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Abstract

Gravitational wave detectors are a new class of observatories with the aim of detect-

ing gravitational waves from cosmic sources. All-reflective interferometer configu-

rations have been proposed for the next generation of gravitational wave detectors,

with conventional transmissive optics replaced by diffractive elements, thereby re-

ducing thermal issues associated with power absorption. However, diffraction grat-

ings introduce an additional phase noise which creates more stringent conditions for

alignment stability. In order to determine whether all-reflective interferometers are

a viable alternative, further investigations are required.

A suitable mathematical framework using Gaussian modes is required for analysing

the alignment stability using diffraction gratings. Such a framework was successfully

created, whereby small displacements of the beam (or grating) are modelled using

a modal decomposition technique. It was confirmed that the original modal-based

model does not contain the phase changes associated with grating displacements.

Experimental tests were carried out to measure the phase of beams diffracted by a

grating, verifying that the phase of a diffracted Gaussian beam is in fact independent

of the beam shape. Phase effects from grating diffraction were further examined

using a rigorous time-domain simulation tool.

The findings from the research presented here show that the perceived phase differ-

ence is based on an intrinsic change of coordinate system within the modal-based

model, and that the extra phase can be added manually to the modal expansion.

This thesis provides a well-tested and detailed mathematical framework that can

be used to develop simulation codes to model more complex layouts of all-reflective

interferometers with diffractive components.
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Statement of originality

This thesis presents research work carried out at the University of Birmingham

between October 2005 and May 2013.

Chapter 1 provides an introduction to the subject of gravitational wave detection

and includes a brief overview of gravitational waves and their sources, the concept of

interferometric detection and the noise sources which limit the sensitivity of current

detectors. This chapter proceeds to a discussion of thermal effects due to power

absorption in optical elements, followed by a description of diffraction gratings and

associated phase effects in Gaussian beams.

Chapter 2 describes an analytical framework which is used to examine the phase

changes in a displaced Gaussian beam after grating diffraction. Two methods of

displacement are considered: firstly through a geometric beam displacement, and

secondly a modal technique by adding a higher-order mode. The absence of the

intrinsic phase factor from the analytical model is also confirmed.

Chapter 3 details a table-top experiment designed to compare the interference pat-

terns between zero-order and first order modes, and thereby establish that the phase

of a beam after grating diffraction is independent of its beam shape.

Chapter 4 introduces a rigorous time-domain simulation tool developed by Daniel

Brown at the University of Birmingham. The simulation tool was used by me to

investigate the diffraction of Gaussian beams and compare phase measurements

of beams displaced geometrically or modally. The conditions required in order to

correctly obtain phase measurements which include the intrinsic phase factor are

also discussed.

Chapter 5 reports a concluding summary based on the research presented here.



The work described in Chapters 2-4 and the concluding results are presented in

D. Lodhia, F. Brückner, L. Carbone, P. Fulda, K. Kokeyama, and A. Freise, Phase

effects in gaussian beams on diffraction gratings, Journal of Physics: Conference

Series 363 012014 (2012), and

D. Lodhia, D. Brown, F. Brückner, L. Carbone, P. Fulda, K. Kokeyama, and A.

Freise, Phase effects due to beam misalignment on diffraction gratings, Optics Ex-

press (2013) (to be published).

Chapter 6 presents an outline of the research carried out as part of the Advanced

LIGO Suspensions Working Group, and in particular on the development and man-

ufacture of the BOSEM devices at the University of Birmingham. An overview of

the test mass suspension system and key features of the upgraded BOSEMs are

provided. This chapter also includes an evaluation of the flag mount tests, a report

on the preparation of the infra-red LEDs and photodiodes, and a description of the

testing procedures carried out on the part-assembled and fully-assembled BOSEMs.

Appendix A depicts the output of beam-shapes and lens properties using a mode-

matching tool for Gaussian beams, a measured profile of a collimated beam, and a

Matlab script used to determine new Gaussian beam parameters after diffraction by

a grating, as stated in Chapter 3.

Appendix B describes the concept of a feedback control system using the Pound-

Drever-Hall technique as detailed in [1].

Appendix C presents electronic schematics for the servo, which I fabricated and used

as part of the experiment.

Appendix D provides a computation to determine the waist size and waist position

of a Gaussian beam in the first-diffraction order using only the radius of curvature

and beam spot size parameters from a zeroth-diffration order.



Appendix E firstly illustrates a CAD drawing of the magnetic-mounted flag, an

improved feature in the design of the BOSEM. The second section conveys data

specifying the number of BOSEMs to be delivered by the University of Birmingham

for insallation in the Advanced LIGO detectors. The third section contains a script

which imports the BOSEM log files (created from the automated testing described in

Chapter 6) and converts them into spreadsheets. This script was primarily adopted

from [2].
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Chapter 1.

INTRODUCTION

The existence of gravitational waves (GWs) first emerged from Albert Einstein’s

theory of General Relativity (GR) in 1916 [3]. The changing gravitational field

around accelerating bodies generates gravitational radiation in the form of ripples

in the curvature of space-time. These gravitational waves travel at the speed of light

isotropically from their source. Despite being the weakest of the four fundamental

forces in nature, gravity offers an important advantage in that its long range allows it

to penetrate further than electromagnetic radiation. The interaction of gravitational

waves with matter is extremely weak, and so they retain much of the information

from their sources, unlike electromagnetic radiation. The detection of gravitational

waves would not only confirm GR, but also signify a new branch of gravitational

wave astronomy; the unique nature of GWs could open up an entirely new window

through which we can observe the universe, and in particular the very early universe.

Indirect observations, such as the findings by Hulse and Taylor in 1975 of a pulsar in

a binary system which was losing energy through gravitational radiation [4], provide

strong evidence of the existence of gravitational waves. However, a direct observation

1



Chapter 1. Introduction

has not been possible so far, and the difficulty lies in the fact that the interaction of

gravitational waves with matter is extraordinarily weak. While there has been an

overwhelming effort over the decades to develop increasingly sensitive gravitational

wave detectors and push the boundaries of science, the hunt for a direct detection

of gravitational waves still continues.

Section 1.1 presents an overview of the nature of gravitational waves and potential

sources. Section 1.2 describes the latest topology of a ground-based interferometric

gravitational wave detector and key features. The limiting noise sources affecting

the sensitivity of the instrument are considered in Section 1.3, while thermal effects

due to power absorption are examined in further detail in Section 1.4. In Section 1.5,

the topic of diffraction gratings is reviewed and their use in all-reflective configura-

tions for detectors. The concept of the intrinsic phase factor is introduced, used to

describe the phase changes a diffracted beam experiences due to beam misalignment

(for distances within a grating period), and previous efforts to reduce grating-related

phase noise. Lastly, the aims of the thesis are addressed - these include the develop-

ment of an analytical framework incorporating grating-related phase effects for use

in interferometry simulation tools and investigations into the missing intrinsic phase

factor from modal-based simulation techniques.

1.1. Theory of gravitational waves and their origin

1.1.1. Characteristics of gravitational waves

An object responds to a passing gravitational wave by alternating length perturba-

tions orthogonal to the direction of wave propagation. This effect is demonstrated

more clearly with a ring of free particles in Figure 1.1: when a GW travels along
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Figure 1.1.: A gravitational wave passing through a ring of free particles causes

the arrangement to stretch and squeeze alternately along the vertical

and horizontal for the h+ polarisation (red), and diagonally for the h×

polarisation (blue), during one period. The phase is also shown along

the bottom.

the z-axis (perpendicular to the plane of particles), spacetime is squeezed along the

x-direction and stretched in the y-direction during the first half of a gravitational

period. As the wave continues into the second half of the period and the phase

rotates by π, spacetime expands in the x-axis and contracts along the y-axis. The

overall result is an oscillatory motion in the arrangement of the particles.

Two polarisations exist for gravitational waves: plus polarisation, h+, and cross

polarisation, h×, and the distinction between the two is that the axes of motion in

the latter is rotated by 45◦, clearly seen in Figure 1.1. It is interesting to note that

the area bounded by the particles remains unchanged during the oscillations.

The strength of a gravitational wave is measured in terms of the strain, h, felt by
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the object it encounters [5]:

h =
2δL

L
, (1.1)

where L is the original length of the object and δL is the absolute change in length.

The measured strain of a gravitational wave diminishes as 1/r for a source at distance

r, and the strain expected from the strongest sources is generally of the order h =

10−21.1 An overview of these gravitational wave sources is given in the next section.

1.1.2. Fundamental sources

The fact that gravitational waves induce such a weak response means that our ef-

forts are concentrated on astrophysical sources which emit the strongest waves. The

single-sign nature of mass (which can only be positive) means that gravitational

waves are emitted as a result of its quadrupole moment, whereas dipole radiation

does not exist2 [7]. In other words, any accelerating body will radiate gravitational

waves, provided that the mass distribution is not spherically or cylindrically sym-

metric - this can include non-uniform spinning stars, binary systems and exploding

supernovae. Ground-based instruments aim to detect frequencies as low as 1 Hz up

to a few kilohertz [8]. Within this frequency range, the most promising astrophys-

ical sources for gravitational waves can be categorised into four types: continuous,

inspiral, burst and stochastic [9].

1Assuming an inspiral binary system of two neutron stars, where the stars are separated by 90 km,
have a combined mass of 2.8 M� and at a distance of 15 Mpc, at a frequency of 100 Hz [6].

2According to general relativity.
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Continuous wave sources

These are continuous gravitational waves with slowly evolving frequencies, origi-

nating from non-axisymmetric spinning neutron stars (pulsars) or a combination of

white dwarf, neutron star and black hole binary systems in orbit (before merging).

Although gravitational waves of this type are generated over a long period of time

and are subsequently weak, monitoring these signals for longer durations can allow

for improved signal-to-noise ratios [10].

Inspiral

Gravitational waves emitted from a binary system carry away energy, causing the two

compact objects to inspiral, and the faster they evolve, the higher the frequency and

strength of GW emission. Up until the moment of coalescence, the rising frequency

and amplitude of the GWs produce a ‘chirp’ signal, and it is during the final stage

of the merger that the GW frequencies lie within the range of detection. Due to

the characteristics of this waveform and the distribution of compact binaries in

the Universe, ground-based detectors are most likely to observe gravitational wave

signals from inspiral sources [10], with a predicted strain in the order of h = 10−23

[11].

Burst sources

Burst sources describe unexpected and abrupt releases of gravitational radiation.

These can occur in supernova explosions during non-symmetrical core collapse, and

possibly even gamma ray bursts. Gravitational waves from burst sources are un-

structured and therefore much more difficult to model and detect since they occur at
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random and for very short periods of time. The expected strain from these sources

could reach h = 5× 10−22 [11].

Stochastic sources

A cosmic background of stochastic gravitational radiation may exist as a remnant of

the Big Bang, analogous to the cosmic microwave background (CMB). This stochas-

tic background would also have contributions from a combination of continuous,

inspiral and burst sources resulting from unresolved astrophysical events. Due to

their weakly interacting nature with matter, any gravitational waves detected from

the stochastic background may provide clues about the nature of the early Universe,

some 10−34 seconds after the Big Bang, whereas the CMB was produced 300,000

years after the Big Bang [12]. Strains detected from stochastic sources are approxi-

mated to be h = 2.4× 10−25 [13].

The predicted levels of strain presented in this section give a sense of the immensely

tiny effects of gravitational waves, even for strong sources. In the next section we

present the concept of gravitational wave detectors and concentrate on the efforts

to optimise the design of ground-based instruments.

1.2. Gravitational wave detection

In order to improve the likelihood of observing gravitational waves, we require a suf-

ficiently large enough detector to better increase the signal - the longer the length

of the instrument, the larger the change in length will transpire according to Equa-

tion (1.1).
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Monochromatic laser light is the most suitable device to measure gravitational waves,

seeing as any physical measuring tool will itself experience the effects of stretching

and squeezing. Michelson interferometers are an ideal topology for gravitational

wave detectors as the L-shaped arms of the instrument maximises the compression

and expansion effects of a gravitational wave - the measurement of the relative

length of orthogonal arms is well-suited to the quadrupole nature of the waves. The

relative arm lengths can be measured, and any change may indicate the presence

of gravitational waves. Described here is an outline of the interferometer design,

however a more useful discussion can be found in Pitkin et al. [14].

1.2.1. Principles of interferometry

Figure 1.2 shows a simple laser Michelson interferometer which is an intrinsic part

of a gravitational wave detector. A laser beam with a fixed carrier frequency, ω0,

is split into two identical beams by a 50/50 beamsplitter (BS), each of which travel

along the interferometer arms of approximately equal length. The mirrors reflect

the beams back along the arms to meet and interfere at the beamsplitter, and any

interference signal is detected at the output by a photodetector (PD).

In the absence of gravitational waves and for arms of equal length, the interfering

beams cancel each other and no signal is observed. If a gravitational wave were to

pass through the detector (orthogonal to the plane of the arms), one arm would

experience a shortening in length while the other experienced an elongation, and a

signal is detected.

This is an over-simplified example of a gravitational wave detector - the expected

change in the arm lengths is equivalent to a thousandth of the diamter of a pro-

ton, and therefore any instrument capable of detecting gravitational waves must be
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Laser
BS

Mirror

Mirror

PD

Figure 1.2.: A simple Michelson laser interferometer. Two identical laser beams

from a beamsplitter (BS) travel along the interferometer arms, reflect

off mirrors and recombine at the BS to form an interference signal,

detected by the photodetector (PD).

immensely sensitive, stable and efficient. This is achieved by the addition of a num-

ber of important components to this core interferometer design, namely the mode

cleaner, Fabry-Perot cavities and power/signal recycling, as illustrated in Figure 1.3

and which are reviewed below.

Mode cleaners

The laser beam usually consists of a mixture of transverse electromagnetic (TEM)

modes, each with slightly varying frequencies and beam shapes - not only does

this lead to frequency instabilities thus affecting the ability of the detector to lock

to a single frequency in the optical cavities, but the interference contrast of the

intersecting beams at the BS is reduced. Instead, the beam passes through a cavity

known as a mode cleaner (MC) before entering the main interferometer [15], as
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Laser

BS

ETM

PD

ETM

ITM
ITMPRM

SRM

Mode
cleaner

Figure 1.3.: General layout of an advanced interferometric gravitational wave detec-

tor. A mode cleaner removes higher order modes in the laser beam.

Following the beamsplitter (BS) are the interferometer arms consist-

ing of input test masses (ITMs) and end test masses (ETMs) to create

Fabry-Perot arm cavities. The inclusion of a power recycling mirror

(PRM) and signal recycling mirror (SRM) helps to avoid light wastage.

shown in Figure 1.3. Tiny adjustments to the optical path length within the MC

causes different frequencies, and therefore different modes, to resonate inside. The

MC effectively ‘cleans’ the laser beam by reflecting higher-order modes and allowing

only a specific mode frequency to exit, and therefore a pure and stable TEM00

Gaussian beam can be obtained. The quality and alignment of the output beam and

cavity stability is defined by the properties of the MC mirrors. A further description

of MCs is provided in Section 3.2.1.
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Fabry-Perot arm cavities

As mentioned at the beginning of this section, longer detector arms will result in a

larger change in absolute length (as indicated by Equation 1.1). Ideally, detectors

would have arms hundreds or even thousands of kilometres long3, however this is

impractical - due to the curvature of the Earth, the increased pitch angle of the end

test masses would also increase the coupling of vertical motion into the longitudinal

motion of the mirrors. Ground-based detectors are therefore currently limited to

arm lengths of a few kilometres, with details specified in Section 1.2.2.

The arms could instead be folded in on themselves, such as the GEO600 detector

(Section 1.2.2), to create path lengths twice as long as the physical arm lengths. An

even more effective method is to include an additional mirror in each arm just after

the BS, superimposing the optical paths to create Fabry-Perot cavities [8]. These

cavities are represented by the input test masses (ITMs) and the end test masses

(ETMs), in Figure 1.3. The objective is to enable the light to bounce back and

forth between the ITMs and the ETMs to increase the number of round-trips of the

photons during interactions with a gravitational wave, thereby virtually increasing

the arm length of the detector. For a more quantitative understanding, consider

a search for gravitational wave signals at 1 kHz (see Figure 1.5 for the detection

range). The gravitational waves would have a wavelength in the order of 105 m,

and consequently each gravitational wave cycle has an interaction with the detector

on a timescale of approximately 1 msec. This requires around 50 ‘bounces’ of each

photon in a 3 km length arm cavity.

Furthermore, the multiple round-trips of the photons eventually lead to a consid-

erable build-up in laser power within the arm cavities. Increased laser power not

3For a gravitational wave with a frequency of 100 Hz, the ideal arm length would be 750 km,
providing a photon round-trip of 1500 km.
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only helps to amplify gravitational wave signals, but also reduces shot noise (see

Section 1.3.2). Using the arm cavities in the example given above, an initial laser

power of only a few kilowatts would be required to reach detectable strain sensitivity

levels (as opposed to an input laser power in the order of megawatts for a simple

Michelson interferometer without Fabry-Perot arm cavities [14]).

Power and signal recycling

The detector arms are normally set such that destructive interference occurs at the

output; in other words, the detector is locked to the dark fringe of the interference

pattern. The output PD is said to be at the ‘dark port’, and in this state, all of the

recombined light is in fact travelling back towards the laser. The inclusion of a power

recycling (PR) mirror in the path of the input laser beam before the BS creates a

PR cavity between the PR mirror and the rest of the interferometer, as indicated in

Figure 1.3. As with the Fabry-Perot cavities, the PR cavity experiences a build-up

in laser power, further enabling reduction in the shot noise. For correctly chosen

parameters and mirror transmissions, laser power can be further reduced from an

order of kilowatts down to 10-100 W, and still generate kilowatts of light power at

the BS [14].

Gravitational wave signals at frequency Ω will cause length changes in the arm

cavities, creating sideband signals around the carrier frequency with ω0 ± Ω. In

contrast to the carrier light field, these sidebands form constructive interference at

the output port, due to their phase relations. These signals are extremely weak,

but the insertion of a signal recycling (SR) mirror before the output PD will reflect

these signals back into the arms, where they can circulate back and forth between

the cavities. This allows for a longer interaction with the gravitational wave signal,

and the resonating sidebands increase in power. A signal recycling cavity is formed
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between the SR mirror and the interferometer, as shown in Figure 1.3. The reflec-

tivity of the SR mirror, and thus the finesse of the SR cavity, controls the extent to

which the signals are amplified and the narrowing of the detection bandwidth. The

length tuning of the SR cavity determines the frequency at which the centre of the

detection bandwidth sits [14].

The concept of ground-based gravitational wave detectors is detailed further in the

following section.

1.2.2. Current ground-based detectors

Gravitational wave detection is undertaken by a huge international collaboration

with institutions from around the world. Since 2002, long-baseline gravitational wave

detectors have been in operation, however many are currently undergoing upgrades

from first generation to second generations detectors. The Michelson interferometer

forms the central basis of the design of all current ground-based detectors.

Virgo, a French and Italian joint effort [16, 17], is a detector with 3 km long arms

and is situated in Cascina, Italy; modifications are underway for Advanced Virgo.

GEO 600 is a German-British detector [18, 19], located in Germany near Sarstedt,

with arm lengths of 600 m. The arms contain no cavities and are in fact delay lines,

folded up on themselves so that each arm is 1200 m long in total. The Japanese

cryogenic detector, KAGRA (Kamioka Gravitational Wave Telescope), previously

known as LCGT (Large Cryogenic Gravitational Wave Telescope) [20, 21], is due to

be built underground at the Kamioka mine with arms 3 km long.

LIGO (Laser Interferometer Gravitational Wave Observatory) [22] is an international

collaboration based in the U.S. and consists of three instruments. Two detectors are
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co-located in Hanford, Washington, at the LIGO Hanford Observatory (LHO) - one

has arm lengths of 4 km (LHO 4K or H1) and the other with 2 km (LHO 2K or H2).

The third resides in Livingston, Louisiana, at the LIGO Livingston Observatory also

with 4 km long arms (LLO 4K or L1).

LIGO began its first science run (S1) in 2002. In 2009 the detector entered an

intermediate phase as enhanced LIGO, having undergone some modifications. 2010

saw the last science run (S6), before the first generation detector was shut down and

the installation of Advanced LIGO commenced. Advanced LIGO and Advanced

Virgo are scheduled to begin operation in 2014 for joint science runs [23, 24], and

KAGRA will join them in 2018 [21].

Improvements to the so-called ‘initial’ LIGO towards Advanced LIGO are currently

underway, including plans to move the H2 detector to India and increasing the arms

to 4 km as part of the proposed LIGO-India project[25, 26]. Due to my involvement

with the Advanced LIGO suspensions group, and in particular my contribution to

the development of the Advanced LIGO BOSEMs (see Chapter 6), the framework of

this thesis will be relevant specifically to the Advanced LIGO detector rather than

ground-based detectors in general, unless specified otherwise. The noise sources

considered in Section 1.3 are in accordance to the predicted performance of Advanced

LIGO. The concept of Advanced LIGO as a second-generation detector is discussed

next.

Advanced LIGO

The main features of the Advanced LIGO gravitational wave detector are sum-

marised here and are illustrated in Figure 1.4, but further particulars are described

in [27] and [28].
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Figure 1.4.: General schematic of the Advanced LIGO detector [28]. The new ad-

ditions include a higher laser power, signal recycling mirror (SRM),

output mode cleaner, larger input and end test masses (ITM and ETM

respectively), compensation plates (CP) for thermal lensing and a DC

readout system. Other components shown are: power recycling mirror

(PRM), faraday isolator (FI), beamsplitter (BS) and output photode-

tector (PD). Transmission values for certain mirrors and light power in

various sections are also indicated.

Detector infrastructure

The current LIGO detectors are located in remote areas away from cities. Each

instrument is entirely enclosed in a vacuum system (H1 and H2 lie alongside each

other and share the same vacuum housing) to reduce residual gas noise [29]. The

detector will be able to operate over a wider frequency range, spanning 10 Hz to just

under 10 kHz.
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Laser system and configuration

A Nd:YAG laser with a wavelength of 1064 nm will provide a power of 180 W (in-

creased from 10 W in initial LIGO), expected to generate a light power of around

850 kW in the arm cavities, as seen in Figure 1.4. A signal recycling mirror (SRM

in Figure 1.4) will be introduced to the pre-existing power recycling scheme, and is

designed for wide-band sensitivity centred around 100 Hz. At this frequency, signal

recycling will enable Advanced LIGO to reach noise strain levels of 3×10−24 Hz−1/2.

Instead of heterodyne detection, homodyne detection (DC readout) will be employed

to reduce noise couplings, although this adds the need for an additional output mode

cleaner [30], situated between the SRM and output PD in Figure 1.4. Techniques

involving squeezed light are presently being tested on the H1 detector, and may

potentially be implemented as part of the Advanced LIGO upgrade [31].

Optics and suspensions

The test masses made from fused silica will have a diameter of about 32 cm and

a mass of 40 kg - larger and heavier than those in initial LIGO to cope with the

increased radiation pressure noise from the high laser power (see Section 1.3.2), and

with finer polished surfaces and improved coatings. Compensation plates (denoted

as CP in Figure 1.4) have been added to the input test masses to actively correct for

thermal lensing [32]. Advanced sensors and actuators will be used to apply actuation

to the test masses [33] (this topic is covered more thoroughly in Chapter 6). The

test masses will be suspended on fused silica fibres, replacing the original steel wires,

on pendulum suspension systems with either 3-stages (for the recycling mirrors and

MC mirrors) or 4-stages (for the ETMs, ITMs, BS and folding mirrors) [34].
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A global network of detectors

To date, there has been no detection of gravitational waves while the first generation

detectors were in operation, and therefore every effort has been made to maximise

the probability of detecting such waves. Gravitational waves which reach the Earth

from space could be travelling from any direction for any duration of time. It is

therefore beneficial to have detectors positioned around the globe to increase the

chances of at least one of the instruments catching the signal; the data can then

be verified with the other detectors. It is with this intention that detectors H1 and

L1 (with the exact same construction) are set in their chosen locations: the arms

of both detectors are aligned (L1 is rotated by 90◦ with respect to H1) to increase

sensitivity for the same GW polarisation [35], and there is sufficient distance between

H1 and L1 that any noise disturbances which accidentally trigger a detection in one

detector will not register in the other.

As well as increasing the likelihood of detecting gravitational waves, the global net-

work of detectors is also important for future gravitational wave astronomy since

more information about the gravitational wave signal can be acquired by triangula-

tion, such as the sky location and specific parameters of the source [24].

1.3. Noise sources and sensitivity

Figure 1.5 illustrates predicted noise levels for the major noise sources for the Ad-

vanced LIGO detector. It was created using the Gravitational Wave Interferometer

Noise Calculator (GWINC) [36]. Below 10 Hz, seismic noise acts as the primary

limit, while gravity gradient (Newtonian) noise is expected to be a limiting factor

at about 10 Hz. In the low-frequency regime between 10 Hz and 40 Hz, a combina-
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Figure 1.5.: Predicted noise curve for Advanced LIGO using GWINC resulting from

various noise sources for an input laser power of 125 W.

tion of suspension thermal noise and radiation pressure noise will restrict sensitivity

levels. Mirror thermal noise and quantum noise (both radiation pressure and shot

noise) will dominate in the intermediate range from 40 Hz to around 200 Hz. Finally,

shot noise will be the restraining noise source above 200 Hz [27]. The black trace

represents the total noise in the detector, setting the overall sensitivity limit of the

detector from all noise contributions across the frequency band. We now look at the

main noise sources in more detail.
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1.3.1. Seismic and Newtonian noise

Noise sources with seismic origin can induce motions of the test masses causing

changes in the length of the arm cavities, and quite possibly masking potential

gravitational wave signals. Seismic noise can affect the test masses either directly

or via Newtonian effects.

