
 

 

THE LAR PROTEIN TYROSINE PHOSPHATASE 

ENABLES PDGF β-RECEPTOR ACTIVATION AND 

SIGNAL TRANSDUCTION 

 

by 

 

WEI ZHENG 

 

A thesis submitted to 

 The University of Birmingham  

for the degree of 

 DOCTOR OF PHILOSOPHY 

 

 

 

 

 

School of Biosciences 

The University of Birmingham 

April 2013 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



This work was published, please quote the reference. The published paper was written 

in collaboration with the supervisor and other authors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

Many cellular activities including cell survival, proliferation, migration and 

differentiation are controlled by growth factors and their corresponding tyrosine 

kinases receptor (RTKs). Growth factor receptor activation is strictly regulated by 

protein tyrosine phosphatases (PTPs). Here I investigated whether the receptor protein 

tyrosine phosphatase (RPTP) LAR, which is known to modify the activity of several 

RTKs, also regulates platelet derived growth factor (PDGF) receptor activity and 

signalling. Mouse embryonic fibroblasts (MEFs) expressing mutant LAR lacking its 

phosphatase domains (LARΔP) showed reduced phosphorylation of PDGFβ receptor 

(PDGFβR) compared with wild type (WT) cells. This was rescued by re-expression of 

WT LAR. The decreased phosphorylation of the PDGFβR was independent of ligand 

concentration and occurred on all tyrosine residues, suggesting that LAR is required 

for full PDGFβR kinase activation. The decreased kinase activity reduced the 

amplitude or duration of the different signalling pathways activated downstream of 

the PDGFβR, and resulted in reduced proliferation in response to PDGF-BB. These 

findings demonstrate, for the first time, that LAR activity is required for 

PDGF-induced fibroblast proliferation. The inhibition of PDGFβR kinase activity in 

LARΔP cells was exerted via increased basal activity of the tyrosine kinase c-Abl and 

its substrate protein kinase Cδ (PKCδ). Ligand-induced PDGFβR dimerization is 

defective in LARΔP cells, possibly due to the observed increase in the Nherf2 protein 

associating with the PDGFβR. In summary, I have identified LAR as a new regulator 



of PDGFβR activity, and propose a novel mechanism where PDGF-induced activation 

of c-Abl serves as a negative feedback loop to terminate the PDGFβR kinase activity. 

This may occur via PKCδ activation promoting the association of Nherf2 with 

PDGFβR, thereby reducing ligand-induced receptor dimerization and kinase 

activation. In this model, LAR promotes PDGFβR activity by inactivating c-Abl.  
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CHAPTER 1 INTRODUCTION 

 

 

Many of the cellular activities including cell survival, growth, proliferation, migration 

and differentiation are controlled by growth factors and their corresponding receptors. 

These growth factors act as signalling transduction molecules to bind to their specific 

receptors located on the cell membrane. These activated receptors then initiate a 

cascade of signal transduction through multiple downstream pathways to regulate the 

expression of a pattern of genes which results in the inhibition and promotion of 

protein production needed for cellular responses. The cellular response to growth 

factor stimulation is tightly controlled. This ensures that cells start and stop 

responding to stimulation at the correct time. Errors in the regulation of cellular 

signalling and response lead to cancer and metabolic diseases (Kadowaki et al. 1996; 

Heldin et al. 1998; Wells 1999). 

 

Intracellular signal transduction involves many phosphorylation and 

dephosphorylation events. Reversible protein phosphorylation is an important 

regulatory mechanism in eukaryotic organisms. Kinases phosphorylate proteins by 

transferring a phosphate group from ATP to their substrates. In eukaryotic cells, 

phosphorylation usually occurs on serine, threonine and tyrosine residues (Thomason 

and Kay 2000; Cohen 2002; Fiedler et al. 2009). Phosphatases dephosphorylate 

http://en.wikipedia.org/wiki/Eukaryote
http://en.wikipedia.org/wiki/Protein_kinase
http://en.wikipedia.org/wiki/Serine
http://en.wikipedia.org/wiki/Threonine
http://en.wikipedia.org/wiki/Tyrosine


13 
 

proteins by the hydrolysis of phosphoric acid monoesters into a phosphate ion and a 

residue with a free hydroxyl group (Tiganis and Bennett 2007). Reversible 

phosphorylation leads to conformational changes in the structure of many enzymes 

and receptors, causing them to become activated or inactivated, and therefore 

regulates the cellular signalling and responses these proteins are involved in (Krebs 

and Beavo 1979; Raju 2000). 

 

1.1 PDGF and PDGFR 

1.1.1 Introduction 

Platelet-derived growth factor (PDGF) is a family of growth factors of importance for 

survival, proliferation and motility of several different cell types. This includes the 

connective tissue cells such as fibroblasts, smooth muscle cells and neurons (Kohler 

and Lipton 1974; Ross et al. 1974; Heldin et al. 1998). PDGF was originally isolated 

from human platelets (Ross 1986). PDGF and its corresponding receptor PDGFR 

(PDGF receptor) have important roles in regulating adult physiological functions. It 

was shown that PDGF causes the constriction of several types of blood vessel (Berk et 

al. 1986; Sachinidis et al. 1990). PDGF also regulates wound healing and the 

maintenance of interstitial fluid pressure (Robson et al. 1992; Rodt et al. 1996).  

 

PDGF plays important roles in the development of alveoli in the lung by promoting 

the growth of alveolar myoblast cells (Bostrom et al. 1996; Soriano 1997). PDGF is 

http://en.wikipedia.org/wiki/Phosphoric_acid
http://en.wikipedia.org/wiki/Ester
http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/Ion
http://en.wikipedia.org/wiki/Hydroxyl
http://en.wikipedia.org/wiki/Protein_structure
http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Receptor_%28biochemistry%29
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important for glomeruli development by allowing the growth of mesenglial cells and 

attracting pericytes to glomeruli blood vessels (Leveen et al. 1994; Lindahl et al. 1997; 

Soriano 1997). PDGF and PDGFR were shown to be highly expressed in testicular 

cells. They were suggested to be crucial for testis development by promoting the 

Leydig cell migration, proliferation and differentiation (Peltomaki et al. 1991; 

Carmona et al. 2009; Basciani et al. 2010). PDGFR has been reported to be expressed 

in the mouse migratory neural crest (Ho et al. 1994; Takakura et al. 1997). PDGF is 

required for neural crest development by stimulating neural crest cell migration and 

survival (Soriano 1997; Robbins et al. 1999). PDGF has been shown to stimulate the 

migration of the cells to the wound site of cartilage in combination with insulin 

growth factor (IGF) to mediate cartilage repair (Breinan et al. 2000; Schmidt et al. 

2006). Because of the mitogenic and chemotactic responses caused by PDGF in 

osteoblast cells, PDGF has been shown recently to be important for bone regeneration, 

and therefore may serve as an effective and safer alternative for autogenous bone graft 

(DiGiovanni et al. 2012).  

 

Studies on mice showed that PDGF plays important roles in regulating embryonic 

development. Knock out of PDGF and PDGFR leads to impaired development of 

alveoli in the lung (Bostrom et al. 1996; Soriano 1997), defective development of 

glomeruli and blood vessels with the absence of mesenglial in glomeruli and inability 

of the blood vessel to attract pericytes (Leveen et al. 1994; Lindahl et al. 1997; 

Soriano 1997), abnormal cerebral vascularization, loss of neuroependymal integrity 
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and ventricular abnormality (Fredriksson et al. 2012), leading to mice dying at the 

time around birth (Leveen et al. 1994; Lindahl et al. 1997; Soriano 1997). 

 

Over-activation of PDGF and PDGFR leads to several physiological diseases and 

cancer. Up-regulation of PDGF and PDGFR were observed in almost all the human 

renal diseases (Zhang et al. 2005). Overactivation of PDGFR leads to renal fibrosis 

and glomerulosclerosis (Floege et al. 2008; Ostendorf et al. 2012). Overactivation of 

PDGFR in retinal cells causes proliferative vitreoretiopathy (Lei et al. 2007; Cui et al. 

2009; Lei et al. 2010). Several observations suggest that overactivity of PDGF is 

involved in the development of various fibrotic conditions in the lung (Souza et al. 

1996; Heldin and Westermark 1999). 

 

Human glioma cells express both PDGF and PDGFR. The distribution of the ligand 

and the receptor indicates that the glial tumour cells are stimulated in PDGF autocrine 

and paracrine loops. Activation of PDGFR induces tumour blood vessel formation 

(Lokker et al. 2002; Martinho et al. 2009; Nazarenko et al. 2012). Overexpression of 

PDGFR is observed in breast cancer, and inhibition of PDGFR and c-kit with Imatinib 

suppressed the growth and invasion of breast cancer cells (Roussidis et al. 2007). 

PDGF overexpression also leads to autocrine stimulation in the rare skin tumour 

dermatofibrosarcoma protuberans (Sjoblom et al. 2001) 
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1.1.2 PDGF Ligand binding and PDGFR dimerization 

PDGF is a dimeric molecule consisting of disulfide-bonded A, B, C and D 

polypeptide chains. All four types of polypeptides form homodimers, while A and B 

can also form heterodimers (Heldin et al. 1998; Li et al. 2000; Bergsten et al. 2001). 

These PDGF isoforms have their effects on the target cells by binding to two types of 

structurally related tyrosine kinase receptors called the PDGF α-receptor (PDGFαR) 

and PDGF β-receptor (PDGFβR) with different specificities. 

 

Many of the tyrosine kinase receptors are activated by ligand binding induced 

receptor dimerization or oligomerization (Heldin and Ostman 1996). All PDGF 

isoforms are dimers and therefore have two receptor binding epitopes, thus each 

PDGF dimer binds to two receptors simultaneously (Duan et al. 1991; Fretto et al. 

1993; Herren et al. 1993). PDGFαR binds to the A, B and C chain of the ligand, while 

PDGFβR binds only to the B and D chain with high affinity, therefore different ligand 

molecules will induce the dimerization of different types of PDGFRs. PDGF AA 

leads to the dimerization of PDGFαα receptor, AB leads to the αα and αβ receptor 

dimer, BB induces the formation of all three types of receptor dimer i.e. αα, αβ and ββ. 

PDGF CC and DD induce the αα and ββ dimerization respectively (Bishayee et al. 

1989; Heldin et al. 1989; Seifert et al. 1989; Kanakaraj et al. 1991)(Figure A).  
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Figure A Ligand-induced dimerization of PDGF receptors 
The ability of different isoforms of PDGF dimer to induce the formation of homo- and heteromeric receptor 

complexes is shown (From a self-made PowerPoint slide given by Dr. Carina Hellberg). 

 

So the PDGF ligand serves as a bridge holding two PDGF receptors together to form 

a dimer. The link between the two PDGF receptor molecules was found to be further 

stabilized by the interaction between the immunoglobulin domain 4 from the N 

terminus of the dimerized receptors (Heldin et al. 1998). There is a low affinity 

interaction between the PDGF receptors in the absence of ligand, which allows the 

receptors to be dimerized and activated without ligand when the expression of 

receptor is high. Studies showed that when PDGF receptors are highly expressed in 

the cell, receptor dimerization and autophosphorylation were observed (Jensen et al. 

1992; Herren et al. 1993). 
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1.1.3 PDGF receptor autophosphorylation and activation of its downstream 

signalling pathways 

Dimerization of PDGF receptors brings the intracellular domains of the two receptors 

to a very close distance which then leads to the autophosphorylation of the receptors 

in trans (Kelly et al. 1991). Autophosphorylation plays important roles in elevating 

the receptor kinase activity and creating binding sites for the downstream signalling 

molecules (Heldin 1997). Tyr857 is one of the autophosphorylation sites, which is 

located in the catalytic part of the PDGFβR, mutation of this tyrosine to phenylalanine 

leads to a reduction of PDGFβR kinase activity (Fantl et al. 1989; Kazlauskas and 

Cooper 1989; Wardega et al. 2010). This tyrosine residue is conserved in PDGFαR 

and many other tyrosine kinase receptors, and evidence suggests that it has an 

important role in regulating the kinase activity (White et al. 1988; Naldini et al. 1991; 

Guiton et al. 1994; Mohammadi et al. 1996). Researchers (Chiara et al. 2004) later 

showed that allosteric auto inhibition of PDGFβR by its C terminal tail is one of the 

mechanisms keeping the receptor inactive in the absence of ligands. There are 11 

autophosphorylation sites out of 15 tyrosine residues located in the intracellular 

non-catalytic part of the PDGFβR, these autophosphorylated tyrosine residues provide 

docking sites for the downstream signal transduction molecules and induce multiple 

signalling pathways (Claesson-Welsh 1994). 

 

Src homology 2 (SH2) domains of proteins bind to phosphorylated tyrosine residues 

in specific environments with certain surrounding amino acids. SH2 domain 
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containing proteins have been shown to bind to the autophosphorylated tyrosine 

residues on the PDGF receptor, and this leads to the activation of the corresponding 

downstream signalling pathways. These include signal transduction molecules with 

enzyme activity e.g. phosphatidylinositol 3’ kinase (PI3K), phospholipase C-γ (PLCγ), 

Src kinase, GTPase activating protein for Ras (RasGAP), as well as adaptor proteins 

such as Grb2, Shc, Nck, Grb7, Crk and signal transducer transcription activator 

STATS (Figure B). SH2 binding specificity is determined by the 3 to 6 amino acids C 

terminal to the phosphorylated tyrosine (Songyang et al. 1993).  

 

 

Figure B Interaction between PDGFαR and PDGFβR with SH2 domain containing signal 
transduction molecules 
The intracellular parts of homodimerized PDGFαR and PDGFβR are drawn. All tyrosine residues outside the 

PDGFR catalytic domains are indicated; known autophosphorylation sites are indicated by an encircled P. The 

known interactions between phosphorylated tyrosine residues in PDGFR and different SH2 domain containing 

signalling molecules are shown (reproduced from Heldin et al. 1998). 
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1.1.3.1 PI3K pathway 

PI3K is a family of kinases that phosphorylate phosphatidylinositol on its 3’ position 

of the inositol ring (G. Panayotou 1996). Class IA PI3K contains a catalytic subunit 

p110 and a regulatory subunit p85. The SH2 domains on the p85 subunit allow it to 

bind to the phosphorylated tyrosine residue on PDGFR (Auger et al. 1989; Coughlin 

et al. 1989). Two binding sites of PI3K have been identified on PDGFβR including 

Tyr740 and Tyr751 (Fantl et al. 1992; Kashishian et al. 1992; Kazlauskas et al. 1992). 

It has been shown that the binding of the p85 subunit to the phosphorylated proteins 

leads to the conformational change of P110 catalytic subunit and increases its enzyme 

activity (Yu et al. 1991). 

 

PDGFβR activation leads to the activation of PI3K. The activated PI3K generates 

PI(3,4,5)P3 which plays a role in recruiting the downstream serine/threonine kinase 

Akt to the plasma membrane (Burgering and Coffer 1995). PI(3,4,5)P3 binds to the 

PH (Pleckstrin homology) domain of Akt, leading to its conformational change, 

allowing the subsequent activation of Akt by the phosphorylation of its Ser473 residue 

by mTORC2 (Alessi et al. 1997; Persad et al. 2001; Feng et al. 2004; Sarbassov et al. 

2005) and the phosphorylation of its Thr308 residue by phosphoinositide dependent 

kinase 1 (PDK1) (Franke et al. 1997; Klippel et al. 1997; Stokoe et al. 1997). 

Activated Akt then phosphorylates BAD. In its dephosphorylated form, BAD interacts 

with BLCXL and leads to cell apoptosis (Zha et al. 1996), however, phosphorylation of 

BAD by Akt prevents its binding to BLCXL thereby protecting the cell from apoptosis 
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(Datta et al. 1997). PI3K has also been shown to be important for the PDGF induced 

actin reorganization, cell migration and proliferation (Heldin et al. 1998). 

 

1.1.3.2 PLCγ pathway 

PLCγ carries out the hydrolysis of PI(4,5)P2 leading to the production of 

inositol(1,4,5)trisphosphate (IP3) and diacylglycerol (DAG). IP3 causes Ca2+ to be 

released from the intracellular Ca2+ stores and increases cytoplasmic Ca2+ 

concentration. DAG can activate certain PKC family members (Berridge 1993). 

PLCγ1 and PLCγ2 were both shown to be activated by PDGF stimulation (Sultzman 

et al. 1991). PLCγ1 has been more thoroughly studied in the PDGF signalling system 

and binds to the autophosphorylation sites Tyr1009 and Tyr1021 on PDGFβR 

(Ronnstrand et al. 1992; Kashishian and Cooper 1993; Valius et al. 1993). The 

binding of PLCγ1 to the PDGFβR and its subsequent phosphorylation of Tyr783 

(Kumjian et al. 1991) are involved in its activation (Meisenhelder et al. 1989). The 

activation of PLCγ by PDGF stimulation leads to several cellular effects including 

proliferation, cytoskeletal rearrangement and activation of ion channels (Ma et al. 

1994; Krawczyk and Matuszyk 2011). 

 

1.1.3.3 Ras pathway 

The adaptor molecule Grb2 can form complex with the Ras Guanine nucleotide 

exchange factor (GEF) Sos1, which plays a role in converting Ras from its inactive 
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GDP bound form to its GTP bound active form (Schlessinger 1993). Upon simulation 

of PDGFR, Ras is activated by Sos1, the GTP bound Ras interacts with the regulatory 

N terminus of Raf1, causing activation of this serine threonine kinase. Activated Raf1 

then phosphorylates and activates the downstream MEK, which in turn 

phosphorylates and activates MAP kinases Erk1 and Erk2. After the activation of 

Erk1 and Erk2, they can be translocated into the nucleus and phosphorylate certain 

transcription factors and regulate their activity to affect gene transcription (Nanberg 

and Westermark 1993; Satoh et al. 1993). 

 

Grb2 has been shown to bind to the phosphorylated Tyr716 and Tyr775 on PDGFβR 

(Arvidsson et al. 1994; Ruusala et al. 1998). Grb2 can also bind to the PDGFβR 

indirectly through binding to its binding sites on other proteins such as the adaptor 

protein Shc and tyrosine phosphatase SHP2, after these proteins have bound to the 

PDGFβR and have had their specific tyrosine residues phosphorylated (Benjamin and 

Jones 1994; Yokote et al. 1994). The direct and indirect binding of Grb2 and Sos1 

respectively with PDGFR allows this complex to interact with and activate the Ras, 

which is located at the inner leaflet of the plasma membrane. The activation of Ras 

can then lead to physiological changes such as cell growth, differentiation and cell 

migration (Arvidsson et al. 1994; Li et al. 1994; Yokote et al. 1994; Ruusala et al. 

1998). 
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1.1.4 PDGFR downstream signalling leads to cell proliferation 

Ras, PI3K and PLCγ pathways have all been shown to be involved in PDGFβR 

induced cell proliferation. The Ras MAPK signalling pathway was shown to be the 

most important pathway in cell proliferation downstream PDGFβR (Mulcahy et al. 

1985; Marshall 1994). ERK1/2 downstream of Ras MAP kinase activation can 

phosphorylate and activate p90rsk kinase which in turn phosphorylates and activates 

transcription factors such as c-fos and CREB and leads to proliferation (Seger and 

Krebs 1995). ERK1/2 may be involved in the regulation of MTOC 

(microtubule-organizing center) which regulates the assembly of cytosolic 

microtubules during interphase and cell mitotic spindle during cell division (Verlhac 

et al. 1993). 

 

PI3K and PLCγ also play roles in promoting the responses involved in cell 

proliferation (Klippel et al. 1996). Microinjection of an activating antibody against 

the N-terminus SH2 domain of P85 subunit of the PI3K, led to the activation of DNA 

synthesis in CHO cells (McIlroy et al. 1997). In experiments where the tyrosine 

residues were mutated on the PDGFβR, adding back the PI3K binding sites Tyr740 

and Tyr751 or the PLCγ binding sites Tyr1021, partly restored the PDGF induced cell 

proliferation (Valius and Kazlauskas 1993). Microinjection of dominant negative 

PLCγ with the catalytic domain gone causes the blocking of the S phase entry upon 

PDGF stimulation (Wang et al. 1998). Homologous disruption of PLCγ gene leads to 

embryonic lethal phenotype due to the attenuation of proliferation and growth of all 
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parts of embryo (Ji et al. 1997).  

