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Abstract: 

This thesis is concerned with the development of pure software-based solutions for cellular 

positioning.  The proposed self-positioning solutions rely solely on the available network 

infrastructure and do not require additional hardware or any modifications in the cellular 

network.  The main advantage of using RSS rather than timing measurements is to overcome 

the need for synchronisation between base stations.  By exploiting the availability of RSS 

observations, the self-positioning methods presented in this thesis have been implemented as 

mobile software applications and tested in real world positioning experiments.  The well-

known Extended Kalman Filter can be used as a static positioning process while modeling the 

uncertainty in signal strength observations.  The range estimation is performed using an 

empirical propagation model that has been calibrated using RSS measurements in the same 

trial areas where the positioning process is applied.  In order to overcome the need for a priori 

maps of the GSM network, a novel cellular positioning method is proposed in this thesis.  It is 

based on the concept of Simultaneous Localisation And Mapping (SLAM) which represents 

one of the greatest successes of autonomous navigation research.  By merging target 

localisation and the mapping of unknown base stations into a single problem, Cellular SLAM 

allows a mobile phone to build a map of its environment and concurrently use this map to 

determine its position.        
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Chapter 1 - Introduction 

 

 

Localisation is the process of finding the spatial location of a target.  From ancient times to the 

modern era, the localisation problem was part of the art of navigation, one of the earliest 

subjects of scientific research.  Navigation determines the position of the target as well as the 

course and distance it has travelled.  For thousands of years, sailors relied on maps, 

landmarks and celestial bodies like the sun, the moon and navigational stars to navigate their 

ships.  Instruments like the astrolabe and the compass have ancient roots and were used for 

early navigation methods such as celestial navigation and dead reckoning.  The development 

of these instruments throughout medieval times and the invention of the marine chronometer1 

accelerated the Age of Discovery.  Lasting from the 15th to the 17th century, this important 

period in the history of navigation is also known as the Age of Great Navigation as it enabled 

the global mapping of the world and the transition to the modern era.   

The emergence of wireless communication in the end of the 19th century revolutionised 

the art of navigation.  By exploiting the propagation properties of electromagnetic waves, the 

first radio direction finders appeared.   During the 1930’s and 1940’s, more advanced 

radiolocation systems were developed such as Radar, VOR, Loran and Decca which were 

                                                      

 

1 A technological breakthrough which allowed navigators to determine longitude for the first time. 
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used for aerial and naval navigation.  With the start of space exploration, satellite-based 

radiolocation systems were developed beginning with TRANSIT during the 1960’s followed 

by the Global Positioning System (GPS) and the Global Navigation Satellite System 

(GLONASS) during the 1970’s.  Nowadays, GPS is the most widely used navigation system as 

it made obsolete other terrestrial systems including VOR, Loran and Decca.   

1.1 Radiolocation 

Radiolocation systems use measurements on radio signals travelling between the target and 

reference stations or beacons of well-known location.  Strictly speaking, the spatial locations of 

the target and the reference stations are points in the Euclidean space each expressed by a 

vector of coordinates based on a well-defined reference system.  The positioning process can 

be applied once the geometrical relationships linking the target position to the reference 

points are derived from the measurements.  These spatial relationships consist of range and 

angle parameters, which are typically estimated using signal processing techniques.  Angle or 

bearing parameters consist of angle-of-arrival (AOA) measurements obtained using direction 

finding techniques.  The Radio Direction Finder (RDF) was the first radiolocation system to be 

developed and was the primary navigation system used until the fifties when it was replaced 

by a more advanced bearing-based system known as the VHF Omnidirectional Ranging2 

(VOR).  On the other hand, there are two types of range-based relationships:  

- Absolute range relationship between the target and a single reference point, which can 

be derived from time-of-arrival (TOA) or received signal strength (RSS) measurements.  

                                                      

 

2 Achieving accuracies between 100 and 500 metres, VOR became the standard navigation system used by aircrafts and is still in 

use today by some airports. 
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For instance, GPS is a TOA-based system whereas Radar uses a combination of TOA 

and RSS measurements.  

- Relative range difference relationship linking the target to a pair of reference points, 

which can be derived from time-difference-of-arrival (TDOA) measurements.  Typical 

TDOA-based systems are Loran-C and Decca.   

Localisation methods using range-based and angle-based measurements are generally 

referred to as lateration and angulation methods respectively.  This classification is based on 

an intuitive interpretation of the geometrical relationships rather than the specific method of 

computation adopted as the location estimation process.  A geometrical interpretation of an 

absolute range relationship between a reference point and the target is a locus, which can be 

circular in 2-D space or spherical in 3-D space, centred at the reference point with radius equal 

to the range value.  Trilateration is the process of finding the intersection of three circles given 

range measurements with respect to three reference points.  Figure 1.1 illustrates trilateration 

in a radiolocation scenario with RF transmitters used as reference points to determine the 

position of the target receiver.  The latter measures the signal received from the transmitters to 

estimate the absolute range relationship, which is biased due to measurement errors.  In fact, 

the circles do not intersect at a single point but rather at several points which represent 

estimates of the target position. 
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Figure 1.1 Trilateration in a radiolocation scenario 

 

On the other hand, a range difference relative to a pair of reference points defines a hyperbola 

whose foci are denoted by these two reference points.  In order to estimate the target position, 

the intersection of at least two hyperboloids is required resulting from at least three reference 

points.  This is known as hyperbolic lateration.  In Figure 1.2, two hyperboloids resulting from 

three transmitters are depicted.  Hyperbola (1,2) is produced from a range difference 

measurement taken by the target receiver relative to Tx1 and Tx2, while hyperbola (2,3) is 

produced from a range difference measurement relative to Tx2 and Tx3.   
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Figure 1.2 Hyperbolic lateration in a radiolocation scenario 

Angle-based relationships are defined by line of bearing or radials linking the location of the 

target to the reference station locations.  The angulation requires at least two reference points 

to produce two radials intersecting at the target position, as shown in Figure 1.3. 

Tx1 Tx2

a1 a2

 

Figure 1.3 Angulation 
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In order to compute the target position mathematically, the measured range and/or 

angle values are used to solve the nonlinear equations defined by the given geometrical 

relationships between the target and each reference point.  However, it is well known that the 

propagation of radio signals is subject to multipath effects, especially in non-line-of-sight 

situations, which corrupt all types of radio measurements.  With large errors in the estimated 

spatial relationships simple geometrical techniques and close-form solutions are deemed 

inadequate for the location estimation process [Gus05][Sir07].   For this reason, radiolocation 

systems such as GPS [GXu03], Loran-C [Web99] and many others employed statistical 

methods such as least squares to solve the nonlinear equations iteratively while taking into 

account the errors in the measurements.  

Another important aspect which can be used to classify radiolocation systems is the 

system’s topology or architecture, which concerns where measurements are taken and 

processed to compute the position of the target.  Two broad classifications exist: self-

positioning (SP) and remote-positioning (RP) systems [Dra98].  In self-positioning systems 

such as GPS, Loran-C and Decca, the target includes a wireless device which receives signals 

from reference transmitters, performs the measurements and computes the position.  In 

remote-positioning systems like Radar however, the processing of measurements are not 

performed at the target but rather at a remote location.  The ability to remotely determine the 

location of the target expanded the domain of the localisation problem which became no 

longer restricted to navigation purposes but also to remote location monitoring and location-

based services.  In effect, remote positioning systems were used for Automatic Vehicle 

Location (AVL) which emerged after the advancement of radio communication technology in 

the mid-twentieth century.   
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1.2 The Emergence of Cellular Positioning 

Technological breakthroughs in the mid-twentieth century such as the transistor, the 

integrated circuit and the microprocessor later enabled the creation of more compact, power-

efficient and low-cost wireless equipment.  These advancements in micro-electronics 

revolutionised wireless communication on one hand and boosted the research in radiolocation 

on the other.  Parallel to the evolution of navigation systems, mobile telephony evolved from 

closed-group Private Mobile Radio systems (PMR) in the 1930’s to high-capacity cellular 

networks in the 1980’s.  Motivated by law enforcement in the late sixties, radiolocation 

methods were applied for land vehicles by Automatic Vehicle Location systems (AVL) [Rit77].  

As mobile terminals during the analogue era of cellular networks were mounted on vehicles, 

research in AVL led to the emergence of cellular positioning.  The latter is defined in this 

thesis as the process of determining the position of a mobile terminal (MT) within a cellular 

network.  The positioning process is applied using measurements on signals travelling 

between the mobile terminal and the Base-Transceiver Stations (BTS), which represent the 

well-known reference points.   

1.2.1 AVL Origins 

With the emergence of digital maps and improved Geographic Information Systems (GIS), 

various AVL applications were deployed in the 1980’s such as fleet management, rapid 

response and intelligent transportation systems.  A typical AVL system consists of a wireless 

communication system which allows a central control station to monitor the location of 

several vehicles in order to apply a certain decision making process.  Depending on the 

application, AVL systems can employ either a self-positioning or remote-positioning 
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radiolocation system.  In the former case, the localisation process is performed by a device 

installed on the vehicles which transfer the location information to the central control.  In the 

latter case, the localisation process is performed by the central control using signals 

transmitted from the vehicles.  

When GPS was made available for civilian use, the high accuracy of the positioning 

service was reserved to the US military.  Moreover, GPS devices require clear views of the sky 

to receive at least four satellite signals and produce a position fix.  As a result, GPS was clearly 

not adequate for use for AVL application at the time3.  As a result, most AVL systems had to 

rely on dead reckoning measurements and some sort of radiolocation method to correct the 

incremental errors of dead reckoning.  Some AVL companies deployed dedicated 

radiolocation infrastructures which were expensive, while others used existing Loran-C and 

Decca infrastructures, which had limited coverage and accuracy in urban areas [Sco93].  The 

successful deployment of analogue cellular networks in the eighties attracted the researchers 

within the AVL community who realised the cost-saving advantages of exploiting the 

nationwide cellular coverage [Sag93][She91].  In addition to providing means for voice and 

data communication, cellular networks also provided AVL systems with the infrastructure for 

implementing radiolocation techniques.  As a result, AVL research linked radiolocation to 

mobile telephony giving birth to the field of cellular positioning, which is the main concern of 

this thesis. 

   

                                                      

 

3
 GPS was widely adopted by AVL systems when selected availability is turned off in the year 2000. 
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1.2.2 Wireless Enhanced-911 

Inspired by radiolocation techniques implemented by radio navigation systems and AVL 

applications, the first cellular positioning techniques emerged as experimental systems in the 

early nineties.  They were classified as mobile-based and network-based methods referring to 

self-positioning and remote-positioning methods respectively [Wan00][Dra98].   Due to the 

increasing number of emergency calls made from mobile phones, the Federal Communication 

Commission (FCC) issued the wireless Enhanced-911 mandate which required network 

operators in the United States to provide emergency call centres with the location of wireless 

callers.  Accurate positioning of calls would improve response time for life threatening 

situations and maximise resources to handle multiple calls [ABI11].  After consulting with the 

wireless industry, the FCC announced that E-911will be implemented in two phases: the first 

required the location of the cell tower connecting the call while the second imposed strict 

accuracy requirements for each of mobile-based and network-based methods [Bul09].  E-911 

has become the main driving force of the research and the telecommunications industry began 

working towards the standardisation of cellular positioning methods for both TDMA and 

CDMA networks.  The first phase of E911 was met using the cell identification method which 

simply consisted of fetching the location of the base station serving the call and sending it to 

the emergency answering point.  Due to necessary modifications either in the network or the 

handsets or both, the second phase was not implemented by the required deadline and was 

postponed many times [ABI05].   

Since AOA techniques required expensive antenna arrays to be installed in base 

stations, TDOA techniques received the most attention among researchers [Mot01].  In order 

to achieve accurate positioning however, TDOA requires precise synchronisation between 
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base stations, accurate time delay estimation and error mitigation of multipath effects [Dra98].  

As they are synchronised, CDMA networks had an advantage over GSM networks which 

required the installation of new network elements called Location Measurement Units to 

perform the timing synchronisation between base stations.  By 1999, TDOA-based techniques 

for both CDMA and GSM networks were standardised allowing the implementation of E-911 

to progress further [Mot01].  In the same time, a hybrid system called Wireless Assisted-GPS 

emerged as an important contender for standardisation.  As it required signal reception from 

at least four satellites, conventional GPS suffered from long Time-To-Fix (TTF) and 

interrupted service in poor signal situations like in dense urban areas, indoors or under 

foliage.  A-GPS combines TOA measurements from GPS satellites and cellular base stations in 

order to improve coverage and latency of conventional GPS [Sol00]. 

 By 2009, the second phase E-911 is implemented across almost the entire United States 

with standardised handset-based method and network-based methods applied by CDMA and 

GSM networks respectively [Bul09].  Handset-based methods used by the CDMA carriers 

Sprint and Verison Wireless include A-GPS and the TDOA-based technique known as 

Advanced Forward Link Trilateration (A-FLT).  Network-based methods adopted by the GSM 

carriers AT&T Mobility and T-Mobile USA include U-TDOA and Cell Identification [Bul09].  

Despite the challenges facing its practical implementation, E-911 has been saving lives by 

providing rapid response to medical emergencies and stopping crimes as soon as they are 

reported.  The main challenge consists of achieving high positioning accuracies in all types of 

environments.  According to E-911 trials, A-GPS fails to meet the accuracy requirements 

indoors and in urban canyons.  TDOA-based techniques perform well in all types of 



22 

 

 

environments except in rural areas where only one or two base stations can be used for 

positioning [ABI11].            

In the same spirit as E-911, the European Community officially confirmed the use of 

112 as a common emergency number and started to work towards the establishment of 

location-enhanced emergency services known as E-112.  Unlike E-911, the E-112 project is not 

only faced with the cost of deploying positioning systems but also by the diversity of 

emergency services in the member states [Van05].  After assessing the issues facing the 

implementation of E-112 project, accuracy requirements were only proposed as the EU was 

unwilling to impose a financial burden on mobile operators and preferred waiting for GSM 

standards bodies to adopt a common location technology [ABI05].  Despite the 

standardisation of the Enhanced-Observed Time Difference4 (E-OTD) technique through a 

common effort of phone manufacturers Nokia and Ericsson with Cambridge Positioning 

System, a bigger obstacle remained which is the cost upgrading emergency response centres 

throughout Europe.  There is however an on-going EU project based on E112 called eCall, 

which aims to provide rapid assistance to motorists involved in serious accidents within the 

EU.  A device equipped with a GPS receiver will be installed in all vehicles that will 

automatically dial 112 at the moment of the accident and wirelessly send impact sensor 

information along with the GPS position to the emergency call centre [Fil11]. 

                                                      

 

4
 E-OTD was developed as a possible GSM positioning system for E-911.  Due financial issues and failure to satisfy the FCC accuracy 

requirements, E-OTD was abandoned and the more accurate U-TDOA was adopted instead as the main method for GSM carriers. 
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1.3 Mobile Location-Based Services 

E-911 represents the first large-scale implementation of a Location-Based Service (LBS) for 

mobile phones.  LBS can be defined as the real-time localisation process of a mobile device in 

order to provide a service based on the returned location information.  LBS applications which 

had been gaining fast popularity since the mid-nineties were telematics.  Benefitting from 

decades of research in AVL, GIS and wireless telephony, automobile manufacturers 

developed telematics systems which provided customers with emergency services and 

navigation information based on GPS location and cellular communication.   

1.3.1 Early Commercial LBS 

On the other hand, the growth of commercial LBS for mobile phones had to wait for the 

evolution of cellular networks towards the third generation systems as well as hardware and 

software improvements of the mobile devices.  In fact, the growth of the Internet during the 

nineties pushed wireless telephony to achieve high data rates and allowed GIS vendors to 

make digital maps available to the public as Internet-based services.  In the same time, 

personal digital assistants (PDA’s) have become capable of displaying rich colour maps and 

integrating a GPS unit.  Deployed by the Japanese operator NTT DoCoMo in 2000, DokoNavi 

was the first commercial LBS which offered high accuracy positioning based on the A-GPS 

technology.  This system consisted of a cellular mobile phone connected to a PDA with built-

in A-GPS chipset which displayed the position of the user on a map [Gul03].  The refinements 

of wireless technology which followed shortly after enabled the creation of smartphones with 

enough computational power and memory to integrate GPS receivers.  In the USA, while 

cellular network operators were implementing the positioning systems standardised for E-
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911, iDEN5 carrier Nextel6 began offering an A-GPS system and became the leading operator 

offering LBS [ABI05].   

In 2005, few years after introducing A-GPS phones to its customers with E-911 in 

mind, CDMA operator Sprint deployed a location-based service which provided customers 

with A-GPS phones with turn-by-turn navigation instructions from a live operator after 

dialling 411 [ABI05].  As for GSM networks, only AT&T deployed commercial LBS which 

adopted the basic cell identification technique since the more accurate network-based method 

U-TDOA required the installation of LMU’s needed for timing synchronisation.  In Europe 

also, CID was also the most widely used technique among GSM operators to provide LBS 

functionality to third-party LBS vendors such as ChildLocate and other online mobile tracking 

services [ABI05].   

1.3.2 Software-Based Solutions 

In order to compensate for the lack of accuracy of commercial cellular positioning systems and 

the lack of indoor or dense urban coverage of GPS, new software-based solutions emerged 

such as Skyhook’s WPS and Intel’s Placelab.  These solutions exploit the expanding coverage 

of WLAN networks and are based on previous work in WLAN indoor localisation, also 

known as location fingerprinting.  This concept consists of linking signal strength 

measurements to ground-truth location forming tuples known as fingerprints, which will be 

stored in a database.  The fingerprinting process is performed offline in a calibration phase so 

                                                      

 

5 iDEN is a TDMA-based technology developed by Motorola in the early nineties which lies at the intersection of trunked radio 

system and cellular networks network.   
6 Software developers within Nextel developed the first Java Location API’s which were later published to the developer 

community. 
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that the resulting database will be used during the location estimation phase.  The latter is the 

online phase in which the mobile terminal measures the received signal strength and searches 

the database for the best-matching fingerprint, whose position determines the solution.  In 

2001, Laitinen introduced the Database Correlation Method (DCM) which applies the 

fingerprinting concept for cellular networks.   By exploiting the availability of RSS 

measurements, DCM overcomes the need for accurate timing synchronisation while coping 

with multipath propagation effects [Lai01].    

1.3.3 The Smartphone Era 

What really boosted the popularity of location-based services is the emergence of user friendly 

and high performance smartphones in the last half-decade.  In 2007, the computing giant 

Apple revolutionised the smartphone industry with the release of the iPhone which was the 

first smartphone with a multi-touch interface.  A year later, the iPhone 3G allowed the user to 

download mobile applications directly from the Apple AppStore via a Wi-fi internet 

connection or a 3G cellular network [She10].  Google later introduced Android, the first open-

source operating system for smartphones which attracted several phone manufacturers 

ending the long domination of Symbian OS7.  In 2008, Apple used Skyhook and Google Maps 

as a location-based service which combined GPS, Cellular and Wi-fi positioning8 [Zan09].  

Skyhook is currently one of the leading LBS vendors with a database including millions of Wi-

fi access points and cellular base stations used as reference points for positioning [Vau09].  

                                                      

 

7
 The leadership of Symbian OS lasted since the release of the Nokia Communicator which was the first 

device that was called ‚smartphone‛ as it combined the functionalities of PDA’s and mobile phones.   
8
 Currently Apple are using their own databases for cellular and Wifi positioning, accessible by third 

party LBS applications.  
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The database is constructed through the so-called ‚war driving‛ which refers to the 

calibration phase of location fingerprinting and database correlation methods.  The Cell 

Identity of cellular base stations and the MAC address of Wifi access points are associated 

with GPS samples gathered whilst driving.   

Moreover, Software Development Kits made available to third-party developers led to 

the creation of a plethora of LBS applications such as turn-by-turn navigation, nearby points 

of interests, real-time transport information and many more [Hub09].  Some LBS application 

developers use databases maintained by LBS vendors while others use smaller and less 

accurate databases maintained by developers within the open-source LBS community using 

data collected by the smartphone users themselves [Ofc10].  Open source databases such as 

OpenSignal were created in order to enable third-party developers to access cellular network 

information that is not publically available, namely the location of base stations and the CID 

codes identifying individual transmitters.   

1.4 Research Scope  

Nowadays, 80% of smartphone users have LBS-type applications installed on their devices 

and the LBS market is predicted to exceed $12 billion by 2014 mainly from increasing 

application sales and mobile advertising [She10].  Despite the increasing popularity of 

smartphones in the last few years, they are still significantly more expensive than standard 

mobile phones which are referred to nowadays as feature phones [Hub09].  In addition to the 

high cost, the diverse functionality of smartphones comes at the cost of higher power 

consumption, making them less adequate for long talk times than standard mobile phones.  

As a result, feature phones are still being sold in higher numbers [But11].   
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As far as location-based services are concerned, low-cost feature phones must rely on 

cellular positioning alone as they are not designed to have GPS and Wifi capabilities.  As a 

result, the need for GPS-free methods for cellular positioning is still present especially for 

emergency services.  While the E-911 emergency services are implemented in almost the entire 

US territory regardless of the type of cellular handset used, Europe and other parts of the 

world are still not benefitting from this important public safety LBS.  While not as important 

for smartphones, cellular positioning is the only solution available to commercial LBS for 

feature phones.  According to Ofcom, the adopted cellular positioning method in the UK is 

Cell Identification which is the most basic and less accurate technique [Ofc11].  As the more 

accurate time-based techniques such as Uplink Time Difference Of Arrival (U-TDOA) and 

Enhanced Observed Time Difference (E-OTD) require the installation of expensive network 

elements, they have seldom been implemented by cellular network operators in Europe.  As a 

result, new cellular positioning techniques which do not require modifications in the network 

infrastructure are needed, which is the main motivation driving this research.   

1.4.1 Main Focus 

This thesis is concerned with the development of pure software-based solutions for cellular 

positioning.  The proposed self-positioning solutions rely solely on the available network 

infrastructure and do not require additional hardware or any modifications in the cellular 

network.  Among the observable information that is inherently available within the GSM 

network is the Cell Identity code (CID) and the received signal strength (RSS).  The former 

identifies the BTS antenna communicating with the mobile terminal while the latter can be 

used to estimate the range between the mobile terminal and the BTS.  The main advantage of 

using RSS rather than timing measurements is to overcome the need for synchronisation 
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between base stations.  By exploiting the availability of RSS observations, the self-positioning 

methods presented in this thesis have been implemented as mobile software applications and 

tested in real world positioning experiments.   

1.4.2 Positioning Methodology 

It is well known that the range between the mobile receiver and the base station transmitter 

can be estimated using a propagation model given signal strength measurements.  As the 

positioning outcome depends on the accuracy of the range estimation, the errors in RSS 

measurements due to multipath propagation have to be taken into account by both the 

propagation model and the positioning process.   As demonstrated by the Author in [Ham06], 

[Ham07] and [Ham08], the well-known Extended Kalman Filter (EKF) can be used as a static 

positioning process9 which models the uncertainty in signal strength observations.  Different 

generic propagation models were used to predict the MT-BTS range and a comparative 

experimental evaluation has been conducted.  In the current research however, the range 

estimation is performed using an empirical propagation model that has been calibrated using 

RSS measurements in the same trial areas as the positioning experimental setup.  In fact, it will 

be shown through experimental evaluation in this thesis that the use of the EKF with a 

calibrated propagation model improves the accuracy of the RSS-based estimation process as 

opposed to using generic models.  Two static EKF models10 are presented in Chapter 3: one 

using range observations and the other using range and bearing observations.  Using prior 

knowledge of the sectorisation setup of base stations, the relative bearing angle between the 

                                                      

 

9 The EKF model is defined here as a static positioning process meaning that the mobile terminal target is not moving while 

measurements are taken and the computation is performed.   The process model of the EKF is in fact static. 
10 Static EKF models refer to EKF models each having a static process model.   
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BTS and the mobile is quantified and integrated into the EKF estimation process with the RSS-

derived range observation.  Without relying on Angle-Of-Arrival measurements, the angle 

relationship between the mobile and the BTS is approximated and deduced from the 

knowledge of the sectorisation setup of the BTS.   

In order to be applied in real-world experimentation, these static positioning systems 

were implemented as a mobile software application we refer to as the ‚GSM Mobile Locator‛.  

Running on the Windows Mobile platform, this application applies the positioning process 

and displays the result on a map downloaded from the Microsoft MapPoint web service.  It 

stores well-known BTS details on a database and allows the user to input the signal strength 

measurements with respect to the BTS used during the positioning experiment.  RSS 

measurements are then translated to distance measurements using the selected propagation 

model among different generic models such as the Hata model and the Walfisch-Ikegami 

model.  Chapter 5 provides the software design of the ‚GSM Mobile Locator‛ application 

while Chapter 6 presents the positioning experiments conducted using the application.    

As they represent the positioning reference points, BTS locations must be known a 

priori and identified according to their associated Cell Identity Codes.  In this work, BTS 

locations were retrieved from Ofcom’s Sitefinder database11 [Ofc12].  However, this database 

does not include the CID codes associated with each transmitter as such information is still 

restricted by mobile operators.  As a result, extensive surveys12 have been conducted to 

identify base stations using their associated CID codes.  As the Sitefinder website is not 

                                                      

 

11 Sitefinder is the most reliable database available to the public in the UK as the data is provided by the network operators 

themselves.   
12 Data collection surveys consisted of monitoring CID in the vicinity of known BTS locations and building the databases required 

by the software applications. 
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updated regularly and may not contain all transmitter locations, the CID identification of 

known transmitters was a laborious task particularly in dense urban areas.  In fact, it is the 

lack of a complete and accurate map of identifiable base stations which boosted the need to 

extend the proposed EKF-based localisation methodology to perform the mapping of BTS 

locations as well as the localisation of the target mobile terminal.    

1.4.3 Main Contribution 

In order to overcome the need for a priori maps of the GSM network, a novel cellular 

positioning method is proposed in this thesis.  It is based on the concept of Simultaneous 

Localisation And Mapping (SLAM) which represents one of the greatest successes of 

autonomous navigation research [Cso97][New99][Bai02][Dur06].  By merging target 

localisation and the mapping of unexplored environments into a single problem, SLAM 

allows an autonomous guided vehicle (AGV) to build a map of its environment and 

concurrently use this map to determine its position.  The AVG can therefore be deployed 

without the need for an offline survey of the environment which can be a lengthy and costly 

process [Bai02].   

The proposed cellular positioning method adopts the fundamental EKF-SLAM 

formalism to build a map of the cellular network and then uses this map to estimate the 

position of the mobile station.  Similarly to feature-based SLAM methods, the term ‘map’ is 

defined in this thesis as a set of observable and identifiable landmarks or features.  In the 

cellular network, landmarks are represented by BTS locations which are identified by the CID 

code allocated to each transmitter.  BTS landmarks can be related to the position of the mobile 

terminal through relative range observations, which are derived from signal strength 

measurements.  
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In the literature, the SLAM applications for tracking mobile phones in unknown 

environments are based on visual tracking using images taken by built-in phone cameras 

[Kle09].  To the best of our knowledge, the SLAM methodology has not been applied for 

cellular positioning using measurements on downlink BTS signals.    This is the case mainly 

because the problem of locating a mobile phone without BTS location information is 

encountered only by third party LBS developers who do not have access to restricted network 

information.  As a result, the proposed Cellular SLAM solution for mobile phones represents 

the main contribution of this thesis.      

Moreover, SLAM has been applied for RF-based localisation such as robot navigation 

problems using unknown sensor nodes in WSN [Dju05][Men09][Pat05] and localisation using 

unknown RFID beacon locations [Kur04] [Dju08].  These methods are known as range-only 

SLAM because bearing measurements are not available in their respective frameworks.  

Compared to range-bearing or bearing only SLAM, range-only SLAM has not been studied 

extensively [Kur04][Ols04].  The similarity of our approach with other range-only SLAM 

applications in the literature lies in the RSS-based observation model as well as the EKF-

SLAM formalism of state augmentation.  What characterises the proposed range-only SLAM 

method is that it does not rely on dead reckoning measurements like typical SLAM 

applications.  As it implements a SLAM approach constrained by the lack of motion sensing 

capability, this methodology is referred to in this thesis as the Constrained Cellular SLAM 

(CCS).  The constrained approach consists of performing the SLAM process after the 

initialisation of base station locations.  Instead of relying on dead reckoning measurements as 

prior knowledge for the mobile state prediction stage of the Kalman Filter, a location 
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fingerprinting two-stage approach is adopted consisting of an Initial Mapping Stage (IMS) 

followed by a Network Localisation Stage (NLS).   

The IMS is a data collection process which is performed by conducting a survey of the 

area surrounding each base station.  The initialisation of BTS positions relies on absolute 

knowledge of the position of the mobile terminal as well as range measurements taken from 

the MT relative to the serving base station.  Mobile position data can be measured using GPS 

while the MT-BTS range data is deduced from signal strength measurements.  The IMS is 

similar to the calibration stage of location fingerprinting techniques as it associates with each 

surveyed BTS a set of mobile location fingerprints.  The aim of this fingerprinting process is to 

enable the system to model the dynamics of the target mobile terminal during the Network 

Localisation Stage.  The NLS is the online stage which performs the EKF-SLAM process of 

tracking the movement of the mobile terminal while simultaneously updating the map of base 

stations.  In order to evaluate the performance of the proposed methodology, the CCS system 

has been implemented as a smartphone application running on a Symbian OS platform.  The 

design of the software is outlined in Chapter 5 and the experimental evaluation of the system 

is presented in Chapter 6.     

1.5 Thesis Overview 

The next chapter will begin with a comparative survey of different cellular positioning 

techniques some of which have been standardised following the E-911 mandate.  Section 2.3 

will provide a brief literature review of signal strength-based radiolocation techniques which 

appeared in Automatic Vehicle Location research before they were applied for cellular 

positioning.  Section 2.4 will describe the propagation model which has been adopted by the 
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proposed positioning systems to link the mobile terminal target estimate to the received signal 

strength measurements.  Section 2.5 will introduce the subject of Simultaneous Localisation 

and Mapping and briefly describe its application in radiolocation systems.   

Chapter 3 will present the static positioning system proposed in this thesis which is 

characterised by the use of a static Extended Kalman Filter model.  The latter adopts the 

calibrated propagation model as the range-based observation model, as described in Section 

3.3.  In Section 3.4, a new approach is presented to derive bearing measurements from the 

sectorisation setup of GSM/UMTS base stations, which is applied by the proposed range-

bearing EKF model.   

Chapter 4 presents the Constrained Cellular SLAM system, which represents the main 

contribution of this thesis as it tackles the cellular positioning problem from a new 

perspective, namely mobile location estimation using unknown BTS locations.  Firstly, an 

overview of the SLAM-based approach is described in Section 4.2.  The adopted observation 

model which is also based on the calibrated signal strength model is described in Section 4.3.  

