

E (Tn(h)) =E

(
1

n (n− 1)h

n∑
i=1

∑
j 6=i

K

(
xi − xj
h

)
Ui Uj

)

=
1

n (n− 1)h

n∑
i=1

∑
j 6=i

K

(
xi − xj
h

)
E[Ui]E[Uj] = 0,

(2.37)

E
[
T 2
n(h)

]
=

2σ4

n2 h

1∫
0

K2 (v) dv + o(n−2 h−1), (2.38)

and

E
[
T 4
n(h)

]
=

12σ8

n4 h2

 1∫
0

K2 (v) dv

2

+ o(n−4 h−2). (2.39)
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Thus, we get

Var (Tn(h) ) = σ2
Tn = E

[
T 2
n(h)

]
− [E(Tn(h) )]2

=
2σ4

n2 h

1∫
0

K2 (v) dv + o(n−2 h−1). (2.40)

For detailed calculation, see Alharbi (2011).

To check the condition (D1), using (2.40) and (2.39) and by the assumption B4, observe

that

(
σ2
Tn

)−2
E
[
T 4
n(h)

]
=

 2σ4

n2 h

1∫
0

K2 (v) dv + o(n−2 h−1)

−2

×

 12σ8

n4 h2

 1∫
0

K2 (v) dv

2

+ o(n−4 h−2)


= 3 + o(1)

→ 3. (2.41)

To verify condition (D2), first note that using equation (2.36) and then Lemma 2.3.1, we

obtain

max
1≤i≤n

∑
1≤j≤n

σ2
ij =

4σ4

n2 (n− 1)2 h2
max
1≤i≤n

∑
1≤j≤n

K2

(
xi − xj
h

)

=
4σ4

n3 h2
max
1≤i≤n

 1∫
v=0

K2

(
xi − v
h

)
dv + O(n−1)

 .
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By substituting u = xi−v
h

, the last equation becomes

max
1≤i≤n

∑
1≤j≤n

σ2
ij =

4σ4

n3 h2
max
1≤i≤n

h
min{xi

h
,1}∫

u=max{xi−1

h
,−1}

K2 (u) du + O(n−1)


≤ 4σ4

n3 h2

[
h

∫ 1

−1
K2 (u) du + O(n−1)

]
= O(n−3 h−1 ). (2.42)

And finally, using equations (2.40) and (2.42), we get

(
σ2
Tn

)−1 max
1≤i≤n

∑
1≤j≤n

σ2
ij ≤ O(n−3 h−1 )

O(n−2 h−1 )
= O(n−1 ) → 0, as n →∞. (2.43)

Therefore by (2.41), (2.43) and using theorem 2.1 in De Jong (1987), it is easy to show that

(
σ2
Tn

)−1
2 Tn(h)

d−→ N ( 0 , 1 ) . (2.44)

That is,

n
√
h Tn(h)

d−→ N

 0 , 2σ4

1∫
0

K2 (v) dv

 .

2.5.3 Proof of Corollary 2.2.1

First note that, using Lemma 2.3.2, the approximation of the third term on the right hand side

of equation (2.5) is

1

n(n− 1)h

n∑
i=1

∑
j 6=i

K

(
xi − xj
h

)
m(xi)m(xj) =

1∫
0

m2(x) dx + O(hr) + O(n−1 ). (2.45)

Equation (2.37) implies that E(Z̄) · E(Tn(h)) = 0. Again using equation (2.37) and the

independence of Yi, Yj and Yk and Ui, Uj and Uk for i 6= j 6= k, we can show that
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E( Z̄ · Tn(h) ) = 0 . This leads to

Cov ( Z̄, Tn(h)) = E( Z̄ · Tn(h) ) − E( Z̄ ) · E(Tn(h)) = 0

By using (2.34) and (2.44), respectively, Z̄ and Tn(h) may be written as

Z̄ =
1√
n

(µ4 − σ4)1/2N1 + σ2 +

1∫
0

m2(x) dx (2.46)

and

Tn(h) =
1

n
√
h

 2σ4

1∫
0

K2 (v) dv

1/2

N2 (2.47)

where the random variablesN1 andN2 are standard normal distribution. Then, by (2.45) and

the above representation of Z̄ and Tn(h) , we may express σ̂2 as

σ̂2 =
1√
n

(µ4 − σ4)1/2N1 + σ2 +

1∫
0

m2(x) dx +
1

n
√
h

 2σ4

1∫
0

K2 (v) dv

1/2

N2

−
1∫

0

m2(x) dx + O(n−1) + O(hr ).

So, we obtain

(
σ̂2 − σ2

)
=

1√
n

(µ4 − σ4)1/2N1 +
1

n
√
h

2σ4

1∫
0

K2 (v) dv

1/2

N2 +O(n−1) +O(hr ).

Therefore, it is clear that

√
n
(
σ̂2 − σ2

)
=

(
µ4 − σ4

)1/2
N1 +

(nh )−1 2σ4

1∫
0

K2 (v) dv

1/2

N2

+ O(n−1/2 ) + O(n1/2 hr ).
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This implies that

√
n
(
σ̂2 − σ2

) d−→ N
(

0 , µ4 − σ4
)
. (2.48)

2.6 The Optimal Bandwidth Selection

It is obvious from Theorem 2.2.1 that the bias and variance of σ̂2 depend on the bandwidth

h . If h is large, the bias is also large. However, if h is small, the variance increases in the

second order. Thus, selection of an optimal bandwidth is vital for the efficient performance

of the estimator in (2.3). In this section, we investigate analytically the optimal bandwidth

of the estimator in (2.3).

From the previous section, the asymptotic mean squared error of the estimator in (2.3)

under the assumptions A1, A2, B1, B2, B3 and B4 is

AMSE(σ̂2) ≈ n−1C2 + n−2 h−1C3 + h2 r C4

where C1, C2 andC3 are as in Theorem 2.2.1 and C4 = C2
1 . To compute the asymptotic

optimal bandwidth for the estimator in (2.3), it is necessary to solve the following equation

∂ (AMSE)

∂h
= 0.

Therefore, we obtain

∂ (AMSE)

∂h
= −n−2h−2C3 + 2r h2 r−1C4 = 0. (2.49)

From equation (2.49), it is obvious that

h opt =

(
C3

2r C4

) 1
2r+1

· n−2/2r+1 .
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Thus, for the case of r = 2, hopt ∼ n−2/5. It should be noted that the (MSE) optimal

bandwidth for estimating the mean function is n−1/5 . However, here, h ∼ n−2/5. This

means the estimator in (2.3) uses the estimate of the mean function, which has a smaller bias

compared to the mean function estimator used in Hall and Marron estimator. This property is

often desirable according to Wang, Brown, Cia and Levine (2008). The mean squared error

corresponding to the asymptotic optimal bandwidth is

AMSEhopt(σ̂
2) = n−1 ·

(
µ4 − σ4

)
+

(
2 r

(r!)2

) 1
2r+1

n (−4 r/2r+1)C
(2 r/2r+1)
3 C

(1/2r+1)
5

+

(
(r!)2

2 r

) 2 r
2r+1

· 1

(r!)2
n (−4 r/2r+1)C

(2 r/2r+1)
3 C

(1/2r+1)
5

= n−1
[
µ4 − σ4 + n(−2 r+1)/(2r+1) · C6

]
(2.50)

where

C6 =

[(
2 r

(r!)2

) 1
2r+1

+

(
(r!)2

2 r

) 1
2r+1

]
C

(2 r/2r+1)
3 C

(1/2r+1)
5 .

For constants in C6, it is noted thatC3 is as in Theorem 2.2.1 and

C5 =

 1∫
0

K(y)yr dy

2  1∫
0

m(t)m(r)(t)dt

2

.

One of the most important cases is for r = 2. The mean squared error in this case is

AMSEhopt(σ̂
2) = n−1

{
µ4 − σ4 + 1.25n−3/5C

4/5
3 C

1/5
5

}
,

whereC5 =

(
1∫
0

K(y)y2 dy

)2 ( 1∫
0

m(t)m′′(t)dt

)2

. In addition, we can note that

Var(ε2) = E
(
ε4
)
−
(
E
(
ε2
))2

= E (Yi − m(xi))
4 −

(
E (Yi − m(xi))

2)2 = µ4 − σ4. (2.51)
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Hence, we obtain

AMSEhopt(σ̂
2) = n−1

{
Var(ε2) + 1.25n−3/5C

4/5
3 C

1/5
5

}
= n−1 var(ε2) + o(n−1).

The relative error of the estimator in (2.3) is n−3/5 .

For the Hall and Marron estimator (1990) and when r = 2 , one can show that the asymp-

totic optimal bandwidth is

hHM =

(
C7

C8

) 1
9

· n−2/9 (2.52)

where

C7 = σ4

1∫
0

(K ∗K(u)− 2K(u))2 du and (2.53)

C8 = (2)−2

 1∫
0

K(y)y2 dy

4  1∫
0

(m′′(t))
2
dt

2

. (2.54)

Note that * denotes a convolution. Clearly, n−2/9 compared with n−2/5 is closer to n−1/5 ,

meaning that the bandwidth h required for the Hall and Marron estimator is close to the

MSE-optimal bandwidth that one needs to estimate the mean function. So, the Hall and

Marron estimator focuses on the estimation of the mean function so that the estimate of the

mean is close to being MSE-optimal.

Before we comment on the mean square error of Hall and Marron estimator, we note that

the asymptotic optimal bandwidth of the estimator in (2.3) is very close to being square of

the asymptotic optimal bandwidth of the Hall and Marron estimator.
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The asymptotic mean squared error of Hall and Marron estimator when r = 2 is

AMSEHM,hopt = n−1
{

var(ε2) + (8)−7/9 n−7/9C
8/9
9 C

2/9
10

}
= n−1 var(ε2) + o(n−1)

where C9 = 2C7 and C10 = 1
4
C8 . The relative error of the Hall and Marron estimator

is n−7/9 . Therefore, in the first order, the optimal mean squared error rates for both of the

estimators are the same. In the second order, it is obvious that the Hall and Marron estimator

has smaller relative error than the estimator in (2.3). However, the smallest relative error does

not lead to a better performance in the finite sample behaviour as Dette, Munk and Wanger

(1998) and Tong, Liu and Wang (2008) have noted. To elaborate this further, consider the

ratio of the MSEs of the new and Hall and Marron estimators by excluding the constants,

MSE(Hall-Marron Estimator)
MSE (New Estimator)

=
n−1[1 + (n−7/9)]

n−1[1 + (n−3/5)]
=

1 + (n−7/9)

1 + (n−3/5)
.

The above ratio is approximately 0.97 for n = 100 . This means that the difference in

the second order of the mean squared error of the estimators has very little effect on the

performance of these estimators. In fact, it means, in finite sample, the performance of the

estimators considered is likely to be determined and dominated by the constants Cis involved

in the MSE expressions. This aspect is illustrated in detail in chapter 3.

Although, in the difference-based estimators, one is not required to estimate the mean

function explicitly, it estimates the mean implicitly with the smallest possible bias by taking

bandwidth h ∼ n−1 . To see this, observe that the first-order difference-based estimator is

based on (Yi − Yi−1)2 . So,

E (Yi − Yi−1)2 = 2 σ2 + [m(xi) − m(xi−1)]
2 .
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To have an estimate for σ2 with smaller bias, m(xi) − m(xi−1) is required to be close to

zero. Note that (xi− xi−1) = n−1 and that m(xi−1) = m(xi) + (xi− xi−1)m′(xi) + · · ·

using the Taylor series expansion. This leads to the bin size of (xi − xi−1) = n−1 . That is,

in general, the difference-based estimators use a smaller bandwidth than that of the new and

the Hall and Marron estimators. The asymptotic optimal bandwidth of the new estimator in

(2.3) is generally in the middle of the asymptotic optimal bandwidths of the difference-based

estimators and the residuals-based estimators.
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Chapter 3

Simulation Study: Finite Sample

Behaviour

3.1 Introduction

In chapter 2, we studied the asymptotic properties of the new estimator in the setting of the

homoscedastic nonparametric regression model. In this chapter, the main aim is to investi-

gate the finite sample performance of the new estimator defined in (1.28) through simulation.

In doing so, we will also verify that the asymptotic distribution of the new estimator is normal

as proved in the last chapter. To exhibit the finite sample performance of the new estimator,

we select a mean function and a bandwidth and then study the effect of these choices on

the shape of the distribution of the new estimator. We repeat this for several different mean

functions, each with different noise levels.

The general structure of the simulation studies is described in section 3.2. In section 3.3,

in order to assess the finite sample performance of the new estimator, we consider different

mean functions, each having different noise levels where the bandwidth is chosen appropri-

ately. In particular, we choose six different mean functions and four levels of error variances.
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From the mean square analysis in the second chapter, it is obvious that the performance

of the new estimator depends on the bandwidth selection. As noted before, large bandwidth

leads to a large bias and small bandwidth increases the variance in the second order. The

effect of bandwidth selection through simulation is presented in section 3.4. To investigate

this effect, the mean function and error variance are fixed, and bandwidth is allowed to vary.

After that, the relation between bandwidth and the mean squared error is discussed in section

3.5, by plotting the logarithms of selected bandwidths against the logarithms of their mean

squared errors.

3.2 The General Structure of the Simulation Studies

The model of the simulation studies in this chapter is Yi = m(Xi) + εi , where

C1. the design points X1, X2, · · · , Xn are independent and identically distributed uniform

[0, 1] random variables,

C2. Xis are independent of εis and

C3. the errors ε1, ε2, · · · , εn are independent and identically distributed random variables

from NormalN(0, σ2) .

For a given sample of size n , we first select randomly Xis and εis. Then Yis are gen-

erated using the model Yi = m(Xi) + εi . The observed values of the new estimator

σ̂2
NEW are calculated using equation (1.28). The kernel function K is selected to be the

standard normal probability density function. This procedure is replicated N times. Thus,

for each chosen σ2 and bandwidthh , there are N observed values of σ̂2
NEW . From these

observed values, the kernel density estimator, 1
N ho

N∑
i=1

W
(
u−ui
ho

)
, is obtained where ui is

ith observed values of σ̂2
NEW . The kernel function used to smooth the observed values of

σ̂2
NEW is the standard normal density function with bandwidth ho = hopt,N = 1.06SN N

−1
5
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where SN denotes the standard deviation of N observed values of σ̂2
NEW . For more details

about the optimal bandwidth choice for the density function, see Silverman (1984), and Fan

and Gijbels (1996). As noted in chapter 2, the new and the Hall and Marron estimators have

the same asymptotic distribution, which was described in Corollary 2.2.1. For comparison,

the asymptotic distributions are plotted in all considered cases in these simulation studies.

Remark:

In this simulation study, the uniform design has been used instead of equally spaced de-

sign. Note that since the distance from X(i) to X(i+1) remains approximately the same and

roughly equals 1
n

, the simulation study results are valid for the equally spaced design.

3.3 The Effect of the Mean Function on the Finite Sample Performance

of The New Estimator

To study the finite sample performance of the estimator in (1.28), six different mean functions

are considered,

i) m1(x) = 1.

ii) m2(x) = 4.7 + 2.4x + 5x2 + 4.3x3.

iii) m3(x) =
(
3 + x+ 4x2 + 8x4

)
· I(x ≤ 0.5)

+
(
5.875− x − x2 − x3

)
· I(x > 0.5).

iv) m4(x) = exp (−2− 4x − 5x2 − 6x3 ).

vi) m5(x) =
4

5
sin (2π x).

vii) m6(x) =
3

4
cos (10π x).

The above mean functions are plotted in the figures (3.1) and (3.2). In particular, we select
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Figure 3.1: The Plots of the Mean Functions m1(x)−m4(x) .
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Figure 3.2: The Plots of the Mean Functions m5(x)−m6(x) .
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three polynomial functions of different orders, an exponential function and two trigonomet-

ric functions. It is obvious that the shape of the first mean function is a line, whereas the

shapes of the other mean functions are non-linear curves. It is noted that the last two mean

function are periodic functions.

The error variances are chosen to be σ2 = 1, 4, 25 and 100 in order to examine the effect

of the size of the error variances on the finite sample performance of the estimator in (1.28).

The aim of this section is to study the effect of the above mean functions on the mean and

variance of the estimator in (1.28). Comparisons between the shape of the distributions of the

estimator in (1.28), the Hall and Marron estimator (1990) and their asymptotic distribution

are also presented for each mean function. It should be noted that the asymptotic perfor-

mance of the estimator in (1.28) with bandwidth h2 (in term of the mean squared error) is

approximately equivalent to the asymptotic performance of the Hall and Marron estimator

with bandwidth h . So, the bandwidth of the new estimator is selected to be square of that

of the Hall and Marron estimator.

With the first mean function as stated above, our model is

Yi = 1 + εi for i = 1, 2, · · · , n. (3.1)

We first choose randomly a hundred εis and then Yis are generated using the model (3.1).

The bandwidths of the new estimator and the Hall and Marron estimator are taken as 0.16

and 0.4, respectively. Then, for the chosen bandwidths, σ̂2
NEW and σ̂2

HM are computed

where

σ̂2
NEW =

1

n

n∑
i=1

Y 2
i −

1

n

n∑
i=1

∑
j 6=i

wi j Yi Yj. (3.2)

and σ̂2
HM and wi j are defined in equations (1.5) and (1.27), respectively. After that, we
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Figure 3.3: The Comparison Between the Estimated Distributions of the New Estimator (solid line) and the H
& M Estimator (dashed line) and their Asymptotic Distribution (dotted line) where m(x) = m1(x) .

replicate the above steps for N = 1000 times. Then, using N = 1000 observed values

of σ̂2
NEW and σ̂2

HM , the kernel density estimate of these estimators are plotted in the figure

(3.3).

For the mean functions m2(x)-m6(x), the same steps above are repeated where the mod-

els, the size of samples and the bandwidths for the kernel function in the estimators are

specified for these mean functions as follows. For the m2(x), the model defines as

Yi = 4.7 + 2.4xi + 5x2i + 4.3x3i + εi for i = 1, 2, · · · , n.
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Figure 3.4: The Comparison Between the Estimated Distributions of the New Estimator (solid line) and the H
& M Estimator (dashed line) and their Asymptotic Distribution (dotted line) where m(x) = m2(x) .

In the figure (3.4), the sample size is n = 200 . In all plots in this graph, the bandwidths

are selected as 0.0064 and 0.08 for the estimator in (3.2) and the Hall and Marron estimator,

respectively.

Using the third mean function m3(x), the model becomes

Yi =
(
3 + xi + 4x2i + 8x4i

)
· I(xi ≤ 0.5)

+
(
5.875− xi − x2i − x3i

)
· I(xi > 0.5) + εi for i = 1, 2, · · · , n.
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Figure 3.5: The Comparison Between the Estimated Distributions of the New Estimator (solid line) and the H
& M Estimator (dashed line) and their Asymptotic Distribution (dotted-dashed line) where m(x) = m3(x) .

The sample size for the figures (3.5)-(3.8) is chosen to be n = 100 . The bandwidths of

the kernel function in the new and the Hall and Marron estimators are taken as 0.01 and 0.1,

respectively, in the figure (3.5).

Using the fourth mean function m4(x), the model becomes

Yi = exp (−2− 4xi − 5x2i − 6x3i ) + εi for i = 1, 2, ....n.

The bandwidths of the kernel function in the new and the Hall and Marron estimators are
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Figure 3.6: The Comparison Between the Estimated Distributions of the New Estimator (solid line) and the H
& M Estimator (dashed line) and their Asymptotic Distribution (dotted line) where m(x) = m4(x) .

taken as 0.25 and 0.5, respectively, in the figure (3.6).

The model using the m5(x) is

Yi =
4

5
sin (2 π xi) + εi for i = 1, 2, ....n.

The model using the m6(x) can be defined as

Yi =
3

4
cos (10π xi) + εi for i = 1, 2, ....n.
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Figure 3.7: The Comparison Between the Estimated Distributions of the New Estimator (solid line) and the H
& M Estimator (dashed line) and their Asymptotic Distribution (dotted-dashed line) where m(x) = m5(x) .

For the figure (3.7), the bandwidths are chosen to be 0.0225 and 0.15 for the estimator in

(3.2) and the Hall and Marron estimator, respectively. However, the bandwidths in the fig-

ure (3.8) are taken as 0.0144 and 0.12 for the same estimators, respectively. Note that, for

the mean functions m2(x) to m6(x), the estimated kernel density function of the consid-

ered estimators is plotted in the figures (3.4)-(3.8), respectively, where the number of the

replications is N = 1000.
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Figure 3.8: The Comparison Between the Estimated Distributions of the New Estimator (solid line) and the H
& M Estimator (dashed line) and their Asymptotic Distribution (dotted-dashed line) where m(x) = m6(x) .

3.3.1 Results:

Clearly, the figures (3.3) to (3.8) provide numerical verification of Corollary 2.2.1. But im-

portantly, from the figures (3.3) and (3.6), it can be seen that means and variances of the

σ̂2
NEW and σ̂2

HM estimators are the same for all levels of σ2 . In addition, we can conclude

that the means and variances of the estimated distributions of the estimators are approxi-

mately the same for all levels of error variance in the figure (3.7).

From the figures (3.4), (3.5) and (3.8), for the small values of the error variances, the
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means of the σ̂2
NEW and σ̂2

HM are approximately the same but the variance of the estimator

in (3.2) is bigger than that of the Hall and Marron estimator. In the large values of the error

variances, these two estimators have roughly the same means and variances. So, it is clear

that as the error variance increases, the means and variances of these two estimators become

close to each other.

For the mean functions m1(x), m4(x) and m5(x), the estimator in (3.2), the Hall and

Marron estimator and their asymptotic distribution have approximately the same means and

variances with a slight difference at the top of the density function curves. From figures

(3.4), (3.5) and (3.8), it is obvious that the variance of the asymptotic distribution, which was

described in Corollary 2.2.1, is different than that of the estimator in (3.2) and the Hall and

Marron estimator when the error variance is small ( for σ2 = 1 and 4 ). This point will be

discussed later in the next section. It should be noted that we studied the effect of some other

mean functions. For details, see Alharbi (2011).

Remark:

1) The main R codes of all figures in this chapter are given in appendix A.

2) The numerical results of the simulation studies for figures (3.3) to (3.8) are given in

appendix B.

3.3.2 Discussion:

To compare the mean squared errors of the estimator in (3.2) and the Hall and Marron esti-

mator, we require
∫
y2K(y) dy = 1 ,

∫
K2(y) dy = 0.2821 and∫

[K ∗K(y)− 2K(y)]2 dy = 0.40635 where the kernel function K is the standard nor-

mal probability density function. It should be noted that, for ease in the calculation, all

constants that involve kernel integration are obtained by integrating from−∞ to +∞ for all
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cases in the current chapter.

In constant and simple linear regression models, the new and the Hall and Marron esti-

mators are unbiased estimators for σ2 since the second derivative of the mean function in

these models is zero. So, the means of the distributions of these estimators are expected to

be approximately the same for all levels of σ2 . To study the effect of the constants C1 and

C3 on the finite sample performance of the estimator in (3.2), we define the following mean

function

m7(x) = 0.2 + 0.4x+ 0.004x2 + 0.3x3 + 0.02x4 + 0.6x5.

For m2(x) where n = 200, hNEW = 0.0064 and hHM = 0.08, the biases of the esti-

mator in (3.2) and Hall and Marron estimator equal to 2.1 × 10−5 and 3.5 × 10−5 , re-

spectively. For m7(x) where n = 200, hNEW = 0.04 and hHM = 0.2, the biases

are 8.65 × 10−6 and 1.6 × 10−4 , respectively . So, it is obvious that the bias is negligible

for both estimators in these two cases and is approximately the same. Note that, in these two

cases, the bandwidth of the estimator in (3.2) is chosen as square of the bandwidth of the Hall

and Marron estimator as described in the remark 2 of Theorem 2.2.1. Thus, the difference

in the bias is due to the constants. For the detailed calculation of the bias, see Alharbi (2011).