 

1.1.5 Downregulation of PDGFR signalling 

As described above, PDGFR plays an important role in regulating normal 

physiological responses, but overactivation of PDGFR causes transformation. It is 

therefore necessary for the cell to carefully control the strength and duration of 

PDGFR signalling. There are several mechanisms acting in parallel to downregulate 

and desensitize PDGFR to maintain its normal function. This section will discuss 

receptor ubiquitination, internalization, degradation and dephosphorylation. 

 

1.1.5.1 Receptor internalization and degradation 

Inactivation of PDGFR signalling is generally accomplished by receptor 

ubiquitination, internalization (also called endocytosis) and subsequent lysosomal 

degradation. The internalization and intracellular sorting of the cell surface receptors 

have been extensively studied (Maxfield and McGraw 2004), but comparatively little 

is known about PDGFR. After ligand stimulation, the activated receptors mainly 

udergo clathrin-mediated endocytosis, the endocytic vesicles containing the receptors 

then fuse with early endosomes (Gorvel et al. 1991; Bucci et al. 1992). At the early 

endosome, some receptors such as the transferrin receptor rapidly recycle back to the 

cell surface via a Rab4a GTPase dependent short recycling loop (Maxfield and 

McGraw 2004). Other receptors are either sorted through a Rab 11 dependent 
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endocytic recycling compartment to enter a long recycling loop to the cell surface, or 

through late endosomes to lysosomal degradation (van Ijzendoorn 2006). EGFR 

(epidermal growth factor receptor) has been shown to recycle through the Rab 11 

positive recycling compartment, while PDGFR does not normally recycle (Karlsson et 

al. 2006; Chi et al. 2011). However, later studies have shown that loss of T cell 

protein tyrosine phosphatase (TC-PTP) induced Rab4a dependent PDGFβR recycling 

and PKC activity was necessary for this recycling (Hellberg et al. 2009). 

 

Cbl mediated multiple monoubiquitination has been shown to be a sorting signal for 

the degradation of EGFR and PDGFR (Raucher et al. 2000; Schmidt and Dikic 2005). 

Ubiquitinated receptors interact with the hepatocyte growth factor regulated tyrosine 

kinase substrate (Hrs) which is a key player of the sorting mechanism, since it further 

interacts with the endosomal sorting complex required for transport I (ESCRT I). Hrs 

and ESCRT I mediate the sorting of ubiquitinated proteins into the late endosome 

(Bache et al. 2003; Bache et al. 2003). It was shown that Hrs binding to signal 

transducer adaptor molecule (STAM2) is important for the proper sorting of PDGFR 

towards degradation (Takata et al. 2000). 

  

1.1.5.2 PDGFβR dephosphorylation by PTPs 

The PDGFR is also inactivated through dephosphorylation. Several protein tyrosine 

phosphatases (PTPs) interact with and dephosphorylate selective tyrosine residues on 
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PDGFβR, thereby controlling the duration of PDGFβR signalling and modulating the 

pattern of PDGFβR downstream signal transduction. Previous studies have shown that 

TC-PTP site selectively dephophorylates the PLCγ binding site Tyr1021 on PDGFβR 

to reduce the migratory response to PDGF-BB (Persson et al. 2004). Low molecular 

weight protein tyrosine phosphatase (LMW-PTP) dephosphorylates Tyr857 on 

PDGFβR thereby reducing the receptor kinase activity (Chiarugi et al. 2002). SHP2 

dephosphorylates the Ras-GAP binding site Tyr771 thereby promoting activation of 

the Ras/MAPK pathway (Ekman et al. 2002). PTP1B dephosphorylates the Src and 

Shc binding site Tyr579 (Ekman et al. 2002; Persson et al. 2004). DEP1 

dephosphorylates several of the autophosphorylation sites on PDGFβR, but not 

Tyr857. Other PTPs such as SHP1, PTP-PEST and CD45 have all been shown to 

control PDGFβR phosphorylation, but their preferred substrate sites and effects on 

downstream signalling have not been studied thoroughly (Mooney et al. 1992; Yu et 

al. 1998; Kovalenko et al. 2000; Markova et al. 2003). 

 

1.1.6 Serine phosphorylation reduces PDGFβR tyrosine phosphorylation 

Serine phosphorylation of the receptor cytoplasmic domain is one of the common 

mechanisms to desensitize receptor activity after stimulation. This has been shown for 

growth factor receptors such as the insulin receptor and EGFR (Takayama et al. 1988; 

Countaway et al. 1992). Since it was described in 1999 (Bioukar et al. 1999), several 

serine threonine kinases have been found to serine phosphorylate PDGFβR and 

attenuate its autophosphorylation and signalling. 
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Casein kinase Iγ2 (CKIγ2) is the first serine threonine kinases that was shown to 

phosphorylate on the serine residues of PDGFβR, and thus negatively regulate its 

autophosphorylation activity (Bioukar et al. 1999). Researchers showed that CKIγ2 

was activated 5 minutes after PDGFβR activation and stayed active for more than 30 

minutes in rat 2 fibroblast cells. Treating cells with specific CKIγ2 inhibitor led to a 

considerable reduction in PDGFβR serine phosphorylation. Transfection of 

constitutively active CKIγ2 greatly reduced PDGFβR tyrosine phosphorylation upon 

stimulation (Bioukar et al. 1999).  

 

Later studies found G protein coupled receptor (GPCR) kinase family member GRK2 

and GRK5, which initiate the desensitization of GPCR, can both serine phosphorylate 

PDGFβR and lead to decreased PDGFβR autophosphorylation (Freedman et al. 2002; 

Wu et al. 2006). GRK2 was shown to be tyrosine phosphorylated and activated by 

PDGFβR upon PDGF stimulation, therefore initiating a negative feedback loop by 

phosphorylating Ser1104 of PDGFβR. Nherf1 (Na+/H+ exchanger regulatory factor 1) 

is known to normally facilitate PDGFβR dimerization and activation by binding to the 

receptor C terminus and forming oligomers. Phosphorylation of this C terminal serine 

1104 blocks the binding site of Nherf 1 and thus prevents Nherf1 association with 

PDGFβR. This leads to the reduction of receptor dimerization, activation and 

autophosphorylation (Freedman et al. 2002; Hildreth et al. 2004). 
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1.1.7 Src phosphorylates PDGFβR 

Src family proteins including Src, Fyn, Yes, Hck, Lck and Lyn play important roles in 

regulating many cellular events including cell survival, proliferation and migration 

(Cance et al. 1994; Oberg-Welsh and Welsh 1995; Thuveson et al. 1995; Brown and 

Cooper 1996). Src protein tyrosine kinase is a 60 kDa protein composed of six 

different parts including SH2 domain, SH3 domain, kinase domain, unique region, 

SH4 domain and a C terminus negative regulatory tail (Brown and Cooper 1996). The 

tyrosine residue Tyr527 is located on the C terminal tail, and phosphorylation of this 

tyrosine leads to the intramolecular interaction between the SH2 domain and the C 

terminus which mediates the autoinhibition of Src kinase activity (Brown and Cooper 

1996). Mutation of Tyr527 of Src leads to constitutive activation of Src protein 

(Cartwright et al. 1987). 

 

Upon PDGFβR activation, Src is recruited to the phosphorylated receptor (Mori et al. 

1993). This leads to the displacement of Tyr527 from the Src SH2 domain, 

dephosphorylation of Tyr527 by protein tyrosine phosphatases (PTPs) and 

phosphorylation of the Tyr416 on the activation loop of Src which upregulates Src 

kinase activity (Hunter 1987). Several PTPs have been shown to dephosphorylate 

Tyr527 of Src, these include PTPα, SHP1, SHP2, PTP1B and LAR (Peng and 

Cartwright 1995; Tsujikawa et al. 2002; Roskoski 2005) 

 

After the activation by PDGFβR, Src was shown to phosphorylate PDGFβR. 
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Researchers found that Src kinase can phosphorylate Tyr934 in the PDGFβR kinase 

domain. Mutation of this tyrosine to phenylalanine led to a reduction in mitogenic 

response and an increase in migration upon PDGF stimulation. In other words, Src 

activation provides positive feedback for PDGF induced proliferation by 

phosphorylating Tyr934 and negative feedback for PDGFβR downstream motility 

(Hansen et al. 1996). 

 

1.1.8 Caveola localization of PDGFβR affects its signalling 

Caveolae are generally defined as invaginations of the plasma membrane composed 

of cholesterol and sphingolipids (Bruns and Palade 1968; Scherer et al. 1994). The 

cholesterol and sphingolipids form a liquid-ordered phase which makes caveolae 

resistant to detergent solubilisation (Bruns and Palade 1968; Scherer et al. 1994; 

Brown and London 1997). Caveolae are not soluble in TritonX100 at 4°C, such as 

that when cells were fixed with paraformaldehyde and extracted with cold TritonX100 

and examined under the microscope, the remaining insoluble membranefractions were 

found to be caveolae (Moldovan et al. 1995). Caveolin is the most abundant protein 

present in Caveolae. The caveolin protein family has three members, caveolin1, 

caveolin2 and caveolin3 (Glenney and Soppet 1992; Scherer et al. 1995). These 

caveolins form oligomers with each other and bind to cholesterol and sphinolipids, 

these interactions serve as a driving force of caveolae formation (Fra et al. 1995; 

Monier et al. 1995; Murata et al. 1995; Sargiacomo et al. 1995; Scherer et al. 1997; 
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Li et al. 1998). Several different important signal transduction molecules have been 

found to be localized in caveolae including receptor tyrosine kinases, G protein 

coupled receptors, src family kinases and protein kinase C family members. Therefore 

caveolae serve as preassembled signalling complexes to play a role in signal 

integration and rapid transduction (Smart et al. 1999). 

 

In 1996, researchers showed that most of the PDGFβRs are located in caveolae in 

normal human fibroblast cells by immunofluorescence experiments (Liu et al. 1996). 

Multiple proteins in the caveolae fraction were shown to be phosphorylated upon the 

stimulation of PDGFβR, while the non-caveolae fraction showed little 

phosphorylation. The researchers suggested that PDGFβR initiates its signalling from 

caveolae (Liu et al. 1996). Later studies showed that PDGFβR interacts with 

caveolin1 and caveolin3 in NIH3T3 fibroblast cells. Experiments using recombinant 

PDGFβR and caveolin scaffolding domains showed that caveolin 1 and caveolin 3 

interact with the receptor and inhibit PDGFβR kinase activity (Yamamoto et al. 1999). 

These studies gave conflicting conclusions on how caveolin affects PDGFR signalling. 

If PDGFβR kinase activity is inhibited by caveolin, how could it activate downstream 

signalling proteins and result in their phosphorylation within caveolae? Mattveev et al. 

2004 later showed that PDGFβR is located in lipid rafts in the absence of ligand 

stimulation. With the presence of ligand, PDGFβR transiently associates with caveola 

region where the receptor is sequestered and kept inactive by interaction with caveolin 

(Matveev and Smart 2002). Thus it is possible that PDGFβR is transported into the 
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caveolae to interact with and activate some downstream signalling proteins. After this 

signal transduction process, PDGFβR activity is rapidly inhibited by the caveolin. The 

receptor is kept inactive in the caveolae for certain period of time before it is 

internalized for degradation or dephosphorylated and transported back to the lipid raft 

to be activated again. This would provide a short term reversible attenuation of 

PDGFβR signalling which may be required by the cell in certain conditions. 

 

1.2 Protein tyrosine phosphatase (PTP) 

1.2.1 Introduction of PTP 

As discussed above, protein phosphorylation on tyrosine residues is one of the most 

important mechanisms of eukaryotic signalling; it plays an important role in 

regulating normal cellular processes such as cell proliferation, migration and 

differentiation. The cellular equilibrium of protein tyrosine phosphorylation is 

controlled by the balanced action of protein tyrosine kinases (PTKs) and protein 

tyrosine phosphatases (PTPs). Following the purification and sequencing of the first 

protein tyrosine phosphatase PTP1B, and the subsequently identified receptor-like 

PTP (RPTP) CD45, it became clear that the PTPs family is diverse and has many 

members with different substrate specificities. They are regulated in different ways 

and expressed in different patterns inside cells.  

 

The members of the PTP superfamily are coded by about 100 genes; they can be 
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divided into two main categories, classical PTPs, which specifically dephosphorylate 

tyrosine residues in proteins, and dual specificity phosphatases (DSPs), which 

dephosphorylate phosphoserine/threonine and phosphotyrosine. The well-known 

tumour suppressor phosphatase and Tensin homolog (PTEN), which can 

dephosphorylate phosphatidylinositol (3,4,5) triphosphate (PIP3), is structurally 

related to PTPs (Ostman et al. 2006; den Hertog et al. 2008). Classical PTPs, DSPs 

and PTEN all catalyse dephosphorylation with a cysteine based mechanism, and 

possess a conserved HC(X5)R signature motif in the catalytic site (Ostman et al. 

2011). It has been shown that PTPs have the capacity to regulate cellular signal 

transduction both positively and negatively.  

 

1.2.2 Classical PTPs 

There are currently 38 classical PTPs, which are further subdivided into receptor like 

transmembrane PTPs (RPTP) and non-transmembrane PTPs (NPTPs). Many RPTPs 

have features of cell adhesion molecules in their extracellular parts; they often have 

immunoglobulin domains and fibronectin type III domains. This implicates an 

involvement in the processes of cell-cell and cell-matrix adhesion (Ostman et al. 

2006). 12 of the 22 RPTPs have a tandem arrangement of the phosphatase domains in 

the intracellular part. Studies have shown that all of the phosphatase activity resides in 

the membrane proximal phosphatase domain (D1), with the membrane distal 

phosphatase domain (D2) inactive. However, the D2 domain has been shown to be 

important for the activity, specificity and stability of the whole RPTP, and plays roles 
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in protein-protein interactions that regulate RPTP dimerization (Streuli et al. 1990; 

Felberg and Johnson 1998; Jiang et al. 2000; Blanchetot et al. 2002) (Figure C).  

 

 
Figure C The classical PTPs 
The classical protein tyrosine phosphatases (PTPs) can be divided into receptor-like (RPTP) or 

non-transmembrane (NPTP) proteins (reproduced from Tonks 2006) 

 

The non-transmembrane cytoplasmic PTPs (NPTPs) generally contain specific 

sequences located around the catalytic domain. These sequences directly control the 

PTP activity by interaction with the PTP active sites and modulate their activity. The 

sequences flanking the PTP catalytic sites can also control the PTP specificity by 

enabling them to bind to specific target proteins. These sequences also control the 

PTP subcellular distribution; therefore restricting access to particular substrates 

located in certain parts of the cell (Garton et al. 1997; Pulido et al. 1998; Tonks 2006) 

(Figure C). 
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1.2.3 The mechanism of PTP mediated protein tyrosine dephosphorylation 

The classical PTP catalytic domain contains a highly conserved active site that is 

required for its catalytic activity. The (I/V)HCXXGXXR(S/T) signature motif in the 

catalytic site contains the cysteine residue that forms an essential part of the active site 

cleft which recognizes the phosphate group of the target substrates. 

Dephosphorylation occurs through a two-step mechanism involving the production of 

a PTP-phosphate intermediate. In the first step, the sulphur atom of the essential 

cysteine residue nucleophilically attacks the phosphate group of the substrate, this 

leads to the protonation of the tyrosyl leaving group by the conserved aspartic acid 

residue on the PTP. The second step involves the hydrolysis of the PTP-phosphate 

intermediate. During this process, a conserved glutamine residue coordinates a water 

molecule; aspartic acid then acts as a base accepting protons from the water molecule, 

and the remaining hydroxyl group attacks the phosphate group causing the release of 

the phosphate group from the PTP cysteine residue (Tiganis and Bennett 2007) 

(Figure D). 
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Figure D Catalytic mechanism for dephosphorylation of phosphotyrosine residue 
The sulphur atom of the essential cysteine residue nucleophilically attacks the phosphate group of the substrate, 

this leads to the protonation of the tyrosyl leaving group by the conserved aspartic acid residue on the PTP. The 

conserved glutamine residue coordinates a water molecule; and aspartic acid acts as a base accepting a proton from 

the water molecule, and the remaining hydroxyl group attacks the phosphate group causing the release of the 

phosphate group from the cysteine (reproduced from Tonks 2006). 

 

1.3 LAR RPTP 

1.3.1 Introduction of LAR 

The Leukocyte common Antigen-Related (LAR) subfamily of RPTPs, also known as 

type IIA PTPs, is one of the most studied RPTP families. It is composed of three 

vertebrate homologs which are LAR, RPTPσ and RPTPδ (Hasegawa et al. 1993; 

Harder et al. 1995; Wagner et al. 1996; Andersen et al. 2001). LAR has been shown 

to be widely expressed in the human neuronal system, lung, bladder, colon, heart and 

many other tissues (Homo sapiens PTPRF in Expressed Sequence Tag (EST) Profile 

http://bioinfo.wilmer.jhu.edu/tiger/db_gene/PTPRF-index.html accessed January 

2003). This family of LAR RPTPs also includes invertebrate members Dlar and 

http://bioinfo.wilmer.jhu.edu/tiger/db_gene/PTPRF-index.html
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DPTP69D in Drosophila, PTP3 in caenorhabbditis elegans and HmLAR1 and 

HmLAR2 in Hirudo medcinalis (Pulido et al. 1995). In addition to regulating 

downstream signal transduction by dephosphorylating its substrates, LAR was also 

shown to interact with several cell surface and cytoplasmic proteins playing important 

roles in promoting neural development, neuronal growth and regeneration (Dunah et 

al. 2005; Yang et al. 2006; Sethi et al. 2010). Disregulation of LAR can lead obesity, 

diabetes and cancer (Zabolotny et al. 2001; Andersen et al. 2004). 

 

LAR has a large extracellular domain which is very similar to the structure of cell 

adhesion molecule (CAM). It generally contains three immunoglobulin domains and 

four to eight fibronectin type III domains. Its hydrophobic transmembrane stretch is 

followed by two intracellular PTP domains D1 and D2 (Figure E). LAR is first 

expressed as a 200kDa protein before its proteolytic cleavage by furin like 

endoprotease. This cleavage produces the mature LAR protein consisting of a 150 

kDa extracellular subunit (E subunit) non-covalently bonded to the 85 kDa 

intracellular PTP subunit (P subunit) (Serra-Pages et al. 1994; Pulido et al. 1995; 

Aicher et al. 1997) (Figure E). The D1 domain of LAR has robust catalytic activity, 

and D2 domain has weak catalytic activity. The LAR D2 domain was suggested to 

play a regulatory role on D1 domain activity (Streuli et al. 1990; Guan and Dixon 

1991; Yu et al. 1992; Tsujikawa et al. 2002). 
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Figure E LAR RPTP structure 
LAR generally contains three immunoglobulin domains and four to eight fibronectin type III domains. Its 

hydrophobic transmembrane stretch is followed by two intracellular PTP domains D1 and D2. 

 

1.3.2 Regulation of LAR activity 

In several of the previously published studies, researchers demonstrated that the 

activities of several RPTPs are negatively regulated by dimerization, these include  

CD45 (Majeti et al. 1998), RPTPα (Blanchetot and den Hertog 2000) and RPTPβ 

(Meng et al. 2000). Crystalographic studies showed that the catalytic sites of RPTPα 

homodimerize, and the wedge structure at the N terminus of D1 inserts itself into the 

D1 catalytic site of its partner and vice versa, and this leads to the inactivation of both 

RPTPα molecules (Bilwes et al. 1996). Since the wedge domain is also conserved in 
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LAR, it could also be a way of regulation for LAR activity (Chagnon et al. 2004). 

However, in the crystallographic studies, unlike RPTPα, the intracellular part of LAR 

did not crystalize into dimer (Nam et al. 1999). In the crystal structure of LAR, D1 

sits on top of D2 and prevents the dimerization of D1 domains by steric hindrance. 

But if there were flexibility between D1 and D2 domain, it is possible that LAR might 

dimerize if D2 moves out of the way of the wedge insertion between D1 domains. 

Later on, researchers demonstrated that oxidation led to conformational changes of 

the LAR intracellular subunit, which suggested there is flexibility in the cytoplasmic 

part of LAR (Groen et al. 2008). Using tagged full length LAR, Groen et al. 2008 

showed that LAR dimerizes constitutively inside cells. 

 

Other researchers showed that treating cells with nickel ions elevated the phosphatase 

activity of LAR. Their experiments showed strong induction of liprin α4 in A549 cells 

at the presence of nickel ions, and it was suggested that nickel induced liprin α4 

expression is necessary for the induced LAR phosphatase activity (Kiok et al. 2011). 

