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ABSTRACT 

Despite high cure rates achieved in the last two decades, treatment resistance 

and therapy-associated toxicity is still observed in a significant proportion of 

children with ALL, warranting alternative therapeutic approaches. Results 

obtained in our laboratory suggest that transcriptional upregulation of 

prosurvival pathways plays a key role in paediatric B-precursor ALL 

chemoresistance, thus providing a strong rationale for the inhibition of 

prosurvival gene transcription. In this study, I investigated the role and feasibility 

of the epigenetics-regulating BET family of proteins as therapeutic targets. I 

showed that BRD4 is ubiquitously expressed in paediatric ALL tumours and that 

treatment with the BET protein inhibitor JQ1 led to potent in vitro sensitisation of 

ALL tumour cells regardless of cellular phenotype, as well as in vivo 

sensitisation using xenograft models of ALL. I observed strong in vitro synergy 

in ALL cell lines and primary tumours treated with a combination of JQ1 and 

dexamethasone. Using microarray technology I confirmed BET protein inhibition 

involves transcriptional downregulation of prosurvival pathways and identified 

potential biomarkers predictive of JQ1 sensitivity. I characterised the cellular 

effects of BET protein inhibition in pre-B ALL and showed this was associated 

with inhibition of cell cycle progression, downregulation of c-Myc protein, direct 

inhibition of DNA replication and induction of caspase-dependent apoptosis that 

was independent of p53 activity. Thus, pharmacological inhibition of BET 

proteins provides an alternative strategy by which to downregulate prosurvival 

signaling and target B-precursor ALL. Finally, I explored PIM kinases that co-

operate with BET proteins during the regulation of transcription as alternative 

therapeutic targets in B-precursor ALL. I was able to show this therapeutic 

approach holds promise, and warrants further study.  
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1. INTRODUCTION 

1.1. Overview 

Leukaemias are the most common malignancy of childhood with acute 

lymphoblastic leukaemia (ALL) accounting for approximately 25% of all 

paediatric tumours [1]. ALL is a disease that affects both children and adults of 

all ages, with prevalence peaking between the ages of 2 and 5 years [2]. This 

disease is characterised by deregulation of the B-cell development process that 

can result in a block at specific stages of differentiation and uncontrolled clonal 

proliferation of early lymphoid progenitor cells of either T- or B-cell lineage, 

which invade the bone marrow, peripheral blood, and organs such as the liver 

and spleen [2].  Although ALL can occur in either cell lineage, Pre-B ALL 

accounts for the greatest proportion of cases (80%) in comparison to pre-T cell 

ALL (15%) [3].  

As recently as the 1960s ALL was largely untreatable with nearly all cases 

proving fatal [1]. However, major improvements in paediatric haematology and 

oncology, together with independent clinical and molecular risk-stratification 

over the past 40 years have successfully increased overall survival to over 80%. 

Nevertheless, ALL is still a major cause of morbidity and mortality in children 

around the world with over 15% of patients suffering from disease relapse 

following first line therapy[1]. This, together with the fact that current treatment 

options lead to significant toxic side-effects, provide the rationale for the 
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requirement of alternative therapies with far less toxic consequences, whilst 

remaining specific and effective in reducing the burden of leukaemia [1]. 

1.2. Clinical classification of paediatric ALL 

1.2.1. B-cell differentiation  

Since ALL represents the proliferation of lymphoid progenitor cells that are 

unable to fully differentiate, it is important to consider B-cell development within 

the context of ALL. 

Haematopoietic stem cells (HSCs) are pluripotent progenitor cells that may 

differentiate into either lymphoid cells (B- and T- lymphocytes), or myeloid cells 

(red blood cells, granulocytes, megakaryocytes, and macrophages) depending 

on the cellular signals they receive [4]. Mature immunocompetent B-cells are 

required for the production of antibodies essential to the adaptive humoral 

immune response. The formation of mature B-cells is a highly complex and 

tightly regulated process, which begins with B-cell lineage commitment of HSCs 

in the bone marrow compartment, and ends with the production of mature B-

cells in secondary lymphoid organs such as the liver, thymus, and spleen, which 

also maintain proliferation and differentiation of HSCs throughout most of 

embryonic development [4]. 

Several transcription factors play critical roles in determining the cell fate of 

HSCs. The commitment of HSCs to the lymphoid lineage is regulated by 

transcription factors such as E2A, Early B cell Factor (EBF) and Pax5 [5-7]. 

Such transcription factors are essential for maintenance of B cell progenitors 

through the various stages of B cell differentiation and ensuring normal B cell 
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lymphopoiesis takes place. Thus, deregulation of B cell development often 

leads to malignant transformation, including B-precursor ALL [4].  

More specifically, B-precursor ALL in particular is characterised by lymphoid 

cells showing maturation arrest within the late pro-B, large pre-B, and small pre-

B stages of differentiation, meaning this type of leukaemia may be subdivided 

into pro-B (null), common, and pre-B ALL, respectively [8].  

1.2.1.1. The early stages of B cell development 

In order for a common lymphoid progenitor cell to undergo full maturation into a 

mature B cell capable of producing antibody, it must go through several stages 

of differentiation. These stages include the common lymphoid progenitor, the 

early B cell, the pro-B, pre-BI, pre-BII cells, and the immature B cell, before 

ending with the mature B cell [8, 9]. Rearrangement of the variable, diversity, 

joining, and constant regions of the immunoglobulin heavy chain (IgH) takes 

place at specific stages of the maturation process, together with the expression 

of a number of surface markers that allow for the identification and classification 

of different subtypes of leukaemia [8].  

1.2.1.2. Immune system gene rearrangements 

The development and maturation of B cells is required for the generation and 

expression of unique B cell receptors (BCRs), which specifically bind to new or 

recurrent antigens encountered by the human body [10]. The BCR is an 

immunoglobulin (Ig) expressed on the B cell membrane and consists of a 

heterodimer of matching pairs of Ig heavy chains (IgH) and two Ig light chains 

(IgL). 
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Figure 1.1: Stages of B-cell development 

a)  Rearrangement of the immunoglobulin heavy and light genes (H and L, 
respectively) during B-cell development. 

b) Expression of markers that are characteristic of specific stages of B-cell 
differentiation and are used to identify leukaemia subtypes.  

(n, nuclear; c, cytoplasmic; *, not expressed in all cells of this type; µH, µ heavy chain 
surface expression; V, variable; D, diversity; J, joining; AUL, acute undifferentiated 
leukaemia; cALL, common ALL) 
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These portions of the BCR are peptides with a C terminal region that exists in a 

limited number of forms, and which determines the class and effector function of 

the respective antibody molecule. Five classes of antibody exist, namely α 

(IgA), δ (IgD), ε (IgE), γ (IgG), and μ (IgM), with each class being specialised for 

the particular method by which it binds, neutralises and removes antigens [10]. 

However, the IgH and IgL heterodimer is itself unable to activate biological 

responses following the binding of a specific antigen. It is the disulphide-

coupled heterodimer of Igα (CD79a) and Igβ (CD79b) located towards the C-

terminal region of the IgH and IgL peptide chains that transduces the binding of 

specific antigens into alterations in intracellular signalling pathways. The IgH 

and IgL heterodimer contains the variable amino acid sequence (antibody 

variable region) that give rise to the binding specificity required for antigen 

recognition, and it is the ordered expression and assembly of these components 

of the BCR that allow for the definition and characterisation of each stage of B 

cell development [11]. 

1.2.1.3. VDJ recombination 

In order for clonal diversity to be achieved, the genes encoding the IgH and IgL 

chains contain constant and variable regions that made up of segments know 

as V (variable), D (diversity), and J (joining), and are arranged and put together 

by a tightly regulated, site-specific recombination process known as VDJ 

recombination [4]. This process is essential for the adaptive immune function of 

the lymphocyte, and consists of rearrangement of the D and J fragments, after 

which the V fragment is joined to the DJ fragment. This occurs first in the heavy 

chain loci, then in the light chain loci, and is a process regulated by enzymes 
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encoded by recombination activating gene (RAG)-1 and RAG-2 [12, 13]. The 

fact that there are over 200 variable (VH), 30 diversity (DH), and 6 joining (JH) 

IgH chain genes means that a very large number of rearrangement 

combinations are possible [14-16]. Enzymes involved in DNA double strand 

(DSB) repair, such as DNA-PK, XRCC4, Artemis and DNA ligase IV, are all 

involved in the re-ligation of cleaved segments of V, D and J genes [17]. Further 

diversity is also attained by imprecise relegation of gene segments, as well as 

the random insertion of nucleotides between segments by the enzyme terminal 

deoxynucleotidyl transferase (TdT) [18]. The pro-B stage of B development is 

the first stage that exhibits B cell lineage commitment and is characterised by 

rearrangement of IgH. The pro-B stage may be further divided into sub-phases 

according to the extent of heavy chain recombination. When the heavy chain is 

in the germ line state, this is described in humans as early pro-B. The point at 

which D and J segments are recombined is known as pro-B. Finally, the point at 

which V-DJ recombination has occurred is known as pre-B I [4].  

In the pro-B stage, chaperone proteins such as calnexin associate with Igα and 

Igβ, which are expressed on the cell surface [19]. Once the IgH chain is 

recombined, it is assembled together with Igα and Igβ, as well as IgL chain 

components, and expressed as an immature pre-BCR on the surface of the B 

cell membrane. Expression of this receptor marks entry into the pre-B stage of 

development [20].  

Any errors during the VDJ recombination process or assembly of the pre-BCR 

components, prevents any further B cell development due to a block in signal 

transduction from the immature receptor, preventing pro-B cells from entering 
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the pre-B stage and instead leading to apoptosis. Cells in the pre-B stage 

undergo recombination of the IgL chain V and J fragments, allowing for the 

assembly of the BCR and marking the entry of cells into the pre-B I step [21-24]. 

The proliferative state and expression of surface markers also allow for the 

identification of pro-B and pre-B stages of B cell differentiation. Pro-B and pre-B 

stages are characterised by waves of VDJ recombination followed by waves of 

proliferation that do not occur simultaneously. These waves of activity are 

initiated and maintained by tightly regulated expression of recombinase 

associated genes 1 and 2 (RAG1 and RAG2) during G0, which encode two 

enzymes that are key to VDJ rearrangement and are then degraded before cells 

enter into S phase [25]. Keeping these two waves separate is important since 

VDJ rearrangement is associated with non-homologous recombination and 

would increase the mutation rate during DNA replication. The proliferative pro-B 

and pre-B stages of differentiation are often found to be deregulated in B cell 

ALL and so it is suggested that failure in keeping DNA replication and VDJ 

recombination separate during B cell development could be a factor in blocking 

differentiation and driving leukaemogenesis [4].  

1.2.1.4. Immunophenotypic classification 

Previous studies investigating immunological markers of lymphoid leukaemias 

provided invaluable information regarding cell lineage and stages of 

differentiation of leukaemia cells, which consequently greatly improved the 

precision with which ALL is diagnosed [26].   
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The maturation of HSCs into fully developed B cells is associated with changes 

in gene expression that modulate the presence of a variety of surface markers. 

Examples of such markers are the receptor and ligand proteins known as 

cluster of differentiation (CD) molecules. Studies that began including the 

assessment of immunologic markers revealed that immunophenotypically 

distinct subpopulations of ALL correlated with specific molecular and karyotypic 

abnormalities, and also provided further insight into the mechanisms of 

lymphocyte signal transduction [26]. Furthermore, antigen expression studies 

led to the notion that malignant lymphoblasts were a result of normal lymphoid 

progenitor cells arrested at various stages of differentiation [27, 28]. It is 

therefore clear to see how important the recognition of lymphocyte 

differentiation antigens and specific immunophenotypes are within the context 

of this disease. 

B cells derived from common lymphoid progenitors are known to express CD34, 

CD10, and CD45 [29]. However, the pan B cell marker CD19 is not expressed 

and it is uncommon for surface CD127 (IL-7R) and nuclear TdT to be expressed 

[30].  

Common lymphoid progenitor cells that enter the early B cell stage of 

differentiation begin to express B-lineage specific genes such as the Vpre-B 

and cytoplasmic CD79a (cCD79a) genes, which encode components of the 

surrogate light chain [31, 32]. Cells at the pro-B stage of B cell differentiation 

express CD34 and CD19, and sometimes CD10 [33].  
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Cells that are at the pre-B-I stage express surface markers CD34, CD45, CD10, 

and CD19. Nuclear TdT is also expressed at pre-B-I [34]. Further maturation 

into the pre-B-II stage is characterised by loss of nuclear TdT expression, along 

with CD34 [8]. At this point CD79 may be expressed, which coincides with 

expression of surface μ heavy chains [35]. 

Immature B cells express CD10, CD19, IgM, and increasing levels of CD45. 

Further development to mature B cells is characterised by loss of CD10 and 

surface IgD expression [8, 34]. 

Generally, B cell ALL expresses an immunophenotype that is similar to normal 

B cell progenitors and is characterised by the expression of CD34, CD19, 

cytoplasmic CD79a and nuclear TdT. In addition to these surface markers 

CD10, CD20, CD22, and CD24 are sometimes also expressed [2]. 

Surface expression of CD66c has been reported in approximately 33% of B-ALL 

cases, compared to normal B cell progenitor cells where this molecule is absent 

[36]. Other more discrete examples of deregulated surface markers during B-

cell differentiation include the expression of CD21 on CD19+CD34+ B-ALL 

cells, and not on healthy cells with a similar immunophenotype. In B-ALL, 

CD10, CD19, and CD34 are usually found to be overexpressed, whereas CD45 

and CD38 are commonly underexpressed [36]. 

1.2.2. Morphological classification 

Morphology was for many years a main criterion for primary diagnosis of ALL 

and may be used to differentiate this type of leukaemia from acute myeloid 

leukaemia. The diagnosis of ALL is defined as malignant lymphoblasts being in 
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excess of 5% of the total number of cells in the bone marrow, equating to at 

least 108 lymphoblasts in a 1010 total cell count. 

Morphological classification of ALL first began in 1976 and followed guidelines 

devised by the French-American-British (FAB) Cooperative Group, which 

described three morphological subtypes: L1, L2 and L3 [37, 38]. The L1 subtype 

consisted of small lymphoid cells that contained hardly any cytoplasm but had 

regular nuclei exhibiting homogenous chromatin and no nucleoli. The incidence 

of this subtype in B-ALL is approximately 25-30%. The L2 subtype consists of 

larger heterogeneous cells with cytoplasm and a nucleus with an irregular 

shape that contains net-like chromatin and nucleoli. This particular subtype is 

observed in approximately 65-70% of cases. The third subtype L3, is used to 

describe homogenous cells with a basophilic cytoplasm containing vacuoles. A 

prominent nucleolus and chromatin with a speckled appearance is also 

descriptive of the L3 subtype, which is observed in 5-10% of cases [39]. 

Although cytochemistry is best used for distinguishing ALL from myeloid 

leukaemias, use of morphological examination by light microscopy together with 

cytochemistry often proves to be of limited use, since distinction between the 

subtypes can at times be subjective and difficult. B-ALL lymphocytes tend to 

exhibit a morphology resembling the L1 and L2 subtypes.  ALL of the L3 

subtype is reported to be very similar to Burkitt’s lymphoma in terms of 

biological characteristics and in response to chemotherapy, highlighting the fact 

that the FAB classification system is on its own inadequate [40]. Indeed, 

following recommendation by the World Health Organisation (WHO), 

morphological examination is currently not routinely used for diagnostic 
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purposes. Instead, other more robust methods of diagnosis and risk 

stratification making use of immunophenotype, molecular features and 

cytogenetics have been subsequently adopted [41]. 

 

1.3. Aetiology of paediatric precursor B-cell ALL 

1.3.1. Epidemiology 

Approximately 30% of all cancers that are diagnosed under the age of 15 years 

are leukaemias [42]. Within the UK an estimated 370 children aged 0-14 years 

are diagnosed with ALL every year, whilst the incidence of ALL in Europe 

equates to 35 cases per million children every year [1]. ALL incidence peaks at 

2-5 years of age [43], and is slightly higher in males compared to females, at a 

sex ratio of 1.3:1.0 [44]. A distinct difference in the occurrence of ALL among 

black and white children exists, where the incidence among white children is 

almost 2-fold greater. There is also substantial variation in annual international 

rates, where incidence for males is estimated to range from 9-47 per million 

males, and from 7-43 per million for females [45, 46]. A previous study showed 

that the incidence of lymphoid leukaemias in the UK and Europe between 1978 

and 1997 was rising in children at a rate of 0.6% per year, and in adolescents at 

a rate of 1.9% per year [47].  

1.3.2. Genetics of ALL 

Very little evidence exists for ALL being a directly inheritable disease. Only a 

few sporadic cases exist, involving mothers that suffered from leukaemia whilst 

pregnant [48], and other cases where the offspring of individuals that were 
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treated for paediatric cancer also developed leukaemia themselves [49]. The 

exact pathogenic mechanism leading to ALL still remains unclear. However, 

years of research have led to many interesting observations and associations 

being made, indicating a predisposition towards the development of ALL (Table 

1.1).  

1.3.2.1. Predisposing syndromes 

There are a number of heritable disorders that are known to predispose 

individuals to the development of ALL.  

The incidence of Down’s syndrome (DS) in new-born children within the UK is 

estimated to be 750 babies every year, which equates to approximately 1 in 

every 1000 babies. It is a chromosomal condition caused by the presence of all 

or part of an extra chromosome 21 (trisomy). The association of DS and an 

increased risk of leukaemia development in patients was first described in the 

late 1950s [50], generally occurring within the first 4 years of birth [51]. Although 

some variation in the reported relative risk for ALL exists, most studies have 

found that patients with DS are up to 20 times more likely to develop ALL [52]. 

The pathogenic events leading up to the development of ALL in DS patients 

remains largely unknown. Recent studies have provided evidence for the 

cooperation of multiple genetic events, such as chromosome aneuploidy, 

submicroscopic deletions of genes involved in cellular proliferation and 

differentiation, namely CDKN2A, ETV6, and PAX5, and also activating 

mutations of the JAK2 gene in the development of leukaemia in these cases 

[53]. The observation that these genetic alterations appear to be selective for 
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trisomic cells, suggest a multi-hit model for the development of ALL in DS 

patients [54]. 

Ataxia telangiectasia (AT) is a rare autosomal recessive disease that is 

commonly diagnosed in early childhood and is characterised by cerebella 

ataxia, immunodeficiency, increased sensitivity to ionising radiation, and a 

predisposition to developing lymphoid malignancies [55, 56], including pre B-cell 

ALL [57]. Over 100 mutations have been found among AT patients that span 

across the coding region of the ataxia telangiectasia mutated (ATM) gene [58-

60], of which approximately 80% are believed to encode either a truncated 

protein product or no protein at all [58, 60, 61]. Modelling studies using ATM -/- 

mice have also provided much insight in to the pathogenesis of lymphoid 

tumour development in AT patients [62]. 

Nijmegen breakage syndrome (NBS) is another chromosomal instability 

syndrome, which differs from AT with respects to presenting clinical features, 

but is very similar in terms of radiosensitivity and predisposition to developing 

cancer [63].  In 1998, mutations in a gene involved in double-strand break 

(DSB) repair, NBS1, were identified and are thought to be responsible for many 

of the characteristic features of NBS [64-66]. Like with AT, NBS patients suffer 

from an increased incidence of induced chromosomal aberrations, which may 

give rise to tumour formation, with over 90% of NBS-associated cancers being 

lymphoid malignancies [63]. 
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1.3.2.2. Inheritable germline polymorphisms 

With respects to the B-lymphoid lineage, development of haematopoietic stem 

cells into healthy B-cells is dependent upon tight regulation of various stages of 

differentiation by multiple transcription factors that determine lineage 

commitment, repress signalling that promotes alternate lineage fates, and 

ultimately drive the maturation of B lymphocytes. Over 65% of patients suffering 

from B precursor ALL have genetic alterations that disrupt healthy B-cell 

development [67, 68]. 

Inherited genetic syndromes, such as AT and DS, constitute less than 5% of 

ALL cases [69]. The heritability of other predisposing factors that may influence 

ALL susceptibility are of great interest and still largely unknown. Data from large 

familial cancer registries indicate a heritable component to developing ALL [70]. 

However, until recently no clear susceptibility genes had been discovered, 

prompting the use of higher resolution genome-wide approaches to identify 

recurrent somatic alterations and gene polymorphisms. In recent years, an 

association between multiple low-risk gene variants, such as those involving the  

nicotinamide N-methyltransferase (NNMT) and reduced folate carrier (RFC1) 

genes, and an increased disease risk have become apparent [71]. 

1.3.2.3. Genetic alterations in B-cell development genes  

The recent use of high-resolution, single-nucleotide polymorphism arrays and 

genomic DNA sequencing approaches have helped identify oncogenic lesions 

that disrupt pathways involved in the regulation of B-cell differentiation and 

contribute to B-cell ALL pathogenesis. 
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The transcription factor PAX5 is the only PAX gene of nine family members to 

be expressed in the haematopoietic system [72]. PAX5 is necessary for the 

commitment of lymphoid progenitor cells to the B-cell lineage, and does this in 

co-operation with the early B-cell factor EBF1 [73]. Absence of PAX5 activity 

results in blocked B cell development, since its main functions are to maintain 

the appropriate gene expression program required for B cell lineage specificity 

[7, 74]. PAX5 induces expression of B-cell specific genes such as CD19, CD72, 

CD79A and BLNK, and ensures repression of genes encoding Notch1 and the 

macrophage colony-stimulating factor receptor (Csflr), required for T-cell 

lineage commitment and myeloid cell development, respectively. Genome-wide 

analysis studies have revealed that copy number alterations of the PAX5 gene 

are most common and occur in 29.7% of B cell ALL patients, with deletions 

occurring almost exclusively in a dominant leukaemic clone [67]. 

EBF1 is a transcription factor necessary for the normal development of B cells, 

co-regulating the expression programme required for B-cell lineage specificity 

together with TCF3, also known as E2A [67]. Mice lacking the EBF1 gene have 

B-cells arrested at the pro-B cell stage of differentiation, whereas mice with one 

allele of the EBF1 gene have a normal number of pro-B cells, but also 50% less 

mature B-cells, suggesting haploinsufficiency of this gene as a possible driving 

factor for leukaemogenesis [75]. A recent study also confirmed a synergistic 

initiation of ALL between EBF1 haploinsufficiency and STAT5 in mice [76]. 

Mono-allelic deletions of EBF1 occur in ALL at a frequency over approximately 

3%, and have been shown to play a significant role in ALL pathogenesis [67]. 
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The Ikaros family of transcription factors are essential for B-cell development 

and consist of the Ikaros, Aiolos, and Helios proteins, each expressed as 

multiple isoforms through alternative gene splicing, and share the capacity to 

heterodimerize [77]. Some of these isoforms confer dominant-negative activity 

when dimerized and so tight regulation of the splicing machinery is therefore 

required to avoid abnormalities that may otherwise lead to malignancy. Indeed, 

mouse modelling of the gene encoding Ikaros, Ikaros family zinc finger 1 

(IKZF1), involving targeted deletion of exons 3 to 5, led to the splicing of a 

dominant-negative isoform and gene inactivation, resulting in a complete lack of 

lymphocytes [78]. The Ikaros transcription factor, activates CD19 and down-

regulates genes that are not B-cell lineage specific, such as CD4 [79]. Genome-

wide association studies have confirmed that 15% of pre-B ALL cases harbour 

focal deletions of the IKZF1 gene. Although alterations of the PAX5 gene occur 

more frequently in ALL, they do not correlate with poor treatment outcome [68], 

compared to cases with IKZF1 gene alterations, which occur less frequently yet 

are strongly associated with a poor treatment prognosis in both high-risk BCR-

ABL1 positive ALL [80, 81], and the novel subtype of ‘BCR-ABL1-like’ ALL [68, 

82].  

The ARID5B gene encodes a protein belonging to the ARID family of 

transcription factors, and is involved in cell growth, embryonic development, and 

regulation of gene expression [83]. Double-knockout mouse models exhibit 

disrupted B-cell development, suggesting that germline alterations of ARID5B 

may disrupt its function in lymphoid differentiation [84]. Consequently, genome-

wide studies have confirmed that the presence of genetic polymorphisms within 
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the ARID5B gene predispose patients to the development of ALL. An interesting 

finding is that alterations of the ARID5B gene are enriched in cases of 

hyperdiploid ALL and are also associated with increased accumulation of 

methotrexate polyglutamate, resulting in better responses to treatment [85, 86]. 

 

1.3.2.4. Cytogenetic abnormalities 

Cytogenetic translocations that activate specific genes are a key characteristic 

of ALL. Apart from holding high prognostic value, they are largely responsible 

for the fact this disease is so biologically heterogeneous [2, 87]. Translocations 

tend to occur among genes that encode transcription factors that are critical to 

the regulation of B-cell differentiation [87]. The resulting fusion gene may then 

encode a fusion protein with oncogenic characteristics. 

The t(12;21)(p13;q22) translocation is associated with younger age and low 

white cell count (WCC) is the most frequent translocation in pre-B ALL, 

occurring in approximately 25% of cases [39, 88]. This cytogenetic alteration 

results in the fusion of the ETV6 (TEL) and RUNX1 (AML1) genes. More 

specifically, the helix-loop-helix (HLH) domain found at the N-terminus of the 

TEL gene, along with the RUNT domain and the transactivation (TA) domain of 

the AML1 gene located at the N-terminus and C-terminus of AML1, 

respectively, are retained and encode the chimeric fusion protein TEL/AML1 

[89, 90]. The protein TEL is a member of the ETS-like family of transcription 

factors, and plays a key role in the development of haematopoietic stem cells 

within the bone marrow [91], whereas AML1 is a subunit of the Core Binding 
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Factor (CBF) transcription factor, essential for foetal liver haematopoiesis [92]. 

The TEL/AML1 fusion protein consists of the 336 amino-terminal region of TEL, 

fused to residues 21-480 of the transcription factor, AML1 [93-95]. The retained 

HLH and TA structures cause the TEL/AML1 fusion protein to have an 

increased affinity for co-repressor proteins such as mSin3 and N-CoR (a 

subunit of the nuclear receptor co-repressor complex that exhibits histone 

deacetylase activity), leading to leukaemogenic activity due to abnormal 

repression of TEL and AML1 target genes [89, 90]. 

The second most common translocation occurring at a frequency of between 3 

to 6% of all cases of paediatric ALL and over 23% of all cases of pre-B ALL [96] 

is t(1;19)(q23;p13.3) E2A/PBX1 [97]. The E2A/PBX1 chimera is a fusion of the 

transactivation domains of E2A and the DNA-binding homeodomain region of 

the PBX1 gene [98]. The E2A gene encodes two different protein products 

known as E12 and E47 via alternative splicing [99]. Both E12 and E47 are 

members of the class I family of basic helix-loop-helix (bHLH) proteins and were 

found to bind to E box sequences within promoter and enhancer elements of 

genes encoding immunoglobulin (Ig) [99]. For this reason it was postulated that 

both E2A gene products regulate Ig locus activation and the development of B-

cells. This was later confirmed by targeted disruption of the E2A locus in mice 

[100, 101], which led to the arrest of B-cell development at the early pro-B stage 

of differentiation, and before the start of Ig heavy chain rearrangement.  

The Philadelphia chromosome was the first chromosomal translocation to be 

associated with malignancy and is caused by a t(9;22)(q34;q11) translocation 

[102], resulting in fusion of the 5’ region of the BCR gene to the 3’ region of the 
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ABL1 gene. When expressed, this fusion gene generates an oncogenic chimera 

protein known as BCR/ABL1, which acts as a constitutively active receptor 

tyrosine kinase. Multiple breakpoints in the BCR gene give rise to the 

expression of fusion products with molecular weights of 190, 210 and 230 kDa 

[103]. BCR/ABL1 is detected in B-cell ALL at a frequency of 3% in children and 

25% in young adults [104]. The abnormally increased tyrosine kinase activity 

leads to the upregulation of prosurvival signalling pathways that can cause high 

resistance to treatment [105]. 

The MLL gene located at position 11q23 encodes a DNA-binding protein that 

methylates histone H3 K4 (H3K4) and is known to fuse with over 100 

translocation partners in ALL and acute myeloid leukaemia [106, 107]. MLL is 

found rearranged in 5-8% of paediatric ALL cases, with rearrangements 

occurring in an estimated 80% of infants aged less than a year old at diagnosis 

[108, 109]. The 5’ portion of the MLL gene is believed to translocate with the 3’ 

portion of the partner gene, leading to leukaemogenic effects [107]. The most 

frequent MLL translocation is the t(4;11)(q21;q23)/MLL-AFF1, formerly known 

as AF4 [106, 107]. The next most frequent translocation is 

t(11;19)(q23;p13.3)/MLL-ENL. Fusions of MLL with AF6/6q27, AF9/9p211 and 

AF10/10p12-14 also occur, albeit very rarely and without any age-specificity 

[103]. Of all ALL cases involving translocations of the MLL gene, 70-80% are 

infants (less than 1 year of age), and of these infants approximately 50% 

harbour the t(4;11) translocation [110]. HOX genes are transcription factors 

involved in the regulation of the haematopoietic system [111]. MLL plays a key 

role in regulating HOX genes in order to maintain normal development, and it 
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has been shown that MLL fusion proteins lose their H3K4 methyltransferase 

activity, which greatly enhances transcriptional activity and the expression of 

Hox genes [112]. Consequently, this has been shown to cause disruption of 

normal stem cell growth and lineage commitment, and therefore drive 

leukaemogenesis [113, 114]. 

An estimated 3-5% of paediatric ALL cases have a structurally abnormal 

chromosome 21 containing inversions, deletions, and duplications along the 

long arm of chromosome 21, known as intrachromosomal amplification of 

chromosome 21 (iAMP21) [115, 116], which is commonly detected in children 

with ALL aged between 7 and 13 years old [117]. iAMP21 has been shown to 

be strongly associated with chromosomal instability of chromosome 21, which in 

turn is also associated with recurrent abnormalities observed in B-precursor 

ALL that affect the expression of genes essential for B-cell development such 

as IKZF1 (22%) and PAX5 (8%) [118]. A common feature among all cases is 

the amplification of a 5.1Mb region between 21q22.11 and 21q22.12, which 

includes the RUNX1 gene encoding AML1, as well as a 1Mb deletion at 

chromosome ends found in approximately 80% of patients [118-120].  

High hyperdiploidy is the most common genetic abnormality in ALL, occurring in 

approximately 30% of children with this disease. This type of chromosomal 

abnormality is most frequent in younger patients with a low WCC and an 

phenotype resembling B cell precursors [121]. This condition is defined as the 

gain of between 5 and 19 chromosomes, which would take the total number of 

chromosomes per leukaemic cell to between 51 and 65 chromosomes [122]. 

The majority of trisomies and tetrasomies occur from the gain of specific 
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recurring chromosomes, namely chromosomes 4, 6, 10, 14, 17, 18, 21 and X 

[123].  

Hypodiploidy, defined as cells containing fewer than 44 to 45 chromosomes is 

observed in an estimated 6% of paediatric ALL cases and can fall into three 

different subgroups [124]. 

The first subgroup occurs in an estimated 1% of children suffering from ALL, 

which have a karyotype that is near-haploid as opposed to being diploid. In 

these children it is uncommon for them to only have between 25 and 28 

chromosomes, meaning the majority of chromosomes only have one copy. 

Chromosomes 10, 14, 18, 21, X and Y are rarely lost [124].  

The second hypodiploidy subgroup, known as low hypodiploidy, is defined by 

the presence of between 30 and 39 chromosomes, where karyotypes are 

commonly monosomic for chromosomes 3, 7, 15, 16 and 17, and disomic for 

chromosomes 1, 6, 11 and 18 [124, 125].   

Although only observed at a very low frequency of 0.2% of ALL cases, strong 

evidence exists to suggest a third hypodiploidy subgroup known as high 

hypodiploidy also exists. This subgroup is defined as those ALL patients with 

between 40 and 45 chromosomes. Although there is debate regarding the 

upper limit of the number of chromosomes in high hypodiploid ALL, the 

exclusive presence of t(9;22), t(12;21), and t(1;19) chromosomal translocations 

in high hypodiploidy is a feature that helps to distinguish this subgroup from low 

hypodiploidy [124, 126]. 
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1.3.3. Risk factors associated with ALL development 

1.3.3.1. High birth weight 

Studies have shown that birth weight is modulated by various genetic traits and 

exposures during the gestation period. Epidemiological studies have highlighted 

a positive association between high birth weight and the development of ALL 

[127, 128], especially in girls, where female babies weighing over 4000 g were 

almost twice as likely to develop ALL compared to female babies weighing less 

[129]. The biological mechanisms behind such observations remain speculative 

and unclear; however, it has been suggested that insulin-like growth factors 

(IGFs) may play a role in this association [130, 131]; supported by the fact IGFs 

influence both foetal growth [132], and the likelihood of developing cancer [133]. 

In addition to this, stem cell pool size has also been shown to be associated 

with birth weight, which may increase the risk of developing ALL since IGF 

along with other growth factors increase the total number of replicating cells and 

therefore also increase the risk for cells becoming tumorigenic [128].  

1.3.3.2. Ionising radiation 

The first observation that prenatal exposures could lead to the development of 

ALL in children was first made over 40 years ago by the Oxford Survey of 

Childhood Cancers. An association was made between mothers receiving 

diagnostic X-rays whilst pregnant and the development of ALL in their children 

[134, 135], which was supported by animal studies confirming that in utero 

exposures to ionising radiation and various chemical carcinogens did in fact 

increase the likelihood of cancer developing in the offspring [136]. Further 
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studies also revealed that ionising radiation affected foetuses and children more 

than adults, and more specifically that radiation dose and gestational age were 

of greatest importance [137, 138].  

The idea that leukaemia risk is increased in offspring of individuals exposed to 

low doses of external ionising radiation has been subject to much controversy in 

the past, with many case-control studies conducted near nuclear power plants 

producing contradictory data and being unable to confirm this [139]. Hitherto, 

the lack of complete and comparable data from the exposed work forces 

involved in these studies, together with the fact that nowadays workers are 

exposed to greatly reduced doses of radiation, has made it difficult to draw 

additional human data. However, one particular study based on a substantial 

amount of good data was conducted in 1990 by Gardner et al [140]. Findings 

from this study suggested an association between paternal occupational 

exposure to ionising radiation at the Sellafield nuclear power plant and 

leukaemia incidence in their offspring. Fathers with a cumulative lifetime dose of 

100 mSv or greater before conception, were over eight times more likely to 

have their children develop leukaemia. 

1.3.3.3. Non-ionising radiation 

Throughout the past few decades there have been huge increases in the 

generation of man-made power sources, with electromagnetic fields now being 

thousands of times greater than those which occur naturally. The potential role 

for residential exposures of extremely low-frequency electromagnetic fields 

(ELF-EMF) in the causation of childhood leukaemia was first brought to light in 
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1979, following data published by Wertheimer and Leeper that suggested an 

association [141]. Their findings have since raised substantial public concern 

and provoked further scientific investigations into this area.  

Studies involving the use of animals and cell line models have provided no 

evidence to support the idea that exposure to power frequency fields may lead 

to carcinogenesis. With respects to magnetic force field exposures, a study 

involving over 3000 cancer cases and 10000 control cases from North America 

and Europe reported that exposures to magnetic fields of up to 0.4 μT did not 

lead to increases in relative risks relative to the no-effect level [142]. Although 

inconclusive, the same study also reported a 2-fold increase in cancer incidence 

in 0.8% of cases exposed to magnetic fields above 0.4 μT. With regards to 

electrical field exposures, far fewer studies exist but have so far found no 

evidence to support the association of electrical fields with paediatric 

leukaemias in the UK. 

1.3.3.4. Infection 

It is well documented that certain infectious and parasitic agents, such as 

HTLV-1 in T-cell leukaemia and lymphoma, and Epstein-Barr virus (EBV) in 

Burkitts lymphoma, are able to cause cancer [143]. With respects to childhood 

ALL, there have been no reports of a specific virus being a causative agent. 

However, a series of observations have maintained the idea of infection playing 

a significant role in the development of ALL, and have led to the generation of 

three key hypotheses. 
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In 1988, Kinlen suggested that there was an above average incidence of 

leukaemia in young people living in the vicinity of two nuclear reprocessing 

plants in the UK and that this was due to exposure to new viruses in regions 

that were previously mainly rural and not so densely populated, which were 

transmitted from infected newcomers to susceptible inhabitants already present 

[144]. The reported increase in frequency of leukaemia in children aged 0 to 4 

years in areas where substantial degree of population mixing existed supported 

this theory. 

In 1988, Greaves first presented his two-hit hypothesis that the development of 

ALL was a consequence of at least two separate, spontaneously-occurring 

mutations [145]. He proposed that the first mutation occurs in utero or during 

early infancy and that this first hit is most likely to occur in B-cell precursors, 

since they are highly proliferative and susceptible to spontaneous mutation 

during early stages of development in the liver and bone marrow. This would 

give rise to a pre-leukaemic clone of B-cells. The second mutation occurs post-

natally after an average of 3-4 years during the infant’s first exposure to 

antigens and subsequent proliferation of antibody-producing cells, which then 

drives the leukaemogenic process. 

Greaves also suggested that the timing of an individual’s exposure to antigens 

in early infancy may play an important role in the development of childhood 

leukaemia [145]. Delays in exposure to antigens and infection might lead to an 

accumulation of pre-leukaemic lymphoid cells that were susceptible to acquiring 

the second spontaneous mutation and lead to overt leukaemia. Therefore a 

child’s response to infection and the risk of developing leukaemia may be 
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affected by many factors such as the duration of breast-feeding, genetic 

background, socioeconomic status, and vaccinations, which all modulate the 

timing and level of positive feedback stimulation in lymphoid precursor cells 

[146]. Case-control studies have supported Greaves’ hypothesis, with results 

showing that a statistically significant increase in the risk of developing ALL 

exists if there is a delay in an individual’s exposure to infections, and other 

studies also reporting that exposure to infection early on in infancy confers a 

statistically significant protective effect [147, 148]. 

Maternal breast feeding has proved to be important in providing a means by 

which children are exposed to infection in early infancy and protected from 

developing leukaemia. A paper published by the UK Childhood Cancer Study 

(UKCCS), in which a total of fifteen case-control studies looking at the 

protective effects of breast feeding were reviewed, showed that overall 

leukaemia risk was decreased in children who were breast fed, and that longer 

duration of breast feeding was associated with an enhanced protective effect 

against the development of leukaemia [149]. It is postulated that the protective 

effect may be due to modulation of a child’s immune system during early 

infancy to respond to infections effectively in later life [150]. 

Studies investigating the effects of different socio-economic status levels and 

their effect on leukaemia incidence have shown that richer families with higher 

status are associated with an increased incidence of childhood leukaemia, with 

as much as a two-fold difference in peak incidence observed between most 

affluent and least affluent countries [151].  
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Table 1.1: Aetiological risk factors for ALL 

The above table summarises risk factors associated with the development of B-

precursor ALL that have been described in section 1.3. 

 

 

 

• Age (peak incidence 2-5 years) 
• Gender (males at greater risk) 
• Ethnicity (white children at greater risk) 
• High birth weight 
• Genetics: 

o Inheritable syndromes: 
 Down’s syndrome (DS) 
 Ataxia telangiectasia (AT) 
 Nijmegen breakage syndrome (NBS) 

o Germline polymorphisms (e.g. NNMT and RFC1 genes) 
o Alteration of B-cell development genes (e.g. PAX5, EBF1, IKZF1, ARID5B) 
o Cytogenetic abnormalities: 

 t(12;21)ETV6-RUNX1 (TEL/AML1) 
 t(1;19) E2A-PBX1 
 t(9;22) BCR/ABL1 
 MLL gene rearrangements 
 iAMP21 
 Ploidy 

• Environmental factors: 
o Ionising radiation (e.g. X-rays) 
o Non-ionising radiation (e.g. Extremely low-frequency electromagnetic fields) 
o Infection (i.e. delayed exposure) 
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1.3.3.5. Two-hit model for ALL tumorigenesis  

Many studies have shown evidence that support the idea of tumorigenesis 

being a multi-step process, first suggested in 1953 by Carl Nordling [152], which 

involves the accumulation of multiple genetic alterations that cause instability 

within the genome and promote the transformation of normal human cells into 

malignant tumour cells. Many diagnosed cancers demonstrate an age-

dependent incidence, whereby an average of four to seven rate-limiting genetic 

alterations appear to be required for highly malignant tumours to form, following 

progression through multiple pre-malignant states into more aggressive cancers 

capable of metastasis; a process not very different to the principles of Darwinian 

evolution, whereby a distinct growth advantage is acquired [153]. Cells cultured 

in vitro require the introduction of multiple genetic alterations for transformation 

to occur, with rodent cells requiring at least two genetic alterations and human 

cells being slightly harder to efficiently transform [154]. Transgenic mouse 

models have also supported the idea that multiple rate-limiting steps are 

required for tumorigenesis. The ‘Knudson hypothesis’ derived from 

retinoblastoma studies in 1971 supports this concept and states that two 

mutational events are required to allow cancer to form. One of the mutations 

may be hereditary, or both may occur in somatic cells [153]. 

Monozygotic twin studies conducted by Mel Greaves investigating the natural 

history of leukaemia, closely relate to the two-step model proposed by Knudson. 

Using Guthrie cards with bloodspots taken from new-borns, Greaves showed 

that in most cases of ALL the TEL-AML1 translocation exists and occurs 

prenatally [155]. He also found that in ALL discordance rates amongst twins are 
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approximately 90%, suggesting that leukaemic clones initiated by TEL-AML1 

fusions, for example, are insufficient to cause overt leukaemia and require a 

second postnatal ‘hit’ [156]. The peak in childhood ALL incidences at 2-5 years 

of age is therefore thought to be a reflection of the time taken for the second 

genetic alteration to take place following the first leukaemia-initiating lesion. The 

fact that the disruption of multiple cellular processes, such as proliferation, 

differentiation, and apoptosis, is commonly required for leukaemogenesis to 

occur, also provides support to the concept of at least two mutational events 

being needed for complete leukaemic transformation. 