From chapter 2, we know that the estimator in (3.2) and the Hall and Marron estima-

tor have approximately the same variance in the first order. To compare the variance in the

second order, we require to compute E1 = n−2 h−1C3 and E2 = n−2 h−1 2C7 where

C3 is as in Theorem 2.2.1 and C7 is defined in equation (2.50). Note that
1∫
0

m2
2(x) dx =

86 and
1∫
0

m2
7(x) dx = 0.4513. For m2(x) where n = 200, hNEW = 0.0064, hHM =

0.08 and σ2 = 1, 4, 25 and 100, we obtain E1 = 0.38, 1.6, 10.9 and 60 and E2 =

0.00025, 0.0004, 0.15 and 2.5, respectively. For m7(x) where n = 200, hNEW = 0.04,
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hHM = 0.2 and σ2 = 1, 4, 25 and 100, we get E1 = 0.00067, 0.007, 0.22 and 3.5 and

E2 = 0.0001, 0.0016, 0.0625 and 1, respectively. From comparisons of E1 and E2 for

m2(x) and m7(x), it is obvious that the differences between E1 and E2 for m2(x) are

larger than that of m7(x) . Thus, these two estimators have approximately the same variances

in the second order for m7(x) . But importantly, the differences in the variances of the esti-

mator in (3.2) and the Hall and Marron estimator are due to the differences in the constants.

So, this difference becomes negligible as n → +∞, h → 0 such that nh → +∞ . From

the discussion above and remark 2 of Theorem 2.2.1, it is clear that these two estimators

expect to have a similar behaviour when n→ +∞, h→ 0 such that nh→ +∞ .

In general, we found that when
1∫
0

m2(x) dx > 1 ( This term comes from the con-

stant C3 ) in the polynomial regression models of order ≥ 3 or when the mean function is

a periodic function, the variances of the σ̂2
NEW and σ̂2

HM estimators are expected to be dif-

ferent for small levels ofσ2. However, for large levels ofσ2, the means and the variances of

the σ̂2
NEW and σ̂2

HM estimators are nearly the same. In addition, when
1∫
0

m2(x) dx < 1,

the means and variances of both estimators are approximately the same for all levels of σ2 .

For the exponential mean function, it is obvious that the distributions of the two estima-

tors are the same. This may happen because the exponent of a negative polynomial function

is always between 0 and 1. In general, for any mean function of the type m(xi) = exp(A )

where A is a polynomial regression function and satisfy the constraint A < 0 for all xis,

the means and variances of the distributions of the estimator in (3.2) and the Hall and Marron

estimator are approximately the same.

In all of the above cases, as n → +∞, h → 0 such that nh → +∞, the distribu-

tions of the estimator in (3.2) and the Hall and Marron estimator are expected to be the

same as their asymptotic distribution, which was described in Corollary 2.2.1. For small
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noise levels, when the mean function is a polynomial function of order ≥ 3 or a peri-

odic function, the difference in the variances between the two considered estimators and

their asymptotic distribution is due to the constants, and this difference becomes negligible

as n→ +∞, h→ 0 such that nh→ +∞ .

Conclusion:

From the discussion above, we conclude that these estimators have approximately the

same means and variances for constant and simple linear regression models and for the

exponent of negative polynomial mean functions. In the polynomial regression models of

order ≥ 3, the estimators have a similar distributions for large error variance or when
1∫
0

m2(x) dx < 1. However, when
1∫
0

m2(x) dx > 1, the variances of these two estimators

are different for small levels of σ2 . This difference is due to the constants. When the mean

function is a periodic function for small levels of error variance, the variances of the esti-

mated distributions of these estimators are also different, but the means are approximately

the same. It should be noted that these results hold for appropriate choices of the bandwidths.

3.4 The Effect of the Bandwidth Selection

Bandwidth selection is one of the most important issues in the smoothing technique. There-

fore, the effect of this choice on the finite sample performance of the new estimator is con-

sidered here. To find this effect, a model with a fixed mean function and error variance is

assumed. Then, the bandwidth is allowed to vary. In addition, the number of replications in

this simulation study is selected to be N = 1000 with samples of size n = 200 . It should

be noted that this simulation study has the same structure as in section 3.2.

We suppose that

Yi = 1 + xi + 0.7x2i + 2x3i + 1.5x4i + 2x5i + εi for i = 1, 2, · · · , n (3.3)
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Figure 3.9: The Comparison Between the Distributions of the New Estimator and the H & M Estimator Using
a Model (3.3) with σ2 = 1 .

where the assumptions C1, C2 and C3 are satisfied. For this model, two different levels of

σ2 are studied. In particular, σ2 is chosen to be 1 and 36. The numerical results of the

simulation studies in this section are presented in appendix B.

The figure (3.9) indicates the comparison between the estimated distributions of the es-

timator in (3.2) and the Hall and Marron estimator for various bandwidths, where σ2 = 1 .

In particular, the bandwidths are taken as h = 0.06, 0.02, 0.008 and 0.006 for the estimator

in (3.2) and h = 0.12, 0.08, 0.05 and 0.01 for the Hall and Marron estimator. In the figure

(3.9), all chosen bandwidths are clearly given optimal results for the estimator in (3.2) ex-
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cept the bandwidth 0.06. As expected for the new estimator defined in (3.2), it is obvious

that large bandwidth gives a small variance and large bias. However, small bandwidth gives

large variance and small bias. For the Hall and Marron estimator, the bandwidths 0.12 and

0.08 indicate some bias in the estimation of σ2 . In addition, it is obvious that when an

appropriate bandwidth is used, then these two estimators and their asymptotic distribution,

which was stated in Corollary 2.2.1, have roughly the same means.

The second case for the model (3.3) is for σ2 = 36 . The figure (3.10) shows the compar-

isons between the estimated distributions of the same estimators in the figure (3.9) with σ2 =

36 and a sample of selected bandwidths, chosen to be h = 0.2, 0.1, 0.05 and 0.01 for the

estimator in (3.2) and h = 0.4, 0.25, 0.1 and 0.07 for the Hall and Marron estimator.

The conclusion from figure (3.10) shows that the bandwidths h = 0.1, 0.05 and 0.01

are nearly optimal for the estimator in (3.2) since the bandwidth 0.2 has given a slight bias

result in the estimation of σ2 . On the other hand, for the Hall and Marron estimators, the

last three of the chosen bandwidths are approximately optimal since the bandwidth h = 0.4

has given a bias estimation for σ2 = 36 . It is clear that if an appropriate bandwidth is used

for the estimator in (3.2) and the Hall and Marron estimator, then these two estimators and

their asymptotic distribution have approximately the same means and variances.

Conclusion: From the figures (3.9) and (3.10), the following conclusion can be drawn.

There is clear influence of the bandwidth choice on the finite sample performance of the

estimator in (3.2). For small error variance, the estimator in (3.2) has a narrow interval for

the optimal bandwidths choice. In addition, the interval of the optimal bandwidth selection

becomes wider for the estimator in (3.2) as the error variance increases. In the next section,

these results are investigated through plotting the logarithms of various bandwidths versus

the logarithms of their mean squared errors.
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Figure 3.10: The Comparison Between the Distributions of the New Estimator and the H & M Estimator Using
a Model (3.3) with σ2 = 36 .

3.5 The Relation Between Bandwidths and the Mean Squared Error

This section examines the differences between the mean squared error for the estimator in

(3.2) and the Hall and Marron estimator for various bandwidths where the bandwidth of the

estimator in (3.2) is selected as square of the bandwidth of the Hall and Marron estimator.

Two different models are studied. In the first model, the bias is zero, which occurs when the

second derivative of the mean function is zero, such as in the simple linear regression model.

The bias in the second model is bigger than zero.
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Assuming that

Yi = 3 + 2xi + εi for i = 1, 2, · · · , n (3.4)

where the assumptions C1, C2 and C3 are satisfied. The aim is to plot a sample of the loga-

rithms of selected bandwidths against the logarithms of their mean squared errors. In partic-

ular, the bandwidths for the Hall and Marron estimator are chosen to be from 0.00001 to 0.7,

where the difference between h(i) and h(i+1) equals to 0.001. The squares of these band-

widths are used for the estimator in (3.2). The size of sample is assumed to be n = 1000 .

In addition, the kernel function in the σ̂2
NEW and σ̂2

HM estimators is the standard normal

probability density function. Note that
1∫
0

m2(x) dx = 16.3334 .

The figure (3.11) shows the plot of the logarithms of various bandwidths versus the log-

arithms of the asymptotic mean squared errors of the estimator in (3.2) and the Hall and

Marron estimator where the model (3.4) is used. From this figure, it can be concluded that

there is a wide range of optimal bandwidth choices for this kind of models even when the

true σ2 is small. It is also noted that the logarithms of the asymptotic mean squared errors

of these two estimators are approximately the same for all chosen levels of σ2 .

A polynomial regression model of order 3 is now studied. Under C1, C2 and C3, suppose

that

Yi = 8 + 3 xi + 4x2i + 5x3i + εi for i = 1, 2, · · · , n. (3.5)

To find the logarithms of the asymptotic mean squared errors of the considered estimators, it

is important to note that
1∫
0

m2(x) dx = 121.53 ,
1∫
0

m′′(x)m(x) dx = 245 and
1∫
0

[m′′(x)]2 dx =

516 . From the graph (3.12), it can be concluded that the optimal bandwidths of the estimator

in (3.2) for small values of error variances have a narrow interval of choices. However, it is
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Figure 3.11: The Plot of the Logarithms of Selected Bandwidths versus the Logarithms of the Asymptotic Mean
Squared Error of σ̂2

NEW (solid line) and σ̂2
HM (dashed line) using Model (3.4).

obvious that the interval of the optimal bandwidths increases as the the error variance rises.

In addition, for all chosen noise levels, both of the estimators have approximately the same

minimum of the asymptotic mean squared error.

For the polynomial regression models of order higher than 3 and when
1∫
0

m2(x) dx > 1,

models of different orders have been studied. The same comparisons between the logarithms

of chosen bandwidths and the logarithms of their mean squared errors have been made by

using these models. The conclusion of these comparisons is similar to the results of the

model (3.5). So, the details are omitted.
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Figure 3.12: The Plot of the Logarithms of Selected Bandwidths versus the Logarithms of the Asymptotic Mean
Squared Error of σ̂2

NEW (solid line) and σ̂2
HM (dashed line) using Model (3.5).

3.6 Summary

In the first part of this chapter, the effect of the mean function on the finite sample per-

formance of the estimator in (3.2) is discussed. For the optimal bandwidth, we found that

the means and variances of the estimator in (3.2), the Hall and Marron estimator and their

asymptotic distribution are approximately the same for constant and simple linear regression

models, the exponent of negative mean functions, and polynomial regression models when
1∫
0

m2(x) dx < 1. When the mean function is a periodic function or a polynomial function

where
1∫
0

m2(x) dx > 1 , the same previous result can also be drawn for large values of

error variances. For small error variances, however the variances of the estimators differ.

But importantly, this difference is due to the constants. The results in section 3.3 provide a

numerical verification of normality of the estimator in (3.2).
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The effect of the bandwidth selection is looked at in sections 3.4 and 3.5 in this chapter.

We conclude that the bandwidth choice has clear influence on the finite sample performance

of the estimator in (3.2). From section 3.5 and for the constant and simple linear regression

models, we found that there is a wide range of the optimal bandwidth choices. In contrast,

for polynomial regression models of order ≥ 3, when
1∫
0

m2(x) dx > 1, the estimator in

(3.2) has narrow interval of the optimal bandwidth choices for small error variances. Thus,

the asymptotic performance of the estimator in (3.2) is affected by small variation in the

bandwidth choices. However, the interval of optimal bandwidth choices increases as the

error variance rises for both of the estimators. These results are supported by the results of

simulation studies in section 3.4.
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Chapter 4

The Mean Squared Error of a New

Estimator for Functional Error Variance

4.1 Introduction

The error of variance can be defined in two different settings under consideration: the model

(1.3) refers to constant variance (homoscedastic nonparametric regression) model and the

model (1.4) refers to variance function ( heteroscedastic nonparametric regression) model.

So far we have discussed a new estimator of error variance in the setting of homoscedastic

nonparametric regression model. In this chapter, we consider the following heteroscedastic

nonparametric regression model

Yi = m(xi) +
√
v(xi) εi, for i = 1, 2, · · · , n (4.1)

where m(xi) represents the unknown mean function E(Yi|xi), Yis denote the response

variable, v(xi) represents the variance function and xis denote the design points. The er-

rors εis are assumed to be independent and identically distributed random variables with

zero mean and unit variance and the fourth moment µ4(x) is bounded where µr(xi) =

E [(Yi − m(xi) )r] .
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From section 1.6, a new estimator for the error variance function, v̂(x), is proposed

where

v̂(x) =
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i

− 1

n (n− 1)h2 h1

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
YiYj

=
1

nh2

n∑
i=1

K

(
x− xi
h2

)[
Yi −

1

(n− 1)h1

∑
j 6=i

K

(
xi − xj
h1

)
Yj

]
Yi

=
1

nh2

n∑
i=1

K

(
x− xi
h2

)
ei Yi (4.2)

Note that K(.) is a kernel function satisfying the assumptions A1 and A2 stated in sec-

tion 1.6 and ei = Yi − 1
(n−1)h1

∑
j 6=i
K
(
xi−xj
h1

)
Yj . Thus, importantly it may be noted that

we smooth ei Yis as opposed to smooth e2i s in the residual-based estimators in order to esti-

mate the error variance function. The bandwidth h1 is used to estimate the mean function,

whereas the bandwidth h2 is used to estimate the variance function by way of smoothing

ei Yis. Our aim in the current chapter is to study the mean square error properties of the

estimator given in (4.2). In particular, we will study the effect of the bandwidths h1 and

h2 on the mean squared error of the estimator v̂(x).

Brown and Levine (2007) defined a class of difference-based estimators in the setting

of the heteroscedastic nonparametric regression model. To compare the asymptotic mean

squared error of the Brown and Levine estimator to that of the estimator in (4.2), we carry

out the mean squared analysis of linear version of the Brown and Levine difference-based

estimators. In this case, the Brown and Levine estimator can be defined as

v̂BL(x, 1, h) =
1

nh

n∑
i=1

{Ŝ2(x, h) − Ŝ1(x, h) (xi − x) }K
(
x−xi
h

)
∆2
i

Ŝ2(x, h) Ŝ0(x, h) − Ŝ2
1(x, h)

(4.3)
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where ∆i =
m∑
k=0

dj yi+k−bm/2c, for i = bm/2c + 1, ...., n + bm/2c − m ; bac repre-

sents the largest integer number less than a; Ŝr(x, h) = 1
n

n−1∑
i=2

(xi − x)rKh(xi − x);

Kh(u) = 1
h
K(u

h
); m denotes the order of differences and the difference sequence dj is

such that
m∑
j=1

dj = 0 and
m∑
j=1

d2j = 1. For more details, see Brown and Levine (2007).

This chapter is organised as follows. The main theorem, which gives the bias and the

variance of the estimator in (4.2), is stated in section 4.2, whereas its proof is provided in

section 4.3. In section 4.4, we give an outline of proof of the mean squared error of the

Brown and Levine estimator stated in (4.3) where the order of differences is 2. Since the bias

and the variance of v̂(x) depends on the bandwidths, we will briefly discuss the bandwidth

selection and its optimal choice in section 4.5.

4.2 The Main Results

Our main aim here is to establish mean squared error properties of the estimator in (4.2).

In addition to the assumptions A1 and A2 stated in section 1.6, we make the following

assumptions:

E1: The kernel function K has r-continuous derivatives in [−1, 1] where r ≥ 2.

E2: xis are equidistant design points in the interval [0,1] such that xi = i/n for i =

1, 2, · · · , n .

E2′: The design points xis are randomly chosen from the U [0, 1] distribution.

E3: The mean function m(x), the variance function v(x), µ3(x) and µ4(x) are bounded,

integrable, differentiable and have r-continuous derivatives.

E4: n→ +∞,h1 → 0 and h2 → 0 such that nh1 →∞ , nh2 →∞ and h1
h2
→ 0 .

The following theorem gives the bias and variance formulae of the estimator in (4.2).

Theorem 4.2.1. Suppose A1, A2, E1, E2, E3 and E4 are satisfied and h2 ∼ n−α , where α
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is positive constant such that α < 1 . Let r > 0 to be an even number, then

(i)E(v̂(x)) − v(x) = hr2 · C1(x) + o(hr2) +O(n−1 h−12 ),

(ii)V ar ( v̂(x) ) = n−1h−12 C2(x) + o(nh2)
−1,

where

C1(x) =
1

r!
v(r)(x)

∫
yrK (y) dy and

C2(x) =
(
µ4(x) − v2(x)

)
·
∫
K2 (t) dt.

Remark:

1) By using the bias and the variance in the above theorem, the mean squared error of the

estimator in (4.2) can be described as

MSE(v̂(x)) = (E(v̂(x)) − v(x))2 + V ar (v̂(x))

=h2 r2 C2
1 (x) + n−1h−12 C2(x) + o(n−1 h−12 ) + o(h2 r2 ).

(4.4)

Note that the contributions of the bias and the variance in the above mean squared

error depend on x through C1(x) and C2(x) , respectively. Clearly from the above

formula, the mean squared error of the estimator in (4.2) depends only on the bandwidth

h2 . For the effect of the bandwidth h1 on the mean squared error of this estimator,

see the remark 2 below. In the above theorem, the bandwidth h2 ∼ n−α where

α is a positive constant such that α < 1. Note that when α < 1/(2 r + 1), the

contribution of the variance in the mean squared error of the estimator (4.2) is larger

than the contribution of the bias. On the other hand, when 1/(2 r + 1) < α < 1, the

opposite occurs. So, taking α = 1/(2 r+ 1) is balance between the squared bias and

the variance of the estimator in (4.2) (the squared bias and variance trade-off).

2) From Theorem 4.2.1, it is obvious that the leading terms do not depend on the bandwidth
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h1 . However, one can quantify the second order effect of the bandwidth h1 on the

mean squared error of v̂(x), but we do not pursue that here. Thus, estimate of the mean

function does not have a first-order effect on the mean squared error of the estimator

v̂(x).

3) The new estimator v̂(x) has approximately the same bias and variance as the residual-

based local polynomial variance function estimator of Ruppert, Wand, Holset and Hössjer

(1997) described in section 1.5, when r is an even number such that r ≥ 2 and

xi = i/n, for i = 1, 2, · · ·n .

4) For the Brown and Levine estimator in (4.3), we can verify that the mean squared error

of this estimator, when the second-order differences is used, equals to

MSE( ˆvBL(x)) = n−1h−12 C2(x) + h2 r2 C2
1(x) + o(n−1 h−12 ) + o(h2 r2 ) (4.5)

where C1(x) and C2(x) are defined in Theorem 4.2.1. Thus, in this case, the asymp-

totic mean squared error of the estimator in (4.2) and the Brown and Levine estimator

in (4.3) are the same. In other words, these two estimators have the same mean squared

error in the first order. An outline of proof of the above mean squared error is discussed

in section 4.4.

5) If the assumption E2′ is used instead of E2, the results in Theorem 4.2.1 are still satis-

fied.

4.3 A Proof of Theorem 4.2.1

This section is divided into two subsections. In the first subsection, we state a lemma that

is required later in the proof of Theorem 4.2.1. This is followed by the proof of the above

theorem in the second subsection.
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4.3.1 Lemma

Lemma 4.3.1.

Suppose the assumptions A1,A2, E1, E2, E3 and E4 hold. Then,

(i)
1

n2

∑∑
i 6=j

K2

(
x− xi
h2

)
K2

(
xi − xj
h1

)
m(xj)

= h1 h2 m(x)

∫
K2 (t) dt +O(n−1 h1).

(ii)
1

n3

∑∑∑
i 6=j 6=k

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
K

(
xi − xk
h1

)
m(xj)

= h21 h2 m(x)

∫
K2 (t) dt+ o(h21 h2).

(iii)
1

n3

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
K

(
xk − xi
h1

)
m(xj)

= h21 h2 m(x)

∫
K2 (t) dt + o(h21 h2).

The proof of the above lemma is similar to the proof of Lemmas 2.3.1 and 3.4.1 in Alharbi

(2011). Thus, the details are omitted here. For more details, see Alharbi (2011).

4.3.2 A Proof of Theorem 4.2.1

To prove part (i) in Theorem 4.2.1, we require to find

E(v̂(x)) = E

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i

)

− E

(
1

n(n− 1)h1 h2

∑∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
YiYj

)
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=
1

nh2

n∑
i=1

K

(
x− xi
h2

)
E(Y 2

i )

− 1

n(n− 1)h2 h1

∑∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
E(Yi)E(Yj)

=
1

nh2

n∑
i=1

K

(
x− xi
h2

)(
m2(xi) + v(xi)

)
− 1

n(n− 1)h2 h1

∑∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
m(xi)m(xj).

Therefore, we obtain

E(v̂(x)) =
1

nh2

n∑
i=1

K

(
x− xi
h2

)
v(xi) +

1

nh2

n∑
i=1

K

(
x− xi
h2

)
m2(xi)

− 1

n(n− 1)h2 h1

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
m(xi)m(xj). (4.6)

Since the mean function m(x) and the variance function v(x) are bounded, Lemma

4.3.1 and Lemma 2.3.1 in section 2.3 can be used to approximate the summations in equation

(4.6). That is, the first and second terms on the right hand side of equation (4.6) can be

approximated as

1

nh2

n∑
i=1

K

(
x− xi
h2

)[
v(xi) +m2(xi)

]
=

1

h2

∫
K

(
x− u
h2

)[
v(u) +m2(u)

]
du+O(n−1 h−12 )

=

∫
K (y)

[
v(t− h2 y) + (m(t− h2 y))2

]
dy + O(n−1 h−12 ). (4.7)

By using Taylor series expansion, the right hand side of equation (4.7) becomes

RHS =

∫
K (y)

[
v(t) − h2 y v′(t) +

h22
2!
y2 v′′(t)− · · ·+ (−1)rhr2

r!
yr v(r)(t) + o(hr2)

]
dy

+

∫
K (y)

[
m(t)− h2ym′(t) +

h22
2!
y2m′′(t)− · · ·+ (−1)rhr2

r!
yrm(r)(t) + o(hr2)

]2
dy

+ O(n−1h−12 )
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= v(t) +m2(t) +
hr2
r!
v(r) (x)

∫
yrK (y) dy

+ hr2

∫
yrK (y) dy

[
1

0! r!
m(0)(x)m(r)(x) +

1

1! (r − 1)!
m(1)(x)m(r−1)(x)

+ · · ·+ 1

r! 0!
m(r)(x)m(0)(x)

]
+ o(hr2) + O(n−1 h−12 ), (4.8)

where v(r) (x) is the rth derivatives of the variance function v(x) and m(r) (x) denotes

the rth derivatives of the mean function m(x) .

By applying the first part of Lemma 4.3.1 to the third term on the right hand side of

equation (4.6), we obtain

1

n(n− 1)h2 h1

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
m(xi)m(xj)

=
1

h1 h2

∫ ∫
K

(
x− t
h2

)
K

(
t− u
h1

)
m(t)m(u) dt du+ O(n−1 h−12 )

= m2(x) +
hr1
r!
m(x)m(r)(x)

∫
zrK (z) dz

+ hr2

∫
yrK (y) dy

[
1

0! r!
m(0)(x)m(r)(x) +

1

1! (r − 1)!
m(1)(x)m(r−1)(x)

+ · · ·+ 1

r! 0!
m(r)(x)m(0)(x)

]
+ o(hr2) + O(n−1 h−12 ). (4.9)

where we used substitutions t−u
h1

= z, x−t
h2

= y to derive the last expression on the right

hand side of equation (4.9). Using (4.8 ) and (4.9), equation (4.6) simplifies to

E(v̂(x)) = v(x) +
hr2
r!
v(r)(x)

∫
yrK (y) dy +

hr1
r!
m(x)m(r)(x)

∫
zrK (z) dz

+ o(hr2) + O(n−1 h−12 )

= v(x) + hr2C1(x) + o(hr2) + O(n−1 h−12 ),

where C1(x) = 1
r!
v(r)(x)

∫
yrK (y) dy.
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Therefore, the squared bias is

(E(v̂(x)) − v(x) )2 = h2 r2 .C
2
1(x) + o(h2 r) + O(n−2 h−22 ). (4.10)

This complete the proof of part (i) in Theorem 4.2.1.

