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Abstract

In this project we describe the non-associative finite-dimensional composition alge-

bra called the Octonions and denoted O. We begin by introducing the structure and

then go on to describe its finite multiplicative substructures. We then introduce the

number theory associated to it before studying its symmetry structure. The project

ends with an application of the octonions to physics.
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Chapter 1

Introduction and Hurwitz’

Theorem

There are precisely four real finite-dimensional composition algebras R, C, H and O.

The real numbers R and the complex numbers C are well-known and their properties

and applications widely-studied. The reals form a ordered field and the complex

numbers are algebraically complete. The quaternions H, which were discovered by

Sir William Rowan Hamilton in 1843, fail to be commutative. The last of them, the

octonions O, discovered independently by Graves and Cayley, are even more ‘exotic’

as not only are they non-commutative but they also fail to be associative.

In this chapter we will introduce the octonions and investigate some of their

basic properties. The chapter ends with Hurwitz’ theorem which states that the

four division algebras we introduce are the only finite-dimensional ones. We do

this by introducing a process known as the Cayley-Dixon doubling process which

generalises the construction of the complex numbers from the reals.
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1.1 The Complex Numbers

We begin with the real numbers. These form a field and hence they are both

associative and commutative. Also, every element λ of R can be assigned a length

|λ| =
√
λ2 which satisfies the multiplicative property that if λ, µ ∈ R, then

|λµ| = |λ||µ|.

Also every element λ has an inverse λ−1 = 1
λ
.

A complex number is of the form z = λ + µi, where λ, µ are both real and

i2 = −1. We define the conjugate of z to be

z = λ− µi.

It is easy to see that z1z2 = z2 z1. Every non-trivial complex number z has a norm

N(z) = zz = zz = λ2 + µ2.

The function N is a positive-definite quadratic form. From the above definition we

get that

z−1 =
z

N(z)
.

Now, we have

N(z1z2) = (z1z2)(z1z2) = z1z2z2 z1 = z1z1z2z2 = N(z1)N(z2).
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This is equivalent to the 2-squares identity

(λ2
1 + µ2

1)(λ
2
2 + µ2

2) = (λ1λ2 − µ1µ2)
2 + (λ1µ2 + µ1λ2)

2.

1.2 The Quaternions

A typical quaternion q ∈ H is normally written in the form

q = α+ βi+ γj + δk

with α, β, γ, δ ∈ R. We have the mulitiplication rules

i2 = j2 = k2 = −1

and

ijk = −1.

These immediately imply

ij = k jk = i ki = j ji = −k ik = −j kj = −i.

Note that these show that the quaternions are not commutative. However, a simple

check of the elements i, j, k shows they are associative.

Define the conjugate of a quaternion q to be q = α − βi − γj − δk. Direct

computation shows that q1q2 = q2 q1. The norm of a quaternion is defined as

N(q) = qq = qq = α2 + β2 + γ2 + δ2.

N is a positive-definite quadratic form. From the definition of the norm it follows

3



that

q−1 =
q

N(q)
.

As norms are real numbers, they commute with every quaternion. Using this fact

and the associativity of H, yields

N(q1q2) = (q1q2)(q1q2) = (q1q2)(q2 q1) = q1(q2q2)q1 = q1N(q2)q1

= q1q1N(q2) = N(q1)N(q2).

When written out in full, this is the 4-squares identity

(α2
1 + β2

1 + γ2
1 + δ2

1)(α
2
2 + β2

2 + γ2
2 + δ2

2)

= (α1α2 + β1β2 + γ1γ2 + δ1δ2)
2 + (α1β2 + β1α2 + γ1δ2 − δ1γ2)

2

+(α1γ2 − β1δ2 + γ1α2 + δ1β2)
2 + (α1δ2 + β1γ2 − γ1β2 + δ1α2)

2.

We can consider

q = (α+ βi) + (γ + δi)j

and so H = C + Cj which is analogous to the construction of the complex numbers

from the reals above. The quaternions are therefore a 4-dimensional real vector space

with basis {1, i, j, k} or a 2-dimensional complex vector space with basis {1, j}. Then

a typical quaternion is just a pair of complex numbers a = (x, y). Addition is again

componentwise and multiplication is given by

a1a2 = (x1, y1)(x2, y2) = (x1x2 − y2y1, y2x1 + y1x2).
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We can define the conjugate of a quaternion as

a = (x,−y).

We now define the real and imaginary parts of a quaternion a to be Re(a) = 1
2
(a+a)

and Im(a) = 1
2
(a− a), respectively. This definition differs from that in the complex

case as we do not take a real number to be the imaginary part but an expression in

i, j, k.

1.3 The Octonions

We now move to our final protagonist and the main theme of this project, the

8-dimensional non-associative algebra of the octonions.

An octonion a is normally written in the form

a = λ∞ +
6∑

k=0

λkik

with λk ∈ R for k ∈ {∞, 0, 1, 2, 3, 4, 5, 6}. Addition is again componentwise and

multiplication is given by the following rules,

i2k = −1

ikik+1ik+3 = −1

with the subscripts read modulo 7. The second of these identities should be taken

to mean the same as for the quaternions. This shows there are seven natural as-

sociative triples namely, {i0, i1, i3}, {i1, i2, i4}, {i2, i3, i5}, {i3, i4, i6}, {i4, i5, i0},

{i5, i6, i1} and {i6, i0, i2}. Each of these behaves as i, j, k in H. This is represented in

Figure 1.1, where following the arrows yields a positive product for example i0i1 = i3,
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Figure 1.1: Multiplication in O

i1i3 = i0, i3i0 = i1 and going against the arrows yields a negative product. The full

multiplication table can then be obtained from these relations.

1 i0 i1 i2 i3 i4 i5 i6

i0 −1 i3 i6 −i1 i5 −i4 −i2
i1 −i3 −1 i4 i0 −i2 i6 −i5
i2 −i6 −i4 −1 i5 i1 −i3 i0

i3 i1 −i0 −i5 −1 i6 i2 −i4
i4 −i5 i2 −i1 −i6 −1 i0 i3

i5 i4 −i6 i3 −i2 −i0 −1 i1

i6 i2 i5 −i0 i4 −i3 −i1 −1

From this table it is immediately clear that the multiplication of the seven basis

vectors ik is anti-commutative imin = −inim for n 6= m. However, 1 commutes with

everything. It is also easy to see that multiplication is not associative as

i5(i4i6) = i5i3 = −i2 6= i2 = −i0i6 = (i5i4)i6.

If a = λ∞ + λ0i0 + λ1i1 + λ2i2 + λ3i3 + λ4i4 + λ5i5 + λ6i6 is a typical octonion, then
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we let the conjugate of a be

a = λ∞ − λ0i0 − λ1i1 − λ2i2 − λ3i3 − λ4i4 − λ5i5 − λ6i6

Direct computation again yields

a1a2 = a2 a1.

The norm is defined to be

N(a) = aa = aa = λ2
∞ + λ2

0 + λ2
1 + λ2

2 + λ2
3 + λ2

4 + λ2
5 + λ2

6.

This a positive-definite quadratic form on O. From the above definition we get

a−1 =
a

N(a)
.

From our definition of the inverse of a, we get a = a−1N(a) and so

N(a1a2) = (a1a2)(a1a2) = (a1a2)(a2 a1) = (a1a2)(a
−1
2 N(a2)a

−1
1 N(a1)).

Again the norms are real numbers and commute with each other. This yields

N(a1a2) = N(a1)N(a2)(a1a2)(a
−1
2 a−1

1 ).

It will be shown later that any subalgebra of O generated by two linearly independent

elements is associative. This implies that the two terms on the right-hand side of
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the above expression cancel and we are left with

N(a1a2) = N(a1)N(a2).

Writing this out in full gives the remarkable 8-squares identity;

(λ2
∞ + λ2

0 + λ2
1 + λ2

2 + λ2
3 + λ2

4 + λ2
5 + λ2

6)(µ
2
∞ + µ2

0 + µ2
1 + µ2

2 + µ2
3 + µ2

4 + µ2
5 + µ2

6)

= (λ∞µ∞ − λ0µ0 − λ1µ1 − λ2µ2 − λ3µ3 − λ4µ4 − λ5µ5 − λ6µ6)
2

+(λ∞µ0 + λ0µ∞ + λ1µ3 + λ2µ6 − λ3µ1 + λ4µ5 − λ5µ4 − λ6µ2)
2

+(λ∞µ1 − λ0µ3 + λ1µ∞ + λ2µ4 + λ3µ0 − λ4µ2 + λ5µ6 − λ6µ5)
2

+(λ∞µ2 − λ0µ6 − λ1µ4 + λ2µ∞ + λ3µ5 + λ4µ1 − λ5µ3 + λ6µ0)
2

+(λ∞µ3 + λ0µ1 − λ1µ0 − λ2µ5 + λ3µ∞ + λ4µ6 + λ5µ2 − λ6µ4)
2

+(λ∞µ4 − λ0µ5 + λ1µ2 − λ2µ1 − λ3µ6 + λ4µ∞ + λ5µ0 + λ6µ3)
2

+(λ∞µ5 − λ0µ4 − λ1µ6 + λ2µ3 − λ3µ2 + λ4µ0 + λ5µ∞ + λ6µ1)
2

+(λ∞µ6 + λ0µ2 + λ1µ5 − λ2µ0 + λ3µ4 − λ4µ3 − λ5µ1 + λ6µ∞)2.

Continuing as before, we can define an octonion as

a = (λ∞ + λ0i0 + λ1i1 + λ3i3) + (λ2 + λ4i1 − λ5i3 + λ6i0)i2

and so O = H+Hi2. The octonions can be considered as an 8-dimensional real vector

space with basis {1, i0, i1, i2, i3, i4, i5, i6}, a 4-dimensional complex vector space with

basis {1, i1, i2, i4} (with complex numbers of the form λ+ µi0) and a 2-dimensional

quaternion ‘vector space’ with basis {1, i2} (strictly speaking a vector space is defined
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over a field and O here is a module over H). So an octonion can be considered as

a pair (x, y) with x, y ∈ H. Addition is again componentwise and multiplication is

given by

a1a2 = (x1, y1)(x2, y2) = (x1x2 − y2y1, y2x1 + y1x2).

Once more, we have that Re(a) = 1
2
(a+ a) and Im(a) = 1

2
(a− a).

We end this section showing how the algebras are nested inside each other and

in fact the octonions contain copies of the other three. The proof comes from [7]

Theorem 1.1

We have the following

1. Any single element of O r R generates a copy of C as an R-algebra;

2. Any two linearly independent elements of O r R generate a copy of H as an

R-algebra;

3. Any three linearly independent elements of O r R generate the whole of O as

an R-algebra.

Proof. We first note that given any octonion a if we choose î to be the unit vector

in the Im(a) direction then we can write a uniquely as

a = reîθ

where r =
√
N(a) and θ is the angle between the real axis and the the vector a

in the plane with basis {1, î } (indeed the same is true of quaternions and complex

numbers).

Choose a ∈ O then we can assume without loss of generality that N(a) = 1.

Hence a = eîθ where î is as above and î2 = −1. We get that eîθ, e2̂iθ ∈ R(eîθ) which

9



implies that cos 2θeîθ − cos θe2̂iθ ∈ R(eîθ). This tells us that î ∈ R(eîθ) so we get the

inclusions

R(eîθ) ⊆ R( î ) ⊆ R(eîθ),

from which we conclude that

R(a) = R( î ) = R(eîθ).

Now choose a second element b such that N(b) = 1 and ĵ(6= î) is the unit vector

in the Im(b) direction, then b = eĵφ as before. Then as above we get

R(a, b) = R( î , ĵ ).

If the inner-product 〈̂i, ĵ〉 = λ for some non-zero λ, we get 〈̂i, ĵ − λ̂i〉 = 0. It follows

that

R(̂i, ĵ) = R(̂i, ĵ − λ̂i).

However, Re(̂iĵ) = −〈̂i, ĵ〉 = 0 and îĵ is purely imaginary. Moreover,

N (̂iĵ) = N (̂i)N(ĵ) = 1 = 〈̂iĵ, îĵ〉 = −(̂iĵ)2

similarly îĵ = −ĵ î. Since N (̂i) = N(ĵ) = 1, multiplication by î or ĵ is an orthogonal

map and should therefore preserve inner-products. So, 〈̂iĵ, î〉 = 〈ĵ, 1〉 = 0 and so

〈̂i, ĵ〉 = 0. We conclude that the vectors {̂i, ĵ, îĵ} form a mutually orthogonal basis

which behaves exactly like the basis {i, j, k} of H.

Lastly, adjoin an element c of unit norm and with c = ek̂ψ as before with k̂ 6∈

R(̂i, ĵ) and k̂2 = −1. If k̂ is not perpendicular to the space R(̂i, ĵ) then if the inner-

products of k̂ with î, ĵ and îĵ are λ1, λ2 and λ3, respectively, then we get ĉ = k̂−λ1̂i−

10



λ2ĵ−λ3̂iĵ is perpendicular to R(̂i, ĵ) and we could take a normalised vector of ĉ as k̂.