Despite the large number of cytogenetic abnormalities that exist in ALL, there is 

limited evidence for a single causal event in the aetiology of this disease, and 

so a “two-hit” model of leukaemogenesis is more applicable. Events which 

occur after the first hit and which are likely to drive the leukaemic 

transformation, may be derived from genetic, environmental, or other unknown 

factors.  

1.4. Presentation and patient management  

Presenting symptoms of ALL are mainly due to the expansion of lymphoblast 

populations within the bone marrow (commonly >90% blast cell infiltration), as 

well as the infiltration of other body organs. The most common symptom of 

patients with ALL is fever, occurring in approximately 55% of cases [157]. Many 

children also show presenting symptoms such as pallor, lethargy, recurrent 

infection (due to the suppression of normal haematopoiesis), swollen or tender 

lymph nodes, liver or spleen (due to leukaemia involvement and enlargement of 
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haemopoietic organs), as well as bone and joint pain [158, 159]. However, 

some clinical findings require special consideration, such as respiratory 

complications resulting from severe anaemia, mediastinal obstruction, or 

respiratory infection [157]. Although rare, complications also arise when white 

cell counts reach levels greater than 100x109/L, which can lead to leukostasis 

and cause respiratory and neurological events. In severe cases, where counts 

reach greater than 400x109/L, haemorrhages within the central nervous system 

may occur [160]. 

Painless enlargement of the testis in males indicates testicular involvement. 

Bone marrow aspirates and flow cytometry are used to identify the 

immunophenotype of the leukaemia in order to determine the lineage and stage 

of differentiation of the leukaemic cells, and allow for appropriate minimal 

residual disease monitoring by flow cytometry. Cytogenetic and molecular 

genetic techniques are then used to identify those patients that are at highest 

risk and to allow for correct treatment stratification and to consider use of 

molecularly targeted therapy if appropriate [69, 161-163]. 

1.5. Risk stratification 

Risk stratification of patients is used to determine the relative risk of treatment 

failure and disease relapse. Stratification also ensures that the most aggressive 

forms of treatment are only given to those patients who are in the high risk 

category, thus sparing patients at lower risk from suffering unnecessary toxic 

side-effects. However, this does not imply that low-risk patients should not 

receive treatment intensification, since this is necessary in order to avoid 
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increased relapse rates [2]. Patients may be categorised into one of three risk 

groups: standard, intermediate, and high risk.  

Advances in treatment and refinement of treatment protocols over recent years 

have led to patient survival rates now exceeding 80% [164, 165]. Studies 

showed that adolescents and young adults who were treated using adult 

protocols showed poor response, whereas patients from the same age-groups 

fared far better when treated with paediatric protocols instead [166-168]. 

Likewise, although national studies have shown that black children have a 

poorer outcome, independent institutions have reported high cure rates similar 

to those seen in white children [169].  Many clinical and biological variables that 

previously served as prognostic factors in ALL are today rendered obsolete, 

with treatment regimen now being the most important indicator of prognosis 

[163]. 

 

1.5.1. Prognostic factors 

Age is a strong prognostic indicator of treatment outcome among patients with 

B cell ALL [170]. Studies conducted at St Jude Children’s Research Hospital 

showed that children aged 1 to 9 years had a significantly better outcome than 

either infants or adolescents [171, 172]. Additionally, studies showed that 5-year 

event-free survival rates were estimated to be 88%, 73%, 69%, and 44% for 

children aged 1 to 9 years, adolescents aged 10 to 15 years, those aged over 

15 years, and babies aged less than a year, respectively [173, 174].  
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An equally strong prognostic indicator of outcome is leucocyte count, with 

higher counts correlating with poorer outcomes [172, 175]. Some patients may 

suffer from extreme hyperleukocytosis, defined as a WCC greater than 

400x109/L, and are at an increased risk of complications such as CNS 

haemorrhage. Leucostasis may also occur, and lead to neurological and 

pulmonary events [160]. In order to compare responses to treatment in children 

with leukaemia, a risk-classification system was made which incorporated both 

age and WCC, and defines that children aged between 1 and 9 years with a 

WCC <50x109/L have a standard risk of suffering from relapse, and those in the 

same age group with a WCC >50x109/L are at high risk [171]. However, this 

method of risk assessment has its drawbacks since almost a third of standard 

risk patients may relapse and amongst high-risk patients it is difficult to 

differentiate between those at the highest risk requiring stem cell transplantation 

[171]. 

Gender has also been shown to influence patient prognosis in ALL. A study 

involving over 4000 cases of paediatric ALL treated on MRC UKALL trials 

showed that girls fare significantly better than boys, with 5-year event-free 

survival rates of 51-71% and 31-57%, respectively, independent of age and 

leucocyte count [176]. Furthermore, the MRC UKALL X trial provided data that 

showed girls stratified into the high-risk group with a diagnostic WCC 

>100x109/L, exhibited a similar prognosis to boys with a lower WCC. 

Consequently, a risk scoring system was derived, taking sex, age and WCC into 

consideration, and which demonstrated an improved discrimination between 
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standard and high-risk groups, with the latter consisting of 16% boys and 3% 

girls [176]. 

There are many frequently occurring chromosomal aberrations that act as 

prognostic markers in B cell ALL [117, 177-182] (Table 1.2).  

1.5.2. Recognition of high-risk ALL 

Relapsed ALL is very heterogeneous and still observed in over 15% of patients. 

Although many paediatric cases are successfully treated, a significant 

proportion of patients fail to regain stable remissions, with relapse rates of 2%, 

23% and 75% being observed in standard-, intermediate-, and high-risk groups, 

respectively [1]. Attempts to elucidate the prognostic value in cytogenetics of 

either diagnostic or relapsed ALL have proven difficult. This is largely due to the 

lack of primary tumour sample availability and matched diagnostic-relapse 

samples, the lack of large clinical trials, and the heterogeneic nature of relapsed 

ALL. However, recent developments in genomic array technology have allowed 

for improvements in our understanding of the genetic events that lead to relapse 

[1].  

Almost 75% of paediatric ALL cases exhibit aneuploidy or chromosomal 

rearrangements, many of which are associated with a favourable prognosis, for 

example TEL-AML1 and hyperdiploidy with >50 chromosomes. Previous 

studies using experimental models have shown that some alterations, such as 

TEL/AML1, are incapable of inducing leukaemia on their own, and support the 

notion that additional co-operating genetic alterations are needed to induce 
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overt leukaemia [183-187]. In contrast, a poor outcome is associated with MLL 

rearrangements, BCR-ABL1, and hypodiploidy.  

A significant number of paediatric ALL samples from high-risk cases do not 

harbour any of the well-known chromosomal alterations observed in ALL [67]. 

As a result, great efforts have been made in using genomic approaches such as 

array-based comparative genomic hybridisation and single-nucleotide 

polymorphism (SNP) microarrays, candidate gene sequencing, next-generation 

sequencing, transcriptome sequencing, and whole-genome sequencing to 

identify novel genetic alterations not observed by cytogenetic analysis [67, 68, 

188, 189] (See section 1.3.2.3 and 1.3.2.4).  

ALL lymphoblasts acquire fewer large structural genetic alterations compared to 

solid tumours. However, they do contain approximately 50 chromosomal 

regions that are frequently subject to alterations such as focal deletions that 

target genes encoding proteins with essential roles in cellular signalling 

pathways. Such affected pathways include lymphoid development and 

differentiation (e.g., IKZF1, PAX5 and EBF1), cell-cycle regulation and tumour 

suppression (e.g., CDKN2A, CDKN2B (INK4/ARF), TP53, PTEN), lymphoid 

signalling (CD200 and BTLA), regulation of apoptosis (BTG1) [67]. Many of the 

genes in these pathways may be targeted for mutation by a number of different 

mechanisms, namely loss-of-function and dominant negative deletions, 

translocations, and sequence mutations [67]. Recent studies have reported the 

identification of genetic alterations associated with inferior outcome to treatment 

and that may be significantly associated with an existing subtype of ALL, or 

even define entirely novel subtypes with their own distinct gene expression 
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profiles. Such novel subtypes in ALL include those harbouring rearrangements 

of the CRLF2 gene, focal deletions of ERG, and intrachromosomal amplification 

of chromosome 21 [118, 190-192]. 

BCR-ABL1 positive leukaemia 

A common feature of chronic myeloid leukaemia (CML) and a subset of ALL is 

the expression of a constitutively active form of the tyrosine kinase BCR-ABL1, 

which confers an aggressive type of leukaemia associated with a poor response 

to therapy [193]. Interestingly, it has been shown that deletions and sequence 

mutations of the lymphoid transcription factor gene IKAROS (IKZF1) are 

associated with BCR-ABL1-positive leukaemia and are capable of inducing the 

onset of leukaemia in mouse models [194]. Furthermore, lymphoid leukaemias 

with alterations in the IKZF1 gene that do not express BCR-ABL1 are also 

associated with a poor outcome, indicating a key role for IKZF1 in treatment 

failure [68]. Since IKZF1 is involved in the regulation of normal lymphoid 

development, it is thought that perhaps the loss of IKZF1 activity may lead to 

leukaemia cells adopting a phenotype akin to that of stem cells, which are 

innately more resistant to therapy [68, 190]. These studies suggest that 

targeting IKZF1 activity and its downstream pathways may allow for improved 

outcomes in patients with this subtype of ALL. 

Overall, detection of the BCR-ABL1 translocation in paediatric cases of B-

precursor ALL requires treatment intensification and consideration of treating 

the patient with monoclonal antibodies (mAbs) or tyrosine kinase inhibitors 

(TKIs) that specifically target the BCR-ABL1 fusion protein [195, 196]. 
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BCR-ABL-like ALL 

In recent years, a novel ALL subgroup was discovered which had a gene 

expression profile very similar to that of BCR-ABL1 ALL, but which did not 

express the BCR-ABL1 oncogene [68, 192]. BCR-ABL-like ALL is associated 

with a poor outcome and typically harbours alterations of the IKZF1 gene, which 

is thought to be the genetic alteration to substitute BCR-ABL1 [68].  

Studies have shown that BCR-ABL1-like leukaemias may be divided into two 

groups based on the genetic alterations, which cause constitutive activation of 

cytokine receptor and tyrosine kinase signalling [191]. Rearrangements of the 

cytokine receptor-like factor 2 (CRLF2) gene, located at the pseudoautosomal 

region of Xp/Yp, are observed in approximately half of all BCR-ABL1-like ALL 

cases [191, 192]. CLRF2 is capable of heterodimerising with interleukin 

receptor 7α (IL7R) to form the thymic stromal lymphopoietin receptor (TSLPR) 

[197]. Translocations, focal deletions, and point mutation of the CRLF2 gene 

result in deregulated expression of CRLF2 that may be detected by flow 

cytometric immunophenotyping at diagnosis [102, 190]. Almost 50% of ALL 

cases harbouring rearranged CRLF2 also have activating mutations in the 

Janus kinase genes [192]. Most mutations occur within the vicinity of the R683 

codon of the pseudokinase domain of JAK2, but may also occur in the 

pseudokinase domain of JAK1, as well as the kinase domain of JAK1 and JAK2 

[192]. The transforming capacity of CRLF2 mutations has been demonstrated in 

studies where coexpression of CRLF2 and JAK mutant alleles led to the 

transformation of cell line models [192, 198]. In addition to this, the JAK-STAT 

pathway is activated in human cells that harbour rearrangements of the CRLF2 
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gene, and is successfully inhibited with the use of selective pharmacological 

JAK inhibitors [199]. Interestingly, alterations of the IKZF1 gene have been 

shown to be associated with mutations of CRLF2 and JAK genes, and confer a 

poor treatment outcome [192, 200]. Consequently, much interest is going into 

the downregulation of the JAK-STAT pathway [201, 202], and phase I trials 

(COG ADVL1011 trial) are underway to determine whether the JAK inhibitor 

ruxolitinib could be introduced into current treatment protocols alongside 

conventional chemotherapeutic drugs currently being used to treat relapsed 

ALL [188].  

The second subtype of BCR-ABL1-like ALL cases is characterised by the 

expression of wild-type CRLF2 together with a number of genetic abnormalities 

such as the expression of fusion proteins that encode constitutively active 

tyrosine kinases (EBF1-PDGFRB, STRN3-JAK2, and BCR-JAK2), activating 

mutations in the transmembrane domain of IL7R, dysregulation of cytokine 

receptors (IGH@-EPOR), and deletions in the SH2B3 gene, encoding the 

adaptor protein Lnk that acts as a negative regulator of JAK2 [203]. Cell line 

models and primary tumours cells expressing the EBF1-PDGFRB fusion protein 

or IL7R mutant alleles are capable of inducing cellular transformation and 

activate the JAK-STAT signalling pathway [189]. Large clinical trials involving 

high-risk ALL patients have also confirmed that many of these genetic 

abnormalities occur frequently in BCR-ABL1-like ALL [188, 204].  
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Hypodiploid ALL 

Hypodiploidy in ALL is associated with an unfavourable prognosis and until 

recently not much was known about the genetics of this particular ALL subtype 

[124]. Studies using large-scale genomic profiling techniques to investigate a 

large cohort of hypodiploidy ALL cases have confirmed that near-haploid ALL 

cases exhibit a high frequency of deletions and mutations capable of activating 

the Ras signalling pathway [188]. Near-haploid (24 to 31 chromosomes) and 

low-hypodiploid (32 to 44 chromosomes) cases of ALL exhibit inactivation of 

transcription factors essential for normal lymphocyte development; features 

distinct from hypodiploid ALL. Some of these alterations involve genes in the 

IKAROS gene family, as well as genes involved in Ras signalling, such as NF1, 

KRAS, and NRAS [188]. 
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Table 1.2: Prognostic markers of high-risk ALL at presentation 

The above table summarises prognostic criteria for high-risk B-precursor ALL 

requiring more intense forms of therapy. 

 

 

 

 

• Age (<1 and years of age)
• White cell count (>50x109/L)
• Gender (Males at greater risk of poor 

treatment response)
• Cytogenetics: 

o Hypodiploidy ( 44 chromosomes)
o BCR-ABL1 gene rearrangements
o Amplified AML1 (iAMP21)
o MLL gene rearrangements
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1.6. Treatment of paediatric ALL  

Treatment of paediatric B-cell ALL typically involves the administration of 

multiple chemotherapeutic drugs in three distinct phases: the remission-

induction phase, an intensification/consolidation phase, and a 

continuation/maintenance phase. The first two phases together may last up to 

approximately 12 months, whereas the continuation phase typically lasts a 

further 2-3 years [196, 205]. Treatment is also directed towards the CNS as 

soon as possible to avoid relapses due to infiltration of leukaemic cells in this 

site [163]. 

1.6.1. Phases of chemotherapy treatment 

1.6.1.1. Remission-induction phase  

Current UK practice is such that in B-precursor ALL the first treatment phase is 

designed to reduce the initial leukaemia burden to below 1% and allow for 

normal haematopoiesis to recommence [163]. This involves the administration 

of a glucocorticoid (dexamethasone), vincristine, pegylated L-asparaginase, 

intrathecal methotrexate, and 6-mercaptopurine, typically over a period of 5 

weeks [196, 205]. Cases of ALL in the standard-risk group generally respond 

well when treated with the three-drug induction regimen (Regimen A) if it is 

followed by intensified therapy involving intrathecal methotrexate and 6-

mercaptopurine over a period of 3 weeks, whereas high-risk patients may 

receive four or more chemotherapy drugs [163].  

Responses to therapy are monitored by measuring submicroscopic ALL present 

in the bone marrow and peripheral blood of remission patients, known as 
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minimal residual disease (MRD) [206-208]. Generally, MRD is monitored 2 

weeks following the initiation of treatment. If residual lymphoblasts are above 

1%, treatment is intensified. Remission-induction therapy is largely successful, 

with 96-99% of paediatric ALL cases reaching clinical remission [163]. With 

respect to steroid drugs used to treat ALL, studies have shown that 

dexamethasone confers superior efficacy than either prednisone or 

prednisolone, since it has a longer half-life and penetrates the CNS more 

readily [209, 210]. Despite these findings, other reports also show that 

increased doses of prednisolone may be just as effective as treatment with 

dexamethasone [211]. 

1.6.1.2. Consolidation/intensification phase 

Once normal haematopoiesis is restored, the risk of relapse is reduced by 

intensifying treatment to eliminate the residual leukaemia cells that may reside 

in the bone marrow and other organs [163]. Treatment regimens in this phase 

follow on from the remission-induction phase and lasts 3 weeks. It includes the 

administration of intrathecal methotrexate on days 1, 8 and 15, the dose for 

which is dependent upon the patient’s age, together with daily oral doses of 6-

mercaptopurine [196, 205].  

Intensification therapy has proven to be very effective in the treatment of ALL 

and is a key component of current treatment protocols [163]. Additionally, a 

randomised study showed that two courses of intensification improved the 

outcome of patients compared to those patients who received only a single 

course followed by additional pulses of the glucocorticoid prednisone and 
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vincristine [212], suggesting that increasing the dose-intensity of drugs used 

during intensification therapy was far more beneficial to patients.  

The intensification phase incorporates an ‘interim maintenance I’ phase (I.M. I) 

that lasts 8 weeks and involves the administration of dexamethasone and 6-

mercaptopurine to standard-risk patients. This is followed by a single ‘delayed 

intensification I’ phase (D.I. I), serving as reconsolidation therapy, and 

consisting of the administration of 6-mercaptopurine for the duration of 7 weeks. 

Standard-risk patients that are MRD-positive at day 28 after having received 

standard therapy as part of Regimen A are transferred to Regimen C and 

receive a second 8-week round of dexamethasone and 6-mercaptopurine as 

part of ‘interim maintenance II’  (I.M. II) therapy, followed by a second round of 

delayed intensification (D.I. II) [196, 205]. 

1.6.1.3. Continuation/maintenance phase 

Patients with ALL require continuation treatment as a final phase of therapy to 

prevent relapses occurring, and so receive an additional phase of continuation 

therapy for up to 2.5 years as standard [213]. Generally, over 65% of paediatric 

ALL cases can be treated successfully within a year of therapy [214]. The key 

components of continuation therapy regimens include daily 6-mercaptopurine 

and weekly methotrexate, along with discontinuous doses of dexamethasone 

and vincristine, over a period of 112 weeks for girls and 164 weeks for boys.  
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1.6.2. Late complications and therapy-associated toxicity 

Intensive intrathecal and systemic treatment involving chemotherapeutic agents 

such as methotrexate and the glucocorticoid dexamethasone can lead to 

various complications in patients. The use of glucocorticoids may lead to short-

term complications including infection, myalgia, myopathy, hyperglycaemia, 

adrenal axis suppression and behavioural problems [215], with more severe 

and long-term side-effects of including osteonecrosis, joint collapse, and the 

requirement for complete replacement of the joint [216, 217]. Risk factors for 

developing treatment-related osteonecrosis include age between 10-20 years, 

white race, female sex, and a high body mass index [216-218]. Although the 

pathogenic events leading to glucocorticoid-induced osteonecrosis are not yet 

fully understood, it is believed that intravascular thrombotic occlusion, adipocyte 

hypertrophy, and bone marrow ischemia, as well as apoptosis of endothelial 

cells, osteoblasts, and osteoclasts may be responsible [215]. Intermittent 

administration of dexamethasone at days 1-7 and 15-21 of intensification 

treatment instead of continuous administration has been shown to reduce the 

toxic side-effects significantly [219]. However, studies are still on-going to 

determine whether or not this approach has a negative impact on maintaining 

lymphoblast counts below acceptable levels. 

Anthracyclines, such as doxorubicin and daunorubicin, may lead to severe 

cardiomyopathy that may persist for many years after treatment, especially 

when administered to female patients and at high cumulative doses [220]. 

Dexrazoxane is a drug used to counteract the negative effects associated with 

the use of anthracyclines, and has been shown to reduce cardiotoxicity without 
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compromising antileukaemic activity [221, 222]. However, current trials still limit 

the use of anthracyclines even for high-risk patients, since some cases of 

cardiotoxicity are so severe [69]. 

1.6.2.1. Stem cell transplantation 

Allogeneic haemopoietic stem-cell transplantation (SCT) is recommended for 

patients failing to respond to treatment, or that show a slow early response to 

remission-induction therapy indicated by the presence of more than 1% 

leukaemic blasts [69]. However, although SCT is a highly effective form of 

therapy, its use must be frequently reviewed as many new agents become 

available that may supersede this form of therapy in terms of efficacy, toxic 

side-effects and the ability to improve treatment outcome [223].  

Previous studies have shown that transplantation does not improve the 

outcome of patients with hypodiploid ALL [181] or MLL-rearranged ALL [109, 

182, 224], but is recommended for high-risk patients with BCR-ABL1-positive 

ALL that do not respond well to the remission-induction treatment that consists 

of intensive chemotherapy combined with a tyrosine kinase inhibitor such as 

imatinib mesylate [69]. 

1.6.3. Minimal residual disease 

Responses to therapy are monitored by measuring submicroscopic ALL present 

in the bone marrow and peripheral blood of remission patients, known as 

minimal residual disease (MRD) [206-208]. MRD measurements are used in 

conjunction with common prognostic factors to be able to stratify patients 

according to risk, and give an indication as to whether treatment intensification 
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is required [225-227].  UK protocols assess treatment response by taking bone-

marrow aspirations and performing morphological analysis at day 8, ± day 15, 

and day 28 following the start of induction therapy. MRD monitored at weeks 4 

and 11 using quantitative polymerase chain reaction (PCR)-based methods is 

also used to assess the risk of relapse [1]. Many previous studies provide 

evidence that poor clearance of leukaemic blasts from the bone marrow or 

peripheral blood is associated with a poor prognosis in ALL and that MRD 

measurements are valuable even in low-risk cases of ALL if defined by clinical 

and biologic features alone [228, 229]. Conventional techniques based on cell 

morphology lack sensitivity and accuracy in detecting leukaemic blasts and can 

only do so when the total population of leukaemic blasts constitute greater than 

5% of the total cell population (clinical remission is defined by a reduction of 

lymphoblasts below 5%)  [162, 171]. The PCR technique is able to detect 

leukaemia cells with a 100-fold increase in sensitivity over conventional 

morphology-based techniques (1 lymphoblast in 10,000 healthy cells) and is the 

preferred method for measuring MRD at very low levels (<0.01%), allowing for a 

more accurate prediction of relapse in individual ALL cases [162, 163, 230, 

231]. The detection of MRD by PCR involves the amplification of breakpoint 

fusion regions of chromosomal aberrations in B cell ALL, such as TEL/AML1, 

BCR-ABL, E2A-PBX1, and MLL fusion transcripts, which give this method its 

tumour-specificity [232]. However, some scepticism exists regarding the 

accuracy of using these markers of MRD to predict the risk of relapse, since it 

has been reported that clinical relapse did not occur for over 27 months in some 

cases that were still MRD-positive [233]. MRD may also be detected by PCR 



 

46 
 

amplification of antigen receptor gene rearrangement sequences in individual 

patients. The Ig and TCR gene loci contain many recombined V, D, and J gene 

segments, which when combined with random interstitial nucleotide insertions 

and deletions, provide unique tumour-specific sequences ideal for measuring 

MRD by PCR analysis [234]. Although, Ig and TCR gene rearrangements are 

ideal targets for MRD detection in individual patients, some tumours exhibit 

oligoclonality at diagnosis and may be subject to further rearrangements or 

deletions [234]. It is therefore current practice to amplify at least two sequences 

in order to avoid false negative results [39]. Over 95% of ALL patients harbour 

Ig and TCR rearrangements, namely IGH (>95%; predominantly VH-JH), IGK 

(~65%; predominantly Kde), IGL (15-20%), TCRG (~55%), TCRD (~40%), 

TCRB (~35%), and Vδ2-Jα29 (40-45%) [235, 236]. 

A second method of detecting MRD is by identifying tumour-specific 

immunophenotypes associated with ALL using multiple-channel flow cytometry. 

Abnormal phenotypes that are indicative of ALL disease, are identified using 

antibodies with specificity against surface expression of antigens such as CD19, 

CD34, TdT, CD10, CD22, CD45, CD38, and CD45 [161, 237, 238]. Flow 

cytometry allows for direct quantification of MRD as opposed to extrapolation 

from a PCR product. This method has the potential to be more accurate than 

PCR [239]. However, it does not supersede PCR techniques in terms of 

sensitivity, since flow cytometry is unable to provide consistent results when 

detecting MRD as low as 1 lymphoblast among 105 normal healthy cells. A 

further limitation with this technique is that it is dependent upon quantifying 

differences in surface antigen expression and not simply the presence or 
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absence of leukaemia-specific markers as used in PCR-based MDR detection. 

Nonetheless, large studies such as the Total Therapy Study XIII program have 

shown that MRD detection by flow cytometry holds great predictive power, 

where detectable MRD (≥0.01%) was strongly associated with higher relapse 

rates, and found to be independent of other clinical and biologic predictors of 

treatment outcome [162, 237, 240]. 

In general, studies have provided evidence to show that the persistence of MRD 

levels of 1 lymphoblast in 104 healthy cells indicates a significantly greater risk 

of a patient suffering a relapse [237, 241, 242]. Other studies have shown that 

positivity for MRD in children in clinical remission following induction therapy 

have a 5-year incidence of relapse rate of approximately 43%, increasing to 

68% if the patient continues to test positive for MRD beyond week 14 of 

maintenance therapy. This particular study also confirmed that those children 

who tested negative to MRD following induction therapy had a 5-year incidence 

of relapse rate of 10%, reducing further to 7% if those children were MRD 

negative at week 14 of maintenance therapy [240].  It is not uncommon for 

remission marrows to contain up to 1010 leukaemic blasts following induction 

therapy [243], which requires consequent consolidation and maintenance 

therapy as standard, with the intention of completely eliminating MRD.  
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1.7. Apoptosis as a factor determining treatment response 

Defective regulation of apoptosis plays a fundamental role, not only in the 

development of tumours, but also their resistance to chemotherapy [244]. 

Cancer cells typically acquire multiple mutations that commonly lead to 

deregulation of signalling pathways and promote genomic instability, which in 

turn, increase the sensitivity of tumour cells to cellular stress such as that 

caused following DNA damage. Conventional chemotherapy and irradiation 

exploit this increase in sensitivity and are used with the intention of causing 

enough DNA damage to cause these tumour cells to undergo apoptosis, whilst 

attempting to minimise the damage to normal healthy cells [245]. However, 

tumour cells that acquire additional defects in the apoptotic pathways may 

become protected against cytotoxic agents and exhibit chemoresistance and 

radioresistance [245]. 

Apoptosis is a homeostatic process of programmed cellular death, which is 

activated during development and aging, and serves to maintain cell 

populations in the various tissues of the human body in a controlled manner 

[246]. Apoptosis may also be triggered by immune reactions or when 

irreparable damage is sustained to a cell through hypoxia, disease or exposure 

to harmful agents, thus acting as a defence mechanism. This prevents 

genetically damaged somatic or germ line cells from acquiring cancer-promoting 

mutations and continuing to proliferate [245].   

Previous findings in our group have shown that a subset of primary ALL 

tumours demonstrate a defect in the induction of apoptosis following exposure 
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to IR, regardless of normal p53 upregulation [247]. It was also shown that an 

association exists between in vitro resistance to apoptosis following DNA 

damage and the clinical response in vivo determined by measuring MRD. 

Furthermore, primary ALL cells that were resistant to apoptosis exhibited 

deregulated transcription of genes involved in multiple prosurvival pathways. 

When these pathways were individually targeted by pharmacological inhibition, 

this led to widely heterogeneous responses in vitro [247, 248]. Thus, an 

alternative strategy is warranted in order to counteract apoptotic resistance 

observed in ALL. 

 

1.7.1. Induction of apoptosis 

1.7.1.1. The role of tumour suppressor p53 

The p53 protein is critical to the regulation of cellular processes in response to a 

variety of intracellular and environmental stresses, such as chemotherapy, 

ultraviolet and ionising radiation, and hypoxia [249-251]. With p53 regulating 

multiple key cellular processes, it is clear to see why this protein is frequently 

inactivated by multiple mechanisms in human cancer. Mutation of the p53 gene 

is found in approximately 50% of all human cancers, and is the most common 

mechanism of inactivation [252].  Interestingly, an estimated 80% of p53 

mutations still allow a full-length p53 protein monomer to be expressed, but 

which lacks the ability to bind to DNA [253].  

Under normal conditions of cellular growth, p53 protein levels are kept low via 

interactions with its negative regulatory partner mouse double minute 2 (Mdm2). 
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The binding of Mdm2 to p53 prevents its transactivation functions and 

ubiquitinates p53, targeting it for proteosomal degradation [254]. Cellular stress 

in the form of direct DNA damage, oncogene activation, hypoxia and deprivation 

of nutrients all lead to activation and stabilisation of p53 following post-

translational modifications. When a cell is under genotoxic stress, such as that 

caused by chemotherapeutic drugs used in the clinic, stabilisation and 

activation of p53 occurs through phosphorylation of Serine-15 at the N-terminal 

region by the damage response kinases ATM and ATR, whilst checkpoint 

kinase-2 (Chk2) and checkpoint kinase-1 (Chk1) phosphorylate p53 on Serine-

20 [255]. Once activated, p53 accumulates in the nucleus and is then capable 

of regulating transcription of target genes involved in the response to DNA 

damage. Early response genes upregulated by p53 are mainly those encoding 

proteins with growth arrest and DNA repair functions, including p21, GADD45α, 

14-3-3α and MDM2 [245, 256]. If DNA damage persists and is unsuccessfully 

repaired, p53 stabilisation is maintained leading to the expression of pro-

apoptotic genes such as Bax, PUMA/NOXA and Fas/DR2 [257, 258]. 

1.7.2. The intrinsic apoptotic pathway 

A large number of non-receptor-mediated stimuli are involved in initiating 

apoptosis via the intrinsic pathway, which can be activated by intracellular 

signals in either a positive or negative way [245]. For example, negative signals 

involve the downregulation of specific growth factors, hormones and cytokines 

that inhibit programmed cell death programs and promote survival, thus 

triggering apoptosis. Other positively acting stimuli include radiation, hypoxia, 

toxins, viral infections, and free radicals [245]. Both of these types of stimuli 
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lead to changes in the inner mitochondrial membrane, which cause the opening 

of the mitochondrial permeability transition pore and a loss of the mitochondrial 

transmembrane potential. Once this occurs, two key groups of pro-apoptotic 

proteins that usually reside within the intermembrane space are released into 

the cytosol [259]. The first group of proteins include cytochrome c, 

Smac/DIABLO, and the serine protease HtrA2/Omi, which activate the caspase-

dependent mitochondrial pathway [260-263]. Cytochrome c then binds and 

activates both Apaf-1 and procaspase-9 to form a caspase-activating complex 

known as the ‘apoptosome.’ The formation of this complex causes the activation 

of caspase-9, which in turn activates downstream effector caspases-7, -6, and -

3 that cleave various substrates such as PARP1, cytokeratins, and proteins 

within the plasma membrane  [256, 264]. The second group of pro-apoptotic 

proteins consists of AIF, endonuclease G, and CAD, which are released from 

the mitochondria at a later stage of apoptosis when a cell is committed to death 

and translocate to the nucleus where they fragment DNA into pieces 

approximately 50-300 kb in size, as well as condensing peripheral nuclear 

chromatin [265-267].  

The previously described mitochondrial events are regulated by a group of 

proteins belonging to the B-cell lymphoma gene-2 (Bcl-2) family of proteins, and 

can be either pro-apoptotic (Bcl-10, Bax, Bak, Bid, Bad, Bim, Bik, and Blk) or 

anti-apoptotic (Bcl-2, Bcl-x, Bcl-XL, Bcl-XS, Bcl-w, BAG, and Mcl-1). The 

expression of these proteins determines whether or not a cell commits to 

apoptotic cell death via regulation of cytochrome c release from the 

mitochondria [245]. Phosphorylation of pro-apoptotic Bad keeps this protein 
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sequestered in the cytosol bound to 14-3-3. Once Bad is unphosphorylated, it 

translocates to the mitochondria and causes the release of cytochrome c [268]. 

Bad is also capable of binding and neutralising the anti-apoptotic effects of Bcl-

XL and Bcl-2, thus promoting cell death [269]. When Bcl-2 and Bcl-XL are not 

sequestered by Bad, these proteins prevent the release of cytochrome c.  

Two additional pro-apoptotic proteins of the Bcl-2 family, Puma and Noxa, also 

play a key role in p53-mediated apoptosis. Both these proteins are upregulated 

by p53 when a cell is subjected to oncogene activation or genotoxic stress 

[245]. Overexpression of Puma in vitro has been shown to cause concomitant 

upregulation of Bax expression [270], whereas Noxa is capable of translocating 

to the mitochondria and binding to anti-apoptotic Bcl-2 family members, which 

results in the release of cytochrome c and activation of caspase-9 [271]. 

1.7.3. The extrinsic apoptotic pathway 

Apoptotic signalling by the extrinsic pathway is mediated via transmembrane 

receptors. These include death receptors belonging to the tumour necrosis 

factor (TNF) receptor gene superfamily [272], which contain cysteine-rich 

extracellular domains and a cytoplasmic domain known as the ‘death domain’ 

[273]. The death domain is essential for the transmission of apoptotic signals 

from the surface of the cell to intracellular signalling pathways. Many of the 

ligands and their corresponding receptors involved in the extrinsic apoptotic 

pathway are well characterised and include TNF-α/TNFR1 [273], FasL/FasR 

[274], Apo3L/DR3 [275], Apo2L/DR4 [276] and Apo2L/DR5 [277]. 
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Following activation of the death receptors by its corresponding ligand, the 

receptors cluster and trimerise. Adaptor proteins located within the cytoplasm 

are then recruited and bind to the receptor death domains [245]. For example, 

the adapter protein FADD binds to the Fas receptor following activation by the 

Fas ligand, whilst binding of the adapter protein TRADD and consequent 

recruitment of FADD and RIP occurs once the TNF ligand binds to the TNF 

receptor [278]. FADD then binds with procaspase-8 to form the death-inducing 

signalling complex (DISC), which leads to the activation of procaspase-8 and 

triggering of apoptosis through activation of the downstream effector caspase-3 

[245, 279].  

1.7.4. Execution of apoptosis 

Typically, cells undergoing apoptosis are subject to various biochemical 

modifications such as protein cleavage, cross-linking of proteins, DNA 

breakdown, and expression of surface markers for phagocytic recognition [280]. 

A group of highly conserved intracellular cysteine proteases known as cysteine 

aspartyl-specific proteases, or caspases, are ubiquitously expressed in most 

cell types and are key mediators of apoptosis. Caspases are expressed as an 

inactive proenzyme, which once activated, initiate a proteolytic cascade that 

serves to cleave other caspase enzymes and amplify the apoptotic signalling to 

aid rapid cell death [245]. Once activated, caspases are able to cleave protein 

at aspartic residues and cells become committed to apoptosis. There are ten 

major caspases that are grouped into three categories, namely upstream 

initiator (caspase-2, -8, -9, -10), downstream executioner (caspase-3, -6, -7), 

and inflammatory caspases (caspase-1, -4, -5) [281, 282]. The two main 
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Figure 1.2: Intrinsic and extrinsic mitochondrial apoptosis 

a)  DNA damage or endoplasmic reticulum (ER) stress are intrinsic apoptotic stimuli 
that lead to mitochondrial outer membrane permeabilisation (MOMP), and the release 
of cytochrome c. Cytochrome c then binds with APAF-1 to form the apoptosome which 
ultimately leads to the activation of caspases 9, 7 and 3. 

b) The extrinsic apoptotic pathway is activated following the ligation of death receptors 
with their corresponding ligands. This leads to the recruitment of adaptor molecules 
such as FAS-associated death domain protein (FADD) which then results in the 
dimerisation and activation of caspase 8, followed by caspase-3 and -7. (Adapted from 
Tait, W.G. & Green, D.R., Nature Reviews Molecular Cell Biology 11, 621-632, 2010) 
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pathways by which apoptosis occurs are intrinsic pathway, regulated by 

intracellular proteins, and the extrinsic pathway, which is triggered by the 

activation of Fas family of death receptors expressed on the cell surface. The 

tumour suppressor p53 is involved in triggering both these pathways; however, 

the intrinsic apoptotic pathway is its principal mechanism of action [283]. 

1.7.5. Inhibitors of apoptosis 

The c-FLIP protein is capable of inhibiting apoptotic signals mediated via the 

death receptors by directly binding to FADD and caspase-8 [284, 285]. Studies 

have shown that p53 may also play a role in the extrinsic apoptotic pathway by 

upregulation or shuttling of DR5 and Fas proteins [283, 286].  

The inhibitor of apoptosis proteins (IAPs) are a very important group of proteins 

capable of inhibiting both the intrinsic and extrinsic apoptotic pathways [287] by 

direct inhibition of caspases; some of which are nuclear factor kappa B (NFκB) 

target genes and regulate NFκB anti-apoptotic activity. Eight mammalian IAP 

family members have been identified to date, namely cellular IAP1 and IAP2 

(cIAP1 and cIAP2), X-chromosome-linked IAP (XIAP), neuronal apoptosis 

inhibitory protein (NAIP), survivin, BRUCE, livin, and testes-specific IAP (Ts-

IAP) [288]. A common feature of all IAPs is the baculoviral IAP repeat (BIR) 

domain located in the N-terminal region, which mediates the interaction with 

caspases and anti- apoptotic activity. They are approximately 80 amino acids in 

length and are able to chelate zinc ions [289]. XIAP, cIAP1, and cIAP2 inhibit 

caspase-9, -7, and -3 directly. Furthermore, it has been shown that XIAP is 

capable of promoting the degradation of inhibitor κB protein, which leads to 
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activation of NFκB and its translocation from the cytoplasm to the nucleus [290]. 

Survivin, together with the hepatitis B X-interacting protein (HBXIP), bind and 

inactivate procaspase-9, thus preventing activation of the intrinsic pathway 

[291]. 

 

1.8. The DNA damage response and treatment resistance 

Treatment of ALL relies on the stratification of patients based on prognostic 

markers such as clinical and genetic features. Furthermore, poor early blast 

clearance following remission-induction therapy is indicative of high-risk ALL 

[162]. Although major improvements in the detection and prediction of treatment 

outcome in more aggressive forms of ALL have been made over the years, not 

much was known about the molecular defects that would confer resistance and 

a poor response to therapy. Various research groups previously investigated 

differential patterns of gene expression in ALL following treatment with a single 

cytotoxic agent or a combination of drugs using gene expression arrays [292-

295]. Results from such studies provided vast amounts of information to aid the 

prediction of treatment resistance and patient prognosis in paediatric B-cell ALL; 

however, the identification of a single gene expression pattern associated with 

chemoresistance to multiple conventional cytotoxic agents used in the treatment 

of ALL has not been possible, despite many of these agents having been shown 

to exert overlapping cellular effects. This, together with the fact the multiplicity of 

genetic events observed in ALL frequently influence common signalling 

pathways, have made the discovery of novel therapeutic targets difficult [193, 

296].  
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Many chemotherapeutics drugs used to treat ALL exert their effects by inducing 

double-strand breaks (DSBs), which is an effect that can be mimicked using 

ionising radiation (IR). Using IR as a model of DNA DSBs to investigate the 

integrity of cellular responses in leukaemia cells, studies have shown that DSBs 

initiate a signalling cascade that results in the activation of both proapoptotic 

and prosurvival pathways [297, 298]. Whether or not a cell undergoes apoptosis 

is dependent upon the number of DSBs and the integrity of the DSB response 

pathway. Usually, above a certain threshold in the number of DSBs, a p53-

driven apoptotic response is initiated, and prosurvival signalling overridden. 

Thus, the integrity of the DSB response plays an important role in the formation 

and progression of lymphoid tumours, and may modulate chemosensitivity in 

ALL [299, 300]. 

1.9. Prosurvival pathways 

There are multiple molecules and pathways that modulate apoptosis. In addition 

to pro-apoptotic signalling there are also prosurvival signalling pathways, which 

create a dynamic balance of opposing signals that determine the fate of a cell.  

These pathways do not operate in isolation and a significant degree of overlap 

exists between them.  

1.9.1. The NFκB pathway 

The nuclear factor kappa beta (NFκB) protein is a transcription factor with a key 

role in regulation of the immune system by controlling the expression various 

cytokines, growth factors, and inhibitors of apoptosis [301]. However, 

pathological dysregulation of the NFκB pathway has been associated with 
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inflammatory and autoimmune diseases, as well as many cancers; particularly 

leukaemias [248]. Five mammalian NFκB family members exist: p50, p52, RelA 

(p65), c-Rel and RelB, which all have a DNA binding and dimerization domain, 

known as the Rel homology domain (RHD) [302, 303]. Through the RHD these 

transcription factors are able to form homodimers and heterodimers that 

recognise and bind to κB sites located in the promoter and enhancer regions of 

genes, thereby controlling gene expression. The RHD also allows NFκB to bind 

inhibitors of NFκB (IκB). IκB sequesters NFκB dimers in the cytoplasm, 

preventing their translocation to the nucleus [304]. The activation of NFκB 

dimers involves the phosphorylation of IκB by the IκB kinase (IKK) complex, 

which causes IκB to be targeted for ubiquitin-mediated degradation by the 26S 

proteasome [305]. This may occur in response to a wide range of stimuli and 

ultimately results in nuclear localisation of NFκB dimers, and therefore the 

expression of NFκB target genes. Unless the stimuli causing activation persist, 

NFκB provides its own negative feedback loop to terminate gene transcriptional 

activity by expressing IκBa, which results in the sequestration of NFκB subunits 

to the cytoplasm. The inhibition of apoptosis by NFκB is mediated by 

upregulation of several genes that encode anti-apoptotic proteins such as the 

IAPs, A1, TNF receptor associated factors 1 and 2 (TRAF1 and TRAF2), and 

caspase-8 FADD-like IL-1β-converting enzyme inhibitory protein (c-FLIP) [306]. 

Increased expression of the NFκB target genes cIAP1, cIAP2, TRAF1, TRAF2, 

and c-FLIP results in direct inhibition of capsase-8, whilst upregulation of XIAP 

prevents the apoptotic activity of caspase-3, -7, and -9 [307, 308]. Multiple anti-

apoptotic Bcl-2 family members such as A1, Bcl-2, and Bcl-XL are upregulated 
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by NFκB and may lead to inhibition of apoptosis by preventing cytochrome c 

release and caspase-9 activation [309, 310]. 