Now, note that V ar (v̂(x)) = E(v̂(x))2 − (E(v̂(x)))2, which means to compute the

variance, we need to know E(Y 3
i ) andE(Y 4

i ). Therefore, note that

E(Y 3
i ) = µ3(xi) + 3 v(xi)m(xi) + m3(xi),

E(Y 4
i ) = µ4(xi) + 4µ3(xi)m(xi) + 6 v(xi)m

2(xi) + m4(xi).

To find E(v̂(x))2, we first consider (v̂(x))2 and express it as

(v̂(x))2 =
6∑

a=1

Pa

where

P1 =
1

n2 h22

n∑
i=1

K2

(
x− xi
h2

)
Y 4
i ,

P2 =
1

n2 h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
Y 2
i Y

2
k ,

P3 =
−2

n2 (n− 1)h22 h1

(
n∑
i=1

K

(
x− xi
h2

)
Y 2
i

){∑∑
i 6=j

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
YiYj

}
,

P4 =
1

n2 (n− 1)2 h22 h
2
1

∑∑
i 6=j

K2

(
xi − xj
h1

)
K2

(
x− xi
h2

)
Y 2
i Y

2
j ,

P5 =
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

(
K

(
x− xi
h2

)
K

(
xi − xj
h1

)
YiYj

)
×

(
K

(
x− xi
h2

)
K

(
xi − xk
h1

)
YiYk

)
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and

P6 =
1

n2 (n− 1)2 h22 h
2
1

∑∑
i 6=k

(∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
YiYj

)

×

(∑
d6=k

K

(
x− xk
h2

)
K

(
xk − xd
h1

)
YkYd

)
.

To analyse P1 + P2, note that by the independence of Yi and Yk for i 6= k , we get

E(P1 + P2) =
1

n2h22

n∑
i=1

K2

(
x− xi
h2

)
E(Y 4

i )

+
1

n2h2

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
E(Y 2

i )E(Y 2
k )

=
1

n2h22

n∑
i=1

K2

(
x− xi
h2

)[
µ4(xi) + 4µ3(xi)m(xi) + 6v(xi)m

2(xi) +m4(xi)
]

+
1

n2h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
×

[
v(xi) v(xk) + v(xk)m

2(xi) + v(xi)m
2(xk) +m2(xi)m

2(xk)
]
. (4.11)

In case of P3, since Yi, Yj and Yk are independent for i 6= j 6= k , we have

E(P3) =
−2

n2 (n− 1)h22 h1

∑∑
i 6=j

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
E(Y 3

i )E(Yj)

− 2

n2 (n− 1)h22 h1

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xk − xi
h1

)
E(Y 3

k )E(Yi)

− 2

n2 (n− 1)h22 h1

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xk − xj
h1

)
× E(Y 2

i )E(Yj)E(Yk)

=
−2

n2 (n− 1)h22 h1

∑∑
i 6=j

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
×

[
µ3(xi)m(xj) + 3 v(xi)m(xi)m(xj) +m3(xi)m(xj)

]
− 2

n2 (n− 1)h22 h1

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xk − xi
h1

)
×

[
µ3(xk)m(xi) + 3 v(xk)m(xk)m(xi) +m3(xk)m(xi)

]
89



− 2

n2 (n− 1)h22 h1

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xk − xj
h1

)
×

[
v(xi)m(xj)m(xk) +m2(xi)m(xj)m(xk)

]
. (4.12)

For the term P4 , again Yi andYj are independent since i 6= j. Thus, we obtain

E(P4) =
1

n2 (n− 1)2 h22 h
2
1

∑∑
i 6=j

K2

(
x− xi
h2

)
K2

(
xi − xj
h1

)
E(Y 2

i )E(Y 2
j )

=
1

n2 (n− 1)2 h22 h
2
1

∑∑
i 6=j

K2

(
x− xi
h2

)
K2

(
xi − xj
h1

)
×

[
v(xi) v(xj) + v(xj)m

2(xi) + v(xi)m
2(xj) +m2(xi)m

2(xj)
]
. (4.13)

Again using independence of Yi,Yj and Yk for i 6= j 6= k, we get

E(P5) =
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
K

(
xi − xk
h1

)
× E(Y 2

i )E(Yj)E(Yk)

=
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
K

(
xi − xk
h1

)
×

[
v(xi)m(xj)m(xk) +m2(xi)m(xj)m(xk)

]
. (4.14)

Finally, by the independence of Yi,Yj ,Yk and Yd for i 6= j 6= k 6= d, we obtain

E(P6) =
1

n2 (n− 1)2 h22 h
2
1

∑∑
i 6=k

K2

(
xi − xk
h1

)
K

(
x− xi
h2

)
× K

(
x− xk
h2

)
E(Y 2

i )E(Y 2
k )

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
× K

(
xk − xi
h1

)
E(Y 2

i )E(Yj)E(Yk)
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+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=k 6=d

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xk
h1

)
× K

(
xk − xd
h1

)
E(Y 2

k )E(Yi)E(Yd)

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
× K

(
xk − xj
h1

)
E(Y 2

j )E(Yi)E(Yk)

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑∑
i 6=k 6=j 6=d

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
× K

(
xk − xd
h1

)
E(Yi)E(Yj)E(Yk)E(Yd)

=
1

n2 (n− 1)2 h22 h
2
1

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K2

(
xi − xk
h1

)
×

[
v(xi) v(xk) + v(xk)m

2(xi) + v(xi)m
2(xk) +m2(xi)m

2(xk)
]

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
× K

(
xk − xi
h1

)[
v(xi)m(xj)m(xk) +m2(xi)m(xj)m(xk)

]
+

1

n2(n− 1)2h4

∑∑∑
i 6=k 6=d

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xk
h1

)
K

(
xk − xd
h1

)
×

[
v(xk)m(xi)m(xd) +m2(xk)m(xi)m(xd)

]
+

1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
K

(
xk − xj
h1

)
×

[
v(xj)m(xi)m(xk) +m2(xj)m(xi)m(xk)

]
+

1

n2 (n− 1)2 h22 h
2
1

∑∑∑∑
i 6=k 6=j 6=d

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
× K

(
xk − xd
h1

)
m(xi)m(xj)m(xk)m(xd). (4.15)

So, the expected value of (v̂(x))2 is

E((v̂(x))2) = E[P1 + P2] + E(P3) + E(P4) + E(P5) + E(P6). (4.16)
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where E[P1 + P2] and E[Pa], for a = 3, · · · 6, are given in equations (4.11)-(4.15), re-

spectively.

To complete the computation of the variance, using equation (4.6), (E(v̂(x)))2 equals

(E(v̂(x)))2 =
1

n2 h22

n∑
i=1

K2

(
x− xi
h2

) [
v2(xi) + m4(xi) + 2 v(xi)m

2(xi)
]

+
1

n2 h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
v(xi) v(xk)

+
1

n2 h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
m2(xi)m

2(xk)

+
2

n2 h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
v(xi)m

2(xk)

− 2

n2 (n− 1)h22 h1

∑∑
i 6=j

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
v(xi)m(xi)m(xj)

− 2

n2 (n− 1)h22 h1

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xk
h1

)
× [v(xk)m(xi)m(xk) ]

− 2

n2 (n− 1)h22 h1

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xk − xj
h1

)
× [v(xi)m(xk)m(xj)]

− 2

n2 (n− 1)h22 h1

∑∑
i 6=j

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
m3(xi)m(xj)

− 2

n2 (n− 1)h22 h1

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xk − xi
h1

)
m3(xi)m(xk)

− 2

n2 (n− 1)h22 h1

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xk − xj
h1

)
× [m2(xi)m(xk)m(xj)]

+
1

n2 (n− 1)2 h22 h
2
1

∑∑
i 6=j

K2

(
x− xi
h2

)
K2

(
xi − xj
h1

)
m2(xi)m

2(xj)

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
K

(
xi − xk
h1

)
× m2(xi)m(xj)m(xk)
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+
1

n2 (n− 1)2 h22 h
2
1

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K2

(
xi − xk
h1

)
m2(xi)m

2(xk)

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
× K

(
xk − xi
h1

)
m2(xi)m(xj)m(xk)

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=k 6=d

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xk
h1

)
× K

(
xk − xd
h1

)
m2(xk)m(xi)m(xd)

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
× K

(
xk − xj
h1

)
m2(xj)m(xi)m(xk)

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑∑
i 6=k 6=j 6=d

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
× K

(
xk − xd
h1

)
m(xi)m(xk)m(xj)m(xd). (4.17)

Therefore, we obtain

V ar(v̂(x)) =
1

n2 h22

n∑
i=1

K2

(
x− xi
h2

) [
µ4(xi) + 4µ3(xi)m(xi) + 4v(xi)m

2(xi)− v2(xi)
]

− 2

n2 (n− 1)h22 h1

∑∑
i 6=j

K

(
xi − xj
h1

)
K2

(
x− xi
h2

)
× [µ3(xi)m(xj) + 2 v(xi)m(xi)m(xj)]

− 2

n2 (n− 1)h22 h1

∑∑
i 6=k

K

(
xk − xi
h1

)
K

(
x− xi
h2

)
K

(
x− xk
h2

)
× [µ3(xi)m(xk) + 2 v(xi)m(xi)m(xk)]

+
1

n2 (n− 1)2 h22 h
2
1

∑∑
i 6=j

K2

(
xi − xj
h1

)
K2

(
x− xi
h2

)
×

[
v(xi) v(xj) + v(xi)m

2(xj) + v(xj)m
2(xi)

]
+

1

n2 (n− 1)2 h22 h
2
1

∑∑
i 6=k

K2

(
xi − xk
h1

)
K

(
x− xi
h2

)
K

(
x− xk
h2

)
×

[
v(xi) v(xk) + v(xi)m

2(xk) + v(xk)m
2(xi)

]
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+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
K

(
xi − xk
h1

)
× v(xi)m(xj)m(xk)

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=k 6=j

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
× K

(
xk − xi
h1

)
v(xi)m(xj)m(xk)

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=k 6=d

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xk
h1

)
× K

(
xk − xd
h1

)
v(xk)m(xi)m(xd)

+
1

n2 (n− 1)2 h22 h
2
1

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
× K

(
xk − xj
h1

)
v(xj)m(xi)m(xk). (4.18)

As noted before, since the mean function m(x), the variance function v(x), µ3(x) and

µ4(x) are bounded, Lemmas 2.3.1 and 4.3.1 are used to approximate the summations in the

above equation. Using Lemma 2.3.1 and then Taylor expansion, the approximation of the

first term on the right hand side of the above equation is

1

n2 h22

n∑
i=1

K2

(
x− xi
h2

) [
µ4(xi) + 4µ3(xi)m(xi) + 4v(xi)m

2(xi)− v2(xi)
]

=
1

nh22

∫
K2

(
x− u
h

)
[µ4(u) + 4µ3(u)m(u)

+ 4 v(u)m2(u) − v2(u)
]
du + O(n−2 h−22 ).

=
1

nh2

∫
K2 ( y) dy

[
µ4(x) + 4µ3(x)m(x) + 4 v(x)m2(x)− v2(x)

]
+ o(n−1 h−12 ), (4.19)

where the last expression on the right hand side of equation (4.19) is derived using the substi-

tution x−u
h

= y. By following the same steps of the approximation above and using Lemma

4.3.1-(i), we can show that the second, third, fourth and fifth terms on the right hand side of
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equation (4.18) can be approximated, respectively, as follows:

−2

nh2

∫
K2(t) dt

[
µ3(x)m(x) + 2 v(x)m2(x)

]
+ o(n−1 h−12 ), (4.20)

−2

nh2

∫ ∫
K(t)K(y)K(t− h1

h2
y) dy dt

[
µ3(x)m(x) + 2 v(x)m2(x)

]
+ o(n−1 h−12 )

=
−2

nh2

∫ ∫
K(t)K(y)

[
K(t) − h1

h2
y K ′(t) +

h21
2!h22

y2K ′′(t) + o(
h21
h22

)

]
dy dt

×
[
µ3(x)m(x) + 2 v(x)m2(x)

]
+ o(n−1 h−12 )

=
−2

nh2

∫
K2(y) dy

[
µ3(x)m(x) + 2 v(x)m2(x)

]
+ o(n−1 h−12 ), (4.21)

1

n2 h2 h1

∫ ∫
K2(t)K2(y) dy dt

[
v2(x)m(x) + 2 v(x)m2(x)

]
+ o(n−2 h2 h1) = o(n−1 h−12 ) (4.22)

and

1

n2 h2 h1

∫ ∫
K2(t+

h1
h2
y)K(y)K(t) dy dt

[
v2(x)m(x) + 2 v(x)m2(x)

]
+ o(n−2 h2 h1) = o(n−1 h−12 ). (4.23)

Using Lemma 4.3.1-(ii) and then applying Taylor series expansion, the approximation of

the sixth term on the right hand side of equation (4.18) is

1

nh2

∫
K2(t) dt v(x)m2(x) + o(n−1 h−12 ). (4.24)

By applying Lemma 4.3.1-(iii), the approximation of each one of the last three terms on the

right hand side of equation (4.18) equals to

1

nh2

∫
K2(t) dt v(x)m2(x) + o(n−1 h−12 ). (4.25)
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Thus, the approximation of the last three terms in (4.18) is

3

nh2

∫
K2(t) dt v(x)m2(x) + o(n−1 h−12 ). (4.26)

Thus, using equations (4.19)-(4.24) and equation (4.26), the variance of v̂(x) is

V ar(v̂(x)) =
1

nh2

∫
K2 (y) dy

[
µ4(x) − v2(x)

]
+ o(n−1 h−12 )

= C2(x)n−1 h−12 + o(n−1 h−12 ), (4.27)

where

C2(x) =

∫
K2 (y) dy ×

(
µ4(x) − v2(x)

)
.

Thus, part (ii) in Theorem 4.2.1 is proved.

4.4 An Outline of Proof of the Mean Squared Error of the Brown and

Levine Estimator in (4.3)

The form of the mean squared error of the Brown and Levine estimators is known in the liter-

ature, which was described in (1.17), but the exact deterministic functions Cis are unknown.

For that, in this section, the bias and the variance of the local linear version of the Brown and

Levine estimator in (4.3) is obtained where the order of differences is 2. The assumptions A1

and A2 and the assumptions E1, E2, E3 and E4 stated in sections 1.6 and 4.2, respectively,

are assumed to be satisfied in the following analysis. First, note that the Brown and Levine

estimator in (4.3) can be written as

v̂BL(x, 1, h) = eT
(
XT
x WxXx

)−1
XT
x Wx ∆2 (4.28)
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where

eT = [ 1 0 ],

∆2 =
[
0 ∆2

2 · · · ∆2
n−1 0

]T
,

Xx =



0 0

1 x2 − x
...

...
...

...

1 xn−1 − x

0 0


and

Wx = diag

{
0, K

(
x2 − x
h

)
, · · · , K

(
xn−1 − x

h

)
, 0

}
.

Thus, to find the bias, it is required to calculate

E{v̂BL(x, 1, h)} = eT
(
XT
x WxXx

)−1
XT
x WxE

(
∆2
)

(4.29)

So, observe that

E
(
∆2
i

)
=

r∑
j=0

d2j
[
v(xi+j−br/2c) + m2(xi+j−br/2c)

]
+

∑∑
j 6=k

dj dkm(xi+j−br/2c)m(xi+k−br/2c).

And then using the Taylor series expansion, we obtain

m(xi+j−br/2c) = m(x) + (x− xi+j−br/2c)m
′(x) +

1

2
(x− xi+j−br/2c)

2m′′(x) + · · ·

and

v(xi+j−br/2c) = v(x) + (x− xi+j−br/2c) v
′(x) +

1

2
(x− xi+j−br/2c)

2 v′′(x) + · · · .
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When x ∈ [xi+j−br/2c−1, xi+j−br/2c], the distance between x and xi+j−br/2c can be

written as huij . Thus, by putting x − xi+j−br/2c = huij , x − xi+k−br/2c = huik and

using the last two equations in above, we get

E
(
∆2
i

)
=

r∑
j=0

d2j

[
v(x) + huij v

′(x) +
1

2
h2 u2ij v

′′(x) + m2(x) + 2huijm(x)m′(x)

+ h2 u2ij
(
m(x)m′′(x) + (m′(x))2

)]
+

∑∑
j 6=k

dj dk
[
m2(x) + huijm(x)m′(x) + huikm(x)m′(x) + h2 uij uik (m′(x))2

+
1

2
h2 u2ijm(x)m′′(x) +

1

2
h2 u2ikm(x)m′′(x)

]
+ o(h2).

For r = 2 (second order’s difference), the optimal difference sequence, which gives the best

possible performance of the difference-based estimators, is 0.809, −0.5 and

− 0.309 as stated in Hall, Kay and Titterington (1990). Using this sequence, one can show

that

E
(
∆2
i

)
=

2∑
j=0

d2j

[
v(x) + huij v

′(x) +
1

2
h2 u2ij v

′′(x)

]
+ o(h2) + O(n−1).

Now, observe that

X T
x Wx Xx =


n−1∑
i=2

Kh(xi − x)
n−1∑
i=2

(xi − x)Kh(xi − x)

n−1∑
i=2

(xi − x)Kh(xi − x)
n−1∑
i=2

(xi − x)2Kh(xi − x)

 .

Then, by putting Ŝr(x, h) = 1
n

n−1∑
i=2

(xi − x)rKh(xi − x), we get

(
n−1 X T

x Wx Xx

)−1
=

1

Ŝ2 (x , h) Ŝ0 (x , h) − Ŝ1
2
(x , h)

 Ŝ2(x, h) − Ŝ1(x, h)

− Ŝ1(x, h) Ŝ0(x, h)

 .
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Now, note that

n−1 X T
x Wx



0

(x2 − x)2

...

(xn−1 − x)2

0


=

 Ŝ2(x, h)

Ŝ3(x, h)



and

Ŝr(x, h) = hr
∫

urK(u) du + O (n−1).

Since K is symmetric around zero, we can prove that

1

2
v ′′(x ) eT

(
X T

x Wx Xx

)−1
X T

x Wx



0

(x2 − x)2

...

(xn−1 − x)2

0



=
1

2
v′′(x)h2

∫
u2K(u) du + O (n−1) + o(h2).

So, we obtain

E{v̂BL(x , 1 , h)} = eT
(
X T

x Wx Xx

)−1
X T

x Wx Xx

 v(x)

v′(x)



+
1

2
v′′(x)h2

∫
u2K(u) du + O (n−1) + o(h2)

= v(x) +
1

2
v′′(x)h2

∫
u2K(u) du + O (n−1) + o(h2).

The second order kernel function is clearly used to find the bias in the above calculation.
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Note that if rth order kernel is used, it is easy to verify that

E{v̂BL(x, 1, h) = v(x) +
1

r!
v(r)(x)hr

∫
urK(u) du + O (n−1) + o(hr)

where r is an even number. To find the variance of the Brown and Levine estimator in (4.3),

we require to compute

Var( ∆2
i ) =

r∑
j=0

d4j
[
µ4(xi+j−br/2c) + 4µ3(xi+j−br/2c)m(xi+j−br/2c)

+ 4 v(xi+j−br/2c)m
2(xi+j−br/2c) − v2(xi+j−br/2c)

]
+ 2

∑∑
j 6=k

d2j d
2
k

[
v(xi+j−br/2c) v(xi+k−br/2c)

+ v(xi+j−br/2c)m
2(xi+k−br/2c) + v(xi+j−br/2c)m

2(xi+k−br/2c)
]

+ 4
∑∑
j 6=k

d3j dk µ3(xi+j−br/2c)m(xi+k−br/2c)

+ 8
∑∑
j 6=k

d3j dk v(xi+j−br/2c)m(xi+j−br/2c)m(xi+k−br/2c)

+ 4
∑∑∑

j 6=k 6=e

d2j dk de v(xi+j−br/2c)m(xi+k−br/2c)m(xi+e−br/2c).

Using Taylor series expansion and the following sequence of differences 0.809, −0.5 and

− 0.309 , we obtain

Var( ∆2
i ) =

1

2

(
µ4(x) + v2(x)

)
+ O (h).

Similarly, we can show that

Cov( ∆2
i , ∆2

j ) =


0.185µ4(x) − 0.435 v2(x) for j = i− 1, i+ 1;

0.0625 (µ4(x) − v2(x) ) for j = i− 2, i+ 2;

0 for |i− j| > 2
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Also note that

n−1 X T
x Wx V Wx Xx =

 h−1C5(x)R(k) + o(h−1) O(n−1)

O(n−1) hC5(x)µ2(k
2) + O(n−1)


where R(k) =

∫
K2(y) dy, µ2(k

2) =
∫
y2K2(y) dy, C5(x) = µ4(x) − v2(x), Vi =

Var( ∆2
i ), Ci, j = Cov( ∆2

i , ∆2
j ) and

V =



0 . . . . . . . . . . . . . . . . . . 0

... V2 C2,3 C2,4 0 . . . . . . 0

... C3,2
. . . . . . . . . ...

...
... C4,2

. . . . . . . . . . . . 0
...

... 0
. . . . . . . . . . . . Cn−3,n−1

...
...

... 0
. . . . . . . . . Cn−2,n−1

...
...

...
... Cn−1,n−3 Cn−1,n−2 Vn−1

...

0 0 . . . . . . . . . . . . . . . 0



.

Now, we can show that

Var{v̂BL(x, 1, h) } = eT
(
XT
x WxXx

)−1
XT
x Wx V WxXx

(
XT
x WxXx

)−1
e

= n−1 h−1C5(x)R(k) + o(n−1 h−1).

4.5 The MSE-Optimal Bandwidth

It is obvious from Theorem 4.2.1 that the performance of the new estimator for error variance

function depends on the bandwidth h2. As in the usual smoothing problem, when h2 is

small, the variance is large and the bias is small. However, if h2 is large, the opposite oc-

curs. So, the optimal choice of the bandwidth h2 will be obtained by balancing the squared

bias and the variance of the estimator v̂(x) . An analytical discussion on the optimal selec-
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tion of the bandwidth h2 is provided in this section.

It is clear from Theorem 4.2.1 that the asymptotic mean squared error of the estimator

(4.2) is

AMSE(v̂(x)) = n−1 h−12 C2(x) + h2 r C6(x)

where C1(x) and C2(x) are defined in Theorem 4.2.1 and C6(x) = C2
1(x). To find the

asymptotic optimal bandwidth of the estimator in (4.2), we minimise AMSE(v̂(x)) with

respect to h2. For that, consider h2 to be a solution of

∂ (AMSE(v̂(x)))

∂h2
= 0.

So, we obtain

∂ (AMSE(v̂(x)))

∂h2
= −n−1h−2C2(x) + 2 r h2 r−1C6(x) = 0, (4.30)

and hence, it is easy to verify that the asymptotic MSE-optimal choice of the bandwidth h2

is

h2−opt =

(
C2(x)

2 r C6(x)

) 1
2r+1

× n−1/2r+1 .

One of the most important cases is for r = 2 (second order kernel) since the kernel function

in this case is a probability density function. So, when second order kenel function is used,

the asymptotic MSE-optimal choice of h2 is

h2−opt =

(
C2(x)

4C6(x)

) 1
5

× n−1/5 ∼ n−1/5 .