 

1.3.3 LAR mediated interaction and signalling 

Several ligands of LAR have been identified so far to bind to this RPTP and induce 

different physiological effects of the cell. The first identified ligand of LAR was the 

extracellular complex laminin nidogen which was shown to bind to the finbronectin 

type III domain 5 of LAR’s extracellular domain and induce the formation of longer 
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cellular processes (O'Grady et al. 1998). Later on, researchers discovered an 11 kDa 

ectodomain isoform of LAR (named LARFN5C) which contains the 5th fibronectin 

type III domain of LAR at its C terminus. Substratum bound LARFN5C potently 

elicits neurite outgrowth response of LAR expressing COS cells, and this potency was 

reduced by 5 folds in the LAR knock out cells (Yang et al. 2003). In 2005, a new 

ligand of LAR, heparan sulfate proteoglycan syndecan (Sdc) was demonstrated to 

interact with Drosophila LAR. Sdc on muscle cells binds to neuronal LAR in vivo and 

positively regulates LAR mediated neurite outgrowth. Experiments using LAR and 

Sdc loss of function mutants showed that Sdc promotes LAR mediated axon guidance 

(Fox and Zinn 2005). Later on, synaptic protein Dallylike (Dlp) was demonstrated to 

bind to Drosophila LAR to regulate synapse morphogenesis and function (Johnson et 

al. 2006). Netrin G ligand 3 (NGL3) was more recently shown to form trans-synaptic 

adhesion with LAR to regulate the excitatory synapse formation (Woo et al. 2009; 

Kwon et al. 2010). 

 

Little is known about the downstream targets of LAR, the existing evidence points to 

LAR promoting actin cytoskeleton remodelling. Downstream signalling of LAR leads 

to axon extension and guidance; this suggests that RhoGTPases and cytoskeletal 

rearrangement may be involved in this process. A large multi-domain protein, Trio， 

was found to interact with LAR using a yeast two hybrid method (Debant et al. 1996). 

Trio contains a serine threonine kinase domain and two guanine nucleotide exchange 
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factor domains specific for Rac-1 and RhoA. In Drosophila, Trio was shown to 

regulate axon guidance. Since Trio is phosphorylated by focal adhesion kinase 

(Medley et al. 2003), LAR could regulate the tyrosine phosphorylation of Trio, 

thereby possibly regulating the activity of Rac1 and RhoA after being recruited to the 

focal adhesions by liprins (LAR interaction protein). Recent studies identified EphA2 

as a substrate of LAR, researchers demonstrated that dephosphorylation of EphA2 by 

LAR uncouples EphA2 from Nck1 and thereby attenuating EphA2 mediated cell 

migration (Lee and Bennett 2013). 

 

Many PTPs, including LAR, were shown to interact with and regulate different 

protein tyrosine kinases. LAR was coimmunoprecipitated with insulin receptor (IR) 

with both D1 and D2 domains important for this interaction (Tsujikawa et al. 2001). 

Autophosphorylation of IR increases when cells are transfected with Cysteine to 

Serine catalytic inactive LAR mutant, suggesting that IR is a substrate of LAR. Other 

protein tyrosine kinases such as EGFR (Suarez Pestana et al. 1999), HGFR (Kulas et 

al. 1996), RET (Qiao et al. 2001) and Src, Lck and Fyn (Tsujikawa et al. 2002) have 

been shown to be substrates of LAR RPTP. 

 

1.3.4 Triangular interaction of LAR, Abl and Ena plays an important role in 

regulating axon guidance 

LAR is highly enriched in axon growth cones which suggests that there may be 
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protein tyrosine kinase activity at this location. A screening study in Drosophila 

identified that Abl protein tyrosine kinase, which is also expressed in developing 

axons, acts as a regulator of Drosophila LAR (Dlar) signalling. Although Abl has been 

extensively studied in the context of cell proliferation, DNA damage response and 

cancer biology, relatively little is known about its role in controlling cell motility and 

shape. More and more evidence suggests that Abl is involved in rearrangement of the 

actin cytoskeleton (Wills et al. 1999; Sirvent et al. 2008). 

 

Both mammalian Abl and Drosophila Abl were shown to phosphorylate LAR on its 

D2 domain in vitro. Conversely, Abl is a good substrate of LAR in vitro. Abl and Dlar 

show a potent antagonistic relationship in vivo. Reduction of Abl suppresses the axon 

guidance phenotype of Dlar loss of function. Conversely, overexpression of Abl in 

postmitotic neurons mimics the Dlar loss of function phenotype, and this effect is 

dependent on the kinase activity of Abl. Coexpression of Dlar reverses this effect of 

Abl, suggesting Dlar is able to dephosphorylate protein that are phosphorylated by 

Abl. Loss of Abl alone disrupts axon pathway formation, indicating both Abl and Dlar 

are important for axon development. These findings suggest LAR and Abl mediate a 

phosphorylation dependent switch that controls the axon guidance process (Wills et al. 

1999; Chagnon et al. 2004). Although it was not shown directly, since LAR and Abl 

serve as substrates for each other and antagonize the function of each other, it is 

possible that LAR inhibits Abl activity by dephosphorylating Abl, and Abl may 

inactivate LAR by phosphorylating LAR (Figure F).  
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A screening study of the downstream effectors of Abl identified the protein Enabled 

(Ena) which is phosphorylated and regulated by Abl (Wills et al. 1999; Sirvent et al. 

2008). This makes Ena a prime candidate for further investigation. It was found that 

Ena is a key regulator of actin cytoskeleton assembly and cell motility, it promotes 

actin assembly by protecting the growing tips from the capping proteins that terminate 

actin polymerization (Wills et al. 1999). Later studies showed that Ena mutation leads 

to the axon guidance phenotype of Dlar mutant in the developing axon cone. Like Abl, 

Ena can bind to the D2 domain of Dlar. It is phosphorylated by Abl and 

dephosphorylated by Dlar in vitro. Abl kinase activity antagonizes the action of Dlar 

and Ena, presumably by phosphorylating these proteins (Sirvent et al. 2008). It 

appears that Ena serves as a molecular switch which itegrates the signals from Dlar 

and Abl, and maintains a highly accurate axon guidance process (Figure F) (Wills et 

al. 1999; Sirvent et al. 2008). 
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Figure F Dlar and Abl antagonize each other in regulating actin remodelling 
Ena plays a role in promoting actin polymerization when unphosphorylated. Dlar dephosphorylates Ena to promote 

its function while Abl phosphorylates it to inhibit its activity. Abl and Dlar are also substrates for each other (Wills 

et al. 1999). 

 

1.3.5 LAR related physiological functions and diseases 

From vertebrate to invertebrate, LAR is mostly expressed in the developing nervous 

system. Immunohistochemistry studies showed that LAR is localized at the axon and 

growth cone of Drosophila, Leech, chick and in mammals. This suggests the role of 
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LAR in the nervous system is conserved through evolution (Tian et al. 1991; Desai et 

al. 1994; Sommer et al. 1997; Gershon et al. 1998; Schaapveld et al. 1998; Thompson 

et al. 2003). 

 

In Drosophila, Dlar is expressed in CNS roots, developing motor nerves and the 

visual system (Tian et al. 1991). In mutant embryos lacking Dlar, the segmental nerve 

b motor axon stopped growing before reaching its muscle targets, or it followed 

incorrect pathways and bypassed the muscle targets. (Tian et al. 1991; Desai et al. 

1994; Desai et al. 1996; Garrity et al. 1999; Clandinin et al. 2001; Maurel-Zaffran et 

al. 2001; Tayler and Garrity 2003). LAR is important for controlling R7 photoreceptor 

axon targeting. Although this function does not require the phosphatase activity of 

LAR, phosphatase dimerization is necessary for this process. This is possibly due to 

that dimerization of LAR may play a role in assembling downstream effectors 

(Hofmeyer and Treisman 2009). 

 

In mammals, absence of LAR delays axon regeneration following injury to the sciatic 

nerve in mice. The upregulation for LAR expression in dorsal root ganglial neurons 

after sciatic nerve injury suggests a role of LAR in promoting neurite outgrowth in 

sensory neurons (Xie et al. 2001; Van der Zee et al. 2003). LAR was reported to be 

highly expressed in the synapses of rat hippocampus neurons and play important roles 

in neuron development and maintenance of excitatory synapses (Dunah et al. 2005). 

In the mice with the LAR cytoplasmic phosphatase domains deleted, the number of 
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cholinergic neuronal cells in the forebrain was greatly reduced. Cholinergic neuron 

innervation was also diminished in brain dentate gyrus. This indicates that LAR 

phosphatase activity is crucial for central nervous system development (Van Lieshout 

et al. 2001). 

 

Several lines of evidence have suggested the involvement of LAR in various diseases. 

Some of the LAR loci are amplified or mutated in different human cancers such as 

small cell lung cancer and colon cancer (Harder et al. 1995; Andersen et al. 2004). 

Expression level of LAR is significantly increased in thyroid carcinomas (Konishi et 

al. 2003) and breast cancer (Yang et al. 1999). Expression of LAR may correlate with 

metastatic breast cancer prognosis (Levea et al. 2000). The role of LAR in regulating 

insulin receptor signalling has been extensively studied, and LAR was shown to 

suppress signalling downstream of the insulin receptor (Zabolotny et al. 2001). 

Transgenic mice overexpressing LAR maintained normal level of blood glucose. 

However, they showed a 2.5 fold increase in the fasting insulin level and reduced 

glucose uptake in the skeletal muscle cells, this indicates that LAR negatively regulate 

insulin receptor signalling and confers insulin resistance to cells (Zabolotny et al. 

2004). The fact that LAR is highly expressed in adipose tissue makes it a possible 

prime drug target for tissue specific regulation of insulin resistance and adiposity 

(Norris et al. 1997). 

 

 



46 
 

1.4 C-Abl 

C-Abl is a non-receptor tyrosine kinase which is located at the nucleus, cytosol, 

plasma membrane and actin cytoskeleton. The c-Abl protein is consists of a SH3 

domain, a SH2 domain, a tyrosine kinase domain, a DNA binding domain and an 

actin binding domain. In addition, c-Abl also contains a NES (nuclear export 

sequence) and three NLSs (nuclear localization signals) which are important for c-Abl 

shuttling between the nucleus and cytoplasm. C-Abl plays important roles in 

coordinating actin remodelling in response to cell stimulation by phosphorylating the 

cytoskeleton regulating proteins (Hernandez et al. 2004). C-Abl regulates cell motility 

by phosphrylating CrkII, and disrupts CrkII induced cell migration (Takino et al. 

2003). C-Abl was also shown to regulate the internalization of cell surface growth 

factor receptors with its cytoskeleton remodelling capacity and by phosphorylating 

these receptors (Kaksonen et al. 2005; Yarar et al. 2005). C-Abl overexpression leads 

to cell cycle arrest and cell apoptosis suggesting its role in DNA damage repair and 

cell death (Sawyers et al. 1994; Yuan et al. 1997). C-Abl was identified as part of the 

mutationally activated fusion oncoprotein, BCR-Abl which was commonly found in 

chronic myeloid leukemia (CML) patients (Ben-Neriah et al. 1986) 

 

There have been several reports showing that c-Abl interacts with PDGFβR and is 

involved in PDGFβR downstream signaling. In 1999, Plattner et al. demonstrated that 

c-Abl is phosphorylated and activated by Src downstream PDGFβR upon ligand 

stimulation (Plattner et al. 1999). Later on, researchers further showed that c-Abl 
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phosphorylates PDGFβR after being activated and serves as a positive feedback loop 

to increase PDGFβR mediated cell proliferation, and at the same time reduceing 

PDGFβR downstream chemotaxis (Plattner et al. 2004; Srinivasan et al. 2009). 

 

 

1.5 PKCδ 

PKCδ (protein kinase C δ) is a member of the PKC family, and was shown to play 

important roles in regulating cell proliferation, apoptosis and tumour growth (Basu 

and Pal 2010). PKCδ was the first identified PKC isoform, and was found to be 

ubiquitously expressed in different cell types and tissues (Ono et al. 1988; Altman and 

Villalba 2002). It can be activated by the binding of diacylglycerol (Michell 1975) and 

tumour promoting phorbol ester (Castagna et al. 1982). Several tyrosine kinases have 

been shown to phosphorylate PKCδ including Src family kinases, c-Abl and growth 

factor receptors (Zrachia et al. 2002; Okhrimenko et al. 2005; Lu et al. 2007; Yoshida 

2007; Lomonaco et al. 2008), depending on the site of phosphorylation, these tyrosine 

kinases can either activate or inactivate PKCδ. Caspase 3 was shown to 

proteolytically cleave PKCδ and generate a constitutively active catalytic fragment 

which largely enhances the apoptosis signal and leads to cell death (Wilson et al. 

2004).  

 

In 2000, Sun et al. showed that hydrogen peroxide induced oxidative stress induces 
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the binding of cellular PKCδ to c-Abl. As a substrate of c-Abl, PKCδ is tyrosine 

phosphorylated and activated by c-Abl. At the same time, PKCδ phosphorylates and 

activates c-Abl which establishes a positive feedback loop between c-Abl and PKCδ 

(Sun et al. 2000). Later on, researchers showed that phosphorylation of GRK2 Ser29 

residue by PKCδ abolishes its inhibition by calmodulin and activates GRK2 (Krasel et 

al. 2001). Thus there may be an activation pathway from c-Abl to PKCδ and the 

GRK2 which acts as a signalling pathway to induce downstream cellular responses.  

 

1.6 Nherf 

The Na+/H+ exchanger regulatory factor (Nherf 1, also called EBP50) and its relative 

NHE3 kinase A regulatory protein (Nherf 2, also called E3KARP, SIP 1 and TKA 1) 

represent a family of adaptor proteins. Both Nherf 1 and Nherf 2 contain two tandem 

PSD95/Drosophila discs large/ZO1 (PDZ) protein interaction domains, and a C 

terminal domain which binds to ezrin-radixin-moesin-merlin (ERM) family of 

cytoskeletal proteins. Nherf 1 and Nherf 2 form homo- and heterodimers with each 

other via their PDZ domains. They also bind to other PDZ proteins to form a 

membrane scaffold which is consist of an array of transmembrane or intracellular 

proteins including transporters, ion channels and signalling proteins. Nherf proteins 

also interact with certain growth factor tyrosine kinase receptors such as PDGFR and 

EGFR to modulate their signalling and downstream responses (Weinman et al. 1993; 

Voltz et al. 2001; Lazar et al. 2004).  
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Studies have shown that Nherf 1 PDZ I domain binds to the DSFL motif at the C 

terminus of PDGFβR with high affinity and potentiates the PDGFβR 

autophosphorylation and downstream signalling. Nherf 1 oligomerizes when it is 

bound to the PDGFβR C terminus and the capacity of Nherf 1 to potentiate PDGFβR 

signalling depends on its oligomerization. It is suggested that Nherf 1 potentiates 

PDGFβR autophosphorylation by creating oligomeric complexes that keep individual 

PDGFβR monomers in close proximity to each other and therefore aiding the 

formation and stabilization of PDGFβR dimers. This explains the mechanism of the 

previous observation that a small truncation of PDGFβR C terminus strongly impairs 

PDGFβR signalling. Nherf 2 was also shown to bind to the carboxyl terminal tail with 

a specificity similar to Nherf 1, and therefore may also be an in vivo binding partner 

of PDGFβR (Maudsley et al. 2000). Later studies showed Nherf 2 binds to the 

PDGFβR C terminal tail at least as well as Nherf 1 (Lau and Hall 2001). However, no 

study has yet been carried out to investigate the effect of Nherf 2 on PDGFR 

autophosphorylation. 

 

Since oligomerization of Nherf1 determines its capacity to potentiate PDGFβR 

signalling, later studies were carried out to investigate oligomerization of Nherf 1 and 

Nherf 2. It was shown Nherf1 and Nherf2 oligomerize with their PDZ domains. 

Purified Nherf 1 PDZ domains associate with each other only weakly when they are 

tested alone. Oligomerization of Nherf1 PDZ domains was greatly facilitated when 
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they are bound to the C terminus of PDGFβR. Nherf1 oligomerization is elevated by 

mutation of Serine 289 on Nherf1 to aspartate which mimics the phosphorylation state 

of this serine residue, suggesting serine phosphorylation on Ser289 of Nherf1 

increases its oligomerization. On the other hand, the Nherf2 PDZ domain was shown 

to oligomerize robustly in the absence of any associated proteins (Lau and Hall 2001). 

However, other studies showed treating cells with the phosphatase inhibitor okadaic 

acid and calyculin A enhanced Nherf1 phosphorylation and inhibited its 

oligomerization. Researchers determined that serine phosphorylation of Nherf 1 PDZ 

domain inhibited its binding to its targets including PDGFR, and the phosphorylation 

was later mapped to Ser77 on Nherf 1 PDZ I domain (Voltz et al. 2007). 

 

More recent studies showed that the interaction between Nherf1 and PDGFR can be 

disrupted by -2 position serine phosphorylation of PDGFR by G protein coupled 

receptor kinase 2 (GRK2). Phosphorylation at this position prevents Nherf 1 from 

binding to PDGFR, and therefore desensitizes PDGFR and reduces its activity 

(Hildreth et al. 2004).   
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Aims and Objectives 

Aim: To investigate the role of LAR RPTP in regulating PDGFβR phosphorylation 

and downstream signal transduction. 

 

Objectives: 

1) To test and compare the ligand stimulated PDGFβR tyrosine phosphorylation and 

kinase activity in the WT and LARΔP cells 

 

2) To investigate PDGFβR downstream signalling and proliferation response in the 

two cell types 

 

3) To compare the ubiquitination, internalization and degradation rates of PDGFβR 

in the two cell types 

 

4) To investigate if LAR deletion affects the activities of Src family proteins and 

PDGFβR.caveola localization 

 

5) To investigate the expression and activity levels of c-Abl in the two cell types, and 

to test if inhibition of c-Abl restores PDGFβR tyrosine phosphorylation 

 

6) To investigate if PKCδ and Nherf2 are involved in the LAR deletion mediated 

reduction in PDGFβR phosphorylation and to compare the PDGFβR dimerization 

in the two cell types  
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CHAPTER 2 MATERIALS AND METHODS 

 

 

2.1 Reagents and antibodies 

Recombinant human PDGF-BB was provided by Amgen (Thousand Oaks, CA). The 

Src kinase inhibitor SU6656 was from Calbiochem (San Diego, CA). Thiazolyl blue 

(MTT), enolase, the c-Abl inhibitor AG957, myelin basic protein (MBP), rottlerin and 

BS3 were purchased from Sigma-Aldrich (St Louis, MO). γ[32P]ATP and 

[3H]thymidine were from Perkin Elmer (Shelton, CT). Control and c-Abl siRNA were 

obtained from Dharmacon (Lafayette, CO). The pEGFP-N2-flmLAR is a construct 

with full length LAR linked with a C terminal GFP tag, a gift from Dr. Wiljan 

Hendriks in Department of Cell Biology, Radboud University Nijmegen Medical 

Centre, Nijmegen of the Netherlands. The secondary sheep anti-mouse IgG HRP 

conjugated antibody and the secondary donkey anti-rabbit IgG HRP conjugated 

antibody were from GE Healthcare (Uppsala, Sweden). The GFP antibody was from 

Invitrogen (Carlsbad, CA). The CrkII, the ubiquitin, Nherf2 and the PY99 monoclonal 

antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA). The Akt, pThr308 

Akt, Erk42/44 (Erk1/2), pErk42/44 (pERK1/2)(Thr202/Thr204), c-Abl and caveolin 1 

antibodies were from Cell Signalling Technologies (Beverly, MA), and the PY20 

antibody and PKCδ antibody were from BD Transduction Laboratories (San Jose, 

http://www.sciencedirect.com/science/article/pii/S0898656811000374
http://www.sciencedirect.com/science/article/pii/S0898656811000374
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CA). Rabbit polyclonal antibodies against the C-terminus of the PDGF β-receptor 

(Karlsson et al. 2006) and its site-selective phosphotyrosine antibodies have been 

described (Chiara et al. 2004; Persson et al. 2004; Toffalini et al. 2010). Antisera 

against PLCγ (Arteaga et al. 1991), Alix (Lennartsson et al. 2006) and Src, Yes and 

Fyn (Kypta et al. 1990), have been previously described. The concentration of the 

commercial antibodies used for western blot and Immunoprecipitation was according 

to the manufacturers’ product information. 2μg/ml and 10μg/ml PDGF antibody was 

used for western blot and immunoprecipitation (IP) respectively. 5μg/ml site-selective 

PDGFβR phosphotyrosine antibodies were used for western blot. 1:500 and 1:200 

dilution of PLCγ antiserum was used for western blot and IP respectively. 1:1000 Alix 

antibody was used for western blot, and 1:300 dilution of Src, Yes and Fyn antibody 

was used for IP. 

