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ABSTRACT 

  

 Following the success in 3D face recognition, the face processing community is 

now trying to establish good 3D facial expression recognition. Facial expressions 

provide the cues of communication in which we can interpret the mood, meaning and 

emotions at the same time. With current advanced 3D scanners technology, direct 

anthropometric measurements (i.e. the comparative study of sizes and proportions of 

the human body) are easily obtainable and it offers 3D geometrical data suitable for 3D 

face processing studies. Instead of using the raw 3D facial points, we extracted its 

derivative which gives us 3D facial surface normals. We constructed a statistical model 

for variations in facial shape due to changes in six basic expressions using 3D facial 

surface normals as the feature vectors. In particular, we are interested in how such 

facial expression variations manifest themselves in terms of changes in the field of 3D 

facial surface normals. We employed a modular approach where a module contains the 

facial features of a distinct facial region. The decomposition of a face into several 

modules promotes the learning of a facial local structure and therefore the most 

discriminative variation of the facial features in each module is emphasised.  We 

decomposed a face into six modules and the expression classification for each module 

is carried out independently. We constructed a Weighted Voting Scheme (WVS) to 

infer the emotion underlying a collection of modules using a weight that is determined 

using the AdaBoost learning algorithm. Using our approach, using 3D facial surface 

normal as the feature vector of WVS yields a better performance than 3D facial points 

and 3D distance measurements in facial expression classification using both WVS and 

Majority Voting Scheme (MVS). The attained results suggest surface normals do 

indeed produce a comparable result particularly for six basic facial expressions with no 

intensity information. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Face processing studies have been carried out over the past few decades for 

different purposes which began with face recognition and now facial expression 

classification studies are also emerging. Classification of facial expressions is a 

challenging problem as the face is capable of complex motions and the range of 

possible expressions is wide (Sandbach
1
 al., 2012). The difference between posed and 

spontaneous examples along with the wide variations seen between subjects when 

expressing emotions are the main obstacles in this area. Posed expressions are the 

expressions a person will produce when she/he was asked to do so while spontaneous 

examples are acquired spontaneously (Bettadapura, 2012).  

 Facial expression recognition is an emerging research area spanning several 

disciplines such as pattern recognition, computer vision and image processing. It 

brings benefits in human centred multimodal human-computer interaction (HCI) 

whereas the user‟s affective states motivate human action and enrich the meaning of 

human communication. In HCI, affective computing employs human emotion to build 



   

 

2 

 

more flexible and natural multimodal (Jaimes et al., 2007). The automatic human 

affect recognition system will change the ways we interact with computer systems. For 

example in intelligent automobile system with a fatigue detector, the vigilance of the 

driver could be monitor and apply appropriate action to avoid the accidents (Ji et al., 

2006). With an efficient automated face expression classification, perhaps it will be an 

aid to the affect-related research community to carry out clinical psychology, 

psychiatry, and neurosciences research. Such systems could improve the quality of the 

affect-related research by improving the reliability of measurements and speeding up 

the currently tedious task of processing data on human affective behaviour (Ekman et 

al., 2005). In addition, facial expressions are the key component in machine 

understanding of sign language. Facial expressions change the meaning of adjectives 

or convey adverbial information as facial expressions are timed to occur with hand 

movements for signs during specific parts of a sentence (Huenerfauth et al., 2011). 

Furthermore, American Sign Language signers also use facial expressions to convey 

emotional subtext. Therefore, an automatic facial expression classification is crucial 

part in machine understanding of sign language. 

 Human interactions consist of speech and gestures and humans are more aware 

of the facial expression of the people they are interacting with, rather than any other 

non-verbal type of communications such body gestures, postures and eye contacts 

(DataFace, 2003; Rose-Hulman, 2010). Facial expressions provide the cues of 

communication in which we can interpret the mood, meaning and emotions at the same 
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time. Therefore, it is important to have accurate and robust expression classification to 

harness the information available in human expression. 

 Many approaches for 2D facial expression classification have been proposed in 

the literature. Unfortunately, most of them suffer from limitations of 2D image 

acquisition such as illumination changes and head pose variations as well as changes in 

facial appearance like make – up, glasses etc. The illumination problem is basically the 

variability of an object‟s appearance from one image to the next with slight changes in 

lighting conditions and viewpoints (Vishwakarma et al., 2007). Due to the illumination 

limitation, it is difficult to handle subtle facial behaviour in 2D modality. In most 

cases, when 2D facial expression images are employed, a consistent facial pose is used 

to ensure a good classification performance is achieved.  

 Facial expression studies have evolved from 2D to 3D modality which has 

much more to offer. With the advances in 3D scanners, the acquisition of 3D facial 

structure and motion is now a feasible task.  3D facial expression data remove the 

problems of illumination and pose that are inherent to 2D modality. Moreover, the 

expression dynamics which offer out-of-plane movement that cannot be captured with 

2D are available in 3D facial data. 3D scanners also generate the 3D point clouds. 

Therefore, direct facial anthropometric measurements can be carried out and produce 

3D facial landmarks as the output. Facial anthropometric refers to the comparative 

study of sizes and proportions of the human face which include the discriminatory 

structural characteristics of the human face (Gupta et al., 2010). These facial 

landmarks are the soft-tissue landmarks which lie on the skin and can be identified on 
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the 3D point clouds. Moreover, these facial landmarks are the points where all faces 

join and that have a particular biological meaning (Vezzetti et al., 2012). For instance, 

the facial landmarks with a particular biological meaning such as the nose tip, inner-

corner eyes and etc.  

 Following the success in 3D face recognition, the face processing community is 

now trying to establish good 3D facial expression classification. 3D geometry contains 

ample information about human facial expression (Tang et al., 2008). With this in 

mind, 3D facial expression classification is believed to be the next promising 

technology. 

There are several studies using 3D data in the face processing area. For 

instance, according to Savran et al., (2012), 3D data can maintain a high performance 

for lower face action unit (AU) compared to 2D data and it also offers 3D facial 

surface data. They compared 3D modality vis-a-vis 2D modality for AU classification 

where the 3D data is converted to 2D images of surface curvature to ensure a fair 

ground of comparison is carried out. For 2D modality, 2D image intensity is extracted. 

 

1.1 Motivation and Contribution 

 Ceolin (2012) aims to fit the statistical models of shape to 2D facial images and 

recover the information concerning 3D shape from these images. Ceolin used a 2.5D 

shape representation based on facial surface normals which is acquired from 2D 
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intensity images using Shape from Shading (SFS). SFS is known to recover surface 

shape from variations in brightness and it is more natural as it captures features of 

human vision system.  The 2.5D surface normals (or known as facial needle maps) are 

then used to classify facial expression and gender.  

 Facial action units (AUs) represent the muscular activity that produces facial 

appearance changes (Ekman and Friesen, 1978). Sandbach
3
 et al., (2012) proposed a 

new feature descriptor called local normal binary patterns (LNBPs) which is exploited 

for detection of facial action units (AUs).LNBPs employ the normals of the triangular 

polygons that form the 3D mesh to encode the shape of the mesh at each point. Surface 

normal feature is equivalent to encoding the gradient of a 2D intensity image, thus it 

provides a richer source of information about the shape of the facial mesh than the 

depth alone. Initially, a circular neighbourhood around each point, specified by a 

radius 𝑟 and 𝑃 points regularly spaced around the circle.The unit normal n𝑝  at each 

point 𝑣𝑝  in the neighbourhood is found, along with that at the central point  n𝑐 , through 

𝑥 − 𝑦 interpolation of the given points in the mesh. From here, two descriptors are 

formed: (1) 𝐿𝑁𝐵𝑃𝑂𝐴 , which calculates the scalar of two normals and (2) 𝐿𝑁𝐵𝑃𝑇𝐴 , 

which calculates the difference of two angles of the normals, the azimuth and the 

elevation. Feature vectors are then formed for each of the descriptors through the use 

of histogram. These histograms are concatenated into one large feature vectors. 

This work is motivated by the geometrical information such as 3D facial points 

is easily provided by the 3D scanners. We extracted 3D facial surface normal from the 

3D facial points. Surface normals are considered to be more accurate in describing 
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facial surface changes compared to using facial points due to the fact that a surface 

normal depends on a facial point as well as its neighbouring facial points. Therefore, 

the face deformations which happen when facial expression occurs can be observed 

closely. In particular, we are interested in how such facial expression variations 

manifest themselves in terms of changes in the field of 3D facial surface normals. 

The difference between our work and Ceolin‟s (2012) is that the surface 

normals is acquired from 2D intensity images using SFS. In our work, the surface 

normals is calculated using 3D facial points. Our approach differs from Sandbach et 

al., (2012) in the sense of calculating the normals method. In their work, the unit 

normal n𝑝  at each point 𝑣𝑝which is regularly spaced at a 𝑟 radius and 𝑃 points around 

the circle is calculated. While in our work, the surface normal of a point is calculated 

by taking into account the surface normal of the points that are connected to that 

particular point. This means that no exact amount of points or the size of area is 

considered. Furthermore, Sandbach used the histograms of the surface normals to form 

the feature vector, whereas we used the surface normals directly as the descriptor in a 

statistical model.  

  

Figure1.1 Levels of intensity for Happy expression taken from Frowd et al. (2009) 
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 Each of the basic facial expressions has levels of intensity which depend on the 

level of intensity of each facial feature. Intensity level of a facial expression is 

important as it will lead to a false impression of people‟s emotion if misinterpreted. 

For example, the smiling face with low intensity can be easily misinterpreted as a 

neutral facial expression (Beszédeš et al., 2007). Figure 1.1 shows intensity level for 

Happy expression where we can see each facial feature deforms rather distinctively at 

each intensity level. The decomposition of a face into several modules promotes the 

learning of a facial local structure and therefore the most discriminative variation of 

the facial features in each module is emphasised. In particular, we would like to see 

how the modular approach improves the classification of 3D facial expression.  

Our contribution in this thesis comes in a package of using the established 3D 

database to classify six basic facial expressions with no intensity information together 

with a modular approach. Initially, a face is decomposed into several modules. The 3D 

facial surface normal for each module are computed using a very basic computation 

which involves 3D facial points. These surface normals are then used in a statistical 

model to capture the variation of the shape due to facial expression changes in each 

module. The statistical model generates the shape parameters which are used as the 

feature vector to classify the facial expression in two different classifiers. The 

expression classification for each module is carried out independently and therefore 

each module is expected to have a different classification result from the other 

modules. In order to infer the emotion underlying a collection of modules, a Weighted 

Voting Scheme (WVS) is constructed. In WVS, each module carries its own weight 
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which indicates the importance of that particular module to classify the facial 

expressions. Facial expression with the highest accumulated weight is considered as 

the facial expression shown by the 3D probe using WVS. The weight is determined 

using the Adaptive Boosting (AdaBoost) learning algorithm. 

 

1.2 Thesis Outline 

The remainder of this thesis is organized into the following chapters. 

 Chapter 2 provides a thorough review of the literature. It starts with 3D face 

databases that are publicly available. The next section discusses3D facial expression in 

general which covers two approaches, one for emotion classification and the other one 

for AU detection. For both approaches, we discuss the 3D facial features used in the 

subsequent section. Only 3D facial static data is described as that is used in our study. 

Then, the statistical modelling used in face processing studies is discussed followed by 

modular-based works. 

 In chapter 3, we present the pre-processing and statistical modelling to be used 

in this work. First we explain the pre-processing steps in our approach, which begins 

with data extraction and 3D facial points alignment. Principal Component Analysis 

(PCA) as the statistical shape modelling is mathematically described in the next 

section.  
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 In chapter 4 we explain the extraction of 3D facial surface normals which is 

computed straightforwardly from 3D facial points. This chapter also includes an 

explanation of the different classification approaches namely nearest neighbour 

classifier and Support Vector Machines (SVM) which are used in this work. The 

results of 3D facial expression using 3D facial surface normals as the feature vectors 

using both classifiers are discussed next. For the purpose of evaluation, 3D facial 

points and 3D distance measurements are also used as the feature vectors in the 

experiments.  

 In chapter 5 we discuss the decomposition of a face into several modules. Each 

module has a collection of facial features associated with Facial Animation Parameters 

which is the muscular action relevant to AUs. We explain the priority rank of each 

module and how the weight of each module is computed using AdaBoost. The 

integration of modules is dealt with using the Weighted Voting Scheme (WVS) 

approach which is also described. The results of modular 3D facial surface normals 

and WVS are discussed.  

 In chapter 6, based on the experimental results found in chapter 4 and 5, several 

key tables are produced, analysed and discussed.  

 Finally, Chapter 7 offers some concluding remarks where a summary of the 

contributions, the weaknesses of our approach as well as future is presented. 
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CHAPTER 2 

 LITERATURE REVIEW 

  

 In this thesis, we use statistical modelling of 3D surface normals and use a 

modular approach where a face is decomposed into several modules. Expression 

classification is performed on each modular independently and the results of the 

modules are then pooled to infer the underlying expression.  Works focusing on 

finding the best features to represent the facial deformation in facial expression 

classification are not as extensive as in the face classification area (Vezzetti et al., 

2012). This research involves three main themes: (i) 3D facial features, (ii) Statistical 

model and (iii) Modular-based work. In this chapter, we provide a thorough review of 

the literature relevant to these topics. 

 The remainder of this chapter is organized as follows: In section 2.1 we 

describe 3D face databases that are publicly available. In section 2.2, the basic 

framework of facial expression classification and two significant goals in 3D facial 

expression, basic emotion classification and AUs detection are discussed. The 3D 
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facial features used in this area are reviewed in section 2.3 in which we deliberately 

arrange according to the facial expression goals. Statistical classification is discussed 

in section 2.4 and modular-based approaches are discussed in section 2.5. The next 

section discussed about the classifiers used in this area of study. Concluding remarks 

can be found in section 2.7. 

 

2.1 3D Face Expression Databases 

 A number of databases have been created in the past two decades for the 

purpose of face modelling and recognition. This section only discusses about existing 

static 3D face databases.  

Databases such as GavabDB(Moreno et al., 2004), Benedikt et al. (2010), 

Blanz et al., (1999), ND-2006 (Faltemier et al., 2007), CASIA (Zhong et al., 2007), 

York 3D (Heseltine et al., 2008), Texas (Gupta et al., 2010) and the extension version 

of FRGC dataset, known as FRGC v2 (Philips et al., 2005)are rarely used in facial 

expression classification studies due to incomplete basic expression set and irregular 

distribution of the expression variations (Fang et al., 2011).Though databases such as 

ICT-3DRFE (Stratou, et al., 2011) and Tsalakanidou (Tsalakanidou et al., 2010) offer 

six basic expressions, the facial landmarks are not provided by the developer. Details 

of all existing static 3D face databases are summarised in Table 2.1.  
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Table 2.1 3D face databases containing 3D static expressions. 

Name/Database Size Content Landmarks 
Publicly 

Available? 

BU-3DFE 100 adults 6  basic expressions 
83 facial 

landmarks 
Y 

Bosphorus 105 adults 6  basic expressions 
24 facial 

landmarks 
Y 

ICT-4DRFE 

(Stratou et al., 

2011) 

23 adults 

6  basic expressions, 

2 neutral, 2 

eyebrows, 4 eye gaze 

and 1 scrunched face 

N/A Y 

Tsalakanidou et 

al. (2010) 
52 adults 

6 basic expressions 

and 11Aus 
N/A N 

Benedikt et al. 

(2010) 
94 adults 

Smiles and word 

utterance 
N/A N 

Blanz et al. 

(1999) 
200 adults Neutral faces N/A Y 

ND-2006 

(Faltemier et al., 

2007) 

888 adults 

Neutral and 5 

expressions: Happy, 

Disgust, Sad, 

Surprise, Random 

N/A Y 

CASIA  (Zhong 

et al., 2007) 
123 adults 

Neutral and 5 

expressions: Smile, 

Laugh, Anger, 

Surprise, Eyes closed 

N/A Y 

GavabDB 

(Moreno et al., 

2004), 

61 adults 

3 expressions: 

Open/Closed Smiling 

and Random 

N/A Y 

York 3D 

(Heseltine et al., 

2008) 

350 adults 

Neutral and 4 

expressions: Happy, 

Anger, Eyes Closed 

and Eyebrows raised 

N/A Y 

Texas  (Gupta et 

al., 2010) 
105 adults 

Neutral and smiling 

or talking with 

open/closed eyes 

25 facial points Y 

 

Based on table 2.1, only two 3D facial expression static databases that are 

available publicly and provide at least six basic facial expressions and complete with 

3D facial landmarks which is Bosphorus Database and BU-3DFE Database. The 

following sub-sections discuss these two databases. 
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2.1.1  Bosphorus Database 

  

 1. Outer left eye brow  2. Middle of the left eye brow 

 3. Inner left eye brow  4. Inner right eye brow 

 5. Middle of the right eye brow  6. Outer right eye brow 

 7. Outer left eye corner  8. Inner left eye corner 

 9. Inner right eye corner  10. Outer right eye corner 

 11. Nose saddle left  12. Nose saddle right 

 13. Left nose peak  14. Nose tip 

 15. Right nose peak  16. Left mouth corner 

 17. Upper lip outer middle  18. Right mouth corner 

 19. Upper lip inner middle  20. Lower lip inner middle 

 21. Lower lip outer middle  22. Chin middle 

 23. Left ear lobe  24. Right ear lobe 
 

Figure 2.1 24 facial landmarks provided by the Bosphorus Database 

  

A multi–attribute database developed by researchers from Bogazici University, 

Turkey called the Bosphorus database (Savran et al., 2008) was acquired using the 

Inspeck Mega Capturor II 3D which is a commercial structured-light based 3D 

digitizer device. With this device, the 3D face is captured by projecting one or more 

encoded light patterns onto the scene and the deformation on the objects‟ surfaces is 

measured to obtain the shape information (Sandbach et al
2
., 2012). The weakness of 
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this device is it only allows limited amount of movement due to restriction of the area 

that is simultaneously covered by the structured pattern and visible by the pattern.  For 

the same reason, the acquired range images may also contain holes. In addition, the 

sources of lights are visible to the subjects and therefore, the spontaneous expression 

type of data is not available to be capture using this device. 

The Bosphorus database is complete with 24 facial landmark points; provided 

that they are visible in the given scan (i.e., the right and left ear lobe cannot be seen 

from the frontal pose), refer to figure 2.1. These facial landmark points are manually 

labelled with its specific anatomic denotation by the developer, for instance landmark 

no 14 is denote as the nose tip. Each segmented 3D face consists of approximately 35, 

000 points. On the other hand, the texture images are also provided with the resolution 

of 1600 x 1200 pixels. 

There are 105 subjects (60 men and 45 women) with 53 different face scans per 

subject. The database provides a rich set of expressions, systematic variation of poses 

and different types of realistic occlusions. Each scan is intended to cover one pose 

and/or one expression type. Thirty-four facial expressions are composed of a wisely 

chosen subset of facial Action Units (AUs) of the Facial Action Coding System 

(FACS), as well as the six basic emotions, as shown in Table 2.2.  
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Table 2.2 Facial Expression with the Corresponding Facial Action Units (FAUs) 

1) Lower FAUs  

Nose Wrinkler – AU9 Lip Puckerer – AU18 

Upper Lip Raiser – AU10 Lip Stretcher – AU20 

Lip Corner Puller – AU12 Lip Funneler – AU22 

Left Lip Corner Puller – AU12L   Lip Tightener – AU23 

Right Lip Corner Puller – AU12R Lip Presser – AU24 

Low Intensity Lip Corner Puller – 

AU12LW 
Lips Part – AU25  

Dimpler – AU14 Jaw Drop – AU26 

Lip Corner Depressor – AU15 Mouth Stretch – AU27 

Lower Lip Depressor –AU16  Lip Suck – AU28 

Chin Raiser – AU17 Cheek Puff – AU34  

  

2) Upper FAUs 3) Some FAUs Combinations 

Inner Brow Raiser – AU1 
Jaw Drop (AU26) + Low Intensity Lip 

Corner Puller (AU12LW) 

Outer Brow Raiser – AU2  Lip Funneler (AU22) + Lips Part (AU25) 

Brow Lowerer – AU4  
Lip Corner Puller (AU12) + Lip Corner 

Depressor (AU15) 

Eyes Closed – AU43   

Squint – AU44  

 

 

FACS provides descriptive power necessary to describe the details of facial expression 

(Tian et al., 2001). Action units (AUs) represent the muscular activity that produces 

facial appearance changes (Ekman et al., 1978). In general, there are 44 AUs but in the 

Bosphorus database, only a subset of these AUs are collected which consists of those 
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AUs that are easier to enact. The selected AUs were grouped into 20 lower face AUs, 5 

upper face AUs and 3 AUs combinations. 

 

2.1.2 BU-3DFE Database 

 Yin et al. (2006) from Binghamton University developed theBU-3DFE 

database and  this 3D database contains 100 subjects (56% female, 44% male), ranging 

in age from 18 years to 70 years old, with a variety of ethnic/racial ancestries, 

including White, Black, East-Asian, Middle-east Asian, Indian, and Hispanic Latino. 

The data were captured using the 3DMD dynamic 3D stereo system which is a multi-

view stereo type of acquisition. This family of acquisitions employ multiple cameras 

placed at various known viewpoints from the subjects.  

 This device records the same simultaneously with constant light sources and 

does not require flashing lights. Therefore, more natural expressions from the subjects 

can be recorded. The approach of using multiple cameras in data collection is the 

constraint as it increases the cost. 

 The models were created with the resolution in the range of 20,000 to 35,000 

polygons which depends on the size of the subject‟s face. Each of the six prototypical 

expressions includes four levels of intensity.  A neutral expression is also available 

however without levels of intensity. There are 25 instant 3D expression models for 

each subject, resulting in a total of 2500 3D facial expression models in the database.  
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Figure 2.2 The 83 facial landmarks given in BU-3DFE database (Sandbach

2
 et al., 

2012) 

 

  

Most of the existing works were evaluated on the BU-3DFE database mainly 

because of two reasons: (i) it was the first database that is publicly available and (ii) 

the 83 manually annotated dense landmarks provided with the release (Fang et al., 

2011). Furthermore, all face models in this database are cropped from the original 

scans which greatly facilitate research in face processing studies. Table 2.3 below 

summarize a comparison between two static 3D face databases. The apparent 

difference between  the two databases are the acquisition method, the level of facial 

expression intensity, the number of annotated facial landmarks and the extra 

information provided by the developers such as 3D facial action unit (AUs) data (for 

Bosphorus Database). The different method to acquire the 3D facial data for each 

database might influence the successfulness of the approach chosen. In this work, we 

used Bosphorus Database as we have been granted the access to the database but not to 

BU-3DFE Database. 
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Table 2.3 A comparison table between two prominent databases. 

Bosphorus Database (Savran et al., 2008) BU-3DFE Database (Yin et al., 2006) 

Inspeck Mega Capturor II 3D 

(Structured-light based) 

3DMD Dynamic 3D stereo system  

(Multi-view Stereo based) 

6 basic expressions 6 basic expressions with four levels of intensity 

1 neutral expression 1 neutral expression 

24 manually annotated 3D facial landmarks 83 manually annotated 3D facial landmarks 

34 Facial Action Units expressions No Facial Action Units expressions 

 

2.2 3D Facial Expression 

 

 
Figure 2.3 Generic Automatic Facial Expression Analysis (AFEA) Framework (Fasel 

et al., 2003; Tian et al., 2005). 

Analysing facial expression includes both a measurement of facial motion and 

the classification of the expression. General approaches to Automatic Facial 

Expression Analysis (AFEA) consist of three steps as described in figure 2.3. It begins 

with face acquisition which involves the detection of the face region. We omitted the 

first stage because it is not essential in our work. 
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 Based on figure 2.1, the next stage is to extract and represent the facial 

deformation caused by facial expressions. In the 2D modality, there are two 

approaches for facial feature extraction in facial expression classification: geometric–

based and appearance–based. Apparently, geometric–based methods present the shape 

and location of facial features such as nose, mouth, eyes and eyebrows. With 

appearance–based methods, image filters are applied to extract a feature vector. In 

addition to the geometry and appearance approaches, there are existing methods which 

used different approaches, for instance (i) using properties of 3D facial landmarks such 

as 3D facial landmarks distances, ratio distances and 3D curvature features (Soyel et 

al., 2008; Tang et al., 2008); (ii) morphable models (Mpiperis et al., 2008); (iii) 

combinations of 3D geometry and 2D texture (Zhao et al., 2010) (iv) mapping from 3D 

to 2D (Savran et al., 2008).  

 The last stage of AFEA systems is facial expression classification that includes 

two goals, basic emotions and facial action units. Both goals are discussed in the 

following sub-section.  

 

 

2.2.1  Basic Emotions 

 From Ekman (1994), facial expressions are claimed to be constant across 

cultures and universal. However, in their cross culture studies, only six basic facial 

expressions are considered which are Anger, Disgust, Fear, Happy, Sad and Surprise, 



   

 

20 

 

as shown in figure 2.2. This explains why most of the work in this area of study 

attempts to classify only the six basic expressions. 