Thus, one can obtain the general formula of the asymptotic mean squared error correspond-

102



ing to this asymptotic optimal choice of h2 as

AMSEh2−opt(v̂(x)) = ( 2 r)
1

2r+1 n (−2 r/2r+1)C
(2 r/2r+1)
2 (x)C

(1/2r+1)
6 (x)

+

(
1

2 r

) 2 r
2r+1

n (−2 r/2r+1)C
(2 r/2r+1)
2 (x)C

(1/2r+1)
6 (x)

= n(−2 r/2r+1) × C7(x) (4.31)

where

C7(x) =

[
(2 r)

1
2r+1 +

(
1

2 r

) 2 r
2r+1

]
C

(2 r/2r+1)
2 (x)C

(1/2r+1)
6 (x).

Using equation (4.31), we can show that the asymptotic mean squared error using a second

order kernel function is

AMSEh2−opt(v̂(x)) = n(−4/5)
[

1.65 × C
(4/5)
2 (x)C

(1/5)
6 (x)

]
.

Brown and Levine (2007) have shown that the asymptotic optimal choice of the band-

width h for their estimator is approximately n
−1

2 r+1 and the mean squared error corre-

sponding to this choice of the bandwidth is

MSEhopt(v̂B&L(x)) = n(−2 r/2r+1) · C8(x) + o(n(−2 r/2r+1) ) (4.32)

where C8(x) is a bounded function which depends only on x. So, for the case of r = 2 ,

the asymptotic MSE-optimal bandwidth is h ∼ n
−1
5 and the asymptotic mean squared

error is

AMSEhopt(v̂B&L(x)) = n(−4/5) × C9(x)

where C9(x) equals to C8(x) when r = 2.
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From equations (4.31) and (4.32), the asymptotic mean squared errors of the new esti-

mator for the error variance function and the Brown and Levine estimator are clearly of the

same order. The difference is only in constants at the point of estimation. Thus, in the finite

sample, when C7(x) < C8(x) , the new estimator v̂(x) has a smaller mean squared error

than the Brown and Levine estimator. So, the new estimator is expected to perform better

than the Brown and Levine estimator in this case. However, in the infinite sample (for large

n), the mean squared errors of these two estimators converge to zero at the same rate.

From equation (4.5) and for the second order of differences, we can conclude that the

asymptotic optimal bandwidth and its corresponding mean squared error of the local linear

version of Brown and Levine estimator is the same as that of the estimator in (4.2).
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Chapter 5

The Asymptotic Normality of a New

Estimator for the Error Variance

Function

5.1 Introduction

In chapter 4, we carried out the mean square analysis of the estimator of the variance func-

tion that we proposed in the setting of the heteroscedastic nonparametric regression model.

The mean squared error allows to establish that the new estimator for estimating the variance

function is consistent and asymptotically unbiased. However, if we were to conduct a hy-

pothesis test or to find a confidence interval for the unknown variance function, it is essential

that we know the asymptotic distribution of the estimator for the variance function. Thus,

the aim in the current chapter is to derive the asymptotic distribution of the new estimator in

the setting of the heteroscedastic nonparametric regression model.

The current chapter is organised as follows. We restate the model in section 5.2. We also

state the main theorem of this chapter together with the descriptive outline of the way results
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are derived in later section. Then, we provide proofs for the main results in section 5.3.

5.2 The Main Results

Recall that our model is

Yi = m(xi) +
√
v(xi) εi, for i = 1, 2, · · · , n (5.1)

where m(xi) represents the unknown mean function E(Yi|xi), Yis denote the response

variable, v(xi) represents the variance function and xis denote the design points. The er-

rors εis are assumed to be independent and identically distributed random variables with

zero mean and unit variance.

For simplicity, xis are assumed to have a fixed design points in the interval [0,1] such that

xi = i/n for i = 1, 2, · · · , n . In this setting, the estimator for v(x) defined in (4.2) is

v̂(x) =
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i

− 1

n (n− 1)h1 h2

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
Yi Yj .

Now, by adding and subtracting the following expression

1

n (n− 1)h1 h2

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
[ 2m(xj)Yi + m(xi)m(xj) ] ,

in the above definition for v̂(x) and then rearranging the terms, we express v̂(x) as

v̂(x) =
3∑

k=1

Sk (h1, h2) (5.2)
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where

S1 (h1, h2) =
1

n

n∑
i=1

Qi &

Qi =
1

h2
K

(
x− xi
h2

) [
Yi −

2

(n− 1)h1

∑
j 6=i

K

(
xi − xj
h1

)
m(xj)

]
Yi ,

(5.3)

S2 (h1, h2) =
−1

n (n− 1)h1 h2

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
UiUj &

Ui = Yi − m(xi) ,

(5.4)

S3 (h1, h2) =
1

n(n− 1)h1 h2

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
m(xi)m(xj). (5.5)

The asymptotic behaviour of each one of the above three terms is studied separately, and

then these terms are combined to establish the asymptotic normality of the estimator v̂(x).

Clearly, the third term S3 (h1, h2) is a deterministic in nature. So, it can be approximated

easily using the standard lemma stated in section 4.3.

The second term S2 (h1, h2) is a quadratic form in Uis. For simplicity, set S2(h1 , h2) =∑∑
1≤i<j≤n

Sij where

Sij =
2

n (n− 1)h1 h2
K

(
x− xi
h2

)
K

(
xi − xj
h1

)
Ui Uj. (5.6)

For this quadratic term, we will verify that S2 (h1, h2) = op (S1 (h1, h2) ).

The first term S1 (h1, h2) is sum of independent random variables and its asymptotic

normality is provided in the following theorem. Note that the assumptions A1, A2 and the
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assumptions E1, E2, E3 and E4 used in the following theorem and corollary are stated in

sections 1.6 and 4.2, respectively.

Theorem 5.2.1. Under the assumptions A1, A2, E1, E2, E3 and E4

√
nh2 (S1 (h1 , h2) − C1(x) )

d−→ N

(
0 ,
(
µ4(x) − v2(x)

) ∫
K2 (y) dy

)
.

where C1(x) = v(x) − m2(x) .

The following corollary, which gives the asymptotic normality of the v̂(x) , follows from

the above theorem

Corollary 5.2.1. Suppose the assumptions A1, A2, E1, E2, E3 and E4 are satisfied. Let

h2 ∼ n−α, where α is a positive constant such that α < 1 , then

√
nh2 (v̂(x) − v(x) )

d−→ N

(
0 ,
(
µ4(x) − v2(x)

) ∫
K2 (y) dy

)
.

It should be noted that if the assumption E2′ stated in section 4.2 is used instead of the

assumption E2, the results of Theorem 5.2.1 and Corollary 5.2.1 are still true.

5.3 Proofs

The main aim of this section is to provide proofs for Theorem 5.2.1 and Corollary 5.2.1.

Since the random variables Qis defined in (5.3) are independent, we use the Lindeberg-

Feller central limit theorem to derive the asymptotic distribution of the term S1 (h1, h2) in

subsection 5.3.1. Then, we prove Corollary 5.2.1 in subsection 5.3.2. To prove this corollary,

we first provide an approximation to the deterministic term S3 (h1, h2). Then, we analyse

the term S2 (h1, h2) to show that S2 (h1, h2) is op (S1 (h1, h2)) . Using these results

and Theorem 5.2.1, we establish the asymptotic normality of the new estimator for v(x)

defined in (5.2 ).
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5.3.1 Proof of Theorem 5.2.1

The main purpose of this subsection is to prove Theorem 5.2.1. To prove this theorem, we

need to find the expected value and the variance of the term S1(h1 , h2). First, observe that

S1(h1 , h2) =
1

n

n∑
i=1

Qi =
1

nh2

n∑
i=1

K

(
x− xi
h2

)
[Yi − di ] Y i

=
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i −

1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi (5.7)

where di = 2
(n−1)h1

∑
j 6=i
K
(
xi−xj
h1

)
m(xj) . Thus, we obtain

E (S1(h1 , h2) ) =
1

nh2

n∑
i=1

K

(
x− xi
h2

) [
v(xi) + m2(xi)

]
− 1

nh2

n∑
i=1

K

(
x− xi
h2

)
dim(xi). (5.8)

Note that since the mean function m(x) and the variance function v(x) are bounded,

lemmas in sections 2.3 and 4.3 can be used to approximate the summations in (5.8). Using

Lemma 2.3.1, we note that

1

nh2

n∑
i=1

K

(
x− xi
h2

) [
v(xi) + m2(xi)

]
= v(x) + m2(x) +O(hr2) +O(n−1 h−12 ). (5.9)

For the second term in equation (5.8), using Lemma 4.3.1-(i), we get

1

nh2

n∑
i=1

K

(
x− xi
h2

)
dim(xi)

=
2

n(n− 1)h1h2

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
m(xi)m(xj)

= 2m2(x) + O(hr2) + O(n−1 h−12 ), (5.10)
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where the last equality follows from Lemma 4.3.1-(i). Thus, we obtain

E (S1(h1 , h2) ) = v(x) − m2(x) + O(hr2) + O(n−1 h−12 )

−→ v(x) − m2(x) , (5.11)

as n → ∞ and h2 → 0 such that nh2 → ∞. To compute the variance of the term

S1(h1 , h2), first note that

E

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i

)2

= E

[
1

n2 h22

n∑
i=1

K2

(
x− xi
h2

)
Y 4
i

+
1

n2 h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
Y 2
i Y

2
k

]

=
1

n2 h22

n∑
i=1

K2

(
x− xi
h2

)[
µ4(xi) + 4µ3(xi)m(xi) + 6 v(xi)m

2(xi) + m4(xi)
]

+
1

n2 h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

) [
v(xi) v(xk) + v(xk)m

2(xi)

+ v(xi)m
2(xk) + m2(xi)m

2(xk)
]
, (5.12)

where µr(xi) = E[(Yi −m(xi))
r] . Also consider

(
E

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i

))2

=

[
1

n h2

n∑
i=1

K

(
x− xi
h2

)(
v(xi) + m2(xi)

)]2

=
1

n2 h22

n∑
i=1

K2

(
x− xi
h2

) [
v2(xi) + 2 v(xi)m

2(xi) + m4(xi)
]

+
1

n2 h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)[
v(xi) v(xk) + v(xk)m

2(xi)

+ v(xi)m
2(xk) + m2(xi)m

2(xk)
]
.

(5.13)
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Now, use of (5.12), (5.13) and standard algebra gives,

Var

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i

)
=

1

n2 h22

n∑
i=1

K2

(
x− xi
h2

)
×
[
µ4(xi) + 4µ3(xi)m(xi) + 4 v(xi)m

2(xi) − v2(xi)
]
.

Using Lemma 2.3.1 in the right hand side of the above equation, we get

Var

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i

)
=

1

nh2

∫
K2 ( y) dy

×
[
µ4(x) − v2(x) + 4µ3(x)m(x) + 4 v(x) m2(x)

]
+ o(n−1 h−12 ). (5.14)

To calculate the variance of
(

1
nh2

n∑
i=1

K
(
x−xi
h2

)
di Yi

)
, first note that

E

[
1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

]2
=

1

n2 h22

n∑
i=1

K2

(
x− xi
h2

)
d2i E

(
Y 2
i

)
+

1

n2 h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
diE (Yi) dk E (Yk)

=
1

n2 h22

n∑
i=1

K2

(
x− xi
h2

)
d2i
(
v(xi) + m2(xi)

)
+

1

n2 h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
di dkm(xi)m(xk).

(5.15)

Also, consider that(
E

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

))2

=

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
dim(xi)

)2

=
1

n2 h22

n∑
i=1

K2

(
x− xi
h2

)
d2i m

2(xi)

+
1

n2 h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
di dkm(xi)m(xk).

(5.16)
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Therefore, using equations (5.15) and (5.16), we get

Var

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

)
=

1

n2 h22

n∑
i=1

K2

(
x− xi
h2

)
d2i v(xi)

=
4

n2 (n− 1)2 h21 h
2
2

∑∑
i 6=j

K2

(
x− xi
h2

)
K2

(
xi − xj
h1

)
m2(xj) v(xi)

+
4

n2 (n− 1)2 h21 h
2
2

∑∑∑
i 6=j 6=k

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
K

(
xi − xk
h1

)
× v(xi)m(xj)m(xk). (5.17)

Now, using Lemma 4.3.1-(i) and then Taylor series expansion, the first term on the right hand

side of the above equation is

4

n2 (n− 1)2 h21 h
2
2

∑∑
i 6=j

K2

(
x− xi
h2

)
K2

(
xi − xj
h1

)
m2(xj) v(xi)

=
4

n2 h1 h2

(∫
K2(y) dy

)2

m2(x) v(x) + o(n−2 h−11 h−12 )

= o(n−1 h−12 ).

By applying Lemma 4.3.1-(ii) to the second term on the right hand side of equation (5.17),

we obtain

4

n2 (n− 1)2 h21 h
2
2

∑∑∑
i 6=j 6=k

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
×K

(
xi − xk
h1

)
v(xi)m(xj)m(xk)

=
4

nh2

∫
K2(y) dy m2(x) v(x) + o(n−1 h−12 ).

Therefore, it is clear that

Var

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

)
=

4

nh2

∫
K2(y) dy m2(x) v(x) + o(n−1 h−12 ). (5.18)
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Now to find the covariance between
(

1
nh2

n∑
i=1

K
(
x−xi
h2

)
Y 2
i

)
and

(
1

nh2

n∑
i=1

K
(
x−xi
h2

)
di Yi

)
,

observe that

Cov

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i ,

1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

)

= E

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i ×

1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

)

−

[
E

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i

)
× E

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

)]

=
1

n2 h22

n∑
i=1

K2

(
x− xi
h2

)
diE(Y 3

i )

+
1

n2 h22

∑∑
i 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
dk E(Y 2

i )E(Yk)

−

[(
1

nh2

n∑
i=1

K

(
x− xi
h2

) [
v(xi) + m2(xi)

])

×

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
dim(xi)

)]
.

Then, by substituting expected values of Yk, Y
2
k and Y 3

k and then simplifying, we get

Cov

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i ,

1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

)

=
1

n2 h22

n∑
i=1

K2

(
x− xi
h2

)
di [µ3(xi) + 2 v(xi)m(xi) ]

=
2

n2 (n− 1)h1 h22

∑∑
i 6=j

K2

(
x− xi
h2

)
K

(
xi − xj
h1

)
× [µ3(xi)m(xj) + 2 v(xi)m(xi)m(xj) ] .

Then, finally using Lemma 4.3.1-(i), we obtain

Cov

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i ,

1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

)
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=
2

nh2

∫
K2 (y) dy

[
µ3(x)m(x) + 2 v(x)m2(x)

]
+ o(n−1 h2). (5.19)

Then using equations (5.14), (5.18 ) and (5.19), we have

Var (S1(h1 , h2) ) = Var

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i

)

+ Var

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

)

− 2 Cov

(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i ,

1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

)
=

1

nh2

∫
K2 ( y) dy

[
µ4(x) − v2(x)

]
+ o(n−1 h−12 ). (5.20)

To use the Lindeberg-Feller central limit theorem, it is necessary to verify that the follow-

ing condition holds,

lim
n→∞

1

D2
n

n∑
i=1

E
[
(Qi − E[Qi] )2 I [ | Qi − E[Qi] |> τ Dn ]

]
= 0 (5.21)

where D2
n =

n∑
i=1

V 2
Qi

, V 2
Qi

is the variance of Qi , and τ is a positive number. To show

the above condition holds, observe that

E [Qi ] =
1

h2
K

(
x− xi
h2

) [
v(xi) + m2(xi) − dim(xi)

]
=

1

h2
K

(
x− xi
h2

) [
v(xi) + m2(xi)

− 2

(n− 1)h1

∑
i 6=j

K

(
xi − xj
h1

)
m(xi)m(xj)

]
.

Using Lemma 2.3.1, the last expression simplifies to

E [Qi ] =
1

h2
K

(
x− xi
h2

) [
v(xi) − m2(xi)

]
+ O

(
hr1
h2

)
. (5.22)
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To compute the variance of Qi, note that

Var
(

1

h2
K

(
x− xi
h2

)
Y 2
i

)
=

1

h22
K2

(
x− xi
h2

) [
µ4(xi) − v2(xi) + 4µ3(xi)m(xi)

+ 4 v(xi)m
2(xi)

]
, (5.23)

and

Var
(

1

h2
K

(
x− xi
h2

)
di Yi

)
=

1

h22
K2

(
x− xi
h2

)
d2i v(xi)

=
v(xi)

h22
K2

(
x− xi
h2

) [
4

(n− 1)2 h21

(∑
i 6=j

K2

(
xi − xj
h1

)
m2(xj)

+
∑∑
i 6=j 6=k

K

(
xi − xj
h1

)
K

(
xi − xk
h1

)
m(xj)m(xk)

)]
.

Using Lemmas 2.3.1 and 4.3.1-(i), respectively, in the last term on the right hand side of the

above equation, we obtain

Var
(

1

h2
K

(
x− xi
h2

)
di Yi

)
=

4

h22
K2

(
x− xi
h2

)
v(xi)m

2(xi) + O(n−1 h−11 h−22 ) (5.24)

To complete the computation of the variance of Qi, we need to compute covariance between

1
h2
K
(
x−xi
h2

)
Y 2
i and 1

h2
K
(
x−xi
h2

)
di Yi . For that observe

Cov
(

1

h2
K

(
x− xi
h2

)
Y 2
i ,

1

h2
K

(
x− xi
h2

)
di Yi

)
=

1

h22
K2

(
x− xi
h2

)
[ di µ3(xi) + 2 di v(xi)m(xi) ]

=
1

h22
K2

(
x− xi
h2

) [
2

(n− 1)h1

∑
i 6=j

K

(
xi − xj
h1

)
m(xj)µ3(xi)

+
4

(n− 1)h1

∑
i 6=j

K

(
xi − xj
h1

)
m(xj) v(xi)m(xi)

]
.
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Then, using Lemma 2.3.1 and Taylor series expansion, we get

Cov
(

1

h2
K

(
x− xi
h2

)
Y 2
i ,

1

h2
K

(
x− xi
h2

)
di Yi

)
=

2

h22
K2

(
x− xi
h2

)[
µ3(xi)m(xi) + 2 v(xi)m

2(xi)
]

+ O

(
hr1
h22

)
+O(n−1 h−22 ). (5.25)

Then, using equations (5.23), (5.24) and (5.25), we obtain

Var (Qi ) = VQi
=

1

h22
K2

(
x− xi
h2

) [
µ4(xi) − v2(xi)

]
+ O

(
hr1
h22

)
+ O(n−1 h−22 ).

→ 1

h22
K2

(
x− xi
h2

) [
µ4(xi) − v2(xi)

]
, (5.26)

as h1, h2 → 0 and nh2 → ∞. Clearly from the above equation, the variance of Qi

depends on xi . Now, to verify that the condition (5.21) holds, we also require to compute

D2
n . So, we find

D2
n =

n∑
i=1

VQi
=

1

h22

n∑
i=1

K2

(
x− xi
h2

) [
µ4(xi) − v2(xi)

]
.

And then using Lemma 2.3.1 and Taylor series expansion, we obtain

D2
n =

n

h22

∫
K2

(
x− u
h2

) [
µ4(u) − v2(u)

]
du

=
n

h2

∫
K2 (y) dy

[
µ4(x) − v2(x)

]
+ o

(
n

h2

)
. (5.27)

Now, it should be noted that

Qi − E(Qi) =
1

h2
K2

(
x− xi
h2

)[
Y 2
i − di Yi − v(xi) + m2(xi)

]
. (5.28)
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Using equations (5.27) and (5.28), it is clear that

I [ | Qi − E[Qi] |> τ Dn ]

= I

[
| Qi − E[Qi] |> τ

√
n

h2

∫
K2 (y) dy [µ4(x) − v2(x)]

]

= I

[
h2 | Qi − E[Qi] |> τ

√
nh2

∫
K2 (y) dy [µ4(x) − v2(x)]

]
−→ 0,

because h2 | Qi − E[Qi] |= K2
(
x−xi
h2

)
[Y 2
i − di Yi − v(xi) + m2(xi) ] is a finite ran-

dom variable. So, it is bounded. However,

τ
√
nh2

∫
K2 (y) dy [µ4(x) − v2(x)] → ∞ as nh2 → ∞ . This means that the indi-

cator function is always zero as n becomes large enough. This implies that

1

D2
n

n∑
i=1

E
[
(Qi − E[Qi] )2 I [ | Qi − E[Qi] |> τ Dn ]

]
−→ 0. (5.29)

So, the condition (5.21) is satisfied. Thus, using Lindeberg-Feller central limit theorem

and equations (5.11) and (5.20 ), we obtain

√
nh2 (S1(h1 , h2) − C1(x))√

C2(x)

d−→ N(0, 1)

where

C1(x) = v(x) − m2(x) and

C2(x) =

∫
K2 ( y) dy

[
µ4(x) − v2(x)

]
.

That is,

√
nh2 (S1(h1 , h2) − C1(x))

d−→ N (0, C2(x)) . (5.30)
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Therefore, the proof of Theorem 5.2.1 is completed.

5.3.2 Proof of Corollary 5.2.1

To prove Corollary 5.2.1, we first require to approximate the term S3 (h1, h2) defined in

equation (5.5). Thus, using Lemma 4.3.1-(i) and then Taylor series expansion, the approxi-

mation of the term S3 (h1, h2) is

1

n (n− 1)h1 h2

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
m(xi)m(xj)

= m2(x) + O(n−1 h−12 ) + O(hr2)

−→ m2(x), (5.31)

as n→∞, h1 and h2 → 0 such that nh1 h2 →∞. Now, our aim is to find the expected

value and the variance of the term S2(h1 , h2). First, recall that

S2(h1 , h2) =
1

n (n− 1)h1 h2

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
UiUj

=
∑∑
1≤i<j≤n

Sij

where Ui = Yi − m(xi) and Sij is defined in equation (5.6).

Also note that Ui and Uj are independent for i 6= j . In addition, it should be noted that

the first two moments of Ui are as follows

E[Ui] = E[Yi]−m(xi) = 0 (5.32)

and

E[U2
i ] = E [Yi −m(xi)]

2 = v(xi) (5.33)
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Using equation (5.32) and by the independence of Ui and Uj for i 6= j, the expected

value of S2(h1 , h2) is

E (S2(h1 , h2) ) = E

(
1

n (n− 1)h1 h2

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
Ui Uj

)

=
1

n (n− 1)h1 h2

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
E[Ui]E[Uj]

= 0. (5.34)

Using (5.32) and (5.33) as well as the independence of Ui, Uj, Uk and Ud for i 6= j 6=

k 6= d , one can see that

E[S2
ij] = E

[
4

n2 (n− 1)2 h21 h
2
2

K2

(
x− xi
h2

)
K2

(
xi − xj
h1

)
U2
i U

2
j

]
=

4

n2 (n− 1)2 h21 h
2
2

K2

(
x− xi
h2

)
K2

(
xi − xj
h1

)
E[U2

i ]E[U2
j ]

=
4 v(xi) v(xj)

n2 (n− 1)2 h21 h
2
2

K2

(
x− xi
h2

)
K2

(
xi − xj
h1

)
, (5.35)

E[Sij Sji] = E

[
4

n2 (n− 1)2 h21 h
2
2

K

(
x− xi
h2

)
K

(
x− xj
h2

)
K2

(
xi − xj
h1

)
U2
i U

2
j

]
=

4

n2 (n− 1)2 h21 h
2
2

K

(
x− xi
h2

)
K

(
x− xj
h2

)
K2

(
xi − xj
h1

)
E[U2

i ]E[U2
j ]

=
4 v(xi) v(xj)

n2 (n− 1)2 h21 h
2
2

K

(
x− xi
h2

)
K

(
x− xj
h2

)
K2

(
xi − xj
h1

)
(5.36)

and

E[Sij Ski ] = E

[
4

n2 (n− 1)2 h21 h
2
2

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
× K

(
xk − xi
h1

)
U2
i Uj Uk

]
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=
4

n2 (n− 1)2 h21 h
2
2

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
K

(
xk − xi
h1

)
× E[U2

i ]E[Uj ]E[Uk ]

= 0. (5.37)

Similarly, we can show that

E[Sij Sik ] = E[Sij Skj ] = E[Sij Sjd ] = E[Sij Skd ] = 0. (5.38)

Now, observe that

E
[
S2
2(h1 , h2)

]
= E

[∑∑
1≤i<j≤n

Sij

]2
= E

[
1

2

∑∑
i 6=j

Sij

]2

=
1

4

[∑∑
i 6=j

E [S2
ij ] +

∑∑
i 6=j

E [Sij Sji] +
∑∑∑

i 6=j 6=k

E [Sij Ski ]

+
∑∑∑

i 6=j 6=k

E [Sij Sik ] +
∑∑∑

i 6=j 6=k

E [Sij Skj ]

+
∑∑∑

i 6=j 6=d

E [Sij Sjd ] +
∑∑∑∑

i 6=j 6=k 6=d

E [Sij Skd ]

]
.