Hence we may assume k̂ is perpendicular to R(̂i, ĵ). The set {1, î, ĵ, îĵ, k̂, îk̂, ĵk̂, (̂iĵ)k̂}

contains eight mutually orthogonal vectors. To check this note

〈(̂iĵ)k̂, ĵ〉 = 0 ⇔ 〈−îĵ, ĵk̂〉 = 0 ⇔ 〈−îĵ,−k̂ĵ〉 = 0 ⇔ 〈̂i, k̂〉 = 0.

The other relations are similarly checked. The set in fact forms a basis for the

algebra O under the correspondence î = i0, ĵ = i1, îĵ = i3, k̂ = i2, îk̂ = i6, ĵk̂ =

i4, (̂iĵ)k̂ = −i5. �

1.4 Hurwitz’ Theorem

In [13] we learn that in 1898 Hurwitz was interested in finding for what values of n

there exist equations of the form

(
n∑

n=1

a2
i

)(
n∑

n=1

b2i

)
=

n∑

n=1

c2i

with ci =
∑n

j,k=1 λijkajbk, λijk ∈ C. For n = 1, 2, 4 and 8 such equations were known.

For the case n = 1, this is the simple relation a2
1b

2
1 = (a1b1)

2. The case n = 2 was

discovered by Diophantus [14] and is equivalent to the multiplicative property of

the modulus of complex numbers. The identity for n = 4 is said to be due to Euler

[14] and follows again from the multiplicative properties of Hamilton’s quaternions.

Degen in 1822 [14] is said to have found an identity for the case n = 8.

Hurwitz’ theorem states that these are the only values of n for which such an

identity exists. The solution to this problem tells us which algebras can admit a

multiplicative norm such as in the complex numbers.

We begin with a few definitions.

11



Definition 1.2

An algebra is a vector space A defined over a field K together with a bilinear map

A × A → A, called multiplication, together with a unique 1 ∈ A, called one, such

that for all λ ∈ K and a, b, c ∈ A

1. 1 · a = a · 1 = a, for all a ∈ A;

2. λ(a · b) = (λa) · b = a · (λb);

3. a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

If the bilinear map is associative a · (b · c) = (a · b) · c, then A will be called an

associative algebra and we can omit any bracketing. Also, since no ambiguity

will occur, we write ab for a · b. A vector space is really an abelian group with a field

of scalars and an algebra satisfies the ring axioms with a field of scalars.

Definition 1.3

A division algebra is an algebra A such that for every nonzero a ∈ A, there exists

a−1 ∈ A with aa−1 = a−1a = 1.

Since every nonzero element of R,C,H and O is invertible, they are clearly divi-

sion algebras over R of dimension one, two, four and eight respectively. It should be

noted here that although the quaternions and octonions can be considered as com-

plex vector spaces, they are not algebras over the complex numbers. In an algebra

A over a field K we must have that (λa)(µb) = λµ(ab) for a, b ∈ A and λ, µ ∈ K.

However, if we take A = H, K = C,a = j, b = j and µ = i, then

j(ij) = jk = i

but

i(j2) = −i.

12



From [12] we get the following result.

Theorem 1.4

If K is algebraically closed, then the only finite dimensional division algebra over K

is K.

Proof. Let A be a finite dimensional division algebra over the algebraically closed

field K and choose a ∈ A. The minimal polynomial p of a is linear as K is alge-

braically closed and p is irreducible. We therefore have that K(a) = K so a ∈ K.

Since this holds for all a ∈ A, we get A = K. �

Definition 1.5

A normed vector space is a vector space V over a field K with a positive-definite

quadratic form N : V → K.

Definition 1.6

A composition algebra is a division algebra A which is also a normed vector space

such that for all a, b ∈ A

N(ab) = N(a)N(b).

Each of our algebras under consideration is a composition algebra which is due

to the 1,2,4 and 8-squares identities.

We can define a symmetric bilinear form 〈 , 〉 : A× A→ K on our composition

algebra A using the identity

〈a, b〉 =
1

2
(N(a+ b) −N(a) −N(b)).

Example 1.7

Let a, b ∈ H. Then if a = x∞ + x1i+ x2j + x3k and b = y∞ + y1i+ y2j + y3k, we get

〈a, b〉 =
1

2
(N(a+ b) −N(a) −N(b))

13



=
1

2
((x∞+y∞)2+(x1+y1)

2+(x2+y2)
2+(x3+y3)

2−(x2
∞+x2

1+x
2
2+x

2
3)−(y2

∞+y2
1+y

2
2+y

2
3))

= x∞y∞ + x1y1 + x2y2 + x3y3.

So our inner-product thus defined is equivalent to the standard dot product in

Rn. The definition is identical in C and O.

We will explore some of the properties of these algebras so from now on we

assume A is a finite dimensional composition algebra over R and a, b, c, d ∈ A. The

following results can be found in [1] and [5].

Lemma 1.8 (The Scaling Law)

〈ab, ac〉 = N(a)〈b, c〉.

Proof. We have N(ab) = N(a)N(b) so replacing b by b+ c, yields

N(a(b+ c)) = N(a)N(b+ c)

N(ab+ ac) = N(a)N(b+ c)

2〈ab, ac〉 +N(ab) +N(ac) = N(a)(2〈b, c〉 +N(b) +N(c))

and we can cancel to get the result. �

Similarly, we have that 〈ab, cb〉 = 〈a, c〉N(b).

Lemma 1.9 (The Exchange Law)

〈ab, dc〉 + 〈ac, db〉 = 2〈a, d〉〈b, c〉.

Proof. In the scaling law replace a with a+ d then we have

〈(a+ d)b, (a+ d)c〉 = N(a+ d)〈b, c〉

14



and

〈ab, ac〉 + 〈ab, dc〉 + 〈db, ac〉 + 〈db, dc〉

= (N(a) + 2〈a, d〉 +N(d))〈b, c〉

which gives

〈ab, dc〉 + 〈db, ac〉 = 2〈a, d〉〈b, c〉.

�

We now introduce a map ∗ : A→ A given by

a∗ = 2〈a, 1〉 − a,

which is the negative of the reflection in the hyperplane orthogonal to 1 and is called

the conjugate of a in A. Hence, we denote the mapping by a∗ = a. It is worth noting

that 1 here represents the vector whose real part equals 1 and with imaginary part

0.

We now examine a few properties of this mapping.

Lemma 1.10 (The Braid Law)

〈ab, c〉 = 〈b, ac〉.

Proof. Take d = 1 in the exchange law, then

〈ab, c〉 = 2〈a, 1〉〈b, c〉 − 〈b, ac〉

= 〈ab, c〉 + 〈ac, b〉 − 〈b, ac〉

= 〈b, (2〈a, 1〉 − a)c〉 = 〈b, ac〉.

15



�

Lemma 1.11 (Biconjugation)

a = a.

Proof. Let b = 1 in the braid law and

〈a, c〉 = 〈a.1, c〉 = 〈1, ac〉 = 〈a1, c〉 = 〈a, c〉

which holds for all c and hence a = a. �

Lemma 1.12 (Product Conjugation)

ab = ba.

Proof. By repeatedly applying biconjugation and the braid law we get

〈ab, c〉 = 〈cab, 1〉 = 〈c, ab〉 = 〈a c, b〉 = 〈a, bc〉 = 〈ba, c〉,

which again holds for all c. �

Lemma 1.13

For all a, b ∈ A, we have,

a(ab) = N(a)b

and

(ab)b = N(b)a.

Proof. Let c be an arbitrary element of A and consider

〈a(ab), c〉 = 〈(2〈a, 1〉 − a)(ab), c〉 = 2〈a, 1〉〈ab, c〉 − 〈a(ab), c〉

16



= 〈a(ab), c〉 + 〈ab, ac〉 − 〈a(ab), c〉 = 〈ab, ac〉 = N(a)〈b, c〉 = 〈N(a)b, c〉.

Again, as this holds for all c in A and we have non-degeneracy, the result follows.

The second statement is similar. �

Lemma 1.14 (The Moufang Identities)

If A is a composition algebra with conjugation, then for all a, b, c ∈ A we have,

1. (ab)(ca) = a((bc)a);

2. a(b(ac)) = (a(ba))c;

3. b(a(ca)) = ((ba)c)a.

It is known that any one of the above identities implies the other two.

Proof. Take d ∈ A then

〈(ab)(ca), d〉 = 〈ca, (ab)d〉 = 〈ca, (ba)d〉 = 2〈c, ba〉〈a, d〉 − 〈cd, (ba)a〉

= 2〈bc, a〉〈a, d〉 −N(a)〈cd, b〉

and

〈a((bc)a), d〉 = 〈(bc)a, ad〉 = 2〈bc, a〉〈a, d〉 − 〈(bc)d, aa〉 = 2〈bc, a〉〈a, d〉 −N(a)〈bc, d〉

= 2〈bc, a〉〈a, d〉 −N(a)〈cd, b〉.

�

Now taking b = 1 or c = 1 in the Moufang identities, we get the following

1. (ab)a = a(ba)
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2. a(ac) = a2c

3. ba2 = (ba)a.

The above are known as the alternative laws.

Definition 1.15

If an algebra satisfies the alternative laws, we call it alternative.

Hence we have shown that

Theorem 1.16

If A is a composition algebra, then A is alternative.

In an alternative algebra any 2-generated subalgebra is clearly associative. This

result is known as Artin’s Theorem.

Theorem 1.17

Let A be an algebra equipped with conjugation, i.e. a linear map ∗ : A → A such

that a∗∗ = a and (ab)∗ = b∗a∗. Then A is a composition algebra if, and only if, A is

alternative and a.a∗ = N(a) where N is a positive-definite quadratic form.

Proof. We have already shown one direction. So let A be an alternative algebra

with conjugation ∗ and a.a∗ = N(a) as above. Then as a, a∗, b, b∗ all belong to the

associative subalgebra generated by a and b, we get

N(ab) = (ab)(ab)∗ = (ab)(b∗a∗) = a((bb∗)a∗) = aa∗N(b) = N(a)N(b)

and A is a composition algebra. �

We now introduce the Cayley-Dixon construction which is used to get the com-

plex numbers from the reals. Given an algebra A which has a conjugation ∗, define
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a new algebra C, called the Cayley-Dixon double of A, which is made of pairs

(a1, a2) with a1, a2 ∈ A. We think of C as taking another copy of A and attaching

an square root of −1, i say, which is orthogonal to all of A. It should be noted that

we can take either

C = A+ Ai

or

C = A+ iA.

In the first case the multiplication would be given by

(a1, a2)(b1, b2) = (a1b1 − b∗2a2, b2a1 + a2b
∗
1),

however in the second case we have multiplication given by

(a1, a2)(b1, b2) = (a1b1 − b2a
∗
2, a

∗
1b2 + b1a2).

We will choose to use the first case as it is consistent with our earlier definitions of

H and O although both are equally valid. The conjugate of an element of C is given

by,

(a1, a2)
∗ = (a∗1,−a2).

Lemma 1.18

The Cayley-Dixon double of A, C say, is an algebra with a conjugation ∗ such that

c∗∗ = c and (c1c2)
∗ = c∗2c

∗
1 for all a, b in C.

Proof. It is immediate that c∗∗ = c for all c ∈ C. For the second part let ai, bi ∈ A
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i = 1, 2 and c1 = (a1, a2) and c2 = (b1, b2) be in C. Then

(c1c2)
∗ = (a1b1 − b∗2a2, b2a1 + a2b

∗
1)

∗ = ((a1b1 − b∗2a2)
∗,−(b2a1 + a2b

∗
1))

= (b∗1a
∗
1 − a∗2b2,−b2a1 − a2b

∗
1),

whilst

c∗2c
∗
1 = (b∗1,−b2)(a∗1,−a2) = (b∗1a

∗
1 − a∗2b2,−a2b

∗
1 − b2a1).

�

Lemma 1.19

If A is a composition algebra such that for all non-zero a ∈ A we have a + a∗ ∈ R

and aa∗ = a∗a > 0, then every non-zero element of C has these properties.

Proof. Let a, b ∈ A with 0 6= (a, b) ∈ C then

(a, b) + (a, b)∗ = (a, b) + (a∗,−b) = (a+ a∗, 0) ∈ R

and

(a, b)(a, b)∗ = (a, b)(a∗,−b) = (aa∗ + bb∗, 0) > 0.

�

Definition 1.20

An algebra A will be called real if a∗ = a, for all a ∈ A.

Lemma 1.21

If A is an algebra with a conjugation, then C is never real.
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Proof. Let A be an algebra with a conjugation and C its Cayley-Dixon double.

Let (a, b) ∈ C with 0 6= b in A. Then we have (a, b)∗ = (a∗,−b) = (a,−b). So

(a, b)∗ = (a, b) if, and only if, b = −b which in turn implies b = 0. �

Lemma 1.22

A is real and commutative if, and only if, C is commutative and associative.

Proof. Suppose A is real and commutative and let (a, b), (c, d) be in C. As A is real

we have

(a, b)(c, d) = (ac− d∗b, da+ bc∗) = (ac− db, da+ bc).

Also

(c, d)(a, b) = (ca− b∗d, ad+ cb∗) = (ca− bd, ad+ cb).