 

Figure 2.4 Emotion-specified facial expressions. From left: Anger. Disgust, Fear; 

Happy, Sad, Surprise (Savran et al., 2008) 

 

2.2.2 Action Units (AUs) 

The Facial Action Coding System (FACS) was introduced by Ekman and 

Friesen (1978). FACS is a method of measuring facial activity in terms of facial 

muscle movements. It consists of over 45 distinct AUs corresponding to a distinct 

muscle which are essentially facial phonemes that can be assembled to form facial 

expressions (Kapoor et al., 2003). Facial phonemes here are referring to a collection of 

facial features that are associated with the construction of any facial expression.  
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Figure 2.5 Example of AUs taken from Savran et al. (2008) 

  

 

AUs detection is denoted as another solution to classifying various human 

emotions instead of only six basic expressions. Velusamy et al. (2011) stated that 

detecting AUs prior to emotion makes a classification system more suited to a culture 

independent interpretation which is in contradiction with Ekman‟s claim where 

expressions are constant across cultures. In addition, these basic expressions occur 
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relatively infrequently and emotions are displayed by more subtle changes in one or 

few discrete facial features such as raising the eyebrows in Surprise (Russell and 

Fernandez-Dols, 1997). AUs are more flexible in that thousands of anatomically 

possible facial expressions can be described by a small number of AUs and AU 

descriptors (Fang et al., 2011). Moreover, according to Velusamy et al. (2011), there 

are 7000 emotions in practice. However, Parrott (2001) claimed that there are 139 

facial expressions that humans are capable of displaying. With this amount of facial 

expressions to be programmed, fully automated facial expression classification is 

indeed a long way from being perfected. 

 

2.3 3D Facial Features 

 Facial features can be classified as being permanent or transient (Bettadapura, 

2012). The permanent appearance of the face is formed by the shapes and placement of 

the bones of the skull, the cartilage,and the soft tissues, including the muscles, fat, and 

skin, of the face, which also might include a person's genetic background (e.g., race, 

ethnicity, and family membership), genetic diseases (e.g., Down's syndrome), and 

more fuzzy concepts such as personality, character, and temperament (DataFace, 

2003).The consistent facial feature underlies our attribution of identity to a person and 

its characteristics also contribute to the relatively static expression of the face. Eyes, 

lips, eyebrows and cheeks are the permanent features. Facial lines, brow wrinkles and 
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deepened furrows are the example of transient features that appear with changes in 

expression and disappear on a neutral face.  

 In the past, the researchers were trying to find the best 3D facial features to 

represent the salient features used in face recognition and to quantify the facial 

deformation caused by facial expressions. We focus on 3D facial features using 3D 

facial static data in this review and 3D facial features normally are the permanent 

features. 

 3D facial landmarks were extracted from the face by various researchers in 

many different ways. Facial landmarks on a face are the real feature while the 

geometric features that are extractable from the real feature are the measure features. 

Distances or angles used in any area of face processing studies are considered 

measures, rather than real features (Vezzetti et al., 2012). However, the nature of these 

reference points may be geometric, for instance, curvature and shape.   

 Vezzetti et al., (2012) in their studies reviewed several geometrical features to 

describe 3D human faces. Among the geometrical measures used for the purpose of 3D 

face recognition are Euclidean distance, geodesic distance, arc – length distance, ratio 

– of distances, curvature and shape, shape index and spin images, spin images, 3D 

SIFT features, depth information and texture information. However in face 

recognition, the computation of the Euclidean or geodesic distances between facial 

landmarks is a method widely used.  
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The 3D facial features studied in 3D facial expression classification is 

conducted by categorizing it according to the goal of the study, for basic emotions or 

AUs detection. 

2.3.1 Basic Emotions 

 The first study of classifying facial expressions using 3D data from BU-3DFE 

was carried out by Wang et al., (2006). They extracted and labelled the primitive 3D 

surface features (i.e.: flat, peak, ridge, ravine, pit, concave hill, convex hill, convex 

saddle hill, slope hill, concave saddle hill, ridge saddle and ravine saddle) and derived 

their statistical distributions to represent the distinct prototypical facial expressions. 

The expression classification is based on the distribution of the above labels over the 

face. Thus, the same type of facial expression is expected to share a similar primitive 

label distribution.  However, their partitioned regions do not contain mouth and eyes, 

which are significant regions in determining facial expression. Their algorithm 

involves manually labelled facial points in order to obtain more accurate region 

partitions. Furthermore, this technique requires extensive computation of curvature 

features which is challenging.  

 Soyel et al., (2007) used six characteristics distances between 3D facial 

landmarks to form a distance vector. They only used 11 manually labelled facial 

landmarks to extract the distances by utilizing facial symmetry. The distance vector is 

derived for every 3D model and is used to compare faces for facial expression 

classification. To achieve the person-independent requirement, they normalized the 
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distance vector of an expressional face by the width of the face. They extended their 

work by introducing an automatic feature selection mechanism (Soyel et al., 2010). In 

their extended work, all 83 facial features available in BU-3DFE are used to find 

distances between points. The classification rate obtained using their approach was 

slightly higher compared to Wang et al. (2006), refer to Table 2.4. 

  

 
Figure 2.6 The distance features (left) and the slope features (right) (Tang et al., 2008) 

 

 Another important result was obtained by Tang et al., (2008) and their work 

was based on the ratio of distances. A set of 96 features are devised based on 

properties of the line segments connecting facial feature points on a 3D face model. 

The features consisted of the normalized distances and slopes of the line segments 

connecting a subset of the 83 facial feature points (refer to figure 2.6). To ensure the 

features are person-independent, the distance features are normalized by facial 

animation parameter units (FAPUs). Using a multi-class Support Vector Machine 

(SVM) classifier, an 87.1% average classification rate is achieved and the highest 
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classification rate obtained in the experiments is 99.2% for the classification of 

Surprise.  

Mpiperis et al. (2008) used bilinear models for joint 3D identity-invariant facial 

expression classification and expression-invariant face classification. The bilinear 

models are developed using the concept of a morphable model which consists of 

principal components of 3D faces. Each vertex of an adapted deformable model to the 

face scan is expressed by two independent and weighted sets of coefficients, one for 

identity and the other for facial expression.   

 Gong et al., (2009) suggested an automatic facial expression classification 

approach by exploring shape deformation. The shape of an expressional 3D face is 

assumed as the sum of two parts, a basic facial shape component (BFSC) and an 

expressional shape component (ESC). A reference face for each input 3D non-neutral 

is built by a learning method to separate BFSC and ESC. The BFSC estimation is done 

using Karhunen – LoeveTransform (KLT) which is closely related to Principal 

Component Analysis (PCA). The expression descriptors are computed by taking the 

surface changes between the original expressional face and its BFSC at the eyes and 

mouth regions. The SVM classifier with RBF kernel is used with expression 

descriptors as the feature vectors. In their work, the facial landmarks is automatically 

labelled which is different from Wang et al., (2006), Soyel et al., (2006) and Tang et 

al., (2008). The expression with the highest classification is Surprise and the lowest is 

Fear.  
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 Maalej et al., (2010) proposed an approach based on local shape analysis of 

several relevant regions/patches of a given face scan. Based on the symmetry property 

of the human face, they optimized their work by using only landmarks laying on half 

of a face model (left part). The patches centred on a set of landmarks are extracted. 

Then, a curve-based representation of these patches is applied to capture the 

deformation between them on different faces under different expressions. The length 

of the geodesic path is computed and used as the input to the classifiers. A binary type 

of classification is used where the similarity scores between faces using all patches are 

computed. AdaBoost and SVM with kernel algorithms are implemented. The average 

success classification rate is 96.1% and the highest classification is Surprise 

expression. 

 Pinto et al., (2011) extracted 2D and 3D descriptors from different scales of 

wavelet transforms from seven expressions which includes the neutral expression. 

Then a Sequential Forward Floating Selection algorithm is used to analyse the multi-

scale features to select the subset of features that best represents each facial expression.  

 Berreti et al. (2011) proposed an automatic approach for person-independent 

facial expression from 3D facial scans. In their work, a set of facial points are detected 

and SIFT descriptors are computed around the sample facial points of the face are used 

as a feature vector to represent the face. Before performing classification of the 

extracted descriptors, a feature selection approach is used to identify a subset of 

features with minimal redundancy and maximal relevance among the large set of 

features extracted with SIFT. Finally, the set of selected features are feed to SVM. 
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Their solution offers three main contributions: (i) to automatically detect facial points 

located in morphologically salient regions of the face; (ii) a local based description of 

the face that computes SIFT features on a set of sample points of the face derived 

starting from 9 facial points; (iii) a solution to feature selection for the identification of 

the salient SIFT features. Using a multi-class SVM classification on a large set of 

experiments, an average of 78.43% has been obtained.  

 As mentioned in the previous section, the BU-3DFE database provides six 

basic facial expressions with four levels of intensity. Studies conducted by Wang et al., 

(2006), Soyel et al., (2007), Tang et al., (2008) and Gong et al., (2009) who used this 

database only used the 2 highest intensities for every kind of expression.  

From table 2.1, we can see only two 3D databases offer the complete six basic 

expressions with facial landmarks. Table 2.4 shows the existing works of 3D facial 

expression classification focused on six basic facial expressions which started from the 

release of BU-3DFE database. The comparison attributes are the database, 3D facial 

features, classifiers, the success percentage for each facial expression as well as the 

average success rate of the classification. Only one of the existing works used in-house 

dataset while the rest used 3D facial data from BU-3DFE database. From the average 

across expressions value, the expression that has the highest success rate is Surprise 

while the lowest success rate is the Fear expression. If we do not take into account the 

results from Pinto et al. (2010) which used in-house dataset, this comparison is still 

indicated as unfair because of the difference in the classifiers used.  
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Table 2.4 Comparison of 3D Facial Features in Facial Expression Classification Rates. 

Author(s) Database 
3D Facial 

Features 
Classifier Angry Disgust Fear Happy Sad Surprise Average  

Wang  (2006) BU-3DFE Surface curvatures Linear Discriminant Analysis 80.00 80.40 75.00 95.00 80.40 90.80 83.1% 

Soyel (2007) BU-3DFE 3D distance- vector FF Neural Network 85.00 91.70 91.70 95.00 90.70 98.30 92.07% 

Tang (2008) BU-3DFE Ratio of distances Multiclass SVM (OVO) 86.70 84.20 74.20 95.8 82.50 99.20 87.1% 

Mpiperis 

(2008) 
BU-3DFE 

3D deformable 

model 
Particle Swarm Optimization 75.30 100.00 100.00 100.00 79.10 100.00 92.3% 

Gong (2009) BU-3DFE 
Surface depth 

changes 
Multiclass SVM 71.41 76.60 62.48 81.21 77.49 88.13 76.2% 

Maalej (2010) BU-3DFE Curve-based 
Multiclass SVM (OVO) and 

AdaBoost 
96.50 97.00 94.50 94.67 96.00 97.83 96.1% 

Pinto (2010) 
In-house 

dataset 
2D and 3D wavelet AdaBoost 90.00 79.00 74.00 90.00 84.00 73.00 94.8% 

Soyel (2010) BU-3DFE 3D distance- vector Tree-PNN 91.70 93.90 90.60 94.10 90.80 98.90 93.33% 

Berretti (2011) BU-3DFE 3D SIFT Multiclass SVM 78.43 77.05 67.50 77.42 78.86 91.31 78.4% 

Average across expressions 83.89% 86.65% 81.11% 91.47% 84.43% 93.05%  
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Due to this difference, Gong et al. (2009) carried a similar experimental setting 

for 3D facial expression classification using four different 3D facial features (Wang et 

al., 2006; Soyel et al., 2007; Tang et al., 2008, Gong et al,. 2009). The average 

classification is computed using SVM classifier in 10-fold cross validation on the two 

highest intensities expression from BU-3DFE database. Berreti et al. (2011) used the 

same experimental setting in order to compare the performance of their 3D facial 

feature. The results reported in table 2.5 are the average classification rates for each of 

the 3D facial features done by few researchers under the same experimental setting.  

 

 

Table 2.5 Comparison of several existing works using a similar experimental 

setting. 

 Wang  (2006) Soyel (2007) Tang (2008) Gong 

(2009) 

Berreti(2011) 

Average 

Classification 

Rates  

61.79% 67.52% 74.51% 76.22% 78.43% 

 

 

Although this sub-section reviewed 3D facial features in the field of facial 

expression classification, the work of Ceolin (2012) is worth to be discussed as it used 

the same concept of facial feature employed in this work which is the surface normals. 

Ceolin (2012) used a 2.5D facial surface normals (or known as facial needle maps) 

which is acquired from 2D intensity images using Shape from Shading (SFS), referred 

to as Principal Geodesic Shape-From-Shading (PGSFS).The PGSFS method relies on 

a statistical model of facial shape formulated in the needle-map domain using Principal 
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Geodesic Analysis (PGA). PGA is a generalization of PCA to a non-linear setting of 

manifolds suitable for use with shape descriptors such as medial representations. The 

PGSFS method is used to iteratively recover needle-maps that realistically capture 

facial shape and also satisfy the image irradiance equation as a hard constraint. In other 

words, the recovered facial needle-maps both encode facial shape information and 

implicitly capture facial texture information. They demonstrated the visualization of 

the distances distribution using Multi-Dimensional Scaling (MDS) to embed the faces 

in a two-dimensional pattern space. They proved that a good separation of different 

faces under varying expression is plausible using statistical model. However, in their 

work, facial expression classification results for each six basic expressions are not 

provided therefore no comparison to other works can be made. 

 

 

2.3.2 Action Units 

 The basic emotions occur relatively infrequent (Tian et al., 2001). Human tend 

to show simple facial motion such as tightening the lips in anger or obliquely lowering 

the lip corners in sadness (Carroll et al, 1997). To capture the subtlety of human 

emotion, the research community started to work on the AUs classification. However, 

due to the lack of FACS-coded databases, the AU-based classification research is not 

as numerous as in basic emotion type of classification. 
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 Zhao et al. (2010) used their extended Statistical Facial Feature Model (SFAM) 

to generate feature instances corresponding to AU classes for three different 

modalities: facial landmark configurations, local texture and local geometry. The 

SFAM is a partial 3D face morphable model which contains both global variations in 

landmark configuration (morphology) and local ones in terms of texture and shape 

around each landmark (Zhao et al., 2009).15 features are extracted from three facial 

modalities, including multi-scale LBP, shape index, distances between landmarks and 

landmark displacement. SFAM is learnt by applying PCA to three kinds of training 

features while preserving 95% of variations for each type of features. Then, the 

similarity between each feature on a face and its instances are evaluated to obtain a set 

of similarity scores. Experiments on recognizing 7 AUs and 16 AUs have achieved 

94.2% and 85.6% recognition rates respectively.  

Savran et al, (2012) compared 3D modality vis-a-vis 2D modality for AU 

classification and they demonstrated that 3D modality is better especially for lower 

face AUs. They map the 3D data into 2D curvature images with each point in the 

image representing the curvature of the 3D surface at that point in the 2D plane. The 

comparison between these two modalities is based on Receiver Operating 

Characteristic (ROC) curves.  

 Sandbach
3
 et al., (2012) proposed a new feature descriptor; local normal binary 

patterns (LNBPs), which is exploited for detection of facial action units (AUs).LNBPs 

employ the normals of the triangular polygons that form the 3D mesh to encode the 

shape of the mesh at each point. Initially, a circular neighbourhood around each point, 
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specified by a radius 𝑟 and 𝑃 points regularly spaced around the circle.The unit normal 

n𝑝  at each point 𝑣𝑝  in the neighbourhood is found, along with that at the central 

pointn𝑐 , through 𝑥 − 𝑦 interpolation of the given points in the mesh. From here, two 

descriptors are formed: (1) 𝐿𝑁𝐵𝑃𝑂𝐴 , which calculates the scalar of two normals and 

(2) 𝐿𝑁𝐵𝑃𝑇𝐴 , which calculates the difference of two angles of the normals, the azimuth 

and the elevation. Feature vectors are then formed for each of the descriptors through 

the use of histogram. The x-y plane of the mesh is divided into 10x100 equally-sized 

square blocks and for each of these a histogram is calculated from the calculated 

binary numbers. These histograms are then concatenated into 1D feature vector 

suitable for use with the SVMs. 

 To date, there have been no studies using the BU-3DFE database to classify 

AUs simply because no AUs data provided by the BU-3DFE database developer. 

Nevertheless, Sun et al. (2008) manually labelled only 8 AUs in the BU-4DFE 

database for their partial AU classification which is clearly using 3D dynamic data.  

 As we mentioned before, there are several works present in the AU detection 

study; however, AUs mapping to facial expressions is still at a minimum.  The recent 

work in AU-based studies was from Velusamy et al., (2011) where in their work, 

relationships between AUs and facial expressions are captured as templates strings 

comprising the most discriminative AUs for each facial expression. The Longest 

Common Subsequence (LCS) distance is used to calculate the closeness of a test string 

of AUs with the template string and hence infer the underlying facial expressions. 

However, Velusamy et al.‟s work is based on 2D data.  



   

 

34 

 

 Table 2.6 shows six basic facial expressions and associated AUs from several 

studies. Different studies state different Action Units (AUs) which are involved in six 

basic facial expressions. Ekman et al. (1978) introduced the basic AUs involved and in 

time, other researchers add/deduct certain AUs to represent the facial expressions. We 

believed this has to do with the intensity of the facial expressions itself, for instance 

different studies might focus on a certain degree of intensity. If we look at the Disgust 

expression, only Zhang et al., (2008) and Savran et al., (2008) agreed that the Disgust 

expression should have AU9 and AU10.Velusamy et al., (2011) and  Lucey et al., 

(2002) do not even include AU9 and AU10 in the Disgust expression. As a reminder, 

AU9 is Nose Wrinkler while AU10 is Upper Lip Raiser. 

 Similarly, in the MPEG-4 standard (Pandzic et al., 2002), the six facial 

expressions are defined by facial animation parameters (FAPs) which describe how 

much the facial feature points have to be moved. Raouzaiou et al., (2002) in facial 

expression modelling provide FAP to AU mapping. However, their mapping has quite 

a difference with Zhang et al.‟s (2008). For example in Raouzaiou et al., (2002), AU6 

only consists of two FAPs which are lift_l_cheek and lift_r_cheek while in Zhang et 

al., (2008), AU6 also comprised close_t_l_eyelidandclose_t_r_eyelid. 
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Table 2.6 Six basic facial expressions with AUs  

 Anger Disgust Fear Happy Sad Surprise 

Ekman &Friesan 

(1978) 
4+5+7+23 9+15+16 

1+2+4+5 

+20+26 
6+12 1+4+15 1+2+5B+26 

Lucey et al., (2002) 4+5+15+17 1+4+15+17 1+4+7+20 6+12+25 1+2+4+15+17 
1+2+5+25 

+27 

Raouzaiou et al., 

(2002) 

2+4+5+7 

+17 
5+7+10+25 4+5+7+24 +26 26+12+7+6+20 7+5+12 

26+5+7+4 

+2+15 

Deng et al., (2008) 
2+4+7+9 

+10+20+26 
NIL 

1+2+4+5 

+15+20+26 
1+6+12+14 1+4+15+23 1+2+5+15+16+20+26 

Zhang et al., (2008) 2+4+7+23 

+24 
9+10 20+(1+5)+ (5+7) 6+12 1+15+17 

5+26+27+ 

(1+2) Primary 

Auxiliary 23+7+17+4+2 
9+7+4+17 

+6 
20+4+1+5 +7 

12+6+26 

+10+23 
15+1+4+17+10 27+2+1+5 +26 

Savran et al., (2008) 
2 

+4+7+9+10+20+26 
9+10 

1+2+4+5+15+16+20 

+26 
1+6+12+14 1+ 4+ 15+23 

1+2+ 5+15+16 

+20+26 

Velusamy et al., 

(2011) 
17+25+ 26+16 17+25+26 

4+5+7+25 

+26 
16+25+26 4+7+25+26 NIL 
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2.4 Statistical Approaches 

 3D face recognition and 3D facial expression classification success is also 

dependant on mechanism used for recognizing a person or classifying emotions. 

Among the approaches used in both fields are Principal Component Analysis (PCA) 

(Turk and Pentland 1991), Linear Discriminant Analysis (LDA) (Belhumeur et al., 

1997), Iterative Closest Point (ICP), Active Shape Models (Prabhu et al, 2000), 

Probabilistic Neural Network (Vinitha et al., 2009), Support Vector Machine (SVM), 

Statistical Facial Feature Model (SFAM) (Zhao et al., 2009) etc. The most popular 

ones are PCA and LDA in which they sometimes are coupled with other approaches; 

for example PCA with the nearest neighbour classifier.  

 Most methods in face processing studies use dimensionality reduction 

techniques due to the fact that faces are represented as points in high-dimensional 

image space. By employing dimensionality reduction, a more meaningful 

representation is established, therefore, addressing the issue of the ”curse of 

dimensionality” (Sharath et al., 2011). Dimension reduction is a process of reducing 

the number of variables under observation. Although face images can be regarded as 

points in a high-dimensional space, they often lie on a manifold (i.e., subspace) of 

much lower dimensionality, embedded in the high-dimensional image 

space. Originally, the main issue in dimensionality reduction is how to properly define 

and determine a low-dimensional subspace of face appearance in a high-dimensional 

image space. 

The dimensionality reduction approaches are divided into supervised (i.e. 

Eigenfaces by Turk and Pentland, 1991) and unsupervised (i.e. Fisherfaces by 
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Belhumeur et al., 1997). In recent years, Eigenfaces and Fisherfaces have attracted 

much attention especially in the 2D modality of face processing study.  

 

2.4.1  Eigenfaces 

 Turk and Pentland (1991) introduced the idea of Eigenfaces which became a 

gold standard in face recognition. In their work, face images are projected into a 

feature space through PCA which means that a face is represented as a linear 

combination of a set of basis images.  

 Pure data driven methods can be applied without knowledge and extract good 

parameters by using the input data, PCA is an example. PCA is one of the methods in 

multivariate statistics that encompasses simultaneous observation and analysis of more 

than one statistical variable. Generally, PCA will reduce the large dimensionality of 

the data space (observed variables) to the smaller intrinsic dimensionality of the 

feature space (independent variables) which are needed to describe the data 

economically (Rady, 2011). In PCA, an orthogonal system is found such that data is 

best approximated by the minimum number of dimensions and the correlation between 

different dimensions is minimized.  

 When applied to face images, PCA yields a set of eigenfaces and these 

eigenfaces are the eigenvectors that are associated with the largest eigenvalues of the 

covariance matrix of the observed data. Each face image can be reconstructed based on 
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the weighted average of the principal components of the original training set of face 

images. PCA projections are optimal for reconstruction from a low dimensional basis; 

however they may not be optimal from a discrimination standpoint as they do not use 

class information in the projection (Belhumeur et al., 1997; Turk and Pentland, 1991). 

 Unsupervised method such as PCA expose statistical properties of the input 

data to discover relevant features and PCA is widely applied in computer vision 

applications, particularly face processing studies. The Active Appearance Model 

(AAM) and 3D Morphable Model are the earliest example of approaches that 

employed PCA in their framework. 

 AAM was proposed by Cootes et al., (1998). An AAM contains a statistical 

model of the shape and grey-level appearance of the object of interest which can 

generalise to almost any valid example. A year later, the 3D Morphable Model was 

introduced by Blanz et al. 3D Morphable Model is derived from a data set of 3D face 

models by automatically establishing correspondence between the examples. It 

captures the variations observed within a data set of 3D scans of examples and 

converts their shape and texture into a vector space representation (Blanz et al., 1999).  

 

2.4.2 Fisherfaces 

 Fisherfaces was introduced by Belhumuer et al. (1997) and the work is based 

on LDA which is basically an enhancement to PCA. LDA assumes that classes/labels 
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are being used and that features of different classes/labels have a Gaussian distribution 

with the same covariance matrix but different mean. The approach of the LDA is to 

project all the data points into new space, normally of lower dimension, which 

maximises the between-class separability while minimising their within-class 

variability (Gillies, 2013).  

The apparent difference between LDA and PCA is that LDA produce a 

subspace that maps the sample vectors of the same class to a single spot of the feature 

representation and therefore the gaps between those of different classes are as clear as 

possible. Given a number of independent features relative to which the data is 

described, LDA creates a linear combination of those which yields the largest mean 

differences between the desired classes. 

In PCA, the PCA subspace is determine from the training data. 𝑖𝑡𝑕  image 

vector containing 𝑁 pixels in the form of  

𝐱𝑖 =  𝐱1
𝑖 ,⋯ , 𝐱𝑁

𝑖      (2.1) 

All 𝑝 images in the image matrix 

𝐗 =  𝐱𝟏, ⋯ , 𝐱𝒑     (2.2) 

The covariance matrix is computed  

Ω = 𝐗𝐗𝐓    (2.3) 

The eigenvalues and eigenvectors is solved 
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Ω𝐕 = 𝚲𝐕,    (2.4) 

where 𝚲 is the vector of eigenvalues of the covariance matrix. 