Using (5.35), (5.36), (5.37) and (5.38), we get

E
[
S2
2 (h1 , h2)

]
=

1

n2 (n− 1)2 h21 h
2
2

∑∑
i 6=j

K2

(
x− xi
h2

)
K2

(
xi − xj
h1

)
v(xi) v(xj)

+
1

n2 (n− 1)2 h21 h
2
2

∑∑
i 6=j

K

(
x− xi
h2

)
K

(
x− xj
h2

)
× K2

(
xi − xj
h1

)
v(xi) v(xj).

Since the variance function v(x) is bounded, using Lemma 4.3.1-(i) and then using Taylor
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series expansion, one can show that

E
[
S2
2 (h1 , h2)

]
=

v2(x)

n2 h21 h
2
2

[∫ ∫
K2

(
x− u1
h2

)
K2

(
u1 − u2
h1

)
du1 du2

+

∫ ∫
K

(
x− u1
h2

)
K

(
x− u2
h2

)
K2

(
u1 − u2
h1

)
du1 du2 + O(n−1 h1)

]
=

2 v2(x)

n2 h1 h2

∫
K2 (t) dt

∫
K2 (y) dy + o(n−2 h−11 h−12 ). (5.39)

Note that O(n−3 h−11 h−22 ) = o(n−2 h−11 h−12 ) under the assumption E4. Then, using (5.34)

and (5.39), we obtain

Var (S2(h1 , h2) ) = E
[
S2
2 (h1 , h2)

]
− [E(S2(h1 , h2) )]2

=
2 v2(x)

n2 h1 h2

(∫
K2 (t) dt

)2

+ o(n−2 h−11 h−12 ). (5.40)

Now, our goal is to compute the covariance between Sk(h1 , h2)’s. Since the term

S3(h1 , h2) is a deterministic function, we get

Cov [S1(h1 , h2), S3(h1 , h2)] = Cov [S2(h1 , h2), S3(h1 , h2)] = 0.

Equation (5.34) implies that

E(S1(h1 , h2) ) · E(S2(h1 , h2) ) = 0.

Also note that, using the independence of Yi, Yj and Yk for i 6= j 6= k, we obtain

Cov [S1(h1 , h2), S2(h1 , h2)] = E(S1(h1 , h2) · S2(h1 , h2) )

− E(S1(h1 , h2) ) · E(S2(h1 , h2) )

= E

[(
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i −

1

nh2

n∑
i=1

K

(
x− xi
h2

)
di Yi

)

×

(
1

n(n− 1)h1h2

∑∑
i 6=j

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
Ui Uj

)]
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= E

[
2

n2 (n− 1)h1 h22

∑∑
i 6=j

K2

(
x− xi
h2

)
K

(
xi − xj
h1

) (
Y 3
i Yj − Y 3

i m(xj)

−Y 2
i m(xi)Yj + Y 2

i m(xi)m(xj) − di Y
2
i Yj + di Y

2
i m(xj)

+ di Y
2
i m(xi)Yj − di Yim(xi)m(xj)

)]
+E

[
1

n2 (n− 1)h1 h22

∑∑∑
i 6=j 6=k

K

(
x− xi
h2

)
K

(
x− xk
h2

)
K

(
xi − xj
h1

)
×
(
Y 2
k Yi Yj − Y 2

k Yim(xj) − Y 2
k Yjm(xi) + Y 2

k m(xi)m(xj)

− dk Yk Yi Yj + dk Yk Yim(xj) + dk Yk Yjm(xi) − dk Ykm(xi)m(xj) ) ]

= 0.

Thus, the three terms Sk(h1 , h2)’s are uncorrelated. Using equation (5.30), the term

S1(h1 , h2) can be written as

S1 (h1 , h2) =
1√
nh2

[
(µ4(x) − v2(x))

∫
K2 (y) dy

]1/2
N1 + v(x) − m2(x) (5.41)

where the random variableN1 is standard normal distribution. From equations (5.34) and

(5.40), it is clear that the expected value of the term S2 (h1 , h2) is zero and its variance is

o(n−1 h−12 ) . Therefore, we obtain

√
nh2 ( S2(h1 , h2) )

P−→ 0 . (5.42)

Thus, the effect of this term in the main distribution of v̂(x) is negligible compared to the

effect of the term S1(h1 , h2). Then, by equation (5.31) and the above representation of the

term S1(h1 , h2), the new estimator v̂(x) can be expressed as

v̂(x) =
1√
nh2

((µ4(x) − v2(x))

∫
K2 (y) dy)1/2N1

+ v(x) − m2(x) + m2(x) + O(n−1 h−12 ) + O(hr2).
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Therefore, we get

v̂(x) − v(x) =
1√
nh2

[
(µ4(x) − v2(x))

∫
K2 (y) dy

]1/2
N1 + O(n−1 h−12 ) + O(hr2).

Thus, it is obvious that

√
nh2 (v̂(x) − v(x) ) =

[
(µ4(x) − v2(x))

∫
K2 (y) dy

]1/2
N1

+ O(n−1/2 h
−1/2
2 ) + O(n1/2 h

r+1/2
2 ).

This implies that

√
nh2 (v̂(x) − v(x) )

d−→ N

(
0 , (µ4(x) − v2(x))

∫
K2 (y) dy

)
. (5.43)
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Chapter 6

Simulation Studies: Finite Sample

Behaviour of a New Estimator for the

Error Variance Function

6.1 Introduction

In chapters 4 and 5, we carried out analytical study of the proposed estimator for the error

variance function. Since the finite sample performance is one of the most important aspects

in the assessment of the goodness of any estimator, in the this chapter, our interest is to inves-

tigate the finite sample performance of the new estimator in the setting of the heteroscedastic

nonparametric regression model. So, we will investigate the effect of the mean function, the

bandwidth used to estimate the mean function, and the bandwidth for estimating the variance

function on the finite sample performance of the proposed variance function estimator. To

study the effect of the mean function, we fix the variance function and we then use different

mean functions to create the regression models. After that, we estimate the variance func-

tion in each case to explore the effect of the mean function where the bandwidths are chosen

appropriately. We shall compare this estimated variance function with the true variance func-
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tion in order to assess the goodness of the estimated variance function. We also provide plots

of the variance and the mean squared error of v̂(xi)s in each case of the simulation studies.

A general structure to study the effect of the mean function and the bandwidths on the

finite sample performance of the new estimator for the error variance function are given in

section 6.2 . In section 6.3, we assess the effect of the mean function on the finite sample

performance of the new estimator for the error variance function. For that, we select differ-

ent mean functions and then each mean function is examined with several variance functions

where the bandwidths are chosen appropriately. We particularly consider six different mean

functions for each variance function we estimate.

The estimator for the error variance function considered here has two different band-

widths. The first one denoted by, h1, is used to estimate the mean function, whereas the

other, h2, is used for estimating the variance function. Thus, the selections of these band-

widths have an effect on the finite sample performance of the new estimator. So, the influence

of both bandwidths is studied in section 6.4. In particular, in subsection 6.4.1, the effect of

the bandwidth h1 on the finite sample performance of the new estimator is investigated.

To study this effect, we fix the mean function, the variance function and the bandwidth h2

and then the bandwidth h1 is allowed to vary. After that, the effect of the bandwidth h2

on the finite sample performance of the new estimator is studied in subsection 6.4.2 . To

explore the effect of the bandwidth h2 through simulation, we fix the mean function, the

variance function and the bandwidth h1, after which several values of the bandwidth h2

are examined with these fixed choices.

We also employ the proposed estimator of the variance function in a real data set in section

6.5. The description of this real data set is given in subsection 6.5.1. Then, the estimation of

the variance function is explained in subsection 6.5.2.
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6.2 The General Structure of the Simulation Studies

In all simulation studies of this chapter, the regression model is Yi = m(xi) +
√
v(xi) εi ,

where

F1. the design points x1, x2, · · · , xn are independent and identically distributed uniform

[0, 1] random variables,

F2. xis are independent of εis and

F3. the errors ε1, ε2, · · · , εn are independent and identically distributed random variables

from standard normal distribution.

As in the setting of the homoscedastic nonparametric regression model, for a given sample

of size n , we first choose randomly xis and εis. After that, sort xis from the smallest to

the the largest values and then Yis are generated using the model Yi = m(xi)+
√

(v(xi)) εi

for selected m and v functions. The observed values of the new estimator v̂new(x) are

computed using the following equation,

v̂new(x) =
1

nh2

n∑
i=1

K

(
x− xi
h2

)
Y 2
i

− 1

n (n− 1)h1 h2

n∑
i=1

∑
j 6=i

K

(
x− xi
h2

)
K

(
xi − xj
h1

)
YiYj . (6.1)

where the bandwidths h1 and h2 are suitably selected. Note that the kernel function K

is chosen to be the standard normal probability density function as was the case in the sim-

ulation studies of the constant variance model in chapter 3. This procedure is replicated N

times. Therefore, for each selection of a variance function and a mean function and band-

widthsh1 and h2, there are N observed values for each v̂new(xi)s. Then, the mean of each

v̂new(xi)s is computed. Therefore, to present the estimated variance function, the mean val-

ues of v̂new(xi)s are plotted versus the chosen xis. The true variance function is plotted

in all considered cases of the simulation studies in order to examine the goodness of the es-
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timated functions. We also plot the corresponding variance and mean squared error versus

xis. The estimated variance functions by Brown and Levine estimators (2007) and their cor-

responding variance and mean squared error are also plotted in figures in sections 6.3.

Remarks:

1) The distance from x(i) to x(i+1) is approximately O(n−1) . Therefore, the results of the

simulation studies are still valid for the equally spaced design points.

2) The main Matlab functions for all the figures in the current chapter are provided in ap-

pendix C.

3) As noted in section 2.1, it is obvious that

K

(
xi − xj
h

)
/(n− 1)h = K

(
xi − xj
h

)
/(n− 1)h f(xi)

≈
K
(xi−xj

h

)∑
i 6=j
K
(xi−xj

h

)
where f(xi) is the density function of the uniform distribution. Thus, it is easy to

verify that the estimator (6.1) can be written as

v̂new(x) =
n∑
i=1

K
(
x−xi
h2

)
n∑
i=1

K
(
x−xi
h2

)
Y 2

i −
∑
j 6=i

K
(
xi−xj
h1

)
YiYj∑

i 6=j
K
(
xi−xj
h1

)
 . (6.2)

The above definition of the new estimator is used in all simulation studies in the cur-

rent chapter. The main reason to use this definition is that the summation of weights

given to each row is one. In other words,
n∑
j=1

wij = 1 for each i where wij =

K
(
x−xi
h2

)
/

n∑
i=1

K
(
x−xi
h2

)
.
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4) Recall that, the local linear version of the Brown and Levine estimator is

v̂BL(x, 1, h) =
1

nh

n∑
i=1

{Ŝ2(x, h) − Ŝ1(x, h) (xi − x) }K
(
x−xi
h

)
∆2
i

Ŝ2(x, h) Ŝ0(x, h) − Ŝ2
1(x, h)

(6.3)

where ∆i =
m∑
k=0

dj yi+k−bm/2c, for i = bm/2c+ 1, ...., n+ bm/2c −m ;

Ŝr(x, h) = 1
n

n−1∑
i=2

(xi−x)rKh(xi − x); bac represents the largest integer number less

than a and m denotes the order of differences, while djs represents the difference

sequence.

5) For the Brown and Levine estimator, we choose three orders of differences. In particular,

these orders are 2, 4 and 6. Note that we use the optimal difference sequence given

in Hall, Kay and Titterington (1991) for the chosen orders. These sequences are given

in the table (6.1).

Orders r The optimal difference sequences (d0, · · · dr)
2 (0.8090, −0.5, −0.309)
4 (0.2708, −0.0142, 0.6909, −0.4858, −0.4617)
6 (0.24, 0.03, −0.0342, 0.7738, −0.3587, −0.3038, −0.3472)

Table 6.1: The optimal difference sequences for the orders 2, 4 and 6

For all of the above optimal difference sequences, the following condition is satisfied,

r∑
i=0

di = 0 and
r∑
i=0

d2i = 1. (6.4)

In all simulation studies in sections 6.3 and 6.5, the local linear version of the Brown

and Levine estimator is used with these three orders of differences. For more details,

please see Hall, Kay and Titterington (1991) and Brown and Levine (2007).
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6.3 The Finite Sample Performance of the Estimator in (6.2): The Ef-

fect of the Mean function

The main goal of this section is to study the effect of the mean function on the finite sample

performance of the proposed estimator defined in (6.2). The description of the models and

specific structure of the simulation studies are provided in subsection 6.3.1, whereas the main

results and the discussion are given in subsections 6.3.2 and 6.3.3, respectively.

6.3.1 The Description of the Models and Specific Structure of the Simulation Studies

To study the effect of the mean function on the finite sample performance of the estimator

in (6.2), we use the six mean functions, which were described in section 3.3. We have four

different variance functions for each of the mean functions. So, in total, we generate data

from 24 regression models. The chosen variance functions are:

i) v1(x) = 3 + 2x.

ii) v2(x) = 0.5
(
2 + 4x − 4x2 + 3x3

)
.

iii) v3(x) = exp (−4− 5x2).

iv) v4(x) = | 0.25 cos (π x) | .

(6.5)

Note that the bandwidth h1 , which is used to estimate the mean function, is chosen to

minimise the bias E[ m̂(x)] − m(x), whereas the bandwidth h2, which is used to estimate

the variance function is selected such that the mean squared error of the variance function

estimator is minimised. Thus, optimal choices of the bandwidths h1 and h2 are used in the

simulation studies in this section. This point will be clarified in the following section. To

illustrate the performance of the estimator in (6.2), we will provide plots of the estimated

and the true variance functions. We also plot the estimated variance functions by the Brown

and Levine estimators on the same graph to illustrate relative performance of the proposed

estimator in (6.2) and the Brown and Levine estimators. Furthermore, we present the plots
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of the variance and the mean squared error of v̂(xi)s for both of the estimators.
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Figure 6.1: The Comparison Between the Estimated Variance Functions by the New Estimator and the Brown
and Levine Estimators where m(x) = m1(x) , (New estimator-Blue; Brown & Levine Estimators-Black; True-
Red).

To start with, consider the following regression model

Yi = m1(Xi) +
√
v1(Xi) εi

= 1 +
√

3 + 2 xi εi, for i = 1, 2, · · · , n. (6.6)
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Figure 6.2: The Variances and Mean Squared errors of the New Estimator and the Brown and Levine Estimators
for Simulation Studies in the Figure (6.1), (New estimator-Blue; Brown & Levine Estimators-Black; True-Red).

We first select randomly xis from the uniform distribution U [0, 1] and εis from the N(0, 1)

distribution, where the sample size is n = 100. After that, xis are sorted into ascending

order. Then, Yis are generated using the model (6.6). The bandwidths h1 and h2 of the

estimator in (6.2) are taken as 0.025 and 0.1, respectively. The bandwidth h2 of the Brown

and Levine estimators is chosen to be 0.06. Then, for the selected bandwidths, v̂New(x)s and

v̂BL(x)s are calculated using the equations (6.2) and (6.3), respectively. The previous steps
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are then replicated for N = 1000 times. The mean of each of v̂New(x)s and v̂BL(x)s

are computed. Using the means of v̂New(x)s and v̂BL(x)s, we plot the xis versus the

means of the v̂New(x)s and v̂BL(x)s in the plot (a) in the figure (6.1). For comparison,

the true variance function defined in (i) in (6.5) is also plotted in the same figure. We also

plot the variance and mean squared error of the estimators in the plots (a) and (b) in the

figure (6.2). Using the same mean function, we repeat the above steps by taking v(x) to be

v2(x) , v3(x) and v4(x) . Thus, to produce the plots (b), (c) and (d) in the figure (6.1),

we repeat the above steps for the following three models, respectively,

(i)Yi = 1 +
√

0.5 (2 + 4xi − 4x2i + 3x3i ) εi, for i = 1, 2, · · · , n.

(ii)Yi = 1 +
√

exp (−4− 5x2i ) εi, for i = 1, 2, · · · , n.

(iii)Yi = 1 +
√
| 0.25 cos (π xi) | εi, for i = 1, 2, · · · , n.

Again, in all these three plots (b), (c) and (d) in the figure (6.1), the same bandwidth h1

is used to estimate the mean function (h1 = 0.025). The bandwidth h2 of the estimator

in (6.2) and the Brown and Levine estimators is taken to be 0.1 and 0.06, respectively. The

corresponding variance and mean squared error of the estimators are presented in the plots

(c)-(h) in the figure (6.2), respectively.

For the mean functions m2(x) to m6(x), the same above steps are repeated where the

sample size is n = 100. The bandwidth h2 of the Brown and Levine estimators is chosen

to be 0.06 for the simulation studies in this section. The models and the chosen values of

the bandwidths h1 and h2 for the estimator in (6.2) are specified in sequel. It should also

be noted that the means of v̂New(x)s and v̂BL(x)s versus xis are plotted in the figures

(6.3), (6.5), (6.7), (6.9) and (6.11), respectively, where the number of the replications is

also N = 1000 times. The corresponding variance and mean squared error of the estimators

for the simulation studies in these figures are plotted in the figures (6.4), (6.6), (6.8), (6.10)
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Figure 6.3: The Comparison Between the Estimated Variance Functions by the New Estimator and the Brown
and Levine Estimators where m(x) = m2(x) , (New estimator-Blue; Brown & Levine Estimators-Black; True-
Red).

and (6.12), respectively.

The models, using the second mean function m2(x), are:

(i)Yi = 4.7 + 2.4xi + 5x2i + 4.3x3i +
√

3 + 2 xi εi, for i = 1, 2, · · · , n.
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Figure 6.4: The Variances and Mean Squared errors the New Estimator and the Brown and Levine Estimators
for Simulation Studies in the Figure (6.3), (New estimator-Blue; Brown & Levine Estimators-Black; True-Red).

(ii)Yi = 4.7 + 2.4xi + 5x2i + 4.3x3i

+
√

0.5 (2 + 4xi − 4x2i + 3x3i ) εi, for i = 1, 2, · · · , n.

(iii)Yi = 4.7 + 2.4xi + 5x2i + 4.3x3i +
√

exp (−4− 5x2i ) εi, for i = 1, 2, · · · , n.

(iv)Yi = 4.7 + 2.4xi + 5x2i + 4.3x3i +
√
| 0.25 cos (π xi) | εi, for i = 1, 2, · · · , n.

The bandwidth h1 of the estimator in (6.2) is chosen as 0.01 in the plots (a) and (b) in
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Figure 6.5: The Comparison Between the Estimated Variance Functions by the New Estimator and the Brown
and Levine Estimators where m(x) = m3(x) , (New estimator-Blue; Brown & Levine Estimators-Black; True-
Red).

the figure (6.3) and to be 0.0032 in the plots (c) and (d) in the same figure. The band-

width h2 of the estimator in (6.2) is selected to be 0.1, 0.12, 0.15 and 0.2 for the plots

(a), (b), (c) and (d) in the figure (6.3), respectively.
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Figure 6.6: The Variances and Mean Squared errors the New Estimator and the Brown and Levine Estimators
for Simulation Studies in the Figure (6.5), (New estimator-Blue; Brown & Levine Estimators-Black; True-Red).

For the third mean function m3(x), the models are:

(i)Yi =
(
3 + xi + 4x2i + 8x4i

)
· I(xi ≤ 0.5) +

(
5.875− xi − x2i − x3i

)
× I(xi > 0.5) +

√
3 + 2 xi εi, for i = 1, 2, · · · , n.

(ii)Yi =
(
3 + xi + 4x2i + 8x4i

)
· I(xi ≤ 0.5) +

(
5.875− xi − x2i − x3i

)
× I(xi > 0.5) +

√
0.5 (2 + 4xi − 4x2i + 3x3i ) εi, for i = 1, 2, · · · , n.
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Figure 6.7: The Comparison Between the Estimated Variance Functions by the New Estimator and the Brown
and Levine Estimators where m(x) = m4(x) , (New estimator-Blue; Brown & Levine Estimators-Black; True-
Red).

(iii)Yi =
(
3 + xi + 4x2i + 8x4i

)
· I(xi ≤ 0.5) +

(
5.875− xi − x2i − x3i

)
× I(xi > 0.5) +

√
exp (−4− 5x2i ) εi, for i = 1, 2, · · · , n.

(iv)Yi =
(
3 + xi + 4x2i + 8x4i

)
· I(xi ≤ 0.5) +

(
5.875− xi − x2i − x3i

)
× I(xi > 0.5) +

√
| 0.25 cos (π xi) | εi, for i = 1, 2, · · · , n.

The bandwidth h1 of the estimator in (6.2) is taken as 0.025 in the plots (a) and (b) in
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Figure 6.8: The Variances and Mean Squared errors the New Estimator and the Brown and Levine Estimators
for Simulation Studies in the Figure (6.7), (New estimator-Blue; Brown & Levine Estimators-Black; True-Red).

the figure (6.5) and to be 0.0032 in the plots (c) and (d) in the same figure. The bandwidth

h2 of the estimator in (6.2), which is used to estimate the variance function, is chosen to be

0.1, 0.1, 0.12 and 0.1 for the plots (a), (b), (c) and (d) in the figure (6.5), respectively.

Using the fourth mean function m4(x), the models become:

(i)Yi = exp (−2− 4xi − 5x2i − 6x3i ) +
√

3 + 2 xi εi, for i = 1, 2, · · · , n.
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Figure 6.9: The Comparison Between the Estimated Variance Functions by the New Estimator and the Brown
and Levine Estimators where m(x) = m5(x) , (New estimator-Blue; Brown & Levine Estimators-Black; True-
Red).

(ii)Yi = exp (−2− 4xi − 5x2i − 6x3i )

+
√

0.5 (2 + 4xi − 4x2i + 3x3i ) εi, for i = 1, 2, · · · , n.

(iii)Yi = exp (−2− 6xi − 5x2i − 6x3i ) +
√

exp (−4− 5x2i ) εi, for i = 1, 2, · · · , n.

(iv)Yi = exp (−2− 6xi − 5x2i − 6x3i ) +
√
| 0.25 cos (π xi) | εi, for i = 1, 2, · · · , n.

For all plots in the figures (6.7), (6.9) and (6.11), the bandwidth h1 for the estimator in
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Figure 6.10: The Variances and Mean Squared errors the New Estimator and the Brown and Levine Estimators
for Simulation Studies in the Figure (6.9), (New estimator-Blue; Brown & Levine Estimators-Black; True-Red).

(6.2) is 0.0032, whereas the bandwidth h2 is selected to be 0.01. It should be noted that

the models, which use to produce the figure (6.7), are described in the above four equations,

whereas the models, using the mean function m5(x), are as follows:
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Figure 6.11: The Comparison Between the Estimated Variance Functions by the New Estimator and the Brown
and Levine Estimators where m(x) = m6(x) , (New estimator-Blue; Brown & Levine Estimators-Black; True-
Red).

(i)Yi =
4

5
sin (2π xi) +

√
3 + 2 xi εi, for i = 1, 2, · · · , n.