The BTS Initialisation Model responsible for initializing landmarks during the Initial Mapping 

Stage is described in Section 4.4, while the Network Localisation Filter responsible for 

applying the EKF-SLAM process during the Network Localisation Stage is described in 

Section 4.5.   

Chapter 5 is concerned with the design of the ‚GSM Mobile Locator‛ and the 

Constrained Cellular SLAM mobile software applications which were used to perform the 

positioning trials for each of the static positioning system and the Constrained Cellular SLAM 

system respectively.    
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Chapter 6 is concerned with the experimental evaluation of the positioning systems presented 

in this thesis.  It begins with outlining the preparation stages required to perform the 

positioning trials, namely the BTS identification and propagation model fitting in Section 6.2 

and Section 6.3 respectively.  The performance analysis of the static positioning system and 

the Constrained Cellular SLAM system is presented in Section 6.4 and Section 6.5 respectively.  

Defined in terms of positioning accuracy, the performance of the proposed systems is 

evaluated against other cellular positioning methods, which has been used in real life E-911 

emergency services. 

Finally, Chapter 7 will give concluding remarks, present possible improvements to the CCS 

solution and future research directions.   
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Chapter 2 – Background 

 

 

 

2.1 Introduction 

The problem of locating mobile terminals is inherent in the design of cellular networks.  As far 

as mobile telephony is concerned, the location of the mobile terminal user within the network 

is required for mobility management procedures such as channel assignment and handover 

[Fren10].  The required location information is not the exact geographical location of the 

terminal but a set of network parameters indicating the terminal’s location relative to the base 

stations.  These parameters include the cell identity code identifying the BTS antenna, signal 

strength and timing measurements which are sent between the mobile terminal and nearby 

base stations in the form of messages.  Unlike mobility management, cellular positioning aims 

at determining the geographical position of the mobile stations as accurately as possible in 

order to perform a certain decision making process [Kup05].  Using network parameters to 

define the geometrical relationship between the target mobile station and a set of reference 

base stations, different radiolocation techniques can be adopted for cellular positioning 

depending on the application.  Multipath propagation is the greatest challenge faced by 

cellular positioning techniques as it corrupts the measurements producing ambiguous and 

inaccurate position estimates [Bla02][Fig10].  Error mitigation of multipath effects has been 
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studied extensively in the literature to identify multipath signals using different signal 

processing techniques [Ven04] [AUP06].  

This chapter begins with a description of the cellular positioning techniques that have 

been standardised by telecommunications bodies to implement the E-911 mandate in the US.  

Techniques adopting cell identification, TDOA and GPS have been standardised whereas 

AOA and signal strength-based techniques have not been standardised due to deployment 

cost and performance issues respectively.  While accurate AOA-based localisation requires 

expensive antenna arrays installed in each base station, RSS localisation depends on accurate 

propagation models to derive accurate estimates of the range relationship between the mobile 

target and reference base stations.   

Applying TOA, TDOA or AOA techniques without multipath error mitigation leads to 

ambiguous positioning outcomes.  Similarly, applying signal strength-based localisation 

without an appropriate empirical propagation model produces an even more ambiguous 

outcome due to the high variability of signal strength measurements caused by multipath 

effects such as fading and shadowing [Bla02].  On the other hand, the so-called location 

fingerprinting techniques seem to cope well with multipath propagation and the variability of 

RSS measurements [Lai01] [Hil00].  These techniques have been developed in the literature 

not only for cellular positioning but in other RF-based localisation frameworks such as WLAN 

and RFID [Mut09].  In fact, they are the most suitable and accurate techniques for indoor 

localisation [Kae05].  As discussed in Section 2.4, location fingerprinting is characterised by a 

two-phase approach to radiolocation, which consists of building a database of RSS 

measurements in an offline calibration phase before using this database to estimate location in 
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real-time. A brief literature review of signal strength techniques used in cellular positioning 

will be provided in Section 2.3.     

As mentioned in the introductory chapter, this work is focused on the development of 

software-based solutions to cellular positioning without relying on the infrastructure required 

by TOA, TDOA or AOA measurements.  In the same spirit as other RF-based localisation 

applications, the positioning methodologies proposed in this thesis take advantage of the 

inherent availability of RSS observations in cellular networks.  An important motivation factor 

driving the research is the growing interest in location-based services in light of the recent 

technological advancement in wireless communications.  Current 3G cellular networks and 

state-of-the-art smartphones boosted the popularity of LBS applications as they are attracting 

an increasing number of software developers in both the professional and amateur worlds.   

The software positioning solution presented in this thesis uses an empirical 

propagation model to define the range relationships between the target MS and reference base 

stations as accurately as possible.  The path loss equation of the propagation model is 

calibrated using real RSS measurements taken prior to the positioning process in each trial 

area of the positioning experimental setup.  In fact, it will be demonstrated in Chapter 6 that 

using a calibrated propagation model as an observation model of an Extended Kalman Filter 

will produce more accurate positioning results as opposed to using generic propagation 

models.  Section 2.4 introduces propagation modeling and shows how the calibrated path loss 

equation is derived. 

As introduced previously, the main contribution of this work consists of a new 

solution to cellular positioning which allows third-party developers who do not have access to 

base station location information to perform the mapping of the cellular network prior to the 
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positioning process.  Instead of relying on a database from a commercial LBS vendor or 

unreliable third-party databases, the proposed methodology allows the LBS developer to 

build his own map of base stations.  The methodology is based on an important research 

subject within the robotics community known as Simultaneous Localisation And Mapping 

(SLAM).  While chapters 4 and 5 describe the proposed Constrained Cellular SLAM system in 

detail, this chapter introduces the SLAM concept in Section 2.5. 

2.2 Standard Cellular Positioning Methods 

The first cellular positioning methods emerged in the late nineties after decades of research in 

Automatic Vehicle Location.  Cellular networks were analogue FDMA systems at the time and 

most mobile terminals were mounted on vehicles.  In 1989, an American AVL company 

TrackMobile developed one of the first AVL systems using the AMPS cellular network 

infrastructure as means for localisation [She91].  This system called Hawk-3000 consisted of an 

alarm system which automatically tracks the position of a stolen vehicle.  As it provided an 

anti-theft service to the vehicle owner, Hawk-3000 can be considered as one of the first 

location-based services for vehicle-mounted cellular phones.   

The phenomenal increase in the number of cellular subscribers in the eighties boosted 

the need for digital cellular networks mobile positioning.   In 1990, the IS-54 standard, also 

known as D-AMPS emerged as a digital TDMA system which considerably increased 

capacity.  In the same year, Swales et Al demonstrated the use of antenna arrays and direction 

finding techniques to collect Angle of Arrival measurements and triangulate the position of 

the mobile station *Swa90+.  Following Swales’s work a year later, the American company KSI 

conducted the first trials of the AOA positioning technique using two D-AMPS base stations 
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[Swa99].   Also in 1990, a year after Qualcomm demonstrated the first CDMA cellular system 

to mobile operators, William Sagey from Hughes Aircraft Company filed his patent entitled 

‚Cellular telephone service using spread spectrum transmission‛ *Sag93].  Sagey was 

previously involved in the development of satellite-based AVL systems and realised the cost-

saving advantage of integrating location capability into existing cellular networks based on 

spread spectrum technology.  As the deployment of CDMA cellular networks seemed far 

from reach, Sagey proposed the installation of spread spectrum processors in AMPS base 

stations to perform the messaging required for accurate TDOA-based localisation.  However, 

Qualcomm succeeded in standardising CDMA under the name IS-95 few years later.  A 

cellular network based on CDMA technology is time synchronised with GPS downlink 

satellite signals enabling accurate timing measurements which can in turn be used for 

TOA/TDOA cellular positioning.  FDMA and TDMA networks are not synchronised and 

therefore need additional network elements as initially proposed by Sagey.  In 1991, the 

advantages of determining the position of a mobile phone were discussed by Paton et al 

[Pat91] and H. Hashemi [Has91].  In addition to providing AVL-like dispatch applications 

such as law enforcement, fleet management and emergency services, they pointed out that 

cellular positioning would provide solutions to mobility management issues of newly 

deployed TDMA networks as well as future CDMA networks.   

Due to the increasing number of emergency calls made from mobile phones13 in 1994, 

the FCC ordered cellular carriers to provide the emergency call centre with the geographic 

position of 911 wireless callers.  After consulting the wireless industry, the FCC issued the 

                                                      

 

13 In the United States, an average of 50,000 emergency calls per day were made from mobile phones in 1994. 
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enhanced 911 mandate (E911) in 1996 requiring operators to implement the wireless 

emergency service in two phases.  Phase 1 consisted of providing the local Public Safety 

Answering Point with the caller’s number as well as the coordinates of the serving base 

station connecting the call.  Phase 2, however, consisted of improving the positioning accuracy 

to 125 m 67% of the time.  Most of the cellular positioning methods which existed at the time 

were network-based methods which used Cell Identification (CID), AOA, TDOA techniques 

for two main reasons: 

- They evolved from remote-positioning AVL systems which monitor the target from a 

central location. 

- They were designed to work with existing handsets without making hardware 

modifications.   

During the late nineties, the E-911 boosted the research in cellular positioning and led to the 

creation of mobile-based techniques which used downlink signals transmitted from the base 

stations to the mobile station such as Enhanced Observed Time Difference (E-OTD), Advance 

Forward Link Trilateration (A-FLT) and Wireless Assisted-GPS (A-GPS).  As a result, the FCC 

revised the accuracy requirements in 1999.  The accuracy required for network based methods 

was within 100m for 67% of the calls and 300m for 95% of the calls.  For handset-based 

methods, the required accuracy was within 50m for the 67th percentile and 150m for the 95th 

percentile.  E-OTD, A-FLT and OTDOA are TDOA-based methods which were standardised 

for TDMA (GSM, iDen), CDMA (Cdma2000) and WCDMA (UMTS) networks respectively.  A-

GPS however could be used across all types of networks.  The methods mentioned above have 

been standardised for E-911 and are described next. 
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2.2.1 Cell Identification  

Each base station transmitter in the cellular network is allocated a Cell Identity Code, or CID, 

in order to identify the cell area covered by the transmitter.  Sectored base stations contain 

more than one directional antenna each with a unique CID.  As its name suggests, cell 

identification is the process of determining the cell in which the mobile terminal is located, 

which is known as the serving cell.  Similarly to radiolocation methods based on proximity 

sensing, the location of the base station illuminating the serving cell indicates the approximate 

location of the mobile terminal   In fact, CID represents the simplest cellular positioning 

method as it is based solely on proximity sensing.  As it does not require any modifications in 

the network infrastructure, CID has been used by mobile carriers in the USA to comply with 

the first phase of E-911, which only required the location of the serving cell14.  The accuracy of 

CID as a proximity sensing method is inversely proportional to the size of the serving cell.  

The accuracy varies between a few tens of metres in urban areas to several kilometres in rural 

areas.   

In order to improve the accuracy of the CID method, the gain pattern of directional 

base station transmitters and the Timing Advance (TA) parameter can be used.  The antenna 

gain pattern indicates the approximate azimuth angle between the mobile and the BTS 

reducing the cell area covered by the BTS and thus improves the accuracy.  TA, also known as 

adaptive frame synchronisation, is used in TDMA networks such as GSM to synchronise the 

transmission time of uplink signals from different mobile stations to the same serving base 

station [Kup05].   The aim of this technique is to ensure that uplink signals arrive at the BTS 

                                                      

 

14 The location of the serving BTS can be determined by consulting the coverage database at the serving mobile location centre 

SMLC.   
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without overlapping with one another while minimizing the duration of guard times15.  The 

technique is called timing advance as the MS advances its time of transmission according to 

the Round Trip Time (RTT) of the signal transmitted from the BTS to the MS and back to the 

BTS.  The RTT is measured by the BTS which converts it to a TA value and sends the latter to 

the MS.  According to the GSM specification, the TA value is represented by a 6 bits integer 

code between 0 and 63 (26-1).  The minimum value of 0 means no timing advance while 63 

refers to the maximum RTT of 233 Nano-seconds.  The TA bit period is therefore 3.698 μs 

which corresponds to an approximate BTS-MS range of 554 metres assuming free-space 

propagation.  Table 2.1 shows the relationship between TA values, RTT and BTS-MS range. 

TA value 0 1 2 3 4 

RTT (μs) 0 3.7 7.4 11.1 14.8 

BTS-MS Range (m) 0-554 554-1108 1108-1662 1662-2216 2216-2770 

Table 2.1 TA values and their corresponding RTT and BTS-MS range 

As it provides an indication of the range between the serving BTS and the mobile terminal, the 

TA value can be used as a positioning method in conjunction with Cell Identification.  In fact, 

3GPP standardised CID+TA in 1999 in order to be used by GSM carriers in the USA for E-911 

localisation [Tay05].  Due to its poor accuracy, it is currently used as a fall-back technique for 

E-911 when the more accurate U-TDOA technique fails to return a position estimate [Bul09].  

ID+TA is the most widely adopted positioning method for commercial location-based services 

such as Google MyLocation, Child Locate, Trace a Mobile <etc. 

                                                      

 

15 TDMA systems avoid interference by inserting between adjacent time slots guard times in which transmission is disallowed. 
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2.2.2 Enhanced Observed Time Difference (E-OTD) 

Similarly to TA, the Observed Time Difference (OTD) is another parameter in the GSM 

specifications which can be used for cellular positioning [Sil96].  In GSM, OTD can be used to 

perform an optional pseudo-synchronisation procedure which improves the handover process 

from a serving BTS to a neighbour BTS.  As GSM networks are unsynchronised, base stations 

do not transmit in the same time resulting in a difference of transmitting times between the 

serving BTS and each neighbour BTS called the Real Time Difference (RTD).  When pseudo-

synchronisation is supported, the mobile is constantly monitoring the OTD by measuring the 

time differences of bursts arriving from the serving BTS (used as reference) and neighbour 

base stations one of which will become the serving BTS after the handover.   Before the latter 

is initiated, the pseudo-synchronisation allows the mobile to predict the propagation delay 

relative to a future serving BTS without requiring the latter to perform a Timing Advance 

measurement.  In order to do so, the mobile requires the time difference due to the relative 

geometrical displacements between the mobile and the serving BTS and between the mobile 

and a neighbour BTS.  This time difference is called the Geometric Time Difference (GTD) and 

is defined as the difference between the OTD and the RTD times as follows: 

GTD=OTD-RTD          (2.1) 

For synchronised networks like CDMA, base stations transmit at the same time so there is no 

RTD and thus GTD coincides with OTD.  GTD can be considered as a TDOA measurement for 

unsynchronised networks as it produces a range difference between the target MS and a pair 

of reference base stations and thus defines a hyperbolic relationship between the target and 

the reference points.  As the case with TA, the time resolution of 1 bit coincides with 554 

metres of propagation distance.  The OTD as a hyperbolic positioning method was 
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investigated by Nokia following the E-911 mandate.  After conducting trials in 1998, the 

positioning accuracy of 125 metres required for E-911 was not met mainly due to the low 

accuracy in the timing measurement.   

However, an improvement to the OTD method was standardised in 1999 under the name 

Enhanced-OTD, based on a system developed by the Cambridge Positioning System (CPS) 

called the Digital Cursor system [Duf96].  E-OTD consists of installing extra receivers within 

the network called the Location Measurement Units (LMU) in order to contribute to the 

location estimation process and overcome the need to process TDOA measurements (or OTD 

in the case of GSM) at the mobile station.  Instead, E-OTD relies on synchronised LMU’s 

capable of accurately measuring the Time-Of-Arrival of signals transmitted from different 

base stations.  Consider a base station n (BTSn) communicating with both the mobile terminal 

and a single Location Measurement Unit (LMUm).  Let TL be a TOA measurement taken 

against the internal clock of LMUm with bias ℇL, TB be the broadcast transmission time from 

BTSn and c as the speed of light, the range between BTSn and LMUm, denoted here by RBL 

reads as:  

RBL = c (TL - TB + ℇL)      (2.2) 

Let TM be the TOA measurement taken by the mobile terminal against its internal clock with 

bias ℇM on the signal transmitted by the same base station BTSn at time TB.  This second TOA 

measurement results in a second range relationship between the mobile target and BTSn 

defined by RBM as follows: 

RBM = c (TM - TB + ℇM)      (2.3) 
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Taking the range difference by subtracting (2.2) and (2.3) cancels out the broadcast 

transmission time TB and results in a common synchronisation error ℇ as follows: 

RBM - RBL = c (TM - TL + ℇ)      (2.4) 

In the range difference expression (2.4), only the position of the mobile target and the 

synchronisation error are unknown.  Given at least 3 range difference equations for 3 base 

stations and a single LMU, a 2-d position can be computed by trilateration.  

After the successful trials of the CPS Digital Cursor system in 1996, the E-OTD method 

attracted wireless manufacturers including Ericsson, Nokia and Siemens to implement the 

required software changes in the handsets and GSM network operators in the USA, namely 

Cingular (currently AT&T Mobility) and T-Mobile to adopt E-OTD as the standard method 

for E-911 Phase II.  Despite reasonable accuracies achieved during several trials, E-OTD 

suffered from the need for compatible handsets which delayed the implementation of E-911.  

As a result, the largest GSM carriers abandoned the method by the end of 2003 [ABI05] and 

adopted the network-based method developed by TruePosition known as Uplink-TDOA, 

which is described next. 

2.2.3 U-TDOA 

Delivering more accurate positioning than E-OTD without requiring handset modifications, 

the Uplink-TDOA has been standardised by 3GPP for use by GSM carriers in the USA to 

comply with Phase 2 of the E-911 mandate [Tay05].  Since its first deployment by the LBS 

vendor TruePosition, U-TDOA has been used as the primary method for positioning the 911 

call and in case of failure, the CID+TA is used as a fall back method [Bul09].  As its name 

suggests, U-TDOA uses the uplink signals transmitted from the mobile phone and received by 
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synchronised Location Measurement Units which are typically installed at the base 

transceiver stations.  Using the serving BTS as reference, cross correlation techniques are 

applied to measure TDOAs between pairs of receiving LMU’s.  The TDOA measurements are 

sent to a processor which converts them into range differences and applies a hyperbolic multi-

lateration algorithm to determine the position of the target MS.  U-TDOA proved to satisfy the 

accuracy requirements of E-911 Phase 2 and represents the success of GSM positioning in the 

USA as it saved many lives according to real-life E-911 case studies.  Its major drawback in 

terms of accuracy and availability is the so-called hearability problem encountered in rural 

areas where less than the required three base stations are within reach of the mobile terminal 

resulting in poor GDOP.   

2.2.4 Advanced Forward Link Trilateration 

This method is the fallback method used by CDMA-based networks for E-911 when A-GPS 

fails to return a position fix or is unavailable in case the handset is not equipped with an A-

GPS chipset.  A-FLT has been standardised by the CDMA standard Committee as a handset-

based method in 1999 [Tay05].  The location estimation is performed by the mobile terminal 

using the downlink signals transmitted from CDMA base stations which are synchronised 

using GPS reference time.  The inherent synchronisation allows for accurate TDOA 

measurements between pairs of base stations, which define the range differences required for 

hyperbolic localisation.    

2.2.5 Assisted-GPS 

Before selective availability was turned off in 2000, the conventional GPS satellite navigation 

system available for civilian use suffered from low accuracy, limited availability and low 
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latency (long time-to-fix).  In the late 1980’s, the British security company Securicor16 

developed their own localisation system known as Datatrak17 to monitor cash-in-transit fleets 

[Ban89].  Using a network of low frequency transmitters operating on a TDMA arrangement, 

Datatrak applied TDOA-based hyperbolic localisation which achieved accuracies between 20 

and 50 metres.  Being more accurate than the restricted GPS service at the time, Datatrak 

became popular in the 1990’s and was offered to British emergency services including the 

police, ambulances and fire services [Ban91].   

Motivated by E-911 and the refinements in the GPS chipset design in the mid-nineties, 

American company based in California called Snaptrack developed a hybrid technology 

called Wireless Assisted GPS.  In order to improve the performance of the GPS service 

available for civilian use, A-GPS combines TOA measurements on signals transmitted from 

GPS satellites with TOA measurements on signals transmitted from cellular base stations.  

After processing the measurements, the wireless device equipped with an A-GPS chipset 

sends the information to a server within the cellular network which is responsible for the 

location estimation process.  As the server is equipped with a powerful computer, the network 

assistance reduces the time-to-fix (TTF).  However, the location estimation can also be 

performed by the handset similarly to conventional GPS, at the expense of increased battery 

consumption and TTF.   

Snaptrack’s novel technology attracted Motorola and Texas Instruments as equity 

investors and was put to trial by US carriers as a potential E-911 Phase 2 solution and by other 

                                                      

 

16 In 1985, Securicor helped BT build the first cellular network in Britain (TACS). 
17 Siemens took over Securicor’s Datatrak division in the year 2000 and have since been providing the Datatrak system to telematics 
companies such as Aplicom  [SAR00]. 
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operators and LBS vendors in the USA, Europe and Japan.  Using A-GPS enabled PDA’s made 

by Denso and after extensive field tests since 1997, the largest Japanese cellular network NTT 

DoCoMo launched the world’s first high performance18 location-based service in 2000 called 

‚DokoNavi'' [Gul03].  While conventional GPS was performing poorly in Tokyo’s urban areas, 

DokoNavi allowed the user to see the estimated location on a map displayed on the PDA 

within 20 metre of the true position.  In the same year, Snaptrack became a Qulacomm 

subsidiary and selective availability was turned off by the US government further improving 

the accuracy of A-GPS, which became known under Qualcomm’s trade name ‘GpsOne’.  After 

the first mobile phones with built-in A-GPS capability were produced, CDMA carriers 

adopted A-GPS as the main method to comply with E-911 Phase 2 requirements.  As A-GPS 

may fail in indoor environments, A-FLT is used as a fallback technique to return the position 

of the emergency call.  

2.3 Signal Strength-Based Techniques 

As introduced previously, TrackMobile developed the first AVL system which used cellular 

base stations as reference transmitters for radiolocation in 1989.  In order to avoid any changes 

in the network infrastructure19 required for timing measurements, this vehicle alarm system 

implemented a positioning method based on RSS measurements on the downlink signals from 

the base stations to the mobile terminal mounted inside the vehicle.  Upon intrusion, the latter 

sends RSS measurements relative to at least four base stations to a central computer which 

                                                      

 

18
 Only a handful of commercial location-based services were available at the time, most of them using basic cell 

identification for positioning [ABI05].  
19

 The major network deployed in the USA at the time was the analogue FDMA-based AMPS network. 
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converts them to ranges and applies a circular lateration algorithm.  The latter is a simple 

geometrical method which uses the intersection of at least four circles to determine the target 

position.  The range estimation is based on the simple inverse-square law formula [She91].  

Without taking into account the large errors in the RSS measurements due to multipath 

propagation, the positioning outcome was deemed very inaccurate [Hil00].   

 In 1994, Frederick Leblanc adopted the concept of storing RSS measurements taken at 

different distances and directions relative to the base station in a database in order to model 

the coverage of the BTS as a ‚scaled contour shape‛ *Leb96+.  In order to determine the 

location of the mobile terminal, LeBlanc proposed matching real-time RSS measurements 

relative to base stations with their corresponding contours and finding their intersection.  The 

concept of linking ground-truth location with RSS measurements and storing the information 

in a database dates back to 1969, when Figel et Al presented an Automatic Vehicle Location 

system based on signal attenuation [Fig69].  This concept would later become known as 

location fingerprinting and become extensively used in both cellular and Wi-fi positioning.  

Typically, location fingerprinting methods are based on a two-phase approach. 

- A calibration phase is conducted offline to collect all the data necessary to form the so-

called fingerprints and store them in a database.  The fingerprints include at least RSS 

measurements taken next to ground-truth and may contain other signal characteristics 

such as the ID of the reference beacons.     

- A location estimation phase applies some sort of correlation algorithm to associate real-

time RSS measurements and other signal characteristics to the fingerprints in the database 

in order to determine the target location. 
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After the E-911 mandate was issued, Oliver Hilsenrath and Mati Wax from U.S 

Wireless Corp. developed a network-based location fingerprinting system called 

RadioCamera.  While other time-based techniques aim at identifying and removing multipath 

signals before applying the positioning process, RadioCamera uses signal characteristics 

including multipath patterns to determine the target position [Hil00].  The location estimation 

process of RadioCamera is based on the correlation of real-time signal characteristics with 

signal signatures or fingerprints stored in the database during the calibration phase of the 

system.  A single base station is required for location estimation but needs to have an antenna 

array installed.  The fingerprints are collected by the BTS which receives the signal 

transmitted from the mobile phone inside a vehicle while driving the roads within the 

coverage area of the BTS.  This would later become known as war-driving, although using the 

downlink signals instead of the uplink signals.  In 1998, U.S Wireless tested their system in the 

Baltimore area demonstrating that it meets and exceeds the FCC accuracy requirements for E-

911 Phase 2.  However, this location fingerprinting method was not standardised mainly due 

to the need for installing expensive antenna arrays, which is the same problem the AOA 

technique faced despite the fact that it was one of the earliest of all cellular positioning 

techniques.   

In around the same time in Japan, LBS vendor Locus Corp deployed the so-called 

personal locator systems for PHS cellular networks.  The method they adopted was known as 

Enhanced Signal Strength due to the fact that it is more robust than standard RSS based 

lateration methods in the sense that they cope with multipath propagation effects.  The 

database of fingerprints is collected using a propagation prediction tool which uses terrain 

information, antenna characteristics and a propagation model to simulate the coverage of base 
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stations.  Enhanced Signal Strength worked both indoors and outdoors achieving mean 

accuracies of 40-50 metres [Kos00].   

In 2001, Laitinen et Al introduced the Database Correlation Method (DCM), a location 

fingerprinting method which estimates the position of a GSM mobile phone using RSS 

measurements on the downlink signals [Lai01].   The fingerprint database was constructed 

using real RSS measurements in a dense urban environment (Helsinki, Finland).  A correlation 

algorithm is used to extract the best matching fingerprint, whose position is taken as the 

estimate, based on the nearest neighbour data association method.  The latter consists of 

comparing the real time measurements against the calibrated measurements using the 

Euclidean Norm as a metric to find the closest fingerprint in signal strength space20.  The 

accuracy achieved by DCM as mentioned in [Lai01] is shown in table 2.2.   

Table 2.2 DCM accuracy 

Environment Rms 67% Rms 90% 

Urban 44 m 90 m 

Suburban 74 m 190 m 

     

Given the signal strength measurement   taken by the mobile terminal and one of the 

fingerprints belonging to the ith BTS    
, the Euclidean distance function      is defined as:  

    √(     
)
 
       (2.5) 

                                                      

 

20
 A WLAN localisation system known as RADAR adopted a similar correlation algorithm to find the best matching fingerprint 

[Rad00].   
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The accuracy of the DCM method depends on the resolution of the fingerprint database and 

performs better in indoor and dense urban areas [Lai01].  The resolution refers to the spread 

of fingerprint samples across the trial area which depends on the sampling frequency of the 

fingerprinting process.  In order to achieve the high accuracies Laitinen relied on an extensive 

calibration phase which collected thousands of fingerprints in a relatively small areas.     

DCM caught the attention of other researchers in the cellular positioning community 

who usually use the acronym DCM to refer to location fingerprinting applied to cellular 

positioning as opposed to WLAN fingerprinting for instance. 

2.4 Propagation Modelling 

Location estimation based on signal strength measurements depends on propagation models 

to derive range relationships between reference base stations and the target mobile station.   

As they predict the propagation properties of radio signals, propagation models have been 

used by cellular network operators to predict the coverage of base stations and plan the 

network layout.  The main parameter predicted by propagation models which provides an 

indication on the distance between a transmitter and a receiver is the path loss.  The latter 

measures the signal attenuation or the amount of signal strength reduction while travelling 

from the transmitter to the receiver.  Expression (2.6) describes the path loss L as the ratio of 

the transmitted power    to the received power    using the logarithmic scale. 

           (
  

  
)                      (2.6) 

As shown in expression (2.6), when    and    are expressed in decibels, the path loss is simply 

their difference.  Typically, the well-known power law model, also known as the log-distance 
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model, is used to describe the path loss in terms of the distance between a transmitter and a 

receiver as follows:   

                    (2.7) 

Where: 

- L is the path loss measured in decibels. 

-    is the BTS-MS distance measured in kilometres.  

-    is known as the path loss exponent which is found empirically to depend on 

antenna heights and other environmental parameters.  

-   is the model’s intercept which consists of the predicted loss at the reference 

distance of 1 km.  It is also referred to as the absolute loss value.  

Expression (2.7) is the simplest form of the propagation model function with only two 

parameters in addition to the distance, namely the path loss exponent   and the absolute loss 

intercept  .  Other generic models however define these two parameters using functions of 

other environmental parameters such as frequency, antenna heights and multipath 

attenuation factors.   

Generic empirical propagation models such as Hata-Okumura, Walfish-Ikegami and 

many others were developed by conducting extensive path loss measurements in different 

environments [Sau07].  An appropriate path loss function based on the log-distance model is 

tuned to the measurements using least squares-based parameter estimation techniques.  As far 

as network rollout is concerned, path loss model calibration is typically the starting point, 

whether in a new frequency band or in a new environment, before they are integrated within 

network planning tools [Sau07].  The path loss fitting process minimises the mean and 
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standard deviation of the error between the path loss measurements and their predicted 

counterparts produced by the calibrated model function.  In fact, the goodness of the fitting 

process is typically assessed using the path loss error standard deviation of the differences 

between the measured and predicted path loss values.  According to Saunders and Aragon-

Zavala in [Sau07], a well-fitted path loss model for macrocell base stations may achieve an 

error standard deviation of between 3 and 8 decibels.  [Sau07] also discusses the impact of 

measurement inaccuracies on the path loss fitting process.  

As introduced previously, the positioning systems proposed in this thesis employ 

EKF-based algorithms, in which the range-based observation model handle received signal 

strength measurements.  The observation model link RSS observations to the position of the 

mobile terminal using a propagation model expressed in log-distance form as follows: 

                       (2.8) 

As the transmitted power    varies from a base station site to another, it is considered by the 

adopted propagation model as part of the absolute loss value parameter    and thus 

expression (2.8) is rewritten as: 

                    (2.9) 

Expression (2.9) represents the RSS-based model function to be calibrated.  The following 

outline describes the least squares process which fits the model described in (2.9) to RSS and 

BTS-MT distance measurements.   
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Given a dataset obtained by collecting i data sample pairs          comprising of the 

distance as the independent variable   and the signal strength as the dependent variable    , 

the least square fitting process computes the parameters   and   as follows: 

( 
 
)                  (2.10) 

  Where: 

- s is the vector of signal strength measurements of the form 

o   (

   

   

 
   

,       (2.11) 

- H is the Jacobian matrix of the model function (2.8) which is expressed below: 

o   [

             
           

 
 

 
          

]           (2.12) 

As the Walfish-Ikegami model resulted in the most accurate distance estimation in [Ham06], it 

has been used here to initialise the path loss exponent   and absolute loss intercept   before 

the least squares fitting process is applied.  The experimental procedure to collect the 

measurement dataset and the results of the fitting process are outlined in Section 6.3. 