 

2.2. Tissue culture and transfection 

Mouse embryonic fibroblasts (MEF) were obtained from mice where the LAR 

cytoplasmic phosphatase domains had been deleted (LARΔP) and from littermate 

wild-type (WT) mice (Schaapveld et al. 1997) according to standard procedures 

(Manipulating the mouse embryo Cold Spring Harbor, Cold Spring Harbor 

Laboratory Press, NY, 1994, pp. 260–261). Both of the WT and LARΔP MEFs are 

gifts from Dr. Wiljan Hendriks in Department of Cell Biology, Radboud University 

Nijmegen Medical Centre, Nijmegen of the Netherlands. The cells were grown in 

http://www.sciencedirect.com/science/article/pii/S0898656811000374
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DMEM supplemented with 10% foetal bovine serum, 100 U/ml penicillin, 100 μg/ml 

streptomycin, 2.5 μg/ml Fungizone and 5 μg/ml plasmocin. MEF cells at 

approximately 60% confluence were transfected using 1.5μg/ml pEGFP-N2-flmLAR 

DNA and 2.5μl/ml jetPEI transfection reagent (Polyplus-transfection SA, Illkirch, 

France) for 48 hours, according to the manufacturer's protocol. 

 

2.3. PDGFR activation, cell lysis, receptor precipitation and 

immunoblotting analysis 

Cells were grown to approximately 90% confluence and starved overnight in DMEM 

medium supplemented with 1 mg/ml BSA. When indicated, the cells were incubated 

with 2 μM SU6656 for one hour, 10 μM AG957 for two hours, 10 μM Rottlerin for 

two hours or DMSO (0.1%, 0.2% and 0.2%, respectively) as controls. Cells were 

stimulated with the indicated concentration of PDGF-BB for the indicated time 

periods at 37°C, cells were put on ice and rinsed with ice cold PBS (135 mM NaCl, 

2.7 mM KCl, 1.5 mM KH2PO4, and 8 mM K2HPO4, pH 7.4) once and lysed in 

SDS-PAGE 1Xsample buffer (1.0M Tris-HCl pH 8.8, 0.5% Bromophenol blue, 43.5% 

glycerol, 10% SDS, 1.3% β-mercaptoethanol) followed by sonication. Alternatively, 

the cells were lysed in our standard lysis buffer (20 mM Tris–HCl, pH 7.5, 0.5% 

Triton X-100, 0.5% deoxycholate, 150 mM NaCl, 10 mM EDTA, 0.5 mM Na3VO4, 

and 1% Trasylol) for 15 minutes on ice. The lysed cells were scraped and collected 

into eppendorf tubes. After centrifugation at 11337g for 15 minutes, the supernatant 
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was collected and the protein concentration in each sample was determined using the 

BCA protein assay (Thermal Scientific, IL) according to the manufacturer's protocol. 

Lysates containing equal amounts of total protein in each sample was used for the 

PDGF β-receptor precipitation by incubation with wheat germ agglutinin (WGA, GE 

Healthcare, Little Chalfont, UK) on the end-over-end rotator for one hour at 4°C. 

Alternatively, lysates were incubated with the indicated antibody for three hours and 

then protein A agarose (GE Healthcare, Little Chalfont, UK) for one hour on the 

rotator at 4°C. The beads were washed three times with standard lysis buffer by 

vigorous shaking in hands, centrifugation at 11337g for 30 seconds and aspirating the 

supernatant. Equal volumes of the 2Xsample buffer (twice the concentration of 

1Xsample buffer) were added to the beads or total cell lysate, and the mixture was 

boiled at 95°C for 5 minutes. The precipitated proteins or the total cell lysate samples 

were separated by SDS-PAGE and transferred to nitrocellulose membranes. The 

transferred membrane was blocked with 5% Bovine serum albumin (BSA) at 37°C for 

30 minutes on the shaker. The membrane was then rinsed in TBS-T (10 mM Tris-HCl 

75mM NaCl, 0.1% Tween 20) once and put into primary antibody solution in TBS-T 

containing 1% BSA and incubated at 4°C overnight on the shaker. The membrane 

was then washed 6 times for 5 minutes with TBS-T and incubated with the secondary 

antibody solution in TBS-T for one hour. The membrane was again washed 6 times 

for 5 minutes with TBS-T and proteins was visualized by enhanced 

chemiluminescence (GE Healthcare, Little Chalfont, UK) using a LAS-100plus 
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CCD-camera (Fujifilm). Densitometrical analysis of the bands were performed using 

AIDA advanced image data analyser software (Fujifilm). 

 

2.4 Isolation of plasmid DNA 

A small pipette tip was used to take a little bit of the bacteria transformed with the 

pEGFP-N2-flmLAR construct and was put into 200ml of LB containing kanamycin at 

100μg/ml. The culture was incubated at 37°C with strong shaking overnight. The 

bacteria suspension was centrifuged at 2350g for 15 minutes at 4°C. The DNA was 

then purified with the QIAGEN Maxi kit according to the manufacture’s protocol. 

The concentration of the DNA isolated was determined by measuring the absorbance 

of the DNA solution at 260nm. An optical density of 1 was considered to represent 

50μg/ml plasmid DNA. 

. 

2.5 Detection of PDGFβR Ubiquitination 

After SDS-PAGE, membranes for ubiquitin analysis were pre-incubated with 

denaturing buffer (6M guanidine-HCl, 20 mM Tris-HCl pH7.5, 5mM 

beta-mercaptoethanol and 1mM PMSF) for 30 minutes at 4°C. The membranes were 

washed extensively with PBS for 6X10 minutes, and then blocked with 5% BSA in 

TBS for 30 minutes at 37°C before incubated with ubiquitin antibody overnight at 
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4°C. 

 

2.6 In vitro kinase assay 

PDGFβR, Src family kinases or c-Abl kinase were immunoprecipitated, and in vitro 

kinase assays were performed using MBP as a substrate for PDGFβR and 

acid-denatured enolase as the substrate for Src and c-Abl kinase (Kypta et al. 1990). 

1mM Dithiothreitol (DTT) was added into the lysis buffer during the IP and washing 

steps to prevent the formation of disulphide bonds between protein molecules. The 

precipitated proteins on protein A agarose were washed three times with lysis buffer 

followed by one wash using kinase buffer (20mM Hepes pH 7.5, 10mM MnCl2). 

Samples were then resuspended in kinase buffer containing 90μM ATP, 125ng/μl 

MBP or enolase and 300nCi/μl [32P]γATP and incubated at 30°C for 10 minutes with 

regular mixing. The reaction was stopped by adding sample buffer into each sample 

and boiling at 95°C for 5 minutes. In the case of c-Abl, the assay was done in the 

presence of 1% DMSO or 100 μM AG957. Samples were then separated using 

SDS-PAGE and transferred onto PVDF membranes. Membranes were exposed to Fuji 

film. The films were visualized with Fuji FLA3000 Bioimager, and quantification of 

radioactivity incorporated into PDGFβR, MBP and enolase was done with the 

quantification program coupled with the Bioimager. 
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2.7 MTT assay 

Cells were seeded in 96-well plates at a density of 3000 cells/well followed by serum 

starvation, and grown for the indicated time periods in DMEM medium containing 

50 ng/ml PDGF-BB or 10% FBS. The cells were incubated with 0.65 mg/ml 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) for four hours 

at 37 °C followed by lysis in DMSO/ethanol (1:1). The formation of water-insoluble 

formazan was determined by measuring OD at 600 nm to analyse the relative cellular 

metabolic activity via NAD(P)H-dependent cellular oxidoreductase enzymes, and 

then the relative increase in cell density was calculated. 

 

2.8 PDGFR internalization assay 

Cells were stimulated with 20ng/ml PDGF-BB for different time periods as indicated. 

Cells were put on ice after stimulation and washed twice with PBS pH 7.3. Cell 

surface proteins were biotinylated by incubating with 0.5mg/ml sulfo-NHS-SS-biotin 

(Pierce Chemical, Rockford, IL) in PBS pH 8 for 1 hour on ice with gentle shaking. 

Unbound biotin was quenched by incubation with 50mM Tris pH 8 for 10 minutes on 

ice. The cells were washed with PBS pH 7.3 and lyzed. Cell lysate was incubated with 

streptavidin sepharose (GE healthcare, Uppsala, Sweden) for 1 hour end over end at 

4°C. The precipitated cell surface receptors were separated using SDS-PAGE and 

visualized with the indicated antibodies.  

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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2.9 Cell fraction separation 

After the cells were stimulated for the indicated time, cells were lyzed with 50mM 

Na2HPO4, 1mM sodium pyrophosphate, 2mM EDTA, 2mM EGTA, 1% TritonX100, 

0.5 mM Na3VO4 and 1% Trasylol, for 15 minutes on ice. Cell lysates were sonicated 

for 2 seconds and centrifuged at 11337 g for 30 seconds. The supernatants were saved 

as the TritonX100 fraction. The remaining pellets were dissolved in 1% SDS and 

heated at 95°C for 10 minutes. Sample buffer was added to the TritonX100 fraction 

and 1% SDS fraction and both were boiled at 95°C for 5 minutes before the samples 

being analysed by western blotting. 

 

2.10 C-Abl knockdown by siRNA 

Cells were transfected with 100 nM of control siRNA, or siRNA targeting c-Abl 

(RNA sequence: GAACCACCAUUCUACAUAA; Dharmacon, Lafayette, CO). For 

every experiment performed, Non-Targeting siRNA from the same company was 

used as a control. Transfection of siRNA was done for 72 hours using 10μl/ml 

INTERFERin (Polyplus-transfection SA, Illkirch, France) according to the 

manufacturer's protocol. 
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2.11 Crosslinking assay 

After stimulation of the cells, PBS instead of lysis buffer was added on to the cells, 

and the cells were scraped and collected. The cell suspension was centrifuged at 

2415g for 10 minutes. Pellets collected were added to 3mg/ml cross linker BS3 in 1% 

TritonX100. After incubating for 15 minutes, the mixture was centrifuged at 11337g 

for 15 minutes, and sample buffer was added to the supernatant. The samples were 

boiled at 95°C for 5 minutes and separated by SDS-PAGE using a 4–20% precast 

linear gradient polyacrylamide gel (BioRAD, Solna, Sweden) and analysed.  

 

2.12 Statistics 

Where applicable, results were analysed using the Student’s t-test, a P value of less 

than 0.05 was considered to represent a significant difference.  
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CHAPTER 3 LAR POTENTIATES PDGFβR TYROSINE 

PHOSPHORYLATION 

 

 

3.1 Introduction 

Many different protein tyrosine phosphatases have been shown to regulate PDGFβR 

phosphorylation by specifically dephosphorylating individual sites on the receptor. As 

described before, TC-PTP dephosphorylates the PDGFβR autophosphorylation site 

Tyr1021 to terminate downstream PLCγ activation and thereby reducing cell 

migration. PTP-1B specifically dephosphorylates Src binding site Tyr579, whereas 

SHP2 dephosphorylates at RasGAP binding site Tyr771 potentiating downstream 

activation of the Ras and MAPK pathway (Ekman et al. 2002; Persson et al. 2004). 

Regulation of PDGFβR phosphorylation by PTPs plays an important part in 

maintaining normal strength and pattern of PDGFβR signalling and its functions. 

LAR was previously shown to dephosphorylate tyrosine kinase receptors such as the 

insulin receptor, hepatocyte growth factor receptor and EGFR and reduce their 

autophosphorylation (Kulas et al. 1996; Falet et al. 1998; Suarez Pestana et al. 1999). 

On the other hand, LAR positively regulates tyrosine kinase neurotrophin receptor 

TrkB by dephosphorylating the negative regulatory tyrosine on Src which was shown 

to increase TrkB activity (Yang et al. 2006). In this study, I am interested in how LAR 
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phosphatase activity affects PDGFβR signal transduction and the underlying 

mechanism. 

 

In this chapter, mouse embryonic fibroblasts with the LAR phosphatase domain 

deleted (LARΔP) and its wild type littermate (WT) cells were used to investigate 

tyrosine phosphorylation of PDGFβR and its autophosphorylation sites after different 

time points of stimulation and at different PDGF-BB concentrations. 

 

3.2 Results 

3.2.1 LARΔP cells show decreased PDGF β-receptor phosphorylation 

The ligand induced tyrosine phosphorylation levels of PDGFβR in WT and LARΔP 

cells were investigated by stimulating cells for different time periods. Cells were 

stimulated with 20 ng/ml PDGF-BB and lyzed. Receptors were precipitated with 

WGA agarose and subjected to SDS-PAGE, transferred onto nitrocellulose 

membranes and blotted with antibodies raised against the tyrosine phosphorylation 

PY99 and PDGFβR protein antibody. The results showed that deletion of LAR 

phosphatase domains did not result in the induction of detectable tyrosine 

phosphorylation of the PDGF β-receptor in serum starved cells (Figure 1A). In both 

cell types, PDGF-BB induced tyrosine phosphorylation of the PDGF β-receptor, but 

the receptor tyrosine phosphorylation in LARΔP cells was consistently lower at all the 

investigated time points (Figure 1A). Densitometric analysis showed the average 
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receptor tyrosine phosphorylation in LARΔP MEFs stimulated for 10 minutes with 

PDGF-BB was only 18% of the receptor phosphorylation in WT cells. Retransfection 

of LAR-EGFP into LARΔP cells reverted this phenotype (Figure1A), showing that 

the LAR phosphatase domains are required for PDGF β-receptor activation. 

Immunoprecipitation of PDGFβR with the PDGFβR antibody instead of WGA 

agarose after cell stimulation gave similar results for PDGFβR phosphorylation level, 

confirming PDGFβR tyrosine phosphorylation is reduced in the absence of LAR 

(Figure 1B). This experiment was repeated twice and showed a similar pattern of 

receptor phosphorylation. A representative result blot is shown in Figure 1.  
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A 

 

 
 
 
B 

 
 
Figure 1 LAR promotes ligand induced PDGFβR phosphorylation  
A. WT, LARΔP and LARΔP cells transiently expressing LAR-EGFP were starved for 16 hours and stimulated with 

20ng/ml PDGF-BB for the time periods indicated. Cells were lyzed and incubated with WGA agarose for 1 hour to 

precipitate glycosylated receptors. Samples were separated by SDS-PAGE, and transferred onto nitrocellulose 
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membranes. The amount of tyrosine phosphorylation on PDGFβR was determined with PY99 phosphotyrosine 

antibody followed by immunoblotting with PDGFβR antibody. GFP expression in the corresponding total cell 

lysates was determined by blotting with GFP antibody， western blotting of Alix was a loading control. Antibodies 

were visualized with ECL and LAS-100 plus CCD camera. Densitometry analysis was performed with AIDA 

advance image data analyser software. This experiment was repeated three times and statistical analysis was 

carried out using student’s t-test. The mean relative receptor phosphorylation +/−SEM for three experiments is 

plotted. Statistical significant differences compared to WT are indicated by *, p<0.05 and **, p<0.01. B. Cells 

were stimulated with 20ng/ml PDGF-BB for the indicated time period, cells were lyzed and PDGFβR were 

immunoprecipitated with PDGFβR antibody, and analysed as described above.  

 
 
 
 

3.2.2 Decreased PDGFβR phosphorylation in LARΔP cells cannot be overcome 

by increasing ligand concentrations 

Knowing that PDGFβR phosphorylation is lower in LARΔP cells, I wanted to 

investigate whether the phosphorylation level could be restored by increasing ligand 

concentration, as this would reveal whether PDGFβR in LARΔP cells can be fully 

activated. Cells were stimulated with concentrations ranging from 0 to 150 ng/ml 

PDGF-BB for 10 minutes and then lyzed. The PDGFβR was precipitated with WGA 

agarose. Receptor phosphorylation levels were assessed by western blot and 

quantified with image data analyser software. The relative PDGFβR phosphorylation 

was plotted (Figure 2).  
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Figure 2 LAR deletion reduces ligand induced PDGFβR tyrosine phosphorylation at all 
PDGF-BB concentrations 
After starvation for 16 hours, cells were stimulated with the indicated concentration of ligand for 10 minutes. Cells 

were lyzed and PDGFβR were precipitated with WGA agarose. Samples were run in SDS-PAGE and transferred to 

nitrocellulose membranes. The amount of tyrosine phosphorylation on PDGFβR was determined with PY99 

phosphotyrosine blotting followed by immunoblotting with PDGFβR antibody. Antibodies were visualized with 

ECL and LAS-100 plus CCD camera. Densitometry analysis was performed with AIDA advance image data 

analyser software. The relative PDGFβR phosphorylation is plotted. These data are representative of three 

experiments.  
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As the ligand concentration increases, the PDGFβR phosphorylation in WT cells 

increased with the phosphorylation level still increasing at the highest concentration 

tested, i.e. 150ng/ml. In LARΔP cells, the phosphorylation peaked at 100 ng/ml 

PDGF-BB and did not increase any further, with PDGFβR tyrosine phosphorylation 

remaining clearly lower in LARΔP cells at all ligand concentration tested compared to 

WT (Figure 2). This result suggests that there might be a non-competitive inhibition 

of ligand stimulated PDGFβR activation in the absence of LAR, so that the PDGFβR 

kinase could not be fully activated in LARΔP cells. 

3.2.3 Decreased phosphorylation of all PDGFβR autophosphorylation sites in 

LARΔP 

Western blotting analysis with antibodies raised against the PDGFβR phosphorylated 

autophosphorylation sites and the general phosphotyrosine antibody PY99, were 

employed to test which sites were affected by loss of LAR activity. Phosphorylation 

levels of the PDGFβR autophosphorylation sites in LARΔP cells ranged from 30% to 

46% of the phosphorylation of corresponding sites in WT cells. No statistically 

significant differences were detected between the phosphorylation of any 

autophosphorylation sites and general tyrosine phosphorylation (Figure 3). The 

finding that all sites showed lower phosphorylation levels is consistent with the 

concentration response experiment result shown above (Figure 2), and this suggests 

that LAR deletion decreases PDGFβR kinase activity.  
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Figure 3 Relative tyrosine phosphorylation of PDGFβR in LARΔP cells 

WT and LARΔP cells were stimulated for 10 minutes with 20ng/ml PDGF-BB, cells were then lyzed and PDGFβR 

was precipitated with WGA agarose. Samples were run on SDS-PAGE and transferred to nitrocellulose membranes. 

PDGFβR phosphorylation was determined with PY99 phosphotyrosine antibody followed by immunoblotting with 

antibodies selective for individual tyrosine phosphorylation sites and PDGFβR protein antibody. Blots were 

visualized with ECL and LAS-100 plus CCD camera. Densitometry analysis was performed with AIDA advance 

image data analyser software. The PDGFβR phosphorylation in LARΔP cells was compared with WT cells, and 

the relative tyrosine phosphorylation is plotted. Data from three separate experiments +/- SEM are shown; using 

student’s t-test, no two phosphorylation sites showed significant differences from each other.  
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3.2.4 Reduced PDGFβR kinase activity in LARΔP cells 

The finding that PDGFβR phosphorylation cannot be restored by increasing ligand 

concentrations in LARΔP cells suggests that PDGFβR kinase activity is decreased. To 

confirm this, an in vitro kinase assay was carried out to compare the PDGFβR kinase 

activity between the two cell lines. Preliminary result showed PDGFβR kinase 

activities were very low in the absence of ligand in both WT and LARΔP cells. 

PDGF-BB stimulation for 3 minutes induced PDGFβR activity in WT fibroblasts. 