Seismic noise

Seismic noise refers to ground vibrations due to human activity and environmen-

tal factors (such as oceanic, geophysical and atmospheric occurrences). Even if a

detector was situated in a remote location, then due to the presence of ambient

seismic noise, the test masses would typically be subject to motions in the order of

10−9 mHz−1/2 at 10 Hz [8], which is still considerably larger than the signal of the

gravitational wave strain.

Two forms of seismic noise exist: bulk waves, which propagate through the interior of

the Earth with longitudinal and transverse motions, and the more disruptive surface

waves, which travel along the surface of the Earth in the form of Rayleigh waves

and Love waves [37].

While the effects of seismic noise are strong at low frequencies, the noise weakens

at higher frequencies. Therefore seismic isolation techniques concentrate on reduc-

ing large disturbances at lower frequencies while being sensitive enough at higher

frequencies, allowing test masses to respond to gravitational waves.

Advanced LIGO aims to reduce the seismic cut-off frequency from 40 Hz (Initial

LIGO) to 10 Hz (shown as the brown trace in Figure 1.5). The complex seismic

isolation and suspension sytems will ensure that motions imparted on the test masses
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from seismic noise are lowered to amplitudes of the order of 10−19 mHz−1/2 [28].

Seismic isolation is achieved through two integrated mechanisms: the seismic isola-

tion subsystem (SEI) and the suspension subsystem (SUS) [38]. The SEI is designed

to attenuate seismic noise due to ground motion in both vertical and horizontal direc-

tions. It is formed of seismic isolation platforms resting on spring stacks, which offers

sensing and control in 6 degrees of freedom. The SUS supresses mainly horizontal

motion (and some vertical motion) by suspending the test mass on a pendulum, on

account that for a simple pendulum, any vibrations above its resonant frequency

are attenuated. The pendulum is suspended within the seismic isolation platform,

and further improvement is made by introducing multiple stages to the pendulum

structure, thereby filtering out a range of frequencies.

Sensing and controlling the length of the detector arm cavities is crucial and relies

on precise mirror positioning through the use of sensors and actuators, known as

BOSEMs (Birmingham Optical Sensor and Electro-Magnetic actuators) [33]. The

subject of suspension systems will be revisited in Chapter 6, where the development

of BOSEMs in particular will be discussed in further detail.

Newtonian noise

Also referred to as gravity gradients, Newtonian noise is generated through environ-

mental mass density fluctuations, and is an indirect effect of seismic noise (although

acoustic and atmospheric activities also contribute) [37]. For example, if a nearby

object is exposed to seismic noise, its gravitational field will fluctuate and induce

motion in the test masses. For current gravitational wave detectors at ground level,

surface waves with seismic origin are expected to be the most harmful in comparison

to other Newtonian noise sources [39].
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In Figure 1.5, the contribution from Newtonian noise (depicted by the green trace

as ‘gravity gradients’) lies below the total noise, suggesting that second generation

detectors will most likely be unaffected by Newtonian noise, but more sensitive third

generation detectors such as the Einstein Telescope (ET) will be susceptible [39].

Newtonian noise cannot be isolated but it can be reduced by positioning the grav-

itational wave detector in a quiet location. A better option would be to build the

detector underground, with the advantage of greatly reducing surface waves. An-

other method of reducing Newtonian noise is through the use of noise subtraction,

which involves placing seismometers around the test masses, monitoring the rela-

tive ground motion and applying a subtraction signal to the feedback control signal

[14, 40].

1.3.2. Quantum noise

Interferometry precision is fundamentally limited by quantum noise (purple trace in

Figure 1.5). Consider a laser beam incident on a test mass: if the relative change in

the mirror positions are observed to a high degree of accuracy, then according to the

Heisenberg uncertainty principle, the momenta of the test masses will be disturbed,

leading to uncertainties in the phase difference between the two arm cavities [41].

These perturbations could potentially conceal gravitational wave signals. The effect

of quantum noise is attributed by radiation pressure and shot noise.

Radiation pressure

Radiation pressure occurs when the surface of the mirror test masses are exposed

to a fluctuating number of photons, resulting in random perturbations of the test
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mass position. The strain due to detector radiation pressure, hrp, for frequency f is

described by [8]:

hrp(f) =
1

mf 2L

√
~Pin

2π3cλ
, (1.2)

where m is the mass of the mirror, L is the length of the cavity arm, λ is the

wavelength of the laser beam and Pin is the input power.

Although radiation pressure rises with increased Pin, it falls in proportion to 1/f 2.

Radiation pressure also decreases with increased mirror masses, as heavier objects

are less inclined to move from photon collisions.4

Shot noise

Shot noise arises from the discreteness of photons and the statistical uncertainty in

the number that will be detected at the output photodetector. If the mean number

of photons in a given time interval is N , then the uncertainty in the number of

photons is given by
√
N .

The strain due to detector shot noise, hshot, for a given frequency can be expressed

as [8]:

hshot(f) =
1

L

√
~cλ

2πPin
. (1.3)

Since power is directly proportional to N , it stands to reason that increasing Pin will

a) proportionally increase the measured gravitational wave signals, and b) decrease

4There has to be a compromise between a test mass heavy enough to reduce radiation pressure
yet not too heavy for the suspension systems supporting it.
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the shot noise proportionally to
√
Pin. In other words, although the absolute shot

noise increases, the relative shot noise decreases, and so the signal-to-shot noise

ratio improves. Increased power, however, comes at the cost of increased radiation

pressure noise.

1.3.3. Thermal noise and limitations

A fundamental limit to detector sensitivity is thermal noise, and is important be-

cause it is limiting in the most sensitive detection band, in the region of about 10 -

200 Hz for Advanced LIGO, as seen in Figure 1.5. Thermodynamical fluctuations of

molecules occur in suspensions and test masses, causing thermally induced motions

of the suspended test mass in the form of rotation, translation and vibration. These

motions affect the length of the detector arms and can ultimately mask potential

gravitational wave signals.

Detector thermal noise can be categorised into two types: suspension thermal noise

and mirror thermal noise. Suspension thermal noise is due to dissipation in the sus-

pension wires which support the test mass - the wires are susceptible to Brownian

noise and thermoelastic noise (dark blue trace in Figure 1.5). The test masses them-

selves are prone to mirror thermal noise, resulting from fluctuations in the mirror

surface [42] and internal vibrations. Both the mirror coatings and substrates are af-

fected by Brownian (red and orange dashed traces, respectively), thermoelastic and

thermorefractive noise, the latter being applicable only to transmissive substrates.

Brownian noise refers to the absolute temperature of the optical element, whereas

thermorefractive and thermoelastic noise relates to the fluctuation of temperature

differences within the optical element. In some cases thermoelastic and thermore-

fractive noise can be combined and treated coherently as one noise source, referred
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to as thermo-optic noise [43] (light blue dashed trace).

The most effective way of reducing overall thermal noise is by reducing the tem-

perature of the test masses and suspensions via cryogenic cooling [44], and will be

employed in future generation detectors such as the Einstein Telescope [45].

Brownian noise in optics and suspensions

Brownian motion is a thermodynamic phenomenon that can also be interpreted

as internal friction. It is a thermodynamic phenomenon referring to the drift of

molecules due to random collisions, and as a result each degree of freedom obtains

energy corresponding to 1
2
kBT . The distance, x, a particle drifts5 over a period of

time, t, obeys

〈x2(t)〉 = 2kBTBt, (1.4)

where kB is the Boltzmann constant, T is the temperature of the optic and B

describes the mobility of the particle (i.e. the response to a force applied externally).

The kinetic energy of a given particle dissipates over time, and this leads to the

Fluctuation-Dissipation theorem [46],

〈SF (f)〉2 = 4kBT<[Z(f)]. (1.5)

The power spectral density of the fluctuating force (due to thermal excitations)

is given by SF (f) with f being the fluctuation frequency, Z(f) is the mechanical

impedance of the optic, and <[Z(f)] represents the real part of the the mechanical

5In the case of solid materials, this refers to the movement of an atom due to vibration, since
particles are not free to move around as they are in liquids and gases.
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impedance, equivalent to the dissipative part [47, 48]. Equation (1.5) describes

the relation between random thermal excitations of molecules and their velocity

fluctuations.

Using the mechanical admittance, Y (f), given by Y (f) = Z−1(f), we obtain the

following expression for the thermal noise spectral density [49]:

Sx(f) =
kBT

π2f 2
<[Y (f)]. (1.6)

The term Z(f) (and therefore Y (f)) contains the frequency-dependent mechanical

loss angle, φ(ω), which defines the ratio of the dissipated energy, Ed, with the stored

energy, Es, per oscillation as:

φ(ω) =
1

2π

Ed
Es
. (1.7)

The mechanical quality factor Q describes the extent to which a material is damped,

and at resonance it is given as the reciprocal of the mechanical loss angle:

Q =
1

φ(ω)
= 2π

Es
Ed
. (1.8)

Alternatively, Q can be thought of as the relation between resonance frequency, f0,

and the bandwidth (full width half maximum) of the resonance peak ∆f :

Q =
f0

∆f
. (1.9)

In order to reduce Brownian noise, most of the energy dissipation must occur at

frequencies concentrated around the resonant frequency of the material. This is
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achieved by using materials with a high Q-factor (and hence narrow bandwidth)

whose resonance peaks lie outside of the measurement band for gravitational wave

detection.6

Brownian noise in the suspension wires induce a physical motion of the test masses,

whereas Brownian noise in the test masses themselves cause displacement of the

mirror surface. The largest contribution to overall mirror thermal noise is Brownian

noise in the coating (shown by the red trace in Figure 1.5), and this is owed in

general to the poor Q-factors of mirror coating materials [50].

In addition to using materials with optimal properties, other methods to reduce

Brownian noise include the use of alternative beam shapes [51], Khalili cavities [52]

and waveguide coatings [53].

Thermoelastic noise in optics and suspensions

Thermoelastic noise is also known as thermoelastic damping because it refers to

the energy lost due to heat flow within the material [54]. Thermal fluctuations

within the test mass or suspension wires are transformed into internal vibrations,

giving rise to contortions of the material. Different regions experience compression

or expansion which heat up or cool down respectively according to the Le Châtelier

principle [55], and a temperature gradient is created. In an attempt to dissipate

some of the mechanical energy generated by the flexing material, a heat flow within

the material is triggered. When the temperature gradient changes through each

vibration cycle, so too does the direction of the heat flow, and this changing process

of dissipation leads to a fluctuation of the system and hence either a non-uniform

6Note that violin modes in the suspension wires lie within the GW detection band, but a long
pendulum length ensures that these modes lie in the high-frequency region for control purposes
[27].
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mirror surface or length variations in the suspension wire, which ultimately stems

from the fluctuation-dissipation theorem.

The linear strain of a material is related to its temperature by its linear thermal

expansion coefficient, α:

α =
1

L

dL

dT
, (1.10)

where L corresponds to the length of the material and T is the temperature.

Thermorefractive noise in optics

All mirror coatings and substrates of transmissive optics, namely the beamsplitter

and the arm cavity input mirrors, are subject to thermorefractive noise, which stems

from the temperature-dependent nature of the refractive index of the material [56].

When an optic is exposed to a laser beam, thermodynamical fluctuations in temper-

ature lead to variations in the optical thickness (of the coating layers or substrate)

causing the refractive index to change, and the reflected or transmitted laser beam

subsequently suffers from phase-related fluctuations.

The change in the refractive index, n, relative to temperature variations is described

by the thermorefractive coefficient, β:

β =
dn

dT
. (1.11)

In order to reduce thermoelastic and thermorefractive effects, lower possible coef-

ficients of α and β are required. It is interesting to note that both of these noise

sources are highly correlated since they originate from the same temperature fluc-
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tuations, therefore raising the possibility that thermoelastic and thermorefractive

mechanisms could cancel each other out to a certain extent [57, 58].

Transmissive optics with increased optical thickness are more sensitive to thermore-

fractive noise. In addition to thermal noise, however, transmissive optics are also

highly prone to thermal effects from power absorption, which will be discussed fur-

ther in the next section.

1.4. Thermal effects due to power absorption

As mentioned in Section 1.3.2, the relative shot noise is reduced by increasing the

laser power and the circulating light power in the detector arm cavities. The laser

power in the Advanced LIGO detector is set to increase from 10 W (Initial LIGO) to

approximately 200 W. The power recycling cavity will further increase this power to

about 2 kW, while the circulating power within the Fabry-Perot cavities is expected

to reach around 800 kW [32].

The requirement for high laser power means that transmissive optical elements,

such as the beamsplitter and the arm cavity input mirrors, are subject to greater

power absorption. As with thermorefractive noise, absorption also occurs in all

mirror coatings and transmissive substrates, leading to a non-statistical thermal

deformation of the optics, an effect known as thermal lensing.

It is important to note the distinction between thermal noise and thermal lensing:

the thermal noise effects described in Section 1.3.3 are due to statistical fluctuations,

whereas thermal effects due to absorption are an ordered and systematic effect.

Thermal lensing is not a noise source but an effect which distorts the wavefront of

the laser beam causing modal mismatch and a reduced interference contrast.
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1.4.1. Thermal lensing

Thermal lensing occurs in a combination of two ways. The first is a geometric

distortion, whereby the Gaussian profile of a laser beam induces local heating con-

centrated around the centre of the optic. The coating and transparent substrate

undergo thermal expansion, also with a greater effect at the centre, thus creating an

additional lens at the optic, as indicated by the central ‘bulge’ in the optic in the

lower half of Figure 1.6. The resulting change in the optical path length, δsL, can

be described as [59]:

δsL ≈
α

4πκ
Pa, (1.12)

where κ is the thermal conductivity of the material and the total absorbed power is

Pa.

The second distortion process takes place as a result of the Gaussian temperature

distribution; the temperature gradients are coupled with corresponding gradients

in refractive index (within the coating material and substrate) according to Equa-

tion (1.11). The change in refractive index instigates a change in the optical path

length, δsn, according to the relation [60]:

δsn ≈
β

4πκ
Pa. (1.13)

The effects of wave-front distortion due to the changing refractive index is signified

in the lower half of Figure 1.6 by the altered beam parameters exiting the optic in

comparison to the low power case shown in the upper half of Figure 1.6. It is worth

noting that the ramifications of a varying refractive index are far more severe than

those from geometric distortions. Using fused silica as an example, the ratio α/κ
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Figure 1.6.: Effects of increased power absorption in transmissive optics. The top

half of the diagram shows a relatively low power laser beam penetrating

the optic. In the lower half of the diagram, a higher laser power induces

thermal lensing: firstly, thermal expansion of the optic material occurs

in the form of a slight ‘bulge’, similar to an additional lens; secondly, the

refractive index of the material is altered. As a result, the wave-front is

distorted and changes the beam parameters of the exiting beam.

for thermal expansion is in the order of 10−8 mW−1, whereas the ratio β/κ for the

refractive index is higher at 10−5 mW−1 [59], and so the change in optical path due

to a changing refractive index is greater.

Thermal lensing distorts the curvature of the wave-front of the reflecting or transmit-

ting beam (the latter applies to transmissive optics), ultimately altering the beam

parameters and the focal length (see Figure 1.6). Considering the long length of the

cavity arms, the implications for wave-front distortion are crucial: modematching in

the cavities will degrade, interference contrast of the laser beams deteriorate (low-

ering the recycling gain), cavity conditions may become unstable, and more light
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may leak out of the dark port. Increased power absorption may also contribute to

double refraction, or birefringence, in transmissive optics. The result is a decrease in

the contrast of the output interference fringes [61]. The effects of aberrated optical

elements due to power absorption will mainly be detrimental to the performance

of second-generation interferometers: the lower laser power in initial LIGO meant

that thermal lensing effects were not too problematic, however the strain sensitivity

levels aimed by Advanced LIGO (in the order of 10−24 Hz−1/2) using higher laser

power will be difficult to reach due to greater power absorption [60, 62].

One method to compensate for thermal lensing is through active wave-front correc-

tion (or thermally adaptive optics), and involves the application of an external heat

source, for example by placing heated compensation plates inside the Fabry-Perot

cavity arms in an attempt to cancel out the wave-front distortion [32, 63]. These

techniques will be implemented in second-generation gravitational wave detectors,

however they will only work to a certain extent and will not completely remove the

effects of thermal lensing. Although high quality fused-silica substrates have been

shown to have bulk absorption as low as 25 ± 0.1 ppm cm−1, thermal lensing effects

still remain [64, 65]. Power absorption in transmissive optics will therefore continue

to be a critical problem for future detectors operating with increased laser power.

1.5. Diffractive elements in interferometry

By replacing partially transmissive mirrors and beamsplitters with reflective diffrac-

tion gratings, the problem of thermal lensing and distortions due to power absorption

can be reduced. Moreover, reflection gratings eliminate the need for optically trans-

parent substrate materials, allowing for opaque (or less transmissive) materials with

more favourable mechanical and thermal properties [66, 67]. One such example is
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silicon, which exhibits increased thermal conductivity and a higher mechanical Q-

factor than the currently used fused silica. However, at 1064 nm it has a higher

optical absorption coefficient in comparison to fused silica, and so although silicon

substrates cannot be used for conventional transmissive optics7, it would be suitable

for reflective optics [68, 69]. In light of these advantages, the notion of interferome-

ters based on all-reflective topologies are promising alternatives.

1.5.1. Diffraction gratings

A diffraction grating is an optical element consisting of a one-dimensional periodic

structure of grooves, allowing light to be diffracted either through reflection or trans-

mission. From now on we will consider only reflective devices, which can for instance

be realised by etching a grating structure into the top-most layer of a dielectric high

reflection (HR) coating8 [70]. A standard phase diffraction grating is illustrated

in Figure 1.7 - for a grating period of d, an incident beam with wavelength λ is

diffracted into m diffraction orders. According to the grating equation

sinα + sinβm =
mλ

d
, (1.14)

the diffraction angle βm of a certain functional output coupling port will be different

from the incident angle α, with an exception for m = 0. This zero-order specular

beam is simply the reflected beam as if the grating were a mirror and obeys β0 = −α.

Note that the angle convention is such that α and β are measured as positive when

to the left of the normal, and negative when to the right of the normal.

7Note that silicon is considered to be an ideal material in transmission at 1550 nm, due to greatly
reduced optical absorption.

8Etched gratings with an application of a smooth coating on top have also been proposed but
were found to scatter more light power than those gratings with grooves etched directly into
the top layer [67].
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Figure 1.7.: Diffraction of light by a reflective diffraction grating. Light incident

at an angle α diffracts into m diffraction orders at angles of βm, all

angles being with respect to the grating normal. The groove profile is

characterised by the groove spacing d, ridge width r and groove depth

g.

Diffraction gratings can be adapted for various applications by adapting the param-

eters in the grating equation in Equation (1.14) for specific requirements, such as

d, number of ports and diffraction angles, an example being the different grating

configurations seen in Section 1.5.2.

The groove profile is described using certain parameters which are not given by the

grating equation. These include the groove depth g, ridge width r and fill factor

f = r/d (as seen in Figure 1.7), a combination of which determines the actual

efficiency of the diffraction into each exiting port of the grating. These parameters

can be designed to create a specific desired grating functionality [71].
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1.5.2. All-reflective interferometer configurations

Diffraction gratings were first proposed as replacements for transmissive optics such

as the beamsplitters and input mirrors in interferometric gravitational wave detec-

tors by Drever [72]. These all-reflective interferometers were experimentally demon-

strated by Sun and Byer [66] using configurations based on the Michelson, Sagnac

and Fabry-Perot interferometers. The latter was a concept for a cavity coupler us-

ing high-efficiency diffraction gratings in the 1st order Littrow configuration, seen in

Figure 1.8(a). However, in this configuration the light inside the cavity is diffracted,

and so a grating with a high diffraction efficiency is necessary. This requires the grat-

ing profile to be fabricated with a high degree of accuracy and restricted tolerances,

which in practice is extremely difficult to achieve perfectly.

Drever proposed that overall losses for a cavity coupler would be lower if low-

efficiency diffraction gratings were employed in the 2nd order Littrow configuration,

shown in Figure 1.8(b). Here, the light within the cavity is mostly reflected while

the overall amount of light being diffracted is low. This allows for gratings with low

diffraction efficiencies whose profiles have larger tolerances, and hence are easier to

manufacture.

The replacement of the beamsplitter with a diffraction grating in a Michelson inter-

ferometer was demonstrated experimentally [73, 74]. Provided that a non-Littrow

configuration was used, the diffraction grating acts as a beamsplitter by generating

4 ports, as shown in Figure 1.9. The concept becomes clear by treating the diffrac-

tion stages separately. Figure 1.9(a) shows diffraction of the initial input beam

diffracted into mirrors 1 and 2, representing the interferometer arms. Since the

classical Michelson design consists of perpendicular arms, an angle of 90◦ between

mirrors 1 and 2 is ideal [75]. In Figure 1.9(b), the reflected beam from the first

mirror is diffracted towards the source of the initial beam and the output, and in
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(a) 2-port

Cavity

Mirror

(b) 3-port

Figure 1.8.: Cavity couplers using diffraction gratings as alternatives to linear Fabry-

Perot cavities. Cavities with (a) 2 ports, and (b) 3 ports are achieved

using 1st and 2nd order Littrow configurations respectively.

Figure 1.9(c) the reflected beam from the second mirror is also diffracted towards

the source and the output.

All-reflective interferometers benefit largely from the reduction of thermal issues,

thus helping to increase sensitivity in future gravitational wave detectors. However,

the implementation of diffraction gratings requires an in-depth understanding of the

phase relations, which we discuss in the next section.

1.5.3. Grating-related phase effects in plane waves

The reduced symmetry in diffraction gratings means that the phase of light will

be affected differently in the event of any grating movement or beam movement

on the grating, compared to mirrors and beamsplitters. Mirrors are unaffected by

roll movement due to their cylindrical symmetry, but grating rotation around the

grating normal introduces an extra degree of freedom. More importantly though, a

translation of the grating parallel to its surface and perpendicular to the direction
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Figure 1.9.: Top: An all-reflective interferometer is created using a diffraction grat-

ing in a non-Littrow configuration, resulting in 4 ports. Bottom: The

beam path is considered in three separate stages: (a) initial input beam

diffracted towards both mirrors, (b) reflection from mirror 1 diffracted

towards the source and the output, (c) reflection from mirror 2 diffracted

towards the source and the output.

of the grooves causes a phase shift in the reflected light [76]. We will consider the

phase noise effects due to grating translation.

Change in optical path length

The broken symmetry of light deflection in diffraction gratings leads to strong cou-

pling between alignment noise and output phase noise [77], and this effect is illus-
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trated in Figure 1.10. From a simple geometrical consideration, a slight displacement

of either the grating, ∆x′, or the beam, h, relative to each other causes an optical

path length shift of ∆P = δ1 + δ2 (where δ2 is negative). Note that displacements

are for distances less than the grating period.

For the moment, the blue and red rays can be considered as part of the same plane

wave, and so at every reference plane (normal to their propagation direction) both

rays should have the same phase. Yet, Figure 1.10 shows that there is a difference in

the total optical path length of ∆P (and therefore a difference in the phase). This

implies that the diffraction at the grating advances or retards the phase of those rays

which have a spatial distance of ∆x′ away from some chosen reference ray, ensuring

that the phase over the total path length remains the same (as the reference ray).

As far as the grating is concerned, the only displacement that occurs is by ∆x′, as

projected on the grating surface. Therefore a translation h of the incident beam

can be considered as being equivalent to a grating displacement of ∆x′. A further

discussion of this geometrical consideration can be found in [77].

From Figure 1.10 we can deduce the following identities for the change in length:

δ1 = ∆x′ sinα and δ2 = ∆x′ sinβ, (1.15)

which can be rewritten in terms of the total shift in length as

δ1 + δ2 = ∆x′ (sinα + sinβ). (1.16)

This shift is shown to be related to the displacement ∆x′ via the grating equation
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Figure 1.10.: Diffraction of light into the m-th diffraction order when the grating is

displaced by amount ∆x′ relative to the beam. A grating displacement

∆x′ (corresponding to a parallel beam shift h) leads to an output opti-

cal path length change of ∆P according to Equation 1.17. For clarity

only one diffraction order m is considered.

by substituting Equation (1.14) into Equation (1.16) to give

∆P = δ1 + δ2 = −∆x′
mλ

d
. (1.17)

The negative sign arises from the fact that translating the grating to the left (or

the beam to the right) induces a positive phase change via the extra geometric path

length, δ1 + δ2. A ‘negative’ phase change is therefore required to counteract the

positive phase change, thereby ensuring that the phase of both non-displaced and

displaced beams in Figure 1.10 are the same at the end reference plane, z.
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Keeping in mind that the change in phase, ∆θ, is described as

∆θ = k∆z

∆θ = k(δ1 + δ2)

δ1 + δ2 =
∆θ

k
, (1.18)

then by substituting into Equation (1.17) we find

∆θ

k
= −∆x′

mλ

d

∆θ = −∆x′
kmλ

d
. (1.19)

Using the relation k = (2π)/λ, we obtain the following expression to describe phase

noise (change in phase due to grating displacement):

∆θ = −∆x′
2πm

d
. (1.20)

We refer to Equation (1.20) more specifically as the intrinsic phase factor. Note that

beam displacement, h, is proportionally equivalent to a grating translation as:

h = −∆x′ cosα. (1.21)

Equation (1.20) implies a substantial phase change of up to 2π between a non-

displaced and displaced beam for displacements in the order of the grating period

(i.e ∆x′ = d). This effect is observed in Figure 1.11, which shows a plot of Equa-

tion (1.20) against varying grating displacements, ∆x′ (for diffraction order m = 1).