2.5 Simultaneous Localisation And Mapping: 

Simultaneous Localisation And Mapping, or SLAM is one of the greatest successes of robotics 

research.  In fact, SLAM represents the key to achieve autonomous navigation as it makes an 

Autonomous-Guided Vehicle (AVG) truly autonomous.  SLAM applications exploit the sensor 

fusion of using internal sensors to predict the target vehicle’s motion and external sensors to 
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take measurements relative to surrounding landmarks and update the predicted target 

position.  The position of each observed landmark is estimated using the AVG‘s position in 

order to build a map of the environment.  The position estimates of the target and 

surrounding landmarks are updated simultaneously. 

The EKF is the most common mathematical tool used to implement the SLAM process 

[Dur06].  EKF-SLAM consists of maintaining the state of the AVG and the map of estimated 

landmark states as part of a joint state vector.  A typical AVG retrieves deduced reckoning 

measurements from internal sensors to estimate its position.  The uncertainty in the estimation 

increases over time with the error accumulation of motion measurements.  The SLAM process 

consists of the data fusion of these deduced reckoning measurements with absolute 

observations relative to reference points in the environment, known as landmarks or features 

[Bai02].  Absolute measurements relative to landmarks are taken using external sensors and 

consist of range and/or bearing measurements.  As they are initially unknown, landmark 

locations must be estimated using the AVG’s pose21 and absolute measurements.  When they 

are observed for the first time, landmarks are typically initialised using range and bearing 

observations and their locations are integrated into the state vector which represents the map.  

This process is known in the SLAM literature as landmark registration [Bai02] or Landmark 

extraction [Wil01][Kim04].  Correct data association is required to identify future observations 

associated with registered landmarks, whose positions have already been initialised and 

integrated into the state vector.  In fact, when they are associated with landmarks that are 

already registered in the map, new measurements are used in the EKF update step to improve 

                                                      

 

21
 In robotics, the pose of a target consists of its position and orientation. 
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the AVG pose estimate and thus reduce the uncertainty accumulated from incremental 

motion measurements.   

In 1990, Smith, Self and Cheesman introduced the notion of the stochastic map which 

later became the foundation of what is known as the EKF-SLAM method [Dur06].  In their 

landmark paper [SSC90], Smith et Al proposed the use of the Kalman Filter as a state space 

model to estimate the stochastic map.  The latter consists of a state vector containing the 

robot’s pose augmented with the locations of landmarks and its associated covariance matrix 

maintaining the uncertainties of the estimates and their correlations.  They argued that 

observations are taken as nominal values with errors that can be estimated and thus can be 

assumed to be Gaussian distributed.  As spatial relationships are in practice non-linear, they 

proposed the use of the extended Kalman filter to model the motion of the robot and integrate 

measurements taken relative to surrounding landmarks.   

In the full EKF-SLAM approach, also known as the Absolute Map Filter [New99], the 

entire map of landmarks maintained in the state vector will also be updated which increases 

the correlations between the error estimates maintained in the covariance matrix.  Moreover, 

the covariance update step of the EKF increases the complexity and computational effort of 

the estimation process as more landmarks are integrated into the state vector.  With increasing 

correlations and computation times, it was initially assumed that the estimated landmark 

errors within the covariance matrix would not converge and researched focused on reducing 

or eliminating the correlations between them [Dur06].   However, these correlations were 

proven to be crucial for the consistency as well as the accuracy of the estimation [Cso97].  As a 

result, researchers turned to reducing the computational effort of the state covariance matrix 

update step and many methods were proposed [Wil01][Kim04][Gui02]. 
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In 2002, Kantor and Singh proposed a range-only SLAM method for robot navigation 

using radio beacons as landmarks [Kan02].  In typical range-bearing SLAM applications, the 

robot can estimate the position of a landmark using a single measurement from its sensors 

combining the range and bearing observations relative to the landmark.  In range-only SLAM 

however, a single range observation results in a circular locus around the mobile robot and 

thus the landmark cannot be accurately initialised and registered within the map.  The range-

only SLAM problem has seen an increasing interest in wireless sensor networks in the last 

decade.  In order to cope with the lack of bearing measurements, different landmark 

initialisation methods have been proposed in the literature.  Some of these approaches use 

delayed initialisation of landmarks, which rely on batch processing to estimate the position of 

the radio beacon after the wireless device has travelled a certain distance.  An example of 

delayed landmark initialisation is the sliding batch technique adopted by Dereth Kurth in 

[Kur04].  The latter combines the EKF-SLAM approach with non-linear optimisation of the 

beacon landmark estimate based on the Gauss-Newton algorithm.  Another range-only SLAM 

method using non-linear least–squares approach has been implemented by Newman and 

Leonard for a Sub-Sea SLAM application which allows an autonomous underwater vehicle 

(AUV) to navigate using submerged transponders with no prior knowledge of their locations 

[New03].    On the other hand, more advanced techniques have been proposed which achieve 

un-delayed beacon initialisation in which landmarks are initialised from the very first range 

measurement.  For instance, Merino et Al adopted a multiple hypothesis approach which 

represents the non-Gaussian probability distribution of the beacon landmark state using 

Gaussian Mixtures Models [Mer10].  

  



59 

 

 

 

 

CHAPTER 3 - Static Cellular Positioning Using 

EKF Models 

 

 

 

3.1 Introduction 

As introduced previously, this work is focused on using the available infrastructure to 

estimate the position of the target mobile terminal without any modifications in the GSM 

network.  As described in Chapter 2, an empirical propagation model has been developed to 

estimate the distance between the BTS transmitter and the mobile receiver using the available 

received signal strength (RSS) measurement.  As BTS positions are the reference points in the 

cellular positioning process, RSS observations taken at the mobile are translated to range 

observations relative to the base stations.    This chapter is concerned with the use of the 

Extended Kalman Filter (EKF) for static cellular positioning using a known map of base 

stations and signal strength measurements.  Similarly to a recursive least squares algorithm, a 

static EKF model is adopted for the estimation of the mobile terminal position.  Due to the 

nonlinear nature of RSS measurements, the EKF provides an optimal estimation technique 
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which models the uncertainty of the observation and reduces the mean square error of the 

estimate.  The advantage of using an EKF based approach compared to other nonlinear 

optimization techniques is to recursively estimate the position of the mobile terminal each 

time a new measurement becomes available.  Moreover, RSS observations can be processed 

individually to improve the performance of the EKF in terms of computation time and 

robustness.  In fact, the proposed positioning system consists of a sequential Kalman Filter 

with a static process model and a nonlinear observation model.  

  In order to evaluate the performance of the proposed positioning method, real-world 

experiments have been conducted and they are presented in Chapter 6.  Extensive surveys 

have been conducted as part of this work to create a database storing the details of several 

base stations including the position, the CID and the transmitted power level.  This database 

is used by the ‚GSM Mobile Locator‛ software application implementing the static 

positioning method presented in this chapter.  Using this mobile application in the 

experimental setup described in Chapter 6, the localisation process is activated from a 

reference location measured using GPS in order to evaluate the result.  All network 

observations relative to surrounding base stations are taken from the trial reference position 

by monitoring the history of the network measurement report.  Once the BTS is identified 

using the CID code, the application extracts its position coordinates from the database and 

applies the positioning process.  Like any radiolocation method, the accuracy of the 

positioning result depends on the number of measurements taken from distinct base stations.   

This chapter presents two versions of the proposed static EKF method.  The first 

adopts a range-only observation model whereas the second expands the observation model to 

take into account bearing measurements.  In this discussion, the former is referred to as the 
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range-only model and is presented in Section 3.3 while the latter is referred to as a hybrid 

range-bearing model and is presented in Section 3.4.  Both positioning systems share the same 

static process model, which is presented in Section 3.2.    They both also rely on the path loss 

model described in Section 2.4 to relate RSS measurements to the state of the mobile terminal.   

In order to obtain bearing information from the mobile terminal relative to the BTS position, 

the hybrid range-bearing EKF relies on the knowledge of the sector configuration of the 

observed BTS.   

As stated in Section 2.1, Angle of Arrival measurements require modifications in the 

GSM network and thus they are not used in this framework.  Recall that sectorisation consists 

of installing multiple directional antennas at the base stations.  Each antenna represents a 

sector, which is assigned a unique Cell Identity code for identification. According to our 

surveys, network operators allocate similar CID codes to sectors belonging to the same base 

station.  This similarity can be noticed, for instance, when only one digit of the CID differs 

between neighbouring sectors.  As a result, the observed CID allows us to identify which 

sector is communicating with the mobile.  If the orientation of each BTS sector is known, one 

can deduce an approximate bearing measurement relative to the BTS.  Rather than relying on 

the knowledge of the exact orientation of BTS sectors, we will rely on a common sectorisation 

setup used by network operators in urban areas to derive the bearing measurement.  
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3.2 The Static EKF Model 

The static model of the Extended Kalman Filter presented in this section is based on the 

Author’s work presented in *Ham06] and [Ham08].  In this thesis however, the state of mobile 

terminal is parameterised by Cartesian coordinates rather than geodetic coordinates (latitude 

and longitude) in order to reduce the non-linearity of the observation model.  In [Ham05] and 

[Ham06], different generic path loss models were used by the EKF positioning process.  The 

Walfish-Ikegami model produced range estimations which led to the most accurate 

positioning results.  In this work however, the calibrated propagation model described in 

Section 2.4 is adopted by two EKF models as a range-based observation model.  In both EKF 

models, the path loss observation is integrated directly into the EKF algorithm, whereas the 

positioning systems in [Ham06] and [Ham08] require the intermediate step of converting the 

path loss into a range observation.  This intermediate step is deemed necessary due to the 

complex path loss equation of empirical models such as the Hata model or the Walfish-

Ikegami model [Sau07].  As it provides a simplified path loss expression, the calibrated 

propagation model is adopted by the EKF models presented in this chapter in order to predict 

the path loss measurement using the estimated range between the MT and the BTS.  In order 

to improve the accuracy of the range estimation, the adopted path loss model has been 

calibrated using RSS measurements prior to the positioning trials.  The model fitting 

campaigns were conducted in the same areas as the positioning trials.  It will be demonstrated 

in Chapter 6 that the use of a calibrated path loss model as an observation model of an EKF 

estimation process improves the accuracy of the measurement prediction and consequently 

the positioning result.  
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This section outlines the structure of the static EKF methodology which is shared by both the 

range-only model and the range-bearing model presented in sections 3.3 and 3.4 respectively. 

Let       be the true state of the mobile terminal at any time instant k. Using some global 

reference frame F, the MT and all the base stations used in the positioning process are 

parameterised in Cartesian coordinates.  At time k, the estimate of the mobile state has the 

form:   

  ̂     (
 ̂    
 ̂    

*     (3.1) 

Where  ̂     and  ̂     are the easting and northing coordinates respectively with respect to 

the reference frame F.  The mobile terminal is assumed to be stationary while observing 

surrounding base stations.  Thus, the EKF employs a stationary process model of the form:   

 ̂ 
      ̂ 

           (3.2) 

As shown in expression (3.2), the prediction step takes the previous a posteriori estimate 

 ̂ 
       as the current a priori estimate  ̂ 

    .  Consequently, the propagation of the state 

covariance matrix is: 

  
       

           (3.3) 

Because of the static nature of the process model, the operation of the EKF is synchronized 

with the measurements taken from the mobile position relative to the base stations.  The time 

increment k is therefore synchronized with the input of a new measurement which triggers 

the EKF update cycle to produce the a posteriori estimate of the state.  The measurement 

innovation is the only contribution in the EKF estimation process as the prediction stage has 
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no effect on the state.  The next prediction cycle, as shown by expressions (3.2) and (3.3), will 

simply take the updated state and its covariance as a priori estimates.   

Let n be the number of base stations hearable from the position of the mobile to be 

estimated.  The measurement associated with each BTS consists of the tuple (CID,RSS) which 

is retrieved from the network measurement report received by the MT.  The CID identifies 

each base station and allows the system to extract its position and transmitter power.  For 

sectored base stations, the sector used for communication is supposed to be known.   

A rational application of the principle of insufficient reason consists of initializing the state of 

the mobile terminal using a convex combination22 of the BTS locations.  In most cases, when 

the mobile terminal is communicating with three or more base stations, its position lies within 

the area surrounded by the base stations (within the convex hull of the points representing the 

BTS positions).  Given the position of the i
th
 base station in easting and northing coordinates   

  

and   
  relative to the frame F, the state can be initialised as follows.  If the base stations are 

chosen to contribute equally to the initialization of the state, then the mean of all base station 

locations is taken as the initial estimate X(0), that is:        

     

(

 
 
 

 

 
∑  

 

 

   

 

 
∑  

 

 

   )

 
 
 

                                                                              

                                                      

 

22
 Defined in convex geometry as a linear combination of points where all coefficients are non-negative and sum 

up to 1.  For example, the centre of gravity of a polygon is a convex combination of the polygon’s vertices where 

all coefficients are equal.  The area formed by the polygon can be formally defined as a convex hull of the 

vertices, that is, the smallest convex set containing the polygon’s vertices.  
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In this case, the initial estimate of the mobile position      in expression (3.4) coincides with 

the centre of gravity of the polygon formed by the points representing the BTS locations.  

More formally,      is a convex combination of the BTS positions    
    

  , where all 

coefficients are equal to 
 

 
.   

Alternatively, the state can be initialised using a weighted mean of the BTS locations.   We can 

follow the strong trend that the mobile terminal is closer to the base station yielding the 

smallest path loss.  In this respect, the state can be initialised as follows:   

     

(

 
 
 

 

∑   
 
 

∑    
 

 

   

 

∑   
 
 

∑    
 

 

   )

 
 
 
                                                        

The weight    in (3.5) for the i
th

 BTS position can be the inverse of its associated path loss 

measurement Li taken at the mobile terminal, that is    
 

  
. 

As the errors on the x and y coordinates are initially uncorrelated, the initial covariance matrix 

associated with the state estimate is the following diagonal matrix: 

     *
     

  

      
 +     (3.6) 

The error in the initial state estimate is assumed to be the typical error of the Cell Identity 

proximity sensing method.  Recall from Chapter 2, that this method consists of retrieving the 

position of the serving BTS and use it as the target location estimate.  The error associated 

with the estimate is relative to the size of the cell coverage area of the base station.  Depending 

on the environment and the type of antenna communicating with the MT, this error can vary 
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from a few tens of metres to hundreds of metres in urban environments and to kilometres in 

rural environments.  As the experimental setting of the proposed system is within an urban 

environment of medium density, a standard deviation of 500 metres is used to initialize the 

state covariance matrix. 

Once the state and its associated covariance are initialised, the EKF algorithm iterates 

through the list of n base stations and sequentially updates the state estimate using the 

measurement associated with a single BTS at a time.  The observation model used in the 

update step of the proposed static EKF model has the form: 

       (      )           (3.7) 

Where: 

-       is the true measurement associated with the i
th

 observed BTS taken at time k from 

the true position of the mobile terminal      . 

-   is a nonlinear model function which links the true state       to the true 

measurement so that it can be used to predict the measurement   ̂    given an estimate 

of the state  ̂    . 

-      accounts for the error pervading the real measurement       as well as the error 

of the observation model   predicting the measurement   ̂    .  It is assumed to be 

Gaussian distributed with mean zero and known covariance matrix R.  

Note that the observation model described in (3.7) is a generic expression of the observation 

shared by both EKF models presented in this Chapter.  It is used for the purpose of outlining 

the EKF update cycle of the proposed positioning method.  In the range-only EKF described in 

Section 3.3, expression (3.7) describes the path loss measurement.  In the range-bearing EKF 
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described in S ection 3.4 however, the term       in expression (3.7) consists of the 

measurement vector containing both the path loss and bearing observations.   

When the observation of the i
th

 base station is retrieved at time k, the function h predicts the 

measurement using the current mobile estimate  ̂ 
     and the BTS position    as follows: 

  ̂     ( ̂ 
       )     (3.8) 

As the case of the Kalman filter, the prediction of the measurement is based on the 

assumption that the measurement noise    is Gaussian distributed with mean zero and 

known covariance matrix R.  The difference between the real measurement (3.7) and its 

predicted counterpart (3.8) defines the measurement innovation v(k), that is: 

      ̂              

In order to update the state and its associated covariance, the EKF relies on the linear 

approximation of the observation model around the current state estimate  ̂ 
    .  The 

underlying Jacobian matrix has the form: 

     
  

  ̂ 
    

 *
  ̂   

  ̂ 
    

  ̂   

  ̂ 
    

+ 
(3.9) 

  

The constructed Jacobian matrix is then used to compute the innovation covariance      and 

the filter gain      as shown below: 

           
                  (3.10) 

       
                   (3.11) 
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The EKF model uses the measurement innovation and the Kalman Filter gain to update the 

state and its associated covariance as follows: 

  
       

                  (3.12) 

  
                   

 (k)    (3.13) 

3.3 Range-Only EKF model 

This section is concerned with the range-only EKF model which relies on received signal 

strength measurements (RSS) and the propagation model described in Section 2.4 to estimate 

the state of the mobile terminal.  As stated previously, the measurement update cycle 

proceeds sequentially to process the measurement relative to one BTS antenna at a time.  The 

RSS measurement is therefore a scalar measurement which can be expressed as follows: 

        
    (      )          (3.14) 

Where:    

-   
  is the received signal strength observed by the mobile terminal relative to the i

th
 

base station denoted by BTS
i
. 

-    is the range-only observation model which consists of the path loss equation (2.8) 

from the adopted propagation model.   

-       is the zero-mean Gaussian noise pervading the signal strength measurement.   
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Using the range between the known BTS position    and the current estimate of the mobile 

state  ̂ 
    , the nonlinear function    predicts the path loss measurement according to the 

adopted propagation model as follows: 

 ̂        ( ̂ 
       )           (√(  

   ̂ 
 )

 
 (  

   ̂ 
 )

 
)       (3.15) 

  and   in expression (3.15) are the propagation model parameters denoted in (2.8).    

represents the path loss exponent while   represents the absolute loss value which takes into 

account the loss at the reference distance of 1 km as well as the transmitted power of the BTS. 

The innovation representing the contribution of the path loss measurement to the estimation 

of the state at time k reads as:  

       ̂                   (3.16)   

The Jacobian matrix of the measurement prediction function     is constructed as follows: 

      
  

  ̂ 
    

 *
 ̂    

  ̂ 
    

 ̂    

  ̂ 
    

+                                

The partial derivatives of the predicted loss with respect to the mobile’s easting and northing 

coordinates are computed below: 

  ̂    

   
 

         

                 
 

(3.18) 

  ̂    

   
 

         

                 
 

(3.19) 

The constant c in expressions (3.18) and (3.19) is denoted below: 
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The sequential operation of the EKF treats measurements as scalars and therefore avoids 

matrix inversion during the computation of the filter gain (3.11) as the innovation covariance 

is also a scalar.  The latter is in fact the variance of the path loss measurement which is 

expressed in (3.10).  The model then proceeds to the state update and covariance update 

equations expressed in (3.12) and (3.13) respectively. 

3.4 Range-Bearing EKF Model 

The system presented in this section is an improvement of the range-only model described in 

the previous section.  As it expands the observation model to take into account bearing 

measurements, this model performs better in terms positioning accuracy as it will be shown in 

chapter 6.  Similarly to the range-only EKF model, this hybrid positioning system is a 

sequential Kalman Filter which reads range and bearing measurements from one BTS antenna 

at a time to estimate the state of the mobile terminal.  Let     be the observation model linking 

the true state of the mobile terminal to the hybrid range-bearing measurement as follows: 

       (
     
     

*     (      )          (3.20) 

In expression (3.20), the real measurement vector is decomposed into the path loss 

measurement        and the bearing measurement       .  Thus, the measurment noise        

is also a vector comprising the error associated with the path loss measurement       as well 

as the error associated with the bearing measurement     ), that is:   

       (
     
     

*                                         (3.21) 
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The two noise components in (3.21) are uncorrelated and assumed to be Gaussian distributed 

with mean zero.  Hence, the measurement noise        has a covariance matrix of the form: 

     [
      

      
]                                     (3.22) 

Where       and       represent the variance-covariance attached to the range and bearing 

measurements, respectively.      

Therefore the hybrid observation model     of 3.20 encompasses the path loss model function 

   and the bearing model function    as follows: 

                         (3.23) 

                         (3.24) 

Note that the path loss observation model    is exactly the same as the observation model 

adopted by the range-only EKF expressed in (3.14) and defined by the propagation model 

function of (3.15).  The second part of the measurement, denoted by       with subscript θ, is 

the bearing measurement whose dynamics are modeled by the nonlinear function   .   As 

described in (3.24), the function    predicts the bearing measurement assuming that the 

associated error is Gaussian distributed with mean zero.  In order to define the bearing 

observation model   , we will first explain how bearing information can be inferred from the 

knowledge of the sectorisation setup of base stations.   Section 3.4.2 will then outline how the 

bearing measurement is fused with the path loss measurement and integrated into the EKF 

positioning process.  As the latter relies on the linear approximation of both the range and 

bearing observation models, the underlying Jacobian matrix has the form: 
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       [
     
     

]  *

   

     

   

     

+      (3.25) 

The submatrix       is the result of the linear approximation of the path loss model    with 

respect to the current mobile state estimate.        is in fact the Jacobian of the range-only 

observation model described in the previous section, which is constructed in expression (3.17) 

and computed in (3.18) and (3.19)).  On the other hand,       is the Jacobian of the bearing 

observation model function    and is computed in section 3.4.3.  

3.4.1 Sectorisation-based bearing measurement:   

Instead of using the AOA technique, we propose a method which relies on the knowledge of 

the sectorisation setup of the observed BTS to induce bearing measurements relative to the 

mobile terminal.  As the BTS-MT bearing cannot be measured directly, the only available 

information pointing to the relative BTS-MT displacement is the orientation of the BTS sector.  

Assuming that the observed base station has the common configuration illustrated in Figure 

3.1, we can deduce an approximate bearing observation once we identify which sector is 

communicating with the mobile terminal. 

   

Figure 3.1 BTS sectorisation setup 

Sector 1 

Sector 2 

Sector 3 
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Since the available bearing information is the identified sector itself, a practical 

approach to quantify the bearing measurement is to create a ternary representation of the base 

station.  In fact, the actual bearing measurement used in the EKF estimation process can be 

described as a vector containing three variables representing the 3-sectored BTS.  Thus, the 

bearing observation model described in (3.24) is rewritten as: 

          (

     
     
     

)                                        (3.26)                         

Ii (with i=1 to 3) represent the sector indicator variables with subscript ‘i’ denoting the number 

of the sector communicating with the mobile as shown in Figure 3.1.  The adopted ternary 

representation consists of allocating each indicator variable one of the following ternary set of 

values: {0, 0.5, 1}.  As it will be described in Section 3.4.2, these values are chosen to coincide 

with the values of the Heaviside step function in order to allow the observation model    to 

predict the measurement.  The following outline explains how the bearing measurement is 

derived from the observed CID codes and the history of the network measurement report 

(NMR).    

Recall that the network measurement report lists all the communication channels 

sorted according to the value of the received signal strength.  The BTS antenna transmitting 

the strongest signal is the first in the NMR list and is chosen as the serving BTS.  The first task 

needed to obtain a bearing measurement is to identify the sectored base stations 

communicating with the mobile using the observed CID.  The omnidirectional BTS antennas 

are not taken into account by this hybrid positioning system.  Once sectored base stations are 

identified in the NMR, the second task consists of observing the channels pointing to sectors 

of the same BTS site by recognising the similarity between the CID codes.  If the NMR 
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contains only a single sector from each BTS site, inferring the bearing measurement for each 

BTS is straight forward.  In this case, each BTS will have a bearing vector containing a sector 

indicator variable of value 1 and two indicator variables of value 0.  If two similar CID’s are 

detected from the NMR, then we monitor their corresponding channel entries to check for the 

possibility that the mobile is located at the intersection of the two cells.  For example, consider 

the following scenario:  

Assume that the first two channel entries in the NMR correspond to sectors of the 

same base station.  We will refer to the first entry as the serving sector and the area it covers as 

the serving cell.  Similarly, we will refer to the second entry as the neighbour sector and the 

area it covers as the neighbour cell.  Walking away from the trial reference position, we 

observe the signal strength associated with each of the sectors.  The aim is to check whether 

the serving sector maintains the highest RSS value until we have covered a distance of at least 

200 metres.  If the serving sector maintains its first position in the NMR, then we can assume 

that the mobile is located closer to the centre of the serving cell.  On the other hand, if the 

mobile terminal switches to the neighbour sector after we have walked a distance of less than 

100 metres, then we can assume that the mobile is located closer to the intersection area 

between the two cells.  As a result, a value of 0.5 is given to both sectors in the measurement 

vector       of (3.26).  The input of the bearing measurement will be clarified in Chapter 6.  

According to the adopted representation of the bearing observation, the actual 

measurement is an indication that the true relative BTS-MT bearing is an angle within the 120o 

interval corresponding to the BTS sector communicating with the mobile terminal.  In fact, the 

real bearing measurement described in (3.26) can be expressed as: 
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      (

     
     
     

)    (    )          (3.27) 

     represents the true relative bearing between the BTS position and the true state of the 

mobile terminal.  As it is a function of the displacement between the transmitter and the 

receiver,       is referred to here as the displacement bearing and can be described as: 

                       (3.28) 

Where: 

-    is the known position of the i
th

 observed BTS. 

-    is the nonlinear function describing the true BTS-MT displacement bearing. 

Substituting      in (3.27) with expression (3.28) will allow the observation model    to relate 

the measurement vector to the state of the mobile terminal.  In fact,    becomes a composite 

function which lends itself to expression (3.26) as it can be rewritten as: 

         (           )           (3.29) 

3.4.2 Bearing Measurement Prediction 

During the estimation process, the EKF iterates through the list of base stations updating the 

state of the mobile terminal at each step using the range and bearing measurements.  Once, 

the state is initialised, the position of each observed BTS is retrieved from the database 

according to its corresponding CID.  As stated previously, the latter also identifies which of 

the three sectors is communicating with the mobile so that the appropriate bearing 

measurement vector       is constructed.  In order to take into account the contribution of the 

bearing observation in the estimation process, the EKF relies on the observation model 

function    to predict the bearing measurement in its ternary representation as follows. 
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 ̂     (

 ̂    

 ̂    

 ̂    

)    ( ̂   )     (3.30) 

It is important to note that the measurement prediction of (3.30) is based on the assumption 

that the noise       pervading the bearing measurement in (3.27) is Gaussian distributed with 

mean zero and variance      .  The term  ̂    in expression (3.30) is the predicted BTS-MT 

displacement bearing which allows the model function    to identify the sector 

communicating with the mobile terminal and thus produce the corresponding prediction of 

the measurement vector  ̂    .  As described in (3.28), the relative BTS-MT bearing is a 

function of the mobile state and the position of the BTS which is assumed to be a perfect 

measurement.  Therefore, the nonlinear function   in expression (3.28) can be used to predict 

the BTS-MT displacement bearing using the estimate of the mobile state at time instant k as 

follows: 

  ̂     ( ̂ 
 
      )     (3.31) 

By substituting  ̂    with expression (3.31), the measurement prediction function    of (3.30) 

lends itself to the observation model described in (3.29) assuming that       is the zero-mean 

Gaussian noise: 

 ̂     (

 ̂    

 ̂    

 ̂    

)    ( ( ̂ 
 
      ))   (3.32) 

Using the a priori estimate of the mobile state  ̂ 
     and the position of the i

th
 base station   , 

the relative BTS-MT bearing is predicted first before it is translated into the bearing 

measurement vector  ̂    .  Figure 3.2 illustrates this bearing value predicted by the function 

  expressed in (3.31).  
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Figure 3.2 The Predicted Bearing Value 

 

As stated previously, the BTS position and the mobile state are parameterised by Cartesian 

coordinates of some global reference frame F.  Recall that this Cartesian space represents a 

topological chart resulting from the map projection of the earth’s surface using the ellipsoid 

orthographic perspective.  As shown in Figure 3.2, the angle  ̂    results from the 

displacement of the mobile terminal with respect to the BTS position within the global frame 

F.  In fact, the function   described in (3.31) and (3.32) can predict the angle  ̂    using the 

displacement along the easting axis        ̂ 
       

  and the displacement along the 

northing axis        ̂ 
       

 .  Thus, as the easting and northing displacements are 

functions of the mobile state as well as the BTS position, the bearing prediction function    of 

(3.31) can also be expressed as:  

 ̂        ̂      ̂         (3.33) 

�̂� 𝑘  �̂� 𝑘  

�̂�𝑚
  𝑘  (

�̂�𝑚
  𝑘 

 𝑦 𝑚
  𝑘 

*
 

 𝑥 𝑘  �̂�𝑚
  𝑘  𝑥𝑏

𝑖  

 𝑦 𝑘  �̂�𝑚
  𝑘  𝑦𝑏

𝑖  

𝐵𝑖  (
𝑥𝑏
𝑖

𝑦𝑏
𝑖
) 

Northing (y) 

Easting (x) 
F 



78 

 

 

It is important to note that the function   should map the relative BTS-MT displacement 

defined by   ̂    and   ̂    to a unique angular value of  ̂      As it is measured in radians, 

this angle is bounded within the interval [0, 2 [.  Therefore, the function    can be defined in 

topological terms as a transition function that provides the homeomorphism between the 

Cartesian space of the global chart F and a local chart  .  The latter is defined by a local 

Cartesian coordinates system whose origin is the BTS position   .  In order to coincide with 

the sectorisation setup of figure (3.1), the x-axis of   is parallel to the northing axis of F with 

positive values in the south direction.  On the other hand, the y-axis is parallel to the easting 

axis of F with positive values in the east direction.  Similarly to the azimuth in a polar 

coordinate system, the angle  ̂    is measured between the mobile position and the origin 

with respect to the x-axis in the anticlockwise direction.  As a result, the chart   can be defined 

as the set of points forming a disk with the BTS position    as origin and the Euclidean 

distance  ̂    as radius.  In order to compute the BTS-MT bearing  ̂   , the function   links 

the global and local charts as illustrated in Figure 3.3. 