This was demonstrated for both PDGFβR autophosphorylation and phosphorylation 

of the exogenous substrate MBP (Figure 4). After stimulation, PDGFβR activity in 

LARΔP increased compared to the un-stimulated sample. However, PDGFβR activity 

in LARΔP cells is much lower than in WT cells (Figure 4). Taken together, these 

results indicate that the kinase activity of PDGFβR is higher in WT than in LARΔP 

cells.  
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Figure 4 In vitro kinase assay for PDGFβR  

Cells were starved for 16 hours and stimulated with 20ng/ml PDGF-BB for the indicated time periods. Cells were 

then lyzed, and PDGFβR was immunoprecipitated and incubated with kinase substrate MBP and γ[32P]ATP at 

37°C for 10 minutes with frequent mixing. Samples were run on SDS-PAGE and transferred onto PVDF 

membranes. The membranes were incubated under radioactive sensitive film. Incorporated radioactivity on the 

PDGFβR and MBP were analysed and quantified with a Fuji FLA3000 Bioimager. Similar results were observed 

in more than three experiments.  
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3.3 Discussion 

Autophosphorylation of growth factor receptors such as PDGFβR generally plays 

important roles in regulating cell survival, growth and migration by providing docking 

sites for downstream signalling molecules and activating downstream signalling 

pathways. It is well known that many PTPs negatively regulate PDGFβR 

phosphorylation and its downstream signalling by dephosphorylating specific 

autophosphorylation sites. Interestingly, the results in this study indicate that LAR 

strongly potentiates PDGFβR activity and autophosphorylation. Deletion of LAR 

phosphatase domains considerably reduced PDGFβR tyrosine phosphorylation at all 

time points and ligand concentrations (Figure 1 and Figure 2). In LARΔP cells, 

phosphorylation of the autophosphorylation sites was reduced to 30% - 46% 

compared with the corresponding sites in WT cells (Figure 3). These results, together 

with the preliminary in vitro kinase assay (Figure 4), suggest that PDGFβR kinase 

activity is reduced in a non-competitive manner in LARΔP cells. This finding 

promoted further experiments to determine how knock out of LAR phosphatase could 

reduce the kinase activity of PDGFβR. 

 

The regulation of phosphorylation of tyrosine 857 in the kinase domain of PDGFβR 

was shown to be important for the kinase activity of PDGFβR, sense mutation of 

PDGFβR Tyr857 led to lower kinase activity (Baxter et al. 1998). To confirm that 

PDGFβR activity is lower in LARΔP cells, one could blot with phosphortyrosine 857 

antibody to see if the Tyr857 residue is less phosphorylated upon stimulation in 
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LARΔP cells. Immunofluorescence microscopy using PDGFβR phosphotyrosine 

specific antibodies could also be used to monitor PDGFβR activation at different time 

points and at different ligand concentrations. This would allow the localisation of the 

activated PDGFβR to be assessed in the LARΔP cells.  
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CHAPTER 4 LOSS OF LAR ACTIVITY REDUCES 

PDGFβR DOWNSTREAM SIGNALLING AND 

PROLIFERATION 

 

 

4.1 Introduction 

After the activation and autophosphorylation of PDGFβR, phosphorylated 

autophosphorylation sites serve as docking sites for downstream signalling molecules 

and allow the initiation of multiple downstream signalling pathways. The adaptor 

protein Grb2 binds to the phosphorylated Tyr716 and Tyr775 and leads to activation 

of the downstream Ras-MAPK pathway. Phosphorylated Tyr1009 and Tyr1021 

recruit PLCγ1 to the PDGFβR and lead to the activation of downstream PKC family 

proteins. PI3K binds to phosphotyrosine 740 and 751 to activate downstream Akt 

signalling. Activation of Ras, PLCγ and PI3K pathways stimulate cell growth, 

survival and migration (Heldin et al. 1998). It was previously demonstrated that 

enhanced PDGFβR phosphorylation does not always result in enhanced downstream 

signalling (Persson et al. 2004). In this chapter, PDGFβR downstream signalling was 

investigated by analysing the signal strength at multiple downstream signalling 

pathways. Akt, PLCγ and ERK1/2 phosphorylation was analysed in WT and LARΔP 

cells. 
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4.2 Results 

4.2.1 PDGFβR downstream signalling is reduced in LARΔP 

To understand the consequences of LAR deletion for PDGFβR signalling, 

phosphorylation of downstream signalling molecules was investigated. Cells were 

stimulated with 20ng/ml PDGF-BB and lyzed. Total cell lysates and 

immunoprecipitated PLCγ samples were analysed. Phosphorylation of Akt on Thr308 

in LARΔP cells occurred with similar kinetics as in WT cells, but had a lower 

amplitude (Figure 5A), whereas the PLCγ phosphorylation was more transient (Figure 

5B). Re-expression of WT full length LAR partially restored the Akt and PLCγ 

phosphorylation (Figure5A and Figure 5B). However, there were no differences in 

phosphorylation of Erk1/2 following short term ligand stimulation (Figure 5C upper 

panel). When the cells were stimulated for longer time periods, sustained Erk1/2 

phosphorylation was diminished in LARΔP cells was observed (Figure 5C lower 

panel). Re-expression of LAR partially restored Erk1/2 phosphorylation in LARΔP 

cells.  
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Figure 5 LAR deletion reduces signalling of PDGFβR downstream pathways 
WT, LARΔP and LARΔP cells transfected with LAR-EGFP construct for 48 hours were starved for 16 hours and 

stimulated with 20ng/ml PDGF-BB for the time periods indicated. Cells were lyzed, PLCγ protein was 

immunoprecipitated and total cell lysate samples were collected. Samples were separated by SDS-PAGE, and 
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transferred onto nitrocellulose membranes. A. Akt activation was determined using P-Akt (Thr 308) antibody 

followed by immunoblotting with Akt antibody. B. Immunoprecipitated PLCγ phosphorylation was determined by 

blotting with PY99 phosphotyrosine antibody followed by PLCγ antibody. C. Erk 1/2 activation was analysed 

using P-Erk 1/2 (Thr202 Thr204) antibody followed by blotting with Erk 1/2 antibody. GFP protein amount in the 

corresponding total cell lysate sample was determined with GFP antibody followed by Alix blotting as the loading 

control. Antibodies were visualized with ECL and LAS-100 plus CCD camera. These experiments were repeated 

three times; one representative set of data is shown. 

 

 

4.2.2 LAR deletion reduces PDGF induced cell proliferation 

Cells were starved for 16 hours and then were either left untreated, or stimulated with 

50 ng/ml PDGF-BB or 10% FBS for 48 h. After incubation with MTT, the formation 

of formazan was determined by measuring the OD at 600 nm, and the relative 

proliferation was calculated. The result shows higher proliferation rate of WT cells 

compared to LARΔP upon PDGF-BB stimulation, which is consistent with the 

stronger PDGFβR signalling in WT fibroblasts. On the other hand, foetal bovine 

serum stimulated enhanced proliferation in LARΔP cells compared with WT cells 

(Figure 6). These results demonstrate that LAR is selectively required for PDGF 

induced proliferation.  
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Figure 6 Decreased proliferation in response to PDGF-BB in LARΔP cells 
Cells were starved for 16 hours and then were either left untreated or stimulated with 50 ng/ml PDGF-BB or 10% 

serum for 48 hours. Following incubation with MTT, the formation of formazan was determined by measuring OD 

at 600 nm, and the relative proliferation was calculated. Data from three separate experiments, each performed in 

quadruplicates, +/− SEM are shown. Statistical significant differences (Students T-test) are indicated by *, p < 0.05 

and **, p < 0.01.  
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4.3 Discussion 

To follow up on the finding that LAR is required for full activation of PDGFβR 

kinase, the activities of downstream signalling molecules were investigated. 

Downstream signalling of PDGFβR is clearly weaker in the absence of LAR (Figure 

5), which is consistent with the reduced receptor phosphorylation.  

 

Jurek et al, 2008, demonstrated that PDGF induced Erk activation depends on the 

degradation of MAPK phosphatase 3 (MKP3) which is a phosphatase highly selective 

for Erk (Jurek et al. 2009). PDGFβR activation induces the serine174 phosphorylation 

on MKP3 which leads MKP3 to degradation. It is possible that when LAR is deleted, 

PDGFβR phosphorylation is reduced. However, this phosphorylation is still enough to 

induce normal level of Erk1/2 phosphorylation through the Raf, MEK pathway. 

However, this phosphorylation strength might not be enough to cause enough 

phosphorylation of Ser174 on MKP3 somehow, and MKP3 degradation does not 

proceed as much as normal and lead to the dephosphorylation of Erk1/2 after longer 

periods of stimulation.  

 

In line with the long term Erk1/2 activation, the PDGF-BB stimulated proliferation 

was significantly reduced in LARΔP cells. However LARΔP cells proliferated faster 

than WT cells in response to FBS (Figure 6), demonstrating that LAR does not 

regulate the proliferative machinery directly, but is selective for PDGF-induced 

signalling. FBS contains many types of growth factors including PDGF, EGF, FGF 
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and LPA. LAR has been shown to negatively regulate the signalling of other tyrosine 

kinase growth factor receptors including EGFR and HGFR (Mooney et al. 1997). 

Thus, it is conceivable that proliferative signals from other receptors are increased in 

LARΔP cells, which contribute to the faster proliferation in response to FBS. 

 

To confirm the lower signalling strength in the Akt pathway in LARΔP cells 

compared to WT cells, in vitro kinase assay could be used to measure the kinase 

activity of PI3K which is an upstream signalling molecule responsible for Akt 

activation. As the upstream effector of ERK, Ras activity could be directly measured 

to investigate the Ras signalling pathway strength in the two cell types. 

 

To determine that the MTT assay is reflecting proliferation of cells rather than 

changes in the activity of cellular NAD(P)H-dependent cellular oxidoreductase, 

proliferation could also be assessed using [3H]Thymidine incorporation assay. In this 

assay radioactive thymidine and PDGF ligand can be incubated with the cells 

overnight. The incorporated thymidine can be quantified using a scintillation counter 

as a measure of cell proliferation.  
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CHAPTER 5 PDGFβR DOWNREGULATION IS 

AFFECTED BY LAR 

 

5.1 Introduction 

After PDGF receptor stimulation, it is important to desensitize the cells from PDGF 

stimulation in order to prevent over-activation and uncontrolled growth. Receptor 

degradation is one of the endogenous mechanisms to attenuate PDGF signalling. After 

ligand stimulation, ligand receptor complexes are internalized and removed from the 

cell surface. Ubiquitination of PDGFR will lead to proteolysis and receptor 

degradation inside cells. PDGFR internalization is one of the earliest responses 

elicited by PDGF stimulation. Internalization is mediated by clathrin coated vesicle 

formation and intracellular transport of the receptor away from the cell surface. After 

un-coating, the vesicles fuse with the existing early endosomes. Receptors are then 

sorted into the late endosome and further sorted towards lysosomal degradation 

(Maxfield and McGraw 2004). C-Cbl is one of the SH2 domain containing proteins 

which is recruited to PDGFβR upon stimulation. It has been identified as an E3 

ubiquitin ligase that is involved in PDGFβ receptor ubiquitination and thereby 

targeting the receptor to degradation (Miyake et al. 1998). Both the ligand induced 

internalization and c-Cbl mediated ubiquitination require PDGFR tyrosine 

phosphorylation, and constitute downregulation mechanisms that terminate receptor 
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signalling. 

 

In this chapter, PDGFβR internalisation was investigated in WT and LARΔP cells. 

PDGFβR degradation and ubiquitination were also assessed to obtain further 

information about the effect of LAR on PDGFβR function. 

 

5.2 Results 

5.2.1 PDGFβR ubiquitination 

To analyse the receptor ubiquitination in the two cell types after stimulation, PDGFβR 

were immunoprecipitated. After SDS-PAGE and membrane transferring, membranes 

were probed with Ub antibody to visualize ubiquitination. The data showed higher 

ubiquitination levels in WT cells compared to LARΔP cells upon PDGF-BB 

stimulation with ubiquitination peaking at 20 minutes (Figure 7). This was expected, 

since ubiquitination of PDGFβR is suggested to be dependent on receptor 

phosphorylation.  
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Figure 7 Ubiquitination of PDGFβR 
Cells were starved for 16 hours and stimulated with 20ng/ml PDGF-BB for the indicated time periods. PDGFβR 

were immunoprecipitated and separated by SDS-PAGE. Proteins were transferred onto nitrocellulose membranes. 

Ubiquitination of PDGFβR was visualized with Ub antibody. Antibodies were visualized with ECL and LAS-100 

plus CCD camera. Densitometry analysis was performed with AIDA advance image data analyser software. The 

relative ubiquitination of PDGFβR was plotted. This experiment was repeated three times, results from one 

representative experiment are shown.  
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5.2.2 PDGFβR internalization 

After stimulation, ubiquitination of PDGFβR would lead to the receptor’s degradation 

which is initiated by receptor internalization. Cells were starved overnight, stimulated 

and then put on ice to stop receptor internalization. Cell surface proteins were 

biotinylated by incubating with 0.5mg/ml sulfo-NHS-SS-biotin. Unbound biotin was 

quenched by incubation with 50mM Tris pH 8. The cells were lyzed and incubated 

with the streptavidin sepharose to precipitate the biotinylated cell surface proteins, 

immunoprecipitated PDGFβR was detected by western blotting. Although there are no 

significant differences between WT and LARΔP cells, the mean PDGFβR 

internalization rate was faster in the WT compared to LARΔP cells, with about 50% 

of the cell surface PDGFβR internalized in WT while only around 5% in LARΔP after 

10 minutes stimulation (Figure 8). This is consistent with the ubiquitination result. In 

WT cells, PDGFβR are more phosphorylated, more ubiquitinated and internalized 

faster compared to LARΔP cells.   
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Figure 8 Ligand induced internalization of PDGFβR  
Cells were starved for 16 hours and stimulated with 20ng/ml PDGF-BB for the indicated time periods. Cell surface 

proteins were biotinylated by incubating with 0.5mg/ml sulfo-NHS-SS-biotin, and cell surface proteins were 

precipitated using streptavidin agarose. Samples were subjected to SDS-PAGE and transferred onto nitrocellulose 

membranes. Cell surface receptors were detected with PDGFβR antibody. Antibodies were visualized with ECL 

and LAS-100 plus CCD camera. Densitometry analysis was performed with AIDA advance image data analyser 

software. This experiment was repeate three times, and the mean relative receptor phosphorylation +/−SEM is 

plotted. No statistically significant differences were found between WT and LARΔP internalization at any time 

points  
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5.2.3 PDGFβR degradation 

The degradation rate of PDGFβR of the two cell types was then investigated. Cells 

were stimulated and lyzed. Total cell lysate was separated on SDS-PAGE, and 

transferred onto nitrocellulose membrane. The amount of PDGFβR remaining in the 

cells was determined with PDGFβR antibody. The results show that around 80% of 

the PDGFβRs are degraded in both cell types with no significant differences between 

the two cell types after 3 hours stimulation (Figure 9). As a control, Erk 

phosphorylation was assessed to confirm that there was more sustained signalling in 

WT cells (Figure 9).   
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Figure 9 Ligand induced PDGFβR degradation 
Cells were starved for 16 hours before they were stimulated with 20 ng/ml PDGF-BB for the indicated time 

periods. Cells were lyzed, and total cell lysate were separated by SDS-PAGE and transferred onto nitrocellulose 

membranes. The amount of PDGFβR was determined with PDGFβR antibody, and phosphorylation of Erk 1/2 was 

determined with P-Erk 1/2 antibody followed by Erk protein blotting, and visualization with ECL and LAS-100 

plus CCD camera. Densitometry analysis was performed with AIDA advance image data analyser software. This 

experiment was repeated three times, and statistical analysis was performed using student’s t-test. The mean 

relative receptor phosphorylation +/−SEM is plotted. There are no significant differences between the two cell 

types for their PDGFβR degradation.  
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5.3 Discussion 

PDGFβR activation leads to its down regulation in the form of dephosphorylation, 

followed by ubiquitination, internalization and degradation. In this chapter, PDGFβR 

downregulation was investigated in the presence and absence of LAR phosphatase 

activity. In LARΔP cells, the ubiquitination level is lower compared to WT, which is 

consistent with the tyrosine phosphorylation of PDGFβR (Figure 7). The 

internalization experiments showed no significant differences between WT and 

LARΔP internalization. However, there is a trend shown by the average values in the 

internalization experiments that WT cells internalized PDGFβR faster than in LARΔP 

cells (Figure 8). Interestingly, although the receptors in LARΔP are much less 

phosphorylated, after 20 minutes stimulation, around 50% receptors are internalized 

and after 40 minutes stimulation only 20% receptors are left on the cell surface 

(Figure 8). The decreased kinase activity, as demonstrated in chapter 3, would result 

in the same number of PDGFβR being phosphorylated in LARΔP and WT cells, but 

the PDGFβR would be less phosphorylated. This would result in lower c-Cbl 

recruitment and less receptor ubiquitination. This will make it slower for the activated 

receptor to be found by the endocytosis machinery and thus slow down the 

internalization process. However, since the same population of receptor was 

phosphorylated in LARΔP as in WT, receptors would eventually be internalized. 

 

The receptor degradation rate showed no significant differences between the two cell 

types. With faster ubiquitination and internalization rates, one would expect the 
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degradation to be faster in WT cells. Although PDGFβR get internalized faster into 

the endosome in WT cells, the receptors may stay inside these vesicles longer before 

they are sent to lysosome for degradation. One of the possibilities is that the deletion 

of LAR phosphatase activity somehow accelerates the transportation of the receptors 

from late endosome to lysosome, or some shortcut is created in the absence of LAR 

activity from early endosomes to lysosomes. Several proteins in the ESCRT systems 

that sort the activated receptors, e.g. STAM and Hrs, are substrates for PDGFβR (Row 

et al. 2005). The role of ESCRT protein phosphorylation has not been determined, but 

it is possible that it regulates the time spent in endosomes allowing for signalling to 

occur. If so, reduced PDGFβR kinase activity would enhance the degradation rate. 

 

Another possibility is that the degradation rate inside the lysosome is already 

saturated in LARΔP cells. Thus although the PDGFβR receptors could be sent to the 

lysosomes at a higher speed in WT cells, the lysosomal proteases degrade these 

internalized receptors at the same rate in both cell types at the same maximum 

capacity. The same PDGFβR degradation rate in the LARΔP and WT cells also 

supports the notion that the same sized population of PDGFβR molecules are 

activated during PDGF stimulation in the two cell types, thus the differences in 

receptor phosphorylation is caused by the lower PDGFβR kinase activity in LARΔP 

cells rather than a smaller population of receptors being activated.  

 

To confirm the internalization and degradation results shown in Figure 8 and Figure 9, 
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immunofluorescent microscopy experiments could be carried out to look at the 

internalization and degradation of PDGFβR using PDGFβR specific antibody in the 

two cell types at different time points after stimulation. By doing this, one could 

visualise the receptor moving from the cell surface inside the cell after stimulation, 

followed by degradation of the receptor which would be marked by the disappearance 

of the fluorescent signal. Levels of PDGFβR remaining on the cell surface at different 

time points could be quantified and the internalization rate compared between the two 

cell types. This would provide an alternative method to measure the PDGFβR 

degradation rate.  
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CHAPTER 6 SEARCHING FOR THE UNDERLYING 

MECHANISM 

 

 

6.1 Introduction 

After observing that LAR promotes PDGFβR signalling and downregulation, I 

wanted to investigate the underlying reason. In most of the previously investigated 

cases, PTPs were reported to negatively regulate tyrosine kinase receptor signalling 

by dephosphorylating either the receptor or major downstream components. LAR was 

also reported to negatively regulate EGFR and HGFR signalling. However, LAR was 

once shown to positively regulate the neurotrophin tyrosine kinase receptor TrkB 

signalling and downstream physiological effects by dephosphorylating the negative 

regulatory tyrosine residue Tyr527 on Src (Yang et al. 2006). Researchers described 

that Src is activated after dephosphorylation of Tyr527 (Tsujikawa et al. 2002), the 

activated Src then binds to TrkB receptor and phosphorylates it to elevate the receptor 

signalling. Src has been shown to phosphorylate PDGFβR as well (Hansen et al. 

1996). In the absence of LAR, the Src kinase activity could be suppressed which may 

lead to lower PDGFβR phosphorylation. 

 

Other studies suggested that PDGF receptor activity is affected by its localization in 
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the plasma membrane. Liu et al., 1996 demonstrated caveolae to be the principle 

location of PDGF receptor at the cell surface, and that PDGF receptor initiates signal 

transduction from caveolae. Proteins known to interact with the phosphorylated 

PDGF receptors are highly enriched in caveolae. Liu et al. 1997 showed that PDGF 

receptor phosphorylation and activation of MAPK occured in caveolae (Liu et al. 

1996; Liu et al. 1997). It seems that caveolae are the place that PDGF receptors get 

activated, and the localization of PDGF receptor in caveolae affects PDGF receptor 

activity and function. However, a later study showed that PDGF receptor colocalized 

with the major component of caveolae, caveolin. Caveolin binds directly to PDGF 

receptor and inhibits its autophosphorylation and kinase activity (Yamamoto et al. 