The resulting change in phase, ∆θ, varies over 2π radians (between ±π) for displace-
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Figure 1.11.: Varying grating displacement, ∆x′, causes the resulting change in

phase, ∆θ, to vary over 2π radians (assuming d=1666.7 nm andm = 1).

ments less than d, and the length of each phase cycle coincides with the grating

spacing, d = 1666.7 nm, as expected from Equation (1.20). With a total grating

displacement of 5µm along the x-axis in Figure 1.11, three complete phase cycles

are clearly visible.

It should be noted that in addition to lateral displacement, longitudinal displacement

of the grating (or mirror) also causes phase noise of a similar order [77]. However,

longitudinal motion can be controlled to a high degree of accuracy through the

use of sophisticated locking techniques involving various feedback control loops [78].

Unfortunately, the reduced symmetry in a diffraction grating compared to a mirror

means that lateral motion is much more complicated to control [79], thereby limiting

all-reflective geometries.
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1.5.4. First attempts to mitigate phase noise

It was realised that grating coupled cavities introduce a new noise source simply

due to increased sensitivity to general beam alignment. The possibility of reducing

the phase noise from lateral grating displacements in grating coupled cavities was

investigated by Hallam [80, 81], whereby grating coupled cavities with 2-port and

3-port configurations were compared to traditional two-mirror cavities.

Figure 1.12(a) shows the various light fields within a 2-port coupled grating cavity

in a 1st order Littrow configuration. The incident beam, b0, is diffracted by the

grating (a1). This light propagates a distance L (a′1) before reaching the mirror

(ETM), where it is either reflected (a2) or transmitted (a4). The reflected part

travels the distance L back towards the grating (a′2) where it eventually undergoes

diffraction again (a3) and exits along the same path as the incident beam. The

signal readout occurs at port a4 using the transmitted portion of the beam.

Figure 1.12(b) illustrates the path of the light fields in a 3-port coupled grating

in a 2nd order Littrow configuration. The incident beam, i0, is diffracted (a1) and

propagated a distance L (a′1), as in the 2-port case. The transmitted light is denoted

a5, and the reflected part (a2) propagates back to the grating (a′2). This beam is

eventually diffracted in one of two ways: it can either exit the cavity as the output

beam a3, or travel back along the same path as the incident beam as a4. The

transmitted light forms the signal readout at port a5.

Hallam proposed using the a3 port for signal readout in the 3-port cavity instead

of the a5 port, and subsequently performed noise measurements for signal readout

at the following three ports: a4 (in a 2-port cavity), a3 and a5 (in a 3-port cavity).

The measurements were recorded as suspension requirements in Figure 1.13, where

smaller requirements correspond to increased phase noise contained in the signal
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readout.

Hallam demonstrated that, when compared to a two-mirror cavity, the isolation

requirements against end-mirror tilt for a 2-port cavity were 8 orders of magnitude

worse, yet for a 3-port cavity the requirements were only 5 orders of magnitude

worse. The suppression of lateral displacement phase noise by the cavity finesse

allowed the 3-port cavity to perform better than the 2-port cavity. The reduced

performance of the 2-port cavity is also indicated by the tighter restrictions of the

a4 port signal readout (blue trace in Figure 1.13).

The suspension requirements are less constrained at higher frequencies above 110 Hz

for signal readout at the a5 port (green trace in Figure 1.13). However the require-

ments in the low frequency regime (10 Hz - 110 Hz) were found to be more relaxed

for signal readout at the a3 port (red trace), and this was due to a partial cancel-

lation of phase noise in the forward-reflected output port, a3, and a summation in

the back-reflected port, a4, of the 3-port cavity.

(a) 2-port cavity (b) 3-port cavity

Figure 1.12.: Schematic for grating cavities depicting the various light fields within

the cavity, where ⊕ indicates sideband signals. (a) The signal readout

in the 2-port cavity is located at the a4 port. (b) In the 3-port cavity,

the signal readout is situated at the a3 port instead of the a5 port, thus

improving suppression of lateral displacement phase noise. [80]
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Partial cancellation was observed by oscillating the grating laterally in the 3-port

cavity, causing the carrier light to produce ‘input’ sidebands with an amplitude

proportional to the external input field. The input sidebands were slightly detuned

from the cavity and so resonated with only some gain. Meanwhile, the carrier field

amplitude was enhanced by the cavity gain and coupled out, generating output

sidebands which were proportional to the carrier amplitude. The diffraction order

for the input beam was m = +1 and the output beam was m = −1, so the input and

output sidebands had opposite signs and thereby cancelled each other out. However,

Figure 1.13.: Suspension requirement for the maximum tolerable lateral grating dis-

placement necessary for achieving required sensitivity levels in the Ad-

vanced Virgo design [81]. Measurements were taken at three different

ports: a4 (for a 2-port cavity), a3 and a5 (both in a 3-port cavity) (see

Figure (1.12)), revealing that suspension requirements were alleviated

by a factor of 20 at 10 Hz when port a3 was used for signal readout in

comparison to port a5.
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since the gain of the input sidebands was less than that of the output sidebands, the

cancellation was only partial.

As a result of using the a3 port for signal readout, the suspension requirements

were alleviated (and thereby phase noise supressed) by a factor of 20 at 10 Hz. A

correlation was also observed between lower finesse cavities (i.e wider bandwidths)

and increased phase noise suppression, and therefore the use of low finesse cavities

was recommended.

1.5.5. An analytical framework for grating-related phase noise in

simulations

Partial cancellation of grating-related phase noise was demonstrated successfully in

[80] with the use of improved optical setups and alternative signal readout ports.

Although the results are encouraging and the prospect of using diffractive elements

in future gravitational wave detectors looks promising, a lack of knowledge for prac-

tical implementations prevails, and therefore further investigation into diffractive

elements is required.

Simulation tools potentially offer an accurate method of determining the impact of

grating-related phase noise on detector sensitivity, and are a useful aid for exper-

imental investigations. The basis of the most common simulation tools used for

gravitational wave detection development are either fast Fourier transforms (FFT)

or modal. FFT-based simulation tools have the capacity to simulate any beam shape

and are therefore adept for detector development, for instance dealing with multi-

ple modes and optical losses within cavities. Meanwhile, modal-based simulation

tools rely on the technique of modal decomposition and are useful for the analysis

of small beams possessing tiny defects; these tools are proficient for purposes such
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as auto-alignment and error signals, where specific optical properties are concerned.

One such example of a modal-based simulation tool is Finesse [82].

Simulations of beam misalignment and diffractive optics require changes in their

coordinate systems, yet modal simulation tools are paraxial, i.e., they are restricted

to one coordinate system. In order to replicate beam (or grating) displacements,

modal simulation tools employ a technique known as modal decomposition, achieved

by adding higher-order modes to the fundamental zero-order mode. They are based

on Gaussian models, where Hermite-Gauss modes are used to describe the spatial

aspects of the beam (e.g. beam shape and position). However, as shown in this

work, these modal simulations do not include the intrinsic phase factor from gratings,

which plays an important role in the modelling of beam diffraction for all-reflective

GW detectors.

There is an urgent need for a suitable analytical framework which incorporates the

intrinsic phase factor into simulations using a realistic Gaussian model instead of

geometric planewave considerations. This would then allow for a faster and more

accurate computation of grating-related phase noise, and can be a useful tool to

simulate grating effects for future layouts of high-precision interferometry.

1.6. Structure of this thesis

The aim of this thesis is to develop a Gaussian-based framework for grating diffrac-

tion and investigate grating-related phase effects due to beam misaligments for use

in modal simulation tools, as well as determining the cause for the absence of the

intrinsic phase factor from modal-based simulation tools. These elements are ad-

dressed under the following chapters.
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Chapter 1. Introduction

In Chapter 2 we establish an analytical framework based on a Gaussian description

and explore the effects of beam displacement through modal decomposition. We con-

firm that the Gaussian model does not contain the intrinsic phase factor to produce

the same phase change as observed with geometric plane waves (Equation (1.20)).

We next conduct a thorough analysis of the phase distribution of a Gaussian beam

displaced by two different methods: a geometric translation of the beam and a modal

decomposition. We then verify the accuracy of modal decomposition by comparing

its phase distributions with those produced by actual beam translations, before and

after grating diffraction.

The concept of modal decomposition to describe beam displacements is continued in

Chapter 3 through experimental means. Using a Mach-Zehnder grating interferom-

eter, we investigate the notion that a difference in phase change may occur between

zero-order and first-order mode beams having undergone grating diffraction, and

thereby determine whether the phase of a diffracted beam is dependent on the beam

shape (or mode).

Chapter 4 introduces a rigorous time-domain simulation tool used to examine the

diffraction of displaced Gaussian beams in further detail. Two scenarios are con-

sidered: a geometric beam (or grating) displacement and a modal decomposition.

Ultimately, a direct comparison of the resulting phase profiles is made in order to de-

termine the conditions required in order to obtain phase changes due to the intrinsic

phase factor.

Chapter 5 reports on the conclusions drawn from the work presented in this thesis.

The research and findings described here have also been published in [83] and [84].

Chapter 6 will branch off the main thesis topic where I cover the work that was

carried out as part of the Suspensions Working Group for Advanced LIGO.
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Chapter 2.

ANALYTICAL FRAMEWORK FOR

DIFFRACTED GAUSSIAN BEAMS

A Gaussian model is required to address phase noise accurately, instead of a planewave

approximation. In this chapter, we aim to develop a Gaussian-based framework for

describing beam misalignments, before and after grating diffraction (through astig-

matism). We determine whether beam displacement within the Gaussian framework

displays any sign of the phase noise seen in an otherwise geometric planewave con-

sideration (i.e. a change in phase over 2π radians). Section 2.1 provides the funda-

mentals of Gaussian optics, with complete beam profile descriptions for zero-order

and first-order modes. In Section 2.2, we apply the effects of beam displacement by

means of a first-order modal decomposition, yielding new beam descriptions as part

of the analytical modal model. Section 2.3 formulates the phase terms contained

within the description of non-translated, geometrically translated and modally de-

composed Gaussian beams, and presents a comparison of the electric fields. The

concept of grating diffraction is then discussed in Section 2.4 in the form of astig-

matism.
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Chapter 2. Analytical framework for diffracted Gaussian beams

2.1. Gaussian optics

In this section, we present an overview of Gaussian optics, including the parameters

which define the beam profiles for propagating Gaussian beams, both for zero-order

and first-order modes, and the notation used.

2.1.1. Gaussian beam profile

Gaussian beams are described by Hermite-Gauss modes (HGnm), and are one of the

solutions of the paraxial wave equation [85]. The electric field of a Gaussian beam

propagating in the z-direction can be described in terms of Hermite-Gauss modes

in the following general form:

E(x, y, z) =
∑
nm

anmunm(x, y, z)e−ikz, (2.1)

where anm are complex amplitude factors, and the indices n and m represent the

number of nodes along the x-axis and y-axis respectively, thereby determining the

mode order of the beam. The function unm(x, y, z) describes the transverse spatial

distribution of the beam as it varies slowly with z and can be expressed along the x

and y-directions as

unm(x, y, z) = un(x, z)um(y, z),

A complete definition for unm(x, y, z) is as follows:

unm(x, y, z) =
(
2n+m−1n!m!π

) 1
2

1

ω(z)
exp
(
i(n+m+ 1)Ψ(z)

)
Hn

(√
2x

ω(z)

)

× Hm

(√
2y

ω(z)

)
exp

(
−ik(x2 + y2)

2RC(z)
− x2 + y2

ω2(z)

)
, (2.2)
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Chapter 2. Analytical framework for diffracted Gaussian beams

where Hn and Hm are Hermite polynomials and k is the wave number, specified as

k = 2π/λ. ω(z) is the radius of the beam spot, RC(z) is the radius of curvature of

the beam wavefronts, and Ψ(z) is the Gouy phase, all of which have the following

definitions:

ω(z) = ω0

√
1 +

(
z

zR

)2

, zR =
πω2

0

λ
,

Ψ(z) = arctan

(
z − z0

zR

)
, RC(z) = z +

z2
R

z
,

where ω0 is the radius of the beam waist, z0 is the position of the beam waist and

zR is the Rayleigh range. Figure 2.1 depicts a typical Gaussian beam profile as the

beam propagates along the z-axis. b is known as the confocal length and is twice

the Rayleigh range, and Θ is the divergence angle of the beam in the far-field, both

of which are given by

b = 2zR =
2πω2

0

λ
and Θ ' 2λ

πω0

.

In general, an offset beam is displaced in both the x and y directions. For simplicity,

however, we will investigate just one degree of freedom i.e. displacement in the x-

direction only. The normalised Hermite-Gauss function (of a non-displaced beam),

un(x, z) in x then becomes:

un(x, z) =

(
2

π

) 1
4

(
exp
(
i(2n+ 1)Ψ(z)

)
2nn!ω(z)

) 1
2

Hn

(√
2x

ω(z)

)
exp

(
−i kx2

2RC(z)
− x2

ω2(z)

)
.

(2.3)
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Chapter 2. Analytical framework for diffracted Gaussian beams

z

0 0 

Figure 2.1.: Profile of a Gaussian beam [86] propagating along the z-axis. Key pa-

rameters include the beam waist radius, ω0, beam spot radius, ω(z),

divergence angle, Θ, Rayleigh range, zR, and the confocal length, b.

2.1.2. Fundamental and higher order modes

Zero-order modes, TEM00

Since n = 0 for a zero-order mode beam, then the Hermite polynomial becomes

H0 = 1, and the beam is defined as:

u0(x, z) =

(
2

π

) 1
4

(
exp
(
iΨ(z)

)
ω(z)

) 1
2

exp

(
−i kx2

2RC(z)
− x2

ω2(z)

)
. (2.4)

This equation can be simplified if we initially consider the beam at the waist position

to compute key parameters without the loss of generality, and then propagate away

from the waist when required. Firstly, the beam size, ω(z), simply becomes the beam

waist size, ω0. Secondly, the radius of curvature goes to infinity at the waist, and

so the RC term in Equation (2.4) can be ignored. Thirdly, z becomes z0, allowing

for a zero Gouy phase, Ψ(z0) = 0. Equation (2.4) now has the following form at the
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Chapter 2. Analytical framework for diffracted Gaussian beams

waist position:

u0(x, z0) =

(
2

π

) 1
4 1
√
ω0

exp

(
−x

2

ω2
0

)
. (2.5)

First-order modes, TEM10

In the case of a first-order mode beam with n = 1, it follows that H1 = 2
(√

2x
ω(z)

)
,

and is expressed as:

u1(x, z) =

(
2

π

) 1
4

(
exp
(
i3Ψ(z)

)
2ω(z)

) 1
2
(

2
√

2x

ω(z)

)
exp

(
−i kx2

2RC(z)
− x2

ω2(z)

)
. (2.6)

At the waist this becomes

u1(x, z0) =

(
2

π

) 1
4 1√

2ω0

(
2
√

2x

ω0

)
exp

(
−x

2

ω2
0

)
. (2.7)

Equation (2.7) can be rearranged to obtain:

u1(x, z0) =

(
2

π

) 1
4 1
√
ω0

exp

(
−x

2

ω2
0

)
1√
2

(
2
√

2x

ω0

)

=

(
2

π

) 1
4 1
√
ω0

exp

(
−x

2

ω2
0

)
︸ ︷︷ ︸

=u0(x,z0)

2x

ω0

. (2.8)

The first three factors in Equation (2.8) correspond to the zero-order mode, allowing

us to simplify the expression and obtain a relation between a zero-order mode and

a first-order mode at the waist :

u1(x, z0) =
2x

ω0

u0(x, z0). (2.9)
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Away from the beam waist

We now consider the beam away from the waist, for any position z. A similar relation

to the one given in Equation (2.9) can be computed using the full expressions stated

in Equations (2.4) and (2.6) for a zero-order and first-order modes. Equation (2.6)

can be rewritten as

u1(x, z) =

(
2

π

) 1
4

(
exp
(
iΨ(z)

)
ω(z)

) 1
2

exp

(
−i kx2

2RC(z)
− x2

ω2(z)

)
︸ ︷︷ ︸

=u0(x, z)

(
exp
(
iΨ(z)

)
√

2

)(
2
√

2x

ω(z)

)
.

(2.10)

Once again, the first three factors correspond to the zero-order mode, producing the

following relation between a zero-order mode and a first-order mode away from the

waist position:

u1(x, z) = exp
(
iΨ(z)

) 2x

ω(z)
u0(x, z). (2.11)

2.2. Beam displacement

If a zero-order beam is displaced by an amount h along the x-axis to a new set of

coordinates, (x′, z′), as shown in Figure 2.2, then at any position z, the translated

beam is expressed as

ut0(x′, z′) =

(
2

π

) 1
4

(
exp
(
iΨ(z)

)
ω(z)

) 1
2

exp

(
−i kx2

2RC(z)
− x2

ω2(z)

)
. (2.12)

51



Chapter 2. Analytical framework for diffracted Gaussian beams

z=0

x’

x
h

z’

z

Figure 2.2.: A Gaussian beam of zero-order mode (solid) with coordinates x, z is dis-

placed by an amount h. The displaced beam (dashed) is still described

as a zero-order mode beam, but has a new coordinate system, x′, z′.

However, the translated beam can still be described in the original coordinate system

(x, z) using the relation x′ = x− h:

ut0(x, z) =

(
2

π

) 1
4

(
exp
(
iΨ(z)

)
ω(z)

) 1
2

exp

(
−ik(x− h)2

2RC(z)
− (x− h)2

ω2(z)

)
. (2.13)

Expanding Equation (2.13) gives:

ut0(x, z) =

(
2

π

) 1
4

(
exp
(
iΨ(z)

)
ω(z)

) 1
2

exp

(
−ik(x2 + h2 − 2xh)

2RC(z)
− (x2 + h2 − 2xh)

ω2(z)

)

=

(
2

π

) 1
4

(
exp
(
iΨ(z)

)
ω(z)

) 1
2

exp

(
−i kx2

2RC(z)
− x2

ω2(z)

)
exp

(
−ik(h2 − 2xh)

2RC(z)

)

× exp

(
−(h2 − 2xh)

ω2(z)

)
. (2.14)

The beam described in Equation (2.14) can be decomposed using a modal expansion

technique as discussed in the next section.

52



Chapter 2. Analytical framework for diffracted Gaussian beams

2.2.1. Modal decomposition

Misalignments can be decomposed into higher order modes. In other words, a trans-

lated beam can be described as a sum of the fundamental mode and the first order

mode:

E(x, y, z) = a00u00e
−ikz + a01u01e

−ikz. (2.15)

Here, a00 and a01 are amplitude factors which determine how much of the zero order

and first order modes contribute to the resulting translated beam. We will also

see that these amplitude factors are proportional to the amount of displacement, h.

Referring back to Equation (2.14), we have:

ut0(x, z) =

(
2

π

) 1
4

(
exp
(
iΨ(z)

)
ω(z)

) 1
2

exp

(
−i kx2

2RC(z)
− x2

ω2(z)

)
︸ ︷︷ ︸

=u0(x, z)

exp

(
−ik(h2 − 2xh)

2RC(z)

)

× exp

(
−(h2 − 2xh)

ω2(z)

)
. (2.16)

The fundamental mode is in fact described by the first three factors in Equa-

tion (2.16), so we can rewrite it as

ut0(x, z) = u0(x, z) exp

(
−ik(h2 − 2xh)

2RC(z)

)
exp

(
−(h2 − 2xh)

ω2(z)

)
. (2.17)

Due to the fact that the displacement h is usually very small compared to the beam

size1, i.e. h/ω � 1, we can make two approximations. First, we can make the

1Based on the example given in Section 2.5, h = 0.05 mm and ω = ω0 = 10 mm, and so h/ω =
0.005.
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assumption that

exp

(
−h

2

ω2

)
≈ 1, (2.18)

so that Equation (2.17) becomes

ut0(x, z) = u0(x, z) exp

(
−ik(h2 − 2xh)

2RC(z)

)
exp

(
2xh

ω2(z)

)
. (2.19)

The second approximation is the application of a first-order Taylor expansion to the

exponential term in Equation (2.19), as follows

exp

(
2xh

ω2

)
≈ 1 +

2xh

ω2
, (2.20)

and substituting into Equation (2.19) produces the result

ut0(x, z) = u0(x, z) exp

(
−ik(h2 − 2xh)

2RC(z)

)(
1 +

2xh

ω2

)

= exp

(
−ik(h2 − 2xh)

2RC(z)

)[
u0(x, z) +

h

ω

2x

ω
u0(x, z)︸ ︷︷ ︸

=exp(−iΨ(z))u1(x, z)

]
(2.21)

Part of the second term in Equation (2.21) can be replaced with the definition of

a first-order mode (Equation (2.11)), and we obtain the following description of

a translated beam as a sum of zero-order and first-order modes in the form of a

decomposed beam:

ud0(x, z) = exp

(
−ik(h2 − 2xh)

2RC(z)

)[
u0(x, z) +

h

ω
e−iΨ(z)u1(x, z)

]
, (2.22)

where the superscript d denotes decomposition. From this it is clear that the trans-

lated beam is composed of zero-order and first-order mode terms; we can therefore
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deduce that a translated zero-order mode beam can be described by a decomposition

into higher-order modes.

It is worth noting that this procedure is applicable for arbitray displacements, and

that the Hermite-Gauss modes are orthonormal and a complete set. Since we con-

sider very small beam displacements, it is possible to compute displacements using

only a few number of modes.

Notice that if the beam waist position is considered, where RC = ∞, Ψ = 0 and

ω = ω0, then Equation (2.22) becomes:

ud0(x, z0) = u0(x, z0) +
h

ω0

u1(x, z0) (2.23)

2.3. Beam comparison

Section 2.2 established that a displaced beam can be described by modal decompo-

sition, yet we need to verify if the same applies to the phase of the beam. The aim

of this section is to examine the phase terms of a non-displaced and displaced Gaus-

sian beam as they both travel from one reference plane, undergo grating diffraction,

and reach a second reference plane. The displaced beam is then considered as being

decomposed into zero-order and first-order modes, after which the phase terms for

all three cases can be analysed.

2.3.1. Identifying the phase components

In order to observe how accurately a decomposed beam describes a translated beam,

a further understanding of the phase terms is required when propagated away from
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the waist, i.e. z 6= z0. The phase terms are given by the imaginary exponential terms;

referring to Equations (2.1) and (2.3), we find that non-translated and translated

zero-order beams each contain three such terms. In the following, the subscripts f ,

t and d correspond to the fundamental non-translated, translated and decomposed

beams respectively.

Using the general form, exp(−iθ), the phase of a beam, θ, at any given point in the

x-z plane is described as:

exp(−iθf ) = exp(−ikz) exp
(
i1

2
Ψ
)

exp

(
−i kx

2

2RC

)
. (2.24)

By substituting x for x− h, the same terms hold for translated zero-order beams:

exp(−iθt) = exp(−ikz) exp
(
i1

2
Ψ
)

exp

(
−ik(x− h)2

2RC

)
. (2.25)

However, in the case of a decomposed beam it is not so straight-forward, since it

is described by a sum of zero-order and first-order modes. In order to describe

exp(−iθd), a clear description for θd is required and computed in the next step.

Determining the phase terms of a decomposed beam

The electric field of a propagated decomposed beam according to Equation (2.22) is

given by:

Ed
0(x, z) = exp

(
−ik(h2 − 2xh)

2RC

)[(
2

π

) 1
4 1√

ω
exp

(
−i kx

2

2RC

− x2

ω2

)
exp

(
i1

2
Ψ
)

+
h

ω
exp (−iΨ)

(
2

π

) 1
4 1√

2ω
exp

(
−i kx

2

2RC

− x2

ω2

)
exp

(
i3

2
Ψ
)(2

√
2x

ω

)]

× exp(−ikz), (2.26)
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which can be simplified to

Ed
0(x, z) = exp

(
−ik(h2 − 2xh)

2RC

)((
2

π

) 1
4 1√

ω
exp

(
−i kx

2

2RC

− x2

ω2

)
exp

(
i1

2
Ψ
)

×
[

2xh

ω2
+ 1

])
exp(−ikz). (2.27)

The last term in the square brackets is purely real and therefore does not contribute

to the phase. Equation (2.27) becomes

Ed
0(x, z) =

(
2

π

) 1
4 1√

ω
exp(−ikz) exp

(
i1

2
Ψ
)

exp

(
−x

2

ω2

)

× exp

(
−i kx

2

2RC

)
exp

(
−ik(h2 − 2xh)

2RC

)
. (2.28)

The last two exponential factors can be factorised to leave the following:

Ed
0(x, z) =

(
2

π

) 1
4 1√

ω
exp(−ikz) exp

(
i1

2
Ψ
)

exp

(
−x

2

ω2

)
exp

(
−ik(x− h)2

2RC

)
.