These are clearly equal since A is commutative. Associativity follows similarly. Now

suppose C is commutative and associative, then we have that

(a, b)(c, d) = (ac− d∗b, da+ bc∗) = (ca− b∗d, ad+ cb∗) = (c, d)(a, b);

((a, b)(c, d))(e, f) = ((ac)e−(d∗b)e−f ∗(da)−f ∗(bc∗), f(ac)−f(d∗b)+(da)e∗+(bc∗)e∗)

which is equal to

(a, b)((c, d)(e, f)) = (a(ce)−a(f ∗d)−(c∗f ∗)b−(ed∗)b, (fc)a+(de∗)a+b(e∗c∗)−b(d∗f)).

We see that these hold if A is both real and commutative. �

Lemma 1.23

A is commutative if, and only if, C is associative.

Proof. The proof of this is almost identical to the proof of Lemma 1.22. �

21



Lemma 1.24

A is associative if, and only if, C is alternative.

Proof. This is again similar to the proof of Lemma 1.22 �

So we have seen that starting with an associative and commutative composition

algebra A with trivial conjugation one can apply the Cayley-Dixon doubling process

at most three times to obtain new composition algebras. Before proving that the

composition algebras we introduced at the beginning of this chapter are the only

real division algebras, we need a result of Frobenius from [12]

Theorem 1.25 (Frobenius’ Theorem)

The only finite-dimensional real associative division algebras are R, C and H.

Proof. Let A be a finite-dimensional real division algebra and let A′ be the subset

{u ∈ A |u2 ∈ R, u2 6 0}. We want to show that A′ is in fact a subspace. To this

end choose u ∈ A′ and λ ∈ R, then we have λu ∈ A′ and A′ is closed under scalar

multiplication. Next choose two linearly independent u, v ∈ A′, we wish to show

that u + v is also in A′. Observe that it is impossible to have an expression of the

form

u = av + b

for a, b ∈ R because if we let u2 = c 6 0 and v2 = d 6 0, then we have

c = (av + b)2 = a2d+ 2avb+ b2.

Since v does not lie in R but c and d do, we get that avb = 0 and so ab = 0 which

implies that either a = 0 or b = 0. If a = 0 we get that u = b ∈ R contradicting the

fact that u2 6 0. Assuming b = 0 yields u = av, which contradicts our assumption.

Hence the elements 1, u, v are linearly independent.
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We now consider the vectors u+ v and u− v. They are both roots of quadratic

equations and so we can write

(u+ v)2 = p(u+ v) + q (u− v)2 = r(u− v) + s.

We also have that

(u± v)2 = u2 ± (uv + vu) + v2.

Substituting the values u2 = c and v2 = d, we get

c+ d+ (uv + vu) = p(u+ v) + q c+ d− (uv + vu) = r(u− v) + s.

Adding these expressions

(p+ r)u+ (p− r)v + (q + s− 2c− 2d) = 0.

We have seen that 1, u, v are linearly independent, which means that all the coeffi-

cients must be zero and we can conclude that p = r = 0. So (u+ v)2 = q ∈ R and as

u+ v /∈ R we must have q < 0. Therefore u+ v ∈ A′ and A′ is a subspace of A. We

have already seen that any element of A is of the form a + y for a ∈ R and y ∈ A′

and so

A = R ⊕ A′.

Choose u ∈ A′ and let

Q(u) = −u2

with Q(u) ∈ R and Q(u) > 0. We have that Q(u) = 0 ⇔ u = 0. If a ∈ R, then
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Q(au) = a2Q(u) and we can define

2B(u, v) = Q(u+ v) −Q(u) −Q(v) = −(u+ v)2 + u2 + v2 = −(uv + vu).

So B(u, v) is a symmetric bilinear form on A and Q(u) is the positive-definite

quadratic form associated to it.

Now we look at the possibilities for A. If A = R, then we get the first division

algebra we considered. Suppose then that R ( A, then we get A′ 6= 0 and can choose

i ∈ A withQ(i) = 1. From this it follows that i2 = −1 and R(i) = C. Suppose further

that C ( A then Ri ( A′ and we can choose a j which is perpendicular to Ri and

such that Q(j) = 1. It follows that j2 = −1 and 1
2
(ij + ji) = −B(i, j) = 0 so

ij = −ji. Let k = ij then k2 = −1, and ik + ki = 0 = kj + jk so k ∈ A′. Moreover,

k is perpendicular to both i and j. We get that 1, i, j, k are linearly independent so

we have

A =⊇ R + Ri+ Rj + Rk = H

Suppose finally that A 6= H, then there exists an l ∈ A′ with Q(l) = 1 which is

perpendicular to i, j and k. We then have

li = −il lj = −jl lk = −kl k = ij

from which it follows that

l(ij) = (li)j = −(il)j = −i(lj) = i(jl) = (ij)l

and so

lk = kl
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which contradicts the fact that

lk = −kl

and we are done. �

We are now in position to state and prove Hurwitz’ Theorem.

Theorem 1.26 (Hurwitz 1898)

The only finite-dimensional real composition algebras are R, C, H and O.

Proof. Every finite-dimensional composition algebra is a (not necessarily associa-

tive) division algebra and since by Frobenius’ theorem the only associative division

algebras over R are R,C and H by our previous lemmas we can obtain the octo-

nions O by doubling H. The octonions are non-associative and so their Cayley-Dixon

double is not a composition algebra. �

So we have met the four real composition algebras and seen that they are the

only four. In this project we will examine the substructures of them and their

number theory as well as see how they are being used to describe rotations in higher

dimensions by physicists.

25



Chapter 2

The Finite Multiplicative

Substructures of the Division

Algebras

In the real, complex and quaternion cases the multiplication is associative and so

the set of invertible elements form a group. So in these cases we look for the finite

subgroups. The Octonions are not associative but they do satisfy the Moufang

identities and so the invertible elements of O form a Moufang Loop and we seek the

finite subloops.

2.1 Finite Subgroups of the Complex Numbers

The finite subgroups of R are contained in the set of elements {x ∈ R | xn =

1, some n ∈ N}. It is obvious that the only elements with this property are ±1.

Thus the finite subgroups of R are {1} and {±1}.

Any complex number z = λ + µi defines a unique point (λ, µ) in R2 and any

point in R2 defines a unique complex number z. The complex number z = λ + µi
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can be written in the form

reiθ

where r =
√
N(z) and tan θ = µ

λ
. The set {z ∈ C | N(z) = λ2 + µ2 = 1} defines a

unit circle in R2 which is denoted S1. Let z1 lie on the unit circle, then z = eiθ for

some 0 6 θ < 2π. If z2 = reiα is any other complex number, then

z1z2 = eiθ(reiα) = rei(θ+α).

So we see that multiplication by z1 rotates z2 through an angle of θ. This rotation is in

the anti-clockwise direction as i2 = −1. We have the identity reiθ = r(cos θ+ i sin θ)

and since any element of a finite subgroup of C must have r = 1 we get a map

φ(eiθ) =




cos θ − sin θ

sin θ cos θ



 .

This is clearly an isomorphism into SO(2) the rotation group in 2-dimensions. Then

by [11] the finite subgroups of SO(2) are just the cyclic groups of finite order.

2.2 Finite Subgroups of the Quaternions

Just as the unit complex numbers give a complete description of rotations in 2-

dimensions, so the unit quaternions can be used to describe rotations in 3-dimensions.

The set of isometries that preserve orientations in 3-dimensions is denoted SO(3).

In this section we aim to associate the subset of pure quaternions, those with no real

part, with R3 and show that the unit quaternions act on this subset via rotations

and that every rotation of R3 can be realised in this way.

As in the complex case the quaternions are in bijection with the space R4. Let

Hp = {a ∈ H | Re(a) = 0} be called the set of pure quaternions, which is in
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obvious bijection with the set R3. We will call H1 = {a ∈ H | N(a) = 1} the set

of unit quaternions. If we equip R3 with the standard Euclidean metric then we

get a bijection between H1 ∩ Hp and the unit sphere S2. The group SO(3) is the

set of rotations of S2 and so we will show that the set H1 forms a group under

multiplication and that it acts on the space Hp as rotations and we aim to find a

surjective homomorphism between H1 and SO(3) with kernel {±1}.

For q in H1 define Cq to be the linear map from H to H given by

Cq(x) = qxq

for all x in H. It should be noted here that

N(Cq(x)) = qxq qxq = qxqqx q = N(q)qxx q = N(q)2N(x) = N(x)

as N(q) = 1. So Cq is an isometry. If x is such that Im(x) = 0, then x commutes

with all of H and so Cq will fix x. So we want to know the effect of Cq on the space

Hp

To show a quaternion x is a member of Hp we need only check that x = −x. We

have that

Cq(x) = qxq = qx q = Cq(x)

for all x in H. If x is in Hp, then

Cq(x) = Cq(x) = Cq(−x) = −Cq(x)

and Cq(x) is in Hp as Cq is linear.

We have seen in Chapter 1 that any quaternion q can be written in the form q =

r(cos θ+ î sin θ) where î is of unit length in the q−Re(q) direction and r =
√
N(q).
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We want to show that if q is as above with r = 1, then Cq is a rotation about

the axis î through 2θ. Choose an orthonormal basis {̂i, ĵ, k̂} for Hp and define an

orientation on it by letting î ĵ = k̂ (the only choices here are ±k̂ since the product

must be a unit vector perpendicular to both î and ĵ; Either choice is fine and

corresponds to a choice of the direction of rotation). We have

Cq( î ) = (cos θ + î sin θ)̂i(cos θ − î sin θ)

= (̂i cos θ − sin θ)(cos θ − î sin θ)

= î cos2 θ + î sin2 θ

= î,

Cq( ĵ ) = (cos θ + î sin θ)ĵ(cos θ − î sin θ)

= (ĵ cos θ + k̂ sin θ)(cos θ − î sin θ)

= ĵ cos 2θ + k̂ sin 2θ,

Cq( k̂ ) = (cos θ + î sin θ)k̂(cos θ − î sin θ)

= (k̂ cos θ − ĵ sin θ)(cos θ − î sin θ)

= k̂ cos 2θ − ĵ sin 2θ,

and it is clear that Cq rotates about the axis î through an angle of 2θ.

We now want to show that any rotation of R3 can be realised as the conjugate

of a pure quaternion by a unital one. Any rotation in 3-dimensions is defined by its
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axis of rotation, î say, and its angle of rotation θ. By our previous work and choosing

q = cos θ
2

+ î sin θ
2
, we get the rotation we desire.

We have seen that there is a mapping ϕ from H1 to SO(3) given by

q 7→ Cq.

Since

(Cp ◦ Cq)(x) = Cp(qxq) = pqxq p = pqxpq = Cpq(x)

for all x in Hp, the map ϕ is a homomorphism. As any rotation can be described

in this manner, ϕ is surjective and we want to find ker(ϕ). As Cq is linear, it is not

difficult to see that q and −q define the same rotation and so ker(ϕ) contains {±1}.

If q is in Hp r {±1}, then Cq is nontrivial and so we have that ker(ϕ) = {±}. To

summarise

H×
1 /{±1} ∼= SO(3).

The finite subgroups of SO(3) are discussed in detail in [11] and are

1. the cyclic groups Cn of finite order;

2. the dihedral groups D2n;

3. the tetrahedral group T, isomorphic to A4;

4. the octahedral group O, isomorphic to S4;

5. the icosahedral group I, isomorphic to A5.

So the finite subgroups of H× are those in the above list along with their double

covers which we will denote 2Cn, 2D2n, 2T, 2O, and 2I, respectively.
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We note in passing that there is an isomorphism between the groups H1 and

SU(2), the group of 2×2 unitary matrices of determinant 1, given by

ψ : a∞ + a1i+ a2j + a3k 7→




a∞ + a1i a2 + a3i

−a2 + a3i a∞ − a1i



 .

It can easily be checked that ψ is an isomorphism and that det(ψ(a)) = N(a). Hence

by using the quaternions we immediately see that

SU(2)/{±1} ∼= SO(3).

2.3 Curtis’ Construction of the Finite Subloops

of the Octonions

The octonions are non-associative and hence O× does not form a group. However,

we have seen that they satisfy weaker conditions namely the Moufang identities

with three octonions and the alternative laws for two of them. The octonions form

a Moufang Loop, named after Ruth Moufang, and in this case we seek a complete

list of the finite subloops. We follow Curtis’ construction which was first discovered

in 1970 but went unpublished for over thirty years. A similar construction was given

by Chein in 1978 but his was less general. The construction now carries his name.

In this section we closely follow the exposition given in [8].

We have already seen the Moufang identities in Chapter 1 and know that our

division algebras satisfy them. Here we give a definition of a structure that sat-

isfies these properties and then show that the non-associative substructures of the

octonions are of this type.
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Definition 2.1

A Moufang loop is a closed multiplicative structure M with an identity 1M where for

all x ∈M the maps Lx : a 7→ xa and Rx : a 7→ ax are both bijections, for all a ∈M,

and the multiplication in M satisfies:

1. (ab)(ca) = a((bc)a),

2. a(b(ac)) = (a(ba))c,

3. b(a(ca)) = ((ba)c)a,

for all a, b, c ∈M.