1999). The findings of Sergey et al, 2001 could explain these contradictory results 

described above. They showed that the PDGF receptor is associated with the 

non-caveolae lipid rafts, and after ligand stimulation the PDGF receptor transiently 

associated with caveolae which led to the phosphorylation of downstream signalling 

molecules. PDGF receptor was also shown to be sequestered in the caveolae region 

and desensitized from later activation (Matveev and Smart 2002). In summary, there 

have been several reports demonstrating that caveola localization of PDGFR may act 

as a major regulator of receptor kinase activity and signalling. 

 

In this chapter, I looked at the possible involvement of Src kinase in the LAR related 

reduction in PDGFβR phosphorylation in LARΔP cells. The caveola localization of 

PDGFβR was also investigated in the two cell types. 
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6.2 Results 

6.2.1 Src inhibition does not change PDGFβR phosphorylation in either WT or 

LARΔP cells 

It is possible that Src is activated by LAR by its dephosphorylation at the Src Tyr527 

residue in WT cells; activated Src could then phosphorylate PDGFβR and lead to 

higher phosphorylation. Therefore, the Src inhibitor SU6656 was used to inhibit Src 

activity in both cell types to see if this would affect PDGFβR phosphorylation. Cells 

were incubated with 2μM SU6656, stimulated and lyzed. Receptors were precipitated 

with WGA agarose beads, and subjected to western blotting. The result of one 

experiment is shown in Figure 10. Src inhibition did not alter PDGFβR 

phosphorylation in either the WT or LARΔP cells (Figure 10). This indicates that lack 

of Src activation by LAR is not the reason for the lower PDGFβR phosphorylation in 

LARΔP cells, since one would expect to see the PDGFβR phosphorylation dropping 

in the WT cells after the inhibitor treatment, if Src phosphorylates the receptor.  
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Figure 10 Src inhibitor SU6656 does not change PDGFβR phosphorylation in WT or LARΔP 
cells 
Cells were starved for 16 hours before they were incubated with 2μM SU6656 or 0.1% DMSO for 1 hour. Cells 

were then stimulated with 20 ng/ml PDGF-BB for the indicated time periods and lyzed. Receptors were 

precipitated with WGA agarose beads, and western blotted. The PY99 antibody was used to determine the tyrosine 

phosphorylation level of PDGFβR followed by blotting with PDGFβR antibody. Antibodies were visualized with 

ECL and LAS-100 plus CCD camera. Densitometry analysis was performed with AIDA advance image data 

analyser software. The phosphorylation of PDGFβR was plotted. This experiment was repeated twice with similar 

results.   
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6.2.2 Src kinase activity is similar in WT and LARΔP 

To further confirm that reduced Src activation does not cause the reduced tyrosine 

phosphorylation of PDGFβR in LARΔP cells, an in vitro kinase assay was utilized to 

compare Src kinase activity in the two cell types. Starved cells were stimulated with 

20ng/ml PDGF-BB for the indicated time periods. Src family kinases were 

precipitated and incubated with the exogenous substrate enolase and γ[32P]ATP at 

37°C for 10 minutes with frequent mixing. Samples were run on SDS-PAGE and 

transferred onto PVDF membranes. The membranes were incubated under radioactive 

sensitive film. Radioactive signals on the phosphorylated enolase was detected and 

quantified with a Fuji FLA3000 Bioimager. The result of one experiment is shown in 

Figure 11. This shows that Src kinases were activated to a similar extent in the two 

cell types, confirming that Src is not the intermediate player here.   
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Figure 11 In vitro kinase assay for Src family kinases 
Cells were stimulated with 20 ng/ml PDGF-BB for the indicated time periods. Src family kinases were precipitated 

with Src family kinase antibody, and incubated with enolase and γ[32P]ATP at 37°C for 10 minutes with frequent 

mixing. Samples were run on SDS-PAGE and transferred onto PVDF membranes. The membranes were incubated 

under radioactive sensitive film. Radioactive signals on the phosphorylated enolase were detected and quantified 

with a Fuji FLA3000 Bioimager. This experiment was repeated twice.  
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6.2.3 A very small fraction of PDGFβR is present in the caveolae region 

There have been several publications showing that PDGFβR phosphorylation and its 

signalling is affected by its localization in caveolae or lipid rafts. To investigate 

whether there are differences for the amount of PDGFβR localized in caveolae in the 

presence and absence of LAR activity, the caveola localization of PDGFβR in the WT 

and LARΔP cells were compared. Starved cells were stimulated and lyzed. PDGFβR 

was immunoprecipitated and caveolin 1 co-precipitation was analysed. Result shows a 

higher amount of caveolin 1 associating with PDGFβR in WT compared to LARΔP 

(Figure 12A). This is in accordance with the study that suggested activated PDGF 

receptors are sent to caveolae to be sequestered and kept inactive. WT cells are 

activated more than LARΔP cells, so the receptor association with caveolin 1 would 

be higher in WT cells. It is well known that caveolae do not dissolve in the 

TritonX100 at 4 °C (Moldovan et al. 1995). To further study the proportion of 

PDGFβR that is localized in caveolae region before and after ligand stimulation, cells 

were lyzed with buffer containing 1% TritonX100 for 15 minutes on ice. The cell 

lysates were sonicated for 2 seconds and centrifuged and the supernatants were saved 

as the TritonX100 soluble fractions. The remaining pellets were dissolved in 1% SDS 

with heating at 95°C for 10 minutes. Both fractions were boiled in sample buffer and 

analysed with western blot. The vast majority of both total PDGFβR and 

phosphorylated PDGFβR were located in the TritonX100 soluble non-caveolae 

fraction before and after stimulation in both cell types. There was no detectable 

PDGFβR located in the Triton insoluble fraction (Figure 12B). In combination with 
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the immunoprecipitation results, it seems that very small fraction of PDGFβR is 

located in the caveolar region in these two cell types. It is possible that the presence of 

caveolar structures is very limited in the mouse embryonic fibroblasts used for this 

study. The big difference in PDGFβR phosphorylation between WT and LARΔP cells 

did not appear to be caused by the different caveolar localization of PDGFβR in the 

two cell types.  
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Figure 12 PDGFβR localization in different fractions 
A. Cells were starved for 16 hours and stimulated with 20 ng/ml PDGF-BB for the time periods indicated. 

PDGFβR was immunoprecipitated and separated by SDS-PAGE and transferred onto nitrocellulose membranes. 

Caveolin 1 was visualized by using Cav-1 antibody, followed by blotting with PDGFβR antibody. This experiment 

was repeated twice, one representative result is shown. B. After stimulation for the indicated time periods, cells 

were lyzed with buffer containing 1% TritonX100 for 15 minutes on ice. Cell lysates were sonicated for 2 seconds 

and centrifuged. The supernatant was saved as the TritonX100 soluble fraction. Pellets were dissolved in 1% SDS 

with heating at 95°C for 10 minutes. Sample buffer was added to the TritonX100 fraction and 1% SDS fraction 

and both were boiled at 95°C for 5 minutes and analysed by western blot. This experiment was repeated twice with 

similar results.  
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6.3 Discussion 

PDGF receptor phosphorylation can be affected by several different cellular 

components, so its signalling can be well regulated. Possible reasons for the reduced 

PDGFβR phosphorylation observed in LARΔP cells were investigated in this chapter. 

The Src negative regulatory tyrosine Tyr527 is a known target of LAR, and therefore 

Src could be activated by LAR to phosphorylate PDGFβR in WT cells. In the absence 

of LAR phosphatase activity, one would expect Src activity to be reduced, which in 

turn would decrease the PDGFβR phosphorylation in LARΔP cells. However, Src 

inhibitor treatment did not cause any reduction in PDGFβR phosphorylation in WT 

fibroblasts (Figure 10), demonstrating that no additional phosphorylation in WT 

compared to LARΔP was due to Src. Src kinase activity was similar in unstimulated 

MEFs, and PDGF-BB activated Src in both cell lines (Figure 11), demonstrating that 

loss of LAR activity did not reduce the Src kinase activity in LARΔP cells. The Src 

expression levels in the two cell types were checked to be the same with western blot 

(data not shown). 

 

Several previous studies suggested that caveolar localization of PDGF receptor affects 

its kinase activity and function. If the caveolar PDGF receptor localization in WT and 

LARΔP showed some differences, it could be an explanation for the observed 

difference in receptor phosphorylation. However, the TritonX100 soluble 

non-caveolae fraction contained all the receptors detected in both cell types (Figure 

12B). Although immunoprecipitation study shows caveolin 1 association with 
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PDGFβR in both cell types with more association in WT cells (Figure 12A), no 

phosphorylated receptors were detected in the caveolar fraction (Figure 12B). The 

altered membrane localization clearly cannot explain the large difference in PDGFβR 

phosphorylation we observed. Further experiments could be carried out to confirm if 

there are equal amounts of caveolin 1 present in both cell types. This would further 

show that caveolin 1 associates with PDGFβR more in the WT than in LARΔP cells 

(Figure 12A). The caveolin 1 amount should be checked in the Triton X 100 soluble 

fraction and in the Triton insoluble fraction to confirm that caveolin 1 is being isolated 

from the insoluble fraction (Figure 12B). Colocaisation of PDGFβR with caveolin in 

the different WT and LARΔP cell types could also be investigated with fluorescence 

microscopy.  
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CHAPTER 7 HIGHER C-ABL ACTIVITY IN LARΔP 

LEADS TO LOWER PDGFβR PHOSPHORYLATION 

 

 

7.1 Introduction 

C-Abl is a non-receptor tyrosine kinase that is located in both the cytoplasm and 

nucleus. It interacts with a large variety of cellular proteins including signalling 

adaptors, kinases, phosphatases, cytoskeleton proteins and transcription factors 

(Sirvent et al. 2008). C-Abl is a substrate for LAR, and LAR was shown to play a role 

in antagonizing Abl function in drosophila neuronal cells. The large variety of 

substrates for c-Abl could provide a link between LAR and PDGFβR activity 

(Chagnon et al. 2004). C-Abl phosphorylates kinases such as Protein kinase C and 

phosphatases such as SHP2, both of which could directly or indirectly regulate 

tyrosine phosphorylation of PDGFβR (Yuan et al. 1998; Mitra et al. 2008). Moreover, 

c-Abl localizes to and participates in the regulation of focal contacts which could also 

change integrin mediated adhesion and signalling. This could in turn affect PDGF 

receptor signalling as well (DeMali et al. 1999). Srinivasan et al. demonstrated that 

c-Abl is phosphorylated by PDGFβR at Tyr245 and Tyr412, the phosphorylation of 

which are required for c-Abl activation (Srinivasan et al. 2009). On the other hand, 

c-Abl was shown to phosphorylate PDGFβR and potentiate its kinase activity and 

http://europepmc.org/search/?scope=fulltext&page=1&query=AUTH:%22Srinivasan%20D%22
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PDGF-BB induced proliferation. This would provide a positive feedback loop 

between c-Abl and PDGFβR. Therefore c-Abl could either phosphorylate the 

PDGFβR or activate other kinases that regulate PDGFR kinase activity. C-Abl 

expression and activity were compared in WT and LARΔP cells, and its role in 

PDGFβR activation was investigated in this chapter. 

 

7.2 Results 

7.2.1 Higher cytoplasmic c-Abl localization in LARΔP cells 

As one of the major downstream targets of LAR, c-Abl expression, subcellular 

localization and activity were analysed in the two cell types. Unstimulated WT, 

LARΔP and LARΔP cells transiently expressing LAR-EGFP were lyzed with 

standard lysis buffer. The cell lysates were blotted and the c-Abl protein amount in the 

solubilized fraction was determined and densitometry analysis was performed. These 

data show that more than twice the amount of c-Abl was recovered in LARΔP 

compared to WT cells. LARΔP cells transfected with full length LAR-EGFP construct 

show a lower level of c-Abl than untransfected LARΔP cells but higher than in WT 

cells (Figure 13A). This suggests that the presence of LAR phosphatase activity 

suppresses either the expression or the cytoplasmic localization of c-Abl expression. 

To distinguish between these possibilities, cells were lyzed either with normal lysis 

buffer, which does not solubilize nuclear proteins, or with sample buffer which lyzes 

both fractions. A very similar level of c-Abl was observed in the total cell lysate of 
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WT and LARΔP cells (0.9 and 1 according to quantification using AIDA software 

(Figure 13B). 80% of the total c-Abl proteins were present in the cytoplasm in 

LARΔP, while only 56% of the c-Abl were located in the cytoplasmic fraction in WT 

cells. There are no changes in the amount of c-Abl protein in the cytoplasm after 

stimulation in the two cell types. These results indicate that the higher amount of 

c-Abl protein in cytoplasm of LARΔP cells is due to a larger proportion of total cell 

c-Abl located in the cytoplasm rather than enhanced protein expression. This is 

presumably caused by c-Abl exportation from the nucleus to the cytoplasm in the 

absence of LAR phosphatase activity.   
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A 

 

 
B 

 
 
Figure 13 C-Abl exists in different fractions within WT and LARΔP cells 
A. Unstimulated WT, LARΔP and LARΔP cells transfected with LAR-EGFP construct were lyzed with the lysis 

buffer described before to release the cytoplasmic proteins, the c-Abl protein amount in the cytoplasmic fraction 

was determined using c-Abl antibody followed with reblotting with Alix antibody as the loading control. This is a 

representative result of three experiments. B. cells were starved for 16 hours and stimulated with 20 ng/ml 

PDGF-BB for the time periods indicated. Cells were either lyzed with standard lysis buffer or sample buffer, the 

cell lysates obtained with lysis buffer were centrifuged at 11337g for 15 minutes. The supernatant was saved as the 

“cytoplasmic” fraction, sample buffer was then added to the sample and boiled at 95°C for 5 minutes. Lysates 

obtained with sample buffer were sonicated for 2 seconds and centrifuged at 11337g for 30 seconds and boiled at 

95°C for 5 minutes and saved as “total cell lysate”. Samples were subjected to western blot and the c-Abl protein 

amount was determined with c-Abl antibody followed by reblotting with Alix antibody as the loading control. 

Densitometry analysis was performed with AIDA advance image data analyser software. This experiment was 

repeated for three times, and results showed similar pattern. The result is representative of three experiments.  
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7.2.2 Higher c-Abl tyrosine phosphorylation in LARΔP cells 

As mentioned before, c-Abl is a known substrate of LAR, so without LAR, c-Abl is 

expected to be hyperphosphorylated. Since c-Abl phosphorylation increases its kinase 

activity, c-Abl phosphorylation and kinase activity were analysed in WT and LARΔP 

cells. Starved cells were stimulated and lyzed, and c-Abl was immunoprecipitated and 

tyrosine phosphorylation of c-Abl protein was determined by western blot using PY20 

antibody followed by reblotting with c-Abl antibody (Figure 14A upper panel). 

Tyrosine phosphorylated proteins were also immunoprecipitated with the 

phosphotyrosine antibody PY20 and the amount of precipitated c-Abl was determined 

using western blotting (Figure 14A lower panel). There is initial c-Abl 

phosphorylation in the absence of ligand in both cell types. C-Abl phosphorylation 

was increased after PDGF-BB stimulation in both cell types. However, c-Abl 

phosphorylation was consistently higher in LARΔP than in WT (Figure 14A upper 

panel). Likewise, phosphotyrosine immunoprecipitation pulled out more c-Abl 

proteins in LARΔP cells than WT as well (Figure 14B lower panel). These results 

suggest that c-Abl is active in the absence of PDGF in these cells, and that ligand 

addition increases c-Abl activity further, particularly in LARΔP cells. To confirm this, 

the phosphorylation of CrkII, a well-known downstream substrate of c-Abl, was 

analysed in the two cell types. Unstimulated cells were lyzed, and CrkII was 

immunoprecipitated with CrkII antibody. Samples were western blotted with 

phosphotyrosine antibody followed by CrkII antibody, Densitometry analysis showed 

CrkII phosphorylation in LARΔP cells and no detectable phosphorylation of CrkII in 
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WT, which strengthens the notion that the c-Abl activity in unstimulated LARΔP cells 

is much higher than in WT cells (Figure 14B).  
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A                                             B 

 
 
 
 
Figure 14 Higher tyrosine phosphorylation of c-Abl and its substrate CrkII in LARΔP cells 
compared to WT  
A. Cells were starved for 16 hours and stimulated with 20 ng/ml PDGF-BB for the indicated time periods and 

lyzed. Samples were immunoprecipitated with c-Abl antibody and western blotted. Phosphorylation of c-Abl 

protein was determined with PY20 antibody followed by reblotting with c-Abl antibody (upper panel). 

Phosphorylated proteins in total cell lysate were also immunoprecipitated with phosphotyrosine antibody PY20, 

and the c-Abl protein amount in the IPs was detected using c-Abl antibody (lower panel). This is representative of 

three experiments. B. Unstimulated cells were lyzed and immunoprecipitated with CrkII antibody, samples were 

western blotted with phosphotyrosine antibody followed by CrkII antibody, Densitometry analysis was performed 

with AIDA advance image data analyser software, and the phosphorylation of c-Abl and CrkII were calculated and 

are indicated under the blot. Similar results were observed in three experiments.   
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7.2.3 C-Abl kinase activity in LARΔP is higher than in WT 

In vitro kinase assays were carried out to confirm that the c-Abl kinase activity was 

higher in LARΔP cells. Cells were transiently transfected with the DNA indicated in 

Figure 15. After 48 hours, the cells were lysed and c-Abl was immunoprecipitated. 

The immunoprecipitates were divided into two parts; one part was subjected to an in 

vitro kinase assay, in the presence of solvent (DMSO) or 100 μM of the c-Abl 

inhibitor AG957, using enolase as the substrate. The other part was separated by 

SDS-PAGE, and c-Abl was detected by immunoblotting. The GFP protein amount 

within the total cell lysate was analysed, using Alix as the loading control. Results 

show higher c-Abl kinase activity in serum starved LARΔP cells compared to the WT. 

Transfecting LARΔP cells with full length LAR construct reduced the c-Abl kinase 

activity demonstrating that LAR activity suppresses c-Abl activity in MEFs. The 

kinase activity measured is due to c-Abl, since the addition of c-Abl inhibitor AG957 

effectively reduced the activity measured in the samples (Figure 15).   
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Figure 15 Higher c-Abl kinase activity in LARΔP cells compared with WT cells 
WT and LARΔP cells were transiently transfected with the indicated DNA. After 48 h, the cells were lysed and 

c-Abl was immunoprecipitated. The immunoprecipitates were divided in two; one part was subjected to in vitro 

kinase assay in the presence of solvent (DMSO) or 100 μM of the c-Abl inhibitor AG957 using enolase as the 

substrate. The other part was separated by SDS-PAGE, and the immunoprecipitated c-Abl was detected by 

immunoblotting. The GFP protein amount within the total cell lysate was analysed, using Alix as loading control. 

This is representative of three experiments.  
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7.2.4 C-Abl inhibition restores PDGFβR phosphorylation in LARΔP cells 

From the above experiments, we noticed that deletion of the LAR phosphatase 

domains resulted in a clear increase of c-Abl kinase activity. To investigate the 

possibility that the increased c-Abl activity reduces PDGFβR phosphorylation, I 

analysed the effect of the specific c-Abl inhibitor AG957 on PDGFβR 

phosphorylation. Cells were starved and treated with 10μM AG957 or 0.1% DMSO 

for two hours followed by stimulation with 20 ng/ml PDGF-BB for the indicated time 

periods. There was a considerable increase in PDGFβR phosphorylation after c-Abl 

inhibition with AG957 in both cell types. Incubation of LARΔP with AG957 brings 

the PDGFβR phosphorylation to a comparable level with that in the untreated WT 

(Figure 16). This suggests that the increased c-Abl kinase activity is the reason for the 

reduced PDGFβR phosphorylation in LARΔP cells. By reducing c-Abl kinase activity, 

PDGFβR phosphorylation can be restored to a similar level to that in WT cells, 

demonstrating that c-Abl is one of the intermediate players connecting LAR and 

PDGFβR.  
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Figure 16 c-Abl inhibition restores PDGFβR phosphorylation in LARΔP cells 
Cells were starved for 16 hours, and then treated with 10μM AG957 or 0.1% solvent DMSO for two hours. Cells 

were then stimulated with 20 ng/ml PDGF-BB for the indicated time periods. Cells were lyzed, and receptors were 

precipitated with WGA agarose beads and western blotted. Phosphorylation of PDGFβR was visualized by blotting 

with phosphotyrosine antibody PY99 followed by reblotting with PDGFβR antibody as loading control. 