(2.29)

From Equation (2.29), the factors which contribute to the phase of a decomposed

beam are identified as

exp(−iθd) = exp(−ikz) exp
(
i1

2
Ψ
)

exp

(
−ik(x− h)2

2RC

)
. (2.30)

The phase terms in Equation (2.30) are exactly same as those for a translated beam

in Equation (2.25).
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Resulting phase terms

The phase of a beam, θ, can be expressed as

θf,t,d = kz − 1
2
Ψ + φf,t,d. (2.31)

The common factor of kz− 1
2
Ψ can be omitted to leave φf,t,d, defined for each beam

as follows:

Fundamental beam: φf =
kx2

2RC

, (2.32)

Translated beam: φt =
k(x− h)2

2RC

, (2.33)

Decomposed beam: φd =
k(x− h)2

2RC

. (2.34)

These phase terms can now be explored for diffracted beams and displacements

smaller than a grating period.

2.4. Grating diffraction

Before grating diffraction, the spot size of the beam is considered to be perfectly

circular, i.e., the beam size along the x and y directions are the same at any given

propagation distance z. The effect of a diffraction grating on a Gaussian beam is

considered here in the form of astigmatism.

For clarification, consider a model where the propagating beam encounters a diffrac-
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tion grating whose surface is parallel to the x-z plane. For simplicity, the beam

waist, ω0, is assumed to be located at the grating, i.e. where z = z0. The angles

of incidence, α, and reflection, β, with respect to the grating normal are different,

i.e. α 6= β, as depicted in Figure 1.10. This gives rise to an additional optical path

length of δ1 to the offset incoming, and a missing optical path length of δ2 in the

offset diffracted beam. Consequently, only the beam parameters along the x-axis

change, whilst those along the y-axis remain the same, and an elliptical beam spot

is produced. A beam diffracted by a grating is astigmatic, with the exception of

m = 0 diffraction orders.

However, applying an astigmatism only changes the size of the beam along one axis

and does not constitute as a true interaction with a diffraction grating.

2.4.1. Beam displacements within a grating period

With the Gaussian model lacking a true grating description, the effects can be

demonstrated simply by examining the effects of beam displacement for increasing

values of h within a grating period of d = 1666 nm by computing the phase given by

Equation 2.34 (and equivalently for Equation 2.33). The phase is measured at the

central optical axis (where x = 0) of the modally decomposed beam (or translated

beam), using the waist size, ω0 = 10 mm, and the resulting phase profile can be seen

in Figure 2.3 as the red trace. Regardless of the beam size or ellipticity (caused by

a non-symmetric reflection off a diffraction grating), the phase is zero at all times

at the beam’s central optical axis. The trace displays no periodic phase change

over a distance equivalent to the grating period (in contrast to the 2π phase change

observed in Figure 1.11 due to the intrinsic phase factor), and this is simply because

there is no grating for the beam to interact with.
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Figure 2.3.: Phase measured at the central optical axis for a translated/modally

decomposed beam. Displacement occurs over a grating period, d, and

the parameters are defined as: h = 0.05 mm, z = 0.5 m, λ = 10−6 m and

ω0 = 10 mm. The trace does not exhibit a periodic phase noise of 2π

radians.

We have established that the phase terms which describe a modally decomposed

beam are the same as those defined by a translated beam, and thus there is no

need for a direct comparison of phase between a translated beam and a modally

decomposed beam. We can, however, compare the differences in the electric field of

the two beams, as demonstrated in the next section.
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2.5. Comparison of electric field amplitudes

The electric field of a translated zero-order is given by:

Et
0(x, z) =

(
2

π

) 1
4 1√

ω
exp

(
−i kx2

2RC(z)
− x2

ω2(z)

)
exp

(
−ik(h2 − 2xh)

2RC(z)

)

× exp
(
i1

2
Ψ
)

exp

(
−(h2 − 2xh)

ω2(z)

)
︸ ︷︷ ︸

Ft

exp(−ikz), (2.35)

and the electric field for a modally decomposed beam (according to Equation (2.27))

is described as:

Ed
0(x, z) = exp

(
−ik(h2 − 2xh)

2RC(z)

)((
2

π

) 1
4 1√

ω
exp

(
−i kx2

2RC(z)
− x2

ω2(z)

)

× exp
(
i1

2
Ψ
) [ 2xh

ω2(z)
+ 1

]
︸ ︷︷ ︸

Fd

)
exp(−ikz). (2.36)

Notice that the only difference between the two expressions is the complete factor

indicated as Ft in Equation (2.35), which was approximated in Section 2.2.1 and re-

sulted in the approximated factor, Fd, in Equation (2.36). Although the approxima-

tion holds for small displacements, we can observe the effects of this approximation

for much larger beam displacements. We are only concerned with the factors Ft and

Fd for comparison, since all of the other terms in Equations (2.35) and (2.36) are

identical.

From the expression for a translated beam, we let

Ft = exp

(
−(h2 − 2xh)

ω2(z)

)
, (2.37)
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Figure 2.4.: Amplitude of the Ft factor (green) and the Fd factor (red) for contin-

uously increasing beam displacement, h. The factors are computed at

the central optical axis of the beam, using the parameters λ = 10−6 m,

ω0 = 10 mm and z = 0.5 m.

and for a modally decomposed beam we have

Fd =
2xh

ω2(z)
+ 1. (2.38)

These factors were computed in Matlab for a typical Gaussian beam with the fol-

lowing values: λ = 1 × 10−6 m, ω0 = 10 mm and z = 0.5 m2, as seen in Figure 2.4.

The green and red lines represent Ft and Fd, respectively, as measured at the central

optical axis of the beam. The x-axis shows a displacement from zero up to half of

the beam radius, and the approximated factor of Fd clearly deviates further away

2The value of z = 0.5 m was chosen to match typical beam propagation distances observed during
table-top experiments.
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Chapter 2. Analytical framework for diffracted Gaussian beams

from the Ft factor at such large beam displacements.

If we now consider a typical displacement where h = 0.05 mm, then h/ω0 = 0.005,

and we see from Figure 2.4 that the approximation for the decomposed beam is

highly comparable to the factor for the translated beam in this region.

This can be understood more clearly by considering the difference between Fd and Ft

relative to Ft, which is illustrated by the purple trace in Figure 2.5 (using the same

beam parameters). Again, for larger h, the relative difference increases, showing that

the Fd approximation deviates further away from Ft. Yet for a displacement of h =

0.05 mm, the relative difference was equal to 2.5×10−5, which is an extremely small

number, implying that the difference in the electric field between a translated beam

and a decomposed beam is almost negligible for very small beam displacements.

2.6. Analytical results

The phase terms between a translated beam and a modally decomposed beam are

the same, regardless of the beam’s ellipticity (due to grating diffraction). We find

that the electric field amplitude of a modally decomposed beam is highly comparable

to that for a translated beam at for very small displacements - in realistic terms, the

degree to which a beam experiences misalignment is minute, typically less than 0.5%

of the beam size. The exceptionally small difference between the two expressions

suggests that the resulting electric field from modal decomposition is very close to

that of a translated beam, and that the technique of decomposing a beam into higher

order modes is a very good approximation for describing small beam displacements.

As discussed in Section 1.5.3, a beam diffracted by a grating must introduce a

substantial phase change of 2π radians when displaced over a grating period, d, under
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Figure 2.5.: Difference between Fd and Ft relative to Ft, with increasing beam dis-

placement, h. The parameters are: λ = 10−6 m, ω0 = 10 mm and

z = 0.5 m.

a geometrical planewave consideration. Yet within the Gaussian model, the absence

of a proper description for a diffraction grating means that when a beam is displaced

either through a geometrical translation or a modal decomposition, the phase (as

described by Equation (2.33) or (2.34)) at the central optical axis always remains

constant (see Figure 2.3). The 2π phase change is absent within the Gaussian-based

framework, contrary to the phase change predicted by Equation (1.20). It stands

to reason that the intrinsic phase factor is missing because the diffraction grating

element itself has not been fully described, and thus there is no proper interaction

between the beam and the grating to generate the appropriate phase changes.

However, we have identified that the phase terms in a translated beam and a modally

decomposed beam are the same, and this applies regardless of the beam ellipticity;
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Chapter 2. Analytical framework for diffracted Gaussian beams

the similarity between a translated and decomposed beam is not dependent solely

on the beam size but on the amount of displacement relative to the beam size.

In order to further understand the role of the intrinsic phase factor within the

Gaussian model presented, and for the purpose of verifying the technique of modal

decomposition, we must first ascertain that the phase in the individual zero-order

and first-order modes of a diffracted beam are, in fact, the same. In the next

chapter, we determine whether the phase is influenced by the beam shape using an

experimental setup.
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Chapter 3.

EXPERIMENTAL

DEMONSTRATION OF

PHASE-MODE INDEPENDENCY

In Chapter 2, a theoretical analysis of a Gaussian beam was performed, and the

effect of beam displacement on the phase of the beam was examined. The beam

was displaced using two methods - through a geometric translation and a modal

decomposition. Although both methods demonstrated identical descriptions for the

phase, it was found that the Gaussian framework does not contain the phase change

associated with the intrinsic phase factor.

In this chapter we use experimental means to determine if the phase of zero-order

and a first-order diffracted beams are the same, and therefore establish whether or

not the phase of a diffracted beam is dependent on the beam shape (or mode). This

is achieved by observing an interference pattern created by two zero-order mode

beams, one of which is imprinted by a diffraction grating, and comparing it to the
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Chapter 3. Experimental demonstration of phase-mode independency

interference pattern using two first-order mode beams, also one of which is imprinted

by grating diffraction. Any difference in the phase of the two mode orders would be

indicated by a shift in phase between the two interference patterns, or fringes.

Section 3.1 introduces the properties of the specific diffraction grating used as part of

the experimental setup. In Section 3.2 we present the details of the table-top experi-

ment: a Mach-Zehnder interferometer with a reflective diffraction grating contained

within one of the interferometer arms. The concept of the frequency stabilisation

technique is provided in Section 3.3, required to lock the modecleaner and the main

interferometer. We describe a method of dual-mode locking in Section 3.4, enabling

a stable lock whilst continuously switching between zero-order and first-order modes.

3.1. Blazed gratings

Usually for a diffraction grating with non-defined efficiencies, such as the one shown

in Figure 1.7, most of the energy from the incident beam is contained in the zeroth

diffraction order, while the power in the higher diffraction orders weaken progres-

sively. Since the aim of this work is to investigate the effects on a diffracted beam,

we require a grating specifically designed for a high efficiency in the first diffraction

order, unlike the 3-port gratings described mainly in Section 1.5.2. This is achieved

with a blazed diffraction grating, which are available commercially.

A blazed grating lends its name to the shape of the grooves which have an asym-

metric ‘sawtooth’ profile, as illustrated in Figure 3.1. This particular groove design

consequently shifts the diffraction envelope such that the diffraction peak (of max-

imum power) coincides with a higher diffraction order. The grating efficiency can

therefore be optimised in the first diffraction order for a specific wavelength.
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Figure 3.1.: Blazed gratings are optimised in the first diffraction order, with max-

imum efficiency for a given wavelength determined by the blaze angle,

γ, but are still governed by the grating equation.

Despite the nature of the blazed grooves, the standard grating equation (Equa-

tion (1.14)) applies as normal; the various diffraction orders are located accordingly

with respect to the grating normal, including the zeroth diffraction order whose

beam properties are identical to the incident beam.

However, the groove geometry stipulates that the groove surface normal is different

to the grating normal, thereby separating the specular reflection (and hence the

diffraction peak) from the zeroth diffraction order. By selecting the correct blaze

angle, γ, the first diffraction order will lie close to the specularly reflected beam,

falling within the diffraction peak to obtain increased power.
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3.2. A Mach-Zehnder setup to observe phase effects

Through experimental means, we want to distinguish the phases between diffracted

beams of zero-order and first-order modes. This is achieved by interfering two beams

(of the same mode), where one of the beams is imprinted by diffraction from a grat-

ing. Several interferometer configurations were considered, such as the Michelson

and Sagnac interferometers, but for the purpose of studying the relative phase be-

tween two interference patterns for different modes, the Mach-Zehnder (MZ) inter-

ferometer is ideal. It has the advantage of being quick and fairly simple to set up,

and allows for flexibility in the geometrical layout, as seen in Figure 3.2. Before

entering the main MZ interferometer, the input beam is purified via a triangular

mode cleaner (MC) to yield a single and pure beam mode. The input and output

beamsplitters (BS) are partially reflective mirrors designed for 50% transmission and

reflection. At the input BS, the beam is split into two arms of equal length - one arm

includes a piezoelectric transducer (PZT) and the other arm contains the diffraction

grating, denoted as the ‘PZT’ path and the ‘grating’ path, respectively. Both beams

recombine at the output BS resulting in two superimposed output beams. One out-

put beam is incident on the ‘east’ photodetector (PD) and the second output beam

is incident on the ‘south’ PD, and both beams are 180◦ out of phase with respect to

each other.

3.2.1. Mode cleaner

The input laser beam in our lab is well collimated with a waist size of 1183µm.

However, in order for the MC to operate successfully, the beam entering the MC

must have specific beam parameters. For our particular MC, the beam was required

to have a waist size of 371µm (and hence a Rayleigh range of 0.41 m), with the
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Figure 3.2.: Layout of a table-top grating Mach-Zehnder interferometer. The mode

cleaner (MC) is locked using a piezoelectric transducer (PZT) and a

photodetector (PD), allowing a single mode beam to pass through. The

beam is split into two arms by an input beamsplitter (BS), where one

arm contains a diffraction grating and the other arm includes a PZT

mirror, and the beams recombine at an output BS and are detected by

the east and south PDs. The PZT mirror causes fluctuations in the

length of the arm to create interference signals.

waist located centrally between the input and output mirrors of the MC. A JamMt

simulation tool [87] was used to compute the best combination of lenses for mode-

matching the laser beam into the MC. Mode-matching was achieved using a convex

lens with f = 100 mm and a concave lens with f = −50 mm (see Figure A.1 in

Appendix A for details).

The alignment of the beam upon entering the MC is crucial - the beam must be

incident on the input mirror of the MC at a very precise point and angle. This

is to ensure that the beam is reflected at the correct angles within the MC and
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completes a round-trip before exiting the MC. A combination of steering mirrors

guides the beam into the MC and can be adjusted to alter the beam alignment,

thereby amplifying the resonance of the desired mode. The MC is tuned using a

PZT - when a voltage is applied to the PZT, the shape of the material deforms

proportionally, thereby adjusting the position of the PZT mirror. Although these

movements are extremely tiny, it is enough to alter the round-trip distance of the

circulating light inside the MC, allowing one specific mode to exit and suppressing

all other modes. The distance for one round-trip within the triangular MC is 0.42m,

with a free spectral range (FSR) of 714 MHz and a finesse of F = 307± 20 [88] (see

Figure 3.4(a)).

The exiting beam from the MC encounters a beamsplitter, where the reflected beam

is sensed by a PD and the signal is used as part of a feedback loop to lock the

MC to a particular beam mode (as discussed in Section 3.3). The transmitted beam

from the beamsplitter continues to the main interferometer setup, travelling through

another pair of collimating lenses. The lenses have the same focal lengths as the

mode-matching lenses but in reverse order, ensuring a collimated beam once more

with a waist size of 1036µm (see Appendix A.2 for the measured beam profile). The

input BS then separates the beam into two arms: the grating path and the PZT

path.

3.2.2. Mach-Zehnder, grating path

The beam transmitted through the input BS forms one arm of the Mach-Zehnder

interferometer, referred to as the grating path. The grating used in this setup is

orientated to lie in the x-y plane, with the grooves aligned parallel to the y-axis, and

α = 10◦ for the incident beam with respect to the grating normal. The grating is

located on a dual-axis translation stage to enable motion in two degrees of freedom:
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along the x-axis for lateral translation, and along the z-axis. The high-resolution

manual actuators allow for grating displacements smaller than the groove spacing,

with incremental steps as small as 500 nm. Note that the purpose of the translation

stage was for grating and beam alignment during the experimental setup, and not

to investigate grating displacements.

The groove spacing of the grating was chosen to be the same order as the wavelength

of the laser. A square, ruled grating with 600 grooves/mm was chosen, giving a

groove spacing of d = 1666.7 nm. The grating is ‘blazed’ to produce a sawtooth

profile, illustrated in Figure 3.3. The blaze angle determines the wavelength at

which the grating exhibits high diffraction efficiency. In this case, a blaze angle of

γ = 17.45◦ produces an approximate efficiency of 70% for a 1064 nm wavelength.

The grating was aligned to the incident beam such that for the diffracted beams,

maximum power occurred in the first diffraction order (m = +1). This was found to

occur when the incident beam was set at an angle of α = 10◦ to the grating normal.

Using the grating equation, the beam was found to have a first order diffraction

angle of β1 = 27.69◦. Angle conventions imply that both α and β are positive, since

they are on the same side of the grating normal.

A beam reflected off a grating experiences a change in beam parameters along the

x-axis1 (i.e. parallel to the surface of the optics table). More importantly, these

new parameters include a new waist size and waist position (if the beam were to

be traced backwards). A Matlab script was used to take the original parameter

inputs, namely the waist size and propagation distances (details can be found in

Appendix A.3). The beam was propagated and reflected off the grating using the

angles specified in Figure 3.3, and the new beam parameters along the x-axis were

computed. The waist size and Rayleigh range before and after diffraction are as

1Note that the beam profile in the y-direction remains unchanged.
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Figure 3.3.: Orientation of the blazed grating. When incoming beam is incident at

an angle of α = 10◦, first order diffraction occurs at β1 = 27.69◦ to the

grating normal.

follow:

Before diffraction After diffraction

ω0 1036µm → 950µm

zR 2.29 m → 1.92 m

Note that the effect of diffraction has caused the previously circular beam cross-

section to decrease along the x-direction, resulting in an astigmatic beam.

A turning mirror is situated after the grating, guiding the beam to a pair of steering

mirrors. These are set slightly further apart than those for the MC so as to provide

greater sensitivity during mirror adjustment for beam alignnment at the output BS.
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3.2.3. Mach-Zehnder, piezoelectric transducer path

The beam reflected from the input BS forms the second arm of the Mach-Zehnder

interferometer, designated as the PZT path. Since the beam in the PZT path is

unaffected by any diffraction effects, the beam retains a circular beam shape, while

the beam in the grating path has an elliptical beam shape due to grating diffraction.

It is important that when both beam paths recombine at the output BS, their beam

shapes are as similar as possible so as to obtain a high contrast in interference and

therefore a strong signal detection by the output PDs. Therefore one of two things

must be done: either an astigmatism is applied to the beam in the PZT path to

match the astigmatic beam in the grating path, or the elliptical beam shape in

the grating path is converted back to a circular beam shape. Both methods can

be achieved using a ‘telescope’ of three cylindrical lenses,2, which change the beam

parameters along one axis only.

Due to space contraints of the optical layout, the method of converting the beam

shape from circular into elliptical in the PZT path was chosen, and this required

a change in the beam parameters along the x-direction only. The mode-matching

simulation tool computed the best combination of cylindrical lenses (see Figure A.2

in Appendix A for specific lens properties and positions).

Once the cylindrical lenses were positioned in the PZT path, as seen in Figure 3.2,

a laser beam profiler was used to observe the spatial intensity profile of the beam.

The beam profiler captured a 2-D image of the beam to be captured, displaying the

intensity patterns and dimensions of the beam spot in the x−y plane on a laptop. To

ensure that the converted astigmatic beam matched the beam profile of the grating

path, the beam profiler was placed in various positions along the optical beam path

z of both the grating arm and the PZT arm, and measurements of the beam shape

2Two lenses are usually sufficient, but if space is limited then a third is necessary.
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were recorded and compared. The cylindrical lenses were adjusted back and forth

along the z-axis by fractional amounts until the beam diameter along the x-axis in

the PZT path matched as closely as possible the beam diameter in the grating path

along different positions of z.

Once the beam profiles of the two paths were well matched, a final measurement was

carried out to compare the ellipticity in each path. The beam profiler was placed

0.7 m away from the input BS along the grating path, which was located just in front

of the first steering mirror. After averaging over a 10-second period, the diameter

along the x-axis (2ωgrx ) of the diffracted beam was recorded as (2058 ± 15)µm, and

the diameter along the y-axis (2ωgry ) was (2195± 15)µm, resulting in an ellipticity

of εgr = 0.937. The profiler was then placed 0.7 m away from the input BS along the

PZT path, just in front of the PZT mirror itself. In the x-direction, the diameter

was found to be 2ωPZTx = (2053± 15)µm, with a diameter along the y-direction as

2ωPZTy = (2205±15)µm, giving εPZT = 0.931. The beam shape of both beam paths

was therefore confirmed to be very similar.

After passing through the cylindrical lenses, the beam is reflected off a PZT mirror,

followed by a pair of steering mirrors directing the beam to the output BS. Ramping

the PZT mirror caused tiny fluctuations in the length of the PZT path, thereby

creating an interference pattern when the two beam paths recombined at the output

BS.

3.3. Cavity resonance stabilisation techniques

Frequency fluctuations occur naturally in a laser, and so some form of frequency

stabilisation is required in order to ‘lock’ a system to a specific resonance frequency,

and this is achieved using a feedback control loop. In the case of locking an MC
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with respect to the laser, the laser intensity is measured by the PD at the MC’s

output, and the signal is fed back to the MC’s PZT mirror, which then adjusts itself

accordingly to hold the cavity on resonance. The basic concepts of this form of

feedback control are introduced in the following sections. In the following example

we use a simple linear cavity, otherwise known as a Fabry-Perot cavity, instead of a

triangular mode cleaner for simplicity.

3.3.1. Analogue cavity resonance stabilisation

A linear cavity, such as the one shown in Figure 3.5, is said to be on resonance

if the laser frequency, νr, is an integer multiple of the free spectral range (FSR):

νr = N∆νfsr. The FSR is defined as ∆νfsr = c/2L, where L is the length of the

cavity. In other words, resonance occurs when an integer number of wavelengths

of the laser light is equal to twice the length of the cavity3. A plot of the light

transmission against frequency reveals evenly spaced resonance peaks, as shown in

Figure 3.4(a). The finesse, F , is the ‘quality factor’ of the peak, where the solid and

dashed transmission lines represent cavities with a high and low finesse, respectively.

The finesse is described as the ratio between the FSR and the linewidth of the peak

(also known as the full-width half-maximum, FWHM). For a further understanding

of modulation, see Appendix B.

The feedback loop

Locking a system through feedback control is the process of taking measurements

of the beam’s intensity derivative and feeding it back either to the laser or the MC

PZT in order to hold the cavity on resonance. For our setup, the PD is said to be

3Or one round-trip distance for a triangular MC.
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Figure 3.4.: (a) Resonance peaks formed by light transmission through a Fabry-Perot

cavity as a function of frequency. When transmitted light is maximum,

reflected light from the cavity is minimum and vice versa, and these

occur at very specific frequencies. The solid red line corresponds to a

high-finesse cavity, and the dashed red line represents a relatively low-

finesse cavity. (b) Below resonance, modulating the frequency a small

amount causes the transmitted light to vary in amplitude over a larger

range. Above resonance, the transmitted light will vary 180◦ out of

phase. By modulating and observing the behaviour of the tranmitted

light, it is possible to distinguish which side of resonance the system has

drifted to.

measuring the signal in transmission, since the laser beam is transmitted through

the MC, and the transmitted light is held at maximum resonance.

An alternative but very similar method is to locate the PD at the input mirror of the

cavity to detect the reflected beam, as demonstrated in Figure 3.5 - this technique

is known as the Pound-Drever-Hall (PDH) scheme [89]. Using the PDH method,

the reflected signal is held at minimum intensity, meaning that the light transmitted

through the cavity is automatically held at maximum resonance.

The reason why transmission was chosen for our setup is due to space constrictions

of the optical layout. The following example given in Figure 3.5 uses the PDH
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Figure 3.5.: Demonstration of a feedback control loop to lock a simple Fabry-Perot

cavity on resonance using the Pound-Drever-Hall technique. An os-

cillator modulates the laser frequency through an electro-optic mod-

ulator (EOM). The reflected signal from the cavity is detected by a

photodetector (PDref) and sent to a mixer, which is then multiplied

with the oscillator signal. The output is the error signal, which en-

ters the servo amplifier. The resulting feedback signal is amplified by

the high-voltage (HV) amplifier and finally fed back to the piezoelectric

transducer (PZT), holding the cavity at resonance and therefore in a

stable lock.

technique to explain the practicalities of feedback control - additional information

can be found in [1].

A brief description of the feedback control loop shown in Figure 3.5 begins with an

oscillater which modulates the phase4 of the laser via an electro-optic modulator

(EOM). The reflected signal from the cavity is detected by the photodetector in

reflection (PDref) and enters a mixer as one of its inputs. The mixer receives a second

input signal from the oscillator and multiplies the two input signals. Contained

within the mixer is a low-pass filter which extracts the appropriate signal from the

4Phase and frequency modulation both have the same results, but phase modulation is easier to
carry out in practice and the mathematical analysis is more simple.
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product of the inputs. The output from the mixer is called the error signal, ε, and

proceeds to the servo amplifier (see Appendix C for the servo circuit schematics).