Let the mobile position be defined by the Cartesian coordinates (     
) in the local 

chart  .  The function   transforms the global northing displacement       into xs and the 

easting displacement       into ys.  The subscript s is added to differentiate between the local 

coordinates of the mobile and its global coordinates expressed in the state vector (3.1).  As    

is the origin of the local coordinate system, thus          and         .  With the radius 

being    √  
    

      , then            ( ̂   ) and            ( ̂   ).   
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Figure 3.3 The Bearing Transition Function 

The transition function   applies the coordinate transformation and computes the angle  ̂    

by taking into account the quadrant of the local Cartesian system as follows.   
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  (3.34) 

With the inverse sine function defined within the local chart, the function   describes the 

predicted bearing  ̂    within the global reference frame F as follows: 
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Where: 

-        is the predicted displacement along the x-axis: 

           ̂ 
       

         

-       is the predicted displacement along the y axis: 

        ̂ 
       

          

-  ̂    is the predicted distance between the BTS position and the mobile state: 

  ̂    √( ̂ 
       

 )
 
 ( ̂ 

       
 )

 
       

 

Note that the function   is not defined if the predicted distance  ̂    is zero.  Recall from 

Section 3.2 that the state of the mobile terminal is initialised so that it does not coincide with 

any of the base stations to avoid the zero-distance condition.  In fact, the latter violates the 

definition of the path loss model equation which is a logarithmic function of the BTS-MT 

distance.   With an appropriate state initialisation, this condition is avoided during the 

prediction of the range and bearing observations.   

As it is defined within the interval [    [   the function   described in (3.35) is a periodic 

angular function with a jump discontinuity at the x-axis of the local chart   which translates to 

  ̂      in the global perspective.  The bearing prediction function   is therefore not 

differentiable if the mobile state estimate is located exactly south of the BTS position.  Since it 

is used by the observation model function    which must be infinitely differentiable, the 

function   must be described as an analytic function.  In this respect, the Heaviside unit 
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function allows us to translate the discontinuous function    into a single analytical expression 

of the predicted bearing  ̂   .  It is now clear why the ternary representation of the bearing 

measurement is designed to coincide with the values of the unit step function.  Given a real 

number  , let    be the Heaviside unit function defined as: 

     ,

        
         
       

      (3.36)   

Note that   is defined in this work using the conventional half-maximum convention which 

allows for analytic approximation of the function.  In fact, it can be defined in terms of the 

sign function to exploit the smooth approximation of this latter as follows: 

       
 

 
[         ]         ∈       (3.37) 

Since                        , thus expression (3.37) is rewritten as: 

         
 

 
[          ]                                            (3.38)                                             

In the following outline, the bearing prediction function   is expressed in terms of the 

Heaviside function   defined in (3.36).  The resulting expression will then be translated into a 

differentiable equation using the analytic approximation of   described in (3.38). 

Recall that the bearing prediction function   depends on the easting and northing 

displacements   ̂    and   ̂    between the BTS and the MT.   As shown in figure 3.2, the 

function   transforms   ̂    and   ̂    into local coordinates within the chart   to compute 

the bearing  ̂    in each quadrant.  Describing   in terms of the unit step function combines 

the value of the angle  ̂    in each quadrant in a single expression.   The signs of the 

horizontal and vertical displacements specify the quadrant of   which contains the mobile 



82 

 

 

position, and hence, the angle value is extracted from definition (3.35).  Using the 

conventional form of   defined in (3.36), the reformulated expression of the function   reads 

as: 

 ̂    *     (
  ̂   

    
)+      ̂       (   ̂   )  *       (

  ̂   

    
)+   (  ̂   )  (  ̂   ) 
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(3.39) 

Finally, expression (3.39) is rewritten as an analytic function using the smooth approximation 

of the unit step function   denoted in (3.38), as follows: 
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(3.40) 

As described in (3.32), the observation model    predicts the measurement vector  ̂     using 

the predicted bearing  ̂   .  According to the definition of the sector-based bearing 

measurement presented in section 3.31, the function    should produce a unique ternary 

combination of the indicator variables that matches the predicted bearing   ̂   .  This 

combination constitutes the predicted measurement vector  ̂     as shown in Figure 3.4. 
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Figure 3.4 Predicted bearing value and its corresponding ternary representation 

Note that each sector indicator variable Ii is itself a function of the predicted angle   ̂   .  As 

the latter is defined within the interval [    [, each indicator function Ii is defined as follows: 
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Being a discontinuous function with output values {0, 0.5, 1}, each sector indicator function 

(3.43), (3.44) and (3.45) is expressed in terms of the Heaviside function as follows: 
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Using the smooth approximation of the unit function, the indicator variables (3.44), (3.45) and 

(3.46) are translated into analytic functions of the predicted bearing  ̂    as follows: 
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With the predicted bearing  ̂    of the form (3.42), expressions (3.47), (3.48) and (3.49) 

constitute the bearing observation model    which predicts the bearing measurement vector 

as described in (3.32).   As    is now expressed as an analytic function, the EKF can proceed to 
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the measurement update cycle starting with the linear approximation of    around the 

estimate of the mobile terminal state. 

3.4.3 The Bearing Observation Jacobian: 

The linear approximation of the observation model    described in (3.32) with respect to the 

mobile state estimate  ̂ 
     produces the Jacobian matrix of the form: 
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As each sector indicator is linked to the state using the intermediate predicted displacement 

angle  ̂    defined by the function  ( ̂ 
       ) denoted in (3.39), the Jacobian matrix       is 

constructed as follows: 
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The derivative of each indicator variable with respect to the predicted bearing  ̂    reads as: 
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The partial derivatives of the predicted bearing described in (3.41) with respect to the easting 

and northing coordinates of the mobile state are computed below: 
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3.5 The measurement update: 

Recall from Section 3.2 that the state of the mobile terminal is initialised using the weighted 

mean of all BTS positions communicating with the mobile terminal.  The EKF then updates 

the state and its associated covariance recursively using the adopted path loss and bearing 

observation models.   By observing one base station at time, the measurement update cycle of 

the EKF proceeds as follows:  

 The range-bearing measurement vector         denoted by expression (3.20) is inferred 

from the CID and path loss measurements retrieved from the network. 

o The path loss measurement       is the difference between the received signal 

strength and the transmitted power of the BTS antenna. 

o The bearing measurement vector       is constructed using the sector 

indicators I1 , I2 and I3 as described in section 3.3.1.  

 Using the a priori state estimate  ̂ 
     and the position of the observed BTS, the path 

loss and bearing measurement are predicted by their corresponding models    and    

constituting the hybrid measurement model     denoted by (3.20). 

o The predicted path loss measurement  ̂      is computed using equation (3.15) 

o The predicted bearing measurement  ̂     is constructed using the prediction 

of each sector indicator  ̂  in (3.47),  ̂  in (3.48) and  ̂  in (3.49) after computing 

the intermediary bearing angle  ̂    using (3.38). 

 The measurement innovation of the system denoted in (3.21) is therefore rewritten as: 

o         
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 The linear approximation of both models results in a Jacobian of the form (3.25) which 

is now rewritten as 
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Where,  

 
  ̂    

  ̂ 
    

 is the derivative of the predicted path loss with respect to the 

state denoted by the partial derivatives (3.18) and (3.19). 

 The derivatives of the sector indicators with respect to the state are 

computed in the previous section. 

 The covariance of the measurement innovation      denoted by (3.22) is now rewritten 

with subscript rb as follows: 

o                
          

                (3.59) 

Where, 
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   (3.60) 

 The Kalman Gain weights the contribution of the measurement innovation as 

described by (3.11) 

 Finally, the state and its covariance are updated using (3.12) and (3.13) respectively.  
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 CHAPTER 4 - Constrained Cellular SLAM  

 

 

 

4.1 Introduction 

This chapter presents a novel approach to cellular positioning which allows the mobile 

terminal to build a map of base stations and then use this map to deduce its own location.  

The EKF-SLAM formalism is adopted to create a localisation system which can accommodate 

the GSM network in which it is deployed.  As introduced previously, the received signal 

strength (RSS) is used in this work to infer range relationships between reference base stations 

and the mobile terminal.  The main advantage of RSS over timing measurements is to 

overcome the need for additional hardware and network modifications.  In fact, the system 

proposed in this chapter is implemented as a pure software-based solution by exploiting the 

availability of RSS observations within the GSM network infrastructure.  To the best of our 

knowledge, the SLAM approach is applied in the cellular positioning framework for the first 

time in this work, CCS represents the main contribution of this thesis.  

The proposed cellular SLAM methodology implements a constrained SLAM approach due to 

the lack of motion sensing capability in this framework.  As typical SLAM applications in 

navigation problems rely on dead reckoning measurements to build a map of the 

environment, CCS uses an alternative method to track the movement of the mobile terminal 
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and initialise newly observed landmarks.  For this reason, we refer to the methodology as the 

Constrained Cellular SLAM (CCS).  As it is fundamental to solve the SLAM problem, CCS 

performs the state augmentation process and maintains the correlations between the state of 

the mobile terminal and all the landmark states.  However, an initial map is constructed 

during a pre-processing stage to compensate for the lack of real-time motion data.  This pre-

processing stage is referred to here as the Initial Mapping Stage, in which, landmarks are 

initialised using known mobile locations.   This calibration stage enables the system to apply 

the EKF-SLAM method during the Network Localisation Stage.  The latter only relies on 

network information i.e. CID to identify base stations and RSS to infer relative range 

observations.  In this discussion, we will refer to the estimation process employed during the 

Initial Mapping Stage as the BTS Initialisation Model (BIM).  Similarly, the EKF-SLAM process 

performed online in the Network Localisation Stage is referred to as the Network Localisation 

Filter (NLF).  Both of these algorithms rely on the same propagation model to link the relative 

BTS-MT displacement to RSS observations.  As stated previously, the path loss model adopted 

in this work is developed empirically by fitting the propagation parameters using RSS 

measurements in the trial area in which the experimental evaluation of the system is 

conducted.    

In addition to the constraint mentioned above, the system assumes that the mobile 

terminal can only measure the signal strength received from the serving base station.  This 

second constraint affects the Network Localisation Stage as it does not allow the mobile 

terminal to localise itself using range observations relative to different BTS locations.  As a 

result, the EKF-SLAM approach is a sequential algorithm which updates the map augmented 

state vector using a single observation at a time.  Without dead reckoning measurements and 
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multiple range observations, the CCS exploits the Initial Mapping Stage to associate mobile 

location fingerprints to each landmark in the map.  This process is similar to the location 

fingerprinting methods applied in RF-based localisation systems which were discussed in 

Section 2.  In this work however, the fingerprints are not used as independent measurements 

for location estimations but rather used as available information to predict the movement of 

the mobile terminal. 

  This chapter begins with an overview of the Constrained Cellular SLAM 

methodology in Section 4.2.  It will then provide the mathematical formulation of the CCS 

methodology.  Detailed structure of each of the adopted observation model, the BTS 

Initialisation Model and the Network Localisation Filter are presented in Section 4.3, Section 

4.4 and Section 4.5 respectively.  The smartphone application implementing CCS is described 

in Chapter 5 while Chapter 6 will present the experimental evaluation of the system.      

4.2 System Overview 

This section provides a detailed description of the Constrained Cellular SLAM methodology.  

It will first describe the underlying constraints of the framework in Section 4.2.1.  It will then 

state the main contribution presented by CCS to improve the accuracy of RF-based 

localisation in Section 4.2.2.  The Initial Mapping Stage and the network Localisation stage are 

described in Section 4.2.3 and 4.2.4 respectively.   

4.2.1 Constrained SLAM Approach 

As introduced previously, Simultaneous Localisation and Map building (SLAM) has been 

applied in various localisation frameworks to overcome the need for an a priori map of the 

environment as well as to adapt to any environmental changes.  In a standard EKF-SLAM 
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system, the EKF predicts the position of the target using dead reckoning measurements 

retrieved from internal sensors.   

- Initially, the EKF maintains the target position within the state vector and its 

associated uncertainty within the covariance matrix.   

- When the external sensors obtain a range and/or bearing measurement relative to a 

newly encountered landmark, the latter is then initialised using the measurement and 

the estimated target position.   

- The initialised landmark is then registered within the map by augmenting the state 

vector with the landmark’s state.   

- Upon receiving subsequent measurements associated with a registered landmark, the 

EKF updates the estimate of the target’s location thus reducing the error accumulated 

during the prediction cycle.   

Due to state augmentation, the EKF does not only update the target state but also the states of 

all landmarks within the state vector.  As a result, the update step correlates the error in the 

target estimate with the error of each landmark state estimate.  The resulting correlations, 

which grow at each update, are crucial for the consistency and the accuracy of the location 

estimation.  However, the computational effort scales quadratically with the number of 

landmarks maintained within the state vector [Dis01].  Therefore, in order to implement a 

successful EKF-SLAM approach for Cellular positioning, CCS adopts the fundamental 

formalism of state augmentation while keeping the computational effort low for efficient 

implementation.   

  The system assumes that the mobile terminal does not have access to motion sensors.  

As a result, this constraint does not allow the system to track the movement of the mobile 
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terminal using dead reckoning measurements.  However, these measurements are used in 

typical EKF-SLAM applications to predict the target state and initialise newly observed 

landmarks.   Therefore, CCS must use an alternative SLAM method to track the movement of 

the mobile location and perform the landmark mapping process.  In this framework, GPS is 

the available solution to obtain reliable location data, which can be used to initialise BTS 

locations.  Since the aim of CCS consists of performing cellular positioning by relying solely 

on network information, the GPS-dependent task of landmark initialisation must be carried 

out offline during a pre-processing phase, referred to here as the Initial Mapping Stage.  In the 

Network Localisation Stage however, GPS does not contribute to the estimation and is only 

used to evaluate the mobile state estimates produced by the EKF-SLAM process.     

The alternative SLAM approach treats the initialisation of landmarks as a mapping 

problem in which ground-truth mobile position data and range-based observations are used 

for the localisation of BTS landmarks.  The map resulting from the Initial Mapping Stage will 

then be used as reference during the Network Localisation Stage, in which the EKF-SLAM 

methodology is performed.  This includes the state augmentation process as well as the 

simultaneous update of the mobile and landmark states.  The Cell Identity Code is used to 

identify BTS landmarks in both stages of the system.  In the former stage, the CID identifies 

the initialised base station and plays the role of an identifier within the entry representing the 

BTS stored in the database.  In the latter stage, the CID is used as a data association process 

which links RSS observations to landmark states that have already been integrated into the 

state vector.   
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4.2.2 Improved RF-Based Localisation 

As described in Chapter 2, the concept of postponing online location estimation after 

conducting an offline calibration phase is common within RF-based localisation techniques.  

In the cellular localisation framework, this concept has been adopted by the database 

correlation method (DCM) [Lai01].  The latter consists of creating a database of location 

fingerprints during an initial calibration stage, which is then used as reference during the 

location estimation stage.  A location fingerprint consists of the mapping between a known 

location of the mobile terminal and the RSS measurement taken from the same location.  In the 

location estimation stage, the measured RSS is processed by a correlation algorithm to extract 

the best matching fingerprint from the database.  The Constrained Cellular SLAM bears an 

interesting relationship with database correlation methods not only because of the two-phase 

approach.  In fact, the concept of location fingerprinting can also be applied in this work to 

compensate for the lack of dead reckoning measurements during the Network Localisation 

Stage.  During the Initial Mapping Stage of the system, each GPS-RSS sample used to estimate 

the position of a BTS is stored as a location fingerprint.  At the end of the survey, each base 

station is represented by a database entry containing the estimated position as well as a list of 

mobile location fingerprints.  During the Network Localisation Stage, the fingerprints will 

provide the EKF-SLAM algorithm with a priori location information that can be used to 

predict the position of the mobile terminal.  Similarly to DCM, a correlation algorithm scans 

through the list of fingerprints belonging to the observed BTS to find the best matching 

fingerprint.  Moreover, the integration of fingerprint location information during the 

prediction step of the EKF allows the system to update the a priori estimate using a single RSS 

observation.  As introduced previously, the ability to only observe the serving base station is 
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the system’s second constraint which affects the range-only localisation task rather than the 

SLAM procedure.      

As described in Chapter 2, DCM performs well in dense urban areas given that a high 

resolution radio map is constructed during the calibration phase.  The main disadvantage of 

DCM is the laborious task of building and maintaining large databases.  The Kalman Filter has 

been used in the literature to improve the performance of DCM.  For instance, Hellebrandt 

and Mathar [Hel99] and Takenga et Al [Tak07] proposed the use of Kalman Filtering to track 

the movements of the mobile terminal by smoothing the location estimates produced using 

DCM.  In this work however, the EKF-SLAM algorithm employed by CCS does not take the 

fingerprints as independent measurements.  It rather exploits the fingerprint location as the 

available information related to the state dynamics of the system.  Once the a priori state 

estimate is produced, the EKF integrates the RSS measurements taken by the MT relative to 

the observed BTS.  Compared to other cellular techniques adopting DCM, CCS performs the 

mapping of BTS locations which will improve the accuracy of the MT localisation without 

requiring a high resolution fingerprint map.  It will be shown in Chapter 6 that adopting the 

SLAM formalism of state augmentation improves the estimation of the mobile position and 

achieves better accuracy than using a standard database correlation method.     

4.2.3 The Initial Mapping Stage 

CCS begins with the Initial Mapping Stage (IMS) to collect the information needed to perform 

the EKF-SLAM process during the Network Localisation Stage.  During a survey of the trial 

area, the Initial Mapping Stage performs an iterative process which initialises the base stations 

encountered by the mobile terminal.  The BTS Initialisation Model (BIM) estimates the 

position of each BTS landmark using samples comprising of: 
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- A GPS position fix given in latitude and longitude coordinates measured by the built-

in GPS module of the mobile terminal. 

- The Cell Identity Code (CID) identifying the base station antenna in communication 

with the mobile terminal. 

- The received signal strength (RSS) measured at the mobile terminal from the sample 

GPS position with respect to the observed BTS.   

Initial Mapping Stage

Sampling Process

BTS Initialisation 
Model

GPS , CID & RSS 
Observation

Fingerprinting Process
New 

Sample

Updated BTS 
Position

Fingerprint

Landmark 
Databse 

Entry

Initial Map 
Database

 

Figure 4.1 Initial Mapping Stage 
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The BTS Initialisation Model is a recursive EKF algorithm which estimates the position 

of the serving BTS each time a new sample is collected.  As a global Cartesian frame is used to 

parameterise the state of the BTS landmark, the geodetic coordinates of the GPS sample are 

transformed into Cartesian coordinates within the global frame F.  The observation model 

linking the BTS state to RSS measurements is the adopted path loss model described in Section 

4.3.  The observation model consists of the path loss equation that has been calibrated using 

RSS measurements in the same trial area as that of the mapping survey.  As stated previously, 

empirical fitting of the propagation model parameters improves the accuracy of the 

measurement prediction and the positioning result.  Since the landmark to be localised is 

stationary, BIM is a static model of the EKF with a stationary motion model.  In fact, it is 

similar to the static cellular positioning system presented in Chapter 3 with the target being 

the BTS rather than the mobile terminal.  The accuracy of the landmark position estimation 

depends on the survey itself, namely the path of the mobile terminal relative to the true 

position of the base station.  As a range-based algorithm, BIM produces more accurate 

estimates if the reference GPS samples are taken in a circular manner around the target base 

station.  The factors effecting the accuracy of landmark estimation are discussed in further 

detail in Chapter 6.     

As introduced previously, a fingerprinting process is deemed necessary during the 

Initial Mapping Stage to enable the system to model the dynamics of the mobile terminal in 

the Network Localisation Stage.  Each time a new sample is used to estimate the BTS 

landmark position, it is taken as a mobile location fingerprint which is then associated with 

the landmark entry in the database.  As illustrated in figure 4.1, the Landmark Database Entry 

(LDE) consists of: 
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- The CID identifying the BTS antenna  

- The estimated BTS location converted into local Cartesian Coordinates 

- The list of fingerprints associated with the base stations.   

 

The fingerprinting process reiterates while the mobile terminal is connected to the 

same BTS.  When a handover to a different BTS is detected, the LDE is stored in the database 

that will be used as reference for positioning in the Network Localisation Stage.  The size of 

the database depends on the area covered by the survey as well as the resolution of the 

fingerprinting process.   As stated in the previous section, the CCS system does not require a 

high resolution fingerprint map to achieve good accuracy.  In fact, adopting a SLAM-based 

approach overcomes the need for the laborious task of building a high resolution database. 

4.2.4 The Network Localisation Stage 

In the Absolute Map Filter (AMF) approach to EKF-SLAM, the state vector is augmented with 

the entire map of landmarks [New99].  The state of each observed landmark is initialised and 

registered as part of the map that is maintained within the state vector.  The error in the 

vehicle pose estimate during the prediction stage of the EKF propagates to the landmark 

being observed during the initialisation and subsequent updates of the landmark.  Due to the 

common error in the vehicle estimate, all the error estimates of the landmarks maintained in 

the state vector become correlated during the update step of the covariance matrix [Cso97].  

The complexity of the AMF covariance update is O(n3) where n is the number of landmark 

states integrated into the state vector [Gui02].  Several alternatives to the AMF approach have 

been proposed to reduce the computational cost of large-scale SLAM systems for efficient 

implementations [Dis01].   
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In the cellular positioning framework however, the structure of the environment is 

significantly less complex than that of outdoor navigation problems in which the map may 

contain hundreds of landmarks.  Similarly to other range-only SLAM frameworks in which 

the environment is made up of beacons or transponders, the number of BTS landmarks in the 

cellular network is limited within the experimental setup.  Compared to large-scale SLAM, the 

implementation of AMF approach in this framework does not suffer as much from the 

computational burden associated with the full-SLAM covariance update.  However, the 

Constrained Cellular SLAM system is implemented as a mobile application with limited 

computational resources and thus requires some complexity reduction approach.  In fact, CCS 

employs the Network Localisation Filter (NLF) which implements a simple local map 

approach to EKF-SLAM.  The NLF maintains the state of the mobile terminal augmented with 

a local map of BTS landmarks in the vicinity of the MT.  In this discussion, the term ‘local 

map’ refers to the list of landmark states integrated into the state vector, whereas the term 

‘global map’ refers to the database resulting from the Initial Mapping Stage.  Moreover, the 

state vector of the system containing the mobile state augmented with the local map will be 

referred to here as the ‘SLAM State’.   

Due to the limited number of BTS landmarks in this cellular SLAM framework, the 

global frame of reference F used in the Initial Mapping Stage is again used to parameterise the 

SLAM State in this Network Localisation Stage.  In order to reduce the computational burden 

of the application, a limited number of BTS landmarks are kept in the SLAM state vector.  As 

it is already stored by the application in an auxiliary database, the global map is not 

transferred entirely from the database to the state vector.  Therefore, the Constrained Cellular 

SLAM system must adopt a landmark management technique to maintain both the local and 
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global maps.  Figure 4.3 shows a block diagram illustrating the procedure followed by the 

CCS system during the Network Localisation Stage.   

Network Localisation Stage

Initial Map Database
CID & RSS 

Observation

Updated 
Landmark 

Position
Network Localisation Filter

Extracted 
Landmark Database 

Entry

Mobile State 
Estimate

Data Association

Mobile Location 
Fingerprint

 Landmark Position Landmark 
Management

Figure 4.2  The Network Localisation Stage 

When the network localisation phase begins, the NLF retrieves the CID and RSS 

measurements from the network monitoring process.  It then initialises the SLAM state using 

the adopted database correlation method.  A search algorithm is firstly employed to scan 

through the list of landmark database entries in order to find an entry matching the observed 

CID.  Once identified, the position stored within the landmark entry is extracted and then 

integrated into the SLAM state vector.  Secondly, the observed signal strength is compared 

against each fingerprint associated with the extracted landmark.  The fingerprint yielding the 

smallest Euclidean distance in signal space is used to initialise the mobile state.  This database 

correlation algorithm is employed each time a new CID or signal strength observation is 

received from the network monitoring process of the system. Once the mobile state is 
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initialised and the state of the first serving BTS is registered, the NLF starts a recursive 

prediction-update cycle.   

The location fingerprinting process is not only used to initialise the state of the mobile 

terminal but also to model its dynamics.  Upon receiving a new CID and/or RSS measurement, 

the NLF retrieves the matching fingerprint from the map and produces the a priori state 

estimate.  The EKF prediction step uses the relative displacement between the previous and 

current matching fingerprints to estimate the new position of the mobile terminal.  In fact, this 

inter-fingerprint range and bearing are applied as the system’s control inputs which drive the 

mobile state during the prediction step.  The process model of the NLF is described in detail in 

Section 4.5.3.  The a priori estimate of the mobile terminal state and the state of the observed 

BTS are then used to predict the RSS measurement according to the adopted observation 

model described in Section 4.3.  By applying the linear approximation about the MT and the 

serving BTS state estimates, the EKF algorithm updates the entire SLAM state.  The 

measurement update step is described in more detail in Section 4.5.4.   

4.3 The Observation Model 

The CCS system uses a range-only observation model based on signal strength measurements 

taken at the mobile terminal with respect to the serving base station.   The relationship 

between the observed RSS and the range separating the mobile receiver and the BTS 

transmitter is defined by an empirical propagation model which has been calibrated in the 

same trial area as that of the positioning experiments.  Both the BTS Initialisation Model and 

the Network Localisation Filter employ this model to predict the path loss incurred by the 

BTS-MT downlink signal.   
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The path loss is modeled with a simple power law model of the form:  

                     (4.1)        

Where, 

- L is the path loss incurred by the downlink signal.  

- d is the Euclidean distance between the BTS and the MT measured in kilometres.   

-   is the absolute loss value which represent the contribution of effects related to 

multipath propagation to the total path loss.  Being the intercept of the power law 

model,    corresponds to the loss value at the reference distance of 1 km. 

-   represents the path loss exponent which mainly depends on the environmental  

system parameters.  

 

The path loss value can be measured in decibels (dB) by subtracting the measured RSS value 

 
 
 at the mobile terminal from the transmitted power  

 
 of the BTS antenna, that is: 

              (4.2) 

The linear regression process used for the model fitting has been presented in Section 

2.4.  As the transmitted power is assumed unknown in this framework, it is also fitted along 

with the model parameters α and β.  Since the measurement available to the system is the 

received signal strength  
 
denoted in expression (4.2), the log-distance model expressed in 

(4.1) is rewritten to describe the RSS measurement as follows: 

 
 
  

 
                   (4.3) 
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Given the positions of the mobile terminal and the serving BTS with respect to a global 

Cartesian frame F, expression (4.3) can be rewritten as:  

 
 
  

 
           (√                 )  (4.4) 

Where: 

     and    represent the Cartesian coordinates of the BTS. 

    and    represent the Cartesian coordinates of the MT. 

 

As the Path Loss Model expressed in (4.4) links the displacement between the MT and 

the BTS to the RSS measurement, it can be used as an observation model in both stages of the 

Constrained Cellular SLAM system.  Given the true MT state        and the true BTS state 

      at time k, the observation model (4.4) describes the true RSS observation      in state 

space notation as follows: 

 

      (           )           (4.5) 

Where: 

 h is the nonlinear function which represents the propagation model of (4.4) 

      represents the zero-mean Gaussian noise which accounts for the measurement 

noise and also the prediction error in the observation model  .  
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4.4 The BTS Initialisation Model: 

During the calibration stage of the system, the BTS Initialisation Model operates concurrently 

with the network monitoring subsystem and the GPS sampling process.  The network monitor 

runs continuously to detect RSS variations and cell handovers, whereas the sampling process 

is controlled by the user to request GPS position data at discrete time intervals.  When the 

position fix is returned by the GPS module, it is combined with the CID and RSS 

measurements to create a position sample.  While the mobile terminal is moving, samples are 

collected relative to the serving BTS and stored in the list of samples.  Using the observation 

model described in the previous section, the BIM estimates the position of BTS landmark 

recursively each time a new sample is obtained.  When a handover is detected, the list of 

samples is handled by a fingerprinting process to produce a list of location fingerprints.  The 

latter is then associated with the state of the landmark in order to create a landmark database 

entry that will be stored in the map.   

As stated previously, the BTS Initialisation Model is a static model of the extended Kalman 

Filter maintaining the state of the serving BTS.  The state vector at time instant k is 

parameterised by the Cartesian coordinates and has the form:   

       [
     
     

]       (4.6) 

   and    are the easting and northing coordinates of the target base station within ellipsoidal 

orthographic coordinate system.  Subscript b denotes that the state only contains the 

coordinates of the base station.  As the latter is a fixed point in the Cartesian plane, the BIM 

employs a stationary motion model in which the priori estimate at the current time step (k) is 
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the same as the posteriori estimate from the previous step (k-1).  The state model is shown 

below.   

 ̂ 
       

             (4.7) 

Similarly, the time update of the state covariance is: 

  
       

             (4.8) 

In this state model, the posterior state is estimated using the current measurement obtained at 

time k.  The measurement consists of the sample collected from the current position of the 

mobile terminal during the survey of the base station transmitter.  The sample at time k has 

the following form: 

   (        (
  

  
*     

*      (4.9) 

Where 

     is the cell identity code identifying the serving BTS communicating with the 

mobile terminal at time k.  

    is the GPS position fix measured at time k in latitude    and longitude    

coordinates.  It is important to note that these geodetic coordinates are converted to 

Cartesian easting and northing coordinates    
 and    

 respectively in the global 

east north frame F. 

    
 is the received signal power measured at the MT from the GPS ground-truth. 

Initially, there is no prior knowledge about the location of the target BTS until the first 

GPS sample is taken by the mobile terminal.  The state estimate is therefore initialised using 

the GPS position    of the first sample   .  At time 0, the state vector is initialised as follows: 
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 ̂ 
       +ω       (4.10) 

ω is a vector used to initialise the BTS state to coincide with a position within a certain 

distance from the GPS sample.  The state is not initialised to coincide with the first GPS 

samples as it would lead to a zero distance between the mobile and the BTS, which violates 

the definition of the log-distance observation model expressed in (4.4). 

The covariance matrix associated with the landmark state estimate is the following diagonal 

matrix: 

  
     [

   
  

    

 ]      (4.11) 

The error in the initial state estimate is assumed to coincide with the typical error of the Cell 

Id proximity sensing method.  This error is relative to the size of the cell covered by the BTS 

transmitter.  As far as the BIM is concerned, the BTS position is the state to be estimated and 

the observation model expressed in 4.4 is rewritten as: 

      (      )            (4.12) 

Note from the observation model expressions (4.4) and (4.12) that the state of the mobile 

terminal is omitted from the model function  .  Indeed, in this case, the MT position is not the 

state to be estimated as it is measured by the GPS module as part of the sample    denoted in 

(4.9).  It is considered by the system as a perfect measurement as the GPS uncertainty is 

negligible compared to the error in the BTS state estimate.   

The BTS initialisation model is a sequential Kalman Filter which updates the state of 

the BTS landmark using a single RSS measurement.  Thus, the measurement      of (4.12) is a 

scalar which is assumed uncorrelated with previous measurements.  The noise       is 
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assumed to be Gaussian distributed with mean zero and variance R.  As a result, the 

observation model function h denoted in 4.12 lends itself to the propagation model equation 

of (4.4) to predict the RSS measurement  ̂    as follows: 

 ̂                 (√( ̂        
)
 
 ( ̂        

)
 
)      (4.13) 

When a new measurement sample    is collected at time k, the BTS initialisation model uses 

the coordinates of the a priori state estimate  ̂     and  ̂     equation (4.13) to predict the 

path loss measurement  ̂    in order to proceed to the EKF measurement update stage.  