It is known that any of the identities implies the other two.

Theorem 2.2

Let G be a group which contains an element a which lies in Z(G) such that a2 = 1; so

a is an involution or the identity. Introduce a new symbol x and define Ĝ = G∪xG,

where we identify x with x1G. Then if we define multiplication in Ĝ by:

1. (xg)h = x(hg);

2. g(xh) = x(g−1h);

3. (xg)(xh) = ahg−1;

for all g, h in G, then (Ĝ, . ) is a Moufang loop.

This is Curtis’ construction which was submitted for the Rayleigh prize in 1970.

Chein’s is similar but he requires that a = 1. In this way his result yields fewer loops

than Curtis’.
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Proof. For all g in G, the maps Rg and Lg are obviously bijections as G is a group.

Note that Rxh(hg
−1) = x(gh−1h) = xg and Rxh(xag

−1h) = ahh−1ga−1 = g as

a ∈ Z(G). So Rxh is surjective and injectivity is obvious.

We now need to verify that a(ba) = (ab)a. Clearly, if a, b both lie in G, we are

done. So we need only check the three other cases. We have,

(g.xh)g = (x.g−1h)g = x(gg−1h) = xh = x(g−1gh) = g(xgh) = g(xh.g);

(xg.h)xg = (xhg)xg = ag(hg)−1 = ah−1 = a(h−1g)g−1 = xg(xh−1g) = xg(h.xg);

(xg.xh)xg = (ahg−1)xg = x(gh−1ag) = x(agh−1g) = xg(agh−1) = xg(xh.xg).

Hence aba is well-defined for all a and b in Ĝ. It is now only left to check that

the Moufang identities hold. Let g, h and k be elements in G. As G is a group, the

case g(h(gk)) = (g(hg))k is trivial and we need only consider the other seven when

one or more of the elements lies in xG. Now,

ghg.xk = x(g−1h−1g−1k) = g(h(g(xk)));

(g.xh.g)k = xh.k = xkh = x(g−1gkh) = g(xgkh) = g(xh(gk));

(g.xh.g)xk = xh.xk = akh−1 = g(ag−1kh−1) = g(xh(xg−1k)) = g(xh(g.xk));

(xg.h.xg)k = ah−1k = ah−1kgg−1 = xg.xh−1kg = xg(h.xkg) = xg(h(xg.k));

(xg.h.xg)xk = ah−1.xk = xahk = xg(hakg−1) = xg(h(xg.xk));

(xg.xh.xg)k = xagh−1g.k = xakgh−1g = xg.akgh−1 = xg(xh.xkg) = xg(xh(xg.k));

and finally,

(xg.xh.xg)xk = xagh−1g.xk = kg−1hg−1

33



= xg.xakg−1h = xg(xh.akg−1) = xg(xh(xg.xk)).

Hence the identities hold for all elements in Ĝ and it is therefore a Moufang loop.�

Theorem 2.3

Let G be a group and let a ∈ Z(G) such that a2 = 1. Adjoin an element x to G and

define 〈G, x〉M be the Moufang loop generated by G and x in which the multiplication

of G holds and we have the relation

xgx = ag−1

for all g ∈ G. Then G has index 2 in 〈G, x〉M and the multiplication is the same as

that in Ĝ above.

Proof. The relation gives us that x2 = a, and hence x−1 = ax and xg = g−1x. So

for all g, h in G

1. (xg)h = xg(xah−1x) = ((xgx)ah−1)x = (ag−1ah−1)x = (g−1h−1)x = xhg;

2. g(xh) = (xag−1x)xh = x(ag−1(x2h)) = xg−1h;

3. (xg)(xh) = xg(h−1x) = x(gh−1)x = ahg−1.

�

Theorem 2.4

The Moufang loop Ĝ is associative, and hence a group, if, and only if, G is abelian.

Proof. Suppose that Ĝ is associative, then we have x(gh) = (xg)h = x(hg), for all

g, h ∈ G and so G is commutative.

On the other hand if G is commutative then the map that sends each element to

its inverse is an isomorphism as (xy)−1 = y−1x−1 = x−1y−1. Choosing a ∈ G with
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a2 = 1, we adjoin an element x such that x2 = a and x−1gx = g−1, for all g in G.

Now,

g.xh = xx−1gxh = xg−1h

xg.h = xgh = xhg

and

xg.xh = ax−1gxh = ag−1h = ahg−1.

This group 〈G, x〉 is actually the semi-direct product of G with 〈x〉 ∼= C4 with

gx = g−1 factored by the subgroup 〈ax2〉. �

In his essay [7] Curtis proves that up to isomorphism the finite multiplicative

subloops of O are precisely the Moufang loops Ĝ when G is a finite non-abelian

subgroup of H which contains the element a = −1. These are listed in the previous

section. There is one exception, the infinite subloop of the Integral Octonions, which

will be the subject of the next chapter.

We now give an example.

Let Q8 = {±1,±i,±j,±k} be the quaternion group of order eight under the

usual multiplication. If we then adjoin an element x such that x2 = −1, then we

get a group with elements

±1,±i,±j,±k,±x,±xi,±xj,±xk

which is equivalent to the set

±1,±i0,±i1,±i3,±i2,∓i6,∓i4,±i5,

respectively. So the loop Q̂8 is the subloop of basis elements of O.
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We have seen the finite substructures of our division algebras. However, as was

mentioned in this chapter, there is one more but it is infinite. This Moufang loop

is called the Integral Octonions and in some sense is the analogue of the Gaussian

integers in C. Our next chapter is devoted to the number theory aspect of the

division algebras and we introduce and study the integral elements of both H and

O.
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Chapter 3

Arithmetics of the Division

Algebras

Since the Division Algebras carry the extra structure of a ring it makes sense to

seek a ‘Number Theory’ inside of them. In the real case the subring is the normal

rational integers and in the complex case we get the ring Z[i] which is the set of

Gaussian Integers. In this chapter we describe the equivalent structures in both the

quaternions and octonions and explain the theory of prime factorisation in each.

3.1 The Hurwitz Integers

In direct analogy to the Gaussian numbers, Lipschitz in 1886 defined the integral

quaternions to be the set L = {a+bi+cj+dk | a, b, c, d ∈ Z}.We will call quaternions

of this form Lipschitz and note that if q is Lipschtiz, then it can be written in the

form q = x + yj where x, y are Gaussian numbers. However, the Lipschitz integers

do not behave well under division. For example, let a, b ∈ L and set

a/b = q1 + q2i+ q3j + q4k,
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with the qk ∈ Q, then take pk to be the nearest integer to qk so we obtain a Lipschitz

integer

p = p1 + p2i+ p3j + p4k.

Setting r = a/b− p, we get

a = bp+ r.

Now it is a requirement for the division algorithm that N(r) < N(b) and so we

calculate

N(r/b) = N(a/b− p) = (q1 − p1)
2 + (q2 − p2)

2 + (q3 − p3)
2 + (q4 − p4)

2

6

(
1

2

)2

+

(
1

2

)2

+

(
1

2

)2

+

(
1

2

)2

= 1.

So the inequality is not strict. In fact we have equality precisely when every coef-

ficient lies in Z + 1
2
. To overcome this problem Hurwitz in 1896 suggested defining

the integral quaternions to be quaternions q = a+ bi+ cj + dk with a, b, c, d either

all in Z or all in Z + 1
2
. Quaternions of this type will be called Hurwitz and we will

denote the set of all Hurwitz integers by H.

We now wish to study the primes and units of the Hurwitz integers in order to

develop the theory of prime factorisations. We follow the work in [5] As usual, a

prime Hurwitz integer P will be one whose norm N(P ) is a rational prime p. Since

the only factorisations of p are p× 1 and 1× p, the only factorisations of P must be

of the form

P = U × P ′

or

P = P ′ × U
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where N(P ′) = p and N(U) = 1. Hence, the unit Hurwitz quaternions are defined

to be the Hurwitz quaternions of norm 1.

Theorem 3.1

There are twenty-four Hurwitz units which are ±1, ±i, ±j, ±k and ±1
2
± 1

2
i± 1

2
j± 1

2
k.

Proof. Obvious. �

The Hurwitz units in fact form a copy of the binary tetrahedral group 2T which

we met in the last chapter. Now that we know the Hurwitz units, we can determine

the factorisations of the Hurwitz primes. If P is a Hurwitz prime, then it can only

have factorisations of the form

P = (PU−1)U

or

P = U(U−1P )

where U is a Hurwitz unit. Note also that as U is a unit, U−1 is also a unit.

How a Hurwitz integer factorises depends on whether it is divisible by some

natural number n > 1. We therefore make the following definition.

Definition 3.2

A Hurwitz integer q is called primitive if it is not divisible by a natural number

n > 1. If q is not primitive, we will call it imprimitive.

Theorem 3.3 (Primitive Unique Factorisation Theorem)

Given any primitive Hurwitz integer Q whose norm N(Q) = q where q has a prime

factorisation q = p1p2...pn, then there is a factorisation of Q into Hurwitz primes

Q = P1P2...Pn
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where N(Pk) = pk.

We will call the factorisation Q = P1P2...Pn modelled on the factorisation

p1p2...pn of q. Moreover, if Q = P1P2...Pn is a factorisation of Q modelled on q =

p1p2...pn, then the other factorisations modelled on it will be of the form

Q = P1U1.U
−1
1 P2U2.U

−1
2 P3U3...U

−1
n−1Pn

where the Uk are Hurwitz units. We call the factorisations unique upto unit-

migration

Proof. Since we have the division by small remainder property and a multiplicative

norm, the set H is a Euclidean domain and so every ideal is principal. So the ideal

p1H +QH

is principal and so there is a P0 ∈ H such that

p1H +QH = P0H

We must have that N(P0) divides N(p1) and so N(P0) is either 1, p1 or p2
1 as p1 is

prime. If P0 = 1, then p1H + QH would be the whole of H. This is impossible as

then every element of H would be of the form p1h1 +Qh2 and so would have norm

N(p1h1 +Qh2) = 2〈p1h1, Qh2〉 +N(p1h1) +N(Qh2)

= 2p1〈h1, qh2〉 + p2
1N(h1) + p1p2...pnN(h2)

which is clearly divisible by p1. Next if N(P1) is equal to p2
1, then P1 would divide

p1 and so p1 = P1U, where U is a unit. But then p1U
−1 = P1 so p1 divides Q but
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Q is primitive. Hence N(P1) must be equal to p1 and so we have Q = P1Q1 with

N(Q1) = p2...pn. By repeatedly applying the above argument, we getQk = Pk+1Qk+1

with N(Qk+1) = pk+1...pn. We end up with Q = P1P2...PnQn+1 where Qn+1 is a

unit. �

Example 3.4

Consider a Hurwitz integer Q of norm 315. This has prime factoristion 32.7.5 so

there are twelve different ways of ordering this

3.3.5.7 3.3.7.5 3.5.3.7 3.7.3.5 3.5.7.3 3.7.5.3

5.3.3.7 7.3.3.5 5.3.7.3 7.3.5.3 5.7.3.3 7.5.3.3

There are twenty-four units in H and so we have 243.12 = 165, 888 possible prime

factorisations of Q.

Let p be a prime, then a quadratic residue of p is an integer a such that a ≡ b2(p),

for b 6≡ 0(p). Any other integer not congruent to a square (or zero) modulo p is

called a quadratic non-residue. If we fix a non-residue n and multiply it by all the

quadratic residues, we obtain all the non-residues. Let n be the smallest non-residue,

then n = a+ 1 for some quadratic residue a. Since a is a residue, we can write it as

a ≡ b2(p) for some b 6≡ 0(p) and we get n ≡ b2 +12(p). As all other non-residues can

be obtained by multiplying n by the residues, we have shown that every non-residue

n0 can be written in the form n0 ≡ c2 + d2(p). Furthermore, −1 is either a residue

or the sum of two residues and so 0 ≡ −1 + 12(p) is the sum of either two or three

residues. In other words 0 ≡ a2 + b2 + c2(p) for some a, b, c not all zero. We are now

ready to prove our next theorem.
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Theorem 3.5

Every rational prime p has at least one factorisation

p = PP

where P is a Hurwitz integer.

Proof. For any x, we have x2 ≡ (p− x)2(p) so we can assume that 0 6 a, b, c 6 p/2

as above. Hence we get a2 + b2 + c2 = mp for some 0 < m < p. This defines a

quaternion Q = ai+ bj + ck with N(Q) = mp. Then the ideal pH +QH = PH as

before and by a similar argument to the proof of the Primitive Unique Factorisation

Theorem , we get N(P ) = PP = p. �

We have completed our analysis of the factorisations of primitive Hurwitz integers

and we now look at the imprimitive case. Before we start our analysis, we will need

to define the Catalan triangle and the associated polynomials. The Catalan numbers

are obtained in almost the same way as Pascal’s triangle but we do not read from

the left.

1

1

1 1

2 1

2 3 1

5 4 1

5 9 5 1

42



We can now read off the Catalan polynomials. We have

C0(x) = C1(x) = 1

C2(x) = x+ 1

C3(x) = 2x+ 1

C4(x) = 2x2 + 3x+ 1

C5(x) = 5x2 + 4x+ 1

We now define the truncated Catalan polynomial Cn,m(x) to be the terms in the

Catalan polynomial Cn(x) that have degree no greater than m. For example

C5,1 = 4x+ 1.

