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i 

Abstract 
 

The effects of acrylic acid on the electro-mechanical behaviour of commercial ITO/PET 

systems for use in thin flexible displays were investigated under uniaxial tension and 

monotonic bending under both tensile and compressive stresses of the ITO coated surface 

within the ITO/PET system.  The tribological properties of these systems were also 

investigated using a fretting technique under dry sliding conditions via a customised High 

Frequency Reciprocating Rig.  Changes in electrical resistance were monitored in situ.  Ex 

situ SEM was conducted to provide surface characterisation of the mechanically-tested 

samples.  The results showed when tested under tension the ITO/PET systems ability to resist 

strain was significantly reduced in both uniaxial tensile testing and monotonic bending after 

exposure to acrylic acid.  The main failure mechanism is suggested to be stress-corrosion 

cracking.  However when tested in compression, the exposure to acrylic acid was not seen to 

have an effect on the electro-mechanical properties.  The tribological properties of these thin 

film systems were also seen to be affected by the exposure to acrylic acid as; the number of 

cycles to failure for the 300 Ω/ sample was reduced from 570 cycles to 200 cycles.   
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“Did you hear about the rose that grew 

from a crack in the concrete?  

Proving nature's law is wrong it  

learned to walk without having feet.  

Funny it seems, but by keeping its dreams,  

it learned to breathe fresh air.  

Long live the rose that grew from concrete 

when no one else ever cared” 

 

T. Shakur 
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1. Introduction  

1.1 Introduction to displays 

We often take them for granted, however displays are present in every aspect of our modern 

day life; they are present in the forms of televisions, personal computers and mobile phones to 

name only a few.  Displays have constant impact on our lives and consumers are becoming 

familiar with new technologies and are also pushing for new innovations.  The evolution of 

display technology has rapidly grown over the past decade, the cathode ray tube (CRT) 

display screens that once dominated the market are now archaic and the thin liquid crystal 

display matrix (LCD) technologies that surpassed them are now over 30 years old.  

Innovation has now moved into the possibility of manufacturing flat, flexible displays.  

However for the manufacturing process to be viable, flat flexible substrates must be found to 

replace the conventional glass substrates currently used.  Displays have always been a 

pinnacle aspect to the consumer, as they are the interface between us humans and machines.   

1.1.2 Touch screen applications 

Touch screens have become very popular in mobile devices as they are aesthetically pleasing; 

save space by combining the display and input area, allow dynamic simulation of electro-

mechanical controls such as buttons and engage the user in simple, effortless control at their 

finger tips.  Touch screen panels are manufactured with multiple layers.  The top layer 

consists of a polymer film whilst the bottom layer is manufactured from glass which acts as a 

sensor (Sierros, 2006).  Both of these layers are coated with TCO’s (Transparent Conducting 

Oxides) such as Indium Tin Oxide.   These layers are separated by a middle layer of dielectric 

spacers.  The interface functions when an electrical current is applied to the polymer layer and 
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a finger compresses the top film layer.  The polymer film then comes into contact with the 

bottom layer glass sensor and a controller detects the current flow to the corners of the display 

panel and with this information it is able to calculate and detect the geometry of the finger on 

the display (Crawford, 2000) 

1.1.3 Flexible displays 

The evolution of the display industry is rapidly growing year on year, with a gained interest 

into the topic of flexible display technology.  Slikkerveer (2002 ) defined a flexible display as; 

“A flat panel display constructed of thin (flexible) substrates that can be bent, flexed, 

conformed, or rolled to a radius of curvature of a few centimetres without losing 

functionality”.  With regards to the requirements of the display to be bent to a radius of 

curvature whilst still maintaining key functional properties, a flexible display can be further 

classified into formed and flexible via the degree of flexibility it will see in service.  Formed 

displays are bent once to a specified radius of curvature, and are ideal for the automotive 

industry such as a display that fits right inside the dashboard.  Unlike a formed display which 

is flexed once and no further, a flexible display may be bent and flexed multiple times during 

use.   

 

The future developments for flexible display technologies are promising, however their 

introduction to the consumer market is still dependant on technical and manufacturing 

developments.  In terms of a substrate material that conforms to the previously stated design 

parameters that define a flat flexible display, Polymers offer a number of advantages.  