The servo acts to drive the error signal to zero in the form of a feedback signal,

which goes on to be amplified through the high-voltage amplifier (HV amp), and

the resulting feedback signal is fed back to the PZT situated on the output mirror

of the cavity. The feedback loop is now complete and the system is said to be locked

on resonance. Appendix B provides a description of the fields for the carrier and

sideband frequencies (Section B.2), followed by a derivation for the power in the

reflected beam (Section B.3) and details on obtaining the error signal (Section B.4).

3.3.2. Mode-cleaner control loop

Referring back to our setup, a feedback control system similar to the PDH example

in Figure 3.5 was employed for the MC using high frequency modulation, illustrated

in Figure 3.6. The transmitted light from the output of the MC is picked off by a BS

and detected by the PDtrans, providing an AC signal for the mixer. The oscillator

modulates at 15 MHz, and the mixer is also optimised to operate at 15 MHz. The

error signal passes through the servo, and the resulting feedback signal is fed back

into the PZT of the MC, thus completing the feedback loop. The feedback signal

triggers a deformation of the PZT, adjusting the position of the PZT’s mirror surface

so as to maintain the correct round-trip distance inside the MC. This allows a

particular mode to resonate, thereby locking the MC on resonance with respect to

the laser.

A CCD camera was inserted in the beam path just before the input BS of the

interferometer so that the image of the shape of the beam spot emerging from

the MC could be observed directly on a monitor. A cavity scan was performed

using the ramping function on the servo which applies a triangular wave signal to
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Figure 3.6.: Feedback control system used for locking the triangular mode cleaner

(MC) on resonance with respect to the laser. The transmitted signal

from the MC is detected by the photodetector (PDtrans) and fed into a

mixer together with a modulation signal from the oscillator. The mixer

outputs an error signal, which enters a servo and is amplified by the

high-voltage amplifier (HV amp). The resulting feedback signal is fed

back to the piezoelectric transducer (PZT), whose position continually

adjusts so that the required mode resonates and exits the MC.

the MC’s PZT (green trace in Figure 3.7), causing the PZT to move back and

forth and sweep through the various resonance modes. During the cavity scan, the

monitor reveals a whole range of beam shapes with varying Hermite-Gauss (and

some Laguerre-Gauss) modes. Through careful alignment of the beam entering the

MC, the resonance peaks corresponding to zero-order modes were amplified while

higher-order modes were suppressed, as depicted by the red trace in Figure 3.7.

The blue trace in Figure 3.7 represents the error signal, with steep zero-crossings

coinciding with the highest resonance peaks. Note that the shape of the error signal

is typical for high-frequency modulation, as seen in Figure B.2(a).

Without the ramp function, the position of the PZT can be manually adjusted using
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Figure 3.7.: A cavity scan by ramping the piezoelectric transducer back and forth

(green) causes zero-order modes to resonate within the mode cleaner

(MC) cavity, producing resonance peaks (red). High-frequency modu-

lation creates an error signal (blue) at each resonance peak, and is used

to lock the MC on resonance.

an offset dial on the servo to locate the required mode, such as the zero-order mode,

by observing the CCD image. When the PZT is in the correct position for zero-order

mode resonance, the image of a zero-order mode appears on the monitor as a bright

circular beam spot. Simultaneously, the output signal from the MC’s PD displays

a sudden increase in power on an oscilloscope. At this precise point, the feedback

control is engaged by switching on the integrator switches on the servo, holding the

PZT in position. At this point the MC is said to be locked, and this is clear from

the presence of a consistent beam spot image from the monitor without drifting into

other modes.
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Chapter 3. Experimental demonstration of phase-mode independency

3.3.3. Mach-Zehnder control loop

The arms of the MZ setup can also be locked to either the bright or dark fringe

operation point by using one of the output PDs and the PZT mirror contained in

one of the arms. The feedback control system can be seen in Figure 3.8, and works

on the same principle as that described in Section 3.3.2 for the MC, with a couple

of differences.

Firstly, the phase modulation is not applied through an EOM but to the PZT via

the HV amplifier (as is the feedback signal). Secondly, a low-frequency modulation

was used (as opposed to the high-frequency modulation of 15 MHz used in the MC,

which would have required an extra EOM). The PZT had a resonance frequency of

approximately 2 kHz, and so the modulation frequency was set between 1 - 2 kHz.

South
PD

Low-pass
filter

HV ampServoMixer

Frequency
generator

 PZT
mirror

Grating

Input
BS

Output
BS

East
PD

Figure 3.8.: Feedback control system used for locking the interferometer arms to the

dark fringe at the south photodetector (PD). The oscillator is replaced

by a frequency generator, and the inclusion of a low-pass filter enables

low-frequency modulation of the piezoelectric transducer (PZT).
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Chapter 3. Experimental demonstration of phase-mode independency

Low-frequency modulation is achieved by using a frequency generator instead of an

oscillator to inject a modulation signal to a mixer (designed specifically for low-

frequency modulation) and the PZT via the HV amp, as seen in Figure 3.8. Low-

frequency modulation required a low-pass filter, which was placed between the mixer

and servo (indicated in Figure 3.8), and setting the filter’s cut-off frequency to 300 Hz

ensured that all high frequencies were removed.

Figure 3.9 illustrates the effects of interference between the two arms of the MZ.

When the PZT is ramped back and forth continuously (green trace), the optical

path length of the PZT arm increases and decreases, causing continuous constructive

and destructive interference at the output BS. This gives rise to interference fringes,

which is detected by the east PD as increasing and decreasing light power (pink

trace). Note that due to the symmetry of the interference fringes, the signal detected

by the south PD is the same as the pink trace but reversed in amplitude. The best

interference contrast, or fringe visibility, achieved for this setup was in the region of

85-95%, and was considered to be very reasonable.

The error signal is indicated by the blue trace, and the steep zero-crossings are

seen to occur when the beam intensity at the east PD is maximum (bright fringe),

coinciding with the minimum intensity (dark fringe) at the south PD. The shape

of the resulting error signal is typical for low-frequency modulation, as was seen in

Figure B.2(b). The south port PD provided the AC signal for the mixer and the

feedback signal was fed into the PZT, allowing the MZ arms to lock to the ‘dark‘

port of the south PD (and hence holding the beam intensity on the bright fringe at

the east PD).
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Figure 3.9.: Error signal for the Mach-Zehnder arms. Ramping the piezoelectric

transducer back and forth (green) causes interference in the superim-

posed output beams to create bright and dark fringes at the east pho-

todetector (pink). Low-frequency modulation creates an error signal

(blue), allowing the interferometer to lock to the beam’s minimum or

maximum intensity.

3.4. Dual-mode locking technique

We aim to compare the phase between zero-order and first-order modes imprinted

with a grating diffraction using the grating MZ setup. However, the absolute phase

cannot be measured and so we cannot simply observe the interference fringes of

zero-order and first-order modes independently and compare the phase difference.

A reference point is required against which relative phase changes can be measured

with any significance, but we have no common reference point, since using each order

of mode would imply running two separate experiments.
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Instead, we execute a method of using the same beam and continuously alternate

between the two modes, whilst ensuring that the MC was locked to the relevant

mode at all times. We employed a technique involving ‘dual-mode locking’.

3.4.1. Method of dual-mode locking

The procedure of dual-mode locking relies on the precise tuning of the MC. The

resonances corresponding to HG00 and HG01 modes are both maximised to the same

level using the steering mirrors. The peak of the zero-order mode occurs when the

MC’s PZT is at one specific position, and the peak of the first-order mode occurs

when the PZT is at another position.

These two positions equate to an amplitude difference, implying that if the PZT was

supplied with a square-wave signal consisting of only two voltage levels, the PZT

can be displaced back and forth continuously between two very precise positions.

A square-wave signal from an external signal generator provided these two voltages,

where the minimum portion of the square-wave coinciding with the peak of one

resonant mode, while the maximum part of the square-wave coincided with the

peak of the other resonant mode. The CCD monitor screen displayed images of the

alternating zero-order and first-order mode beam shapes, as seen in Figure 3.10.

For this setup, the amplitude for the square-wave signal was found to be in the range

of 2.1±0.1 volts. A frequency of 10 Hz was used initially to locate the resonant

peaks, and was eventually reduced to the order of a few hertz to enable locking.

Figure 3.11 shows a continuously locked signal for each mode emitted from the MC

(red trace) during dual-mode operation using the square-wave signal (green trace).

Three perturbations are evident in the red trace - these are due to stabilisation
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effects from the electronics and are discussed in the next section. Despite these

fluctuations, the MC remained successfully locked at each mode.

3.4.2. Dual-mode fringe pattern

Once a stable dual-mode beam has been established and locked using the MC, the

beam proceeds through the main MZ interferometer. The switching between the

zero-order and first-order modes can be observed clearly throughout the setup with

a simple infra-red laser viewing card. When the PZT in the arm of the MZ is ramped,

interference at the output BS generates fringes as before, and the continuity of the

fringe pattern during mode-switching can be observed. The effect is illustrated in

Figure 3.12, where a fringe pattern resulting from dual-mode locking can be seen

(red).

Slight fluctuations are evident in the otherwise perfectly continuous fringe pattern,

coincident with the imperfections seen in the PD signal from the MC (blue), which in

turn occur each time the square-wave jumps to maximum and minimum. The fluc-

(a) Zero-order mode (b) First-order mode

Figure 3.10.: When the piezoelectric transducer in the mode cleaner is displaced

back and forth precisely at the correct amplitude, the resonating mode

will alternate between zero-order and first-order modes, producing in-

terchanging images of the beam shape.
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Figure 3.11.: Stable output signal from the modecleaner (MC) during locking in

dual-mode. When the piezoelectric transducer in the MC shifts be-

tween zero-order and first-order modes (green), the output signal de-

tected by the photodetector (PD) is locked to each mode alternately

and remains stable (red).

tuations, signified by the vertical dashed lines, are caused by the electronic systems

attempting to lock to a new mode each time. After a brief moment, the system

stabilises into a locked system, and the fringe signal continues its waveform. For

this reason, the square-wave signal is set to a frequency of 3Hz - a higher frequency

forces the electronics to destabilise more frequently and results in very noisy fringe

signals, yet if the frequency is too low, it is difficult to lock the modecleaner at both

resonances5. The breaks in fringe symmetry are due to the PZT in the MZ changing

direction during ramping (peaks and troughs of the triangular wave), indicated by

the vertical dotted lines.

5The MC is difficult to lock using a low-frequency square-wave signal because the longer the
time period at maximum or minimum level, the more round-trip distance inside the MC varies,
causing the cavity to drift in and out of resonance.
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3.5. Experimental results

If a difference in phase existed between zero-order and first-order modes, a definite

phase shift would be observed in the fringe waveform each time the mode changed
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Figure 3.12.: Fringe pattern resulting from dual-mode locking. From top to bot-

tom: piezoelectric transducer (PZT) ramp for the Mach-Zehnder arm

(purple); interference fringe signal detected by the east photodetector

(PD) (red); locked output signal in dual-mode from the modecleaner

(MC) PD (blue); 3 Hz square-wave signal applied to the PZT in the

MC (green). The maximum and minimum part of the square-wave

locks to zero-order and first-order mode resonances, respectively. Note

that the slight fluctuations present in both the fringe signal and the

output of the MC are due to the stabilisation effects of the electronics

when attempting to lock each time to a new mode.
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(i.e. at the precise point when the square-wave signal jumped to maximum or

minimum). However, the fringe signal (red trace) in Figure 3.12 reveals a continuous

and unbroken waveform during mode-switching. Apart from the perturbations in

the fringe signal which are due to the stabilisation effects from the electronics, there

appears to be no obvious deviation from the general wave pattern. This result implies

that, within the measurement accuracy, there is no difference in phase between zero-

order and first-order modes after grating diffraction, and thereby confirming that

the phase of a diffracted beam is, in fact, independent of the beam shape (or mode).

In the next chapter, we introduce a rigorous simulation tool and continue to verify

mode independency in diffracted beams. In addition, a rather more thorough inves-

tigation is carried out, comparing the effects of a diffracted beam when displaced

geometrically and through modal decomposition.
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Chapter 4.

TIME-DOMAIN SIMULATION FOR

GRATING DIFFRACTION

We have established that the analytical framework developed in Chapter 2 does not

contain the intrinsic phase factor associated with grating-related phase changes over

2π radians, which is otherwise present in a geometric planewave approach. We have

verified that the method of modal decomposition is an accurate representation for

small beam displacements. In Chapter 3 we demonstrated using a table-top exper-

iment that the phase of a diffracted beam is independent of the beam mode. Such

experimental setups are unfortunately limited to some extent in terms of precision,

and a further improvement in accuracy is too costly and time-consuming. Instead,

we look to alternative methods in order to study the phase behaviour of different

modes after diffraction by a grating in greater detail. A flexible solution is the use of

simulation tools - they allow the user to adapt any setup to suit their requirements,

and various parameters can be manipulated quickly, easily and in a cost-effective

manner.
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Chapter 4. Time-domain simulation for grating diffraction

We introduce an alternative notation to describe various orders of modes in terms

of transverse electromagnetic, or TEMnm, waves. The indices n and m refer to

the node number, and so TEM00 and TEM10 correspond to zero-order modes and

first-order modes respectively.

In this chapter, we aim to simulate a diffraction grating through which beams of

different orders of mode are propagated, and attempt to study the phase changes

created when the beam or grating is displaced. The motivation behind this is to

understand why phase shifts of 2π radians are absent in the Gaussian-based ana-

lytical model. The main objective is to observe and compare the phase changes in

the 1st diffraction order in two different scenarios: (a) during a geometric beam (or

grating) displacement using a TEM00 beam (see Section 4.3.1), and (b) during a

modal decomposition, achieved by adding a TEM10 beam to a TEM00 beam and

thereby replicating a beam displacement (see Section 4.4). The outcome will verify

how accurately the modal decomposition approximation describes phase changes (in

the 1st diffraction order) in comparison to the phase change from actual beam or

grating displacements in a geometric sense.

Section 4.1 introduces the simulation tool, adapted to emulate a propagating Gaus-

sian beam after grating diffraction. Since the simulation parameters can easily be

adjusted, the phase of the diffracted beams can be measured under various condi-

tions.

Section 4.2 provides the key parameters which define the simulation space. Consid-

erations regarding the optical layout are also acknowledged, notably the positioning

of the beam waists and reference planes for phase measurements.

In Section 4.3, we essentially test the simulation tool by propagating and diffracting

a TEM00 mode beam during beam/grating displacement. We determine whether
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the resulting phase in the 1st diffractive order exhibits a periodic change in phase

of 2π radians. This would also corroborate with the findings in [76]. The method

is repeated using a TEM10 mode beam during grating displacement, and phase

measurements are obtained for each diffraction order at both intensity peaks. Again,

we resolve for signs of a periodic change in phase of 2π radians in the 1st diffractive

order.

After studying the modes independently, Section 4.4 explores the effects of combining

a TEM00 beam and TEM10 beam, and hence replicating a displaced beam/grating

through modal decomposition. The aim of this section is to establish if the phase in

the combined modes continues to display a change over 2π radians, through means of

an equivalent beam/grating displacement. Subsequently, we also determine whether

the phase of a diffracted TEM00 beam and TEM10 beam is the same by comparing

the phase of the combined beams (through modal decomposition) with that of the

geometric beam/grating displacements, in support of the experimental findings in

the previous chapter.

4.1. Introduction to the finite-difference time-domain

tool

The Finite-Difference Time-Domain (FDTD) is a comprehensive analytical tech-

nique which can be utilised to create a powerful two-dimensional simulation tool to

solve Maxwell’s equations rigorously in the time-domain [90]. The basic principle

for the FDTD tool is to solve the time-domain evolution of electric and magnetic

fields over time for a given spatial domain. In the framework of this thesis, an

implementation of the FDTD tool was used to investigate how diffraction grating

displacements coupled into the phase of diffraction orders [91, 92].

92



Chapter 4. Time-domain simulation for grating diffraction

Figure 4.1.: The simulation space depicted as a grid of cells. Configurations for

electric ( ~E) and magnetic ( ~H) field components are shown for both

transverse electric (TE) and transverse magnetic (TM) polarisations.[91]

4.1.1. Concept of the simulation tool

Electromagnetic (EM) fields are propagated through a simulated flat and finite spa-

tial domain, which itself consists of discrete cells. Each cell contains information

defining the properties of the space-time it occupies, including the EM field, at a

specific point. Using Maxwell’s equations, a set of ‘update’ equations are created

and applied to each cell with forward iterations in time. The cells are solved numer-

ically using the Yee algorithm [93], which separates the electric ( ~E) and magnetic

( ~H) field components both spatially (Spatial Staggering) and in time (Temporal

Staggering). The result is a staggered grid composed of ~E and ~H components, seen

in Figure 4.1.

The spatial differential of one cell can be calculated using the known values around

it, a technique known as the Finite-Difference (FD) differential approximation. FD

approximations are derived from Taylor expansions of a function containing a small
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Figure 4.2.: FD differential approximation for transverse electric cells: Hy (red) is

updated using the surrounding Ez values; Ez (green) is updated using

the surrounding ~H values; Hx (blue) is updated using the surrounding

Ez values.[91]

deviation. The approximations are then applied to a set of boundary conditions to

produce a list of ‘update’ equations for transverse electric (TE) and transverse mag-

netic (TM) polarisations. This is better visualised in Figure 4.2 (for TE cells): the

change in the Ez component is dependant on the way the surrounding ~H field com-

ponents vary, and vice versa. The field components of each cell are then ‘updated’

at incremental timesteps, thereby specifying the optical layout one cell at a time.

The update equations also contain the constants ε and µ, which are responsible for

determining the properties of the diffraction grating, including the grating material

and grating period.
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Cell size, ∆ 25 nm

Simulation dimension
1300∆ × 1800∆

= 32.5µm × 45µm

Wavelength, λ 1064 nm

Grating period, d 60∆ = 1500 nm

Beam propagation distance, z 1200∆ = 30µm

Waist size, ω0 100∆ = 2500 nm

Table 4.1.: Parameter values used to simulate beam diffraction for 0th and 1st

diffraction orders.

4.2. Main parameters and defining the optical layout

Since the simulation is two-dimensional, it is assumed that there are no spatial

changes along the z-axis. The cell size, ∆, determines the resolution of the simula-

tion space - the smaller the cell size, the higher the resolution. Table 4.1 outlines

various parameter values, some of which are in terms of ∆. For the purpose of this

work, the simulation considers the diffraction orders m = 0 and m = ±1 only. The

diffraction angle is set at ±45◦ so as to minimise anisotropic dispersion. For illus-

tration purposes, a TEM00 beam was simulated using the parameter values set out

in Table 4.1, propagating through a diffraction grating while the grating remained

fixed in one position (i.e. grating displacement ∆x = 0). Figure 4.3 demonstrates

the resulting diffraction pattern at an instantaneous point in time. The beam trav-

els in the direction indicated by the red arrow through a diffraction grating (grey

dashed line), resulting in 0th and 1st diffraction orders.

After grating diffraction, each diffracted beam is propagated along its own respective

z-axis for a specified distance before encountering reference planes, as depicted in

Figure 4.3. These reference planes are transverse to the direction of beam propa-

gation, each of which are infinite in length along the x and y-directions within the
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simulation space. Probes are positioned along the reference planes to measure the

amplitude of the beam at the position z. The reference plane is placed at the waist

of the 0th diffraction order beam so as to avoid additional effects caused by the

Gouy phase. This is due to the fact that the Gouy phase is dependent on the beam

mode, and the waist position of a Gaussian beam is unique because the Gouy phase

is always zero for all beam modes. By positioning the reference plane at the beam

waist for a given diffraction order, we can compare the change in phase of a TEM00

with a TEM10 mode beam during grating displacement without having to consider

extra Gouy phase effects for the different modes. The reference planes of the 1st

diffraction orders are then placed the same optical distance away from the grating.

Note that the beam propagation distance in Table 4.1 refers to the distance between

the grating and the reference plane in the 0th diffraction order.

For each diffraction order, the absolute phase of the passing beam is measured by a

probe which lies along the reference planes (solid pink lines). In the case of a TEM00

mode, the probe sits at the centre of each reference line (i.e. on the optical axis of

the beam). It should be noted that the reference planes are located away from the

grating to avoid any near-field interference effects which may occur at the grating.

For measurements involving grating displacements, the grating is translated in small

steps and the probes record the phase at each grating position (Section 4.3 provides

more details). Note that at each grating position, the simulation is run for some

time to allow for better averaging (typically 8 hours).

According to Figure 4.3, the reference plane for the 0th order is clearly situated at

the waist. However, a closer inspection of the 1st diffraction orders reveals that the

positions of the reference planes and waists do not coincide - the waist positions are

situated much closer to the grating, as indicated in Figure 4.3. This phenomena is

examined in further detail below.
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Figure 4.3.: A simulation snapshot view during the propagation of a TEM00 beam

resulting in a diffraction pattern, without grating displacement (∆x =

0). The beam propagates through the diffraction grating (grey dashed

line). Probes lie in the centre of the reference planes (visible as pink

lines) and are used to measure the phase in the m = 0 and m = ±1

diffraction orders. Notice that the waist position of the 1st diffraction

orders are not co-located with the reference planes.

4.2.1. Waist position discrepancy

The effect of the differing waist positions between the 0th and 1st diffraction orders

can be explained using simple trigonometry, illustrated in Figure 4.4. The size of

the beam spot, 2ω, for the 0th order beam is perpendicular to the optical axis (z-

axis), but this length becomes the diagonal (or the hypotenuse) of the 1st order

diffracted beam, where 2ω′ = 2ω
√

2. Not only does this introduce a reduction in the
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waist size of the diffracted beam (and hence a higher divergence angle), but its waist

position is forced closer to the grating. It could be argued that the reference plane

could simply be moved closer to the grating in order to match the waist position.

Although convenient, it is not ideal - as mentioned previously, the light in close

proximity to the grating suffers near-field interference effects, clearly observed in

Figure 4.3. Instead, the waist position of the diffracted beams are moved further

away from the grating, thereby ensuring that the coinciding reference planes are

unaffected by near-field effects. This, however, introduces another complication:

without knowing the true waist size or waist position of the diffracted beam, we

have no clear description of the beam parameters, making the task of setting the

reference plane at the required waist position extremely difficult.

1st diffraction 
order

0th diffraction 
order

2w

2w’

Grating

45

Figure 4.4.: Waist size discrepancy due to diffraction. The beam spot size, 2ω′, of

the 1st order diffracted beam is not the same as the 0th order beam

spot size, 2ω.
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The sagitta parameter

It is, however, possible to derive expressions for the waist parameters using the

sagitta parameter, as seen in Figure 4.5. The beam radius, ω, and the radius of

curvature, RC , for the 0th order beam at the grating (position z) is proportional

to its sagitta, s, which itself is the same value for the 1st order beam. For the

diffracted beam, s and ω′ gives the radius of curvature, R′C , at the grating. A

thorough computation is presented in Appendix D, which ultimately results in the

following expressions for the distance of the the waist position from the grating, z′,

and the waist size, ω′0, of the diffracted beam:

z′ =
(ω′2π)2R′C

R′2Cλ
2 + (ω′2π)2

, (4.1)

and

ω′0 =
ω′λR′C(

R′2Cλ
2 + (ω′2π)2

) 1
2

=
λ

ω′π

√
R′Cz

′. (4.2)

Taking into account the waist position discrepancy, the simulation parameters were

adjusted accordingly. The simulation space was increased so that the waist in the

0th diffraction order was situated much further away from the grating, allowing the

waist (and therefore the reference planes) in the 1st diffraction order to be ideally

located further away from the grating, away from any near-field effects. This is

displayed in Figure 4.6, whereby the waist positions and reference planes in the 1st

diffraction orders are clearly situated away from the grating.
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RC
(z)

sRC - s

Figure 4.5.: The sagitta, s, of a beam at point z is related to the beam spot radius ω

and the radius of curvatureRC at z. The sagitta has the same magnitude

for both 0th and 1st diffraction orders.

4.3. Phase change for grating/beam displacement

In this section, we propagate a Gaussian beam through a diffraction grating and

measure the phase in each diffraction order as the grating is displaced and observe

the change in phase. The aim of this task is to substantiate the phase changes

associated with the intrinsic phase factor, and simultaneously ascertain that the

simulation tool does indeed produce the correct results.

We recall that the expression describing the change in phase due to a geometric

grating/beam displacement was given in Section 1.5.3 as

∆θ = −∆x′
2πm

d
. (4.3)

When a grating or beam is displaced by an amount ∆x = d, then according to

Equation (4.3), a diffracted beam will undergo a total phase shift of 2πm radians,

with a dependency on the diffraction order m. This phase change is referred to
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Figure 4.6.: Simulated 0th and 1st order diffraction pattern of a TEM00 beam, cor-

recting for the waist position in the 1st diffraction orders. The reference

planes for the m = ±1 diffraction orders now coincide with the waist

positions.

as the intrinsic phase factor. We implemented this grating movement (along the

vertical direction) into the FDTD tool, incrementing the distance d into 40 steps,

and placing probes in the 0th and 1st diffraction orders. The model was run 40

times, each time displacing the grating by a distance of d/40 and obtaining phase

information from each probe. We expect to see a linear relationship between the
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grating displacement and measured phase for m = ±1, and a constant phase for

m = 0.

4.3.1. Grating displacement

TEM00 beam

A simple TEM00 beam is subjected to grating diffraction, as shown in Figure 4.6, and

the resulting phase measured during grating displacement can be seen in Figure 4.7

for the zeroth and first diffraction orders for a TEM00 beam.