Theorem 3.6

Suppose Q has norm 2n0pn1

1 ...p
nt

t and is divisble by the rational integer 2m0pm1

1 ...pmt

t

then up to unit migration, the number of factorisations of Q modelled on the fac-

torisation of N(Q) is
∏

k>1

Cnk,mk
(pk)

evaluated at the odd primes p1, p2, ..., pt.

We sketch the proof.

Proof. We will consider Hurwitz integers which factorise as

Q = P1P2...Pn

where N(Pk) is prime. Since Q may be imprimitive, suppose it is divisible by ps but
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not ps+1 then

Q = psP.

Then P is a primitive Hurwitz integer and as such, by the Primitive Unique Fac-

torisation Theorem, it can be factored up to unit migration as

P = R1R2...Rn−2s.

For every prime p, it can be shown that there exist up to unit right multiplication

p+ 1 Hurwitz integers of norm p. So we need to know if

P1 = R1

up to unit right multiplication. So there are pcases where it does and only one where

it does not. If it does, then we get a Hurwitz integer of norm pn−1 which is divisible

by ps but not ps+1 and so inductively has Cn−1,s(p) solutions. In the other p cases

we get Hurwitz integers of norm pn−1 that are divisible by ps−1 but not ps and so

we get Cn−1,s−1(p) solutions for each. Recursively we get

Cn,s(p) = Cn−1,s(p) + pCn−1,s−1(p)

and this defines the Catalan numbers. �

3.2 The Integral Octonions

Dickson [9] first gave a definition of what it means for a set in an algebra to be a

set of ‘integral’ elements. In this chapter we again follow closely the work in [5].

Definition 3.7 A set of elements from an algebra is called an order if
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1. Each element of the order is the solution to an equation with integer coeffi-

cients,

2. The set is closed under subtraction and multiplication and

3. 1 is in the set.

If, further, the order is maximal we call it an arithmetic.

So it is the aim of this section to define the arithmetics and hence the set of

integral elements. Any octonion a = a∞ +a0i0 +a1i1 +a2i2 +a3i3 +a4i4 +a5i5 +a6i6

satisfies the equation

x2 − 2a∞x−N(x) = 0

which Coxeter [6] calls the rank equation. In fact any quaternion or complex number

would also satisfy the equation with a∞ replaced by the real part. We are now ready

to start building the Integral Octonions. We begin with the integer span of the basis

elements which Conway [5] calls the Gravesian Integers and we label G. There are,

however, other orders which contain G. Just as with the Hurwitz integers we will

have cause to take the halves of certain coordinates of the octonions. To this end

we define the set of elements in an integral octonion whose coordinates are halves

of odd integers to be a halving-set. So for example the octonion

b =
1

2
+ 3i0 + 5i1 +

7

2
i2 + 9i3 +

9

2
i4 + 6i5 +

1

2
i6

is said to have halving-set ∞, 2, 4, 6. We shall call the arithmetic of the octonions

the integral octonions.

Lemma 3.8

For an element in the integral octonions the double of every coordinate is an integer

and the size of a halving-set is either 0, 4 or 8.
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Proof. In the first case we can multiply any integral octonion by ik for any k and so

make any coordinate the real part. Since the integral octonions must be closed and

since 2Re(a) must be an integer in the rank equation, we are done. For the second

part note that N(a) must be an integer in the rank equation and so the number of

‘halves’ can be either 0, 4 or 8. �

We will write iabcd for the integral octonion whose halving set is 1
2
(ia+ ib+ ic+ id.

In this way we can denote the different orders inside the octonions by their halving-

sets. The Gravesian integers are those which are all integers and so the halving-set

is ∅. If we then define the Kleinian integers to be the Gravesians along with those

elements all of whose coordinates are halves of odd integers, then they have halving-

sets ∅ and Ω = ∞, 0, 1, 2, 3, 4, 5, 6.

Kirmse was the first to expand on this idea and took the halving-sets to be the

associative triples of the quaternion subalgebras along with ∞, representing the real

part, and their complements. These Conway has called the ∞-integers [5].

∞013 2456

∞124 3560

∞235 4601

∞346 5012

∞450 6123

∞561 0234

∞602 1345

∅ Ω

Unfortunately, the ∞-integers are not closed under multiplication as we have

i∞026i∞013 =
1

2
(i∞ + i0 + i2 + i6)

1

2
(i∞ + i0 + i1 + i3) =

1

2
(i0 + i2 + i3 + i5) = i0235
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which is not in the list of ∞-integers. We learn in [6],([15],pg.130) that Kirmse

claimed there were eight maximal orders in the octonions and then described the

only one which does not work. Dickson then found three based on Kirmse’s work

before Coxeter, with the help of Bruck, then went on to construct all seven and show

that they are maximal. The solution involves making a swap with ∞ and any n.

Failure to make this swap has become known as Kirmse’s mistake. We list all the

sets below but note that only the n-integers for n ∈ {0, 1, 2, 3, 4, 5, 6} are actually

valid.

∞− integers

∞013 2456

∞124 3560

∞235 4601

∞346 5012

∞450 6123

∞561 0234

∞602 1345

∅ Ω

0 − integers

∞013 2456

0124 ∞356

0235 ∞461

0346 ∞512

∞450 6123

0561 ∞234

∞602 1345

∅ Ω

1 − integers

∞013 2456

∞124 3560

2351 ∞460

3461 ∞502

4501 ∞623

∞561 0234

6021 ∞345

∅ Ω

2 − integers

0132 ∞456

∞124 3560

∞235 4601

3462 ∞501

4502 ∞613

5612 ∞034

∞602 1345

∅ Ω

3 − integers

∞013 2456

1243 ∞560

∞235 4601

∞346 5012

4503 ∞612

5613 ∞024

6023 ∞145

∅ Ω

4 − integers

0134 ∞256

∞124 3560

2354 ∞601

∞346 5012

∞450 6123

5614 ∞023

6024 ∞135

∅ Ω

5 − integers

0135 ∞246

1245 ∞360

∞235 4601

3465 ∞012

∞450 6123

∞561 0234

6025 ∞134

∅ Ω

6 − integers

0136 ∞245

1246 ∞350

2356 ∞401

∞346 5012

4506 ∞123

∞561 0234

∞602 1345

∅ Ω
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One can also obtain the n-integers for n ∈ {0, 1, 2, 3, 4, 5, 6} to obtain an equally

valid set of integral elements. It is readily seen that each set is isomorphic to any

other so we will only consider the 0-integers.

Theorem 3.9

The 0-integers are multiplicatively closed.

Proof. The halving-sets for the 0-integers are

∞013 2456 0124 ∞356 0235 ∞461 0346 ø

∞512 ∞450 6123 0561 ∞234 ∞602 1345 Ω

which is spanned by i∞356, i0235, i0463 and i0156 over G. Since multiplying any two of

these 0-integers leads to another, up to sign, we see that the set is closed. �

We have now identified eight of the orders inside O. We have the seven n-integers

as well as the Gravesian integers whose halving-set is ∅. If we take the intersection

of any two n-integers, say the 1-integers and the 5-integers, we get the set

∞561 4023

∅ Ω

which can be obtained from a copy of the Hurwitz integers inside O via the

Cayley-Dixon doubling process. For this reason we call these the Double Hurwitz

integers. There are seven such sets. Finally, the intersection of all the n-integers

yields an order with halving-set Ω and ∅. These are the Kleinian integers since they

are numbers of the form

a =
1

2
(1 + i0 + i1 + i2 + i3 + i4 + i5 + i6).

These now account for all the orders in O and it is our aim to prove this result.
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Definition 3.10

A halving-set will be called inner if the corresponding octonions are ∞-integers,

and outer otherwise.

Lemma 3.11

The Gravesian integers and any octonion whose halving-set is an outer n-set generate

all the n-integers.

Proof. Suppose, without loss of generality, that a is a 0-integer whose halving-set is

one of the outer ones. We can subtract elements of the Gravesian integers to bring

a into the form

1

2
(ia + ib + ic + id).

Then it can be seen ([5],pg.104) that multiplication by the sums of three Gravesian

units (those of the form ik) gives all outer 0-sets. Since any inner set is just the sum

of two outer sets, we are done. �

Lemma 3.12

Along with the Gravesian integers

1. any two octonions with complementary 4-element halving-sets generate each

other and

2. two octonions with distinct non-complementary inner sets as halving-sets gen-

erate the n-integers, for some n.

Proof. If we multiply 1
2
(1+ i1 + i2 + i4) by i0 on the left, we obtain 1

2
(i0 + i3 + i5 + i6).

Since this can be done for any complementary set by a unit Gravesian integer, we

are done. For the second note that by the first part we can assume that both sets

contain ∞ so by looking at the tables above one can see that they are obtained from
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each other by increasing other subscripts by 1, 2 or 4 (mod 7). Again, we can just

assume it is one since there is the subscript doubling isomorphism (1 2 4)(3 6 5)

which we will meet in the next chapter. Let the two halving sets be ∞602 and ∞013

then their product is 1
2
(i0 + i2 + i3 + i5) as we saw before. But 0235 is an outer 0-set.

Then by Lemma 3.11 we are done. �

Theorem 3.13

The sixteen orders of O we have described are the only ones containing the Gravesian

integers.

Proof. Choose an order containing G then if it is not G or the Kleinian integers,

it must contain one of the halving-sets and therefore the complementary one as it

must be closed under addition with K. If these are the only halving-sets, we have a

set of Double-Hurwitz integers. Suppose these are not all, then it must have either

an outer n-set or two non-complementary inner ones. By our previous lemmas, it

must contain all the n-integers for some n. Any larger order would contain two n-

integer sets, n1, n2 say. Considering the subscript doubling again we see that we can

suppose they differ by 2. So, without loss of generality, let them be the 0-integers

and the 2-integers, however i∞235 is an 0-integer and i0235 is a 2-integer and their

product is

i0235i∞235 = −3

4
+

1

4
(i0 − i1 + i2 + i3 − i4 + i5 + i6)

whose rank equation can be computed as x2 + 3
2
x+ 1 and so is not a member of an

order. �

Corollary 3.14

The n-integers form an arithmetic for all n.

So we have a complete list of the orders and arithmetics in O. As we did before we

now want to study their properties and especially their prime factorisations. For this
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we will need some geometric considerations. We start by choosing one arithmetic in

O, the 0-integers.

Definition 3.15

An n-dimensional regular simplex is the minimal convex set (or convex hull)

containing n+1 points which are all equidistant from each other. The n-dimensional

simplex lattice An is defined to be the structure generated over Z by the vectors along

the edges of a regular simplex.

A regular simplex can be thought of as generalising the triangle to higher dimen-

sions. In 2-dimensions it is just the triangle and in 3 it is the tetrahedron. For An

if we take the vertices of a regular simplex to be the n+ 1-dimensional points

vi = (0, 0, ..., 1, ..., 0)

with 1 in the ith position, then the generators are

vi − vj = (0, 0, ..., 1, ...,−1, ..., 0).

Then An is simply the set of all points

(x0, x1, ..., xn)

in n+ 1 dimensions whose coordinates are integers which sum to 0.

Definition 3.16

A regular orthoplex, or convex polytope, has vertices which are the unit vectors

on each axis of an orthonormal basis. They are therefore the vectors of type

(±1, 0, ..., 0)
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with ±1 in an arbitrary position. The n-dimensional orthoplex lattice Dn is the

lattice generated over Z by these vectors.

Much like a regular simplex can be thought of as generalising the triangle into

higher dimensions, a regular orthoplex is often thought to be the generalisation of

the square to higher dimensions. In 2-dimensions it is just the square. In 3 it is the

octahedron. For generators of Dn we simply take the vectors

vi = (0, 0, ...., 1, ..., 0) and vi = (0, 0, ....,−1, ..., 0).

So Dn is just the set of all vectors

(x1, ..., xn)

whose coordinates are integers which sum to an even number.

We are now in a position to define the E8 root lattice which the Integral octonions

form.

Definition 3.17 The E8 root lattice is the lattice generated by S,O where S is an

8-dimensional simplex and O is an adjacent orthoplex.

We quote some facts about E8 from ([5],109).

1. Both A8 and D8 are contained in E8.

2. For any point a in 8-dimensional space, there is a point b of the E8 lattice such

that |a− b| 6 1.

It is remarkable that even though this ’small remainder’ principle carries over to

the Integral Octonions, the use of ideals to develop the theory of prime factorisations
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falls apart. In fact for any integral octonion a we can find another b such that |a−b| 6

1/2. However, the result holds in E8 and this is important as we shall see later. There

is however something more remarkable! There is in the Integral Octonions a process

equivalent to the Euclidean Algorithm in the rational integers. Conway ([5],pg.111)

attributes the discovery to Rehm. We start by taking an octonion r1 and a rational

integer m1 which divides N(r1). Then we have

N(r1) = m1m0

and we will obtain a series of mi ∈ Z and ri, gi integral octonions using the following

method;

r1 = g1m1 + r2 N(r1) = m0m1

r2 = g2m2 + r3 N(r2) = m1m2 m1 > m2

...
...