LDA uses PCA subspace as input data, i.e. matrix V obtained from PCA. The 

important step in LDA which differentiate it from PCA is to find two scatter matrices 

referred to as the “between class“ and “within class“ scatter matrices (Mazanec et al., 

2008). The within class matrix is defined as follows: 

𝐒𝐰 =  𝐒𝐢,
𝑪
𝒊=𝟏 𝐒𝐢 =   𝒙 − 𝒎𝒊  𝒙 − 𝒎𝒊 

𝐓
𝒙∈𝑿𝒊

 (2.5) 

where  𝐦𝒊is the mean of the images in the class and 𝐶is the number of classes. The 

between class matrix is defined as: 

𝐒𝐁 =  𝑛𝐢 𝒎𝒊 − 𝒎  𝒎𝒊 − 𝒎 𝐓,𝑵
𝒊=𝟏   (2.6) 

where n𝒊is the number of images in the class, 𝐦𝒊is the mean of the images in the class 

and 𝒎is the mean of all the images. Then generalized eigenvalue problem in LDA is 

solved using  

𝐒𝑩𝐕 = 𝚲𝐒𝐰𝐕    (2.7) 

 Belhumuer et al. (1997) also carried out a comparison experiment between 

Eigenfaces and Fisherfaces and they reported that Fisherfaces appears to be the best 

simultaneously handling variation in lighting and expressions.  The most common 

problem in Fisherfaces is that if the dimension is much larger than the number of 

training samples per class and as a result, a singular matrix is produced. To overcome 
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this problem, the face image is projected into a face subspace of PCA. Subsequently, 

the projected PCA vectors are applied to LDA to construct a linear classifier in the 

subspace. Even though LDA is said to perform better than PCA in classification, LDA 

requires more computation compared to PCA.  

  

2.5 Modular-Based Work 

 A pure eigenface system can be fooled by gross variations in the input image 

(hats, beards, etc). Pentland et al., (1994) introduced the modular eigenspaces (or 

eigenfeatures) used in face recognition. According to them, the modular description 

allows for the incorporation of important facial features such eyes, nose and mouth. 

They showed that eigenfeatures alone were sufficient in achieving a 95% recognition 

rate in their experiment.  By using a combination of eigenfeatures and an eigenface 

representation, a slight improvement of 98% was obtained. They also showed that a 

modular representation has the advantage of disambiguating false eigenface matches 

due to gross variations in the input image.  

 There are also several studies that employed face decomposition in their work 

and most of them are based on a linear combination approach. Tena et al., (2011) used 

a collection of PCA sub-models that are independently trained but share boundaries. 

Their findings strengthen the hypothesis that a region-based model is better than a 

holistic approach and the region-based approach increases flexibility for local 

deformations. Gottumukkal et al., (2003) also showed a significant result especially 
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when there are large variations in facial expression and illumination.  The work of 

Tena et al., (2011) was based on 3D data and 2D data in Gottumukkal et al., (2003). 

However, there is no facial expression classification results recorded in Tena et al., 

(2011) as this work is developed for animation purposes while Gottumukkal et al., 

(2003) was for face recognition. 

 Gottumukkal et al., (2003) discovered that if the face images are divided into 

very small regions the global information of the face may be lost and the accuracy of 

this approach is no longer acceptable. Thus, choosing the size of the modules to 

represent a face is also vital.  Chiang et al. (2009) divided the face into five modules 

which included the left eye, the right eye, the nose, the mouth, and the bare face with 

each facial module identified by a facial landmark at the module centre.  

 

2.6 Classifiers 

In machine learning and statistics, classification is the problem of identifying to 

which of a set of categories of a new observation belongs, on the basis of a training set 

of data containing instances whose category membership is known (Wikipedia
2
, 2013). 

Classification methods are used in many areas like data mining, finance, signal 

decoding, voice recognition, computer vision, natural language processing or 

medicine. In this area of study, once the facial features are extracted and selected, the 

next step is to classify the probe face. Face processing classification algorithms can be 
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roughly divided into two broad families of approaches: (i) learning-based classifiers 

(sometimes known as parametric classifiers and (ii) non-parametric classifiers.  

The learning-based classifiers require intensive learning phase of the classifier 

parameters. The methods such as Support Vector Machines (SVM) (Tang et al., 2008; 

Gong et al., 2009; Maalej et al., 2010; Berreti et al., 2011), Boosting, Linear 

Discriminant Analysis (Wang et al. 2006), Neural Network (Soyel et al., 2007), rule-

based (i.e. PSO (Mpiperis et al., 2008), Decision Trees are known as parametric 

classifiers.  

For non-parametric classifiers, the classification is based on the data and 

therefore, no learning or parameters are required. The basic idea of the nearest- 

neighbour classifier is to store all labelled instances (i.e., the training set) and compare 

new unlabelled instances (i.e., the test set) to the stored ones to assign them an 

appropriate label. Non-parametric classifiers have several important advantages that 

are not shared by most learning approaches: (i) Can naturally handle a huge number of 

classes. (ii) Avoid overfitting of parameters and (iii) Require no learning or training 

phase (Boiman et al., 2008). The most common non-parametric is the nearest- 

neighbour classifier.  

In this work, we are demonstrating the discriminative power of feature set and 

thus a simple classifier such as nearest neighbour and SVM is sufficient to be used. 
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2.7 Conclusions 

 It should be clear from this literature review that research on 3D facial 

expression classification has not been as extensive as research in 3D face recognition 

in the last few decades. This is due to the existence of the 3D expression data that has 

been publicly available only since 2006. We conclude this chapter with a summary of 

the literature. 

 Research into 3D facial expression databases, the general framework of facial 

expression, 3D facial features, statistical modelling methods and classifiers used by the 

research community were reviewed. In the literature, we can see a gap in the use of the 

most fundamental feature in 3D which is 3D surface normals to classify 3D facial 

expressions. In terms of visual appearance, surface normals produce smooth shading 

across the transition from one triangle to another, making a fundamentally polygonal 

object look round. Besides that 3D facial surface normals also provide a richer source 

of information about the shape of the facial mesh than the depth alone. We are 

interested to investigate the feasibility of surface normals to classify facial expression. 

Our main objective is to use 3D facial surface normals which are extracted 

straightforwardly from the provided 3D facial points in 3D facial expression 

classification. 

 Most of the studies stressed the regions that are salient to quantify facial 

expression. These regions contain facial features that reflect the intensity of facial 

expression shown by the subjects. We aim to find 3D facial surface normals on each 

region and model it using the statistical approaches. In particular, we aim to see how 
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3D surface normals are distributed in each region deformation caused by a facial 

expression. 
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CHAPTER 3 

DATA PRE-PROCESSING AND 
STATISTICAL MODEL 

 

Statistical models attempt to model the shapes of objects found in images and 

the model characterizes the variation of shapes within a training set. There are two 

types of statistical modelling; unsupervised and supervised. One of the well-known 

statistical models is Principal Component Analysis (PCA) belongs to the unsupervised 

learning group. Unsupervised learning group is designed to extract common sets of 

features present in the input data and the examples given to the learner are unlabelled. 

The only input parameters are the number of dimensions that will be retained in the 

embedding and the data points. In unsupervised learning the machine obtains neither 

supervised target outputs, nor rewards from its environment. In a sense, unsupervised 

learning can be thought of as finding patterns in the data above and beyond what 

would be considered pure unstructured noise (Ghahramani, 2004). 
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 PCA has been used widely in 2D and 3D to extract facial features, to align 

facial landmarks as well as to perform face identification. Heseltine et al
1
., (2004) used 

PCA to reduce the dimensionality of 3D facial surfaces to perform 3D face recognition 

while Kapoor et al., (2010) used the Mahalanobis distance as the feature vectors in 

PCA for facial expression classification. Several works using PCA with different 

feature vectors in the field of face processing, ranging from 2D to 3D,  can be found in 

Gottumukkal and Asari, (2003), Praseeda et al., (2008), Dongcheng, S. and Jieqing 

(2010) and Tena J.R. et al., (2011). In this work, PCA is used to model the 3D 

geometrical properties of 3D facial expressions and in this chapter the basic concept of 

PCA is discussed. 

 The remainder of this chapter is organized as follows: In sections 3.1 and 3.2, 

we explain the pre-processing steps in our approach, which begins with data extraction 

and 3D facial points alignment, respectively. PCA is described in section 3.3. Section 

3.4 concludes this chapter. 

 

3.1 3D Face Points Extraction 

3D faces with different facial expressions were used in this work and the data 

was acquired from the Bosphorus database (Savran, et al, 2008). Although the 

Bosphorus database provides 105 subjects with six basic expressions plus neutral 
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expression, only 65 subjects can be used for training and experiments since these were 

the only subjects that came with a complete set of six basic facial expressions. 

3D faces with labelled expressions with different poses are not available in this 

database and therefore, all 3D face images of six basic facial expressions are frontal 

profiles. The Bosphorus database provides 24 manually annotated facial landmarks, 

provided that they are visible in the scan (see figure 2.1).These facial landmarks are 

manually labelled with its specific anatomic denotation by the developer, for instance 

landmark no 14 is denote as the nose tip. However, only 22 of the provided facial 

landmarks were used as the two facial landmarks (both earlobes) were not visible in 

the frontal scan and thus the 3D correspondence of both earlobes could not be 

computed. In this work, the focus is on the Facial Animation Parameters (FAPs) 

involved in six basic facial expressions. There are six facial landmarks that are visible 

in the frontal scan and they are associated with the determined FAPS but not provided 

directly by the Bosphorus database which is the top and bottom of both eyes and centre 

of both pupils. However, the developer of the Bosphorus database does provide the 3D 

facial landmarks together with its 2D pixel value correspondence. Therefore, we 

manually marked the six extra facial landmarks on its 2D image and the 3D 

correspondences were established manually. The six extra facial landmarks are the 

centre point of both pupils as well as the lowest and highest points on both eyes (refer 

to Figure 3.1).  
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Figure 3.1 Six extra facial landmarks 

 

17 face boundary 3D facial points were also found and added into the system 

(refer to Figure 3.2).  

 
Figure 3.2 17 face boundary 3D facial points 

 

In addition to the 22 provided landmarks, 6 extra landmarks and 17 boundary 

points, we also added 70 facial points that we computed by finding the average of each 

triangle‟s vertices. This is done with the objective of having a rather dense looking 3D 

face model.  Figure 3.3 shows a facial point (point number 4) as an average of three 

facial points (point number 1, 2 and 3) that form a triangle mesh.  
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Figure 3.3 Finding an extra facial point 

Figure 3.4 shows an example of a 3D face using the complete set of 3D facial 

points with Delaunay triangulation. Delaunay triangulation is a proximal method that 

satisfies the requirement that a circle drawn through the three nodes of a triangle will 

contain no other node (Tchoukanski, 2012).   

 
Figure 3.4A 3D face model with happy expression 
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3.2 3D Facial Points Alignment 

 3D facial points of each face need to be aligned before any value comparison 

between the faces takes place. This is to ensure the 3D faces are as closely aligned to 

each other as possible while keeping the shape unchanged. In this work, a simple 

affine transformation is employed in the alignment process. The scanned 3D faces 

normally have hundreds to thousands of 3D facial points; clearly a global 

transformation for all 3D points requires extensive computation. The alternative 

solution is to use only three 3D facial landmarks,  𝑙1, 𝑙2, 𝑙3  in the initial alignment 

process. Those feature landmarks are specifically the inner left and right eye corner, 

𝑙1and 𝑙2, as well as the nose tip, 𝑙3; the three black dots in figure 3.4 and 3.5 denote the 

feature landmarks used. These three landmarks are often used in face alignment 

because the change of their position in any expression is infrequent (Tian et al., 2001). 

 A mean shape is used as a reference in 3D facial alignment. The three 3D facial 

landmarks  𝐥1, 𝐥2 , 𝐥3 from neutral expressions from all subjects are used to find the 

mean shape. As a result, we have three facial points  𝐥1 , 𝐥2
 , 𝐥3

   that represent the mean 

shape 

 
Figure 3.5 Three facial landmarks used in 3D face alignment. 
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 Figures 3.7a and 3.7b show the initial condition before 3D face alignment took 

place. The red coloured triangle is the mean shape while the uncoloured triangles are 

the training sets. Each corner of the triangles represents the three feature points in the 

mean shape as well as in the training sets.𝑀𝑖 is the triangle for each training sets 

where 𝑖 = 1, … , 𝑘 and k is the number of training 3D faces. Let 

    𝑀 =
1

𝑡
 𝑀𝑖

k
𝑖      (3.1) 

where 𝑀𝑖 =  𝑀1, 𝑀2, … , 𝑀k  and 𝑀 =  𝐥1, 𝐥2 , 𝐥3 . There are two phases of alignment 

process. The first phase of the alignment process is the translation to an origin point 

and only the three significant feature points will undergo the translation process.  The 

origin point refers to 𝑙3 in figure 3.3. The Euclidian distance between 𝐥3 for every 

𝑀𝑖with 𝐈3
  of the mean shape is measured. This means that each 𝑀𝑖  has their own set of 

𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝟏𝑖 . Let  

𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝟏𝑖 =  𝐥3
𝐢 − 𝐈3

      (3.2) 

where 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝟏 =  𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑦𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑧𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . Subsequently, all three 

landmark points of 𝑀𝑖  are translated according to the value of the 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝟏𝒊 

obtained.  

 𝑥, 𝑦, 𝑧 →  𝑥 + 𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑦 + 𝑦𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑧 + 𝑧𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  (3.3) 
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Figures 3.9(c) and 3.9(d) show the translated points for all 𝑀𝑖and we can see 

that 𝑙3 for all 𝑀𝑖are in the same position. Figure 3.6 shows the top view of after the 

translation process of the mean shape  𝑀  (red rectangle) and 𝑀𝑖(black rectangle). It 

also shows the 𝑙1 and 𝑙2 of 𝑀𝑖and 𝑀 . We can see 𝑙1 and 𝑙2 of 𝑀𝑖are still not aligned 

with 𝑙1 and 𝑙2of 𝑀 . 

 
Figure 3.6 An example of after the translation process of the mean shape 

𝑀 (red rectangle) and 𝑀𝑖(black rectangle) from top view. 

  

 

Figure 3.7𝜃 must be determined for the first phase of 3D rotation.from side view 
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  Figure 3.7 shows the initial scenario before the second phase in the 3D 

alignment phase begins from the side view. The second phase in the alignment process 

involves rotation of each 𝑀𝑖  about an arbitrary line by𝜃, an angle formed by vectors 𝐯1 

and 𝐯2as shown in figure 3.7.This phase is divided into two parts each of which is a 3D 

rotation. The objective of the first part is to ensure 𝐯1 and 𝐯2is as close as possible and 

thus the angle 𝜃 between 𝐯1 and 𝐯2is kept to a minimum. To do this, we need to 

determine the 𝜃 value and the arbitrary line for each 𝑀𝑖 . The midpoint of 𝑙1 and 𝑙2 for 

both 𝑀𝑖and 𝑀 , denoted as 𝐿𝑖  and 𝐿, are computed (see figure 3.4). Then, vectors 𝐯1 

and 𝐯2 are computed.  

𝐯𝟏 =   𝐿 − 𝑙3      (3.4) 

𝐯2 =   𝐿𝑖 − 𝑙3     (3.5) 

 

Next, the angle 𝜃 between 𝐯1 and 𝐯2is determined. 

𝜃 =  cos−1 𝐯1 ∙𝐯2

 𝐯1  𝐯2 
    (3.6) 

The normal to the plane containing 𝐯1and 𝐯2, denoted as 𝐪, is calculated.  

𝐪 = 𝐯1 × 𝐯2     (3.7) 
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The arbitrary line which comprises points 𝑝1and 𝑝2, as defined in equations 3.8 and 

3.9 is computed.  𝑙3in equation 3.8 and 3.9 is clearly 𝑙3 of 𝑀  as 𝑙3 of all 𝑀𝑖  have been 

translated to it in the previous phase. 

𝑝1 =  𝑙3                               (3.8) 

𝑝2 = 𝑙3 + 𝐪     3.9) 

 With the arbitrary line and 𝜃 determined, we need to ensure the direction of the 

3D rotation. All three 3D facial landmarks are then rotated using the arbitrary line and 

two different angles which are 𝜃 and– 𝜃. We thus have two sets of newly transformed 

3D facial landmarks; one using the 𝜃 and the other one is using −𝜃. Next, the midpoint 

of 𝑙1 and 𝑙2 for both sets of newly transformed 3D facial landmarks are calculated. The 

midpoint of each set is denoted as 𝑚𝑝1 and𝑚𝑝2. To decide which angle (𝜃 or – 𝜃) we 

have to store, the distances between 𝐿 to 𝑚𝑝1 and 𝐿to 𝑚𝑝2 are computed. The 

smallest distance of those two tells us the angle that we ought to store. Figure 3.8 

described the first part of the 3D rotation result from the top view. From this first part 

of the rotation, 𝑝1,  𝑝2 and 𝜃 (or −𝜃) are stored. 

 

Figure 3.8 An example of the first part of 3D rotation result from top view. 
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 The objective of the second part of 3D rotation is to ensure 𝑙1 and 𝑙2 of 𝑀𝑖  and 

𝑀  is as close as possible to each other. The second part of the 3D rotation starts with a 

translation for all 3D landmarks. The Euclidian distance between 𝐿𝑖  for every 𝑀𝑖with 𝐿 

of the mean shape is measured. Let  

𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝟐𝑖 =  𝐋 − 𝐋𝑖    (3.10) 

where  𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝟐𝑖 =  𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑦𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑧𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . All the landmarks of each 

𝑀𝑖  are then translated using the𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝟐𝑖  value. Then, another vector, 𝐯3 is 

computed using the new translated 3D landmarks. 

𝐯3 =  𝐋 − 𝐋𝑖     (3.11) 

𝜃is set to 0° and a 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 variable is set to 1000. 𝑙1is then rotated using 

the line formed by 𝐯3and 𝑙3 and 𝜃. Next, the new 𝑙1 is stored in an array denoted 

as 𝑡𝑒𝑚𝑝. Then, we change the 𝜃 by adding another degree of angle to it.The rotation is 

repeated again using the same line formed by 𝐯𝟑and 𝑙3 but with the new 𝜃. This 

iteration ends when 𝜃 = 360°. After rotation, the distance between the new rotated 

𝑙1which has been stored in the array 𝑡𝑒𝑚𝑝 and the 𝑙1 of the mean shape 𝑀  is 

computed. If the currently computed distance is less than the 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

parameter, the 𝜃 corresponding to the 𝑙1 is saved. From the second part of the rotation, 

𝐯3,  𝑙3 and 𝜃 alignment parameters are saved. Figures 3.7e and 3.7f show the final 

outcome of the 3D face alignment from the frontal and side views.  
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3.9(a) 

 

3.9(b) 

 

3.9(c) 

 

3.9(d) 

 

3.9(e) 

 

3.9(f) 

Figure 3.9(a)-3.9(f) The red triangle is the mean shape while the black triangles are the 

training sets. The left side is the frontal view while the right side is the side view. 

(3.9(a) and 3.9(b)) Mean shape with the training sets before alignment process. (3.9(c) 

and 3.9(d)) After the translation transformation to the origin point. (3.9(e) and 3.9(f)) 

A complete alignment process. 
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 Figures 3.9(a)-3.9(f) show the alignment process for only three landmarks. 

After all the alignment parameters for each face in the training set are computed,  all 

the 3D landmarks of a face will be aligned according to its assigned facial alignment 

parameters. Figures 3.10(a) and 3.10(b) show the result of 3D alignment for three 

faces. The grey face is the mean shape while the green face is a fear expression and the 

red face is a surprise expression. From the figure we can see the three faces are 

overlapping onto each other and this means that they were aligned.  The difference of 

each face shape is more apparent from the side view (figure 3.10(b)). 

  

(a) 

 

(b) 

Figure 3.10 Results of 3D face alignment (a) front biew (b)side view 
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Table 3.1 Pseudo-Code Illustration for Second Phase in 3D Face Alignment 

Function Transformation2 

 

**** First part of 3D rotation**** 

Get mean shape midpoint, 𝐿 of 𝑙1 and 𝑙2 

Get 𝑀𝑖  midpoint, 𝐿𝑖  of 𝑙1 and 𝑙2 

𝐯𝟏 =   𝐿 − 𝑙3  
𝐯𝟐 =   𝐿𝑖 − 𝑙3  

Get angle, 𝜃 between 𝐯𝟏 and 𝐯𝟐 

Get a normal, 𝑞 of 𝐯𝟏 and 𝐯𝟐 

𝑝1 =  𝑙3 

𝑝2 = 𝑙3 + 𝐪 
For each facial landmark 

     Rotate on a line form by 𝑝1 and 𝑝2 by 𝜃 

     Store output as array1 

     Rotate on a line form by 𝑝1 and 𝑝2 by −𝜃 

     Store output as array2 

Get array1 midpoint of 𝑙1 and 𝑙2, 𝑚𝑝1 

Get array2 midpoint of 𝑙1 and 𝑙2, 𝑚𝑝2 
Compute distance between 𝑚𝑝1 and𝐿, 𝑑𝑖𝑠𝑡1 

Compute distance between 𝑚𝑝2 and 𝐿, 𝑑𝑖𝑠𝑡2 
If 𝑑𝑖𝑠𝑡1 < 𝑑𝑖𝑠𝑡2 , save 𝜽, 𝒑𝟏 and 𝒑𝟐 

Else save −𝜽, 𝒑𝟏 and 𝒑𝟐 

 

**** Second part of 3D rotation**** 

𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝟐𝐢 = 𝐿 − 𝐿𝑖  

Translate all landmarks using 𝐯𝟑 value 

𝐯𝟑 = 𝐿 − 𝐿𝑖  

𝜃 = 0° 

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1000.0 

For each facial landmark 

   While 𝜃 < 360° 

     Rotate on a line form by 𝑙3 of face mean shape and 𝐯𝟑 by 𝜃 

     Store new 𝑙1 in array of 𝑡𝑒𝑚𝑝 

𝜃 = 𝜃 + 1 

  Get distance for 𝑙1 of face mean shape and 𝑙1 of 𝑡𝑒𝑚𝑝, 𝑑𝑖𝑠𝑡 

  If 𝑑𝑖𝑠𝑡 < 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

     Save 𝜽,𝐯𝟑 and 𝒑𝟏 

Table 3.1 describes the second phase of the 3D face alignment in pseudo-code. 

All sets of facial landmarks 𝑀𝑖  are passed through this function. The 3D translation 

and rotation parameters of both parts, for each 𝑀𝑖  are saved. The emboldened symbols 

in Table 3.1 refer to the saved parameters in this phase. With these parameters, the 
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remaining coordinates of all 3D facial points of each face are aligned according to the 

same transformation set. 

 

Table 3.2 Alignment Parameters for 𝑀1 
16.34 14.92 -18.88-                                             translation value 

-0.09219   2.54 -15.19 40.38   -433.39 -0.60 63.50 𝜃 (or −𝜃), 𝑝1 and 𝑝2 parameters. 

-0.00873   2.54 -15.19 40.38   1.54 14.74 2.55       𝜃 , 𝑣4 and 𝑙3 parameters. 

 

 Table 3.2 shows an example of the alignment parameters for 𝑀1. The first line 

is the translation parameters where all 3D facial landmarks of 𝑀1must be translated to 

16.34 in the x-direction, 14.92 in the y-direction and -18.88 in the z-direction. The first 

part of the rotation is in the second line and the first parameter is the angle while the 

rest are the vectors 𝐯𝟏and 𝐯𝟐. The last line is the second part of the rotation and the 

order of the parameters is similar to the second line.  

 In the initial phase of this work, we used a set of faces with six basic 

expressions to compute a mean shape. However, we are concerned about the different 

type of expressions from different subject that might influence the face mean shape. 

We were concerned that the intense expressions (from the six basic expressions) such 

as surprise and happy give a big impact in the mean shape computation; thus the mean 

shape will look a lot like the intense expressions. Therefore, we would like to see the 

dispersion of the aligned training set from the mean shape.  
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 We managed to compute the standard deviation of the aligned training set for 

both types of the mean shape: mean shape built from six basic expressions and mean 

shape built from neutral expression only. Table 3.3 shows the result and both standard 

deviations of the aligned training set are close to each other. From this table, we can 

conclude that building a mean shape whether using the six basic expression data or 

neutral faces data gives a similar alignment result.  

 

Table 3.3 Standard deviation of the training set from two types of mean shape 

Type of Mean Shape 

Standard Deviation(σ) of 

the Aligned Training Set 

Mean shape built from six basic expressions 0.680 

Mean shape built from neutral expression only 0.675 

 

3.3 Principal Component Analysis 

 Principal Component Analysis (PCA) is a useful statistical technique that has 

found application in data compression and it is the simplest eigenvector-based 

multivariate analysis method.  If a multivariate dataset, for example a set of images, is 

visualised as a set of coordinates in high-dimensional data space, PCA provide will 

lower the dimensional face image but it still has most informative information. 