1.9.2. The JAK-STAT pathway 

Studies first identified the Janus kinase (JAK)-signal transducer and activator of 

transcription (STAT) pathway as a signalling pathway that mediates mammalian 

cytokine signals [311-314]. To date, seven STAT proteins (STAT1-4, 5A, 5B 

and 6) and four JAK kinases (JAK1-3 and tyrosine kinase 2 (TYK2)) have been 

identified. Activation of the canonical JAK-STAT signalling pathway involves the 

binding of a ligand, such as a cytokine, to the upstream transmembrane 

receptor. Once activated, the receptor dimerises and provides cross-activation 

of JAK kinases that are bound to the receptor. The JAK kinase then 

phosphorylates tyrosine residues located in the cytoplasmic receptor tail. 

Consequently, STAT transcription factor proteins then dock at these phosphor-

tyrosine sites, and are then phosphorylated by the JAK kinases. Phosphorylated 

STAT proteins dimerise and localise to the nucleus, where they activate 

transcription and regulate expression of their corresponding target genes [312]. 

STAT target genes include those encoding antiapoptotic factors such as the B-

cell lymphoma 2 (Bcl-2) family of proteins, genes involved in angiogenesis and 

metastasis factors such as vascular endothelial growth factor (VEGF), and 

genes involved in cell proliferation such as cyclin D1 and c-Myc [315, 316]. 

Since many of these genes are involved in proliferation and survival signalling, 

their dysregulated upregulation by STAT transcription factors is commonly 

associated with tumour-promotion. JAK-STAT signalling is also modulated by 

positive and negative regulators, which determine the magnitude and duration 
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of signals within the pathway [312, 317, 318]. Activated STAT proteins are 

capable of inducing their own expression in the form of a positive-feedback 

loop. However, negative regulators of the JAK-STAT pathway including 

suppressor of cytokine signalling (SOCS), protein tyrosine phosphatases 

(PTPs), and protein inhibitor of activated STAT (PIAS) also exist, and are 

responsible for inhibiting JAK-STAT signalling following activation [312, 317, 

318]. Studies in Drosophila have highlighted the existence of a non-canonical 

JAK-STAT signalling pathway, where unphosphorylated STAT has a role in 

directly controlling the stability of heterochromatin and regulating the activity of 

transcription machinery [319]. 

1.10. Epigenetic regulation of prosurvival gene transcription 

The term ‘epigenetics’ describes the heritable changes to a cellular phenotype 

that are a result of covalent modifications made to the nucleosome without 

altering the DNA sequence [320]. The discovery of CpG islands, 

characterisation of the human DNA methylome, and identification of novel 

histone modifications, together with the major technological advances in recent 

years, have greatly improved our understanding of epigenetics and its 

importance in maintaining normal gene expression [321]. Accumulating data 

exists to support a significant role of epigenetic modifications in ALL. For 

example, the gene encoding the negative regulator of the JAK/STAT pathway, 

SHP1, is frequently silenced by methylation in 24% of B-precursor ALL [322]. 

Additionally, studies have shown that histone acetylation plays a crucial role in 

maintaining normal regulation of the complex process of V(D)J recombination 
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during B-cell development, through a mechanism involving the IL7R/STAT5 

signalling axis and the Pax5 transcription factor [323-326].  

Chromatin is a macromolecular complex consisting of packaged DNA and 

histone proteins, and therefore contains all the heritable genetic material of 

eukaryotic cells [320]. It may be divided into two distinct regions, namely 

heterochromatin and euchromatin. Heterochromatin is typically very highly 

condensed and contains mainly inactive genes. In contrast, euchromatin 

confers a more open structure and contains the majority of active genes. Within 

chromatin, 147 base pairs of DNA are wrapped around a histone octamer 

comprising of two of each of histones H2A, H2B, H3, and H4 [320].  

The modification of DNA and histones is a dynamic process, with such changes 

being constantly made and removed by chromatin-modifying enzymes. 

Epigenetic modifications are critical to the regulation of cellular processes such 

as gene transcription, DNA repair, and replication, and it is now well known that 

deregulation of post-translational histone modifications can have serious 

consequences that contribute to many human cancers [321].  

To date, four types of DNA modifications [327, 328], and sixteen different types 

of histone modifications exist, which serve to alter the structure of chromatin, as 

well as to provide docking sites for specialised proteins that specifically 

recognise these changes [320].  
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1.10.1. Histone acetylation 

A major type of histone modification involved in modifying chromatin structure, 

DNA repair, and gene transcription is the Nε-acetylation of lysine residues. 

Acetylation functions to remove the positive charge of lysine residues, causing 

the electrostatic bonds holding histones and DNA together to weaken. 

Consequently, chromatin adopts a more ‘open’ structure associated with active 

gene transcription [320, 329, 330]. Additionally, acetylation of lysine residues 

also functions to provide the docking site required for its recognition by various 

chromatin ‘reader’ proteins containing bromodomains, and tandem plant 

homeodomain (PHD) fingers [331]. 

 

1.10.2. Histone acetylation readers and their role in regulating 

gene transcription 

The principal readers of Nε-acetylated lysine residues are a family of proteins 

containing a highly conserved binding motif known as a bromodomain. Over 40 

human bromodomain-containing proteins have been identified to date, and 

function as chromatin remodelers, transcriptional coactivators, histone 

acetyltransferases, and histone methyltransferases [332]. Until recently, 

therapeutic targeting of protein-protein interactions with small pharmacological 

inhibitors had not been possible. However, great advances in this area have 

meant that it is now possible to develop highly specific inhibitors that target the 

BET family of bromodomain proteins, consisting of BRD2, BRD3, BRD4, and 

BRDt [333, 334]. These proteins recognise epigenetic chromatin modifications, 
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such as poly-acetylated lysine residues of H3 and H4 histone tails, and play an 

essential role in the regulation of transcription and cell cycle progression [335].  

With respect to transcriptional regulation, studies have shown that BRD4 forms 

part of transcription complexes and remains bound to transcriptional start sites 

of genes expressed during the M/G1 transition, thus influencing mitotic 

progression and transcriptional elongation [336]. BRD4 recruits the positive 

transcription elongation factor complex (P-TEFb), consisting of CDK9 and cyclin 

T1 subunits, to the acetylated tails of histone H3 and H4. CDK9 subsequently 

phosphorylates the Ser2 residue of RNA polymerase II, triggering transcriptional 

elongation [337]. Despite the role in general transcription control, BRD4 activity 

seems to affect the transcription of a defined subset of growth- and survival-

promoting genes [335, 336, 338, 339]. Interestingly, the targeting of BET 

bromodomains appears to be a promising therapeutic approach following recent 

success in treating the aggressive and fatal NUT-midline carcinoma; a disease 

associated with recurrent translocations of BRD3 and BRD4 [334]. Interestingly, 

such an approach has also proven to be effective in a range of haematological 

malignancies expressing BET family proteins [340-342], with a common feature 

of these studies being the downregulation of MYC following BET inhibition. The 

c-Myc protein this gene encodes plays a fundamental role in cell cycle 

progression and survival, and is one of the most commonly dysregulated genes 

in cancer, with high expression also frequently observed in a wide range of 

haematological malignancies, including ALL [343]. Furthermore, studies in mice 

have provided striking evidence to support that BET inhibition is highly effective 
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in vivo [344, 345], and may potentially provide an alternative strategy in the 

treatment of BET protein-expressing malignancies. 

 

1.10.3. The role of PIM kinases in prosurvival gene transcription  

The PIM protein family consists of three highly conserved serine/threonine 

kinase members (PIM1, PIM2 and PIM3) [346]. The PIM1 gene was first 

discovered by cloning studies investigating retroviral integration sites in 

Moloney murine leukaemia virus (MMLV)-induced lymphomas, which showed 

that over 50% of T-cell lymphomas exhibited integration near the PIM gene 

locus and subsequent upregulation of PIM1 mRNA [347, 348]. Later studies 

using transgenic mice confirmed potent cooperating oncogenic activity between 

PIM1 and MYC [349], as well as with Bcl2, RunX2 and the E2A-PBX1 fusion 

gene [350-352]. Interestingly, MYC transgenic mice lacking the PIM1 gene 

showed that PIM2 expression was activated to compensate for PIM1 loss [353]. 

Similarly, PIM2 upregulation was found to occur as a late event in MMLV-

induced lymphomas [354] and also potently synergised with MYC [355]. 

Significant functional redundancy between PIM kinases has been shown both in 

vitro and in vivo, which is due to the high level of amino acid sequence 

homology, where PIM1 and PIM2 share 61% homology, and PIM1 and PIM3 

share 71% homology [346]. All three members of the PIM kinase family are 

ubiquitously expressed; however, their level of expression can vary between 

different cell types [356]. For example, PIM1 is most highly expressed in 

haematopoietic cells, whereas PIM2 presents at higher levels in brain and 
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lymphoid cells, and PIM3 in breast, brain and kidney cells [356]. Through 

alternative transcription initiation, two isoforms (34 and 44 kDa) are encoded by 

the PIM1 gene that have both been shown to maintain their kinase activity 

[356]. Similarly, alternative initiation sites within the PIM2 gene have been 

reported and give rise to 3 different isoforms (34, 37 and 40 kDa), whilst only 

one protein is encoded by the PIM3 gene [357]. The PIM kinases lack a 

regulatory domain, thus they are mainly regulated at the transcriptional level 

and so are constitutively active once expressed [358, 359]. PIM1 has also been 

shown to be regulated via protein stabilisation through binding with heat shock 

proteins (HSP). For example, the binding of PIM1 protein to HSP90 leads to 

stabilisation, whereas binding to HSP70 leads to its ubiquitylation and 

proteasomal degradation [360, 361].  In contrast, protein stabilisation of PIM2 

by HSPs has not been reported.  

A wide range of cytokines and growth factors, including the interleukins and 

granulocyte-macrophage colony-stimulating factor (GM-CSF), are known to 

activate the JAK/STAT signalling pathway, which leads to rapid upregulation of 

PIM genes [346, 362-364]. Similarly, studies have shown that JAK2, BCR/ABL 

and FLT3 mutants induce the expression of PIM1 and PIM2 genes via a 

mechanism involving the activation of the NFκB prosurvival signalling pathway 

and downstream STAT transcription factors [365-368]. However, the 

relationship between PIM kinases and NFkB remains an area of debate within 

the literature, since it is not clear whether PIM is up- or downstream of NFκB 

[369, 370]. 
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Although the role of PIM kinases in B-precursor ALL has not yet been explored, 

studies have shown that PIM1 and PIM2 are frequently upregulated in several 

other human myeloid and lymphoid leukaemias, and lymphomas, such as acute 

myeloid leukaemia (AML), chronic lymphocytic leukemia (CLL), mantle cell 

lymphoma (MCL), diffuse large B-cell lymphoma (DLBLC), marginal zone 

lymphoma-MALT type (MZL-MALT), follicular lymphoma (FL), and nodal 

marginal zone lymphoma (NMZL) [357, 365, 371-375].  With respect to the 

clinical relevance of PIM kinases, high PIM2 expression is associated with 

aggressive disease in DLBLC patients [376]. Furthermore, recent studies have 

shown that PIM1 and PIM2 are also upregulated in solid tumours such as 

prostate cancer, where high levels of PIM1 protein expression (over 50% of 

prostate cancer patients) positively correlated with an inferior treatment 

outcome [357, 377].  

Studies have shown that on their own, PIM kinases only weakly transform 

mesenchymal cells to give rise to leukaemia and lymphoma [378, 379]. 

However, the synergy between PIM family members and other oncogenes such 

as MYC, results in a far greater transforming capacity [353]. Since, on its own, 

c-Myc protein overexpression leads to the induction of apoptosis, tumours must 

adapt and gain the capability to overcome this effect [353, 364]. Intriguingly, 

both PIM1 and PIM2 have been demonstrated to counteract the pro-apoptotic 

functions of c-Myc by inactivating the pro-apoptotic protein BAD through 

phosphorylation of its Ser112 residue [380]. In addition, PIM kinases 

phosphorylate c-Myc, thus increasing its stability and transcriptional activity 

[346]. Other pro-apoptotic proteins inactivated following PIM-mediated 
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phosphorylation include ASK1 and PRAS40, which are important for JNK /p38 

signalling pathways and the inhibition of mTORC1 kinase activity that regulate 

cellular growth and proliferation, respectively [381, 382]. 

More recently, PIM2 has been shown to share similar cellular functions to the 

Akt kinase downstream of the phosphatidylinositol 3-kinase (PI3K) signalling 

pathway, since both proteins regulate survival, metabolism and cell size [346, 

359, 383, 384]. Interestingly, studies have confirmed that, similar to Akt, PIM2 

promotes mRNA translation by phosphorylating and subsequently inactivating a 

ribosomal translation inhibitor known as the eukaryotic translation initiation 

factor 4E-binding protein 1 (4E-BP1) encoded by the EIF4EBP1 gene [385]. 

Furthermore, the previously mentioned phosphorylation of proapoptotic BAD by 

PIM kinases, is also observed upon activation of Akt [359]. These findings, 

together with the confirmation that PIM kinases act independently of Akt [383], 

suggest that cytokines and growth factors activate survival pathways with a 

significant degree of overlap [383].  

Intriguingly, recent studies have shown that the PIM kinases also play a role in 

regulating gene transcription by enhancing BRD4-mediated recruitment of P-

TEFb [346, 386]. More specifically, this involves the recruitment of PIM1 to E-

box DNA sequences through a direct interaction with c-Myc, which then enables 

PIM1 to phosphorylate histone H3 at Ser10 (H3S10) [386]. This allows for the 

binding of 14-3-3 proteins [387], which is then followed by recruitment of the 

acetyltransferase MYST1 that is responsible for the acetylation of histone 4 at 

Lysine 16 (H4K16) [388]. Subsequently, H4K16 provides the binding site 

required for the binding of the BET protein BRD4, which recruits P-TEFb that 
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functions to phosphorylate RNA Pol II at Ser2, thus releasing stalled RNA Pol II 

from transcriptional pause sites and promoting transcript elongation [388], as 

previously described.  

Interestingly, this highlights an alternative mechanism of Myc-regulated gene 

expression, where c-Myc promotes transcript elongation at gene promoters with 

a pre-formed transcription initiation complex, as opposed to recruiting 

transcription initiation complexes to the promoter [389]. Although it is not yet 

clear whether other PIM kinase family members regulate gene transcription in 

this way, it has been estimated that PIM1 enhances the expression of 

approximately 20% of all genes induced by c-Myc [346, 386].  

Consequently, in recent years, great effort has gone into the generation of 

pharmacological PIM kinase inhibitors [390]. One study identified the 

imidazo[1,2-b]pyridazine K00135 as a PIM kinase inhibitor, which demonstrated 

specific anti-leukaemic activity against primary AML tumour cells in vitro [391]. 

Thus, it remains to be determined whether the targeting of PIM kinases holds 

any therapeutic advantage in the treatment of B-precursor ALL. 
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1.11. Aims and objectives 

From the overview of the current status of paediatric ALL given in the 

introduction it is apparent that, despite high cure rates achieved in the last two 

decades, high levels of toxicity associated with standard chemotherapy and 

treatment resistance in a subset of patients imposes the need for new 

therapeutic approaches [1]. The results from our own laboratory suggest that 

upregulation of prosurvival pathways may represent one of the major factors in 

B-precursor ALL chemoresistance. 

Recent advances in understanding the regulation of transcription suggest two 

possibilities for the direct targeting of prosurvival cellular machinery: 

a) the inhibition of epigenetic readers as factors that recognise chromatin 

permissive for transcription  

b) the inhibition of co-factors that modify and stabilize transcription complexes. 

Therefore, the aim of my project was to use these alternative strategies to target 

prosurvival signaling in a range of B-precursor ALL tumours, and particularly 

those that exhibit treatment resistance. My approach was based on the 

hypothesis that B-precursor ALL, including high-risk ALL, can be sensitised to 

apoptosis by downregulation of survival pathway signaling via the inhibition of 

gene transcription, and that this can be achieved by targeting the BET family of 

proteins and PIM kinases. 
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Thus, the specific aims and objectives of this study were: 

• To investigate the role of BET proteins in B-precursor ALL and determine 

whether pharmacological inhibition of BET proteins leads to the 

sensitisation of tumour cells, both in vivo and in vitro.  

• To determine the effect of BET protein inhibition on gene transcription in 

pre-B ALL. 

• To characterise the cellular effects of BET protein inhibition in B-

precursor ALL. 

 

• To determine whether the PIM kinases pose as suitable candidates for 

further study, and as potential therapeutic targets in B-precursor ALL. 
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2. MATERIALS AND METHODS 

2.1. Primary ALL patient tumours 

The primary tumour samples used in this study were selected according to 

material availability and derived from patients enrolled in the UKALL 2003 trial, 

from the Birmingham Children’s Hospital, UK. 

Following diagnosis, stratification of paediatric B precursor ALL patients into 

three different risk groups (standard, intermediate and high risk) is defined by 

diagnostic criteria outlined in the UKALL 2003 protocol 

http://www.ctsu.ox.ac.uk/research/mega-trials/leukaemia-trials/ukall-

2003/protocol-version-7. 

The risk groups and the diagnostic features that define them are as follows: 

• Standard risk: Patients >1 and <10 years of age, with a diagnostic white cell 

count (WCC) <50x109/L, and without hypodiploidy (≤44 chromosomes), BCR-

ABL, or rearrangements of the MLL gene. 

• Intermediate risk: Patients ≥10 years of age, or that have a diagnostic WCC 

≥50x109/L, and that do not harbour lymphoblasts with BCR-ABL, hypodiploidy 

(≤44 chromosomes), or an MLL gene rearrangement. 

• High risk: All patients that exhibit a slow early response (SER) to induction 

therapy, as well as those patients harbouring lymphoblasts with BCR-ABL, 

hypodiploidy (≤44 chromosomes), an MLL gene rearrangement, or 

amplification of RUNX1 (AML1). 

http://www.ctsu.ox.ac.uk/research/mega-trials/leukaemia-trials/ukall-2003/protocol-version-7
http://www.ctsu.ox.ac.uk/research/mega-trials/leukaemia-trials/ukall-2003/protocol-version-7
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Primary ALL samples used in this study were obtained from patients during 

induction therapy. Standard risk patients were treated on Schedule A 

(dexamethasone, vincristine, pegylated L-asparaginase, methotrexate, and 6-

mercaptopurine), intermediate risk patients on Schedule B (similar to Schedule 

A, but with the addition of daunorubicin), and high risk patients on Schedule C 

(similar to Schedule B, but with the administration of higher doses of 

daunorubicin). 

Table 2.1 lists the primary ALL samples used in this study as well as available 

clinical information associated with the patients from which the samples were 

derived.  

In addition to the ALL tumours, 2 primary paediatric AML tumours (AML-1 and 

AML-2) were also included as positive controls for JQ1 anti-tumour activity. 

Clinical information for these patients can be found in Appendix 1. 

Clinical data that were available for patients used in the qRT-PCR PIM2 

expression screen can be found in Appendix 2. 
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Patient No. Age at diagnosis 
(years.months) 

WCC at 
diagnosis 
(x109/L) 

Clinical 
stratification Cytogenetic profile 

ALL-101 5 44.9 HIGH RISK 46 XY 

ALL-103 5.3 3.1 LOW RISK Hyperdiploid 

ALL-104 6.4 5.6 LOW RISK 46XYt(12;21) 

ALL-105 2 391.3 HIGH RISK 45xy, dic (9;20)+8, -13 

ALL-106 2.7 55.9 HIGH RISK 46XY del(1)p332p32, 
dup(2)q2q3),add(9)p2 

ALL-108 6.4 0.6 LOW RISK 46XY, t(12;21) 

ALL-109 13 2.7 LOW RISK 46XY 

ALL-110 2.5 7.5 HIGH RISK 46XY, t(12;21) 

ALL-111 2.7 42.9 LOW RISK 55XY, high hyperdiploid 

ALL-112 5.5 6.5 HIGH RISK Hyperdiploid 

ALL-113 1.9 10.7 HIGH RISK N/K 

ALL-114 0.7 394 Infant ALL MLL - rearrangement 

ALL-115 11 26.2 LOW RISK 47-48XX 

ALL-116 6.6 5.4 HIGH RISK 46XY, t(12;21) 

ALL-117 1.7 56 HIGH RISK 52XY,+X+4+6+7+8+21(2), 46XY(8) 

ALL-118 1 27.2 Infant ALL MLL - rearrangement 

ALL-121 2 N/K HIGH RISK Hyperdiploid 

ALL-122 3.6 3.4 HIGH RISK 46XY, t(12;21) 

ALL-123 2.6 12.1 HIGH RISK 54XX +X+4+6+14+17+18+21+21 

ALL-124 11 N/K LOW RISK 46XY, t(12;21) 

ALL-126 9 N/K Relapsed ALL Hyperdiploid 

ALL-129 2.3 87.8 N/K 47,XX,+X,t(3;22)(p25;q13)[9]/46,XX[1] 

ALL-130 7.45 40.7 N/K 55,XX,+X,ins(1;?)(q2;?),+4,+6,+10,+14,+
17,+18,+21,+21[9]/46,XX[1] 

ALL-131 11 72.6 N/K t(1;19) 

ALL-132 9 24.4 N/K t(1;19) 

ALL-133 N/K N/K N/K N/K 

 

Table 2.1: Clinical information for the B-precursor ALL patients used in 
this study  

Tumours were identified by their patient number (‘Patient No.’). Data in this 
table includes the patients’ age at diagnosis, diagnostic white cell count (WCC), 
as well as details of their cytogenetic profiles. This information, together with the 
measurement of MRD at Day 28, is used to stratify patients diagnosed with B-
ALL into different risk groups and ensure they are assigned to the appropriate 
treatment regimen. (N/K = Not known; data was unavailable). 
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2.2. Tissue culture techniques  

2.2.1. Isolation and cryopreservation of mononuclear cells from 

bone marrow aspirate 

Using aseptic technique, bone marrow aspirate was carefully diluted with 10 ml 

RPMI culture medium containing L-Glutamine (Invitrogen), supplemented with 

10% foetal calf serum (Invitrogen) and 1% penicillin/streptomycin antibiotics 

(Invitrogen), all pre-heated to 37ºC in a water bath. This was then gently 

transferred to a universal tube containing 10 ml Lymphoprep (Axis-shield), 

forming two separate layers with the diluted bone marrow aspirate in the top 

layer. This was then followed by centrifugation at 1600 rpm for 25 minutes with 

no brake. The newly-formed, third middle layer containing the lymphoid 

mononuclear cells was carefully collected using a pasteur pipette, transferred to 

a new universal tube, and washed twice using supplemented culture medium at 

37ºC, centrifuging at 1600 rpm for 5 minutes on a low brake setting. Lymphoid 

mononuclear cells were counted during the second wash using a 

haemocytometer. The supernatant was discarded, leaving a pellet of lymphoid 

cells at the bottom of the universal tube. The contents of the original universal 

tube still containing the top and bottom layers were discarded, leaving behind 

residual drops of separated red blood cells. 

To prepare cells for cryopreservation, pelleted lymphoid cells were re-

suspended in cryopreservation medium at 37ºC, constituting of a mixture of 

90% foetal calf serum (Invitrogen) and 10% dimethyl sulphoxide (DMSO) 

(Sigma), at a cell density of 1.5 x 107 cells/ml. Red blood cells were also 
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prepared by re-suspending all of the red bloods cells in 1 ml cryopreservation 

medium. Cells were transferred to 1 ml Cryovials (Nunc). Vials containing 

lymphoid cells and red blood cells were appropriately labelled and placed in 

plastic containers substantially padded with cotton wool, and then stored at -

80ºC. The next day, vials were stored in the liquid nitrogen sample bank, and 

their location recorded.  

When viable cells were needed for experiments, vials containing frozen cells 

were taken from liquid nitrogen and thawed in a 37ºC water bath, before 

transferring the contents to a new universal tube, and adding 10 ml culture 

medium pre-warmed to 37ºC, one drop at a time. Cells were then centrifuged at 

1600 rpm for 5 minutes, washed in culture medium, and re-suspended at the 

required cell density. 

2.2.2. Cell line maintenance 

The following ALL cell lines were suspended in RPMI culture medium 

supplemented with 10% foetal calf serum (Invitrogen) and 1% 

penicillin/streptomycin antibiotics (Invitrogen), maintained in 75 cm2 vented cell 

culture flasks (Iwaki), and incubated in humidified incubators at 37ºC, 5% CO2: 

NALM-6 and REH were originally provided by Dr. Tony Ford (Institute of Cancer 

Research, Sutton, UK), and the NALM-17 cell line by Dr. Yoshinobu Matsuo 

(Fujisaki Cell Center, Japan). Jurkat, SD1, SUPB-15 and TOM-1 cell lines were 

obtained from DSMZ GmbH, Germany. Cells were split every 7 days at a ratio 

of 1:10. Details for the cell lines used in this study are summarised in Table 2.2.  
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Cell line 
name 

Year 
established 

Leukaemia 
type 

Sex & age at 
diagnosis 

Prognostic 
karyotype Reference 

NALM-6 1976 Pre-B cell ALL M 19 None [392] 
NALM-17 1978 Pre-B cell ALL M 9 None [393] 

REH 1975 Common-B cell 
ALL F 15 TEL/AML1 [394] 

SD1 1991 Pre-B cell ALL F ? BCR/ABL1 [395] 
SUPB-15 1988 Pre-B cell ALL M 8 BCR/ABL1 [396] 
TOM-1 1987 Pre-B cell ALL M 54 BCR/ABL1 [397] 

Jurkat 1977 T-ALL M 14 None [398] 

 

Table 2.2: Cell line information. 

Available information relating to the cell lines used in this study. Cell lines were 

established from leukaemia cells derived from patients diagnosed with ALL. Sex 

(M = male, F = female), age and the prognostic karyotype of each patient are 

also provided. 
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2.2.3. Chemical reagents 

The BRD4 inhibitor JQ1, and the PIM kinase inhibitor K00135 (both received as 

a 10 mM stock dissolved in DMSO), were kindly provided by Prof. Stefan Knapp 

(Structural Genomics Consortium, University of Oxford, UK). The mitotic 

inhibitor vincristine (Sigma), the topoisomerase II inhibitor daunorubicin 

(Sigma), and the synthetic glucocorticoid receptor ligand dexamethasone 

(Sigma) were dissolved in DMSO at a 10 mM stock concentration. The 26S 

proteasome inhibitor MG132 (Merck) was dissolved in DMSO at a 100 mM 

stock concentration. Aliquots of these reagents were stored at -20ºC.  

2.3. Protein chemistry techniques 

2.3.1. Extraction of total protein from viable cells 

Control and drug-treated cells were collected into separate 1.5 ml eppendorf 

tubes (Eppendorf) and centrifuged at 1600 rpm for 5 minutes at 4ºC. Culture 

medium was decanted and the pellet washed by re-suspension in ice-cold 

phosphate buffered saline (PBS). Cells were pelleted once more and PBS 

poured off, making sure to remove as much residual PBS as possible using a 

pipette. The pellet was then re-suspended in 30-60 μl UTB lysis buffer (8 M 

Urea 50 mM Tris-HCl, pH 7.5), depending on size of the pellet. Each sample 

was then subjected to a single sonication pulse lasting approximately 7 

seconds. Lysates were centrifuged at 14000 rpm for 15 minutes at 7ºC. The 

supernatants were then transferred to clean eppendorf tubes, pre-cooled on ice, 

leaving behind any cell debris. Protein samples were then snap-frozen in liquid 

nitrogen and stored at -80ºC until needed. 
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2.3.2. Total protein quantification using the Bradford assay 

Protein concentrations were determined for each sample by constructing a 

standard curve. This was done by preparing six bovine serum albumin (BSA) 

(Invitrogen) standards of increasing concentrations (0 (10 μl water), 100, 200, 

300, 400, and 500 μg/ml) and adding 10 μl of each standard in triplicate to a 96-

well flat-bottomed plate (Iwaki). The protein lysates were then loaded in 

triplicate onto the 96-well plate at a 1:10 dilution. This was done by first adding 

9 μl distilled water to an individual well, followed by 1 μl of the appropriate 

protein sample. Bradford reagent (Biorad) was then diluted 1:5 with distilled 

water, followed by addition of 200 μl of the prepared solution to each of the 

wells containing the BSA standards or protein lysate samples. After 5 minutes, 

the plate was loaded into a microplate reader (Biorad) and absorbencies 

measured at a wavelength of 595 nm. The absorbance values obtained were 

used to plot a standard curve graph with the concentration of BSA (μg/ml) on 

the x-axis and the average absorbance of the triplicate plotted on the y-axis. 

Using the mathematical equation for a straight line y=mx+c. the total protein 

concentration of each lysate was determined using the mean absorbance of the 

samples from triplicate readings (x=-c/m). Between 15 and 30 µg of protein 

were loaded for each sample. 

2.3.3. Western blotting 

2.3.3.1. SDS-PAGE 

Total protein in lysate samples was separated in an 8% polyacrylamide gel, 

consisting of 4 ml 0.1 M Tris/0.1 M Bicine (pH 8.3), 10.65 ml 30% acrylamide 
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(N, N’-methylene-bis-acrylamide) (Bio-Rad), 400 µl 10% (w/v) SDS (Sodium 

dodecyl sulphate) (Biorad), 80 µl Temed (N, N, N’. N’-tetra-methyl-

ethylenediamine) (Sigma), 200 µl 10% (w/v) APS, and 24.65 ml of sterile distilled 

water. Whilst the gel was left to set, 500 ml running buffer was prepared (0.1 M Tris 

/ 0.1 M Bicine (pH 8.3), 0.1% (w/v) SDS). 

Protein samples were prepared on ice, making sure each sample contained the 

same amount of protein. If large variations of sample volume were observed, 

samples were made up to the same volume (80 µl max.). Samples were then 

mixed with the appropriate volume of 4X Sample buffer (0.125 M Tris HCl 

pH6.8, 20% glycerol, 4% (w/v) SDS, 0.2 M DTT, 0.02% (w/v) bromophenol 

blue) and denatured for 5 minutes in a heat block at 95ºC. The samples were 

then briefly centrifuged for 5 seconds, before being loaded into the set 

polyacrylamide gel, along with a broad range protein molecular weight marker 

(Fermentas), and electrophoresed in previously prepared running buffer at 28 

mA for approximately 5 hours, or until the blue sample buffer visible within the 

gel had reached the bottom.  

2.3.3.2. Electrophoretic protein transfer 

Once electrophoresis of protein samples through the polyacrylamide gel was 

complete, protein was transferred to nitrocellulose membrane (Thermo 

Scientific) by electrophoresis at 200 mA for 16 hours in a Transphor 

electrophoresis unit (Hoefer Scientific). The transfer buffer contained 48 mM 

Tris, 390 mM glycine and 20% (v/v) methanol. Care was taken to ensure, no air 

bubbles existed between the gel and the nitrocellulose membrane, in order to 

avoid incomplete transfer of protein, and also ensure that the nitrocellulose 
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membrane was between the negatively-charged protein in the gel and the 

anode side of the transfer tank. 

2.3.3.3. Immunoblotting for transferred protein 

Once transfer of proteins was complete, the nitrocellulose membrane was 

removed from the transfer tank and left to soak in Ponceau stain (1% Ponceau 

Red in 3% (w/v) trichloroacetic acid) for approximately 2 minutes on a rocker, 

before removing the membrane from the Ponceau stain and briefly rinsing it 

with distilled water. The transferred protein bound to the nitrocellulose 

membrane was now visible as red bands, allowing for the removal of excess 

sections of membrane and cutting of the membrane into strips with a scalpel, 

depending on the size of the proteins being blotted for. Cut strips were then 

washed in Tris-buffered saline (200 mM Tris HCl, 1.36 M NaCl pH7.6, 0.1% 

Tween-20 (TBST) for 10 minutes to remove the stain, and blocked in TBST 

containing 5% milk on a rocker for 1 hour at room temperature. Blocked 

membranes were then washed in TBST for 10 minutes for a total of three 

washes, with fresh TBST wash buffer being used with each wash. At the end of 

the third wash, membranes were incubated with the primary antibody, diluted to 

the recommended concentration in TBST with 5% milk (Marvel) solution, for 1 

hour at room temperature. Antibodies recognising phospho-proteins were 

diluted to the recommended concentration in TBST with 5% (w/v) BSA 

(Invitrogen). Following incubation in primary antibody, membrane strips were 

washed in TBST for 10 minutes, three times. After the third wash, membrane 

strips were incubated in horseradish peroxidase-labelled secondary antibody 

conjugate of the appropriate anti-species, and pre-diluted to the recommended 
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concentration in TBST with 5% milk. Membranes were incubated in secondary 

antibody for 1 hour a room temperature, after which they were washed 3 times 

in TBST for 10minutes each wash. Membrane strips were briefly drained of 

excess liquid and incubated in the enhanced chemiluminescence (ECL) reagent 

(Milipore), as per manufacturer’s directions, for 1 minute. Following incubation 

in ECL, excess liquid was carefully removed from membrane strips, which were 

then placed in between two transparent acetate sheets and secured within an 

X-ray cassette with tape, whilst making sure there were no trapped air bubbles. 

The reaction between ECL substrate and the horseradish peroxidase conjugate 

leads to the production of luminol that emits light. Therefore, the ECL-treated 

membrane strips in the X-ray cassette were taken to a darkroom and exposed 

to X-ray film (Kodak) and developed in a developing system (Xograph Imaging 

Systems Compact X4). The length of time the X-ray film was exposed to 

emitted light was dependent upon the signal strength and often required 

multiple exposures to attain optimum results. Table 2.3 lists all the antibodies 

used in this study. 
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Table 2.3 Antibodies information. 

Details for the antibodies used in this study and experimental conditions under 
which they were used.  

(WB = Western blot, IF = Immunofluorescence, F = Flow cytometry, RT = Room 
temperature). 
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2.3.4. FITC Annexin V / propidium iodide flow cytometric 

analysis for the detection of apoptosis 

Cells were seeded into a 6-well plate (Iwaki) at a cell density of 1x106 cells/ml 

and exposed to 1 µM JQ1 inhibitor for 0, 24, and 48 hours (where ‘0 hours’ cells 

represented the negative control and were treated with 0.01% (v/v) DMSO 

instead of JQ1. Two additional plates were prepared in this way so as to provide 

a triplicate reading. JQ1 inhibitor was added to cells in a way that would allow 

for harvest of cells at the same time.  

At time of harvest, 2 ml of cell suspension for each treatment were transferred 

into individual flow cytometry sample tubes using a pasteur pipette. Cells were 

then washed by adding 3 ml ice-cold phosphate-buffered saline (PBS), and 

centrifuging at 2000 rpm for 5 minutes. The supernatant was then discarded, 

and cells washed with PBS once more. The required volume of 1X binding 

buffer was prepared using the 10X binding buffer contained in the apoptosis 

detection kit (BD Pharmingen) and diluting it with distilled water, after which 100 

µl 1X binding buffer was added to each tube. I then added 5 µl of FITC Annexin 

V and/or PI to the appropriate tube. Tubes were then vortexed, wrapped in 

aluminium foil and incubated for 10 minutes in the dark at room temperature. 

500 µl 1X binding buffer was then added to each tube and flow cytometry 

performed using the Beckman Coulter XL sorter. Gating of the fluorescence 

signal emitted in FITC Annexin V labelled and PI labelled cells was performed 

prior to analysis of test samples in order to be able to distinguish between the 

two different fluorophores and allow for the separation of cell populations into 

viable (FITC Annexin V and PI negative), early apoptotic (FITC Annexin V 
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positive, PI negative), and late apoptotic or dead cells (both FITC Annexin V 

and PI positive). A total of 15,000 events were collected per sample. 

2.4. Microarray study 

The microarray experiment in this study was conducted in collaboration with Dr. 

Simone Sharma at Institute of Child Health Microarray Facility, University College 

London (UCL).  

Procedures in sections 2.4.3 – 2.4.5 were performed according to instructions 

detailed in product-specific NuGen user guides 

(http://www.nugeninc.com/nugen/index.cfm/support/user-guides/). 

2.4.1. RNA extraction 

A total of 8 primary ALL tumour cells were treated with either DMSO or 1 µM 

JQ1, and then total RNA isolated using the RNeasy Mini kit (Qiagen).  

First, cells were centrifuged at 300 x g for 5 minutes and culture medium 

completely removed by careful pipetting, after which 600 µl of the supplied 

Buffer RLT was added to 0.5-1 x 107 cells. Cells were homogenised by passing 

the lysate through an RNase-free syringe fitted with a 0.9 mm syringe needle at 

least five times. One volume of 70% ethanol was then added to each lysate, 

and mixed well by pipetting. Up to 700 µl of the lysate was transferred to an 

RNeasy spin column placed in a 2 ml collection tube. The samples were then 

centrifuged at 10,000 rpm for 15 seconds, and the flow-through discarded. This 

step was repeated for the remainder of the lysate, if the sample volume 

exceeded 700 µl.  

http://www.nugeninc.com/nugen/index.cfm/support/user-guides/
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At this stage, the optional on-column DNase digestion using the RNase-free 

DNase kit (Qiagen) was incorporated into this protocol to eliminate genomic 

DNA contamination. This was carried out as per manufacturer’s instructions. 

Following DNase digestion, 500 µl Buffer RPE were added to each spin column 

containing the RNA samples, which were then centrifuged at 10,000 rpm for 15 

seconds. The flow-through was discarded and an additional 500 µl Buffer RPE 

were added to the spin columns, and then centrifuged at 10,000 rpm for 2 

minutes. The columns were placed in clean 1.5 ml collection tubes and 

centrifuged at full speed for 1 minute to remove any residual flow-through. The 

columns were then placed in clean 1.5 ml sample tubes (Eppendorf), and the 

RNA eluted by adding 30 µl RNase-free water directly to each column and 

centrifuging at 10,000 rpm for 1 minute, and repeating the elution step once 

more by passing the eluate through the same column. RNA samples were 

immediately placed on ice, and the RNA quality and concentration was 

determined using the ND-1000 Spectrophotometer (NanoDrop). RNA with an 

OD260nm/280nm ratio between 1.8 and 2.0 was considered of sufficient quality for 

downstream microarray applications. 

2.4.2. RNA quality control 

The 2100 Bioanalyzer (Agilent) was used to determine the integrity of RNA 

samples. The algorithm used by this machine allows for the calculation of a 

RNA integrity number (RIN), which is considered to be a reliable and 

standardised method for the assessment of RNA quality for microarray 

applications [399]. Only RNA samples with a RIN value greater than 8 were 
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deemed to be good quality RNA and chosen for use in this microarray study 

[400]. 

2.4.3. First and second strand cDNA synthesis 

A total of 40 ng RNA per sample were treated using the Ovation PicoSL WTA 

kit, which serves as a fast and simple method for preparing cDNA for whole 

genome expression analysis, optimised for analysis on Affymetrix Array Plates.  

The Ovation PicoSL WTA kit utilises Ribo-SPIA® technology to amplify cDNA 

from very small amounts of sample RNA within the picogram range, and 

consisted of three steps:  

1- Generation of first strand cDNA: The unique first strand DNA/RNA chimeric 

primers hybridise to both the 5’ end of the poly-A tail sequence and randomly 

across RNA transcripts in the sample. The reverse transcriptase (RT) enzyme 

then generates the first strand cDNA by extending the 3’ DNA end of each 

primer, producing a cDNA/mRNA hybrid molecule that contains a specific RNA 

sequence at the 5’ end of the cDNA strand that is required for the generation of 

the second strand cDNA. 

2- Generation of a DNA/RNA heteroduplex double strand cDNA (second strand 

cDNA): Priming sites for DNA polymerase to produce a second strand cDNA 

are made by fragmenting the mRNA within the cDNA-mRNA complexes 

produced in the last step. This allows for the generation of second strand cDNA 

that contains a specific complementary 5’ DNA sequence for the chimeric 

primer mix to bind to. What is produced, is a double-stranded cDNA molecule 

with a unique DNA-RNA heteroduplex at one end. 
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3- Amplification of DNA using SPIA® technology: This is a rapid DNA amplification 

process that involves the use of SPIA DNA/RNA chimeric primers RNase H and 

DNA polymerase to produce large quantities of cDNA with a sequence that is 

complementary to the mRNA in the original ALL sample. 

2.4.4. Generation of ST-cDNA  

Sense transcript-cDNA (ST-cDNA) was generated using the WT-Ovation Exon 

Module kit (NuGen), in order to render it suitable for use in the downstream 

Encore Biotin Module (NuGen). 

2.4.5. Fragmentation, labelling, and hybridisation of ST-cDNA to 

oligonucleotide probe array 

ST-cDNA was then fragmented and labelled using the Encore Biotin Module 

(NuGen). This process involved two steps, whereby cDNA was chemically and 

enzymatically fragmented into cDNA products of 50 to 100 base pairs in length, 

followed by enzymatic conjugation of a biotin-labelled nucleotide to the 3-

hydroxyl end of the fragmented cDNA. 

Subsequently, 2.5 µg of fragmented and labelled ST-cDNA were then 

hybridised to GeneChip® Human Gene 1.0 ST Arrays (Affymetrix) for 16 hours 

at 45ºC, as per NuGen’s instructions. The GeneChip® Human Gene 1.0 ST 

Arrays cover a total of 36,079 total RefSeq transcripts each. The arrays were 

then washed and stained with a fluorescent biotin-binding molecule 

(streptavidin-phycoerythrin) using the GeneChip® Fluidics Station 450 

(Affymetrix). 
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2.4.6. Oligonucleotide probe array scan 

The Human Gene 1.0 ST Arrays were then scanned using the GeneChip 

Scanner 3000 (Affymetrix), under the control of the Microarray Suite program 

(MAS 5.0). The scanner indirectly quantifies the amount of biotinylated ST-

cDNA for each probe set by using a laser to induce fluorescence of 

phycoerythrin molecules that are conjugated to streptavidin, which in turn binds 

biotin molecules. The dedicated software package measures the fluorescence 

and calculates an intensity value for each of the probe sets and using a 

statisctical expression algorithm, determines the expression level of each 

transcript within a sample. 

2.4.7. Analysis of microarray data 

Data was analysed with the help of Dr. Wenbin Wei at the School of Cancer 

Sciences, University of Birmingham. 