Polymers are light weight, conformable, transparent and most of all flexible.  In comparison 

to the rigid mechanical properties of the traditional glass substrates that are currently used in 

flat panel television display technology such as the liquid crystal displays, which makes it 
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more than difficult to manufacture into a flexible display substrate, the mechanical properties 

of polymers can range from engineering polymers of high rigidity to soft rubbers and films.  

Moreover they offer the advantage of enabling a higher profit margin in the consumer market 

due to their combination of low base value and suitability to be mass produced by a viable roll 

to roll manufacturing process.  This in turn has developed into the development of research 

for polymer use not only in the television display industry, but they are being considered as a 

key substrate material in a range of applications including; organic light emitting diodes 

(OLED’s), dielectric materials and transparent substrates (Choi et al., 2008).   

 

However the service efficiency and lifetime of these flexible displays is heavily dependent on 

the polymers mechanical, electrical and optical properties.  Therefore it is essential that care is 

taken when choosing the correct polymer to be used as a flexible substrate as many do not 

fulfil the reliability requirements of display processing as they may exhibit poor mechanical, 

structural and/or chemical properties (Bouten et al., 2005, Choi et al., 2008, Crawford, 2005).  

Furthermore the mechanical mismatch between the viscoelastic polymer substrate and the 

brittle TCO anodic material may result in cracking and/or delamination during manufacture or 

operation (Crawford, 2005).  The cracking of this brittle layer results in a decrease of the 

electrical functionality of these flexible devises and it is therefore it is critical that we conduct 

electro-mechanical tests to find the limits of these polymer/TCO systems.    

 

 

 



  Introduction 

___________________________________________________________________________ 
4 

1.2 Aims of the project  

1) To investigate the effect of acrylic acid exposure on the electrical and optical 

properties of ITO coated PET substrates for thin films; as these systems can come 

into contact with numerous acidic environments during the manufacturing process 

and acrylic acid is commonly found in epoxies used to stack these systems during 

device manufacture.  The optical reliability of these systems is vital during service; 

therefore any detrimental effects to these optical properties need to be fully 

understood.   

 

2) To analyse the electro-mechanical behaviour of these thin films before and after 

exposure to an acrylic acid environment.  During manufacturing processes, such as 

roll-to-roll processing, these devices will be exposed to a range of stresses including 

but not limited to; tensile and compressive bending whilst being exposed to acidic 

environments.  It is therefore imperative that we investigate and compare the effects 

these scenarios may have on the system’s ability to function effectively. 

 

3) To investigate how the tribological properties of these thin film systems can be 

affected after exposure to acrylic acid.  When these systems are stacked during the 

manufacturing process there is a possibility that they may slide past one another, 

furthermore the designed function of the device may require it to operate in a sliding 

motion.  Therefore a detailed understanding of the tribology of these systems is 

required.  
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2. Literature review 
 

2.1 Scope of this work 
 
To fully understand how factors such as acrylic acid exposure affect the performance of 

commercial ITO/PET systems such as; the optical, electro-mechanical and tribological 

properties and the implications these affects cause on the fabrication and application of 

flexible display technologies, it is imperative that one fully understands the work that has 

been previously conducted within this area of research.  This chapter aims to review relevant 

work conducted from within this field of study; from material selection through to device 

application, so that the effects of acrylic acid exposure on the ITO/PET systems ability to 

function effectively within flexible display technologies can be fully understood.   
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2.2 Potential substrates for use in flexible displays 
 
For a substrate to be considered as an alternate for traditional glass substrates and to be used 

in new flat, flexible display technologies, it must match the current desired requirements.  

These requirements include;  

 High optical transmission; the substrate needs to be optically clear in the visible 

spectrum.  

 Low surface roughness as the electrical sensitivity of thin devices is sensitive to the 

substrates surface roughness.   

 Good mechanical properties including a relatively high modulus enabling support for 

the device.   

  Protection against the permeation of oxygen and chemicals.   

 Desirable electrical properties, as the conductive substrate layer is commonly used as 

an anode.   

