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Abstract

In chemical literature much information is given in the form of diagrams depicting chemical

structures. In order to access this information electronically, diagrams have to be recognised

and translated into a processable format. Although a number of approaches have been proposed

for the recognition of molecule diagrams in the literature, they traditionally employ procedural

methods with limited flexibility and extensibility.

This thesis presents a novel approach that models the principal recognition steps for

molecule diagrams in a strictly rule based system. We develop a framework that enables the

definition of a set of rules for the recognition of different bond types and arrangements as

well as for resolving possible ambiguities. This allows us to view the diagram recognition

problem as a process of rewriting an initial set of geometric artifacts into a graph representation

of a chemical diagram without the need to adhere to a rigid procedure. We demonstrate the

flexibility of the approach by extending it to capture new bond types and compositions. In

experimental evaluation we can show that an implementation of our approach outperforms the

currently available leading open source system. Finally, we discuss how our framework could

be applied to other automatic diagram recognition tasks.
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CHAPTER 1

INTRODUCTION
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Over the years, the use of diagrams and sketches of chemical structures to capture and

communicate ideas has become an integral part of chemists’ activities. This is because these

sketches can be more informative than, for instance, using a textual representation since they not

only describe the internal structure of a certain compound, they also convey other information

such as potential properties and intricate architectures. Hence, a picture is worth a thousand

words.

The opposite process, which is retrieving precise information from existing chemical

structure diagrams and storing it in a computer searchable format, remains a challenging task.

The difficulty stems from the various ways chemists depict different formations and properties,

and from image analysis processes such as the correct identification of shapes.

The current state of the art in interpreting chemical structure diagrams relies heavily on

procedural approaches. In other words, the recognition process is based on a rigid list of steps

that the approach goes through in order to recognise chemical structure diagrams and identify

their bonds. This affects the extensibility, flexibility, and running time of the method as it

becomes difficult to maintain, extend and results in repeating the same steps every time it is

run.

In this thesis, we present and evaluate a technique for the recognition of chemical

structure diagrams from bitmapped images. The technique is based on ideas derived from

human expertise and is developed and evaluated using common chemical structure recognition

evaluation methods on a variety of benchmark sets.

The technique has several advantages over existing approaches. In particular it deals with

many bond drawing styles, it is easy to extend, easy to maintain and fast to execute. All these

features stem from the rules at the core of the system. Since all patterns can be captured in

an unambiguous list of rules, with each rule composed of a list of conditions or predicates, the

whole system becomes easier to modify to handle patterns from other domains and becomes

easier to extend in case new patterns are to be identified. It also provides ease of maintenance

because one can easily identify which patterns are being mis-recognised.

Our rules strictly define various bond formations and architectures in a mutually exclusive
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manner. By mutual exclusivity, we mean that the rules are well defined so that the order of their

execution is minimised. This is realised by capturing different bonds using a sequence of strict

conditions to avoid ambiguity and improves the performance of chemical diagram recognition.

As we demonstrate throughout this thesis, the technique in general outperforms state of the art

methods and produces results of higher accuracy when comparing results.

1.1 Hypotheses

In this thesis we address the following four hypotheses:

• A strictly rule-based approach where diverse bond drawing styles are captured using a

list of strict rules can be used to accurately and efficiently recognise chemical structure

diagrams.

• The rule framework can be flexible to allow for easy extension to incorporate additional

diagram elements.

• The approach can be efficiently implemented in a system that can match the performance

of other contemporary approaches in chemical diagram recognition.

• The extraction of geometrical primitives from chemical diagrams can be improved using

novel approaches to the detection of line endpoints and geometrical objects in the shape

of solid triangles which are used to depict one of the bond types.

We create a rule-based recognition system to evaluate the above hypotheses. The system

will be composed of 18 rules defining different bond patterns that exist in chemical structure

diagrams. These 18 rules were derived after analysing some existing benchmark datasets

and catalogues of chemical structure diagrams. The system will take in as input a set of

geometric objects of five possible types called primitives and will generate a suitable output

format. We identify these primitives by using an existing line simplification algorithm in a

novel way. A primitive can be a line segment, a triangle, an arrow, a circle or a character

group. We also demonstrate the extensibility of the system as we modify these rules when
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necessary to accommodate some new bond types making the number of rules 22. We also

provide implementation and evaluation methodologies.

1.2 Overview of the Approach

Our rule-based approach for the recognition of chemical structure diagrams consists of two

modules, a vectoriser and a rule-engine. In the vectoriser, we preprocess an input image, analyse

the chemical structure diagram it represents and generate a set of geometric primitives. Each of

these primitives can be one of five types (i.e. a character group, a circle, a line segment, a solid

triangle or an arrow). These primitives are then picked up by the rule engine which rewrites

them into a graph structure representation of the recognised molecule. In a post-processing

step, we translate this graph structure into a variety of output formats such as MOL files [98] or

SMILES [61, 107].

1.2.1 Vectorisation

The vectorisation works in three steps:

Image binarisation: For the first step of image binarisation we use Otsu’s method [73]. This

is followed by labelling of connected components.

Optical character recognition (OCR): In the second step we perform optical character

recognition by extracting a set of structural features from connected components and applying

a nearest neighbour classification based on a Euclidean metric. We remove all connected

components recognised as characters from the image. We also detect circles at this step since

their appearance is similar to that of an oxygen atom label, i.e. “O”. We remove all detected

characters and circles and the result of this step is a set of primitives each of which can be either

a character group or a circle.

Separation of bond elements: At this point we have a new copy of the (character free)

diagram. We apply a thinning algorithm to connected components to thin them to a single

pixel width. We then build a polyline representation of the thinned lines. Here we employ

a novel adaptation of the Douglas-Peucker line simplification algorithm to determine line end
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points. At the same time we determine the average line width and average line length. We use

a novel expanding disc technique to identify solid triangles and template matching to identify

arrow lines. This results in having a set of primitives each of which can be a line segment, a

solid triangle or an arrow. The latter two are then annotated with their respective direction.

1.2.2 Rule System

Our rule system essentially works with the geometric primitives resulting from the

vectorisation as input. In particular it uses character groups and circles from the OCR step,

as well as line segments, solid triangles and arrows from the bond separation. The goal of our

rule system is to rewrite the input set of primitives into a graph structure that represents the

molecule in terms of the atoms (or superatoms) and different types of bonds between them.

We define rules in terms of preconditions and consequences. A rule is applicable if there

exist geometric objects that satisfy its preconditions. The consequence results in the removal

of existing geometric objects and the addition of elements to the graph as well as possibly the

addition of new geometric objects. In general, preconditions of different rules are mutually

exclusive, and thus the order of rule application is minimised. Rules work with a number of

parameters, both fuzzy and strict, that set certain thresholds, for instance the minimal bond

length, under which decisions will be made. These parameters allow for the customisation and

adaptation to particular requirements of datasets.

1.3 Contributions

The following points provide a summary of the contributions of this thesis.

1. A novel application of the Douglas-Peucker line simplification algorithm to precisely

detect line endpoints in a structure containing interconnected straight line segments.

2. A novel approach using an expanding disc to accurately identify objects in the shape of

solid triangles and bold lines.

3. A novel strict rule-based system to precisely identify various bond conventions and
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formations. The system consists of 18 rules and takes a set of primitives as input and

produces a suitable computer processable format.

4. We demonstrate the robustness of our approach by providing experimentation two

implementations. A procedural implementation and a random implementation.

1.4 Publications

The following conference and workshop publications were published to summarise the work

carried out in this thesis.

• Noureddin Sadawi, “Recognising Chemical Formulas from Molecule Depictions”, In Pre-

Proceedings of the 8th IAPR International Workshop on Graphics Recognition (GREC

2009) [86]

• Noureddin M. Sadawi, Alan P. Sexton and Volker Sorge “Performance of MolRec

at TREC 2011 — Overview and Analysis of Results”, The Twentieth Text REtrieval

Conference Proceedings (TREC 2011) [87]

• Noureddin M. Sadawi, Alan P. Sexton and Volker Sorge “Chemical Diagram Recognition:

A Rule-based Approach”, 19th Document Recognition and Retrieval Conference (DRR

2012) [88]

• Noureddin M. Sadawi, Alan P. Sexton and Volker Sorge “MolRec at CLEF 2012 —

Overview and Analysis of Results”, Conference and Labs of the Evaluation Forums

(CLEF 2012) [89]

And two posters:

• Noureddin Sadawi, Alan P. Sexton and Volker Sorge. Performance of MolRec at TREC

2011: Overview and Analysis of Results, November 2011.

• Noureddin Sadawi, Alan P. Sexton and Volker Sorge. Performance of MolRec at CLEF

2012: Overview and Analysis of Results, September 2012.
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1.5 Thesis Overview

This thesis consists of three parts. Part I is an overview of background and related work

relevant to the topic of this thesis. Chapter 2 briefly introduces methods used to represent

chemical structures and provides an explanation of several ways used to depict bonds and bond

arrangements. Chapter 3 looks at some of the common methods used to represent chemical

structures electronically. It focuses on MOL files as it is the format used for evaluating the

tool developed as part of the work carried out in this thesis. Finally, Chapter 4 presents

existing approaches for chemical structure recognition and analyses them in a “how-things-

work” manner to provide the user with an overview of how procedural the existing methods are.

Some advantages and disadvantages of these approaches are also discussed.

Part II presents our approach to recognition of chemical structure diagrams. Our method

to carry out optical character recognition (OCR) and identify characters and circles has been

explained in Appendix A. Chapter 5 provides specifications of our overall recognition system.

It explains the philosophy of our system as well as its architecture and embeddings. It also

presents an overview of our implementation methodology and contains justification of why

our rule-based recognition system is favourable when compared to the traditional procedural

approach. This chapter then ends by explaining our testing and validation methodology.

Chapter 6 details our methods of using the Douglas-Peucker algorithm to precisely detect line

segment endpoints, our method of using an expanding disc to identify solid triangles and bold

lines and our method for spotting arrow lines. In Chapter 7, we provide more information

about our rules and explain various concepts and parameters necessary to build them. After

that, we present a summary table of our 18 rules and then discusses in detail a selection of four

of these rules (with the remaining rules provided in Appendix B). The discussion includes an

explanation of each rule’s predicates and how they capture and rule out various patterns. Not

only this, but it also provides sample OCAML code to show how we have implemented these

rules. A simple fully work example to illustrate how our entire system works is provided at the

end of this chapter. Chapter 8 explains what happens after our system of rules terminates. We
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detail how we form a graph data structure to represent the diagram in question. We also show

how we post-process the graph by expanding superatoms and guessing stereocentres. After that,

we explain how we generate a suitable output. Additionally, we show the steps for a procedural

approach that we have developed. The last chapter in this part is Chapter 9. This chapter

begins by addressing rule conflicts, rule execution order, system termination and the issue of

circularity. After that, we describe how our system can be easily extended to accommodate

more bond types where we introduce four new bond types to the system. The chapter also

shows which of our original 18 rules introduced in Chapter 7 and Appendix B are affected and

how they can be modified to avoid conflict and ambiguity.

The final part of this thesis is Part III which provides details of the validation, robustness

and performance of our rule-based recognition system. It also presents the results of our

experimental evaluation after comparing our implementation with other state of the art systems

in Chapter 10. This part ends in Chapter 11 with conclusions and suggestions for what can be

done in the future to extend and improve this work.

1.6 Summary

This chapter provided material to motivate the reader, introduce the main research idea and

provide a concise hypothesis statement. The overall structure of the rule-based approach for

recognition of chemical structure diagrams was also given. Additionally, an overview of the

structure of this thesis was also given.
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Part I

Background
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CHAPTER 2

OVERVIEW OF CHEMICAL STRUCTURE
DIAGRAMS
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This thesis is about extracting precise information from chemical diagrams and saving this

information in a format processable by a computer. By computer processable format, we mean

a format that can be used in various operations such as comparison, frequent editing, copying,

pasting and others. It is obvious that for such operations, a textual format, for example, is

easier and more efficient to use than an image format. Notice that the terms chemical structure

diagram and molecule diagram are going to be used interchangeably throughout the remainder

of this thesis.

In this chapter, we will provide a brief overview of some necessary knowledge from the

Chemistry domain. We will focus on how chemical structures are often represented and on the

contents of chemical diagrams. This thesis is on recognition of chemical structure diagrams so

it applies several concepts from Chemistry. However, a detailed account of chemistry is out of

the scope of this work. Further information can be found in [18, 96, 85, 83].

Chemistry used to be defined as the study of matter’s nature, properties, decomposition and

the changes that it undergoes. According to [85], this definition is not precise and it is almost

impossible to accurately define it. This is because there is huge overlap between Chemistry

and other scientific disciplines such as Physics, Geology, Astronomy and others. However,

one can devise a general definition such as: It is the field of science that is concerned with

simplifying how elements and compounds work to facilitate understanding and creation of new

useful compounds. It deals with collections of atoms such as molecules, their properties, their

transformations and interactions to form materials encountered in everyday life. In other words,

it is the science of matter at the atomic to molecular level. Not only this, but Chemistry is often

denoted the central science [18] since it embraces all other sciences. It is the foundation upon

which other sciences such as material science, biology, pharmacy and others are based and

connected through.

Numerous topics fall under the umbrella of Chemistry. For instance, the atomic structure

of matter is an essential aspect. An atom is the basic chemical building block of matter, it is

the smallest particle of a chemical element which retains its chemical properties. Also, the

study of chemical bonding and how atoms join together is another very important field because
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elements are formed by atoms which have the same chemical properties [96]. Known elements

are conveniently presented in what is known as the periodic table where symbol abbreviations

for each known chemical element and other information are listed.

Two or more atoms can join together to form what is referred to as a molecule. If the atoms

are from different elements, the molecule is known as a compound. Hence, all compounds

can be considered molecules, though on the other hand, not all molecules can be considered

compounds. An example of this is H2, (or molecular hydrogen), which is a molecule and not a

compound because it is made from one element. Whereas Water (H2O) is a compound and not

a molecule because it is composed of two elements.

2.1 Molecule Representation/Drawing

The attraction between atoms to form molecules results in creation of chemical bonds. As

proposed by the American chemist Gilbert Newton Lewis in 1916, the formation of these

bonds is a result of interaction between electrons from atoms. There are two major types of

bonds, ionic and covalent. However, after the interaction of atoms and creation of molecules, a

means of communicating molecules including their structures and properties is needed. In the

following sections, We are going to explain some of the various ways that molecules can be

represented on paper or on screen.

2.1.1 Molecular formulae

In molecular formulae the number of occurrences of each atom present in the molecule is

counted. They do not provide any information about the way they are joined together. For

example, the molecular formula of butane is C4H10; this means that butane consists of four

carbon atoms and ten hydrogen atoms. Another example is ethanol which is composed of

two carbon atoms, six hydrogen atoms and one oxygen atom; hence, the molecular formula of

ethanol is C2H6O. However, different molecules can have the same molecular formula. As

can be seen in Figure 2.1, the two provided molecules have the same formula of C13H17NO3

but the way their atoms are bonded is different. These disadvantages limit the use of
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molecular formulae since information about the bonding formation cannot be obtained from

such representations [22].

(a) (b)

Figure 2.1: Two different molecules with the same formula

2.1.2 Structural formulae

The way various atoms are bonded is sometimes shown in structural formulae. These are

depictions illustrating which atoms of the molecule are bonded to which atoms with the type of

bond is also shown. We are going to introduce some of the existing ways to display molecular

formulae in the coming few sections. We will also provide more information about bond types

later in this chapter and throughout the remaining chapters of this thesis.

2.1.2.1 Displayed formulae

A good way to communicate molecules is through a pictorial description because much

information can be conveyed via a single diagram. A diagrammatic or displayed formula

shows all the bonds in the molecule as individual lines. Each line represents a pair of shared

electrons. For example, Figure 2.2(a) provides a model of methane, whose molecular formula

is CH4, showing its 3-dimensional nature. The black ball represents a carbon atom and the four

white balls represent hydrogen atoms (observe that this is not common in chemistry related

publications). On the other hand, Figure 2.2(b) shows methane’s displayed formula. Notice

that the way methane is drawn does not resemble the real shape of the molecule - methane is

not flat with 90◦bond angles [22].

However, for large and complicated molecules, drawing a fully displayed formula can be

tedious and occupy much space - especially all of the carbon-hydrogen bonds. However, the
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(a) Structural formula (b) Skeletal formula

Figure 2.2: Methane and its displayed formula (image from [22])

formula can be simplified by writing, for example, CH3 or CH2 instead of showing all these

bonds. So for instance, ethanoic acid would be shown in a fully displayed form and a simplified

form as Figure 2.3 illustrates. In fact, it can be condensed further to CH3COOH but the way

atoms are bonded will not be seen [22].

(a) Fully displayed
form

(b) Simplified form

Figure 2.3: Ethanoic Acid (image from [22])

Observe that the carbon and hydrogen atoms forming methane are connected via single

bonds only, whereas for ethanoic acid, the carbon, hydrogen and oxygen atoms are connected

via single and double bonds. We are going to explain various bond types later in this chapter.

2.1.2.2 Skeletal formulae

One of the common ways to describe molecules is to use skeletal formulae. As the term

suggests, it is an abbreviated pictorial description of molecules. In a skeletal formula, all

the hydrogen atoms attached directly to carbon atoms are omitted, which results in a carbon

skeleton with functional groups attached to it [22]. So, when interpreting such representations,

a hydrogen atom is assumed where necessary. In fact, it is a very common practice to omit

carbon and hydrogen atoms from molecular depictions, especially in research papers, advanced
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textbooks and other areas.

(a) structural formula (b) skeletal formula

Figure 2.4: Cyclohexane - C6H12

In a skeletal diagram of this type.

• There is a carbon atom at each junction between bonds in a chain and at the end of each

bond (unless there is something else there already).

• There are enough hydrogen atoms attached to each carbon to make the total number of

bonds on that carbon up to 4 (observe that it is common to make this assumption for other

atoms).

• Skeletal diagrams take less space and can be easily and quickly drawn - electronically or

manually.

• They are easy to interpret, and it is easier to illustrate important parts of the molecules.

Figure 2.4 shows the structural formula and the skeletal formula for cyclohexane, C6H12.

As it can be seen, cyclohexane is a ring of carbon atoms each with two hydrogens attached.

Notice that the carbon and hydrogens are not the only atoms involved in chemical molecules.

Several elements can be used to form such structures depending on their properties and on the

desired target molecule. A list of some of the most common elements is provided in Table 2.1.

2.1.2.3 Representing Aromatic Rings

Aromaticity is a chemical property of some significance to chemists. It exists in certain

cyclic, or ring, structures such as the benzene ring shown in Figure 2.5(c). Benzene, (C6H6), is
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Table 2.1: Example Elements from the Periodic Table
Element name Abbreviation

Carbon C
Hydrogen H
Nitrogen N
Oxygen O

Phosphorus P
Sulphur S
Chlorine Cl
Fluorine Fl
Bromine Br

composed of six carbon atoms and six hydrogen atoms connected via single and double bonds.

It is often depicted as a ring of six carbon atoms, with alternating single bonds and double

bonds. However, because of reasons related to the aromaticity of the ring, the structures shown

in Figure 2.5 are equivalent. Therefore, it is a common practice to indicate the aromaticity of a

ring by drawing a circle inside it (Figure 2.5(c)).

(a) (b) (c)

Figure 2.5: Benzene C6H6 - The three structures are equivalent

2.1.3 Two Dimensional Structural Formulae for Three Dimensional

Representations

Molecules are inherently 3-dimensional objects albeit they are usually displayed on 2-

dimensional media such as paper or computer displays. This was first suggested by the

German chemist August Kekulé (1829-1896). Hence, sketching any 3-dimensional entity on

2-dimensional media involves change in shape, restriction in terms of expressiveness and other

problems. Therefore, a field of Chemistry related to the spatial formation of atoms in molecular
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objects had to be introduced. This field is called Stereochemistry. So, the relationship

between atoms in 3-dimensional space determines their stereochemical configuration. The field

is also concerned with the consequences of having different spatial arrangements of atoms in

molecules. According to [16], two enantiomers of carvone provide a widely known example of

how significant stereochemistry is in everyday life. As shown in Figure 2.6, the two compounds

have different stereochemistry and therefore they have different smells.

(a) S-carvone (smells like caraway) (b) R-carvone (smells like spearmint)

Figure 2.6: Significance of Stereochemistry

The need to convey 3-dimensional information in molecule entities on 2-dimensional

surfaces led to the use of perspective. Fortunately, several drawing conventions were suggested

to at least illustrate the 3-dimensional configuration of molecules in 2-dimensional media.

The most common way to achieve this is the use of special shaped bonds. As Figure 2.7

shows, different shapes of bonds are used to imply the existence, or non-existence, of 3-

dimensional arrangement between two atoms. According to recommendations of International

Union of Pure and Applied Chemistry (IUPAC) for graphical representation of stereochemical

configuration [16], in case of 3-dimensional arrangements, the architecture specifies that one

of the two concerned atoms is protruding or receding from the plane of depiction and the other

atom is the stereogenic centre.

Planar bonds, Figure 2.7(a) are usually drawn as normal lines to indicate that the bond is

in the plane of the drawing surface (even if the two atoms at each end are not co-planar). By

normal we mean they are not thick, wavy, dashed or any shape other than an ordinary straight

line.

If a structure has atom(s) above the drawing plane, bond(s) to such atoms are usually
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(a) Planar (b) Solid Wedge (c) Hollow Wedge (d) Dashed
Wedge

(e) Arrow

(f) Bold (g) Dashed Bold (h) Dashed (i) Wavy

Figure 2.7: Common Types of Bond Representation on Paper

illustrated with solid wedge (Figure 2.7(b)), with the wide end of the wedge connected to these

atoms (the narrow end of the wedge is connected to the stereogenic centre). However, using

a hollow wedge such as the one in Figure 2.7(c) can also be encountered (several examples

can be found in [104]). Additionally, a bold bond, which is usually shown as a thick line as in

Figure 2.7(f), is sometimes used although it is often used to show that both atoms are above the

plane of drawing, or to indicate that one of the atoms is above plane and the other is not, which

means that the stereogenic centre is unknown [16].

As for bonds that project below the plane of the drawing, different formations of short

normal lines have been used [16]. These include, short parallel lines of increasing/decreasing

length (a hashed wedge as in Figure 2.7(d)), short parallel lines of the same length (a hashed

bold bond as in Figure 2.7(g)) and short collinear lines of the same length (Figure 2.7(h)). These

bond formations are usually used to show that both atoms are below the plane of drawing or

to indicate that one of the atoms is below plane and the other is not, which means that the

stereogenic centre is unknown [16].

However, representation of bonds going into the plane of drawing is still problematic despite

earlier recommendations to use hashed bold bonds [16]. For example, there is no universal

agreement on how to interpret a hashed wedge bond. That is, atoms at the wide end are

sometimes considered to be in the plane of drawing. This interpretation is sometimes given

to atoms at the narrow end. In addition to that, a dashed bond such as the one shown in
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Figure 2.7(h) is sometimes used to represent a hydrogen bond, a partial bond or delocalisation.

A wavy line such as the one shown in Figure 2.7(i), of round or angular waves, is used to

explicitly indicate that the configuration is not known. This means that the bond can be either

protruding or receding (above or below plane). Hence, wavy bonds involve two ambiguities,

the first is whether the bond above or below plane, and the second is which side the stereogenic

centre is. The waves are usually of similar length, although wavy bonds with waves of different

amplitude can be encountered (several examples can be found in [10]). Furthermore, the arrow

bond shown in Figure 2.7(e) are also used to depict a dative bond. According to [104], it

indicates the existence of a negatively charged atom at the arrow end of the bond.

Notice that it can be understood from the provided explanation that an author’s intended

meaning can be misunderstood from just a structure drawing. This is because there is no

consensus amongst chemists on how to draw each architecture [16]. Having said that, this thesis

is concerned with the accurate recognition of different kinds of bond shapes and arrangements.

It is not intended to judge how valid, or preferable, bond shapes are, or how they should be

depicted in terms of orientation or any other property.

We are going to provide more information on how different types of bonds are illustrated

and introduce several common bond formations and arrangements in the coming sections of this

chapter. In the next section we will introduce what is known as Markush Structures. Notice that

automatically interpreting such structures will not form part of this thesis.

2.1.4 Markush Structures

Markush structures are used in compound classes which are described by generic

notations [5]. This is done to indicate that the presented structure has some degree of

variability [41]. They are mostly used in databases of patents and the notations are used to

represent a series of chemical compounds. This means that a diagram can describe a family, or

families, of compounds. A typical Markush structure consists of a core structure represented

by a diagram and substituents which are usually listed separately [52]. Each substituent can

contain variable group(s), normally referred to as R1, R2 and so on, where the introduction of
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variability can be done in any of several ways. The following list provides some of these ways:

• R-Groups. Also known as substituent variation, this is where the structure contains a

list of alternatives. An R-atom is used to denote the variable part of the structure and the

enumeration of the list of alternatives is given separately.

• Atom Lists. A List of atom types can be present at a certain position to allow the structure

to have some degree of variability.

• Position variation. A substituent group in the core structure may have a variable

attachment position.

• Repeating Units. This is when the occurrence of a group can be repeated several times

(frequency variation).

Figure 2.8: Markush Structure

An example Markush structure illustrating the mentioned types of variability is given in

Figure 2.8. R1 and R2 represent substituent variation as R1 can be either F or Cl, whereas R2

can be a generic expression such as alkyl. The n represents frequency variation, and the OH has

a position variation because it can be connected to either of the shadowed nodes. Finally, the L

indicates the existence of atoms lists (provided in square brackets). The reader should note that

these are only examples of ways to represent variability in Markush structures, a larger list can

be found in [5].
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2.2 More on Diagram Notation

As we have explained in the previous sections, molecule diagrams depict the relationship

between atoms using various bond shapes. Apart from carbon and hydrogen, a list of the most

common atoms has been provided in Table 2.1. Additionally, an overview of the most common

bond types has been provided in Section 2.1.3. However, a molecule diagram can contain

subtle combinations and arrangements of such atoms and bonds. For instance, the use of a

circle inside a multi-sided polygon to indicate the existence of an aromatic ring is a common

practice (Section 2.1.2.3). Another example is the contents of Markush structures which have

been explained in Section 2.1.4.

2.2.1 Double and Triple Bonds

In addition to that, molecule diagrams can contain other architectures. One example is the

use of two close parallel line segments and three close parallel line segments to illustrate planar

double bonds and planar triple bonds respectively (Figure 2.9). Notice that the line segments

have similar lengths. Observe that each line segment in each bond represents a pair of shared

electrons between the the two bonded atoms.

(a) Planar Double Bond (b) Planar Triple Bond

Figure 2.9: Planar Double and Triple Bonds

2.2.2 Implicit Atoms

Another example is the use of combinations of multiple bonds. As can be seen in

Figure 2.10, there is a combination of single bonds with double and triple bonds respectively.

Subsequently, carbon atoms are understood to exist at the connection between the single bonds

and the double and triple bonds. These will be referred to as implicit atoms, implicit nodes
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or embedded nodes in the remaining chapters of this thesis. To clarify the idea, a grey circle

has been placed where an implicit carbon atom exists. It can be noticed that there is only one

implicit carbon atom in Figures 2.10(a) and 2.10(c), whereas there are two implicit carbon

atoms in Figures 2.10(b) and 2.10(d).

(a) (b) (c) (d)

Figure 2.10: Embedded Node on Shadowed Side(s) of Planar Double and Triple Bonds

2.2.3 Bridge Bonds

Chemists use another arrangement of line segments to illustrate what is denoted as bridge

bonds (Figure 2.11). Bridge bonds are a formation of line segments to indicate the existence

of a 3-dimensional structure. These are typically presented in a 21/2-dimensional perspective

drawing form where there are multiple different connection paths between different parts of the

chemical structure diagram. As Figure 2.11(a) illustrates, the bond line segments that cross in

the drawing but do not intersect in 3-dimensions are sometimes drawn in an open form, where

the back-ground bond is drawn broken leaving the viewer to deduce that the broken lines are

actually one line. On the other hand, Figure 2.11(b) displays an architecture where the different

connection paths between different parts of the chemical structure diagram are drawn in a closed

form, leaving the reader to deduce that the crossing point does not correspond to a junction.

(a) Open Bridge (b) Closed Bridge

Figure 2.11: Open and Closed Bridge Bonds (shadowed)
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Observe that the structure in Figure 2.11(a) consists of a hexagon and two pentagon shapes,

whereas the structure in Figure 2.11(b) consists of three hexagon shapes. These shapes are

sharing some of their sides and they can be deduced by visualising them in 3D.

2.2.4 Bond Directions

As we have explained in section 2.1.3, several bonds represent 3-dimensional architecture.

These include dashed bonds, dashed bold bonds, dashed wedge bonds, wedge bonds, bold

bonds, hollow wedge bonds and wavy bonds. Some of them represent below plane bonds (these

are the dashed, dashed bold and dashed wedge bonds) and some others represent above plane

bonds (these are the wedge, bold and hollow wedge bonds) with the wavy bond representing

either below or above plane architecture.