(ii)Yi =
4

5
sin (2π xi) +

√
0.5 (2 + 4xi − 4x2i + 3x3i ) εi, for i = 1, 2, · · · , n.

(iii)Yi =
4

5
sin (2π xi) +

√
exp (−4− 5x2i ) εi, for i = 1, 2, · · · , n.

(iv)Yi =
4

5
sin (2π xi) +

√
| 0.25 cos (π xi) | εi, for i = 1, 2, · · · , n.
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Figure 6.12: The Variances and Mean Squared errors the New Estimator and the Brown and Levine Estimators
for Simulation Studies in the Figure (6.11), (New estimator-Blue; Brown & Levine Estimators-Black; True-
Red).

The models using m6(x) are:

(i)Yi =
3

4
cos (10π xi) +

√
3 + 2 xi εi, for i = 1, 2, · · · , n.

(ii)Yi =
3

4
cos (10π xi) +

√
0.5 (2 + 4xi − 4x2i + 3x3i ) εi, for i = 1, 2, · · · , n.

(iii)Yi =
3

4
cos (10π xi) +

√
exp (−4− 5x2i ) εi, for i = 1, 2, · · · , n.

(iv)Yi =
3

4
cos (10π xi) +

√
| 0.25 cos (π xi) | εi, for i = 1, 2, · · · , n.
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6.3.2 Results

The main results from the figures (6.1)-(6.12) are described in this subsection. From the fig-

ures (6.1), (6.7), (6.9) and (6.11), in general, the performance of the estimator in (6.2) and the

Brown and Levine estimators are approximately the same except near the boundary, which

was expected. So, the Brown and Levine estimators do not perform as good in the boundary

as the estimator in (6.2) since there is a clear lack of information near the boundary because

of differencing. In fact, higher the order of differencing, worst is the performance of the

Brown and Levine estimator near the boundary. In the figures (6.2), (6.8), (6.10) and (6.12),

the variance and the mean squared error of the estimator in (6.2) are smaller than that of the

Brown and Levine estimators.

In the plots (a) and (b) in the figures (6.3) and (6.5), the performances of the estimators

are approximately the same in the interior points. The estimator in (6.2) has less bias in

the boundary points than that of the Brown and Levine estimators. In the plots (c) and (d)

in these two figures, the estimator in (6.2) may has less bias than that of the Brown and

Levine estimators, but their variances and their mean squared errors are less than that of the

estimator (6.2).

6.3.3 Discussions

This discussion is valid when the bandwidths for the estimator in (6.2) and the Brown and

Levine estimators are chosen appropriately. Recall that the chosen values for the bandwidths

h1 and h2 in subsection 6.3.1 are selected optimally for both estimators. When the variance

function is a simple linear regression function, the bias of the estimated variance function by

both estimators is expected to be zero since the second derivative of the variance function

is zero. However, the bias is expected to be bigger than zero when the variance function is

polynomial regression functions of order ≥ 3 , exponential functions or trigonometric func-
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tions. In the figures (6.1), (6.3), (6.5), (6.7), (6.9) and (6.11), it should be noted that, in the

boundary points, there is a clear bias in the estimated variance functions by the Brown and

Levine estimators because of using differencing in the estimation of the variance function.

This point will be clarified at the end of this subsection.

Clearly, when the mean function is a polynomial function, which has rth continuous

derivatives where r ≤ 10, its effect on the finite sample performance of the estimator in

(6.2) is very clear. See for the example plots (f) and (h) in the figures (6.4) and (6.6).

However, when the mean function is a smooth function, its effect on the performance of the

estimator is less than that of a polynomial regression function of order r ≤ 10, but this

effect is smaller than that of the variance function. For the variance function, in general,

when the variance function is a polynomial regression function of order smaller than 10, the

estimator in (6.2) is expected to perform better than that of the Brown and Levine estimators

in the boundary. However, the performances of the estimators are approximately the same

in the interior points. On the other hand, when the mean and variance function are a smooth

function, we can conclude that the estimator in (6.2) performs better than the Brown and

Levine estimators. However, when the variance function is a smooth function and the mean

function is a polynomial regression function of order smaller than 10, the performances of

the estimator in (6.2) and the Brown and Levine estimators are approximately the same in

the interior points, but the Brown and Levine estimators perform better than the estimator in

(6.2) in the boundary in term of the mean squared error. In summary, when the mean func-

tion is a polynomial function of order ≥ 3, exponential function or trigonometric function

and the variance function is a polynomial function of order ≥ 3, the performance of the

estimator in (6.2) is better than that of the Brown and Levine estimators in the boundary.

When the mean and variance function are smooth functions, the estimator in (6.2) performs

better than the Brown and Levine estimators.
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From Theorem 4.2.1, recall that the mean squared error of the estimator in (6.2) is

MSE(v̂(x)) = h2 r2 C2
1 (x) + n−1h−12 C2(x) + o(n−1 h−12 ) + o(h2 r2 ), (6.7)

where C1(x) = 1
r!
v(r)(x)

∫
yrK (y) dy and C2(x) = (µ4(x) − v2(x) ) ·

∫
K2 (t) dt.

Thus, it is obvious that the deterministic functions C1 (x) and C2 (x) depend on the vari-

ance function that we are estimating, whereas the mean function does not have a first order

effect. Thus, its contribution in the the mean squared error of the estimator in (6.2) is ex-

pected to be negligible. In the finite sample, the results in this section support this conclusion.

Note that the effect of the variance and mean functions on the finite sample performance of

the estimator in (6.2) decreases as the size of the sample increases. From chapter 4, in the

asymptotic analysis, we showed that the mean squared errors of the estimator in (6.2) and

the Brown and Levine estimator in (6.3) are the same in the first order where the order of

differences is 2. In the finite sample case, when the order of differences is 2, the difference

in the boundary points between these two estimators are due to the lack of information in the

difference-based method.

Generally, the performances of these two estimators are approximately the same in the

interior points when the order of differences is 2. However, as the order of differences rises,

it is clear that the lack of information in the boundary points increases and in some cases the

bias also rises. It should be noted that when the optimal bandwidth of the Brown and Levine

estimator is bigger than that of the estimator in (6.2), the Brown and Levine estimators might

have a bigger bias than that of the estimator in (6.2). On the other hand, small choices of the

bandwidth h2 for the Brown and Levine estimator decrease the bias, but the variance rises

and so does the lack of the information in the boundary points.

According to the literature, when the local polynomial fitting is used to estimate the mean
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function in the nonparametric regression models, the estimated mean function does not suffer

from the boundary effect. So, we can use the same kernel in the boundary and interior points.

In other words, the local polynomial estimators for the mean function adapt automatically

when they estimate the boundary points. The same thing happens when the local polynomial

fitting is used to estimate the density function. On the other hand, when the local polynomial

fitting is used to estimate the error variance function in the difference-based method, the

difference-based estimators suffer from the boundary bias. This bias in the boundary points

is due to the lack of information when the differences’ sequences are computed to estimate

the error variance function.

Conclusion:

Generally, the performances of the estimators in the interior points are approximately the

same except when the mean and variance function are trigonometric functions. In this case,

the estimator in (6.2) performs better than the Brown and Levine estimators in the interior

and boundary points. When the mean and variance are polynomial functions of order ≥ 3,

the performance of the estimator in (6.2) is better than that of the Brown and Levine estima-

tors in the boundary. However, when the mean function is a polynomial function of order

≥ 3 and the variance function is a smooth function, the opposite occurs.

Clearly, the effect of the variance function on the finite sample performance of the esti-

mator in (6.2) is larger than the effect of the mean function in all cases in this section. Thus,

these results support the conclusion of Theorem 4.2.1 that estimating mean function does not

have a first order effect on the mean squared error of the estimator in (6.2). Note that when

the mean function is a polynomial function of order ≥ 3, it has more influence on the finite

sample performance of the estimator in (6.2) than when it is a smooth function.
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6.4 The Effect of the Bandwidth Selection on the Performance of the

Estimator in (6.2)

The bandwidth selection is one of the most important aspects in the error variance estimation

since it plays a major role on the performance of the error variance function estimators.

Furthermore, it is obvious from chapter 4 that, in the asymptotic analysis, the performance

of the estimator in (6.2) depends on the bandwidths h1 and h2 . In chapter 4, we also found

that the effect of the bandwidth h2 on the mean squared error of the estimator in (6.2) is

more significant than the influence of the bandwidth h1 . In the current section, we study the

effect of the bandwidth selection on the finite sample performance of the estimator in (6.2)

through simulation. The effect of the bandwidth h1 on the performance of the estimator in

(6.2) is considered in subsection 6.4.1, whereas the influence of the bandwidth h2 is studied

in subsection 6.4.2.

6.4.1 The Effect of the Bandwidth h1 on the Finite Sample Performance of the Esti-

mator in (6.2)

The effect of the choices of the bandwidth h1 on the finite sample performance of the

estimator in (6.2) is studied in this subsection. To study this effect, the mean function, the

variance function and the bandwidth h2 are fixed. Then, the bandwidth h1 is allowed to

vary. Note that the bandwidth h2 is selected to be balancing between the squared bias and

the variance of the estimator in (6.2). The number of replications in the simulation studies is

chosen to be N = 1000 of sample size n = 100 . In particular, we study the influence of

the h1 on the finite sample performance of the estimator in (6.2) with three different mean

functions and two variance functions. Note that the structure of the simulation studies in this
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Figure 6.13: The Effect of the Bandwidth h1 on the Behaviour of the New Estimator where v(x) = v5(x),
h1 = 0.32 and h2 = 0.1, (Left: Estimated and True variance functions, Middle: the Variance and Right:
The MSE).

subsection is described in section 6.2. The chosen mean functions are:

i) m8(x) = 3 + 1.8x + 2.5x2 + 1.5x3.

ii) m9(x) = exp (−2 − 5x − 2x2 ).

iii) m10(x) =
1

2
sin (25π x).
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It should be noted that the plots of the above three mean functions are similar to the plots of

the mean functions m2(x), m4(x) and m6(x), respectively. Thus, their plots are omitted.

However, the variance functions are selected to be

ii) v5(x) = 2 + 3.5x + 4.5x2 − x3.

iv) v6(x) = | 0.75 sin (π x) | .

The aim of choosing different mean and variance functions, rather than that of the pre-

vious section is to assess the performance of the estimator in (6.2) with the largest possible

number of the functions.

The models for the figures (6.13)-(6.16) are:

(i) Yi = 3 + 1.8xi + 2.5x2i + 1.5x3i

+
√

2 + 3.5xi + 4.5x2i − x3i εi, for i = 1, 2, · · · , n,

(ii) Yi = exp (−2 − 5x − 2x2 )

+
√

2 + 3.5xi + 4.5x2i − x3i εi, for i = 1, 2, · · · , n,

(iii) Yi =
1

2
sin (25π x) +

√
2 + 3.5xi + 4.5x2i − x3i εi, for i = 1, 2, · · · , n,

(6.8)

where the assumptions F1, F2 and F3 are satisfied. Using the model (i) in (6.8), we fix the

bandwidth h2 to be h2 = 0.1 and the bandwidth h1 is taken to be 0.32 . Then, using the

same structure described in section 6.2 and the above models, the figure (6.13) is produced.

For the figures (6.14)-(6.16), the structure is as in the figure (6.13) where the bandwidth

h1 = 0.063, 0.01 and 0.0032, respectively. The bandwidth h2 in these figures is fixed to

be 0.1.
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Figure 6.14: The Effect of the Bandwidth h1 on the Behaviour of the New Estimator where v(x) = v5(x),
h1 = 0.063 and h2 = 0.1, (Left: Estimated and True variance functions, Middle: the Variance and Right:
The MSE).

The models of the figure (6.17)-(6.20) can be defined as

(i) Yi = 3 + 1.8xi + 2.5x2i + 1.5x3i +
√
| 0.75 sin (π xi) | εi, for i = 1, 2, · · · , n,

(ii) Yi = exp (−2 − 5xi − 2x2i ) +
√
| 0.75 sin (π xi) | εi, for i = 1, 2, · · · , n,

(iii) Yi =
1

2
sin (25π x) +

√
| 0.75 sin (π xi) | εi, for i = 1, 2, · · · , n, (6.9)
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Figure 6.15: The Effect of the Bandwidth h1 on the Behaviour of the New Estimator where v(x) = v5(x),
h1 = 0.01 and h2 = 0.1, (Left: Estimated and True variance functions, Middle: the Variance and Right:
The MSE).

where the assumptions F1, F2 and F3 are true. The figures (6.17)-(6.20) are produced using

the same structure as in section 6.2 and the models in (6.9). The bandwidth h2 in these

figures is fixed to be 0.1, whereas the bandwidth h1 is selected to be 0.32, 0.063, 0.01

and 0.0032, respectively. Now, the results from figures (6.13) to (6.20) are given in the fol-

lowing sub-subsection.
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Figure 6.16: The Effect of the Bandwidth h1 on the Behaviour of the New Estimator where v(x) = v5(x),
h1 = 0.0032 and h2 = 0.1, (Left: Estimated and True variance functions, Middle: the Variance and Right:
The MSE).

Results:

In the figures (6.13)-(6.20), recall that the bandwidth h2 is selected appropriately. In the

figures (6.13), when the mean function is m8(x), there is a very little bias in the estimated

variance function when xis are less than 0.7. On the other hand, the bias of the estimated

variance function is very large when xis are bigger than 0.7. The mean squared error of the

estimator in (6.2) is clearly high. For the remaining mean functions in the figure (6.13), there
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Figure 6.17: The Effect of the Bandwidth h1 on the Behaviour of the New Estimator where v(x) = v6(x),
h1 = 0.32 and h2 = 0.1, (Left: Estimated and True variance functions, Middle: the Variance and Right:
The MSE).

is a very little bias in the estimated variance function. In the figures (6.14)-(6.16), the esti-

mated and true variance functions are approximately the same, while the variance increases

slightly as the bandwidth h1 becomes smaller. There is a little bias in the estimated variance

function by the estimator in (6.2) when h1 = 0.0032 and 0.01. However, for h1 = 0.063,

there is a clear bias in the estimated variance function when xis are bigger than 0.8. The

variance and the mean squared error in the figures (6.14)-(6.16) do not change significantly
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Figure 6.18: The Effect of the Bandwidth h1 on the Behaviour of the New Estimator where v(x) = v6(x),
h1 = 0.063 and h2 = 0.1, (Left: Estimated and True variance functions, Middle: the Variance and Right:
The MSE).

with the chosen values for the bandwidth h1.

From the figures (6.17)-(6.20), when the bandwidth h1 = 0.32 or 0.063 and the mean

function is m8(x) or m10(x) , the bias is obviously large. The appropriate choice of the

bandwidth h1, for these two mean functions, is approximately 0.0032. For all chosen val-

ues of the bandwidth h1, the estimated and true variance functions are approximately the
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Figure 6.19: The Effect of the Bandwidth h1 on the Behaviour of the New Estimator where v(x) = v6(x),
h1 = 0.01 and h2 = 0.1, (Left: Estimated and True variance functions, Middle: the Variance and Right:
The MSE).

same when the mean function is m9(x) . In the figures (6.17)-(6.20), the effect of the small

selection of the bandwidth h1 on the variance and the mean squared error of the estimator

in (6.2) is very small. Generally, it is obvious from the figures (6.13)-(6.20) that the optimal

finite sample performance of the estimator in (6.2) is obtained when h1 = 0.01 or 0.0032.
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Figure 6.20: The Effect of the Bandwidth h1 on the Behaviour of the New Estimator where v(x) = v6(x),
h1 = 0.0032 and h2 = 0.1, (Left: Estimated and True variance functions, Middle: the Variance and Right:
The MSE).

Discussions:

In this subsection, we study the bias in the estimated variance function using the estimator

in (6.2) due to estimation of the mean function. So, the bandwidth h2 of the estimator in

(6.2) is supposed to be chosen optimally. From the results of the figures (6.13)-(6.20), we

found that, when the mean function has rth continuous derivatives where r ≤ 10 and

the chosen value of the bandwidth h1 is large, the bias of the estimated variance function
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is also very large. On the other hand, when h1 is small, the bias is negligible as well as

the mean squared error. So, we can conclude that the bandwidth h1 should be chosen to

minimise the bias of the estimated mean function.

However, when the mean function is a smooth function, we found that the effect of the

bandwidth h1 is negligible. Note that if the bandwidth h1 is chosen to be too large, this

will cause a bias in the estimated variance function using the estimator in (6.2) because the

bias increases slightly as the chosen value for the bandwidth h1 rises.

From the discussion above, we can conclude that small choices of the bandwidth h1 are

an appropriate selection for this bandwidth. In chapter 4, we found that the bandwidth h1

does not have a first order effect. So, its contribution in the mean squared error of the estima-

tor in (6.2) is negligible. The results in this subsection support this conclusion in the finite

sample case. In addition to that, we found from the simulation studies in this subsection that

any chosen value in the interval (n−0.8, n−1.3 ) is an appropriate choice of the bandwidth

h1 for the estimator in (6.2) for all considered models in this subsection. It should be noted

that n refers to the chosen sample size, which is n = 100 for all simulation studies in

this subsection. Note that if the bandwidth h1 is chosen to be too small (less than n−1.3),

this will affect the finite sample performance of the estimator in (6.2) because the weight

matrix in the estimation of the mean function becomes invalid. In other words, the summa-

tion of some rows in the weight matrix is zero instead of one, which is the correct summation.

Conclusion:

We can conclude that the effect of the bandwidth h1 in the finite sample performance of

the estimator in (6.2) is generally negligible for small choices of this bandwidth. However,

large values for this bandwidth increase the bias of the estimated variance function and this

bias is due to the bias in the estimation of the mean function. Thus, the bandwidth h1
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should be chosen to minimise the bias of the estimated mean function, E [m̂(x) ] − m(x).

These results support the results of Theorem 4.2.1 in chapter 4. The results of this subsection

are only valid for optimal choices of the bandwidth h2.

6.4.2 The Effect of the Bandwidth h2 on the Finite Sample Performance of the Esti-

mator in (6.2)

In the current subsection, we consider the influence of the bandwidth h2 on the finite sample

performance of the estimator in (6.2). To study this effect, we fix the mean function, the

variance function and the bandwidth h1 and then the simulation studies are generated for

several values of the bandwidth h2 with these fixed choices. The number of replications

in this simulation studies is selected to be N = 1000 of sample size n = 100 . As

in the previous subsection, we study the effect of the bandwidth h2 on the finite sample

performance of the estimator in (6.2) with the same three mean functions and the same two

variance functions. It should be noted that the simulation studies in this subsection have the

same structure as described in section 6.2. An appropriate choice of the bandwidth h1 is

selected, which minimises the bias of the estimated mean function.

To find the effect of the bandwidth h2, we start with the mean function m8(x) and the

variance function v5(x). First, we select randomly xis from the uniform U [0, 1] distri-

bution and the εis from the standard normal distribution where the size of selected sample

is n = 100 . Then, we sort xis into increasing order and then Yis are generated using the

model in (i) in equations (6.8). The observed values of the estimator in (6.2) are computed

where the bandwidth h1 = 0.0032 and the bandwidth h2 = 0.4 . Then, these steps are

repeated for N = 1000 times. Then, the mean values of v̂New(xi)s, their variance and

their mean squared error are plotted versus the selected xi in the plot (a), (b) and (c) in

the figure (6.21), respectively. To draw the plots (d), (e) and (f) in the figure (6.21), the

previous steps are repeated where the model in (ii) in equations (6.8) is used. The plots
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Figure 6.21: The Effect of the Bandwidth h2 on the Behaviour of the New Estimator where v(x) = v5(x),
h1 = 0.0032 and h2 = 0.4, (Left: Estimated and True variance functions, Middle: the Variance and Right:
The MSE).

(g), (h) and (i) in the figure (6.21) are produced using the same steps where the model is in

(iii) in equations (6.8).

For the figures (6.22)-(6.24), the same previous procedures are repeated where the Yis are

generated using the models in (6.8) and the bandwidth h2 is chosen to be 0.15, 0.05 and 0.005,

respectively. The figures (6.25)-(6.28) are produced using the same steps where the models
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Figure 6.22: The Effect of the Bandwidth h2 on the Behaviour of the New Estimator where v(x) = v5(x),
h1 = 0.0032 and h2 = 0.15, (Left: Estimated and True variance functions, Middle: the Variance and Right:
The MSE).

is in equations (6.9) and the bandwidth h2 is taken as 0.4, 0.15, 0.05 and 0.005, respec-

tively. In all these figures, the bandwidth h1 is fixed to be 0.0032 .

Results:

The main results in this subsection are described as follows. Recall that the bandwidth h1

is chosen appropriately in the figures (6.21)-(6.28). It is obvious that the estimated variance
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Figure 6.23: The Effect of the Bandwidth h2 on the Behaviour of the New Estimator where v(x) = v5(x),
h1 = 0.0032 and h2 = 0.05, (Left: Estimated and True variance functions, Middle: the Variance and
Right: The MSE).

functions are biased in the figure (6.21), while the variance is small. On the other hand, in

the figure (6.24), the bias is negligible, while the variance is very large. Hence, the mean

squared error is also large. The estimated variance functions in the figure (6.22) are still a lit-

tle biased, but its bias is smaller than that of the bandwidth h2 = 0.05. Using the bandwidth

h2 = 0.05, the estimated and the true variance functions are approximately the same, but

the variance is slightly high. Thus, from the figures (6.21)-(6.24), the optimal choice of the
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Figure 6.24: The Effect of the Bandwidth h2 on the Behaviour of the New Estimator where v(x) = v5(x),
h1 = 0.0032 and h2 = 0.005, (Left: Estimated and True variance functions, Middle: the Variance and
Right: The MSE).

bandwidth h2 is approximately between 0.1 and 0.2, because it is balancing between the

squared bias and the variance of the estimator in (6.2).

In the figures (6.25)-(6.28), the requirement of balancing between the squared bias and

the variance is also very clear. When h2 = 0.4, it is clear that the bias is large, whereas

the variance is small. On the other hand, the variance is very high when h2 = 0.005, while
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Figure 6.25: The Effect of the Bandwidth h2 on the Behaviour of the New Estimator where v(x) = v6(x),
h1 = 0.0032 and h2 = 0.4, (Left: Estimated and True variance functions, Middle: the Variance and Right:
The MSE).

the bias is small. For the bandwidth h2 = 0.15, the bias is slightly small, but the variance

is slightly large. When the bandwidth h = 0.05 , the bias is very small, but the variance is

slightly larger than that when h2 = 0.15. From the figures (6.25)-(6.28), it is evident that

the optimal choice of the bandwidth h2 is also between 0.1 and 0.2.
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Figure 6.26: The Effect of the Bandwidth h2 on the Behaviour of the New Estimator where v(x) = v6(x),
h1 = 0.0032 and h2 = 0.15, (Left: Estimated and True variance functions, Middle: the Variance and
Right: The MSE).

Discussions:

In this subsection, the effect of the bandwidth h2 on the squared bias and the variance of

the estimator in (6.2) is studied in the finite sample case through simulation. It should be

noted that the bandwidth h1 is selected appropriately in the figures (6.21)-(6.28). In these

figures, for large values of the bandwidth h2 and when the variance function is a polyno-

mial regression function of order r ≤ 10, the bias of the estimated variance function by
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Figure 6.27: The Effect of the Bandwidth h2 on the Behaviour of the New Estimator where v(x) = v6(x),
h1 = 0.0032 and h2 = 0.05, (Left: Estimated and True variance functions, Middle: the Variance and
Right: The MSE).

the estimator in (6.2) is large. This bias becomes smaller as the bandwidth h2 decreases.

On the other hand, when the bandwidth h2 is small, the bias is clearly negligible, but the

variance is large. Thus, when the variance function is a polynomial regression function of

order r ≤ 10, the optimal chosen value of the bandwidth h2 should be balancing between

the squared bias and the variance of the estimator in (6.2).