Subtracting the predicted measurement from the real measurement yields the measurement 

innovation     , which represents the contribution of the measurement to update the state 

estimate.  

      ̂               (4.14) 

Following the EKF approach, the BTS initialisation model relies on the linear approximation 

of the observation model around the a priori state estimate   
    .  As only one RSS 

measurement is processed at a time, the Jacobian of the predicted measurement function is the 

following row matrix: 

     *
  ̂   

  ̂    

  ̂   

  ̂    
+ 

(4.15) 

 

The partial derivatives of the predicted observation with respect to the landmark’s eating and 

northing coordinates are shown below: 
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  ̂   

  ̂    
 

  ( ̂        
)

( ̂        
)
 
 ( ̂        

)
 
 

(4.16) 

 

  ̂   

  ̂    
 

  ( ̂        
)

( ̂        
)
 
 ( ̂        

)
 
 

(4.17) 

The constant   in expressions (4.16) and (4.17) is denoted below: 

  
   

      
  

(4.18) 

The constructed Jacobian matrix is then used to compute the innovation variance      and the 

filter gain      as shown below: 

           
                   (4.19) 

       
                     (4.20) 

Finally, the measurement innovation and the Kalman Filter gain are used to produce the a 

posteriori estimate of the state and its associated covariance as follows: 

  
       

                   (4.21) 

  
                   

 (k)     (4.22)  

When the network monitoring subsystem detects a handover to a new BTS, the state 

estimate produced by the BIM is used to initialise the BTS landmark within the map.  As 

explained in Section 4.2.3, the initialisation consists of creating a Landmark Database Entry 

within the database representing the initial map of landmarks.  The CCS system starts a new 

iteration of the BTS initialisation model to estimate the position of the new serving BTS after 

the handover event is detected.  The EKF iteration starts by initialising the state using the first 
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GPS sample as shown in (4.10).  The state is then updated using the EKF equations as more 

samples are received until the next handover and so on.  If the CID of the newly observed BTS 

matches that of a landmark already stored in the database, the state of the matching landmark 

entry is extracted from the database.  It is then integrated into the state vector so that the EKF 

resumes the estimation using new measurements.   

As stated previously, the initialisation of a BTS does not only consist of estimating the 

position of the landmark.  The database entry representing the initialised landmark associates 

mobile location fingerprints to the position of the BTS.  These location fingerprints are the 

very same samples that were used during the BIM calibration phase to initialise the BTS 

landmark.  This fingerprint association process is performed by the BTS initialisation model to 

prepare the system for the Network Localisation Stage.   

4.5 The Network Localisation Filter 

This section presents the mathematical formulation of the Network Localisation Filter (NLF), 

which represents the state space solution performing the proposed EKF-SLAM approach.  

According to the framework constrains mentioned previously, the constrained Cellular SLAM 

system builds an initial map of BTS landmarks before tracking the movement of the mobile 

terminal in real-time.  The result of the Initial Mapping Stage is a database of identifiable BTS 

positions each linked to a list of mobile location fingerprints.  Each landmark database entry 

stores the following information: 

- The CID identifying the BTS transmitter. 

- The coordinates of the BTS landmark with respect to the global frame F . 

- The list of fingerprints collected during the initialisation of the landmark.   
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Recall from Section 4.2.4 that this initial map is referred to here as the global map which is 

stored by the application in an auxiliary database.  The term auxiliary is used to denote that 

this list of BTS landmarks is maintained outside the state vector of the EKF-SLAM system.      

Firstly, this section describes how the state vector is maintained by the NLF in section 4.5.1.  It 

will then describe the fingerprint-based motion model in Section 4.5.2 and the measurement 

update step in Section 4.5.3.   

4.5.1 The State Vector 

As introduced previously, the NLF model adopts a local map approach which consists of 

integrating the states of the landmarks in the vicinity of the mobile terminal.  As it is stored in 

an auxiliary database, the global map resulting from the Initial Mapping Stage is not 

transferred directly to the SLAM state.  By maintaining a limited number of landmark states 

within the state vector, the computation effort required during the covariance update is 

significantly reduced.  The size of the local map can be chosen to coincide with the number of 

base stations that are communicating with the mobile terminal.  In addition to the serving 

BTS, up to six neighbour base stations are transmitting signals to the MT.  By following the 

strong trend that the mobile terminal is likely to connect to one of these neighbour base 

stations, the size of the local map should be greater than 6.     

At time k, let          be the true state of the SLAM system which contains the mobile 

terminal state       augmented with the local map of n BTS landmark states, each denoted by 

   
    for        .  The true SLAM State has the form: 
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[
 
 
 
     

   
   

 
   

   ]
 
 
 

       (4.23) 

Thus, the Network Localisation Filter maintains the SLAM State estimates as follows:  

 ̂        

[
 
 
 
 
 ̂    

 ̂  
   

 
 ̂  

   ]
 
 
 
 

      (4.24) 

Let the covariance matrix associated with the SLAM state be defined as:  

         [

      
      

 

             
             

   
                   

]   (4.25) 

Where:  

        is the covariance matrix of the mobile state estimate  ̂     

        is the covariance matrix associated with the     BTS state estimate  ̂  
    

 The terms           
     consist of the cross-covariance matrices measuring the 

correlation between the error in the MT and the  BTS state estimate 

 

As the mobile terminal can only observe at a given time one single landmark, namely the 

serving BTS, landmarks are extracted individually from the global map and registered as part 

of the local map.    As introduced in Section 4.2.4, the SLAM state is initialised at the start of 

the Network Localisation Stage with an initial MT state estimate  ̂     augmented with the 

first BTS landmark  ̂  
     which has been extracted from the database.  The Cell ID is used to 

identify and extract the Landmark Database Entry corresponding to the first serving base 
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station.  Recall that each LDE in the database contains a list of fingerprints each defined in 

expression (4.9).  One of the fingerprints associated with the serving BTS landmark will be 

used to initialise the state of the mobile terminal  ̂    .  The fingerprint yielding the smallest 

Euclidean distance in signal space is considered the best matching fingerprint.  The location of 

the latter is taken as an initial estimate of the mobile state  ̂    .   

Recall that the position of the ith registered landmark  ̂  
    has been estimated by the 

BTS initialisation model during the Initial Mapping Stage.  The BIM reduced the uncertainty 

of the landmark estimate, which was initialised to coincide with the typical CID proximity 

sensing error.  In this Network Localisation Stage, after the integration of an extracted 

landmark into the SLAM State, we can assume that the uncertainty of the landmark is less 

than the typical rms error of the Cell Identification technique described in Section 2.2.1.   As a 

result, the covariance matrix        of the extracted BTS landmark is initialised accordingly.  

The covariance matrix of the mobile state estimate        is initialised at time zero taking 

into consideration the displacement between the initial MT state estimate  ̂     and the first 

landmark state estimate  ̂  
       

The ‘nearest neighbour’ data association process is executed each time a change in the 

observed signal strength or CID is detected leading to the extraction of a new fingerprint from 

the database.  The motion model described in the next section uses the new fingerprint to 

produce the a priori state estimate.  If a new CID is observed meaning that the MT is 

connected to a new serving BTS, the LDE associated with the CID is extracted from the 

database and integrated into the state vector.  Each time a handover occurs, the three-step 

procedure consisting of CID look-up, LDE extraction and state registration is repeated.  The 

following outline shows how the fingerprint correlation is performed. 
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Suppose that the LDE corresponding to the observed BTS has M fingerprints.  Recall 

that each fingerprint coincides with a GPS sample that was used during the Initial Mapping 

Stage to initialise this BTS landmark.  As a result, we will denote each fingerprint using the 

same notation as the GPS sample defined in (4.9).  Let    be the ith fingerprint (       ) 

consisting of the ground-truth position   (
   

   
) and the RSS measurement    

taken by the MT 

from the ground-truth.  As stated previously, the  coordinates of the fingerprint have been 

converted from the GPS geodetic to Cartesian coordinates defined by the global frame F.  

Given the signal strength measurement taken by the mobile terminal     , the Euclidean 

distance function      is defined as:  

        √(        
)
 
   (4.26) 

The database correlation algorithm iterates through the M fingerprints to produce M distance 

measures.  The fingerprint    yielding the smallest distance is considered the nearest 

neighbour fingerprint matching the current RSS observation.  As a result, the system extracts 

the position    from the fingerprint.  If the correlation algorithm finds N fingerprints with 

equal distances, it extracts the corresponding N ground-truth locations    for j=1,<,N and 

computes their mean convex combination as follows: 

      (

 

 
∑    

 
   

 

 
∑    

 
   

)     (4.27) 

The SLAM state is extended until the limit size of n landmarks is reached.  At this stage, the 

adopted map management process starts monitoring the covariance of each landmark state in 

the local map.  Using the determinant of the covariance matrix as a measure of uncertainty, 

the landmark state estimate with the lowest uncertainty is removed from the state vector and 
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reinserted into the database representing the global map.  As a result, the Landmark Database 

Entry corresponding to this landmark is updated with the new state estimate.  This LDE is 

also extended to include the covariance matrix of the updated landmark state.  The aim of this 

extension is to save the error of this landmark state estimate for future observation, extraction 

and registration of this landmark.  Upon re-observing the landmark, the saved covariance 

matrix is used to refine the SLAM state covariance           by integrating it into its 

corresponding submatrix within         .  It is important to note that there is some 

information loss associated with the deletion of a landmark state and covariance from the 

SLAM state and covariance matrix respectively.  In fact, the error of this landmark estimate is 

decorrelated from the rest of the map once the landmark is deleted form the system.   

4.5.2 The Process Model 

Let the state dynamics of the mobile terminal be described by the following discrete time 

process model:  

                              (4.28) 

Where: 

   is the non-linear function which models the kinematics of the mobile terminal by 

linking the past state        to the current one       given the control input        

        represents the process noise describing the uncertainties in the control input 

measurements and the motion model itself.   
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The Kalman Filter assumes the process noise to be Gaussian distributed with mean zero and 

covariance matrix     .  As a result, the state estimate of the mobile terminal can be predicted 

as follows: 

 ̂ 
      ( ̂ 

           )    (4.29) 

In order to model the dynamics of the mobile user, the Network Localisation Filter exploits 

the history of the fingerprints extracted using the adopted database correlation algorithm.  In 

fact, the control inputs of the system are inferred from the location fingerprints and consist of 

the transition distance       and the transition bearing      , that is: 

     (
     

     
*       (4.30) 

  The state estimate expressed in (4.29) can thus be rewritten as: 

 ̂ 
      ( ̂ 

                  )   (4.31) 

As shown in the previous section, each measurement received by the mobile terminal is 

processed by the database correlation algorithm to extract a fingerprint location.  The state of 

the mobile terminal is initialised to coincide with the fingerprint location matching the first 

CID and RSS measurements.   When a second fingerprint is extracted from a second RSS/CID 

measurement, the relative distance and bearing between the two fingerprint locations are 

computed.  Taking the relative displacement between two consecutive fingerprints as the 

control input, a new a priori state estimate is produced.  As illustrated in Figure 4.3, the 

transition distance       consists of the displacement between the previous state at time k-1 

and the current state at time k.  The transition bearing is the forward azimuth with respect to 

northing axis of the reference frame F.    
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Therefore, the a priori estimate of the mobile terminal state   
     in the global reference 

frame F is calculated as follows: 

 ̂ 
      ̂ 

               (     )     

 ̂ 
      ̂ 

                          (4.32) 
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   Figure 4.3 The motion model 

In order to extend the motion model to predict the whole SLAM state defined in (4.23), the 

state of the ith landmark within the local map is modeled as: 

 ̂  

      ̂  

           (4.33) 

As the landmark state is also parameterised in easting and northing coordinates, the landmark 

model is rewritten as: 

   ̂  

      ̂  
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 ̂  

      ̂  

           (4.34) 

 

Thus, the prediction step of the Network Localisation Filter for the whole SLAM system 

proceeds as follows:   

 ̂    
       ( ̂    
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 ̂  
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 ̂  

      

 ̂  

      

 
 ̂  

      

 ̂  

      ]
 
 
 
 
 
 
 
 

   (4.35) 

As each landmark state is constant in the prediction step, the covariance prediction only 

affects the mobile state.  The propagation of the SLAM state covariance through the process 

model takes into account the uncertainty of the current mobile state estimate, as well as the 

error in the transition distance and bearing measurements.  The covariance prediction 

equation reads as:   

     
               

        
                

           (4.36) 

Where: 
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       is the Jacobian of the function f approximating the uncertainty propagation about 

the a posteriori state estimate of the previous step  ̂    
      .  

       is the Jacobian of f which approximating the uncertainty propagation about the 

control input vector u(k) containing the transition distance       and the transition 

bearing      . 

       is the covariance of the vector u(k) defined by the matrix *
  

  

   
 +, in which   

  is 

the variance associated with the distance measurement and   
  is the variance 

associated with the bearing measurement.   

 Q(k) is the covariance matrix of the process noise       described in (4.28). 

 

The Jacobian matrix       holds the partial derivatives of the predicted SLAM state 

 ̂    
     with respect to the mobile state and each landmark state as follows: 

      *
  ̂    
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]    (4.37) 
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As shown in expression (4.37), the Jacobian matrix       of the entire slam state is equal to the 

identity matrix.  Thus, the covariance propagation equation (4.36) can be simplified in (4.38). 

     
          

                     
      (4.38) 

Similarly, the Jacobian matrix of the control inputs       is constructed as follows: 
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           (4.39) 

4.5.3 The Measurement Update Step 

In the proposed CCS approach, the initialisation of new landmarks is performed offline 

during the Initial Mapping Stage.  Therefore, all the measurements received by the Network 

Localisation Filter are associated with an existing landmark within the global map and 

integrated into the SLAM State vector.  The CID is used for data association.  Similarly to the 

BTS initialisation model, the Network Localisation Filter adopts the path loss model described 

in Section 4.3 to map the state to a signal strength observation.  The NLF uses the observation 

model to correct the predicted state of the MT and update the local map of BTS landmarks 

simultaneously.  By adopting the typical EKF-SLAM measurement update, the RSS 
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observation is taken by the mobile terminal relative to one of the landmarks registered as part 

of the SLAM state vector.  If it has not been observed previously and is not part of the local 

map, the landmark is extracted from the database. 

Let the nonlinear function   be the observation model representing the propagation model 

equation (4.4), which maps the true SLAM state denoted in (4.24) to the true RSS 

measurement      as follows: 

      (        )           (4.40) 

In expression (4.40),       denotes the measurement noise pervading the signal strength 

measurement.  It accounts for both the multipath distortion in the RSS measurement as well as 

the error in the observation model   predicting the measurement.        is assumed 

Gaussian distributed with mean zero and covariance R and  uncorrelated with the process 

noise       described in (4.28).  As a result, the RSS observation can be predicted using the 

adopted observation model   as follows: 

 ̂     (     
    )      (4.41) 

Let ̂  
    [   

       

    ]
 

 be the state estimate of the ith registered BTS being observed by 

the MT whose a priori estimate is  ̂ 
     [  

     
 
    ]      

Given the displacement  ̂      between the estimated mobile and landmark states, the 

propagation model expressed in (4.4) predicts the RSS observation relative to the ith BTS as 

follows: 

  ̂                 ( ̂     )            (4.42) 

With, 
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 ̂      √(   
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 (   

       
    )

 
    (4.43) 

Note that subscript i is used to denote the observed BTS landmark.  As it is a function of the 

mobile and landmark states, the RSS prediction equation (4.42) lends itself to the observation 

model function h in (4.41).   As a result, the NLF can use expression (4.42) to predict the 

observation and update the SLAM State by applying the linear approximation of the model 

with respect to SLAM state estimates.  As a single RSS measurement is processed by the EKF 

at a time, the underlying Jacobian matrix      has the form:   

     *
   ̂   

  ̂ 
    

   ̂   

  ̂  

    
 

   ̂   

  ̂  

    
+                                            

Since the RSS observation is related to a single landmark, namely the serving BTS, the 

Jacobian matrix      contains a large number of zeros which correspond to the state 

derivatives of the remaining (n-1) unobserved landmarks.  The Jacobian is computed below: 

     *
   ̂   

  ̂ 
    

   
   ̂   

  ̂  

    
  +                                   

The derivative of the observation model with respect to the mobile state estimate  ̂ 
     reads 

as: 
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Similarly, the derivative of the observation model with respect to the serving BTS state 

estimate  ̂  

     reads as: 

  

    

    
 *

  ̂   

    

    

  ̂   
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    *

          
]                                             

The constant   in expressions (4.46) and (4.47) is denoted below: 

  
   

      
  

          (4.48) 

The EKF equations which update the SLAM state proceed as follows: 

                                    (4.49) 

                           (4.50) 

     
          

         (        ̂   )   (4.51) 
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CHAPTER 5 - Software Design 

 

 

 

5.1 Introduction 

The emergence of smartphones with the multi-touch interface23 and the ability to download 

and install applications directly into the device without connecting to a PC changed the 

definition of the term ‚smartphone‛.  Indeed, handsets which were considered smartphones 

few years ago due to their PC-like operating system are now considered feature phones as 

they lack this user-friendly interface and increased mobility of downloading applications on 

the go.  As a result, Location-Based Services quickly became popular due to the wide variety 

of location-aware applications which are not restricted to turn-by-turn navigation but include 

other services such as transport information, mobile banking, mobile gaming <etc.  

This chapter is concerned with the high-level software design of the positioning 

solutions presented in this thesis, namely, the static positioning system described in Chapter 3 

and the Constrained Cellular SLAM (CCS) system described in Chapter 4.  As presented in 

Chapter 6, these software solutions are mobile applications that have been used to perform 

positioning experiments and evaluate the proposed positioning systems.  The static EKF 

system is implemented by the ‚GSM Mobile Locator‛ LBS application whereas the CCS 

                                                      

 

23
 Beginning with Apple’s iPhone in 2007. 
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system is implemented by the Constrained Cellular SLAM application.  ‚GSM Mobile 

Locator‛ and the CCS application are described in Section 5.2 and Section 5.3 respectively.  

This chapter presents the high-level UML design of the proposed positioning systems and 

considers the UML use case model only.  The design and implementation models of the UML 

design are not considered in this thesis.  As a result, all the UML diagrams depicted in this 

chapter are initial diagrams from the use case model. 

5.2 GSM Mobile Locator Application 

Recall from Chapter 3 that the static positioning system employs an Extended Kalman Filter 

algorithm which was developed in two stages.  The first stage of this EKF-based positioning 

system was developed as part of the Author’s MEng project *Ham05+.  It used a range-only 

observation model and relied on translating signal strength measurements to distance 

measurements via generic propagation models prior the application of the EKF positioning 

process.  During the Author’s research presented in this thesis, the second stage of the EKF 

positioning system was implemented with two major improvements:  

- The first consists of the use of a calibrated propagation model to predict the RSS 

measurements as accurately as possible within the environment of the positioning 

trials.  With a simplified path loss equation, the range-based observation model no 

longer requires the intermediate step of translating RSS measurements to distance 

measurements.  This range-only EKF system is described in Section 3.3.  

- The second consists of extending the EKF observation model to handle bearing 

measurements in order to improve the positioning outcome in terms of accuracy.  
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As outlined in Section 3.4, bearing observations are derived from the sector 

configuration setup of reference base stations.      

The software application implementing the static positioning system presented in Chapter 3 is 

referred to in this thesis as ‚GSM Mobile Locator‛.  This application implemented the first 

stage of the positioning system during the Author’s MEng project *Ham05+.  The system’s 

second stage, which is developed as part of the work presented in this thesis, consists of 

updating the ‚GSM Mobile Locator‛ application to implement the functionality of the two 

static EKF models described in Chapter 3.  As stated previously, theses positioning systems 

require an initial BTS identification survey to associate each BTS location with its relevant CID 

code(s).  The locations of the surveyed base stations are retrieved from Ofcom’s Sitefinder 

website, which also provides us with some details regarding the transmitter mounted on each 

site.  These details include the height, transmitted power and frequency, but not the associated 

CID code(s).  As detailed in Section 6.4, this survey is conducted using a separate engineering 

network monitoring tool called Netmonitor, which displays the CID code of the serving base 

station, measures the received signal strength and shows the Network Measurement Report.  

The BTS identification process generates a database of BTS entries which is linked to the GSM 

Mobile Locator application in order to conduct positioning experiments.  This database stores 

all the BTS information required for the positioning process, namely the latitude and 

longitude coordinates, the CID code(s), the height and transmitter power.   

5.2.1 LBS Functionality 

The ‚GSM Mobile Locator‛ application was implemented in C# and deployed on a PDA using 

Microsoft Visual Studio.NET 2003.  It was designed as a location-based service (LBS) 

application to provide the user with practical information based on the location determined 
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using the static EKF positioning method.  GSM Mobile Locator is a .NET application that 

accesses the Microsoft MapPoint Web Service (MWS) in order to add location-based 

functionality to the positioning system.  MWS an XML service with a SOAP API comprised of 

four constituent services: finding locations, rendering maps, calculating routes, and a set of 

common utility function objects and methods.  As illustrated in figure 5.1, MWS allows our 

GSM Mobile Locator application to: 

- Display on a map the position of the mobile terminal and each base station used as 

reference points for positioning. 

- Find nearby points-of-interest (POI) and display them on the map. 

- Compute and visualise routes selected by the user.   

The platform on which GSM Mobile Locator is deployed (Windows Mobile 2003) does not 

allow us to implement the process of observing CID codes and measuring the received signal 

strength.  For this reason, a network monitoring tool called Netmonitor is used to obtain the 

measurements required to conduct our positioning trials.  Therefore, GSM Mobile Locator and 

Netmonitor will be used simultaneously to test the performance of the range-only and range-

bearing EKF models described in Chapter 3. 
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Figure 5.1 GSM Mobile Locator interation with Mappoint Web Service 

5.2.2 Use Case Scenario 

When the application is started to conduct a positioning experiment, the user should select 

which of the range-only or range-bearing EKF models will be used as the positioning process.  

The user should also choose which propagation model will be used as an observation model 

for the EKF positioning process. 
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During the experimental evaluation of the system in Section 6.4, positioning outcomes will be 

compared according to which propagation model was used to define the distance relationship 

between the mobile terminal and reference base stations.  During the length of the experiment, 

the network monitoring tool is used to observe the Network Measurement Report which 

displays the downlink signals transmitted by hearable base stations.   Using to the observed 

CID codes, the base stations which can be identified from the survey database will be selected 

for the positioning trial.  In fact, the application’s graphical user interface (GUI) provides the 

user with a list view of the surveyed base stations.   

The user proceeds by selecting a single BTS at a time and entering its associated RSS 

measurement as displayed in Netmonitor’s measurement report [Ham06].  In case a generic 

propagation model is chosen as the EKF’s observation model, the user should use the 

propagation model view of the application to convert the measured RSS to a distance 

observation.  The path loss equation of generic models also requires the user to specify the 

type of area as well as the values other parameters such as the BTS height, MT height and 

frequency.  In case a calibrated propagation model is selected, the user should enter the 

calibrated parameters, namely, the path loss exponent and absolute loss value, so that the 

application sets the observation model of the EKF algorithm.  Moreover, the user should 

directly link the RSS observation to the selected BTS from the list view.  For evaluation 

purposes, the user should also specify the exact location of the experiment with the help of a 

GPS device.   

Once measurements have been allocated to at least two distinct base stations, the user 

can activate the EKF positioning process to initialise the mobile position estimate.  The latter 

should be displayed on a map rendered using the web service, which the user can navigate 

through by zooming and panning.  The system should then locate the nearest points-of-
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interest (POI) from the computed mobile position and displays them on the downloaded map.  

Moreover, the user can request a route calculation by selecting the route’s starting and ending 

points among the list of POI.  When signal strength measurements vary or additional base 

stations appear in the NMR, the user can enter new measurements to update the MT position 

estimate.  The use case scenario described in this section is illustrated in figure 5.2.   
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Figure 5.2 GSM Mobile Locator Use Case Diagram  
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5.2.3 Identification of Classes 

The noun identification technique is used in this section to identify key domain classes from 

the use case scenario described in the previous section.  The nouns and phrases that are 

potential class identifiers are: base stations, database, system, graphical user interface, 

propagation model, EKF algorithm and points-of-interest.  Because of the visual nature of this 

application and the extensive use of its graphical user interface, the class 

‚MobileLocatorInterface‛ is designed to implement the GUI functionality as well as the 

system’s control tasks instead of having a separate controller class.  The control tasks consist 

of the following: 

- accessing the database of base stations and retrieving the details of selected BTS, 

- setting propagation model parameters according to the user selection 

- communicating with the EKF positioning process to integrate measurements, 

initialise/update the mobile terminal position and retrieve the positioning result. 

- accessing the MapPoint Web Service to download maps, find POI and calculate 

routes. 

The identified classes are briefly described below:  

- BTS class: represents a single base-transceiver station and holds the details in its 

instance fields i.e. latitude, longitude, height, transmitter power, street name (used to 

discriminate between base stations).  An instance of this class is created by 

MobileLocatorInterface class for each base station used during the positioning 

experiments.   



131 

 

 

- PropagationModels Class: responsible for MT-BTS distance calculation using a 

selected generic propagation model among Hata, Extended Hata and CCIR.  If the 

calibrated propagation model has been selected for the experiment, the parameters of 

the path loss equation are set by the user via the MobileLocatorInterface class. 

- KalmanFilter Class: responsible for implementing the EKF static positioning system 

described in Chapter 3.  It includes the EKF recursive algorithm which iterates through 

the list of base stations and updates the estimate at each time the user enters a new RSS 

measurement. 

The interaction between these classes is illustrated by the initial UML class diagram 

depicted in figure 5.3.   
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Figure 5.3 GSM Mobile Locator Initial Class Diagram 
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5.3 Constrained Cellular SLAM Application 

As introduced previously, the Constrained Cellular SLAM system aims to overcome the need 

to rely on commercial or third-party databases of BTS location and CID information required 

to implement mobile Location–Based Services.  By adopting a Simultaneous Localisation And 

Mapping approach, CCS allows third-party developers to build their own map of base 

stations for use as reference location information required in LBS application development.  

Moreover, the CSS methodology has been developed to run on low-cost smartphones or 

feature phones as they are still sold in higher number than state-of-the-art smartphones.   

The CCS system has been deployed on a Symbian OS powered Nokia smartphone 

with built-in GPS.  It has been implemented in Symbian C++ which is an object-oriented 

language derived from C++.  This section presents the design of the software implementing 

Cellular SLAM using UML.  In terms of software development, the CCS application 

represents an extension of the BTS Locator program which was developed during the early 

stages of this research in order to map base station locations.  The BTS Locator application 

implements the monitoring of GSM signals as well as GPS position retrieval as perquisite 

tasks to apply the SLAM methodology.  In fact, the functionality of the BTS Locator 

application coincides with the map building stage of the Constrained Cellular Slam system.   

Apart from the Symbian OS smartphone itself, the only required hardware is a GPS 

receiver.  Only the Cell Identity code (CID) identifying the serving base station and its 

associated received signal strength (RSS) can be retrieved from the device.    In fact, the 

capability of the Symbian OS platform restricts the application to access the Network 

Measurement Report and retrieve CID and RSS measurements from neighbour base stations. 
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Another implementation related restriction affecting the adoption of a SLAM-based approach 

consists of the lack of mobility information such as the orientation, velocity and acceleration of 

the smartphone user.  In order to build a map of the cellular network and use it to estimate the 

position of the mobile terminal, a constrained SLAM methodology is proposed in this thesis 

which interleaves the map building and localisation tasks.  A two-stage approach is therefore 

adopted so that a Constrained Cellular SLAM system can be implemented without relying on 

the integration of external measurements, in other words, without using separate network 

monitoring tools or dead reckoning devices.  As current smartphones are equipped with 

motion sensors such as accelerometers and gyroscopes, the proposed cellular SLAM 

methodology can be extended to exploit motion sensing capability in the future, as discussed 

in Chapter 7.      

5.3.1 Requirement Analysis 

From the structure of Cellular SLAM, the domain model of the system consists of the 

following functional requirements: 

5.3.1.1 Network monitoring  

 The application needs to access the phone’s modem to retrieve the CID of the serving 

base station as well as the received signal strength (RSS).   

 It must detect cell handovers and signal strength variations as soon as they occur.   

 All this data should be displayed to the user on the smartphone’s screen.    

5.3.1.2 GPS Measurement   

 GPS position data must be retrieved from the built-in GPS device.   
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 The application should allow the user to request this data when needed or at fixed 

time intervals using the application’s menu commands. 

5.3.1.3 Sampling Process  

 The exploration stage of cellular slam requires a sampling process which uses GPS and 

GSM network observations to estimate the position of BTS landmarks.   

 Each GPS position fix should be linked to the observed CID and RSS and form a 

position sample.   

 A sample should be created when a GPS position fix is obtained while network 

monitoring is active.  This implies that the application should retrieve GPS and 

network measurements simultaneously.   

 Each position sample is then taken a location fingerprint associated with the initialised 

base station which communicates with the smartphone.  

 The sampling process should stop taking measurements while the smartphone is 

stationary in order to avoid redundant fingerprints of the same location. 

5.3.1.4 BTS Landmark Initialisation   

 Each time a new sample is retrieved, it is used by an Extended Kalman Filter model to 

estimate the position of the serving BTS landmark. 

 During the Initial Mapping Stage, the system should synchronize the operation of the 

EKF with the location fingerprinting task required to prepare the system for its 

network localisation stage. 

 When the mobile switches to a different BTS, the system should detect the change in 

the observed Cell Id as soon as it occurs.   
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 As a result of the handover, the system should stop the sampling process. 

 The Initial Mapping Stage for each trial area where the system will be evaluated 

should be conducted in several surveys in order to progressively build the map of the 

GSM network.  As a result, the user should be able to save the map of initialized base 

stations at any time and access the database at the start of future surveys.  

5.3.1.5 EKF-SLAM 

 The application should implement the extended Kalman Filter (EKF) responsible for 

maintaining the state of the SLAM system (the SLAM state).   

 The EKF uses the adopted observation model to update the mean and covariance of 

the augmented SLAM state which combines the mobile state and the registered 

landmark states. 

 Using the map built during the exploration stage, the system should be able to 

estimate the position of the smartphone by identifying the base station through CID 

observation and by measuring the received signal strength.   

 The observed BTS has one or more mobile position fingerprints collected during the 

exploration stage.  The system should implement the nearest neighbour association 

method described in Section 4.5 to retrieve the fingerprint position which best matches 

the measurement 

 The mobile position fingerprint is used by the EKF process model to predict the state 

of the mobile terminal. 

 The signal strength measurement is then used to update the entire SLAM state. 
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5.3.2 The Use Case Model 

The following user scenario description is derived from the above requirement analysis and 

illustrated by the use case diagram of Figure 5.4.     