These bonds are usually connected to what is denoted as the “stereogenic” centre. Using this

centre, such bonds can be assigned “directions” to clearly indicate which end of the bond is on

plane and which end is below, or above, the plane. This direction is vital to correctly interpret

these bonds as it is chemically very significant. However, the stereogenic centre is unknown for

all the above mentioned bonds except the wedge, hollow wedge and dashed wedge bonds. This

means, a mechanism needs to be found to correctly identify stereogenic centres when they are

unknown.

As far as the correct interpretation of chemical structure diagrams is concerned, usually

the structures do not provide sufficient information to know the stereocentre in case of bold,

dashed bold and dashed bonds. Thus, this represents one of the challenges in recognition of

chemical structure diagrams. We are going to introduce our way for identifying bonds that

represent 3-dimensional architecture and how we determine the stereocentre when it is unknown

in Section 8.4.

2.2.5 Superatoms

The special arrangements in chemical structure diagrams are not restricted to bonds, rather,

atoms are also sometimes presented in a special way. To save display space, authors often use

23



shortcut names to known substructures instead of drawing the entire substructure in a chemical

structure diagram. These shortcut names are known as superatoms. Figure 2.12 shows several

example superatoms.

(a) (b)

(c) (d)

Figure 2.12: Example Superatoms (Highlighted)

Superatoms have a potentially complex substructure that can contain many atoms and bonds.

Furthermore, while a chemical formula is at least potentially parseable, some of these names

give no indication to their content other than via looking up a dictionary. For example, the

superatom name PMBN (shown in Figure 2.12(a)) identifies a substructure with the chemical

formula “C8H9ON”.

Also, while it is clear which atoms in the main structure are connected to the superatom,

it is not clear which atom(s) in the superatom is/are connected to the main structure. This is

evident in the shown figures. For example, the superatom OCC6H13 (shown in Figure 2.12(b))

is connected to the main structure via two bonds - a single bond (to an omitted carbon atom), and

a double bond (to the Oxygen atom). However, it is not obvious which atom in the superatom

is connected to the single bond and which atom is connected to the double bond. This is also

clear for the superatom NHCOCH2O (shown in Figure 8.4(d)). In fact, this problem is more

complicated than that since there are superatoms which have the exact same name but they have

a different formula, and hence, a different number of connections. This is clear in the case of
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the CO superatom. In Figure 8.4(c), the main structure is connected to it via one connection

only, whereas in Figure 8.4(d), the main structure is connected to it via two connections. Notice

that the two superatoms have exactly the same name but a different formula because of the

conventional omission of hydrogen atoms from atom names.

On the one hand, these shortcut names represent a useful way for chemists to keep the

molecule drawings compact, but on the other hand, they create a problem for people trying

to automatically interpret such drawings from images. That is, after optically recognising

characters and symbols and grouping them, the user is left with the following problems:

1. It is not straightforward to know what the exact superatom’s substructure is (although for

a chemist, this is a trivial task).

2. Also, and more importantly, it is not straightforward to know how the superatom is exactly

connected to the surrounding structure.

It is relatively easy to deduce the molecule structure of some chemical formulae, therefore,

we will focus on the second problem. In Section 8.3, we will introduce our method for

solving this problem. Additionally, we are going to provide more information on superatoms in

Section 3.1.5.3.

2.3 Summary

In this chapter we have discussed the representation of chemical structures with their

3-dimensional information on a 2-dimensional surface. The chapter started by providing

some domain knowledge from Chemistry and continued by introducing methods of molecule

representation. As mentioned before, this thesis is not intended to be part of a work submitted

to attain a degree in Chemistry. Nevertheless, the provided information should give the reader

an overview of what the problem of chemical structure diagram recognition entails. In the

next chapter, the focus will be on several formats of how such diagrams are represented in a

computer.
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CHAPTER 3

ELECTRONIC REPRESENTATION OF CHEMICAL
STRUCTURE DIAGRAMS
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We have introduced some of the various ways of representing chemical structure diagrams on

2-dimensional media in the previous chapter. In this chapter, we present how these diagrams

can be represented electronically (i.e. in computers). The field that deals with representing

information in a format that facilitates knowledge extraction is called Chemoinformatics. The

field of Chemoinformatics involves the use of computational methods for the processing of

chemical data and tackling problems in the field of Chemistry. The focus of these methods is

on manipulating chemical structure information but it also encompasses several applications on

chemical information such as analysis, design, management, retrieval and visualisation which

are carried out in the context of drug discovery and design.

There does not seem to be a consensus on the correct spelling as there are different

spellings reported in the literature. These include Cheminformatics, Chemical Informatics

and Chemiinformatics. This is possibly because the field is new compared to other fields in

Chemistry [60]. In fact, the field is so new that there is not even a universal agreement on its

definition, albeit numerous attempts have been made to define it. Examples of these are:

“...the mixing of information resources to transform data
into information and information into knowledge, for the
intended purpose of making better decisions faster in the
arena of drug lead identification and optimisation” [17]

and

“Chem(o)informatics is a generic term that encompasses
the design, creation, organisation, storage, management,
retrieval, analysis, dissemination, visualisation and use
of chemical information, not only in its own right, but
as a surrogate or index for other data, information and
knowledge” [77]

Chemoinformatics is an important discipline as it involves addressing several challenges.

For example, a difficult task is the efficient storage and maintenance of the huge already existing

amount of data. Also, the use of the already known data to learn about cases for which the

required data is not available is another ongoing task. In addition to that, it plays a vital role in

understanding the biological activity of a compound and its structure.

Chemoinformatics presents an opportunity to integrate the understanding of information

technology with knowledge of Chemistry, this is due to the ever expanding overlap between
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the two fields. In fact, advances in this field allow chemists to accurately model chemical

compounds. Chemists are now able to access various molecular properties such as shape,

chemical reactivity and others.

The scope of chemoinformatics encompasses diverse applications such as:

• Structure representation

• Structure/Substructure searching and database searching

• Similarity measurement and clustering

3.1 Electronic Representation of Molecular Structures

A common way to store information about chemical compounds is by means of databases

entries containing different properties and possibly representations of each compound. Several

databases are now publicly available through many organisations. The number of entries in

a typical chemical compound database ranges from hundreds of thousands to millions. For

example, at the time of writing this thesis, the online chemical database ChemSpider [24]

reports that it contains more than 28 million structures.

In the following subsections, we are going to present an overview of some of the methods

used to represent a molecular structure in a computer readable format. We will use the example

in Figure 3.1 as a basis and show its corresponding representation in each method.

3.1.1 Chemical Graph

A mathematical graph can be used to represent structures not only in Chemistry but in

several other fields. We are going to provide a general definition of a graph in mathematics, and

then show how it can be used to represent a chemical structure.

Definition 1 A graph G is a pair (V, E) of sets, called the vertex set and the edge set. V is a set

of vertices, in the form v1, v2, . . . , vn and E is a set of edges, where an edge is a pair of vertices.

Members of the set E denote the existence of an edge between every pair of vertices.

Another important property related to a mathematical graph is a path. A path between two
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Figure 3.1: Example Chemical Structure Diagram

vertices u and v in a graph can be defined as the sequence of consecutive edges required to

travel from u to v, and the length of the path is the number of edges in it.

The graph definition which we have provided is abstract and defining what the vertices and

edges represent is application dependent. Therefore, a molecular structure can be interpreted

as a mathematical graph where each atom is a node, and each bond is an edge [29]. It is

worth mentioning that the same element can exist multiple times in the same structure. This

can lead to ambiguity in distinguishing atoms (nodes) when building a corresponding chemical

graph. Therefore, we are going to allocate unique identifiers to atoms. Figure 3.2 shows a graph

representation of the chemical structure shown in Figure 3.1. Representing a chemical structure

as a graph provides the ability to use graph theory for the mathematical processing of molecular

structures.

3.1.2 Adjacency Matrix Representation

A matrix of dimensions n × n can be used to represent a molecular structure with n

atoms (nodes). Remember that H atoms are often omitted and therefore we are not going
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(a) Molecular Graph (b) Molecular Graph with Node IDs

Figure 3.2: The Corresponding Chemical Graph of the Structure in Figure 3.1

to consider them as nodes. An adjacency matrix illustrates the connectivity of vertices through

edges. Figure 3.3 shows the corresponding adjacency matrix of part of the structure shown

in Figure 3.1. To preserve space, we are going to assume that we only have the structure

represented by atoms 1 to 10 (Observe that the atom IDs and labels of the structure in

Figure 3.3(a) are provided in Figure 3.2). For a molecular graph, the index of the matrix

corresponds to the atoms’ unique identifiers and the entries indicate whether a bond exists

between any two atoms. Formally, we can define an adjacency matrix as:

Definition 2 The n × n matrix A, used to represent a graph G with n vertices v1, v2, . . . , vn

such as the one defined in the previous section, is called adjacency matrix whose entries are of

the value:

• aij = 1 if a path from vi to vj exists

• aij = 0 otherwise

Observe that other matrix representations can also be used. For example, a distance matrix

encoding the distances between atoms can be used to represent molecular structures. To

find the distance D between two atoms a and b, the shortest path between the two atoms is
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(a) Molecular Structure (b) The Corresponding Adjacency Matrix

Figure 3.3: A Chemical Structure and its Adjacency Matrix Representation

determined, and then D is calculated as the number of bonds (edges) in this path. Another

matrix representation of chemical structures is the connectivity matrix. Also known as the bond

matrix, the connectivity matrix used to represent a molecular graph illustrates atom (node)

connectivity and the connectivity order. In other words, it indicates the corresponding bond

orders for any bonded atoms. Notice that the matrix representation is easy to use and fast

to access, for example, when examining whether two atoms are connected. However, its

disadvantage is that is has a fixed size as space will be allocated for entries of unconnected

atoms.

3.1.3 Linear Representations

Representing chemical structures in a linear format is very common amongst chemists.

The idea is to have a concise and descriptive representation that conveys information about

the structure and saves display and storage space.

3.1.3.1 The Molecular Formula

We have briefly introduced this representation in Section 2.1.1. In a molecular formula,

the number of atoms of each element that form a particular chemical structure is precisely
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shown [57].

A symbol based representation is used to shorten this string representation. Each atom is

represented by its atomic symbols from the periodic system. In addition, the Hill system [47]

describes the order of the atoms within a molecular formula, i.e. the number of carbon atoms in a

molecule is indicated first, then the number of hydrogen atoms are listed followed by the number

of all other chemical elements subsequently, in alphabetical order. If we take Figure 3.4(a) as

an example, its molecular formula should be C5H7N3O.

This first systematic naming approach was a step towards more standardisation, which was

commendable but not sufficient. As discussed in Section 2.1.1, scientists realised soon that

different molecules can have the same chemical formula (i.e. isomerism problem). Thus, the

original form of the nomenclature was not adequate.

3.1.3.2 The SMILES String

Invented by Arthur Weininger and David Weininger in the late 1980’s, SMILES

notation [107] is one of the common approaches to communicate molecular structures. SMILES

is an abbreviation for Simplified Molecular Input Line Entry Specification. As its name

suggests, SMILES is relatively easy to understand. Also, to create and interpret most of the

SMILES strings, only a few rules are required.

According to [61], the SMILES notation consists of a series of characters containing no

spaces (atoms are represented by their atomic symbols). Hydrogen atoms may be omitted

(hydrogen-suppressed graphs) or included (hydrogen-complete graphs). Aromatic structures

may be specified directly or in Kekulé form.

There are five generic SMILES encoding rules, corresponding to specification of atoms,

bonds, branches, ring closures, and disconnections. Single bonds do not have a symbol

representation. Double bonds are typified by ’=’ and triple bonds by ’#’. To determine a

SMILES string, the molecule graph is traversed in such a manner, that each vertex is visited

only once. Cycles are described by allocating digits to the connecting ring atoms. For that

purpose these connecting atoms are broken up and marked with the same digit. If a branch
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point in the molecule is reached, parentheses are introduced. A left-hand parenthesis is used to

symbolise a new branch and a right-hand bracket is used to indicate that all atoms in that branch

were visited. Branches can be nested to any level necessary [57].

To see how simple extracting SMILES is, we are going to take part of the structure displayed

in Figure 3.1 and use it as an example. As shown in Figure 3.4(a), we have taken the bottom

right part (i.e. the part represented by nodes 22 to 30). To extract a SMILES string, we are going

to start at the top N and walk the structure downwards. Figure 3.4(b) shows how a cycle has

been broken and the digit 1 has been placed on both ends of the removed bond. The figure also

shows the branches highlighted. Now applying the rules discussed in the previous paragraph,

we end up with NC(= O)C1 = CN(N = C1)C. Notice that we can extract multiple SMILES

strings for the same structure depending on our starting atom and how we traverse branches. An

algorithm to extract a canonical SMILES string is introduced in [108].

(a) Molecular Structure (b) Extracting SMILES string

Figure 3.4: SMILES Example

This simplicity of SMILES led to a widespread acceptance as a universal line notation

nomenclature for the representation of chemicals. In the meantime the notation has been

extended several times, most notably by Daylight Chemical Information Systems Inc [61].
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3.1.3.3 IUPAC Nomenclature

The concept of two dimensional molecular diagrams was a result of new experimental

methods which allowed insights into molecule structures. This was the way out of the confusion

and made molecules more conceivable. However, the structural bodies of different molecules

with the same molecular formula differ.

A modified Geneva Nomenclature was developed by the Commission on Nomenclature

of Organic Chemistry [41], formed by the IUPAC (International Union of Pure and Applied

Chemistry) [70], an international non-governmental organisation established in 1919. This

IUPAC nomenclature naming system is still in use today and new updates are presented

regularly.

In IUPAC, names are based on the number of carbon atoms present in the longest possible

chain. The inference of a molecule’s name starts with determining the longest hydrocarbon

skeletal structure of the molecule and identifying all functional groups in the molecule that

distinguish it from the parent hydrocarbon.

The carbons in the main chain are numbered in a way that small enumerated carbons

include functional groups. Generating the name is done through the connection points of the

main chain-functional group. It is then followed by the functional group names and finally

ended with the name of the hydrocarbon skeletal structure. Despite being systematic, including

stereochemistry and allowing the reconstruction of the structural formula, this line notation

has several drawbacks; it is error prone because it applies a complex naming system and the

generated names are complicated.

3.1.4 Chemical Markup Language

Chemical Markup Language (CML) [1] was developed by Peter Murray-Rust and Henry

Rzepa since the mid-1990’s. As Figure 3.5 illustrates, CML is based on XML. The figure shows

a corresponding CML representation of part of the structure shown in Figure 3.1. We have

chosen the top-right part of the structure (i.e. the structure represented by nodes 11 to 20) for

display space restrictions. CML provides an approach for precise management of information

34



in several areas and concepts such as molecular information and reactions. A recent article

about the semantics of CML can be found in [66].

(a) A Chemical Structure (b) The Corresponding CML file

Figure 3.5: An Example Structure with its CML file

3.1.5 Connection Tables (MOL files)

As the definition of the adjacency matrix suggests, if the number of atoms in the molecule

is n, the number of entries increases with respect to n2. For that reason, connection table

formats [41, 60] became more popular. By listing only the atoms that are present in a molecule

and the bonds between them (Figure 3.6), the number of entries only increases as a linear

function of the number of atoms.

In connection tables, atoms are assigned indices (sometimes called atomic numbers) which

operate as unique identifiers. At least two sections exist in the simplest form of this kind of
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format (Figure 3.6). The first section contains all indices of the atoms and their corresponding

labels. The second part holds all the bonds specified as pairs of atomic numbers.

Atom List
1 O
2 C
3 C
4 C
5 N
6 C

Bond List
Atom 1 Atom 2 Bond Order

1 2 2
2 3 1
2 5 1
3 4 2
6 5 1

Figure 3.6: A Basic Connection Table for a Simple Molecular Structure

Connection tables can include more information. Despite the usual practice of omitting

hydrogen atoms (hydrogen suppressed connection tables), details such as spatial coordinates of

atoms (xy or xyz), atom charge and others are often included in connection table formats.

There are several connection table file formats reported in the literature; ranging from files

to describe one molecular structure (MOL files), to SDfiles, which contain information about

one or more molecular structures and others. The reader is reminded that this thesis will only

focus on MOL files, and therefore it is recommended to read Symyx’s CTfile standard [98] to

gain a deeper insight into the exact format of MOL files.

3.1.5.1 Detailed Structure of MOL file

As shown in Figure 3.7, the MOL file consists of several blocks describing the structural

properties and relationships of a group of atoms. It starts with a header block where general

information about the structure, or the MOL file itself can be saved. The first important part

is the counts line which contains the number of atoms, the number of bonds, the MOL file

version and other information. It should be noted that the MOL file version used throughout

this thesis is V2000. The next essential block is the atom block which specifies the atom’s
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spatial coordinates, symbol, charge, stereochemistry and other information. After this comes

the bond block which, as its name suggests, holds information about atoms’ connectivity. Any

two atoms connected by a bond are specified (using their atomic number) with the bond type

and any bond stereochemistry. The MOL file may also contain other blocks such as an atom list

block and a properties block. The first shows the atomic number of the list and the atoms in the

list, and the second contains additional properties such as charged atoms, isotopes and others.

It ends with a M END entry.

Figure 3.7: The Corresponding MOL file of the structure in Figure 3.5(a)

3.1.5.2 Stereochemistry in MOL files

An example was shown in section 2.1.3 to illustrate the significance of stereochemistry

in chemical compounds. Two molecular structures can look the same when displayed, but

their corresponding MOL files can have different stereochemistry. Although it can be argued

that, if the purpose of an approach is to extract accurate information from a given molecular
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depiction so that the same structure results when rendering the extracted data, then having

different stereochemistry becomes insignificant. However, if the results are to be processed

further, then the issue becomes essential. Therefore, it is important to have a precise description

of compounds in their corresponding MOL files.

3.1.5.3 Superatoms in MOL files

We have introduced superatoms in Section 2.2. They are shortcut names used to save display

space. In a MOL file, superatoms are usually placed in the properties block. A definition of

a superatom starts with the line M STY. . . every superatom is given a unique integer index

value. An ideal superatom block contains entry/entries listing the atoms they contain, and an

entry indicating the bond(s) that connect the superatom to the main structure. It also contains

an entry to show the superatom’s label which is needed for display.

(a) An example Superatom (b) The Corresponding Substructure

Figure 3.8: A Superatom with its equivalent Substructure

Figure 3.8 shows an example superatom and its corresponding substructure (both are

highlighted). In 3.8(a), only the shortcut name is shown, whereas the full substructure is

displayed in 3.8(b). In fact, figuring out the correct interconnections between superatoms and

their parent, or host, structure represent a challenge. This is due to the difficulty of knowing

which atoms of the superatoms are connected to the main structure. This gives rise to an

interpretation problem since the intended meaning is not immediately obvious. Not only this,

but sometimes superatoms having the exact same shortcut name but with different number of

connections to the parent structure are also encountered in the literature. More information

about superatoms will be provided in Section 8.3.
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3.2 Summary

This chapter provided a brief introduction to the field of Chemoinformatics and its

applications. We have introduced several ways of how chemical structure diagrams are

represented in computers. These computer processable formats allow users to edit the chemical

structure diagram’s connectivity information which helps in areas such as scientific research. In

the next chapter, we are going to review the existing approaches to chemical structure diagram

recognition. In Part II, the focus will be on the computer science side of the task. Hence, we

are going to introduce our rule-based approach with all the relevant details.
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CHAPTER 4

EXISTING APPROACHES TO CHEMICAL
DIAGRAM RECOGNITION

40



There are several existing approaches for chemical diagram recognition. Some of them date

back to the 1980s. In this chapter, an overview of these existing approaches will be given.

The overview will be of a ”how it works“ format, meaning it will be shown how each of these

approaches works.

4.1 The tool developed by IBM’s Almaden Research Centre

This is one of the earliest attempts to tackle the problem [20, 15]. It was carried out at IBM’s

Almaden Research Centre.

The input images to this system are binary images at 300 dpi resolution. All connected

components of the input image are determined. Here a multi-sided convex polygon bounding

each subimage is generated instead of the conventional square shaped bounding box as it helps

improving the accuracy of calculating distances between adjacent components.

A molecule clipping process is run where detecting the molecular diagram in the image is

achieved by applying a size filter to the connected components. A size that is larger than the

maximum expected character size is chosen. This may result in subimages which are presumed

to be parts of the molecule image. These parts are combined using a predefined threshold

distance to make the complete image with all its connected components.

The Graphical Image Formatting and Translating System, GIFTS, is used to vectorise the

image. GIFTS, which was developed by IBM Tokyo Research Laboratory, outputs a set of

coordinates representing endpoints. Short vectors are assumed to be parts of characters and

a classification process is carried out to separate atoms and lines (bonds). The classification

process starts by grouping connected vectors and then identifying which of them are characters,

bonds or circles.

A predefined value of the ratio of the size of the group to the size of the whole structure is

used to filter out symbols. This is followed by analysis of the neighbourhood of small groups,

such as “l” which is considered as a character if located close to another character. Circles are

identified as groups having at least eight vectors. And the rest of groups are labelled as bond

structures.
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An OCR engine is used to identify characters. The connected component lists of groups

classified as characters are used to retrieve their corresponding pixel groups from the structure

image which in turn are used as input to the OCR engine.

An attempt is also made to identify and segment glued characters. The process starts by

normalising the extracted regions and sending them to the OCR engine. To identify characters,

the approach referenced in [49] is employed.

This is followed by parsing the strings of characters identified by the OCR to map any

strings corresponding to substructures into their original basic structure format. Unconnected

strings are discarded.

The recognition process continues by preprocessing and then analysing the rest of the

vectors to constitute the basic structure of the diagram. Preprocessing is done because straight

lines may be split into two or more shorter lines.

This procedure involves a clean-up process to correct any lines broken near a junction

(where more than two lines intersect) and to correct any single lines split into shorter segments.

To correct the first case, any relatively short lines are removed and the lines connected to them

are linked. The second case is handled by using a preset value for the angle at the point where

two lines connect. If any lines are found to make an angle less than this threshold, the point of

meeting is removed and the two lines are merged to make one longer line segment.

Circles denoting the existing of aromatic rings are identified as mentioned previously and

their closest six atoms are determined and sorted (clockwise or anti-clockwise). Double bonds

are placed on every second bond around each circle.

A MOL file containing connectivity information is generated at the end of this stage. The

produced MOL file is then checked for valence validity and the structure is displayed on a GUI

for manual correction (if needed).

A close look at the publications describing this work can reveal a few drawbacks. For

example, the authors did not mention how they identify embedded nodes and various types of

3-dimensional bonds. Also, they assume that the number of atoms surrounding a circle in an

aromatic ring is always six.
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4.2 CLiDE

Chemical Literature Data Extraction [48, 105], or CLiDE starts with binarising the input

image (full page) using the technique introduced in [9]. A multi-coloured image is binarised

using a certain threshold to identify foreground and background components (foreground is

turned into black whereas background is turned into white). After binarisation, a connected

component labelling process is applied using a run-length technique. The result of this step

is a list of all connected components in the image with their contours represented as series of

directions.

Page segmentation follows to separate text from graphics using the approach introduced

in [91]. In this technique, the page structure is represented as a tree starting by generating lists

of words, lines, text blocks and graphic blocks and then deriving the least-cost spanning tree.

CLiDE Pro continues by attempting to divide connected components into basic categories

such as atoms (text) and lines. This is carried out by calculating the value of a size threshold

(using the method found in [106]) and using some other features, such as density and aspect

ratio, with this threshold value to classify the components.

Representation of bonds as vectors is carried out by vectorising the connected components

classified as lines and graphic components. This is achieved by analysing the contours of

the connected components and generating a polygon for every contour. These polygons are

approximations and they are generated by detecting straight and curved segments using a

method similar to the one introduced in [92].

A preset threshold value is used in creating these polygons such that a side of the polygon

is not further than this distance from every point on the original contour. Long sides of

polygons indicating the existence of straight lines and short sides indicating curves result when

an appropriate value for this threshold is selected. Information about the segment in the other

side of the line is used to correct errors resulting in having more than one fraction for the same

line, or uncutting borders where they should be cut.

At the end of this step, information about components is gathered. Since all vectors are
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described by their corresponding two borders, their shapes (straight or wedge), coordinates,

thickness are determined. Wavy lines are identified as relatively short vectors (shorter than

characters) which connect to each other and a straight line on which they lie can be drawn.

Components classified as dashes (short line segments) are then investigated. If situated

along a straight line, short parallel dashes are identified by comparing the size of dashes found

at both ends of lines (dashed wedge) or as parallel dashes of similar length. Straight dash bonds

are detected as collinear dashes. Any remaining dashes are investigated further according to

their dimensions and location.

Characters are classified using an OCR engine based on a filter technique and analysis of

their geometrical and topological features. Symbols of relatively larger size can be interpreted

regardless of their size and font and, to some extent, rotation. After identifying characters, they

are grouped (horizontally and vertically) according to their coordinates to build words which

are in turn looked up in a database of frequently used functional groups such as R-groups and

others. An attempt to parse words or atom labels not found in the database is made.

To determine connectivity information, all bond lines are associated with free-flags at their

two endpoints. If two bond lines touch each other, their corresponding free-flags are set to false,

otherwise they are set to true.

After this, line-atom connectivity is determined using a predefined threshold distance,

making sure that the line’s free-flag is set to true, the atom label is in the direction of the line

and making sure that this atom is the closest to this line. A default Carbon atom is associated

to all bond lines which are not connected to any atom. To join any two bond lines (detection of

double/triple bonds), they must be within close proximity of each other and must be parallel.

A connection table illustrating the connectivity details of all bonds and atoms is generated

at this stage and bonds connecting the same atoms are combined to make double/triple bonds.

Also, atoms connected to which end of wedge and dashed wedge bonds are also distinguished

in the connection table.

This is followed by the interpretation of generic structures which are usually represented as

structures associated with variable groups (R-groups).
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Some ambiguous patterns are dealt with during various phases of the recognition procedure.

Bridge bonds are handled using a set of rules which include the analysis of the environment,

length, how collinear the probed bonds are and cycle membership of candidate crossing bonds

(rules found in [53]).

Also, the proximity of vertical and horizontal lines is analysed since they can cause

ambiguity in various situations. For example, if the letter “C”is on the right side of a vertical

line, then the vertical line is interpreted as part of a “Cl” atom except if the line is part of a

dashed bond.

Also, if a relatively large circle is found inside a cycle with centres of both the circle and the

cycle are close enough, then the circle is interpreted as a aromatic.

The generated connection table is analysed further for some bond formations such as when

a triple bond and a single bond are joined together and when a dashed line can be incorrectly

interpreted. These are identified by analysing neighbouring bonds and the average bond length.

Despite being a commercial tool, CLiDE still suffers from some weaknesses. For instance,

it attempts to identify various bonds and bond arrangements in a brute-force manner. Not only

this, but vectorisation seems to produce incorrect results if a line has several spikes. Also, the

use of Hough transform may lead to missing double and triple bonds especially when lines are

too close. Additionally, it is not clear how the stereocentre is determined in case of dashed, bold

and bold dashed bonds.

4.3 ChemOCR

This is the ChemOCR project [8, 7, 113]. It starts by removing the results of applying

any anti-aliasing filter and continues to binarise the image by using a dynamic binarisation

algorithm. After the image has been binarised, all connected components are identified.

The resulting connected components are then fed into a OCR engine which was designed

specifically to process characters existing in chemical diagrams. Wavelet functions are used to

extract moments and these are used as features. The classification is carried out using a support

vector machine algorithm which can automatically add incorrectly identified components.
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Any components which are not identified by the OCR are assumed to be parts of the

molecule’s body. A graph of vectors is generated by vectorising these components. Only one

vector represents each line in the image and the resulting graph should contain the same number

of edges and vertices as lines and joints in the input image.

Wedge bonds are identified by superimposing all vectors in the graph with the pixels that

generated them in the original image. Some statistic is used to determine how each vector and

its corresponding pixels register. Bonds of the form of short parallel lines are identified as

unconnected vectors which are parallel and of a naturally fitting size.

Vectors that are not identified as dotted bonds (short-parallel lines) and are unconnected

are examined by building a region of interest around them. This region is defined by dilating

the bounding box of the vector by a factor of two. Any other vector that is located within the

region of interest is examined. Double and triple bonds are identified as two parallel and three

parallel vectors respectively. It is assumed that more than three parallel vectors constitute a

dotted bond (short-parallel lines). Cross bonds (closed bridge bonds) are identified as vectors

which intersect at the middle part of the vector.

The results of the OCR are analysed and the atoms and superatoms’s names are formed.

Grouping of atoms is carried out by dilating the bounding box of all characters by a factor of

two and then linking characters if their dilated bounding boxes overlap or touch. The direction

of grouping (horizontal or vertical) is determined by testing the centre points of linked bounding

boxes. Also, a dictionary of valid atom and superatom names is used to solve any ambiguities

resulting from mistakenly grouping too close atoms or superatoms.

After this, a graph is built by assigning the atoms and superatoms to vertices in the vector

graph. This is done by calculating the centre of mass for all atoms and superatoms, finding their

nearest vertex and binding them. A Carbon atom is assumed at any vertex that is not linked to

any atom/superatom. This graph is used to build an SDF file.

After describing how ChemOCR works, one can list several points where it can be improved.

An example of these is that the authors did not mention that they handle dashed bonds, wavy

bonds, any of the two types of bridge bonds, embedded nodes and bold bonds.
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4.4 OSRA

OSRA [38, 37], or Optical Structure Recognition Application, is an open source tool which

is freely available. OSRA’s approach relies heavily on reusing existing open source tools.