165



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

V
−

F
 
E

s
t
im

a
t
o

r
s

(a) m
8
(x) − h

2
=0.005

0 0.2 0.4 0.6 0.8 1
0

10

20

x

V
a

r

(b) m
8
(x) − h

2
=0.005

0 0.2 0.4 0.6 0.8 1
0

10

20

x

M
S

E

(c) m
8
(x) − h

2
=0.005

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

x

V
−

F
 
E

s
t
im

a
t
o

r
s

(d) m
9
(x) − h

2
=0.005

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

x

V
a

r
(e) m

9
(x) − h

2
=0.005

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

x
M

S
E

(f) m
9
(x) − h

2
=0.005

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

x

V
−

F
 
E

s
t
im

a
t
o

r
s

(g) m
10

(x) − h
2
=0.005

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

x

V
a

r

(h) m
10

(x) − h
2
=0.005

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

x

M
S

E
(i) m

10
(x) − h

2
=0.005

New Est.
True

Figure 6.28: The Effect of the Bandwidth h2 on the Behaviour of the New Estimator where v(x) = v6(x),
h1 = 0.0032 and h2 = 0.005, (Left: Estimated and True variance functions, Middle: the Variance and
Right: The MSE).

For a smooth variance functions, the bias in the estimated variance function by the esti-

mator in (6.2) is very obvious when the bandwidth h2 is large. Clearly, this bias becomes

smaller as the bandwidth h2 decreases. However, when the bandwidth h2 is small, the

variation is very clear in the estimated variance function. Thus, when the variance function

is a smooth function, small choices of the bandwidth h2 lead to a small bias and a large

variance as in the usual smoothing problems. In contrast, large selections of the bandwidth
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h2 increase the bias and decrease the variance of the estimator in (6.2).

From the discussion above, the chosen mean or variance functions may have effect on the

finite sample performance of the estimator in (6.2). However, this effect of the mean and

variance functions can be minimised by choosing an optimal value for the bandwidth h2 . In

addition, note that the bandwidth h2 has range of the optimal selected values. If the chosen

value is bigger than the maximum point in this range, this chosen value will cause bias in the

estimated variance function by the proposed estimator in (6.2). On the other hand, when the

selected value is less than the minimum point in this range, it will lead to large variance in

the estimated variance function.

From Theorem 4.2.1, it is clear that the bandwidth h2 has first order effects on the mean

squared error of the estimator in (6.2). The results of the finite sample performance of the

estimator in (6.2) in this subsection clearly support this conclusion. Thus, large values of

the bandwidth h2 lead to a large mean squared error for the estimator in (6.2) because they

increase the bias of the estimated variance function by this estimator. However, small val-

ues of the bandwidth h2 also increase the mean squared of the estimator in (6.2) because

they rise the variance of this estimator. From the above discussion, we can conclude that the

bandwidth h2 should be chosen to be balancing between the squared bias and the variance

of the estimator in (6.2). In addition, it is clear that the chosen value of the bandwidth h2

plays important influence on the finite sample performance of the estimator in (6.2).

Conclusion:

We can conclude that the effect of the bandwidth h2 on the finite sample performance

of the estimator in (6.2) is generally very clear and plays important roles on the finite sample

performance of this estimator . So, this bandwidth should be chosen to be balancing between

the squared bias and the variance of the estimator in (6.2). This conclusion is applied for all
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chosen mean and variance functions. These results are only valid when the bandwidth h1

is chosen appropriately.

6.5 The Age-Blood Pressure Data

The behaviour of the estimator in (6.2) on the real data set is one of the most important issues

to assess the performance of this estimator. In the current section, we consider a real data

set to test the performance of the estimator in (6.2). In the following subsection, this data is

described, whereas the assessments of the performance of the estimator in (6.2) are looked

at in subsection 6.5.2.

6.5.1 The Description of the Age-Blood Pressure Data

A brief description of the age-blood pressure data is given in this subsection. This data set is

reported in the Applied Linear Statistical book by Neter, Kutner, Nachtsheim and Wasserman

(1996). This data consists of two variables, which are the age and blood pressure of 54

women. The aim was to find the relationship between the age and blood pressure. For

more details about this data, refer to Neter, Kutner, Nachtsheim and Wasserman (1996). The

scatter plot of the age-blood pressure data is demonstrated in the figure (6.29). The age is

counted by years, while the blood pressure is measured by millimetres of mercury (mmHG).

From this figure, it is obvious that the variation in the blood pressure variable increases as

the age rises. This suggests that the variance of the blood pressure variable is not constant.

Thus, the relationship between the age and blood pressure variables can be found using the

following heteroscedastic nonparametric regression model. Suppose that

Yi = m(xi) +
√
v(xi) εi, for i = 1, 2, · · · , 54 (6.10)

where m(xi) represents the unknown mean function E(Yi|xi), Yis denote the blood pres-

sure variable, v(xi) represents the unknown variance function at the point xi and xis
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denote the age variable. Note that the errors εis are assumed to be normally distributed ran-

dom variables with zero mean and unit variance. In the following subsection, our aim is to

estimate the unknown error variance function v(xi) using the estimator in (6.2).
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Figure 6.29: The Scatter Plot of the Age-Blood Pressure Data

6.5.2 The Estimation of the Error Variance Function in the Model (6.10)

In this subsection, we explain the way to estimate the unknown variance function in the

model (6.10). First, the age variable is adjusted such that

Ageadj = age / (Max(age) + 1 ).

Using the adjusted age variable, the estimator in (6.2) is used to estimate the variance func-

tion where h1 = 0.034, h2 = 0.1 and Yi denotes the blood pressure, whereas the design

points xis are the adjusted age points. Thus, the estimator in (6.2) produces a variance for

every adjusted age point. To find the estimated variance function, the raw age variable is

plotted versus the estimated variance points. To compare the performance of the estimator
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in (6.2) to that of the Brown and Levine estimators, the estimated variance functions by the

Brown and Levine estimators are also plotted in the same figure for several differences’ or-

ders where the bandwidth h2 = 0.15 and the orders of differences are 2, 4 and 6. These

plots are demonstrated in the figure (6.30).
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Figure 6.30: The Estimated Variance Functions for the Age-Blood Pressure Data Using the Estimator in (6.2)
and the Brown and Levine Estimators

Remark:

If the age variable is not adjusted, the results are still the same, but suitable bandwidths

should be chosen.

Clearly from figure (6.30), the estimated variance functions are approximately the same for

all estimators until age 48. After age 48, the estimated variance functions are different.

Obviously, in the figure (6.29), the variation in the blood pressure variable increases as the
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age rises. However, the estimated variance function by the Brown and Levine estimator

decreases after age 47 when the order of differences is 6. This may be because of the lack

of information in the boundary due to using differencing to estimate the variance function.

Thus, this part of the estimated variance function by this estimator is unreliable. For the

remaining estimators, we expect that their performances are reasonably good. It is not easy

to assess this, because the true variance function is unknown. Note that the curve of the

estimated variance function by the estimator in (6.2) for large ages is slightly lower than the

curves of the estimated variance functions by the Brown and Levine estimators when the

orders of differences are 2 and 4. Thus, we can conclude that the general performances of

the estimator in (6.2) and the Brown and Levine estimators for second and fourth orders of

differences are approximately the same.

6.6 Summary

In this chapter, we studied the effect of the mean function on the finite sample performance of

the estimator in (6.2). We can conclude that the effect of the mean function is less than that of

the variance function. Furthermore, the performance of the estimator in (6.2) in the interior

points is better than, or the same as, that of the Brown and Levine estimators. In the boundary

points, the performance of the estimator in (6.2) is better than that of the Brown and Levine

estimators except when the mean function is a polynomial function of order ≥ 3 and the

variance function is a smooth function. This lack of information in the boundary points of

the Brown and Levine estimators increases as the order of differences rises.

For the bandwidths of the estimator in (6.2), we found that the bandwidth h1 should

be chosen to minimise the bias of the estimated mean function. On the other hand, the

bandwidth h2 should be selected to be balancing between the squared bias and the variance

of the estimator in (6.2), because large choices of this bandwidth lead to a large bias in the
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estimated variance function. However, small choices of the bandwidth h2 rise the variance

of the estimated variance function by the estimator in (6.2). In the chosen real data set, we

can conclude that the results for the considered estimators are approximately the same.
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Chapter 7

Conclusion and Future Work

7.1 Introduction

In this thesis, the error variance estimation is considered in the settings of constant and

functional variance nonparametric regression models. First, recall that to estimate the error

variance, our proposal is to average ei Yis as opposed to the averaging of e2i s, which is used

in the residual-based estimators. That is, in the setting of constant variance model,

σ̂2 =
1

n

n∑
i=1

(Yi − m̂(xi))Yi (7.1)

and when ith observation is not used in the estimation of the mean function, the above class

of estimators becomes

σ̂2 =
1

n

n∑
i=1

(Yi − m̂−i(xi))Yi. (7.2)

The class of estimators in (7.2) can be extended to be used when the error variance is a

function of xis. That is,

v̂(x) =
n∑
i=1

wi(x) (Yi − m̂−i(xi))Yi, (7.3)
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where wi(x) is a weight function.

Our interest is to seek answers to the questions − about whether the smoothing of eiYi

has any advantage over smoothing e2i or using differencing, and whether not using obser-

vation Yi in the estimation of m(xi) has any advantage over using it.

7.2 The Main Results

With respect to the mean squared analysis, the new estimator, which is defined in (1.28) and

the residual-based estimators have a similar behaviour in the first order. In other words, the

estimator in (1.28) and the Hall and Marron estimator have achieved the same optimal rate

in the first order, which is

MSE(σ̂2) = n−1 var(ε2) + o(n−1). (7.4)

The above optimal rate is not achieved by the fixed order difference-based estimators. It

was noted that the optimal bandwidth for the estimator considered here is approximately the

square of the optimal bandwidth for the Hall and Marron estimator. For the second order

kernel function, the optimal bandwidth to estimate the mean function with respect to the

mean squared error is n−1/5, whereas the optimal bandwidth of the estimator in (1.28) is

n−2/5 , which means that it estimates the mean function with smaller bias. This property is

often desirable as Wang, Brown, Cia and Levine (2008) have noted. In contrast, the Hall and

Marron estimator estimates the mean function almost optimally since its optimal bandwidth

is n−2/9 , which is closer to n−1/5 . The Hall and Marron estimator has smaller relative

error in the second order than the estimator in (1.28). However, the relative error in the

second order does not play a role in the finite sample behaviour as Dette, Munk and Wanger

(1998) and Tong, Liu and Wang (2008) have noted. To put things in perspective, ignoring
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the constants, it was noted that

MSE(Hall-Marron Estimator)
MSE (New Estimator)

=
n−1[1 + (n−7/9)]

n−1[1 + (n−3/5)]
=

1 + (n−7/9)

1 + (n−3/5)
.

The above ratio is approximately 0.97 for n = 100 . In fact, it means, as observed in chap-

ter 3, that the constants have more influence on the mean squared error in the finite sample

behaviour than the second order.

In the finite sample, we investigated the performance of the estimator in (1.28) through

the simulation studies. When the bandwidths of the estimator in (1.28) and that of the Hall

and Marron estimator are chosen optimally, neither of the estimators is better than the other

across all mean functions and different noise levels. Thus, for the small error variances,

when the mean function is a periodic function or a polynomial function of order ≥ 3 , the

difference in the variances of the estimator in (1.28) and the Hall and Marron estimator is

due to the constants.

To summarise, in the estimator in (1.28), which is based on the average of ei Yi, to get

the best possible mean squared error for this estimator, the optimal bandwidth is approxi-

mately n−2/5. This means that one is not required to estimate the mean function optimally.

On the other hand, in the Hall and Marron estimator, based on the average of e2i , to get the

smallest possible mean squared error, the optimal bandwidth is roughly n−2/9. Thus, the

mean function in the estimator in (1.28) is estimated with smaller bias compared to that of

the mean function estimator used in the Hall and Marron estimator.

In the theoretical investigation, we showed the asymptotic normality of the distribution

of the estimators in (1.28) and (1.29). We also proved that the estimator in (1.28) and the

Hall and Marron estimator have the same asymptotic distribution. Also, the results of the
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simulation studies in chapter 3 provide a clear numerical verification of the normality of the

estimator in (1.28). The asymptotic distribution of the estimator in (1.29) and that of the

local linear version of the Brown and Levine estimator are approximately the same, where

the order of differences is 2.

With respect to the mean square property, the estimator in (1.29) and the other error vari-

ance function estimators have a similar behaviour. To clarify, the form of the mean squared

errors of the error variance function estimators, which include the estimator in (1.29), is

MSE(v̂(x)) = h2 r2 C2
1 (x) + n−1h−12 C2(x) + o(n−1 h−12 ) + o(h2 r2 ).

where C1(x) and C2(x) are deterministic functions. So, the difference between these es-

timators, with respect to the mean squared error, is in the deterministic functions C1(x) and

C2(x) . We showed that the mean squared error of the estimator in (1.29) in the first order

is the same as that of the local linear version of the Brown and Levine estimator (for the

second order of differences only). Interestingly, the mean squared error of the estimator in

(1.29) depends only on the bandwidth h2, which is used to estimate the variance function.

So, the bandwidth h1 does not have a first order effect on the mean squared error of the

estimator in (1.29). We also proved that the MSE-optimal selection of the bandwidth h2 is

approximately n−1/2r+1. So, when the second order kernel is used, the MSE-optimal choice

becomes h2 ∼ n−1/5 .

In the investigation of the finite sample performance of the error variance function esti-

mators, we conclude that the estimator in (1.29) performs better than the Brown and Levine

estimators in the boundary except when the mean function is a polynomial function of order

≥ 3 and the variance function is a smooth function. The performance of the estimator in

(1.29) is approximately better than, or the same as, that of the Brown and Levine estima-
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tors in the interior points. We also found that the bandwidth h1, which is used to estimate

the mean function, should be chosen to minimise the bias of the estimated mean function,

E [m̂(x) ] − m(x). However, the bandwidth h2 should be selected to be balancing between

the squared bias and the variance of the estimator in (1.29). The effect of this bandwidth on

the finite sample performance of the estimator in (1.29) is larger than that of the bandwidth

h1. In all considered cases in chapter 6, the effect of the variance function on the finite sam-

ple performance of the estimator (1.29) is larger than that of the mean function. To generalise

this conclusion, we require to carry out more investigation regarding all different forms of

the mean and variance functions. The results of the finite sample behaviour of the estima-

tor in (1.29) support the conclusion of Theorem 4.2.1. In summary, one of the advantages

of smoothing ei Yis over using differencing is that there is no lack of information on the

estimated variance function v̂(x) near the boundary. The estimation of the mean function

does not have a first order effect on the mean squared error of the estimator in (1.29). So,

the effect of using, or not using, observation Yi in the estimation of the mean function is

negligible.

7.3 Future Work

In the current thesis, the properties of the new estimators for the error variance in the settings

of the constant and functional (when the error variance is a function of xis) variance models

are investigated. In particular, in these two settings, we carried out the asymptotic mean

squared error analysis for the new estimators and we established their asymptotic normality.

So, it will be of interest to study the finite sample performance of the data-based bandwidth

selection methods in these two settings. In the current thesis, in both settings, we considered

the univariate case. Therefore, it will be of interest to generalise the new estimators, which

are defined in (1.28) and (1.29), to be used in a multivariate case. For that, consider the fol-
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lowing multivariate nonparametric regression model where the error variance is a constant,

Y i = m(x i) + ε i for i = 1, 2, · · · n, (7.5)

where m denotes the mean function E(Y i|x i), Y is represent the response variable, x is

denote the design points. The errors ε is are assumed to be independent, identically dis-

tributed and random with zero mean and variance σ2 . It should be noted that the index i

is a d-dimensional index such that i = ( i1, i2, · · · id) and x i = ( x1, x2, · · · xd )′ where

d denotes the number of the dimensions. For simplicity, the design points x is are assumed

to be an equispaced d-dimensional grid. In this case, each coordinate can be defined as

xik = ik
n

where ik = 1, 2, · · · n for k = 1, 2, · · · d. Thus, the overall sample equals to

s = nd . Using the equispaced d-dimensional grid, the estimator of the error variance in the

model (7.5) can be written as

σ̂2 =
1

n

n∑
i=1

Y 2
i −

1

n (n− d)hd

n∑
i=1

∑
j 6=i

K

(
x i − x j

h

)
Y i Y j (7.6)

where K(.) is a symmetric multivariate kernel function. It should be noted that the error

variance σ2 and the bandwidth h are assumed to be the same in all dimensions. When

the error variance is a function of x is, assume the following multivariate nonparametric

regression model

Y i = m(x i) +
√
v(x i) ε i for i = 1, 2, · · · n, (7.7)

where Y is, m and x is are as in the model (7.5), ε is are independent with zero mean

and unit variance, v(x i)s represent the variance function and the absolute fourth moment

of errors is bounded. Now, to estimate v(x i) using a methodology similar to that employed
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in this thesis in the equispaced d-dimensional grid, we define a new estimator to be

v̂(x) =
1

nhd2

n∑
i=1

K

(
x− x i
h2

){
Y i −

1

(n− d)hd1

∑
j 6=i

K

(
x i − x j
h1

)
Y j

}
Y i (7.8)

where h1 is used to estimate the mean function, whereas h2 is used to estimate the vari-

ance function. These bandwidths are assumed to be the same in all dimensions.

For the estimators in (7.6) and (7.8), it will be of interest to investigate their asymptotic

properties. In particular, the mean square analysis will be carried out. This analysis will

be of help to find their MSE-optimal bandwidths. Also of interest will be the study of their

asymptotic distributions. In addition, it will be of interest to study the finite sample properties

of these estimators. So, one can investigate the effect of the mean functions and bandwidth

selections on the finite sample performances of the estimators in (7.6) and (7.8). In addition,

issues related to data-based bandwidth selection methods can be studied.
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Appendix A

The R Commands of the Functions for
the Figures (3.1) until (3.12)

To do the plots of the mean functions in the figure (3.1) and (3.2), the following R codes are
used:

n=1000
x1=matrix(c(runif(n,0,1)),nrow=n)
x=matrix(c(sort(x1)),nrow=n)
b2=matrix(c(rep(1,n)),nrow=n)
fx1=b2
b3=matrix(c(rep(4.7,n)),nrow=n)
fx2=b3+(2.4 *x)+(5 *xˆ2)+(4.3 *xˆ3)
fx3=matrix(c(rep(0,n)))
for( i in 1:n){
if (x[i] <=0.5) fx3[i]=3+x[i]+(4*x[i]ˆ2)+(8*x[i]ˆ4)
else fx3[i]=5.875-x[i]-(x[i]ˆ2)-(x[i]ˆ3)}
fx4=1/(exp(2+4*x+5*xˆ2+6*xˆ3))
par(mfrow=c(2,2))
plot(x, fx1, col=c(2), type = "l", xlab = "x", ylab = "m_1(x)")
title(main="m_1(x)")
plot(x, fx2, col=c(2), type = "l", xlab = "x", ylab = "m_2(x)")
title(main="m_2(x)")
plot(x, fx3, col=c(2), type = "l", xlab = "x", ylab = "m_3(x)")
title(main="m_3(x)")
plot(x, fx4, col=c(2), type = "l", xlab = "x", ylab = "m_4(x)")
title(main="m_4(x)")

For the figure (3.2), we use the R codes below

n=1000
x1=matrix(c(runif(n,0,1)),nrow=n)
x=matrix(c(sort(x1)),nrow=n)
fx5= (4/5)*sin(2*pi*x)
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fx6=(3/4)*cos(10*pi*x)
par(mfrow=c(2,1))
plot(x, fx5, col=c(2), type = "l", xlab = "x", ylab = "m_5(x)")
title(main="m_5(x)")
plot(x, fx6, col=c(2), type = "l", xlab = "x", ylab = "m_6(x)")
title(main="m_6(x)")

The following four functions are required in the functions for the figures (3.3) until (3.10).
The first function is to compute K

(
Xi−Xj

h

)
. This function can be written as

xker1=function(x,n,h) {
tx=t(x)
xker=matrix(c(rep(0,nˆ2)),nrow=n)
for (i in 1:n){
for (j in 1:n)
xker[i,j]=dnorm((x[i,1] - tx[1,j])/h)}
xker}

The second function is to find K
(
Xi−Xj

h

)
Yj , which is:

xkery1=function(x,y,n,h) {
tx=t(x)
ty=t(y)
xker=matrix(c(rep(0,nˆ2)),nrow=n)
ff=matrix(c(rep(0,nˆ2)),nrow=n)
for (i in 1:n)
for (j in 1:n) {
xker[i,j]=dnorm((x[i,1] - tx[1,j])/h) }
for (i in 1:n)
for (j in 1:n){
ff[i,j]=xker[i,j]*ty[1,j] }
ff }

The third function is to calculate
∑
j 6=i

wi j Yi Yj where

wij =
K
(
Xi−Xj

h

)
∑
i 6=j
K
(
Xi−Xj

h

) , 1 ≤ i , j ≤ n.

This function can be demonstrated as

xkery2new1=function(x,y,n,h){
tx=t(x)
ty=t(y)
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xker=matrix(c(rep(0,nˆ2)),nrow=n)
ppp=matrix(c(rep(0,nˆ2)),nrow=n)
for (i in 1:n)
for (j in 1:n){
xker[i,j]=dnorm((x[i,1] - tx[1,j])/h) }
xker1=xker - diag(dnorm(0),n,n)
ddd=xker1/(apply(xker1,1,sum))
for (i in 1:n)
for (j in 1:n){
ppp[i,j]=ddd[i,j]*ty[1,j]*y[i,1] }
ppp }

The fourth function is to estimate the density function using a kernel function, ˆfh(x) =

1
nh

n∑
i=1

K
(
x−Xi

h

)
. This function can be written as

kden=function(x,h, nn ){
tx=t(x)
ggg=matrix(c(rep(0,nnˆ2)),nrow=nn)
for (i in 1:nn)
for(j in 1:nn){
ggg[i,j]=dnorm((x[i,1]-tx[1,j])/h) }
kerden=(1/(nn * h))*(apply(ggg,1,sum))
kerden }

The function for the figure (3.3) is as follows

conhm=function(h,n,nn,sig){
sigmane=matrix(c(rep(0,nn)))
sigmahm=matrix(c(rep(0,nn)))
b1=matrix(c(rep(1,n)),nrow=n)
for(k in 1:nn) {
x=matrix(c(runif(n,0,1)),nrow=n)
y=b1+ matrix(c(rnorm(n,mean=0,sd=sig)),nrow=n)
yy1=xkery2new1(x=x,y=y,n=n,h=hˆ2)
sigmane[k]=((1/n)*sum(yˆ2))-((1/n)*(sum(apply(yy1,1,sum))))
y1=xker1(x=x,n=n,h=h)
y2=xkery1(x=x,y=y,n=n,h=h)
y11=y1/(apply(y1,1,sum))
y22=y2/(apply(y1,1,sum))
ysq=(y11)ˆ2
y33=sum(((dnorm(0))/(apply(y1,1,sum))))
y44=sum(apply(ysq,1,sum))
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y55=sum((y-(matrix(c(apply(y22,1,sum)),nrow=n)))ˆ2)
sigmahm[k]=(1/(n-(2*y33)+y44))*y55 }
print(summary(sigmane))
print(summary(sigmahm))
print(var(sigmane))
print(var(sigmahm))
sigmanesort=matrix(c(sort(sigmane)),nrow=nn)
sigmahmsort=matrix(c(sort(sigmahm)),nrow=nn)
bw1=1.06*(sd(sigmane))*((nn)ˆ(-1/5))
bw2=1.06*(sd(sigmahm))*((nn)ˆ(-1/5))
d1=kden(x=sigmanesort,h=bw1,nn=nn)
d2=kden(x=sigmahmsort,h=bw2,nn=nn)
plot(range(sigmanesort,sigmahmsort), range(d1,d2),
type = "n", xlab = "x", ylab = "Density")
lines(sigmanesort,d1, col = 2,lty=1)
lines(sigmahmsort,d2, col =3,lty=4
legend(locator(1), lty=1:2, col=2:3,
legend=c("New","HM"),xjust=1,yjust=0,x.intersp=0.1,y.intersp=0.8) }
par(mfrow=c(2,2))
conhm(h=0.1,n=100,nn=1000,sig=1)
conhm(h=0.1,n=100,nn=1000,sig=2)
conhm(h=0.1,n=100,nn=1000,sig=5)
conhm(h=0.1,n=100,nn=1000,sig=10)

The functions for the figures (3.3) until (3.10) are the same function above except the model
and the last four lines. These should be modified as required for each figure. Thus, the details
are omitted.