Research into the development of flexible displays initially suggested that thin glass, metal 

foils and polymers can be considered as possible substrate developments.  Thin glass films 

can allow a degree of flexibility and share the commonly desired properties of current glass 

substrates but are very brittle (Weber A, 2002).  The brittle properties of the thin glass 

substrates limit their ability to be used in applications, thus not making them a viable substrate 

option.  Research into metal foils has suggested that they are able to survive high process 

temperatures resulting in good barrier layers to both oxygen and moisture without the limiting 

brittle failure mechanisms of thin glass substrates, however they are very expensive, cannot 

handle multiple bends and are more suited for use in non-transmissive displays (Shin, 2005).   

The limiting factors with metal foil substrates however lie within the fact that they can only 

work in non-transmissive displays, cannot function with multiple blends and result in higher 
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manufacturing costs due to the increased cost of the material (Choi et al., 2008).  Therefore 

polymers offer the best combination of both the desired properties including good optical, 

chemical and mechanical performances with a low material and manufacturing costs and the 

ability to be mass produced into the consumer market by a roll-to-roll process.   

2.1.3 Potential polymer substrates for flexible displays 

There are numerous polymers that could be considered as viable flexible substrates for 

flexible displays.  The most commonly researched however are semi crystalline 

thermoplastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and 

an amorphous thermoplastic, poly-carbonate (PC).  The structure of these polymers is shown 

in Figure 2. 1. 

 

 

Figure 2. 1 Potential polymers that can be used as flexible display substrates (Choi et al., 2008) 

 

The polyester polymers (PET and PEN) share the advantages of exhibiting high optical 

transmission, a desired coefficient of thermal expansion (CTE), provide a suitable barrier of 

chemical resistance and are relatively cheap to manufacture.  However they also are subjected 
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to the disadvantages of having poor surface roughness and lower than desired glass transition 

temperatures (Tg) and upper operating temperatures, 150oC and 200oC for PET and PEN 

respectively.  The knowledge of potential polymers glass transition temperature  is vital in the 

material selection process, if the glass transition temperature of these polymers were to be 

above ~140oC  they would be subjected to a significant degree of degradation during melt-

processing (Choi et al., 2008).  Poly-carbonate on the other hand, offers improved surface 

roughness with excellent optical transmission properties, however when compared to both 

PET and PEN, has poor solvent resistance, poor mechanical properties with a similar upper 

operating temperature (150oC) (Choi et al., 2008). 

2.1.4 Alternate potential polymer substrates for flexible displays 

As previously stated, the most commonly researched polymers for use in flexible display 

technologies are; PET, PEN and PC.  However there are numerous polymer substrates that 

could potentially be used as the substrate material for these flexibly display technologies such 

as; polynorbonene (PNB), polyimide (PI), polyarylate (PAR), polyethersulphone (PES), 

polyether-etherketone (PEEK) an, polycyclic olefin (PCO) (Choi et al., 2008, MacDonald, 

2004).  Polyether-etherketone (PEEK), much like PET and PEN is a thermoplastic semi-

crystalline polymer and polyethersulphone (PES) is an amorphous polymer which can be 

solvent cast or melt extruded.  The following polymers, although amorphous, cannot be melt 

processed; polycyclic olefin (PCO), polyarylate (PAR), polynorbonene (PNB) and polyimide 

(PI).  A detailed description of these polymers is not within the scope of this work. 

2.1.5 Production of polyethylene terephthalate  

Polyethylene terephthalate is a thermoplastic polymer that is widely used due to its ability to 

be recycled, satisfying the growing need for “greener” alternative to the commonly used 
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polymer.  It was first made commercially available by a patent in 1941 from John Whinfield 

of the Calico Printers Association (Sierros, 2006).  Early productions of PET were 

manufactured by reacting terepthalic acid with ethylene glycol.  PET films can be produced 

via a number of methods but a drawing process is most commonly used.  In this drawing 

process the temperature is taken above the polymers glass transition temperature (Tg) 

allowing melt extrusion through a slot die, quickly followed by quenching and as a result 

forms an amorphous precursor film.  In-line drawing in both the transverse and machine 

direction takes place, often involving reheating above 80oC, and is followed by in-line heat 

setting.  During the in-line drawing in the transverse and machine direction, strain-induced 

crystallisation of up to 50% can be achieved (Sierros, 2006).   