OSRA starts with grayscaling and binarising the input image. The input image is grayscaled

by choosing the minimum colour band in every pixel as the grayscale value rather than

calculating the average band. For binarisation, OSRA does not employ the use of adaptive

thresholding and rather uses a global threshold.

Image segmentation is applied after this step. This is done to automatically clip the areas

where molecule images are. Detecting the molecule image is achieved by calculating the ratio

of foreground pixels to the total area of the rectangle containing the molecule image, calculating

the aspect ratio of this rectangle, this rectangle does not overlap with any other rectangles

containing structures, the dimensions of the rectangle are within a predefined range depending

on the resolution of the image.

The procedure continues by estimating how noisy the image is. This is accomplished by

counting the number of pixel segments which are linear and of length 2 pixels and 3 pixels,

and then calculating their ratio. This ratio, called the noise factor, is then compared against

a predefined threshold and the noisiness is estimated. If the image is found to be noisy,

the GREYCstoration anisotropic smoothing library [2] is used to perform noise removal and

smoothing. This step is then followed by thinning the image to unit width and this is done using

the algorithm found in [28]. Currently, OSRA applies the smoothing and thinning procedures

only to images of resolution 300 dpi.

To detect bonds and nodes, OSRA employs the Potrace library [90] to convert bitmap images

to vector graphics which in turn are used to compute the positions of bonds and atoms. In more

detail, the output of the potrace library, which is a set of control points of a Bezier curve, is used

to locate atoms first and then the bonds are detected as the vectors linking the detected atoms.

To perform OCR, OSRA uses the open source tools GOCR [4] and OCRAD [3]. A size

filter is used and all connected groups of Bezier curves resulting from the previous step are
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input to the OCR tools. Verification of some characters and symbols according to their position

is performed after saving all recognised characters and removing their corresponding Bezier

curves from the list created in the previous step.

To detect aromatic rings, OSRA looks for relatively large circles inside of rings. The ring

atoms must be close enough to the circle and the angles between the ring bonds and the vectors

to the centre of the circle must be less than 90. However, if the ring bonds and the circle touch,

the process of detection fails.

Also, to measure the average bond length, OSRA repeatedly builds a sorted list of all bond

lengths and then chooses the value at 0.75 by rank. The average bond width and the distance

within double bonds are measured in a similar way. Double and triple bonds are detected by

making sure they are parallel, they are within the measured distance and that they are within

each other’s ”shadow”.

Wedge bond detection is performed by using a least-square estimate of thickness against

position within the bond and then testing for any increase/decrease along the bond. Additionally,

dashed bonds are detected as relatively small shapes where a straight line can be drawn through

their geometric centres and that they are positioned within the average bond length. OSRA

conditions that there must be at least three such shapes in the same dashed bond.

To detect closed-bridge bonds, OSRA finds an atom which is connected to four straight

lines. When looked at, these four lines form two longer straight lines. It checks whether the

atom satisfies a number of conditions and performs disambiguation accordingly.

An input image to OSRA can have three different outputs because OSRA tries to handle the

input image at three different resolutions. A certain confidence measure is calculated to choose

the most likely solution.

Like other existing approaches, OSRA has its drawbacks. For instance, the authors do not

mention that it handles wavy bonds, bold bonds and dashed bonds. Additionally, OSRA follows

the usual procedural brute-force approach in identifying various architectures.
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4.5 ChemReader

Chemreader [78, 79] starts by attempting to resize and denoise the input image. Resizing

is performed using GREYCstoration [2], and the freely available algorithm found at [103].

The purpose of resizing is to adjust the character sizes and bond lengths in order to suit the

recognition algorithms employed by ChemReader.

It continues by finding the connected components of the image using the 8-connectivity

algorithm. These components are then classified into either graphics components or characters.

Characters are detected as components with similar heights and areas as explained in [39]. Also,

characters touching graphic components (lines) are segmented using the method found in [101].

This is followed by checking the location and horizontal/vertical run profile of components

which cause disambiguity such as the letter ”l“ which is often wrongly classified as a vertical

line.

To detect straight-lines, ChemReader uses the modified HT found in [111]. In this approach,

pairs of pixels can selected randomly and assigned a weight which is based on the probability

that the two pixels belong to the same line-segment. Unrecognised characters can be identified

as short line segments and, therefore, these short line segments are re-checked.

Double and triple bonds are detected as two and three close enough lines respectively. In

low resolution images, double and triple bonds wrongly identified as single bonds are processed

by checking their thickness and by checking the black runs orthogonal to the bond.

To detect Wedge bonds, ChemReader lists corners using [95] and then checks all possible

combinations of three corner points. It detects the wedge bond by checking whether the area

of the triangle formed by the 3 points equals the number of foreground pixels in the triangle,

checking whether the triangle has two equal sides and by splitting the triangle into three smaller

areas and comparing their foreground pixel counts.

To detect dashed bonds, unprocessed components are checked by applying their centres to

a conventional Hough Transform. A line which is perpendicular to a dashed line segment can

be detected.
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The approach ChemReader uses to detect circles in aromatic rings is to find a connected

component whose centre is almost the same distance from all its pixels. A threshold is used to

check the standard deviation of pixel distances from the centre of a candidate component. The

Generalised Hough Transformation [11] is used to detect pentagon and hexagon shapes which

can be wrongly identified as circles.

To perform OCR, ChemReader uses the open source library GOCR [4]. GOCR uses

template matching of feature holes at various positions, density of sub-regions and back-ground

to fore-ground transitions. It is mentioned that some components including GOCR are going

to be removed and replaced with other tools. In addition to GOCR, a total of ten candidate

characters and their confidence scores are associated to every input character. This is achieved

by using a distance based OCR algorithm.

This is followed by a dictionary based chemical spell checking after grouping the identified

characters according to their neighbourhood. Given a chemical word and its confidence score

and the dictionary, the checker attempts to find the likeliest chemical word by using a statistical

measure.

A graph based on the extracted information is built to represent the chemical structure.

Nodes within a preset distance from each other are combined into one node. All nodes are

assigned labels from the recognised symbols using Carbon as default for nodes with no symbol.

This graph is used to generate a table illustrating connectivity information which can be used to

output a conventional format.

Despite reporting encouraging results, ChemReader seems to employ the usual procedural

approach as in other existing tools. The main drawback of the procedural approach is that it can

be difficult to extend and it has to perform certain checks even when they are not needed. Not

only this, but in terms of identifying bonds, the authors do not mention that they identify any of

the two types of bridge bonds or how they spot embedded nodes.
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4.6 ChemInfty

ChemInfty [67, 55, 40] is developed by a research group based in Japan. The group is

known for their InftyReader [97] project. Although some publications about ChemInfty have

appeared in the literature, the authors do not specify how exactly they identify and distinguish

different bond formations. In [40] they made an attempt to tackle touching components in

chemical diagrams using dynamic programming [42], and in [40] an attempt to build a graph

representing a given chemical diagram and take advantage of a human user to make necessary

corrections is made.

Nevertheless, ChemInfty’s recognition procedure can be summarised as follows: the input

image is binarised and smoothed first. This is followed by identifying and removing characters

and caption areas (recognising characters is carried out using their InftyReader OCR engine).

After that, the remaining part of the image is thinned to unit width, and crossing and bending

points are detected. An attempt to recognise and remove bonds is made here before attempting

to group the remaining image segments and searching for each segment group’s most suitable

combination. The search process is responsible for spotting and identifying any characters that

may have been part of touching components.

4.7 Imago

Imago [93] starts by using a preset threshold value to binarise the input image and then

computes the image’s connected components. An attempt to identify dashed wedge and dashed

bold bonds is then made to avoid having the short line segments affecting the results of next

steps (character classification and others).

The stereocentres of any dashed bold bonds are also identified, although the procedure

to identify them was not revealed in [93]. This is followed by classifying all the remaining

connected components into two categories, atom labels and bonds. This is carried out by using

an approximate height of capital letters that may exist in the input molecule image. A certain

procedure is used to calculate this value from the input image and any connected component’s
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height is compared against this height value and determined to be either a symbol or a graphic

(bond). Single lines which may have a similar height to that of a capital letter are handled as

exceptions to the criterion.

All the resulting atom labels (symbols) are then grouped to form atom labels and

superatoms.

The remaining components, which are the bonds, are used to create a skeleton molecule

graph. This is done by thinning the graphics part of the image such that their width is one and

then removing any foreground pixel that has more than two foreground neighbours. Douglas-

Peucker algorithm [32] is used to simplify the resulting polylines. A graph is created using the

simplified lines and double and triple bonds are identified as close and parallel edges. The graph

is updated by merging nodes that are very close to each other or that are very close to the same

atom label.

An attempt to identify solid wedge bonds is made after that step although the authors did

not reveal how exactly this is carried out. According to the paper, their approach depends on

the result of thinning the solid wedge, an example image containing a solid wedge was given

with its thinned version but the result of the thinned wedge looks exactly like a normal line.

Superatoms are then replaced by their corresponding predefined sub-graphs and the

resulting molecule graph is used to output a MOL file.

Imago is one of the recent chemical diagram recognition tools, it is not mentioned in [93]

how it recognises any of the two types of bridge bonds, dashed bonds or wavy bonds.

Additionally, the authors did not say whether they attempt to spot embedded nodes.

4.8 AsteriX Server

AsteriX [62] is a Web server that was designed to process PDF files containing chemical

diagrams. It uses Xpdf suite of programs to decompose the input pdf file and extract text and

pictures. Pictures are classified as chemical diagrams, or non-chemical diagrams. Subsequently,

the detected chemical diagrams are analysed further to identify and extract 2-dimensional

coordinates of components.
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The process of deciding whether a given picture contains a chemical diagram (molecular

structure) or something else is heuristic. The suspect image is preprocessed by connecting

all components that are within a certain distance of each other (a window is centred at a

foreground pixel and any components within the window are linked to the foreground pixel’s

parent component), the resulting image is denoted a “patch”. Also, likely bonds and atoms

are obtained as the connected components of the original image, atoms and bonds are denoted

“motifs”.

Now, a list of seven conditions is used to make decisions (to decide whether the image at

hand contains a chemical diagram or not). The list includes a size filter for patches, a certain

minimum and maximum number of motifs in a patch, a size filter and a certain length of vertical

or horizontal lines (length compared to the patch size), one of the motifs must be one of the most

common atoms used in chemical diagrams (C,N,O,. . . ), distribution of lengths of straight line

segments and distribution of values of angles between connected straight line segments.

After a decision is made, an attempt is made to identify bonds and atoms from pictures

deemed as molecular structures. The process includes identifying bonds, bond connection

points and atoms (an attempt to identify atoms glued to endpoints of bonds is also made

here). The identification process is based on the assumption that pixel density is usually high

at connection points (locations where bonds are connected to each other, or where bonds are

connected to atoms). Whenever such a location is found, a template matching technique with a

size filter is used to identify possible characters.

At this stage, the connectivity information of bonds and atoms is calculated to determine

which bonds are connected to each other and which atoms are associated with which bonds.

It must be noticed that the authors do not mention how they identify out-of-plane and

into-plane bonds (bonds of type: solid-wedge, dashed-wedge, bold, dashed-bold and dashed).

Additionally, they do not mention how they identify embedded nodes as they reported only

that double and triple bonds are detected when atoms are connected by two or three lines

respectively. The approach continues by trying to identify aromaticity via matching centres

of any detected five, or six, sided cycles with those of any identified circles or ellipses.
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The final stages include handling other details such as disambiguating vertical lines and

capital “I”letters, dealing with superatoms and atom charges represented by plus or minus signs.

It should be noticed that the authors do not explain how they deal with such details.

The obtained connectivity information is used to construct an SDF file which contains 2-

dimensional information. This file is then fed into the ChemAxon [21] software to generate

3-dimensional coordinates.

The Asterix server is the latest tool to recognise chemical structure diagrams during the

time of writing this thesis. However, the approach seems to heavily rely on template matching

and the authors did not mention how they deal with several bond types and formations. These

include all of the 3-dimensional bonds, both types of bridge bonds and embedded bonds.

4.9 Chemink

This online interpretation of hand sketched chemical diagrams [74, 75] works by first

grouping ink strokes into clusters that represent symbols (ink parsing) and then identifying

the symbols represented by these individual clusters (symbol recognition).

A symbol recogniser is used to identify symbols represented by all combinations of up to

seven consecutive strokes. Chemical knowledge is used to verify the results and resolve any

inconsistencies.

Real-time feedback and update of interpretation are provided since the system performs this

process as the structure is being drawn.

The identification of symbols is carried out using a support vector machine based classifier.

The classifier was trained on valid symbols such as straight bonds, wedge bonds, hash bonds

and atoms represented as sets of strokes. The features used included the number of strokes

typically required to draw symbols, dimensions of bounding boxes, the density of ink and the

distance between strokes in the cluster (group).

The average length of a straight bond is estimated and used in normalising the features used

for symbol identification. This step makes the recogniser more insensitive to scale differences

that may exist due to variations in drawing styles.
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Two independent recognisers are used to perform text recognition. A handwriting

recognition system provided by Microsoft is used in combination with a template matching

distance based OCR engine.

The environment around all symbols is checked and some domain-specific rules are applied.

These include constraints such as all atoms must be connected to other atoms or bonds (no

unconnected atoms), digits next to elements should always appear as subscripts and others.

Strokes representing multiple connected bonds are segmented using a poly-line approximation

algorithm.

Symbols that share one stroke or more are resolved by comparing their recognition and

environment scores. Candidates which exhibit the highest improvement in score are chosen.

Other scores are saved for later re-interpretation if needed.

Omitted carbon atoms are assumed where appropriate and associated to any nodes which

have no element. To fill any vacancies in their valence shells, hydrogen atoms are also assumed

to be present at unsatisfied atoms (atoms are satisfied when the number of connections they

have equals their valence).

Also, circles used to indicate the existence of aromatic rings are distinguished from oxygen

atoms by making sure they are located inside 6-carbon cycles.

The next step is to check the structure for its chemical significance. Elements are checked

to make sure they have the correct number of connections. Any inconsistencies arising from

incorrectly recognising elements are resolved by reconsidering the scores saved during the

previous phases. The same approach is employed to correct mistakes in connectivity and in

symbol identification.

ChemInk attempts to recognise hand-drawn chemical structures. However, the authors did

not mention how it spots several bond types and arrangements such as wavy bonds, bold bonds

or any of the two types of bridge bonds.
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4.10 Summary

A detailed overview of how existing chemical diagram recognition approaches work has

been presented in this chapter. The reader can notice that some approaches do not state how

they deal with certain bond formations. For example, approaches explained in Sections 4.4,

4.3 and 4.7 do not mention whether or not they handle wavy bonds, let alone how they identify

them. The same applies for some of the approaches explained in the previous Sections when

dative (arrow) bonds, bold bonds, dashed bold bonds and dashed wedge bonds are concerned.

In fact, the majority of existing approaches do not mention how they spot embedded nodes and

none of them state that they handle hollow wedge bonds.

However, the careful reader should notice that the main drawback of all existing approaches

is the fact that none of them provides a precise definition for each bond convention and

formation. Another disadvantage of the above mentioned approaches is that their recognition

process seem to be too procedural. What this means is that all structures must go through the

exact same step even if some of the recognition steps are unnecessary.

Hence, this is what this Thesis provides. It defines every bond convention and formation

in a precise and strict manner such that no two or more bond conventions are mistakenly

identified. This is advantageous over all existing approaches because not only does it provide

a strict and unambiguous definition for different bond types and formations, but it also allows

for non-predetermined execution of bond recognition steps since they can be represented as

combinations of predicates. This leads to improvement in recognition accuracy as well as

execution speed as will be shown in the remaining chapters.
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Part II

Rule-based Recognition System
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CHAPTER 5

SPECIFICATIONS
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In this chapter we shall provide a high level overview of our system as a whole. We will begin

by explaining the overall philosophy of our rule-based recognition system and then provide

information about its architecture. After that, we will briefly discuss our implementation

approach which resulted in a tool that we have used for validation and evaluation. We will refer

to this tool as MolRec in the remainder of this thesis. Then, we shall discuss why the rule-based

approach is favourable when compared to the traditional procedural approach. Following this

discussion, we are going to provide information about our testing and validation methodology.

5.1 The Overall Philosophy

We have explained how existing approaches work in Chapter 4 and we have mentioned that

all of them employ the traditional procedural approach. Each of the existing systems follows

a certain list of steps every time an attempt is made to identify various bond types. However,

we have chosen to use a rule-based approach to address the problem of automatic recognition

of chemical structure diagrams. While we explain why our approach is advantageous over the

procedural approach in Section 5.4, we shall explain what rule-based systems are in this section.

According to [13], rule-based systems are used for modular representation of human

expert’s knowledge. They use rules, in the form of condition-action pairs, to encode that

knowledge into an automated system. They facilitate ease of understanding even when the

amount of knowledge being represented is large.

Typically, a rule-based system consists of three components. Namely, A Rule Base, a Rule

Engine and a Working Memory [84]. The rule base contains all of the relevant knowledge

encoded as rules which contain condition-action pairs [12]. It encapsulates all actions that

should be taken when conditions are satisfied. The rule engine, also denoted inference engine,

interprets these rules and applies them whenever the conditions of a certain rule are met. The

working memory contains data that is used by the rule engine to activate rules. The rule engine

examines the working memory for the presence, or absence, of data elements and attempts to

apply rules accordingly [51].

Notice that this approach differs from the commonly known procedural approach in that the
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order in which rules are executed is not predetermined. To make this idea clearer, think of how

one does not know which thread is going to execute next in a multi-threaded system. Similarly,

in a rule-based system one does not know which rule is going to execute next. We will explain

the advantages of this behaviour in Section 5.4.

As for our system, its philosophy is similar to that of equation rewrite systems [34]. As

rewrite systems obtain the simplest form of a formula by repeatedly replacing its subterms [31],

our system repeatedly rewrites one or more objects into graph edges until a termination criteria

is satisfied.

Figure 5.1: Components of a Rule-based System

We split our rule-based system across the three components we have mentioned previously.

As Figure 5.1 shows, our system has a Working Memory which stores a set of geometric

primitives, a Rule Base which stores our rules as functions that are of the form of condition-

action pairs and a Rule Engine which interprets these rules, applies them on subsets of primitives

and executes their corresponding actions. We shall demonstrate how these three components

work by providing a fully worked example in Section 7.6.

Our working memory, which represents the input to our rule engine contains a set of

geometric primitives. As we will explain in Section 7.2, these primitives are a result of a

vectorisation step. Each of these primitives can be a character group, circle, line segment, solid

triangle or an arrow.

5.2 System Architecture

Figure 5.2 illustrates the components of our system. An image containing a chemical

structure diagram is input to our system where the processing starts by binarising the image,
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performing optical character recognition and then vectorising the remaining components of the

image. The result of this stage is a set of primitives which is used as input to our rule-based

recognition engine. The rule-based recognition system attempts to identify bond arrangements

and formations. When it terminates, a graph data structure representing the chemical structure

is created. This graph is then post-processed and a MOL file is created.

Figure 5.2: Components of Our System

The following is a summary of the purpose of every component of our system.

Optical character recognition (OCR): The first step in our approach is to binarise the image,

perform optical character recognition (OCR) and remove recognised characters from the input

image. For image binarisation we use Otsu’s method [73] because it computes an optimal

threshold value from the input image rather than using a static threshold.
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As for the OCR, we apply a connected component labelling algorithm and extract a set of

structural features from these connected components. We then apply a nearest neighbour

classification based on a Euclidean metric to identify characters. We also detect circles at this

step since their shape is similar to that of an oxygen atom label, i.e. “O”. We then remove

all connected components recognised as characters or circles from the image by turning their

pixels into background. These characters and circles will form part of the input to our rule-

based recognition system. Observe that we have provided a detailed explanation of our OCR

method in Appendix A.

Vectorisation: After removing all the recognised characters and circles from the input image,

we apply a thinning algorithm to the remaining components of the image which results in

a new image where all the components have single pixel width. We then build a polyline

representation of the thinned lines. Here we employ a novel adaptation of the Douglas-

Peucker line simplification algorithm to determine line segment endpoints. At the same time

we determine the average line width and average line length. We use a novel expanding disc

technique to identify solid triangles and template matching to identify arrow lines. The result

of this step is precise information about line segments, components in the shape of solid wedge

and arrow lines. This information is added to the information obtained from the OCR step to

complete the required input to our system. We are going to provide a detailed explanation of

our vectorisation method in Chapter 6.

Rule-based Recognition System: As we will explain in Section 7.2.1, we create a set of five

types of geometrical primitives from the results obtained from the two previous steps. These

primitives are rewritten into graph edges by our rules and a graph data structure representing

the input chemical structure is created.

As for our rules, we define them in terms of preconditions and consequences and we design

them in such a way that they all have the same input and output format. A rule is applicable

if there exist geometric objects that satisfy its preconditions (observe that we may refer to the

preconditions of a rule as predicates in the remainder of this thesis). The consequence of each
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rule is an effect on the input set of primitives which results in the removal of existing geometric

objects and the creation of graph edges as well as possibly the addition of new geometric objects.

In general, preconditions of different rules are mutually exclusive, and thus the order of rule

application is minimised. Our rules work with a number of parameters, both fuzzy and strict,

that set certain thresholds, for instance the minimal bond length, under which decisions will be

made. These parameters allow for the customisation and adaptation to particular requirements

of datasets. We will explain these parameters and provide more details about our rules in

Chapter 7.

Graph: After the rule-based recognition system has terminated, we create a graph data

structure to represent the input chemical structure diagram as we now have the set of edges. As

we have explained in Section 3.1.1, the vertices of this graph represent nodes in the chemical

diagram, whereas edges represent bonds. We post-process this graph to resolve superatoms and

unknown stereocentres as we show in Section 8.1. We then use this graph to generate a MOL

file.

MOL File: We have stated in Section 3.1.5 that MOL files are a common way to represent

chemical structure diagrams electronically. As we detail in Section 8.5, we generate a MOL file

from the graph data structure as it can be easily used for evaluation by comparing the resulting

MOL file to a bench-marked MOL file.

5.3 Implementation Methodology

Our implementation of our rules is easy to understand. We implement each rule as a function

that receives a set of primitives and returns a 3-tuple. The function attempts to apply its rule’s

predicates, have an effect on the set of primitives and then generate an output. As we have

mentioned previously, we refer to the effect on the primitive set as consequence.

Inside each rule, or function, we apply the predicates in a waterfall style. In other words,

the form of our predicate implementation is as follows:

P1 → P2 → . . . Pn ⇒ C
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We attempt to apply a predicate Pi and pass the data to the next predicate. If all predicates

are applied successfully, we apply the consequence C.

To make the idea clearer, we show a pseudocode of a rule in Listing 5.1. Notice that for

applying predicates, each function attempts to apply the first predicate on the input set of

primitives. If the application of this predicate is successful, it removes the primitives that satisfy

this condition from the primitive set and passes them on to the next predicate. This continues

from one predicate to another until all preconditions are met and an output is generated. If the

application of any predicate is unsuccessful, the function ends immediately without attempting

the next predicates.

1 rule input =
2 Apply predicate1 to input
3 if application successful then
4 save primitive subset in X1
5 save remaining primitives in Y1
6 Apply predicate2 to X1
7 if application successful then
8 save primitive subset in X2
9 save remaining primitives in Y2

10 ...
11 Create set of graph edges and save in E
12 save Y1, Y2,... in Y
13 Return (success, E, Y)
14 endif
15 else
16 Return (fail, input, empty set)
17 endif
18 else
19 Return (fail, input, empty set)

Listing 5.1: Pseudo-code for Rule

Additionally, we place these functions, or rules, in a pool and randomly choose one of

them. This rule is attempted on the set of primitives if it does not require any other rule to be

attempted before it. Otherwise, we check whether that required rule has been attempted and

continue accordingly. Also, we make sure that all rules have an equal chance of being selected

by marking each selected rule such that it is not chosen again until all other rules have been

chosen. This is going to prevent our system from entering an infinite loop as we explain further

in Section 9.1.

Furthermore, we use an abstract data type to represent the primitives as well as represent
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a graph edge so that all of our rules, and their predicates, have the same format of input and

output. We read the primitives, store them in a data structure and use this data structure as the

working memory. The idea here is for the rule engine to constantly access the working memory

and examine if any primitive, or subset of primitives, satisfies any rule conditions. If this is

true, the rule engine removes this subset of primitives from the working memory and generates

corresponding graph edges when the rule executes. As we will explain in Section 7.1, this

procedure should continuously run until the termination mechanism is met. Observe that we

discuss our termination mechanism in Section 9.1.

5.4 Why Rule-based

Chapter 10 evaluates by comparison, two alternate strategies, rule-based and procedural.

The procedural approach uses a mechanical or brute-force system that follows a strict sequence

of steps each time (the steps are explained in Section 8.6). The rule-based approach is where

steps become independent rules and application of rules is less rigid; order of execution of rules

is minimised.

The results in Section 10.2 show that the two systems perform almost equally well.

Following from this, it is left to justify why we adopt the system of rules over a traditional

procedural approach.

The procedural based approach is clearly imperative, it requires statements on how to

perform each action. So in a procedural approach, the action can only be deduced by following

paths of the logic in the code. The rule-based approach is declarative: it allows us to write the

system as clear statements of what is required. Therefore it becomes clear what the system is

doing, allows us to prove aspects of the system and allows us to improve the system by adding

support for new constructs.

Consider that the declarative, rule-based system can become imperative by imposing

constraints on the rule ordering. This is not ideal as adding new rules requires consideration

not only of the guards on the rules, but also the order that is required, making the system

unnecessarily fragile. In effect, such rules become a single algorithm, rather than just a set
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of independent transformation rules. Not imposing a specific order on the rule execution,

allows the developer to simply write the rules declaratively. In this case, only the rules that

are applicable, as defined by the guards, will run. Adding a new rule to handle a new construct

should not, therefore, cause side effects that cause pre-existing construct handling to break.

5.5 Testing and Evaluation Methodology

In order to evaluate our implementation, we are going to run the tool we have developed

on several benchmark chemical structure diagram datasets. Since these datasets contain images

of chemical structure diagrams with their corresponding MOL files, we are going to generate

our MOL files and compare them against those of the datasets. In order to achieve this, we use

OpenBabel [72], which is a freely available tool that provides the ability to compare different

MOL files semantically while ignoring unimportant syntactic differences. It is important

to notice that, given two MOL files as input, OpenBabel computes a standard International

Chemical Identifier (InChI [50]) from each MOL file and checks whether the two InChI keys

match. The method we use here is Precision and Recall [82]. Observe that precision and recall

are concerned with the relevance of retrieved information whereas in our case we only seek

a match or mismatch measure. Therefore, we will only compute the percentage of matched

(recalled) and mismatched structures.

5.6 Summary

We have provided specifications of our system in this chapter. We started the chapter by

providing information about the philosophy and architecture of our rule-based system and

followed that by briefly discussing our implementation methodology. After this discussion, we

presented our justification for why our rule-based system is favourable when compared to the

traditional procedural approach and we also discussed out testing and evaluation methodology.

Observe that the remaining chapters of this thesis are going to be as follows. Using

Figure 5.2 as a reference, we have provided our method for performing optical character

recognition in Appendix A. Chapter 6 will contain an explanation of our method to perform
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vectorisation. Chapter 7 will provide a description of how our rules work. In it we will explain

in detail a selection of four rules and provide a fully-worked example to illustrate how our

system works. We explain the remaining rules in Appendix B. After that, we address several

issues and aspects of our system in Chapter 9. The final two chapters of this thesis will contain

experimental evaluation, conclusions and future work.
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CHAPTER 6

VECTORISATION
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In this chapter we are going to provide the necessary steps of our suggested mechanism to

accurately identify the remaining three types of primitives. Namely, the line segments, solid

triangles and arrows. Notice that we are going to assume that Optical Character Recognition

has been carried out and all the characters and circles have been removed from the input image.

Figure 6.1: Vectorisation Steps

As can be seen in Figure 6.1, the steps start with thinning the image components into

unit width thickness and then extracting precise line endpoints. As we will explain later in

this chapter, we will perform the line endpoint extraction by using the Douglas-Peucker line

simplification algorithm in a novel application. We are going to achieve this by tracing the

thinned lines to find and disconnect multi-way junctions (this step may involve an attempt to

smoothen the image before thinning it so possible spikes are removed) and then simplifying the

resulting poly-lines to find precise line endpoints. Observe that, to our knowledge, this is the

first time this algorithm is used to automatically determine endpoints of interconnected lines

in images of chemical structure diagrams. We then follow this by detecting solid triangles and

arrow lines. We detect solid triangles using a technique which we denote the expanding disc

technique, and detect arrow lines using template matching.

6.1 Image Thinning

We start processing the input image by thinning its remaining components to unit width.

Image thinning can be defined as the process of successively removing selected border pixels

69



from binary images. The result of thinning an image is another image where all lines are reduced

to single pixel thickness. An example image is shown in Figure 6.2(a), its thinned version is

shown in Figure 6.2(b). Notice that the thinning algorithm should erode away boundary pixels

as much as possible while preserving the topology and connectivity of the original image. It

should also preserve pixels at the ends of lines. Additionally, it should ensure that the thinning

reduces the image components from all sides so the resulting components, when superimposed

on the original components, can be in the middle (as shown in Figure 6.2(c)).