2.4.7.1. Normalisation of data 

Experiments involving the use of several high density oligonucleotide arrays 

often introduce variation of non-biological origin between arrays, and it is 

therefore important to remove this variation by normalisation, so that gene 

expression data may be compared between samples [401]. 

Normalisation of microarray data in this study was achieved using the default 

settings of the Robust Multichip Analysis (RMA) probe set summarisation 

algorithm available as part of the Expression Console v1.2.1 software package 

(Affymetrix).  
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2.4.7.2. Data filtration and statistical tests 

Following normalisation, data was filtered to remove any statistically 

insignificant expression values, thus making data interpretation easier. 

For univariate analysis, data was filtered in two ways: the first filtration method 

involved ordering only the DMSO-treated primary ALL tumours according to in 

vitro sensitivity to the cytotoxic effects of JQ1 (as measured in cytotoxicity assay 

experiments), and then ranking genes according to the fold difference in gene 

expression between ALL tumours most sensitive and least sensitive to JQ1. 

This was in aid of identifying genes predictive of JQ1 sensitivity.  

The second filtration method, also used as part of univariate data analysis, 

involved the ranking of genes according to fold gene expression change 

between primary ALL samples treated with either DMSO or 1 µM JQ1. 

These filtration processes were achieved using an empirical Bayes approach, 

using the Linear Models for MicroArray (LIMMA) statistical package within the 

BioConductor computer program [402]. For both filtration methods parameters 

were set to exclude genes with a p-value greater than 0.001 and a fold change 

less than 2. 

For multivariate analysis, consisting of the gene set enrichment analysis 

performed on microarray data from this study (Section 2.4.7.4), normalised 

expression data were exported to the Excel program (Microsoft) and filtered by 

removing genes that were not expressed at all or at very low levels that could 

be considered background noise. Genes with a p-value greater than 0.05 and a 

fold change less than 1.5 were excluded.  
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2.4.7.3. Gene clustering 

For the generation of heatmaps microarray data was imported from GeneSpring 

and loaded into the Cluster 3.0 computer program. Complete linkage clustering 

was then performed on the data, and then visualised as heatmaps that were 

gereated using the TreeView software program 

(http://rana.lbl.gov/EisenSoftware.htm). The heatmaps allowed for the 

visualisation of patterns of differential gene expression patterns between 

DMSO- and JQ1-treated primary ALL tumours, as well as genes that correlated 

with JQ1 EC50. 

In experiments involving PIM2, microarray data previously obtained in our lab 

[247] were re-analysed. Heatmaps allowed for the visualisation of genes that 

were expressed with a significant association to PIM2 expression.  

2.4.7.4. Gene Set Enrichment Analysis 

With the help of Dr. Wenbin Wei, Gene Set Enrichment Analysis (GSEA) [403] 

was performed on filtered microarray data and allowed for the identification of 

differentially expressed genes that belonged to, and enriched, functionally 

related gene sets representing major cellular processes and biological 

pathways.  

Using the javaGSEA Windows application (http://www.broadinstitute.org/gsea/), 

GSEA was conducted on the filtered dataset, which determined the enrichment of 

each gene in gene sets constituting the Molecular Signatures Database (MsigDB) 

1.0 gene set database. The application parameters were set to identify only those 

gene sets with a minimum of 10 genes and a maximum of 500 genes. The 

http://rana.lbl.gov/EisenSoftware.htm
http://www.broadinstitute.org/gsea/
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javaGSEA application also calculated the level of significance (p-value) for each 

enriched gene set, and a false discovery rate (FDR) [403], which indicated the 

probability that an observed result was a false positive. Once GSEA was complete, 

enriched gene sets were ranked according to the p-value and FDR, and gene sets 

with a p-value less than 0.05 and an FDR rate less than 0.25 (25% chance of a 

false positive result) excluded. Using such stringent cut-off values resulted in the 

selection of only those gene sets with highly significant gene enrichment.  

2.5. Molecular genetics techniques 

2.5.1. Quantitative real-time reverse transcriptase polymerase 

chain reaction (qRT-PCR) 

2.5.1.1. cDNA synthesis 

The reverse transcription system (Invitrogen) was used to convert 1 µg total 

RNA into single-stranded cDNA.  

The first step involved placing PCR reaction tubes on ice and adding 1 µl dNTP 

mix (each of the four different dNTPs at a concentration of 10 mM) (Invitrogen), 

1 µl random primers (Promega), 1 µg of RNA, and RNase-free water (Qiagen) 

up to a total volume of 12 µl. The sample tubes were briefly vortexed and 

centrifuged, and then incubated at 65ºC for 5 minutes. 

The second step involved the addition of 1 µl Superscript II reverse 

transcriptase (Invitrogen), 1 µl RNaseOUT recombinant ribonuclease inhibitor 

(Invitrogen), 2 µl dithiothreitol (DTT) (Invitrogen), and 4 µl 5X First-Strand Buffer 

(250 mM Tris-HCl, 375 mM KCl, 15 mM MgCl2) (Invitrogen) to each sample 

tube containing 12 µl of reaction mix and RNA from the first step. Samples were 
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then incubated at 25ºC for 5 minutes, 42ºC for 50 minutes, and finally 80ºC for 

15 minutes. Synthesised cDNA was then stored at -80ºC until further use. When 

cDNA samples were needed for experiments and thawed for the first time, 

samples were diluted 1:5 with distilled water.  

2.5.1.2. Primer design 

Primers were designed for specific genes, based on the mRNA sequence for a 

given gene, using the OligoPerfect Designer online tool (Invitrogen). 

Parameters were set to generate primers with an annealing temperature of 

60ºC and maximum length of 100 bases. Lyophilised primers were reconstituted 

with sterile distilled water to a stock concentration of 200 µM. To avoid 

unnecessary freeze-thawing, primer stocks were diluted 1:10 with sterile 

distilled water. Sequences for the primers used in this study can be found in 

Table 2.4.  
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Primer name Primer sequence 
IL7R Forward 5’-AGG CAC TTT ACC TCC ACG AG-3’ 

IL7R Reverse 5’-GTT GGA AGT GAA TGG ATC GC-3’ 

BIRC3 Forward 5’-TCC GGC AGT TAG TAG ACT ATC CA-3’ 

BIRC3 Reverse 5’-GGG AAG AGG AGA GAG AAA GAG C-3’ 

EIF4EBP2 Forward 5’-GAG AAT TGC GAC GAT CCA AC-3’ 

EIF4EBP2 Reverse 5’-TCA TGA CTA TTG CAC CAC GC-3’ 

TNFSR4 Forward 5’-TTG AAT TCG AGG ATA CCG ATG-3’ 

TNFSR4 Reverse 5’-GTA ATT CAG GGA CTG GGG CT-3’ 

PPP1R13B Forward 5’-GAC AGG TTG TTT CCG GTG TT-3’ 

PPP1R13B Reverse 5’-GAC TCT CCC CGC GAT GAT-3’ 

MYC Forward 5’-AGG GAT CGC GCT GAG TAT AA-3’ 

MYC Reverse 5’-TGC CTC TCG CTG GAA TTA CT-3’ 

B-ACTIN Forward 5’-CAC CAT TGG CAA TGA GCG GTT C-3' 

B-ACTIN Reverse 5’-AGG TCT TTG CGG ATG TCC ACG T-3’ 

PIM2 Forward 5’-TGG GCA TCC TCC TCT ATG AC-3’ 

PIM2 Reverse 5’-ATT AGG GCA CAG CAG TCT GG-3’ 
 

Table 2.4: qRT-PCR primer sets used in this study.  

Primers were designed using the OligoPerfect primer design online tool 

(Invitrogen). Primers were all designed to exhibit optimum annealing at 

approximately 60ºC, in order to be most efficiently used in downstream qRT-

PCR experiments using the same protocol. 
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2.5.1.3. SYBR Green RT-PCR reaction preparation 

Control cDNA synthesised from NALM-6 cell line template mRNA was used in 

test PCR reactions to test primer sets using the FastStart Taq DNA Polymerase 

kit (Roche) with a range of annealing temperatures from 58ºC to 68ºC, as well 

as different concentrations of primers. Reactions were run on a 4% agarose gel 

and visualised in order to confirm PCR products were present, that only one 

single PCR product was made per primer set, and that a high PCR product yield 

was obtained. 

After testing the primers, PCR reactions were prepared in MicroAmp Fast Optical 

96-Well Reaction Plates (Applied Biosystems) to which 4 µl of cDNA were added 

to each well, along with 16 µl of a prepared Master mix consisting of 0.25 µl 

forward primer (250 nM), 0.25 µl reverse primer (250 nM), 10 µl Fast SYBR 

Green mix (Applied Biosystems), and 5.5 µl distilled water, giving a total volume 

of 20 µl per reaction. The reaction plate was then placed in a 7500 Fast Real-

Time PCR System  (Applied Biosystems) and thermal cycling conditions set as 1 

cycle at 95ºC for 20 seconds for activation of the DNA polymerase enzyme, 40 

cycles at 95ºC for 3 seconds for denaturation, followed by 60ºC for 30 seconds 

for annealing and extension. A heat dissociation phase was also added on to 

the end of the thermal cycling protocol within the RT-PCR system software, to 

provide a dissociation curve that measured the level of amplicons relative to a 

range of melting temperatures from 60ºC to 95ºC, and therefore confirm primer 

specificity, as characterised by a single peak above 75ºC. Ct values generated 

for each gene of interest were then normalised to the β-actin loading control 

gene, so that relative expression levels could be calculated. Fold change in 
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transcript levels of a given gene were then calculated by dividing the relative 

expression levels after drug treatment by the relative expression before drug 

treatment. 

2.6. Cell biology techniques 

2.6.1. Measurement of cytotoxicity 

Primary leukaemic cells and cell lines were seeded into opaque 96-well plates 

at a density of 5x104 cells per well, and treated with either dimethylsufoxide 

(DMSO) or increasing concentrations of JQ1 (0.001 to 10 µM), with or without 

the additional agent (dexamethasone or vincristine).  Following incubation at 

37ºC for 48 hours (primary ALL tumours) or 72 hours (cell lines), the CellTiter-

Glo Luminescent Cell Viability Assay (Promega) was used according to the 

manufacturer’s instructions to indirectly evaluate the loss of cellular viability in 

response to drug treatment based on quantitation of the amount of ATP 

released by cells following lysis using the supplied  reagents.  

In cytotoxicity experiments involving PIM inhibitor K00135, the same conditions 

were used as above, only K00135 concentrations ranging from 0.01 to 100 µM 

were used instead, unless stated. 

The Prism 4 (GraphPad) software package was used to calculate half maximal 

effective concentrations (EC50) and to analyse results by Student’s unpaired t-

test where appropriate. A p-value of <0.05 was taken as significant. 
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Calcusyn software was used to measure the degree of synergy, as indicated by 

calculated combination indices (CI), between two compounds used to treat 

tumour cells (CI<1 synergistic, CI=1 additive, CI>1 antagonistic). 

 

 

2.6.2. Fluorescent DNA fibre-labelling technique 

NALM-6 cells were pre-treated with DMSO or 1 µM JQ1 inhibitor for 1 hour and 

24 hours prior to labelling. Dual labelling of replication tracts was performed by 

pulse-labelling cell cultures in exponential growth with 25 µM chloro-

deoxyuridine (CIdU) for 20 minutes, followed by 250 µM iodo-deoxyuridine (IdU) 

for a further 20 minutes.  

To prepare DNA fibre-spreads on microscope slides, 2 ml of each cell 

suspension at a cell density of 200 cell/ml were spread on Silane-prep slides 

(Sigma-Aldrich), close to and in parallel to the label. The sample was allowed to 

evaporate until almost dry, after which 10 µl of spreading buffer (0.5% SDS in 

200 mM Tris–HCl (pH 7.4), 50 mM EDTA) was pipetted on top of the sample, 

causing cells to swell and rupture. After 10 minutes had elapsed, the slide was 

tilted at an angle of 15º to allow the cell lysate to slowly travel down the slide. 

The DNA spreads were then left to air-dry, before being fixed in 3:1 

methanol/acetic acid for 2 minutes and left to air-dry once more overnight. The 

slides were then stored at -20ºC for 24 hours. 

For immunodetection of CIdU- and IdU-labelled tracts, acid-treated fibre 

spreads were incubated with a mix of rat anti-BrdU monoclonal antibody, clone 
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BU1/75 (ICR1) (Serotec), and mouse anti-BrdU monoclonal antibody. Slides 

were fixed in 4% paraformaldehyde and incubated with a mix of AlexaFluor 555-

conjugated goat anti-rat and AlexaFluor 488-conjugated goat anti-mouse 

immunoglobulin G (IgG) (Molecular Probes). Fibres were examined using a 

Nikon Eclipse E600 microscope with a 60X lens, images recorded using the 

Volocity software package (Perkin Elmer) and the lengths of green (AlexaFluor 

488) and/or red (AlexaFluor 555) labelled patches measured using the ImageJ 

software application.  

2.6.3. Cell cycle analysis  

Staining of ALL cell line cells with PI and analysis by flow cytometry was used to 

measure the cell cycle distribution of cells treated with either DMSO or 1 µM 

JQ1 for 24 hours. This technique uses light scattering from the passing of 

sample cells through a laser, and fluorescence emitted following the excitation 

of the PI dye, which binds and intercalates into DNA, to quantify the DNA 

content in cycling cells.  

ALL tumour cells were treated in a 6-well plate (Iwaki) at a density of 2x106/ml. 

Using a Pasteur pipette, 3 ml of cell suspension were transferred to flow 

cytometry sample tubes and centrifuged at 2000 rpm for 3 minutes, and the 

supernatant discarded. Cells were then washed by re-suspending cells in 3 ml 

ice-cold PBS, before centrifuging again and re-suspending cells in 3 ml ice-cold 

70% ethanol/PBS, drop-by-drop whilst gently vortexing. At this stage cells were 

either stored at -20ºC for up to a week or used immediately.  
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Ethanol-fixed samples were stained on the day of cytometric analysis, by first 

centrifuging cells at 2000 rpm for 5 minutes at 4ºC, re-suspending the formed 

pellet in 3 ml ice-cold  PBS, and then centrifuging cells once more before re-

suspending pellets in a 1 ml PI/RNase solution (25 µg/ml PI, 0.1 mg/ml RNase). 

PI-satined cells were then wrapped in aluminium foil and incubated in the dark 

at room temperature. Samples were then analysed using an Accuri C6 Flow 

Cytometer (Becton Dickinson) with an excitation wavelength of 488 nm. Using 

the latest version of WinMDI, the proportion of cells in the G1, S, and G2 

phases of the cell cycle were determined. 

2.6.4. Bromodeoxyuridine (BrdU) incorporation cell 

proliferation assay 

NALM-6 cells were treated with either DMSO or 1 µM JQ1 for 24 hours. 3x106 

NALM-6 cells were pulse-labelled with 10 µM BrdU (Sigma-Aldrich) for 20 

minutes prior to harvesting cells at the 24 hour timepoint, washed in PBS, and 

then fixed in 80% ice-cold ethanol overnight at -20ºC. Cells were then incubated 

in 15 mM pepsin for 20 minutes at 37ºC, before being pelleted and incubated 

with 2 N HCl for 20 minutes at room temperature. The pellet was then washed 

in buffer Bu (0.1% FCS, 0.1% Tween 20, 0.1 M Hepes in PBS) and incubated 

with mouse anti-BrdU antibody, clone Bu20a (Dako) diluted to 1:50 in buffer Bu 

for 45 minutes. Cells were then centrifuged and re-suspended in anti-mouse-

FITC antibody (Vector laboratories) diluted at 1:50 with buffer Bu. To stain total 

DNA, cells were pelleted and re-suspended in PBS containing 25 µg/ml 

propidium iodide (Sigma-Aldrich) and 50 µg/µl RNase (Sigma-Aldrich), before 
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performing analysis of samples by flow cytometry using an Accuri C6 Flow 

Cytometer (Becton Dickinson). 

2.7. ALL xenograft mouse model studies 

Two in vivo experiments were performed in this study. Animals were treated in 

accordance with UK Home Office guidelines, Schedule 1 

(http://www.legislation.gov.uk/ukpga/1986/14/pdfs/ukpga_19860014_en.pdf). 

In the first experiment 1x106 NALM-6 cells were injected subcutaneously into 16 

NOD/Shi-scid/IL-2Rγnull (NOG) mice. Upon evidence of visible tumours, animals 

received either 50 mgkg-1 JQ1 (n=8) or vehicle alone (10% (w/v) 2-hydroxy-

propyl-β-cyclodextrin) (Sigma-Aldrich) (n=8) via intra-peritoneal (IP) injection for 

5 days per week for a period of 2 weeks. Tumour volume was measured 

manually thrice weekly using a calliper.  

In the second experiment, a xenograft model of a primary B precursor ALL 

tumour (ALL 105) was created by the intravenous injection of 1x106 cells via the 

tail vein. Once levels of human CD45 reached 1% in the peripheral blood, mice 

received either 50 mgkg-1 JQ1 (n=7) for 5 days per week over a period of 4 

weeks, or vehicle alone (n=7).  The proportions of cells positive for hCD45, 

hCD10, hCD19, and hCD34 were assessed on weekly blood samples. At the 

end of drug treatment spleens were harvested and tumour burden determined 

by spleen size. In addition, percentages of hCD45+CD34+CD19+CD10+, 

hCD45+CD34+CD19+CD10-, and hCD45+CD34-CD19+CD10 subpopulations 

were calculated from the proportion of gated live cells, and compared between 

the vehicle-treated and JQ1-treated animals.  

http://www.legislation.gov.uk/ukpga/1986/14/pdfs/ukpga_19860014_en.pdf
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3. RESULTS I: TARGETING BET PROTEINS IN PRE-B ALL  

3.1. Sensitisation of ALL tumour cells to the BET 

bromodomains inhibitor JQ1 

Although remarkable improvements in the treatment of B precursor ALL have 

been made over the past few decades, a significant number of patients still 

suffer from disease relapse and toxicity associated with the use of conventional 

chemotherapeutic agents. This highlights the highly heterogenous nature of 

ALL, where variable treatment responses are observed and resistance to 

treatment sometimes ensues. It is therefore clear to see that the requirement 

exists for a novel, more targeted approach in treating these patients.  

The bromodomain-containing BRD4 protein is a member of the BET family of 

proteins, and has recently emerged as novel therapeutic target in malignancies 

such as AML and NUT-midline carcinoma [344]. Studies have shown that BRD4 

forms part of transcription complexes and remains bound to transcriptional start 

sites of genes expressed during the M/G1 transition of the cell cycle, thus 

promoting mitotic progression and transcriptional elongation [336]. 

Taking these findings into consideration, I aimed to explore the possibility of 

targeting BET proteins in ALL, including BRD4 that has previously been 

implicated in the pathophysiology of haematopoietic malignancies, using the 

highly specific pharmacological inhibitor JQ1, as an alternative strategy to 

downregulating multiple prosurvival signaling pathways and cellular processes, 

and thereby sensitising tumours to apoptosis. 
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3.1.1 Expression of BRD4 in ALL cell lines and primary tumours 

To establish whether or not pharmacological inhibition of BRD4 was a feasible 

approach, I began by determining the protein expression levels of BRD4 in 

lysates prepared from a panel of 6 ALL cell lines, representing diverse disease 

subtypes. These included BCR-ABL1+ ALL (SD1, SUPB-15, and TOM-1), 

apoptotic-resistant BCR-ABL1- ALL (NALM-6, REH), and apoptotic-sensitive 

ALL (NALM-17). I also tested a panel of 10 primary ALL tumours (ALL-103, 

ALL-104, ALL-105, ALL-106, ALL-108, ALL-109, ALL-110, ALL-111, ALL-112, 

and ALL-113) of which 5 were low-risk MRD (ALL-103, ALL-104, ALL-108, ALL-

109 and ALL-111) and 5 were high-risk MRD (ALL-105, ALL-106, ALL-110, 

ALL-112 and ALL-113). I used SDS-PAGE followed by the Western-blotting 

technique to visualise BRD4 protein.   

I observed high levels of 152 kDa BRD4 protein expression across all ALL cell 

lines and primary tumours analysed, irrespective of their phenotype (Figure 3.1a 

& b). Although it was not possible to improve the western blot due to restricted 

primary tumour material, BRD4 expression did not appear to correlate with 

clinical features (age, WCC, cytogenetic abnormalities, or risk stratification) that 

were associated with the patients from which these tumours were derived 

(Table 2.1).  
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Figure 3.1: Expression of BRD4 protein in ALL cell lines and 
primary tumours. 
 
Whole protein lysates were prepared from 6 ALL cell lines and 10 
primary ALL tumours and probed for 152 kDa BRD4 protein expression 
by Western blotting. Β-actin was used as a loading control.  
 
a) High levels of BRD4 expression are seen across all ALL cell lines in 
this panel, namely NALM-6, NALM-17, REH, SD1, SUPB-15 and TOM-1.  
 
b) Although some degree of inter-patient variability in the level of BRD4 
expression exists, all primary ALL tumours express BRD4 protein. 
Tumour cells treated with 1 µM JQ1 for 6 hours do not show any 
significant decrease in BRD4 expression relative to β-actin. 
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3.1.2 In vitro cytotoxic effects of JQ1-mediated inhibition of 

BET proteins in ALL cell lines and primary tumours 

Since all the ALL cell lines and primary tumours analysed expressed high levels 

of BRD4 protein (Figure 3.1), I decided to use a luminescent ATP-based 

cytotoxicity assay to measure the effect of JQ1 treatment on cell viability. The 

panel of cell lines tested were SUPB-15, SD1, REH, TOM-1, Jurkat and NALM-

6.  Cell viability was measured 72 hours following exposure to increasing 

concentrations of JQ1 inhibitor only. I also addressed JQ1-mediated cytotoxicity 

in a panel of 25 non-cycling primary B precursor ALL tumours that included 

representatives of low-risk and high-risk MRD phenotypes, infant and relapsed 

ALL, as well as non-tumour PBMC obtained from 3 healthy donors. Since 

recent studies demonstrated potent sensitisation of primary AML tumours 

following BRD4 inhibition [344], I also tested for JQ1 cytotoxicity in 2 primary 

AML tumours.  

In all the ALL cell lines tested, I found that JQ1 led to an impressive decrease in 

cell viability at 72 hours (Figure 3.2a), with EC50 values ranging from 0.17–1.00 

µM (Table 3.1). Interestingly, treatment of primary ALL tumours with a cytotoxic 

dose of 1 µM JQ1 inhibitor did not have an impact on BRD4 expression levels, 

which was consistent with the JQ1 mechanism of action involving the inhibition 

of BRD4 activity as opposed to decreasing its expression. 

In contrast to ALL cell lines that were uniformly sensitive, incubation of primary 

ALL tumours with 1 µM JQ1 demonstrated a moderate to substantial loss of cell 

viability following 48 hours (Figure 3.2b). I calculated that 36% (9/25) of primary  
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Figure 3.2:  JQ1-induced cytotoxicity in a panel of ALL cell lines and a 
range of primary tumours. 

Effects of JQ1 treatment on cell viability were measured using a luminescent 
ATP-based cytotoxicity assay. 

a) Cell lines NALM-6, NALM-17, REH, SD1, SUPB-15 and TOM-1 incubated 
with 1 µM JQ1 for 72hr show a dramatic loss of viability. Assays were 
performed in triplicate. Data are presented as mean ± SEM; n=3. 

b) Compared to PBMC obtained from two healthy individuals, representative 
primary ALL and AML tumours show a differential loss of viability upon 48hr 
incubation with 1 µM JQ1. Data are presented as mean ± SD. 
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ALL tumours showed EC50 values < 1 µM (2 high-risk MRD, 4 low-risk MRD, 1 

infant ALL, and 2 tumours with unknown risk stratification), which was a 

cytotoxic dose comparable to that observed in ALL cell lines (Table 3.2).  

Furthermore, I also noticed that primary tumours with an EC50 value between 1 

and 10 µM, for which I had complete clinical information, were all MRD high-risk 

ALL tumours. Interestingly, lower sensitivity to JQ1 was observed in 16% (4/25) 

of primary ALL tumours, where EC50 values were >10 µM (Table 3.2). Of these 

JQ1-resistant tumours, one was high-risk ALL (ALL-123), and three were low-

risk ALL (ALL-103, ALL-109, ALL-124).  

I calculated the mean EC50 for all primary tumours and control PBMC treated 

with JQ1, and found that high-risk ALL tumours had a lower mean EC50 of 5.63 

± 5.32 µM, compared to low-risk ALL tumours with a mean EC50 of 7.58 ± 6.31 

µM (Table 3.2). This suggested JQ1 cytotoxic activity favourably targeted high-

risk ALL tumours, which are those derived from patients that frequently exhibit 

chemoresistance and are deemed as having an unfavourable clinical prognosis.  

Infant ALL tumours (ALL-114 and ALL-118) were also sensitive to JQ1-

treatment (0.17 and 2.0 µM, respectively). Infant ALL is characterised by 

potential chemoresistance, frequently occurring rearrangements of the Mixed-

Lineage Leukaemia (MLL) gene, and a poor clinical prognosis [404, 405]. Since 

MLL fusion proteins activate the transcription of several oncogenes through 

binding with BRD4 [406], and the JQ1 inhibitor has been shown to exert potent 

anti-leukaemic activity against MLL-rearranged AML [344], it is possible that 

JQ1 is also effective in eliminating infant ALL tumour cells. 
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Cell line median JQ1 EC50 (±SD) (µM) 

SUPB-15 0.237 (±0.019) 

SD1 0.173 (±0.023) 

REH 1.004 (±0.012) 

TOM-1 0.398 (±0.019) 

Jurkat 0.326 (±0.006) 

NALM-6 0.552 (±0.021) 

   

 

 

 

Table 3.1: Half-maximum-effect concentrations (EC50) calculated for a 
panel of ALL cell lines treated with JQ1 inhibitor. 

JQ1 EC50 values (±S.D.) were calculated for SUPB-15, SD1, REH, TOM-1, 
Jurkat, and NALM-6 using the Prism 4 software package (GraphPad Inc.), 
which were derived from data values obtained for each cell line in cytotoxicity 
experiments following 72h incubation of cells with a log-scale range of JQ1 
concentrations.  

EC50 values for JQ1-treated ALL cell lines were generally in the low nanomolar 
range (0.173-1.004 µM).  
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Table 3.2: Half-maximum-effect concentrations (EC50) calculated for a 
panel of primary leukaemia tumours treated with JQ1 inhibitor. 

Calculated EC50 values were derived from cytotoxicity experiment data, where primary 
tumours were treated with a range of log-scale JQ1 concentrations for 48h. 

ALL tumours, particularly those derived from high-risk patients, were sensitised to 
clinically achievable JQ1 concentrations (JQ1 EC50 <10 µM). Primary AML tumours 
were used as a positive control and were also sensitised to JQ1. 

Healthy PBMCs were not sensitised to JQ1 and showed high JQ1 EC50 values. 

Patient JQ1 EC50 (µM) Sub-group mean                            
JQ1 EC50 ± SEM (µM)

ALL-101 1.80
ALL-105 0.11
ALL-106 5.83
ALL-110 3.38
ALL-112 4.30
ALL-113 0.72
ALL-116 5.82
ALL-117 5.75
ALL-121 2.81
ALL-122 1.45
ALL-123 34.17
ALL-126 1.47
ALL-103 23.08
ALL-104 0.18
ALL-108 0.73
ALL-109 20.22
ALL-111 0.79
ALL-115 0.49

ALL-114 0.17

ALL-118 2.00

ALL-129 0.12
ALL-130 1.45
ALL-131 2.64
ALL-132 1.17
ALL-133 0.42

AML-1 0.06

AML-2 3.72

 PBMC-1 886.08

 PBMC-2 10107000.00

 PBMC-3 303.49
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The healthy PBMCs did not exhibit a significant loss of cell viability even with 10 

µM JQ1 (Figure 3.2b), whereas both primary AML samples (AML-1 and AML-2) 

showed a significant loss of viability with a mean EC50 of 1.89 ± 1.49 µM (Table 

3.2).  

These results indicate that JQ1 activity has a profound impact on the viability of 

multiple ALL cell lines and primary ALL tumours in vitro, regardless of their 

phenotype. This data also suggests that JQ1 is capable of sensitising high-risk 

ALL more potently than low-risk ALL. The observation that primary AML 

tumours are highly sensitive to the effects of JQ1 treatment in the results I 

reported, is supported by published data demonstrating the in vivo anti-tumour 

activity of JQ1 in an AML xenograft model [344]. Finally, results showing that 

JQ1 treatment does not exert cytotoxic effects in healthy control PBMCs, are 

indicative of JQ1 activity being tumour-specific and potentially safe to test in 

animal studies. 
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3.1.3 Combined in vitro cytotoxic effects of JQ1 together with 

conventional chemotherapeutic agents in ALL cell lines and 

primary tumours. 

Since treatment with JQ1 alone induced substantial in vitro cytotoxic effects in 

ALL cell lines and a large panel of ALL tumours, I decided to investigate the 

combined cytotoxic effects of JQ1 together with conventional cytotoxic agents 

used to treat ALL, namely dexamethasone, vincristine, and daunorubicin.  

I treated REH, TOM-1, and NALM-6 cells with a subcytotoxic dose of JQ1 (0.1 

µM) in combination with log scale increments in drug concentration of each of 

the conventional cytotoxic agents named above, ranging from 0.0001 to 10 µM, 

and measured cell viability at 72 hours using the ATP-based cytotoxicity assay.  

Notably, treatment of TOM-1 cells with the JQ1/dexamethasone combination 

showed enhanced cytotoxicity compared to dexamethasone treatment alone 

(Figure 3.3), and was highly synergistic with dexamethasone concentrations 

ranging from 0.0001 to 0.1 µM (Table 3.3).  

In contrast, I observed no increased cytotoxicity in REH cells when 0.1 µM JQ1 

was combined with increasing concentrations of dexamethasone (Figure 3.4). 

There was no dose-dependent response following dexamethasone treatment, 

therefore use of the Calcusyn software package to calculate synergistic effects 

was not possible, since a dose-effect curve is a requirement. This may have 

been due to the fact REH cells are known to lack expression of the 

gonadotrophin receptor via which dexamethasone exerts its cytotoxic effects 
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[407]. I did not observe any synergistic effects in REH cells treated with a 

combination of JQ1 with either vincristine or daunorubicin (data not shown). 

Similarly, treatment of NALM-6 cells with the JQ1/dexamethasone combination 

also led to greatly enhanced cytotoxic effects compared to dexamethasone 

treatment alone (Figure 3.5), and exhibited the greatest cytotoxic response to 

dexamethasone compared to REH and TOM-1. Furthermore, I observed highly 

synergistic effects across all the different concentrations of dexamethasone I 

used to treat NALM-6 cells (ranging from 0.0001 to 10 µM) (Table 3.3).  

Given that combined JQ1/dexamethasone treatment appeared to induce the 

greatest sensitisation of ALL cell lines (TOM-1 and NALM-6) to dexamethasone 

(Figures 3.3 & 3.5) in comparison to combinations with either vincristine or 

daunorubicin, and the availability of primary tumour material was limited to be 

able to test multiple drug combinations, I selected dexamethasone as the drug 

to test for synergistic effects in combination with 0.1 µM JQ1 in three 

representative primary ALL tumours (ALL-129, ALL-130, and ALL-132). I did 

this by measuring cell viability at 48 hours after drug treatment using the ATP-

based cytotoxicity assay.  

I found that the JQ1/dexamethasone treatment combination led to increased 

sensitisation to dexamethasone in all three primary ALL tumours (ALL-129, 

ALL-130 and ALL-132), when compared to tumour cells treated with 

dexamethasone alone (Figure 3.6-3.8). I observed the greatest sensitisation in 

ALL-129 and ALL-130, with the greatest differential in surviving cell fractions 

being at lower concentrations of dexamethasone, ranging between 0.0001 and 
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0.01 µM. Furthermore, I confirmed that treatment with the JQ1/dexamethasone 

combination demonstrated highly synergistic effects in all three primary ALL 

tumours using concentrations of dexamethasone ranging between 0.0001 and 1 

µM (Table 3.4). 

These results indicate that JQ1 activity leads to increased in vitro sensitisation 

of ALL cell lines and primary tumours to conventional chemotherapeutic agents 

used in the clinic. 

3.1.4 Summary 

In conclusion, I showed that BRD4 protein is expressed at high levels in multiple 

ALL cell lines and primary ALL tumours. I also showed that treatment of both 

cell lines and primary tumours with JQ1 induced cytotoxicity, irrespective of the 

phenotype or associated risk stratification. Furthermore, the data I have 

reported shows there may be potential benefits from treating ALL tumours with 

a combination of JQ1 with chemotherapeutics such as dexamethasone. This 

data supports the rationale for further work to elucidate the mechanism of JQ1-

mediated cytotoxicity in ALL, and determine whether or not these anti-tumour 

effects are translatable in an in vivo model of ALL. 
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Figure 3.3: In vitro cytotoxic effects of combined treatment with JQ1 and 
dexamethasone in the TOM-1 cell line 

Cell viability was measured in triplicate using a luminescent ATP-based 
cytotoxicity assay. Data are presented as mean ± SEM; n=3. 

a) JQ1 sensitises TOM-1 cells (72h incubation), with a surviving fraction of 0.59 
at 0.1 µM JQ1.  

b) Treatment of TOM-1 cells with the JQ1/dexamethasone drug combination led 
to significant synergistic cytotoxicity.  
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Figure 3.4: In vitro cytotoxic effects of combined treatment with JQ1 and 
dexamethasone in the REH cell line 

Cell viability was measured in triplicate using a luminescent ATP-based cytotoxicity 
assay. Data are presented as mean ± SEM; n=3. 

a) JQ1 sensitised REH cells (72h incubation), with a surviving fraction of 0.76 at 0.1 µM 
JQ1.  

b) REH cells are resistant to the cytotoxic effects of dexamethasone. Subsequently no 
synergistic effects were observed following treatment with a combination of 
JQ1/dexamethasone. 
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Figure 3.5: In vitro cytotoxic effects of combined treatment with JQ1 and 
dexamethasone in the NALM-6 cell line 

Cell viability was measured in triplicate using a luminescent ATP-based 
cytotoxicity assay. Data are presented as mean ± SEM; n=3. 

a) JQ1 sensitises NALM-6 cells (72h incubation), with a surviving fraction of 
0.48 at 0.1 µM JQ1.  

b) Treatment of NALM-6 cells with the JQ1/dexamethasone drug combination 
led to significant synergistic cytotoxicity.  
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Table 3.3: Combination indices for JQ1 and dexamethasone in TOM-1 and 
NALM-6 cell lines. 

Combination indices (CI) were calculated using the Calcusyn software 
(Biosoft™), in line with the Chou and Talalay drug interations mathematical 
model [408]. 

The CI is a measure of drug interaction, with CI>1, CI=1 and CI<1 representing 
antagonistic (*), additive (**) and synergistic (***) effects, respectively. 

Synergistic cytotoxic effects were observed in TOM-1 cells treated with 0.1 µM 
JQ1 together with 0.0001-0.1 µM dexamethasone. 

Synergistic cytotoxic effects were observed in NALM-6 cells treated with 0.1 µM 
JQ1 together with 0.0001-10 µM dexamethasone. 

Dexamethasone (µM) Combination Index Synergism
JQ1 (0.1 µM) JQ1 (0.1 µM)

TO
M

-1

0.0001 0.44 ***

0.001 0.34 ***

0.01 0.25 ***

0.1 0.53 ***

1 4.43 *

10 36.77 *

N
AL

M
-6

0.0001 0.33 ***

0.001 0.31 ***

0.01 0.26 ***

0.1 0.18 ***

1 0.17 ***

10 0.19 ***
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Figure 3.6: In vitro cytotoxic effects of combined treatment with JQ1 and 
dexamethasone in ALL-129 primary tumour cells. 

Cell viability was measured in triplicate using a luminescent ATP-based 
cytotoxicity assay. Data are presented as mean ± SEM; n=3. 

a) JQ1 sensitises ALL-129 tumour cells (48h incubation), with a surviving 
fraction of 0.37 at 0.1 µM JQ1.  

b) Treatment of ALL-129 cells with the JQ1/dexamethasone drug combination 
led to significant synergistic cytotoxicity using 0.0001-10 µM dexamethasone. 
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Figure 3.7: In vitro cytotoxic effects of combined treatment with JQ1 and 
dexamethasone in ALL-130 primary tumour cells. 

Cell viability was measured in triplicate using a luminescent ATP-based 
cytotoxicity assay. Data are presented as mean ± SEM; n=3. 

a) JQ1 sensitises ALL-130 tumour cells (48h incubation), with a surviving 
fraction of 1.06 at 0.1 µM JQ1.  

b) Treatment of ALL-130 cells with the JQ1/dexamethasone drug combination 
led to significant synergistic cytotoxicity using 0.0001-1 µM dexamethasone. 
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Figure 3.8: In vitro cytotoxic effects of combined treatment with JQ1 and 
dexamethasone in ALL-132 primary tumour cells. 

Cell viability was measured in triplicate using a luminescent ATP-based cytotoxicity 
assay. Data are presented as mean ± SEM; n=3. 

a) JQ1 sensitises ALL-132 tumour cells (48h incubation), with a surviving fraction of 
1.26 at 0.1 µM JQ1.  

b) Treatment of ALL-132 cells with the JQ1/dexamethasone drug combination led to 
significant synergistic cytotoxicity using 0.0001-0.1 µM dexamethasone. 
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 Dexamethasone (µM) 
Combination Index  Synergism 

 

JQ1 (0.1 µM) JQ1 (0.1 µM) 

A
LL

-1
29

 
0.0001 0.266 *** 
0.001 0.001 *** 
0.01 0.211 *** 
0.1 0.135 *** 
1 0.210 *** 
10 0.838 *** 

A
LL

-1
30

 

0.0001 0.066 *** 
0.001 0.001 *** 
0.01 0.069 *** 
0.1 0.168 *** 
1 0.192 *** 
10 1.143 * 

A
LL

-1
32

 

0.0001 0.112 *** 
0.001 0.141 *** 
0.01 0.469 *** 
0.1 0.342 *** 
1 1.286 * 
10 15.398 * 

 

Table 3.4: Combination indices for JQ1 and dexamethasone in primary 
ALL tumours. 

Combination indices (CI) were calculated using the Calcusyn software 
(Biosoft™), in line with the Chou and Talalay drug interactions mathematical 
model [408]. 

The CI is a measure of drug interaction, with CI>1, CI=1 and CI<1 representing 
antagonistic (*), additive (**) and synergistic (***) effects, respectively. 

Synergistic cytotoxic effects were observed in ALL-129 tumour cells treated with 
0.1 µM JQ1 together with 0.0001-10 µM dexamethasone. 

Synergistic cytotoxic effects were observed in ALL-130 tumour cells treated with 
0.1 µM JQ1 together with 0.0001-1 µM dexamethasone. 

Synergistic cytotoxic effects were observed in ALL-132 tumour cells treated with 
0.1 µM JQ1 together with 0.0001-0.1 µM dexamethasone. 
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3.2 Gene expression profiling and transcriptional biomarkers of 

JQ1 sensitisation 

Although the bromodomain-containing protein BRD4 has been shown to play a 

key role in regulating cell growth and proliferation, the underlying mechanisms 

by which it regulates transcription of genes involved in cell growth had, until 

recently, remained largely unknown. We now understand that whereas most 

transcription factors such as RNA polymerase II, Oct1, Pax 3, and E2F1 

dissociate from chromosomes during mitosis, causing global transcription to 

cease, BRD4 protein remains bound to mitotic chromosomes to provide cellular 

‘memory’ to daughter cells [336]. This allows for the reloading of RNA 

polymerase II and many other transcription factors onto chromosomes, and re-

initiation of inherited patterns of gene expression following mitosis. Studies in 

NIH3T3 and MEF cells have shown that knockdown of the BRD4 gene using 

specific shRNA leads to a block at G1 and therefore cell cycle arrest, and that 

BRD4 knockdown significantly reduces the expression of cell cycle genes, such 

as cyclin D1 and cyclin D2 [335].  

Data to support alternative roles for BRD4 and the regulation of transcription of 

genes independent of cell cycle regulation are relatively limited. However, a 

recent study has provided evidence that Lys310-acetylated NFκB recruits BRD4 

in a complex with p-TEFb, which consists of CDK9 and cyclin T1, and RNA 

polymerase II to form the transcription machinery complex required for the 

expression of various pro-inflammatory NFκB genes, frequently associated with 

the aetiology of many cancers [409]. Our laboratory has previously published 

data confirming the deregulation of apoptotic pathways in primary ALL tumours, 



 

123 
 

partly attributed to the upregulation of multiple prosurvival signaling pathways 

such as the NFκB pathway [247, 248]. Taking all these reported findings into 

consideration, together with the fact that I showed JQ1-mediated BRD4 

inhibition to not only be cytotoxic to proliferating cell lines, but also to largely 

non-cycling primary ALL tumour cells in vitro, I hypothesised that BRD4 also 

regulates the expression of genes involved in prosurvival signaling and 

inhibition of apoptosis in ALL, and not only genes associated with cell-cycle 

progression. 

To test my hypothesis and further investigate the mechanism of JQ1-mediated 

cytotoxicity in ALL, I decided to make use of global gene expression microarray 

technology to identify the effect that BRD4 inhibition has on gene transcription 

in 8 primary ALL tumours before and after 6 hour exposure to 1µM JQ1, using 

Affymetrix GeneChip Human Gene 1.0 ST Arrays. I decided to use a 6 hour 

JQ1-exposure time point since I was only interested in the changes in 

expression of primary response genes, and wanted to reduce the likelihood of 

secondary response gene activation. 
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3.2.1 RNA quality control 

Before starting the microarray experiment I needed to assess the integrity and 

quality of the RNA extracted from primary ALL tumour cells, to ensure that 

results obtained were reliable and truly representative of gene expression 

patterns within sample tumour cells. I made use of the Agilent 2100 Bioanalyser 

system to assess RNA quality, which is based on the RNA Integrity number 

(RIN), determined by the 2100 Expert system software. High RIN values 

represent good quality RNA, which is seen as two distinct bands (representing 

28S and 18S eukaryotic ribosomal subunits) and as two distinct peaks on the 

electropherogram (Figure 3.9b). It has been shown that RNA samples with RIN 

values below 7 are likely to reflect RNA degradation (Figure 3.9). Thus, I used 

carefully extracted RNA with RIN values greater or equal to the recommended 

value of 8 [400]. A total of 8 primary ALL tumour samples were selected for this 

microarray study (ALL-101, ALL-103, ALL-104, ALL-105, ALL-106, ALL-108, 

ALL-109 and ALL-113), which represented a spectrum of different sensitivity to 

JQ1 based on EC50 values obtained in in vitro cytotoxicity experiments.  