2.1.6 Chemical resistance of polyethylene terephthalate  

During the manufacturing process polymer substrates will be exposed to a wide range of 

chemicals as well as moisture, therefore it is important that any polymer substrate to be used 

in thin flexible displays offers a strong resistance to moisture and solvents.  Semi-crystalline 

polymers such as PET offer a strong to resistance to solvents such as acetones, methanol and 

acids, whereas amorphous polymers often have poor solvent resistance (Choi et al., 2008).  

PET can absorb 1400ppm O2 at equilibrium however the exact values can fluctuate and are 

dependent on temperature and humidity.    

2.1.7 Optical clarity  

Optical clarity is one of the most important properties for display technologies.  Crawford 

(2005) discussed the importance of the polymer substrates exhibiting an optical clarity of 

above 85% in the visible spectrum combined with a low haze value.  PET offers total light 
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transmission of above 85% in the visible spectrum coupled with a haze value of less than 

0.7% (MacDonald, 2004).   

2.2 Transparent conducting oxides 

Transparent conducting oxides (TCO) are currently used in a vast number of commercial flat-

panel display applications such as; personal hand-held devices, televisions and computers to 

name just a few.  One of the most commonly used of the TCO family is indium tin oxide.  It 

is widely acknowledged as a transparent conducting electrode material due to its high optical 

transmittance of over 90% in the visible spectrum whilst being able to exhibit low electrical 

resistivity of 2 x 10-4 Ω/cm (Choi et al., 2008).  These properties were obtained from ITO 

deposited onto glass substrates under high processing temperatures of 300 oC.  However ITO 

thin films are very expensive due to the rarity of Indium and require high processing 

temperatures to achieve the desired optical and electrical properties on glass substrates.  

Moreover, they are extremely brittle, which causes problems in the application to thin flexible 

substrates.   

 

For thin flexible displays to be commercially viable, they need to mirror the key properties of 

its glass counterparts, but deposition of TCO onto polymer substrates requires lower 

deposition temperatures (under 200oC).  It has been generally stated that by using lower 

temperatures during the deposition process will result in poor optical transmission and high 

electrical resistance (Kim et al., 2001).  Techniques have now been developed to overcome 

these disadvantages of deposition at low temperatures.  The pulsed laser deposition (PLD) 

deposition technique operates by using a high-powered pulsed laser beam focused on to a 

target material inside either a vacuum of background gas chamber.  The latter is most 

commonly used with oxygen when depositing oxides to fully oxygenate the deposited film.  
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As the laser energy density reaches the required threshold a laser-induced plasma plume is 

produced resulting in the material being vaporised from the target and deposited onto the 

substrate as a thin film (Kim et al., 2001).  By using this deposition technique Kim et al. 

(2001) stated that it was possible to obtain the key properties of high temperature deposition 

at low substrate temperatures of under 100oC.  Kim et al. (2001) recorded electrical resistance 

as low as 4 x 10-4 Ωcm and an average optical transmission of 90% in the visible spectrum 

 

The PLD technique was further developed by Chung et al. (2004) who depositing TCO’s at 

room temperature followed by an annealing process using an XeCl excimer laser.  The results 

of using excimer laser annealing were that the optical and electrical properties could be 

significantly improved when compared with other room-temperature deposition techniques.  

Other deposition techniques such as ion beam assisted deposition and reactive DC-Magnetron 

sputtering have also been reported to exhibit desirable properties (Young-Soon Kim and Shin, 

2003).  Although the PLD process can achieve highly desired properties for coated thin films 

such as a low surface roughness at low deposition temperatures, the limited area of the ablated 

plume eliminates the possibility of mass production. 
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2.2.1 The DC-magnetron sputtering process 

Dc-magnetron sputtering is a commonly applied process as it enables large areas of thin films 

to be coated in a batch process.  During this sputtering process gas ions are accelerated 

towards a target material from excited plasma, particles of the target material are then 

removed from the target material and condensed on to the desired substrate.  This process 

takes part inside a vacuum chamber and a schematic diagram can be seen in Figure 2. 2. 

 

 

Figure 2. 2 A schematic diagram of the sputtering process 
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A reactive gas such as Argon is fed into the chamber to initiate the ignition of the plasma and 

due to radiation ionized Ar+ions become available.  A high negative potential is applied to the 

target material and as a result the Ar-ions are accelerated towards the target and the material 

particles are removed, this can also produce secondary electrons causing additional ionization.  