(a) Original Image (b) Thinned Image (c) Medial Axis

Figure 6.2: Image Thinning

Practically, thinning is performed by using a kernel (which is usually a small image on a

rectangular grid) and translating its origin to all pixel positions in an image. The kernel, which

is sometimes referred to as a structuring element, must always have its origin set to foreground

(0 or black). The underlying image pixels are compared with elements of the structuring

element (every image pixel is compared with the kernel element over it) and decisions are made

accordingly. In more detail, the image pixel below the origin of the structuring element is set

to background if the foreground and background pixels in the image match the foreground and

background pixels in the structuring element. Choosing a structuring element usually dictates

the results of a thinning process. Also, the choice of when to stop performing thinning is another

important factor. While usually performing thinning repeatedly until convergence (i.e. until the

image stops changing), applying it for a certain number of iterations is common in various

applications such as pruning.

We provide two example thinning kernels in Figure 6.3. An input image can be iteratively
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scanned using the shown kernels. The kernel shown in Figure 6.3(a) should be used first, the

kernel shown in Figure 6.3(b) and then their six 90◦ rotated versions, making an overall 4×2 = 8

kernels. This procedure should be repeated in each iteration until none of the kernels causes the

image to change. Notice that in the illustrated kernels, we assume a value of 0, or black for the

foreground and a value of 1, or white for the background. We use X for the don’t care case.

(a) (b)

Figure 6.3: Example Thinning Kernels

One of the very common approaches in raster-to-vector conversion of images is to compute

the skeleton of the image, i.e. to thin the image to unit width. However, it is often argued

that thinning has drawbacks. For example, some information is lost when thinning. Also, it is

common to have spikes, or barbs, when the image is irregular or has rough edges. Additionally,

line junctions and extremity points are displaced, resulting in unwanted positions as of those

intended when generating the original image. These issues were discussed in more detail

in [100].

We are going to use a number of solutions to resolve these drawbacks. For example, we

are going to overlook the issue of information loss as long as the thinning process maintains

the general shape of the image components. Also, feedback can be used to verify the shape

of an object at later stages of a recognition, or analysis, process. In addition to this, we will

carry out a post-processing step to resolve the issue of unwanted barbs resulting after thinning

rough objects. In fact, a preprocessing step such as image blurring can also be used to smoothen

the image prior to thinning it. Finally, the problem of junction and endpoint displacement can

be easily tackled in many applications where connectivity of image objects is the main focus.

For instance, in our context if two bonds in a molecule image are intended to be connected,

displacement of their junction is unimportant as long as the result of a molecule recognition
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process, that employs thinning, preserves their connectivity.

6.1.1 Types of Thinning Algorithms

We have defined image thinning as the iterative removal of border foreground pixels until a

termination criteria is satisfied. Several conditions are usually checked whenever a foreground

pixel is encountered and this pixel is deleted if it satisfies those conditions. We will now have a

brief overview of two families of thinning algorithms.

6.1.1.1 Sequential Thinning

The concept of sequential thinning, as the name suggests, is that the boundary pixels

(satisfying removal conditions) of an object in an image are removed sequentially. That is,

the border pixels are checked for removal in a constant sequence in every iteration and they

are removed one pixel at a time. For example, the removal of a pixel P in the ith iteration

depends on two things: it depends on the result of the (i−1)th iteration and on the pixels which

have been processed already in the ith iteration. An example sequential thinning algorithm can

be found in [54]. An advantage of removing one pixel at a time is that it ensures topology

preservation [58], [59].

6.1.1.2 Parallel Thinning

If border pixels are visited in different orders, sequential algorithm may extract different

skeletons. This is not the case with parallel thinning algorithms [54]. A thinning algorithm is

parallel if all the boundary pixels, meeting deletion conditions, are removed at the same time.

This means that removing pixels in the ith iteration only depends on the remaining pixels after

the previous iteration (i.e. iteration (i − 1)). Hence, the manner in which pixels are checked

is parallel since they are checked independently in every iteration. Example parallel thinning

algorithms can be found in [54] and [76].
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6.1.2 The Thinning Algorithm we have used

We have implemented Guo and Hall’s thinning algorithm [43] where the image is divided

into two distinct subfields in a check-board manner and the algorithm runs in a two-subcycle

fashion. Using Figure 6.4, a foreground pixel P0 is erased or kept according to the following

conditions:

1. Sub-iteration 1:

(a) XH(P0) = 1 where

XH(P0) =
∑4

i=1 bi

bi =

 1 if P2i−1 = 0 AND (P2i = 1 or P2i+1 = 1)

0 otherwise

(b) 2 ≤ min(n1(P0), n2(P0)) ≤ 3 where

n1(P0) =
4∑

k=1

P2k−1 ∨ P2k

and

n2(P0) =
4∑

k=1

P2k ∨ P2k+1

(c) (P2 ∨ P3 ∨ P̄8) ∧ P1 = 0

2. Sub-iteration 2:

(a) Condition a from sub-iteration 1

(b) Condition b from sub-iteration 1

(c) (P6 ∨ P7 ∨ P̄4) ∧ P5 = 0

Notice that a single iteration consists of the two sub-iterations. And as we have mentioned

previously, to thin the input image to a unit width thickness, the iterations should be run until

the resulting image does not change any more. As shown in Figure 6.5(b), we have chosen to

use this algorithm because of its robustness and reliable performance.
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Figure 6.4: Example 8-Neighbourhood

(a) Original Image (b) Thinning Results

Figure 6.5: Thinning using Guo and Hall’s Thinning Algorithm

6.2 Extraction of Precise Line Endpoints

After the image components, (which are a group of connected straight lines), have been

thinned, we will now introduce a way for precisely extracting line endpoints. The method

we are going to employ is based on traversing the thinned lines and detecting junctions and

extremities. Notice that by a junction, we mean the connection point of two or more lines, and

by extremities we mean line endpoints which are not connected to any other lines.

Now, we are going to scan the thinned version of the input image from top left until we find

a foreground pixel P . As illustrated in Figure 6.6, whenever we find a foreground pixel, we will

search its 3 × 3 neighbourhood in an anti-clockwise direction. We will traverse all connected

foreground pixels in this neighbourhood and save their coordinates. We will repeat this process

for all connected foreground pixels and we will form the input polylines to the Douglas-Peucker

line simplification algorithm. Observe that applying the Douglas-Peucker line simplification

algorithm in this domain is a new application. However, before applying the line simplification,

we will split these polylines into sub-polylines at various points.

Figure 6.7 shows examples of where we are going to split polylines. As the figure illustrates,
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Figure 6.6: Foreground Pixel Tracing

point 1 has only one neighbour, point 2 has four and point 3 has two. As the traversal progresses,

the neighbourhood of foreground pixels is checked and the lines are split if one of the following

conditions is met:

• If a pixel has only one neighbour and that neighbour has already been visited (this means

the pixel is an extremity or it is at the tip of a line).

• If a pixel has more than two neighbours (this means the pixel is at a multi-way junction

of more than two lines)

• If a pixel has two neighbours and both neighbours have been visited (this means the pixel

is at the end of a cycle)

As we said before, we will save coordinates of all visited pixels as sub-polylines and continue

the process until coordinates of all foreground pixels have been processed.

After this step, we are going to detect corners, junctions and free line endpoints by applying

a line simplification algorithm to the coordinate points. The algorithm that we are going to use

in the context of this work is the Douglas-Peucker algorithm [32].

6.2.1 How Douglas-Peucker Algorithm works

This algorithm is usually used for line simplification algorithms (see Figure 6.8). As the

algorithm shown in Appendix C shows, it starts with a list of points that represent the original
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Figure 6.7: Example connected pixels and their neighbours

line and the distance dimension ε > 0. Observe that choosing a suitable value of ε is application

dependant and in our application, we have chosen a value equal to an average line thickness

which we compute using the expanding disc as we are going to see in Section 6.3.

The algorithm splits the line recursively and automatically marks the first points and last

point to be kept. It then finds the point that is furthest from the line segment formed by the first

points and last point. The distance between points and lines is measured using Equation 6.1.

Any point whose distance from this line is less than ε and that is not currently marked to be kept

is discarded. And any point whose distance from this line is equal to or more than ε is kept.

This is repeated recursively with the first point and the furthest point, and then with the furthest

point and the last point. When it completes, a new representation of the line (containing only

the points that have been marked to be kept) can be obtained.

Given the coordinates of a straight line segment (x1, y1) and (x2, y2), and a point (x0, y0),

we can calculate the shortest distance between them as.

d =
| (x2 − x1) (y1 − y0)− (x1 − x0) (y2 − y1) |√

(x2 − x1)2 + (y2 − y1)2
. (6.1)
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Figure 6.8: How Douglas Peucker Algorithm works (image from [109])

6.2.2 Barb (Spike) Removal

However, if the input image is irregular (i.e. it has rough edges), parasitic components can

result after the thinning operation. These components are usually in the form of barbs, or spikes

as we have shown in Figure 6.9. Therefore, when the traversal process finishes, these barbs

will be considered as valid line segments despite being very short and often causing longer

line segments to be split into two or more shorter line segments. We have to handle these

barbs correctly in order to obtain precise results. The process to minimise the effect of these

components is often denoted pruning.

Usually, a pruning algorithm erases all barbs (branches) which are shorter than a predefined

number of pixels. The algorithm recursively removes a given number of pixels from each

branch, starting at the free endpoints. This step is usually followed by dilating the resulting

image with a structuring element (kernel) of a given size and then intersecting the new image

with the original image.
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We are going to deal with spikes after finalising the thinning and traversal operations. We

are going to detect them as very short line segments (usually not longer than the average line

width) that are perpendicular, and connected to other straight line segments.

Figure 6.9: Spike resulting after thinning of rough line (shadowed)

If we detect such line segments, we can exclude them from the resulting set of line segments

and merge the longer line segments that they split. But, it is obvious that this is not going to

successfully work if the image has too many spikes and we need another approach.

In order to obtain better results, we are going to use image blurring to smoothen the rough

edges. We are going to blur the original (un-thinned) image, binarise it and thin it again. This

process guarantees that the thinned image will have fewer barbs than the original image (in

fact in many cases the new thinned image can be barb-free). The traversal operation can be

performed again and more accurate results can be obtained.

Image blurring is converting a source image X to another image Y such that each pixel

in Y is made up of a mixture of surrounding pixels from X . In other words, the destination

image Y is generated by spreading over each pixel in the source image X and mixing it into its

surrounding pixels. This is traditionally achieved via convolving a kernel over all foreground

pixels in the source image.

We are going to use the kernel shown in Figure 6.10 to perform image blurring. We

will use this kernel to perform the convolution operation by scanning the original image and

superimposing the kernel on it such that the kernel’s origin corresponds to all pixel positions of

every foreground pixel in the image. We multiply the value of the corresponding pixels from
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the kernel and the image pixels they are over and then add together all the results. The result of

this addition will be the new pixel value.

Figure 6.10: A Simple Blurring Kernel

As we mentioned previously, we binarise the image, thin it and repeat the traversal process

to obtain a list of line endpoints. In the coming sections we are going to introduce our method

for detecting solid triangles and arrow lines.

6.3 Detecting Solid Triangles and Bold Lines

We are going to use a new way to extract precise geometric information about bonds in the

shape of solid triangles (solid wedges) and thick lines. We are going a disc of a radius larger

than a previously measured average line thickness. This disc can fit inside the base of an average

solid triangle. The idea is to walk along the thinned lines and use their points as centres of an

expanding disc. We are going to have an assumption that thinned lines are on the middle of

their original lines (we have illustrated this in Figure 6.2(c)).

At each point, we will grow the disc until it reaches the largest size possible while still

covering only foreground pixels in the original image. Then we change the position of the disc

to the next point and the process continues.

Since it is relatively straightforward to distinguish between a normal line (planar bond) and

a bold line (this can be done by comparing the line thickness against the average line thickness),

we are going to the focus here on distinguishing between solid triangles (solid wedge bonds)

and thick lines (bold bonds).

To distinguish between solid triangles and thick lines, we are going to use the linear algebra

model presented in Algorithm 1 to analyse the values of the radiuses of the discs. Whenever we
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Figure 6.11: Detection of Solid Triangles and Thick Lines

detect a disc whose radius is larger than the average line width, we check the radius values over

that line. If we find these values to be increasing or decreasing, then we identify the underlying

line as a solid triangle, whereas if we find the values to be relatively stable, then we classify the

line as a thick line.

Algorithm 1: Behaviour of Radius Values
Input: Threshold θ

Input: List of sequence of n radius values: r1, r2, . . . , rn

Output: Class of Behaviour c

begin
Consider this sequence as a set of points in a 2-dimensional plane:
l = (1, r1), (2, r2), . . . , (n, rn)

Calculate Slope m of Line of Best Fit for points in l (Equation 6.2)
if |m| < θ then

return c = ThickLine

end
else

if m > 0. then
return c = SolidTriangle

end
else

return c = SolidTriangle

end
end

end

We are going to consider the sequence of radius values as a set of points in a 2-dimensional
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plane and then calculate the slope (Equation 6.2) of line of best fit (the line that best describes

these points). We are then going to use the absolute value of this slope to determine the line

type.

Slope =

n
n∑

i=1

(xiyi)−
( n∑

i=1

xi

)( n∑
i=1

yi

)
n

n∑
i=1

(x2
i )−

( n∑
i=1

xi

)2
(6.2)

Where n is the number of line points,

(x1, y1), (x2, y2), ..., (xn, yn) are the line points∑
xy = sum of products = x1y1 + x2y2 + · · ·+ xnyn∑
x = sum of values of x = x1 + x2 + · · ·+ xn∑
y = sum of values of y = y1 + y2 + · · ·+ yn∑
x2 = sum of values of x2 = x2

1 + x2
2 + · · ·+ x2

n

Now, to detect such bonds, we are going to use the following procedure:

Let us assume that a disc of a radius larger than the average line thickness is found. And let the

sequence of radiuses over a thinned line is: r1, r2, . . . , rn. This sequence can be considered as

a set of points in a 2-dimensional plane: (1, r1), (2, r2), . . . , (n, rn). An example is shown in

Figure 6.12, where the values are as illustrated in Table 6.1.

n radius value
1 4
2 4
3 5
4 6
5 7
6 7
7 8
8 8
9 9

Table 6.1: Example Radius Values

Now, the line that best describes these points can be determined. Notice, this is the best fit

line for this set of points.

The equation of a straight line is:
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Figure 6.12: Sequence Behaviour

y = a ∗ x + b (6.3)

Since the equation of a straight line can be formulated by a slope, a, and intercept, b, the

slope can be used to determine the line type as follows:

Given θ threshold (which can be determined empirically), if the absolute value of the slope

is less than the threshold, then the sequence is stable. And, if the slope is positive and greater

than the threshold, then the sequence is increasing. And, If the slope is negative and less then

the negative of the threshold, then the sequence is decreasing.

The idea of using the expanding disc can help detecting the direction of the solid triangle

since the base can be found at line end with the largest radius value regardless of whether the

radius values are increasing or decreasing.
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6.4 Detecting Arrows

As explained in Section 2.1.3, a one sided arrow line is used to depict a dative bond. This

bond type is used to indicate the existence of a negatively charged atom at the arrow end of the

bond. An example structure with dative bonds is provided in Figure 6.13.

Figure 6.13: Example Structure with Dative Bonds

We are going to use template matching to detect arrow heads. Template matching is a

technique used to search an image to find areas which are similar to a sub-image. The searched

image and the sub-image are denoted the source image and template respectively. The search is

done by moving the template in all directions one pixel at a time and comparing it to the source

image [19]. To determine how well the match is, a metric that indicates that is computed at

every location.

So the idea is to use a small image (i.e. a template) and move it to all possible positions in

a larger image. Every time the template is moved, a numerical value that indicates how well

the template matches the source image in that location is calculated. In our case, since line

endpoints have been obtained, we will use a sub-image that contains an arrow head to search

the proximity of these line endpoints in the original image [69]. Observe that we currently only

use templates of the arrow type shown in Figure 6.13 and we search around endpoints of line

segments which are longer than a pre-calculated average line length. We also use an empirically

determined threshold to decide whether a given area of the source image contains an arrow head.
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6.5 Summary

In this chapter we have provided a somewhat detailed overview of our suggested method

to perform vectorisation of a chemical structure diagram image. The process assumes the

image is binarised, and all characters have been removed by an OCR engine. The output of

the vectorisation process introduced in this chapter is a list of geometric primitives, each of

which can be a line segment, a solid triangle or an arrow. Along with the output of an OCR

engine, which is explained in Appendix A, this complements the number of primitives required

for our rules system and provides the necessary input for the rule engine. We are going to

introduce the rules system in the next chapter. And in Chapter 8, we will discuss our way of

forming a mathematical graph data structure representing the chemical structure diagram. This

graph can be used to output a suitable textual or tabular format such as a standard MOL file.
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CHAPTER 7

A DESCRIPTION OF THE RULES

85



We shall present a description of some of our rules in this chapter. As we have stated in earlier

chapters, the rule-based recognition system consists of three parts. Namely, a rule base, a rule

engine and a working memory. We have briefly discussed our working memory in Section 5.1

and we will define its contents, i.e. the geometric primitives, in Section 7.2.1. Our method for

extracting these primitives has been explained in Appendix A and Chapter 6. In this chapter, we

shall provide more detail about our implementation of the rule base and rule engine. We will

also define the geometric primitives, explain some fundamental concepts and define several

preliminary parameters which are necessary to understand how our system captures various

bond types and architectures. After that, we are going to present a summary of our 18 rules and

then explain in detail a selection of four of these rules. We will discuss the predicates of these

rules, how they capture and rule out various patterns and provide sample OCAML code to show

how we have implemented them. Observe that we are going to provide the remaining 14 rules

in Appendix B. At the end of this chapter, we will provide a simple fully worked example to

demonstrate how the recognition process works.

7.1 More on our Implementation of Rules

We have explained the structure of a typical rule-based system in Section 5.1. As for our rule

base, it contains the implementation of our rules. Since rules contain conditions and actions,

we implement each rule as a function that receives a set of primitives as input, combines the

rule’s corresponding conditions (or predicates) and generates a 3-tuple output. Similarly, we

implement each predicate as a function that has the same format of input and output. Having the

same input and output format for all predicates as well as the rules themselves is advantageous

in the sense that it makes all functions consistent.

The first component of the 3-tuple output is a true/false flag that indicates whether the

predicate, or the rule as a whole, applies successfully. The second component of the tuple

contains a subset of the primitives set (the primitives that satisfy the predicate, which is passed

on to the next primitive). In case of a rule’s output, this component will have a set of graph

edges created from the subset of primitives which meets all preconditions. The third component
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contains the remaining primitives which do not satisfy a given rule’s predicates.

We would like to bring to the attention of the reader that our implementation works in a way

such that all bonds are captured at once by their relevant rule rather than capturing only one

bond at a time.

As we have discussed before, rules are chosen and applied by our rule engine. Since rules

are defined in terms of preconditions and consequences, a rule is applicable if there exist

geometric objects that satisfy its preconditions. The consequence results in the removal of

existing geometric objects and the creation of graph edges as well as possibly the addition of

new geometric objects. In general, preconditions of different rules are mutually exclusive, and

thus the order of rule application is minimised.

The overall procedure of the rule engine starts by initialising the working memory. We

do this by reading the set of primitives into a suitable data structure. We then continue the

procedure by placing the rules in a rule pool (which is a list of rules) and randomly choosing

one of these rules. We check if the rule does not require any other rule to be attempted before it.

If this is the case, then we apply the rule and execute its consequence. As we have mentioned in

Section 5.3, we make sure that all rules have an equal chance of being chosen by marking each

chosen rule such that it is not selected again until all other rules have been attempted.

As for executing predicates of rules, we attempt to apply the first predicate of a rule on the

input set of primitives. If the application of this predicate is successful, it removes the primitives

that satisfy this condition from the primitive set and passes them on to the next predicate.

This continues from one predicate to another until all predicates are satisfied and an output

is generated. If the application of any predicate is unsuccessful, the rule ends immediately

without attempting the next predicates.

We apply the consequence of a rule by removing the primitive subset that meets all the

conditions and create graph edges from those primitives. However, if the rule consequence

involves the creation of new primitives (as in Rule 2 and Rule 3 which are explained in

Appendix B.1 and Section 7.5.2 respectively), we add these primitives back to the primitive set.

We repeat this selection and application procedure until the termination condition is met. After
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that, create a full graph data structure representing the input structure and attempt to resolve

any ambiguous graph edges that may result from Rule 4, Rule 5 or Rule 6. We then expand any

existing superatoms and guess stereocentres of any dashed, bold or dashed bold bonds. We end

the algorithm by generating a MOL file as we have shown in Section 8.1.

7.2 Preliminaries

After detailing the components of our rule-based system, we will now explain in detail

our five types of geometric primitives which we use as input. Additionally, we shall define

several concepts and parameters on which we base the rules. Observe that these concepts and

parameters are going to be used in the implementation of the predicates.

7.2.1 Geometrical Primitives

The first assumption we are going to make is that the work will be with a restricted number

of geometrical primitives that are the result of an initial vectorisation phase of the image. A

set of these primitives will represent our working memory. We are going to distinguish the

following five primitives:

Definition 3 Line Segment. We will define a line segment l as a rectangle with measurable

width and length, a unique centre point c(l), and two endpoints e1(l), e2(l) representing the

middle points on the edge of the short sides of the rectangle.

Figure 7.1: Line Segment with its measurable

attributes

As Figure 7.1, it is not significant how

the line segment’s attributes are measured so

long as they are measured accurately. The

two endpoints are at the centre of the shorter

edges, the centre point can be determined as

the middle point of the line connecting the

two endpoints, the line segment’s length can

be calculated as the length of the line connecting the two endpoints and so on. Observe that our
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vectorisation method reduces the width of all line segments to unit width but we calculate the

actual width of these line segments using the expanding disc as we explained in Chapter 6.

Notice that the vectorisation step should result in having all connected paths of line segments

split into sets of simple line segments at their corners. In particular, any intersecting set of line

segments should be split at the junction point. Thus line segments in the form of a sans serif

“T” should be split into three separate but connected line segments, and in the form of a sans

serif “V” into two line segments. We will explain the connected concept in the next section.

Definition 4 Arrow. We define an arrow as a line segment with an arrow head as one end point

(Figure 7.2).

Figure 7.2: An Arrow Primitive

In other words, this primitive has exactly the same

attributes as the line segment primitive with an extra

characteristic. It has an arrow head as one of its points. As

we will explain in more detail later, this arrow head gives

this primitive a direction. This direction is important

when determining the chemical significance of a bond of

this form.

Definition 5 Solid Triangle. We define a solid triangle as a solid wedge shaped with a

discernible base line.

Figure 7.3: A Triangle

Primitive

Figure 7.3 illustrates an example solid triangle primitive.

Notice that the triangle is filled (solid), and its tip and base are

unambiguously distinguishable. Knowing the tip-to-base direction

is vital for extracting the chemical significance of such objects.

Definition 6 Circle. We define a circle as a ring consisting of the

circumference (of some unspecified thickness) of a circle.
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In molecule diagrams this is found as the indicator of an aromatic ring inside multi-sided

cycles (very often inside a pentagonal or hexagonal carbon cycle).

Figure 7.4: A Circle

Primitive

As shown in Figure 7.4, a circle has equal width and height. Its

centre point can be calculated if necessary. Also, another important

point to notice is that a circle should be distinguished from the letter

“O” and the digit “0” as some fonts draw them as completely spherical.

This is left to how the approach is implemented but some useful hints

such using a size filter and examining the environment around suspect

objects should be considered as we explained in Section A.5.

Definition 7 Character Group. We define it as a group of letters,

digits or symbols. They have a small inter-distance and are considered one entity.

Figure 7.5: A Chargroup

Primitive

Chargroup primitives can consist of a single character,

two characters or multiple characters as shown in Figure 7.5.

Characters can be letters, digits or symbols. The digits are

usually used as subscripts and they indicate repetition of the

character, or substructure, they follow. The grouping of

characters is left to the implementation although, as we have

explained in Section A.4.1, certain conditions based on rules-of-thumb must be applied in order

to produce correct character groups.

7.2.2 Concepts

We need a number of general concepts to define the rules, based on parameters that can

be instantiated later. We will design the rules so that they accommodate a certain level of

approximation in attributes of components of the diagram such as slopes of lines, collinearity

of sets of points and lengths of lines. This is due to possible imprecision in the drawing of the

images and inevitable digitisation artifacts in images of chemical diagrams.
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Therefore, we are going to use fuzzy parameters for this purpose. These are pairs of values

that record the minimum and maximum allowable values for their attribute of interest. For

instance, for a fuzzy parameter f = [fmin, fmax] and a value v, we say that v is approximately

f , or v ∈ f , if and only if v is between the minimum and maximum values allowed by f . We

are going to use the following concepts for rule definitions:

Definition 8 Separation Distance. The distance between two graphic objects defined as the

closest distance between points of the different objects. For objects p and q, the separation

distance will be abbreviated as dist(p, q) in the remaining sections of this thesis.

Definition 9 Connected. Two line segments are said to be connected if they have exactly one

endpoint in common.

Definition 10 Dash-Neighbouring. Let x be a fuzzy parameter. An element of a set of objects

is said to dash-neighbour (wrt. x) another element of that set if the two elements are distinct

and the closest distance between points of the different elements is approximately x.

Definition 11 Approximate Collinearity. Let x be a strict (i.e. non-fuzzy) parameter. A set of

points is defined to be approximately collinear with respect to Radius of Collinearity x, if there

is a line such that the orthogonal distances from the line to each of the points is less than or

equal to x. A set of geometrical objects is said to be approximately collinear if the set of all

points of the objects are approximately collinear.

Definition 12 Approximately Parallel with separation x and overlap y, ‖y
x . Let x, y be strict

parameters. Let l1, l2 be line segments. Then l1 ‖y
x l2 if and only if

(i) for the lines L1, L2 fixed by the end points of l1, l2, respectively, every point p ∈ l1 has

dist(p, L2) ≤ x and every point p ∈ l2 has dist(p, L1) ≤ x.

(ii) there exist line segments l′1 ⊆ l1, l′2 ⊆ l2 with length(l′1) = length(l′2) = y and for every

p ∈ l′1, dist(p, l′2) ≤ x, and for every p ∈ l′2, dist(p, l′1) ≤ x.
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Observe that the definition of approximately parallel with separation and overlap ensures not

only that line segments can vary slightly from being truly parallel and must have an approximate

orthogonal separation from each other but also that the orthogonal projection of one onto the

other must intersect over a length corresponding to the overlap parameter. This rules out

collinear line segments as if they overlapped to that extent they would have been vectorised

into a single line segment. In the remainder this concept will be referred to as approximately

parallel, only.

7.2.3 Parameters

Now, we are going to define several of both strict (i.e. non-fuzzy) and fuzzy parameters. We

are going to use these parameters in the rule system. Additionally, these are the parameters on

which the concepts introduced in the previous section are based.

Radius of collinearity rc. A strict parameter used in the definition of approximate collinearity.

Dash length dl . A fuzzy parameter indicating the acceptable length of a single dash in a dashed

line.

Dash separation ds . A fuzzy parameter indicating the acceptable distance between consecutive

dashes in a dashed line. It is used for determining dash-neighbouring elements.

The three previous parameters are illustrated in Figure 7.6. Observe that it is required that rc

is less than the minimum values of both dl and ds . This is to ensure strictness in the collinearity

of dashes forming the same dashed line.

Figure 7.6: Radius of collinearity, Dash length and Dash separation

Bold dash length bdl . A fuzzy parameter indicating the acceptable length of a single line

segment representing a bold dash in a dashed bold line.

Bold dash width bdw . A fuzzy parameter indicating the acceptable width of a single line

segment representing a bold dash in a dashed bold line.

The previous two parameters are illustrated in Figure 7.7. Notice that bdl may have a similar
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Figure 7.7: Bold dash length and Bold dash width

value to that of dl . The same applies to bdw and the width of a normal line. However, when

examining existing chemical diagrams this can be true in some cases and untrue in other cases.

Therefore, a separate and independent definition was given to each of them.

Bold bond width bbw . As shown in Figure 7.8(a), this is a strict parameter indicating the

minimum acceptable width of a single line segment representing a bold bond.

Wedge base wb. Illustrated in Figure 7.8(b), this is a fuzzy parameter indicating the acceptable

width of a wedge base (it applies for solid, hollow and dashed wedges alike).

(a) Bold bond width (b) Wedge base

Figure 7.8: Bold bond width and Wedge base

Bond separation bs . As shown in figure 7.9, this is a strict parameter indicating the acceptable

maximum distance between two parallel bonds.

(a) (b)

Figure 7.9: Bond separation

Minimal overlap ol . A strict parameter indicating the minimal distance necessary for two line

segments to be considered overlapping. Notice that bs and ol are the parameters that generally

instantiate the definition of approximately parallel, ‖ol
bs . It is also important to emphasise at

this stage that we are only interested in overlap between approximately parallel line segments.

Overlapping non-parallel line segments are of no interest because the architecture they form

does not have any significance in the context of this work.
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Figure 7.10: Parallel line overlap

7.3 Bond Cutting

Our system has 18 rules that capture various bond types and configurations. Our first

three rules deal with regular single, double, and triple planar bonds. However, this is less

straightforward than it appears, as these bonds can not only occur separately, as displayed

in Figure 7.11(a)–7.11(c), but also can be given implicitly within single line segments.