...

rn−1 = gn−1mn−1 + rn−2 N(rn−1) = mn−2mn−1 mn−2 > mn−1

rn = gnmn N(rn) = mn−1mn mn−1 > mn

So, we begin with our original r1,m1 and then find two integral octonions g1 and

r2 by the division algorithm for integral octonions and take the conjugate of the

remainder r2 and keep repeating the process. The following propositions show that

it indeed works.

Proposition 3.18

mi divides N(ri+1), for all i.

Proof. As N(ri+1) = N(ri − gimi) = N(ri) + m2
iN(gi) − 2mi〈ri, gi〉 so mi divides

every term on the right-hand side and so divides the left-hand side from which we

conclude that mi divides N(ri+1). �

53



This proof shows why we conjugate the remainder in each case.

Proposition 3.19

mi+1 < mi, for all i.

Proof. This follows from the fact that mimi+1 = N(ri) 6
m2

i

2
. �

Since the mi are strictly decreasing and lie in Z, this process must eventually

terminate.

We now ‘reverse’ the process as with the standard Euclidean algorithm. Let µn

be an element in O of norm mn. We have that

rn = gnmn = gn(µnµn) = (gnµn)µn.

There are no associativity issues here as every element lies in a 2-generated subalge-

bra. Setting µn−1 = gnµn, makes µn−1 a left divisor of rn such that N(µn−1) = mn−1.

We also have that µn−1 is a right divisor of rn and mn−1 and hence also of rn−1 be-

cause

rn−1 = gn−1mn−1 + rn = (gn−1µn−1)µn−1 + µnµn−1

= (gn−1µn−1 + µn)µn−1.

If we let µn−2 = gn−1µn−1 +µn, then we obtain a left divisor of rn−1 whose norm

is mn−2. This process can be continued until there is a left divisor of r1, µ0, of norm

m0. We represent this as
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N(µn) = mn

rn = µn−1µn µn−1 = gnµn N(µn−1) = mn−1

rn−1 = µn−2µn−1 µn−2 = gn−1µn−1 + µn N(µn−2) = mn−2

...
...

...

r2 = µ1µ2 µ1 = g2µ2 + µ3 N(µ1) = m1

r1 = µ0µ1 µ0 = g1µ1 + µ2 N(µ0) = m0

If r is an integral octonion of norm mn we wish now to give a description of the

sets of all possible left and right divisors of norm m and n. The number of them will

turn out to be exactly the number of integral octonions of norm m and n.

Lemma 3.20

Let g be in O and factorise g in two ways so

g = ab = a′b′

where N(a) = N(a′) 6= 0 and N(b) = N(b′) 6= 0. Then if θa is the angle between a

and a′ and θb is the angle between b and b′, we have

θa = θb.

Proof. We take the inner-product of g with ab′ then by the Scaling Law we have

N(a)〈b, b′〉 = 〈ab, ab′〉 = 〈g, ab′〉 = 〈a′b′, ab′〉 = N(b′)〈a′, a〉,

which implies that

〈a′, a〉
N(a)

=
〈b, b′〉
N(b′)
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which is the same as

cos θa = cos θb.

�

Let {µn}, {µn−1}, {µn−2}, ..., {µ0} be the set of all µis that can occur in the

reversing of our algorithm. Our work has shown that {µn} is the set of all integral

octonions of norm mn. It is similar to the set {µn} as can be seen by letting mn = g

in the above lemma. We indicate this by

{µn} ∼mn
{µn}.

So we obtain the similarities

{µn} ∼rn {µn−1} ∼mn−1
{µn−1} ∼rn−1

... ∼m1
{µ1} ∼r1 {µ0}

Lemma 3.21

If r is an integral octonion such that N(r) = mn with m,n ∈ N and d = gcd(r,m, n),

then the set of left divisors (µl) of r of norm m and the set of right divisors (µs)

of r of norm n are geometrically similar to the set of all integral octonions (µt) of

norm d = mt

For a proof of this see ([5],pg.113).

The non-associativity of the octonions leads to a slight problem concerning prime

factorisations modelled on a factorisation of the norm. We saw before that if a

quaternion has norm 315, then there are twelve possible factorisations due to the

lack of commutativity. In the integral octonions the problem is worse as for each
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factorisation we have

315 = ((3.3)5)7 = (3(3.5))7 = ...

But the theory of unit-migration also doesn’t work as

au.u−1b

is not necessarily equal to ab. If a change affects two adjacent factors it will be called

meta-migration since it is similar to the unit-migration of the Hurwitz integers.

The number of factorisations au.b′ based on ab is equal to the number of units

and the set of left divisors is similar to the set of units so we get the following

Theorem 3.22

The number of factorisations of a primitive integral octonion Q = ((P1P2)(P3...))Pk

modelled on a given factorisation of the norm is 240k−1. Also, if we fix all but two

of the factors, then the sets of possible values for them is similar to the of the 240

units.

In the case where Q is not primitive we get a result similar to the one which

holds for the Hurwitz integers.

Theorem 3.23

An integral octonion of norm pn1

1 p
n2

2 ...p
nk

k which is divisible by pm1

1 pm2

2 ...pmk

k has

240n−1
∏

i

Cni,mi
(p3
i )

prime factorisations on a model with n = n1 + ...+ nk.
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Proof. The proof is very similar to the proof in the quaternion case. However, unit-

migration does not work here so the 240 factors must be counted as they occur. We

replace p with p3 as there are 240(p3 +1) integral octonions of norm p ([5],pg.113).�

So we have developed the theory of arithmetics in both the quaternions and the

octonions and developed a theory of prime factorisations. The integral octonions

will be used in our next chapter when we need to work modulo 2 in order to obtain

the group G2(2).
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Chapter 4

Groups Associated with The

Octonions

In this chapter we will look at some of the groups that the octonions yield. The

automorphism group of the octonions turns out to be a 14-dimensional Lie group

known as G2. We give a sketch of its construction via a double cover of the special

orthogonal group in 8-dimensions using some the properties of isotopies. We then

move on to reading the octonions over the field Fq for q = pn where p is an odd prime

and n > 2. We then examine the case where q = 3 and determine some generators

for the group as well as showing the outer automorphism. For the case where the

field has order 2 we will use the E8 lattice to determine generators for the group.

4.1 The Automorphism Group of O

We begin by working out the automorphism group of the octonions via the group

SO(8) which is the group of all orientation preserving isometries, rotations, in 8-

dimensions. We will need a few results on isotopies, monotopies and their compan-

ions before we start.
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Definition 4.1

An isotopy of a loop is a triple of invertible maps (α, β|γ) such that if we have

xy = z, then

xαyβ = zγ .

A single map in an isotopy is called a monotopy.

We can rewrite isotopies in the form (α, β, γ) and then we take the definition to

mean

xαyβzγ = 1

when xyz = 1. After Conway [5] we call an isotopy of the first type a duplex and

of the second type a triplex.

If we choose γ to be a monotopy, then there exists two maps α and β with

xy = z ⇒ xαyβ = zγ . This equation implies that

xα1β = xγ ⇒ xα = xγ(1β)−1 = xγb

and

1αyβ = yγ ⇒ yβ = (1α)−1yγ = ayγ

where a and b are the images of 1 under the respective maps.

So we get that if γ is a monotopy, then there exists elements a, b in our loop for

which if xy = z then

(xy)γ = xγb.ayγ.

Definition 4.2

The elements of the loop a, b described above are called companions of the mono-

topy γ.
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Isotopies are in some way similar to automorphisms and indeed if a monotopy

has companions a = b = 1, then it is an automorphism.

With this in place, we are now ready to begin our study of the automorphisms

of the octonions. We begin by looking at how strongly the octonions fail to be

associative.

Lemma 4.3

If r ∈ O is such that

x(ry) = (xr)y

for all x, y, then r is real.

Proof. For all k we have (ikik−1)ik+1 = −ik(ik−1ik+1) by [6]. So taking k = 1 we

get that if (i1r)i2 = i1(ri2), then the coefficient of i0 in r must be zero. As we let k

cycle through 0, ..., 6, we get that the coefficient of ik must be 0 for all k. Hence r is

real. �

Theorem 4.4

If a, b are companions for the monotopy γ, any other pair of companions for γ will

be of the form ar, r−1b for some real number r.

Proof. If we choose two other companions A,B, then we must have

xγa.byγ = xγA.Byγ

for all x, y. Taking xγ = X and yγ = Y, we get

Xa.bY = XA.BY

for all X,Y. Setting A = ar, X = a−1 and Y = 1 we get that b = rB or equivalently
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r−1b = B. Our identity now becomes

Xa.bY = X(ar).(r−1b)Y

for all X,Y. If we let Y = (r−1b)−1 = b−1r we get that (Xa)r = X(ar) and if we let

X = (ar)−1 = r−1a−1, we see r−1(bY ) = (r−1b)Y. Now, we can put

Xa.bY = (Xa)r.r−1(bY )

and then substituting x for Xa and ry for bY yields

x(ry) = (xr)y

and since this holds for all x, y, by our previous lemma r is real. �

Since the octonions are non-associative it makes sense to study the multiplica-

tions

Lx : a 7→ xa Rx : a 7→ ax Bx : a 7→ xax.

Since the octonions are alternative x(ax) = (xa)x, the map Bx is well-defined and

we have

aLxRx = (xa)x = aBx = x(ax) = aRxLx .

In our proof that the composition algebras satisfy the Moufang identities in Chapter

1, we had the identity (written here in a slightly different form),

(xy)(zx) = 2〈x, yz〉x−N(x)yz.
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Then as a reflection in x is given by

refx : a 7→ a− 2〈x, a〉
N(x)

x

we see that

(xy)(zx) = −N(x)(yz)refx = N(x)(yz)ref1refx .

We conclude that bimultiplication by x, Bx, is just a scalar multiple of ref1refx.

This leads us to the following lemma;

Lemma 4.5

The operations ref1.refa and refa.ref1 can be obtained from bimultiplication by unit

octonions.

Proof. The reflections are unaffected by scaling and so we can take N(a) = 1. The

expression ref1refa is then as defined above and the second reflection is just the

inverse of the first Ba−1 = Ba. �

Theorem 4.6

If γ is an element of SO(8), there exist α, β in SO(8) such that (α, β|γ) is an isotopy

(hence γ is a monotopy). Further, α, β are unique up to sign.

Proof. Since γ is an element of SO(8), it is a rotation and as such can be generated

by an even number of reflections [11]. So let

γ = refa1
refb1refa2

refb2 ...refa2k
refb2k

.

We have that

refan
refbn = refan

ref1ref1refbn
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is the product of two bimultiplications by the previous lemma. Hence, we can write

γ as the product of 2n unit bimultiplications. Call these Bmi
for i = 1, ..., 2k. Then

the isotopy (α, β|γ) can be written as

(Lm1
Lm2

..., Rm1
Rm2

...|Bm1
Bm2

...)

which is the isotopy we are looking for. As the mi are unit octonions α and β

are in SO(8). They are also unique up to scalar multiplication but the only non-

trivial scalar that keeps them in SO(8) is −1. So we can conclude that (α, β|γ) =

(−α,−β|γ) and we are done. �

In what follows it will be more convenient to use the triplex form of an isotopy.

The triplex (α, β, γ) therefore represents the isotopy of the form (LaLb..., RaRb..., BaBb...).

Definition 4.7

An isotopy (α, β, γ) will be called orthogonal if the three monotopies in it are

elements of SO(8).

Our previous work has shown that the orthogonal isotopies form a double cover

of SO(8). This group is known as Spin8 and it contains the automorphism group of

the octonions. The relationship between the groups is seen through the map

(±α,±β, γ) 7→ γ.

The seven dimensional spin group Spin7 is the preimage of SO(7) in Spin8 under

this map. Hence the triples (α, β, γ) such that γ fixes the identity will form a copy

of Spin7. If, on the other hand, we had chosen the α or β which fix the identity, we

would have other copies of Spin7.
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Theorem 4.8

The intersection of any two copies of the above Spin7 groups is in fact the intersec-

tion of all three and, moreover, it is the group of automorphisms of the octonions.

Proof. If (α, β, γ) is an isotopy, we can apply it to the equation 1× 1× 1 = 1 to get

1α × 1β × 1γ = 1.

This shows that if two of the monotopies fix 1, then they all do. Hence the intersec-

tion of any two copies of Spin7 is the intersection of all three. If a, b are companions

of γ, then

α = γRa and β = γLb

which implies that a = b = 1. So γ must be an isomorphism. �

This group is called G2 and is a 14-dimensional Lie group. According to Baez

[2] it was Elie Cartan in [3] in 1914 who first showed the isomorphism between

Aut(O) and G2 however, here we just take it as a definition. Now that we have

a description of the automorphism group over the real numbers, we look to find

out about the group G2(q) over fields of finite characteristic. If our field has odd

characteristic, then we can read the octonions in their usual basis. However, in

fields of characteristic 2 we will have to study the automorphisms of the Integral

Octonions and the E8 root lattice which can be read modulo 2.