PCA performs a basis transformation to an orthogonal coordinate system 

formed by the eigenvectors of the covariance matrices (Hwang et al., 2000).  Its 

operation can be thought as revealing the internal structure of the data in a way which 
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best explains the variance in the data (Wikipedia, 2013). PCA is often used as a 

method that can get the shape representation of the face by the principal components. 

In this work, the goal of a PCA is to determine the principal directions of variation of 

the data within the data cloud.   

 The PCA computation in this work is based on Turk and Pentland (1994) and 

Trivedi (2009). Suppose 3D facial points are the feature vectors. Let 𝛀𝑖  be the training 

3D facial points of the 𝑖𝑡𝑕  person which has 𝑁 3D facial points.  

𝛀𝑖 =  

𝑠𝑥,1, 𝑠𝑦,1, 𝑠𝑧,1

𝑠𝑥,2, 𝑠𝑦,2, 𝑠𝑧,2

…
𝑠𝑥,𝑁 , 𝑠𝑦,𝑁 , 𝑠𝑧,𝑁

 

Nx3

                                                     (3.12) 

 

From equation 3.11, 𝛀𝑖  can be represented as 1-D vector by concatenating each row 

into a single column vector 

𝛀𝑖 =   𝑠𝑥,1 , 𝑠𝑦,1 , 𝑠𝑧,1 , 𝑠𝑥,2 , 𝑠𝑦,2 , 𝑠𝑧,2 , … , 𝑠𝑥,𝑁 , 𝑠𝑦,𝑁 , 𝑠𝑧,𝑁 
𝑇

Nx3x1
         (3.13) 

The 3D facial points are mean centred by subtracting the mean facial points from each 

3D facial points. Let 𝐦  represent the mean of 3D facial points: 

𝐦 =  
1

𝑘
 𝛀𝑖

𝑘
𝑖=1     (3.14) 
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where 𝑖 = 1, … , 𝑘 andk is the number of training 3D faces. Let    𝐝𝑖  be defined as mean 

centred 3D facial points: 

𝐝𝑖 = 𝛀𝑖 − 𝐦      (3.15) 

PCA can be derived using the covariance matrix or Singular Value Decomposition 

(SVD). Here we are going to explain the method that we chose which is using the 

covariance matrix. 

𝚺 =  
1

𝑘
 𝐝𝑖 𝐝𝑖

𝑇𝑘
𝑖=1     (3.16) 

The covariance matrix Σ is a sum of outer vector products and it is a 𝑘 x 3𝑁  matrix. 

Essentially the covariance matrixΣexpresses the variation about the mean in each 

dimension. PCA determines a linear transformation of the data which diagonalizes the 

covariance matrix of the transformed data. We compute the 

matrix 𝐕 of eigenvectors which diagonalizes the covariance matrix.  

𝐕−𝟏𝚺𝐕 = 𝐃     (3.17) 

where 𝐃 is the diagonal matrix of eigenvalues of 𝚺. 

 Next, we find vectors 𝐮𝑗 and scalars λ𝑗  which are the eigenvectors and 

eigenvalues of the covariance matrix. Our aim is to seek a set of  𝑘 orthornormal 
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vectors,𝐮𝑖  which best describes the distribution of the data. The 𝑗𝑡𝑕  vector, 𝐮𝑗 , is 

chosen such that 

𝜆𝑗 =  
1

𝑘
  𝐮𝑗

𝑇𝐝𝑖 
2𝑘

𝑖=1      (3.18) 

is a maximum, subject to 

𝐮𝑙
𝑇𝐮𝑗 =  𝜕𝑙𝑗 =  

1      if𝑙 = 𝑗
0  otherwise

     (3.19) 

To determine the number of principal components to use, we first rank the eigenvalues, 

λ𝒋′s in decreasing order. We chose the 𝑠 principal components corresponding to the 

eigenvalues for which: 

    𝜆𝑗 > 𝑓 𝜆𝑗
𝑠
𝑗=1

𝑠
𝑗=1     (3.20) 

𝑓is some fraction of the variation in the original dataset that we want to explain in our 

transformed feature space.  It is standard practice in the face processing area to keep 

95% to 99% of the total variance.  
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Figure 3.11 Principal components versus the percentage of variance retained. 

 

In this work, we chose to retain 97% of the variance and that is 46 out of 260 

principal components in the case of 3D facial surface normals as the baseline feature. 

The reason we chose 97% of the variance is simply because it is the middle point 

between 95% and 99%. Figure 3.9 shows number of principal components versus the 

percentage of variance retained. 

 At this stage, each 𝐝𝑖  can be represented as a linear combination of the 

eigenvectors 𝐮𝑗 : 

𝐝𝑖 =  𝜔𝑖𝑗𝐮𝑗
𝑘
𝑗=1       (3.21) 

This linearly convex combination is fully controlled by the shape parameters, 𝜔𝑖𝑗 , 

given by: 

𝜔𝑖𝑗 = 𝐮𝑗
𝑇𝐝𝑖      (3.22) 

0

20

40

60

80

95% 96% 97% 98% 99%



   

 

66 

 

Each set of training 3D facial points is represented on this basis as the vectors which 

are simply the projection of the data onto the subspace defined by the eigenvectors. 

𝜑𝑖 =   𝜔𝑖1, 𝜔𝑖2, … , 𝜔𝑖𝑗  
𝑇
    (3.23) 

where𝑖 = 1, … , 𝑗.We can create a range of face shapes by varying the shape parameters 

𝜔. 

𝛀 = 𝐦 +  𝜔𝑖𝑗𝐮𝑗
𝑘
𝑗=1     (3.24) 

 

3.4 Conclusions 

 In this chapter, we described our pre-processing steps which are common in the 

3D face recognition field. The process began with the raw 3D facial points extraction 

from Bosphorus database and was followed by 3D face alignment. We used 22 

manually annotated 3D facial landmarks and another 93 additional 3D facial points. 

We introduced the PCA computation that has been implemented in this work.  

 In the next chapter, both pre-processed data and the PCA algorithm will be 

used to perform 3D facial expression classification.  
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CHAPTER 4 

3D FACIAL SURFACE NORMALS 

  

 Combinations of facial features form a human facial expression. Therefore, the 

deformation of facial features should be a suitable approach in order to determine the 

facial expressions shown by the subjects.  The question is which 3D properties best 

describe the deformation of facial features so that a higher success rate of facial 

expression classification can be achieved. These 3D properties should be the 

significant properties that involves in at least six basic facial expressions and therefore 

the facial deformation can be easily observe. 

 The use of 3D facial geometric data and extracted 3D features for facial 

expression classification has not been widely studied. According to Gökberk et al., 

(2006), the most frequently used 3D facial features in 3D face classification are 3D 

point (also called point cloud feature), 3D feature distance (Soyel et al., 2007), 

curvature-based descriptors (Gökberk et al., 2006) and facial profile curves and 3D 

shape analysis (Soyel et al., 2007; Wang et al.,2006; Maalej et al., 2010). Generally, 
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the 3D features are extracted and fed into the facial expression/face classification 

classifiers. In Soyel et al., (2007), distances between 3D facial landmarks were used 

directly as the input to classifiers in order to classify facial expression.  

 This chapter is about our approach to facial expression classification using 3D 

facial surface normals built from 3D facial points as the baseline feature. The 

preliminary results are presented in this chapter.  After the common pre-processing 

step, 3D facial surface normals are extracted from 3D facial points. Shape weights are 

then computed from principal components formed by a set of 3D faces.  For the 

purpose of evaluation, facial expression classification using 3D facial points and 3D 

distance measurements are also carried out. Using shape weights as the input, two 

chosen classifiers are used in facial expression classification: a simple nearest 

neighbour classifier and a Support Vector Machine (SVM).In this work, we are 

demonstrating the discriminative power of feature set and thus a simple classifier such 

as nearest neighbour and SVM is sufficient to be use. 

 The remainder of this chapter is organized as follows: In section 4.1 we explain 

the extraction of 3D facial surface normals from 3D facial points. The classification 

procedure which includes an explanation of the different classification approaches is 

described in section 4.2. The results are discussed in section 4.3 followed by a general 

discussion in section 4.4. Section 4.5 concludes this chapter. 

 



   

 

69 

 

4.1 3D Facial Surface Normals 

 Verzetti et al., (2012) in their work conclude that results on 3D facial features 

studies in the facial expression classification area were not as numerous as in face 

classification studies. Until now, only two significant studies have been frequently 

referred to in the literature: (1) Euclidean distances for six different facial features 

(Soyel et al., 2007) and (2) ratio of distances which are based on properties of the line 

segments connecting a set of particular facial features (Tang et al, 2008). 

 Our focus is on the advantage of having 3D facial points which are easily 

provided by the technology 3D scanners on the market. With the availability of raw 3D 

facial data, extraction of 3D facial surface normals is a straightforward task. For that 

reason, a model based on 3D facial surface normals is suggested as another 3D 

geometric measurement feature that could improve facial expression classification rate. 

A surface normal is a vector that is perpendicular to the tangent plane to a surface at a 

point .In addition, surface normals are also the features that encode the local 

directional gradient.   

 We believe that each expression has a consistent distribution of surface normals 

which distinguish it from other expressions. When the facial expression changes, the 

facial points positions also change which will cause its surface normal to change since 

surface normals is a derivative of facial landmark position. Surface normals are 

considered to be more accurate in describing facial surface changes compared to using 

facial points due to the fact that a surface normal is built from a 3D facial point as well 

as its neighbouring facial points. This has to do with the computation of surface 
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normals which includes every neighbouring facial points of those particular facial 

features. The similar idea of taking into account the neighbouring facial points into the 

computation of a facial feature can be found in curvature-based descriptors and surface 

profiles. However, in this work, we are interested in how such facial expression 

variations manifest themselves in terms of changes in the field of 3D facial surface 

normals. 

 Ceolin (2012) in her work employed a 2.5D representation based on facial 

surface normals (also known as facial needle map) for gender and facial expression 

classification. The needle map used is a shape representation that is acquired from 2D 

intensity images using Shape-from-Shading. In our work, the surface normals are 

computed using the raw 3D facial points extracted from the Bosphorus database which 

is different from Ceolin‟s method. The surface normal of each triangular polygon is 

calculated using its corner points (i.e.: three 3D facial points).  

 Let 𝐅𝐢 be a 3D face of the 𝑖𝑡𝑕  subject. 𝐅𝐢is represented by the set of 3D facial 

points 

𝐅𝐢 =   𝑝1
𝑖 , 𝑝2

𝑖 , ⋯ , 𝑝𝑁
𝑖       (4.1) 

where the 𝑝𝑖𝑠 are the  𝑥, 𝑦, 𝑧 coordinate of each 3D facial point and 𝑁 is the number 

of 3D facial points in the face. At each of the 3D facial points on the facial surface, we 

encode the facial points using their unit surface normal vectors, 

𝛀𝐢 =   𝑠1
𝑖 , 𝑠2,

𝑖 ,⋯ , 𝑠𝑁
𝑖       (4.2) 
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where the𝑠𝑘
𝑖 𝑠 are the 3D unit normals 𝑠𝑘

𝑖 =  𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧 . Once all of the triangular 

polygon normals are calculated, the normal for each vertex in the triangulated face data 

is computed by averaging the normals of the neighbouring polygon surface normals. 

Figure 4.1 shows an example of the triangular polygon with its vertex normals.  

 

Figure 4.1   Example of triangular polygons with its vertex normals. 

  For example, vertex 1 has four neighbouring meshes and in order to get 𝑆1
𝑖 , all 

the normals of four triangular meshesthat include vertex 1,2, 3, 4, 7 and 8must be 

averaged, as shown in figure 4.1. In addition, to calculate surface normals, these 

vertices have to be in anti-clockwise winding order around the face. To calculate the 

normal for this mesh, we need to compute the cross product of these vectors followed 

by normalization to find the unit vector of the normal. Once all surface normals for 

mesh A, B, C and D are calculated then the average of them is calculated. Besides 

unweighted average, the other option is to use a weighted average by some importance 

factor (i.e.: area of a mesh). In this work, the unweighted average of normals is 
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employed is done to avoid any other factor (such as the area of a mesh) to influence the 

normal computation. Figure 4.2 shows an example of surface normals of a 3D facial 

surface. The red lines denote the surface normals on a 3D facial surface. 

 
Figure 4.2 Surface normals on a 3D facial surface 

 

4.2 Classification Procedure 

 After the extraction of 3D surface normals, these features are then used as the 

input in the statistical modelling stage. In this work, PCA is chosen and it has been 

described in Section 3.3. A 3D face probe𝛛,  contains 𝑁 set of 3D surface points. The 

probe is normalized where 𝐦     is the mean of 3D surface normals.  

𝛄 =  𝛛 − 𝐦       (4.3) 
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This normalized probe is projected onto the eigenspace (the collection of Eigenvectors) 

and find out the weights𝜔𝑖𝑗 . 

𝜔𝑖𝑗 = 𝐮𝑗
𝑇𝛄     (4.4) 

for 𝑗 = 1, … , 𝑘 and k  is the number of training 3D faces and 𝐮𝑗
𝑇     are the eigenvectors. 

The normalized probe 𝛄 can be represented as:  

𝜑𝑖 =   𝜔𝑖1, 𝜔𝑖2, … , 𝜔𝑖𝑗  
𝑇
    (4.5) 

In this work, we used two types of classification approaches: Nearest Neighbour 

Classifier and Support Vector Machine. As mentioned before, we are demonstrating 

the discriminative power of feature set and thus a simple classifier such as nearest 

neighbour and SVM is sufficient to be use. The following sections give details on the 

classification approach. 

 

4.2.1 Nearest Neighbour Classifier 

 The nearest neighbour is the simplest of all algorithms for classifying a test 

sample. Given a training set with n-classes, a new training sample is classified by 

calculating the distance to the nearest training class.  
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𝐿1distance measurement (or known as Manhattan distance) is the sum of 

absolute differences between two vectors where 𝐿1 is is achieved by walking „around the 

block‟ in order to get from point 𝑥 to point 𝑦. On the other hand, Euclidean distance is a 

𝐿2 norm type distance measurement where the length of the straight line between 

point 𝑥 to point 𝑦 is the distance. 

Any distance measure can be used, however the most widely used distance 

metric is the Euclidean distance. In this work, Euclidean distance is used simply 

because the idea is to measure the shortest distance (i.e. the length of the straight line 

between two locations) of the projected probe face to the projected training sets. In 

general, the distance between two points x and y in a Euclidean space, ℜ𝑛  is given by: 

𝑑(𝐱, 𝐲) =  𝐱 − 𝐲 =   𝑥𝑖 − 𝑦𝑖 2   (4.6) 

To determine a face class that provides the best description of the probe, the 

feature vector of the face class which minimizes the Euclidean distance to vector is 

chosen 

𝑒𝑘 =   𝜑 − 𝜑𝑘     (4.7) 
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4.2.2 Support Vector Machine 

 The Support Vector Machine (SVM) is a supervised learning method that 

analyses and recognizes patterns. It is inherently a two-class/binary classifier. Given a 

set of training examples, each data is marked as belonging to one of the two classes 

and the SVM builds a model that categorizes the new example data to one class or 

another.  SVM map an input sample to a high dimensional feature space and try to find 

an optimal hyperplane that minimizes the classification error for the training data using 

the non–linear transformation function (Sebald, et al., 2001).  A new example is then 

predicted to belong to a class based on which side it falls in.  

 The boundaries between classes are hyperplanes (a line in figure 4.3). 

The best hyperplane for the SVM means the one with the largest margin (two dashlines 

in figure 4.3) between the two classes. Margin means the maximal width of the slab 

parallel to the hyperplanes that has no interior data points (Mathworks, 2012). The 

vectors near the hyperplanes are the support vectors and the support vectors are the 

width constrain of the margin. SVM analysis determines the hyperplanes that are 

oriented so that the margin between the support vectors is maximized. 
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Figure 4.3 SVM concepts of two classes 

 Facial expression classification is not a binary classification as we have six 

basic facial expressions involved. Despite being inherently binary, SVM can also solve 

multiclass problems. Figure 4.4 shows a multiclass SVM problem where we have six 

classes which are separated by gaps. There are two ways of doing multiclass 

classification using SVMs: (i) one-versus-all classifiers (OVA) and (ii) one-versus-one 

classifiers (OVO). The concept of OVA is that a data point is considered as belonging 

to a class if and only if that particular class accepted it and other classes rejected it. On 

the other hand, OVO which is also known as “pairwise coupling”, solves the 

multiclass classification by choosing a class that is selected by the most classifiers. In 

OVO, an SVM classifier is developed for each pair of classes resulting in 𝑁(𝑁 − 1)/2 

SVM classifiers.  
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Figure 4.4 Multiclass SVM problem 

 The acknowledged drawback for OVO is it is more computationally intensive 

since it requires many SVM classifiers to be built. According to Weston and Watkins 

(1998), both approaches have the same accuracy. In this work, OVA is chosen for its 

simplicity, practicality and to avoid the intensive computation of OVO. However, 

software that is publicly free called SVM
multiclass 

(Joachim et al., 2009) is used in this 

work. A thorough explanation of the multiclass SVM implemented in SVM
multiclass

 can 

be found in Appendix A. 

  

4.3 Experimental Technique 

 The aim of this experiment is to explore the potential of 3D facial surface 

normals in classifying six basic facial expressions. The experiment was done using 3–



   

 

78 

 

fold cross-validation. This approach has been chosen as it will help to generalize the 

independent data set used in this study and thus reduce the risk of having overfitting 

problem. Overfitting occurs to the model that fits the data more than is warranted. It 

generally happens when a model is too complex (i.e. has too many parameters) and as 

a result, it will have poor predictive performance.  

 There are 64 subjects with 384 faces in total. 3-fold cross validation is chosen 

to maximize the number of subjects in one fold. With 3-fold cross validation, each fold 

have at least 21 subjects with six different facial expressions. Normally, most of the 

existing works used 10-fold cross validation. However, with 10-fold, each fold will 

only have at least 6 subjects which is too small for a sample size. All facial expressions 

of one subject belong to the same fold. This is to make sure when classification takes 

place, a facial expression of one particular subject will not be classified as another 

facial expression for the same subject. All facial expressions are used for both training 

and validation and each facial expression is used for validation exactly once.   

 The cross-validation process is repeated 3 times (based on the number of folds 

allocated). For each fold to be tested the remaining 2 folds belong to the training set. 

Two of these folds have 132 six-basic facial expressions and the remaining has only 

126 expressions.  

3D faces can be regarded as points in a high-dimensional space; they often lie 

on a subspace of much lower dimensionality, embedded in the high-dimensional image 

space. By employing dimensionality reduction, a more meaningful representation is 

established, therefore, addressing the issue of the ”curse of dimensionality” (Sharath et 
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al., 2011). We used PCA as the dimensional reduction approach and the dimensional 

reduction goal is to find a low-dimensional representation of the data while still 

describing the data with sufficient accuracy. Dimensionality reduction techniques 

using linear transformations (i.e. PCA) have been very popular in determining the 

intrinsic dimensionality of the manifold as well as extracting its principal directions. 

For many datasets, the first several principal components explain most of the variance, 

so that the rest can be disregarded with minimal loss of information. As mentioned in 

the previous chapter, we chose to retain only 97% of the total variance. For 3D facial 

points, 97% of the total variance is equal to 31 out of 260 principal components and 22 

out of 260 principle components for the 3D distance measurement feature 46 out of 

260 principal components for 3D surface normals. 3D facial surface normals as the 

feature vector certainly capture a large amount of the facial expressions variation from 

different subjects compared to 3D facial points and 3D distance measurements. 

 3D facial surface normals of all training faces are used as the input to PCA and 

the probe 3D face is then projected to the face space defined by the eigenvectors of the 

PCA model. The shape weights from the PCA are used as the input to the classifiers. 

For classification, the nearest neighbour classifier and SVM are used.  

 For the purpose of evaluation, there are two feature vectors are used together 

with 3D facial surface normals: (1)3D facial points and (2) 3D distance measurements. 

The reason we chose 3D facial point is simply because 3D facial point is the raw 

information obtained from 3D space. 3D distance measurement feature is used as to 

duplicate Soyel‟s and Tang‟s idea. Soyel et al. (2010) used 83 facial features available 
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in BU-3DFE to find distances between points. Tang et al. (2008) extracted a set of 96 

features which consist of the normalized distances and slopes of the line segments 

connecting a subset of the 83 facial feature points. However, there are few facial 

landmarks that were used in Soyel and Tang‟s which are not provided in the database 

used in this work (i.e. facial points under the nose are not available for all 3D faces 

frontal profile) and therefore cannot be used as the feature vector. In our work, 3D 

distance measurements feature is the distance from each facial point to the nose tip.  

The shape weights of 3D facial points and the 3D distance measurements must 

also be computed before the classification phase takes place. A total of 115 3D surface 

normals, 115 distance measurements vector and 115 3D facial points are used in this 

experiment. 

 Table 4.1 shows the results of using the simple nearest neighbour classifier 

with three different types of feature vectors as the baseline feature expressed by the 

confusion matrices. The emboldened numbers are the percentage of each expression 

correctly classified, along with where the misclassifications occurred.  Since we are 

using a 3-fold cross–validation approach, the numbers in the table are the sum of the 

3–fold cross–validation as a percentage.  

 Each confusion matrix shows where the main errors are introduced. For 3D 

facial points feature, the only expression that is correctly classified more than half the 

time is Happy expression. Two expressions that have lower than 30% correct 

classification are Disgust and Fear. The Sad expression has a slightly more than 30% 

correct classification. Surprise and Anger are roughly about the same percentage. The 
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top two main confusions for Anger, Sad and Disgust come from incorrect 

classification as Anger or Sad or Disgust, showing the higher similarities of 3D facial 

points between these expressions.  

 Unlike 3D facial points features, the only expression that reaches more than 

50% correct classification is Surprise when 3D distance facial point from nose tip are 

used as the feature vector. The results on Disgust, Fear and Sad are all lower than 30% 

whereas fear has the lowest percentage which is 20%. Anger and Happy have a similar 

result, which is 41–44% correct classification. Similar to 3D facial points, the main 

confusion for Anger, Sad and Disgust comes from incorrect classification as Anger or 

Sad or Disgust. However for Happy, three classes have the same misclassification rate 

which is Fear, Surprise and Sad. 

 However, using 3D facial surface normals as the baseline feature with nearest 

neighbour classifier definitely improves the facial expression classification rate. 

Disgust and Fear have the worst classification results where both are lower than 35%. 

Surprise and Happy are the expressions with correct classification of more than 50% 

and between both, Happy has the highest score. Anger and Sad are almost 50% 

correctly classified. The separation between expressions classes for 3D facial surface 

normals is quite a lot larger than those for 3D facial points and 3D distance 

measurements. Anger and Happy have never been classified as Surprise.  However, the 

percentage for Surprise expression using 3D facial surface normals is slightly lower 

than using 3D distance measurements. We believe this is because for Surprise 

expression, the deformation most of the facial features are obvious, such as the 
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eyebrows are raised, the upper eyelids are wide open, the lower eyelids relaxed and the 

jaw is opened (Pandzic & Forchheimer, 2002). Using 3D distance measurement 

feature, the deformation of the facial features is significant enough to be classified as 

Surprise.  

 

Table 4.1 Confusion matrices of 3D facial expression classification using the nearest 

neighbour classifier Recall rates for each expression are shown in bold. 

% Anger Disgust Fear Happy Sad Surprise 

 3D Facial Points 

Anger 43.08% 26.15% 15.38% 3.08% 20.00% 9.23% 

Disgust 18.46% 27.69% 7.69% 10.77% 16.92% 3.08% 

Fear 10.77% 9.23% 23.08 7.69% 9.23% 26.15% 

Happy 3.08% 12.31% 6.15% 61.54% 12.31% 1.54% 

Sad 20.00% 16.92% 9.23% 7.69% 30.77% 12.31% 

Surprise 4.62% 7.69% 38.46% 9.23% 10.77% 47.69% 

 3D Distance Measurement 

Anger 41.54% 29.23% 4.62% 6.15% 20.00% 1.54% 

Disgust 16.92% 24.62% 10.77% 9.23% 15.38% 4.62% 

Fear 4.62% 7.69% 20.00% 13.85% 12.31% 21.54% 

Happy 9.23% 7.69% 12.31% 43.08% 16.92% 9.23% 

Sad 23.08% 23.08% 12.31% 13.85% 27.69% 6.15% 

Surprise 4.62% 7.69% 40.00% 13.85% 7.69% 56.92% 

       3D Surface Normals 

Anger 47.69% 21.54% 15.38% 4.62% 21.54% 4.62% 

Disgust 13.85% 32.31% 15.38% 12.31% 12.31% 6.15% 
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Fear 15.38% 12.31% 26.15% 3.08% 4.62% 26.15% 

Happy 1.54% 3.08% 1.54% 69.23% 6.15% 1.54% 

Sad 21.54% 15.38% 16.92% 10.77% 43.08% 6.15% 

Surprise 0.00% 15.38% 24.62% 0.00% 12.31% 55.38% 

  

 Table 4.2 shows the results of using SVM with three different types of feature 

vectors as the baseline feature. For 3D facial points, no misclassification error for 

Happy and Surprise is the expression with the second highest correct classification. 