(a) (b)

(c)

Figure 7.11: Single, Double and

Triple Planar Bonds

Figure 7.12 demonstrates this idea, where there is

a combination of single bonds with double and triple

bonds, respectively. Notice that there is always an

overlap between the shorter line segment and the longer

line segment in Figure 7.12(a) and 7.12(b). Similarly,

the overlap should always be there when there are two

short line segments and a longer line segment as in

Figure 7.12(c) and 7.12(d) as well as an overlap between

the shorter two line segments. It is also essential to notice

that the overlap value, can be equal to the length of the short line(s) as shown in Figure 7.10.

From a chemical point of view, carbon atoms are understood to be at the shadowed areas

separating the bonds (Figure 7.12). Thus we need a mechanism to split up these bonds to be

used within the consequences of some rules. We will call this mechanism “cutting”.

(a) (b) (c) (d)

Figure 7.12: Implicit Nodes (shadowed)
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Given a set of two or three approximately parallel line segments, a minimal bounding

rectangle that contains them can be defined. Also, cut lines (Figure 7.13) orthogonal to the

long axis of the rectangle at the end points of the component line segments are defined. Cut

lines that are orthogonal and within rc of each other are unified because they are approximately

the same. This is done to avoid cutting at the same place more than once (cut lines 1,3 and 2,4

in Figure 7.13).

Figure 7.13: Illustration of Cut Lines

Now the long line segment can be split at the cut lines into separate (collinear) line segments.

It is important to notice that this is when new geometric primitives can be added to the working

memory (i.e. our set of primitives which is used as input). Only rule R2 and rule R3 use cutting

(Appendix B.1 and Section 7.5.2 respectively). If there were two line segments, there will be

at most two cut lines and precisely one section corresponding to a double bond. With three line

segments there will be at most five sections with precisely one corresponding to a triple bond.

7.4 Summary of Rules

Our current rule engine consists of 18 rules in total. As summarised in Table 7.1, they

include rules to capture planar single, double and triple bonds as well as dashed, dashed bold

and dashed wedge bonds. They also include rules to recognise two cases of hollow wedge

bonds. Additionally, they contain rules that handle wavy, dative, solid wedge and bold bonds.

Moreover, there are rules that identify aromatic bonds and two types of bridge bonds.

However, the rules not only cover these bond types, arrangements and configurations, but

they also contain rules that deal with ambiguous cases when it is not straightforward to decide

whether a pattern represents a dashed bold bond or a planar triple bond, whether a pattern

represents a dashed wedge bond or a planar triple bond and whether a pattern represents a

dashed wedge bond or a planar double bond. Table 7.1 provides a summary of these rules.
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Rule Summary
Rule 1 Captures planar single bonds and outputs graph edges each of which

represents one of the captured single bonds.
Rule 2 Captures planar double bonds and applies cutting when necessary. It outputs

graph edges each of which represents one of the captured double bonds.
Rule 3 Captures planar triple bonds and applies cutting when necessary. It outputs

graph edges each of which represents one of the captured triple bonds.
Rule 4 Captures a special type of bond which can either a dashed bold bond or a

planar triple bond. It outputs graph edges each of which represents this type
of bonds. A disambiguation process is carried out after creating a full graph.

Rule 5 Captures a special type of bond which can either a dashed wedge bond or a
planar triple bond. It outputs graph edges each of which represents this type
of bonds. A disambiguation process is carried out after creating a full graph.

Rule 6 Captures a special type of bond which can either a dashed wedge bond or a
planar double bond. It outputs graph edges each of which represents this type
of bonds. A disambiguation process is carried out after creating a full graph.

Rule 7 Captures dashed bonds and outputs graph edges each of which represents one
of the captured dashed bonds.

Rule 8 Captures dashed bold bonds and outputs graph edges each of which represents
one of the captured dashed bold bonds.

Rule 9 Captures dashed wedge bonds and outputs graph edges each of which
represents one of the captured dashed wedge bonds. This rule should be
attempted before Rule 7.

Rule 10 Captures hollow wedge bonds whose base is not connected from the middle to
other bonds. This rule is applied after a full graph has been built and merges
edges.

Rule 11 Captures hollow wedge bonds whose base is connected from the middle to
other bonds. This rule is applied after a full graph has been built and merges
edges.

Rule 12 Captures wavy bonds and outputs graph edges each of which represents one
of the captured wavy bonds.

Rule 13 Captures dative (arrow) bonds and outputs graph edges each of which
represents one of the captured dative bonds.

Rule 14 Captures solid wedge bonds and outputs graph edges each of which represents
one of the captured solid wedge bonds.

Rule 15 Captures bold bonds and outputs graph edges each of which represents one of
the captured bold bonds.

Rule 16 Captures aromatic rings. This rule is applied after a full graph has been built
as it changes the type of single bond edges forming aromatic cycles to edges
representing aromatic bonds.

Rule 17 Captures open bridge bonds. This rule must be applied after R1 as it merges
pairs of single bond edges forming open bridge bonds.

Rule 18 Captures closed bridge bonds. This rule is applied after a full graph has been
build. It merges single bond edges which are identified to be forming closed
bridge bonds.

Table 7.1: Textual Summary of our 18 Rules
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7.5 Sample Rules

We are going to discuss a selection of four of our 18 rules in this section. Namely, we

will discuss our rule to identify planar single bonds (R1), planar triple bonds (R3), dashed

bonds (R7) and wavy bonds (R12). We have chosen these rules so that the reader can compare

between R1-R3, and R7-R12 as they share several predicates.

The discussion will include providing the predicates of each of these rules as well as

illustrating our OCAML code for each of them. As we mentioned previously, the remaining

14 rules are going to be provided in Appendix B.

7.5.1 R1: Planar Single Bond

The planar single bond is usually drawn as shown in Figure 7.14. It is a line segment with no

parallel line segments within close proximity. It can connect either two atoms or atom groups,

two nodes, or a node and an atom. We use the following conditions to capture a single planar

bond:

1. l is a line segment.

2. length(l) > wb

3. width(l) < bbw

4. There is no line segment l′ such that l ‖ol
bs l′.

Consequence: l is a single bond with endpoints of l

Figure 7.14: A Single Planar bond

This rule identifies a single line segment which has no parallel line segment(s) within bond

separation. Observe that R1.2 guarantees that the rule does not capture a line segment that can
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be a hollow wedge base (R10 and R11) and R1.3 guarantees that the rule does not capture a bold

line (R15). Additionally, notice that R1.4 excludes R2 and R3 (Appendix B.1 and Section 7.5.2

respectively).

As for our implementation, we provide our code for R1 in Listing 7.1. To preserve space,

we only show the code for the rule and not the predicates. As we mentioned in Section 5.3, the

rule receives a list of primitives as input and returns a tuple containing whether it has identified

any single bonds, a list of graph edges representing these bonds and a list of the remaining

primitives.

1 let apply_r1 primitives =
2 match get_normal_lines primitives with
3 | true, all_normal_lines,other_primitives ->
4 (
5 match get_planar_singles (flatten all_normal_lines) with
6 | (true,all_singles,other_normal_lines) ->
7 (
8 let single_edges = create_single_edge all_singles in
9 (true,single_edges,(other_primitives@other_normal_lines))

10 )
11 | (_,_,_) -> (false,[],primitives)
12 )
13 | (false,_,_) -> (false,[],primitives)

Listing 7.1: OCAML code for R1

Observe that the get_normal_lines function combines predicates R1.1, R1.2 and R1.3

whereas get_planar_singles represents predicate R1.4. It is worth mentioning here that it is

these predicates who use the parameters we discussed in Section 7.2.3. Also, notice that graph

edges representing planar single bonds are created using the function create_single_edge.

Additionally, notice that the rule returns the entire set of primitives if any of its

predicates is not satisfied. This is evident in lines 11 and 13 of Listing 7.1. Also, notice

that if the rule successfully executes, it returns all remaining primitives as shown in line 9

((other_primitives@other_normal_lines)).

7.5.2 R3: Planar Triple Bond

As illustrated in Figure 7.15, the planar triple bond is usually drawn as three very close

parallel line segments. Cutting can be applied when necessary as explained in Section 7.3. We
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identify a triple planar bond if the following conditions are satisfied:

1. L = {l1, l2, l3} is a set of three line segments

2. ∀l ∈ L : length(l) > wb

3. x ∀l ∈ L : width(l) < bbw

4. l1 ‖ol
bs l2 and l2 ‖ol

bs l3 and l1 ‖ol
2∗bs l3

5. There is no l 6∈ L such that l1 ‖ol
bs l or l2 ‖ol

bs l or l3 ‖ol
bs l

Consequence: Cutting(l1, l2, l3) will yield a triple bond as well as at most four new line

segments.

Figure 7.15: A Triple Planar bond

Notice that the two conditions involving ‖ol
bs in each of rules R1, R2 and R3 ensure that the

rules are mutually exclusive. This means that the two line segments forming the double bond

will not be identified as two separate single bonds. Also, the three line segments forming the

triple bond will not be considered as three separate single bonds nor will they be detected as a

combination of a single and a double bond.

Notice also that R3.2 guarantees that the rule does not capture any line segment that can be

a hollow wedge base (R10 and R11) and R3.3 guarantees that the rule does not capture any bold

line (R15).

In addition to that, the rule ensures that a pattern such as the one illustrated in Figure 7.16

will not be identified as a triple bond. Rather, it will be identified as two double bonds (see B.1).

This is because rule R3 requires that the two shorter lines are overlapping and approximately

parallel.
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Figure 7.16: Cutting produces two double bonds rather than a triple bond

Observe that this rule is one of the two rules that may add new geometric primitives to the

working memory (i.e. our set of primitives which is used as input). The other rule is R2 which

is explained in Appendix B.1. As we illustrated in Figure 7.12 in Section 7.3, there are only

two cases when cutting can be applied. The first case involves cutting the longer line segment

only once which yields one triple bond and one new line segment (Figure 7.12(c)). And in

the second case the longer line segment is cut twice which produces one triple bond and two

new line segments (Figures 7.12(d)). If cutting is successfully applied, the resulting new line

segment(s) will be added to the set of primitives and identified later by rule R1 as planar single

bond(s).

As for our implementation, we provide our code for R3 in Listing 7.2 where we only show

the code for the rule and not the predicates. As we mentioned in Section 5.3, the rule receives a

list of primitives as input and returns a tuple of containing whether it has identified any bonds,

a list of edges representing these bonds and a list of the remaining primitives.

1 let apply_r3 primitives =
2 match get_normal_lines primitives with
3 | (true,normal_lines,o_prmtvs) ->
4 (
5 match get_planar_triples (flatten normal_lines) with
6 | (true,all_triples,o_lines2) ->
7 (
8 match attempt_cutting3 all_triples with
9 | (true, tri_clusters,o_lines3) ->

10 let tri_edges = create_triple_edge tri_clusters in
11 (true,tri_edges,(o_prmtvs@o_lines2@(flatten

o_lines3)))
12 | (false,tri_clusters,_) ->
13 let tri_edges = create_triple_edge tri_clusters in
14 (true,tri_edges,(o_prmtvs@o_lines2))
15 )
16 | (false,_,_) -> (false,[],primitives)
17 )
18 | (false,_,_) -> (false,[],primitives)

Listing 7.2: OCAML code for R3
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Observe that the get_normal_lines function combines predicates R3.1, R3.2 and R3.3

whereas get_planar_triples combines predicates R3.4 and R3.5. Observe also that cutting is

attempted using the function attempt_cutting3 after identifying patterns of three adjacent and

parallel line segments. If this function finds a cuttable cluster of three line segments, it returns a

modified list of three line segments (after being cut) and a list of resulting line segments which

should be returned to the set of primitives. If the three line segment cluster does not require

cutting, it returns the same cluster. Observe that in both cases graph edges representing planar

triple bonds are created using the function create_triple_edge.

Additionally, notice that the rule returns the entire set of primitives if any of its

predicates fails. This is evident in lines 16 and 18 of Listing 7.2. Also, notice that

if the rule successfully executes, it returns all remaining primitives as shown in line 11

((o_prmtvs@o_lines2@(flatten o_lines3))) and line 13 ((o_prmtvs@o_lines2)).

7.5.3 R7: Dashed Bond

A dashed bond is usually drawn as short collinear line segments (Figures 7.6 and 7.17). The

line segments are evenly spaced apart and their length is similar (their length is usually less than

the length of a normal line segment that would be captured by R1, R2 or R3).

Figure 7.17: A Dashed Bond

We identify a dashed bond using the following conditions:

1. L = {l1, . . . , ln}, where n ≥ 3, is a set of line segments

2. ∀l ∈ L : length(l) ∈ dl approximately dl

3. L is approximately collinear

4. No two elements of L have a separation distance of less than the minimum of ds
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5. Two elements of L, called the end elements, dash-neighbour wrt. ds precisely one other

element of L. All other elements of L, called internal elements, dash-neighbour wrt. ds

precisely two other elements of L

Consequence: L forms a dashed bond with endpoints given by the endpoints of the minimal

line segment that contains l1, . . . , ln. The new dashed bond has a down direction with unknown

start and end.

Observe that R7.2 guarantees that the captured line segments will not be captured by any of

R1, R2, R3, R10, R11, R16, R17 or R18. Also, R7.3 guarantees that the pattern is not captured

by R8 and R7.4 guarantees that the pattern is not captured by R12.

1 let apply_r7 primitives =
2 let left_overs = ref [] in
3 let dashed_edges = ref [] in
4 match get_dashes primitives with
5 | true,all_dashes,other_lines ->
6 ( left_overs := other_lines :: !left_overs;
7 match create_col_dash_clusters (flatten all_dashes) with
8 | (true,col_dashes,col_others) ->
9 ( left_overs := col_others :: !left_overs;

10 iter (
11 fun dashes ->
12 (
13 match create_adjacent_dash_clusters dashes with
14 | (true,adj_dashes,adj_others) ->
15 (
16 let dashed_bonds = map (
17 fun cls ->
18 create_dashed_edge cls
19 ) adj_dashes in
20 dashed_edges := dashed_bonds ::

!dashed_edges;
21 )
22 | (false,_,_) ->
23 left_overs := dashes :: !left_overs;
24 )
25 ) col_dashes;
26 match length !dashed_edges with
27 | 0 -> (false,[],primitives)
28 | _ -> (true,(flatten !dashed_edges),(flatten

!left_overs))
29 )
30 | (false,_,_) -> (false,[],primitives) )
31 | false,_,_ -> (false,[],primitives)

Listing 7.3: OCAML code for R7
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As for our implementation, we provide our code for R7 in Listing 7.3 where we only show

the code for the rule and not the predicates. As we mentioned in Section 5.3, the rule receives a

list of primitives as input and returns a tuple of containing whether it has identified any bonds,

a list of edges representing these bonds and a list of the remaining primitives.

Observe that the get_dashes function

combines predicates R7.1 and R7.2 whereas create_col_dash_clusters represents predicate

R7.3. Also, the function create_adjacent_dash_clusters combines predicates R7.4 and

R7.5. Finally, the rule creates graph edges each of which representing a dashed bond using the

function create_dashed_edge.

In addition to that, notice that the rule returns the entire set of primitives if any of its

predicates fails. This is evident in lines 27, 30 and 31 of Listing 7.3. Also, observe that

if the rule successfully executes, it returns all the remaining primitives as shown in line 28

(!left_overs).

7.5.4 R12: Wavy Bond

Wavy bonds (Figure 7.18) are commonly used in chemical structure diagrams. As the

name suggests, they have a wavy form although a less commonly used saw-tooth format can

be encountered in the literature.

Figure 7.18: A Wavy Bond

A vectorisation process will most likely turn a wavy bond into a connected sequence of

short line segments arranged in a saw-tooth, or a zig-zag, pattern. As illustrated in Figure 7.19,

a straight line can pass through the centre points of these line segments. We will identify a

pattern that forms a wavy bond if following conditions are satisfied:

1. L = {l1, . . . , ln}, where n ≥ 3, is a set of line segments
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2. ∀l ∈ L : length(l) ∈ dl

3. All elements of L are connected

4. The centre points of the elements of L are approximately collinear

5. Two elements of L, called the end elements, dash-neighbour precisely one other element

of L. All other elements of L, called internal elements, neighbour precisely two other

elements of L

6. Two end points that are not connected must be the pair of end points that are furthest apart

Consequence: A wavy bond between the furthest two endpoints. The new wavy bond has an

unknown direction and unknown start and end.

Figure 7.19: Dashes in a Wavy Bond

Observe that R12.2 guarantees that none of the captured line segments can be captured by

any of the rules that deal with normal line segments (such as R1-3). Also, R12.3 guarantees that

the line segments will not be captured by either of R8 or R9.

As for our implementation, we provide our code for R12 in Listing 7.4 where we only show

the code for the rule and not the predicates. As we mentioned in Section 5.3, the rule receives a

list of primitives as input and returns a tuple of containing whether it has identified any bonds,

a list of edges representing these bonds and a list of the remaining primitives.

Observe that the get_dashes function combines predicates R12.1 and R12.2 whereas

create_connected_dash_clusters represents predicate R12.3. Also, the function

create_wavy_dash_clusters combines predicates R12.4 and R12.5. Finally, the rule creates

graph edges each of which representing a wavy bond using the function create_wavy_edge.
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1 let apply_r12 primitives =
2 let left_overs = ref [] in
3 match get_dashes primitives with
4 | (true,all_dashes,other_lines) ->
5 ( left_overs := other_lines :: !left_overs;
6 match create_connected_dash_clusters (flatten all_dashes) with
7 | (true,con_dashes,other_dashes) ->
8 ( left_overs := other_dashes :: !left_overs;
9 match create_wavy_dash_clusters con_dashes with

10 | (true,wv_dashes,other_dashes) ->
11 (
12 let wavy_edges = map (
13 fun dashes ->
14 create_wavy_edge dashes
15 ) wv_dashes in
16 match length wavy_edges with
17 | 0 -> (false,[],primitives)
18 | _ -> (true,wavy_edges,(flatten

!left_overs))
19 )
20 | (false,_,_) -> (false,[],primitives) )
21 | (false,_,_) -> (false,[],primitives) )
22 | (false,_,_) -> (false,[],primitives)

Listing 7.4: OCAML code for R12

Furthermore, observe that the rule returns the entire set of primitives if any of its

predicates fails. This is evident in lines 17, 20, 21 and 22 of Listing 7.4. Also, notice that

if the rule successfully executes, it returns all the remaining primitives as shown in line 18

(!left_overs).

7.6 A Fully Worked Example

In this section, we will provide a simple fully worked example to demonstrate how our

recognition process works. As stated before, the process starts with vectorising the input image

to obtain geometric primitives. An example molecular diagram with information extracted after

vectorisation is provided in Figure 7.20. Observe that the actual list of primitives starts at the

second line of Figure 7.20(b). The first line shows the image dimensions and coordinates of its

centroid which are necessary to create a MOL file as we shall explain in Section 8.5.
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(a) Molecular

Diagram

(b) Result of Vectorisation

Figure 7.20: A Molecule Diagram with its Corresponding Set of Primitives

Since the primitive list actually starts at the second line of Figure 7.20(b), we observe that

there are 14 primitives (two character groups and 12 line segments). Observe that the lines

showing character group primitives provide each character group’s label and the coordinates

of its bounding box. Also, observe that the lines showing line segments provide each line

segment’s coordinates, width and slope.

It can be seen in Figure 7.20(a) that only three rules are going to execute, namely, the

rule that captures planar single bonds (R1), the rule that captures planar double bonds (R2)

and the rule that captures planar triple bonds (R3). As we have stated in Section 7.1, our

implementation works in a way such that rules attempt to capture all their target bonds at once

instead of capturing only one bond at a time.

As for the rule execution sequence, if R1 is executed first then this would generate five

graph edges each of which represents a single bond, hence reducing the number of primitives

to nine. If R3 executes next, it would generate one graph edge representing a triple bond and

add two new line segment primitives to the list of primitives which reduces the number of

primitives to eight (notice that R3 removes three line segments and adds two). If R2 executes,

it would generate two graph edges each of which represents a double bond, thus removing four
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line segments from the list of primitives which decreases its size to four. Now R1 is the only

applicable rule to capture the two line segments added by R3 which results in two more graph

edges each of which representing a single bond and reducing the size of the list of primitives to

two (chargroups only). At this stage, no more rules are applicable and therefore the rule engine

terminates and the graph formation process starts.

As shown in Figure 7.21, a different rule execution sequence may start with R3. This would

generate one graph edge representing a triple bond and add two new line segment primitives

to the list of primitives which reduces the number of primitives to 13 (notice that the initial

number of primitives was 14 and R3 would remove three line segments and add two). Now

if the next rule to execute is R2, it would generate two graph edges each of which represents

a double bond, thus removing four line segments from the list of primitives which decreases

its size to nine. Hence, the only remaining applicable rule is R1 which should generate seven

graph edges each of which represents a single bond, thus reducing the number of primitives to

two (chargroups only). Again, at this stage, no more rules are applicable and therefore the rule

engine terminates and the graph formation process starts.

Table 7.2 provides the results of an experiment in which we ran our tool 10000 times on the

diagram provided in Figure 7.20(a). The table shows all the possible rule execution orders and

the number of their occurrences. Observe that we compared all the resulting MOL files against

the benchmark MOL file of the used diagram and they were all matching.

Rule Sequence # of Occurrences
R2-R1-R3-R1 1672 times
R3-R1-R2 1695 times
R1-R3-R2-R1 1603 times
R2-R3-R1 1673 times
R3-R2-R1 1655 times
R1-R2-R3-R1 1702 times

Table 7.2: Possible Rule Execution Sequences with their Occurrence Frequency
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Figure 7.21: A Fully Worked Example of how our Recognition System Works
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7.7 Summary

This chapter has provided a description of our rules. We have started by providing more

details about our implementation and then defined the geometric primitives, explained some

fundamental concepts and defined several preliminary parameters which are needed by the

recognition system. After that, we have given a tabular summary of the 18 rules comprising

our rule engine. Also, a detailed discussion of four of these rules has been provided in this

chapter with the remaining rules explained in Appendix B. As for the four discussed rules, we

have explained their predicates and how they capture and rule out various patterns. Not only

this, but we have also provided sample OCAML code to show how we have implemented these

rules. At the end of the chapter, we have provided a simple fully worked example where we

demonstrated how the entire recognition process works. In the next chapter, we shall show how

we form a graph data structure and use it to generate a suitable output.
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CHAPTER 8

GRAPH FORMATION AND OUTPUT
GENERATION
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After detailing the components of our rule-based recognition system and providing a description

of its embeddings, we shall now explain how we generate a suitable output. As explained in

Chapter 7, one or more graph edges are created after a rule successfully executes. We will

show in this chapter how we use these edges to construct a graph data structure to represent a

chemical structure diagram, post-process it and output a MOL file. Our explanation will include

some rules-of-thumb to avoid incorrectly forming a graph as well as our method for expanding

superatoms. We will discuss our approach for guessing the stereocentre of a 3-dimensional

bond when it is unknown. Additionally, we will illustrate our method of generating a MOL file

from the graph. We will end the chapter by listing the steps of a typical procedural approach for

recognising chemical structure diagrams.

8.1 Formation of Graph

As we have mentioned in Section 3.1.1, a mathematical graph can be used to represent a

chemical structure. A mathematical graph G is a pair (V, E) of sets, the vertex set V and the

edge set E. As these sets are application dependent, using a graph data structure to represent a

chemical diagram only requires representing nodes as vertices and bonds as edges.

An example chemical structure diagram and its corresponding graph are provided in

Figure 8.1 where every node in the graph represents an atom and every edge represents a bond.

It can be noticed that there are multiple vertices with the same label, the implied C atom.

This may lead to ambiguity in distinguishing atoms (vertices) when processing the graph and

therefore we allocate them unique identifiers. Apart from the label, we give vertices another

attribute and that is the geometric location of the node in the original image. This location

can be computed easily by averaging the x and y components of each line segment endpoint

associated with the node. This location is vital for generating a corresponding MOL file as we

will explain in Section 8.5.

Notice that rules R16 and R18 (Appendix B.12 and B.14 respectively) require a preliminary

graph to operate. This means that their execution must be delayed until all the other rules have

finished executing. To form a graph using the output obtained from the rule engine, several
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(a) Molecular Structure (b) The Corresponding Chemical Graph

Figure 8.1: Graph Representation of a Chemical Structure

parameters need to be set. Since the output can be represented as a list of graph edges, distances

to judge whether edges are connected or not need to be set. Also, chargroup primitives should

be used since they represent graph vertices and share one or more edges. Another distance

that should be appropriately configured is the distance between an edge and a chargroup that

it is attached to. In the absence of an explicit chargroup, a label of C, representing a Carbon

atom, should be used. Some heuristics that can be used to precisely build a graph representing

a chemical structure are suggested in Section 8.2.

Additionally, one should pay attention to the output of rules R4, R5 and R6. Since the

patterns captured by these rules can be one bond in one direction and another bond in the

orthogonal direction, we resolve them after building an initial graph. The idea is to examine the

position of each pattern and decide what they represent based on the result of that examination.

Two issues should be resolved after the graph has been built. The first issue is that of

superatoms. By looking at Figure 8.1, it can be noticed that the node with the SO2 label is itself

a graph since the SO2 is a superatom (Section 3.1.5.3). As we will explain in Section 8.3, we

need to expand the superatom so we can fully generate a graph data structure.

The second issue relates to the direction of dashed, bold and dashed bold bonds. We will
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introduce our suggested mechanism for guessing these directions in Section 8.4.

8.2 Heuristics for Graph Formation

The following list of points should be considered when building a graph data structure that

represents a chemical structure. These heuristics are based on observation and rules of thumb,

and they have been used in the tool developed as part of this work.

• Nodes can either be closed or open in a chemical structure diagram (Figure 8.2). When

a node has at least two connected line segments, we denote it as Closed. An Open node

is a node that has no connected line segments. We use this to constraint the identification

step so that a closed node can not have an explicit chargroup (atom) even if one is in

close proximity. This is significant because it allows us to better classify and identify

nodes. For example, as Figure 8.2(a) shows the CH3 should not be associated with the

shadowed node despite being very close to it. On the other hand, if an open node has no

explicit atom, lines forming this node must be parallel. As illustrated in Figure 8.2(b), the

two shadowed line endpoints do not belong to the same node even though they are within

close proximity of one another.

(a) Closed Node (b) Open Node

Figure 8.2: Closed and Open Node Examples

• Lines connected to explicit atoms must be pointing towards them. This means that if a

line’s endpoint is very close to an explicit atom, then for the line to be connected to that

atom, if extended, should pass through the atom’s bounding box (Section A.2.2). (i.e. the

line must be pointing towards the atom). This is illustrated in Figure 8.3, atom A has two

very close line endpoints, one has been shadowed and one has not. When extending the
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line, which endpoint has been shadowed, it can be seen that the line will not go through

A’s bounding box, and therefore it is not connected to it. However, if the other line is

extended, it will pass through A’s bounding box and therefore it is connected to it.

Figure 8.3: Line Close to Atom but not pointing towards it

8.3 Expanding Superatoms

As we have mentioned in Sections 2.2 and 3.1.5.3, superatoms are used as shortcut names of

substructures to save display space. Examples of a chemical structure diagrams with superatoms

are shown in Figure 8.3.

(a) (b)

(c) (d)

Figure 8.4: Example Superatoms (Highlighted)

We have stated that it is not straightforward to know how the superatom is exactly connected

to the main structure. In an attempt to resolve this problem, we suggest using a dictionary —

of a large number of superatom names — which should contain superatom names and their

corresponding substructures.

Unfortunately, we have not yet been able to find a definitive dictionary of this type, although
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a useful one can be found at [64]. Some existing attempts to solve the problem use a dictionary

based on mapping names to SMILES strings and generate the corresponding structure from

that.

The SMILES expression does not identify which atoms of the superatom connect to the

surrounding structure. When there is only one such connecting point, the atom in question can

usually be identified by considering valencies on the atoms. However, if there are two or more

bonds between the superatom and the surrounding structure, it is unclear how to determine the

appropriate permutation of connection possibilities to match the actual chemical structures in

question.

Rather than using SMILES expressions, we chose to mine the MOL files of the

benchmark dataset made available by OSRA [104] and the training dataset made available

by TREC11 [102] to identify more complete information about superatoms than are available

from their SMILES strings. Superatoms in benchmark MOL files identify the superatoms in

situ, marking each atom of the whole structure that belongs to the superatom, together with

the internal bonds in the superatom and the external bonds between the superatom and the

surrounding structure.

Figure 8.5: Superatom Dictionary

Subsequently, we have built a detailed dictionary of superatoms and their internal

information. As Figure 8.5 illustrates, each entry in the dictionary has several fields. The

first field represents the superatom’s name, the second field provides the number of connections

to the main structure, the third field provides an adjacency list corresponding to the superatom

substructure, the fourth field shows which atom IDs of the superatom are connected to the main
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structure, the fifth field is a list of the atoms forming the superatom’s substructure with their

unique identifiers and the sixth field shows which atoms has any charge.

This still leaves us with the connection permutation problem, but at least gives us

unambiguous internal connection information and identification of the connecting atoms.