The primary RNA I extracted proved to be high quality, which increased the 

likelihood of successful microarray hybridisations and the collection of high 

integrity data from which to investigate the effects of JQ1-mediated BRD4 

inhibition on gene transcription in primary ALL (Figure 3.10 and 3.11). 
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Figure 3.9: Interpretation of data generated by the Agilent 2100 bioanalyser in the 
assessment of RNA quality. 

This system uses voltage-induced size separation in gel-filled channels and microcapillary 
electrophoresis to separate RNA and allow for the assessment of RNA quality. The system 
generates an electropherogram, and then uses an algorithm to calculate an RNA integrity 
number (RIN) [399, 410]. RNA samples with RIN values below 7 are of insufficient quality for 
downstream microarray applications, and a RIN value of 8 or greater is recommended [400]. 

a) Good quality gel-separated RNA is visualised as two distinct bands, comprising of 28S and 
18S ribosomal RNA r(RNA) species, with high RIN values. 

b) A typical electropherogram of good quality RNA is shown as two single peaks for 18S and 
28S rRNA, and high RIN values. (M = marker, FU = fluorescence units) 
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Figure 3.10: Quality assessment of primary ALL RNA samples using the 
Agilent 2100 bioanalyser: Gel electrophoresis. 

RNA extracted from 16 primary ALL tumour samples (8 control DMSO-treated 
and 8 1µM JQ1-treated samples) was gel-electrophoresed by the bioanalyser. 

Two distinct 18S and 28S rRNA bands were observed for all tumour RNA 
samples, with no observable degradation. 
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Figure 3.11: Quality assessment of primary ALL RNA samples using the 
Agilent 2100 bioanalyser: Electropherogram and RIN calculation. 

Laser-induced fluorescence of RNA is detected by the bioanalyser, and 
generates an electropherogram (plotted as fluorescence over time), which is 
used to calculate the RIN value for each RNA sample. 

Aside from the marker peak on the far left of each electropherogram, two 
distinct 18S and 28S rRNA peaks were observed for each RNA sample. 

All RNA samples (DMSO- and JQ1-treated) showed RIN values greater than 8 
and were of very high quality for downstream microarray experiments. 

ALL-104 0hr ALL-104 6hr

ALL-105 0hr ALL-105 6hr

ALL-109 0hr ALL-109 6hr

RIN 9.30

ALL-103 0hr ALL-103 6hr

ALL-108 0hr ALL-108 6hr

ALL-106 0hr ALL-106 6hr

ALL-113 0hr ALL-113 6hr

ALL-101 0hr ALL-101 6hr

RIN 9.20

RIN 9.60 RIN 9.20

RIN 9.00 RIN 8.90

RIN 8.90 RIN 8.30

RIN 8.20 RIN 8.50

RIN 9.10 RIN 9.00

RIN 9.20 RIN 9.40

RIN 9.30 RIN 9.10

DMSO-treated JQ1-treated (1µM) 
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3.2.2 Analysis of single gene expression changes in primary 

ALL tumours following BRD4 inhibition 

Univariate analysis of microarray results is used to explore the most significant 

changes in the expression of individual genes between two different treatment 

conditions. I used the univariate analysis approach to investigate which genes 

were most differentially expressed in 8 primary ALL tumours upon inhibition of 

BRD4 following 6 hour exposure to the cytotoxic concentration of 1 µM JQ1, 

compared to the same tumours treated with DMSO. With the assistance of the 

bioinformatics expert, Dr. Wenbin Wei, array data were analysed using the 

Affymetrix Expression Console with the default settings of “Default: RMA-

Sketch”. I then identified genes most differentially expressed, with p-values less 

than 0.001 and a fold change greater than 2 using the limma analysis package 

[402]. 

With expression data filtered using the above mentioned statistical parameters, 

I identified a total of 96 differentially downregulated genes in JQ1-treated 

tumour cells (Figure 3.12). Downregulated genes included those involved in the 

inhibition of apoptosis such as BIRC3, which is an NFκB target gene encoding 

cIAP2 protein, commonly overexpressed in haematological malignancies and 

implicated in caspase inhibition [343, 411, 412]. The FAIM3 gene, encoding the 

anti-apoptotic factor Toso, was also significantly downregulated by JQ1 and is 

known to inhibit and regulate death receptor signaling [413]; an apoptotic 

pathway shown to be upregulated in lymphoblasts treated with anthracyclines 

commonly used to treat ALL [414]. Intriguingly, and consistent with recently 

published data [345], I found that JQ1 also caused downregulation of the IL7R  
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Figure 3.12: Global gene expression profiling to investigate the effects of 

JQ1 on gene transcription in primary ALL tumours 

Transcript expression heat-map was generated using dChip (http://www.dchip.org/) 
with the default settings, and shows a selected subset of genes downregulated or 
upregulated in 8 primary ALL tumours following 6 hour exposure to 1 µM JQ1.  

Downregulated genes include those belonging to multiple pro-survival signaling 
pathways such as NFκB and JAK/STAT, as well as c-Myc target genes and members 
of the interleukin gene family.  

Each column represents a different patient sample and each row represents a single 
gene. Colour changes within a row indicate expression levels relative to the average of 
the same population. Red indicates up-regulation, blue down-regulation. 
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gene, which was the third most differentially expressed gene among JQ1-

treated primary ALL tumours (3.91-fold decrease, p<0.001). The IL7R gene 

encodes the interleukin-7 receptor (IL-7R), which mediates prosurvival 

signalling via the JAK/STAT pathway and has been shown to be constitutively 

expressed in B-cell precursor ALL [197]. For a fully functional cytokine receptor 

to form, IL-7R must heterodimerise with either the IL-2R γ (IL2RG) subunit to 

form the IL-7 receptor, or with the cytokine receptor-like factor 2 (CRLF2) to 

form a receptor for thymic stromal lymphopoietin (TSLP), both of which are 

involved in abnormal activation of the STAT5 transcription factor [415, 416] . 

Furthermore, CRLF2 deregulation is observed in up to 10% of paediatric ALL 

and is associated with an unfavourable prognosis [192].  

Another cytokine receptor gene, IL2RA, encoding a protein subunit of the cell 

surface receptor complex to which the cytokine IL-2 binds has been shown to 

activate the JAK-STAT signalling pathway [417]. The IL2RA gene was also 

significantly downregulated following JQ1 treatment in all primary ALL tumours 

tested, suggesting that JQ1 targets multiple points in JAK/STAT pathway.  

Additionally, I found that the SENP1, ALKBH8, and CARD6 genes were also 

downregulated in JQ1-treated primary ALL, and encode proteins frequently 

associated with the promotion of cancer cell survival [418-422], as well as the 

MYC gene commonly overexpressed in haematological malignancies and key 

to cell proliferation [343, 412].  

I found that 127 genes were significantly upregulated following treatment of 

primary ALL cells with JQ1 inhibitor (Figure 3.12). These included the 



 

131 
 

EIF4EBP2 gene, encoding a protein involved in the regulation of mTor signaling 

through repression of growth-promoting mRNA translation [423], as well as the 

PAIP2B gene, with a role in inhibiting translation of mRNA. The PPP1R13B 

gene was also upregulated following JQ1 treatment, and encodes the ASPP1 

protein. Interestingly, ASPP1 cooperates with p53 to induce apoptosis and is 

associated with a poor prognosis in ALL patients that lack its expression [424]. 

In summary, univariate analysis of microarray data in this experiment revealed 

that JQ1-mediated BET protein inhibition in primary ALL led to downregulation 

of genes involved in apoptosis inhibition and survival, as well as the 

upregulation of genes with a role in apoptosis induction and translational 

repression.  
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3.2.3 Microarray validation of differential responses in primary 

ALL tumours at 6 hours following JQ1-mediated BRD4 

inhibition using qRT-PCR 

Due to the nature of microarray studies, involving the measurement of 

expression levels of thousands of genes all at the same time, there is potential 

for false positive results, which imply a given gene is up- or downregulated 

following a particular treatment, when in fact it is not. For the same reasons as 

to why it is necessary to repeat experiments, and apply statistical significance 

tests to data, the validation of microarray data using a different experimental 

technique provides confidence that an observed result is not a false positive. 

To validate the differential responses observed in the microarray in this study, I 

selected 6 candidate genes (TNFSF4, IL7R, BIRC3, MYC, EIF4EBP2, and 

PPP1R13B) and decided to use qRT-PCR as the method of validation, since it 

is a highly sensitive and efficient technique. I selected TNFSF4 because this 

gene exhibited the greatest average differential response between untreated 

and JQ1-treated cells, and the highest statistical rank in the microarray analysis, 

with a 4.82-fold decrease in transcript expression (p<0.01). The IL7R gene also 

ranked highly with respect to statistical analysis, playing a major role in 

precursor B cell proliferative signaling and being directly involved in the 

activation of the JAK-STAT pathway [425]. BIRC3 is the NFκB target gene 

encoding the antiapoptotic cIAP2 protein [426]. MYC was selected since it is 

commonly overexpressed in leukaemia and potently drives cell proliferation. 

Recent studies have also confirmed that downregulation of BRD4 activity leads 
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to reduced expression of c-Myc protein in AML [344]. EIF4EBP2 is the gene 

encoding the 4EBP2 protein that is responsible for inhibiting growth-promoting 

mTOR signaling [427], whilst PPP1R13B encodes the ASPP1 protein implicated 

in the regulation of the apoptotic function of the TP53 tumour-suppressor gene 

in ALL and is associated with a poor prognosis when expressed at abnormally 

low levels [424]. Changes in expression of the above mentioned genes after 6 

hour exposure to 1 µM JQ1, measured by qRT-PCR, were generally consistent 

across tumours in the microarray, and have functions relevant to cell survival 

and apoptosis. Thus, JQ1-mediated modulation of the expression of all 6 genes 

might explain JQ1-induced cytotoxicity observed in ALL cells. 

I used 10 primary tumours (ALL-119, ALL-120, ALL-121, ALL-122, ALL-123, 

ALL-124, ALL-125, ALL-126, ALL-127, and ALL-128) for RT-PCR validation that 

were not used in the microarray, in order to confirm whether or not the changes 

in gene expression following JQ1 treatment observed in the microarray results 

were reproducible by RT-PCR. 

After RT-PCR quantification of selected gene mRNA transcripts in primary 

tumours, I found that there were uniform patterns of differential expression 

similar to those seen in the microarray data. IL7R, BIRC3, TNFSF4 and MYC 

were significantly downregulated following 6 hour JQ1 exposure, whilst 

EIF4EBP2 and PPP1R13B were significantly upregulated (Figure 3.17). 

In summary, the RT-PCR results I obtained suggest that changes in gene 

expression following JQ1 treatment are reproducible irrespective of the method 
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used or the primary tumour analysed, and therefore that results derived from 

the analysis of my microarray data are reliable. 
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Figure 3.17: Validation of microarray data using the qRT-PCR technique 

RNA was extracted from 10 primary tumours (ALL-119, ALL-120, ALL-121, ALL-122, 
ALL-123, ALL-124, ALL-125, ALL-126, ALL-127, and ALL-128) that were not included 
in the microarray experiment. 

Microarray results were validated by qRT-PCR using primer sets recognising TNFSR4, 
EIF4EBP2, BIRC3, PPP1R13B, MYC and IL7R mRNA. Ct values were normalised to 
β-actin mRNA. Graphs represent mRNA levels in DMSO- and JQ1-treated tumours. 

Pre-treatment of primary ALL tumours with 1 µM JQ1 leads to the differential 
expression of all selected validation genes in a similar fashion to that observed in the 
microarray experiment. 

p<0.01 p<0.01 

p<0.01 

p<0.01 

p<0.01 
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3.2.4. GSEA analysis of differentially regulated signaling 

pathways in primary ALL tumours following JQ1-mediated BET 

protein inhibition 

Multivariate analysis of microarray data is an approach used to assess whether 

or not there are synchronised changes in the expression of multiple genes 

belonging to common signaling pathways. As a wealth of expression data is 

generated from a microarray study, multivariate analysis can help identify which 

signaling pathways are affected by a particular treatment. Thus, I decided to 

use this method to analyse my microarray data to provide further insight as to 

the cellular signaling pathways being modulated in primary ALL tumours 

following treatment with JQ1 inhibitor. 

More specifically, I used gene set enrichment analysis (GSEA) [403] to look for 

concordant expression changes among genes grouped according to the 

biological pathway or function they are associated with; otherwise known as 

‘gene sets’. An advantage of this method of analysis over analysis on an 

individual gene level is that GSEA does not depend upon important individual 

genes standing out, but instead can detect modest yet consistent changes in 

gene expression within gene sets. This approach prevents the overlooking of 

differentially expressed genes even if only a selection of genes within a gene 

set is actually significant [428].  

With this in mind, the GSEA software package I used allowed me to rank all the 

genes according to their significance level (with respect to the differential 

expression observed when comparing genome-wide expression profiles of 
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DMSO- and JQ1-treated ALL tumours), and then calculating an enrichment 

score (ES) for each biological pathway, which is dependent upon the 

significance ranking of the member genes in that pathway. In other words, this 

establishes the proportion of genes that are significantly under- or 

overexpressed within their respective gene sets. This proportion is considered 

to be significant if the calculated false discovery rate (FDR) is less than 25% 

[429], or if the p-value is less than 0.05 [430, 431]. Use of the FDR value to 

determine significance is usually more stringent than use of the p-value; 

however, I decided to use both the FDR and p-value to determine the 

significance of differentially regulated gene sets. 

I aimed to identify biological processes or signaling pathways that were 

differentially regulated in primary ALL tumours following JQ1 treatment. Using 

GSEA I identified 771 out of 1886 gene sets that were downregulated following 

exposure to 1 µM JQ1, of which 172 gene sets were significantly downregulated 

exhibiting an FDR < 25%. %. Consistent with previous univariate analysis, I 

identified  gene sets representing the prosurvival signaling pathways NFκB and 

JAK-STAT, as well as the c-MYC pathway and multiple cytokine signaling 

pathways (IL2, IL7, IL10, and IL17) (Table 3.5; Figure 3.13 and 3.14). The 

‘BRCA/BRCA1 pathway’ and ‘cell proliferation’ gene sets were also 

downregulated, but marginally failed to meet the significance criteria, with them 

having a significant p-value but not FDR. GSEA also identified 1115 out of 1886 

gene sets to be upregulated following JQ1 treatment, of which 175 gene sets 

were significantly enriched at FDR < 25%. Noticeably, a significant proportion of 
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gene sets upregulated included those involved in gluconeogenesis, glycolysis, 

and Hif1a signaling.  
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Table 3.5: GSEA pathways downregulated in primary ALL tumours 
following JQ1 treatment. 

GSEA of microarray expression data obtained from 8 primary ALL tumours 
incubated with either DMSO or 1 µM JQ1 for 6 hours show that, in addition to 
the MYC pathway, JQ1-treatment leads to the downregulation of multiple 
cytokine and prosurvival signaling pathways, including the NFκB and JAK-STAT 
pathways, which are significant at FDR <0.25 (25%). 

Gene set / pathway name
Number of genes 

in pathway
NOM P FDR q

IL17 PATHWAY 13 0 0.010

CELL SURFACE RECEPTOR LINKED 

SIGNAL TRANSDUCTION
121 0 0.010

NFkB PATHWAY 106 0 0.080

INFLAMMATORY RESPONSE 

PATHWAY
29 0.002 0.020

CYTOKINE CONNECTION 15 0.02 0.100

IL7 PATHWAY 16 0.014 0.100

MYC PATHWAY 43 0.004 0.079

IL10 PATHWAY 13 0.039 0.140

IL2RB PATHWAY 34 0.012 0.140

STRESS SPECIFIC 44 0.012 0.150

CELL ADHESION 132 0.006 0.150

IL1 PATHWAY 62 0.014 0.170

JAK/STAT SIGNALING PATHWAY 150 0.01 0.200

VEGF 23 0.05 0.220

BRCA/BRCA1 PATHWAY 93 0.02 0.264

CELL PROLIFERATION 196 0.01 0.270
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Figure 3.13: GSEA of the NFκB and JAK-STAT pathways in primary ALL tumours 
in response to JQ1 treatment. 

Both the prosurvival signaling a) NFκB and b) JAK-STAT pathways are significantly 
downregulated (FDR <25%) in primary ALL tumours cells exposed to 1µM JQ1 for 6 
hours. 

NFκB pathway

JAK-STAT pathway

a) 

b) 
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Figure 3.14: GSEA of the MYC and Surface receptor signaling pathways in 
primary ALL tumours in response to JQ1 treatment. 

Both the a) MYC and b) Surface receptor signaling pathways are significantly 
downregulated (FDR <25%) in primary ALL tumour cells exposed to 1µM JQ1 
for 6 hours. 

 

MYC pathway

Surface receptor 
signaling pathway

b) 

a) 
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3.2.5 Identification of biomarkers predictive of JQ1 sensitivity 

and resistance 

Cytotoxicity data presented in section 3.1.1 show that, although primary ALL 

tumours ubiquitously express the BET protein BRD4 and a large proportion of 

ALL tumours are sensitised to the cytotoxic effects of JQ1 treatment, a 

considerable number of tumours still exhibit moderate sensitisation or 

resistance to BET inhibition. 

Upon consideration of the above observations, I proceeded to identify a way by 

which to predict tumour response to JQ1, so that unnecessary administration of 

this inhibitor to ALL patients most unlikely to respond would be avoided as this 

would only increase the risk of toxic side-effects, without providing any 

therapeutic advantage. 

Subsequently, I decided to look for biomarker genes predictive of JQ1 

sensitivity using the microarray data I had previously obtained (section 3.2.2). 

With the help of Dr. Wenbin Wei, I ranked primary ALL tumours according to 

JQ1 EC50 values from cytotoxicity experiments in section 3.1.2 and, using 

normalised and filtered gene expression values derived from untreated tumours, 

selected those genes most significantly associated with JQ1 EC50 using 

Spearman's rank correlation coefficient statistical analysis (coefficient ≥0.6; 

p<0.05) (Figure 3.15). 

Of these genes, I found that expression of the PLAUR and REL genes showed 

a strong positive correlation with JQ1 EC50 values in primary ALL tumours 
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(Figure 3.16), where the highest expression levels were observed in those 

tumours most resistant to the cytotoxic effects of JQ1 treatment.  

The PLAUR gene encodes the receptor for urokinase plasminogen activator 

(uPAR), which is anchored to the cell surface and is frequently overexpressed 

in human cancers [432-434]. The uPAR plays a role in the urokinase-catalysed 

activation of plasminogen, which results in extracellular matrix degradation and 

facilitates tumour invasion [435]. Furthermore, studies have shown that uPAR 

expression is associated with blast cell dissemination to the peripheral blood 

and inferior treatment outcome in AML [436]. 

The REL gene encodes c-Rel, which belongs to the rel subfamily of NFκB 

transcription factors, and is frequently overexpressed in Hodgkin’s lymphoma 

(HL) and non-Hodgkin’s B-cell lymphomas (NHLs) [437], and promotes B-cell 

proliferation and survival [438].   

Given their close association with JQ1 resistance in primary ALL tumours, 

quantification of either PLAUR or REL gene transcripts could be used to predict 

tumour sensitivity to JQ1. Importantly, this could be quickly determined using 

the qRT-PCR technique, which would require a very low number of cells from a 

biopsy.  

I next decided to perform GSEA on the EC50-ranked microarray data derived 

from untreated primary tumours, in a bid to identify biological processes or 

signaling pathways that may be upregulated and contributing to the resistance 

to JQ1 observed in a subset of tumours.  
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Figure 3.15: Transcriptional biomarkers predictive of JQ1 sensitivity and 
resistance in primary ALL 

The Affymetrix Expression Console™ software was used to normalise microarray gene 
expression values from untreated primary ALL tumours that were ranked according to 
JQ1 EC50 values derived from in vitro cytotoxicity experiments. 

ALL tumours are ranked from low to high EC50 values (green to red), seen on the top 
row of the above heatmap.  

The heatmap shows a subset of genes that positively correlate with JQ1 EC50 using 
Spearman’s rank correlation coefficient (coefficient ≥0.6; p<0.05), and may allow ALL 
tumour sensitivity to treatment with JQ1 to be predicted. 
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Figure 3.16: The PLAUR and REL genes as biomarkers predictive of JQ1 
sensitivity 

Primary ALL tumours analysed in the JQ1 microarray were ranked according to 
JQ1 EC50 values derived from in vitro cytotoxicity experiments.  

Expression levels of the a) PLAUR and b) REL genes in DMSO-treated tumours 
were plotted as mRNA expression relative to transcript levels in ALL-105 
tumour cells, which expresses the lowest level of each biomarker gene and is 
most sensitive to the cytotoxic effects of JQ1. 

Expression of PLAUR and REL genes negatively correlates with JQ1 sensitivity. 
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I found that 721 of 1335 gene sets were differentially upregulated in JQ1-

resistant primary tumours in comparison with JQ1-sensitive tumours. Of these, 

121 gene sets were significant (FDR <25%; p<0.05) and included gene sets 

representing NFκB, RAS and NOTCH prosurvival signaling pathways, as well 

as pathways that regulate cytokine signaling and gene transcription (Table 3.6).  

Since RAS and NOTCH pathways are upregulated in untreated JQ1-resistant 

primary ALL tumours, and I did not observe their downregulation in tumours 

following JQ1 treatment, it is possible that cross-talk from RAS and NOTCH 

signaling pathways may be promoting ALL tumour cell survival and contribute 

towards JQ1-resistance [439-441].   

In addition, two gene sets representing pathways that regulate the ribosome 

and ribosomal protein expression were also upregulated in JQ1-resistant 

tumours (Figure 3.15).  

Overall, the PLAUR and REL genes appear to be suitable candidate biomarker 

genes predictive of JQ1 sensitivity in B-precursor ALL. Furthermore, JQ1 

resistance may be mediated via the upregulation of multiple converging 

prosurvival signaling pathways and expression of ribosomal proteins involved in 

protein translation. 

3.2.6. Summary 

In conclusion, microarray data presented in this section were generated using 

high quality primary RNA samples, and qRT-PCR validation results were 

concordant with the changes in gene expression observed in the microarray. 
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The inhibition of BET proteins induced gene expression changes in primary ALL 

tumours that would be expected to favour the induction of apoptosis. This 

involved the downregulation of multiple prosurvival pathways, such as the NFκB 

and JAK-STAT signaling pathways.  

Importantly, the PLAUR and REL genes were identified as potential biomarker 

genes predictive of B-precursor ALL tumour sensitivity to JQ1. 

Overall, these results support my hypothesis in that targeting the BET family of 

proteins poses as an alternative strategy by which to inhibit prosurvival gene 

transcription to promote the induction of apoptosis in pre-B ALL.  
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Table 3.6: GSEA pathways upregulated at baseline level in primary ALL 
tumours most resistant to JQ1 activity 

Gene expression data was obtained from 8 DMSO-treated primary ALL tumours 
ranked according to JQ1 EC50.  

GSEA was performed on microarray gene expression data to identify pathways 
most strongly associated with JQ1 EC50 using Spearman’s rank correlation 
coefficient (coefficient ≥0.6; p<0.05). 

Multiple prosurvival pathways (including RAS and NFκB pathways), gene 
transcription pathways, and ribosome metabolism and assembly pathways are 
upregulated in primary ALL tumours with the highest JQ1 EC50 values (most 
resistant to JQ1 activity). These pathways are significant at FDR <0.25 (25%) 
and a nominal p-value (NOM P) <0.05. 

Gene set / pathway name Number of genes 
in pathway NOM P FDR q

RIBOSOME ASSEMBLY 67 0.000 0.002

TNFα-MEDIATED NFKB SIGNALING 18 0.000 0.021

RIBOSOMAL PROTEINS 81 0.000 0.029

TACI GENE EXPRESSION SIGNATURE 
(Moreaux et al. 2004) 288 0.000 0.032

RAS ONCOGENIC SIGNATURE 199 0.000 0.035

NFKB SIGNALING 88 0.005 0.085

TRANSCRIPTION FACTORS 56 0.000 0.110

GENE TRANSCRIPTION 63 0.011 0.143

CYTOKINE-CYTOKINE RECEPTOR 
INTERACTION 197 0.006 0.156

CELL COMMUNICATION 99 0.006 0.188

NOTCH SIGNALING PATHWAY 37 0.025 0.191
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3.3. Cellular effects of JQ1 on ALL tumour cells 

I proceed to elucidating some of the cellular effects by which cytotoxicity is 

exerted in ALL tumour cells following JQ1-mediated BET inhibition (Section 

3.1.2). 

Since I showed in section 3.1.1 that the BET protein family member BRD4 is 

frequently expressed in B-cell precursor ALL, and other studies have confirmed 

BRD4 plays a crucial role in positively regulating the expression of genes 

involved in growth and cell cycle progression [442], I began by investigating the 

effects of JQ1 treatment on the cell cycle of cycling ALL tumour cells (section 

3.3.1).  

Based on data from cell cycle analysis experiments that hinted towards a JQ1-

mediated impact on S-phase tumour cells, as well as the reported findings that 

BRD4 interacts with the RFC-140 essential for DNA replication [443], and plays 

a distinct role in Merkel cell polyomavirus (MCV) DNA replication [444], I also 

investigated the impact of JQ1 on the DNA replication process in ALL (section 

3.3.2). 

Finally, I investigated the effects of JQ1 treatment on apoptosis in ALL tumour 

cells, in order to gain a better understanding of how ALL tumour cells are 

eliminated.  
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3.3.1. Investigating JQ1-mediated effects on the cell cycle and 

c-Myc downregulation.   

I decided to use propidium iodide staining and flow cytometry to obtain cell 

cycle profiles for TOM-1, SUPB-15, SD1, and NALM-6 ALL cell lines following 

24 hour treatment with either DMSO or 1 µM JQ1. I found that JQ1 treatment 

led to a consistent accumulation of cells in the G1 phase of the cell cycle in all 

cell lines compared to control (Figure 3.18). This was accompanied by a 

marked reduction in S-phase cells in the SUPB-15, SD1, and NALM-6 cell lines. 

However, there was no reduction in the proportion of cells in the G2 phase of 

the cell cycle. Taking these observations into consideration, it is possible that 

JQ1 activity may be affecting cell cycle proteins regulating transition to the G2 

phase, as well as clearly inducing G1 arrest. The significant reduction in the 

proportion of S-phase cells is of particular interest and may be indicative of an 

impact on the DNA replication process. Furthermore, since the S-phase 

population of cells are not completely reduced, it was important to investigate 

whether DNA replication is still active within these cells (section 3.3.2).  

The c-Myc protein is tightly regulated throughout the cell cycle and plays a vital 

role in the facilitation of G1/S progression through the induction of G1 

cyclin/CDK kinase activity [445, 446]. Thus, downregulation of c-Myc is 

commonly associated with cell cycle arrest and the accumulation of cells in the 

G1 phase of the cell cycle [445]. A wide range of haematological malignancies 

exhibit deregulated expression of c-Myc, including B- and T-ALL, AML, chronic 

lymphocytic leukemia (CLL), follicular lymphoma, diffuse large B-cell lymphoma, 

multiple myeloma, and Burkitt lymphoma, with previous studies showing that  
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Figure 3.18: Cell cycle analysis in DMSO- and JQ1-treated ALL cell lines  

ALL cell lines TOM-1, SUPB-15, SD1 and NALM-6 were treated with either DMSO or 
1µM JQ1 for 24 hours. Cells were then analysed by FACS using the PI dye to stain 
total DNA content. Graphs are plotted as cell count over PI stain intensity.  

G1-arrest is shown in all ALL cell lines tested following JQ1 treatment. 

A reduction of S-phase cells is also shown in SUPB-15, SD1 and NALM-6 cell lines. 
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TOM-1
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overexpression of c-Myc in many of these diseases is associated with a poor 

clinical prognosis [447]. Consequently, a pharmacological strategy to 

downregulate c-Myc expression and activity is long sought after but not yet 

available. 

In recent years, c-Myc has been implicated as a downstream target of BRD4 

[339, 442]. Additionally, treatment of leukaemic cells with JQ1 in the context of 

AML led to rapid, marked reductions of Myc at both the transcriptional and 

protein levels. Taking these findings into consideration, together with the 

observation that JQ1 treatment induces potent G1-arrest, and that data from my 

microarray experiment shows MYC transcripts were downregulated in primary 

ALL tumours following exposure to JQ1, I decided to further investigate the 

regulation of Myc expression in ALL.  

Using the preB-ALL NALM-6 cell line, I quantified MYC mRNA levels by RT-

PCR at 6 and 24 hours after initial exposure of cells to 1 µM JQ1. I found that at 

6 hours MYC transcript levels were reduced by approximately 30% compared to 

control DMSO-treated NALM-6 cells (Figure 3.19a). However, at 24 hours MYC 

transcript levels had increased again, this time exhibiting a 20% reduction 

compared to control. This was unexpected since studies have shown MYC 

transcript levels to be substantially downregulated by lower concentrations of 

JQ1 up to at least 48 hours in multiple AML cell lines [344]. I then decided to 

use Western blotting to see how JQ1 affected c-Myc protein expression in a 

panel of ALL cell lines. Interestingly, exposure to 1 µM JQ1 led to complete 

downregulation of c-Myc protein at 24 hours across all cell lines tested and was 

maintained up to at least 96 hours (Figure 3.19b).  
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Figure 3.19: Myc downregulation in ALL cell lines following JQ1 treatment  

a) NALM-6 cell were treated with either DMSO or 1µM JQ1 for 6 and 24 hours. Total 
RNA was extracted from samples and Myc mRNA was measured by qRT-PCR.  

JQ1 induces transient downregulation of Myc mRNA (6hr) at the transcriptional level, 
before increasing again after 24hr exposure to JQ1. 

b) TOM-1, NALM-6, REH and SUPB-15 cells were treated with 1µM JQ1 for 0 (DMSO 
control), 24, 48, 72 and 96 hrs. Protein lysates were analysed by Western blotting, 
where samples were probed for c-Myc and β-actin (loading control). 

1µM JQ1-treatment leads to complete and sustained downregulation of c-Myc protein 
by 24hr in all ALL cell lines analysed. 

 

a) 

b) 
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Since Myc expression at the transcriptional level did not mirror expression at the 

protein level in ALL cell lines, and c-Myc protein downregulation following 24 

hour exposure to 1 µM JQ1 was a common feature, I decided to investigate 

whether or not JQ1-mediated c-Myc protein downregulation was due to 

modulation of protein stability and the targetting of c-Myc for proteasomal 

degradation. This idea is consistent with the fact BRD4 has previously been 

reported to regulate the stability of the papillomavirus-encoded E2 protein [448]. 

I treated NALM-6 and TOM-1 cells with either DMSO (control), the 26S 

proteasome inhibitor MG132 (10 µM) alone, JQ1 (1 µM) alone, or a MG132/JQ1 

combination for 24 hours, and then assessed the levels of c-Myc protein 

expression by Western blotting. I found that in both ALL cell lines, treatment 

with JQ1 alone caused complete reduction of c-Myc, as was expected; 

however, treatment with the MG132/JQ1 combination completely abrogated 

JQ1 activity with respect to c-Myc downregulation (Figure 3.20). This suggests 

that the MG132 inhibitor prevents proteasomal degradation of c-Myc protein in 

ALL tumour cells exposed to JQ1, and that JQ1 is capable of modulating the 

stability of c-Myc protein via a post-translational mechanism involving the 26S 

proteasome, thus highlighting a role for BET proteins in the reguation of cellular 

proteins at the post-translational level, in addition to the transcriptional level. 

In summary, JQ1 treatment leads to cell cycle G1 arrest in all ALL cell lines 

tested and it is possible that JQ1 activity has an impact on DNA replication 

machinery. Treatment with JQ1 also induces modest and temporary 

downregulation of MYC at the transcriptional level, but instead appears to 
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mainly exert the observed loss in c-Myc protein expression by regulating protein 

stability at the post-translational level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

156 
 

 

 

 

 

 

 

Figure 3.20: MG132-mediated inhibition of the proteasome abrogates 
downregulation of c-Myc protein by JQ1 

NALM-6 and TOM-1 cells were either untreated, treated with 10 µM MG132 
only, 1 µM JQ1 only, or treated with an MG132/JQ1 inhibitor combination for 
24hr. Protein lysates were analysed by Western blotting, where samples were 
probed for c-Myc and β-actin (loading control). 

Treatment of ALL tumour cells with 1 µM JQ1 leads to complete downregulation 
of c-Myc in both cell lines, whereas treatment with either MG132 or MG132/JQ1 
combination does not. This suggests JQ1-mediated c-Myc protein 
downregulation is dependent upon activity of the proteasome. 
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3.3.2 Investigating the effects of JQ1 exposure on the DNA 

replication process 

Each time a eukaryotic cell divides, accurate replication of the complete 

genome must be precisely coordinated in order to maintain genome integrity. 

The origins of replication are the sites at which multiple proteins assemble in an 

ordered manner during late mitosis and early G1 to form the pre-replicative 

machinery, giving rise to replication forks [449]. Abnormal modifications to this 

highly organised process may lead to unscheduled DNA synthesis and genomic 

instability; thus promoting tumorigenesis [450]. Studies have shown that c-Myc 

plays an important role in DNA replication origin initiation via a non-

transcriptional mechanism involving the direct interation with minichromosome 

maintenance (MCM) proteins that constitute the pre-replicative complex crucial 

to the regulation of replication origins [451, 452]. Furthermore, it has also been 

reported that the BET protein BRD4 directly interacts with the largest subunit, 

RFC-140, that constitutes part of the highly conserved five-unit replication factor 

C (RFC) complex essential for DNA replication [443]. Interestingly, the role of 

BET proteins in replication is not only restricted to mammalian cells. A recent 

study has shown that BRD4 interacts with the MCV Large T antigen (LT) and is 

critical for successful viral DNA replication of the MCV genome [444].  

Upon consideration of the above mentioned observations, it is possible that JQ1 

activity has an impact on the DNA replication process in ALL cells. This was 

also supported by the observation that transcription of the CLSPN gene 

encoding the protein Claspin was upregulated in the microarray in primary ALL 

tumours treated with JQ1 (Figure 3.12), since Claspin is a critical mediator of 
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the DNA-damage response pathway [453]. The Claspin protein is expressed 

following increased levels of stress and blocks in DNA replication, and is 

responsible for the phosphorylation and consequent activation of Chk1, which in 

turn activates the S-phase checkpoint [454]. 

The significant reduction in the proportion of S-phase cells following JQ1 

treatment of ALL cell lines I previously showed (Figure 3.18), also suggests a 

specific effect on replication. In light of this observation, I was particularly 

intrigued to investigate the status of replicative activity in the very small 

proportion of remaining S-phase cells, despite being treated with JQ1, as active 

replication in these cells might indicate JQ1-resistant ALL clones capable of re-

expansion.  

I therefore decided to test my hypothesis that JQ1-induced cytotoxic effects 

observed in proliferating ALL cells are partly due to a direct impact on DNA 

replication, rather than just consequences of cell cycle arrest. I did this by using 

a fluorescent DNA fibre-labelling technique and the BrdU incorporation assay to 

investigate the effects of JQ1 on replicating NALM-6 cells.  

The DNA fibre-labelling technique involves the use of halogenated nucleotide 

analogues that are incorporated into newly synthesised DNA of proliferating 

cells. Once extracted DNA fibres are stained with specific antibodies conjugated 

to either red or green fluorescent dyes, they can be visualised by fluorescent 

microscopy. With the use of dedicated computer software, this approach allows 

for the identification and quantification of ongoing replication forks, fork 

terminations, new origins of replication, as well as the determination of the 
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direction and the rate at which replication forks progress [455] (See Appendix 

8.6 for schematic showing possible replication structures).  

I began by investigating fork progression rates, derived from the measurement 

of the fluorescent red and green portions of each individual DNA fibre within the 

captured photographic images. I decided to treat NALM-6 cells with 1 µM JQ1 

for a short exposure time of 1 hour, insufficient to induce G1/S cell cycle arrest, 

so as to exclude the possibility that any replication effects I observed using a 

longer exposure time would not be attributable to cell cycle effects. Upon 

measuring the individual fibres extracted from NALM-6 cells treated with either 

DMSO or 1 µM JQ1 for 1 hour, I found that treatment of cells with JQ1 led to 

greatly decreased fork progression rates compared to control cells (Figure 

3.21a). This indicated that JQ1 may have a direct effect on the DNA replication 

process and that it was unlikely that the effects observed after just 1 hour were 

due to JQ1-mediated downregulation of genes involved in cell cycle 

progression.  

I then investigated the effect of JQ1 on fork progression rates at a 24 hour 

timepoint, since this was the same timepoint at which I observed a significant 

reduction in the proportion of S-phase NALM-6 cells by PI/FACS cell cycle 

analysis (Figure 3.18). I found that 24 hour exposure to 1 µM JQ1 also caused a 

decrease in fork progression rates compared to control cells (Figure 3.21b).  

To further confirm that the observed reduced rates of fork progression were due 

to the inhibition of replication in S-phase cells and not derived from a JQ1-

mediated effect on the G1/S checkpoint and reduced entry to the S-phase, I 
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used the BrdU incorporation assay to quantify the level of BrdU uptake by S-

phase NALM-6 cells following exposure to increasing concentrations of JQ1. I 

found that JQ1 treatment did not affect the entry of cells into the S-phase of the 

cell cycle, but did reduce the proportion of S-phase cells in a dose-dependent 

manner (Figure 3.22).  

I next wanted to gain further insight into the type of replication structures that 

were present in NALM-6 cells treated with 1 µM JQ1 by quantifying the total 

number of 1st label origins, 2nd label origins, 1st label terminations/stalled forks, 

and 2nd label terminations. I found that 24 hour exposure of NALM-6 cells to 1 

µM JQ1 led to greater than 13% increase in the proportion of DNA fibres 

characteristic of stalled replication forks compared to DMSO-treated cells 

(Figure 3.23). No significant changes were observed for the other types of 

replication structures. 

The data presented in this section lend support toward my hypothesis that JQ1 

activity has a direct effect on DNA replication. I showed that treatment of a 

proliferating ALL cell line with JQ1 led to reduced fork progression rates and an 

increase in the frequency of stalled replication fork structures, as a result of 

increased replication stress. Finally, BrdU incorporation assay data also 

indicates that the observed JQ1-mediated effects on replication are 

independent of G1/S checkpoint control. 
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Figure 3.21: Effect of JQ1 treatment on DNA replication fork progression 
in ALL tumour cells 

NALM-6 cells were pre-treated with either DMSO (control) or 1 µM JQ1 for 1hr and 24hr. 
Cells were then labelled with CldU (first label/red fluorescent dye) and IdU (second 
label/green fluorescent dye) for 20 minutes each. Photographs were taken of visualised 
replication fibres in each treatment. Individual fibres were measured using ImageJ 
software, and distribution of fork speeds calculated.  

a) Treatment of NALM-6 cells with 1 µM JQ1 for 1hr causes a reduction in replication fork 
progression, as demonstrated in analysis of both CIdU and IdU labels. 

b) Treatment of NALM-6 cells with 1 µM JQ1 for 24hr causes a reduction in replication fork 
progression, as demonstrated in analysis of the IdU label. This is not demonstrated by 
analysis of the CIdU label. 

These results, involving a short 1hr incubation of cells with JQ1 inhibitor, suggest JQ1 
activity has a direct impact on DNA replication fork progression in NALM-6 cells. 
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Figure 3.22: JQ1 treatment induces specific reduction of replicating S-
phase cells 

BrdU incorporation by FACS analysis shows a normal S-phase cell distribution in 
NALM-6 cells (DMSO-treated control), which reduces in intensity when treated with 
increasing concentrations of JQ1. This suggests JQ1 specifically targets DNA 
replication. 
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Figure 3.23: JQ1 causes DNA replication stress in S-phase ALL tumour 
cells 

NALM-6 cells were pre-treated with either DMSO (control) or 1 µM JQ1 for 24hr and 
pulse-labelled with CldU (red) and IdU (green) for 20 minutes each. 

a) JQ1-treated DNA replication fibre (right) shows reduced incorporation of 
CIdU, and complete lack of IdU incorporation, compared to replication fibres 
extracted from DMSO-treated NALM-6 cells (left) that incorporated both dyes.  
This indicates JQ1 perturbs replication fork progression. 

b) Four different replication structures could be derived from the measurement 
of both CIdU and IdU stained replication fibres. 

Treatment of cells with JQ1 causes an increase (~13%) in the proportion of 1st 
label terminations, which represent stalled replication forks.  
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3.3.3 Effect of JQ1 on apoptosis in ALL tumour cells 

Most therapeutic agents kill tumour cells via the induction of apoptosis, and the 

knowledge we have acquired regarding programmed cell death has allowed for 

the design of novel agents that specifically target malignant cells for killing more 

efficiently. The induction of apoptosis is considered to be an ideal mechanism of 

killing for novel agents, since apoptotic cells are removed in a very controlled 

manner via phagocytosis, as opposed to necrotic cell death, where cells lyse 

and release their contents into the extracellular space, triggering an 

unfavourable inflammatory response [245]. 

 

Our group previously reported that apoptotic resistance observed in primary 

ALL tumours in vitro following DNA damage correlates with high-risk patient 

stratification and a poor clinical response in vivo, indicating that overcoming this 

apoptotic resistance with novel agents could potentially improve the treatment 

outcome of high-risk patients [247]. Our group also reported that despite a 

normal damage-induced upregulation of p53 in the primary tumours tested, 

those resistant to apoptosis exhibited upregulation of multiple prosurvival 

pathways [248]. Deregulation of prosurvival pathways is often associated with 

the abnormal expression of antiapoptotic proteins such as Mcl-1, Bcl-2, as well 

as many of the IAP family members. Mcl-1, is a known therapeutic target in 

acute and chronic lymphoid malignancies [456], and is upregulated in many 

cases of relapsed ALL [457]. Deregulated expression of Bcl-2 is also reported to 

correlate with a poor response to chemotherapy in AML and CLL [458, 459]. 