Using the phone’s keypad, the user starts the application and activates the network 

monitoring process, which consists of observing the changes in the Cell ID and RSS.  Before 

initiating the sampling process at the start of an Initial Mapping Stage survey, the user decides 

whether to create a new map of base stations to start a new survey or to retrieve an existing 

map from the smartphone’s memory to continue an existing survey.  While walking or 

driving a vehicle, the user can request GPS position measurements in order to collect the 

position samples.   The user can also activate the period timer which generates successive GPS 

updates at fixed time intervals.  Whilst waiting for a position fix, the user can cancel the 

request or disable the update process if already enabled.  The system automatically executes 

the EKF localisation algorithm to estimate the landmark position each time a new GPS sample 

is collected.  This is illustrated by the <<extends>> arrow in the use case diagram of Figure 5.4.   

In the uses case diagram of Figure 5.4, note the system’s boundary which separates the 

user’s actions from the processes performed by the system.  Finally, the network positioning 

stage can be started by the user to estimate the position of the mobile using the map of 

landmarks resulted from the exploration stage.    
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Figure 5.4  CCS Application Use Case Diagram 
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5.3.2.1 Identification of classes 

In order to facilitate the process of identifying key domain classes, we named each task of the 

above requirement analysis and then use the noun identification technique.  Table 1 shows the 

list of all the nouns and phrases in each requirement in the order of their occurrences.  Only 

the potential class identifiers are listed after removing the candidates which are clearly 

inappropriate.    

Table 5.1 List of candidate class identifiers 

Task  Potential Class identifiers 

Network monitoring Application, modem, base station, screen 

GPS Measurement GPS position, GPS device, time intervals, menu commands 

Sampling Process GPS position, propagation model, sample, system, list of samples, base station 

BTS Localisation BTS, system, sampling process,  Landmark, menu commands 

Map Management Application, map management, landmark 

Extended Kalman Filter  Application, extended Kalman Filter, mobile state, landmark state, 

fingerprinting process, position fingerprint, landmark 

Mobile Position Estimation Map, system, position, base station, position fingerprint, proximity sensing 

 

In the above requirement analysis, the terms application and system can either refer to the 

model of the system responsible for performing the required tasks, or the interface of the 

system which allows the user to interact with the system.  The system’s model should be 

implemented by the control class responsible for managing the operations of other classes.  

Since the name of our system is ‘Cellular SLAM’, we should call the control class 

‘CellularSLAMControl’.   

The term control is one of the three stereotypes used in UML.  The other stereotypical 

classes consist of the boundary and entity classes.  The boundary classes represent the 
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interface to the user as well as the systems external to our system.  In table 1, ‘screen’ and 

‘menu command’ are the identifiers referring to the user interface classes but they are not 

themselves suitable class names.  For example, ‘UserInterfaceView’ is a more adequate name 

for the class responsible for displaying information and ‘UserInterfaceControl’ can be the class 

receiving user commands.  The structure of the graphical user interface (GUI) is outside the 

scope of use case modeling.  Therefore, the GUI should be represented with one class 

‘UserInterface’ at this stage.   

The systems external to the application itself consist of the GPS device and the phone’s 

modem.  Boundary classes should be implemented to allow the control class to access these 

systems.  The class responsible for retrieving CID and RSS from the modem can be called 

NetworkMonitor.  The propagation model responsible for deriving range measurements from 

signal strength measurements should be implemented as an entity class.  We chose the name 

‘GPS positioner’ to represent the class responsible for accessing GPS information and the 

name ‘GpsTimer’ to represent the entity class responsible for the generation of GPS updates.  

The entity classes are responsible for implementing the important operations of the system.  

Cellular SLAM has two EKF algorithms which can be included in the entity class 

‘KalmanFilterSLAM.  Entity classes are also used to instantiate objects encapsulating a large 

collection of data.  In our system, samples are such objects as they hold the position measured 

by the GPS device, the cell ID of the BTS, RSS and its associated MS-BTS range.  The class 

‘PositionSample’ will be used to create sample objects as part of the sampling process.  

Similarly, the base station or landmark should be represented by the class ‘Landmark’ to 

create objects encapsulating the position of the BTS and its associated data. .i.e. the CID, the 

covariance matrix of the estimate and the number of samples used to produce the estimate.   
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As described in task 6, the created landmark should also be linked to the mobile position 

updated by the Kalman Filter.  The updated MS position becomes a position fingerprint 

associated with the landmark object.  ‘PositionFingerprint’ is therefore an appropriate class 

identifier.  During the network localisation stage of the system, a proximity sensing algorithm 

is performed to estimate the mobile position.  Since the fingerprint objects are owned and 

maintained by the landmark object, this proximity sensing algorithm should be implemented 

in the Landmark class, rather than in a separate class.  Table 5.1 shows the initial identified 

classes listed according to their stereotypes.  

Table 5.2  CCS Class Names     

Stereotype Classes 

Boundary UserInterface, NetworkMonitor, GpsPositioner 

Control CellularSLAMControl 

Entity PositionSample, GpsTimer, KalmanFilterSLAM,  Landmark, 

PropagationModel, PositionFingerprint   

 

5.3.2.2 CRC cards 

Once classes have been identified, CRC cards can be used to show the responsibilities and 

collaborators of each class.  The responsibilities describe the role and operations carried out by 

the class at a high level, while the collaborators represent the other classes interacting with the 

class.  Although CRC cards are not part of the UML design, they are useful when identifying 

the responsibilities of classes and their associations.  They also provide insights on the quality 

of the design as they help avoid low cohesion and high coupling. 
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UserInterface 

Responsibilities Collaborators 

This class creates the graphical user interface (GUI) of the application.  

It allows the user to issue commands to the systems which will be 

handled by the control class CellularSLAMControl.  The latter handles 

the operations and sends information to be displayed by the GUI. 

 

CellularSLAMControl 

NetworkMonitor 

Responsibilities Collaborators 

This class provides the system access to the GSM network in order to 

retrieve the cell id of the serving base station and the received signal  
 

CellularSLAMControl 

strength.  Once network monitoring is enabled by the user, this class is used by the 

CellularSLAMControl class to send messages to the telephony subsystem requesting the network 

information.  After receiving the data from the telephony server, the NetworkMonitor class 

forwards the data to the control class.  

GpsPositioner 

Responsibilities Collaborators 

This class is responsible for obtaining GPS position data from the built-in 

GPS module upon receiving requests from the user interface via the 

control class. 

 

CellularSLAMControl 

On startup, CellularSLAMControl instantiates a GpsPositioner object which enables the GPS 

module and connects to it.  The object can then request a GPS measurement from the module and 

wait while the GPS device connects to the satellites and compute the position fix.  Once produced, 

the position data is sent back to the control class.    

 

PositionSample 

Responsibilities Collaborators 

This class represents a sample collected as part of the exploration stage of 

the system.  A position sample is created by combining the measured GPS 

 

CellularSLAMControl 

 latitude and longitude coordinates with network information including the CID, RSS and MS-BTS 

distance.  The PositionSample class therefore groups all the data together as attributes and is 

instantiated by the control class when a GPS position fix is produced.  The PositionSample object is 

constructed by combining the GPS position with the network data observed at the time of the 

position fix. 
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PropagationModel 

Responsibilities Collaborators 

 

This class implements our propagation model described in Chapter 

Section 2.4.  The class uses the model’s path loss equation to compute the 

distance between 

 

CellularSLAMControl 

 the mobile phone and the serving bases station using the signal strength as measurement and the 

transmitted power the value of which has been calibrated as part of the model’s development.  This 

class is used by the control class to translate RSS measurements to MS-BTS range observations each 

time the signal strength changes.    

 

MobileFingerprint 

Responsibilities Collaborators 

 

This class represents a mobile position fingerprint which consists of the 

mobile state position updated by the KalmanFilterSLAM class following 

each landmark localisation.  The state pose or mobile position fingerprint is 

constituted of the following attributes:  

 

KalmanFilterSLAM 

Landmark 

- The position of the mobile position updated by the Kalman Filter. 

- The average of the signal strength measurements associated with the landmark position 

estimate. 

- The determinant of the innovation covariance matrix used in the measurement update 

stage of the EKF to update the SLAM state vector.   

KalmanFilterSLAM instantiates this class and adds the created object to the list of 

MobileFingerprint objects.  This list is associated with the landmark that has been recently 

initialised.   
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Landmark 

Responsibilities Collaborators 

 

This class represents a base station landmark that has been initialised as 

part of the mapping process.  It includes the following attributes: the 

landmark’s CID identifier; the estimated latitude and longitude 

coordinates of the landmark; the covariance matrix associated with the 

landmark position estimate; the list of mobile fingerprints. 

 

KalmanFilterSLAM 

CellularSLAMControl 

The landmark position and its covariance have been estimated by the localisation algorithm 

implemented by the KalmanFilterSLAM class.  The latter creates a landmark object for each 

identified BTS and associates a mobile position to the landmark.  In order to implement the 

fingerprinting process, the landmark should maintain a list of MobileFingerprints objects that will 

be used in the network localisation stage of the system. 

CellularSLAMControl 

Responsibilities Collaborators 

 

This is the control class of the application responsible for managing the 

actions of all other classes.  It provides the link between the user interface 

with the rest of the system.  It creates the NetworkMonitor and 

GpsPositioner objects and uses them to retrieve network and GPS data.  It 

is responsible for performing the sampling process of creating sample 

objects needed for landmark localisation.  These objects are instances of the 

PositionSample class encapsulating CID, RSS, GPS coordinates and the MS-

BTS range measurement produced using the PropagationModel class.    

 

NetworkMonitor 

GpsPositioner 

GpsTimer 

PositionSample 

PropagationModel 

KalmanFilterSLAM  

 While the phone is connected to the same BTS, the sampling process continues until a handover 

occurs.  The latter is detected by the class by sensing the change in the observed CID at the moment 

of obtaining a GPS position fix from the GpsPositioner.  PositionSample objects are constructed for 

each observed base station and are stored in a list which will be used by the KalmanFilterSLAM 

class to estimate the position of the BTS landmark.  The CellularSLAMControl also executes the 

landmark localisation process after receiving a request from the user interface.  When the user 

activates the network positioning mode, the control class accesses the list of landmarks from the 

KalmanFilterSLAM class and searches for the landmark matching the observed CID to retrieve the 

target mobile phone position associated with the landmark.   
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KalmanFilterSLAM 

Responsibilities Collaborators 

This class implements the landmark localisation algorithm, the map 

management process, the extended Kalman Filter maintaining the SLAM 

state.  Upon receiving a new position sample from CellularSLAMControl, 

this class applies the EKF landmark localisation algorithm to estimate the 

position of the landmark.  It then creates an instance of the Landmark 

calss and stores it in an array representing the global map of landmarks.  

When the user intitiate the network localisation stage,  

 

CellularSLAMControl 

Landmark 

MobileFingerprint 

a map management algorithm to check if the BTS can be associated with a previously identified 

landmark.  This class also creates a fingerprint object following each landmark observation.  The 

fingerprint object is initialized using the mobile position retrieved from the state vector and the 

signal strength measurements that contributed in the localisation of the landmark.  It is then added 

to the list of fingerprints maintained by the landmark object.  One of these fingerprints will be 

considered as the mobile position estimate in the network localisation stage. It is the responsibility 

of this class to implement the selection process according to the adopted nearest neighbor data 

association, which is based on signal strength observation. 

 

The CRC cards help identify the operations and attributes of each class and create the class 

model of the system.   The class diagram depicted in Figure 5.5 shows how classes are 

associated and includes the main operations and attributes of each class.  The arrows with 

diamond ends represent the aggregation association between the instantiated class and its 

creator, with the diamond connected to the class creating and using objects.  Multiplicities are 

shown next to each arrow to determine how many objects are created for each instantiated 

class.  In addition, collaboration diagrams are created in order to clarify the design of the 

system further.  The statechart diagram illustrates the different states of the system and the 

transition between them, while the sequence diagram shows the sequence of messages sent 

between objects.  The class model and the two collaboration diagrams will be refined in the 

following section, where we proceed to the analysis model which will provide an internal 

view of the system and describe how its functionality is realized.     
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5.3.3 Class, State and Sequence Diagrams 

+StartNetworkMonitoring()

+RequestGpsPosition()

+CreateAndAddSample(in sample : PositionSample)

+LocaliseLandmark()

+EstimateMobilePosition()

-GpsPositioner : GpsPositioner

-NetworkMonitor : NetworkMonitor

-ListOfSamples* : PositionSample

-CID

-RSS

CellularSlamControl

+KalmanFilterSlam()

+SetSamplePositions(in ListOfSamples : PositionSample)

+KalmanFilter()

+InitialiseLandmark()

+SearchLandmarks(in CID : int)

-StateVector : Matrix

-PotentialLandmarks : Landmark

-ValidatedLandmarks : Landmark

KalmaFilterSLam

+PositionSample(in lat, in lon, in cid, in rss, in dist) : PositionSample

-latitude : float

-longitude : float

-CellID : int

-signalStrength : int

-distance : double

PositionSample

+PropagationModel()

+EstimateDistance() : float

PropagationModel

1

1..n

1

1..m

1

+HandleCommand()

+Display()

-control : CellularSlamControl

UserInterface

1

+MobileFingerprint(in lat, in lon, in rss, in inCov) : MobileFingerprint

-latitude : float

-longitude : float

-signalStrength : int

-InnovationCovDet : int

MobileFingerprint

+NetworkMonitor() : NetworkMonitor

+GetNetworkInfo()

-CellId

-SignalStrength

NetworkMonitor

+GpsPositioner() : GpsPositioner

+RequestPositionInfo()

-GpsLatitude : float

-GpsLongitude : float

GpsPositioner

+Landmark(in CID, in Lat, in Lon, in CovMat) : Landmark

+AddFingerprint(in fingerprint : MobileFingerprint)

-latitude : float

-longitude : float

-CellID : int

-CovarianceMatrix : Matrix

-FingerprintsArrayList : MobileFingerprint

Landmark

1

1..p

 

Figure 5.5 CCS Application Initial Class Diagram                              
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Landmark LocalisationMap Management

[Known BTS / Retrieve mobile position]

Network Monitoring

GPS Positioning

Accuracy Evaluation

[Network positioning activated]

[Unknown BTS / Return to Exploration Stage]

[New Position Fix/Create sample]

Fingerprinting Process

[Handover detected]

[User request]

{OR}

[Network Monitoring OFF]

[No Handover/continue GPS positioning]

Check CID associated with GPS sample

Sampling Process

Look for CID association in map of landmarks

Cellular Positioning Mode

 

Figure 5.6 CCS Application Initial Statechart Diagram 

We can see from the statechart diagram that the network monitoring is the process running 

throughout the execution time of the application.  In fact, it is required in both exploration and 

cellular positioning stages of the system.  As stated in the requirements analysis, the user 

should activate the network positioning mode after surveying an area using the system in 

exploration mode.  In other words the application starts with the network monitoring and 

GPS sampling tasks which together form the exploration stage of the system.  The latter keeps 

running until the user activates the network monitoring mode after the system has 

constructed a map of surrounding landmarks.  If the observed CID belongs to a known 
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landmark, the mobile position can be estimated and the system enters its accuracy evaluation 

state.  The latter will be detailed later in this chapter.  If the observed base station is not 

present in the map of landmarks, the system switches from positioning mode back to the 

sampling mode.  This is illustrated in the diagram by the transition with the condition 

‘observed BTS with unknown CID’.   

  The transitions between states provide us with insights on the sequence of message 

passing between the system’s objects.  In fact the statechart diagram lends itself to the 

construction of the initial sequence diagram, depicted in figure 5.7, which shows the 

communication between objects in the time order that interactions take place.  In UML, the 

sequence diagram is one of the two forms of interaction diagram, the other one being the 

collaboration diagram.  The latter also shows the sequencing of messages but not as clearly as 

the sequence diagram, especially if the execution of the system involves repetitive tasks.  As 

the exploration stage of Cellular SLAM is an iterative process, the sequence diagram is the 

preferred choice.  The diagram in figure 5.6 shows the execution of two message loops, or loop 

sequences as described next: 
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control: CellularSlamControlUserInterface netMon: NetworkMonitor gpsPos: GpsPositioner Kfs: KalmanFilterSlam Lmk: Landmark

ActivateNetworkMonitoring()

GetNetworkInfo()

Cell ID & RSS

RequestGpsInfo()RequestGpsSample()

GPS latitude & longitude

CreateAndAddSample(CID,RSS,Latitude,Longitude)

RequestLandmarkPosition() SetSamples(SamplesList)

KalmanFilter()

Landmark Position

LocaliseLandmark()

Loop

ActivateCellularPositioning()

Par

RetrievePositionFingerprint()

Mobile Position Estimate

GetNetworkInfo()

Cell ID & RSS

Loop

UpdateDisplay()

UpdateDisplay()

Opt

ResetSamplesList()

UpdateDisplay()

SearchListOfLandmarks(CID)

Alt

[Landmark Found]

[else]

UpdateDisplay()

ActivateExplorationMode()

[Cellular Positioning On]

[Exploration Mode ON]

[Handover Detected]

 

Figure 5.7 CCS Application Initial Sequence Diagram 
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The first sequence represents the execution of the exploration stage whereas the second 

represents the execution of the cellular positioning stage.  Upon receiving the request of 

activating the network monitoring mode from the user interface, the control object performs 

the sampling process which consists of the simultaneously observing network information 

(CID and RSS) and obtaining GPS position measurements.  As described by the CRC cards, 

GetNetworkInfo() and RequestGpsInfo() are the methods called by objects of the 

NetwokMonitor and GpsPositioner classes which are owned by the CellularSLAM control 

object.  As the latter should monitor network observation while waiting for a GPS position fix, 

these methods have to be asynchronous.  Asynchronous method invocation (AMI) allows the 

sending object to stay active while waiting for the reply of asynchronous message calls.  In 

fact, AMI can be implemented by making the NetwokMonitor and GpsPositioner active 

objects running concurrently.  In the sequence diagram, this is represented by the frame with 

the title ‘Par’, meaning parallel execution, and a dashed line separating the two observation 

tasks.  When a handover occurs, the landmark localisation sequence is executed within the 

option frame titled ‘Opt’ and guarded by the condition ‘Handover Detected’.  This sequence 

can also be launched if the user requests an estimate of the observed BTS landmark.  In this 

landmark localisation frame, the control object sends the list of the samples collected during 

the sampling process to the instance of the KalmanFilterSLAM class responsible for 

performing the SLAM operations.  Only the BTS localisation and Kalman Filter operations are 

depicted by the diagram as the others will be included in the more detailed sequence diagram 

in the analysis model.       

The second loop frame includes the execution of the cellular positioning stage.  As 

stated previously, this stage performs the localisation of the mobile phone using the data 
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collected by the fingerprinting process during the exploration stage.  Firstly, CID and RSS 

measurements are taken from the network.  A search algorithm then scans through the map of 

landmarks to check if the observed CID matches a BTS from the map.  As shown in the 

sequence diagram, the search algorithm is implemented by the ‘SearchListOfLandmarks’ 

method of the KalmanFilterSLAM class which is invoked by the CellularSLAMControl object 

passing the observed CID as a parameter.  If a match exists, the system can estimate the 

position of the mobile phone using the proximity sensing method described in section 4.1.2 

and implemented by the retrievePositionFingerprint() method of KalmanFilterSLAM.  If no 

matching landmark is found, the system returns to the exploration stage.  The alternative 

frame ‘Alt’ in the sequence diagram illustrates this if/else logic. 
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Chapter 6 - Experimental Evaluation 

 

 

6.1 Introduction 

The aim of this chapter is to report the performance of the static positioning system and the 

Constrained Cellular SLAM system proposed in this thesis as well as to evaluate them in 

terms of accuracy against other cellular positioning techniques, which have been described in 

Chapter 2.  The cellular positioning systems proposed in this thesis were evaluated by 

conducting real-world experiments after being implemented as mobile software applications.   

Section 6.4 presents the static positioning experiments conducted using the ‘GSM Mobile 

Locator’ application running on a Windows Mobile PDA.  Section 6.5 presents the positioning 

experiments which test the performance of the Constrained Cellular SLAM system using the 

Symbian OS smartphone application on which it is deployed.  The design of these software 

applications was outlined in Chapter 5.   

In addition to providing a summary of the positioning results, this chapter presents the 

practical details of an example experiment for each of the static EKF and the CCS positioning 

systems.  It begins by outlining the preparation stages required to conduct the positioning 

trials, which are twofold: 
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- The base station identification process of associating BTS locations to CID codes, which 

is described in Section 6.2.   

- The calibration process of the propagation model adopted by the positioning systems 

presented in this thesis, which is described in Section 6.3.   

The base station identification process affects the proposed positioning systems differently.  It 

is required by the static positioning system because it defines the BTS reference points used 

for positioning.  In other words, the absolute knowledge of BTS locations and their 

identification is crucial for the accuracy of the positioning outcome.  On the other hand, the 

BTS identification process is used by the CCS system for evaluation purposes only.  As 

described in Chapter 4, the BTS locations are estimated in both stages of the adopted SLAM 

methodology as they are initialised during the Initial Mapping Stage and updated during the 

Network Localisation Stage.  Thus, the true BTS positions are only required to evaluate the 

accuracy of the estimated BTS landmark positions. 

During positioning trials conducted in central Birmingham as part of the Author’s 

previous work [Ham06], various propagation models have been tested and compared to 

evaluate the accuracy of the distance estimation and the positioning results.  The experiments 

conducted using the Walfish-Ikegami model produced the most accurate range predictions 

when compared to the Hata model and its extensions .i.e. the COST 231 and ERC report 68.  In 

this work however, an empirical propagation model is calibrated using a linear regression 

process in the same trial area as the positioning experimental setup.  As stated previously, the 

aim of tuning the propagation model in a positioning trial area is to improve the accuracy of 

BTS-MS range predictions in that specific area.  In fact, it will be demonstrated in this chapter 
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that more accurate BTS-MT range relationships will allow the proposed positioning systems 

to achieve more accurate positioning outcomes.   

As far as the visual presentation of the trials presented in this chapter, the mapping 

software Microsoft MapPoint 2010 is used to display the positions of the base stations and the 

mobile position estimates.  The accuracy of the positioning outcome is evaluated by 

measuring the distance separating the estimated mobile position and the reference or ‘true’ 

mobile position, which is obtained using GPS and pinpointed using the MapPoint software.  

All the latitude and longitude coordinates specified as part of the positioning trials in this 

chapter are expressed in decimal format24.  Another engineering software tool called 

Netmonitor [Ham06] was used during the BTS identification process and the static EKF 

positioning experiments.  As stated previously, Netmonitor can be used to measure the CID 

and received signal strength for the serving base station as well as to monitor the Network 

Measurement Report, which displays the details of up to six neighbouring BTS transmitters.  

As introduced in Chapter 3 and detailed in Section 6.4, monitoring the history of the NMR is 

required by the range-bearing EKF system to derive bearing measurements.  Netmonitor was 

required to perform these experiments since the ‘GSM Mobile Locator’ PDA application does 

not have the capability of monitoring the GSM network.  On the other hand, the use of a 

standalone tool was not required to perform the experimental evaluation of the Constrained 

Cellular SLAM system because the Symbian OS smartphone application implementing CCS is 

able to measure the CID of the serving BTS as well as the RSS observed by the mobile 

terminal.   

                                                      

 

24
 Latitude north and longitude west. 
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6.2 Base Station Identification 

Extensive surveys have been conducted in order to identify well-known base stations and 

build the database required for the operation of the ‘GSM Mobile Locator’ application 

implementing the static EKF positioning system.  The location of the base stations are 

obtained from Ofcom’s Sitefinder website, which includes maps displaying the locations of 

base stations as well as other information such as antenna height and transmitted power.  

Sitefinder is a reliable source to obtain BTS information as the latter is provided by network 

operators themselves.  However, Sitefinder does not provide the Cell Identity Codes 

associated with each base station, nor does it state how many sector antennas are present on 

each site.   

Figure 6.1 Ofcom Sitefinder database 
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Figure 6.1 is an example screenshot from the Sitefinder website showing a map of base 

stations in one of the CCS positioning experiments reported in Section 6.5.  Notice in the right 

side of the map a table showing the details of one of the base stations.   

There are other third party databases available online for the LBS community which 

list BTS locations by their CID identifiers but they are not as reliable as Sitefinder.  As 

introduced previously, third party databases are built using the data collected by smartphone 

users and then sent via the Internet to a server which processes the information to estimate the 

position of each BTS.  The accuracy of the estimated BTS positions is poor as it strongly 

depends on the number of users collaborating to collect the data as well as the path they take 

during the survey relative to the base stations.   

Therefore, the aim of the BTS identification process is to link known base station 

locations with their relevant CID codes.  As far as the software implementation of the static 

positioning system is concerned, the GSM Mobile Locator application requires the BTS 

identification process to translate CID inputs received from the user to their corresponding 

BTS location coordinates, which represent the reference points for positioning.  While the 

performance of the static positioning systems depend on the exact knowledge of base station  

locations and their corresponding CID’s, the Constrained Cellular SLAM system only needs 

the exact BTS locations for evaluation purposes only.  Being a cellular positioning system 

based on Simultaneous Localisation And Mapping, the CCS software application carries out 

the mapping of base stations including the CID-BTS location association.  

Once the base stations to be used as reference for positioning experiments have been 

identified and located using Sitefinder, site surveys have been conducted to identify 

individual sectors of base stations and associate them with their corresponding CID codes.  
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Firstly, the BTS locations published in Sitefinder are mapped using a GIS mapping software 

like Microsoft Mappoint or Google Earth.  The mapping software is also used to record the 

latitude and longitude coordinates of each base station. 

   

Figure 6.2 Mappoint map displaying identified base stations 

Using a GSM network monitoring tool like Netmonitor capable of displaying the Network 

Measurement Report, each BTS is surveyed by taking CID and RSS measurements in several 

direction around the BTS.  Figure 6.2 shows a Mappoint map displaying the base station 

identified as a result of the CID matching procedure.  Finally, the BTS data is compiled into a 

database format ready for the software implementation of the proposed positioning 

applications. 
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6.3  Propagation Model Fitting 

As stated previously, the signal strength-based positioning systems proposed in this work 

rely on an initial propagation model tuning process which is performed in the same areas as 

where the experimental evaluation of the positioning outcome is carried out.  The parameters 

of the path loss equation have been fitted using real signal strength measurements in the area 

of each positioning trial.  Each trial area is surveyed in advance in order to identify the base 

stations according to their corresponding Cell ID’s.    

As described in Section 2.4, the calibrated propagation model is expressed in the 

power law form of (2.9), that is: 

                 (6.1)     

The least square fitting process outlined in Section 2.4 calibrates the path loss exponent   and 

absolute loss   parameters given the measurement dataset consisting of i data sample pairs 

         where    represents the distance as the independent variable and     represents the 

measured signal power as the dependent variable.    The experimental procedure to collect the 

sample dataset for the calibration process is as follows.   

- Firstly, a base station of well-known coordinates, sectors and CID codes is chosen.   

- For each base station, RSS measurements are taken at regular intervals while 

travelling along the streets covered by each sector of the BTS.   

- From each position of the mobile terminal, a GPS reading is taken and used to 

measure the true distance between the mobile and the BTS.   
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In order to provide an example of the measurement dataset resulting from the above the data 

collection process, few dataset samples are taken from the model calibration experiment in the 

Stirchley area and shown in Table 6.1. 

Table 6.1 Propagation model fitting example dataset. 

BTS Position GPS Position 

 

True Distance Rx  

Latitude 

(North) 

Longitude 

(West) 

Latitude  

(North) 

Longitude 

(West) (Metres)  (dBm) 

52.432188 -1.918774 52.43053 -1.920525 113.057159 -78 

  52.430488 -1.920637 121.628281 -79 

  52.430439 -1.920732 130.05162 -80 

  52.430413 -1.920805 135.615875 -81 

  52.430421 -1.920881 138.751297 -80 

  52.430076 -1.920504 152.605942 -83 

  52.430291 -1.921341 171.868744 -85 

  52.43023 -1.921454 182.100311 -84 

  52.430159 -1.921538 191.51857 -86 

  52.429977 -1.922028 230.043655 -88 

  52.429756 -1.922445 267.485809 -91 

  52.429366 -1.922693 308.613861 -93 

  52.429185 -1.922682 322.165375 -94 

  52.429058 -1.922788 337.35202 -95 

 

The measurement datasets collected for the propagation model tuning process can also 

visualised using Mappoint as illustrated by Figure 6.3, which consists of a map showing part 

of the calibration experiment conducted in the Yardley Wood area.  In this map, the BTS 

position is highlighted by the green pushpin while the colour shaded circles represent the 

mobile position-RSS data pairs.  High, medium and low RSS values are represented by the red 
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white and blue colours respectively25.  Moreover, few samples are labeled to show the RSS 

measurement as well as the latitude and longitude coordinates of the sample position.  

Tables 6.2 present the results of the data fitting experiments, namely the calibrated 

parameters   and   as well as the signal strength error standard deviation    
.  The calibrated 

parameters are used to produce the path loss equations which become the range-based 

observation models for each of the static EKF positioning system and the Constrained Cellular 

SLAM system.  Note that some of the calibration trial areas in Table 6.2 have been used to 

conduct the positioning test for both systems.    

 

Figure 6.3 Propagation model calibration samples 

 

                                                      

 

25
 Note that this gradient colour shading will be used in other maps within this chapter. 



161 

 

 

Table 6.2 Propagation model calibration in preparation for positioning experiments 

Area Name Area Type Reference 

BTS 

Area  

(km2) 

Number of 

Samples  

Calibrated Parameters    
 

(dB) 
    

Five ways Urban 3 6 225 4 97 6.2 

Edgbaston Mixed  
(Urban/Suburban) 

5 7.5 250 3.9 93 7.7 

New Street Dense Urban 4 1.5 140 4.2 109 8.6 

Colmore Row Dense Urban 3 1.2 127 4.3 100 7.3 

Kings Heath Urban 3 3 190 4 92 4.5 

Moseley Suburban 2 2.5 125 3.7 93 9.5 

Yardley Wood Suburban 3 4 230 3.5 82 3.8 

Stirchley Suburban 2 1.8 132 3.8 92 4.2 

Hall Green Suburban 2 2 160 3.7 88 7.4 

Shirley Suburban 2 2.2 208 3.8 84 5.9 

 

As stated in Section 2.4, a well-fitted path loss model has an error standard deviation of 

between 3 and 8 decibels [Sau07].  Note from Table 6.2 that the standard deviation between 

the RSS measurements and their predicted counterparts varies from 3.8 to 9.5 decibels.  As 

shown in Table 6.2, only two out of ten model tuning experiments produced an error standard 

deviation of more than 8 dB, namely the urban experiment in the New Street area and the 

suburban experiment in the Moseley area.  Sections 6.4 and 6.5 will present the positioning 

experiments in each of the areas listed in Table 6.2 and analyses the impact of the goodness of 

the model fitting process on the positioning outcome.  Moreover, it will be shown that using a 

calibrated propagation model improves the accuracy of the positioning result as opposed to 

using generic propagation models in the same experimental setup.   