In the case of m = 0 (green trace), the phase remains constant, which is consistent

with Equation (4.3). For m = + 1 (red trace) and m = − 1 (blue trace), the phase

changes linearly by 2π radians over a displacement of 1.5µm, or one grating period

d, as predicted.

It is also interesting to note that the 1st diffraction orders display slopes with oppo-

site signs: the m = + 1 beam shows a gradual decrease in phase (negative), whereas

the m = − 1 beam gradually increases in phase (positive). This is simply due to the

fact that as the grating is translated in one direction, the optical path length of one

of the diffracted beams decrease and for the other diffracted beam the optical path

length increase. This in turn requires the phase change to also increase or decrease,

leading to a negative and positive slope.

It is important to remember that we are interested in the change in phase, and

not the absolute phase. The absolute phase can be considered as an offset and is

affected by factors such as the specific location of the probe along the optical axis.

The position of the traces for m = + 1 and m = − 1 relative to each other along the
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Figure 4.7.: Phase change for the 0th and 1st diffraction orders during grating dis-

placement for a TEM00 beam. No phase change is present for m = 0

beam (green), while the diffracted beams m = +1 (red) and m = -1

(blue) show a total change in phase of 2π radians over a displacement

of 1.5µm (one grating period, d).

x-axis is irrelevant, but the shape of each trace is significant.

TEM10 beam

We now repeat the process described in the previous section, this time using a

TEM10 beam. Figure 4.8 depicts a simulation snapshot during the propagation of

a TEM10 beam passing through a diffraction grating, generating diffraction orders

of m = 0,±1. Each TEM10 beam consist of two intensity spots, or lobes, which are

always 180 degrees out of phase. Each reference plane therefore consists of a pair of
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Figure 4.8.: Simulated 0th and 1st order diffraction pattern of a TEM10 beam. Each

diffraction order now contains two intensity peaks; to account for this,

the phase is measured at two points along each reference plane, lobes 1

and 2.

probes, marked lobe 1 and lobe 2, to measure the phase.

The phase measurements for each lobe are displayed in Figure 4.9. The 0th diffrac-

tion orders are shown in green: solid line for lobe 1 and dashed line for lobe 2. In

addition to being flat, both traces are π radians out of phase, as expected. The
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m = −1 diffraction order is indicated in blue: the solid blue line is lobe 1 and the

dashed blue line is lobe 2. Lobe 1 is π radians out of phase with lobe 2, as should

be the case for a first-order Gaussian beam. Both lines also reveal the same profile

as seen in Figure 4.7 for m = −1 (also in blue): the phase is seen to change linearly

by 2π radians over one grating period, with a gradual increase in phase. For the

m = +1 diffraction order, lobe 1 is represented by the solid red line and lobe 2 is

the dashed red line. Once again, both lobes are seen to be π radians out of phase

with each other, and the phase exhibits a linear change by 2π radians over a grating

period, with the phase decreasing gradually, and this is consistent with m = +1 in

Figure 4.7 (red trace).

In the case of a diffracted TEM10 beam, the phase measurements exhibit the correct

profile with the phase shift of 2π radians. We can therefore conclude that it is

appropriate to combine a TEM10 mode with a TEM00 mode for the purpose of

modal decomposition (see Section 4.4), since each mode displays the correct phase

behaviour.

4.3.2. Beam displacement

In order to substantiate that a grating displacement and beam displacement are

identical situations, the simulations described in Section 4.3.1 were repeated but

applying incremental displacements to the incident beam (also along the vertical

axis, parallel to the grating in Figure 4.6) instead of shifting the grating. For consis-

tency in phase measurements, the reference planes were also required to be displaced

simultaneously in the vertical direction.

The resulting phase in each diffraction order for beam displacement was found to

be exactly the same as that generated by grating displacement, for each TEM00 and
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Figure 4.9.: Phase change for the 0th and 1st diffraction orders during grating dis-

placement for a TEM10 beam.

TEM10 beam. In addition to proving the equivalency between beam and grating

displacement, this also assured that the simulation tool was producing legitimate

phase results. Confident with the simulation output, we look to the next task of

investigating the phase output of a modally decomposed beam.

4.4. Modal decomposition

In the previous section, we showed that the diffracted TEM00 and TEM10 beams

displayed phase profiles consistent with the intrinsic phase factor, in the case of either

grating or beam displacements. Keeping the grating stationary, we can now use
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the concept of modal decomposition by combining zero-order and first-order modes

to reproduce beam displacements and examine the phase effects. The incremental

beam displacements are replicated by an incremental addition of the amplitude of the

TEM10 mode to the TEM00 mode (as described in Equation (2.22)). The addition of

the two modes can be performed within the simulation tool in two ways: firstly by

combining the modes before propagation, and secondly by propagating each mode

separately before combining the modes, outlined as follows.

4.4.1. Mode combination

Combine the TEM00 and TEM10 modes before propagation

This method involves adding the TEM10 mode to the TEM00 mode at the begin-

ning of the simulation. For each effective beam displacement, the TEM10 input

is incrementally increased in amplitude. For each incremental increase, the corre-

sponding TEM10 mode is combined with the TEM00 mode and then propagated

through the diffraction grating, and the phase is measured at the reference planes

for each increment.

Propagate the TEM00 and TEM10 modes independently before combining

In this case, each TEM00 and TEM10 mode is propagated in full through the diffrac-

tion grating and then combined. The amplitude of the TEM10 mode is increased

in small increments and propagated each time, before coupling with the fully prop-

agated TEM00 mode. For every increase in amplitude, the phase of the summed

propagation is measured at the reference planes (where maximum intensity occurs

in the resulting diffracted beams).
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Both of the modal decomposition methods described above were simulated for a

displacement equivalent to h/ω0 = 0.3. The diffraction patterns produced were

identical, as illustrated by the left and centre images in Figure 4.10. The absolute

error in phase between the two diffraction patterns can be seen in the right-hand im-

age in Figure 4.10; the difference is almost zero, and indicates an equal phase pattern

between the two modal techniques. This result validates the superposition principle

for linear optics, and since both modal decomposition techniques are identical, either

method can be applied. All modal decomposition computations described from now

on will use the second method.

Figure 4.10.: Diffraction pattern of a modally decomposed beam for a displacement

equivalent to h/ω0 = 0.3. Left : TEM00 and TEM10 modes combined

and then propagated through the diffraction grating. Centre: Each

mode propagated separately and then merged. Right : Absolute error

in phase between the two methods.
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4.4.2. Translation of reference planes

Since the addition of a higher-order mode to a zero-order mode induces an effective

beam displacement, it follows that the reference planes must also be displaced in the

same direction as the effective beam displacement (as was the case in Section 4.3.2),

ensuring that the geometry of the layout with respect to the grating is consistent.

This is a requirement that must be met by each of the TEM00 and TEM10 mode

propagations before they are combined.

To demonstrate the importance of translating the reference planes for both mode

propagations, Figure 4.11 displays the phase change resulting from a modal decom-

position where the reference planes for only the TEM10 mode is shifted, and those

for the TEM00 remain fixed in position. The black dashed lines represent the ideal

phase change according to the intrinsic phase factor for an analytical planewave

model, and the m = 0 diffraction order (green trace) maintains a flat line. However,

the diffraction orders for m = +1 (red trace) and m = −1 (blue trace) do not follow

the predicted dashed lines, instead displaying phase changes close to zero.

When the simulation is performed while shifting the reference planes for both the

TEM00 and TEM10 mode propagations equally and in sync with the effective beam

displacement h, we obtain the phase changes shown in Figure 4.12. As well as the

anticipated flat green trace for the m = 0 diffraction order, the phase profiles for

the m = +1 and m = −1 diffraction orders (red and blue traces, respectively) are

evidently perfectly aligned with the black dashed lines predicted by the intrinsic

phase factor. It is therefore imperative to shift the reference planes for both modes

during a modal decomposition in order to obtain the correct phase changes. In

addition, the accuracy of the simulation tool is verified by the results presented in

Figure 4.12.
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Figure 4.11.: Phase change due to modal decomposition with moving reference

planes for one mode. Only the reference planes for the TEM10 mode

propagation are translated simultaneously with the effective beam dis-

placement, while those for the TEM00 mode remain stationary. The

black dashed lines denote the phase change due to the intrinsic phase

factor for m = ±1.

According to Figure 4.12, the beam is displaced by a total distance of one grating

period d, which is equivalent to ∆x/ω0 = 0.6 (where ∆x = 1.5µm and ω0 = 2.5µm).

Note that by this point, the m = ±1 diffraction orders have undergone a total phase

change of 2π radians, with a positive slope for m = −1 and a negative slope for

m = +1. This periodic phase change is in exact agreement with the intrinsic phase

changes for an analytical planewave model (and as seen in Figure 4.7).

Now that we have established the phase behaviour for geometrical beam/grating

displacements and modal decomposition, we can now make a direct comparison in

the following section.
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Figure 4.12.: Phase change due to modal decomposition with moving reference

planes in both modes. The reference planes for both the TEM00

and TEM10 mode propagations are translated simultaneously with the

equivalent beam displacement. The m = ±1 diffraction orders (red

and blue traces) follow the precise linear profile given by the analytical

modal model (black dashed line with crosses)
.

4.5. Grating/beam displacement vs. modal

decomposition

We investigated the phase behaviour for a geometrical grating/beam displacement

(Section 4.3) and for a modal decomposition (Section 4.4) and found both instances

to be in agreement with Equation (4.3). However, a direct phase comparison between

the two methods would provide a definitive and clearer understanding. To recap,

the two scenarios considered are as follow:
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1. A geometric translation of the incident TEM00 beam (or grating) in the vertical

direction, noting that in the case of beam displacement, the reference planes

are shifted simultaneously.

2. A modal decomposition, adding a TEM10 mode to the TEM00 mode to create

an effective beam displacement in the vertical direction. This leads to two

possibilities: (a) a corresponding shift of the reference planes vertically, and

(b) keeping the reference planes fixed in position.

1. Displaced beam 
/ grating 

2(a) Modal – moving 
reference planes 

2(b) Modal - stationary    
reference planes 

m = 0 

m=+1 

m= -1 
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Figure 4.13.: Comparison of the change in phase of a displaced beam for var-

ious diffractive orders. Three cases are considered: a geometric

beam/grating translation (solid), modal decomposition with adjusted

reference planes (dotted) and modal decomposition with stationary ref-

erence planes (dashed). Note that the dashed green line is coincident

with the solid green line.
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The resulting phase changes in each diffraction order for the three cases outlined

above in 1, 2 (a) and 2 (b) are illustrated in Figure 4.13, showing a clear distinction.

The geometric beam/grating translation (case 1) is depicted by the solid lines, with

the m = ±1 diffraction orders (red and blue, respectively) exhibiting the correct

linear change in phase of 2π radians over a total displacement of d. The modal

decomposition technique with moving reference planes (case 2 (a)) is identified by

the dotted lines, and display exactly the same phase noise as observed in case 1. In

contrast, the modal decomposition method with stationary reference planes (case

2 (b)) represented by the dashed lines exhibit zero phase change for the m = ±1

diffraction orders.

4.6. Simulation results

We have established that the technique of modal decomposition into zero-order and

first-order modes (with moving reference planes) describe a misaligned diffracted

beam perfectly, and we interpret the identical phase profiles in Figure 4.13 as veri-

fication.

Figure 4.13 reveals that when a displaced diffracted beam is simulated, whether

through a geometric translation or modal decomposition, the reference planes must

also be shifted (in the same direction as the effective beam displacement) in order

to measure the true phase, and this implies a change in the coordinate system.

However, the modal decomposition method can be analysed in two possible ways:

reference planes can either be moved or fixed.

For clarity, we refer to Figure 4.14 to demonstrate a beam displacement through

modal decomposition for shifting and stationary reference planes. As in case 2 (a),

a shifting of the reference plane simultaneous with the effective beam displacement
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m = 0 
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Figure 4.14.: Phase measurements resulting from modal decomposition are depen-

dent on the movement of the reference planes (purple solid lines). A

vertical shift of the reference plane (solid blue arrow) ensures that the

optical path length of the beam remains constant, as specified in case

2 (a). However, if the reference plane is stationary (blue dashed ar-

row), the optical path length of the displaced beam changes by ∆P

(red dotted arrow), thereby exactly cancelling the desired phase effect,

described by case 2 (b).

and in a vertical direction (indicated by the solid blue arrow) guarantees a constant

optical path length of the beam, and therefore the geometry of the layout with

respect to the grating remains consistent. In contrast for case 2 (b), the stationary

reference plane (which has an infinite length within the simulation space, depicted

by the blue dashed arrow) instinctively intersects the displaced beam at a different

position along the beam’s optical axis. The change in the optical path length of the

displaced beam, denoted as ∆P (red dotted arrow) in Figure 4.14, acts to completely

cancel the desired phase effect.

114



Chapter 4. Time-domain simulation for grating diffraction

The findings from the simulations can initially be summarised as follows: in the case

of modal decomposition, moving the reference planes simultaneously with effective

beam displacement does indeed correspond to a phase shift in agreement with the

intrinsic phase factor for a pure geometric planewave consideration. However, sta-

tionary reference planes have the effect of compensating for the phase change, and

therefore resulting in a zero phase shift.

We have shown that a correct phase result can be obtained by the vertical shifting

of the reference planes. But by shifting the reference planes, the user is in fact

instinctively providing the extra information about the beam, such as the precise

point where it interacts with the grating, which is required to provide the correct

phase information for the diffracted beam.

The standard modal-based simulation tools used in the GW community for detector

design and commissioning are based on a framework which have optics centred on

one axis for analysing beam content and therefore rely on modal decomposition

techniques to describe beam misalignments. Such modal-based simulation tools

follow the case described in 2 (b), where the reference planes cannot be moved.

However, we have also shown that on the central optical axis used by these tools,

any phase due to beam or grating displacements is not present. This allows for the

models to be amended by explicitly adding the intrinsic phase factor as described

in the planewave formalism as a feature of the optical component, i.e., the grating.
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CONCLUSIONS

Within the scope of this work, I have validated the fundamental aspects of a modally

decomposed beam using an analytical description. I developed an analytical frame-

work which incorporated a Gaussian model for describing the phase changes due to

beam misalignments through both geometric translation and modal decomposition

into higher-order modes. I computed the phase terms for translated and modally

decomposed beams and confirmed that they are the same. The approximation factor

used to obtain the expression for the electric field of a modally decomposed beam was

validated as an accurate method to describe small beam misalignments. I showed

that the analytical framework for existing mode-based simulation tools lacks a full

description for diffraction gratings for the beam to interact with. The absence of a

grating structure means that the associated intrinsic phase factor (i.e. the periodic

phase change resulting from lateral grating or beam displacement) does not exist

within this analytical framework.

The purpose of the experiment was to observe a beam diffracted by an actual grating

but without any lateral displacement of the beam or grating. I substantiated the
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mode-independency of the phase of a beam to justify the concept of adding higher-

order modes when describing misaligned beams. Using a table-top Mach-Zehnder

setup with a diffraction grating placed in one of the arms, I compared the phase

between zero-order and first-order beams. No phase changes were observed between

the two mode-orders, and I showed for the first time that the phase of a diffracted

Gaussian beam is entirely independent of the beam shape (or mode), and that the

addition of higher-order modes has no effect on the overall phase of the beam.

By using a rigorous time-domain simulation tool, I was able to fully describe a

grating structure and displace a diffracted beam (geometrically and through modal

composition). This approach allowed for the setup to be described precisely and,

provided the reference planes were set correctly, the expected phase changes in the

displaced diffracted beam could be demonstrated in accordance with the intrinsic

phase factor.

The research presented in this thesis confirms that in addition to the grating pa-

rameters such as angles and efficiencies, the intrinsic phase factor must also be

described explicitly in order to obtain the correct phase changes for beam displace-

ments. Analytical and numerical models which analyse beam content and are based

on frameworks with the optics centred on one axis therefore require an explicit

manual implementation of the intrinsic phase factor when dealing with small beam

misalignments so as to acquire an accurate description of the beam phase upon

interaction with diffractive elements.
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ADVANCED LIGO BOSEM

DEVELOPMENT AND TESTING

The LIGO detectors are currently undergoing a series of upgrade installations to-

wards Advanced LIGO, with the aim of increasing sensitivity levels by a factor of

ten and operating over a broader frequency bandwidth. Seismic noise limits initial

LIGO at low frequencies to about 40 Hz; Advanced LIGO will push this seismic

cut-off frequency down to about 10 Hz. This is achieved through a complex multiple

pendulum suspension system and enhanced methods of sensing and control of the

test mass position.

This chapter begins by providing a summary of the main suspension system compo-

nents, with a focus on the combined sensors and actuators developed at the Univer-

sity of Birmingham. This is followed by a description of the various activities carried

out in the framework of this thesis to support the sensor/actuator modifications.

These include an evaluation of sensor flags mounted magnetically compared with

Vacseal mounts (Section 6.2), burn-in and screening of the infra-red light-emitting
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diodes (IRLEDs) and photodiodes (PDs) (Section 6.3) and automated testing for

fully assembled devices (Section 6.4). A total of 654 BOSEMs were produced by the

University of Birmingham for the Advanced LIGO detectors.

6.1. Suspension system

LIGO

In initial LIGO, fused silica test masses weighing 11kg were suspended as single

pendulums on steel wire slings. Actuation was applied to damp the pendulum modes

(local control), and to control the test masses directly through the use of coil and

magnet systems, maintaining the interferometer’s correct operating position (global

control) [38].

Advanced LIGO

The Advanced LIGO suspension system is based on the GEO 600 triple pendu-

lum design [95]. There are a number of benefits associated with multiple pendulum

stages; firstly, the seismic vibration isolation of the test mass in the horizontal di-

rection is increased. The transfer function of the pendulum falls off at each stage

as f−2 above its pendulum resonance frequency, and by choosing resonances within

the range of 0.4 Hz to 4 Hz [27], the multiple-stage pendulum can provide passive

isolation above a few hertz. Secondly, any noise injected by the controllers at the

suspension point or due to thermal effects are reduced because the pendulum acts

as a mechanical filter, and control forces exerted on the test mass are reduced con-

siderably [96].
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Figure 6.1.: Structure of a quadruple suspension system, displaying the main chain

and reaction chain. The stages from top to bottom are: top mass, upper-

intermediate mass, penultimate mass and test mass, with the first three

stages suspended from cantilever spring-blades [94].

The optics within different subsystems of the Advanced LIGO interferometer will

have various seismic noise suppression requirements, and so a mixture of triple and

quadruple suspensions will be used. The most sensitive optics will be supported by

quadruple suspensions, including the ETMs, ITMs, BS and folding mirrors. The

triple suspensions will support the PRM, SRM and the three MC mirrors [34].

The configuration for a quadruple suspension can be seen in Figure 6.1. Three stages

of cantilever support the top, upper-intermediate and penultimate masses (only two

stages are required in the triple suspensions), with the purpose of increasing vertical

vibration isolation. The top and upper-intermediate masses consist of rectangular
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stainless steel plates. The test mass is formed from fused silica, weighing 40 kg. In

terms of mass and size, the penultimate mass is identical to the test mass, however,

the silica material of the penultimate mass is of a lower quality (as its optical prop-

erties are not relevant for the interferometric measurements). With the exception

of the final stage, the masses in each stage will be suspended by steel music wire.

Since the test mass is the least isolated from the last pendulum stage, it will be

suspended from the penultimate mass by high-quality fused silica fibres which have

a low mechanical loss [27].

The quadruple suspension system is actually composed of two parallel pendulum

chains 5 mm apart: the main chain, which suspends the test mass, and the reaction

chain, to support the reaction mass, as indicated in Figure 6.1. The mass and

dimensions of the reaction chain are almost identical to the main chain, and its

purpose is to apply actuation to the main chain from a quiet platform.

Actuation forces can be either local, for local damping of the suspension modes,

or global, where actuators respond to the sensing and control signals from the in-

terferometer for controlling the longitudinal and angular degrees of freedom of the

test mass [97]. The application of these local and global forces are visible in Fig-

ure 6.2. Fine control forces are applied via an electrostatic drive (ESD), where an

electrostatic force is produced by a gold pattern on the surface of the final reaction

mass.

Larger control forces are generated between the top masses (for local control) and

between the upper intermediate and penultimate masses (for global control) using

coils and magnets. Initial LIGO employed a very simple version of these Optical Sen-

sor and Electromagnetic Actuators, or OSEMs. The design evolved to produce two

variations of the OSEM for Advanced LIGO: the Advanced LIGO OSEM (AOSEM ),

revised by the U.S. team, and the Birmingham OSEM (BOSEM ), developed by the
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Figure 6.2.: Location of the different actuators and control forces on a quadruple

suspension. Operating frequency ranges and maximum actuation forces

are also shown [33].

team at the University of Birmingham.

The arrangement of the various actuators are shown in Figure 6.2: the top mass of

the main and reaction chains each contain 6 BOSEMs, 4 BOSEMs are located on

the upper-intermediate mass of the reaction chain, and 4 AOSEMs are attached to

the penultimate mass of the reaction chain. We will now look at the BOSEMs in

some further detail.
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6.1.1. BOSEMs

Figure 6.3 is a computer-aided design (CAD) of a BOSEM, which is a position sensor

with an integrated electro-magnetic actuator. It consists of an IRLED, quadrant PD,

coil actuator, flexi-circuit and connectors to interface with the electronics.

Detection is carried out using a shadow-sensing technique, and the reference position

is provided by a magnetic flag, such as the one shown in Figure 6.4(a). The design of

the flag is the same as those used in the OSEMs for Initial LIGO, and is composed

of a flag rod, magnet and spacer (although the method of mounting the flag to

the spacer was modified during the development of the BOSEM - see Section 6.2).

The flag is mounted on the main chain and is aligned with the BOSEM, which is

attached to the reaction chain. The flag rests inside the centre of the BOSEM such

that the tip of the flag partially obstructs the light between the IRLED and PD, as

demonstrated by the CAD models in Figure 6.4(b). The magnetic portion of the

flag sits within the coil, and actuation occurs from coil-drivers to maneuver the flag

position, thus adjusting the position of the main suspension chain.

(a) Front view (b) Rear view

Figure 6.3.: A computer-aided design model of a BOSEM, showing front and rear

views. [98]
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(a) Magnetic flag (b) Flag inserted into the BOSEM

Figure 6.4.: Computer-aided design models of: (a) a close-up view of the magnetic

flag constituents: flag rod, magnet and spacer [99], and (b) a partial

BOSEM to illustrate the positioning of the magnetic flag [33].

The actuation force of the BOSEMs was 500 mN, much higher than the 50 mN in

the Initial LIGO OSEMs. This was mainly achieved through a combination of an

increased coil current, a larger number of coil windings and larger magnets.

6.2. Magnetic-mounted flag test

The flag used in initial LIGO (as shown in Figure 6.4(a)) was a construction of three

parts: a flag rod, magnet and spacer. The flag rod and magnet were joined together

using a vacuum leak sealant (Vacseal). The other end of the magnet was adhered

to the spacer, also using Vacseal. The resulting flag can be seen in Figure 6.5(a).

The original Vacseal-mounted flags were extremely rigid and stiff, and this presented

problems during installation or periods of high seismic activity such as an earth-

quake: if the flags exceeded their maximum displacement threshold, the flag rods

were prone to snapping and breaking at one of the adhesion joints. Re-mounting
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(a) Flag with Vacsealed mount (b) Flag with magnetic mount

Figure 6.5.: (a) The flag assembled using Vacseal, as used in initial LIGO. (b) The

proposed magnetic-mounted flag for Advanced LIGO.

the flag assembly was found to be very difficult and time-consuming.

An alternative method of mounting the flag rod for Advanced LIGO was proposed

- a new design was required which would allow the flag rod to return to its original

position within the mount after incurring tiny displacements. A magnetic-mounted

flag offered a versatile solution, as shown in Figure 6.5(b). The base of the new flag

rod and the end of the spacer were both shaped as recessed caps, each containing

a flat magnetic disc, illustrated by the cross-section Figure 6.6(a). The caps acted

as magnetic plugs, allowing both ends of the magnet to fit securely within each

cap. As an initial design, the spacer was in the form of a hexagonal screw, with a

capped head. Figure 6.6(b) displays a 3-D image of the magnetic-mounted flag, and

a detailed schematic can be found in Appendix E.1.

The capability of a magnetic-mounted flag to perform suitably in a BOSEM was as-

sessed in terms of robustness, compared with the original Vacseal-mounted flag. Two

qualities were investigated: strength and maximum displacement, and a description

of each test and their results are given below.
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Strength testing

The strength of each flag was measured by fixing the flag horizontally and suspending

weights from the end of the flag rod (5 mm from the tip), observed in Figure 6.7(a).

Weights were added until either (a) the Vacseal bond broke, or (b) the magnetic

force was overcome, causing the flag to detach from its mount.

The tests were repeated eleven times for the magnetic mount and three times for the

Vacseal mount. The Vacseal-mounted flag was found to support a mean maximum

weight of (2.00 ± 0.05) kg before separating at the joint between the magnet and

the spacer. In contrast, the magnetic-mounted flag could hold only a mean weight

of (0.183 ± 0.001) kg before the force between the magnet and the hexagonal screw

gave way.