Once the material particles are ionized, they are bombard and coat the substrate.  A 

combination of the gas pressure and the electron distance can affect the probability of 

ionization and the introduction of the permanent magnet can increase the ionization rate by 

emitted secondary electrons even further.  The magnet causes the electrons within its field to 

become trapped and circulate over the target surface for a longer period of time (Lan et al., 

2009).  This time increase results in a high possibility of ionization, forming plasma initiation 

at low pressures, which further results in higher deposition rates (Lan et al., 2009).  
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2.3 Roll-to-roll manufacturing  

Currently the proposed method for the commercial production of display panels is via a 

lengthy batch process using vacuum deposition techniques such as dc-magnetron sputtering.  

However if a commercially viable roll-to-roll process could be developed, then this enables 

the manufacturing of thin flexible displays to produced at increased rate.  The increase in the 

rate of production of these thin films results in a more viable processing method for consumer 

market expansion.   

 

There are many advantages to the use of a roll-to-roll process; 

 Total manufacturing overhead time will be significantly reduced as it will not be 

required to load and unload the display panels into the vacuum chamber or chemical 

processing stations.   

 Contamination levels will be decreased with the reduction of contact during the 

loading and unloading phases.  

 Due to the reduction in human contact in processing the substrates greater yields can 

be achieved.  

 A greater degree of automation can be achieved. 

 It will enable a one-step manufacturing process  
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Figure 2. 3 Schematic diagram of a unique roll to roll sputtering system courtesy of (Choi et al., 2009). 

 
Choi et al. (2009) developed a unique roll to roll sputtering system to coat polyethylene 

terephthalate substrates with indium tin oxide electrodes for the production of flexible organic 

solar cells.  The roll to roll sputtering technique was able to deposit 200 mm wide PET 

substrates with a thickness of 188 μm with an Indium Tin oxide coating of 200 nm.   A 

schematic diagram of the roll to roll sputtering process can be seen in Figure 2. 3.  Choi et al. 

(2009) found that the optical and electrical properties of the indium tin oxide were dependant 

on the Argon/Oxygen flow ratio in this roll to roll process and even at low deposition 

temperatures films can be produced with a low sheet resistance (47.4 Ω/) with an average 

optical transmittance of 83.46% in the wavelength region of 500 – 800 nm.   
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2.3 Indium tin oxide and flexible displays 

It has been previously discussed that thin metallic foils can be used as the anodic material in 

flexible display technologies (Choi et al., 2008), however these materials can only obtain 

limited optical transmission properties whilst displaying an acceptable reduction in 

conductivity.  Wide band gap (Eg > 3eV) materials such as ITO offer both high transparency 

and high electrical conductivity.  ITO is formed via the doping of In2O3 with Sn which in turn 

replaces the In3+ atoms from the cubic structure of Indium Oxide (Fan and Goodenough, 

1977).  During this process Sn forms an interstitial bond with O2 and exists as SnO or SnO2  

with a valence of +2 or +4 respectively (Fan and Goodenough, 1977), and this valence 

directly influences the conductivity of the ITO layer  where; a low valence results in a 

reduction in conductivity as a result of a decrease in carrier concentration and a high valence 

results in an increase of conductivity due to Sn+4 acting as an n-type donor releasing electrons 

(Paine et al., 2005).  The high optical transmittance values of ITO film properties are due to 

the material being a wide band gap semi-conductor.  However these values can be influenced 

by a number of defects such as surface roughness and a high deficiency of oxygen atoms can 

reduce the size of the band gap and therefore results in a reduction of the films transparency 

and carrier mobility (Kim, 2007 )   
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2.3.1 Mechanical properties of ITO coated polymer substrates  

The advantages of using ITO as the transparent conducting oxide for thin flexible display 

technologies has been previously discussed, however the mechanical properties of the 

material influence the development and production of these technologies.  It is known due to 

the rarity of indium, that manufacturing costs are high, and also the brittle nature of ITO 

induces problematic situations when discussing the manufacture of thin flexible displays.  

Therefore investigation into the mechanical failure of the thin film materials is vital in the 

selection process for coated polymer substrates to be considered for use in thin flexible 

display technologies.   