The following outline provides an example of the calibration process outcome using 

the experiment conducted in the suburban area of Stirchley, from which the dataset of Table 

6.1 was taken.  As shown in Table 6.2, this particular model fitting experiment consisted of 

surveying two base stations within an area of about 1.8 km2n in which 132 data samples have 
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been collected.  Figure 6.4 and Figure 6.5 show the graphs for the measured and predicted RSS 

values corresponding to one and two base stations respectively.  In both figures, the graph 

drawn in red illustrates the relationship between the measured RSS values and the true 

distance separating the mobile position and the reference base station(s).  On the other hand, 

the blue graph shows the predicted RSS values produced by the model function calibrated 

using the least squares fitting process described in Section 2.4 and which reads as: 

                        (6.2) 

 

Figure 6.4 Signal strength model calibration: measured and predicted RSS for 1 BTS 
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Figure 6.5 Signal strength model calibration: measured and predicted RSS for 2 BTS 

Note that there are two RSS measurements associated with each distance value in Figure 6.5, 

as opposed to a single RSS measurement in Figure 6.4.  Knowing that both reference base 

stations in this trial have a transmitted power of 57 dBm, the calibrated model equation (6.2) 

can be rewritten to describe the path loss as follows:    

                       (6.3) 

The graph representing the calibrated path loss model in its conventional power law form can 

thus be produced as shown in Figure 6.6 and Figure 6.7, which consider samples 

corresponding to one and two base stations respectively 
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Figure 6.6 Path loss model calibration: measured and predicted path loss for 1 BTS  

 

Figure 6.7 Path loss model calibration: measured and predicted path loss for 2 BTS  
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6.4 Static Positioning 

In order to test the performance of the static positioning system presented in Chapter 3, 

several trials have been conducted using the ‘GSM Mobile Locator’ PDA application which 

has been described in Section 5.2.  As the E-911 was the main driving force behind the cellular 

positioning research, the proposed static positioning system will be evaluated against the 

cellular positioning methods that have been standardised as a result of the E-911 mandate.  

The static positioning trials reported in this section have been conducted in both urban and 

suburban areas using the base stations of two different GSM network operators (T-Mobile and 

Orange).   

This section begins by describing the experimental setup of the static positioning trials 

that have been conducted within the scope of the research.  It will then report and discuss the 

results of the positioning trials before evaluating the accuracy of the proposed method against 

standardised cellular positioning methods which were used in real-world E-911 trials. 

6.4.1 Experimental Setup 

In order to be used as reference points for the static positioning trials, a number of known 

base stations are selected from the database resulting from the identification process described 

in Section 6.2.  As stated in Chapter 3, the known geodetic coordinates of the base stations are 

transformed to their corresponding ellipsoid orthographic coordinates with respect to a 

chosen reference location within the trial area.  As the ‘GSM Mobile Locator’ does not have the 

capability of measuring CID and RSS values from the PDA device, a standalone GSM network 

monitoring tool such as Netmonitor is used for this purpose.    
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Using Netmonitor, we observe the Network Measurement Report which lists the BTS 

transmitters according to their associated CID codes signal strength measurements.  As this is 

the static case, the measurements are taken form a single position which is determined using 

GPS for accuracy evaluation purposes.  The NMR may include unknown CID’s since not all 

the base stations have been identified.  As a result the unknown CID’s are not taken into 

account in the positioning process.  Using our ‘GSM Mobile Locator’ application, we operate 

the EKF positioning process sequentially by inputting each RSS measurement individually.  

The high variability of RSS due to fast fading is averaged out before inputting RSS 

measurements into the input view illustrated by the application’s screenshot of Figure 6.8.  

This screenshot is taken from one of the 27 static positioning experiments reported in Table 6.3 

and is presented here to illustrate the data input process.   

 

Figure 6.8 GSM Mobile Locator application BTS-RSS input tab. 

As shown in Figure 6.8, we select the base stations from the database displayed as a list view 

in the left side of the application’s input tab.  Recall that each BTS is identified using the 
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observed CID following the CID matching process described in section 6.2.  As stated in the 

use case scenario of Section 5.2.2, the propagation model used for the positioning experiment 

should be specified before applying the positioning process i.e. by pressing the Locate Mobile 

button in the input tab screenshot of Figure 6.8.  If a generic propagation model like the 

Walfish-Ikegami model is selected, we should first calculate the propagation distance using 

the model’s path loss equation.  As shown in Figure 6.9, the GSM Mobile Locator application 

provides a ‘distance estimation’ tab in which the user can specify the parameters required by 

generic propagation models to estimate the BTS-MT distance corresponding to the measured 

signal strength.   The estimated distance is then linked to the relevant BTS specified in the 

Input Tab using the distance text field and the confirmation button depicted in the right side 

of the Input Tab screenshot shown in Figure 6.8.  If the calibrated path loss model was to be 

adopted for the experiment, the measured signal strength should be entered directly in the 

Input Tab.  In this case, the calibrated propagation parameters are integrated in the 

application’s code before the deployment of the application onto the PDA device. 

 

Figure 6.9 GSM Mobile Locator application Distance Estimation tab. 
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The bearing inputs from figure 6.8 represent the adopted ternary representation of the bearing 

measurement vector described in Section 3.4.  If the bearing inputs are specified, the 

application will apply the range-bearing EKF model as the positioning process.  If bearing 

inputs are not specified, the range-only observation model will be used.  As mentioned in 

Section 3.4, the bearing measurement is denoted by the BTS sector CID given that the BTS has 

3 directional antennae each identified with a CID.  For instance, given the knowledge that a 

certain CID refers to the 120 degrees ‘East Sector’ I1 of the BTS according to Figure 3.1, the 

bearing ternary vector is 1 0 0.  In Figure 6.8, the bearing vector is 0 1 0 which indicates that 

the observed CID belongs to the ‘North Sector’ I2 of the BTS.  As mention in Section 3.4.1, we 

monitor the Network Measurement Report using a GSM signal monitoring tool like 

Netmonitor to determine the ternary code used as bearing measurement.  The following 

outline explains how the bearing ternary representation is deduced from monitoring the 

history of the NMR.  

From the trial reference position, we record the CID and RSS of the serving BTS which 

is the first entry in the NMR.  We also need to identify the other sectors belonging to the 

serving BTS and record their positions within the NMR.  We then start walking away from the 

reference position in an initially chosen direction while observing the signal strength 

associated with each of the sectors.  The aim is to check whether the serving sector maintains 

its top position within the NMR with the highest RSS value until we have covered a distance 

of at least 200 metres.  In order to set the bearing vector values, the following four cases are 

identified while monitoring the evolution of the NMR: 
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- Case1: If the serving sector maintains its first position in the NMR, then we can assume 

that the mobile is located closer to the centre of the serving cell.  This will result in a 

bearing vector comprising of the value of 1 for the sector in question and two 0’s for 

the other two sectors.   

- Case 2: if the mobile terminal switches to one of the neighbour sector after we have 

walked a distance of less than 100 metres, then we can assume that the mobile is 

located closer to the intersection area between the two cells belonging to the serving 

BTS.  This implies that the bearing vector will have two 0.5 values for the two sectors 

in question while the third sector has a value of 0.   

- Case 3: if a handover to a neighbour sector occurs after walking between 100 and 150 

metres, we can assume that the mobile is located between the centre of the serving cell 

and its edge.  The bearing vector will be set in the same way as in case 1.   

- Case 4: if a handover to a different base station occurs, we return to the reference 

position and walk in a different direction as we are interested in the mobile 

displacement relative to sectors of the same BTS. 

Once the bearing vector has been defined, we return to the experiment reference position to 

continue the static positioning process.  Once all the inputs are set for an observed base 

station, the EKF positioning algorithm updates the mobile terminal position estimate using 

the measurements relative to this base station.  As stated previously, the algorithm proceeds 

iteratively by updating the mobile state estimate using a single measurement at time, whether 

the measurement consists of a new RSS relative to the same BTS or relative to another BTS 

following a handover event.   
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Figure 6.10 The estimated mobile position (GSM Mobile Locator) 

 

An example of the positioning outcome of a static positioning experiment is depicted in 

Figure 6.10.  The latter combines the ‘View Map’ tab and the ‘Mobile Location’ tab screenshots 

of the Mobile Locator application to display the estimated position on a map  and show the 

accuracy of the positioning result and the error covariance matrix associated with the mobile 

state estimate. 

6.4.2 Static Positioning Results 

For each of the range-only EKF system and the range-bearing EKF system, Table 6.3 reports 

the average accuracy from all 27 trials, which is expressed in terms of the Root Mean Square 

error in the estimated position relative to the ‘true’ experiment reference position.  As the 

number of trials in different areas varies between 2 to 5 trials, the accuracy reported in Table 

6.3 for one area is the mean of the rms values of all the trials conducted in that area.  In order 

to evaluate the performance of the proposed static positioning system against other cellular 
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positioning methods, Table 6.3 shows the mean accuracy for each of the urban and suburban 

trials. 

Table 6.3 also compares the positioning results obtained using the calibrated 

propagation model with those obtained using the Walfish-Ikegami model (WI).  Only the 

latter is used in this comparative discussion because it was deemed the most accurate generic 

propagation model in terms of distance predictions, as presented in the Authors previous 

work [Ham06]. 

Table 6.3 Static positioning accuracy 

 

Trial Area 

Name 

 

Area 

Type 

 

Trials 

 

BTS 
Using Calibrated Model Using WI Model 

   
 

(dB) 

Range-Only  

Accuracy (m) 

Range-Bearing 

Accuracy (m) 

Range-Only 

Accuracy (m) 

Range-Bearing 

Accuracy (m) 

Five Ways Urban 5 

 

6 6.2 107  85 116 98 

New Street Urban 3 5 8.6 152 122 162 148 

Colmore Row Urban 4 3 7.3 168 139 171 155 

Urban Environment Mean Accuracy 142 115 155 142 

Moseley Suburban 2 4 9.5 188 169 239 225 

Yardley Wood Suburban 5 4 3.8 161 120 195 183 

Strichley Suburban 5 2 4.2 208 185 261 227 

Hall Green Suburban 3 4 7.4 143 118 197 150 

Suburban Environment Mean Accuracy 175 148 223 175 

 

At first sight, the results reported in Table 6.3 confirm that adopting a calibrated propagation 

model produce more accurate positioning outcome than using the Walfish Ikegami 

propagation model in urban or suburban environments.  As expected, extending the 

observation model of the static EKF algorithm to process bearing measurements also 

improves the positioning outcome.  Moreover, it appears that the accuracy improvement of 

the range-bearing system over the range-only system is more important when using the 

calibrated model as opposed to using the WI model.   
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Figure 6.11 illustrates the effect of the number of distinct reference base stations and 

the RSS model calibration error standard deviation on the positioning accuracy.  Note that 

Figure 6.11 only considers the results of the range-bearing EKF positioning process which 

used the calibrated propagation model.   

  

Figure 6.11 Static positioning accuracy analysis 

Similarly to lateration and angulation positioning methods, the performance of the proposed 

static EKF algorithm improves as the number of distinct reference BTS increases.  As stated 

previously, distinct BTS refer to transmitters mounted on different sites of different locations.    

It is clear from Figure 6.11 that the accuracy increases with the number of base stations.  On 

the other hand, the effect of the calibration error standard deviation    
on the accuracy is less 

apparent.  In fact, the number of distinct base stations has a more important impact on the 

accuracy.  However, one can use    
to compare the accuracies of positioning trials in which 

the same number of base stations have been used, which is the case for the Moseley, Yardley 

Wood and Hall Green suburban experiments.  In fact, we can notice from Figure 6.11 that the 

values of    
 which resulted from the propagation model calibration stages of the Yardley 

Wood and Moseley experiments affected the positioning outcome since the former experiment 

70

90

110

130

150

170

190

210

0 2 4 6

A
cc

u
ra

cy
 (

m
) 

Number of distinct BTS 

70

90

110

130

150

170

190

210

2 4 6 8 10

A
cc

u
ra

cy
 (

m
) 

RSS Model Error Standard Deviation 

Yardley Wood 

Five Ways 

New Street 

Colmore Row 

Moseley 

Stirchley 

Hall Green 

Stirchley 

Colmore Row 

Hall Green 

New Street 

Moseley 

Yardley Wood 

Five Ways 



173 

 

 

resulted in a more accurate outcome than the latter.  The Hall Green experiment however 

seems not to be affected by the calibration error standard deviation    
.  One can argue that 

this is the case because the trial area of the Hall Green experiment is smaller than that of 

Yardley Wood, as shown in Table 6.2, while both positioning trials used the same number of 

base stations.  In addition to the number of distinct reference base stations, another important 

factor affecting the accuracy consists of the displacements of the BTS reference points relative 

to the true position of the mobile terminal, that is, the reference experiment position from 

which the measurements are taken.  This factor is defined by the relative geometry between 

the reference points and the target position and is known in lateration techniques as the 

geometric dilution of precision (GDOP) [Fig10].   

6.4.2.1 Static Positioning Trial  

Figures 6.12 is a map showing the positioning results of one of the five experiments conducted 

in the Five Ways area.  This experiment produced the highest positioning accuracy out of all 

the other static positioning trials conducted in this work.  This is mainly due to the use of 

three distinct base stations, a high GDOP factor and a well fitted propagation model.  As 

shown in the map of Figure 6.12, the displacement of true mobile position relative to each 

reference BTS allows for a good initialisation of the mobile state estimate.  As a result, an 

accurate positioning outcome is achieved following EKF state updates, which 77m in this 

particular trial.  This is a typical example on the effect of geometric dilution of precision on the 

positioning outcome.  Moreover, Figure 6.12 illustrates the difference in terms of positioning 

accuracy between the range-only EKF and the range-bearing EKF, which both used the 

calibrated path loss model.   These results are compared to the outcome resulting from the 

range-bearing EKF process which used the Walfish-Ikegami model as the observation model.  
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The static positioning system has also been evaluated against a commercial online tracking 

service called ‘Trace A Mobile’.  The result of this service is illustrated in the bottom right 

hand corner of Figure 6.12 with an accuracy of 363 m.     

   

Figure 6.12 Static positioning urban experiment 

 

6.4.2.2 Evaluation against other cellular positioning methods 

Table 6.4 reports a real-life evaluation of standardised cellular positioning methods conducted 

by TruePosition and published by ABI research in [ABI11].   Recall from Section 2.2.3 that 

TruePosition is the LBS vendor who developed the U-TDOA method which made obsolete E-

OTD and was standardised as a result for the E-911 project.  According to ABI Research in 
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[ABI11], U-TDOA, Advanced-Forward Link Trilateration and A-GPS were evaluated using 

more than 3500 real-life E-911 calls which were received by Public Safety Answering Points in 

Texas in the second half of 2010, as shown in Table 6.4.  Note that the second column reports 

the results obtained from calls made within Verison’s CDMA network, in which A-GPS is 

used as the primary positioning method and A-FLT as the fallback method that is used in case 

A-GPS fails to return a position fix.   

Table 6.4 U-TDOA, A-FLT and A-GPS evaluation using E-911 calls 

 

Our positioning results obtained using range-bearing EKF and the calibrated propagation 

model were more accurate than U-TDOA and A-GPS results of the Texas E-911 trials in the 

95th percentile.  Because of the synchronisation of CDMA networks, the A-GPS/AFLT 

combination performs better than any other network-based method and outperforms the 

proposed method.   

Since it is handset-based26, the proposed positioning method should be evaluated 

against another self-positioning RSS-based method such as the Database Correlation Method 

(DCM), which was described in Section 2.3.  Recall that DCM has been applied in the GSM 

network by Laitinen et Al [Lai01] using a concept known as fingerprinting, which is typically 

                                                      

 

26 As stated previously, handset-based or self-positioning methods refer to the methods in which all the 

measurements and the position estimation process are performed at the level of the mobile terminal. 

Accuracy (metre) 

Percentile U-TDOA A-GPS/AFLT 

(CDMA) 

A-GPS 

(UMTS) 

67th  78.3 22.5 35.6 

90th  129.2 50.7 176.3 

95th  168.6 74.4 390.3 
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used for indoor wireless positioning.  The accuracy of DCM achieved in [Lai01] was reported 

in Table 2.2.  Compared to the proposed static EKF method, DCM is 25 metres more accurate 

in urban environments and 42 metres less accurate in suburban environments.  However, it is 

important to note that DCM relies on an extensive fingerprint database collection phase and 

that the positioning accuracy achieved in the online estimation stage strongly depends on the 

size and resolution of the fingerprinting database.   

The advantage of using DCM as a cellular positioning method is the fact that it does 

not rely on a priori knowledge of base station locations as the fingerprinting process produces 

all the required data for position estimation.  The proposed SLAM methodology extends this 

advantage by estimating the locations of base stations during the offline fingerprinting phase 

which will improve the position estimate during the online positioning phase.  The 

performance of the Constrained Cellular SLAM system will be evaluated against DCM in the 

next section. 

6.5 Constrained Cellular SLAM 

This section evaluates the performance of the Constrained Cellular SLAM system by reporting 

the positioning accuracies achieved during real-world positioning trials.  In order to test the 

proposed cellular SLAM methodology, the CCS trials have been conducted using the 

smartphone software application which has been developed within the scope of the research.  

The design of the CSS application was presented in Section 5.3.  Similarly to the static EFK 

positioning system, the EKF-SLAM methodology adopted by CSS relies on the calibrated 

propagation model as a range-based observation model linking RSS observations to the state 

estimates.  As stated previously, the positioning experiments conducted to evaluate the CCS 
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system have also been conducted in the areas where the propagation model has been 

calibrated.   

This section begins by explaining the experimental setup and practicalities undertaken 

to perform the Initial Mapping Stage of the CSS system.  It will then discuss the results of the 

Network Localisation Stage and defines the factors affecting the accuracy of the mobile and 

landmark estimates.  Moreover, it will be demonstrated in this section that the RSS model 

calibration process affects the accuracy of the landmark initialisation during the Initial 

Mapping Stage as well as the update of landmark state estimates during the Network 

Localisation Stage.  The importance of the path taken during the IMS survey will also be 

stressed by providing a map visualisation example of the landmark estimation process.  

Finally, this section will consider one of the CCS positioning trials in detail in order to show 

the convergence properties of the adopted EKF-SLAM algorithm.  

6.5.1 Initial Mapping Stage Experimental Setup and Evaluation 

Recall from Section 4.4 that the IMS employs the EKF-based BTS Initialisation Model (BIM) to 

estimate the positions of observed BTS landmarks.  The mobile terminal positions are 

measured using the phone’s built-in GPS device and the calibrated RSS model is adopted by 

the BIM as the observation model linking RSS measurements to the BTS landmark state.  The 

outcome of the IMS is a database of BTS entries which represents the initial map of the cellular 

network.  Each BTS entry consists of the BTS position and the list of mobile fingerprints which 

were used to estimate the entry’s position.  During the Network Localisation Stage, the BTS 

map resulting from the IMS will be used by the EKF-SLAM algorithm to estimate the mobile 

position and update the landmarks that are observed after extracting them from the BTS map 

database.   
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The experimental setup of the IMS and the accuracy of the landmark initialisation 

process are presented in Table 6.5.  This table considers the RSS calibration process in order to 

investigate the impact of the number of calibration samples and the RSS error standard 

deviation    
 on the accuracy of landmark initial estimates.     

Table 6.5.  CCS experiments Initial Mapping Stage 

 

Trial Area 

 

 

RSS Model           

Calibration 

 

 

Initial Mapping Stage 

 

 

Number of 

Samples 

 

   
 (dB) 

 

 

Area 

(km2) 

 

Mobililty 

 

 

Number of 

Mapped BTS  

 

Number of 

Fingerprints 

 

RSS 

Resolution 

(dB) 

 

Landmark  

Accuracy 

(m) 

New Street  

(urban) 

124 8.6 3 Walking 8 124 23 193 

Kings Heath 

(suburban) 

172 4.5 2.5 Walking 6 172  27 155 

Hall Green 

(suburban) 

208 7.4 2 Walking 4 208 21 132 

Shirley 

(suburban) 

183 5.9 5.5 Driving 4 183 28 275 

Yardley wood 

(suburban) 

220 3.8 9 Driving 10 220 34 244 

Edgbaston  

(mixed) 

305 7.7 10 Driving 12 305 36 169 

 

For each of the six CCS experiments listed in Table 6.5, the details of the experimental 

setup associated with the Initial Mapping Stage are as follows: 

- The area of the IMS survey in km2.  The area comprised all the observed base stations as 

well as all the fingerprints that were collected to initialise each base station.    

- The number of mapped base stations is the number of individual BTS antennas that have 

been observed and estimated during the survey.  This is not the number of distinct 

base stations as it takes into account individual sectors within sectored base stations.  



179 

 

 

- The total number of mobile fingerprints collected during the initialisation of all the 

observed base stations.  For example, if 2 base stations were initialised using 10 

fingerprints, the total number of fingerprints collected is 20.    

- The received signal strength measurement resolution.  By considering the RSS 

measurements encapsulated inside the mobile fingerprints, the RSS resolution consists 

of the difference between the maximum and minimum RSS values in decibels.  For 

examples, given a list of 10 fingerprints each with a RSS measurement, the maximum 

RSS value among all 10 fingerprints is -70 dBm and the minimum RSS value is -90 

dBm, the resolution is 20 dB.   

- The mobility is related to the average speed27 of the mobile terminal during the IMS 

survey.  Two types of mobility scenarios are considered: walking and driving.    

- The landmark accuracy consists of the mean rms error of all the landmark estimates, 

produced in the IMS survey of each trial area, relative to the true BTS positions 

identified from Sitefinder.  Since BTS landmarks are defined by individual BTS 

antennas including sectors of the same BTS site location, the mean accuracy is 

calculated using individual rms errors for each BTS sector.   

In order to provide a map visualisation of the fingerprinting process conducted as part of the 

Initial Mapping Stage, Figure 6.14 illustrates the fingerprints collected in all the suburban area 

trials listed in Table 6.5.  In total, 913 fingerprints are shown in the map of Figure 6.14 

encompassing the Kings Heath, Yardley Wood, Shirley and Hall green areas with a total area 

of 14.4 km2.  These suburban trial areas are shown in Figure 6.13 which also pinpoints the 

                                                      

 

27 The average speed of the mobile terminal could be measured by the application by retrieving it directly from the 

integrated GPS module. 
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locations of the base stations identified using Sitefinder.  As stated previously, the true 

locations of base stations are specified in order to evaluate the accuracy of the landmark 

initialisation process of the CCS Initial Mapping Stage.   The position of each BTS is 

represented by a triangle.  Note that some base stations have 3 sector directional antennas 

while others have a single omnidirectional antenna.   

 

Figure 6.13 True positions of identified base stations for suburban CCS experiments 

 

Note from Figure 6.14 that each fingerprint is represented by a colour coded circle.  The 

position of the circle is determined by the GPS sample where the fingerprint is taken while the 

colour gradient shading provides an indication on the RSS measurement of the fingerprint.  

Moreover, the maximum, median and minimum RSS values are represented respectively by 

the dark red, white and dark blue colours.  Their respective values are -65, -85 and -105 dBm 

and thus the RSS resolution in all the suburban experiments is 40 dB.  The colour shades 
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between the minimum and the median RSS values are represented by the light blue colour 

whereas the colour shades between the median and maximum RSS values are represented by 

the light red colour.  

 

Figure 6.14 Fingerprints collected during Initial Mapping Stage 

 

As introduced in Section 5.3.2, the CCS application allows the user to conduct the Initial 

Mapping Stage in each trial area in several step surveys in order to progressively build the 

database representing the BTS map.  For each CCS experiment, the IMS can be stopped and 

resumed as long as the database is saved at the end of each IMS survey.  In fact, the CCS 

application allows the user to save the estimated BTS landmark entries (BTS positions and 
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their associated lists of fingerprints) in a database file stored inside the phone’s memory.  The 

Network Localisation Stage is activated once the database obtained at the end of the IMS is 

deemed large enough to perform the EKF-SLAM process.     Figure 6.15 shows the screenshots 

of the CCS application at the start of the IMS.  Firstly, a GPS position fix is requested to 

initialise the state of the serving BTS as shown by the left side screenshot of Figure 6.15.  The 

application then takes the GPS sample and combines it with the RSS measurement to form a 

fingerprint.  Notice from the middle screenshot of Figure 6.14 the following: 

- The RSS and the CID of the serving BTS are displayed under ‘GSM Signal 

Information’. 

- The GPS position fix obtained from the GPS module is displayed under ‘GPS 

position’ along with the speed and heading which are also measured using GPS.  

- The initial estimate of the BTS landmark is displayed under the ‘Initial Mapping 

Stage’ next to the time instant and CID.   

During the IMS survey, the mobile terminal travels while taking GPS samples, measuring the 

RSS and monitoring the CID to detect handovers to other base stations.  Measurements are 

taken every 5 and 10 seconds in the driving and walking scenarios respectively.  In the 

walking scenario, every measurement sample is taken manually using the CCS application 

command whereas in the driving scenario, the algorithm implementing the fingerprinting 

process uses a timer to take measurements every 10 seconds.  The GPS monitor keeps track of 

the distance travelled in order to avoid taking several measurements while the smartphone is 

stationary.  In fact, the fingerprinting process algorithm stops sending GPS position requests 

to the GPS monitor when the latter detects that the mobile terminal is not moving.  The 
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regular GPS and fingerprint sampling is reactivated when a distance of 10 metres is travelled 

from the last stationary point. 

As described in Section 5.3.2, each base station will be represented in the application 

by a Landmark object which encapsulates the BTS position, its CID and the list of fingerprint 

objects.  All the landmark objects collected during the IMS can be saved in a database file at 

the end of every IMS survey by pressing the save command, as shown in the right side 

screenshot of Figure 6.15.  In the next survey, the database can be accessed using the ‚Load‛ 

command as shown in the right screenshot of Figure 6.15.  Loading an existing BTS map 

database allows the user to resume the IMS of ongoing SLAM experiments.  As a result, more 

GPS samples can be taken to resume the initialisation process of existing BTS landmarks in the 

database, or to initialise newly observed landmarks whether in an existing trial area or a new 

unexplored area.  The list of fingerprints associated to extracted or new BTS entries can 

therefore grow in preparation for the Network Localisation Stage.   

   
 

Figure 6.15.  CCS Application Screenshots of the Initial Mapping Stage 
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It will be demonstrated in the next section that the accuracy of the CCS system strongly 

depends on the number of fingerprints collected during the IMS.  On the other hand, the 

database is not loaded if the user wishes to start a new IMS survey and build an entirely new 

map of base stations.   

Figure 6.16 consists of a graph showing the relationship between the number of 

fingerprints and the landmark accuracy which is again expressed in terms of rms distance 

error.  The areas listed in Table 6.5 are numbered in Figure 6.16 and ordered according to the 

number of fingerprints.  At first sight, the effect of the number of fingerprint on the landmark 

accuracy is not clearly apparent.  Notice that areas 1, 2 and 3 have been surveyed whilst 

walking whereas areas 4, 5 and 6 have been surveyed while driving.  If we separate the trial 

areas in the graph of Figure 6.15 into two groups according to the mobility scenario, we can 

notice in each group that the increase of the number of fingerprints leads to a decrease in the 

rms error and hence an improvement in the landmark estimation accuracy.  

  

Figure 6.16 Landmark Initialisation Accuracy 
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Another important factor affecting the accuracy of landmark initialisation is the geometric 

dilution of precision (GDOP) which, in this case, consists of the displacements of GPS samples 

relative to the true position of the base stations.  The accuracy of the landmark estimate 

improves if samples are taken from different directions relative to the true BTS position, 

especially if samples are taken in a circular manner around the true BTS position.  However, 

the Initial Mapping Stage surveys have been conducted without taking into account the true 

positions of base stations.  The surveys were rather focused on producing a fingerprint map of 

the highest possible resolution by taking GPS samples and RSS measurements along the major 

routes of each trial area, as shown in Figure 6.14.   

Figure 6.17 provides an example of the estimation process of one of the base stations in 

the Yardley Wood area by showing the evolution of the BTS state estimates with respect to the 

true BTS position.   

 

Figure 6.17 Evolution of landmark estimates during the Initial Mapping Stage. 
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In Figure 6.17, the true position of the surveyed BTS is denoted by the red flag whose label 

lists the three BTS sectors and their corresponding CID codes.  The estimates of Sector 2 and 

Sector 3 produced by the BTS initialisation Model are mapped using the gradient coloured 

circles highlighted by the yellow line.  Sector 2 and Sector 3 estimates are represented by the 

green and purple coloured circles respectively and only the final estimates resulting at the end 

of the IMS are labeled with their corresponding accuracy relative to the true BTS position.  

Note that the remaining circles that are not marked by the yellow line consist of the GPS 

samples/fingerprints, which are denoted using the same RSS-based colour scheme used in the 

map of Figure 6.14.   

We can deduce from the evolution of landmark estimates shown in Figure 6.17 that the 

final landmark estimates produced by the BIM are not necessarily the most accurate 

positioning outcomes.  While Sector 2 estimates converge towards the true BTS position, 

Sector 3 does not show this convergence.  In fact, the accuracy of the landmark positioning 

outcome strongly depends on the path of the mobile terminal relative to the true BTS position, 

in other words, on the relative geometry between the MT GPS samples and the target BTS, 

which is defined by the Geometric Dilution of Precision (GDOP) [Fig10].  In the example 

experiment illustrated in Figure 6.17, the mobile terminal was travelling west making the 

Sector 3 estimates generally shift towards the west direction, as shown by the purple circles. 

6.5.2 Network Localisation Stage Results and Evaluation 

Once a trial area is surveyed as part of the Initial Mapping Stage, the Network Localisation 

Stage mode of the application is activated in order to start the EKF-SLAM positioning process.  

A path is chosen within the surveyed area making sure all the base stations that are hearable 

from any point of the chosen path have been mapped during the IMS.  As stated in Chapter 4 
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and Chapter 5, if an unknown BTS is encountered during the NLS, the application returns to 

the IMS mode to initialise the position of this BTS and link fingerprints to it.  When the NLS is 

activated by pressing the command shown in the left screenshot of Figure 6.18, the application 

starts the network monitoring process to constantly observe the received signal strength and 

the CID of the serving BTS in order to detect any handovers as soon as they occur.      