(a) Schematic of magnetic flag with magnetic
mount

(b) 3-D view of the magnetic mount

Figure 6.6.: (a) Cross-section of the magnetic-mounted flag: 1© Magnet, 2© Hexag-

onal head screw, 3© Flag rod, 4© Magnetic plugs and 5© Vent holes. (b)

A 3-D representation of the magnetic-mounted flag.
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Maximum displacement testing

Figure 6.7(b) demonstrates the setup used to determine the maximum displacement

of the flag using a translation stage. Once again, the flags were secured horizontally,

and the edge of the translation stage was aligned with the tip of the flag rod. Small

displacements were made using micrometer adjusters, causing the translation stage

to move in a direction perpendicular to the axis of the flag rod (parallel to the optics

table). In the case of the Vacseal-mounted flag, the stage was translated until the

Vacseal bond separated. For the magnetic-mounted flag, the translation stage was

displaced a small amount and then returned to its starting point, causing the flag

to tilt out and then snap back into its original position due to the magnetic force.

The displacements were increased incrementally, until the flag and magnet were so

tilted out of the hexagonal screw cap that they were prevented from returning to

their neutral position.

The tests were repeated six times for the magnetic mount and three times for the

Vacseal mount. The Vacseal-mounted flag underwent a mean maximum displace-

(a) Weight suspension (b) Flag displacement

Figure 6.7.: (a) Weights suspended from the magnetic-mounted flag. (b) Displace-

ment testing of the magnetic-mounted flag, with the translation stage

at its starting reference position.
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ment of (0.88 ± 0.02) mm, with the breakage occurring between the magnet and

spacer. The magnetic-mounted flag, on the other hand, sustained a mean maximum

displacement of (12.85 ± 0.01) mm.

Conclusion

While the Vacseal-mounted flag was able to withstand a considerable amount of

weight, the magnetic-mounted flag was able to tolerate a fairly large displacement

force. In terms of preparation and assembly, the magnetic-mounted flag provided to

be much easier and efficient to assemble. It also allowed control of the orientation of

the flag (around the central axis of the flag rod) during installation, if necessary. If

the flag were to separate from its mount, the magnetic-mounted flag can instantly be

re-attached. In contrast, a Vacseal-mounted flag would require cleaning to remove

any remaining Vacseal residue, followed by a bakeout over several days to cure

the sealant before re-attachment. Based on these findings, the magnetic mount was

therefore recommended for supporting the BOSEM flags in Advanced LIGO. Further

details of the test procedures are reported in [100].

6.3. Infra-red LED and photodiode preparation

The BOSEM relies on shadow-sensing, where sensors are used to detect possible

movement of the flag. These sensor components are displayed in Figure 6.8: the

IRLED emits light, which is then detected by the PD. The flag rests orthogonal

to the light path between the sensors such that the flag tip obstructs half of the

light. Any increase or descrease in light is sensed by the PD, indicating that the flag

(and therefore the main chain) position has moved, and actuation is applied via the

BOSEM coil and flag magnet to move the main chain back to its original position.
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(a) IRLED (OP232) (b) PD (BPX65)

Figure 6.8.: Properties of the sensor devices used in the BOSEMs.[99]

According to the manufacturer’s datasheet, the apertured radiant intensity of the

IRLED was in the range of 2-6 mW/cm2, and unfortunately the devices could not

be graded more specifically. Consequently, variations were found to occur in the

output intensity of the IRLEDs during the early stages of sensor testing, sometimes

as much as 50 %. Considering the high sensitivity levels required for the shadow-

sensing technique, variations of this magnitude could result in uneven sensing and

actuation of the suspensions. It was therefore essential that the IRLEDs installed

in the detector retain minimum intensity variations. Although 654 BOSEMs were

required, a batch of 2000 IRLEDs (OP232) and 2000 PDs (BPX65) were procured.

Each IRLED device was subjected to a series of testing procedures in order that a

suitable sample with relatively low intensity variations (between devices) could be

selected.

6.3.1. Burn-in testing

A burn-in test was conducted to ensure that the output intensities of the IRLEDs

were normalised. The test also helped to identify any faulty devices, since a failure
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Figure 6.9.: Burn-in testing for the infra-red (IR) LEDs. Top: The setup for one

batch of devices across four printed circuit boards (PCBs), powered at

maximum current. Bottom left: PCB layout, capable of sustaining 55

IRLEDs. Bottom right: Powered IRLEDs during the the burn-in.

of an IRLED was most likely to occur well within 50 hours of operation, according

to the manufacturer. Each device was powered at its maximum current (100 mA)

continuously for 50 hours. The procedure was carried out over a period of about 21

days in batches of 200 devices using four printed circuit boards (PCBs), as seen in

the top half of Figure 6.9. On the left are two power supplies, each connected to two

PCBs. The design of the PCB is shown in the bottom left of Figure 6.9, with the

IRLEDs plugged into dual in-line (DIL) sockets, enabling easy replacement of the

devices, and 38 ohm resistors in parallel for each device. The infra-red light of the

powered IRLEDs is visible in the bottom right of Figure 6.9. Every device passed
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PD 

IRLED 

Plastic 
screws 

(a) Photodiode screening jig

Tab 

IRLED 

Clamp 

(b) Infra-red LED screening jig

Figure 6.10.: A screening jig provided an efficient method of screening devices, with

(a) a photodiode inserted on one side, and (b) an infra-red LED in-

serted on the other side.

the burn-in process successfully without any failures, and all IRLEDs continued to

emit at maximum intensity.

6.3.2. Screening

The screening procedure for all IRLEDs was performed by driving each device at

35 mA1 and observing its output intensity as detected by a single PD. Depending on

the measured intensities, the IRLEDs were then separated into ‘bins’. An aluminium

jig was created to aid the screening process in terms of time and accuracy. It

accommodated one PD and one IRLED, positioned the same distance apart as they

would be in a BOSEM (6.35 mm). Figure 6.10(a) displays the PD inserted into one

side of the screening jig, with the legs connected to an ammeter. For consistency, the

same PD device was used throughout the entire screening process for the IRLEDs.

Figure 6.10(b) shows an IRLED inserted into the other side of the jig, and the

exposed legs were then easily connected to a power supply. The jig was clamped to

1The supply current is at 35 mA during operation in Advanced LIGO
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the table for stability, while two white plastic screws on top of the jig ensured that

the inserted PD and IRLEDs remained steady.

The flanges on both the PDs and IRLEDs incorporated a tiny tab, just visible in

Figure 6.10(b) at the base of the IRLED (in the ‘8 o’clock’ position). The location

of these tabs was identical for every device, thereby serving as a reliable reference

point. This allowed all screened devices to be orientated in exactly the same way,

also for consistency.

A sample of about 200 devices were screened first to establish the range of intensities.

The range for each bin spanned 1µA, with the lowest bin range of 47-48µA and the

highest bin range of 77-78µA. For extreme cases, two extra bins were included for

devices with intensity values which were unusually low (< 47µA) or high (> 78µA).

The nominal value was quoted by the manufacturer to be 60µA; each bin therefore

offered an intensity variance of about 2 % around this nominal value, well within

the permitted range of 15 %2. This meant that devices from seven consecutive bins

could be selected, since a single bin was unlikely to contain a sufficient number of

654 IRLEDs.

Figure 6.11 shows the distribution of IRLED intensities after completion of the

screening process for all 2000 devices. The orange bars indicate seven consecutive

bins with the highest population of devices, ranging from 58 - 65µA - these bins

contained 698 devices in total, which were selected for installation in the BOSEMs.

A detailed breakdown of the number of BOSEMs required for various parts of the

Advanced LIGO detector is given in Appendix E.2.

2This figure of 15 % was computed by the Suspensions group at the Rutherford Appleton Labo-
ratory.
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Figure 6.11.: Distribution of measured intensities for 2000 infra-red LEDs. The or-

ange bars represent the bins containing the largest number of devices,

with intensity variations well within the acceptable range of 15%.

6.4. BOSEM testing procedure

The BOSEMs were fabricated and assembled in cleanrooms at the University of

Birmingham ([101] provides a specification). Once assembled, it was essential to

test the BOSEMs thoroughly and verify that they met the performance requirements

(which can be found in [99]). A specific automated test procedure was developed,

intended to be carried out on every BOSEM in two stages: on the part-assembled

coil-former (Figure 6.12(a)) and the fully-assembled BOSEM (Figure 6.12(b)). Note

that all testing procedures were carried out in a clean-room environment. A fully

detailed description of the procedure is given in [102], while the account below

focuses on my input.
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6.4.1. Part-assembled testing

The first stage of testing involved measuring the coil continuity and coil insulation

using a digital voltmeter (DVM), as seen in Figure 6.13. This was to identify any

faults between the coil and the flexi-circuit. The resistance between the body and

the coil start/end points were measured and compared to the criteria specified in

[102].

6.4.2. Fully-assembled testing

The second test stage was conducted in two parts: the first was to test the high-

voltage (HV) insulation breakdown, and the second was the parameter testing using

the Automated Test Equipment (ATE).

(a) Part-assembled coil-former (b) Fully-assembled BOSEM

Figure 6.12.: Automated testing was performed in two stages: on a (a) part-

assembled coil-former, and (b) fully-assembled BOSEM.
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Coil start and 
end points 

Coilformer 
body 

DVM 

Figure 6.13.: The part-assembled BOSEMs are tested between the coil and the flexi-

circuit [102].

HV insulation breakdown

The purpose of this test was to ensure that the coil insulation did not deteriorate

and to eliminate any risk of short-circuiting with the coilformer. Figure 6.14 reveals

the setup, where 200 V at 20 mA were applied to each BOSEM via a power supply

and a remote activation switch. If there was any fault with the coil, the blue light

in the indicator box would light up to indicate that the BOSEM had failed the test.

ATE

The next phase in testing was to measure key parameters of each fully-assembled

BOSEM using the ATE setup shown in Figure 6.15. A general purpose interface bus

135



Chapter 6. Advanced LIGO BOSEM development and testing

Figure 6.14.: The first test performed on a fully-assembled BOSEM is for high-

voltage insulation breakdown [102].

(GPIB) enabled a connection between the Keithley digital multimeter (DMM) and

Wayne Kerr LCR3 meter, and then interfaced with a laptop using a USB-to-GPIB

controller. The Keithley meter, Wayne Kerr meter (via a junction box), low-voltage

power supply, laptop and BOSEM were combined at a central interface box. It

should be noted that the automated testing described here can also be performed

on AOSEMs and noise-prototype OSEMs (NPOSEMs). [102]

Testing of each BOSEM lasted for around 30 seconds, and the data was processed us-

ing the ATE software installed on the laptop. The readings were displayed on-screen

in the form of a graphical user interface (GUI), as illustrated in Figure 6.16. The

measurements were also saved in a log file in a similar format, seen in Figure 6.17.

The heading contains information relating to the directory in which the data is

3LCR is an abbreviation for inductance (L), capacitance (C) and resistance (R)
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Figure 6.15.: The second test involved the automated test equipment to test a range

of key parameters in a fully-assembled BOSEM [102].

stored, date and time stamp, initials of the user and the location of the testing. Be-

low the heading, the parameters are given in the first column and the corresponding

measurements are recorded. The requirements, provided by the nominal values in

the third column and the tolerances in the fourth column, must be satisfied. If the

measured values fell either within or outside the specified range, then that particular

parameter automatically passed or failed respectively, indicated in the fifth column.

The BOSEM was deemed successful when all parameters were passed.

Note that the nominal values and tolerance ranges were set manually, and some

figures were later revised, for example the nominal value of the intensity (detected by

the PD) was adjusted from 60µA to 62.5µA, and the tolerance range was increased

from 15 % to 28 % (as observed in Figure 6.16 and [102]). This particular amendment

was due to the focusing effects of the lens inside the IRLED carrier ([101]), and as a
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Figure 6.16.: Test measurements obtained using the automated test equipment are

displayed as a GUI [102].

result the IRLED was found to emit a slightly increased light intensity as detected

by the paired PD within a fully-assembled BOSEM.

This automated test was designed to be repeated as necessary over the lifetime of

the BOSEM, especially when shipped overseas to check for possible damage. Each

BOSEM was engraved with a unique serial number, which was logged each time

it was tested (see the top of Figures 6.16 and 6.17). The data was automatically
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Advanced LIGO - BOSEM Automated Test Equipment - Version 3.0 
C:\ATE\Test Data\D060218-C\SERIAL_No001.txt             2008/11/26    12:07:33 
SMA           Final UHV-clean assembled BOSEM tests at Uni. of Birmingham 

Parameter Measured Nominal Tolerance Pass/Fail 

Sensor 

PD(uA) 65.83 60 15% PASS 

IRLED(mA) 35.00 35 5% PASS 

Ratio(%) 0.19 0.17 15% PASS 

Actuator 

L(mH) 14.75 14.7 5% PASS 

Q@100(Hz) 0.242 0.243 5% PASS 

R(Ohms) 37.69 37.6 5% PASS 

Insulation 

PD(Ohms) >250E6 1E9 250E6 PASS 

IRLED(Ohms) >250E6 1E9 250E6 PASS 

Coil(Ohms) >250E6 1E9 250E6 PASS 

Figure 6.17.: The log file generated by the automated test equipment. If the mea-

sured values for all parameters meet the requirements given by the

nominal and tolerance values, the BOSEM passes the test.

stored in the same log file corresponding to that particular BOSEM, allowing the

performance of that BOSEM to be monitored over time.

ATE statistical analysis

Once the log files were obtained for each BOSEM, subsequent analyses on the in-

tensities, resistances and inductances were performed. The log files were imported

into separate Excel spreadsheets and data was collated using a script (detailed in

Appendix E.3) which treated the entire Excel workbook as 3-dimensional. This was

possible because the value of each parameter was stored in the same cell coordi-

nates, despite being in separate worksheets. For example, all current values were
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accumulated into a separate table, with the first column represented the BOSEM

serial numbers and the second column contained the measured current values. This

enabled a plot of the distribution of data to be generated efficiently, and the spread

of values could be examined.

I performed the ATE statistical analysis technique described above on the first batch

of one hundred fully-assembled BOSEMs using the ATE. Figure 6.18 shows the

spread of measured intensities, resistances and inductances respectively. Note that

once I demonstrated the results of the analysis successfully, analysis of the remaining

554 BOSEMs was continued by other colleagues. A total of 654 BOSEM devices

were eventually collected, all having passed the testing using the ATE.

6.4.3. BOSEM characterisation

It is important to note that the ATE testing was performed in ‘free-air’ in a clean-

room environment, and did not reflect a complete analysis of the performance of

the BOSEM. A full quality check required the BOSEM to be tested in the same

environment as that in which it would be operating. This final characterisation

procedure involved testing the noise performance of all 654 BOSEMs through a

range of frequencies while the light emitted by its IRLED was half obscured by

a flag, imitating the true setup for Advanced LIGO (a further description of the

characterisation method can be found in [103]). These tests were performed both

in free-air and in-vacuum, and the resulting BOSEM displacement sensitivity noise

measurements were found to be consistent.

However, the BOSEMs were displaying displacement sensitivity noise levels of up

to 3 × 10−10 m Hz−1/2 at 10 Hz, and were not meeting the requirement of 1 ×

10−10 m Hz−1/2 at 10 Hz. The cause of this extra noise was due to the Optek IRLEDs
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- it was discovered that excess amounts of epoxy were bridging the cathode part of

the IRLED to its anode casing, and as a result the IRLEDs were exhibiting high

photo-current noise. An alternative IRLED, the Vishay TSTS7100, were newly

available commercially, and after testing were found to be comparable to the Optek

devices but revealed lower levels of photo-current noise. All Optek IRLEDs in the

BOSEMs were replaced with the Vishay devices, re-tested using the ATE (with a

100% pass rate) and re-characterised - all BOSEMs displayed displacement sensi-

tivity noise levels well below the requirement of 1× 10−10 m Hz−1/2 at 10 Hz. More

details can be found in [103].

A total of 654 BOSEMs were successfully delivered to the U.S. for testing and

installation, with the final batch shipped in March 2011. Upon arrival in the U.S.,

a random sample of 100 BOSEMs were selected from the total amount to be re-

characterised in-vacuum to ensure that they were still fully functional, and a 100 %

pass rate was reported [103].
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Figure 6.18.: Distribution of intensities (top), resistances (middle) and inductances

(bottom), resulting from the automated testing procedure on 100

BOSEMs.
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Beam profile and parameters

A.1. Mode-matching the beam

Just another mode matching tool (JamMt) [87] is an application developed for the

purpose of mode-matching. It was used in the context of this work to determine the

appropriate combination of lenses to mode-match the laser beam into the MC, as

described in Section 3.2.1, and the result can be seen in Figure A.1.

The mode-matching tool was also used to compute a suitable combination of cylin-

drical lenses in the PZT arm of the MZ setup in Section 3.2.3, ensuring that the

circular beam shape was transformed to match the elliptical beam along the grating

arm. Figure A.2 displays the outcome.

143



Appendix A. Beam profile and parameters

f = -50 mm

z = -0.393 m

f = 100 mm

z = -0.446 m

Figure A.1.: JamMt simulation tool for mode-matching the beam into the mode

cleaner to give the desired beam waist size and location. Initial beam:

ω0 = 1183µm, z0 = −0.255 m; resulting beam: ω0 = 371.221µm,

z0 = 0.064 m.
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f = -200 mm

z = 1.092 m

f = 150 mm

z = 0.95 m

f = 150 mm

z = 1.249 m

Figure A.2.: JamMt simulation tool for mode-matching the circular beam in the

PZT path to match the elliptical beam shape in the grating path using

cylindrical lenses. Initial beam: ω0 = 1036µm, z0 = 0 m; resulting

beam: ω0 = 950.472µm, z0 = 0.356 m.

145



Appendix A. Beam profile and parameters

A.2. Beam characterisation

After exiting the MC, the laser beam passed though a set of collimating lenses,

as mentioned in Section 3.2.1. To ensure that the resulting beam was fairly well

collimated, a beam profiler was used to measure the beam shape at various distances

of propagation and determine the waist size, waist position and Rayleigh range

along the x-axis (horizontal direction) and y-axis (vertical direction), as illustrated

in Figure A.3.

Figure A.3.: Measured beam profile after the mode cleaner and collimating lenses

and before entering the main interferometer setup.
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A.3. Matlab script to determine new beam

parameters after grating diffraction

The script below was developed using Matlab to compute new beam parameters after

a beam is diffracted by a grating. Any input values can be chosen for the incident

beam using the following beam parameters: wavelength, index of refraction, waist

size radius and the distance of the grating from the waist position. The angles of

incidence and reflection of the beam are set to 10◦ and 28◦ respectively, as required

by my table-top experimental setup. The new waist size and waist position along

the x-axis are computed for the diffracted beam.

%---------------------------------------------------------------------

-----

% Script which computes the new position and waist size of a beam (in

% the x and y axis) after propagating a distance z, reflected off a

% grating, and propagated further where it reaches an end beamsplitter.

%

% The input arguments are the wavelength (lambda), index of refraction

% (nr), original waist size (w0), and distance from the waist to the

% grating (z).

%

% The grating reflection causes a change in the beam size in the x-

% direction (the y-direction remains unchanged).

% The new beam size (and hence new q parameter) in the x-direction

% is computed.

%

% At the end beamsplitter, the resulting q parameters (in x and y)
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% yields the new corresponding waist sizes and positions (also in

% x and y).

%

clear all;

% input arguments

lambda = 1064e-9;

nr = 1;

w0 = 1036e-6;

z = 1.152;

[0.5pt]

% beam is propagated to the grating

gp=FT_init_gauss_param(lambda,nr,‘w0’,w0,‘z’,z);

% computing new beam size in x-direction when reflected at grating

new_w = gp.w*(cos(28*pi/180)/cos(10*pi/180));

% computing new q parameter when reflected at grating

gp3 = FT_init_gauss_param(lambda,1,‘w’,new_w,‘Rc’,gp.Rc);

% q parameter in the x-direction (at grating)

q3(1)=gp3.q(1);

% q parameter in the y-direction (at grating)

q3(2)=gp.q(2);

% propagates the beam (along distance of 1.14m) to reach the end

% beamsplitter and computes the new q parameter at the end beamsplitter
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gp4=FT_init_gauss_param(lambda,nr,‘q’,q3);

gp5=gp4;

gp5.q=gp5.q+1.14;

gp5 = FT_update_gauss_param(gp5,gp5.q,1);

% takes the new q parameters and computes the new corresponding waist

% sizes (in x and y), and also calculates respective waist positions

disp(sprintf(‘beam at BS is:\ n’));

disp(sprintf(‘w0x=%.5g, z0x=%.5g\ n’,gp5.w0(1),gp5.z(1)));

disp(sprintf(‘w0y=%.5g, z0y=%.5g\ n’,gp5.w0(2),gp5.z(2)));

% compute values for JamMt

149



Appendix B.

Pound-Drever-Hall laser frequency

stabilisation

B.1. Modulation concept

By operating on one side of these resonances, a small change in laser frequency

would result in a large change in transmitted light. The transmitted intensity could

be measured and fed back to the MC PZT, thus holding this intensity constant.

However we encounter the problem that the transmission intensity is symmetric

around the resonance peak. Any drift out of resonance is difficult to correct if we

cannot distinguish which side of resonance the frequency had drifted to, making it

unclear whether an increase or decrease in the frequency was required to return to

resonance.

We overcome this by looking at the derivative of the transmitted intensity, which is

antisymmetric about resonance. By dithering (or modulating) the laser frequency ω0

by a very small amount, we can identify which side of resonance the frequency is on.
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From Figure 3.4(b) we see that below resonance, the derivative of the transmitted

intensity is positive, meaning that the intensity increases with increasing frequency.

Modulating the frequency sinusoidally means that the transmitted intensity will vary

sinusoidally in phase. Above resonance, the derivative is negative, i.e. the transmit-

ted intensity decreases with increasing frequency, and a sinusoidal modulation will

cause the transmitted intensity to vary sinusoidally 180◦ out of phase. Note that

on resonance, the transmitted intensity remains unchanged when a small frequency

variation is applied.

B.2. Carrier and sidebands

When the laser (carrier) frequency, ω0, is modulated at a frequency of Ω, sidebands

are created; this is the result of interfering two waves with different frequencies. The

lower sideband has a frequency of ω0 − Ω, and the upper sideband has a frequency

of ω0 + Ω. Interfering the modulation sidebands with the reflected beam produces

a beat pattern at the modulation frequency, and it is the phase of this beat pattern

which provides the phase of the reflected beam. It can then be determined how

much the laser frequency is above or below resonance, as shown in Figure B.1.

The electric field of a laser beam can be written as E0e
iω0t. After passing through

the EOM, the electric field becomes

Einc = E0e
i(ω0t+βsinΩt). (B.1)
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Figure B.1.: Phase (blue) of the beat pattern generated by the interference of the

modulation sidebands. On either side of beam resonance (red), the

derivative of the phase has opposite signs, thus enabling the system to

correctly return to resonance.

This expression can be expanded using Bessel functions to give

Einc ≈ E0 [J0(β) + 2iJ1(β) sin Ωt] eiω0t

= E0

[
J0(β)eiωt + J1(β)ei(ω0+Ω)t − J1(β)ei(ω0−Ω)t

]
, (B.2)

where Ω/2π is the phase modulation frequency, and β is the modulation index1.

Three different fields can be seen in this expression: a carrier (with frequency ω0/2π),

and two sidebands (with frequencies (ω0 ±Ω)/2π). If the total power is P0 = |E0|2,

then power in the carrier Pc and the power in each of the first-order sidebands Ps

are given as

Pc = J2
0 (β)P0, and Ps = J2

1 (β)P0 (B.3)

If the modulation depth is small (β < 1), it means that almost all of the power lies

in the carrier and the first-order sidebands, Pc + Ps ≈ P0.

1The modulation index describes how much the modulated variable varies around the carrier.
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B.3. Power in the reflected beam

We now look at how the appropriate terms are isolated from the PD signal. The

reflected beam from a Fabry-Perot cavity has the same electric field as the incident

beam multiplied by the reflection coefficient, F : Eref = FEinc. In the case of several

fields (one carrier and two sidebands), each field in the reflected beam is multiplied

by the reflection coefficient as follows:

Eref = E0[F (ω0)J0(β)eiω0t

+ F (ω0 + Ω)J1(β)ei(ω0+Ω)t

− F (ω0 − Ω)J1(β)ei(ω0−Ω)t], (B.4)

from which the power of the reflected beam can be derived. Before continuing, let

us denote the terms to simplify the algebra as follows:

F0 = F (ω0)eiω0t

F+ = F (ω0 + Ω)ei(ω0+Ω)t

F− = F (ω0 − Ω)ei(ω0−Ω)t,

and their complex conjugates as

F ∗0 = F ∗(ω0)e−iω0t

F ∗+ = F ∗(ω0 + Ω)e−i(ω0+Ω)t

F ∗− = F ∗(ω0 − Ω)e−i(ω0−Ω)t.
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The power in the reflected beam is given by Pref = |Erefl|2 = E∗E. Using Equa-

tion (B.4), this gives us:

E∗E = |F0|2 + |F+|2 + |F−|2

+ [F0F
∗
+]− [F ∗0F−] + [F ∗0F+]− [F0F

∗
−]− [F+F

∗
−]− [F−F

∗
+]︸ ︷︷ ︸

2 Ω terms

. (B.5)

The last two terms can be shown to partly cancel:

F+F
∗
− = ei(ω0+Ω)te−i(ω0−Ω)t

= eiω0teiΩte−iω0teiΩt = e2Ωt

F−F
∗
+ = ei(ω0−Ω)te−i(ω0+Ω)t

= eiω0te−iΩte−iω0te−iΩt = e−2Ωt.