The BIRC3 gene encodes the antiapoptotic protein cIAP2, which is frequently 
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overexpressed in Hodgkin lymphoma and many haematological malignancies 

including ALL [460, 461]. Overexpression of survivin, an antiapoptotic protein 

encoded by the BIRC5 gene, has been reported in primary ALL tumours and is 

associated with high risk of clinical relapse [462].  

 

Taking the above reported findings and the importance of understanding a 

therapeutic agent’s mechanism of cell killing, particularly when combined with 

other agents, I first determined whether or not JQ1 induced killing by apoptosis. 

I  used Annexin V / PI staining and flow cytometric analysis, and found that 

incubation of NALM-6 cells with 1 µM JQ1 for 72 hours revealed a differential 

increase (~11%; p < 0.01)  in the percentage of apoptotic cells compared to 

DMSO-treated control cells (Figure 3.24a). I then used the Western blotting 

technique to confirm this observation by treating preB-ALL cell lines with 1 µM 

JQ1 and probing for PARP1, procaspase-3 and procaspase-7 over a 96 hour 

timecourse. I found that JQ1 treatment led to cleavage of full-length PARP1, 

procaspase-3 and procaspase-7 proteins, as seen in the BCR-ABL1+ SUPB-15 

cell line at 72 hours, and in the REH cell line at the later timepoint of 96 hours 

(Figure 3.24b). Since procaspase-3 and -7 require cleavage in order to act as 

the effector caspases of apoptosis and induce cleavage of substrates such as 

PARP1, these results indicate that the cytotoxic effects of JQ1 activate the 

apoptosis pathway. The delayed onset of apoptosis seen in REH when 

compared to SUPB-15 may be a reflection of the less prominent JQ1 cytotoxic 

effects observed in experiments using ATP-based cytotoxicity assays.  
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Next, I wanted to further investigate the mechanism of apoptosis induction 

following JQ1 treatment in ALL cell lines by measuring p53 expression levels in 

the NALM-6 cell line with wild-type p53. I used Western blotting to measure the 

level of total p53 in NALM-6 cells treated with 1 µM JQ1 over a 72 hour 

timecourse. In this experiment I also included DMSO-treated NALM-6 cells as a 

negative control, and NALM-6 cells treated with 100 nM daunorubicin as a 

positive control for p53 upregulation and activation. I found that treatment with 

JQ1 did not cause upregulation of p53 protein throughout the timecourse, as 

seen in the DMSO control, and in contrast to the cells treated with the DNA-

damaging agent daunorubicin, where p53 upregulation occurred at 6 hours 

post-treatment and persisted up to 72 hours (Figure 3.25a).  

 

Subsequently, I tested for phosphorylation of p53 at Ser15, which is a 

phosphorylation site targeted by the mediators of the DNA damage response, 

ATR and ATM [463]. Phosphorylation of p53 at Ser15 leads to p53 

transactivation and p53-mediated transcription of genes involved in cell cycle 

arrest such as CDKN1A that encodes the p21 protein, as well as other genes 

involved in DNA repair and apoptosis [464-466]. Whereas treatment with 

daunorubicin led to phospho-p53 (Ser15) upregulation at 6 hours through to 72 

hours exposure (Figure 3.25a), I found that JQ1 and DMSO did not lead to the 

phosphorylation of p53 (Ser15). Similarly, JQ1 and DMSO failed to induce p21 

upregulation, whereas exposure to daunorubicin led to moderate p21 

upregulation after 6 hours, the levels of which continued to increase, peaking at 

48 hours, before decreasing again at 72 hours post- treatment (Figure 3.25a). 
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These results suggest that JQ1 induces via p53-independent apoptosis in ALL 

cells.  

 

Thus, to further elucidate the p53-independent mechanism of apoptosis induced 

in JQ1-treated NALM-6 cells, I decided to probe for four key anti-apoptotic 

proteins, Bcl-2, Mcl-1, BIRC3 (cIAP2), and BIRC5 (survivin) and look for any 

changes in expression of these proteins following JQ1 treatment. I found that 

following 24 hour exposure of NALM-6 cells to 1 µM JQ1, Mcl-1 expression 

levels decreased steadily until 96 hours and that no significant change was 

observed in the expression levels of Bcl-2 and cIAP2 (Figure 3.25b). However, 

the expression of survivin was completely lost within 48 hours of incubation with 

1 µM JQ1.  

Since I did not observe any significant impact of JQ1 on the transcription of 

BIRC5 in the microarray data, I addressed the possibility that the loss of survivin 

protein expression was due to protein degradation. Using Western blotting I 

measured the levels of survivin in NALM-6 cells treated with either DMSO, 1 µM 

JQ1, 10 µM MG132, or a combination of JQ1/MG132. I found that JQ1 

treatment alone caused complete downregulation of survivin, compared to no 

change in expression in cells treated with DMSO or MG132 alone (Figure 3.26). 

In contrast, treatment of NALM-6 cells with JQ1 combined with the proteasome 

inhibitor MG132 completely abolished the ability of JQ1 to downregulate 

survivin, as was seen with c-Myc protein expression.  
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3.3.4 Summary  

Taken together, in terms of cellular killing, I found that JQ1 treatment of ALL cell 

lines induced p53-independent apoptosis that involved the downregulation of 

the antiapoptotic protein survivin by modulating the stability of this protein at the 

post-translational level. 
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Figure 3.24: JQ1 induces caspase-dependent apoptosis in ALL tumour cells 

a) Annexin V/PI staining and FACS analysis shows differential induction of apoptosis in 
NALM-6 cells treated with 1 µM JQ1 over a 72h incubation period compared to DMSO-
treated control cells. 

b) Western blotting shows the induction of apoptosis in ALL cell lines SUPB-15 and 
REH as measured by cleavage of proteins PARP1, procaspase-3 and -7 over a 96hr 
incubation period with 1 µM JQ1. Actin was probed for as a loading control. 
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Figure 3.25: Induction of apoptosis by JQ1 involves a p53-independent 
mechanism 

a) Western blotting shows no evidence of either p53 upregulation, p53 phosphorylation 
or significant p21 upregulation in NALM-6 cells incubated with 1 µM JQ1 over 72hr. 
Treatment with the DNA-damaging agent daunorubicin (100 nM) induces expression of 
both total and phosphorylated p53, as well as the expression of the p53 target p21. 

b) Western blot shows that 24hr exposure of NALM-6 cells to 1 µM JQ1 leads to the 
downregulation of Mcl-1 protein expression levels, which decrease steadily until 96 
hours. The expression of survivin was completely lost within a 48hr incubation with 1 
µM JQ1. No significant change was observed in the expression levels of Bcl-2 and 
cIAP2 protein. Actin was used as a loading control. 
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Figure 3.26: Co-treatment of ALL tumour cells with JQ1 and the 
proteasome inhibitor MG132 abrogates JQ1-mediated downregulation of 
survivin  

JQ1 abolishes protein expression of survivin in NALM-6 cells, which is rescued 
following combined JQ1/MG132 treatment. This suggests the downregulation of 
survivin expression following JQ1 treatment is at the post-translational level. 
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3.4. Investigation of JQ1 activity in an ALL xenograft model 

 

Many murine models have been developed to aid our understanding of human 

cancer development and responses to novel therapies before they reach the 

clinic.  One of the most commonly used models is the human tumour xenograft, 

whereby human tumour cells are transplanted under the animal’s skin or into 

the organ type from which the human tumour cells originated from [467]. The 

recipient mice must be immunocompromised so that the human tumour cells 

are not rejected by the host immune system. Efforts to develop mouse strains 

with increased capacities for enhanced human tumour engraftment have led to 

the discovery and use of severe combined immunodeficiency (SCID) mouse 

strains. The NOG (NOD/Shi-scid/IL-2Rγnull) mouse is a more recently 

developed generation of SCID mice, accepting heterologous cells far more 

easily than other immunodeficient murine models such as the nude mouse and 

NOD/SCID mouse, since NOG mice have dyfuctional macrophage and dendritic 

cells, and lack T-, B- and NK-cell activity [468]. Depending on the number of 

cells injected, leukaemia cells typically engraft over a period of 8 weeks, in 

which time in vivo responses to specific therapies may be tested [469]. The 

greatest advantage of using a human tumour xenograft model is that tumours 

will consist of human and not mouse tumour cells, therefore maintaining the 

original human tumour’s molecular features including chromosomal 

abnormalities, whilst providing a more realistic representation of how effective 

the therapy would be if given to the patient [469, 470]. Indeed, studies looking at 

whether or not results from tumour xenograft models translated to responses 



 

173 
 

observed in the respective patients revealed a very high degree of predictive 

power both in the response to chemotherapeutic agents and resistance in 

patients [471]. Therefore, it is not surprising that cancer therapeutic agents are 

rarely clinically approved unless shown to exhibit anti-tumour activity in a 

preclinical in vivo mouse model [470]. 

Additional aspects to consider, when using murine models to investigate 

leukaemia, are that exposure to some drugs may impose selective pressure on 

leukaemic subclones or may target specific immunophenotypic subpopulations 

of cells more than others, causing a shift in the expression of 

immunophenotypic markers [472]. This phenomenon is sometimes observed in 

the clinic and creates difficulties in the monitoring of MRD to promptly predict 

the risk of relapse in patients receiving treatment [473, 474]. The CD34 marker 

is an antigen expressed in human haematopoietic stem cells and progenitor 

cells, with expression decreasing as the cell differentiates. Important studies in 

ALL have provided evidence to support the existence of disease-propagating 

pre-leukaemic stem cells that evolve through the acquisition of additional 

genetic abnormalities [475-478]. This is also supported by studies in paired 

relapse and diagnostic primary ALL samples, which provide evidence for the 

selection of leukaemic stem cells with acquired additional abnormalities [80, 

479].  

In hindsight, the fact that the proportion of leukaemic subpopulations are subject 

to change and the evolving pre-leukaemic stem cell is likened to a constantly 

moving therapeutic target [480], highlights the importance in monitoring 



 

174 
 

subpopulations by measuring expression of surface markers when testing 

therapeutic agents in animal studies.  

 

Since JQ1 exhibited potent anti-tumour activity in xenograft models of AML and 

NUT midline carcinoma, and I observed JQ1 cytotoxic effects against ALL in 

vitro, I decided it was appropriate to begin testing the efficacy of JQ1 in vivo 

using the ALL xenograft mouse model our group has developed. 

 

To address JQ1 activity in vivo, I performed two separate experiments using 

ALL xenograft models; one using an in vitro JQ1-sensitive ALL cell line, and the 

other using a JQ1-sensitive primary ALL tumour. 

 

3.4.1 Investigating JQ1 activity in a NALM-6 xenotransplant 

model 

The first experiment involved the subcutaneous injection of NALM-6 cells into a 

cohort of 16 NOG mice. Once tumours were visible, with the help of a colleague 

from our group (Tracey Perry), animals received either 50mgkg-1 JQ1 (n=8) or 

vehicle alone (n=8) via intra-peritoneal (IP) injection for 5 days per week, for a 

period of 2 weeks. The tumour volume was then measured manually three 

times a week using callipers.  

I found that animals receiving JQ1 showed a significant reduction in tumour 

growth over a 10-week period compared to animals treated with vehicle over 

the same period of time (Figure 3.27) (p<0.05) 
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Figure 3.27: JQ1 prevents proliferation of ALL tumour cells in vivo  

An unpaired, 2-tailed t-test was used to compare the differences between vehicle (n=8) 
and JQ1 treated animals (n=8), with error bars representing the standard deviation.  
 
a) Subcutaneous NALM-6 tumours show a significant impairment in growth when 
treated with 50mg/kg JQ1 over a 2 week time period compared to tumours treated with 
vehicle. This was significant at p<0.05 
b) The difference in tumour size is shown in the photograph of two representative 
animals, treated with vehicle (left) and 50mg/kg JQ1 (right). 
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3.4.2 Investigating JQ1 activity in ALL-105 xenotransplant 

model 

The second experiment involved the development of a xenograft model of an 

apoptotic-resistant, MRD high-risk, but JQ1-sensitive primary B precursor ALL 

(ALL-105), in a cohort of 14 NOG mice. Once animals had been injected with 

ALL-105 primary tumour cells (again with the kind help of Tracey Perry), the 

level of engraftment was monitored by measuring the percentage of human 

CD45 (hCD45) cells by weekly blood sampling and flow cytometric analysis. 

Once the levels of hCD45 reached 1%, treatment commenced. After 4 weeks of 

treatment with either JQ1 or vehicle, flow cytometric analysis was used to 

measure the overall tumour load in the spleens of engrafted animals, as well as 

the frequency of specific ALL progenitor populations. 

Furthermore, I found that engrafted spleens from animals treated with JQ1 

showed a significant reduction in tumour load compared to spleens from 

animals treated with vehicle (p<0.001). This was represented by a reduction in 

mean spleen weight, and reduction in spleen size in JQ1-treated animals 

(Figure 3.29).   

I found that the level of hCD45-positive cells in all animals treated with vehicle 

exceeded the recommended experimental endpoint of 25% hCD45 by 28 days, 

whereas levels of hCD45 in samples taken from animals receiving JQ1 

treatment were maintained below 25% throughout a period of 49 days (the end 

of the experiment) (Figure 3.28).  
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flow cytometric analysis revealed three ALL subpopulations in the engrafted 

leukaemia, CD34+CD19+CD10-, CD34+CD19+CD10+ and CD34-

CD19+CD10+, that had the capacity to proliferate in vivo. Although the 

malignant origin was uncertain, a small percentage of CD34-CD19+CD10- cells 

were also detected in engrafted spleens. I observed a JQ1-induced reduction in 

all three ALL progenitor subpopulations, with the greatest reduction being 

exerted on CD34+CD19+CD10+ subset of ALL cells (Figure 3.30).  I observed 

a slight increase in the frequency of CD34-CD19+CD10- cells in JQ1-treated 

animals in comparison to vehicle-treated animals, suggesting either differentially 

lower sensitivity of mature progenitors or differentiation of blast cells induced by 

JQ1. 

 

Finally, I found that the mean body weight of animals treated with JQ1 did not 

significantly differ from those receiving vehicle during a 28 day period and did 

not exceed the recommended experimental endpoint of 15% loss in body 

weight (Figure 3.31). This indicated that the JQ1 compound was well tolerated 

by the animals and did not cause a significant deterioration in their health. 

3.4.3 Summary 

In conclusion, the data obtained from these animal studies confirmed that JQ1 

confers anti-tumour activity in vivo. This was demonstrated by a clear reduction 

of tumour growth and leukaemia burden in JQ1-treated animals compared to 

those treated with vehicle. Data analysis also revealed that JQ1 eliminates all 

ALL progenitor subpopulations, with the greatest effect seen in 

CD34+CD19+CD10+ cells. 
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Figure 3.28: JQ1 prevents proliferation of apoptosis-resistant primary ALL 
tumour cells in vivo  
 
a) Graph shows %hCD45 in vehicle-treated ALL-105 engrafted NOG mice. All 
vehicle-treated mice exceeded the experimental endpoint of 25% hCD45 by 28 
days.  
 
b) Graph shows %hCD45 in ALL-105 engrafted NOG mice treated with JQ1. 
The level of %hCD45 was maintained below 25% throughout a period of 49 
days. 
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Figure 3.29: JQ1 treatment leads to reduced leukaemic burden in an ALL 
xenograft mouse model (ALL-105) 
 
In a xenograft of a representative apoptosis-resistant primary ALL-105, animals 
treated with JQ1 (n=7) showed a significant reduction in tumour load compared 
to spleens from animals treated with vehicle (n=7). 
 
This was represented by a reduction in mean spleen weight (p<0.001) (left), 
and reduction in spleen size (right) in JQ1-treated animals. The spleen size of 
the animals treated with JQ1 was representative of the spleen size seen in 
healthy control mice.  
 
An unpaired, 2-tailed t-test was used to compare the differences between 
vehicle and JQ1 treated animals, with error bars representing the standard 
deviation. 
 

Vehicle 
(control)

JQ1



 

180 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.30: JQ1 eliminates multiple ALL subpopulations in vivo 

Flow cytometric analysis of murine spleens engrafted with ALL-105 reveals that 
JQ1-treated animals show reduction in ALL subpopulations: 
CD34+CD19+CD10-, CD34+CD19+CD10+ and CD34-CD19+CD10+, and a 
relative increase in the CD34-CD19+CD10- population. 

An unpaired, 2-tailed t-test was used to compare the differences between 
vehicle and JQ1 treated animals, with error bars representing the standard 
deviation. 
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Figure 3.31: JQ1 is well tolerated in an ALL xenograft mouse model 

NOG mice engrafted with ALL-105 and treated with either vehicle or JQ1 were 
weighed on days 0, 14, 21 and 28.  

Total body weight of mice receiving either treatment did not fluctuate 
significantly or reduce by 15% (experimental endpoint). This suggests JQ1 is 
well tolerated in vivo. 
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4. RESULTS II: THE PIM2 KINASE AS A CANDIDATE 

FOR FURTHER STUDY  

 

4.1. Investigation of PIM kinases as potential targets in the 

treatment of precursor B-cell ALL 

PIM kinases are expressed in a wide range of leukaemia and lymphomas, and 

have been positively associated with a poor treatment prognosis [481-484]. 

However their role in precursor B-cell ALL has not yet been explored. 

As described in section 1.10.3, recent studies have demonstrated that the PIM 

kinases play an important role in the regulation of gene transcription by 

promoting specific histone acetylation events required for the docking of BET 

proteins, such as BRD4, to histones within transcriptionally active chromatin 

[386, 387]. This in turn allows for the recruitment of the P-TEFb complex, which 

is essential for the release of RNA polymerase II from promoter-proximal pause 

sites and subsequent transcript elongation [388].  

In light of my results described in Chapter 3 that show BET proteins are 

associated with the transcriptional upregulation of multiple prosurvival pathways 

in ALL, I hypothesised that PIM kinases serve as an alternative means by which  

prosurvival signalling pathways are kept switched on and that consequently, 

targeting PIM kinases can induce apoptosis in ALL tumour cells. 
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Indeed, in support of this hypothesis, further analysis of the microarray results 

presented in this study, in which I ranked the fold-change in gene expression 

(as opposed to basal expression levels) in JQ1-treated primary ALL tumours 

according to EC50 values derived from in vitro cytotoxicity experiments, showed 

that upregulation of the PIM2 gene in response to JQ1 treatment was strongly 

associated with JQ1-resistant tumours (Appendix 3). This suggests that PIM 

proteins might compensate for the pharmacological inhibition of BET protein 

activity, and confer resistance to JQ1. 

I therefore proceeded to investigate whether PIM kinases were important in the 

pathogenesis of B-ALL, and posed as a viable therapeutic target for future 

studies.  
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4.1.1. Method validation for the screening of primary ALL 

tumours for PIM expression 

I first wanted to identify the most practical method by which to measure the 

frequency of PIM kinase expression in primary pre-B ALL tumours, whilst using 

a limited amount of primary tumour material. 

Since I had access to RNA samples extracted from a cohort of 68 primary ALL 

tumours, and PIM expression is reported to be regulated at the transcriptional 

level [385, 485], I decided to validate the qRT-PCR technique for the indirect 

screening of primary ALL tumours for PIM protein expression.  

I began by testing the primers I designed to detect PIM1 and PIM2 transcripts 

on a panel of 7 primary ALL RNA samples (ALL-201, ALL-204, ALL-210, ALL-

213, ALL-217, ALL-232 and ALL-240). I did not measure PIM3 transcript levels 

as this gene is not associated with haematopoiesis.  

I found that for each RNA test sample, the primer sets for both PIM genes 

amplified a single product at the expected molecular weight (Figure 4.1 a & b). 

Sequencing of the amplified PCR products also confirmed that they aligned to 

PIM1 and PIM2 mRNA sequences. These results showed that the PIM primer 

sets were specific and could be used in further experiments. 

Using qRT-PCR and Western blotting, I then decided to test whether PIM gene 

expression correlated with PIM protein expression levels in a panel of 7 

leukaemia cell lines (REH, NALM-17, SD1, Kasumi, Jurkat, CEMC1 and K562). 

In contrast to the REH, NALM-17, Jurkat and CEMC1 cell lines that did not 

express PIM, I found that both PIM1 and PIM2 were expressed at the RNA and 
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protein level in Kasumi, SD1 and K562 cell lines (Figure 4.2 a & b). I detected 

two PIM1 protein isoforms (33 kDa and 44 kDa) and three PIM2 isoforms (34, 

38 and 40 kDa), with the 38 and 40 kDa PIM2 isoforms being expressed at 

higher levels to that of the 34 kDa isoform. Although studies have shown that 

both PIM1 isoforms retain kinase activity, the kinase activity of PIM2 isoforms 

has been shown to negatively correlate with molecular weight, with the largest 

40 kDa isoform showing the least kinase activity [380]. Since each of the PIM 

isoforms retains kinase activity, I wanted each isoform to be detected in the 

qRT-PCR PIM expression screen; thus I made sure to design primers that 

amplified regions of the PIM genes that were common to all PIM1 and PIM2 

isoforms. 

Importantly, I observed a correlation between PIM2 mRNA and protein 

expression in leukaemia cell lines (Figure 4.2 a & b).  In contrast, PIM1 mRNA 

expression did not correlate with PIM1 protein expression, since the difference 

in PIM1 protein expression in SD1 and K562 cell lines was not proportionate to 

the difference observed at the mRNA level in the same cell lines. This suggests 

that post-translational modification of PIM1 and modulation of its stability may 

be occurring, as is described in the literature [361].  

Taken together, these results confirm that measurement of PIM2 mRNA by 

qRT-PCR is a suitable method by which to indirectly and efficiently measure 

PIM2 protein expression, as opposed to the measurement of PIM1, which may 

prove to be inaccurate given the regulatory post-translational mechanisms of 

PIM1 protein expression. 
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Figure 4.1: Confirmed specificity of PIM1 and PIM2 primer sets 

PCR reactions were set up to test the a) PIM1 and b) PIM2 primer sets. cDNA 
synthesised from total RNA samples from a panel of 7 primary ALL tumours 
(ALL-201, ALL-204, ALL-210, ALL-213, ALL-217, ALL-232 and ALL-240) was 
used to prepare the PCR reactions. Reactions were prepared using the 
FastStart PCR system (Roche) and were set to 45 amplification cycles, with an 
annealing temperature of 60°C.  

The primer sets used to amplify the PIM1 and PIM2 target sequence produced 
a single product in all the RNA samples tested, with products being of the 
expected size. 

a) 

b) 
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Figure 4.2: Correlation between PIM mRNA expression and protein 
expression 

a) cDNA was synthesised from total RNA extracted from a panel of 7 leukaemia cell lines 
(Kasumi, Jurkat, CEMC1, REH, NALM-17, SD1 and K562). Graph represents PIM1 and PIM2 
mRNA expression relative to the expression levels in normal B-cells as quantified by qRT-PCR.  
Ct values were normalised to β-actin mRNA 

b) Graph represents PIM1 and PIM2 protein expression levels in the same panel of cell lines as 
above, detected by Western blotting. PIM kinase isoforms were also detected. Actin was used 
as a loading control. 

A correlation between mRNA and protein expression exists for PIM2 but not PIM1. 

a) 

b) 
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4.1.2. PIM expression screen of a cohort of primary ALL tumour 

samples  

I showed in section 4.1.1. that measurement of PIM2 RNA expression by qRT-

PCR can be used to indirectly measure PIM2 protein levels, given that PIM2 

protein is constitutively active once expressed and is not regulated by post-

translational modification [380]. I therefore proceeded to screening a cohort of 

68 primary ALL tumour RNA samples for PIM2 expression. 

Using the level of PIM2 RNA expression in that of the PIM-expressing cell line 

K562 as a marker for high expression, I found that PIM2 was highly expressed 

in 17/68 (25%) RNA tumour samples (Figure 4.3). In addition, I screened a 

small independent cohort of primary ALL tumours for PIM2 protein by Western 

blotting and confirmed that PIM2 was highly expressed in 2/7 (28.6%) (Figure 

4.4), which corroborates the calculated frequency of PIM2 overexpression in B-

precursor ALL derived from qRT-PCR data. However, it is likely that more 

tumours express significant levels of PIM2 protein, since the calculated 

frequencies of high PIM2 expression are based on a comparison to K562 that 

expresses high levels of this kinase.  

I next wanted to see if PIM2 expression could be associated with clinical 

features in pre-B ALL. I decided to designate ALL tumours as PIM-2 positive 

and PIM2-negative if they expressed ≥50% or <50% PIM relative to K562, 

respectively. Using the available clinical information corresponding to the cohort 

of 68 RNA samples analysed, I found that there was no association between 

PIM2 expression and patient age or gender. I also found no difference in the 
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cytogenetic repertoire between PIM2-positive and PIM2-negative tumours, 

suggesting that PIM2 expression was not associated with cytogenetic features 

conferring a poor treatment prognosis. 

To determine whether PIM2 expression influenced patient response to 

treatment, I checked whether PIM2 expression influenced patients’ responses 

at Day 8 of treatment with respect to blast clearance. I found that there was a 

positive trend between PIM-2 positive tumours and poor blast clearance (Figure 

4.5, top)  

I then looked at whether PIM2 expression influenced MRD at Day 28 of 

treatment and found that PIM2-positive tumours were associated with positive 

MRD (Figure 4.5, bottom), suggesting that PIM2 expression may be associated 

with chemoresistance.   

Overall, PIM2 appears to be overexpressed in over a quarter of primary ALL 

tumours and may influence chemoresistance in vivo.  
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Figure 4.3: qRT-PCR screen for PIM2 expression in a large cohort of pre-B 
ALL tumours  

A large cohort of primary ALL tumour RNA samples (n=68) were screened for PIM2 
expression by qRT-PCR. Graph represents PIM2 mRNA expression relative the 
expression K562.  

This shows PIM2 is overexpressed in 17/68 (25%) of B-precursor ALL tumours. 
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Figure 4.4: PIM2 is expressed at the protein level in primary pre-B ALL 
tumours  

Western blotting was used to screen for PIM2 protein in a panel of primary ALL 
tumours (n=7). Actin was used as a loading control. 

PIM2 protein is expressed in 2/7 (28.6%) of primary ALL tumours. 
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Figure 4.5: Influence of PIM2 expression on patient response to treatment  

A positive trend towards an association between high-PIM2 expression and poor early 
response to treatment at day 8 is shown (top) (11.8 vs. 22.2%; p=0.5906).  

A positive trend towards an association between high-PIM2 expression and MRD 
positivity at day 28 is shown (bottom) (45.5% vs. 64.7%; p=0.3340). 

Due to the small number of tumour sample for which clinical information was available, 
statistical significance was not observed. However, this may be improved by extending 
this cohort in further studies. 

(GER, good early response; PER, poor early response; MRD, minimal residual 
disease) 

GER
PER

Blast clearance (Day 8)

Low PIM2 High PIM2 

MRD neg.
MRD pos.

MRD (Day 28)
Low PIM2 High PIM2 

88.2%

11.8%

77.8%

22.2%

54.5%

45.5% 35.3%

64.7%
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4.1.3 In vitro cytotoxic effect of K00135-mediated inhibition of 

PIM kinases in ALL cell lines and primary tumours 

Since a significant proportion of primary ALL tumours overexpressed PIM2, I 

decided to use a luminescent ATP-based cytotoxicity assay to investigate the 

effect of PIM kinase inhibition on the cell viability of a panel of leukaemia cell 

lines (SD1, REH, Jurkat and K562) using the PIM inhibitor K00135 [391]; an 

imidazo[1,2-b]pyridazine derivative kindly provided to me by our collaborator 

Prof. Stefan Knapp. Cell viability was measured 72 hours following exposure to 

increasing concentrations of the K00135 inhibitor alone.  

I also addressed K00135-mediated cytotoxicity in a panel of 11 primary B-

precursor ALL tumours that were identical to some of the tumour samples 

tested in JQ1 experiments (Section 3.1.2), but independent of the primary ALL 

tumour cohort screened for PIM2 expression by qRT-PCR in section 4.1.2. 

Additionally, I tested for cytotoxic effects of K00135 on healthy non-tumour 

PBMCs, to determine whether any observed cytotoxic effects were tumour-

specific. 

I found that the treatment of the PIM1- and PIM2-expressing SD1 ALL cell line 

with K00135 induced cytotoxic effects in a dose-dependent manner (EC50 5.4 

µM) (Figure 4.6; Table 4.1). Similarly, the induction of cytotoxicity was observed 

in K562 cells (EC50 19.3 µM), which were much less sensitive to the effects of 

K00135 treatment when compared to SD1 cells, despite the K562 cell line 

exhibiting the greatest PIM kinase overexpression of the leukaemia cell lines I 

tested (Figure 4.2b). As expected, the NALM-17 cell line that expressed very 
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low levels of PIM protein, was not sensitised following K00135 treatment (EC50 

>100 µM). However, REH and Jurkat cell lines, which did not express any 

detectable PIM proteins (Figure 4.2a & b), appeared to be sensitised to K00135 

treatment (REH EC50 10.2 µM and Jurkat EC50 4.6 µM). This suggests that 

K00135-induced cytotoxicity observed in the leukaemia cell lines not expressing 

PIM protein may be due to off-target effects, despite the K00135 inhibitor having 

been shown to exert selective antileukaemic activity in several AML cell lines 

and primary AML tumours [391].  

With respect to primary ALL tumours, I found that treatment of tumour cells with 

K00135 over a 48 hour incubation period led to dose-dependent induction of 

cytotoxicity, with a range of sensitivity to K00135 being observed (Figure 4.7; 

Table 4.2). Three tumours (ALL-103, ALL-104 and ALL-111) demonstrated 

increased sensitivity to K00135 compared to the rest of the tumours tested in 

this panel, with 30% (3/10) tumours showing EC50 values <5 µM, compared to 

70% (7/10) tumours that had EC50 values >5 µM. Importantly, similar treatment 

of healthy PBMCs did not demonstrate sensitivity to K00135 (EC50 >10 µM).  

As primary tumour material was limited, I aimed to make good use of the 

information I had already obtained from previously analysed tumours. Thus, I 

referred to the microarray data from my studies involving JQ1 to derive PIM2 

basal expression levels in the primary tumours I had treated with K00135 

(Figure 4.8), since K00135-treated tumours were largely the same primary ALL 

tumours I had used to test for JQ1 cytotoxicity and I had also confirmed in 

section 4.1.1. that PIM2 transcript levels correlate with PIM2 protein levels.  
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Intriguingly, I found that at a clinically achievable concentration of 1 µM K00135, 

ALL-103 tumour cells, which expressed one of the highest levels of PIM2 in this 

panel of ALL tumours (table 4.2), was the most sensitive to the cytotoxic effects 

of K00135. In contrast, the primary ALL tumour with the lowest expression of 

PIM2 (ALL-106) was the least K00135-sensitive tumour of all the tumours 

analysed. A further observation was that ALL-105 expressing high levels of 

PIM2 was not sensitised to K00135, suggesting some tumours may be 

inherently resistant to the effects of PIM kinase inhibition.  

Overall, the specificity with which K00135 targets PIM kinases in the leukaemia 

cell lines I tested remains largely unknown, since I observed cytotoxic effects of 

K00135 in two ALL leukaemia cells lines not expressing PIM kinases. This may 

be due to cross-reactivity of K00135 with one other kinase (CLK1), as has been 

reported [486]. However, similar to BET inhibition, Pim kinase inhibition by 

K00135 induces differential cytotoxicity in primary ALL tumour cells compared 

to normal healthy PBMCs. Importantly, some primary tumours also appear to be 

resistant to K00135 treatment, despite expressing high levels of PIM2. 
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Figure 4.6: K00135-induced cytotoxicity in a panel of leukaemia cell lines  

Effects of K00135 treatment on the cell viability of B-precursor ALL cell lines 
REH, NALM-17, Jurkat, and SD1 were measured at 72hr using a luminescent 
ATP-based cytotoxicity assay. The CML cell line K562 is confirmed as being 
sensitive to the cytotoxic effects of PIM-inhibition [487], and was therefore 
included as a positive control. Assays were performed in triplicate. Data are 
presented as mean ± SEM; n=3. 

Apart from the NALM-17 cell line, which shows resistance to the cytotoxic 
effects of K00135, ALL cell lines (REH, Jurkat, SD1) show increased 
sensitisation to K00135 compared to the CML K562 cell line.  
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Table 4.1: Half-maximum-effect concentrations (EC50) calculated for a 
panel of leukaemia cell lines treated with K00135 inhibitor  

JQ1 EC50 values were calculated for REH, NALM-17, Jurkat, SD1, and K562 
using the Prism 4 software package (GraphPad Inc.), which were derived from 
data values obtained for each cell line in cytotoxicity experiments following 72hr 
incubation of cells with a log-scale range of K00135 concentrations.  

With the exception of NALM-17 cells, which show overt resistance to K00135 
(EC50 398.4), ALL cell lines are sensitised to the cytotoxic effects of K00135 
EC50 4.6-10.2 µM), with K562 positive control cells being less sensitive to 
K00135-induced cytotoxicity (EC50 19.3 µM). 
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Figure 4.7: K00135-induced cytotoxicity in a panel of primary ALL tumours  

Effects of K00135 treatment on the cell viability of B-precursor ALL cell lines 
REH, NALM-17, Jurkat, and SD1 were measured using a luminescent ATP-
based cytotoxicity assay. 

Compared to PBMCs obtained from healthy individuals (n=3), representative 
primary ALL tumours show a differential loss of viability upon 48hr incubation 
with 0.1 and 1 µM JQ1. Data are presented as mean ± SD. 

 



 

200 
 

 

Table 4.2: Half-maximum-effect concentrations (EC50) calculated for a 
panel of primary ALL tumours treated with K00135 inhibitor. 

Calculated median EC50 values were derived from cytotoxicity experiment data, 
where primary tumours were treated with a range of log-scale K00135 
concentrations for 48hr. 

Compared to PBMCs obtained from healthy individuals (n=3), a total of 7 
representative primary ALL tumours (ALL-103, ALL-104, ALL-108, ALL-109, 
ALL-110, ALL-111 and ALL-113) show a differential loss of viability following 
48hr exposure to K00135 (EC50 values <10 µM). 

A total of 3 primary ALL tumours (ALL-105, ALL-106 and ALL-112) exhibit 
resistance to the cytotoxic effects of K00135 (EC50 >40 µM), with ALL-105 
showing the greatest resistance (EC50 4892 µM). 
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Figure 4.8: PIM2 expression in primary ALL tumours analysed in 
cytotoxicity experiments involving the K00135 inhibitor 

PIM2 expression levels in tumours tested for sensitivity to K00135-induced 
cytotoxicity (section 4.1.3) were derived from JQ1 microarray data presented in 
section 3.2.2, as these were the same tumours. 

The graph represents PIM2 mRNA expression relative to expression levels in 
ALL-106. Tumours are arranged from low to high PIM2 expression.  
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4.2. Identification of gene expression patterns associated with 

PIM2 expression in primary B-precursor ALL tumours 

As previously described in section 1.10.3, studies have shown that the PIM1 

kinase promotes transcriptional pause release of stalled RNA Pol II, through a 

mechanism involving the BET protein BRD4 [488].  The role of other PIM kinase 

family members in regulating transcription has not yet been elucidated. 

However, given the high degree of amino acid sequence homology between 

PIM1 and PIM2 [362], it is possible that PIM2 may influence the expression of a 

distinct subset of genes. 

Furthermore, results from cytotoxicity experiments (section 4.1.3.) indicate that 

the PIM inhibitor K00135 leads to differential sensitisation of a subset of primary 

ALL tumours, and that in the majority of tumours this effect depends on PIM2 

expression. Thus, I decided to investigate the transcriptional profiles of primary 

ALL tumours associated with high and low levels of PIM2 expression to identify 

potential PIM2-regulated genes and pathways.  

I did this by reanalysing microarray data previously obtained from our lab from 

22 individual primary ALL tumours, which harboured a range of cytogenetic 

features and included several tumours derived from patients in the high-risk 

stratification group. With the help of a statistician (Dr. Wenbin Wei), I ordered 

tumours according to their baseline level of PIM2 gene expression, and then 

selected the top 100 genes most significantly associated with PIM2 expression 

using the Spearman’s rank correlation coefficient [489]. 
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Using this approach, I found that high PIM2 expression was associated with the 

upregulation of 33 genes, including multiple NFκB transcription factor target 

genes (XIAP, TNFAIP3, NLRP3 and CD48), as well as TIMP1, HYOU1 and 

UBA1 (Figure 4.9). 

The NFκB target gene XIAP encodes a member of the IAP family of apoptotic 

inhibitors [490], and is frequently overexpressed in a variety of malignancies, 

including leukaemias and lymphomas [491, 492]. It has been shown to be one 

of the most potent suppressors of apoptosis induced by a wide range of agents, 

such as TNF, TRAIL, Fas-L, staurosporine, paclitaxel and etoposide [493, 494]. 

Furthermore, the expression of XIAP has been shown to correlate with a poor 

clinical outcome in DLBCL [491]. 

Another gene associated with the overexpression of PIM2 was the tissue 

inhibitor of metalloproteinase 1 (TIMP1) gene, which is a STAT3 target gene 

that has been shown to be overexpressed in a spectrum of tumour types, and is 

frequently associated with an aggressive clinical phenotype [495-500]. 

The hypoxia up-regulated 1 (HYOU1) gene was also positively associated with 

PIM2 expression and has previously been shown to be overexpressed in 

prostate cancer and confer chemotherapeutic resistance via a mechanism 

involving the inhibition of caspase-dependent apoptosis [501, 502]. 

Upregulation of the UBA1 gene encoding the ubiquitin-activating enzyme UBA1 

(E1) was another gene I found to be associated with high PIM2 expression. The 

E1 enzyme initiates the multi-step proteasomal pathway of protein degradation 

by conjugating a single ubiquitin molecule to proteins, which are then further 
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ubiquitinated by other ubiquitin-conjugating enzymes, and consequently 

degraded [503, 504]. Whereas polyubiquitinated proteins are destined for 

proteasomal degradation, monoubiquitination of proteins has been shown to 

regulate gene transcription and DNA repair [505, 506]. Interestingly, recent in 

vivo studies using an AML primary xenograft mouse model have demonstrated 

that E1 activity is significantly upregulated and that its inhibition leads to 

targeted malignant cell death and delayed tumour growth [507]. 

I also identified a significant association between the downregulation of 67 

genes and high PIM2 expression (Figure 4.10). These included DNA repair 

genes such as MLH3 and XRCC2, which encode protein key to the regulation of 

mismatch repair (MMR) and homologous recombination (HR), respectively. 

Studies have shown that downregulation of the MLH3 gene is observed in 

hereditary nonpolyposis colorectal cancer (HNPCC), ALL, CLL and malignant 

lymphoma [508-514], and is associated with an increased rate of spontaneous 

mutation and instability of microsatellites [515]. With respect to the XRCC2, a 

lack in XRCC2 gene expression is associated with fragmentation of the 

centrosome and increased genomic instability [516]. Furthermore, decreased 

expression of this gene has been shown to promote tumourigenesis following 

DNA damage, as other less accurate DNA repair mechanisms are activated 

instead, introducing a higher rate of misrepaired DNA lesions [517]. Thus, 

XRCC2 is recognised as a tumour suppressor gene.  

Interestingly, I found that high PIM2 expression was associated with 

downregulation of the POLH gene encoding DNA polymerase eta (Pol η) that is 

also involved in the accurate repair of DNA, particularly translesion synthesis of 
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DNA damage caused by ultraviolet radiation [518]. Subsequently, decreased 

Pol η expression is linked to an increased risk of malignant melanoma [519].  

Intriguingly, studies have also confirmed an association between deficiencies in 

Pol η and hypermutation occurring during immunoglobulin class switch 

recombination [520]. In addition, Pol η is targeted to stalled replication 

machinery and forms a complex with proliferating cell nuclear antigen (PCNA) 

and replication factor C (RFC) [521]; the latter of which is known to interact with 

the BET protein BRD4, as mentioned in section 1.10.3.  

In addition, I found that downregulation of the RPL5 gene correlated with high 

PIM2 expression, of which the ribosomal protein product has been shown to 

block cell growth by enhancing tumour suppressor p53 activity in response to 

ribosomal stress during protein synthesis [522]. 

Next, I decided to use GSEA on the same microarray data to identify subtle 

associations between biological signalling pathways and PIM2 expression in B-

precursor ALL tumours [403]. I identified 38 gene sets upregulated in PIM2-

expressing ALL tumours that were significantly enriched at a false discovery 

rate (FDR) <25%.  

This included gene sets representing pathways that regulate gene transcription, 

the cell cycle, DNA replication, ribosome assembly, protein translation, 

proteasomal degradation and PI3K/Akt prosurvival signaling (Table 4.3).  

Intriguingly, with regards to gene transcription, the expression of PIM2 was 

significantly associated with the upregulation of several basal transcription 

factor genes. The basal transcription factors (TFIIA, TFIIB, TFIID, TFIIE, TFIIF 



 

206 
 

and TFIIH) are proteins essential to RNA Pol II-mediated gene transcription and 

form protein complexes that constitute the pre-initiation complexes at gene 

promoters [523-527]. The basal transcription factors then promote the binding of 

RNA Pol II to DNA, and also ensure that promoter escape and entry into the 

transcript elongation phase takes place [523, 527, 528]. 

Furthermore, GSEA highlighted multiple pathways encompassing the DNA 

replication process. For example, tumours expressing high levels of PIM2 were 

associated with the upregulation of pathways that regulate interaction of the 

origin recognition complex (ORC) with replication origins, which are where DNA 

replication initiates from during the S-phase of the cell cycle [529, 530]. I will 

therefore be interesting to confirm whether PIM2 has a direct impact on DNA 

replication in future studies. 

In contrast, I did not identify any statistically significant gene sets that negatively 

correlated with PIM2 expression. 