Fear has the lowest score in which most of it has been misclassified as Surprise. 

Disgust has less than 30% correct classification and it has been incorrectly classified as 

Anger and Happy. Most Anger expressions are misclassified as Sad and vice–versa.  

 3D distance measurement has three expressions which achieved more than 50% 

correct classification and they are Anger, Happy and Surprise. This result is slightly 

improved compared to using the nearest neighbour classifier. However, in contrast 

with other feature vectors in both classifiers, Disgust has the lowest rate of correctly 

classified expressions. Fear and Sad expressions also have low rates of correct 

classification which is 15.38% and 27.69% respectively. Again, as opposed to other 

feature vectors in both classification types, Happy is largely misclassified as Surprise. 

Fear and Disgust are never misclassified as Surprise. 

 Comparable with 3D facial points, 3D surface normals records a 100% correct 

classification for the Happy expression. Disgust expression has a slightly lower rate of 

correctly classified than using 3D facial points but it is still better than using 3D 
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distance measurements. 3D facial surface normals have the lowest rate of correctly 

classified for the Surprise expression, however the classification rate is still more than 

50%. For the rest of the expressions, 3D surface normals perform quite well compared 

to the two feature vectors.  It is acceptable to confuse Disgust, Sad and Anger.  

 

 

Table 4.2 Confusion matrices of 3D facial expression classification using SVM. 

Recall rates for each expression are shown in bold. 

 

Anger Disgust Fear Happy Sad Surprise 

 3D Facial Points 

Anger 56.92% 27.69% 10.77% 0.00% 26.15% 3.08% 

Disgust 6.15% 27.69% 9.23% 0.00% 4.62% 1.54% 

Fear 3.08% 3.08% 6.15% 0.00% 6.15% 1.54% 

Happy 0.00% 29.23% 3.08% 100.00% 9.23% 1.54% 

Sad 30.77% 6.15% 7.69% 0.00% 43.08% 1.54% 

Surprise 3.08% 6.15% 63.08% 0.00% 10.77% 90.77% 

 3D Distance Measurement 

Anger 52.31% 40.00% 3.08% 6.15% 40.00% 4.62% 

Disgust 3.08% 1.54% 0.00% 4.62% 3.08% 0.00% 

Fear 3.08% 7.69% 15.38% 9.23% 3.08% 4.62% 

Happy 7.69% 27.69% 9.23% 56.92% 13.85% 7.69% 

Sad 32.31% 15.38% 12.31% 1.54% 27.69% 4.62% 

Surprise 1.54% 7.69% 60.00% 21.54% 12.31% 78.46% 

 3D Surface Normals 

Anger 64.62% 27.69% 7.69% 0.00% 23.08% 6.15% 

Disgust 7.69% 26.15% 9.23% 0.00% 9.23% 3.08% 
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Fear 6.15% 4.62% 29.23% 0.00% 1.54% 9.23% 

Happy 3.08% 26.15% 10.77% 100.00% 13.85% 20.00% 

Sad 15.38% 12.31% 6.15% 0.00% 47.69% 7.69% 

Surprise 3.08% 3.08% 36.92% 0.00% 4.62% 53.85% 

  

4.4 Discussions 

 In general, most of the Fear expression examples are misclassified as Surprise 

and Surprise has mainly been incorrectly classified as Fear. This is an expected 

outcome due to the similarities in both expressions – mouth stretch, eyebrows raise and 

eyes open (Sandbach et al, 2012). However, the facial expression classification results 

of the three feature vectors using the simple nearest neighbour classifier are still not 

good enough compared to a recent study by Sandbach et al., (2012) based on 3D 

dynamic facial expression data. They used Gentleboost as the classifier and then a 

Hidden Markov Model (HMM) is employed in order to model the full temporal 

dynamics of the expression.  Gentleboost is a binary classification for use with 

multilevel categorical predictors with a weighted least-square regression. The idea of 

Gentleboost is to put higher weights on the difficult images ().The highest score rate in 

Sandbach et al.‟s 3D experimental work is Surprise and the lowest score rate belongs 

to Fear. In our work, using 3D facial surface normals with the nearest neighbour 

classifier, the highest score rate belongs to Happy whereas the lowest score is Fear. On 

the other hand, the highest correctly classified expression for 3D facial surface normals 
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with SVM is also Happy, although the lowest correctly classified expression is 

Disgust. This is not a good comparison due to the obvious reason which is the data 

type difference.  For dynamic data, an expressive sequence is expected to have its 

onset features followed by apex and offset features. This is like having a clue of what 

to anticipate from the data. Static facial expression data do not have these features and 

classification is made purely based on the facial features on a single image frame. 

 Soyel et al., (2007) used only a small set of 11 3D distance-vectors as the 

feature vector with neural network classifier. Nine distance-vectors were selected from 

the left side of the face as the repetitive selection on the right side is not needed due to 

symmetry. Tang et al., (2008) used images from the 3D facial expression database BU-

3DFE and they are using features based on the ratio of distances between points which 

are based on properties of the line segments connecting a set of particular facial 

features. However, we cannot use both works (Soyel et al., 2007 and Tang et al., 2008) 

as a benchmark since they are using data from the BU-3DFE database. The different 

method to capture the 3D facial data for each database might influence the 

successfulness of the approach chosen. On the technical side, 3D facial data of 

Bosphorus database was captured with Inspeck Mega Capturor II 3D while for BU-

3DFE database, 3DMD digitizer is used. In addition, Savran et al., (2008) mentioned 

that a special powder was applied on the subjects face to avoid specular reflections 

occurring on the face. To date, there is no work that has the same experiment set-up 

suitable for a valid comparison.   
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Figure 4.5 Dimensional structures of six basic facial expressions (Russell and Bullock, 

1986) 

  

 Russell and Bullock (1986) stated that the facial expression categories have a 

fuzzy boundary between each other at the level of classification. Figure 4.5 shows the 

dimensional structure of six basic facial expressions. It is a two-dimensional structure 

where the x-axis is the pleasantness dimension and the y–axis is the arousal level 

dimension. Consistent with this claim, based on table 4.2 and table 4.3, Disgust is 

often mistakenly classified as Anger or Sad and vice versa.  
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(a) 

 
(b) 

 
(c) 

Figure 4.6 A subject showing (a) an Anger expression, (b) a Sad expression and (c) a Disgust 

expression 
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Figures 4.6(a) - (c) show examples of Anger, Sad and Disgust expressions and we 

can clearly see similarities especially at the eyes, eyebrows, nose, cheek and forehead. 

We can see in figure 4.5, the gap between Disgust and Sad is not very clear and there 

is an overlap in classification space between Sad and Disgust (see the maroon-coloured 

dot among the orange-coloured dot). Therefore, Angry (Anger) could be wrongly 

classified as Sad. Surprise is the false positive of Fear/Afraid and vice versa. Figure 

4.7 (a) and (b) show the similarities between the Fear and Surprise expressions which 

are obviously at the mouth and eyes area. 

 

(a) 

 

(b) 

Figure 4.7 A subject showing (a) a Fear expression and (b) a Surprise expression 
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Figure 4.8 Overall 3D facial expression classification results for three types of 

feature vectors using the nearest neighbourhood classifier 

  

 Figure 4.8 shows the overall results on 3D facial expression classification 

results for three types of feature vectors using the nearest neighbour classifier. 

Evidently, 3D facial surface normals outperform 3D facial points and 3D distance 

measurement in all facial expressions except for the Surprise expression where it has 

the same results as 3D distance measurement. On the other hand, 3D facial points are 

better than 3D distance measurement in all expressions excluding the Surprise 

expression. This is because 3D distance measurements between each facial landmark 

and nose tip are able to encapsulate the Surprise expression which shows a significant 

distance between the mouth and cheek. 
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Figure 4.9 Overall 3D facial expression classification results for three types of 

feature vectors using simple SVM 

 

 Figure 4.9 shows the overall results on 3D facial expression classification 

results for three types of feature vectors using SVM. 3D facial points and 3D facial 

surface normals have the highest score for the Happy expression. Rather good results 

occur with Anger, Fear and Sad for 3D facial surface normals when compared against 

3D facial points and 3D distance measurements. However, a large difference 

percentage on Surprise can be seen between 3D facial surface normals and the other 

two feature vectors. 3D facial surface normals achieve a better result for Fear 

expression but still fail to reach half of the correct classification. 
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Table 4.3 Average classification rates in our work 

3D Facial Features 
Nearest Neighbour 

Classifier 
Support Vector Machine 

3D Facial Points 39% 54% 

3D Distance Measurement 36% 39% 

3D Facial Surface Normals 46% 54% 

  

 Table 4.3 shows the average classification rates for the three feature vectors 

using nearest neighbour classifier and SVM. 3D facial surface normals obtained a good 

result though it still is slightly under half of the percentage. For SVM, 3D facial 

surface normals are similar to 3D facial points which is slightly over 50%. 3D distance 

measurements produce the worst classification for both classifiers.  

 

4.5  Conclusions 

 Shape weights are computed and used as the input to a nearest neighbour and a 

SVM classifier. The probe 3D face is projected onto a sub space spanned by the PCA 

eigenvectors and its shape weights computed. A facial expression classification 

experiment using 3D facial points and 3D distance measurements was also carried out. 

Of all six experiments, the 3D facial surface normals approach performs well for both 

classifiers.  
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 Even with only six basic facial expressions, the chance to mistakenly classify 

an expression is rather high. It is due to wide variations of facial expression between 

subjects as well as the differences between acted and natural examples. A facial 

expression is formed by a collection of facial features and to classify a facial 

expression from a whole face is like learning a global deformation of a face. Hence, we 

could not observe each of the facial feature deformations closely. We believe 

decomposing a face into several modules promotes the learning of a facial local 

structure and therefore the correlation between a facial feature and a facial expression 

is emphasised. 

 This motivates our work in the following chapter. In chapter 5, we focus on 

facial expression classification based on modular 3D surface normals. 
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CHAPTER 5 

MODULAR 3D SURFACE NORMALS 

  

 In the previous chapter, we presented 3D facial expression 

classificationusing3D facial surface normal features using PCA. The outcomes of the 

experiments are only slightly improved compared to using 3D facial points or 3D 

distance measurements. We believe the reason for getting such results is the large 

variation of expression intensity between each facial expression that we have in the 

database which clearly affects the facial expression classification. This is due to the 

fact that human show their facial expression according to emotional level on which 

they experience. Intensity level of a facial expression is important as it will lead to a 

false impression of people‟s emotion if misinterpreted. Ekman and Friesen (1978) 

introduced five level of expression intensity while Yin et al. (2006) in their developed 

database used 4 different level of intensity. 

 A facial expression involves deformation of a collection of particular facial 

features and muscles. Classifying a facial expression from one whole face is like 
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learning a global deformation of a face. The decomposition of a face into several 

modules promotes the learning of a face local structure and therefore the correlation 

between a facial feature and a facial expression is highlighted. Concurrently, the 

problem of the large variation of intensity for every facial feature might be solved as 

the face decomposition will help to put more weight on each facial feature. 

 The face decomposition approach has raised another question of how to 

determine the facial expression shown by the probe subject when one or more face 

modules do not agree on a facial expression classification. A facial expression must be 

determined based on a group of facial features. Certain facial features play a great role 

in deciding a facial expression classification. To solve this, we carried out a modular 

priority rank test using Adaptive Boosting (AdaBoost) which is a machine learning 

algorithm which works by combining several “weak learners”. As a result, we have 

found the priority rank of each face module together with its weighting. 

 In our work, the framework begins with the face decomposition. When 

classifying the probe 3D face, the classification of each module was optimised 

independently and the results were then blended following a Weighted Voting Scheme 

(WVS) approach. Results from the modular priority rank test are used in the WVS. For 

the purpose of evaluation, we also carried out experiments using Majority Voting 

Scheme (MVS) in our work. 

 The remainder of this chapter is organized as follows: In section 5.1 we discuss 

the decomposition of a face into several modules. The next section explains the 

priority rank of each module. The integration of modules is dealt with using the WVS 
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approach which is described in section 5.3. The results of this approach are given in 

section 5.4. In section 5.5, we discuss the results in general and section 5.6 concludes 

this chapter. 

 

5. 1 Modular 3D Facial Surface Normals 

 When facial expression classification is carried out based on a whole face, the 

dependency between facial features is not being taken full advantage of. In other word, 

when a facial feature deforms due to facial expression changes, the other facial 

features which are connected to the facial feature are deforming as well. The level of 

intensity of the affected facial features is dependent to the intensity level of the facial 

feature that deform principally because it is the important deformation in a facial 

expression. We believe by decomposing a face into several modules, we are able to 

learn the local structure of each facial feature and their relationship between facial 

features and thus the classification of the facial expression should improve.  

 Different combinations of facial features and muscles produce different types 

of facial expressions. Facial expression varies from one person to another depending 

on their facial musculature, bone structure, facial features shapes, wrinkles, and so on. 

The intensity of facial features varies as well. Figure 5.1 shows three subjects taken 

from the Bosphorus database with six basic facial expressions and we can see the 

difference in their facial expressions by looking at each of the facial features. For 
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Anger and Disgust expressions, all subjects show a different type of mouth 

deformation. The size of the gap between the upper lip and lower lip in the Surprise 

expression is also dissimilar between subjects. Moreover, the deformations for 

eyebrows and mouth in the Sad expression for every subject are completely different. 

Hypothetically, by decomposing faces into modules, we could focus on capturing the 

variation as well as the intensity of facial features in each module.  

 Subject A Subject B Subject C 

Anger 

   

Disgust 
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Fear  

   

Happy 

   

Sad 
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Surprise 

   

Figure 5.1 Three subjects with six basic facial expressions 

  

  

 
Figure 5.2 Face decomposition in our work 
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 In this work, a face is divided into six modules as illustrated in figure 5.2 where 

one colour denotes one module. With this decomposition, we are considering that in 

any expressions, all facial features are involved regardless the importance of that facial 

features for a particular expression. This is simply because FER refers to the study of 

facial changes elicited as a result of relative changes in the shape and positions of the 

main components, such as eyebrows, eyelids, nose, lips, cheeks and chin (Rabiu et al., 

2012). In addition, we could also measure the priority rank of the facial features. 

Tang‟s in their work made an assumption that the face is symmetrical, therefore only 

facial features on half of the face are considered. However, there are subjects who 

show an expression which was among the six basic expressions with unsymmetrical 

deformation of facial features, specifically the Eyebrows (refer to figure 5.2). Due to 

this kind of data, we have decided to include all facial features on both sides of the 

face.  

 
Figure 5.3 Subject shows the Fear expression with unsymmetrical deformation of the 

Eyebrows. 
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 MPEG-4 is a method of defining compression of audio and visual (AV) digital 

data which also provides end users with a wide range of interaction with various 

animated object. Facial Animation Parameters (FAPs) are a set of parameters, used in 

animating MPEG-4 models that provides an alternative way of modelling facial 

expression and the underlying emotion (Zhang et al., 2008). FAPs give the 

measurement of muscular action relevant to the AUs. Each of the modules has a 

different set of facial features which are also associated with FAPs except for the 

forehead. No facial feature in the forehead is involved in the deformation in six basic 

facial expressions. However we also include the forehead module in this work because 

we wanted to see how it influences each of the expressions. 

 
Figure 5.4 Facial features that belong to more than one module are on the black-

coloured edge 
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 Another interesting question is the facial features that are on the boundaries of 

a few modules. For example, the left and right nose saddles belong to the Nose and 

Cheeks module. We cannot just simply put these boundary facial features in only one 

module and completely ignore its effect on the other module. For that reason, we 

decided to include those boundary facial features in any modules that have them. 

Figure 5.3 shows the black-coloured edge where the boundary facial features that 

belong to more one module are positioned.  

  

 

 

 

Table 5.1 FAPs in every face module 

Module Facial Animation Parameters (FAP) Action Unit 

Nose stretch_l_nose, stretch_r_nose, AU9 

Cheek lift_l_cheek,  lift_r_cheek AU6 

Lips 

open_jaw, raise_b_midlip, stretch_r_cornerlip, 

raise_l_cornerlip, raise_r_cornerlip, push_b_lip, stretch 

_l_cornerlip, depress_chin, raise_b_midlip_o, 

stretch_r_cornerlip_o, raise_l_cornerlip_o, 

raise_r_cornerlip_o, stretch _l_cornerlip_o 

AU25, AU26, 

AU27, AU12, 

AU17 

Eyes 
close_t_r_eyelid, close_t_l_eyelid, close_b_r_eyelid, 

close_b_l_eyelid, 
AU5, AU7 

Eyebrows 

raise_r_i_eyebrow, raise_r_i_eyebrow, 

squeeze_r_eyebrow , raise_l_i_eyebrow, 

raise_l_o_eyebrow, squeeze_l_ eyebrow, 

AU1, AU2, 

AU4 
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 Table 5.1 shows the FAPs in every face module. Several works in the facial 

expression analysis area state different Action Units (AUs) are involved in six basic 

facial expressions. The list of AUs for six basic facial expressions is shown in Chapter 

2. According to Raouzaiou et al., (2002), the deformation of the cheek module only 

occurs in the Happy expression. On the other hand, Zhang et al., (2008) state that the 

deformation of the nose module occurs in Anger and Disgust. However, in Raouzaiou 

et al.‟s work, they did not include those FAPs in the nose module to describe the 

Angry and Disgust expression. With face decomposition, the FAPs/AUs for each facial 

expression is able to be observe. 

 

5.2 Modular Priority Rank 

 As mentioned before, in this work, the facial expression classification for each 

module is done independently. Therefore, each module is expected to produce a 

different classification from other modules. The problem arises when to decide which 

facial expression is being portrayed by the 3D probe in general when the results of 

each module classification are different. Each module has its own impact level to the 

six basic expressions. The simplest way to find which modules are affecting facial 

expression is to find their priority weighting.  

 Silapachote et al., (2005) select facial features using Adaptive Boosting 

(AdaBoost) and successfully single out the discriminative features. Consequently the 
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discriminative image regions without relying on a priori domain knowledge are also 

determined.  Their experiment shows that AdaBoost has successfully picked the mouth 

and the eyes as being informative and it also discarded irrelevant regions. However, 

they used 2D images as their data and only four expressions are considered in their 

experiments which are Neutral, Smile, Anger and Scream.  

 In this work, we also used AdaBoost to determine the important facial features. 

Our work differs from Silapachote et al.‟s work in that we used 3D facial raw points as 

the feature vectors in AdaBoost whereas Silapachote et al (2005) used histograms of 

Gabor and Gaussian derivative responses as appearance features. We also aim to have 

a weighting priority for each of the modules which Silapachote et al do not provide in 

their results. 3D facial raw points is chosen because it is the feature vector that is 

obtained directly from the 3D acquisition device. Any discrepancy in the weighting 

results due to wrong computation of feature vector used will affect the classification 

result.  

 AdaBoost was first introduced by Freund and Schapire (1997). AdaBoost is 

easy to implement and provides feature selection on very large sets of features. Even 

though it offers a fairly good generalization, an over-fitting problem can occur in the 

presence of noise. Given  𝑥1, 𝑦1 , … ,  𝑥𝑛 , 𝑦𝑛  where 𝑥𝑖 ∈  𝜒 with its binary class 

𝑦𝑖 ∈  −1,1  and a weak classifier 𝑕𝑡 : 𝜒 →  −1,1 . AdaBoost works by combining 

several “weak” learners𝑕𝑡(𝑥) in a linear combination  

𝐻 𝑥 = 𝑠𝑖𝑔𝑛   𝛼𝑡𝑕𝑡(𝑥)

𝑇

𝑡=1

                                                              (5.1) 
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to construct a strong learner. It is suitable only for binary classification. Initially, all 

weights 𝛼𝑡  are set equally and AdaBoost chooses the learner that classifies most data 

accurately. The process of AdaBoost maintains a distribution on the training samples. 

For the next 𝑇 iterations, the weight of each weak learner is determined, the 

distribution is updated and the data is re-weighted to increase the “importance” of 

misclassified training samples. For every iteration, the performance of each single 

weak learner 𝑕𝑗  on all training samples is assessed using the weighted error defined as 

𝜖𝑡 =  𝑤𝑡 𝑖 1 𝑕𝑗 (𝑥𝑖)≠𝑦𝑖 
                                                        (5.2)

𝑖

 

At the end of each iteration, the learner 𝑕𝑢  with the lowest error rate 𝜖𝑡  based on 

equation 5.2 is selected and stored as the best classifier 𝑕𝑡  at iteration 𝑡. Parameter 𝛼𝑡  

is computed as follows: 

𝛼𝑡 =
1

2
ln  

1 − 𝜖𝑡
𝜖𝑡

                                                           (5.3) 

 AdaBoost later is extended to a multi-boosting classification by Schapire and 

Singer (1999) known as AdaBoost.MH. In our work, we directly used the MultiBoost 

software package developed by Benbouzid et al., (2012).  MultiBoost implements 

AdaBoost with Multi-class Hamming Lost (AdaBoost.MH). AdaBoost.MH is a type of 

AdaBoost algorithm that converts the multi-class problem into multiple binary 

problems with an additional feature defined by the set of class labels. We set the 
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iterations round to 200. At each iteration, a strong learner is determined together with 

its weight and here, a strong learner is referred to a 3D facial landmark. The weight of 

the 3D facial points that belong to the same module is stored and at the end of the 

iteration, the weights are summed up. Each module now has a weight and the weight 

must be normalized to ensure the total weight for all modules is equal to 1.  

 
 Figure 5.5 A face decomposition with priority rank for each module  

Table 5.2 Face modules and its weight 

Rank Module Weight 

1 Eyebrows 0.1984 

2 Mouth 0.1848 

3 Eyes 0.1740 

4 Cheeks 0.1719 

5 Nose 0.1419 

6 Forehead 0.1291 
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 Figure 5.5 shows the face decomposition with the priority rank obtained from 

the multi-boosting result and Table 5.2 shows the weighting for each face module. The 

number on each module denotes their priority rank. In agreement with Silapachote et 

al., (2005), the eyebrows are the most important facial region in facial expression 

classification, followed by the mouth and the eyes region. The Nose module only 

significantly deforms in the Disgust expression, which explains it is a rather low 

weighting. As expected, the forehead module has the lowest weighting. 

 

5.3  Weighted Voting Scheme 

 A weighted voting system (WVS) is based on the idea that not all voters are 

equal. In other words, one in which the preferences of some voters carry more weight 

than the preferences of other voters. In our work, WVS is used to determine the facial 

expression class for the 3D probe based on the class that has been determined for each 

face module. As mentioned in the previous section, each module (voter) has its own 

weight. 

 Figure 5.6 shows the framework of WVS for modular 3D facial expression 

classification. Initially, the face is decomposed into six modules and the facial 

expression classification for each module is done independently. The 3D geometrical 

feature for each module is passed to the PCA algorithm to generate the shape weights 

used as the feature vectors in the SVM as well as nearest neighbour classifier. Due to 
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this independent mode, each module is expected to produce a different classification 

from other modules. Each module now has been classified as showing one of the facial 

expressions. The class information for each module together with its weight is passed 

into the Votes Counter algorithm. In the Votes Counter algorithm, the weight of the 

modules that belong to the same facial expression class is summed up. At this stage, 

each facial expression class has its accumulated weight and the facial expression class 

with the highest weight is considered as the facial expression shown by the 3D probe.  

 

 
Figure 5.6 Weighted Voting Scheme for modular 3D facial expression classification 
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Table 5.3 An example of WVS problem 

 Module Weight Facial Expression 

1 Eyebrows 0.1984 Surprise 

2 Mouth 0.1848 Disgust 

3 Eyes 0.1740 Happy 

4 Cheeks 0.1719 Happy 

5 Nose 0.1419 Happy 

6 Forehead 0.1291 Surprise  

  

 Table 5.3 shows an example of the results of the WVS algorithm. Eyes, Cheeks 

and Nose have been classified as Happy and the total weights for these three modules 

are 0.4878 while Mouth is the only module classified as Disgust which means its 

weight is solely 0.185. Forehead and Eyebrows are classified as Surprise with a total 

weight of 0.3275. The other three facial expressions namely Anger, Fear and Sad have 

a zero weight. WVS in this case voted Happy expression as the facial expression 

shown by the 3D probe. 

 In the case where each module has been classified as a completely different 

facial expression from all the others, WVS will vote on the final facial expression class 

based on the module with the largest weight. 
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5.4  Results 

 In this section, the results of the experiments are described and the analyses are 

presented. This section is divided into two sub-sections. The first sub-section discusses 

results for the modular 3D facial expression classification and the second sub-section 

discusses the WVS and MVS results. 

 

5.4.1 Modular 3D Facial Expression Results 

 Similar to the previous experiments in chapter four, the experiments in this 

chapter were done using 3–fold cross-validation. The emboldened numbers are the 

percentage of each expression that was correctly classified, along with where the 

misclassifications occurred.  Since we are using a 3–fold cross–validation approach, 

the numbers in the table are the sum of the 3-fold cross–validation expressed as a 

percentage. 