Densitometry analysis was performed with AIDA advance image data analyser software, and phosphorylation of 

PDGFβR was plotted. These data are representative of three experiments.  
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7.2.5 Suppression of c-Abl expression restores PDGFβR phosphorylation in 

LARΔP cells 

To confirm that inhibition of c-Abl restores the PDGFβR phosphorylation in LARΔP 

cells, c-Abl siRNA was used to knock down c-Abl expression, and the PDGFβR 

phosphorylation was analysed. Cells were transfected with control siRNA or c-Abl 

siRNA and then stimulated with 20 ng/ml PDGF-BB for the indicated time periods 

and the PDGF β-receptor was precipitated using WGA agarose. C-Abl 

downregulation in total cell lysates was confirmed by immunoblotting with c-Abl 

antibody, followed by immunoblotting with Alix antiserum as a loading control. 

C-Abl expression level was decreased after the treatment of c-Abl siRNA in both of 

the two cell types. Knocking down c-Abl considerably increased PDGFβR 

phosphorylation in LARΔP cells upon ligand stimulation (Figure 17), confirming that 

c-Abl kinase inhibition restores PDGFβR activity in LARΔP cells.  
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Figure 17 Knocking down c-Abl protein level restores PDGFβR phosphorylation in LARΔP 
cells.  
Cells were transfected with control siRNA or c-Abl siRNA. The cells were stimulated with 20 ng/ml PDGF-BB for 

the indicated time periods and the PDGF β-receptor was precipitated using WGA agarose. The precipitated 

receptors were separated by SDS-PAGE and transferred to nitrocellulose membranes, and the amount of receptor 

phosphorylation was determined by immunoblotting using the PY99 phosphotyrosine antibody, followed by 

immunoblotting with PDGF β-receptor antibody. C-Abl knock down in total cell lysates was confirmed by 

immunoblotting with c-Abl antibody, followed by immunoblotting with Alix antiserum as a loading control. 

Shown are densitometric analyses of c-Abl protein compared to Alix protein. The relative PDGFβR 

phosphorylation is plotted. These data are representative of three experiments  
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7.3 Discussion 

C-Abl non receptor tyrosine kinase shuttles freely between the nucleus and cytoplasm 

due to a nuclear export sequence (NES) at its C terminus and the presence of three 

nuclear localization signals (NLS). In the nucleus, c-Abl modulates cellular responses 

induced by DNA damage, and was therefore suggested to play a role in cell growth 

inhibition and apoptosis promotion (Pendergast 2002; Sirvent et al. 2008). In the 

cytoplasm, c-Abl plays important role in morphogenesis and actin filament dynamics 

(Woodring et al. 2003). Cytoplasmic c-Abl also has a role in signalling induced by 

extracellular stimulation. Integrin engagement has been reported to activate the 

cytoplasmic pool of c-Abl (Lewis et al. 1996). C-Abl in the cytoplasm is reported to 

be a downstream target of activated PDGF receptor and Src tyrosine kinase, and its 

activity is increased upon PDGF stimulation and dependent on the Src kinase 

activation (Plattner et al. 1999).  

 

In my experiments, I found that the c-Abl level in the cytoplasm was clearly higher in 

the LARΔP cells compared to WT, while there were similar levels of c-Abl protein in 

the whole cell (Figure 13). C-Abl protein seems to be exported from the nucleus into 

the cytoplasm in the absence of LAR phosphatase activity. The regulation of nuclear 

importation and exportation of c-Abl are not yet well characterized. There has been a 

report showing that there is export of c-Abl from nucleus to cytoplasm and 

recruitment of c-Abl to early focal contacts upon cell adhesion (Lewis et al. 1996). 

C-Abl localization was later reported to be regulated by P300 histone 
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acetyltransferase (di Bari et al. 2006). P300 acetylates c-Abl on Lys730 located on its 

second NLS and drives c-Abl to accumulate in the cytoplasm. It is possible that the 

deletion of LAR phosphatase activity enhances the ability of cell adhesion mediated 

recruitment of c-Abl to the cytoplasm, or alternatively enhances the activity of P300. 

At present, it is not clear if these events are causatively linked, or if other yet to be 

identified mechanisms regulate c-Abl localization. The LAR phosphatase domain 

deletion leads to the increased tyrosine phosphorylation on c-Abl which positively 

regulates its kinase activity. In addition, it causes a shift of c-Abl protein from the 

nucleus to the cytoplasm in LARΔP cells, which plays a part in increasing c-Abl 

activity in cytoplasm.  

 

There have not been any reports showing that increased c-Abl cytoplasmic activity 

inhibits PDGFβR activity before. One explanation for this effect would be that c-Abl 

activates serine threonine kinases which in turn phosphorylate PDGFβR. It was 

reported that serine phosphorylation of PDGFβR is an important mechanism for 

receptor signalling attenuation by inhibiting tyrosine kinase activity. Several 

serine/threonine kinases are downstream substrates of c-Abl including PKCδ, GRK2 

and GRK5 (Yuan et al. 1998; Wu et al. 2005; Wu et al. 2006). The overactivation of 

c-Abl in LARΔP may lead to the higher activity of its downstream serine threonine 

kinases that could directly or indirectly lead to the serine phosphorylation on 

PDGFβR and downregulation of its activity. 
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On the other hand, it is possible that c-Abl could suppress integrin signalling, which is 

known to potentiate PDGFβR signalling. LAR and c-Abl were shown to have 

opposite effects in regulating actin filament development. Protein enabled (Ena) is 

known to promote actin polymerization, and is a substrate of LAR and c-Abl. 

Dephosphorylation of Ena by LAR increases its activity, while tyrosine 

phosphorylation of Ena by c-Abl inhibits its function (Wills et al. 1999). When LAR 

phosphatase activity is lost in LARΔP cells, the inhibitory effect of LAR on c-Abl and 

stimulatory effect on Ena would be gone. This would lead to the disruption of normal 

cytoskeletal regulation inside the cell, which could disrupt normal cell adhesion. The 

integrin signalling which assists ligand stimulated PDGF receptor phosphorylation 

would be expected to be disturbed when cells cannot adhere properly (Sundberg and 

Rubin 1996; DeMali et al. 1999).  

 

To confirm the nuclear and cytoplasmic localization of c-Abl in the two cell types, 

cell fractionation experiment can be carried out to isolate nuclear fraction and 

cytoplasmic fraction of the cell. Each fraction could then be analysed for its c-Abl 

content using western blot analysis. 
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CHAPTER 8 C-ABL DOWNSTREAM PROTEIN KINASE 

C DELTA AND NHERF2 ARE INVOLVED IN LAR 

RELATED REDUCTION OF PDGFβR 

PHOSPHORYLATION IN LARΔP 

 

 

8.1 Introduction 

After identifying c-Abl as a mediator connecting LAR and PDGFβR phosphorylation, 

I continued to investigate the mechanisms of how c-Abl overactivation led to 

decreased PDGFβR signalling. It has been shown that c-Abl can directly 

phosphorylate PDGFβR (Plattner et al. 2004), but no report has demonstrated that 

c-Abl leads to reduction of PDGFR phosphorylation. The higher c-Abl kinase activity 

and lower PDGFβR activity in LARΔP cells suggests that the overactivated c-Abl 

either activates negative regulatory machinery for PDGFβR and/or inactivate proteins 

which potentiate PDGFβR signalling. One of the general mechanisms for tyrosine 

kinase receptor desensitization is the serine phosphorylation of the receptors. It has 

been shown that serine phosphorylation of PDGFβR reduces its kinase activity and 

tyrosine autophosphorylation (Bioukar et al. 1999; Freedman et al. 2002; Cai et al. 

2009). Studies showed that PDGFβR serine phosphorylation was increased after 5 

minutes of PDGF stimulation and remained elevated after 30 minutes. The serine 



118 
 

threonine kinase casein kinase CKI-γ2 is activated and translocated to PDGFβR 

where it then phosphorylates the receptors on serine residues. This negatively 

regulates PDGFβR tyrosine kinase activity leading to the receptor inactivation 

(Bioukar et al. 1999). G protein coupled receptor kinases (GRKs) were first identified 

to be the serine threonine kinases that phosphorylate activated G protein coupled 

receptor (GPCR) on its intracellular domain after their associated G protein has been 

released. The phosphorylated serine threonine residues on GPCR serve as binding 

sites for arresting proteins which prevent the reassociation of G proteins and target the 

receptor to internalization (Singh et al. 2008). Later, certain GRKs that were shown to 

serine phosphorylate the PDGF receptor, also were shown to promote receptor 

inactivation. Two members of the GRK family, GRK2 and GRK5 were shown to be 

activated by PDGFβR mediated tyrosine phosphorylation, and serve in a negative 

feedback loop by phosphorylating PDGFβR serine residues and thereby reducing the 

receptor kinase activity (Freedman et al. 2002; Cai et al. 2009). It was later shown 

that overexpression of GRK2 reduced the association of PDGFβR with Nherf1 by 

60%, and at the same time reduced PDGFR autophophorylation and increased 

receptor serine phosphorylation. Nherf1 was reported to bind to the C terminus of 

PDGFβR through its PDZ domain. The ability of Nherf1 to oligomerize makes it 

possible that Nherf1 may serve as an adaptor protein that facilitates PDGFβR 

dimerization and activation (Voltz et al. 2001). Nherf1 recognizes the PDGFβR C 

terminus motif DSFL as a binding site for its PDZ domain, and mutation of leucine 

residue 1106 to alanine on PDGFβR prevents Nherf1 from binding. GRK2 was shown 
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to phosphorylate S1104 on PDGFβR where the Nherf1 binding motif is located, and 

this led to Nherf1 dissociation and PDGFβR desensitization (Hildreth et al. 2004). 

 

The activities of both GRK2 and GRK5 have been shown to be regulated by the 

serine threonine kinase protein kinase C delta (PKCδ). PKCδ phosphorylates both 

kinases, this activates GRK2 but leads to the inactivation of GRK5 (Pronin and 

Benovic 1997; Krasel et al. 2001). C-Abl tyrosine phosphorylates and activates PKCδ, 

thus, in LARΔP cells, it is possible that the overactivated c-Abl activates PKCδ, 

which in turn activates GRK2. GRK2 then phosphorylates the serine residue S1104 on 

the PDGFβR C terminus and leads to the dissociation of Nherf1, therefore preventing 

receptor dimerization and full activation. In this chapter, I investigated the 

involvement of PKCδ and Nherf family members, Nherf1 and Nherf2, in PDGFβR 

phosphorylation and dimerization downstream of c-Abl. 

 

8.2 Results 

8.2.1 PKCδ inhibition increases PDGFβR phosphorylation in LARΔP cells 

To analyse whether the serine threonine kinase PKCδ activated downstream of c-Abl 

is involved in the reduced PDGFβR activation in LARΔP cells, cells were incubated 

with the PKCδ inhibitor Rottlerin. Serum starved cells were incubated with 10μM 

Rottlerin or vehicle (DMSO) for 2 hours. Cells were then stimulated, lyzed, and 

PDGFβR phosphorylation was determined. There was increased PDGFβR 



120 
 

phosphorylation in LARΔP cells after the Rottlerin treatment supporting the notion 

that PKCδ promotes inactivation of PDGFβR in these cells (Figure 18A). As a c-Abl 

downstream target, PKCδ is expected to be overactivated in LARΔP cells. It is known 

that after its activation, PKC is generally degraded for desensitization (Kang et al. 

2000). If the PKCδ is overactivated downstream c-Abl in LARΔP cells, one would 

expect the PKCδ level to be lower in LARΔP cells due to degradation. To confirm this, 

experiments were carried out to compare the PKCδ levels in the two cell types. This 

experiment was carried out for two times. There were lower amounts of PKCδ in 

LARΔP cells compared to WT cells, suggesting that PKCδ is more activated in 

LARΔP cells (Figure 18B).  
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Figure 18 PKCΔ inhibition restores PDGFβR phosphorylation in LARΔP cells.  
A. WT and LARΔP cells were starved for 16 hours before they were incubated with 10μM PKCδ inhibitor 

Rottlerin or the carrying solvent DMSO for 2 hours. Cells were then stimulated, lyzed, and PDGFβR were 

precipitated with WGA agarose. Receptor phosphorylation was determined with phosphotyrosine antibody PY99 

followed by reblotting with PDGFβR antibody. This experiment was carried out twice with similar results. B. Cells 

were lyzed, and total cell lysates were western blotted using PKCδ protein amount was determined using PKCδ 

antibody followed by reblotting with Alix antibody as the loading control. This was repeated twice with similar 

results.  
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8.2.2 More Nherf2 associates with PDGFβR in LARΔP cells than WT 

Thus, in LARΔP cells, it appears as if the increased c-Abl activation increases the 

PKCδ activity, which may result in increased activity of GRK2 and subsequent 

phosphorylation of the serine residue on the PDGFβR C terminus that causes Nherf1 

dissociation from the receptor. I tried to co-immunoprecipitate Nherf1 with PDGFβR 

in my MEFs, but these experiments were not successful (data not shown). However, 

the other member in the Nherf family, Nherf2, is also known to bind to PDGFβR, but 

it is not known if this would facilitate PDGFβR dimerization and potentiate receptor 

autophosphorylation. To determine if Nherf2 regulates PDGFβR activity, I first 

performed experiments to analyse the amount of Nherf2 associated with PDGFβR. 

Cells were starved and stimulated with 20 ng/ml PDGF-BB. Cells were lyzed and 

immunoprecipitated with PDGFβR antibody, and Nherf 2 associated with PDGFβR 

was detected. Nherf2 associated with PDGFβR before stimulation in LARΔP cells, 

while no detectable Nherf2 was seen in association with the receptor in the WT cells. 

Nherf2 started to associate with the receptor in WT cells after stimulation, although 

the amount of associated Nherf2 in WT cells was lower than in LARΔP cells after 

stimulation (Figure 19).   
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Figure 19 Nherf 2 association with PDGFβR  
Cells were starved for 16 hours and stimulated with 20 ng/ml PDGF-BB for the indicated time periods. Cells were 

lyzed and immunoprecipitated with PDGFβR antibody, Nherf 2 associated with PDGFβR was shown by blotting 

with Nherf 2 antibody followed by reblotting with PDGFβR antibody. This experiment was repeated three times 

with similar results. 

 

8.2.3 Impaired PDGFβR dimerization and receptor binding proteins interaction 

in LARΔP cells 

Nherf1 association with the PDGF receptor has been shown to assist PDGF receptor 

dimerization and increase receptor autophosphorylation. Although Nherf2 was shown 

to bind to PDGF receptor (Maudsley et al. 2000; Lau and Hall 2001), it is not known 

if it affects PDGF receptor kinase activity. Since Nherf2 rather than Nherf1 was 

associated with PDGFβR in the MEF cells I used (data not shown), the dimerization 

of PDGFβR in these cells was analysed to determine if Nherf2 association affects 

receptor dimerization. Cells were starved overnight and stimulated with 20 ng/ml 

PDGF-BB. Cells were collected and centrifuged at 2415g for 10 minutes, and 3mg/ml 

cross linker BS3, 1% TritonX100 in PBS was added to the pellet. After 15 minutes 
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incubation, the mixture was centrifuged at 11337g for 15 minutes, and sample buffer 

was added to the supernatant and boiled at 95°C for 5 minutes. Samples were 

separated on SDS-PAGE and analysed. PDGFβR was visualized with PDGFβR 

antibody followed by reblotting with Nherf 2 antibody. In WT cells, the PDGFβR 

largely existed as 190kDa monomers before stimulation (Figure 20 upper panel). 

After 7 minutes of stimulation with PDGF-BB, the PDGFβR shifted almost 

completely from being a 190kDa monomers to a higher molecular weight band. This 

demonstrates the presence of PDGFβR monomer before stimulation and the formation 

of PDGFβR dimers, possibly with associated signalling proteins after ligand 

stimulation in WT cells. The stimulation on ice sample showed an intermediate state 

where a portion of the PDGFβRs were still not stimulated and remained in the 

monomeric form as a 190kDa band, while the remainder of the population had 

dimerized. In unstimulated LARΔP cells, PDGFβR was detected as smeared bands of 

a higher molecular weight instead of just the sharp band at 190kDa that represents the 

monomeric form. This suggests that only a subpopulation of PDGFβR exists as 

monomers in LARΔP in the absence of ligand. This suggests that there might be 

several different types of proteins, or oligomers of the same protein, associating with 

the PDGFβR in this cell type even before stimulation. In the stimulated samples from 

LARΔP cells, there are four bands that are visible including the PDGFβR monomers 

and the higher molecular weight band observed in WT cells which presumably 

represents active dimers. However the constitution of the other two bands is unknown 

(Figure 20 upper panel).  
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For the Nherf2 blot, results showed no Nherf2 signal in the WT unstimulated samples, 

and there was very faint signal of Nherf2 in the WT sample stimulated for 7 minutes 

at around the dimer position (Figure 20 lower panel). When the WT samples were 

stimulated for 60 minutes on ice, there was more Nherf2 association. In LARΔP cells, 

the unstimulated and stimulated samples showed a sharp Nherf2 band at 

approximately 310kDa, and some smeary bands with higher molecular weights, 

stimulation on ice for 60 minutes gave a much denser signal in these two regions 

(Figure 20 lower panel). Nherf2 seems to be colocalized with PDGFβR at the higher 

molecular weight positions but not with the PDGFβR monomer at 190kDa in both of 

the cell types. However, the amount of Nherf2 associated was much higher in LARΔP 

cells. All the PDGFβR bands detected at higher molecular weights have 

corresponding Nherf2 bands suggesting that the complexes formed at approximately 

310kDa and the higher molecular weights, exclusively observed in LARΔP cells, 

were the complexes of PDGFβR and Nherf2 oligomers.   
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Figure 20 LARΔP cells show defective PDGFβR dimerization and more PDGFβR-Nherf2 
interaction 
Cells were starved overnight for 16 hours and stimulated with 20 ng/ml PDGF-BB for the time periods indicated. 

Cells were collected and centrifuged at 2415g for 10 minutes. The pellets collected were added to 3mg/ml cross 

linker BS3 in 1% TritonX100. After 15 minutes incubation, the mixture was centrifuged at 11337g for 15 minutes, 

and sample buffer was added to the supernatant and boiled at 95°C for 5 minutes. Sample was run in SDS-PAGE 

and analysed. PDGFβR was visualized with PDGFβR antibody followed by reblotting with Nherf 2 antibody. This 

experiment was carried out for several times. The cleanest blot is shown.  
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8.3 Discussion 

In this part of the study, it was found that PKCδ, a downstream target of c-Abl was at 

a decreased level in LARΔP cells, which suggests that PKCδ could have been 

degraded following its overactivation due to high c-Abl activity (Figure 18B). PKCδ 

inhibition by Rottlerin restored PDGFβR phosphorylation in LARΔP cells indicating 

that the overactivation of PKCδ by c-Abl leads to the reduction of PDGFβR activation 

(Figure 18A). However, it has not been reported before that PKC causes reduction in 

PDGF receptor phosphorylation. 

 

Serine phosphorylation of PDGF receptor has long been known as one mechanism to 

desensitize the activated PDGF receptor. Serine threonine kinases CKI-γ2, GRK2 and 

GRK5 have been shown to directly phosphorylate PDGF receptor on serine residues 

leading to receptor inactivation (Pronin and Benovic 1997; Bioukar et al. 1999; 

Krasel et al. 2001). It is known from the literature that PKCδ plays a role in activating 

GRK2 via phosphorylation (Krasel et al. 2001). Thus, it would be possible that PKCδ 

activated GRK2 phosphorylates serine residues at the C terminus of PDGFβR in the 

absence of ligand stimulation. This would prevent the association of Nherf1 with 

PDGFβR. Without Nherf1, PDGFβR cannot dimerize properly. This would prevent 

the normal activation and autophosphorylation of PDGFβR. 

 

Many cellular proteins are known to interact with the two tandem PDZ domains in 

Nherf1 and its homologue Nherf2. Previous reports suggested that where the two 
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Nherf proteins are present together, they generally perform overlapping function to 

regulate transmembrane receptors, transporters and other proteins located in or near 

the plasma membrane (Voltz et al. 2001). Nherf1 was reported to bind to the C 

terminus of PDGFβR with its first PDZ domain. The binding of Nherf1 to PDGFβR 

increases its oligomerization ability, therefore leading to the formation of Nherf1 

oligomers. These Nherf1 oligomers serve as adaptors that bring PDGF receptors in 

close proximity which facilitates their dimerization and kinase activation (Maudsley 

et al. 2000). In our study, we analysed the association of Nherf1 to PDGFβR in the 

MEF cells with immunoprecipitation of PDGFβR. Experiments found no detectable 

Nherf1 associating with the PDGFβR in the MEF cells. However we cannot rule out 

that the Nherf1 antibody we use may not be sensitive enough to detect the Nherf1 

signal associating with the PDGFβR.  