4.2 The Monomial Subgroup

Before we begin our study of the full automorphism group of the octonions in odd

characteristic, we observe some symmetries of the multiplication table. These auto-

morphism will form a group which will be called the monomial subgroup. We recall

the table of the octonions given in Chapter 1.
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1 i0 i1 i2 i3 i4 i5 i6

i0 −1 i3 i6 −i1 i5 −i4 −i2
i1 −i3 −1 i4 i0 −i2 i6 −i5
i2 −i6 −i4 −1 i5 i1 −i3 i0

i3 i1 −i0 −i5 −1 i6 i2 −i4
i4 −i5 i2 −i1 −i6 −1 i0 i3

i5 i4 −i6 i3 −i2 −i0 −1 i1

i6 i2 i5 −i0 i4 −i3 −i1 −1

There are some symmetries of this table, namely

ik 7→ ik+1

and

ik 7→ i2k.

The second of these is the natural extension of the automorphism

i 7→ j 7→ k 7→ i

of the quaternions. There is another automorphim

(i0, i1, ..., i6) 7→ (i0, i2, i1, i6,−i4,−i5, i3)

which is an extension of i↔ j, k 7→ −k with i1 = i, i2 = j and i4 = k.

If we work modulo signs, from Figure 1.1 the permutations

(0 1 2 3 4 5 6) (1 2 4)(3 6 5) (1 2)(3 6)
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generate the full automorphism group of the plane, which is known to be PSL3(2).

So there exists a homomorphism from the symmetry group onto PSL3(2). However,

the signs of i0, i1 and i2 can be altered and these will then determine the signs of all

the elements. So, the homomorphim has a kernel 23 and the full symmetry group

of the multiplication is 23PSL3(2).

4.3 G2(q)

In this section we will describe how the automorphism group of the octonions, when

read over a field of odd characteristic, behaves and use this information to compute

a formula for its order. We follow the work of [15].

We start this section by examining the group of automorphisms when we read

O over a field K of size q = pn for p an odd prime. We will call this O(q). The

automorphisms of O(q) must preserve 1 and so live inside GO7(q) as it acts on the

orthogonal 7-space. However, since it must preserve the norm, which is multiplica-

tive, we have that it is in fact an element of SO7(q). The multiplication in O(q) is

completely determined by the vectors i0, i1 and i2 since i0i1 = i3 and in = i2im for

n ∈ {4, 5, 6} and m ∈ {0, 1, 3} modulo signs. So if we know the image of these three

vectors, then we know the whole multiplication table. This group is the natural

analogue of G2 over a finite field and we shall denote it G2(q).

We now wish to calculate the order of G2(q) for q a power of an odd prime. If i

is any purely imaginary unit octonion of norm 1, then we get

i2 = −ii = −N(i) = −1.
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If, further, we have that

i =
6∑

t=0

λtit and j =
6∑

t=0

µtit

are any two mutually orthogonal purely imaginary unit octonions, then when we

multiply them every term imin must anti-commute for m 6= n and if m = n then

the terms imim must sum to 0, for all m. Hence we get that

ij = −ji.

If we now set k = ij and choose a new purely imaginary unit vector l orthogonal to

i, j and k, then when we expand (ij)l the terms λaµbνc(iaib)ic for which it is true

that (iaib)ic = ia(ibic) correspond to the real parts of ij, jl, il or kl and all of these

terms sum to 0. We conclude that

(ij)l = −i(jl).

The multiplicativity of the norm, N(xy) = N(x)N(y), shows that multiplication by

a unit octonion is an orthogonal map and so the set

{1, i, j, l, k, il, jl, kl}

is an orthonormal basis for O(q).

To compute the size of G2(q) we need only count the number of triples {i, j, l}

that behave as above. Since i can be any purely imaginary unit octonion, we get

|SO7(q)|/|SOε
6(q)| = q6 + εq3 = q3(q3 + ε)
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where ε = ±1 satisfies ε ≡ q mod 4. This corresponds to whether or not the bilinear

form has a totally isotropic subspace of dimension 3. We now have that j can be

any purely imaginary unit vector of the

q5 − εq2 = q2(q3 − ε)

such vectors in the orthogonal 6-space of type ε. The last vector l can be any of the

unit vectors in the remaining 4-space of plus type spanned by l, il, jl, kl. There are

q3 − q of these and so the order of G2(q) is given by

|G2(q)| = q3(q3 + ε)q2(q3 − ε)q(q2 − 1) = q6(q6 − 1)(q2 − 1).

This result puts us in a strong position to search for generating matrices for the

groups G2(q). We do this in the case q = 3.

4.4 G2(3)

In this section we aim to find generating matrices for the group G2(3) in terms of

the work we have done before. The group has order 36(36 − 1)(32 − 1) = 4, 245, 696.

We have seen that the octonions have the automorphism

α : it 7→ it+1
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and this gives us a 7 × 7-matrix

a =





0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0





.

We find another automorphism by fixing the quaternion subalgebra spanned by i0, i1

and i3 and then sending i2 to another unit octonion orthogonal to those three. We

choose

e : i2 7→ i2 + i4 + i5 + i6

remembering that we are working over K = F3. We know that i4 = i1i2 and our

automorphism β must preserve this so we get that

β(i4) = β(i1i2) = β(i1)β(i2) = i1(i2 + i4 + i5 + i6) = (i4 − i2 + i6 − i5).

Similarly,

β(i5) = β(i2i3) = i5 − i6 − i2 + i4

and

β(i6) = β(i0i2) = i6 + i5 − i4 − i2.
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Putting this into a matrix we get

b =





1 0 0 0 0 0 0

0 1 0 1 1 1 0

0 0 1 0 0 0 0

0 2 0 1 2 1 0

0 2 0 1 1 2 0

0 2 0 2 1 1 0

0 0 0 0 0 0 1





.

In fact using Magma,

> am:=Matrix(GF(3),7,[0,1,0,0,0,0,0,

> 0,0,1,0,0,0,0,

> 0,0,0,1,0,0,0,

> 0,0,0,0,1,0,0,

> 0,0,0,0,0,1,0,

> 0,0,0,0,0,0,1,

> 1,0,0,0,0,0,0]);

> bm:=Matrix(GF(3),7,[1,0,0,0,0,0,0,

> 0,1,0,1,1,1,0,

> 0,0,1,0,0,0,0,

> 0,2,0,1,2,1,0,

> 0,2,0,1,1,2,0,

> 0,2,0,2,1,1,0,

> 0,0,0,0,0,0,1]);

> AB:=MatrixGroup<7,GF(3)|am,bm>;

> ‘hash’AB;
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4245696

we can see that the two matrices A and B are enough to generate the whole of

G2(3).

4.5 The Outer Automorphism of G2(3)

The group G2(3) has an outer automorphism [15], which does not occur in other

characteristics. In this section we construct this outer automorphism using an exte-

rior square. Using this we can define a factor space which defines a linear map from

the standard octonion basis to the factor space which is the automorphism we seek.

We begin by constructing the exterior square, so for the basis vectors {in |n ∈ F7}

of the octonions define

in ∧ im = in ⊗ im − im ⊗ in = −im ∧ in.

Then the exterior square is the set with basis {in ∧ im |n < m} which is a 21-

dimensional subspace of the tensor product O ⊗ O. Inside this space there is an

7-space spanned by

v1 = i1 ∧ i3 + i2 ∧ i6 + i4 ∧ i5

and its images under the mapping ik 7→ ik+1. We call this subspace W. Looking at

the images of these vectors under our generators A and B of our group, we see that

A leaves it invariant by construction. For the matrix B on the first element of the

basis i1 ∧ i3 + i2 ∧ i6 + i4 ∧ i5, we see that i1 ∧ i3 is fixed and we get

B(v1) = i1 ∧ i3 + 4(i2 ∧ i6 + i4 ∧ i5)
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but since we are working modulo 3, the matrix B fixes this vector. Similar calcu-

lations for the other basis elements show that the whole space is invariant under

G2(3). Working modulo W there is another invariant 7-space. This space exists in

characteristic 3 since the exterior square of the G2(3)-module has three composition

factors of dimension 7. This can be seen in the Magma calculation

> print "Group G is G2(3) < GL(7,GF(3))";

Group G is G2(3) < GL(7,GF(3))

> V:=GModule(G);

> V;

GModule V of dimension 7 over GF(3)

> W:=ExteriorSquare(V);

> W;

GModule W of dimension 21 over GF(3)

> CompositionFactors(W);

GModule of dimension 7 over GF(3),

GModule of dimension 7 over GF(3),

GModule of dimension 7 over GF(3).

In other characteristics there is only the one 7-dimensional composition factor. Our

new space V ∗ is spanned by the vectors

i∗t = it+1 ∧ it+3 − it+2 ∧ it+6 +W.

The automorphism is induced by the map

∗ : it 7→ i∗t .
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Proposition 4.9

The map

∗ : it 7→ i∗t

induces an outer automorphism of G2(3).

Proof. The map ∗ commutes with the permutations (1 2 3 4 5 6 0) and (1 2 4)(3 6 5)

by construction. And it also commutes with the map that negates i0, i3, i5 and i6.

Then the map

(i0, ..., i6) 7→ (i0,−i1, i4,−i3, i2, i6, i5)

takes

(i∗0, ..., i
∗
6) 7→ (i∗0,−i∗1, i∗4,−i∗3, i∗2, i∗6, i∗5)

so that it is an outer automorphism of the monomial subgroup 23PGL3(2). How-

ever, this group is the automorphism group of the multiplication table and G2(3)

is the automorphism group of the octonion multiplication so we can conclude that

∗ induces an outer automorphism of G2(3). This can be seen by sending g ∈ G to

ĝ ∈ G by setting

(ĝ(v))∗ = g(v∗).

We end this chapter with a look at the group G2(2). This cannot be done in the

usual manner as −1 = 1. Instead we must consider a scaled copy of the E8 root

lattice and the integral octonions. In such a manner we can read these modulo 2 to

obtain the results we need.

4.6 G2(2)

To obtain the group G2(2) we will need to take the Integral octonions modulo 2. In

his book Wilson [15] puts an octonion multiplication on to the E8 lattice. We will
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Figure 4.1: E8 Dynkin Diagram

use his construction to obtain generating matrices for the group G2(2) which can be

thought of as the automorphism group of the Integral Octonions modulo 2. Wilson

attaches the fundamental roots

where

e1 = −i5 e2 = 1
2
(−i2 − i4 + i5 + i6)

e3 = −i6 e4 = 1
2
(i0 − i3 − i4 + i6)

e5 = −i0 e6 = 1
2
(−1 + i0 + i1 + i3)

e7 = 1 = i∞ e8 = 1
2
(i0 + i1 + i2 + i4)

We reduce this lattice modulo 2. As such we define two vectors to be congruent

mod 2 if their difference is twice a vector. Following that we wish to write our usual

8-dimensional basis {1, i0, i1, i2, i3, i4, i5, i6} in terms of these coordinates modulo 2.

We see immediately that

i5 = (1, 0, 0, 0, 0, 0, 0, 0); i6 = (0, 0, 1, 0, 0, 0, 0, 0);

1 = i∞ = (0, 0, 0, 0, 0, 0, 1, 0); i0 = (0, 0, 0, 0, 1, 0, 0, 0);

We now need to calculate the remaining ik for k = 1, 2, 3, 4 remembering that we

are working modulo 2. For i1 we get that

i1 − (i0 + i5 + i6) = −(i0 − i1 + i5 + i6) = 2(
1

2
(i0 + i1 + i2 + i4)+

1

2
(−i2 − i4 + i5 + i6))
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So the difference is twice an integral octonion and so i1 is congruent to i0 + i5 + i6

modulo 2 in the lattice. So we get that the point i1 is the vector e1 + e3 + e5 given

by

i1 = (1, 0, 1, 0, 1, 0, 0, 0).

For i2 we see that

i2 − (1 + i0 + i6) = 2(
1

2
(−1 − i0 + i2 − i6))

which is the double of

1

2
(i0 + i1 + i2 + i4) +

1

2
(i0 − i3 − i4 + i6) +

1

2
(−1 + i0 + i1 + i3)

modulo 2 and so i2 has coordinates e7 + e5 + e3 which is

i2 = (0, 0, 1, 0, 1, 0, 1, 0).

Similar calculations yield

i3 = (1, 0, 1, 0, 0, 0, 1, 0) and i4 = (1, 0, 0, 0, 1, 0, 1, 0).

So we have all our original basis vectors in terms of the E8 lattice modulo 2. Again

Wilson [15] gives us some automorphisms of the Integral Octonions. We quote them

here.
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α :i0 7→ i6 7→ i2 7→ i0

i1 7→
1

2
(i1 + i3 − i4 + i5)

i3 7→
1

2
(−i1 + i3 + i4 + i5)

i4 7→
1

2
(i1 − i3 + i4 + i5)

i5 7→
1

2
(−i1 − i3 − i4 + i5)

β : it 7→ it+1

and

γ : (i0, i1, i2, i3, i4, i5, i6) 7→ (−i0,−i1, i6, i3, i5, i4, i2).