 Table 5.4 shows the modular 3D facial expression classification results using 

the nearest neighbour classifier with 3D facial points as the baseline feature in the 

confusion matrices. Not even one facial expression in the Eyebrows, Eyes and 

Forehead modules recorded more than a 37% rate of correct classification. The highest 

rate is the Happy expression for the Nose module with a correct classification rate of 

73.85%. The Mouth, Cheeks and Nose modules achieved more than 50% success 



   

 

111 

 

classification rate for the Happy expression only. In the Mouth module, Happy has 

never been misclassified as Anger and vice versa. The average success rates for all 

modules are between 22% - 39%.  

Table 5.4 Confusion matrices of modular 3D facial expression classification using 3D 

facial points with nearest neighbour classifier. Recall rates for each expression are 

shown in bold. 

Eyebrows 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 29.23% 23.08% 13.85% 18.46% 13.85% 9.23% 

Disgust 18.46% 16.92% 9.23% 15.38% 13.85% 7.69% 

Fear 9.23% 16.92% 16.92% 16.92% 16.92% 15.38% 

Happy 20.00% 24.62% 27.69% 21.54% 21.54% 18.46% 

Sad 12.31% 15.38% 13.85% 9.23% 15.38% 13.85% 

Surprise 10.77% 3.08% 18.46% 18.46% 18.46% 35.38% 

 
      

Mouth 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 
36.92% 12.31% 12.31% 0.00% 35.38% 9.23% 

Disgust 
15.38% 36.92% 9.23% 24.62% 23.08% 15.38% 

Fear 
12.31% 7.69% 20.00% 6.15% 6.15% 18.46% 

Happy 
0.00% 12.31% 3.08% 64.62% 1.54% 1.54% 

Sad 
33.85% 23.08% 15.38% 1.54% 27.69% 7.69% 

Surprise 
1.54% 7.69% 40.00% 3.08% 6.15% 47.69% 
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Eyes Module Anger Disgust Fear Happy Sad Surprise 

Anger 
26.15% 29.23 16.92 16.92 23.08 6.15 

Disgust 21.54% 21.54 10.77 13.85 7.69 4.62 

Fear 13.85% 10.77 10.77 10.77 15.38 23.08 

Happy 20.00% 24.62 30.77 26.15 18.46 18.46 

Sad 12.31% 10.77 12.31 12.31 21.54 20.00 

Surprise 12.31% 10.77 12.31 12.31 21.54 20.00 

       

 
      

Cheeks 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 
29.23 21.54 15.38 4.62 23.08 9.23 

Disgust 23.08 29.23 10.77 13.85 24.62 6.15 

Fear 12.31 15.38 30.77 9.23 9.23 24.62 

Happy 3.08 4.62 1.54 56.92 9.23 6.15 

Sad 23.08 20.00 13.85 10.77 20.00 7.69 

Surprise 23.08 20.00 13.85 10.77 20.00 7.69 

 
      

Nose Module Anger Disgust Fear Happy Sad Surprise 

Anger 
21.54 13.85 12.31 1.54 23.08 9.23 

Disgust 16.92 30.77 10.77 9.23 20.00 10.77 

Fear 18.46 12.31 35.38 3.08 13.85 24.62 

Happy 3.08 6.15 1.54 73.85 3.08 3.08 

Sad 27.69 24.62 16.92 7.69 24.62 21.54 

Surprise 12.31 12.31 23.08 4.62 15.38 30.77 
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Forehead 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 
33.85 15.38 10.77 9.23 27.69 7.69 

Disgust 9.23 27.69 13.85 16.92 12.31 10.77 

Fear 12.31 6.15 23.08 9.23 13.85 16.92 

Happy 12.31 16.92 18.46 36.92 12.31 6.15 

Sad 21.54 18.46 13.85 15.38 18.46 21.54 

Surprise 21.54 18.46 13.85 15.38 18.46 21.54 

  

 Table 5.5 shows the modular 3D facial expression classification results using 

the nearest neighbour classifier with 3D distance measurements as the baseline feature 

in the confusion matrices. No expressions in any module except the Mouth module 

achieved a correct classification rate of more than 39%. In the Mouth module, two 

expressions have been 50% correctly classified namely Anger and Happy. The average 

success rates for all modules are between 18% - 37% that is lower than using 3D facial 

landmarks. In the Mouth module, Happy has never been misclassified as Anger and 

vice versa.  

 

 



   

 

114 

 

Table 5.5 Confusion matrices of modular 3D facial expression classification using 3D 

distance measurement with nearest neighbour classifier in percentage. Recall rates for 

each expression are shown in bold. 

Eyebrows 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 18.46 13.85 16.67 12.50 23.08 16.92 

Disgust 20.00 18.46 18.18 17.19 16.92 13.85 

Fear 16.92 15.38 6.06 12.50 23.08 10.77 

Happy 12.31 21.54 18.18 29.69 7.69 16.92 

Sad 15.38 20.00 19.70 10.94 9.23 15.38 

Surprise 16.92 10.77 21.21 17.19 20.00 26.15 

       

Mouth 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 50.77 18.46 6.06 0.00 36.92 4.62 

Disgust 10.77 26.15 16.67 17.19 23.08 12.31 

Fear 7.69 18.46 22.73 12.50 6.15 27.69 

Happy 0.00 13.85 10.61 50.00 4.62 7.69 

Sad 27.69 18.46 7.58 7.81 27.69 3.08 

Surprise 3.08 4.62 36.36 12.50 1.54 44.62 

       

Eyes Module Anger Disgust Fear Happy Sad Surprise 

Anger 30.77 16.92 7.69 12.31 20.00 6.15 

Disgust 16.92 26.15 9.23 18.46 24.62 3.08 

Fear 6.15 7.69 32.31 18.46 10.77 26.15 

Happy 16.92 18.46 12.31 15.38 18.46 7.69 

Sad 20.00 20.00 7.69 13.85 15.38 12.31 

Surprise 20.00 20.00 7.69 13.85 15.38 12.31 

       

Cheeks 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 29.23 29.23 12.31 12.31 27.69 7.69 
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Disgust 16.92 27.69 16.92 7.69 13.85 9.23 

Fear 16.92 16.92 29.23 20.00 12.31 38.46 

Happy 6.15 9.23 10.77 38.46 12.31 6.15 

Sad 26.15 13.85 6.15 10.77 30.77 6.15 

Surprise 26.15 13.85 6.15 10.77 30.77 6.15 

       

Nose Module Anger Disgust Fear Happy Sad Surprise 

Anger 27.69 7.69 9.09 1.56 9.23 9.23 

Disgust 10.77 13.85 15.15 23.44 20.00 20.00 

Fear 15.38 20.00 22.73 17.19 21.54 21.54 

Happy 6.15 23.08 15.15 28.13 4.62 16.92 

Sad 29.23 20.00 15.15 7.81 24.62 15.38 

Surprise 10.77 15.38 22.73 21.88 20.00 16.92 

       

Forehead 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 16.92 18.46 10.77 15.38 21.54 4.62 

Disgust 20.00 20.00 7.69 12.31 16.92 16.92 

Fear 10.77 10.77 15.38 15.38 16.92 16.92 

Happy 18.46 21.54 23.08 27.69 13.85 10.77 

Sad 24.62 10.77 18.46 15.38 16.92 18.46 

Surprise 24.62 10.77 18.46 15.38 16.92 18.46 

  

Table 5.6 shows the modular 3D facial expression classification results using 

the nearest neighbour classifier with 3D facial surface normal as the baseline feature in 

the confusion matrices. The Happy expression in all modules achieved more than 45% 
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success classification rate.  In the Mouth module, another two expressions have been 

45% correctly classified which are Sad and Surprise. The average success rates for all 

modules are between 28% - 43% which is better than using 3D facial points and 3D 

distance measurements. In the Mouth module, Happy has never been misclassified as 

Anger and Sad while Sad has never been misclassified as Surprise. In addition, Fear 

has never been misclassified as Happy in the Cheeks module. 

Table 5.6 Confusion matrices of modular 3D facial expression classification using 3D 

facial surface normals with nearest neighbour classifier. Recall rates for each 

expression are shown in bold. 

Eyebrows 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 36.92 21.54 13.85 3.08 6.15 6.15 

Disgust 15.38 24.62 12.31 10.77 18.46 6.15 

Fear 12.31 13.85 4.62 7.69 18.46 16.92 

Happy 9.23 18.46 18.46 46.15 12.31 27.69 

Sad 9.23 9.23 20.00 6.15 27.69 13.85 

Surprise 16.92 12.31 30.77 26.15 16.92 29.23 

       

Mouth 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 38.46 16.92 4.62 0.00 36.92 7.69 

Disgust 12.31 32.31 21.54 9.23 13.85 7.69 

Fear 6.15 9.23 26.15 9.23 1.54 30.77 

Happy 1.54 16.92 6.15 70.77 3.08 6.15 

Sad 40.00 18.46 7.69 0.00 44.62 3.08 

Surprise 1.54 6.15 33.85 10.77 0.00 44.62 
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Eyes Module Anger Disgust Fear Happy Sad Surprise 

Anger 38.46 32.31 1.54 4.69 12.12 4.62 

Disgust 13.85 20.00 7.69 9.38 10.61 1.54 

Fear 10.77 6.15 26.15 7.81 13.64 24.62 

Happy 10.77 23.08 18.46 53.13 21.21 9.23 

Sad 15.38 13.85 10.77 18.75 33.33 13.85 

Surprise 10.77 4.62 35.38 6.25 9.09 46.15 

       

Cheeks 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 36.92 20.00 10.77 6.15 27.69 9.23 

Disgust 10.77 29.23 12.31 15.38 15.38 7.69 

Fear 18.46 10.77 27.69 3.08 16.92 23.08 

Happy 1.54 4.62 0.00 55.38 7.69 3.08 

Sad 15.38 20.00 12.31 12.31 21.54 15.38 

Surprise 16.92 15.38 36.92 7.69 10.77 41.54 

       

Nose Module Anger Disgust Fear Happy Sad Surprise 

Anger 40.00 18.46 6.15 3.08 23.08 9.23 

Disgust 15.38 36.92 7.69 15.38 10.77 10.77 

Fear 10.77 12.31 32.31 7.69 7.69 35.38 

Happy 4.62 13.85 7.69 46.15 9.23 1.54 

Sad 23.08 13.85 20.00 18.46 32.31 12.31 

Surprise 6.15 4.62 26.15 9.23 16.92 30.77 

       

Forehead 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 41.54 18.46 20.00 3.08 12.31 7.69 

Disgust 15.38 27.69 10.77 9.23 12.31 10.77 

Fear 9.23 15.38 15.38 4.62 23.08 21.54 



   

 

118 

 

Happy 4.62 12.31 7.69 55.38 9.23 13.85 

Sad 23.08 10.77 15.38 13.85 21.54 10.77 

Surprise 6.15 15.38 30.77 13.85 21.54 35.38 

 

 

 
Figure 5.7 Consistency test using standard deviations of 3D facial features compiled 

from the success rate of the modules across facial expressions of nearest neighbour 

classifier. 

  

 Figure 5.7 shows consistency test using standard deviations of 3D facial 

features compiled from the success rate of the modules across facial expressions using 

nearest neighbour classifier. The following graphs (5.8-5.13) discuss the performance 

of the three 3D facial features for each expression and each of those graphs will refer 

to figure 5.7 in order to verify with the standard deviation which represents the 

consistency of the 3D facial feature across the modules.  
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Figure 5.8 Success rate of modular facial expression classification for the Anger 

expression using nearest neighbour classifier. 

  

 Figure 5.8 shows the success rate of modular facial expression classification for 

the Anger expression using the nearest neighbour classifier. Throughout all the 

modules, 3D facial surface normals perform better than 3D facial points and 3D 

distance measurements except for the Mouth module.  3D distance measurements has a 

higher success rate in Mouth, Eyes and Nose modules compared to 3D facial points. 

While 3D facial points has a higher rate in Eyebrows, Cheeks and Forehead when 

compared with 3D distance measurements. The highest classification is achieved by 

the 3D distance measurements in the Mouth module while the lowest classification is 

also achieved by the same feature vector in the Forehead module. These clear 

difference of highest and lowest for the same 3D distance measurements results the 
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bigger standard deviation for 3D distance measurements and it indicates that 3D 

distance measurement has an inconsistent performance across the modules (refer figure 

5.7). 

 
Figure 5.9 Success rate of modular facial expression classification for the Disgust 

expression using nearest neighbour classifier. 

  

 Figure 5.9 shows the success classification rate of modular facial expression 

classification for the Disgust expression using the nearest neighbour classifier. 3D 

facial surface normal is better than 3D facial points and 3D distance measurements in 

all modules except the Eyes and Mouth module.  3D facial points surpass the 3D 

distance measurements classification rate in the Mouth, Cheeks, Nose and Forehead 

modules. The highest classification is achieved by 3D facial points in the Mouth 

module as well as 3D facial surface normals in the Nose module. Meanwhile the 
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lowest classification is achieved by 3D distance measurements in the Nose module. 

Based on figure 5.7, all three 3D facial features are regarded as having the similar 

performance across the modules. 

 
Figure 5.10 Success rate of modular facial expression classification for the Fear 

expression using nearest neighbour classifier. 

  

 Figure 5.10 shows the success classification rate of modular facial expression 

classification for the Fear expression using the nearest neighbour classifier. 3D facial 

points achieved a slightly higher classification rate than 3D facial surface normals and 

3D distance measurements in Cheeks, Nose and Forehead. However, in the Eyebrows 

module, 3D facial points are significantly better than the two vectors. 3D distance 

measurements surpass the other two feature vectors in the Eyes module. The only 

module that 3D facial surface normals perform best in is the Mouth module. If we look 
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closely at the Cheeks module, the success classification rates for the three facial 

features are very similar. The highest classification is achieved by 3D facial points in 

the Mouth module while the lowest classification is achieved by 3D facial surface 

normals in the Eyebrows module. 

 
Figure 5.11 Success rate of modular facial expression classification for the Happy 

expression using nearest neighbour classifier. 

  

 Based on figure 5.11, the worst performance across the modules has to be 3D 

distance measurements in classifying the Happy expression. The best correct 

classification rate for 3D facial surface normals can be seen in the Eyebrows, Mouth, 

Eyes and Forehead modules. 3D facial points only perform better than the two other 

feature vectors in the Cheeks and Nose modules. The highest classification rate is 
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achieved by 3D facial surface normals in the Mouth module while the lowest 

classification is achieved by 3D distance measurements in the Eyes module. 

 
Figure 5.12Success rate of modular facial expression classification for the Sad 

expression using nearest neighbour classifier. 

  

 Figure 5.12 shows the success classification rate of modular facial expression 

classification for the Sad expression using the nearest neighbour classifier. 3D facial 

surface normals achieved a better classification rate than 3D facial points and 3D 

distance measurements across all modules except for the Cheeks module.  A 3D 

distance measurement surpasses the other two feature vectors in the Cheeks module. 

The worst classification rate is 3D facial points. The highest classification rate is 

achieved by 3D facial surface normals in the Mouth module while the lowest 

classification is achieved by 3D distance measurements in the Eyebrows module. 
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Figure 5.13 Success rate of modular facial expression classification for Surprise 

expression using nearest neighbour classifier. 

  

Based on figure 5.13, the worst performance across the modules has to be 3D 

distance measurements for classifying the Surprise expression. A rather similar 

classification rate is obtained across the feature vectors in the Mouth and Forehead 

modules. However, 3D facial landmarks perform better in all modules except in the 

Eyes module. The only module that 3D facial surface normals perform best in is the 

Eyes module. The highest classification rate is achieved by 3D facial landmarks in the 

Mouth module while the lowest classification is achieved by 3D distance 

measurements in the Nose module. 

 Table 5.7 shows the modular 3D facial expression classification results using  

SVM with 3D facial points as the baseline feature in the confusion matrices. The 

Happy expression in the Nose, Mouth and Cheeks modules achieved a 100% success 
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classification rate while for the Forehead module, the Happy expression records a 92% 

correct classification. The Surprise expression in all modules except Eyebrows 

achieves more than 56% correct classification and the Cheeks module has the highest 

rate of 92% correct classification. The Mouth, Cheeks and Nose modules have 52% 

correct classification for the Anger expression. In the Mouth module, Anger and Sad 

achieve approximately 50% correct classification. The average success rates for all 

modules are between 25% - 49% which is better than using 3D facial points with the 

nearest neighbour classifier. The module that has the lowest average success rate is 

Eyebrows and the Mouth module has the highest success rate.  

Table 5.7 Confusion matrices of modular 3D facial expression classification using 3D 

facial points with SVM. Recall rates for each expression are shown in bold. 

 

Eyebrows 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 33.85 20.00 7.69 12.31 13.85 7.69 

Disgust 20.00 18.46 27.69 24.62 13.85 20.00 

Fear 7.69 6.15 16.92 6.15 15.38 13.85 

Happy 9.23 13.85 4.62 10.77 6.15 6.15 

Sad 12.31 21.54 32.31 26.15 40.00 24.62 

Surprise 16.92 20.00 10.77 20.00 10.77 27.69 

       

Mouth 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 53.85 18.46 6.15 0.00 29.23 3.08 

Disgust 1.54 6.15 7.69 0.00 3.08 6.15 

Fear 1.54 1.54 4.62 0.00 1.54 1.54 

Happy 6.15 52.31 16.92 100.00 13.85 3.08 
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Sad 32.31 12.31 6.15 0.00 47.69 1.54 

Surprise 4.62 9.23 58.46 0.00 4.62 84.62 

       

Eyes Module Anger Disgust Fear Happy Sad Surprise 

Anger 41.54 38.46 15.38 20.00 18.46 9.23 

Disgust 21.54 23.08 7.69 15.38 10.77 6.15 

Fear 10.77 4.62 6.15 4.62 9.23 1.54 

Happy 10.77 13.85 10.77 27.69 10.77 10.77 

Sad 6.15 13.85 13.85 13.85 27.69 3.08 

Surprise 9.23 6.15 46.15 18.46 23.08 69.23 

       

Cheeks 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 55.38 35.38 9.23 0.00 36.92 6.15 

Disgust 12.31 15.38 6.15 0.00 6.15 0.00 

Fear 1.54 1.54 3.08 0.00 1.54 0.00 

Happy 1.54 36.92 9.23 100.00 24.62 0.00 

Sad 15.38 3.08 4.62 0.00 13.85 1.54 

Surprise 13.85 7.69 67.69 0.00 16.92 92.31 

       

Nose 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 52.31 6.15 6.15 0.00 35.38 6.15 

Disgust 7.69 23.08 15.38 0.00 4.62 13.85 

Fear 3.08 4.62 4.62 0.00 3.08 12.31 

Happy 9.23 58.46 18.46 100.00 27.69 9.23 

Sad 23.08 6.15 13.85 0.00 23.08 3.08 

Surprise 4.62 1.54 41.54 0.00 6.15 55.38 
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Forehead 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 41.54 27.69 20.00 1.54 24.62 12.31 

Disgust 13.85 9.23 9.23 4.62 6.15 3.08 

Fear 0 0 1.54 0 4.62 1.54 

Happy 20.00 41.54 30.77 92.31 41.54 18.46 

Sad 7.69 3.08 1.54 0.00 7.69 0.00 

Surprise 16.92 18.46 36.92 1.54 15.38 64.62 

 

 Based on table 5.7, Anger and Disgust have never been misclassified as Fear 

while Happy has never been misclassified as Fear and Sad in the Forehead module. 

Figure 5.14 shows Forehead deformation and we can see clearly that Anger and Happy 

have a mild Forehead deformation while Fear and Sad have a rather strong 

deformation of Forehead. In addition, Surprise has never been misclassified as Disgust, 

Fear and Happy in the Cheeks module. Figure 5.15 shows lower face deformation. The 

Cheeks module for Surprise expression has a strong deformation intensity compared to 

Disgust, Fear and Happy. Throughout all the modules, Disgust is always misclassified 

as Happy and Surprise is the false positive of Fear. 
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Figure 5.14 Forehead deformations for Anger, Disgust, Fear, Sad and Happy 

expression. 
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Figure 5.15 Lower face deformations for Disgust, Fear, Sad, Happy and Surprise 

expression. 

 



   

 

130 

 

 Table 5.8 shows the modular 3D facial expression classification results using 

the SVM with 3D distance measurements as the baseline feature in the confusion 

matrices. The Happy expression in the Mouth, Cheeks and Nose modules achieved 

more than 57% successful classification. The Surprise expression in the Mouth, Eyes 

and Cheeks modules perform better than 67% of correct classification and the Eyes 

module has the highest correct classification rate of 83%. In the Mouth module, Anger 

and Surprise also perform better than 50% correct classification. The Forehead module 

has the highest correct classification rate of 51% for the Sad expression. The average 

success rates for all modules are between 17% - 43% which is better than using 3D 

distance measurements with the nearest neighbour classifier. The module that has the 

lowest average success rate is Eyebrows and the Mouth module has the highest success 

rate. In the Eyebrows and Cheeks module, Fear has never been misclassified as 

Disgust. Happy has never been classified as Anger, Disgust and Sad in the Mouth 

module which is due to the obvious gap in the Happy expression (refer to figure 5.15). 

In addition, Surprise has never been misclassified as Disgust and Happy in the Eyes 

module due to the different deformation they have (refer to figure 5.16). Surprise in the 

Cheeks module has never been classified as Sad (refer to figure 5.15). Anger in the 

Nose module has never been classified as Happy and based on figure 5.15; the Nose is 

stretching due to a smile action in the Happy expression which causes an intense 

deformation compared to the Nose stretching intensity in the Anger expression.  
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Table 5.8 Confusion matrices of modular 3D facial expression classification using 3D 

distance measurement with SVM. Recall rates for each expression are shown in bold. 

Eyebrows 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 4.62 4.62 10.77 9.23 7.69 13.85 

Disgust 3.08 4.62 0.00 4.62 1.54 4.62 

Fear 23.08 24.62 24.62 26.15 24.62 35.38 

Happy 18.46 16.92 20.00 21.54 18.46 29.23 

Sad 29.23 35.38 33.85 20.00 35.38 6.15 

Surprise 21.54 13.85 10.77 18.46 12.31 10.77 

       

Mouth 

Module  
Anger Disgust Fear Happy Sad Surprise 

Anger 53.85 16.92 12.31 0.00 35.38 7.69 

Disgust 1.54 3.08 0.00 0.00 1.54 3.08 

Fear 3.08 3.08 3.08 3.08 1.54 6.15 

Happy 6.15 43.08 21.54 86.15 16.92 10.77 

Sad 32.31 26.15 7.69 0.00 40.00 1.54 

Surprise 3.08 7.69 55.38 10.77 4.62 70.77 

       

Eyes Module Anger Disgust Fear Happy Sad Surprise 

Anger 38.46 29.23 12.31 13.85 10.77 9.23 

Disgust 15.38 15.38 1.54 18.46 6.15 0.00 

Fear 10.77 13.85 18.46 1.54 6.15 4.62 

Happy 4.62 10.77 3.08 12.31 12.31 0.00 

Sad 13.85 13.85 12.31 20.00 44.62 3.08 

Surprise 16.92 16.92 52.31 33.85 20.00 83.08 

       

Cheeks 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 63.08 46.15 13.85 6.15 49.23 6.15 

Disgust 4.62 7.69 0.00 3.08 4.62 3.08 
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Fear 4.62 3.08 9.23 3.08 4.62 9.23 

Happy 9.23 23.08 18.46 56.92 20.00 13.85 

Sad 12.31 7.69 7.69 3.08 7.69 0.00 

Surprise 6.15 12.31 50.77 27.69 13.85 67.69 

       

Nose Module Anger Disgust Fear Happy Sad Surprise 

Anger 86.15 29.23 20.00 1.54 61.54 23.08 

Disgust 6.15 23.08 15.38 6.15 13.85 7.69 

Fear 3.08 7.69 9.23 12.31 6.15 20.00 

Happy 0.00 26.15 44.62 78.46 10.77 35.38 

Sad 1.54 6.15 1.54 0.00 3.08 6.15 

Surprise 3.08 7.69 9.23 1.54 4.62 7.69 

       

Forehead 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 16.92 16.92 13.85 12.31 12.31 13.85 

Disgust 10.77 3.08 3.08 9.23 3.08 7.69 

Fear 6.15 9.23 9.23 15.38 3.08 7.69 

Happy 21.54 21.54 9.23 21.54 10.77 13.85 

Sad 27.69 30.77 38.46 18.46 50.77 18.46 

Surprise 16.92 18.46 26.15 23.08 20.00 38.46 

 

 

 



   

 

133 

 

 

Anger 

 

Disgust 

 

Fear 

 

Happy 

 

Sad 

 

Surprise 

Figure 5.16 Eyes and Eyebrows deformation for all six basic facial expressions. 

 Table 5.9 shows the modular 3D facial expression classification results using 

SVM with 3D facial surface normal as the baseline feature in the confusion matrices. 