This leaves us with two Ω terms. Equation (B.5) can be rewritten as:

E∗E = |F0|2 + |F+|2 + |F−|2

+ [F0F
∗
+]− [F ∗0F−]︸ ︷︷ ︸

C

+ [F ∗0F+]− [F0F
∗
−]︸ ︷︷ ︸

C∗

+(2 Ω terms). (B.6)

In order to prove that C* is the complex conjugate of C, we first expand the terms

in C:

F0F
∗
+ = F (ω0)eiω0tF ∗(ω0 + Ω)e−iω0t−iΩt

= F (ω0)F ∗(ω0 + Ω)e−iΩt

F ∗0F− = F ∗(ω0)e−iω0tF (ω0 − Ω)eiω0t−iΩt

= F ∗(ω0)F (ω0 − Ω)e−iΩt.
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Next, we expand the terms in C*:

F ∗0F+ = F ∗(ω0)e−iω0tF (ω0 + Ω)eiω0t+iΩt

= F ∗(ω0)F (ω0 + Ω)eiΩt

F0F
∗
− = F (ω0)eiω0tF ∗(ω0 − Ω)e−iω0t+iΩt

= F (ω0)F ∗(ω0 − Ω)eiΩt.

It is clear that the exponential terms in C* are simply complex conjugates of the

exponential terms in C. We can treat C and C* as follows

C + C∗ =
(

Re(C) + Im(C)
)

+
(

Re(C)− Im(C)
)

= 2Re(C)

= 2Re([F0F
∗
+]− [F ∗0F−])

= 2Re

{([
F (ω)F ∗(ω + Ω)

]
−
[
F ∗(ω)F (ω − Ω)

])
e−iΩt

}
. (B.7)

We can also use the relation

Ce−iΩt = Re[C] cos (Ωt) + Im[C] sin (Ωt),

allowing us to rewrite Equation (B.7) as

C + C∗ = 2

{
Re
[
F (ω)F ∗(ω0 + Ω)− F ∗(ω0)F (ω0 − Ω)

]
cos (Ωt)

+ Im
[
F (ω0)F ∗(ω0 + Ω)− F ∗(ω0)F (ω0 − Ω)

]
sin (Ωt)

}
.
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Substituting for C + C*, and for F0, F+ and F−, Equation (B.6) now becomes:

E∗E = |F (ω0)|2 + |F (ω0 + Ω)|2 + |F (ω0 − Ω)|2

+ 2

{
Re
[
F (ω0)F ∗(ω0 + Ω)− F ∗(ω0)F (ω0 − Ω)

]
cos (Ωt)

+ Im
[
F (ω0)F ∗(ω0 + Ω)− F ∗(ω0)F (ω0 − Ω)

]
sin (Ωt)

}
+ (2 Ω terms). (B.8)

Finally, we introduce the factors corresponding to the carrier and sideband powers,

Pc and Ps respectively, and obtain the following expression for the power in the

reflected beam (as detected by the PDref :

Pref = Pc|F (ω0)|2 + Ps{|F (ω0 + Ω)|2 + |F (ω0 − Ω)|2}

+ 2
√
PcPs

{
Re
[
F (ω0)F ∗(ω0 + Ω)− F ∗(ω0)F (ω0 − Ω)

]
cos (Ω t)

+ Im
[
F (ω0)F ∗(ω0 + Ω)− F ∗(ω0)F (ω0 − Ω)

]
sin (Ω t)

}
+ (2 Ω terms). (B.9)

In other words, we are left with three fields at different frequencies: the carrier

(ω0) and the two sidebands (ω0 ± Ω). When combined, the outcome is a wave

with an apparent frequency of ω0, but is contained within an envelope with a beat

pattern at two frequencies. The reflected power in Equation (B.9) contains three

important frequency components: the carrier results in direct current (DC) power,

the interference between the carrier and the sidebands produce the sine and cosine

terms which oscillate at the modulation frequency (Ω), and lastly the sidebands

interfering with each other to yield the ‘2Ω’ terms (higher-order components).
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Figure B.2.: The Pound-Drever-Hall error signal, ε/2
√
PcPs, versus frequency for a

Fabry-Perot cavity at (a) high modulation frequency, and (b) low mod-

ulation frequency. The cavity is assumed to be lossless with identical

mirrors, and the cavity finesse is ∼ 500.
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Appendix C.

Electronic schematics for the servo

The electronics for the feedback control systems were produced at the University

of Birmingham. The servo was built by the author using the specifications shown

in Figures C.1 to C.4. Circuit board schematics were adopted from designs by H.

Vahlbruch and B. Hage at the AEI Max Planck Institute for Gravitational Physics

in Hannover, Germany.

161



Appendix C. Electronic schematics for the servo

Figure 1: Project circuit diagram (sheet 1)

2 Servo2.documentation.tex (2007-10-17 16:24) – 13 pages

Figure C.1.: Servo schematic 1/4
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Figure 2: Project circuit diagram (sheet 2)

Servo2.documentation.tex (2007-10-17 16:24) – 13 pages 3

Figure C.2.: Servo schematic 2/4163
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Figure 3: Project circuit diagram (sheet 3)

4 Servo2.documentation.tex (2007-10-17 16:24) – 13 pages

Figure C.3.: Servo schematic 3/4
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Appendix C. Electronic schematics for the servo

Figure 4: Project circuit diagram (sheet 4)

Servo2.documentation.tex (2007-10-17 16:24) – 13 pages 5

Figure C.4.: Servo schematic 4/4165



Appendix D.

Parameter computation using the

sagitta

Following on from Section 4.2.1, we will show how the radius of curvature, RC , and

the beam spot radius, ω(z), for a 0th diffraction order beam can lead to expressions

describing the distance of the waist position from the grating, z′, and the waist size,

ω′0, for a beam in the 1st diffraction order. For the purpose of this computation,

primed parameters refer to the diffracted beam. Note that we consider all parameter

descriptions at the grating i.e. z is at the grating position.

Defining the sagitta

First we look at the relationship between the radius of curvature, the radius of the

beam spot and the sagitta. Circle geometry is used to treat the curvature of a

Gaussian wavefront [104], as depicted in Figure D.1. Each wavefront is considered

to be part of a circle with a radius, RC , the sagitta, s, and the semi-chord length

which is in fact the radius of the beam spot, ω(z). The sagitta of the wavefront of
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RC
(z)

sRC - s

Figure D.1.: The radius of curvature, RC , of a Gaussian beam wavefront can be

defined in terms of its sagitta, s, (blue) and the beam spot radius,

ω(z), (solid red).

both the incident and diffracted beams at point z always remain the same, ensuring

that the frequency of the beam is preserved. From Figure D.1 we can define the

radius of curvature as RC = s+ (RC − s), and simple trigonometry gives:

R2
C = ω(z)2 + (RC − s)2

= ω(z)2 +R2
C − 2RCs+ s2

0 = ω(z)2 − 2RCs+ s2. (D.1)

Using the quadratic equation, we obtain the following solution for s:

s =
2RC ±

√
(−2RC)2 − 4ω(z)2

2

=
2RC ±

√
4R2

C − 4ω(z)2

2

= RC ±
√
R2
C − ω(z)2. (D.2)
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The negative solution of Equation (D.2) corresponds to the sagitta (the positive

solution is the distance from the chord to the opposite side of the circle). Hence the

sagitta is given by:

s = RC −
√
R2
C − ω(z)2 , (D.3)

and rearranging for RC gives:

RC =
ω(z)2 + s2

2s
. (D.4)

Beam spot radius in the diffracted beam

We can determine the beam spot radius of the diffracted beam, ω′(z), at the grating

if we know the following: beam spot radius of the incident beam, ω(z) (at the

grating), the angle of incidence, α, and the angle of diffraction, β (where both angles

are measured from the grating normal). In the case of the simulation (Chapter 4),

α = 0◦ and β = 45◦. We also have the following relation between ω′(z) and ω(z):

ω′(z) = ω(z)

(
cos β

cosα

)
. (D.5)

Radius of curvature in the diffracted beam

Since the sagitta remains the same for both the incident and diffracted beam, we

can use Equation (D.4) to determine the radius of curvature in the reflected beam,

R′C , at the grating as:

R′C =
ω′(z)2 + s2

2s
. (D.6)
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Substituting for ω′(z) from Equation (D.5), we can rewrite this expression as:

R′C =
ω2(z)

(
cosβ
cosα

)2
+ s2

2s
. (D.7)

Waist position in the diffracted beam

We now derive an expression for the waist position, z′, for the diffracted beam - this

is the distance of the diffracted beam’s waist, ω′0, from the grating. We assume that

the waist position is such that z0 = 0.

The waist radius of the incident beam is:

ω0 =

√(
zRλ

π

)
. (D.8)

Using the relationship between the waist size and spot size, and substituting for ω0

gives:

ω = ω0

√
1 +

z2

z2
R

=

√(
zRλ

π

)(
1 +

z2

z2
R

)
=

√
λ

πzR
(z2
R + z2), (D.9)

which can be rearranged to

ω2πzR
λ

= z2
R + z2. (D.10)
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Using the equations RCz = z2
R + z2 and zR =

√
RCz − z2, we can substitute as

follows:

ω2π

λ

√
RCz − z2 = RCz. (D.11)

Squaring both sides and rearranging the λ term gives:

(ω2π)2(RCz − z2) = R2
Cλ

2z2

(ω2π)2RC − (ω2π)2z = R2
Cλ

2z

(ω2π)2RC = z
(
R2
Cλ

2 + (ω2π)2
)
. (D.12)

Since we are considering the diffracted beam, the parameters ω, RC and z are

designated as ω′, R′C and z′ and we are left with the following solution to describe

the distance of the waist from the grating:

z′ =
(ω′2π)2R′C

R′2Cλ
2 + (ω′2π)2

. (D.13)

Waist size of the diffracted beam

The waist size of the diffracted beam, ω′0, can now be computed by using the pa-

rameters z′, R′C and ω′. We know that:

R′Cz
′ =

ω′2(z)πz′R
λ

. (D.14)
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We use the definition for the Rayleigh range:

z′R =
ω′20 π

λ
, (D.15)

and substitute for z′R in Equation (D.14), giving:

R′Cz
′ =

ω′2π

λ

ω′20 π

λ
. (D.16)

Rearranging for ω′0, it follows that:

ω′20 =
R′Cz

′λ2

ω′2π2
, (D.17)

and we obtain the expression:

ω′0 =
λ

ω′π

√
R′Cz

′ . (D.18)

If z′ is unknown, we can compute ω′0 in terms of only ω′ and R′C by substituting for

z′ from Equation (D.13):

ω′0 =
λ

ω′π

√
R′2C(ω′2π)2(

R′2Cλ
2 + (ω′2π)2

)
=

λR′C
ω′π

(ω′2π)√(
R′2Cλ

2 + (ω′2π)2
) .

(D.19)
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The solution for the waist radius of the diffracted beam becomes:

ω′0 =
ω′λR′C(

R′2Cλ
2 + (ω′2π)2

) 1
2

. (D.20)
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BOSEM testing and distribution

E.1. Cross-section of the magnetic-mounted flag

Shown here is a CAD drawing depicting the cross-section of the magnetic-mounted

flag, proposed for Advanced LIGO in replacement of the Vacseal-mounted flags

from Initial LIGO (see Section 6.2). The flag comprises of a hexagonal head screw,

magnet, flag rod and two magnetic plugs (each inserted within the screw and flag

rod).

This technical note was produced by Ian Wilmut, Rutherford Appleton Laboratories,

on behalf of the Suspensions Working Group for Advanced LIGO.
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E.2. BOSEM count

Figure E.1 displays a count of BOSEMs which were due to be delivered by the

University of Birmingham (see Section 6.3). The acronyms represent various divi-

sions of the Advanced LIGO detectors in which the BOSEMs would be installed:

BSC (beamsplitter chamber), HAM (horizontal access module), ITM (input test

mass), CP (compensation plate), FM (folding mirror), ETM (end test mass), BS

(beamsplitter), RM (recycling mirror), IMC (input modecleaner), OMC (output

modecleaner), NP (noise prototypes), and Aux (Auxiliary Optics). Some noise pro-

totypes remained in the UK and were also delivered to LASTI (LIGO Advanced

System Test Interferometer) at the Massachusettes Institute of Technology for test-

ing purposes. Note that LIGO-1 OSEMs refer to the original OSEMS used in Initial

LIGO.

Figure E.1 was taken from the technical note in [105], produced by Justin Green-

halgh, Rutherford Appleton Laboratories, on behalf of the Suspensions Working

Group for Advanced LIGO.
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E.3. Script to import BOSEM data log files

177



Appendix E. BOSEM testing and distribution

178



Appendix E. BOSEM testing and distribution

179



Bibliography

[1] E.D. Black. An introduction to pound–drever–hall laser frequency stabiliza-

tion. American Journal of Physics, 69:79, 2001. , 78

[2] Allen Wyatt. Importing multiple files to a single workbook.

”http://excel.tips.net/T003148_Importing_Multiple_Files_to_a_

Single_Workbook.html”. , 177

[3] A. Einstein. Die grundlage der allgemeinen relativitätstheorie. Annalen der

Physik, 354(7):769–822, 1916. 1

[4] RA Hulse and JH Taylor. Discovery of a pulsar in a binary system. The

Astrophysical Journal, 195:L51–L53, 1975. 1

[5] C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation, volume 1. 1973. 4

[6] Jordan B Camp and Neil J Cornish. Gravitational wave astronomy*. Annu.

Rev. Nucl. Part. Sci., 54:525–577, 2004. 4

[7] B.F. Schutz. Gravitational waves on the back of an envelope. American

Journal of Physics, 52:412–419, 1984. 4

[8] P. R. Saulson. Fundamentals of interferometric gravitational wave detectors.

180

http://excel.tips.net/T003148_Importing_Multiple_Files_to_a_Single_Workbook.html
http://excel.tips.net/T003148_Importing_Multiple_Files_to_a_Single_Workbook.html


Bibliography

World Scientific, 1994. 4, 10, 18, 21

[9] BS Sathyaprakash and B.F. Schutz. Physics, astrophysics and cosmology with

gravitational waves. Living Rev. Relativity, 12(2), 2009. 4

[10] L.P. Grishchuk, VM Lipunov, K.A. Postnov, M.E. Prokhorov, and

BS Sathyaprakash. Gravitational wave astronomy: in anticipation of first

sources to be detected. Physics-Uspekhi, 44:1, 2001. 5

[11] Bernard Schutz. A First Course in General Relativity. Cambridge University

Press, Second edition, 2009. 5, 6

[12] LIGO. Ligo scientific collaboration. http://www.ligo.org/science/

GW-Stochastic.php. 6

[13] M.P. Edgar. Experimental investigations into diffractive optics and optome-

chanical systems for future gravitational wave detectors. PhD thesis, University

of Glasgow, 2011. 6

[14] M. Pitkin, S. Reid, S. Rowan, and J. Hough. Gravitational wave detection by

interferometry (ground and space). Living Reviews in Relativity, 14(5), 2011.

7, 11, 12, 20

[15] B. Willke, N. Uehara, EK Gustafson, RL Byer, PJ King, SU Seel, RL Sav-

age Jr, et al. Spatial and temporal filtering of a 10-w nd: Yag laser with

a fabry–perot ring-cavity premode cleaner. Optics letters, 23(21):1704–1706,

1998. 8

[16] Virgo. Advanced virgo baseline design. Virgo document number VIR-0027A-

09 (Virgo documents can be accessed via the Virgo technical documentation

system: https://tds. ego-gw. it/), 2009. 12

181

http://www.ligo.org/science/GW-Stochastic.php
http://www.ligo.org/science/GW-Stochastic.php


Bibliography

[17] T. Accadia, F. Acernese, F. Antonucci, P. Astone, G. Ballardin, F. Barone,

M. Barsuglia, A. Basti, T.S. Bauer, M. Bebronne, et al. Status of the virgo

project. Classical and Quantum Gravity, 28:114002, 2011. 12

[18] B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, BW Barr,

S. Berukoff, S. Bose, G. Cagnoli, M.M. Casey, et al. The geo 600 gravitational

wave detector. Classical and Quantum Gravity, 19:1377, 2002. 12

[19] H. Grote. The status of geo 600. Classical and Quantum Gravity, 25:114043,

2008. 12

[20] S. Miyoki. Large scale cryogenic gravitational wave telescope. Nuclear Physics

B-Proceedings Supplements, 138:439–442, 2005. 12

[21] K. Kuroda. Status of lcgt. Classical and Quantum Gravity, 27:084004, 2010.

12, 13

[22] JR Smith and L.S. Collaboration. The path to the enhanced and advanced

ligo gravitational-wave detectors. Classical and Quantum Gravity, 26(11):4013,

2009. 12

[23] J. Marx, K. Danzmann, J. Hough, K. Kuroda, D. McClelland, B. Mours,

S. Phinney, S. Rowan, B. Sathyaprakash, F. Vetrano, et al. The gravitational

wave international committee roadmap: The future of gravitational wave as-

tronomy. 2011. 13

[24] LIGO Scientific Collaboration, Virgo Collaboration, J Aasi, J Abadie, BP Ab-

bott, R Abbott, TD Abbott, M Abernathy, T Accadia, F Acernese, et al.

Prospects for localization of gravitational wave transients by the advanced

ligo and advanced virgo observatories. arXiv preprint arXiv:1304.0670, 2013.

182



Bibliography

13, 16

[25] Indigo. http://www.gw-indigo.org/. 13

[26] G. Losurdo. Ground-based gravitational wave interferometric detectors of the

first and second generation: an overview. Classical and Quantum Gravity,

29(12):124005, 2012. 13

[27] G.M. Harry. Advanced ligo: the next generation of gravitational wave de-

tectors. Classical and Quantum Gravity, 27:084006, 2010. 13, 17, 25, 119,

121

[28] D. Shoemaker. Advanced ligo reference design. Technical report, M060056-v2,

2009. 13, 14, 19

[29] S. Sunil and DG Blair. Vacuum system requirement for a 5 km baseline of

gravitational-wave detector. In Journal of Physics Conference Series, volume

114, page 2025, 2008. 14

[30] T.T. Fricke, N.D. Smith-Lefebvre, R. Abbott, R. Adhikari, K.L. Dooley,

M. Evans, P. Fritschel, V.V. Frolov, K. Kawabe, J.S. Kissel, et al. Dc readout

experiment in enhanced ligo. Classical and Quantum Gravity, 29:065005, 2012.

15

[31] H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and

R. Schnabel. Demonstration of a squeezed-light-enhanced power-and signal-

recycled michelson interferometer. Physical review letters, 95(21):211102, 2005.

15

[32] C. Zhao, J. Degallaix, L. Ju, Y. Fan, D.G. Blair, BJJ Slagmolen, M.B.

Gray, C.M.M. Lowry, DE McClelland, DJ Hosken, et al. Compensation of

183

http://www.gw-indigo.org/


Bibliography

strong thermal lensing in high-optical-power cavities. Physical review letters,

96(23):231101, 2006. 15, 27, 30

[33] L. Carbone, SM Aston, RM Cutler, A. Freise, J. Greenhalgh, J. Heefner,

D. Hoyland, NA Lockerbie, D. Lodhia, NA Robertson, et al. Sensors and

actuators for the advanced ligo mirror suspensions. Classical and Quantum

Gravity, 29(11):115005, 2012. 15, 19, 122, 124

[34] N.A. Robertson, M. Barton, G. Cagnoli, C.A. Cantley, D. Coyne, D. Crooks,

E. Elliffe, P. Fritschel, S. Goßler, A. Grant, A. Heptonstall, J. Hough, et al. Ad-

vanced ligo suspension system conceptual design. Technical report, T010103-

04-D, 2005. 15, 120

[35] Frederick J Raab. Overview of ligo instrumentation. In Astronomical Tele-

scopes and Instrumentation, pages 11–24. International Society for Optics and

Photonics, 2004. 16

[36] L.S. Finn. Gravitational wave interferometer noise calculator. http://

gwastro.org/, 1997. 16

[37] N. Mavalvala, N.R. Hunter-Jones, et al. Novel approaches to Newtonian noise

suppression in interferometric gravitational wave detection. PhD thesis, Mas-

sachusetts Institute of Technology, 2011. 18, 19

[38] N.A. Robertson, B. Abbott, R. Abbott, R. Adhikari, G.S. Allen, H. Arman-

dula, S.M. Aston, A. Baglino, M. Barton, B. Bland, et al. Seismic isolation

and suspension systems for advanced ligo. In Society of Photo-Optical Instru-

mentation Engineers (SPIE) Conference Series, volume 5500, pages 81–91,

2004. 19, 119

184

http://gwastro.org/
http://gwastro.org/


Bibliography

[39] MG Beker, G. Cella, R. DeSalvo, M. Doets, H. Grote, J. Harms, E. Hennes,

V. Mandic, DS Rabeling, J.F.J. van den Brand, et al. Improving the sensitivity

of future gw observatories in the 1–10 hz band: Newtonian and seismic noise.

General Relativity and Gravitation, 43(2):623–656, 2011. 19, 20

[40] J. Harms, R. DeSalvo, S. Dorsher, and V. Mandic. Simulation of under-

ground gravity gradients from stochastic seismic fields. Physical Review D,

80(12):122001, 2009. 20

[41] A. Buonanno and Y. Chen. Quantum noise in second generation, signal-

recycled laser interferometric gravitational-wave detectors. Physical Review

D, 64(4):042006, 2001. 20

[42] G. Lovelace. The dependence of test-mass coating and substrate thermal noise

on beam shape in the advanced Laser Interferometer Gravitational-Wave Ob-

servatory (advanced LIGO). Arxiv preprint gr-qc/0610041, 2006. 22

[43] M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Ogin. Thermo-

optic noise in coated mirrors for high-precision optical measurements. Physical

Review D, 78(10):102003, 2008. 23

[44] T. Tomaru, T. Suzuki, T. Uchiyama, A. Yamamoto, T. Shintomi, CT Taylor,

K. Yamamoto, S. Miyoki, M. Ohashi, and K. Kuroda. Maximum heat transfer

along a sapphire suspension fiber for a cryogenic interferometric gravitational

wave detector. Physics Letters A, 301(3-4):215–219, 2002. 23

[45] M. Punturo, M. Abernathy, F. Acernese, B. Allen, N. Andersson, K. Arun,

F. Barone, B. Barr, M. Barsuglia, M. Beker, et al. The einstein telescope:

a third-generation gravitational wave observatory. Classical and Quantum

Gravity, 27:194002, 2010. 23

185



Bibliography

[46] Y. Levin. Internal thermal noise in the LIGO test masses: A direct approach.

Physical Review D, 57(2):659, 1998. 23

[47] H.B. Callen and R.F. Greene. On a theorem of irreversible thermodynamics.

Physical Review, 86:702–710, 1952. 24

[48] E.C. Chalkley. Investigations of the properties of materials for the optics and

suspensions of future gravitational wave detectors. 2010. 24

[49] P.R. Saulson et al. Thermal noise in mechanical experiments. Physical Review

D, 42(8):2437–2445, 1990. 24

[50] G.M. Harry, A.M. Gretarsson, P.R. Saulson, S.E. Kittelberger, S.D. Penn,

W.J. Startin, S. Rowan, M.M. Fejer, DRM Crooks, G. Cagnoli, et al. Thermal

noise in interferometric gravitational wave detectors due to dielectric optical

coatings. Classical and Quantum Gravity, 19:897, 2002. 25

[51] P. Fulda, K. Kokeyama, S. Chelkowski, and A. Freise. Experimental demon-

stration of higher-order laguerre-gauss mode interferometry. Physical Review

D, 82(1):012002, 2010. 25

[52] F.Y. Khalili. Reducing the mirrors coating noise in laser gravitational-wave

antennae by means of double mirrors. Physics Letters A, 334(1):67–72, 2005.

25

[53] A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel.

High reflectivity grating waveguide coatings for 1064 nm. Classical and Quan-

tum Gravity, 23:7297, 2006. 25

[54] E.D. Black, A. Villar, and K.G. Libbrecht. Thermoelastic-damping noise from

sapphire mirrors in a fundamental-noise-limited interferometer. Physical re-

186



Bibliography

view letters, 93(24):241101, 2004. 25

[55] HLL Châtelier. A general statement of the laws of chemical equilibrium.

Comptes rendus, 99:786–789, 1884. 25

[56] VB Braginsky, ML Gorodetsky, and SP Vyatchanin. Thermo-refractive noise

in gravitational wave antennae. Physics Letters A, 271:303–307, 2000. 26

[57] H.J. Kimble, B.L. Lev, and J. Ye. Optical interferometers with reduced sensi-

tivity to thermal noise. Physical Review Letters, 101(26):260602, 2008. 27

[58] M.L. Gorodetsky. Thermal noises and noise compensation in high-reflection

multilayer coating. Physics Letters A, 372(46):6813–6822, 2008. 27

[59] W. Winkler, K. Danzmann, A. Ruediger, and R. Schilling. Heating by optical

absorption and the performance of interferometric gravitational-wave detec-

tors. Physical Review A, 44(11):7022–7036, 1991. 28, 29

[60] K.A. Strain, K. Danzmann, J. Mizuno, PG Nelson, A. Rüdiger, R. Schilling,
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