 

Previous research into the electro-mechanical properties of ITO coated polymer substrates 

such as investigating the strain – dependant electrical resistances of ITO have shown that at a 

certain strain percentage, electrical resistance of the ITO coated polymer substrate increases 

rapidly (Cairns et al., 2000).  This strain threshold is known as the critical onset strain (COS) 

and occurs due to crack formation and propagation in the ITO layer and is defined as the 

strain at which the increment of electrical resistance measured in situ  is equal to 10% (Bouten 

et al., 2005, Leterrier, 2003 ).  Three PET substrate samples were used in an initial 

investigation with varying sheet resistances of 80, 200 and 500 Ω/square which correlates to a 

coating thickness of 105, 42 and 16.8 nm respectively (Cairns et al., 2000).  Low sheet 

resistance such as 80 Ω/square correlates to a thicker ITO coating (105 nm) and the results 

display not only a rapid electrical increase at a certain strain percentage but also that the 

thickest ITO coating investigated (105 nm) failed at the lowest stain percentage, inferring that 

the critical onset strain is dependent on the ITO film thickness.  This work was continued 

further by Cairns D.R. (2001) where thin ITO films of varying sheet resistances from 61 – 
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400 Ω/square were deposited on to a 125 μm thick PET substrate via DC magnetron 

sputtering.  Uniaxial tensile tests using a miniature tensile testing machine (Rheometric 

Scientific Minimat 2000) were performed whilst electrical resistance was measured in-situ, 

and an optical microscope enabled optical analysis of crack propagation.  The results showed 

crack initiation occurs perpendicular to the load direction at a COS of 2.75%.  As the strain in 

the sample is increased above this critical onset strain, the number of cracks rapidly increases, 

resulting in a decrease in fragment length and a rapid increase in electrical resistance.  The 

tensile properties have been further researched using a tensile and 2–point bend testing 

method to discover the critical failure strain of ITO coated polymer substrates (Bouten, 2002).  

Two polymer substrates of 100mm and 22mm in sample length were used with a constant 

ITO coating thickness of 100nm and the electrical resistance was monitored in-situ.  Results 

showed that the critical onset strain (COS) determined as a 10% increase in electrical 

resistance was observed at 2.3% for the 100 mm sample and 5% for the shorter 22 mm 

sample.  The differences in critical onset strains were attributed to clamping issues.  The 2–

point bend test displayed failure strains of 1.29% and 1.21% for the 100 mm and 22 mm 

samples respectively, significantly lower than the failure strains shown in the tensile tests.  

  

The film thickness dependence of the electro-mechanical and optical properties of ITO thin 

films have been systematically investigated using film thicknesses of 72 nm to 447 nm on 

polyethylene terephthalate substrates (Hao et al., 2008).  Through XRD and SEM analysis it 

can be seen that the crystal grain size and surface roughness increases with an increase in film 

thickness.  However the optical transmission and sheet resistivity decreases with an increase 

in ITO film thickness, due to the crystal grain structure becoming too large.  It should also be 

noted that thick ITO films exhibit a lower COS than thinner ITO films, which is consistent 
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with previous studies where the COS has been seen to be inversely proportional to the square 

root of the film thickness (Cairns D.R., 2001, Wang et al., 1998, Hao et al., 2008) This 

confirms that the mechanical properties of ITO coated polymers substrates for use in thin 

flexible displays are dependent on the ITO film thickness.     

 

When a thin flexible display component is flexed during service, further mechanical 

complications arise.  As the component is flexed, one surface will be under compressive strain 

whilst the other in tensile strain.  However at the centre of the film lies a neutral axis where 

stain will equate to zero (Chen et al., 2001a).  At any other layer away from the centre of the 

film however the strain can be given by;  

 

   
 

 
                    (2. 1) 

 
where γ is the distance away from the neutral axis and R is the radius of curvature of the 

neutral axis.   