Using these automorphisms we want to find matrices that generate the group

G2(2). Before we begin we give a list of some precalculated vectors which has come

to bear the name the dictionary;

0124 = (0, 0, 0, 0, 0, 0, 0, 1) ∞365 = (0, 1, 1, 0, 0, 1, 0, 1)

023 5 = (0, 1, 0, 1, 0, 0, 0, 0) ∞146 = (0, 0, 0, 1, 1, 1, 0, 0)

03 46 = (0, 0, 0, 1, 0, 0, 0, 0) ∞125 = (0, 1, 0, 1, 1, 1, 0, 0)

045∞ = (0, 1, 0, 1, 1, 1, 0, 1) 1236 = (0, 0, 0, 1, 1, 0, 0, 1)

0561 = (0, 1, 0, 0, 0, 0, 0, 1) ∞234 = (0, 0, 0, 0, 0, 1, 0, 1)

06∞2 = (1, 0, 1, 1, 0, 1, 0, 1) 13 45 = (0, 1, 1, 1, 1, 0, 0, 1)

0∞13 = (0, 0, 0, 0, 0, 1, 0, 0) 2 456 = (0, 1, 0, 0, 0, 0, 0, 0),

where here the four numbers abcd represent the integral octonion 1
2
(ia + ib + ic + id)

and the bars denote negation. We then use the dictionary to compute the images

77



of the ek We begin with the automorphism α. We have that

α : e1 = i5 7→
1

2
(−i1 − i3 − i4 + i5)

which we write as 13 45. Then using the dictionary we have

13 45 = 1 3 45 + i1

= (0, 1, 1, 1, 1, 0, 0, 1) = (1, 0, 1, 0, 1, 0, 0, 0)

= (1, 1, 0, 1, 0, 0, 0, 1).

Next we have

α : e2 = 2 456 7→ 1

2
(−i0 + i2 + 1/2(−i1 + i3 − i4 − i5) + 1/2(−i1 − i3 − i4 + i5))

=
1

2
(−i0 − i1 − i4 + i2)

which is 0 1 42. We have 0 1 42 = 0124 + i0 + i1 + i4 = (0, 0, 1, 0, 1, 0, 1, 1) Similarly,

α : e3 7→ (0, 0, 1, 0, 1, 0, 1, 0)

α : e4 7→ (0, 0, 1, 0, 0, 0, 0, 0)

α : e5 7→ (1, 1, 1, 0, 0, 1, 0, 1)

α : e6 7→ (0, 0, 0, 0, 0, 0, 1, 0)

α : e0 7→ (0, 1, 0, 0, 0, 0, 0, 1).

This yields the matrix
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A =





1 1 0 1 0 0 0 1

0 0 1 0 1 0 1 1

0 0 1 0 1 0 1 0

1 1 1 0 1 0 1 0

0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 1

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1





Carrying out these calculations for β and γ gives us, respectively, the matrices

B and C which are

B =





1 0 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 0 0 0 0

1 1 0 0 1 0 0 1

0 0 0 0 1 0 0 0

1 0 1 1 0 1 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




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C =





1 0 0 0 1 0 1 0

0 1 0 0 0 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 0 0 0

0 0 0 0 1 0 0 0

1 0 1 0 0 1 0 0

0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1





.

Putting these matrices into Magma,

> am:=MatrixGroup<8,GF(2)|A>;

> ‘hash’am;

6

> bm:=MatrixGroup<8,GF(2)|B>;

> ‘hash’bm;

3

> cm:=MatrixGroup<8,GF(2)|C>;

> ‘hash’C;

2

> G22:=MatrixGroup<8,GF(2)|A,B,C>;

> ‘hash’G22;

12096

shows us that all three matrices together generate the group G2(2). However, the

group is not perfect and G2(2)′ ∼= U3(3) Using the Atlas [4] and Magma

> U33:=MatrixGroup<8,GF(2)|A,B>;

> ‘hash’U33;
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6048

we see that the simple group U3(3) ∼= G′
2(2) is generated by the matrices A and B.

So we have found generators for both G2(3) and G2(2) and described some of

the symmetries of the octonions as well as the symmetries of one of the groups. The

last chapter gives an example of how physicists are using the octonions to describe

what is happening in higher dimensions.
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Chapter 5

The Division Algebras and

Higher Dimensional Spacetime

In this chapter we look at how the octonions are being used in physics to describe

a 10-dimensional spacetime system and the rotations involved. The work presented

here comes from [10].

In the theory of special relativity two observers moving at different speeds will

have different measures of both space and time and could even see the events in

different orders. Each observer will have his own frame of reference and a Lorentz

transformation will map the observations in one frame to the other. If space is

considered to be homogenous, the same everywhere, the Lorentz transformations

are just linear transformations.

By the laws of relativity the speed of light is constant for all observers and

a Lorentz transformation must take into account not only the Euclidean distance

between two events but also the time interval. This is summed up as defining the

spacetime distance s between two events to satisfy

s2 = ∆r2 − c2∆t2
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with c the speed of light and ∆r and ∆t the differences in space and time, respec-

tively. Special relativity is set in Minkowski spacetime which has four dimensions;

the three usual space dimensions, up-down, left-right and forwards-backwards but it

also has one timelike dimension. In this way Minkowski spacetime is a four dimen-

sional manifold. The Lorentz transformations are those transformations which leave

the origin fixed and so are considered as rotations of Minkowski space. The full set

of symmetries of Minkowski spacetime, including the translations, is the Poincaré

group.

A vector in Minkowski spacetime is given by

x =





t

x

y

z





where x, y, z are the three spacelike coordinates and t is the timelike coordinate.

The vector x can be written in matrix form as

X =




t+ z x− iy

x+ iy t− z



 .

This matrix is Hermitian in the sense that

X = X†

with X† the conjugate-transpose of X. Any complex Hermitian 2 × 2 matrix has

four real independent components as the diagonal entries must be real and the off

diagonals must be conjugates of each other.
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The squared length of a vector x in spacetime is defined as

|x|2 = x2 + y2 + z2 − t2

with the speed of light defined to be 1. Here we will only consider those transforma-

tions which preserve the relative orientation of the axes, the rotations, which is the

Lorentz group SO(3, 1) where the one tells us about the minus sign in the squared

length. The pair (3,1) is called the signature of the symmetric bilinear form. Now

Lorentz transformations must preserve this squared length so how can we determine

these in terms of X?

The given definition of X has the property that

−det(X) = |x|2

so we need to find those transformations which preserve determinants. Since

det(XY ) = det(X)det(Y )

we could multiply X on either side by a matrix, Y say, of determinant 1. However,

this raises two problems. The first is how to ensure that the product XY is still

Hermitian and the bigger problem that over the quaternions and octonions the

determinant does not retain its multiplicative property.

To solve the first problem instead of using multiplication, we can ‘conjugate’ X

by a matrix M as

X 7→MXM †.

Using the fact that

(XY )† = Y †X†
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we have that MXM † is Hermitian if, and only if, X is. Hence our problem reduces

to finding the complex matrices such that

det(MXM †) = det(M)det(X)det(M †) = det(X)

or equivalently

det(MM †) = det(M)det(M †) = 1.

We have the relation

det(M †) = det(M)

and we reduce our problem to finding the complex matrices M that satisfy

|det(M)| = 1.

Over C we can just select those matrices of determinant 1 as M can be multiplied

by a complex phase, eiθ, without affecting anything else. So we have that the set

of all complex 2 × 2 matrices of determinant 1, which is known as SL(2,C), maps

surjectively onto the Lorentz group SO(3, 1). The kernel of this mapping is {±1}

and so we see that SL(2,C) is in fact the double cover of SO(3, 1).

We now examine the effect of a Lorentz transformation on our 4-dimensional

Minkowski spacetime. The first things we look for are the spatial rotations, rotations

in the xy, xz and yz planes. By taking the matrix

Rz =




e−iθ 0

0 eiθ




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the mapping X 7→ RzXR
†
z becomes

(RzX)R†
z =




e−iθ(t+ z) e−iθ(x− iy)

eiθ(x+ iy) eiθ(t− z)








eiθ 0

0 e−iθ





=




t+ z e−i2θ(x− iy)

ei2θ(x+ iy) t− z



 .

So the transformation preserves the tz-plane and rotates the xy-plane through an

angle 2θ in the positive direction. In the same way, the matrices

Rx =




cos θ −i sin θ

−i sin θ cos θ



 Ry =




cos θ − sin θ

sin θ cos θ





correspond to rotations through 2θ in the yz and xz planes, respectively. Any spatial

rotation can be generated by these.

A rotation of the time axis t is known as a boost. Geometrically a boost preserves

area but is not necessarily Euclidean and is therefore a hyperbolic rotation. In the

zt-plane boosts look like

Bz =




eφ 0

0 e−φ



 .

If we have X ′ = BzXB
†
z, then by multiplying out and comparing the coordinates

we get

t′ = t cosh 2φ+ z sinh 2φ

x′ = x

y′ = y

z′ = t sinh 2φ+ z cosh 2φ
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which corresponds to a boost in the the zt-plane by 2φ. Boosts in the xt and yt

planes are given by

Bx =




coshφ sinhφ

sinhφ coshφ



 By =




coshφ −i sinhφ

i sinhφ coshφ





respectively.

Since all rotations can be obatined by rotations in each plane, we have obtained

a complete list of the matrices which generate all spatial rotations and boosts in 4-

dimensional spacetime. We now proceed to see what happens over the other division

algbras. If we replace x+ iy by an element a in a real division algebra A, we get

X =




t+ z a

a t− z





with a the conjugate of a. The element a has either one, two, four or eight compo-

nents and so each corresponds to a spacetime vector x of dimension three, four, six

or ten, respectively. The negative of the determinant still gives the Lorentzian norm

−det(X) = |x|2.

There are no problems with the determinant even in the Octonion case as here the

components can be seen to lie in a complex subalgebra. We therefore still want

transformations of the form

X 7→MXM †

that preserve determinants. It is here that we hit upon some problems. In the

quaternion case the multiplicativity of the determinant is lost and it is not clear
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how to define the determinant for non-Hermitian matrices. This problem can be

rectified by the identity

det(MXM †) = det(M †M)det(X).

So our problem reduces to that of finding quaternionic matrices M which satisfy

det(M †M) = 1.

In the octonion case things are even worse as due to the lack of associativity the

map

X 7→MXM †

is not well-defined nor can we know if MXM † is Hermitian. The solution is rather

ad hoc as we select only those matrices for which the expression is well-defined! It

is enough to take the coefficients as lying in a complex subalgebra of O. In this case

the mapping

X 7→MXM †

involves only two directions and is therefore quaternionic. So the identity

det(MXM †) = det(M †M)det(X)

holds.

We now wish to generalise the rotations we obtained earlier. The matrix Ry still

gives a rotation in the plane defined by the real part of a and z. Bz and Bx still

give boosts in the z and x directions. By also still gives a boost in the y direction

and swapping i (which is equal to i0 in the octonions) with j or k (or the other ik
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in the octonions) we get all the spatial directions. Similarly, Rx and Rz now rotate

in the plane defined by the real part of a or z with i (or i0) and making the correct

replacements yields all the spatial rotations.

So for each division algebra we have all the boosts and spatial rotations except

those involving two imaginary directions. However in H the jk-plane can be rotated

for some element a by conjugating with eiθ. The same holds here. Conjugating X

by

Ri =




eiθ 0

0 e−iθ





will leave the diagonal of X untouched because it is real and rotate a by 2θ in the

jk-plane. Replacing i by j or k to get Rj and Rk, will rotate the other planes.

Over the octonions things are a little harder. If we choose a ∈ O and write a =

z∞ + z1i0 + z2i1 + z3i3 with each zt lying in the complex subalgebra R(i2), then

conjugating by ei2θ yields

ei2θae−i2θ = ei2θz∞e
−i2θ + ei2θz1i0e

−i2θ + ei2θz2i1e
−i2θ + ei2θz3i3e

−i2θ

= z∞ + z1e
2i2θi0 + z2e

2i2θi1 + z3e
2i2θi3

and this corresponds to a rotation of three planes at once. However we can solve

this problem by the mapping

X 7→ (i0 cos θ + i1 sin θ)i0Xi0(i0 cos θ + i1 sin θ)

which is called a flip and is a rotation through 2θ in the i0i1-plane.

We have found forms for the generators of the Lorentz transformations in three,

four, six and ten dimensions. Moreover, we have also shown that the groups

SL(2,R), SL(2,C), SL(2,H) and SL(2,O) map onto the groups SO(2, 1), SO(3, 1),
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SO(5, 1) and SO(9, 1) respectively. In fact they are the double covers. We note fi-

nally that care should be taken as the determinant is not well-defined over H and

so we require that det(M †M) = 1 for SL(2,H). For the octonions we require that

for SL(2,O) the elements are those for which X 7→ MXM † is well-defined. As O

is not associative, we cannot just define the group action in SL(2,O) to be matrix

multiplication and instead define it to be

(M1 ◦M2)X = M1(M2XM
†
2)M

†
1

where ◦ represents the group operation.

The modern physical theory of supersymmetry requires spacetime to be 10 di-

mensional. The octonions, as we have seen, reduce the problem of working with

10 × 10-matrices to describe rotations in all planes to the case of 2 × 2-matrices.

This is only one of the ways the octonions are being used in physics.
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