8.4 Guessing the Stereocentre

For 3-dimensional bonds with unknown stereochemistry, as in Figure 8.6, one needs to

decide the stereo nature of the bond, i.e. which side of the bond is the stereocentre.

(a) Bold bond (b) Dashed bond (c) Dashed bold
bond

Figure 8.6: Bonds with Unknown Stereochemistry

Usually, the syntax of the diagram does not give sufficient information to resolve this

correctly (Figure 8.7(a) and 8.7(b)) so, in the absence of better domain knowledge, we suggest

using a number of heuristics based on observed patterns in diagrams which have been analysed

previously. These heuristics can use information about the number of neighbours on each end

of the bond in question.

(a) (b)

Figure 8.7: Which atom is the stereocentre?

In more detail, after the graph is built, we examine it using the following procedure:

• If the bond in question has a free end, as in Figure 8.8(a), then the stereocentre is assumed

to be the atom at the non-free end.

• If the bond in question does not have a free end, i.e. the bond is connected to other bonds

from both sides as in Figure 8.8(b), then the end with the smallest number of neighbours

is chosen to be the stereocentre.
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• If the two nodes on both sides of the bond have the same number of neighbours, the

stereocentre is chosen at random.

(a) Stereocentre is
atom number 1

(b) Stereocentre
is atom number 2

Figure 8.8: Determining the Stereocentre

8.5 Outputting MOL File

After building a graph data structure that captures details and connectivity information of

a given image that contains a chemical structure, one possible output would be a MOL file

(Figure 8.9). We have discussed the structure of MOL files in Section 3.1.5.1. The number of

atoms, number of bonds, any atom charge information, bond type and bond orientation can be

easily obtained from the generated graph.

One interesting output that needs to be calculated is the atom coordinates. Since MOL

files use Angstroms, using normal coordinates would not be appropriate. However, we use the

following procedure to calculate a reasonable estimate of these coordinates:

1. Calculate the input image’s centroid (centre of gravity) using Equation A.3.

2. The node centres should be available from the generated data structure (a node’s centre

can be obtained by averaging the x and y components of the endpoints of all the bonds

that belong to the node).

3. Now, given x̄ and ȳ as the two components of the image’s centroid, xc and yc are a given

node’s two coordinates (node centre), we compute the approximate X and Y coordinates

of the node in the MOL file as follows:

X =
xc − x̄

100
and Y =

yc − ȳ

100
(8.1)
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(a) A Chemical Structure

(b) The Corresponding MOL file

Figure 8.9: An Example Structure with its MOL file

8.6 Steps of Procedural Implementation

In the procedural approach we are going make an attempt to extract a molecule diagram from

a bitmap image, and construct a graph data structure representing that molecule and generate

a MOL file. We are going to carry out the recognition process by a combination of standard

techniques and bespoke algorithms. Figure 8.10 presents intermediate results of the recognition

procedure for an example molecule image. As the figure illustrates, the steps can be summarised

in the following points:
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Figure 8.10: Recognition steps for the molecule C9H9NO.

• Preprocessing. We perform image binarisation using Otsu’s method [73] and follow it

by identifying connected components. After that, we perform OCR by extracting a set

of structural features from connected components and applying a Euclidean metric based

classification. We also detect circles and distinguish them from “O” atoms using a size

filter. We remove all connected components recognised as characters from the image and

use some contextual information to disambiguate difficult cases.

• Polyline Extraction. At this point we produce a new copy of the diagram (a character

free diagram) and apply a thinning algorithm to connected components to thin them to

a single pixel width. Using the thinned lines as a guide, we walk the corresponding

paths in the original image to determine the average line width by finding the largest disc

that fits wholly with the stroke width of the line. At the same time, we build a polyline

representation of the thinned lines. We split polylines, at every junction where three or

more polylines meet, into separate polylines. We also identify Closed polylines.

We then apply the Douglas-Peucker line simplification algorithm [32] to the resulting

polylines with the simplification threshold set to between 1 and 2 average line widths as

found above. Occasionally, some spikes on the polylines that were produced as artifacts

of thinning can remain after applying the line simplification. If these are detected, the

un-thinned image is smoothed, binarised, thinned and the line simplification process is

repeated.

• Bond analysis. Now we calculate a first estimate of average bond length of all the line
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segments in the discovered polylines. This estimate is refined as the recognition procedure

progresses.

To extract precise geometric information solid wedge and bold bonds we employ the same

approach explained in 6.3.

We detect dashed wedge and dashed bold bonds by identifying short lines whose centre

points are regularly spaced within a certain tolerance. A more direct approach based on

using their slope is not reliable because of the difficulty of accurately finding the slope of

such short lines. While we identify dashed bonds as repeated short collinear lines.

Wavy bonds are reduced after thinning and line simplification to a sawtooth pattern

polyline of connected short line segments. This is straightforward to identify when

following the polyline.

Parallel lines close together where each is of approximately the average bond length

indicate a double (or triple) bond. Parallel lines where at least some are shorter than

the others indicate a sequence of separate bonds with an atom at the node identified by

the end of the shorter lines. We identify all these by clustering lines of the same slope

that are within a threshold distance of each other. In the bond sequence case, the long

lines are split at the point where the short lines end, so that a node to hold the implied

atom is created. Hollow wedge bonds are identified as groups of lines forming isosceles

triangles.

• Graph Creation and Further Bond Analysis. We construct an initial undirected graph

at this point where each bond is an edge and each junction is a node. We achieve this by

grouping line segment endpoints by distance and by connectivity to the bounding box of

atoms in order to construct each node. We label each vertex of the graph with the atom or

molecular sub-formula it represents. In our example in Figure 8.10, a vertex is introduced

for each of the carbon atoms as well as one for each of the sub-formulas NCO and C2H5.

Note that NCO is a superatom and it has to be expanded. Note also that each carbon atom

that is normally omitted in the molecule depiction is explicitly represented with a label C
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in the graph. We also label the edges of the graph with the type of bond they correspond

to.

After forming the initial graph, we detect open bridge bonds by identifying the pattern

of three line segments, two of which have the same slope and are aligned with their

closest end points within a threshold distance of each other, and where the third segment

passes between the endpoints of the first two. On the other hand, closed bridge bonds

are identified by examining “X” junctions and checking that the corresponding lines are

part of irregularly shaped cycles. Non bridge bond cycles are always regularly shaped

polygons. Irregularity, detected by junction angles outside expected ranges, is a clear

indication of 21/2-dimensional perspective drawing of some structure.

We follow this by dealing with aromatic rings. Circles indicating the existence of aromatic

rings are identified during the OCR stage. We detect nodes surrounding these circles

according to their geometric location and then update the corresponding bonds linking

these nodes appropriately.

• Guessing stereocentres. As we have built the initial graph and have labelled its edges

with the type of bond they correspond to, we make an attempt to guess the stereocentre of

dashed, bold and bold dashed bond at this stage of the recognition procedure. We carry

out the guessing process using the approach which we are going to explain in Section 8.4.

• Expanding Superatoms. The last step we carry out before producing a MOL file

is to expand any existing superatoms. Since superatoms have a potentially complex

substructure that can contain many atoms and bonds, we expand them and replace them

in the molecule graph. We looked them up in our superatom dictionary (see Section 8.3

for more details on this), construct their corresponding graph and plug it into the main

graph data structure.

• Generating MOL file. At this stage, we use the resulting graph data structure to generate

a MOL file using the approach explained in 8.5.
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8.7 Summary

This chapter explains how we construct a graph data structure to represent a chemical

structure diagram and use it to generate a MOL file. We have provided some rules-of-thumb

in order to correctly build such a graph. In addition to that, we have explained how we post-

process the graph by expanding superatoms and guessing stereocentres when they exist. We

have dedicated the last section of this chapter to list the steps of a procedural approach which

we have developed. The next chapter, which is the last of this part, will address several issues

about our rule-based recognition system.
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CHAPTER 9

EXTENSIBILITY AND FLEXIBILITY OF THE
APPROACH
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We have provided a tabular summary of our 18 rules and explained in detail a selection of

four of these rules in the previous chapter. As for the selected rules, we have discussed their

predicates, how they capture and rule out various patterns and provided sample OCAML code

to show how we have implemented these rules. We have also demonstrated how our entire

recognition process works by providing a simple fully worked example. In this chapter, we are

going to discuss a number of issues related to a rule-based recognition system like ours. In

particular, we are going to address conflicts, rule execution order, system termination and the

issue of circularity.

After that, we will demonstrate the extensibility of our rule-based approach by showing that,

despite having 18 rules, the number of rules can grow to widen the scope of handled bond types

and bond arrangements.

9.1 Discussion of Rules

Many issues arise when designing a rule-based system for pattern recognition. These issues

include rule conflicts, order of rule execution, when, or how, should the recognition system

terminate and an issue known as circularity.

9.1.1 Rule Conflicts

Rule conflicts and order of rule execution are closely related in the context of our work.

Observe that by rule conflicts we mean a situation when multiple rules can have their conditions

satisfied resulting in a subset of rules, usually denoted the conflict set, that should execute. If

such a scenario happens, a mechanism to resolve such conflicts is vital to choose which rule of

the conflict set should execute. Additionally, by rule execution order we mean a situation when

it is necessary to execute one or more rules before other rules.

The correct choice of parameter values (Section 7.2.3) helps to minimise rule conflicts.

Furthermore, choosing a subset of rules that must execute before other rules improves

performance and eliminates rule conflicts.

For example, a single line segment which length is above wedge base length and which
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width is less than bold bond width would be captured by R1, R10, R11, R16, R17 or R18. To

avoid such conflict, we make sure that R1 is executed at least once before any of R10, R11,

R16, R17 and R18. Also, another case is when a dashed wedge bond is formed of very short

dashes (often at the pointy end), these dashes can be captured by R7 and interpreted as a dashed

bond. This can lead to a dashed wedge bond being interpreted as two bonds (dashed wedge and

dashed, or dashed bold and dashed). To avoid this situation, we ensure that R9 is executed at

least once before R7.

9.1.2 System Termination

Another issue that may arise is when the rule system terminates. As we explained in

previous chapters, the idea of a rule-based system is for the rule engine to constantly access

the working memory (i.e. the set of primitives) and examine if any primitive, or subset of

primitives, satisfies any rule conditions. If this is true, this subset of primitives is removed

from the working memory when the rule executes – bear in mind that R2 and R3 can add

new primitives to the primitive set. This procedure should continuously run until a termination

mechanism is met.

One suitable termination mechanism is when the working memory becomes empty, i.e. there

are no more primitives in the primitive set. However, because the rules do not explicitly make

use of chargroup primitives, this mechanism may be modified to terminate the rule system when

the primitive set contains only chargroup primitives.

However, a case when the primitive set contains primitives other than chargroups which are

not captured by any rule can exist. A typical example is when a circle primitive which is not

part of an aromatic cycle exists. Because R16 will not remove this circle from the primitive

set (remember it is not part of an aromatic cycle), the previous termination mechanism will

not be satisfied and the whole system may enter an infinite loop. To avoid such a scenario, we

add another termination mechanism that ensures the system does not go into an endless loop.

Namely, we terminate the rule execution if the system goes through all the rules and none of

them applies. In other words, we will terminate if the rule engine attempts to execute the 18
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rules and no rule executes.

9.1.3 Circularity

Not only that, but one needs to pay attention to another situation that might occur. Because

some of our rules (namely R2 and R3) remove as well as generate and add geometric objects

to the set of primitives, one needs to realise that the system might enter an infinite cycle of

removing and adding geometric primitives. We will refer to such a scenario as Circularity. We

make sure that our system does not fall into circularity by making sure that these rules apply

cutting only when necessary. We control this by choosing a suitable value for the overlap

parameter (Section 7.2.3) and by making sure that these rules are not executed again until

other rules have been attempted as we have mentioned in Section 5.3. Observe that we have

demonstrated the effectiveness of our approach by running our tool 10000 times on a chemical

diagram image that contains a cuttable triple bond and our tool terminated successfully in all

runs (see Section 7.6 for more details).

9.2 More Bond Types

To provide proof for the extensibility of the approach, we are going to add rules to capture

four new bond types. We will explain the necessary conditions to capture each of them and the

required changes to any of the previously introduced 18 rules in the next subsections.

9.2.1 R19: Aromatic Bond

Figure 9.1: Aromatic Bond

This bond is usually illustrated as two parallel dashed lines (a double dashed bond as in

Figure 9.1). The two lines have the same number of dashes and every dash on one line appears
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as the orthogonal projection of another dash on the other line. Therefore, we will distinguish

between this type of bonds and the dashed bond by adding one or more conditions to those of

the dashed bond and building a set of rules specifically to identify this type of bonds.

In Section 7.5.3, we had the following conditions in the original rule to identify a dashed

bond (R7):

1. L = {l1, . . . , ln}, where n ≥ 3, is a set of line segments

2. ∀l ∈ L : length(l) ∈ dl

3. L is approximately collinear

4. No two elements of L have a separation distance of less than the minimum of ds

5. Two elements of L, called the end elements, dash-neighbour wrt. ds precisely one other

element of L. All other elements of L, called internal elements, dash-neighbour wrt. ds

precisely two other elements of L

Consequence: L forms a dashed bond with endpoints given by the endpoints of the minimal

line segment that contains l1, . . . , ln. The new dashed bond has a down direction with unknown

start and end.

To distinguish a dashed bond from an aromatic bond, we are going to add the following

condition to the conditions we have used to capture a dashed bond (R7):

• There is no line segment l′ 6∈ L such that l′ ‖ol
bs l where l ∈ L

Observe that this condition ensures that there is not line segment that parallel to and is in

close proximity of any dash in the dashed bond.

Now to capture an aromatic bond, we are going to use the following conditions:

1. L1 = {l1, . . . , ln}, where n ≥ 3, is a set of line segments

2. L2 = {l1, . . . , ln}, where n ≥ 3, is a set of line segments

3. Cardinality of L1 equals cardinality of L2
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4. L1 is approximately collinear as well as L2

5. L1 and L2 are not collinear (notice the difference when compared to the previous

predicate)

6. No two elements of L1 have a separation distance of less than the minimum of ds , the

same applies to L2

7. Every l ∈ {L1 ∪ L2} has length of approximately dl

8. For every l1 ∈ L1, there is one and only one l2 ∈ L2 such that l1 ‖ol
bs l2

only one element in L2

9. Two elements of L1, called the end elements, dash-neighbour wrt. ds precisely one other

element of L1. All other elements of L1, called internal elements, dash-neighbour wrt.

ds precisely two other elements of L1

10. Two elements of L2, called the end elements, dash-neighbour wrt. ds precisely one other

element of L2. All other elements of L2, called internal elements, dash-neighbour wrt.

ds precisely two other elements of L2

Consequence: L forms an aromatic bond with endpoints given by the endpoints of the minimal

line segment that contains L1 and L2.

9.2.2 R20: Tautomeric Bond

Figure 9.2: Tautomeric Bond

As shown in Figure 9.2, a tautomeric bond is often drawn as a normal line segment parallel

to a dashed line, (in other words, as a dashed line parallel to a normal line segment). Every
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dash of the dashed line can be fully orthogonally projected on the normal line segment with two

dashes having one end point of theirs coinciding with one of the normal line’s endpoints.

Therefore, we will distinguish between this type of bonds and the dashed and single bonds

by adding more condition(s) to those of the dashed bond and single bond and building a set of

rules specifically to identify this type of bonds.

In Appendix 7.5.1, we had the following conditions in the original rule to identify a planar

single bond (R1):

1. l is a line segment

2. length(l) > wb

3. width(l) < bbw

4. There is no line segment l′ such that l ‖ol
bs l′

Consequence: l is a single bond with endpoints of l.

To distinguish a single planar bond from a tautomeric bond, we are going to add the

following condition to the conditions we have used to capture a single planar bond (R1):

• There is no line segment l′ such that l′ has length of approximately dl and l′ ‖ol
bs L

Additionally, in Section 7.5.3, we had the following conditions in the original rule to identify

a dashed single bond (R7):

1. L = {l1, . . . , ln}, where n ≥ 3, is a set of line segments

2. ∀l ∈ L : length(l) ∈ dl

3. L is approximately collinear

4. No two elements of L have a separation distance of less than the minimum of ds

5. Two elements of L, called the end elements, dash-neighbour wrt. ds precisely one other

element of L. All other elements of L, called internal elements, dash-neighbour wrt. ds

precisely two other elements of L
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Consequence: L forms a dashed bond with endpoints given by the endpoints of the minimal

line segment that contains l1, . . . , ln. The new dashed bond has a down direction with unknown

start and end.

To distinguish a dashed bond from a tautomeric bond, we are going to add the following

condition to the conditions we have used to capture a dashed bond (R7):

• There is no line segment l′ such that l′ has length of > dl and for every line segment l ∈ L

there is not line l such that l ‖ol
bs l′

Now to capture a tautomeric bond, we are going to use the following conditions:

1. L = {l1, . . . , ln}, where n ≥ 4, is a set of line segments

2. L can be split into two distinct sets L1 and L2 such that:

(a) L1 = {l1} such that length of >> dl

(b) Every l ∈ L2 has length of approximately dl

3. Every l ∈ L2 is parallel to, and with overlap of dl , l1

4. L2 is approximately collinear

5. No two elements of L2 have a separation distance of less than the minimum of ds

6. Two elements of L2, called the end elements, dash-neighbour wrt. ds precisely one other

element of L2. All other elements of L2, called internal elements, dash-neighbour wrt.

ds precisely two other elements of L2

Consequence: L forms a tautomeric bond with endpoints given by the endpoints of the

minimal line segment that contains L1 and L2.
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Figure 9.3: Double Bond with Type 1 Stereochemistry

9.2.3 R21: Double Bond with Type 1 Stereochemistry

A double bond with stereochemistry is usually drawn in one of two ways. We will cover

the first way in this rule and cover the second way in the next rule (R22). As Figure 9.3 shows,

it is drawn as a bold line parallel to a normal line. The two lines have the same length and

they are very close. In order to capture a bond of this type and avoid having the two lines

identified as individual single planar and bold bonds, we are going to modify the rules that we

have introduced to capture single planar bonds (R1 in Appendix 7.5.1) and bold bonds (R15 in

Section B.11).

In Appendix 7.5.1, we had the following conditions in the original rule to identify a planar

single bond (R1):

1. l is a line segment

2. length(l) > wb

3. width(l) < bbw

4. There is no line segment l′ such that l ‖ol
bs l′

Consequence: l is a single bond with endpoints of l.

To distinguish a single planar bond from a double bond with type 1 stereochemistry, we are

going to add the following condition to the conditions we have used to capture a single planar

bond (R1):

• There is no line segment l′ such that width(l′) > bbw , len(l′) > wb and l′ ‖ol
bs l
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Also, in Section B.11, we had the following conditions in the original rule to identify a bold

bond (R15):

1. l is a line segment

2. width(l) > bbw

Consequence: A bold bond. The new bold bond has an up direction with unknown start and

end.

To distinguish a bold bond from a double bond with type 1 stereochemistry, we are going to

add the following condition to the conditions we have used to capture a bold bond (R15):

• There is no line segment l′ such that width(l′) < bbw , len(l′) < wb and l′ ‖ol
bs l

Now to capture a double bond with type 1 stereochemistry, we are going to use the

following conditions:

1. L = {l1, l2}, is a set of two line segments

2. width(l1) < bbw

3. width(l2) > bbw

4. length(l1) > wb and length(l2) > wb

5. l1 ‖ol
bs l2

6. There is no line segment l 6∈ L such that l1 ‖ol
bs l or l2 ‖ol

bs l

Consequence: L forms a double bond with type 1 stereochemistry with endpoints given by the

endpoints of the minimal line segment that contains l1 and l2.

9.2.4 R22: Double Bond with Type 2 Stereochemistry

As we have shown in Figure 9.4, the second type of a double bond with stereochemistry is

drawn as two normal lines crossing at the middle. This results in a pattern of shorter lines of
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Figure 9.4: Double Bond with Type 2 Stereochemistry

similar length forming an “X” junction. Notice that the free (unconnected) endpoints of these

lines can be split into two pairs where the distance between each two endpoints of each pair is

small, and, the distance between any endpoint from one pair and any endpoint from the other

pair is relatively large. Notice also that the junction can be misinterpreted as part of a closed

bridge bond, or as a valid node (junction).

In Appendix B.14, we had the following conditions in R18 to capture a closed bridge bond:

1. L = {l1, l2, l3, l4} is a set of line segments

2. l1 and l2 are approximately collinear, as are l3 and l4

3. l1 and l2 have a separation distance of 0, as do l3 and l4

4. l1 and l2 are part of an irregularly shaped cycle

5. There is no character group where these lines connect

Consequence: Replace l1 and l2 with the smallest line segment containing them, and similarly

for l3 and l4.

To distinguish a closed bridge bond from a double bond with type 2 stereochemistry, we are

going to add the following condition to the conditions we have used to capture a closed bridge

bond (R18):

• The distance between the unconnected endpoints of l1 and l3 is > bs

• The distance between the unconnected endpoints of l2 and l4 is > bs
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• The distance between the unconnected endpoint of any of l1 or l3 and the unconnected

endpoint of any of l2 or l4 is > bs , and vice versa

Now to capture a double bond with type 2 stereochemistry, we are going to use the

following conditions:

1. L = {l1, l2, l3, l4} is a set of line segments

2. length(l1), length(l2), length(l3) and length(l4) are approximately the same

3. L can be split into two distinct sets L1 = {l1, l2} and L2 = {l3, l4} such that:

(a) Elements of L1 are approximately collinear

(b) Elements of L1 have a separation distance of 0

(c) Elements of L2 are approximately collinear

(d) Elements of L2 have a separation distance of 0

4. The distance between the unconnected endpoints of l1 and l3 is within bs

5. The distance between the unconnected endpoints of l2 and l4 is within bs

6. The distance between the unconnected endpoint of any of l1 or l3 and the unconnected

endpoint of any of l2 or l4 is � bs , and vice versa

Consequence: L forms a double bond with type 2 stereochemistry with endpoints given by the

endpoints of the minimal line segment that contains L1 and L2.

9.3 Summary

We have addressed a number of the issues of rule conflicts, rule execution order, system

termination and the issue of circularity in the first section of this chapter. In the second section

we have discussed the extensibility of our rule-based approach. Four new bond types have

been introduced and the necessary changes to any of the original 18 rules have been provided.

In the next chapters we will provide a detailed overview of our experimental evaluation and

conclusions.
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Evaluation
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CHAPTER 10

EVALUATION
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We are going to discuss the experimentation and subsequent evaluation of the designed rules

in this chapter. We have implemented a tool to validate and demonstrate the robustness of our

rules. In the remaining parts of this chapter, we will refer to the tool as MolRec. It is worth

mentioning here that we have developed two versions of MolRec. A brute-force procedural

version, where the execution always follows the same list of steps as we have explained in

Section 8.6, and a version where we implemented our rules in a way such that the order of

rule execution is not predetermined. The first will be referred to as procedural MolRec and the

second will be referred to as random MolRec.

We have used various chemical diagram benchmark datasets to evaluate MolRec. This

includes the publicly available dataset provided by OSRA [104], a dataset which we have

created that is available at [10], two datasets from TREC11 [102] and two datasets from

CLEF12 [27]. Observe that we may refer to the dataset which we have created as the Maybridge

dataset. To carry out evaluation, we have used OpenBabel [72], which is a freely available

tool that provides the ability to compare different MOL files semantically while ignoring

unimportant syntactic differences. However, for cases where generating the MOL file that

captures the intended meaning of all symbols and formations available in a structure is difficult,

such as when Markush structures are involved, the resulting MOL files were converted into

images using ChemAxon’s molconvert [65] and the evaluation was done visually.

Observe that before we present a comparison between MolRec and other existing systems,

we will first repeatedly run random MolRec on a selection of images from the above mentioned

datasets. This will be a method to validate our rules and evaluate their robustness.

10.1 Repeatability on Selection of Images

In order to test our implementation, we have used the above mentioned chemical diagram

benchmark datasets which include the OSRA dataset, our dataset, the datasets from TREC11

and the datasets from CLEF12.

As an experiment, we have randomly selected 100 images from the OSRA dataset, 100

images from our dataset, 50 images from the TREC11 datasets and 50 images from the CLEF12
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datasets. We have run random MolRec on these images several times and evaluated the results

using the method we discussed in Section 5.5 and the results were always the same as shown in

table 10.1.
Dataset # of Images # of Mis-recognised Images
OSRA 100 12
Ours (Maybridge) 100 8
TREC11 50 2
CLEF12 50 5

Table 10.1: Results of Running our Tool several times on Selection of Images

Not only this, but we have chosen two images from the correctly recognised images from

each of these selections and run random MolRec on each of these images 10000 times. We have

compared the resulting MOL files against the benchmark MOL files of these images and all of

the results were correct.

Additionally, we have recorded all the possible rule execution orders for all of these images

and counted how many times each possible rule execution order occurred. This is illustrated in

the following group of figures and tables.

Figures 10.1 and 10.2 show the two images we have chosen from the OSRA subset.

The figures also show the frequency of all possible rule execution orders. Observe that for

Figure 10.1, we can have any order of R1, R2 and R12, whereas for Figure 10.2, we can have

any order of R1 and R2 followed by R16. This is because we delay the execution of R16

until other rules have executed as it requires an initial graph as we mentioned in Table 7.1 and

Appendix B.12.

Rule Sequence # of Occurrences
R2-R1-R12 1613
R1-R12-R2 1714
R1-R2-R12 1726
R12-R2-R1 1616
R2-R12-R1 1668
R12-R1-R2 1663

Figure 10.1: An Example image from OSRA Dataset with its Rule Execution Sequence

138



Rule Sequence # of Occurrences
R1-R2-R16 4974
R2-R1-R16 5026

Figure 10.2: Another Example image from OSRA Dataset with its Rule Execution Sequence

The two images we have chosen from the Maybridge subset with the frequency of all

possible rule execution orders are provided in Figures 10.3 and 10.4 respectively. Observe

that for Figure 10.3, we can have any order of R1, R2 and R3, whereas for Figure 10.4, we can

have any order of R1 and R2.

Rule Sequence # of Occurrences
R3-R1-R2 1702
R1-R2-R3-R1 1699
R1-R3-R2-R1 1637
R2-R1-R3-R1 1680
R3-R2-R1 1622
R2-R3-R1 1660

Figure 10.3: An Example image from Maybridge Dataset with its Rule Execution Sequence

Rule Sequence # of Occurrences
R1-R2 4982
R2-R1 5018

Figure 10.4: Another Example image from Maybridge Dataset with its Rule Execution
Sequence

In addition to the previous sample images, we illustrate the two images we have chosen from

the TREC11 subset with the frequency of all possible rule execution orders in Figures 10.5

and 10.6 respectively. Observe that for Figure 10.5, we can have any order of R1 and R2,

followed by R18. This is because we delay the execution of R18 until R1 has executed and an
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initial graph has been built as we have stated in Table 7.1 and Appendix B.14. Notice that in

our implementation we effectively delay the execution of R18 until other rules have executed

and an initial a graph has been built. For the image in Figure 10.6, we can have any order of

R1, R2 and R7.

Rule Sequence # of
Occurrences

R1-R2-R18 4992
R2-R1-R18 5008

Figure 10.5: An Example image from TREC11 Dataset with its Rule Execution Sequence

Rule Sequence # of Occurrences
R1-R2-R7 2988
R2-R1-R7 3010
R2-R7-R1 1418
R7-R1-R2 564
R1-R7-R2 1479
R7-R2-R1 541

Figure 10.6: Another Example image from TREC11 Dataset with its Rule Execution Sequence

The last two images we are going to display in this section are the images we have chosen

from the CLEF12 subset. These are shown with the frequency of all possible rule execution

orders in Figures 10.7 and 10.8 respectively. Observe that for Figure 10.7, we can have any

order of R1, R2 and R14 followed by R17. This is because we delay the execution of R17 until

R1 has executed at least once as we mentioned in Table 7.1 and Appendix B.13. Notice that in

our implementation we effectively delay the execution of R17 until other rules have executed

and an initial a graph has been built. On the other hand, notice that we can have any order of

R1, R2 and R7 for Figure 10.8.
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Rule Sequence # of Occurrences
R2-R1-R14-R17 1622
R1-R14-R2-R17 1608
R14-R2-R1-R17 1712
R1-R2-R14-R17 1683
R14-R1-R2-R17 1643
R2-R14-R1-R17 1732

Figure 10.7: An Example image from CLEF12 Dataset with its Rule Execution Sequence

Rule Sequence # of Occurrences
R1-R2-R12 1683
R2-R12-R1 1653
R1-R12-R2 1652
R2-R1-R12 1684
R12-R1-R2 1671
R12-R2-R1 1657

Figure 10.8: Another Example image from CLEF12 Dataset with its Rule Execution Sequence

10.2 Comparison with Existing Systems

We shall now provide our comparison and evaluation of the performance of MolRec

against the performance of OSRA [38] on two datasets. Additionally, we are going to present

performance evaluation results from two international events that we participated in.