 

Therefore it can be seen that one can maximise the flexibility of the device by ensuring that 

the brittle ITO layer is close to the neutral axis (Z. Suoa, 1999).  However if the ITO layer is 

unable to be placed close to this neutral axis, then the component will be limited by the 

brittleness of this layer and a further understanding of the fracture properties and failure 

mechanisms is required.   Chen et al. (2001a) used ITO coated PET substrates under simply 

supported ends and clamped situations and induced both tensile and compressive stresses via 

a series of bending experiments.  Chen et al. (2001a) results showed that if the sample was 

placed under tension a steady state channelling crack is formed, however if the sample was 
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placed under compressive loads, the ITO coating delaminates and buckles before cracking 

propagates.  It was said that under low power microscope analysis the failure mechanism for 

compressive loads was superficially seen to be similar to tensile channelling cracks, however 

under further high magnification (Scanning Electron Microscopy) surface analysis the failure 

mechanism is shown to be a tunnelling – delamination – buckling – crack.  The mean critical 

onset strains for tensile and compression were found to be 1.1% and 1.7% respectively, 

however  whether the tensile or compressive strain is more critical is dependent on the 

cracking resistance energy to delamination toughness ratio, Gc/Gd (Chen et al., 2001a, Chen et 

al., 2002).  When the sample is under a uniform applied strain and the length of the 

channelling crack is greater than the film thickness, then steady – state cracking may be 

observed (Chen et al., 2001a).  During steady – state cracking the crack length does not affect 

the level of applied strain as the energy release rate is constant (Chen et al., 2002, Chen et al., 

2001a).  Therefore the ITO layer will fail if its release energy is either greater or equal to this 

crack resistance energy (Gc) (Chen et al., 2001a, Bouten et al., 2005)  where Gc is given by 

(Hutchinson, 1996, Beuth Jr, 1992, Chen et al., 2002); 

 

    
 

  
    

                                   (2. 2) 

 
where g      is a function of the Dundur’s parameter shown in equation 3 for plane strain 

conditions;  

 

   
        

          
          

  
   

      
     

         
     
     

 
 

            
                         (2. 3) 
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When thin films are placed under compressive loads the brittle ITO layer may also delaminate 

via a buckling mechanism.  Within this buckling mechanism the elastic energy stored within 

thin film is released resulting in a new free surface by peeling the coating from the substrate 

surface (Bouten et al., 2005).  Chen et al. (2002) placed samples under compressive loads and 

investigated their failure mechanism features using SEM and AFM, the images revealed that 

the failure mechanism was that of a buckling delamination closely followed by film cracking.  

In compression the energy release rate is based upon the delamination area and is given as 

(Chen et al., 2000, Chen et al., 2002, Chen et al., 2001a); 

 

          
  

  
                     (2. 4) 

 

where Gd is the delamination energy, Gc is the crack resistance energy and 2b is the 

delamination width.  As previously mentioned the cracking resistance energy to delamination 

toughness ratio, Gc/Gd dictates whether the thin film will fail fist in either tension or 

compression.  If Gc< Gd then tensile failure may occur at a lower strain than under 

compression (Chen et al., 2002, Chen et al., 2001a).   

 

Stress – corrosion cracking failure mechanisms under applied bending strains were 

investigated by Sierros et al. (2009b) via wrapping samples around mandrels that ranged in 

differing diameters.  These samples were then submerged in differing concentrations of 

acrylic acid solutions.  The results showed a reduction in the electrical properties of the thin 

film samples due to corrosion induced cracking, furthermore as the acidic concentration 

increased, so did the degree of corrosion.  As a result of this, when a bending strain was 
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applied it could be seen that the thin film samples failed significantly sooner than the samples 

that were just subjected to corrosion with no applied stress.  With this in mind it was observed 

that the combination of both an applied stress and a corrosive environment, cracking of the 

ITO layer can be initiated at stresses of less than a quarter of those needed without corrosion.   

 

Lan et al. (2010) further investigated the failure mechanisms during bending conditions and 

aimed to improve the optical and electrical properties of ITO coated PET substrates for use in 

thin flexible displays via the use of a thermionic emission (TE) enhanced DC magnetron 

sputtering system.  X-ray diffraction patterns showed that the samples without a thermionic 

emission layer displayed an amorphous feature whereas the samples with a TE layer 

demonstrated a clear crystalline structure (Lan et al., 2010).  The presence of this crystalline 

region is as a result of substrate temperature elevation in combination with an intensified 

plasma density (Lan et al., 2009).  Bending tests showed that via the inclusion of TE layers, 

mechanical and adhesive properties can be significantly increased; the critical radius of 

curvature improved from 17.00 mm to 13.9 mm, samples could perform above 1200 rhythmic 

cycles compared to just 50 and the optical transmission was seen to have improved from 70% 

to 83%.  The increase in these mechanical properties is due to the increase in crystallinity and 

film adhesion during the sputtering process (Lan et al., 2010).   
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2. 4 Tribological properties  

Flexible display devices are diverse in their function and application selection, so it is 

therefore expected that flexible display devices may need to effectively function in a range of 

harsh environments such as; in solar panel technologies or the automotive industry to name 

but a few.  Cairns D.R. (2001) investigated the adhesive wear of ITO coated PET substrates.  