   

Figure 6.18 CCS application screenshots during the Network Localisation Stage 

Note from Figure 6.18 that the NLS has been activated after 71 fingerprints of base station ID 

22552.  Notice under the ‘NLS SLAM State’, the Mobile State (MS) position is specified in 

latitude and longitude next to the time instant to the left and the determinant of the MS 

covariance matrix to the right.  Below the Mobile State, the Base station State (BS) is displayed 

which represents the state of the currently observed BTS.  The BS position is displayed 

between the CID and the covariance matrix determinant associated with the BS.  While 

focusing on the NLS SLAM state, notice in Figure 6.18 the difference between the middle and 

right-side screenshots.  The middle screenshot shows the SLAM State after the initialisation of 

the first mobile state and BTS state while the right-side screenshot shows the SLAM State after 

5 iterations.   
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As described in Section 4.5, the initial mobile position is produced by the database 

correlation algorithm after scanning the fingerprints associated with the observed BTS.  The 

state of the mobile terminal is not updated until a change in the measured RSS or a handover 

to a different CID is detected.  The a priori mobile state estimate is produced by the process 

model described in Section 4.5.2, which uses the displacement of the current mobile state 

relative to the new fingerprint extracted following a change in the network measurements 

(CID or RSS).  Note from the screenshots of Figure 6.18 that the transition distance and 

bearing are displayed below the BTS state.  As stated previously, GPS is used during the NLS 

solely for evaluation purposes.  The accuracy of the mobile terminal position can therefore be 

monitored during the course of the experiment and is displayed next to the transition 

information along with the velocity, which is also measured using GPS.         

Table 6.6 reports the positioning accuracy results of the CCS experiments for each of 

the mobile terminal and landmarks estimates.   The details of the experimental setup 

associated with the NLS are listed in Table 6.6 as follows: 

- The number of observed base stations which are first retrieved from the database 

representing the initial map and then integrated into the SLAM state vector in 

order to contribute to the EKF-SLAM estimation process.   

- The mobile accuracy is the mean rms error between the estimated mobile position 

and the true mobile position.   

- The landmark accuracy refers to the mean accuracy of all observed landmarks 

during the network localisation stage of the experiment.  The accuracy of a 

landmark estimate consists of the rms error between the estimated landmark 
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position and the true position of the BTS which has been retrieved from Sitefinder 

for evaluation purposes only. 

Table 6.6 Constrained Cellular SLAM experiments 

 

Trial Area 

 

 

Initial Mapping Stage 

 

 

Network Localisation 

Stage 
 

   
 (dB) 

 

 

Area 

(km2) 

 

Mobility 

 

Number of 

Fingerprints 

 

RSS 

Resolution 

(dB) 

 

Observed 

BTS no 

 

Mobile 

Accuracy 

(m) 

 

Landmark 

Accuracy 

(m) 

New Street  

(urban) 
8.6 3  Walking 124 23 5 281 160 

Kings Heath 

(suburban) 
4.5 2.5 Walking 172 27 5 349 112 

Hall Green 

(suburban) 
7.4 2 Walking 208 21 2 321 105 

Shirley 

(suburban) 
5.9 5.5 Driving 183 28 3 283 237 

Yardley 

wood 

(suburban) 

3.8 9 Driving 220 34 10 265 188 

Edgbaston  

(mixed) 
7.7 10 Driving 305 36 7 297 157 

 

Table 6.6 takes some elements of the Initial Mapping Stage reported in Table 6.5 in order to 

investigate the impact of the IMS on the Network Localisation Stage in terms of the accuracy 

of the mobile terminal and landmark estimates.  Figure 6.19 is a graph illustrating the impact 

of the number of fingerprints collected during the IMS on the mobile and landmark accuracies 

at the end of the NLS.   
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Figure 6.19 The impact of the fingerprinting process on mobile and landmark accuracies 

Note that the suburban trials in areas 2 to 5 confirm that the accuracy of the mobile state 

estimates improves with the increase in the number of fingerprints.  However, area 1 (New 

Street) and area 6 (Edgbaston) represent exceptions to this relationship as the increase in the 

number of fingerprints did not result in an improvement in the mobile accuracy.  This may be 

due to the different nature of the environment in these urban areas.  Despite a lower number 

of fingerprints, the New Street trial results are relatively accurate compared to the suburban 

trial results because it is a smaller area and with a similar resolution of signal strength 

measurements.  This leads to more unique fingerprints in the BTS map database and hence 

improves the accuracy of the initialisation of the mobile state estimate, which is due to an 

enhanced performance of the database correlation algorithm described in Section 4.5.1.  The 

results of the Edgbaston experiment are less accurate because the area is much larger with a 

similar RSS resolution, which does not improve the individuality or uniqueness of 

fingerprints. 
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On the other hand, the impact of the fingerprinting process on the landmark positioning 

outcome has already been demonstrated in the IMS surveys reported in the previous section.  

In this discussion however, we can evaluate the extent to which the EKF-SLAM process 

improves landmark accuracy after updating the augmented SLAM state vector during the 

Network Localisation Stage.  As shown in Figure 6.20, the accuracy improvement is larger in 

trial areas with a well-fitted RSS model as defined by the calibration error standard deviation 

   
.  The result of the New Street experiment is again an exception as its landmark accuracy 

appears to be relatively accurate compared to the suburban trials despite a larger RSS error 

standard deviation     
.  Therefore, the characteristics of the fingerprinting process, namely 

the smaller urban area and high RSS resolution relative to the other trial areas, play a major 

role in the landmark estimation accuracy improvement. 

 

Figure 6.20 Impact of calibration error standard deviation on landmark accuracy improvement 

 

Note from Table 6.6 that the mean accuracy of the mobile positioning outcomes from all the 

CCS trials is 299 metres.  Compared to the Texas E-911 trial results shown in Table 6.4,   the 

CCS accuracy is lower compared to U-TDOA and A-GPS/AFLT results.  However, it is higher 
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than the A-GPS results within the 3G/UMTS networks in the 95th percentile.  Compared to 

DCM methods in the literature, the accuracy achieved by CCS is lower because the size of the 

fingerprint map is considerably smaller in size and resolution compared to the maps 

constructed in DCM trials.  It is however important to note that cellular DCM positioning 

received little interest in the literature compared to RSS fingerprinting methods for indoor 

WLAN positioning, which are characterised by high resolution fingerprint maps.   

We can deduce from this discussion, that the Constrained Cellular SLAM can achieve 

higher accuracies than the reported mean accuracy of 300 m if the Initial Mapping Stage is 

conducted extensively.  This would involve building a high resolution map of fingerprints, 

which is characterised by a large number of fingerprints as well as a high RSS measurement 

resolution.  The accuracy of the mobile and landmark estimates would greatly increase if the 

path taken by the mobile leads to a high GDOP relative to the true locations of base stations.   

6.5.3 CCS Positioning Experiment  

This section provides a detailed outline of the Yardley Wood experiment in order to provide 

an example of a CCS trial, illustrate the positioning outcomes and demonstrate the 

convergence properties the SLMA state covariance matrix, which is fundamental in any EKF-

SLAM system.  Note from Figure 6.19 that this experiment represented by area 5 in the graph, 

achieved the most accurate mobile position estimate (265m).  Conversely, this trial produced 

the second least accurate landmark positioning (224m).  

6.5.3.1 Initial Mapping Stage 

Figure 6.21 is a map showing the path taken during the Initial Mapping Stage of this trial area, 

which is approximately 27 Kilometers long covering an area of 9 Km2.  
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Figure 6.21 Fingerprints from Area 5 suburban CCS experiment (Initial Mapping Stage) 

In this trial area, 5 distinct base stations have been identified from Sitefinder.  Four of these 

BTS have three sectors according to the BTS identification process.  As a result, a total of 13 

individual antennas can be observed by the mobile terminal while travelling within this area.  

In Figure 6.21, the fingerprints are shown in a unique colour for each distinct base station and 

thus five colours can be distinguished.  The gradient colour change from light to dark colour 

indicates the measured signal strength.  The green coloured fingerprints from Figure 6.21, 

which belong to a single base station with three sectors, are redrawn in Figure 6.22.  A 

different colour is now used to denote the fingerprints of different sectors. 
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Figure 6.22 Fingerprints of individual BTS sectors and resulting landmark estimates 

 

 

Figure 6.22 shows the true position of the surveyed BTS as well as the landmark estimates of 

each sector of the BTS produced by the BTS Initialisation Model.  These landmark estimates 

are combined to their corresponding fingerprints and saved as part of the BTS map database 

constructed during this IMS survey.   

6.5.3.2 Network Localisation Stage 

As stated previously, the iterations of the EKF-SLAM algorithm during the NLS are 

determined by events detected by the network monitoring process of the CSS application, 

namely CID handovers and RSS variations.  In this particular experiment, 49 iterations of the 
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EKF-SLAM algorithm were recorded by the application, which are listed in Table 6.7 along 

with the observed CID, the measured RSS and the resulting mobile position estimation 

accuracy. 

Once the initial map of base stations has been constructed, the Network Localisation 

Stage is initiated to estimate the position of the mobile terminal as well as updating the initial 

BTS positions.  In order to evaluate the accuracy of the EKF-SLAM positioning process, the 

true mobile terminal positions are retrieved by the CCS application from the built-in GPS 

module.  The path taken by the MT during the NLS is shown in Figure 6.23.  Starting from the 

bottom right corner of Figure 6.23, the trial consisted of driving around the loop in the anti-

clockwise direction to return back to the starting position.  Figure 6.23 denote the GPS 

evaluation samples using pushpins which are coloured according to the observed CID.  Note 

that these colours were used to represent the same base station during the fingerprinting 

process of Figure 6.20.   
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Figure 6.23 The true mobile terminal path taken during the Network Localisation Stage 

Figure 6.24 is a graph showing the mobile state estimate accuracy at each EKF-SLAM 

iteration, which is denoted by time instant k.  The mean accuracy of the mobile position 

estimate from k=1 to 49 is 265m.  The estimated mobile terminal positions are illustrated by 

colour-coded circles in Figure 6.25.  In order to show the chronology of mobile position 

estimates from time instant 1 to 49, Figure 6.25 uses gradient colour shading to denote the 

initial, intermediate and final estimates using the blue, white and red colours.   
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Table 6.7 Network Localisation Stage measurements and results 

k CID Rss (dBm)  Latitude  (degrees N) Longitude (degrees W) Accuracy (m) 

1 22552 -82 52.41243 -1.858931 1 

2 22552 -82 52.41252 -1.85875 14 

3 22552 -82 52.4147 -1.858924 250 

4 22552 -84 52.41523 -1.858474 312 

5 22552 -79 52.41501 -1.858625 293 

6 22551 -79 52.42287 -1.85955 332 

7 22551 -82 52.42552 -1.858351 392 

8 22551 -88 52.42563 -1.858258 398 

9 22551 -85 52.42561 -1.858269 413 

10 22551 -83 52.42468 -1.858195 524 

11 22551 -84 52.42468 -1.85819 516 

12 22551 -81 52.42525 -1.858354 451 

13 29844 -81 52.42722 -1.861984 278 

14 22079 -81 52.42983 -1.868058 322 

15 22079 -77 52.42955 -1.868321 74 

16 22079 -85 52.42961 -1.86583 277 

17 28933 -85 52.43032 -1.869771 29 

18 28933 -80 52.43027 -1.869932 23 

19 28933 -75 52.43015 -1.870218 5 

20 28933 -80 52.43008 -1.876313 163 

21 28934 -80 52.42651 -1.876594 499 

22 28934 -86 52.42648 -1.876608 502 

23 28933 -86 52.4295 -1.874038 220 

24 28933 -82 52.42953 -1.874019 219 

25 28933 -80 52.42952 -1.874026 219 

26 26597 -80 52.42765 -1.885479 196 

27 26596 -80 52.4277 -1.886505 183 

28 26596 -81 52.42777 -1.886447 293 

29 26597 -81 52.42798 -1.885415 369 

30 26597 -71 52.4277 -1.885546 380 

31 26597 -82 52.42829 -1.884821 559 

32 28935 -82 52.42562 -1.884802 265 

33 28935 -71 52.42574 -1.885624 309 

34 28935 -82 52.42353 -1.884538 420 

35 22553 -82 52.41749 -1.873098 535 

36 22553 -87 52.41738 -1.87296 550 

37 28935 -87 52.41955 -1.876329 165 

38 28935 -84 52.41968 -1.876571 145 

39 28935 -71 52.41997 -1.87724 73 

40 28934 -71 52.42027 -1.877279 128 

41 22553 -71 52.41557 -1.871195 315 

42 22553 -84 52.41406 -1.868322 166 

43 28934 -84 52.41637 -1.871275 210 

44 28934 -87 52.41537 -1.870555 167 

45 22553 -87 52.41519 -1.871547 246 

46 22553 -86 52.41498 -1.87198 246 

47 22553 -82 52.41458 -1.87019 169 

48 22553 -83 52.41374 -1.868305 113 

49 22553 -89 52.41274 -1.868507 94 
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Figure 6.24 The mobile state estimate accuracy 

 

Figure 6.25 Map of mobile state estimates 

Note from the map of mobile estimates of Figure 6.25 that there are displacement gaps 

between some estimates.  These gaps illustrate the control inputs of the process model, 

namely the transition distance and bearing, which depend on the fingerprinting process and 
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the database correlation algorithm, as stated previously.  The history of the transition distance 

is illustrated in Figure 6.26.  Figure 6.27 shows the convergence property of the Mobile State 

(MS) covariance which is fundamental as far as the performance of the EKF-SLAM algorithm 

is concerned.  As stated previously, the MS covariance can be defined by the determinant of 

the covariance matrix of the mobile state within the entire SLAM system covariance matrix. 

 

Figure 6.26 History of the transition distance 

 

Figure 6.27 Evolution of Mobile State covariance 
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Like any EKF-based system, the length of the transition distance increases uncertainty in the 

prediction step of the EKF.  This is illustrated in figure 6.27 by the increase in the mobile state 

covariance at the time instants where the transition distance is larger than 600 metres, as 

shown by the three peaks in Figure 6.26.  The covariance increase is large enough to affect the 

overall convergence of the EKF-SLAM system as it remains visible after the update step of the 

EKF.  However, it is clear that the system converges at each state update in line with the 

theoretical convergence property of EKF-SLAM.   

Note from Table 6.7 that the iteration in which a handover occurred is shaded in red.  

The order in which each landmark is observed and for how long is important as far as the 

convergence of landmark covariance is concerned.  For this reason, Table 6.8 is constructed to 

identify landmarks in terms of the order in which they have been observed using a Landmark 

Order ID.   

Table 6.8 History of landmark observations 

Landmark Order ID K at Handover  CID Observation Time Interval  

1 1 22552 5 

2 6 22551 7 

3 13 29844 1 

4 14 22079 3 

5 17 28933 4 

6 21 28934 5 

7 26 26597 1 

8 27 26596 2 

7 29 26597 3 

9 32 28935 3 

10 35 22553 2 

9 37 28935 3 

6 40 28934 1 

10 41 22553 2 

6 43 28934 2 

10 45 22553 5 
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Table 6.8 links the order ID to the CID of the landmark and specifies the time instant of the 

observation as well as the time interval during which the landmark has been observed.  

Notice in Table 6.8 that ten landmarks have been observed during the Network Localisation 

Stage of this trial.  Table 6.8 also highlights the landmarks that are re-observed. 

In support of Table 6.8, Figure 6.28 illustrates the history of landmark observations 

which consists of the time instants when new landmarks are observed following a handover 

and how long they are observed for.  The red squares in this graph denote how long each 

landmark has been observed before the next handover occurs.  The order ID of each landmark 

is shown in Figure 6.28 each red square. 

 

Figure 6.28 History of landmark observations 

 

Figure 6.29 shows the history of the observed landmark covariance, which also illustrates 

when handovers occur.  In fact, each increase in the determinant of the covariance matrix 

shows that a new landmark is being observed following a CID handover, at the same time 

intervals specified in Table 6.8 and Figure 6.28.    
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Figure 6.29 History of the observed landmark covariance 

 

The evolution of the covariance associated with each landmark that was observed and 

integrated into the SLAM State vector is shown in Figure 6.30.  The aim is to demonstrate the 

correlation between observed landmarks and existing landmarks whose states have been 

initialised and integrated into the SLAM augmented state vector.  As stated previously this 

correlation is key to the convergence property of the map augmented state covariance matrix. 

0.E+00

2.E+11

4.E+11

6.E+11

8.E+11

1.E+12

1.E+12

0 5 10 15 20 25 30 35 40 45 50

L
an

d
m

ar
k

 C
o

v
ar

ia
n

ce
 D

et
er

m
in

an
t 

Time Instant k 



203 

 

 

6.30 Evolution of each landmark covariance within the SLAM state covariance  

Reading Figure 6.30 in conjunction with Figure 6.28, we can notice that: 

- The 7th landmark (red, 26597) and 9th (orange, 28935) landmark were re-observed 

once at time instants 29 and 37 respectively.   

- The 6th landmark (green, 28934) was re-observed twice at time instants 40 and 43. 

- Similarly, the 10th landmark (blue CID 22553) was re-observed twice at time 

instants 41 and 45.   

- Each re-observation of the landmarks stated above is reflected in the graph by a 

significant drop in the covariance matrix determinant associated with each of these 

landmarks.  

Moreover, 
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- The 3rd landmark (purple, 29844) was observed only once and for a single time 

instance (k=13).  Similarly, the 8th landmark (grey,26596) was observed once and for 

two time instants (27 and 28).   

- This explains the slow reduction in the uncertainty associated with these 

landmarks.  In fact, the slow convergence of the covariance determinant for each of 

these landmarks is due to the correlation of their estimates with the estimates of the 

other landmarks within the SLAM system.    

Figure 6.31 is a map showing the evolution of the landmark estimates, which are retrieved 

from the map augmented SLAM state at each iteration.  The true location of each BTS which 

was observed during the NLS survey is denoted in Figure 6.30 using a coloured triangle.  In 

order to identify the base stations, the same colours as in Figure 6.23 are again used in Figure 

6.30.   The mean accuracy of all landmark estimates relative to their true BTS positions is 188 

metres.  Note that this accuracy has been reported in Table 6.6 as part of the Yardley Wood 

trial. 
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Figure 6.31 Evolution of BTS landmark estimates from the SLAM state vector 

In order to show the convergence of landmark state estimates towards the true BTS position, 

Figure 6.32 considers one of the observed BTS landmarks shown in Figure 6.31.  This 

landmark is denoted in the map of Figure 6.31 by the green triangle for its true position and 

by the green circles for its estimates.  Figure 6.32 shows the evolution of the state estimates of 

each sector of this landmark using the same colour gradient shading that was used in Figure 

6.22, as the latter illustrates the IMS estimation process of the same BTS.  The evolution of 

covariance matrix determinant associated with each of these sectors has already been depicted 

in figure 6.30.    
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Figure 6.32 Convergence of landmark estimates associated with a 3 sectored BTS  
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Chapter 7 – Conclusion  

 

 

 

As localisation systems depend on the infrastructure within which they operate, it is well 

known that a universal localisation method suitable for all types of applications simply does 

not exist.  While critical location-based services such as the E-911 emergency service focus on 

the accuracy of the positioning system, other commercial and third party require less accurate 

positioning.  In this work, we have focused on the development of pure software-based 

solutions to cellular positioning which takes advantage of the availability of signal strength 

measurements.  The main advantage of using RSS rather than timing measurements is to 

overcome the need for synchronisation between base stations.  In this thesis, we demonstrated 

through experimental evaluation that RSS-based static positioning can be performed using an 

Extended Kalman Filter model, and also, that Simultaneous Localisation And Mapping can be 

applied in the cellular positioning framework.  The static EKF positioning system and the 

Constrained Cellular SLAM system were proposed in this thesis in Chapter 3 and Chapter 4 

respectively.  In order to evaluate their performance in real-world positioning trials, the 

proposed systems were designed and implemented as mobile software applications, which 

were referred to as the ‘GSM Mobile Locator’ and the ‘CCS Application’.  The design of these 

mobile applications was outlined in Chapter 5 while the experimental evaluation of the 

systems they implement was presented in Chapter 6.  
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7.1 The Static EKF Positioning System 

The static EKF model described in Chapter 3 has been evaluated by conducting experiments 

in the same trial areas that have been surveyed to calibrate the adopted RSS-based 

propagation model.  As reported in Section 6.4, 27 positioning trials were performed in 3 

urban areas and 4 suburban areas.  The static positioning trials were conducted using a 

network engineering tool to monitor the Network Measurement Report and the GSM Mobile 

Locator application to perform the positioning process.  RSS measurements are entered in the 

application individually in order to operate the EKF algorithm sequentially and record the 

position estimate at each iteration.   

In the Author’s previous work *Ham06+, a static EKF model was presented and the 

positioning outcomes were evaluated according to the generic propagation model that was 

used to convert RSS measurements to BTS-mobile terminal distance relationships.  In this 

thesis, a new approach of extracting bearing measurements from BTS sectorisation 

information has been developed in order to extend the observation model to take into account 

bearing information.  It has been demonstrated in Section 6.3 that adopting a range-bearing 

observation model leads to higher accuracies than adopting a range-only model.   

Moreover, the use of a calibrated RSS model in the same area as the experimental setup 

improves the accuracy of the positioning process as opposed to using the Walfish-Ikegami 

model, which produced the most accurate positioning results among the other generic 

propagation models surveyed in [Ham06].  Furthermore, the accuracy improvement resulting 

from integrating bearing measurements into the EKF system is more important when the 
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calibrated propagation model is used to link the mobile state to the RSS measurement, as 

opposed to using the path loss equation of the WI model.   

The static positioning trial results reported in Section 6.4 confirmed the impact on 

accuracy of the geometric dilution of precision (GDOP) and the number of reference base 

stations.  Moreover, the results indicate that the goodness of the propagation model fitting 

process also affects the positioning outcome in similar environments.  How well the model is 

fitted was defined using the RSS error standard deviation resulting from the calibration 

process.  In fact, it was noticed that the goodness of the fit affected the positioning outcome in 

trials conducted in suburban areas of similar size.  

Compared to U-TDOA and A-GPS results of real-life E-911 trials, our positioning 

results obtained using range-bearing EKF and the calibrated propagation model produced 

more accurate results.   However, the accuracy of the A-GPS/AFLT combination in 

synchronised CDMA networks could not be matched by the proposed method.  This was 

expected as time based methods in accurately synchronised networks outperforms RSS-based 

methods.  Our static EKF system was therefore evaluated against another RSS-based and self-

positioning method known as the Database Correlation Method, which has been applied in 

cellular positioning for the first time by Laitinen et Al [Lai01].  Compared to DCM, the 

proposed static EKF method is more accurate in suburban environments.  One can argue that 

the fingerprinting process conducted as part of the data collection stage of DCM is more 

extensive in urban environments and thus produces high resolution fingerprint maps.  In fact, 

the positioning accuracy achieved in the online estimation stage of DCM strongly depends on 

the size and resolution of the fingerprinting database.  In addition to the availability of RSS 

measurements, another advantage of using DCM as a cellular positioning method is the fact 
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that it does not rely on a priori knowledge of base station locations.  This is because the 

fingerprinting process in the offline stage produces all the required data for position 

estimation during the online stage.   

7.2 The Constrained Cellular SLAM System 

With the emergence of smartphones able to display maps and retrieve information based on 

the location of the user, the LBS community grew rapidly as they are given means to develop 

their own LBS applications.  Many of these applications use databases of the WLAN access 

points and cellular base stations to complement GPS which has limited use indoors or in 

dense urban areas.  Similarly to DCM, these databases are constructed using location 

fingerprinting.  These LBS applications are available to smartphone with Wi-Fi connectivity 

and not available to basic feature phones.  Moreover, third-party LBS developers have the 

choice of either using commercial databases which can be costly to obtain or using third-party 

databases collected by smartphone users themselves and are thus deemed unreliable.   

The Constrained Cellular SLAM (CCS) methodology presented in Chapter 4 bears a 

similarity with DCM as it adopts the fingerprinting concept to overcome the need for a priori 

BTS location information.  CCS extends this advantage by estimating the locations of base 

stations during the offline fingerprinting stage which will improve the position estimate 

during the online positioning stage.  Therefore, CCS allows third-party developers to build 

their own map of base stations for use as reference location information required in LBS 

application development.  Moreover, the CCS methodology is designed for low-cost mobile 

phones, which are still sold in higher numbers than state-of-the-art smartphones.     
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The Constrained Cellular SLAM system represents the main contribution of this thesis 

as SLAM has not previously been applied for cellular positioning.  Some Visual-SLAM 

applications in the literature, such as [Kle09], used the built-in camera of mobile phones for 

mapping the environment, however, such applications should not be categorised within 

cellular positioning methods as they are not based on radiolocation.  In fact, the location 

estimation process in Visual-SLAM applications that use camera phones do not take 

measurements on RF signals transmitted from cellular network base stations, which is 

fundamental in the definition of cellular positioning provided in this thesis.  However, other 

RSS-based SLAM applications exist.  They are classified as range-only SLAM approaches and 

have been developed for RFID and WSN applications.  To the best of our knowledge, none of 

the range-only SLAM applications in the literature were used within the cellular positioning 

framework.  

Our CCS approach has been designed to achieve autonomous cellular positioning for 

low-cost mobile phones without access to dead reckoning measurements.  As described in 

Chapter 2, conventional feature-based SLAM approaches in the robotics literature rely on 

internal dead reckoning measurements to obtain knowledge on the robot’s motion.  External 

measurements relative to features in the environment are then used to initialise and update 

the locations of the observed features and thus build a map of the environment.  Since dead 

reckoning measurements are not available to low-cost mobile phones, the proposed cellular 

SLAM system must rely on GPS in order to obtain information on the motion of the mobile 

which is necessary to build the map of the environment.  Since GPS is an accurate self-
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positioning method on its own, it should only be used during an initial data collection phase 

similar to that of Database Correlation Methods and RSS fingerprinting methods28.  As a 

result, the estimation of the mobile position using cellular network observations, which is at 

the heart of any cellular positioning method, is delayed after the offline data collection phase.  

Therefore, in order to apply SLAM in this constrained cellular framework, the localisation of 

the target mobile has to be performed after an initial mapping task.  In this thesis, we referred 

to the offline map building phase and the online cellular positioning stage as the Initial 

Mapping Stage (IMS) and Network Localisation Stage (NLS) respectively.   

The IMS employed an EKF algorithm referred to as the BTS Initialisation Model (BIM) 

to estimate the position of the target BTS using GPS samples taken from the mobile terminal 

and the signal strength measurements during the IMS survey.  Each GPS sample is linked to a 

RSS measurement to form the so-called fingerprint.  Each collected fingerprint is associated 

with the initialised landmark estimate at the end of the IMS survey to produce a BTS 

Landmark Entry (BLE).  As a result, the outcome of the IMS is a database of BLE’s 

representing the initial map of the GSM network, which will be used as reference during the 

NLS.  In order to compensate for the lack of dead reckoning measurements during the 

Network Localisation Stage, the fingerprints collected as part of the initial map of base 

stations are used by the EKF-SLAM process to predict the motion of the mobile terminal.  The 

EKF-SLAM algorithm then receives new RSS measurements and associates them to existing 

landmarks within the map to integrate the newly observed landmarks into the map 

                                                      

 

28
 Unlike these DCM and other fingerprinting methods which construct a database of location-RSS fingerprints, 

the data collection phase of the CCS methodology is conducted to build a map of base stations, in which each BTS 

entry includes a list of mobile location-RSS tuples representing the fingerprints. 
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augmented state vector (SLAM state).  The EKF update stage can then use the measurements 

to update the estimate of the mobile terminal state as well as all the landmark state estimates 

that are part of the augmented SLAM state.    

The experimental evaluation of the Constrained Cellular SLAM system has been 

presented in Section 6.5.  Six trials have been conducted using the CCS smartphone 

application in suburban, urban and mixed environments within areas that have been 

surveyed to identify base stations for evaluation purposes and to calibrate the propagation 

model to be used as the observation model for the EKF-SLAM algorithm.  The evaluation of 

landmark initialisation accuracy has been performed at the end of the Initial Mapping Stage 

for each CCS trial.  At the end of the IMS, it was noted that the landmark estimates produced 

by the BIM do not always converge towards the true BTS positions.   In fact, the accuracy of 

the landmark initialisation strongly depends on the Geometric Dilution of Precision (GDOP) 

defining the relative geometry between the measured mobile positions and the target BTS.  At 

the end of the NLS of each CCS trial, the mean accuracy of the mobile terminal estimates has 

been reported which less than 300 metres.  As expected, it was noted that positioning accuracy 

strongly depends on the number of fingerprints collected during the IMS especially in 

suburban areas.  The urban experiments produced results which highlighted the importance 

of the signal strength measurement resolution.  As it defines the individuality of fingerprints, 

the RSS resolution affects the performance of the database correlation algorithm employed to 

extract fingerprints from the database and thus affects the positioning accuracy.   

Finally, the mean accuracy of CCS trials was evaluated against the cellular positioning 

methods which were standardised for E-911 positioning.  The reported accuracy 

outperformed A-GPS results reported in real life E-911 trials conducted within 3G UMTS 
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networks but could not match that of A-FLT/A-GPS trials within CDMA networks.  Therefore, 

we can conclude that a Cellular SLAM method is not only feasible for implementation as a 

software application for low-cost smartphones but also can achieve positioning results that 

can be more accurate than A-GPS.  We can also deduce that the Constrained Cellular SLAM 

can achieve higher accuracies than the reported mean accuracy of 300 m if a high resolution 

map of fingerprints is constructed during the Initial Mapping Stage.  The map should be not 

only large in terms of the number of fingerprints but should also be characterised by a high 

individuality of fingerprint RSS measurements as well as a high GDOP associated with the 

relative geometry between the fingerprint locations and the true locations of base stations.   

7.3 Prospective Work 

As far as the static positioning system is concerned, a prospective work consists of the 

application of the system in indoor environments.  Further experimentation is required in 

order to evaluate the performance of the system indoors and compare the results with WLAN 

localisation systems.  The GSM Mobile Locator application can also be modified for 

deployment on new smartphones that are able to monitor the network measurement report 

and thus overcome the need to use a separate network monitoring tool.  Moreover, the 

application would become more attractive to the user because of the intuitive touch screen 

interface of state-of-the-art smartphones. 

The lack of dead reckoning measurements represents the main observational 

constraint which prevented the implementation of the full SLAM methodology in the cellular 

framework.  Without this constraint, a conventional EKF-SLAM approach can be applied to 

achieve autonomous cellular positioning.  Therefore, the proposed cellular SLAM 
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methodology can be improved to exploit the capability of state of the art smartphones, which 

are equipped with built-in accelerometers and gyroscopes.  Dead reckoning measurements 

would be retrieved by the smartphone application implementing the system in order to be 

used in the prediction stage of the EKF-SLAM process.  Moreover, the performance of the 

EKF-SLAM update stage can be improved by obtaining measurements relative to more than 

one BTS from a single mobile position.  In order to enable multiple RSS measurements, the 

mobile platform on which the smartphone application is deployed would need to provide the 

developer with the software development kits required to access the Network Measurement 

Report.  By exploiting the connectivity of state-of-the-art smartphone, the methodology can 

also be extended to combine WLAN and cellular positioning in one application.  Furthermore, 

a method based on Visual-SLAM can be developed to extend the scope of the cellular 

positioning framework.  In addition to BTS locations initialised using RSS measurements, the 

camera of the smartphone could be used to identify and extract other features from the 

environment such as streets and buildings.       
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