10.2.1 Experiments using the OSRA Dataset

OSRA’s benchmark set comprises 5735 computer generated diagrams with their

corresponding MOL files. Both procedural MolRec and OSRA (version 1.4.0) were run on

the datasets and their performance is illustrated in Table 10.2.
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OSRA Succ. OSRA Failed Total
Proc. MolRec Succ. 3420 (59.63%) 1617 (28.20%) 5037 (87.83%)
Proc. MolRec Failed 153 (2.67%) 545 (9.50%) 698 (12.17%)
Total 3573 (62.30%) 2162 (37.70%) 5735 (100%)

Table 10.2: Procedural MolRec vs. OSRA - OSRA dataset

Initial experiments showed OSRA underperforming due to its limited superatom dictionary,

therefore, OSRA was enhanced by adding all the superatom descriptions from [64] before doing

the comparison. The results of this experiment are given in Table 10.2.

Additionally, random MolRec and OSRA (version 1.4.0) were run on the same dataset and

Table 10.3 shows a comparison of their performance:

OSRA Succ. OSRA Failed Total
Rand. MolRec Succ. 3456 (60.26%) 1642 (28.63%) 5098 (88.89%)
Rand. MolRec Failed 117 (2.04%) 520 (9.07%) 637 (11.11%)
Total 3573 (62.30%) 2162 (37.70%) 5735 (100%)

Table 10.3: Random MolRec vs. OSRA - OSRA dataset

Observe that the previous two tables denote in matrix style the number of images on which:

(a) both systems succeed, by returning the correct MOL file as recognition result (top left

corner), (b) both systems fail (bottom right), (c) either OSRA succeeds and MolRec fails

(bottom left), or (d) MolRec succeeds and OSRA fails (top right).

10.2.2 Experiments using our Dataset

We built a dataset from 5730 scanned molecule images taken from a catalogue of drug

compounds by Maybridge [6] and later extended it to 5740 images. The catalogue’s pages were

scanned at resolution of 600dpi and automatically analysed using a bespoke tool that we have

developed. This resulted in images of molecule structures with their corresponding Chemical

Abstracts Service Registry numbers. These numbers were used to look up structures in online

chemical databases such as [24, 94, 68, 23] to obtain their corresponding International Chemical

Identifiers. These in turn were converted to MOL files using OpenBabel. Table 10.4 shows a

comparison of recognition results of OSRA (version 1.4.0) and procedural MolRec using our
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dataset before extending it. The table can be read in the same way as Tables 10.2 and 10.3.

OSRA Succ. OSRA Failed Total
Proc. MolRec Succ. 3740 (65.16%) 1068 (18.60%) 4808 (83.76%)
Proc. MolRec Failed 504 (8.78%) 428 (7.46%) 932 (16.24%)
Total 4244 (73.94%) 1496 (26.06%) 5740 (100%)

Table 10.4: Procedural MolRec vs. OSRA - our dataset

In addition to that, the same dataset was used to compare the performance of random

MolRec and OSRA (version 1.4.0). This was done after extending the dataset to 5740 images.

Table 10.5 shows a comparison of the obtained results.

OSRA Succ. OSRA Failed Total
Rand. MolRec Succ. 3855 (67.16%) 1100 (19.16%) 4955 (86.32%)
Rand. MolRec Failed 389 (6.78%) 396 (6.90%) 785 (13.68%)
Total 4244 (73.94%) 1496 (26.06%) 5740 (100%)

Table 10.5: Random MolRec vs. OSRA - our dataset

The results provided in the previous two sections demonstrate that MolRec generally

outperforms OSRA, even on its own benchmark set.

10.2.3 Experiments using TREC11’s Datasets

An Image2Structure evaluation task was carried out at TREC11; participants were given a

training set of 1000 images with their corresponding MOL files. They were later given a test

set of 1000 images and were asked to run their tools on these images and submit the resulting

MOL files. The organisers requested that each participant should submit at most the results of

two runs.
In [63] the organisers reported that they received 11 runs from five participants. Table 10.6

shows a list of participants with the results shown in Figure 10.9.
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Participant Group Run name(s) Identifier
University of Birmingham UoB
SAIC-Frederik OSRA
GGA Software GGA
University of Michigan ChemReader
Fraunhofer SCAI ChemOCR

Table 10.6: List of Participants at TREC11’s I2S Task

Figure 10.9: Number of Structures Identified in each run at TREC11

As Figure 10.9 shows, MolRec scored the highest success rates with two runs of 94.9% and

95% respectively. On the training set, MolRec scored a success rate of 93%.

10.2.4 Experiments using CLEF12’s Dataset

A similar evaluation contest to that of TREC11 was held at CLEF12. The task was different

in that the organisers decided to include Markush structures (Section 2.1.4). Handling Markush

structures is not covered within the scope of this thesis as there is no way of guessing how

to represent a given Markush structure in a MOL file. This is because context information

is needed such as searching a full document for what is the equivalent atom(s) for a given R

group. Therefore, the evaluation was done in two stages. The first stage was to evaluate the

results using OpenBabel, and then to visually evaluate the results which were deemed mis-
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recognition. This is because OpenBabel does not recognise symbols such as R and X as valid

atom labels. ChemAxon’s molconvert was used to generate images of the MOL files and the

overall results were as follows:

• The training set has 133 images. Evaluating the performance of MolRec on this set using

OpenBabel outputs a success rate of more than 44% (59 images). As for the remaining 74

images, their resulting corresponding MOL files were converted into JPEG images using

molconvert. After visually inspecting the output images, 61 of them were found to match

the original images, leading to an overall success recognition rate of 90.22%.

• The organisers of CLEF12 published a test set of 961 images. This collection was

split into two sets. The first set was of 865 images selected for automatic evaluation

by comparison of generated MOL files with the ground truth MOL files using the

OpenBabel toolkit [72]. However, there are chemical diagrams whose valid MOL files

are beyond OpenBabel’s ability to compare (typically because they contain some form of

Markush structure) and a second set of 95 such diagrams was selected for manual, visual

evaluation. This second set was intentionally included to provide a greater challenge to

the participating diagram recognition systems.

We ran MolRec four times on these sets where we slightly adjusted its internal parameters

and MolRec achieved the results illustrated in Tables 10.7 and 10.8. The two tables show

the number of correct and incorrect recognitions for the four runs on the manual and

automatic evaluation sets respectively. Notice that because most of the diagrams mis-

recognised in some runs were also mis-recognised in other runs, there were a total of 52

different diagrams mis-recognised in the manual evaluation set and a total of 46 different

diagrams mis-recognised in the automatic evaluation set.

Again, MolRec scored the highest recognition rate. This has been illustrated in the results

table shown in Table 10.9 which was published by the CLEF12 organisers [80].
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Run # Recognitions # Mis-Recognitions Accuracy

1 44 51 46.32%
2 56 39 58.95%
3 44 51 46.32%
4 54 41 56.84%

Table 10.7: Four Runs on the Manual Evaluation Set (95 images)

Run # Recognitions # Mis-Recognitions Accuracy

1 832 33 96.18%
2 821 44 94.91%
3 821 44 94.91%
4 832 33 96.18%

Table 10.8: Four Runs on the Automatic Evaluation Set (865 images)

Automatic Set Manual Set Total
# structures Recalled % # structures Recalled % # structures Recalled %

saic 865 761 (88%) 95 38 (40%) 960 799 (83%)
uob-1 865 832 (96%) 95 44 (46%) 960 876 (91%)
uob-2 865 821 (95%) 95 56 (59%) 960 877 (91%)
uob-3 865 821 (95%) 95 44 (46%) 960 865 (90%)
uob-4 865 832 (96%) 95 54 (57%) 960 886 (92%)

Table 10.9: Chemical diagram recognition results at CLEF12

10.3 Analysis of Results

After carrying out the experiments we have discussed in the previous section, we will now

analyse the recognition errors. We shall focus on recognition errors caused by our rules and

recognition errors caused by vectorisation. Our analysis of recognition errors has yielded the

following most common problems:

10.3.1 Recognition Errors due to Rule Mismatch

Ambiguous Open-bridge Bonds: A number of open-bridge bonds were very ambiguous,

causing several images to be incorrectly recognised. This ambiguity was because one of the

connecting parts of the bond was too short (Figure 10.10).
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Figure 10.10: An ambiguous Open-bridge Bond (shadowed)

Rule R 17 (Appendix B.13) does not capture an open-bridge bond similar to this. This is because

the long line segment is identified as a single bond. However, depending on parameters used to

form a graph, this bond can be sometimes interpreted as connected to the node where the short

line segment lies.

Ambiguous Closed-bridge Bonds: A number of closed bridge bonds were very ambiguous,

causing several images to be incorrectly recognised. Having such patterns causes errors as

relevant rules are not executed. As shown in Figure 10.11 a closed bridge bond can be

ambiguous and difficult to spot even by a human observer.

Figure 10.11: An ambiguous Closed-bridge Bond

Rule R 18 (Appendix B.14) does not capture a closed bridge bond similar to this. The reason is

that the line segment pointing towards the OH atom is not identified as part of any irregularly

shaped polygon, hence, the junction will be seen as a valid node.

R12 Error (Wavy Bond): The image displayed in Figure 10.12, shows a dashed wedge bond

with a wavy line crossing it. We are not familiar with this notation and do not know how to
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interpret it. An analysis of the corresponding solution MOL file showed the same contents as if

the wavy line was not present at all. Our tool interpreted this pattern as 4 bonds connected at

the centre: two dashed wedges and two wavy bonds.

Figure 10.12: R12 Error

R20 Error (Tautomeric Bond): Our current implementation does not yet include the rules we

have discussed in Section 9.2. Hence whenever any of those bonds is encountered, it will be

mis-recognised. Figure 10.13 shows an image that contains a tautomeric bond. As we have not

yet implemented it, it is currently captured as two separate bonds (a single bond and a dashed

bond). However, it is worth mentioning that this bond is represented as an aromatic bond in the

corresponding solution MOL file.

Figure 10.13: R20 Error

Unhandled Bond Type - Dashed Dative Bond: Our rules do not handle the dashed dative

bond shown in Figure 10.14. Therefore, whenever a diagram that has such a bond is input

to our tool, our tool interprets it as a dashed bond (R7) although the corresponding solution

MOL file interprets it as a planar single bond.

148



Figure 10.14: Unhandled Bond Type

10.3.2 Recognition Errors due to Vectorisation

Touching Components: It is common to have touching components in images of chemical

structure diagrams. These include touching characters (ligatures are very common), characters

glued to symbols, characters touching bonds, symbols touching bonds and bonds touching

bonds (Figure 10.15). Both OSRA and our dataset were examined for touching components.

The OSRA dataset has 1106 (19.29%) images with touching components (including ligatures),

and 114 (1.99%) images excluding ligatures. On the other hand, our dataset has 246 images

with touching components (4.29%).

Figure 10.15: Various Touching Components

This causes several vectorisation errors, and subsequently leads to mis-recognition. However,

common ligatures can be handled during the OCR process (as explained in Appendix A). A

robust segmentation method is required to improve the performance of MolRec in particular

and chemical structure diagram recognition tools in general.

Broken Characters: It is not uncommon to have broken components in images of chemical

structure diagrams. Currently we do not handle broken characters such as those shown in

Figure 10.16. These were mainly encountered in the TREC11 and CLEF12 datasets.
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Figure 10.16: Example Broken Characters

This causes several vectorisation errors, and subsequently leads to mis-recognition. A robust

segmentation method is required to improve the performance of MolRec in particular and

chemical structure diagram recognition tools in general.

Atom Grouping Errors: OCR classification errors and incorrect grouping of atoms, symbols

and bonds were also encountered. These also include a few very ambiguous images that are

hard to interpret even visually such as the ones shown in Figure 10.17.

(a) (b)

Figure 10.17: Ambiguous Connectivity of Atoms and Bonds

Figure 10.17(a) fails because of difficulty in correctly forming chargroups and in identifying

connectivity of different bonds. Figure 10.17(b) illustrates an extremely difficult to interpret

chargroup. The NH2O is actually formed of two chargroups, the NH2 which is connected to

the single bond on the left and the O which is connected to the double bond on the right. It is

almost impossible to automatically handle such patterns without using a brute-force approach.

Superatoms: Another common reason for recognition errors is in MolRec choosing an

incorrect permutation of superatom connections for superatoms which have more than one

connection to the main structure (Figure 10.18).
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Figure 10.18: Superatoms with 2 or more connections to the main structure

To our knowledge, there exists no robust approach for solving this problem. The use of

superatoms in chemical structure diagrams and the difficulty in interpreting their connectivity

to the structure they are used in were explained in Sections 3.1.5.3 and 8.3 respectively.

10.4 Summary

This chapter provided a statistical evaluation of MolRec, a tool developed to demonstrate

and examine the validation, robustness and performance of our rule-based system. The tool

shows that using the rule-based approach to clearly define different bond conventions and

arrangements provides a mechanism for accurate identification of such patterns. The provided

results show that MolRec outperforms state-of-the-art tools and suggests a need for further

research in the field of automatic diagram recognition.
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CHAPTER 11

CONCLUSIONS & FUTURE WORK
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11.1 Conclusions

In this thesis, we have presented an approach for the recognition of chemical structure

diagrams from images. By tackling this challenge in a novel way, we have developed a rule-

based system with extremely strict definitions for various bond formations and arrangements.

Our approach is not only robust in the sense that it copes with a wide range of bond sketching

styles, but also is extremely efficient to develop and easy to extend when needed.

The aim of this thesis was to address the following hypotheses:

• A strictly rule-based approach where diverse bond drawing styles are captured using a

list of strict rules can be used to accurately and efficiently recognise chemical structure

diagrams.

• The rule framework can be flexible to allow for easy extension to incorporate additional

diagram elements.

• The approach can be efficiently implemented in a system that can match the performance

of other contemporary approaches in chemical diagram recognition.

• The extraction of geometrical primitives from chemical diagrams can be improved using

novel approaches to the detection of line endpoints and geometrical objects in the shape

of solid triangles.

We have developed MolRec, a tool that has the implementation of our rules. We have

shown through the experimentation with it using several benchmark chemical structure diagram

datasets that the use of image thinning, line simplification algorithm and the expanding disc

indeed yields higher standard results in terms of determining line endpoints and shapes in the

form of solid triangles and bold lines. We have also shown that with our rule-based approach

the identification of diverse bond drawing styles is robust, efficient and easy to extend. The

high quality results we achieved in two international events demonstrate the superiority of our

approach in comparison against leading systems.
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11.2 Future Work

After the extensive experimentation of the work in this thesis with several benchmark

chemical structure diagram datasets and presenting it to the research community, we have

compiled the following list of possible areas where we can improve our system.

11.2.1 Improve OCR

The OCR module in MolRec does not currently handle broken and touching characters. This

is a known difficult problem in document analysis. The difficulty of this problem is two fold.

Firstly, the correct detection of touching characters is a challenge on its own. And secondly,

the accurate identification of the touching characters and precisely segmenting them is another

difficult task. We believe that an improved character recogniser and touching and broken symbol

correction would considerably improve the system.

11.2.2 Better Bond Segmentation

MolRec does not currently handle touching bonds. In general, touching components in

chemical structure diagrams include:

• Touching characters, we discussed this in the previous section

• Characters touching bonds

• Some cases of bonds accidentally touching bonds, usually due to ink bleed between close

parallel lines making a connection that should not be there

While a number of solutions have been proposed in the literature to handle touching

characters and the segmentation of text and graphics in document images, this problem is

notoriously difficult.

11.2.3 Handle Markush Structures

Handling Markush structures is one interesting area of research as it involves several

problems. For example, the parentheses used to indicate frequency are often glued to bond
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lines and the use of a straight line segment to indicate position variation. So these two are OCR

and segmentation problems. Another problem is that MOL files are limited and cannot be used

to represent Markush structures [80]. Not having a standard extension or alternative to MOL

files suitable for the representation and comparison of diagrams with Markush structures is a

severe handicap to further development and testing of chemical diagram recognition systems.

11.2.4 Superatoms and Stereocentre

We have discussed and provided our solutions to the problems of determining the

connectivity of superatoms to the main structure and guessing the stereocentre of dashed, bold

and dashed bold bonds. We plan to gain more domain knowledge and attempt to solve these

two problems more efficiently.

11.2.5 Examine Flexibility of our Approach

We believe that our approach is flexible and can be easily employed in other disciplines. In

the coming sections we provide examples of how the rules would capture different components

of electronic circuits (Section 11.2.5.1) and flowcharts (Section 11.2.5.2).

11.2.5.1 Electronic Circuit Recognition

Several attempts for the automatic interpretation of electronic circuits have been reported in

the literature [71, 35, 36, 33]. An example circuit has been illustrated in Figure 11.1. Notice

that the text from the provided figure has been manually removed. Text is usually used within

electronic circuit diagrams to provide component values and label components.

By looking at the diagram, it is obvious that several components resemble many bond

conventions. For example, wires connecting various components correspond to single bonds

(R1). The saw-tooth pattern used to represent resistance correspond to wavy bonds (R12), the

pattern used to represent batteries correspond to a dashed bond (R7) placed between two dashed

wedge bonds each of which is formed of two dashes (R6) and the arrow used to indicate the

existence of relay corresponds to a dative bond (R13). Also, the absence of a dot where more

than two line segments (wires) on the diagram meet means they are not connected - this is
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Figure 11.1: Example Electronic Circuit

equivalent to a closed bridge bond (R17).

11.2.5.2 Flowchart Recognition

Another research area is the recognition of flowcharts [112, 99]. Again, there is a clear

resemblance between the components of flowcharts and bond conventions and arrangements.

Two simple flowcharts have been shown in Figure 11.2.

Figure 11.2: Example Flowchart

The circle object used to indicate the existence of an aromatic ring is used as a start, or end,

symbol in flowcharts (remember a circle is identified as a primitive in our approach and is used

as part of R16). Also, lines connecting different components correspond to single bonds (R1)

and arrow used to show flow of control, and signify that flow passes to the symbol the arrow

points to, resemble dative bonds (R13). Additionally, diamonds used to represent true/false tests
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(decisions) are four sided cycles, whereas rectangles used to illustrate processing steps can be

seen as multi-sided cycles (similar to those used in R16).
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APPENDIX A

OPTICAL CHARACTER RECOGNITION (OCR)
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We have mentioned several times throught this thesis that we use optical character recognition to

identify two types of geometric primitives (i.e. character groups and circles. In this appendix,

we are going to provide a general overview of a simple and yet effective method of how to

conduct a robust Optical Character Recognition (OCR). Since it is an essential part of chemical

structure diagram recognition, the appendix we will attempt to give enough information to

become familiar with different phases of an OCR process. We are not going to use the OCR

process to identify characters only, but as we will explain, we will also use it to detect circles.

A.1 Optical Character Recognition

In pattern recognition, optical character recognition (OCR) is an active and important

research field. Given digital images representing characters including alphabetic letters, digits

and others, the goal of an OCR system is to correctly identify these characters without the

intervention of a human [110]. This is typically achieved by extracting features from a training

set of characters, and then finding a match for an input character using the same set of features

extracted from the input character. This decision making process of finding a match is often

denoted classification. According to [25], the general components of a typical OCR process are

illustrated in Figure A.1.

As figure A.1 shows, the process starts by using a predefined dataset of characters for

training. The dataset contains records of known character classes with their distinctive features.

When an unknown character is to be identified, its features are extracted and a classification

process is carried out to assign it one of the classes from the training set. The selection of a

distinctive set of features and decision making to identify an unknown character represent the

core of an OCR system.

A.2 Connected Component Labelling

For the identification of objects in a digital image, groups of connected foreground pixels

must be located. Notice that we are going to use the term foreground pixels to refer to the non-

white pixels of the image. Likewise, we are going to refer to white pixels as background pixels.
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Figure A.1: Components of an OCR Engine

So, the objects in a digital image are the connected components of that image. Therefore,

the process of identifying all groups of interconnected foreground pixels is called connected

component labelling or CCL. Formally, a connected component can be defined as follows:

Definition 13 A Connected Component, C, is a set of foreground pixels such that for every

pair of pixels px, py ∈ C, there exists a path px, . . . , py which satisfies the following conditions:

• All pixels in the path are foreground pixels

• Every consecutive pair of pixels in the path are neighbours

The neighbourhood, or connectivity, of pixels can usually be either four-connected or eight-

connected. As Figure A.2 shows, in a four-connected neighbourhood, pixels that have an

edge in common with a pixel p are the pixel’s neighbours. Whereas, in an eight-connected

neighbourhood, the neighbours of p are the pixels that have an edge or a corner in common with

it.
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(a) Eight-connected
Neighbourhood

(b) Four-connected
Neighbourhood

Figure A.2: Two Types of Pixel Neighbourhoods

A.2.1 Calculating Connected Components

There are various ways of computing a connected component and we will summarise them

as follows:

Using graph data structure [46]: The foreground pixels of a given image can be represented

as a graph where each foreground pixel represents a node in the graph. A list of nodes that are

connected to each other can be built, nodes can be considered connected using four, or eight,-

connectivity as explained previously, and connected component(s) of the resulting graph can be

computed.

Using Flood-fill algorithm: This approach is sometimes referred to as the grass-fire

approach [81]. It begins by locating a foreground pixel and then searching its neighbours to

obtain other pixels that connect to it. The neighbourhood of these pixels is then searched to find

pixels that connect to them and so on until the connected component is obtained.

Using a two-pass algorithm with equivalence class resolution [45]: This algorithm works

by assigning temporary labels to each foreground pixel. When a foreground pixel is

encountered, the neighbours that have already been visited in the scan are examined. If none

of these neighbours have been assigned a temporary label, the corresponding pixel is assigned

a new label value. If a foreground pixel with two neighbours having different label values is

encountered, one of the labels is chosen randomly and then it is recorded that these two label

values refer to the same component. Now the temporary labels are examined and the subsets

which refer to the same object are identified. This is denoted equivalence class resolution.
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Finally, the second pass is performed to re-label the pixels belonging to the same component .

Using Run Length Encoding [44]: In this approach, the image is represented as a collection

of sequences, or runs, of foreground pixels. The starting pixel and the number of pixels in

a sequence/run are used in analysing the connectivity. Connected sequences can be obtained

using the equivalence classes approach. We are going to use this approach in our work because

of its simplicity and efficiency. This method is efficient because each pixel in the image is

scanned only once. By looking at the example image shown in Figure A.3, we notice that there

are only three connected components, corresponding to three equivalence classes. Hence, we

can obtain the following set of connectivity pairs:

• Run 1 is connected to Run 2

• Run 3 is connected to Run 4

• Run 5 is connected to Run 6

Figure A.3: CCL using Run Length Encoding

A.2.2 Bounding Boxes

The result of connected component labelling is usually the coordinates of the object’s

bounding box (Figure A.4). Using the definition of a connected component (Definition 13)

as a basis, we can define coordinates of a bounding box as follows:
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Figure A.4: Coordinates of a Character’s Bounding Box

Definition 14 Coordinates of bounding box of a connected component, C, are represented as

a pair ((x1, y1), (x2, y2)), such that.

• x1 = minx{Cx} where Cx ∈ C

• y1 = miny{Cy} where Cy ∈ C

• x2 = maxx{Cx} where Cx ∈ C

• x1 = maxy{Cy} where Cy ∈ C

A.3 Performing OCR and Removal of Characters

As we have mentioned in Section A.1, OCR deals with the identification of any characters.

Notice that a character in our context can be a letter, a digit or a symbol. A typical OCR engine

finds the connected components (Section A.2.1) of an input image and attempts to associate

each component, or group of components, with a predefined character class. Notice that a

single connected component can have one or more characters. This can be useful when trying

to identify two or more touching characters which is common especially in case of typographic

ligatures.

The identification process involves calculating discriminative features from connected

components and comparing them with precomputed features. This comparison is known as
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classification. In the coming few sections, we will provide a simple method to extract features

and carry out classification. Our feature extraction method will use a simple and yet effective

and easy to conduct approach. We will extract a small number of features to avoid the Curse of

Dimensionality phenomenon [14].

A.3.1 Feature Extraction

Unique characteristics that can represent a specific character are called features. Features

are unique in the sense that they should be relevant to the formation process of the character

and they should be computed feasibly. This step is essential in the context of optical character

recognition. Also, features are often calculated as vectors of real numbers. A suggested set of

discriminative features and how to compute them includes the following:

1. Density Features using Grid. We will extract these features by superimposing a 3 by

3 grid on each character candidate as displayed in Figure A.5, hence zoning the sub-

image [30], and then computing the percentage of foreground pixels in each zone.

Formally, for a sub-image S of width w and height h, this is done by dividing the sub-

image into 9 non-overlapping zones Zi, i = 0 . . . 8 each of size m×n where m = w
3

and

n = h
3
.

In this case, the feature fi is calculated as:

fi =
Ni

m× n
(A.1)

Where Ni is the number of foreground pixels in the ith zone.

As for the example illustrated in Figure A.5, observe that the feature value in the left

most zone of the top row in Figure A.5(b) corresponds to the left most zone of the top

row in Figure A.5(a), the feature value in the middle zone of the top row of Figure A.5(b)

corresponds to the middle zone of the top row in Figure A.5(a) and so on.

2. The Aspect Ratio. The aspect ratio r of an image can be defined as the ratio of the

image’s longer dimension to its shorter dimension. In other words, it is ratio of the
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(a) Character S with 3×
3 grid superimposed

(b) Grid foreground
pixel percentages fi

Figure A.5: Zoning of a character image.

image’s width to the image’s height. However, we are going to calculate it as follows:

r =
w

w + h
(A.2)

It can be noticed that the denominator is w + h instead of h. We are going to do this to

guarantee that the value of the aspect ratio is always 0 < r < 1. Also, it will help make

feature calculation size invariant.

This results in ten features (f1, f2, ..., f9, f10). We are going to use these features in

identifying objects as we will explain in the coming sections.

In the next point, we are going to show how we can compute another feature, the centre of

gravity. Notice that we will not use it in the OCR process but we will use it in calculating

the coordinates of atoms (or nodes) as we will explained in more detail in Section 8.5.

3. Centre of Gravity: The centre of gravity, or centroid of a region can be computed as the

arithmetic mean of the coordinates of foreground pixels in the x and y directions. For

a binary image I , where I(x,y) ∈ {0, 1}, the components of the centroid (x̄, ȳ) can be

calculated as:

x̄ =

∑
(x,y)∈I

x

|I|
and ȳ =

∑
(x,y)∈I

y

|I|
(A.3)
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Where |I| is the area of I , which corresponds to the number of foreground pixels in I .

Also, normalised components of the centre of gravity can be obtained by using the

following equations:

x̄c =
x̄

w
and ȳc =

ȳ

h
(A.4)

where w and h are the image’s width and height respectively.

A.3.2 Classification

In object recognition in general, any input should be assigned to one of possible object

classes, or models. This process is denoted classification. A predefined library, or dataset of

objects including their extracted features and classes, or models is usually employed. Hence,

a classifier’s job is to search this library and find a match for a given input using a similarity

measure.

We are going to use a metric to measure the similarity between two objects A and B in a set

U . Namely, we are going to use a Euclidean distance D (Equations A.5 and A.6) to find a best

match. According to [26] the Euclidean distance should satisfy the following conditions:

1. Positivity: D(a, b) ≥ 0;

2. Zero self-distance: D(a, a) = 0;

3. Symmetry: D(a, b) = D(b, a);

4. Isolation: a 6= b ⇒ D(a, b) > 0;

5. The triangle inequality: D(a, c) ≤ D(a, b) + D(b, c).

We are going to develop and use a database of characters for training and identification

of unknown input. Each entry in the database will consist of a character class name and the

precomputed set of features. Table A.1 shows a sample database of features computed using the

grid, section A.3.1, where the first field (f1) is the density in the top left grid, the second field
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(f2) is the density in the middle top grid and so on. The tenth field (f10) represents the aspect

ratio.
Format of Features and Classes

Case f1 f2 f3 . . . f10 Class
0.41666 0.58333 0.50000 . . . 0.40000 2
0.12500 0.50000 0.50000 . . . 0.40000 2
0.55681 0.44886 0.51704 . . . 0.40243 8
0.33333 0.26666 0.40000 . . . 0.40740 8
0.21428 0.14285 0.35714 . . . 0.47500 C
0.20000 0.45000 0.55000 . . . 0.45161 C
0.32653 0.06122 0.34693 . . . 0.51162 H
0.41558 0.00000 0.42207 . . . 0.43421 H
0.56666 0.20000 0.50000 . . . 0.45454 N
0.68888 0.07222 0.38888 . . . 0.44444 N
0.33750 0.33333 0.34583 . . . 0.47872 O
0.28571 0.18367 0.26530 . . . 0.50000 O
0.36250 0.31250 0.36250 . . . 0.44444 S
0.44791 0.42187 0.53645 . . . 0.43678 S
0.58333 0.45833 0.62500 . . . 0.40625 R

Table A.1: An Example Dataset

Then, we are going to use these features in a classification process to assign a character

label to each character. We are going to achieve this by calculating the feature vector of the

different components of the image and then finding the best match using Euclidean distance

(Equation A.5) and a certain threshold that is computed empirically.