Overall, the results I obtained from reanalysis of microarray data previously 

obtained in our lab suggest a link between PIM2 expression and the 

upregulation of prosurvival (NFκB and PI3K signaling) and anti-apoptotic 

pathways. Furthermore, results indicate PIM2 is positively associated with the 

expression of genes involved in the regulation of gene transcription, cell 

proliferation, DNA repair, DNA replication and protein translation. However, at 

this stage it is not possible to specify whether these pathways are up- or 

downstream of PIM2 activity.  
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Particularly interesting, is the observation that many of the pathways and 

biological processes associated with PIM2 expression, such as upregulated 

NFκB pathway activity and anti-apoptotic pathway signaling, gene transcription 

and DNA replication, overlap with those downregulated following the inhibition 

of BET proteins, suggesting this overlap may be contributing to the resistance to 

K00135 and JQ1 observed in some tumours. 
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Figure 4.9: Re-analysis of global gene expression data identifies a positive 
correlation between the expression of a specific subset of genes and PIM2 
expression in primary ALL tumours 

Microarray data previously obtained in our lab [247] was re-analysed to look for 
associations between PIM2 expression and specific genes in pre-B ALL. A total of 22 
tumours were ordered from low to high PIM2 gene expression (PIM2 gene indicated by 
arrow). 

Transcript expression heat-map was generated using dChip (http://www.dchip.org/) 
with the default settings, and shows a subset of genes with the strongest positive 
correlation with PIM2 expression, determined using Spearman’s rank correlation 
coefficient statistical analysis (coefficient ≥0.6; p<0.05). 
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Figure 4.10: Re-analysis of global gene expression data identifies a 
negative correlation between the expression of a specific subset of genes 
and PIM2 gene expression in primary ALL tumours 

Microarray data previously obtained in our lab [247] was re-analysed to look for 
associations between PIM2 expression and specific genes in pre-B ALL. Tumours were 
ordered from low to high PIM2 gene expression (PIM2 gene indicated by arrow). 

Transcript expression heat-map was generated using dChip (http://www.dchip.org/) 
with the default settings, and shows a subset of genes with the strongest negative 
correlation with PIM2 expression, determined using Spearman’s rank correlation 
coefficient statistical analysis (coefficient ≥0.6; p<0.05). 

           

  

PIM2
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Table 4.3: GSEA pathways positively associated with PIM2 gene 
expression in primary ALL tumours 

GSEA results were obtained from the re-analysis of gene expression data 
previously obtained in our lab [247], and derived from the analysis of 22 DMSO-
treated primary ALL tumours. Tumours were ranked in order of low to high PIM2 
expression.  

Spearman’s rank correlation coefficient was used to identify pathways and 
biological processes most strongly associated with PIM2 expression (coefficient 
≥0.6; p<0.05). 

The pathways listed above are significant at FDR <0.25 (<25%). 

 

Gene Set Size FDR q-val

ORC1 REMOVAL FROM CHROMATIN 62 0.02

CELL CYCLE CHECKPOINTS 102 0.03

CDT1 ASSOCIATION WITH THE CDC6 ORC ORIGIN COMPLEX 51 0.04

CDC20 PHOSPHO APC MEDIATED DEGRADATION OF CYCLIN A 59 0.06

AUTODEGRADATION OF CDH1 BY CDH1 APC 53 0.07

CELL CYCLE MITOTIC 283 0.09

CD28 DEPENDENT PI3K AKT SIGNALING 17 0.11

PROTEASOME PATHWAY 19 0.11

p53-INDEPENDENT DNA DAMAGE RESPONSE 43 0.11

EIF PATHWAY 15 0.17

BASAL TRANSCRIPTION FACTORS 31 0.21

PEPTIDE CHAIN ELONGATION 83 0.23
GTP HYDROLYSIS AND JOINING OF THE 60S RIBOSOMAL 
SUBUNIT 103 0.23

RIBOSOME 85 0.24

VIRAL MRNA TRANSLATION 83 0.25

PROTEIN TRANSLATION 117 0.25
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4.3. Cellular effects of K00135 on ALL tumour cells 

4.3.1. Investigating the effect of K00135 on c-Myc expression 

As mentioned in Chapter 1, the c-Myc transcription factor plays a major role in 

the regulation of cell proliferation, growth and differentiation, and is deregulated 

in a wide range of leukaemias and lymphomas [343]. Importantly, studies using 

bitransgenic mice overexpressing either PIM1 or PIM2 together with MYC led to 

mice succumbing to precursor B-cell lymphoma in a very short period of time, 

demonstrating the strong synergy between these two oncogenes [379]. Further 

studies showed that PIM2 greatly enhances c-Myc transcriptional activity by 

stabilising c-Myc protein via a mechanism involving phosphorylation of c-Myc 

Ser 329 [531]. 

Taking the above into consideration, together with the fact that PIM kinases 

have been shown to enhance BRD4-mediated gene transcription by forming a 

complex with c-Myc [346], I decided to use Western blotting to measure the 

level of c-Myc protein in K00135-sensitive ALL tumour cells and determine the 

effect of K00135-mediated PIM kinase inhibition on c-Myc expression. Using the 

K562 CML cell line as a positive control, I found that treatment of the PIM-

expressing pre-B ALL cell line SD1 and K562 with 1 µM K00135 led to complete 

downregulation of c-Myc protein by 72 hours post-treatment in both cell lines 

(Figure 4.11a).  

I next proceeded to test primary ALL tumour cells treated with K00135 for the 

effect on c-Myc expression, as was observed in cell lines. Thus, I selected 

primary ALL tumour ALL-103, which overexpressed PIM2 as shown in Figure 
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4.8. On this occasion, I used a range of increasing concentrations of K00135 

inhibitor and a fixed 48 hour timepoint at which to harvest the cells, since 

primary tumour cells are less resilient than cell lines and exhibit a significant 

loss of viability at timepoints beyond 48 hours of in vitro culture. I found that 

ALL-103 primary tumour cells also overexpressed c-Myc protein, which was 

completely downregulated in tumour cells treated with 1 µM K00135 (Figure 

4.11b).  

In summary, similar to BET protein inhibition, treatment of PIM-expressing ALL 

tumour cells with the PIM inhibitor K00135 leads to a loss of c-Myc protein 

expression. 
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Figure 4.11: Myc downregulation in ALL tumour cells following K00135 
treatment  

Protein lysates were analysed by Western blotting, where samples were probed for c-
Myc and β-actin (loading control). 

a) SD1 and K562 cells were treated with 1µM K00135 for 0 (DMSO control), 24, 48 and 
72hrs.  

Treatment with 1µM K00135 leads to complete downregulation of c-Myc protein by 
72hr in both leukaemia cell lines analysed. The K562 cell line was used as a positive 
control for PIM kinase inhibitor activity. 

b) PIM2-expressing ALL-103 primary tumour cells were treated with increasing 
concentrations of K00135 inhibitor (0, 0.1, 0.5 and 1 µM).  

Treatment of ALL-103 tumour cells with 1 µM K00135 leads to complete 
downregulation of c-Myc protein.  
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4.3.2. Effect of K00135 on apoptosis 

As previously mentioned, PIM2 has been shown to inhibit apoptosis and 

caspase activation by phosphorylating the pro-apoptotic protein BAD on 

Ser112, confirming that PIM2 is a prosurvival kinase [380]. Since PIM kinases 

are upregulated by JAK/STAT and NFκB pathway signaling, and our group has 

previously shown that the NFκB pathway is frequently upregulated in apoptotic-

resistant, I decided to test B-precursor ALL tumour cells (ALL-103) for an effect 

on apoptosis following treatment with the PIM kinase inhibitor K00135. 

I did this by treating ALL-103 tumour cells with increasing concentrations of 

K00135 (0, 0.1, 0.5 and 1 µM) for 24 hours, and then using the Western blotting 

technique  to probe for cleaved procaspase-7 and PARP1 protein as an 

indicator of apoptosis induction. I found that the degree of cleavage of these 

proteins increased in a dose-dependent manner, where treatment with 1 µM 

K00135 led to an almost complete cleavage of procaspase-7 and PARP1 

proteins (Figure 4.12a). 

Interestingly, I found that K00135 treatment of SD1 cells led to the cleavage of 

PARP1, which also coincided with the downregulation of proapoptotic BAD 

phosphorylation on Ser112 (Figure 4.12b). This observation was in line with a 

study that showed this effect in the FDC-P1 mouse myeloid cell line [380], but 

was an effect not yet reported within the context of ALL.  

In summary, the above observations indicate that pharmacological inhibition of 

PIM2 leads to the induction of caspase-dependent apoptosis in primary ALL 
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tumour cells, and that this might involve the downregulation of Bad Ser112 

phosphorylation.  
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Figure 4.12: K00135 induces caspase-dependent apoptosis in ALL tumour 
cells 

a) Western blotting shows dose-dependent induction of apoptosis in ALL-103 
primary tumour cells treated with K00135 as measured by the cleavage of 
PARP1 and procaspase-7 proteins. Actin was probed for as a loading control. 

b) Western blotting shows induction of apoptosis over a period of 72hr in SD1 
cells exposed to 1 µM K00135 as measured by the cleavage of PARP1 and 
downregulation of proapoptotic BAD phosphorylation on Ser112. Actin was 
probed for as a loading control. 
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5. DISCUSSION I: INHIBITION OF BET PROTEINS AS 

AN ALTERNATIVE STRATEGY FOR THE 

SENSITISATION OF HIGH-RISK B-PRECURSOR ALL 

 

5.1 Treatment resistance in B precursor ALL and the 

requirement for more targeted treatments  

As pointed out in the introduction, paediatric B precursor ALL is currently a 

highly curable disease, with long-term disease-free survival rates of over 80% 

being achieved in children [69]. However, despite major improvements in the 

treatment of this disease in previous years, treatment resistance in a significant 

number of patients together with general long-term toxic effects from currently 

used therapies are still observed [532]. Thus, alternative targeted therapeutic 

approaches are needed if we are to overcome these problems within the clinic. 

In my thesis I have addressed regulators of transcription and epigenetic readers 

as therapeutic targets. The therapeutic potential of pharmacologic inhibition of 

bromodomains has only recently been explored in haematological malignancies 

such as AML, demonstrating striking anti-tumour effects [344]. In addition, 

although recently cytotoxic effects were demonstrated in ALL cell lines, this 

approach has not been tested in a wide range of primary ALL tumours and little 

is known of the cellular effects following bromodomain inhibition [345].  

In this study, I investigated the inhibition of bromodomains in B-precursor ALL 

as a potential novel strategy for the sensitisation of primary ALL tumours, 
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including high-risk ALL tumours that are frequently associated with resistance to 

therapy. I utilised the thieno-triazolo-1,4-diazepine, JQ1, which binds specifically 

and competitively to the acetyllysine binding pocket of the conserved 

bromodomain and extra-terminal domain (BET) protein family (BRD2, BRD3, 

BRD4, BRDT). Data published by our collaborator Prof. Stefan Knapp shows 

that, of the BET protein family members, JQ1 binds to the bromodomains of 

BRD4 with the greatest affinity [334]. I investigated JQ1-mediated cytotoxicity 

and also attempted to characterise transcriptional changes and cellular effects 

in ALL tumour cells in response to JQ1 treatment. Finally, I addressed the 

efficacy of JQ1 in eliminating leukaemia cells using the in vivo ALL xenograft 

developed by our group. 

5.2 A role for JQ1-mediated BET bromodomains inhibition in B 

precursor ALL 

Previous findings have shown that BET proteins are frequently expressed in 

aggressive diseases such as AML and NUT midline carcinoma, and that 

treatment of these malignancies with the BET protein inhibitor JQ1 successfully 

leads to their elimination [334, 344]. Data presented in this study suggests that 

this may also be a promising avenue in the treatment of B-ALL. Results 

presented in Chapter 3 show that a wide range of ALL cell lines and primary 

tumours express the BET protein family member BRD4 and that tumour cells 

treated with JQ1 can be successfully sensitised irrespective of the cellular 

phenotype or patient risk stratification. Furthermore, all primary ALL tumours 

express BRD4 and the level of BRD4 expression does not appear to influence 

JQ1 sensitivity. Furthermore, BRD4 is not downregulated upon treatment with 
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JQ1. This latter observation is in keeping with the fact JQ1 does not alter 

transcriptional regulation of BRD4 but instead blocks any protein activity 

downstream of BRD4 [334]. Data in Chapter 3 also demonstrate that several 

high-risk primary ALL tumours are highly sensitive to JQ1 in vitro activity at 

submicromolar concentrations, as are ALL cell lines harbouring cytogenetic 

features associated with poor prognosis and aggressive disease such as BCR-

ABL1. Indeed positive results were obtained testing JQ1 in vivo using a 

xenograft model of high-risk ALL, as is further discussed in section 3.4. 

Together these findings address the current complications associated with 

therapy-resistant high-risk ALL, and instil confidence in the further development 

of JQ1 as a compound with potential inclusion in clinical trials. At this point, it is 

not possible to infer whether or not the cytotoxic effects of JQ1 treatment 

observed in this study are a consequence of the sole inhibition of BRD4 since 

BET bromodomains exhibit high sequence conservation, and all inhibitors 

developed to date exhibit some degree of inhibitory activity toward other BET 

protein family members [334]. However, published data highlights the structural 

basis for potent and specific activity of JQ1 towards BRD4 in particular [334], 

and an RNA interference (RNAi) screen targeting multiple chromatin regulators 

in an AML mouse model also identified BRD4 as being key to disease 

maintenance [344]. This provides indirect evidence that the cytotoxic effects 

observed in JQ1-treated ALL tumour cells are primarily due to inhibition of 

BRD4 activity. Additionally, some crossover in inhibition may have a desirable 

effect on tumour cells, since other members of the BET family of proteins are 

also implicated in tumorigenesis [340, 533]. 
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Results from in vitro cytotoxicity experiments show that ALL cell lines are all 

sensitive to the cytotoxic effects induced by JQ1. In contrast, primary ALL 

tumours treated with JQ1 showed a wide range of responses. Cell lines are 

immortal and continually proliferating unlike isolated primary tumour cells, and 

so it is possible that this is reflected in the degree of sensitivity to JQ1, since the 

cytotoxic effects of JQ1 have been shown to be partly due to its impact on cell 

cycle progression [340]. Primary ALL tumour cells obtained from patients’ bone 

marrow do not proliferate in standard culture. Thus, it may be possible that 

those primary ALL tumours sensitised by JQ1 in vitro, respond as a result of 

alternative cellular effects exerted by JQ1 other than on the regulation of the cell 

cycle, which may not be as prominent. Therefore, a possibility remains that, if 

primary ALL tumour cells were induced to proliferate in vitro, they would show 

similar degrees of JQ1 sensitivity to the ALL cell lines. Another alternative 

explanation may be that tumour cells showing a lack of response to JQ1 are not 

dependent upon BET protein-regulated pathways for their survival. For 

example, primary AML tumour cells I tested were highly sensitive to JQ1 

treatment, whereas healthy peripheral blood mononuclear cells (PBMCs) were 

not, further supporting the tumour-specificity of the JQ1 inhibitor and the 

unlikelihood of off-target effects leading to undesirable toxicity. 

Treatment of ALL cell lines with a combination of JQ1 together with 

conventional chemotherapeutic agents dexamethasone, vincristine, or 

daunorubicin produced variable results, where the combination of JQ1 with 

dexamethasone led to greatly enhanced sensitivity in cell lines TOM-1 and 

NALM-6, which was in contrast to the response observed following treatment of 
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these cell lines with either JQ1/vincristine or JQ1/daunorubicin combinations. 

These synergistic effects of combined JQ1/dexamethasone treatment were also 

observed in several representative primary ALL tumours.  

Microarray results presented in Chapter 3 demonstrate that JQ1-mediated 

inhibition of BET proteins leads to the downregulation of prosurvival pathways, 

including the NFκB pathway (section 3.2.4) previously reported by our group to 

be frequently upregulated in treatment-resistant preB-ALL [248]. Studies using a 

human lung carcinoma cell line have also reported that BRD4 binds to 

acetylated RelA, and coactivates the transcriptional activity of NFκB [338]. In 

addition, the mechanism of apoptosis-induction by dexamethasone could be 

partly explained by its ability to upregulate IκB; an inhibitory protein that 

sequesters the NFκB transcription factor in the cytoplasm, preventing the 

expression of NFκB target genes [534, 535]. It is therefore possible that the 

synergistic cytotoxic effects observed in ALL tumour cells treated with the 

JQ1/dexamethasone combination are due to modulation of the NFκB pathway 

by each of these drugs, in a disease where NFκB activity is frequently 

upregulated.  

It may be possible that the lack of synergistic effects observed in ALL cell lines 

treated with JQ1 in combination with either vincristine or daunorubicin was due 

to the mechanism of cytotoxicity induction by both vincristine and daunorubicin 

being largely dependent upon proliferation, and may therefore be counteracted 

by JQ1 inhibitory activity on the cell cycle. However, this does not explain the 

similar absence of synergism observed in non-cycling primary tumours. 

Nevertheless, the JQ1/dexamethasone combination may have positive 
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implications in the clinic if the synergistic effects translate in vivo, since it may 

be possible to eliminate ALL blasts more effectively, as well as lower the dose 

of dexamethasone given to a patient, and therefore the risk of toxic side-effects. 

At this point it is worth noting that response to glucocorticoids remains one of 

the most powerful predictors of outcome in ALL [536] and therefore, 

development of compounds such as JQ1 that can manipulate this effect is 

highly desirable. 

Interestingly, dexamethasone failed to induce cytotoxicity in the REH cell line. 

Unsurprisingly, combined treatment with JQ1 did not exhibit synergistic 

cytotoxicity. This can be explained by the fact that REH does not express GR 

[407], which is required for dexamethasone to bind to in order for cytotoxicity to 

be induced. Limited evidence exists to suggest a GR-independent mechanism 

of action exists for dexamethasone, but  this aspect remains largely 

inconclusive [537]. 
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5.3 Microarray analysis reveals differentially expressed genes 

belonging to apoptotic, prosurvival, and protein translation 

pathways in JQ1-treated primary ALL tumours 

Since results presented in section 3.2  show that ALL tumour cells respond well 

to the cytotoxic effects of JQ1, and JQ1 inhibits BET proteins that play a crucial 

role in the epigenetic control of gene expression, I decided genome-wide 

expression analysis using microarray technology would be the best approach to 

investigate transcriptional responses in a panel of primary ALL tumours 

following JQ1 treatment. Furthermore, the full set of genes which BRD4 

regulates has not been thoroughly investigated, and has not been extensively 

looked at in primary ALL. A panel of primary tumours with a range of 

cytogenetic abnormalities and sensitivity to JQ1 were selected for inclusion in 

the microarray experiment, so that the transcriptional responses observed were 

not just characteristic of a particular cellular phenotype, but instead factored in 

the biological heterogeneity of ALL. Stringent statistical parameters were set to 

filter for the most significant and uniform differentials in gene expression across 

the ALL tumour panel. This, together with rigorous quality control of RNA and 

the experimental procedure, ensured that observed JQ1-induced expression 

changes were most likely to be genuine and reproducible. 

Microarray data show that the MYC gene is significantly downregulated in 

primary ALL following JQ1 treatment (section 3.2). This is a very important 

result, since MYC plays a central role in cell cycle progression and survival 

[343, 412] and is one of the most deregulated oncogenes in cancer, including 
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several different haematological malignancies [343]. For these reasons, a drug 

that downregulates MYC expression has long been sought after in the treatment 

of MYC-expressing tumours. JQ1 appears to be a promising candidate to fulfil 

this task, since it not only downregulates MYC at the transcript level, but also 

shows striking downregulation of c-Myc protein (section 3.3). 

Other genes found to be consistently downregulated by JQ1 activity include 

SENP1, ALKBH8, and CARD6, which are all associated with a role in tumour 

cell survival [420-422].  

Results in Chapter 3 also show that 127 genes were significantly upregulated in 

primary ALL tumours following JQ1 treatment. These included genes with a role 

in the inhibition of the mTor growth-promoting signaling pathways (EIF4EBP2) 

[427] and mRNA translation (PAIP2B) [538], as well as enhancement of the 

apoptotic signaling (PPP1R13B) [539]. The JQ1-mediated upregulation of the 

PPP1R13B gene is particularly interesting from a clinical standpoint, since this 

gene encodes ASPP1 protein capable of stimulating the apoptotic function of 

the p53 tumour suppressor, but also triggering apoptosis independently of p53 

via interactions with both p63 and p73 [539]; a feature of ASPP1 that could 

potentially be of use in the targeting of tumours harbouring mutant p53. 

Furthermore, decreased levels of ASPP1 have been shown to confer a poor 

prognosis in patients with ALL [424].  

From the microarray data in this study, it is evident that the inhibition of BET 

proteins has great impact on the expression of genes involved in multiple 

cellular processes and signaling pathways. Since JQ1 has such a profound 
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cytotoxic effect on ALL cell lines and primary tumours in vitro, it is likely that 

tumour cell death is induced following JQ1-mediated modulation of transcription 

of genes involved in apoptosis, proliferation, survival and cellular growth. This is 

not surprising given that BRD4 recruits the positive transcription elongation 

factor b (P-TEFb) complex to gene promoters, leading to the phosphorylation of 

RNA polymerase II and stimulating transcriptional elongation [442, 540]. The 

fact JQ1 has such a broad effect on gene transcription in primary ALL may 

account for the multiple JQ1-induced cellular effects observed in this study 

(section 3.3).  

 

GSEA results in (section 3.2.4) show that JQ1 activity causes significant 

downregulation of multiple prosurvival signaling pathways, including the NFκB 

pathway that is capable of exerting prosurvival effects and countering apoptotic 

signaling. NFkB target genes in this gene set that were differentially expressed 

in primary ALL tumours following JQ1 treatment included IL7R, IL6, IL8, and 

STAT5A. The impact JQ1 had on this pathway was of particular interest, since 

our group had previously reported that the NFκB pathway was upregulated in 

primary ALL tumours that were resistant to DNA damage-induced apoptosis in 

vitro [248].  

GSEA results also indicate that JQ1 activity leads to the downregulation of the 

JAK-STAT pathway in primary ALL. This holds great potential in the treatment 

of particular subsets of ALL, such as BCR-ABL-positive ALL and BCR-ABL-like 

ALL, which are known to exhibit increased JAK-STAT pathway activation and 
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demonstrate poor treatment outcome [191]. Although the BCR-ABL1 oncogene 

itself activates the JAK-STAT pathway, almost half of all BCR-ABL-like ALL 

tumours that do not express BCR-ABL1 harbour rearrangements of the CRLF2 

gene that are frequently associated with activating mutations within JAK genes 

[190]; again demonstrating a poor response to treatment. Furthermore, 

approximately 10% of all cases of ALL harbour JAK mutations, some of which 

harbour IKZF1 gene alterations that are associated with a poor clinical outcome 

[190].  

Interestingly, upon consideration of GSEA results, it is possible that the 

observed downregulation of JAK-STAT and NFκB pathways might be largely 

attributable to the significant impact JQ1 has on the IL-7R gene, since the IL-7R 

belongs to the same signalling axis, and is an important upstream regulator of 

JAK-STAT and NFκB activity.  

The Myc pathway was also shown to be downregulated by JQ1 activity, which 

coincided with the observation that the MYC gene itself is downregulated in 

JQ1-treated primary ALL tumours in this study. Indeed, results support the 

downregulation of the Myc pathway, since c-Myc protein is also completely 

downregulated. Since MYC is central to cell proliferation, an impact on the cell 

cycle of ALL tumour cells was predicted and confirmed in cell cycle analysis 

experiments (section 3.3.1).  

Given that GSEA shows the ability of JQ1 to downregulate major prosurvival 

pathways in primary ALL tumours (section 3.2.4), a possibility remains that the 

primary tumours that failed to respond to JQ1 treatment in cytotoxicity 
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experiments were not driven by the same prosurvival pathways downregulated 

by JQ1. 

Importantly, the fact that our group has previously reported the upregulation of 

prosurvival pathways in high-risk primary ALL tumours following DNA damage-

induction [248], and that JQ1 is able to downregulate multiple prosurvival 

pathways in primary ALL tumours, including high-risk tumours, suggests BET 

protein inhibition may provide a solution to targeting these pathways, at least in 

MRD high-risk leukaemias. Additionally, crosstalk between prosurvival 

pathways that may confer resistance to chemotherapy in tumour cells [541], 

may be circumvented with this alternative approach of targeting proteins such 

as the BET family of proteins on a level at which many signaling pathways 

converge. This may also explain why JQ1-mediated inhibition of BET proteins 

leads to such broad cellular effects and sensitises ALL tumours with a range of 

phenotypes in this study. Importantly however, despite potent anti-tumour 

activity, some tumours still demonstrate resistance to JQ1. Although two 

potential biomarker genes of JQ1 sensitivity were identified (PLAUR and REL), 

further studies are required to confirm this in a wider range of paediatric 

leukaemias. 

  

5.4 JQ1 activity induces multiple cellular effects on ALL tumour 

cells 

Since Myc expression plays a major role in driving tumour growth in a wide 

range of cancers including leukaemias and lymphomas [343], a clinically viable 
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strategy to downregulate its expression has long been sought after. Previous 

studies have reported that downregulation of Myc and disruption of the c-Myc-

induced transcriptional program constitutes one of the main mechanisms of cell-

killing following the inhibition of BRD4 [333, 334, 340, 341]. In line with this, 

malignancies driven by c-Myc such as AML, NMC and multiple myeloma, are 

sensitised by JQ1-mediated BRD4 inhibition through displacement of BRD4 

protein from the MYC gene promoter [334, 344, 488].  

Similar to previous reports, results in Chapter 3 showed that JQ1 led to uniform 

downregulation of c-Myc protein in all ALL tumour cells, as well as the 

downregulation of c-Myc target genes and cell cycle arrest. However, in 

contrast to previous findings, only transient reductions in MYC mRNA were 

observed by qRT-PCR in this study. This suggests that BRD4 influences c-Myc 

protein stability, which is in keeping with reports that implicate BRD4 in the 

regulation of protein stability of the papillomavirus-encoded E2 protein [448]. 

Indeed, this was later confirmed in experiments where ALL tumour cells were 

exposed to JQ1 in the presence or absence of the 28S proteasome inhibitor 

MG132, with MG132 coincubation completely abolishing JQ1-induced loss of c-

Myc expression (section 3.3.1). This observation highlights a potential role for 

BRD4 in the regulation of cellular proteins at the post-translational level, as well 

as the transcriptional level. 

The question of whether or not the cytotoxic effects induced by JQ1 can be 

entirely attributed to c-Myc downregulation remains debateable. Several studies 

suggest that this is not the case, since ectopic expression of MYC was shown to 
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be unable to prevent JQ1-induced cell death [344], and resistance to JQ1 can 

occur despite c-Myc downregulation [333].  

Results presented in Chapter 3 support the notion that BRD4 inhibition exerts 

an anti-tumour effect by different mechanisms and that the cytotoxic effects 

following BRD4 inhibition expand beyond c-Myc downregulation. Apart from 

results that showed JQ1 leads to substantial downregulation of prosurvival 

signaling pathways in non-cycling primary ALL tumour cells (an effect not 

previously reported in other malignancies), JQ1-induced cellular effects other 

than c-Myc downregulation included the perturbation of the DNA replication 

process. 

In section 3.3.2 results showed that replication fork progression rates were 

reduced in S phase ALL tumours cells following treatment with JQ1. This 

coincided with a dramatic increase in stalled replication forks. Taken together, 

these observations suggest that JQ1-mediated BRD4 inhibition has a direct role 

in the induction of replicative stress.  

Reduced fork progression rates observed after 24 hour exposure of ALL tumour 

cells to JQ1, were also observed at the shorter exposure of just 1 hour. This 

suggests that the reduction in fork progression rates is a direct effect induced by 

BRD4 inhibition and not an indirect effect caused by inhibition of the cell cycle. 

This was also supported by BrdU incorporation experiments (section 3.3.2) that 

showed that JQ1 led to a decrease in the proportion of S phase cells and did 

not affect S phase entry, suggesting a direct effect on the DNA replication 

process.  
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In section 3.3.2 JQ1 treatment led to an increase in the proportion of first label 

termination structures and not second label terminations. This confirms that the 

replication inhibitory effect induced by JQ1 is in fact due to fork-stalling and not 

an overall increase in terminations (i.e. successfully completed replication of 

DNA). This effect is supported by the fact that other drugs, such as etoposide, 

also induce fork-stalling (Peterman, unpublished observation). 

A role for BET proteins in replication is not unlikely, especially since BRD4 has 

been reported to interact with the RFC complex essential for DNA replication 

[443], and inhibition of BRD4 led to changes in expression of the gene encoding 

another key regulator of DNA replication, Claspin, as observed in the microarray 

experiment (section 3.2.2). 

Although further investigation is warranted, a possible explanation for the 

defective replication induced by JQ1 is that loaded transcription complexes are 

not completely processed once BRD4 is inhibited, thus preventing  transcript 

elongation and presenting a physical obstruction to faster proceeding replication 

machinery. Although little is known regarding collisions between transcription 

and replication machinery, there is evidence in the literature to suggest this 

phenomenon is not uncommon [542]. 

Results in (section 3.3.3) show that JQ1 induces the cleavage of proteins 

characteristic of apoptosis. Additionally, the onset of apoptosis appeared to 

mirror the degree of JQ1 sensitivity of ALL tumour cells in cytotoxicity 

experiments. This suggests that the mechanism of cell killing induced by JQ1 is 

indeed via programmed cell death, which is corroborated by results in previous 
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studies showing the induction of apoptosis following BRD4 inhibition in AML 

[344] and NMC [334]. 

In section 3.3.3 I showed that JQ1 treatment of ALL tumour cells did not induce 

the upregulation of p53, unlike treatment with the chemotherapeutic agent 

daunorubicin. This indicates that JQ1 does not cause the activation of the DNA 

damage response pathways, and that the induction of apoptosis is via a p53-

independent mechanism. To test this hypothesis, I probed for common anti-

apoptotic proteins associated with many different types of cancer and checked 

to see if JQ1 induced any changes in expression. Results in showed a dramatic 

loss in expression of the anti-apoptotic protein survivin, suggesting that the 

mechanism of apoptosis induction by JQ1 involves the downregulation of 

survivin. The fact that an anti-apoptotic protein such as survivin plays a role in 

JQ1-induced apoptosis is not surprising since anti-apoptotic proteins are 

commonly overexpressed in Myc-activated tumour cells, to inhibit the 

proapoptotic functions of Myc [447]. However, since microarray results did not 

highlight the BIRC5 gene that encodes survivin protein as being differentially 

expressed after JQ1 treatment, I decided to check whether or not survivin was 

being regulated by JQ1 at the post-translational level. Indeed results in section 

3.3.3 showed that this was the case, since co-incubation of ALL tumour cells 

with JQ1 together with the 28S proteasome inhibitor MG132 led to complete 

abrogation of the ability of JQ1 to downregulate survivin protein expression; an 

effect also observed for c-Myc protein. These observations suggest that BET 

proteins regulate the stability of oncogenic proteins. 
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Additionally, results in this study show that JQ1 induces apoptosis independent 

of p53. Although mutations of the p53 gene in precursor-B-cell ALL are rare and 

occur at a frequency of approximately 2% [248, 543], p53 mutant ALL still holds 

significance since alterations of the p53 gene can confer resistance to treatment 

and a poor outcome [248, 544]. Thus, it is possible that JQ1 may prove to be 

beneficial in the treatment of patients with p53 mutant ALL. 

5.5 JQ1 prevents tumour growth in an ALL xenograft model and 

targets different ALL progenitors 

Results in section 3.4, involving the use of a murine xenograft model of an 

apoptotic-resistant B precursor ALL with high-risk MRD (ALL-105), showed that 

JQ1 potently inhibited the growth of xenografted primary leukaemia cells in vivo, 

when compared to vehicle-treated animals. Results also show a dramatic 

reduction in tumour growth in JQ1-treated mice with a subcutaneous 

engraftment of NALM-6 cells, when compared to those treated with vehicle. 

This suggests that JQ1 exhibits cytotoxic effects on ALL tumour cells both in 

vitro and in vivo, which is in agreement with the in vivo JQ1-mediated anti-

tumour effects observed in other studies using xenograft models of AML [344] 

and NMC [334].  Additionally, JQ1 targeted all the progenitor subpopulations 

that constituted the engrafted leukaemia and had the capacity to proliferate in 

vivo, with a slight increase being observed in the proportion of the CD34-

CD19+CD10- ALL subset. This suggests that JQ1 is able to target ALL 

progenitor cells regardless of their stage of differentiation, and potentially cause 

a shift towards more mature cells. The ability for JQ1 to induce differentiation of 

leukaemia progenitors has been confirmed in studies that show JQ1-treatment 
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of AML blasts leads to maturation via a JQ1-mediated impact on the 

transcriptional programme that controls myeloid differentiation [340, 344]. 

5.6. Summary I: BET protein inhibition as a novel therapeutic 

strategy to sensitise apoptosis-resistant B-precursor ALL 

• In this study, I have confirmed that the BET protein BRD4 is widely 

expressed in ALL tumour cells, and that the pharmacological inhibitor 

JQ1 can successfully target BET proteins to induce potent cytotoxic 

effects in vitro, irrespective of the cellular phenotype.  

• The tumour-specificity of JQ1 was supported by the fact that primary 

AML tumours were highly sensitive to JQ1 in this study (an observation 

in line with previous reports [344]), and that healthy PBMCs did not 

exhibit significant cytotoxic effects following JQ1 treatment.  

• Furthermore, I showed that JQ1 acts synergistically with 

dexamethasone, suggesting this drug combination may allow for the 

lowering of dexamethasone doses administered to ALL patients, and 

therefore reduce the toxic side-effects associated with its use.  

• Using microarray technology, I have elucidated the transcriptional effects 

of JQ1-mediated BET protein inhibition in a cohort of ALL primary 

tumours.  

• I have shown that JQ1 activity leads to the downregulation of major 

prosurvival signaling pathways that include the NFκB pathway, which our 

lab previously confirmed to be upregulated in high-risk ALL tumours 
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[248], and the JAK-STAT pathway, which is a prosurvival pathway 

commonly activated in the tumour cells of high-risk ALL patients with a 

poor treatment outcome [190, 191].  

• I have also shown that JQ1 activity leads to downregulated expression of 

genes belonging to multiple cytokine signaling pathways that are often 

deregulated in haematological malignancies and are known to drive 

tumour growth and proliferation [545-548].  

• I confirmed that c-Myc and its associated target genes are also 

downregulated by JQ1. However, I have shown that this was an effect 

caused primarily by Myc downregulation at the post-translational level, 

rather than at the transcriptional level, highlighting a role for BET proteins 

in the modulation of c-Myc protein stability that has not previously been 

reported. 

• The impact of JQ1 on c-Myc expression is of great importance, since c-

Myc potently drives tumorigenesis and is frequently overexpressed in 

many cancers, including haematological malignancies [343]. Thus, an 

effective therapeutic approach towards the downregulation of c-Myc has 

long been sought after, and I show that BET protein inhibition using the 

JQ1 inhibitor provides a means by which to achieve this.  

• I have also shown that downregulation of c-Myc coincides with the 

induction of G1 arrest in actively proliferating ALL tumour cells treated 

with JQ1, together with a substantial reduction of the proportion of S 

phase cells. 
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• I have subsequently confirmed that inhibition of BET proteins has a direct 

impact on DNA replication, seen as a reduction in fork progression rates 

and an increase in replication fork stalling.  

• I have confirmed that the mechanism of JQ1-induced cell killing is 

mediated via a p53-independent mechanism that involves the 

downregulation of the anti-apoptotic protein survivin, and that like c-Myc, 

survivin is regulated by BET proteins at the post-translational level; most 

likely by BRD4.  

• The most striking results in this study were those obtained from animal 

studies. I showed that JQ1 was capable of inhibiting the proliferation of 

ALL xenografts in vivo, including a xenograft model of a high-risk ALL 

patient our lab had previously shown to be resistant to DNA damage-

induced apoptosis. Importantly, JQ1 targets both immature and mature 

ALL subpopulations, reducing the likelihood of treatment resistance as a 

result of the re-expansion of stem-like populations. Furthermore, during 

the writing of this thesis, with the assistance of Tracey Perry, additional 

results have been obtained by our group using our ALL mouse xenograft 

model, which show that high-risk primary ALL tumours are highly 

sensitised to dexamethasone when co-treated with JQ1 (personal 

communication). 
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5.7. Conclusion I 

Overall, results from this study support the rationale for the targeting the BET 

proteins, including BRD4, in B-precursor ALL using JQ1, which is capable of 

sensitising high-risk ALL tumours both in vitro and in vivo. This suggests that 

treatment involving JQ1 may be a clinically viable option for the treatment of 

high-risk ALL patients that respond poorly to conventional therapies. The fact 

that this study and several others have successfully demonstrated potent JQ1-

mediated anti-tumour activity in vivo, in which the JQ1 inhibitor was well 

tolerated by its recipient host and targeted tumours with great specificity, holds 

promise for the further development of this compound. Importantly, it should be 

relatively straightforward to include JQ1 into the current UK ALL clinical trial by 

further stratifying enrolled dexamethasone-resistant patients into two 

subgroups; one group receiving dexamethasone only, and the other receiving a 

JQ1/dexamethasone drug combination. 

Altogether, this study justifies further work in this area of research to aid the 

design of the first clinical trial based on BET inhibition in paediatric ALL.  
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6. DISCUSSION II: THE PIM-2 KINASE AS A SUITABLE 

CANDIDATE FOR FURTHER STUDY 

 

6.1. Evidence that the prosurvival PIM2 kinase is overexpressed 

in B-precursor ALL and is an ideal candidate for further study 

As described in section 1.10.3 the PIM kinases are overexpressed in a wide 

range of haematological malignancies and solid tumours, and have been shown 

to confer prosurvival activity by counteracting the increased sensitivity to the 

induction of apoptosis that is observed in tumours overexpressing c-Myc [356]. 

Furthermore, previous studies have confirmed that PIM1, and possibly other 

PIM proteins, play a key role in gene transcription by both regulating Myc-

transcriptional activity, and promoting the binding of the BET protein BRD4 to 

histone acetyllysine residues, which in turn recruits the P-TEFb complex 

required for transcript elongation [386, 388].  

In an attempt to prove my main hypothesis that primary B-precursor ALL can be 

sensitised following inhibition of oncogenic transcriptional activity, I previously 

showed that targeting BET proteins is an effective approach by which to do so.  

Here, I discuss an additional approach involving the targeting of PIM2, and 

evaluate preliminary evidence to support PIM2 as a promising additional target 

for the sensitisation of primary ALL, and therefore as an ideal candidate for 

further study.  
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The first step in investigating the feasibility of this strategy was to determine 

whether PIM kinases were overexpressed in B-precursor ALL. I needed to 

establish a suitable method by which to measure PIM expression, and 

proceeded to indirectly quantify PIM protein levels by measuring PIM mRNA 

using qRT-PCR. The qRT-PCR technique was an ideal method by which to 

determine the frequency of PIM overexpression, since I had access to a large 

cohort of 68 primary ALL RNA samples. I considered the use of this method on 

the basis that PIM2, and in some cases PIM1, is constitutively active once 

expressed [385] and no post-translational modifications of the PIM2 kinase 

have been reported. 

I found that PIM2 was significantly overexpressed in primary ALL tumours at a 

frequency of 25% relative to the expression levels in the K562 leukaemia cell 

line, whilst observing a similar proportion of tumours expressing PIM2 protein in 

a smaller cohort of primary ALL tumours I had analysed by Western blotting. 

This was unsurprising, since PIM genes are confirmed to be upregulated by 

activated STAT transcription factors that are downstream of prosurvival 

signaling pathways, such as the JAK-STAT and NFκB pathways [369], which 

our group has previously shown to be upregulated in primary ALL [248]. 

In addition, I observed a trend towards a positive association between PIM2 

expression in primary ALL tumours and the presence of MRD at Day 28 in the 

corresponding patients from which the tumours were obtained. However, 

although this result may suggest a role for PIM2 in chemoresistance in vivo, this 

has to be considered with caution, as I did not have access to MRD clinical data 

for all the primary ALL tumours I screened. Thus, it would be necessary to 
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increase the number of ALL tumours in the PIM screen for which we have full 

clinical information in future studies. 

Overall, my observations that PIM2 is significantly overexpressed in ALL and 

might play a role in chemoresistance in vivo, together with the already reported 

prosurvival functions of PIM2 in other haematological malignancies, support my 

rationale for proceeding with investigations into the role of PIM2 in B-precursor 

ALL. 

6.2. Evidence to support PIM kinases can be targeted in B-

precursor ALL 

I previously provided evidence to support that PIM2 is overexpressed in pre-B 

ALL and so I next wanted to determine whether PIM2 could be specifically 

targeted in order to sensitise primary ALL tumours. 

Since PIM kinases are also involved in normal haematopoiesis, it was 

reassuring to find data in the literature from studies using compound PIM1, 

PIM2 and PIM3 knockout mice that showed these animals were still viable and 

fertile [362]. Despite exhibiting a reduced body size at birth, the results from this 

study suggest that PIM kinases are important to mammalian development but 

are kinases mediating growth factor signaling that can be inhibited and not 

cause cytotoxicity to healthy developing lymphocytes [362]. 

I therefore proceeded to test ALL tumour cells with a pharmacological inhibitor 

of PIM kinases, K00135, which was obtained from our collaborator Prof. Stefan 

Knapp and had shown encouraging anti-tumour activity in PIM-expressing 

primary AML tumours [391]. In K00135-treated leukaemia cell lines, I failed to 
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see a clear correlation between PIM expression and induction of cytotoxicity, 

since cell lines not expressing any detectable PIM kinase protein (for example, 

REH and Jurkat) were sensitised in addition to the PIM-expressing ALL cell line 

SD1.  

This suggests that K00135-induced cytotoxicity observed in the leukaemia cell 

lines not expressing PIM protein may be due to off-target effects, despite the 

K00135 inhibitor having been shown to exert selective antileukaemic activity in 

other studies involving the use of several AML cell lines and primary AML 

tumours [391]. However, published structural data, involving a screen of 

K00135 against a panel of 50 kinase catalytic domains, confirms that this 

inhibitor cross-reacts with one additional kinase, namely Cdc-like kinase 1 

(CLK1) [391].  

The possibility that CLK1 inhibition leads to cytotoxic effects in the ALL cell lines 

I tested that do not express PIM kinases remains to be investigated. 