The Anger, Happy and Surprise expressions achieved more than 50% success 

classification across the modules. Only the Mouth module performs at more than 66% 

of correct classification for the Sad expression. The Fear expression has a zero 

classification rate in the Eyebrows module. The average success rates for all modules 

are between 33% - 54% which is better than using 3D facial surface normals with the 

nearest neighbour classifier. The module that has lowest average success classification 

rates is Eyebrows and the Mouth module has the highest success rate. In the Eyebrows 

module, Disgust, Happy and Sad have never been misclassified as Fear while Surprise 

and Anger have never been misclassified as Disgust. There are obvious differences of 

deformation in the Eyebrows module for each expression, (see figure 5.16). Happy has 
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never been classified as Fear in the Eyebrows, Mouth, Cheeks and Nose modules (refer 

to figures 5.15 and 5.16 for the different deformation shown by the facial features in 

each module).In addition, Surprise has never been misclassified as Disgust in the 

Eyebrows and Forehead modules.  

 Overall, modular 3D facial expression classification using 3D facial surface 

normals with SVM performs better than the other two feature vectors used in both 

classifiers. However, 3D facial surface normals with SVM do not achieve 100% 

correct classification in the Happy expression which is in contrast to 3D facial points. 

Table 5.9 Confusion matrices of modular 3D facial expression classification using 3D 

facial surface normals with SVM. Recall rates for each expression are shown in bold. 

Eyebrows 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 53.85 44.62 21.54 10.77 26.15 10.77 

Disgust 0.00 1.54 4.62 1.54 4.62 0.00 

Fear 1.54 0.00 0.00 0.00 0.00 1.54 

Happy 18.46 21.54 26.15 56.92 26.15 24.62 

Sad 6.15 9.23 10.77 6.15 26.15 1.54 

Surprise 20.00 23.08 36.92 24.62 16.92 61.54 

       

Mouth 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 60.00 26.15 9.23 1.54 24.62 7.69 

Disgust 3.08 7.69 4.62 0.00 1.54 1.54 

Fear 1.54 10.77 26.15 0.00 3.08 20.00 

Happy 1.54 15.38 4.62 98.46 3.08 6.15 

Sad 29.23 29.23 10.77 0.00 66.15 1.54 

Surprise 4.62 10.77 44.62 0.00 1.54 63.08 
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Eyes Module Anger Disgust Fear Happy Sad Surprise 

Anger 50.77 29.23 12.31 7.69 24.62 4.62 

Disgust 13.85 27.69 3.08 4.62 9.23 3.08 

Fear 3.08 0.00 32.31 1.54 6.15 16.92 

Happy 15.38 27.69 6.15 73.85 16.92 6.15 

Sad 12.31 7.69 6.15 9.23 32.31 0.00 

Surprise 4.62 7.69 40.00 3.08 10.77 69.23 

       

Cheeks 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 50.00 23.08 15.38 0.00 26.15 9.23 

Disgust 16.92 33.85 9.23 4.62 13.85 1.54 

Fear 12.31 15.38 23.08 0.00 3.08 24.62 

Happy 0.00 12.31 3.08 90.77 7.69 0.00 

Sad 15.38 9.23 7.69 4.62 40.00 6.15 

Surprise 6.15 6.15 41.54 0.00 9.23 58.46 

       

Nose Module Anger Disgust Fear Happy Sad Surprise 

Anger 66.15 24.62 13.85 0.00 35.38 9.23 

Disgust 7.69 43.08 7.69 6.15 15.38 9.23 

Fear 6.15 3.08 15.38 0.00 6.15 18.46 

Happy 1.54 18.46 9.23 87.69 6.15 6.15 

Sad 15.38 7.69 13.85 1.54 23.08 10.77 

Surprise 3.08 3.08 40.00 4.62 13.85 50.00 

       

Forehead 

Module 
Anger Disgust Fear Happy Sad Surprise 

Anger 66.15 35.38 15.38 1.54 21.54 13.85 

Disgust 6.15 12.31 6.15 1.54 4.62 0.00 
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Fear 4.62 3.08 9.23 1.54 4.62 10.77 

Happy 6.15 35.38 13.85 93.85 23.08 12.31 

Sad 4.62 4.62 10.77 0.00 30.77 3.08 

Surprise 12.31 9.23 44.62 1.54 15.38 60.00 

  

 
Figure 5.17 Consistency test using standard deviations of 3D facial features compiled 

from the success rate of the modules across facial expressions of SVM classifier. 

  

 Figure 5.17 shows consistency test using standard deviations of 3D facial 

features compiled from the success rate of the modules across facial expressions using 

SVM classifier. The following graphs (figure 5.18-5.23) discuss the performance of 

the three 3D facial features for each expression and each of those graphs will refer to 

figure 5.17 in order to verify with the standard deviation which represents the 

consistency of the 3D facial feature across the modules.  
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Figure 5.18 Success rate of modular facial expression classification for Anger 

expression using SVM 

 

 Figure 5.18 shows the success rate of modular facial expression classification 

for the Anger expression using SVM. Throughout all modules, 3D facial surface 

normals have a consistent performance compared to 3D facial points and 3D distance 

measurements as it has at least 50% for every module.  This claim is supported with 

the consistency test using the standard deviations (refer figure 5.17). A bigger value of 

standard deviation for 3D distance measurements indicates the inconsistent of this 

facial feature across modules. 3D distance measurements surpass the other two feature 

vectors‟ performance only in the Cheeks and the Nose modules. The highest 

classification is achieved by 3D distance measurements in the Nose module while the 

lowest classification is also achieved by the same feature vector in the Eyebrows 

module. 
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Figure 5.19 Success rate of modular facial expression classification for Disgust 

expression using SVM 

  

Figure 5.19 shows the success classification rate of modular facial expression 

classification for the Disgust expression using SVM. Overall all feature vectors have 

the worst performance for this expression compared to results from the nearest 

neighbour classifier. We believe that this happens due to Disgust expression having a 

very high similarity with Anger which cause a high misclassification except for the 

Nose module (refer to figures 5.14, 5.15 and 5.16 for Anger and Disgust expression). 

However, 3D facial surface normals surpass the other two feature vectors in all 

moduleexcept for the Eyebrows module. The highest classification is achieved by 3D 

facial surface normals in the Nose module while the lowest classification is also 

achieved by the same feature vector in the Eyebrows module. 
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Figure 5.20 Success rate of modular facial expression classification for Fear expression 

using SVM 

 

 Figure 5.20 shows the success classification rate of modular facial expression 

classification for the Fear expression using SVM. 3D facial surface normals feature has 

the best result except for the Eyebrows module.  3D distance measurements perform 

better in the Eyebrows module. The highest classification is achieved by 3D facial 

surface normals in the Eyes module while the lowest classification is achieved by 3D 

facial surface normals in the Eyebrows module with zero correct classification. Overall 

all feature vectors have the worst performance for this expression compared to results 

from nearest neighbour classifier. 
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Figure 5.21 Success rate of modular facial expression classification for Happy 

expression using SVM 

 

 Based on figure 5.21, the worst performance across the modules has to be 3D 

distance measurements. The highest correct classification rate for 3D facial surface 

normals can be seen in Eyebrows, Eyes and Forehead while for other modules, 3D 

facial points perform better. We can see that 3D face surface normal have a consistent 

performance throughout the modules and it also proves by the standard deviation value 

in figure 5.17. The highest classification is achieved by 3D facial points in the Mouth 

module while the lowest classification is achieved by 3D facial points in the Eyebrows 

module. 
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Figure 5.22 Success rate of modular facial expression classification for Sad expression 

using SVM 

  

 Figure 5.22 shows the success classification rate of modular facial expression 

classification for the Sad expression using SVM. The performances of all feature 

vectors are not consistent in this expression. Overall, the worst classification rate is 3D 

distance measurements even though it surpasses the rest of the feature vectors in the 

Forehead module. The highest classification rate is achieved by 3D facial surface 

normals in the Mouth module while the lowest classification is achieved by 3D 

distance measurements in the Nose module. 
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Figure 5.23 Success rate of modular facial expression classification for Surprise 

expression using SVM 

 

 Based on figure 5.23, the worst performance across the modules for classifying 

the Surprise expression using SVM has to be 3D distance measurements as the average 

classification rate for 3D facial points, 3D distance measurements and 3D facial 

surface normals are 65.54%, 42.32% and 60.39% respectively. 3D facial points 

perform better in all modules except in the Eyebrows and Eyes modules. The highest 

classification rate is achieved by 3D facial points in the Cheeks module while the 

lowest classification is achieved by 3D distance measurements in the Nose module. 3D 

facial surface normals result is consistent throughout this expression. 
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5.4.2 Weighted Voting Scheme Results  

 The results of modular facial expression classification experiments using the 

nearest neighbour and SVM classifiers are passed to the Votes Counter. n the Votes 

Counter algorithm, the weight of the modules that belong to the same facial expression 

class is summed up. Finally, the weight for each facial expression is computed and the 

final facial expression is the one with the highest vote.  

 With this weighted approach, the module with the largest weight plays an 

important role in classifying the final facial expression. In most cases, different 

modules vote for different expressions in classifying a facial expression. For example 

in the case of most Anger expressions, the first three modules (Eyebrows, Mouth and 

Eyes) vote for the Sad expression while the rest of the modules vote for the Anger 

expression. The final facial expression would be Sad as it has much more weight 

compared to the Anger expression. 
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Table 5.10 Confusion matrices of WVS on modular experiments using the nearest 

neighbour classifier results. Recall rates for each expression are shown in bold. 

 

Anger Disgust Fear Happy Sad Surprise 

 

3D Facial Points 

Anger 36.92 16.92 16.92 6.15 23.08 4.62 

Disgust 16.92 38.46 10.77 4.62 21.54 9.23 

Fear 13.85 12.31 23.08 6.15 12.31 16.92 

Happy 3.08 13.85 10.77 66.15 9.23 7.69 

Sad 24.62 16.92 12.31 6.15 23.08 6.15 

Surprise 4.62 1.54 26.15 10.77 10.77 55.38 

 3D Distance Measurement 

Anger 41.54 16.92 13.85 7.69 24.62 4.62 

Disgust 13.85 23.08 10.77 12.31 24.62 7.69 

Fear 12.31 15.38 21.54 18.46 12.31 29.23 

Happy 4.62 15.38 13.85 41.54 3.08 6.15 

Sad 21.54 21.54 10.77 7.69 26.15 7.69 

Surprise 6.15 7.69 29.23 12.31 9.23 44.62 

       

       3D Surface Normals 

Anger 52.31 18.46 4.62 1.54 16.92 6.15 

Disgust 12.31 40.00 7.69 6.15 9.23 0.00 

Fear 7.69 12.31 30.77 3.08 9.23 27.69 

Happy 6.15 13.85 6.15 78.46 9.23 3.08 

Sad 10.77 4.62 10.77 3.08 47.69 6.15 

Surprise 10.77 10.77 40.00 7.69 7.69 56.92 
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 Table 5.10 shows the confusion matrices for WVS based on a modular 

experiment using the nearest neighbour classifier results. For 3D facial points feature, 

only the Happy and Surprise expressions are correctly classified more than half the 

time. Two expressions that have lower than 30% correct classification are Fear and 

Sad. Anger and Disgust are roughly about the same percentage. Fear and Surprise are 

always misclassified as Surprise and Fear respectively. 

 Unlike for 3D facial points features, there are no expressions that reach more 

than 50% correct classification. Three expressions that managed to achieve more than 

40% are Anger, Happy and Surprise. The results on Disgust, Fear and Sad are all lower 

than 30% whereas Fear has the lowest percentage which is 21.54%.  

 The average rate of classifications of the three feature vectors are 41%, 33% 

and 51% for 3D facial points, 3D distance measurements and 3D facial surface 

normals respectively. Again, using 3D facial surface normals as the baseline feature 

with the nearest neighbour classifier definitely improves the facial expression 

classification rate compared to the other two feature vectors. Fear has the worst 

classification results with only 30.77% correct classification. Angry, Surprise and 

Happy are the expressions with correct classification of more than 50% and Happy has 

the highest score. Disgust and Sad are more than 40% correctly classified. Surprise has 

never been misclassified as Disgust.   
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Table 5.11 Confusion matrices of WVS based on modular experiment using SVM 

results. Recall rates for each expression are shown in bold. 

 

Anger Disgust Fear Happy Sad Surprise 

 3D Facial Points 

Anger 63.08 27.69 7.69 0.00 35.38 3.08 

Disgust 10.77 13.85 12.31 0.00 1.54 4.62 

Fear 3.08 0.00 1.54 0.00 4.62 0.00 

Happy 3.08 44.62 10.77 100.00 13.85 1.54 

Sad 15.38 6.15 7.69 0.00 32.31 0.00 

Surprise 4.62 7.69 60.00 0.00 12.31 90.77 

       

       3D Distance Measurement 

Anger 63.08 30.77 7.69 1.54 29.23 7.69 

Disgust 0.00 6.15 0.00 0.00 1.54 0.00 

Fear 6.15 6.15 4.62 3.08 6.15 3.08 

Happy 6.15 29.23 15.38 80.00 12.31 12.31 

Sad 20.00 18.46 21.54 4.62 44.62 1.54 

Surprise 4.62 9.23 50.77 10.77 6.15 75.38 

 

3D Surface Normals 

Anger 75.38 26.15 12.31 0.00 16.92 4.62 

Disgust 4.62 43.08 3.08 0.00 1.54 0.00 

Fear 1.54 0.00 21.54 0.00 0.00 4.62 

Happy 0.00 20.00 3.08 100.00 3.08 0.00 

Sad 12.31 6.15 3.08 0.00 67.69 0.00 

Surprise 6.15 4.62 56.92 0.00 10.77 90.77 
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 Table 5.10 shows the confusion matrices of WVS based on a modular 

experiment using the SVM classifier. For 3D facial points, there is no misclassification 

error for Happy and Surprise is the expression with the second highest correct 

classification. Fear has the lowest score in which most of it has been misclassified as 

Surprise. Disgust has less than 15% correct classification and it has been incorrectly 

classified as Anger and Happy. Most Anger expressions are misclassified as Sad and 

vice-versa.  

 3D distance measurement has three expressions which achieved more than 50% 

correct classification and they are Anger, Happy and Surprise. This result is slightly 

improved compared to using the nearest neighbour classifier. In agreement with other 

feature vectors in both classifiers, Fear has the lowest rate of correctly classified 

expressions. Again, as opposed to other feature vectors in both classification types, 

Happy is largely misclassified as Surprise. Fear, Happy and Surprise are never 

misclassified as Disgust. 

 Similar to 3D facial points, 3D facial surface normals record a 100% correct 

classification for the Happy expression. The Disgust expression has a 29% higher 

classification rate than using 3D facial points. 3D facial surface normals have an equal 

rate of correct classification for the Surprise expression with 3D facial points. Overall, 

3D facial surface normals perform quite well compared to the two other feature vectors 

where the average classification of 3D facial surface normals is 66% while 50% and 

46% for 3D facial points and 3D distance measurements respectively.    
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Figure 5.24 Success rate of WVS using the nearest neighbour classifier 

 

 
Figure 5.25 Success rate of WVS using the SVM classifier 
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 Figure 5.24 and 5.25 show the success rate of WVS using nearest neighbour 

classifier and SVM. 3D facial surface normals record good results compared to the 

other feature vectors. The consistent performance of 3D facial surface normals across 

the modules is believed to be the main reason for having an improved result. The 

classification rate for Disgust and Fear expression using SVM for the three feature 

vectors are poorer than using nearest neighbour classifier. Despite the simple 

computation feature of the nearest neighbour classifier, the success classification rates 

are higher compared a more complicated computation performed by SVM and we see 

it as an advantage of this work. 

 

Table 5.12 An example of equal votes in MVS 

 Module 
Facial 

Expression 

1 Eyebrows Surprise 

2 Mouth Surprise 

3 Eyes Fear 

4 Cheeks Happy 

5 Nose Happy 

6 Forehead Fear 

 

 For the purpose of comparison, we also carried out experiments using a 

Majority Voting Scheme (MVS), as opposed to WVS. In MVS, the final classification 

of multiple classifications goes to the class with the majority vote. However, in the 
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case of two or more classes having equal votes, our algorithm will classify the final 

expression as False Positive (FP). Table 5.12 shows an example of MVS with equal 

votes.  

 Table 5.13 shows the confusion matrices for MVS based on a modular 

experiment using the nearest neighbour classifier results. For 3D facial points feature, 

only the Happy expression is correctly classified more than half the time. Three 

expressions that have lower than 30% correct classification are Anger, Disgust and 

Sad. The FP cases are higher in the Anger and Sad expressions and other expressions 

have approximately the same percentage. 

 Similar to 3D facial points features results in WVS, there are no expressions 

that reach more than 50% correct classification. The highest classification rate belongs 

to Anger whereas Fear has the lowest percentage which is 10.77%. The FP case is 

higher in the Sad expression and other expressions have approximately the same 

percentage. 

 Similar to 3D facial points only the Happy expression is correctly classified 

more than half the time when 3D facial surface normals are used. 3D facial surface 

normals also yield better results for the Anger, Happy and Sad expressions when 

compared to the other feature vectors. Similar to results in WVS, Fear has the worst 

classification results with only 12.31% correct classification. 

  The average rate of classifications of the three feature vectors are 32%, 26% 

and 36% for 3D facial points, 3D distance measurements and 3D facial surface 

normals respectively. 
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Table 5.13 Confusion matrices of MVS on modular experiments using the nearest 

neighbour classifier results. Recall rates for each expression are shown in bold. 

 Anger Disgust Fear Happy Sad Surprise 

 

3D Facial Points 

Anger 24.62 10.77 10.77 3.08 18.46 4.62 

Disgust 9.23 33.85 4.62 4.62 12.31 6.15 

Fear 9.23 4.62 20.00 6.15 9.23 15.38 

Happy 0.00 10.77 4.62 56.92 0.00 4.62 

Sad 16.92 12.31 10.77 4.62 12.31 4.62 

Surprise 3.08 1.54 23.08 3.08 7.69 44.62 

FP 36.92 26.15 26.15 21.54 40.00 20.00 

 

3D Distance Measurement 

Anger 38.46 10.77 6.15 0.00 13.85 1.54 

Disgust 7.69 23.08 6.15 9.23 13.85 4.62 

Fear 9.23 10.77 10.77 12.31 9.23 20.00 

Happy 4.62 13.85 10.77 30.77 1.54 3.08 

Sad 16.92 16.92 6.15 4.62 18.46 3.08 

Surprise 1.54 7.69 24.62 7.69 3.08 35.38 

FP 21.54 16.92 35.38 35.38 40.00 32.31 

       

3D Surface Normals 

Anger 44.62 12.31 4.62 0.00 15.38 1.54 

Disgust 9.23 27.69 0.00 4.62 6.15 0.00 

Fear 4.62 10.77 12.31 1.54 6.15 20.00 

Happy 3.08 9.23 3.08 58.46 4.62 1.54 

Sad 10.77 3.08 10.77 0.00 30.77 1.54 

Surprise 3.08 6.15 27.69 1.54 1.54 43.08 

FP 24.62 30.77 41.54 33.85 35.38 32.31 
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Table 5.14 Confusion matrices of MVS on modular experiments using the SVM 

classifier results. Recall rates for each expression are shown in bold. 

 Anger Disgust Fear Happy Sad Surprise 

 

3D Facial Points 

Anger 53.85 23.08 3.08 0.00 23.08 3.08 

Disgust 9.23 12.31 9.23 0.00 0.00 4.62 

Fear 1.54 0.00 1.54 0.00 1.54 0.00 

Happy 1.54 41.54 6.15 100.00 15.38 1.54 

Sad 10.77 1.54 3.08 0.00 24.62 0.00 

Surprise 3.08 6.15 53.85 0.00 10.77 83.08 

FP 20.00 15.38 23.08 0.00 24.62 7.69 

 

3D Distance Measurement 

Anger 53.85 23.08 4.62 0.00 26.15 3.08 

Disgust 0.00 0.00 0.00 0.00 0.00 0.00 

Fear 1.54 6.15 1.54 1.54 3.08 3.08 

Happy 4.62 21.54 10.77 63.08 7.69 4.62 

Sad 10.77 15.38 15.38 0.00 33.85 0.00 

Surprise 3.08 4.62 33.85 7.69 6.15 66.15 

FP 26.15 29.23 33.85 27.69 23.08 23.08 

       

3D Surface Normals 

Anger 67.69 27.69 9.23 0.00 16.92 4.62 

Disgust 1.54 24.62 3.08 0.00 1.54 0.00 

Fear 0.00 0.00 10.77 0.00 0.00 3.08 

Happy 0.00 18.46 1.54 98.46 3.08 1.54 

Sad 7.69 0.00 3.08 0.00 40.00 0.00 

Surprise 4.62 3.08 47.69 0.00 10.77 73.85 

FP 18.46 26.15 24.62 1.54 27.69 16.92 
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 Table 5.14 shows the confusion matrices of MVS based on a modular 

experiment using the SVM classifier. Similar to WVS, for 3D facial points, there is no 

misclassification error for Happy and Surprise is the expression with the second 

highest correct classification. Fear has the lowest score in which most of it has been 

misclassified as Happy. Disgust has less than 15% correct classification and it has been 

incorrectly classified as Anger and Happy. Most Anger expressions are misclassified 

as Sad and vice-versa. The rate of FP cases is approximately the same in the Anger, 

Fear and Sad expressions. Clearly, the Happy expression does not have any FP cases.  

 3D distance measurement has three expressions which achieved more than 50% 

correct classification and they are Anger, Happy and Surprise. This result is slightly 

improved compared to using the nearest neighbour classifier. The Disgust expression 

has zero correct classification. Again, as opposed to other feature vectors in both 

classification types, Happy is largely misclassified as Surprise. All expressions are 

never misclassified as Disgust. The FP case is higher in the Fear expression and other 

expressions have approximately the same percentage. 

 3D facial surface normals record a 98.46% correct classification for the Happy 

expression which means only one case of the Happy expression is classified as FP. The 

Disgust expression has a 10% higher classification rate than using 3D facial points. 

The Surprise expression has a slightly lower correct classification rate when compared 

to using 3D facial points. Using the MVS approach, 3D facial surface normals still 

perform quite well compared to the two other feature vectors where the average 
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classification of 3D facial surface normals is 53% while it is 46% and 36% for 3D 

facial points and 3D distance measurements respectively.    

 

 
Figure 5.26 Success rate of MVS using the nearest neighbour classifier 

 Figure 5.26 shows the success rate of MVS using the nearest neighbour 

classifier. 3D facial surface normals record good results in the Anger, Happy and Sad 

expressions while 3D facial points has the highest correct classification in Disgust, 

Fear and Surprise. However, the correct classification rates for 3D facial surface 

normals in Disgust, Fear and Surprise expression only differs by a few percentage 

points from that obtained using 3D facial points. In addition, 3D distance 

measurements have the lowest correct classification across all expressions.  
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Figure 5.27 Successrate of MVS using SVM classifier 

 Figure 5.27 shows the success rate of MVS using SVM. 3D facial surface 

normals record improved results compared to the other feature vectors in all 

expressions except for the Happy expressions when SVM is used. Furthermore, 3D 

facial surface normals record higher correct classification rates using SVM in the 

Anger, Happy, Sad and Surprise expressions compared to using the nearest neighbour 

classifier. However, this is not the case in the Disgust and Fear expressions and it is 

even worse than WVS. This is due to poor results across the modules in the SVM 

experiments. Again, the consistent performance of 3D facial surface normals across the 

modules is believed to be the main reason for having an improved result. 
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5.6 Conclusions 

 The work in this chapter begins with the modularization of a face. We divided a 

face into six modules namely Forehead, Eyebrows, Eyes, Nose, Cheeks and Mouth. 

Subsequently, the modular priority rank is determined using AdaBoost and each of the 

modules is assigned a weight. Since the facial expression classification for every 

module is done independently, this means that for one face, each module could 

represent different facial expressions and therefore another approach is needed in order 

to determine which single facial expression is portrayed by the face. We used the WVS 

approach since we have the weight for each of the modules. The results of the modular 

experiments using both classifiers are passed to the votes counter and the expression 

which gets the vote will have the weight of that module. For the purpose of 

comparison, we also carried out experiments using Majority Voting Scheme (MVS). 

Finally, the weight of the vote for each of the facial expressions is computed and the 

final facial expression is the one with the highest vote. In the next chapter, several 

more key tables based on the results from this chapter are produced and discussed.  

 

 

 

 



   

 

157 

 

 

CHAPTER 6 

ANALYSIS AND DISCUSSION 

 

 

 In the previous chapter, we presented 3D facial expression classification 

using3D facial surface normal features using Principal Component Analysis (PCA) 

along with the implementation of modular approach. The results of the experiments 

were briefly discussed. In this chapter, the key table is produced and a thorough 

analysis is carried out.  

 

6.1 Comparison with a Non – Modular Approach 

For the purpose of assessment of our modular approach, we carried out a non–

modular facial expression classification using 3D facial surface normals. Table 6.1 

shows average classification rates in our work which includes both non-modular and 
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modular with WVS and MVS approaches. Across all classifiers and non-

modular/modular approaches, 3D facial surface normals show improvement in the 

modular approach for both classifiers and shows the best overall results for both 

classifiers. Results using MVS records a poor result compared to WVS. 