The following R commands is to do the plots in the figure (3.11):

msehc=function(x,y,n, sig2) {
h=seq(x,y, by=0.001)
h1=hˆ2
epsion=matrix(c(rnorm(n, mean=0, sd=sqrt(sig2))),nrow=n)
msenew =((sum(epsionˆ(4)))/n)*nˆ(-1)-(sig2)ˆ2*nˆ(-1)

+(((2*(sig2)ˆ2*0.2821)
+(4*sig2*0.2821*16.3333))*nˆ(-1)*(n-1)ˆ(-1)*hˆ(-2))

msehm=as.numeric(var(epsionˆ2)*nˆ(-1))
+(2*(sig2)ˆ2*0.40635*nˆ(-2)*hˆ(-1))

plot(range(log(h1),log(h)), range(log(msenew),log(msehm)),
type = "n", xlab = "log(h1)", ylab = "log(AMSE)")
lines(log(h1),log(msenew), col = 1,lty=1)
lines(log(h),log(msehm), col =2,lty=2)
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legend(locator(1), lty=1:2, col=1:2,
legend=c("New","HM"),xjust=1,yjust=0,x.intersp=0.1,y.intersp=0.8)}
par(mfrow=c(2,2))
msehc(x=0.00001,y=0.7,n=1000,sig2=1)
title(main="Sigmaˆ2=1")
msehc(x=0.00001,y=0.7,n=1000,sig2=9)
title(main="Sigmaˆ2=9")
msehc(x=0.00001,y=0.7,n=1000,sig2=36)
title(main="Sigmaˆ2=36")
msehc(x=0.00001,y=0.7,n=1000,sig2=100)
title(main="Sigmaˆ2=100")

To do the plots in the figure (3.12), the following R commands is used:

msehc=function(x,y,n, sig2) {
h=seq(x,y, by=0.001)
h1=hˆ2
epsion=matrix(c(rnorm(n, mean=0, sd=sqrt(sig2))),nrow=n)
msenew =(msenew=((sum(epsionˆ(4)))/n)*nˆ(-1)-(sig2)ˆ2*nˆ(-1)

+(((2*(sig2)ˆ2*0.2821)
+(4*sig2*0.2821*121.53))*nˆ(-1)*(n-1)ˆ(-1)*hˆ(-2))
+(hˆ(8)*15006.25)

msehm=as.numeric(var(epsionˆ(2)*nˆ(-1))
+(2*(sig2)ˆ2*0.40635*nˆ(-2)*hˆ(-1))+(hˆ(8)*16641)

plot(range(log(h1),log(h)), range(log(msenew),log(msehm)),
type = "n", xlab = "log(h1)", ylab = "log(AMSE)")
lines(log(h1),log(msenew), col = 1,lty=1)
lines(log(h),log(msehm), col =2,lty=2)
legend(locator(1), lty=1:2, col=1:2,
legend=c("New","HM"),xjust=1,yjust=0,x.intersp=0.1,y.intersp=0.8)}
par(mfrow=c(2,2))
msehc(x=0.00001,y=0.7,n=1000,sig2=1)
title(main="Sigmaˆ2=1")
msehc(x=0.00001,y=0.7,n=1000,sig2=9)
title(main="Sigmaˆ2=9")
msehc(x=0.00001,y=0.7,n=1000,sig2=36)
title(main="Sigmaˆ2=36")
msehc(x=0.00001,y=0.7,n=1000,sig2=100)
title(main="Sigmaˆ2=100")
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Appendix B

The Summary statistics of the Simulation
Studies in Chapter 3

The numerical results of the simulation studies for the figures (3.3) until (3.10) are, respec-
tively, as follows,

Estimator New Estimator Hall & Marron Estimator
Minimum 0.5719 0.5746
1st Qu. 0.8908 0.8927
Median 0.9855 0.9851
Mean 0.9983 0.9979
3rd Qu. 1.0967 1.0987

Maximum 1.4905 1.4787
Variance 0.02332681 0.02287094

Table B.1: Simulation Results for the Figure (3.3) where σ2 = 1.

Estimator New Estimator Hall & Marron Estimator
Minimum 2.381 2.365
1st Qu. 3.586 3.588
Median 3.993 3.988
Mean 4.015 4.016
3rd Qu. 4.414 4.409

Maximum 5.889 5.923
Variance 0.3523456 0.3489922

Table B.2: Simulation Results for the Figure (3.3) where σ2 = 4.

185



Estimator New Estimator Hall & Marron Estimator
Minimum 15.60 15.76
1st Qu. 22.56 22.52
Median 24.95 24.87
Mean 25.08 25.08
3rd Qu. 27.45 27.45

Maximum 38.30 37.92
Variance 13.30174 13.08038

Table B.3: Simulation Results for the Figure (3.3) whereσ2 = 25.

Estimator New Estimator Hall & Marron Estimator
Minimum 63.04 62.64
1st Qu. 91.25 91.14
Median 100.04 99.96
Mean 100.78 100.78
3rd Qu. 109.89 109.74

Maximum 150.58 149.43
Variance 197.6076 196.1564

Table B.4: Simulation Results for the Figure (3.3) whereσ2 = 100.

Estimator New Estimator Hall & Marron Estimator
Minimum 0.3429 0.7856
1st Qu. 0.8762 1.0229
Median 1.0111 1.0913
Mean 1.0093 1.0968
3rd Qu. 1.1276 1.1661

Maximum 1.626 1.4373
Variance 0.03338553 0.01117575

Table B.5: Simulation Results for the Figure (3.4) whereσ2 = 1.

Estimator New Estimator Hall & Marron Estimator
Minimum 2.348 2.860
1st Qu. 3.645 3.811
Median 3.979 4.089
Mean 4.012 4.097
3rd Qu. 4.349 4.362

Maximum 5.807 5.434
Variance 0.2840502 0.1706614

Table B.6: Simulation Results for the Figure (3.4) whereσ2 = 4.
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Estimator New Estimator Hall & Marron Estimator
Minimum 16.45 18.06
1st Qu. 23.00 23.38
Median 23.00 24.95
Mean 24.98 25.06
3rd Qu. 26.73 26.61

Maximum 38.00 36.29
Variance 7.966907 5.910173

Table B.7: Simulation Results for the Figure (3.4) whereσ2 = 25.

Estimator New Estimator Hall & Marron Estimator
Minimum 61.59 65.57
1st Qu. 91.80 92.96
Median 99.34 99.58
Mean 99.78 99.95
3rd Qu. 107.28 106.94

Maximum 144.28 140.69
Variance 133.8503 105.1202

Table B.8: Simulation Results for the Figure (3.4) whereσ2 = 100.

Estimator New Estimator Hall & Marron Estimator
Minimum 0.4662 0.528
1st Qu. 0.8647 0.920
Median 0.9837 1.014
Mean 0.9993 1.024
3rd Qu. 1.1258 1.122

Maximum 1.6955 1.567
Variance 0.03804316 0.02284399

Table B.9: Simulation Results for the Figure (3.5) whereσ2 = 1.

Estimator New Estimator Hall & Marron Estimator
Minimum 2.244 2.439
1st Qu. 3.504 3.629
Median 3.951 3.983
Mean 3.996 4.015
3rd Qu. 4.479 4.254

Maximum 6.287 6.306
Variance 0.5124069 0.3650561

Table B.10: Simulation Results for the Figure (3.5) whereσ2 = 4.
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Estimator New Estimator Hall & Marron Estimator
Minimum 13.02 14.94
1st Qu. 22.17 22.46
Median 24.91 24.99
Mean 24.97 24.98
3rd Qu. 27.68 27.28

Maximum 39.66 39.51
Variance 16.48936 13.18847

Table B.11: Simulation Results for the Figure (3.5) whereσ2 = 25.

Estimator New Estimator Hall & Marron Estimator
Minimum 56.45 61.22
1st Qu. 88.83 90.48
Median 98.96 99.31
Mean 100.62 100.44
3rd Qu. 110.68 110.03

Maximum 166.92 156.44
Variance 273.0497 214.5188

Table B.12: Simulation Results for the Figure (3.5) whereσ2 = 100.

Estimator Proposed Estimator Hall & Marron Estimator
Minimum 0.5669 0.5709
1st Qu. 0.8947 0.8938
Median 0.9903 0.9893
Mean 0.9949 0.9950
3rd Qu. 1.0877 1.0869

Maximum 1.4871 1.4878
Variance 0.0199973 0.019965

Table B.13: Simulation Results for Figure (3.6) whereσ2 = 1

Estimator Proposed Estimator Hall & Marron Estimator
Minimum 2.375 2.386
1st Qu. 3.627 3.625
Median 3.974 3.978
Mean 4.015 4.014
3rd Qu. 4.408 4.399

Maximum 6.492 6.479
Variance 0.339022 0.3384979

Table B.14: Simulation Results for Figure (3.6) whereσ2 = 4
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Estimator Proposed Estimator Hall & Marron Estimator
Minimum 16.50 16.51
1st Qu. 22.66 22.67
Median 24.96 24.92
Mean 25.16 25.16
3rd Qu. 27.55 27.52

Maximum 38.63 38.43
Variance 12.7359 12.70057

Table B.15: Simulation Results for Figure (3.6) whereσ2 = 25

Estimator Proposed Estimator Hall & Marron Estimator
Minimum 53.39 54.26
1st Qu. 90.47 90.43
Median 99.90 99.90
Mean 100.49 100.48
3rd Qu. 109.94 109.80

Maximum 151.66 151.25
Variance 212.7284 211.2499

Table B.16: Simulation Results for Figure (3.6) whereσ2 = 100

Estimator New Estimator Hall & Marron Estimator
Minimum 0.5426 0.6257
1st Qu. 0.8924 0.9344
Median 0.9903 1.0329
Mean 1.0019 1.0391
3rd Qu. 1.0962 1.1353

Maximum 1.4796 1.5274
Variance 0.02410496 0.02265262

Table B.17: Simulation Results for the Figure (3.7) whereσ2 = 1.

Estimator New Estimator Hall & Marron Estimator
Minimum 2.291 2.406
1st Qu. 3.591 3.614
Median 3.961 4.021
Mean 4.027 4.059
3rd Qu. 4.452 4.484

Maximum 6.102 6.085
Variance 0.4338757 0.3848115

Table B.18: Simulation Results for the Figure (3.7) whereσ2 = 4.
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Estimator New Estimator Hall & Marron Estimator
Minimum 12.42 12.77
1st Qu. 22.31 22.59
Median 24.92 25.01
Mean 25.12 25.13
3rd Qu. 27.48 27.35

Maximum 38.85 36.84
Variance 14.43093 12.60777

Table B.19: Simulation Results for the Figure (3.7) whereσ2 = 25.

Estimator New Estimator Hall & Marron Estimator
Minimum 63.07 64.45
1st Qu. 89.37 89.78
Median 99.17 99.54
Mean 99.5 99.66
3rd Qu. 108.56 108.32

Maximum 147.91 148.51
Variance 213.8416 194.3858

Table B.20: Simulation Results for the Figure (3.7) whereσ2 = 100.

Estimator New Estimator Hall & Marron Estimator
Minimum 0.615 0.7415
1st Qu. 0.913 1.1622
Median 1.032 1.2776
Mean 1.034 1.2845
3rd Qu. 1.144 1.3992

Maximum 1.730 2.1096
Variance 0.02631763 0.03238408

Table B.21: Simulation Results for the Figure (3.8) whereσ2 = 1.

Estimator New Estimator Hall & Marron Estimator
Minimum 2.377 2.731
1st Qu. 3.562 3.821
Median 3.971 4.209
Mean 3.996 4.240
3rd Qu. 4.381 4.615

Maximum 6.070 6.363
Variance 0.3649796 0.3393106

Table B.22: Simulation Results for the Figure (3.8) whereσ2 = 4.
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Estimator New Estimator Hall & Marron Estimator
Minimum 13.80 15.78
1st Qu. 22.51 22.78
Median 25.08 25.31
Mean 25.22 25.44
3rd Qu. 27.81 27.78

Maximum 39.58 38.02
Variance 15.46193 13.52381

Table B.23: Simulation Results for the Figure (3.8) whereσ2 = 25.

Estimator New Estimator Hall & Marron Estimator
Minimum 53.87 53.24
1st Qu. 88.37 89.58
Median 98.69 99.23
Mean 99.97 100.02
3rd Qu. 109.84 109.61

Maximum 149.36 145.49
Variance 255.292 216.9286

Table B.24: Simulation Results for the Figure (3.8) whereσ2 = 100.

Estimator New Estimator Hall & Marron Estimator
Minimum 0.9282 0.8544
1st Qu. 1.1557 1.0932
Median 1.2363 1.1669
Mean 1.2389 Mean :1.1695
3rd Qu. 1.3129 1.2378

Maximum 1.6773 1.5907
Variance 0.01334013 0.01182779

Table B.25: Simulation Results for the Figure (3.9) whereσ2 = 1, hNEW = 0.06 andhHM = 0.12 .

Estimator New Estimator Hall & Marron Estimator
Minimum 0.7422 0.7469
1st Qu. 0.9614 0.9915
Median 1.0256 1.0601
Mean 1.0319 1.0634
3rd Qu. 1.0987 1.1285

Maximum 1.3427 1.3698
Variance 0.01137822 0.01084738

Table B.26: Simulation Results for the Figure (3.9) whereσ2 = 1, hNEW = 0.02 andhHM = 0.08 .
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Estimator New Estimator Hall & Marron Estimator
Minimum 0.6374 0.7624
1st Qu. 0.9277 0.9509
Median 1.0018 1.0209
Mean 1.0094 1.0233
3rd Qu. 1.0874 1.0950

Maximum 1.3979 1.4564
Variance 0.0131534 0.00983333

Table B.27: Simulation Results for the Figure (3.9) whereσ2 = 1, hNEW = 0.008 andhHM = 0.05 .

Estimator New Estimator Hall & Marron Estimator
Minimum 0.6642 0.6955
1st Qu. 0.9189 0.9255
Median 0.9997 1.0029
Mean 1.0041 1.0043
3rd Qu. 1.0867 1.08

Maximum 1.4899 1.3813
Variance 0.01533834 0.01220766

Table B.28: Simulation Results for the Figure (3.9) whereσ2 = 1, hNEW = 0.006 andhHM = 0.01 .

Estimator New Estimator Hall & Marron Estimator
Minimum 26.84 26.64
1st Qu. 34.76 34.97
Median 37.35 37.64
Mean 37.49 37.75
3rd Qu. 39.96 40.27

Maximum 50.63 50.75
Variance 14.7104 14.90147

Table B.29: Simulation Results for the Figure (3.10) whereσ2 = 36, hNEW = 0.2 andhHM = 0.4 .

Estimator New Estimator Hall & Marron Estimator
Minimum 25.89 25.90
1st Qu. 33.86 34.10
Median 36.28 36.52
Mean 36.41 36.63
3rd Qu. 38.95 39.26

Maximum 46.88 46.96
Variance 13.34199 13.19872

Table B.30: Simulation Results for the Figure (3.10) whereσ2 = 36, hNEW = 0.1 andhHM = 0.25 .

192



Estimator New Estimator Hall & Marron Estimator
Minimum 25.17 24.81
1st Qu. 33.77 33.67
Median 35.98 35.95
Mean 36.08 36.03
3rd Qu. 38.45 38.39

Maximum 47.72 47.99
Variance 12.76928 12.68781

Table B.31: Simulation Results for the Figure (3.10) whereσ2 = 36, hNEW = 0.05 andhHM = 0.1 .

Estimator New Estimator Hall & Marron Estimator
Minimum 24.87 25.04
1st Qu. 33.39 33.69
Median 36.04 36.09
Mean 36.06 36.06
3rd Qu. 38.48 38.37

Maximum 47.68 47.46
Variance 14.75015 13.21818

Table B.32: Simulation Results for the Figure (3.10) whereσ2 = 36, hNEW = 0.01 andhHM = 0.07 .
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Appendix C

The Matlab Functions for the Figures in
Chapter 6

The main Matlab codes, which are used to produce the figures in chapter 6, are demonstrated
in this appendix. The following function is used to define the mean and variance functions
as required for each plot in the figures (6.1)-(6.28).

function [mx, rvx] = meanvar(x)
mx=2+(4*x)-(4*x.ˆ2);
rvx=0.5*(2+(4*x)-(4*x.ˆ2)+(3*x.ˆ3));
end

In the above function, mx represents the mean function, whereas rvx denotes the vari-
ance function. The main Matlab function to produce the figures (6.1)-(6.28) is as follows
where n denotes the sample size; nn represents the number of replications; h and h2
refer to the bandwidths which is used to estimate the mean and variance functions for the
new estimator, respectively and h3 represents the bandwidth which is used to estimate the
variance function for the Brown-Levine estimators:

function evfnbl( n, nn , h,h2,h3)
ss2=zeros(nn,n);vx2=zeros(nn,n);
vx3=zeros(nn,n);vx4=zeros(nn,n);
for k=1:1:nn
x1=rand(1,n); x=sort(x1);
[mx,rvx]=meanvar(x)
y=mx +((sqrt(rvx)).*randn(1,n));
ty=y’;
w=zeros(n,n);w1=zeros(n,n);
for i=1: 1:n
for j=1:1:n
a=x(j)-x(i);
if a==0
w(i,j)=0;
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else
w(i,j)= (1/sqrt(2*pi))*exp(-0.5*(a/h).ˆ2);
end
end
end
for i=1:n
w1(:,i)=w(:,i)./sum(w,2);
end
w2=zeros(n,n);
for i=1:n
for j=1:n
w2(i,j)=w1(i,j)*y(i)*ty(j);
end
end
w3=zeros(n,n);
for i=1:n
for j=1:n
w3(i,j)= (1/sqrt(2*pi))*exp(-0.5*(((x(i)-x(j))/h2).ˆ2));
end
end
w33=zeros(n,n);
for i=1:n
w33(:,i)=w3(:,i)./sum(w3,2);
end
w4= (y.ˆ2-(sum(w2,2))’);
ss2(k,:)=w33*w4’;
u=zeros(1,n);
for i=2:1:n-1
u(i)=sum((0.809*y(i-1))+(-0.5*y(i))+(-0.309*y(i+1)));
end
u1=u.ˆ2;
u2=zeros(1,n);
for i=3:1:n-2
u2(i)=sum((0.2708*y(i-2))+(-0.0142*y(i-1))
+(0.6909*y(i))+(-0.4858*y(i+1))+(-0.4617*y(i+2)));
end
u12=u2.ˆ2;
u3=zeros(1,n);
for i=4:1:n-3
u3(i)=sum((0.24*y(i-3))+(0.03*y(i-2))+(-0.0342*y(i-1))
+(0.7738*y(i))+(-0.3587*y(i+1))+(-0.3038*y(i+2))+(-0.3472*y(i+3)));
end
u13=u3.ˆ2;
e=[1 0 ];
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x11=ones(1,n); vx1=zeros(1,n);vx12=zeros(1,n); vx13=zeros(1,n);
for i=1:n
x2=x(i)-x; xxt=[ x11; x2];
w55=diag((1/sqrt(2*pi))*exp(-0.5*(((x(i)-x)/h3).ˆ2)));
vx1(i)=e*(inv(xxt*w55*xxt’))*xxt*w55*u1’;
vx12(i)=e*(inv(xxt*w55*xxt’))*xxt*w55*u12’;
vx13(i)=e*(inv(xxt*w55*xxt’))*xxt*w55*u13’;
end
vx2(k,:)=vx1; vx3(k,:)=vx12; vx4(k,:)=vx13;
end
%To plot the estimated and true variance functions
plot(x,mean(ss2,1),’b --’,x,mean(vx2,1),’k -.’, x,rvx,’r -’,
x,mean(vx3,1),’k --’, x ,mean(vx4,1),’k :’)
end

For example, to draw the figure (6.1), the following Matlab codes are used where meanvar
function is changed every time as required:

subplot(221),
evfnbl( 100, 1000, 0.025,0.1,0.06);
subplot(222),
evfnbl( 100, 1000, 0.025,0.1,0.06);
subplot(223),
evfnbl( 100, 1000, 0.025,0.1,0.06);
subplot(224),
evfnbl( 100, 1000, 0.025,0.1,0.06);
legend(’New Est.’,’B-L r=2’, ’True’, ’B-L r=4’, ’B-L r=6’)

To plot the variance and the MSE of the estimated variance function, we can save the data of
the variance and the MSE every time, then we use the following Matlab codes:

plot(x,var(ss2,1),’b --’,x,var(vx2,1),’k -.’,
x,var(vx3,1),’k -’, x,var(vx4,1),’k :’)
xlabel(’x’),ylabel(’Var’), title(’V_{1}(x)’)
plot(x,(mean(ss2,1)-rvx).ˆ2 + var(ss2,1),’b --’,
x,(mean(vx2,1)-rvx).ˆ2 + var(vx2,1),’k -.’,
x,(mean(vx3,1)-rvx).ˆ2+var(vx3,1),’k -’,
x ,(mean(vx4,1)-rvx).ˆ2 +var(vx4,1),’k :’)
xlabel(’x’),ylabel(’MSE’), title(’V_{1}(x)’)

To produce the scatter plot of age-Blood Pressure data in the figure (6.29), we use the fol-
lowing codes:

xage=[20.1832495, 20.26676297, 21.31068133, 22.22932948,
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23.27324784,24.27540946, 24.27540946, 25.36108455, 25.40284129,
26.27973271, 27.44892127, 28.32581269, 29.16094737, 30.24662246,
31.20702735, 31.24878409, 32.29270244, 33.12783713, 33.25310733,
34.29702569, 35.29918731, 37.09472689, 37.13648362, 38.05513178,
38.18040198, 39.26607707, 40.18472522, 40.26823869, 42.06377827,
42.14729174, 43.19121009, 43.23296683, 44.44391212, 45.07026314,
45.98891129, 46.07242476, 46.07242476, 46.86580271, 48.24377494,
49.12066636, 49.37120677, 50.12282798, 50.12282798, 52.04363776,
52.0853945, 52.2106647, 53.08755612, 54.17323121, 55.1336361,
56.17755446, 56.92917567, 56.97093241, 58.22363444, 59.14228259];
ybp=[70.26791809, 65.39419795, 66.35153584, 63.21843003,
70.35494881, 75.22866894, 72.26962457, 71.31228669, 68.2662116,
79.31911263, 73.31399317, 67.221843, 79.23208191, 73.31399317,
66.26450512, 80.1894198, 76.44709898, 76.01194539, 69.22354949,
73.31399317, 79.05802048, 68.2662116, 77.83959044, 91.32935154,
87.5, 75.48976109, 90.28498294, 70.35494881, 72.53071672,
85.49829352, 75.31569966, 80.1894198, 71.31228669, 92.1996587,
83.3225256, 89.15358362, 80.53754266, 96.20307167, 70.00682594,
101.2508532, 80.53754266, 91.32935154, 71.48634812, 86.4556314,
85.15017065, 100.1194539, 79.58020478, 71.57337884, 76.27303754,
92.28668942, 99.16211604, 109.2576792, 80.53754266,90.37201365];
plot(xage,ybp,’o’)

To draw the figure (6.30), we use a similar codes to the evfnbl function where h1 = 0.034,
h2 = h3 = 0.15, n = 54, nn = 1, y = ybp and x = xage.
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