 

Nherf2 was found to avidly associate with PDGFβR in LARΔP cells even before 

ligand stimulation, but not in the WT cells (Figure 19). It is important to compare 

expression levels of Nherf2 in the two cell types to determine whether higher levels of 

Nherf2 in LARΔP cells might contribute to its increased association with PDGFβR in 

this cell type. Nherf2 was reported to bind to the C terminus of PDGF receptor at least 

as well as Nherf1 when the two are directly compared in single-concentration overlay 

experiments (Maudsley et al. 2000). However, Nherf2 was not shown to assist the 

PDGF receptor dimerization and activation like Nherf1. One of the reasons that 

Nherf1 can facilitate receptor activation could be that Nherf1 oligomerization is 
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highly regulated. The PDZ domain of Nherf1 oligomerizes with fairly low affinity. 

The Nherf1 affinity of oligomerization is enhanced by more than 10 fold after binding 

to a ligand such as the C terminus of β2 adrenergic receptor or PDGF receptor. This 

property allows Nherf1 to form oligomers which act as a scaffold only when 

appropriately associated with the proteins it acts to regulate. In comparison to Nherf1, 

oligomerization is a constitutive property of Nherf2. The PDZ domains of Nherf2 

show robust hetero- and homo-oligomerization in the absence of any other associated 

proteins (Vaillancourt et al. 1995). This constitutive robust oligomerization property 

of Nherf2 may allow it to form large multimers. The function and regulation of 

Nherf2 has not been extensively studied, probably because of the assumption that its 

properties and roles are similar to those of Nherf1. However in our study, we found 

that the association of Nherf2 correlated with the reduced PDGF receptor 

autophosphorylation and signalling. 

 

One possibility is that in WT cells, small amounts of Nherf1 protein associate with 

PDGFβR monomer. This association increases the Nherf1 oligomerization ability 

allowing them to bind other Nherf1 associated PDGFβR monomers. This process 

would be facilitated by ligand bridging and would help promote ligand induced 

PDGFβR activation and desensitization. Nherf1 not bound to any PDGF receptor 

monomers would have a much lower capacity to bind to other Nherf1, therefore a 

lower chance of forming oligomers with Nherf1 already bound to the receptor 

monomer, and thus not disturbing the PDGF receptor dimer formation. Since Nherf1 
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is associating with the PDGFβR C terminus, no space is left for Nherf2 to bind any 

more. However, in LARΔP cells, after the phosphorylation of serine residues on 

PDGFβR C terminus by PKCδ activated GRK2, a change in the structure of the C 

terminus might prevent the binding of Nherf1. On the other hand, this structural 

change may potentiate the binding of Nherf2 which is also known to bind to the C 

terminus of PDGF receptor and has a similar PDZ domain structure to Nherf1. Nherf1 

dissociation would also leave the C terminal space clear for Nherf2 to bind. Since the 

Nherf2 PDZ domain can constitutively form robust oligomers without binding to any 

ligand, it is possible that Nherf2 could form multimers around the PDGF receptor 

monomers thereby preventing the normal ligand induced dimerization of the receptors. 

This would also explain the large amount of Nherf2 present in the PDGFβR 

immunoprecipitation samples and crosslinked PDGFβR complexes in LARΔP both 

before and after ligand stimulation (Figure 19 and Figure 20). The smear of PDGFβR 

blot in LARΔP in the crosslinking experiments could be caused by the association of 

different amounts of Nherf2 linked to the receptor (Figure 20).  

 

Although it has not been reported before, the findings in this chapter open up the 

possibility that Nherf2 binding could serve as a desensitization mechanism of PDGF 

receptor after its activation. In WT cells, I observed no detectable Nherf2 associated 

with PDGF receptor before stimulation, while a small amount of Nherf2 associated 

with the receptor after 7 minutes stimulation. Thus, Nherf2 may normally serve as a 

component that is recruited to the receptor after its activation to form an insulator to 
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disrupt receptor activity and facilitate receptor inactivation or internalization. This 

notion is supported by the findings in Chapter 7 where I observed increased PDGFβR 

activation in WT cells after c-Abl inhibition (Figure 16, 17). 

 

In vitro kinase assays could be used to measure the kinase activity of PKCδ in both 

cell types to confirm that PKCδ is over-activated downstream of c-Abl in LARΔP 

cells. PKCδ siRNA could be used to knock down PKCδ expression level in LARΔP 

cells to confirm if PDGFβR tyrosine phosphorylation can be restored upon PKCδ 

inhibition.  

 

The association of Nherf1 and Nherf2 with PDGFβR could also be investigated using 

immunofluorescent microscopy colocalization experiments. Such studies could 

reinforce the finding from the immunoprecipitation experiment (Figure 19) and cross 

linking experiment (Figure 20).  
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CHAPTER 9 DISCUSSION 

 

 

PDGF is known to be a potent stimulator of growth and motility of different types of 

cells. Ligand stimulation of the PDGF receptor has important roles in embryonic 

development and angiogenesis. In adults, PDGFR activation induces wound healing 

and regulates interstitial fluid pressure. PDGFR is implicated in the pathogenesis of a 

number of tumour types. Tumour growth can be promoted by PDGF through 

autocrine stimulation of malignant cells, overexpression and overactivation of 

PDGFRs, and stimulation of angiogenesis and recruitment of cancer-associated 

fibroblasts within the tumour (Heldin et al. 1998; Board and Jayson 2005). PDGF 

drives pathological mesenchymal responses in vascular disorders such as 

atherosclerosis and retinal diseases (Boucher and Gotthardt 2004; Kernt et al. 2010). 

Abnormal PDGF stimulation also leads to fibrotic diseases including pulmonary 

fibrosis and liver cirrhosis (Martin et al. 2013; McGowan and McCoy 2013). 

Understanding the mechanism of endogenous potentiation and desensitization of 

PDGFR signalling would provide us possible therapeutic targets in treating these 

different diseases and tumour.  

 

Several endogenous intracellular mechanisms potentiate PDGFR signalling; integrin 

signalling assists PDGF receptor activation (DeMali et al. 1999), association of the 

adaptor protein Nherf1 to PDGF receptor facilitates receptor dimerization and kinase 
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activation (Maudsley et al. 2000), and the non-receptor tyrosine kinase Src 

phosphorylates PDGF receptor which increases its signalling (Hansen et al. 1997). On 

the other hand, PDGF receptor is dephosphorylated and inactivated by several 

different protein tyrosine phosphatases (PTPs) (Persson et al. 2004; Karlsson et al. 

2006). Serine phosphorylation of PDGF receptor induced by serine threonine kinases 

such as CKI-γ2, GRK2 and GRK5, reduces PDGFR kinase activity and tyrosine 

phosphorylation (Bioukar et al. 1999; Wu et al. 2005; Wu et al. 2006). Activated 

PDGF receptor is downregulated by internalization and degradation to prevent 

uncontrolled receptor signalling. In this thesis, I have described a novel mechanism of 

PDGFβR desensitization. 

 

The data presented in this thesis suggest a mechanism where deletion of the 

phosphatase domains of LAR removes LAR mediated suppression of c-Abl leading to 

c-Abl overactivation. C-Abl then phosphorylates and activates downstream PKCδ 

which in turn serine phosphorylates and activates GRK2. In the absence of the LAR 

phosphatase domains, the constitutively active c-Abl results in the continuous 

activation and then degradation of PKCδ. This would reduce the inhibitory effect of 

PKCδ on histone acetyltransferase P300. Acetylation of c-Abl by P300 on its nuclear 

localization signal location would lead to the accumulation of c-Abl in cytoplasm and 

further enhance cytoplasmic c-Abl activity. PKCδ activated GRK2 phosphorylates a 

serine residue on the PDGFβR C terminus and prevents the association of Nherf1. 

Without the facilitation of Nherf1, PDGFβR cannot dimerize and be activated 
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properly upon ligand stimulation. Nherf1 dissociation from the receptor C terminus 

leaves the space clear for Nherf2 to bind. Nherf2 robustly oligomerizes and forms 

large complexes around PDGFβR monomers prior to stimulation and upon ligand 

stimulation prevents receptor dimerization, activation, autophosphorylatin and 

downstream signalling (Figure 21). 

 
Figure 21 Suggested mechanism of LAR deletion mediated reduction in PDGFβR 
autophosphorylation.  
The full lines indicate that the relationships between proteins were shown by previous publications. The dash lines 

indicate the proposed relationships between proteins. Arrowed headed lines mean activation. Flat headed lines 

mean inhibition. LAR knock out mediated reduction of PDGFβR autophosphorylation is surported by Figure 1, 2, 

3 and 4. a, Ihibition of c-Abl by LAR is shown by Figure 13, 14 and 15. C-Abl mediated reduction of PDGFβR 

tyrosine phosphorylation is surported by Figure 16 and 17. Supressesion of PDGFβR autophosphorylation by 

PKCδ activation is surported by Figure 18A. b, PKCδ activation by c-Abl in the absence of LAR is surportted by 

Figure 18B. c,  Nherf2 mediated reduction of PDGFβR dimerization is shown by Figure 19 and 20. 

 

a 

b 

c 
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This project was continued by a Masters student Daniel Blakeway in our group under 

my supervision. We used siRNA for PKCδ, Nherf1 and Nherf2 to further analyse the 

effect of these proteins on PDGFβR phosphorylation and its downstream ERK 

signalling in LARΔP cells. His results showed reduction of PDGFβR and downstream 

ERK phosphorylation after transfection with Nherf1 siRNA and a clear increase of 

receptor and ERK phosphorylation after PKCδ or Nherf2 knock down. This supports 

the hypothesis presented in this thesis and suggests that Nherf1 and Nherf2 play 

opposite roles in the regulation of PDGF receptor phosphorylation and downstream 

signalling: Nherf1 association with PDGF receptor potentiates receptor 

phosphorylation and Nherf2 association impairs receptor activation and reduces its 

phosphorylation. Thus PKCδ activity, Nherf1 and Nherf2 are probably involved in the 

the regulation of PDGFβR activity. 

 

It is known that c-Abl is activated by Src upon PDGFR stimulation (Plattner et al. 

1999). This makes it possible that c-Abl activation downstream of PDGFR plays a 

role in initiating a negative feedback loop via activation of PKCδ and GRK2 to 

increase the binding of Nherf2 to PDGFR, thereby attenuating PDGFR signalling. 

This is also supported by the increased amount of Nherf2 associating with PDGFβR 

and increased c-Abl phosphorylation after ligand stimulation in WT cells (Figure19, 

Figure20 and Figure14A), and increased PDGFβR phosphorylation after treatment 

with c-Abl inhibitor AG957 and c-Abl siRNA in the stimulated WT cells (Figure16, 

Figure17). 
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In summary, I have demonstrated that LAR activity controls PDGFβR activity. The 

data presented in this thesis show that deletion of LAR activity potentiates 

cytoplasmic c-Abl activity. C-Abl overactivation continuously activates PKCδ and 

leads to PKCδ degradation, robust Nherf2 oligomerization and association with 

PDGFβR and reduction in PDGFβR activity and downstream signalling. In addition 

to identifying LAR as a critical regulator for PDGFβR activation, my data also 

suggest a negative feedback mechanism whereby PDGFβR/Src activation of c-Abl 

promotes Nherf2 association with PDGFβR and leads to attenuation of signalling via 

this receptor. 

 

Most of the previous studies concerning LAR were focussed on its role in neuronal 

cells, and LAR has been shown to be crucial for axon guidance and nerve 

regeneration (Sethi et al. 2010; Wang et al. 2012). However, the mechanism of how 

LAR mediates nerve regeneration and outgrowth is still unclear. PDGF and PDGFR 

are also expressed in neuronal cells, and PDGFR was shown be required for neural 

crest development by promoting the survival and migration of neural crest cells 

(Smith and Tallquist 2010). However, no previous studies have ever shown any link 

between the function of LAR and PDGFR in any cell types including neuronal cells. 

The study described in this thesis established such a link between these two proteins 

by showing that PDGFR activation and its downstream signalling are strongly 

dependent on LAR. LAR enabled PDGFR signalling by attenuating a series of 
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proteins which are involved in PDGFR desensitization including c-Abl, PKCδ, GRK2 

and Nherf2. Thus it is possible that in neuronal cells, LAR and PDGFR regulate each 

other’s activity during nerve development, nerve regeneration and axon guidance. 

While LAR mediates the synapse formation between the neuronal axon cone and 

target cells, the binding of presynaptic LAR with its postsynaptic ligands such as Sdc 

may promote LAR’s activity or function (Fox and Zinn 2005; Johnson et al. 2006). As 

a result, LAR could elicit an even stronger suppression on c-Abl activity and 

expression. This would in turn inactivate downstream PKCδ and GRK2, and lead to 

the potentiation of PDGFR signalling. In neuronal cells, PDGFR downstream 

signalling could play a role in neuron survival and stimulating the expression of 

certain proteins which serve as the building blocks for neuron growth and axon 

extension. Therefore, in the growing neuron, LAR may serve as the vanguard in the 

axon growth cone promoting correct axon guidance. At the same time, LAR would 

regulate PDGFR signalling via c-Abl, enabling the appropriate levels of PDGF 

mediated expression of proteins required for nerve growth and axon extension.   
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FUTURE DIRECTIONS 

 
 

To further elucidate and confirm the mechanism of LAR deletion mediated reduction 

in PDGFβR phosphorylation, these experiments are designed to test the mechanism 

shown in Figure 21. To test if PKCδ and GRK2 are activated by c-Abl, PKCδ and 

GRK2 activities could be tested in WT and LARΔP cells using in vitro kinase assays. 

Higher PKCδ and GRK2 activities in LARΔP cells would be consistent with the 

hypothesis that PKCδ and GRK2 are activated by c-Abl.  

 

To test if Nherf1 associates with PDGFβR more in the WT than in LARΔP cells, 

alternative Nherf1 antibodies with a higher affinity for Nherf1 might enable the 

investigation of the amount of Nherf1 associated with PDGFβR in the two cell types. 

Mass spectrometry could be used to test if PDGFβR phosphorylation at the C terminal 

residue serine 1104 is higher in LARΔP than in WT cells. To test if the 

phosphorylation at serine 1104 prevents the association of Nherf1 and promotes the 

association of Nherf2, tagged PDGFβR with the C terminus Serine 1104 mutated to 

alanine which mimics the unphosphorylated serine could be transfected to LARΔP 

cells, and the amount of Nherf1 and Nherf2 associated with the mutated receptor can 

be compared with the WT receptors. More Nherf1 binding and less Nherf2 binding to 

the serine to alanine mutated PDGFβR would indicate that phosphorylation at Serine 
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1104 prevents Nherf1 association and promotes Nherf2 association. Alternatively, 

tagged PDGFβR with the C terminus Serine 1104 mutated to aspartic acid which 

mimics the phosphorylated serine could be transfected to WT cells, and the amount of 

Nherf1 and Nherf2 associated with the mutated receptor can be compared with the 

WT receptors. Less Nherf1 binding and more Nherf2 binding to the serine to aspartic 

acid mutated PDGFβR would indicate that phosphorylation at Serine 1104 prevents 

Nherf1 association and promotes Nherf2 association. Nherf binding and 

oligomerization ability is known to be regulated by serine phosphorylation; elevated 

c-Abl activity could possibly affect downstream serine threonine kinase activity 

which could change the activity of Nherf proteins. The level of Nherf1 and Nherf2 

phosphorylation in WT and LARΔP cells could be analysed. 

 

To confirm the relationships between the component proteins in the proposed 

signalling pathway shown in figure 21 and their regulatory roles in PDGFβR 

signalling, specific kinase or phosphatase inhibitors and siRNAs can be used to 

inactivate or knockdown these proteins respectively and the activities of the other 

proteins in the pathway could be compared with the untreated cells.  

 

If increased GRK2 activity and PDGFβR serine phosphorylation in LARΔP cells is 

not found, kinase incubator library could be used to screen for kinases involved in 

reducing PDGFβR activity in LARΔP cells. One such library from Cayman Chemical 

contains more than 150 kinase inhibitors which would be tested to determine if any 
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restore the PDGFβR phosphorylation in LARΔP cells upon stimulation with PDGF. 

Any active inhibitors could be targeting the mediators of the LAR deletion related 

PDGFβR signalling reduction. Further experiments could be done to check if those 

kinases are over-activated in LARΔP cells. WT cells could also be treated with the 

inhibitors in the library to test which inhibitors reduce PDGFβR phosphorylation in 

WT cells. This may allow the identification of other kinases which play a role in 

facilitating PDGFβR signalling. Experiments could be done to check if those kinases 

are inactivated in LARΔP cells, if they are, they could be the mediators involved in 

the mechanism. Further experiments can be carried out to confirm this. 

 

To test if LAR is important for PDGFR signalling in vivo, experiments could be done 

to see if LAR knock out animals show deficiencies in the physiological functions that 

are essentially regulated by PDGFR. It has been shown that mice lacking the LAR 

phosphatase domains (LARΔP) grow normally and did not show any defect in the 

major organs by histological examination. However, upon breeding, female LARΔP 

mouse was unable to deliver milk due to an impairment of the mammary gland 

terminal alveoli differentiation. This indicates that LAR is important for mammary 

gland development and function (Schaapveld et al. 1997). PDGFR has been shown to 

be expressed in the mammary epithelial cells, and autocrine PDGFR signalling in 

these cells is required for the oncogenic metastasis (Jechlinger et al. 2006). These 

studies suggest that LAR may potentiate PDGFR signalling which in turn stimulates 

the differentiation of mammary gland cells and allows the normal development of the 
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mammary gland. PDGFR mediated recruitment of pericytes may support the 

formation of new vessels during mammary gland development. Experiments could be 

done to look at the blood vessel formation in the mammary gland site of these LARΔP 

mice, less blood vessel formation may suggest less PDGFR signalling in these mice. 

Alternatively, PDGF ligand could be administered to the LARΔP mice with mammary 

gland defects to test if this could restore the normal function and milk delivery.  

 

In the LARΔP mice, the number of cholinergic neuron cells in the brain vertical 

diagonal band was significantly reduced. Cholinergic innervation of the supragranular 

layer of the dentate gyrus was also diminished. These indicate that LAR is important 

for the growth, proliferation and innervation function of the basal forebrain neuronal 

cells (Van Lieshout et al. 2001). PDGFR has also been shown to be important for 

neuronal cell survival, development and migration (Smith and Tallquist 2010). The 

PDGFβR phosphorylation level could be tested in cholinergic cells from the LARΔP 

and WT mice to see if it is lower in the cells from LARΔP mice. 

 

Novel and less toxic LAR inhibitors are being generated by researchers in order to 

treat the LAR over-activation related diseases including diabetes, obesity and cancer 

(Ajay and Sobhia 2012). Tumours cells which are highly dependent on PDGFR 

stimulation to proliferate can be injected into mice to generate tumours, LAR 

inhibitors could be administered to the tumour area regularly, and the growth rate of 

the tumour in the treated mice can be compared to the control treated tumours. This 
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could tell us if inhibition of LAR could reduce PDGFR mediated tumour cell 

proliferation in vivo. 

 

PKCδ has been shown to mediate albumin induced renal tubular cell apoptosis, 

treatment with PKCδ inhibitor rottlerin supressed apoptosis induced by albumin. 

PKCδ knock out mice also showed less severe apoptosis in renal tubular cells (Li et al. 

2010). It is known that PDGFβR activation leads to renal tubular regeneration after 

ischemic renal injury (Takikita-Suzuki et al. 2003). PDGFβR signalling is important 

for maintaining cell survival (Heldin et al. 1998). If PKCδ activates GRK2 which 

mediates the serine phosphorylation and attenuation of PDGFβR, renal tubular cell 

apoptosis led by PKCδ activation could be the result of the suppression of PDGFβR 

signalling. PDGFβR could be conditionally knocked out from the kidney of the PKCδ 

knock out mice to test if renal tubular cell apoptosis is increased in this double mutant 

compared to the PKCδ single mutant. If the double mutant shows more apoptosis in 

the renal tubule, PKCδ may mediate mice renal tubular cell apoptosis by attenuating 

PDGFβR signalling. 

 

These experiments could further confirm the signalling pathway between LAR and 

PDGFβR and provide us with more information about the importance of this signal 

transduction pathway in animal physiological function and disease treatment. 
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