Given two feature vectors ~x = (x1, x2, ..., xn) and ~y = (y0, y1, ..., yn), we are going to

calculate the Euclidean distance between these two vectors as.

d =
√

∆2 =

√√√√ n∑
i=1

(xi − yi)2. (A.5)

The classification technique we have adopted in this work is often denoted Instance-

based learning or Nearest-neighbour search. Please refer to [56] for an overview of various

classification techniques.
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A.3.3 Removal of Symbols

We are going to remove all identified characters from the input image. The removal

process is simply turning all foreground pixels representing any of the identified characters into

background pixels (i.e. turning them into white). As we can see in Figure A.6, the input image

is now stripped of all recognised characters and it is ready for vectorisation (we are going to talk

about vectorisation in detail in Chapter 6). The characters that we identify from Figure A.6(a)

are “M”, “e”, “O”, “O” , “S”, “N”, “H” and “2”. Notice that “M” and “e” form one atom. This

is also the case with “N”, “H” and “2”. Additionally, notice that there is a high resemblance

between the character “O” and a circle. We are going to talk about joining characters that form

the same atom and distinguishing between “O” and a circle in the following subsections.

(a) Molecular Structure Diagram (b) Symbols are Removed

Figure A.6: The Removal of Symbols from a Molecular Structure Image

A.4 Formation of Atoms (Chargroups)

This is the process of grouping characters that are part of the same word. As we have

mentioned before, characters can be letters, numerals or symbols. We are going to perform

character grouping in a top-down, left-right manner as the characters are usually written.

Also, we are going to carry it out according to the inter-character distance, which is the

distance between the characters’ borders (the bounding boxes of their corresponding connected

components).
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For every connected component, Ci where i = 1, 2, ..., k, of the k characters found in a

chemical structure diagram image, the coordinates, ((x1, y1), (x2, y2)) indicating four extreme

points in four directions are obtained as explained in Section A.2. However, we are going to

refer to these points in a somewhat different way in the remaining sections of this appendix. As

we have shown in Figure A.7, we are going to use L(Ci) for extreme left , R(Ci) for extreme

right , T (Ci) for extreme top and B(Ci) for extreme bottom.

Figure A.7: Coordinates and Extreme Points of a Character

In addition to that, we are going to perform characters grouping according to the following

three parameters:

1. An alignment function, F .

2. The consecutivity of characters.

3. A threshold distance σ separating the characters.

A.4.1 Alignment of Characters

Given two connected components Ca and Cb which correspond to any two characters in the

image, we will have a function F that should guarantee the alignment of Ca and Cb. Remember

that a character can be a letter (‘a’, ‘b’, . . . , ‘z’, ‘A’, ‘B’, . . . , ‘Z’), a digit (‘0’, ‘1’, ‘2’, . . . , ‘9’)

or a symbol (‘(’, ‘)’, ‘ + ’, ‘− ’).
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This function guarantees that characters on the same horizontal line are grouped from left

to right, whereas characters on the same vertical line are grouped from top to bottom.

This function means that, a value of 1 is returned when examining the horizontal alignment

of:

• a character against a character

• a digit against a digit

• a character against a digit, or vice-versa

• a symbol against a character or against a digit, or vice-versa

However, it only returns a value of 1 when examining the vertical alignment of a character

against a character. In other words, we will only allow horizontal alignment between characters,

digits or symbols, whereas we will only allow vertical alignment for characters only.

Determining the alignment of characters also helps identifying charge signs. In chemical

structure diagrams, the plus sign is usually used to indicate the existence of positive charge and

the minus sign is used to indicate the existence of negative charge. Their size is usually smaller

than other components so they can be identified using a size filter. Additionally, it is common

to place these signs near the top left or top right of other characters. Hence, using a function

such as the one described above further assists the accurate spotting of such symbols.

A.4.2 Consecutivity of Characters

The consecutivity of components means that they are in a left-to-right or top-to-bottom

order. We are going to use the following function to determine the consecutivity of any two

connected components.

Given a connected component Cs, we are going to identify the consecutive component Cq

of Cs by using the following function:

q =

 minx{L(Cx)−R(Cs)} where L(Cx) > R(Cs)) In horizontal direction

minx{B(Cx)− T (Cs)} where T (Cx) > B(Cs)) In vertical direction
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A.4.3 Inter-character Distance

Information on inter-character distance is required for the process of atom formation. We

will define this distance as the horizontal or vertical distance between any two consecutive

characters. We are going to use a predefined value, σ, to decide whether any two characters

belong to the same atom. The Euclidean distance can be used to measure the distance between

any two characters. Since the extreme points can be obtained as explained previously, they can

be used as the parameters as follows:

Given two points (x1, y1) and (x2, y2), we calculate the Euclidean distance between these

two points as.

d =
√

(x2 − x1)2 + (y2 − y1)2 (A.6)

A.4.4 Forming the Atoms

To form atoms, any two identified characters, C1 and C2, are grouped if the following three

conditions are satisfied:

1. F (C1, C2) = 1

2. C1 and C2 are consecutive

3. The distance d between C1 and C2 is ≤ σ

A.5 Identifying Rings/Circles

We have mentioned that circle objects are used to indicate the existence of aromaticity in

Section 2.1.2.3. We have also talked about the high similarity between the letter “O” and a circle

in Section A.3.3. We are going to exploit this resemblance when trying to identify aromatic rings

in images of chemical structure diagrams. Instead of having a separate module to recognise

circles, they can be automatically recognised using a training dataset which contains either

circle templates or capital O images in font(s) that draw the letter “O” as circular as possible.

An example showing the use of a circle to illustrate the existence of an aromatic ring in

aspirin is depicted in Figure A.8. The high similarity between the shapes of the circle and the
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“O” atom can be easily noticed.

Figure A.8: Circle used to represent aromatic ring in aspirin

It can be error prone to just rely on the results of the previously explained classification

approach to distinguish between an “O” and a circle. Therefore, we will identify all such objects

as the same character, say O, and will process them further. For instance, it can be noticed from

Figure A.8 that the circle has a larger circumference, i.e. a larger bounding box. Hence we are

going to use a size filter to separate the two. Spotting a circle which is a part of an aromatic

cycle will be explained in Section B.12.

A.6 Summary

We have provided a brief overview of optical character recognition throughout this

appendix. We have made an attempt to familiarise the reader with the stages of a typical OCR

engine by providing a simple way of building an OCR engine. Not only this, but we have

also introduced a method to form atom names in chemical diagrams. The method included

various conditions that can be used to avoid incorrectly joining characters. Additionally, we

have provided a simple approach to distinguish circles and “O” letters. By doing this, we have

introduced a way to identify two of the five geometric primitives. This leaves us with the three

remaining primitives. We have already introduced our method for retrieving these in Chapter 6.
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APPENDIX B

THE RULES SYSTEM
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We have explained four of our 18 rules in detail in Chapter 7 and, as we have mentioned several

times throughout this thesis, we are going to explain the remaining 13 rules in this appendix.

Observe that, unlike we have done in Chapter 7, we are not going to provide sample source

code for any of these rules.

B.1 R2: Double Planar Bond

The planar double bond is usually drawn as two very close parallel line segments. We

identify a double planar bond if the following conditions are true:

1. L = {l1, l2} is a set of two line segments

2. ∀l ∈ L : length(l) > wb

3. ∀l ∈ L : width(l) < bbw

4. l1 ‖ol
bs l2

5. There is no line segment l 6∈ L such that l1 ‖ol
bs l or l2 ‖ol

bs l

Consequence: Cutting(l1, l2) will yield a double bond as well as at most two new line

segments.

Figure B.1: A Double Planar bond

This rule identifies a double line which is conformed of two parallel line segments of similar

length. As shown in Figure B.1, there exists no third line segment of any length that is parallel

to and very close to any of these two line segments.

Observe that R2.2 guarantees that the rule does not capture any line segment that can be a

hollow wedge base (R10 and R11) and R2.3 guarantees that the rule does not capture any bold

line (R15).
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Notice that this rule is one of the two rules that may add new geometric segments to the

working memory (i.e. our set of primitives which is used as input). The other rule is R3 which

has been explained in Section 7.5.2. As we illustrated in Figure 7.12 in Section 7.3, if this

rule applies cutting successfully, it can either add one or two new line segments to the set of

primitives (Figures 7.12(a) and 7.12(b) respectively).

B.2 R4: Dashed Bold Bond vs Triple Bond

In some drawing styles, a triple bond and a dashed bold bond have similar appearance. As

illustrated in Figure B.2, this is because the pattern is drawn as three short parallel line segments.

Despite being visually straightforward to interpret, automatically identifying what the pattern

represents can be problematic. Therefore, whenever a pattern like this is encountered; it is

necessary to use information from the environment around the pattern to accurately decide

whether it is a triple bond or a dashed bold bond. We will use the following conditions to

capture such pattern and yield a special bond type which is disambiguated later:

Figure B.2: Triple Bond or Dashed Bold Bond?

1. L = {l1, l2, l3} is a set of line segments

2. ∀l ∈ L : length(l) ∈ bdl

3. ∀l ∈ L : width(l) ∈ bdw

4. Centre points of all l ∈ L are approximately collinear

5. l1 ‖bdl
ds l2 and l2 ‖bdl

ds l3

6. There is no l 6∈ L such that l1 ‖bdl
ds l or l2 ‖bdl

ds l or l3 ‖bdl
ds l
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Consequence: Either dashed bold bond or triple bond.

Observe that R4.2 guarantees that the captured line segments are not identified as a triple

bond immediately (R3) and R4.6 guarantees that this pattern is not a dashed bold bond (R8).

B.3 R5: Dashed Wedge vs Triple Bond

This is similar to the previous case (rule R4 in section B.2), the only difference is that the

line segments forming this pattern have different lengths which makes it appear as a pattern

involving one or two implicit nodes (Figure 7.12).

Like the previous case, whenever a pattern like this is encountered, the precise identification

of the bond type is postponed until context information is used. We will use the following

conditions to capture such pattern and yield a special bond type which needs to be precisely

identified later:

1. L = {l1, l2, l3} is a set of line segments

2. length(l1) > length(l2) and length(l2) > length(l3)

3. Centre points of all l ∈ L are approximately collinear

4. l1 ‖bdl
ds l2 and l2 ‖bdl

ds l3

5. There is no l 6∈ L such that l1 ‖bdl
ds l or l2 ‖bdl

ds l or l3 ‖bdl
ds l

Consequence: Either dashed wedge bond or triple bond group with implicit nodes.

Observe that R5.2 guarantees that the captured line segments will not be captured by R4,

and R5.4 guarantees that the pattern is not captured by R6. Also, R5.5 guarantees that the

pattern is not captured by R9.

B.4 R6: Dashed Wedge vs Double Bond

This configuration is similar to that captured in rules R4 and R5 (Sections B.2 and B.3)

except that the number of line segments involved is two rather than three. This means the
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pattern could be either a double bond or a dashed wedge bond. We will use the following

conditions to capture such pattern and yield a special bond type which needs to be precisely

identified later:

1. L = {l1, l2} is a set of line segments

2. length(l1) > length(l2)

3. l1 ‖bdl
ds l2

4. There is no l 6∈ L such that l1 ‖bdl
ds l or l2 ‖bdl

ds l

Consequence: Either dashed wedge bond or double bond.

Figure B.3: A Dashed Wedge Formed of only Two Dashes (shadowed)

Observe that this was based on observation and analysis of existing literature. Many

chemical structure images were investigated and whenever two very short line segments were

used in such a pattern, their lengths were always found to be different as illustrated in

Figure B.3. This means it would be straight forward to design a rule to capture the same pattern

if the lengths were the same (this would make it a dashed bold bond vs a double bond).

Notice also that R6.2 guarantees that the captured line segments will not be captured by R4

and R6.4 guarantees that the pattern is not captured by R5.

B.5 R8: Dashed Bold Bond

The dashed bold bond is usually drawn as a group of short parallel line segments that can

be contained in a rectangle. As Figure B.4 illustrates, the length of each of these line segments

is usually shorter than that of a normal line segment and their thickness can be larger than that
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of a normal line segment. Also, as shown in (Figure B.4 and B.5), they are evenly spaced apart

and a straight line can pass through their centre points.

Figure B.4: A Dashed Bold Bond

We will identify a dashed bold bond if the following rules are satisfied:

1. L = {l1, . . . , ln}, where n ≥ 4, is a set of line segments

2. ∀l ∈ L : length(l) ∈ bdl approximately bdl

3. ∀l ∈ L : width(l) ∈ bdw

4. The centre points of the elements of L are approximately collinear

5. No two elements of L have a separation distance of less than the minimum of ds

6. Two elements of L, called the end elements, dash-neighbour wrt. ds precisely one other

element of L. All other elements of L, called internal elements, dash-neighbour wrt. ds

precisely two other elements of L

Consequence: L forms dashed bold bond with endpoints given by the endpoints of the minimal

line segment that contains the centre points of the long sides of the line segments l1, . . . , ln. The

new dashed bold bond has a down direction with unknown start and end.

Figure B.5: Dashes in a Dashed Bold Bond

Observe that R8.2 and R8.3 guarantee that the captured line segments will not be captured

by R9. Also, 8.4 guarantees that the pattern will not be captured by R7. Also, R8.5 guarantees

that the pattern is not captured by R12.
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B.6 R9: Dashed Wedge Bond

A dashed wedge bond has the form of a group of line segments which are short, parallel

and of increasing length . These line segments are usually evenly spaced apart and they can be

contained in a triangle, or a triangular shaped polygon. As Figure B.6 shows, the two end line

segments are usually the shortest and longest (or the opposite depending on where one starts).

The length of such line segments increases gradually as one moves from the shortest towards

the longest line segment.

Figure B.6: A Dashed Wedge Bond

Additionally, similar to the line segments forming a dashed bold bond in rule R8

(Section B.5), the centre points of these line segments are collinear and their thickness can

be larger than that of a normal line segment.

Figure B.7: Dashes in a Dashed Wedge Bond

We will capture a dashed wedge bond if the following conditions are met:

1. L = {l1, . . . , ln}, where n ≥ 4, is a set of line segments

2. ∀l ∈ L : length(l) ∈ dl approximately dl

3. The centre points of the elements of L are approximately collinear

4. No two elements of L have a separation distance of less than the minimum of ds

5. Two elements el, eu ∈ L and el < eu ≥ wb, called the end elements, dash-neighbour
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precisely one other element of L. All other elements of L, called internal elements,

neighbour precisely two other elements of L

6. One neighbour of any internal element must be strictly longer than the internal element,

the other neighbour must be strictly shorter

7. Length of elements of L is strictly monotonically increasing from el to eu

Consequence: L forms dashed wedge bond with endpoints given by the endpoints of the

minimal line segment that contains the centre points of the long sides of the line segments

l1, . . . , ln. The new dashed bold bond has a down direction with unknown start and end.

Observe that R9.2, R9.5 and R9.7 guarantee that the captured line segments will not be

captured by R8. Also, R9.4 guarantees that the pattern will not be captured by R12.

B.7 R10: Hollow Wedge Bond - case 1

A sample hollow wedge bond is shown in Figure B.8. It consists of three line segments

forming an isosceles triangle. Two of the three line segments are of similar length and are

longer than the remaining line segment. The third (short) line segment represents the base of

the triangle.

Figure B.8: A Hollow Wedge Bond - Case 1

We will identify a hollow wedge bond using the following conditions:

1. L = {l1, l2, l3}, is a set of line segments

2. ∀l ∈ L : width(l) < bbw

3. l1, l2 ∈ L : length(l1) = length(l2)
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4. l3 ∈ L : length(l3) ∈ wb

5. length(l1) > length(l3) and length(l2) > length(l3)

6. For any li ∈ L and lj ∈ L, li and lj have exactly one end point in common

Consequence: Hollow wedge bond from joint end point of l1, l2 and centre point of l3. The

new hollow wedge bond has an up direction from joint end point of l1, l2 to centre point of l3.

Observe that R10.2 guarantees that none of the captured line segments can be captured by

R15. Also, R10.4 guarantees that the line segment will not be captured by R1. Additionally,

observe that this rule may conflict with R1 because the line segments l1 and l2 appear as valid

single bonds and may also conflict with R11. This is a typical situation where these rules can

be triggered first and then fired after employing a conflict resolution strategy.

B.8 R11: Hollow Wedge Bond - case 2

Ordinary hollow wedge bonds are captured using rule 10 (section B.7). However, the base

of the triangle representing the bond can sometimes consist of two short line segments rather

than one. As depicted in Figure B.9, this is due to some drawing styles when a line segment is

connected to the middle of the base. Therefore, a slightly different set of conditions can be used

to identify such cases.

We will use the following conditions to capture a hollow wedge bond which base is

connected from the middle to another line segment:

1. L = {l1, l2, l3, l4}, is a set of line segments

2. ∀l ∈ L : width(l) < bbw

3. l3 and l4 are collinear and have one end point in common. Let l5 be the minimal line

segment that contains l3 and l4, and L′ = {l1, l2, l5}, is a set of lines

4. l1, l2 ∈ L′ : length(l1) = length(l2)

5. l5 ∈ L′ : length(l3) ∈ wb
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6. length(l1) > length(l5) and length(l2) > length(l5)

7. For any li ∈ L′ and lj ∈ L′, li and lj have exactly one end point in common

Consequence: Hollow wedge bond from joint end point of l1, l2 and centre point of l5. The

new hollow wedge bond has an up direction from joint end point of l1, l2 to centre point of l5.

Figure B.9: A Hollow Wedge Bond - Case 2

Observe that R11.2 guarantees that none of the captured line segments can be captured by

R15. Also, R11.5 guarantees that the line segment will not be captured by R1. Additionally,

observe that this rule may conflict with R1 because the line segments l1 and l2 appear as valid

single bonds and may also conflict with R10. This is a typical situation where these rules can

be triggered first and then fired after employing a conflict resolution strategy.

B.9 R13: Arrow Bond

A one sided arrow line is used to represent what chemists denote as a dative bond. This

bond type is used to indicate the existence of a negatively charged atom at the arrow end of the

bond. An example dative bond is provided in Figure B.10.

Figure B.10: A Dative Bond

As we have explained in Section 7.2.1, this is one of the five resulting primitives after

applying a vectorisation step, and therefore, we will capture this bond type straightforwardly by

using the following condition:
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1. l is an arrow

Consequence: A dative bond with direction from source to head.

B.10 R14: Solid Wedge Bond

A solid wedge bond in the form of a filled isosceles triangle (as in Figure B.11) is used to

depict the existence of an out-of-plane architecture. The base of the triangle indicates the end

that is going above the plane, and therefore, the direction of this bond is known.

Figure B.11: A Solid Wedge Bond

As we have mentioned in Section 7.2.1, this should result after a vectorisation phase. Hence,

we will identify it by using the following condition:

1. l is a solid triangle

Consequence: A wedge bond with direction from tip to base.

B.11 R15: Bold Bond

A bold bond is used to indicate the existence of out-of-plane architecture with unknown

direction (the end that is coming up is unspecified). As illustrated in B.12, a bold bond is

represented by a thick line segment in the form of a filled long rectangle. This line segment’s

thickness is larger than the thickness of a normal line segment. Hence, we only need to filter

out line segments resulting from the vectorisation phase. We will perform the filtering based on

the thickness of line segments as follows:
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Figure B.12: A Bold Bond

1. l is a line segment

2. width(l) > bbw

Consequence: A bold bond. The new bold bond has an up direction with unknown start and

end

Observe that R15.2 guarantees that this line segment is not captured by any of R1, R3, R3,

R10, R11 and R16.

B.12 R16: Aromatic Ring

An older drawing style used large circles inside cyclic structures to represent aromatic rings

as shown in Figure B.13. The circle is usually surrounded by a number of single line segments

forming a cycle. Usually, the cycles consist of at least five line segments.

Figure B.13: Aromatic Ring (these structures are equivalent)

Since the circle should result from the vectorisation step (Section 7.2.1), all we need to

detect this architecture is to find the group of line segments forming the cycle. Once detected,

these line segments are transformed into aromatic bonds. We are going to achieve this using the

following conditions:
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1. Let C be a circle

2. L = {l1, . . . , ln}, where n ≥ 5, is a set of line segments

3. ∀l ∈ L : len(l) > wb

4. ∀l ∈ L : width(l) < bbw

5. All elements of L are within bs of C

Consequence: n aromatic bonds, one for each li ∈ L.

Observe that R16.3 guarantees that none of the line segments captured by this rule can be

captured by either R10 or R11. Also, R16.4 makes sure that none of these line segments can be

captured by R15.

Notice that the single bonds forming the cycle around the circle will have been captured

by the single bond rule R1 (Section 7.5.1). However, this can be application dependent as the

relevant rules can be triggered first and then executed, or fired, afterwards. Whenever more

than one rule is triggered, a conflict resolution mechanism can be applied to decide which rule

should execute.

Also, notice that the rule is easy to amend if the cycle surrounding the circle is formed of

other types of line segments. Additionally, the rule can be updated to accommodate the less

common case when line segments forming the cycle are not connected and have a chargroup

in common. When encountering this case, firing the rule can be delayed until chargroups are

taken into account.

B.13 R17: Open Bridge Bond

Bridge bonds are 3-dimensional structures where there are multiple different connection

paths between different parts of the chemical structure diagram. These are typically presented

in a 21/2-dimensional perspective drawing form. The bond line segments that cross in the

drawing but do not intersect in 3 dimensions are sometimes drawn in an open form, where

the background bond is drawn broken leaving the viewer to deduce that the broken lines are
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actually one line. We will detect an open bridge bond such as the one shown in Figure B.14

using the following conditions:

1. L = {l1, l2, l3} is a set of line segments

2. ∀l ∈ L : length(l) > wb

3. l1 and l2 are approximately collinear

4. dist(l1, l2) ∈ 2 ∗ bs

5. l3 passes between the closest endpoints of l1 and l2

Consequence: Replace l1 and l2 with the smallest line segment containing them.

Figure B.14: Open Bridge Bond (Bridge is shadowed)

Observe that R17.2 guarantees that none of the lines captured by this rule will be captured

by either R10 or R11. Also, R17.4 guarantees that these lines are not captured by R18.

The three line segments forming the open bridge bond architecture can be identified as

single bonds and captured by rule R1 (Section 7.5.1). This can be overcome using the same

methodology used in Section B.12. The relevant rules can be triggered first and then executed,

or fired, afterwards. Whenever more than one rule is triggered, a conflict resolution mechanism

can be applied to decide which rule should execute.
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B.14 R18: Closed Bridge Bond

As shown in Figure B.15, closed bridge bonds are another case where 3-dimensional

structures are presented in a 21/2-dimensional perspective drawing form. In this case, the

different connection paths between different parts of the chemical structure diagram are drawn

in a closed form, leaving the viewer to deduce that the crossing point does not correspond to a

junction. The conditions we will use to identify closed bridge bonds are as follows:

1. L = {l1, l2, l3, l4} is a set of line segments

2. ∀l ∈ L : length(l) > wb

3. l1 and l2 are approximately collinear, as are l3 and l4

4. dist(l1, l2) = 0 and dist(l3, l4) = 0

5. l1 and l2 are part of an irregularly shaped cycle

6. There is no character group where these lines connect

Consequence: Replace l1 and l2 with the smallest line segment containing them, and similarly

for l3 and l4.

Figure B.15: Closed Bridge Bond (Bridge is shadowed)

Observe that R18.2 guarantees that none of the lines captured by this rule will be captured

by either R10 or R11. Also, R18.4 guarantees that these lines are not captured by R17.
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Again, the four line segments forming the closed bridge bond architecture can be identified

as single bonds and captured by rule R1 (Section 7.5.1). This can be overcome using the same

methodology used in Section B.12. The relevant rules can be triggered first and then executed,

or fired, afterwards. Whenever more than one rule is triggered, a conflict resolution mechanism

can be applied to decide which rule should execute.

B.15 Summary

We have explained the remaining 14 rules in this appendix. As we have stated before, our

rule engine has 18 rules and we have explained four of these rules in more detail in Chapter 7.
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APPENDIX C

THE DOUGLAS-PEUCKER ALGORITHM
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Algorithm 2: Douglas-Peucker Algorithm
Input: ε

Input: L = {(x1, y1), (x2, y2), . . . , (xm, ym)} is any m point polyline.
Output: L

′
= {(x1, y1), (x2, y2), . . . , (xn, yn)} where n ≤ m

begin
Mark (x1, y1) and (xm, ym) as keep
Invoke function douglas peucker(1, m)

Copy points marked as keep into L
′

Procedure douglas peucker(j, k)

begin
if index of (xk, yk) ≤ index of (xj, yj) + 1 then

return
end
Create straight line SLjk between (xj, yj) and (xk, yk)

Initialise maxdist = 0 as the distance of furthest point from SLjk

Initialise maxi = j as the index of the furthest point from SLjk

foreach (xi, yi) ∈ {(xj, yj), (xj+1, yj+1), ..., (xk, yk)} do
Find distance dpi between (xi, yi) and SLjk using Equation 6.1
if dpi > maxdist then

remember distance and index of (xi, yi)

maxdist = dpi and maxi = i

end
end
if maxdist > ε then

Mark (xmaxi, ymaxi) as keep
Split polyline into two polylines at index of (xmaxi, ymaxi)

Recursively apply Douglas-Peucker to the resulting two sub-polylines
begin

douglas peucker(j, maxi)

douglas peucker(maxi, k)

end
end

end
end

202


	Introduction
	Hypotheses
	Overview of the Approach
	Vectorisation
	Rule System

	Contributions
	Publications
	Thesis Overview
	Summary

	I Background
	Overview of Chemical Structure Diagrams
	Molecule Representation/Drawing
	Molecular formulae
	Structural formulae
	Displayed formulae
	Skeletal formulae
	Representing Aromatic Rings

	Two Dimensional Structural Formulae for Three Dimensional Representations
	Markush Structures

	More on Diagram Notation
	Double and Triple Bonds
	Implicit Atoms
	Bridge Bonds
	Bond Directions
	Superatoms

	Summary

	Electronic Representation of Chemical Structure Diagrams
	Electronic Representation of Molecular Structures
	Chemical Graph
	Adjacency Matrix Representation
	Linear Representations
	The Molecular Formula
	The SMILES String
	IUPAC Nomenclature

	Chemical Markup Language
	Connection Tables (MOL files)
	Detailed Structure of MOL file
	Stereochemistry in MOL files
	Superatoms in MOL files


	Summary

	Existing Approaches to Chemical Diagram Recognition
	The tool developed by IBM's Almaden Research Centre
	CLiDE
	ChemOCR
	OSRA
	ChemReader
	ChemInfty
	Imago
	AsteriX Server
	Chemink
	Summary


	II Rule-based Recognition System
	Specifications
	The Overall Philosophy
	System Architecture
	Implementation Methodology
	Why Rule-based
	Testing and Evaluation Methodology
	Summary

	Vectorisation
	Image Thinning
	Types of Thinning Algorithms
	Sequential Thinning
	Parallel Thinning

	The Thinning Algorithm we have used

	Extraction of Precise Line Endpoints
	How Douglas-Peucker Algorithm works
	Barb (Spike) Removal

	Detecting Solid Triangles and Bold Lines
	Detecting Arrows
	Summary

	A Description of The Rules
	More on our Implementation of Rules
	Preliminaries
	Geometrical Primitives
	Concepts
	Parameters

	Bond Cutting
	Summary of Rules
	Sample Rules
	R1: Planar Single Bond
	R3: Planar Triple Bond
	R7: Dashed Bond
	R12: Wavy Bond

	A Fully Worked Example
	Summary

	Graph Formation and Output Generation
	Formation of Graph
	Heuristics for Graph Formation
	Expanding Superatoms
	Guessing the Stereocentre
	Outputting MOL File
	Steps of Procedural Implementation
	Summary

	Extensibility and Flexibility of the Approach
	Discussion of Rules
	Rule Conflicts
	System Termination
	Circularity

	More Bond Types
	R19: Aromatic Bond
	R20: Tautomeric Bond
	R21: Double Bond with Type 1 Stereochemistry
	R22: Double Bond with Type 2 Stereochemistry

	Summary


	III Evaluation
	Evaluation
	Repeatability on Selection of Images
	Comparison with Existing Systems
	Experiments using the OSRA Dataset
	Experiments using our Dataset
	Experiments using TREC11's Datasets
	Experiments using CLEF12's Dataset

	Analysis of Results
	Recognition Errors due to Rule Mismatch
	Recognition Errors due to Vectorisation

	Summary

	Conclusions & Future Work
	Conclusions
	Future Work
	Improve OCR
	Better Bond Segmentation
	Handle Markush Structures
	Superatoms and Stereocentre
	Examine Flexibility of our Approach
	Electronic Circuit Recognition
	Flowchart Recognition



	List of References
	Appendices
	Optical Character Recognition (OCR)
	Optical Character Recognition
	Connected Component Labelling
	Calculating Connected Components
	Bounding Boxes

	Performing OCR and Removal of Characters
	Feature Extraction
	Classification
	Removal of Symbols

	Formation of Atoms (Chargroups)
	Alignment of Characters
	Consecutivity of Characters
	Inter-character Distance
	Forming the Atoms

	Identifying Rings/Circles
	Summary

	The Rules System
	R2: Double Planar Bond
	R4: Dashed Bold Bond vs Triple Bond
	R5: Dashed Wedge vs Triple Bond
	R6: Dashed Wedge vs Double Bond
	R8: Dashed Bold Bond
	R9: Dashed Wedge Bond
	R10: Hollow Wedge Bond - case 1
	R11: Hollow Wedge Bond - case 2
	R13: Arrow Bond
	R14: Solid Wedge Bond
	R15: Bold Bond
	R16: Aromatic Ring
	R17: Open Bridge Bond
	R18: Closed Bridge Bond
	Summary

	The Douglas-Peucker Algorithm