Table 6.1 Average classification rates in our work 

3D Facial Features 

Nearest 

Neighbour 

Classifier 

Support Vector 

Machine 

Non-Modular 3D Facial Surface Normals 46% 54% 

Modular 3D Facial Surface Normals – WVS  51% 66% 

Modular 3D Facial Surface Normals – MVS 36% 53% 

 

 
Figure 6.1 Success classification rates using 3D facial surface normals as the feature 

vector 
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 Figure 6.1 shows the success classification rate using 3D facial surface normals 

as the feature vector. The SVM classifier with WVS produces the best results across all 

expressions except for the Fear expression whereas the non-modular approach using 

the SVM classifier shows an improved result.  

 

6.2 Comparison with Other 3D Features 

Table 6.2 Average classification rates in our modular work 

3D Facial Features 
Nearest Neighbour 

Classifier 

Support 

Vector 

Machine 

Modular 3D Facial Points –  WVS 41% 50% 

Modular 3D Facial Points –  MVS 32% 46% 

 

Modular 3D Distance Measurements –  WVS 33% 46% 

Modular 3D Distance Measurements –  MVS 26% 36% 

Modular 3D Facial Surface Normals – WVS  51% 66% 

Modular 3D Facial Surface Normals – MVS 36% 53% 

  

 Table 6.2 shows average classification rates in our work using both WVS and 

MVS approaches. Across all classifiers and voting system approaches, 3D distance 

measurements classification performance is the worst. 3D facial points classification 

rate is slightly improved when the nearest neighbour classifier is used. A better result 

for 3D distance measurements is achieved when SVM is used. 3D facial surface 
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normals show improvement for both classifiers and show the best overall results for 

both classifiers regardless the voting system used. Results using MVS records a poor 

result compared to WVS. Based on these results, the following figures (6.2 and 6.3) 

describe the success rates for 3D facial features in each expression using specifically 

WVS approach. 

 
Figure 6.2 Success rate of WVS using the nearest neighbour classifier 

Figure 6.2 shows the success facial gesture classification rate of WVS using the 

nearest neighbour classifier for the three 3D facial features. The average rate of 

classifications of the three feature vectors are 41%, 33% and 51% for 3D facial points, 

3D distance measurements and 3D facial surface normals respectively. Using 3D facial 

surface normals as the baseline feature with the nearest neighbour classifier definitely 

improves the facial expression classification rate compared to the other two feature 

vectors. Overall, Fear has the worst classification results across the 3D features. 
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Figure 6.3 Success rate of WVS using the SVM classifier 

 

Figure 6.3 shows the success classification rate of WVS using the SVM 

classifier across the 3D features. Similar to 3D facial points, 3D facial surface normals 

record a 100% correct classification for the Happy expression. For the Disgust 

expression, 3D facial surface normals has a 29% higher classification rate than using 

3D facial points. 3D facial surface normals have an equal rate of correct classification 

for the Surprise expression with 3D facial points. Overall, 3D facial surface normals 

perform quite well compared to the two other feature vectors where the average 

classification of 3D facial surface normals is 66% compared to 50% and 46% for 3D 

facial points and 3D distance measurements respectively. 
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Table 6.3 Modules and voting scheme results for the Happy expression using 3D 

Facial Surface Normals. 

Happy Expression 
Nearest Neighbour 

Classifier 
Support Vector Machine 

Eyebrows 46.15% 56.92% 

Mouth 70.77% 98.46% 

Eyes 53.13% 73.85% 

Cheeks 55.38% 90.77% 

Nose 46.15% 87.69% 

Forehead 55.38% 93.85% 

Majority Voting Scheme (MVS) 58.40% (FP: 33.85%) 98.46% (FP: 1.54%) 

Weighted Voting Scheme (WVS) 78.46% 100% 

  

 Based on figure 6.2 and 6.3, Happy expression recorded the highest correct 

classification compared to the other expressions across classifiers. Table 6.3 shows the 

modules and voting scheme results for the Happy expression using 3D facial surface 

normals. The results using SVM across modules are better than using the nearest 

neighbour classifier. Therefore, the results of both voting schemes are improved. 

However, MVS yielded one FP case. Even though there are four modules in the 

nearest neighbour classifier which achieves more than 50% correct classification, the 

MVS results still failed to achieve as least on par with WVS using SVM. In MVS, an 

expression class of 𝑥 needs to have at least 4 votes to be voted as 𝑥.  If it has less than 

4 votes, it will be misclassified as another expression or it will be voted as an FP case. 

These results tell us that in most expressions, not all modules have the same 

classification results and that explains the poor results of MVS using the nearest 

neighbour classifier. 
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 Nabatchian et al [36] divide the image into several sub-images and perform the 

training and classification process based on these sub–images in their face recognition 

system with illumination variation experiments. They used two types of voting scheme 

which is the Democratic Voting Scheme (DVS), also known as the Majority Voting 

Scheme and WVS to fuse the results of sub–images classification. In their use of 

WVS, the weights were set based on the illumination condition of each sub–image. We 

proved that our results are in agreement with theirs where WVS performs better than 

MVS. 

 

6.3 Comparison with Other Studies 

 

The results in this work still do not achieve at least  the  83% correct 

classification rate which Wang et al., (2006) reported, despite the 3D database 

difference.  Table 2.4 in Chapter 2 shows the average classification rates in other 

works using 3D facial static data. Although they are not directly comparable with our 

work, it shows the achievement in the 3D facial expression analysis area. Wang et al. 

(2006) carried the first experiment of 3D facial expression classification using BU-

3DFE database. They recorded the average rate of 83.1%.  The highest correctly 

classified expression was Happy (95%). There were four expressions under 81%, 

which were Fear, Sad, Disgust and Anger. The highest average recall rate for the 
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experiment that used the BU-3DFE database was achieved by Maalej et al., (2010). 

Soyel et al. (2007) also include Neutral expression in their experiment along with six 

universal facial expressions. Anger and Neutral expressions have the lowest rate which 

is less than 90%. Tang et al., (2008) achieved an 87.1% average classification rate 

using a multi-class SVM classifier. The highest average classification obtained is 

99.2% for the classification of Surprise. However, none of these works achieved the 

100% correct classification of Happy expression which we attained in our study. 

 

 Figure 6.4 The subject in the first row show three different intensities of Anger 

expression, ranging from low (left) to high (right) intensity (taken from Frowd et al., 

2009). The three different subjects from the Bosphorus Database portray Anger 

expression with no intensity information in the second row. 
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We also mentioned in Chapter 2, Wang et al., (2006), Soyel et al., (2007), Tang 

et al., (2008) and Gong et al., (2009) used BU-3DFE database in their study and they 

only include each of the facial expressions with the two highest levels of intensity. On 

the other hand, the Bosphorus database does not provide facial expression with 

intensity information. We believe this is the reason for the significant difference in the 

output as the facial expression with higher intensity means the deformation of each 

facial feature is obvious and easy to classify. Figure 6.4 shows the illustration of 

different intensity of Anger expression in the first row taken from Frowd et al. (2009) 

while the three different subjects from Bosphorus database portray Anger expression 

with no intensity information in the second row. 

However, the Happy expression managed to achieve a 100% classification rate 

whereas none of the previous works have achieved this. This happened as each subject 

shows practically the same level of intensity for the Happy expression in the 

Bosphorus Database. We also believe the intensity of the Happy expression portray by 

the subjects from the Bosphorus Database are fairly high when compared to Frowd et 

al. (2009) facial expression intensity levels (see figure 6.5). 
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Figure 6.5 The subject in the first row show three different intensities of Happy 

expression, ranging from low (left) to high (right) intensity (taken from Frowd et al. 

(2009)). The three different subjects from the Bosphorus Database portray Happy 

expression with no intensity information in the second row 

 

  

Hesse (2011) carried out facial expression classification utilizing 2D landmark 

coordinates, AAM shape and appearance parameters, SIFT and DCT appearance 

descriptors and combinations of AAM parameters and SIFT/DCT descriptors. An 

AAM contains a statistical model of the shape and grey-level appearance of the object 

of interest which can generalize to almost any valid example (Cootes et al, 1998). PCA 
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is used in AAM to obtain both shape and appearance parameters. According to Hesse 

(2011), the worst classification performance is the shape parameters. 

Table 6.4 A comparison of classification accuracies for different expressions between 

2D based approach (Hesse, 2011) and 3D based approach (non-modular and modular 

with WVS) 

Expressions Hesse (2011) 
Our work (Non-

modular) 

Our work (modular 

with WVS) 

Anger 47.1% 64.6% 75.4% 

Disgust 49.6% 25.1% 43.1% 

Fear 38.1% 29.2% 21.5% 

Happy 58.7% 100% 100% 

Sad 49.4% 47.8% 67.7% 

Surprise 67.2% 53.9% 90.7% 

Average 51.7% 54% 66% 

  

Table 6.4 shows a comparison of classification accuracies for different 

expressions between 2D and 3D approach. We used Hesse‟s results to represent the 2D 

approach. However, Hesse‟s result is averaged for all poses for 2D shape parameters. 

These results have highlighted the advantages of using3D modalities over 2D. Hesse 

used 2D images and 2D facial landmark points in AAM to generate shape and 

appearance parameters. In our study, we proposed 3D facial surface normals as the 

feature to be inserted into PCA and we used the obtained shape parameters as the 

feature vectors in the facial expression classification phase. If we look through this 

aspect (using shape parameters), we managed to improve Hesse‟s result especially in 
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Anger, Happy, Sad and Surprise expressions. However, the results on Disgust and Fear 

expressions are still worse.  

A similar concept of surface normals is also used in the work of Ceolin‟s 

(2007) and Sandbach et al., (2012). Sandbach et al (2012) introduced LBNP which 

uses the same concept of surface normals for only AUs classification. Ceolin (2012) 

used a 2.5D facial surface normals (or known as facial needle maps) which is acquired 

from 2D intensity images using Shape from Shading (SFS), referred to as Principal 

Geodesic Shape-From-Shading (PGSFS).In their work, the confusion matrix of facial 

expression classification results are not provided therefore any comparison with their 

works cannot be carried out. 

 

 

6.4 Issues on Disgust and Fear Expression 

We believe that the deformation of the Eyebrows is really significant in any 

facial expression which is in agreement with our AdaBoost experiment. Therefore, we 

decided to make it a separate module instead of combining it with the Eyes module. 

However it turns out that, the results for the Eyebrows module independently are not 

as good as the other modules. We also considered that the small number of 3D facial 

features computed in this module is the reason for the poor result. 
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Figure 6.6 Three subjects A, B and C (from left to right) with Disgust (first row), Fear 

(second row) and Surprise (third row) expressions. 

   

 If we look closely at the Disgust and Fear expressions for the three different 

subjects in figure 6.6, we can see the differences between them specifically in the 

Eyebrows, Mouth and Eyes modules which are the modules with the largest weight. 

The large differences in those modules are significant in the classification phase, where 

for example, for the most intense Fear expression; there is an opened mouth as in the 

Surprise expression (see figure 6 for comparison). However, subject B and C did not 



   

 

170 

 

show the same mouth deformation. To differentiate between Fear and Surprise, the 

Eyebrows for the Fear expression should be showing a different deformation in the 

Eyebrows to the Surprise expression. However, subject C is still showing the similar 

deformation in the Eyebrows in the Surprise and Fear expression; hence it is obvious 

we cannot differentiate the Surprise and Fear expression because of the same 

deformation in Eyebrows for both expressions. 

 Savran et al (2008) states that for the Disgust expression, only two AUs are 

involved namely AU9 (Nose wrinkler) and AU10 (Upper lip raiser) while in Ekman et 

al. [25], the Disgust expression is noted as having AU9 (Nose wrinkler), AU15 (Lip 

corner depressor) and AU16 (Lower lip depressor). Subject B in figure 12 showed the 

AU10 clearly while subject C is showing a bit less deformation of AU10. The 

eyebrows deformation for the three subjects is also different. Even though both Savran 

et al (2008) and Ekman and Friesen (1978) do include AU9 in the Disgust expression, 

it is still not enough to really distinguish the Disgust expression from other expressions 

since the weighting for the nose module is not large. 
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Table 6.5 Facial expression classifications of 3D facial surface normals for the Disgust 

and Fear expressions using nearest neighbour classifier and SVM 

 Eyebrows Mouth Eyes Cheeks Nose Forehead 
Modules 

Average 
WVS 

Disgust-

NN 
24.62 32.31 20.00 36.92 29.23 27.69 28.46 40.00 

Disgust-

SVM 
1.54 7.69 27.69 33.85 43.08 12.31 21.03 43.08 

Fear - NN 4.62 26.15 26.15 27.69 32.31 15.38 22.05 30.77 

Fear – 

SVM 
0.00 26.15 32.31 15.38 25.08 9.23 18.03 21.54 

 

Table 6.5 is an extract from the results presented before to summarize facial 

expression classifications of 3D facial surface normals for the Disgust and Fear 

expressions using nearest neighbour classifier and SVM in percentages. Even though 

the average rate of the modules for the Disgust expression using nearest neighbour is 

higher than using SVM, the WVS result using SVM is a slightly higher than the WVS 

result using nearest neighbour. This is because in the nearest neighbour case, for some 

of the test cases, the Eyebrows module was not supported by other modules, due to the 

combination of other modules having more weighting than the Eyebrows module 

alone. Our approach in this work is to project the feature vectors to the subspace. In the 

aspect of classifier difference, nearest neighbour classifier find a face that has the 

shortest distance to the “probe” face while the feature vectors have to undergo the 

training phase before being classified in SVM. The poor results for each module using 

SVM approach is due to the varying deformation of the facial feature in each module. 
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This will lead to indistinct separable gap between expressions, thus affecting the 

success rates using SVM. Furthermore, in SVM, if the number of feature vectors is 

much greater than the number of samples, the method is likely to give poor 

performances (Scikit-learn, 2013).In the Fear expression case, it is obvious that the 

success rate for each of the modules using SVM is not consistent enough due to the 

Eyebrows success rate which is 0%to produce a good WVS result. Furthermore, the 

higher value of surface normals standard deviation compared to two other features 

(refer to figure 5.17) means the success rate of surface normals across the modules are 

inconsistent. 

 Hesse (2011) also provided facial expression classification results for different 

facial expression intensities in which they have 4 levels of intensity. Based on their 

result, the classification accuracies are improved from level 1 up to level 4 of 

expression intensity. We also believe, in agreement with Hesse (2011), that facial 

expression classification for static data should be conducted according to the level of 

intensity. Thus, different deformation of facial features can be captured for every level 

of intensity. However, the comparison between our work and Hesse (2011) is not fair 

as there is a difference in terms of data modalities.  
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6.5 Conclusions 

 

 In this chapter, we produce several key tables based on the results taken from 

Chapter 4 and 6. Then, the analyses and discussions of the key tables are carried out. In 

general, the modular approach of WVS has a significant effect on 3D facial expression 

classification especially using 3D facial surface normals where a consistent result for 

the classification of the Anger, Happy and Surprise expressions are obtained. Also the 

Happy expression had a 100% success classification rate in both modular and non-

modular approaches using the SVM classifier. All other expressions showed an 

improvement except the Fear expressions. The Disgust and Fear expressions have a 

low success classification rate in general. In the next chapter, we will summarize our 

study and propose several future works to improve these results.  
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CHAPTER 7 

CONCLUSIONS 

 

 In this chapter, first we summarize the contributions of our work and then 

address the limitations of the developed methods. Following the analysis, we discuss 

some possible solutions and propose several suggestions for 3D facial expression 

classification. Section 7.1 restates the contributions. Section 7.2 addresses the 

limitations of our work and Section 7.3 proposes the directions for future works.  

 

7.1 Summary of Contributions 

 The overall goal of this thesis comes in as package where a statistical 

modelling of 3D facial surface normals is used along with a modular approach. The 

resulting shape model on each module is used to perform six basic facial expression 

classifications with no expression intensity information provided.  



   

 

175 

 

 The key results of our work is we have shown that 3D facial surface normals 

outperformed 3D facial points and 3D distance measurements as the feature vectors in 

3D facial expression classification. In particular, we proved the feasibility of using 3D 

facial surface normals to capture face deformation produced by six basic facial 

expressions compared to the two other 3D facial features. In addition, we proved that 

each expression has a consistent distribution of surface normals which distinguish it 

from other expressions and therefore the facial deformation of each facial expression is 

easily monitored.  

By using the modular approach, the discriminative variations of the facial 

features in each module are emphasised. We explored a modular approach and 

decomposed a face into six modules. We performed facial expression classification for 

each module independently. The classifications of each module are combined using 

WVS to determine the final classification of a facial expression. The priority rank 

experiment using AdaBoost has proved that the most important facial feature in six 

basic facial expressions is the eyebrows area while the less important is the forehead. 

The WVS used the modules priority rank result as the weighting factor. We also 

proved that WVS approach is better than using MVS to infer the expression from six 

different modules. The modular approach of WVS has a significant effect on 3D facial 

expression classification especially using 3D facial surface normals where a consistent 

result for the classification of the Anger, Happy and Surprise expressions are obtained. 

Also, the Happy expression had a 100% success classification rate in both modular and 

non-modular approaches using the SVM classifier. 



   

 

176 

 

Hesse (2011) used a similar approach which is using the shape parameters of 

PCA as the input to a classifier with 2D data. We compared our results with Hesse 

(2011) and it is improved by 14%. However, this comparison is indicated unfair due to 

data modalities difference. Furthermore, the Happy expression managed to achieve a 

100% classification rate where none of the previous 3D studies have achieved this. On 

the other hand, Sandbach et al (2012) introduced LBNP which uses the same concept 

of surface normals for only AUs classification. Ceolin (2012) used a 2.5D facial 

surface normals (or known as facial needle maps) which is acquired from 2D intensity 

images using Shape from Shading (SFS), referred to as Principal Geodesic Shape-

From-Shading (PGSFS). The PGSFS method is used to iteratively recover needle-

maps that realistically capture facial shape and also satisfy the image irradiance 

equation as a hard constraint. Therefore, the recovered facial needle-maps both encode 

facial shape information and implicitly capture facial texture information. However, in 

their work, the confusion matrix of facial expression classification results are not 

provided therefore any comparison to with their works cannot be done. 

 

7.2 Limitations 

 We performed facial expression classification for every module. The worst 

average classification rate was the Eyebrows module. This was due to the small 

number of 3D facial features computed in the Eyebrows module. The 3D facial 

expression classification produced by combining the results of individual modules 



   

 

177 

 

using WVS was still not improved when compared with other 3D studies. The WVS 

method depends on the weighting factor. The Eyebrows had the largest weighting and 

because of the worst average classification rate it had, it affected the results of WVS. 

 The existing 3D studies only include the 3D facial expression data with the two 

highest levels of intensity. On the other hand, the Bosphorus database does not provide 

facial expression with intensity information. We believe this is the reason for the 

significant difference of the results between modules and the results with other 3D 

studies as the facial expressions with higher intensities mean the deformation of each 

facial feature is evident and easier to classify.  

 

7.3 Future Directions 

 Having addressed the limitations of the method described in this thesis, in this 

section we put forward suggestions for future work to improve the results presented 

and propose a few suggestions for future research in 3D facial expression 

classification. 

 Even though the Bosphorus database does provide AU deformation data with 

intensity information, it is not the same in the case of 3D facial expression data. Our 

results are degraded due to the intensity differences in each subject shown in the 

Bosphorus database.  For our future work, we would like to carry out facial expression 

classification experiments using 3D facial data with intensity information, specifically 

with the six basic facial expressions with the highest intensity level. We believe that 
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our proposed approach will achieve a good result using this kind of data. Furthermore, 

we would like to train our system using facial expressions with different intensity 

levels and as a result, we will be able to classify the intensity level of facial expression. 

 According to Lucey et al., (2002), shape feature yielded higher classification 

for only certain AUs. For example AUs 1, 2 and 4 coincide with eye brow movement 

which can be easily picked up by the shape feature. However, for AUs 6 (cheek raiser), 

9 (nose wrinkler) and 11 (nasolabial deepener), there is a lot of textural change in 

terms of wrinkles and not so much in terms of contour movement, which suggested 

that 2D appearance data performed better than 2D shape data for those AUs. In other 

words, certain AUs could only measure permanent features and the others only 

measure transient features. Their facial expression classification experiments also 

yielded that the combination of 2D shape and appearance features performed better 

than using shape or appearance features independently. We would like to further 

examine this theory with our approach in the future where we will fuse 3D facial 

surface normals with 2D appearance data using our modular approach. 

 To enable the 3D facial expression classification system to be use in unlimited 

types of facial deformation as well as to make a reliable AU monitoring system, the 

symmetrical assumption for face deformation needs to be relaxed. Furthermore, there 

are subjects who show an expression which was among the six basic expressions with 

unsymmetrical deformation of facial features, specifically the Eyebrows (refer to 

Figure 5.3). In future, we would like to extend our approach to two types of advances 

for the 3D face processing problem (i) to classify more than six basic facial 
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expressions and (ii) to be able to monitor any AU deformation. In order to do this, the 

facial features will be assumed asymmetrical and therefore a face will be decomposed 

into more than six modules. We believe this will also solve the 3D face occlusion 

problem cause by hand, hair etc.  

 As systems aim to analyse more subtle facial expressions, it has emerged that 

dynamic information is very important.  We believe that with dynamic information 

fused with our modular approach, we could monitor the AU/FAP deformation of each 

module easily and different intensities of each facial feature can be captured. In the 

future, we would like to use 3D facial surface normals as the feature vector in a 

modular approach with 3D facial dynamic data. 
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APPENDIX A 

  

 In chapter three, we discussed two ways of doing multiclass classification using 

SVMs: (i) one-versus-all classifiers (OVA) and (ii) one-versus-one classifiers (OVO). 

In this work, OVA is chosen for its simplicity, practicality and to avoid the intensive 

computation of OVO.  

 To mathematically describe multiclass SVM, we must begin with the binary 

SVM description. SVM map an input sample to a high dimensional feature space and 

try to find an optimal hyperplane that minimizes the classification error for the training 

data using the non–linear transformation function (Sebald, et al., 2001).   

X ∶ 𝑥 =  𝑥1, … , 𝑥𝑛 → 𝐹: 𝛷 𝑥 = (𝛷1 𝑥 ,… , 𝛷𝑛 𝑥 )     (A.1)  

In a binary classification situation, let 𝑁 be the number of training samples where each 

input 𝐱i is in one of two classes 𝑦𝑖 = −1 or +1. The inputs to the training algorithm 

are the sets  𝐱i,, yi  where 𝑖 = 1, … , 𝑁, 𝑦𝑖 ∈  −1, 1  
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Figure A.1 Hyperplane through two linearly separable classes. 

  

As described in figure A.1, the support vectors are the training samples closest to the 

hyperplanes and the SVM goal is to orientate the hyperplane to be as far as possible 

from the closest data for both classes.  

The hyperplane can be described mathematically by 𝐰 ∙ 𝐱 + 𝑏 = 0 where  

• 𝐰is the normal to the hyperplane 

• 
b

 𝐰 
is the perpendicular distance from the hyperplane to the origin. 

The crucial point in SVM is to select variables 𝐰  and 𝑏, so that our training data can 

be described by: 

𝐰 ∙ 𝐱 + 𝑏 ≥ +1                      for  𝑦𝑖 = +1                     (A.2)                      

𝐰 ∙ 𝐱 + 𝑏 ≤ −1                      for  𝑦𝑖 = −1                     (A.3) 
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The SVM algorithm makes a prediction based on a function of the form 

𝑓 𝑥 =  𝑤𝑖𝐾 𝐱, 𝐱𝑖 + 𝑏𝑁
𝑖=1     (A.4) 

where 𝐰𝑇 =  𝑤1, 𝑤2, … , 𝑤𝑖  are the weights. 𝐾 . , .  is a kernel function and in here we 

used a linear kernel which is  𝐱, 𝐱𝑖 . 𝑏 represents a bias term and trainable parameter.   

 Given a multiclass training set composed of 𝑃 disjoint classes, we would like to 

use a linear kernel to train an OVA classifier for some arbitrary target class, 𝑗. The 

training dataset  𝑥𝑗 , 𝑐𝑗   consists of 𝑁 examples belonging to 𝑃 classes. The class label 

is 𝑐𝑖 ∈ 1, 2, … , 𝑃. Each SVM classifies samples into corresponding classes against all 

other classes in the OVA method. All 𝑁 training examples are used in constructing an 

SVM for a class. The SVM for class 𝑗  is constructed using the set of training examples 

and their desired output  𝑥𝑖 , 𝑦𝑖 . The desired output𝑦𝑖  for a training example 𝑥𝑖  is 

defined as follows:  

𝑦𝑗 =  
+1           𝑖𝑓 𝑐𝑖 = 𝑗
−1           𝑖𝑓 𝑐𝑖 ≠ 𝑗

  (A.5) 
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