Interestingly, although the cellular functions of CLK1 are not yet fully 

understood, studies have shown that CLK1 plays an important, evolutionarily 

conserved role in pre-mRNA splicing; a process associated with increased 

protein expression and often deregulated in cancers to promote growth and 

survival [549].  

However, K00135-mediated cytotoxic effects in primary ALL tumours appeared 

to positively correlate with PIM2 expression with no significant cytotoxic effects 

being observed in healthy PBMCs.  
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I also noticed that there were some instances where tumours expressed PIM2 

and did not respond to K00135 treatment, as opposed to PIM2 negative 

tumours that were sensitised by K00135 treatment. This suggests that 

treatment with K00135 targets PIM-expressing ALL tumours with some degree 

of specificity, and that some tumours may be resistant to the effects of K00135-

mediated PIM inhibition.  

6.3. Cellular effects of K00135 on PIM-expressing B-precursor 

ALL tumour cells involves downregulation of c-Myc protein and 

induction of apoptosis 

The PIM2 kinase has been show to efficiently stabilise c-Myc protein in a range 

of cell lines derived from human solid tumours by phosphorylating c-Myc at 

Ser329, thus decreasing c-Myc transcriptional activity [531]. Given that c-Myc 

has been reported to regulate transcription by forming a complex with PIM1, 

and possibly other PIM family members, to promote BRD4-mediated transcript 

elongation [386-388], I decided to investigate whether c-Myc would be 

downregulated in PIM-expressing ALL tumour cells following treatment with 

K00135, as the PIM2/c-Myc interaction may be an important mechanism 

through which PIM2 is able to regulate gene transcription in ALL. 

Indeed, I found that K00135 treatment of both leukaemia cell lines and primary 

ALL tumours expressing PIM2 led to complete downregulation of c-Myc protein. 

Further investigation, perhaps in experiments involving the use of the 

proteasomal inhibitor MG132, as well as measurement of MYC expression 

before and after K00135 treatment, will be required to confirm that regulation of 
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c-Myc by PIM in ALL is at the post-translational level. Since my GSEA data 

shows that upregulation of the MYC signaling pathway was not associated with 

ALL tumours expressing PIM2, it is possible that c-Myc is regulated at the 

protein level. 

I found that K00135 induced caspase-dependent apoptosis in primary ALL 

tumours (ALL-103) and that this coincided with the induction of cytotoxicity 

observed in previous experiments. As studies have suggested that the 

oncogenic properties of PIM2 are partly dependent upon its regulation of 

prosurvival signaling [359], and PIM2 is reported to predominantly 

phosphorylate (and therefore inactivate) the Ser112 residue of proapoptotic 

BAD [380], I decided to test the effect of K00135 treatment on BAD 

phosphorylation in SD1 cells. Subsequently, I found that K00135 led to a 

decrease in BAD Ser112, suggesting this may be a mechanism by which PIM 

kinases are able to promote survival in ALL. 

Intriguingly, studies have confirmed that the Akt kinase of the PI3K prosurvival 

signaling pathway shares several overlapping substrates with PIM2, including 

proapoptotic BAD (both kinases phosphorylate BAD Ser112), and the 

translational repressor 4EBP1 [359]. However, PIM2-mediated survival was 

shown to be distinctly independent of Akt signaling, since the overexpression of 

PIM2 in haematopoietic cell lines conferred growth factor-independent survival 

that could not be inhibited by rapamycin; an inhibitor of the mammalian target of 

rapamycin (mTOR) kinase found downstream of Akt [385]. 
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Taken together, the effects of K00135 on c-Myc protein expression, and the 

phosphorylation of BAD in ALL tumour cells, indicate that the K00135 inhibitor is 

likely to be targeting PIM protein and that doing so sensitises ALL. Furthermore, 

it is possible that the observed complete downregulation of the c-Myc 

transcription factor has an impact on gene expression as a consequence. 

6.4. Patterns of gene transcription associated with PIM2 

expression in B-precursor ALL 

As mentioned, PIM kinases regulate gene transcription by forming a complex 

with c-Myc and promoting the binding of BRD4 to histones, which in turn 

recruits the P-TEFb complex [388]. The P-TEFb complex then phosphorylates 

RNA pol II at Ser2 leading to the elongation and subsequent termination of 

transcripts at promoter-proximal pause sites [337, 388]. Furthermore, I showed 

that treatment of SD1 cells with K00135 led to a decrease in RNA Pol II Ser2 

phosphorylation, hinting at a possible role for PIM kinases regulating gene 

transcription in ALL.  

To gain some insight into the genes and pathways PIM2 may regulate, I 

reanalysed microarray data previously obtained in our lab, which was derived 

from an independent cohort of 22 primary ALL tumours. I arranged the tumours 

in order of low to high basal PIM2 expression, and then identified the most 

significant genes associated with PIM2 expression.  

I took this approach as the K00135 inhibitor was not sufficiently specific to 

produce reliable microarray data, and an alternative, more specific PIM kinase 

inhibitor was not available. Furthermore I had also previously made multiple 
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attempts to generate stable PIM2 knock-down (KD) ALL cell lines using both 

lipid-based transfection and lentiviral transduction methods to introduce a short 

hairpin RNA (shRNA) to silence the PIM2 gene in ALL tumour cells. However, I 

was unsuccessful in doing so, despite having successfully cloned the PIM2 

gene into a lentiviral expression construct with the help of Dr. Phil Byrd.  

For the above reasons I proceeded with reanalysis of existing microarray data, 

which had its limitations as I was unable to confirm whether individual genes 

and pathways associated with PIM2 expression in primary ALL tumours were 

upstream or downstream of PIM2.  

Nevertheless, my approach produced interesting results that in many cases I 

could relate to existing findings reported in the literature, as well as other novel 

roles can be further investigated and confirmed in future. For example, I found 

that multiple NFκB target genes (for example XIAP, TNFAIP3, NLRP3 and 

CD48), which regulate NFκB-mediated survival and anti-apoptotic signaling, 

were associated with PIM2 expression.  

Interestingly, limited evidence derived from studies using the FL5.12 murine 

pro-B cell line data exists to support PIM2 being an upstream activator of NFκB, 

where PIM2 was shown to phosphorylate the oncogenic serine/threonine 

kinase, Cot, which in turn phosphorylates IκB [369]. IκB then releases NFκB 

dimers, which localise to the nucleus and activate gene transcription [369]. 

Thus, it remains to be confirmed whether inhibition of PIM2 activity 

downregulates NFκB activation. 
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In addition, previous studies have shown that PIM2 is upregulated following the 

induction of DNA DSBs during V(D)J recombination in developing B-

lymphocytes [550]. This supports my GSEA analysis data, where I observed an 

association between the upregulation of the DNA damage-response pathway 

and the expression of PIM2 in primary ALL tumours. The fact that this pathway 

is upregulated at basal levels in untreated primary tumours, could mean that 

tumours expressing high levels of PIM2 exhibit a greater level of endogenous 

DNA damage due to deregulated proliferation [551]. It would be interesting to 

test whether PIM-expressing ALL tumours, including PIM2-expressing tumours 

resistant to DSB-inducing chemotherapeutic drugs, can be sensitised by co-

incubation of a PIM inhibitor with a cytotoxic agent such as doxorubicin. 

Importantly, the most noticeable pathways and individual genes to be closely 

associated with high and low PIM2 expression were those belonging to cellular 

processes such as gene transcription (basal transcription factors), protein 

translation (mRNA translation, peptide chain elongation, ribosome metabolism), 

and DNA replication (regulation of origin recognition complexes). These 

processes were highly represented in GSEA analysis results, suggesting that 

PIM2 may play a key role in maintaining these processes in B-precursor ALL. 

The above observations are supported by aforementioned previous studies that 

show PIM1 enhances BRD4-mediated gene transcription [386, 388]. 

Furthermore, my observations from GSEA results that PIM2 expression is 

associated with protein translation, is supported by studies showing that PIM2 

activity leads to the phosphorylation and release of 4E-BP1 from EIF4E, which 

are key regulator proteins of the Cap-dependent translation pathway  [346, 383, 
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385]. Ultimately, this allows for the recruitment of ribosomes and translation 

machinery to the ‘capped’ mRNA, and for the synthesis of oncogenic proteins 

such as c-Myc and Mcl-1 to take place [552]. 

However, very limited evidence exists in the literature to suggest PIM kinases 

regulate the DNA replication process. Intriguingly, PIM1 has been shown to bind 

and phosphorylate the latency-associated nuclear antigen 1(LANA-1), which is 

a protein essential for the maintenance of Kaposi's sarcoma herpes virus 

(KSHV) latency, resulting in the activation of viral replication [553]. Thus, it is 

possible that PIM2 regulates DNA replication in ALL, given that GSEA in this 

study showed its expression was also associated with pathways regulating DNA 

replication. As a side note, studies have shown that the BET proteins BRD4 and 

BRD2 also interact with LANA-1 to activate KSHV replication [554], suggesting 

overlapping activity between PIM and BET proteins; a feature I have noticed on 

various occasions throughout my studies. 

6.5. Evidence to suggest overlapping functions between PIM 

and BET proteins 

Previous studies have shown that PIM kinases enhance BRD4 activity, and thus 

promote transcript elongation [386, 388]. In this study I confirmed that inhibition 

of BET proteins leads to the transcriptional downregulation of genes involved in 

prosurvival signaling. Furthermore, I showed that the targeting of both these 

oncogenic proteins leads to the sensitisation of B-ALL tumour cells to apoptosis.  
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Taken together, it appears that a close relationship may exist between PIM 

proteins and BET proteins that promote tumorigenesis and chemoresistance in 

ALL.  

Here, I summarise observations that lend additional support to the existence of 

overlapping activity between PIM and BET proteins. 

Firstly, my observation that PIM2 expression is significantly and differentially 

upregulated in JQ1-resistant primary ALL tumours following treatment with JQ1, 

suggests that PIM2 may act as a compensatory pathway to help maintain 

survival and anti-apoptotic signaling. When highly specific PIM2 inhibitors 

become available, it will be interesting to determine whether JQ1-resisitant 

tumours also expressing PIM2 can be sensitised to JQ1 activity following co-

incubation with a PIM kinase inhibitor. 

However, although cytotoxicity could be induced in most primary ALL tumours 

following JQ1 treatment, I noticed that the JQ1-resistant primary ALL tumour 

ALL-103, expressing both PIM and BRD4, could be successfully sensitised to 

the cytotoxic effects of K00135 instead. In addition, primary tumours ALL-105 

and ALL-113, which were resistant to K00135 treatment, were successfully 

sensitised following exposure to JQ1. Taken together, this suggests that in 

some cases JQ1-resistance and K00135-resistance can be circumvented by 

targeting PIM kinases or BET proteins, respectively, and thus demonstrates the 

benefits of being able to target both PIM kinases and BET proteins in B-

precursor ALL. 
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In addition, I confirmed that treatment of ALL tumour cells with either PIM 

kinase inhibitor K00135 or the BET protein inhibitor JQ1 leads to complete 

downregulation of c-Myc protein. This highlights a further overlap in function 

between PIM and BET proteins that may promote tumorigenesis through the 

stabilisation of c-Myc; an oncogenic kinase known to be frequently 

overexpressed in haematological malignancies and potently drive cell 

proliferation [343]. 

With respect to gene expression, I also observed a similarity in the genes that 

appeared to be regulated by PIM kinases and BET proteins. For example, I 

found that BET protein activity was associated with the regulation of TMEM71, 

TMEM156, IL2RA and XIAP genes (which are all upregulated by JAK-STAT 

pathway activity), whereas PIM2 expression was associated with the 

upregulation of TMEM14B, IL2RG, and XIAP genes. This suggests PIM and 

BET proteins may co-operate in promoting tumorigenesis and may confer 

resistance to either K00135 or JQ1 by independently regulating similar genes. 

Taken together, these observations and other previously reported findings lend 

support to suggest PIM kinase and BET proteins may be cooperating together 

to maintain ALL, and may be doing so via the regulation of proliferation, survival 

signaling, and inhibition of apoptosis. 
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6.6. Summary II: Selection of the PIM2 kinase as a candidate 

therapeutic target for further study 

• In this study, I have validated the qRT-PCR technique as an efficient and 

reproducible method by which to indirectly screen ALL tumours for PIM2 

protein expression, since I confirmed that PIM2 mRNA closely correlates 

with PIM2 protein expression levels. 

• Subsequently, I screened a large cohort of primary ALL tumours (n=68) 

and determined the frequency of PIM2 overexpression in B-precursor 

ALL as being 25%. 

• In vitro cytotoxicity data derived using leukaemia cell lines were largely 

inconclusive. However, in contrast to PBMCs, primary ALL tumours were 

sensitised to the cytotoxic effects of treatment with the PIM kinase 

inhibitor K00135. Furthermore, a subset of primary tumours appeared to 

be resistant to PIM-inhibition.  

• Re-analysis of microarray data derived from an independent cohort of 

primary ALL tumours revealed that PIM2 expression was significantly 

associated with the upregulation of genes involved in NFKB and PI3K 

prosurvival signaling pathways, gene transcription, cell cycle 

progression, DNA replication, ribosome metabolism and protein 

translation. In addition, multiple DNA repair genes were negatively 

associated with PIM2 expression. 
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• I confirmed that K00135 treatment of ALL cell lines and primary tumours 

led to complete downregulation of c-Myc protein. 

• I also confirmed that exposure of ALL tumour cells to K00135 led to the 

induction of caspase-dependent apoptosis, which coincided with a 

decrease in BAD Ser112 phosphorylation; a post-translational 

modification known to inactivate this pro-apoptotic protein [380]. 

• Finally, several observations in this study hint toward a close relationship 

between PIM2 and BET proteins that require further investigation. 

 

6.7. Conclusion II 

Overall, the preliminary results from experiments investigating PIM kinases 

confirm that PIM2 is significantly overexpressed in B-precursor ALL, and can be 

targeted to induce ALL tumour cell death. Ultimately, the data presented in this 

thesis have initiated several lines of investigation, and support the rationale for 

the selection of PIM2 as a candidate for further study, and for its validation as a 

novel therapeutic target in B-precursor ALL in addition to BET proteins.  
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7. FUTURE WORK 

7.1 Extension of ALL tumour cohort 

To further evaluate my hypothesis that targeting BET proteins, such as BRD4, 

is an alternative strategy to the sensitisation of primary ALL tumours, including 

apoptotic-resistant high-risk tumours, it will be important to extend the ALL 

tumour cohort analysed in this study. Our lab has previously reported an 

association between ALL apoptotic-resistance in vitro and high-risk or relapsed 

ALL [247]. Since the data presented in this thesis confirms that BRD4 is widely 

expressed in ALL, independent of the phenotype, and that JQ1-mediated 

inhibition of BET proteins effectively induces a cytotoxic response in both 

apoptosis-sensitive and apoptosis-resistant primary ALL tumours, it will be 

interesting to find out how genetically diverse, refractory ALL tumours respond 

to BET inhibition. This would be highly relevant work, since an estimated 30% of 

ALL patients treated at Birmingham Children’s Hospital are diagnosed with 

either high-risk or relapsed disease (personal communication with Dr. Shaun 

Wilson).  

Refractory ALL tumours can be tested in vitro using the luminescent ATP-based 

cytotoxicity assay described in this study, as it is efficient and produces 

consistent results. Refractory ALL tumours can be treated with JQ1, and other 

highly specific BET inhibitors currently under development by our collaborator 

Prof. Stefan Knapp, in order to further validate that targeting BET proteins is a 

highly effective, novel approach to sensitising chemoresistant ALL tumours. 
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Given the range of in vitro responses of primary ALL tumours to JQ1 it will be 

important to determine whether or not the different responses are in part due to 

different rates of cycling among individual tumours. Since primary tumours are 

predominantly non-cycling in vitro and results in section 3.1.2 indicate that 

tumours most resistant to JQ1 are those with upregulated expression of the 

CDKN1A and GADD45A genes involved in cell cycle arrest, it would be ideal to 

compare the cytotoxic effects in non-cycling primary ALL cells with primary ALL 

cells that have been induced to cycle. This would be possible using a culture 

system containing CD40L, IL-3, IL-7, IL-10 and Flt3L previously established in 

our lab [555]. 

7.2 Investigation of the synergy between JQ1 and 

dexamethasone in vitro 

Results in this study show that JQ1 confers synergistic effects when combined 

with dexamethasone, as demonstrated by in vitro data that shows both ALL cell 

lines and primary tumours are sensitised to dexamethasone using this drug 

combination (section 3.1.3). Since dexamethasone is a key component of 

current ALL treatment protocols and sensitivity to glucocorticoid treatment in 

vivo is a major prognostic factor in B precursor ALL [556], it will be important to 

elucidate the mechanisms by which JQ1 is able to potentiate the cytotoxic effect 

of dexamethasone as this would allow for the identification of tumours that are 

most likely to benefit from addition of BET inhibitors to standard ALL protocols. 

The mechanisms behind such synergy can be investigated by first testing for in 

vitro synergistic cytotoxic effects of combined JQ1/dexamethasone in 

dexamethasone-resistant ALL tumours and then using genome-wide gene 
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expression profiling to compare the transcription profiles of dexamethasone-

resistant ALL tumours that can be sensitised by JQ1 and that are either 

untreated, treated with JQ1, treated with dexamethasone, or treated with a 

combination of JQ1/dexamethasone.  

It has been suggested that dexamethasone exerts its anti-tumour effect via 

downregulation of the NFκB and c-Myc pathways, and that the decision for a 

tumour cell to undergo either apoptotic death or cell cycle arrest is dependent 

upon the expression of the anti-apoptotic protein Bcl-2 and Bcl-2 protein family 

members [557-559]. It will therefore be important to monitor changes in 

expression of proteins such as Bcl-2, Bax, Bak and Bim, in response to different 

treatments using qRT-PCR and Western blotting techniques. Indeed, BIM 

expression has been shown to be essential to dexamethasone-induced 

apoptosis in ALL, and to be regulated mainly at the transcriptional level [560]. 

Interestingly, studies have shown that glucocorticoid resistance in primary B 

precursor ALL cells is not due to decreased GR expression, and instead occurs 

downstream of ligand-induced translocation of GR to the nucleus, and upstream 

of Bim induction [561], suggesting that elucidation of the exact signaling events 

between GR activation and Bim induction may aid attempts to overcome 

dexamethasone resistance in ALL. Furthermore, the mechanism of action of 

dexamethasone involves antagonism of Rel A (p65) activity by interfering with 

RNA Pol II-mediated gene transcription [562]. Since BET proteins such as 

BRD4 promote RNA Pol II transcription activity [442], it may be that 

sensitisation of ALL tumour cells to dexamethasone, when co-treated with JQ1, 

is in part due to favouring an overall inhibitory effect on RNA Pol II activity; this 
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will require further investigation. Should combined JQ1/dexamethasone 

treatment cause differential downregulation of NFκB target genes, chromatin 

immunoprecipitation (ChIP) may be used to determine whether or not exposure 

to both JQ1 and dexamethasone reduces the occupancy of NFκB at target gene 

promoters, compared to untreated cells, or cells treated with dexamethasone 

alone. 

7.3 Investigation of the in vivo effects of BET protein inhibition 

in xenograft models of refractory and dexamethasone-resistant 

ALL  

The high efficacy with which JQ1 sensitises apoptotic-resistant ALL cells 

derived from a high-risk ALL patients in vivo has been demonstrated in this 

study. To further support the concept of targeting BET proteins to sensitise 

chemoresistant ALL, it will be necessary to develop additional xenograft models 

of high-risk and refractory ALL, in order to test the anti-leukaemic effects of JQ1 

and other available specific BET inhibitors. It will be interesting to see how 

effective BET inhibition will be in eliminating leukaemia in vivo in models of ALL 

tumours with a range of cytogenetic abnormalities that are commonly 

associated with a poor prognosis. 

Additionally, results in this study indicate that treatment of ALL tumour cells with 

a JQ/dexamethasone combination leads to synergistic cytotoxic effects in vitro. 

To confirm that these synergistic effects are translatable in an animal model, it 

will be necessary to also develop primary xenograft models of dexamethasone-
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resistant ALL, in order to measure the effects combined treatment has on 

tumour load and ALL progenitor populations. 

 

7.4 Evaluation of transcriptional biomarkers 

Despite uniform expression of BRD4, not all primary tumours are sensitive to 

BET protein inhibition, which is why I set out to identify transcriptional 

biomarkers of sensitivity to JQ1 (section 3.2.5). It will be important to validate 

the biomarker genes I identified in an independent cohort of ALL tumours with 

known sensitivity to JQ1. This work may hold crucial clinical implications in 

future, which would allow for the prediction of a patient’s response to JQ1 based 

on biomarker gene expression levels, and avoid administering the JQ1 inhibitor 

to patients unnecessarily. 

7.5 Investigation of the role of BET proteins in protein stability 

Cellular proteins are targeted for proteasomal degradation following the activity 

of ubiquitin ligases (E1, E2 and E3), which transfer a chain of ubiquitin 

molecules to specific lysine residues on the target protein [563, 564]. 

Intriguingly, several studies have shown that the acetylation of lysine residues 

of key regulatory factors, such as p53, p73, Runx3, FOXO4 and E2F1, can lead 

to an increase in their protein stability [565-571]. As in the case of E2F1, 

acetylated lysine residues create a binding site for a binding partner, which 

when bound, masks the lysine residue and prevents its ubiquitination [565, 

566].  
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Upon consideration of these observations, together with the results I present in 

this thesis showing that inhibition of acetyllysine-binding BET proteins leads to 

proteasomal degradation of both c-Myc and survivin, it would interesting to 

determine whether BET proteins regulate protein stability by binding and 

masking lysine residues of cellular proteins.  

 

7.6 Investigation of the effects of BET protein inhibition on DNA 

replication and repair 

Since monotherapies tend to lead to treatment resistance, combined treatment 

of drugs with different mechanisms of action is preferred. Thus, it will be 

important to elucidate the role of BET proteins in DNA replication and repair and 

provide rationale for combined treatments for ALL involving JQ1, above 

combinations with dexamethasone. 

Results presented in this thesis suggest a JQ1-induced delay in replication fork 

progression and an increase in replication fork stalling. To further understand 

this effect, it will be necessary to verify whether replication fork stalling is 

associated with the induction of DNA damage and increased levels of single-

strand DNA (ssDNA) breaks. This can be measured by Western blot analysis, 

as well as immunofluorescence and quantification of phosphorylated RPA foci, 

which are a marker of ssDNA. Furthermore, increased levels of spontaneous 

γH2AX foci, a frequently used marker of DSBs, in ALL tumour cells treated with 

JQ1 will also be indicative of replication-associated DNA damage. 
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Additionally, to test the hypothesis that the presence of incomplete transcription 

complexes in JQ1-treated cells has an impact on replication fork progression 

and stalling, it will be interesting to see if treatment of ALL tumour cells with the 

CDK9 inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) leads 

to similar effects in DNA replication to JQ1-treated cells, since DRB inhibits 

transcription through a similar mechanism to that suspected for JQ1-mediated 

BRD4 inhibition [339, 572]. 

It will also be important to investigate the effects of BET protein inhibition on 

DNA repair. BET proteins interact with histone deacetylases [573], and it is 

conceivable that their inhibition may affect the configuration of chromatin [574]. 

Since chromatin status is an important determinant of the DNA damage 

response, including homologous recombination repair (HRR) [575-577], it will 

be interesting to see if replicative stress observed in JQ1-treated tumour cells 

exhibit deregulated HRR. This can be tested in experiments using 

immunofluorescence to determine whether JQ1 causes delayed resolution of 

IR-induced foci of phosphorylated γH2AX, which would indicate reduced 

efficacy of DSB repair. If this is the case, further investigation looking at IR-

induced foci of HRR proteins, such as RAD51, RNF168, BRCA1 and RAD18, 

will aid elucidation of changes to DSB repair kinetics. 
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7.7 Determine the role of other BET proteins in the regulation of 

ALL survival and proliferation 

Recent evidence suggests that in addition to BRD4, other BET protein family 

members might also play a role in cancer pathogenesis. For example, BRDT is 

frequently expressed in non-small-cell lung carcinoma (NSCLC), whereas 

BRD2 interacts with the Kaposi sarcoma associated herpes virus (KSHV) 

latency associated nuclear antigen 1 (LANA-1) that is required for replication of 

this tumour-promoting virus [554, 578, 579].  

Although evidence exists to show that JQ1 binds to the bromodomains of BRD4 

with the greatest affinity, bromodomains of other BET proteins are also targeted 

by JQ1 to some extent [334]. Thus, it will be important to determine the 

biological significance of individual members of the BET family, by studying the 

expression levels of BRD2, BRD3 and BRDT, as well as the effect of their 

downregulation, in a number of primary low-risk, high-risk, and relapsed ALL 

tumour cells, as well as in ALL cell lines NALM-6 and REH, which are 

representative of apoptosis-sensitive and apoptosis-resistant phenotypes, 

respectively. The establishment of stable shRNA knock-down in ALL cell lines 

for the BET proteins that are expressed in ALL and demonstrate an impact on 

survival, will also be important future work to link cytotoxic effects to the 

downregulation of specific members of the BET family of proteins. 

7.8 Validation of the PIM2 kinase as a viable therapeutic target 

in B-precursor ALL 
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The overexpression and oncogenic functions of PIM kinases have previously 

been demonstrated in a wide range of haematological malignancies [356]. 

Furthermore, the expression of PIM kinases is activated by JAK-STAT and 

NFκB prosurvival signaling pathways, both of which are frequently upregulated 

in high-risk ALL [67, 68, 189, 192, 248]. 

The results in this study indicate that PIM2 may play a role in maintaining pre-B 

ALL and so it will be important to further characterise its activity and confirm that 

pharmacological inhibition of PIM2 is an additional strategy by which to 

downregulate survival signaling and overcome apoptotic-resistance observed in 

a subset of chemoresistant primary ALL tumours [248]. 

Importantly, a next-generation PIM kinase inhibitor is currently being developed 

(personal communication with Prof. Stefan Knapp), which targets PIM2 with 

greater affinity and specificity than K00135, despite K00135 being found to 

cross-react with only one additional kinase, CLK1 [486]. Once available, it will 

be important to test the effects of the new PIM2 inhibitor in a larger cohort of 

primary ALL tumours, and to verify that targeting PIM2 in tumours exhibiting 

chemoresistance to clinically used cytotoxic agents leads to their sensitisation 

to apoptosis. This will need to be tested in vitro, as well as in vivo using our ALL 

xenograft mouse model. 

In addition, it will be important to test the effects of the new PIM inhibitor in 

combination with chemotherapeutic agents such as doxorubicin, vincristine and 

dexamethasone, since synergistic effects may improve the efficacy with which 

these cytotoxic agents eliminate ALL tumour cells, and allow for a reduction in 
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the doses used to treat patients. It will also be important to test the effects of 

combined treatment with a PIM kinase inhibitor and JQ1 in ALL tumours that 

are resistant to either of these compounds alone, since results in this study 

suggest a significant degree of overlap exists between PIM kinase and BET 

protein activity. 

Overall, further investigation into the targeting of PIM2 with specific 

pharmacological inhibitors will help fully evaluate this approach in the treatment 

of chemoresistant B-precursor ALL, and potentially provide scientific evidence 

to support inclusion of the first PIM kinase inhibitor in a B-ALL clinical trial.   
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8. APPENDICES 

 

 

8.1. Appendix 1- Clinical information for the AML patients used 

as positive controls in JQ1 cytotoxicity experiments 

Patient 

No. 

Age at 

diagnosis 

(years.months) 

WCC at 

diagnosis 

(x109/L) 

Cytogenetic 

profile 

In vitro 

response to 1 

µM JQ1 (EC50) 

AML-1 4.4 46.3 46XY, t(9;22) 0.118 

AML-2 7.6 6.5 46XY, t(15;17) 3.720 

 

 

 

Two primary AML tumours were used as positive controls for JQ1-induced 

cytotoxicity, since previous studies demonstrated potent anti-tumour effects of 

JQ1 in vivo, in a primary AML xenograft model [344] 

The above table shows clinical information for the two primary AML control 

tumours along with corresponding JQ1 EC50 that were derived from cytotoxicity 

experiments in this study. 
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8.2. Appendix 2- Clinical information for the B-precursor ALL 

patients used in the PIM2 qRT-PCR expression screen 

 

 

Patient No. Age Sex Karyotype Blast clearance (Day 8) Mol. MRD  
(Day 28)

K00135 
EC50 µM

ALL-201 8.24 F
48,XX,+X,der(14)t(8;14)(q11;q32),+21c[8]/

47,XX,+21c[2] - - 0.53
ALL-202 15.2 M 54,XY,+X,+4,+6,+10,+14,+18,+21,+21[10] GER LR 0.48
ALL-203 - - - - HR 0.08
ALL-204 - - - - - 0.60
ALL-205 - - - GER LR 0.14

ALL-206 9.68 M

47,XY,dup(1)(q32q12),t(8;14)(q24;q32),+22[3]/
46,XY[14]

IGH/MYC positive [33/93] - - 0.44
ALL-207 11.9 M - GER HR 2.37

ALL-208 2.2 F
55,XX,+X,ins(1;?)(q2;?),+4,+6,+10,+14,+17,+18,+21,+21[9]/

46,XX[1] - HR 1.09

ALL-209 10.5 M
46,XY,del(9)(p1),der(19)t(1;19)(q23;p13)[9]/

46,XY[1] - HR 0.16
ALL-210 0.34 M 46,XY[20] - - 0.17
ALL-211 - - - - - 0.18

ALL-212 6.43 M
57~60,XY,+der(X)t(X;1)(q28;q2),+Y,+4,+5,+6,+8,+10,add (10)(q?),

+14,+17,add(17)(p1),+18,+18,+21,+21,+1~2mar[cp8]/46,XY[2] GER HR 0.54

ALL-213 18.1 F
46,XX,add(3)(p12),inv(5)(p15.3p14)c,add(20)(q1)[6]/

46,XX,inv(5)(p15.3p14)c[14]/ - - 1.75
ALL-214 17.9 F 44,X,-X,-7,t(9;22)(q34;q11)[12] - - 2.26

ALL-215 20.6 M
46,XY,t(2;7)(p1;p1)[8]/

46,XY[2] - - 1.53

ALL-216 14.7 M

47,XY,+X,t(4;11)(q21;q23)[10]

MLL rearrangement positive [5/5]      Metaphase FISH. GER HR 0.56

ALL-217 12.5 F

46,XX,t(3;10)(q25;p11.2),del(9)(p21p21),der(9)t(9;16)(p21;q22)del(9)(p21
p21),

der(16)t(9;16)(p21;q22)[11]/47,idem,+8[3]
- LR 0.16

ALL-218 0.78 F
46,XX,t(4;15)(q21;q15)[9]/

46,XX[1] - - 0.66
ALL-219 4.71 F 52~54,XX,+X,+4,+6,+10,+14,+17,+18,+21,+mar,inc[cp10] GER - 5.63
ALL-220 3.38 M

[ p
2] - - 0.45

ALL-221 8.56 M 48,XY,t(2;12)(p1;q1),-13,-20,+21c,+21,+3~4mar,inc[cp7] PER HR 0.30

ALL-222 8.91 M

46,XY,inc[8]/
47,XY,+12,?add(12)(p1)[7]   

p16 monoallelic deletion [40/113]/
p16 biallelic deletion [56/113]

12cen x3 [18/133]                            Interphase FISH analysis - LR 0.55

ALL-223 0.73 F

46,XX,t(4;11)(q21;q23)[9]/46,XX[1]

MLL rearrangement positive [74/105]      Interphase FISH analysis - - 0.16

ALL-224 0.53 M

46,XY,t(4;11)(q21;q23),t(14;18)(q32;q1)[10]

MLL rearrangement positive [96/99]  Interphase FISH analysis
MLL rearrangement positive [5]         Metaphase FISH analysis - - 0.27

ALL-225 10.1 F
57,XX,+X,+X,+4,+6,+8,+10,+14,+17,+18,+21,+21[8]/

46,XX[2] GER HR 0.30
ALL-226 14.2 M 46,XY,add(7)(q2),add(12)(p13)[10] GER HR 0.41
ALL-227 7.43 M - GER LR 0.42

ALL-228 14 M

46,XY,?del(9)(p2?1p2?1)[20]

p16 partial deletion x1 [22/49]               Interphase FISH PER HR 2.89

ALL-229 2.84 M
54,XY,+?X,+Y,+?4,+6,+10,+14,+18,+21,+21,inc[cp3]/

46,XY[1] GER LR 3.53
ALL-230 1.87 M TEL/AML1 positive [51/56]         Interphase FISH GER LR 1.55, , , , , , , , , ( )(p ), , , , [ p
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ALL-230 1.87 M TEL/AML1 positive [51/56]         Interphase FISH GER LR 1.55
ALL-231 2.59 M

, , , , , , , , , ( )(p ), , , , [ p
0] - LR 0.30

ALL-232 4.22 F

46,XX,der(19)t(1;19)(q23;p13)[9]/
46,XX[1]

E2A gene rearrangement [101/109]   Interphase FISH GER HR 0.07

ALL-233 3.51 M

46~47,XY,?add(12)(p1),?t(12;21)(p13;q22),?+21[cp8]

TEL/AML1 fusion, TEL deleted [43/80]
TEL/AML1 fusion, TEL deleted, gain of AML1 [12/80]   Interphase FISH GER LR 0.44

ALL-234 22.9 M 46,XY[20] - - 0.48

ALL-235 5.48 M
47,XY,+X,-14,-16,add(17)(p1),+2mar,inc[4]/

46,XY[6] - HR 1.83
ALL-236 18.2 M 46,XY[20] - - 0.34
ALL-237 11.6 F 46,XX[20] - - 0.22

ALL-238 3.96 M

46,Y,add(X)(q1),t(1;14)(q21;p1),der(6,)add(6)(p1)add(6)(q1),?t(12;21)(p1
3;q22),

add(22)(p1)[9]/
??,?idemx2,inc[?]/

46,XY[1]
GER LR 0.39

ALL-239 2.94 M TEL/AML1 positive [83/87] - - 1.20

ALL-240 3.82 F

45,X,-X[7]/46,XX[3]

Xcen x1[84/94]                                   Interphase FISH - 0.54
ALL-241 - - - - - 3.09

ALL-242 18.9 F

48,X,t(X;14)(p2;q32),+der(X)t(X;14)(p2;q32),+21c[7]/
47,XX,+21c[16]

IGH gene rearrangement positive [4/5]             Metaphase FISH 
analysis - - 0.84

ALL-243 10.6 F

47,XX,?t(12;21)(p13;q22),+21[5]/
47,XX,add(12)(p1),?t(12;21)(p13;q22),+21[4]/

47,XX,add(6)(q1),-9,?t(12;21)(p13;q22),+21,+mar,inc[3]

TEL/AML positive [101]
TEL deleted x 1 [95/101]       Interphase FISH - LR 2.28

ALL-244 8.11 M

46,XY,add(6)(q1),?t(12;21)(p13;q22)[4]/
46,XY,?t(12;21)(p13;q22)[6]                               G-band metaphase

TEL/AML1 positive [100/104]                             Interphase FISH - HR 0.52

ALL-245 7 F
58,XX,+4,+6,+7,+8,+10,t(10;12)(p1;q1),+11,+12,+14,+17,+18,+21,+21[

7]/ - - 0.58
ALL-246 - - - - - 1.33
ALL-247 18.2 M 46,XY[20] - - 0.18

ALL-248 10.2 M

46,XY,t(5;5)(q1;q31)[7]/
46,XY,t(3;20)(p21;q13),t(5;5)(q1;q31)[7]/

46,XY[1] PER HR 0.69

ALL-249 5.19 M

46,XY,?t(12;21)(p13;q22)[?6]/
47,XY,+10,?t(12;21)[2]/

46,XY[?3]

TEL/AML1 fusion positive             FISH analysis on previous sample  - - 1.15

ALL-250 5.72 M

46,XY,-
6,add(7)(p22),?del(9)(p21p21),add(10)(q2),?t(12;21)(p13;q22),+r[7]/

46,XY,-6,add(8)(p1),?del(9)(p21p21),?t(12;21),+r[5]/46,XY[18]                      
- NR 1.80

ALL-251 2.46 M 46,XY,del(9)(p11)[20] GER HR 2.09

ALL-252 5.95 F

59~61,XX,+X,t(2;12)(q14;p13),+4,+5,+6,+8,+10,+11,+14,+15,
+18,+21,+21,+mar[cp7]/

46,XX[6] - LR 0.68
ALL-253 2.93 F 55,XX,+X,+X,ins(1;?)(q21;?),+6,+10,+14,+17,+18,+21,+21[10] GER LR 0.29

ALL-254 2.11 M

45,XY,der(22)?t(2;9;22;10)(p1;q34;q11;q2),add(3)(p2),
-

7,der(9)?t(2;9;22;10)del(9)(q34q34),der(10)?t(2;9;22;10),der(22)?t(2;9;2
2;10)[9]/
46,XY[1] GER HR 0.46

ALL-255 6.88 M
54,XY,+X,+4,+6,+9,+14,+20,+21,+21[11]/

46,XY[1] GER HR 0.47
ALL-256 16.7 F 46,XX,+5,idic(5)(p1),t(14;19)(q32;q13)[10] - - 0.29
ALL-257 13.4 M - - 0.08

ALL-258 11 F

46,XX,der(19)t(1;19)(q23;p13.3)[11]/
46,XX[1]

TCF3 (E2A) rearrangement [45/60]            Interphase FISH GER LR 0.09

ALL-259 8.28 M

46,XY,t(12;21)(p13;q22),add(12)(p1)[23]/
46,XY,der(12)t(12;21),idicder(21)(p1)t(12;21)[9]/

46,XY,der(12)t(12;21),idicder(21)t(12;21),add(12)(p1)[39]/
46,XY[18]                                                      

                  
TEL/AML1 positive - - 0.37
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Data includes age, gender, cytogenetics, blast clearance (Day 8), molecular 

MRD (Day 28). 

K00135 EC50 values from cytotoxicity experiments are also included. 

‘-‘ denotes where clinical data was not available. M/F = Male/Female, PER =  

poor early response, GER = good early response, LR/HR = low-risk/high-risk 

 

 

 

 

 

 

       
 

 
 

  

 

          

   

   
   

                                

           

       
              

                    

            

       

    
           

  

                                     

                   

  
            

                                

                                

                     

                      

                

                                                      
                  

 p
ALL-260 8.28 M - - - 0.27

ALL-261 5.2 M

46,XY,?del(12)(p13p13),?t(12;21)(p13;q22)[20]               G band 
analysis

- - 0.20

ALL-262 3.06 F
46,XX,?del(9)(p21p21)[4]/46,XX[1]                  Metaphase G-banding 

and FISH - LR 0.64

ALL-263 10.1 F
51~53,XX,+4,+6,del(6)(q1q2),+8,+14,+21,+21,+mar[cp9]/

46,XX[1] GER LR 0.32

ALL-264 8.76 F

45,X,-X,?del(12)(p1?p13),?t(12;21)(p13;q22),inc[6]/
46,XX[2]

TEL/AML1 rearrangement positive, partial TEL deletion [61/106]  GER LR 0.49

ALL-265 4.44 M

46,XY,t(9;22)(q34;q11)[5]/
46,XY[17]

BCR/ABL positive [1/20]           Metaphase FISH GER HR 0.16

ALL-266 3.85 F

45,XX,der(8;12)(q10;q10),?t(12;21)(p13;q22)[2]/
46,XX,add(12)(p1),?t(12;21)(p13;q22),+mar,inc[cp9]/

46,XX[4]

TEL/AML1 positive, TEL deleted x1[93/102]     Interphase FISH - HR 0.65

ALL-267 3.31 M

?46,XY,?del(9)(p?21p?21),?t(12;21)(p13;q22)[?]/46,XY[?]

TEL/AML1 positive [25/91]; p16 deleted (monoallelic) [21/96]        PER HR 0.37

ALL-268 3.63 F
53,XX,+X,+6,+14,+17,+18,+21,+21[12]/

46,XX[3] - LR 0.39
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8.3. Appendix 3- The PIM2 gene is among the most differentially 

upregulated genes in tumours resistant to JQ1 

 

 

 

 

Primary ALL tumours were ranked according to JQ1 EC50, as determined in 
previous cytotoxicity experiments. Fold-changes in gene expression showing 
the strongest positive correlation with JQ1 EC50 values were then identified  
using Spearman’s rank coefficient correlation (coefficient ≥0.6; p<0.05). 

Among those genes selected (shown in the above heatmap) PIM2 was shown 
to be one of the most differentially upregulated genes in JQ1-resistant primary 
ALL tumours indicated by black arrow), suggesting PIM2 may confer resistance 
of ALL tumour cells to the cytotoxic effects of JQ1. 
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8.4. Appendix 4- Photograph of original blot showing BRD4 

expression in ALL cell lines 

 

 

 

 

 

 

The above image is the original western blot produced in experiments 

investigating the expression of BRD4 in a panel of 6 ALL cell lines (NALM-6, 

NALM-17, REH, SD1, SUPB15, TOM-1), and is the same blot used to produce 

Figure 3.1a in Results Chapter 3. The arrow indicates the protein band 

representing BRD4 which was detected at the expected molecular weight of 

152 kDa. BRD4 was expressed at high levels across all ALL cell lines. 
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8.5. Appendix 5- Photograph of original blot showing BRD4 

expression in ALL primary tumours 

 

 

 

The above images are the original western blots produced in experiments 

investigating the expression of BRD4 in a panel of 10 ALL primary tumours and 

are the same blots used to produce Figure 3.1b in Results Chapter 3. BRD4 

protein was detected as a 152 kDa protein in all ALL primary tumours. The 

numbers ‘0’ and ‘6’ represent the time in hours that primary tumour cells were 

exposed to 1µM JQ1.  
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8.6. Appendix 6- Schematic showing the possible structures 

that can be identified using the fluorescent DNA replication 

fibre technique 

 

 

 

The above replication structures can be visualised using the fluorescent DNA 
fibre-labelling technique, whereby replication tracts are first labelled with the 
nucleotide analogue CIdU and then IdU (20 minutes incubation each), followed 
by immunostaining with appropriate antibodies conjugated to two different 
fluorophores. After laser-excitation, the fluorphores emit red light (1st label) and 
green light (2nd label), allowing replication structures to be identified, as well as 
the direction of DNA replication and the rate of progression (by measuring the 
lengths of red and green fibres). 
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