A polymer stylus was repeatedly drawn over the sample for 60,000 siding cycles.  This 

resulted in pit formation in the ITO layer with polymer extrusion through the ITO pits and 

ITO flakes from the top surface to the bottom surface.  With an increase in the number of 

sliding cycles crack formation was observed.   

 

When ITO anodes become exposed to voltage differences in the presence of moisture and 

contamination, their resistance to corrosion is decreased (Sierros et al., 2009a).  Moreover the 

components of the flexible display device can come into contact with acidic solutions from 

either harsh environment conditions or epoxy resins, these acidic solutions can corrode the 

brittle ITO layer and any applied or residual stresses can result is stress corrosion cracking, 

resulting in crack formation, propagation and/or delamination (Sierros et al., 2009a).  

  

Sierros et al. (2009a) further investigated the tribological properties of ITO coated PET 

substrates through a custom built reciprocating wear testing rig under both dry and wet sliding 

conditions, where a flat ITO surface came into contact with another flat ITO counter surface.  

During the experiment the top sample slides in a reciprocating motion over the bottom surface 

and for wet sliding conditions the sample was placed into a container filled with a 0.1 M 

acrylic acid solution with a constant applied load of 3.5 Newton.  At 100 sliding cycles a 40% 

resistance increase was observed and at 10,000 cycles a large rapid increase in electrical 
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resistance was seen which indicates a significant loss of surface functionality.  Microscopy 

evaluation revealed plastic deformation of the underlining polymer substrate and crack 

formation with a 45 degree orientation with respect to the sliding direction, which infers that 

the wear mechanisms of the ITO surface include cohesive failure within the film and adhesive 

wear between the ITO film coating and the PET substrate (Sierros et al., 2009b, Sierros et al., 

2009a). 

 

Solar panels applications are highly at risk to the exposure to harsh environmental conditions 

and their efficiency and long term reliability are dependent on the surface integrity of the film 

which can be damaged due to their exposure to harsh environmental condition (Sierros et al., 

2011).  Sierros et al. (2011) investigated the efficiency and long term durability of 

multilayered Ag/Ag – alloy based ITO thin films via the use of a reciprocating wear test.  A 

polytetrafluoroethylene ball, commonly known as PTFE was reciprocated over a thin film 

under wet sliding conditions with the use of a NaCl solution (1 M concentration) under 

moderate loading conditions (3 N) and by increasing the number of cycles (3 cycles/minute).  

The reciprocating motion of the PTFE ball; chosen due to its low friction coefficient, was of 

25.4 mm in length and due to the load a mean Hertzian contact pressure of 0.56 MPa was 

induced, which is a typical  contact pressure under moderate handling and service conditions 

for solar panel components (Sierros et al., 2011).  The investigation discovered that; critical 

onset crack formation initiated between 200 and 268 cycles, over 3240 cycles resulted in a 

decrease in mass of the PTFE ball due to wear transfer and impregnation onto the thin film 

sample, an increase in reciprocating cycles results in the corrosion resistance of the sample 

decreases and with regards to weight measurements three wear regimes are inferred up to 540, 

up to 1080 and above 1080 reciprocating cycles respectively.   
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2.5 Hertzian contact mechanics  

 
Image courtesy of  (Popov, 2010) 

 

Contact mechanics is the study of the stresses, deflections and deformations of two elastic 

solids that touch each other and require particular attention in hardness, impact and wear 

testing  (Fischer-Cripps, 1999).  The mathematical formula is built upon the mechanical 

properties of the materials used and mechanics where elastic, viscoelastic and plastic bodies 

are in either dynamic or static contact (Popov, 2010).  A common area of interest is in the 

contact between a flat specimen surface and a rigid indenter.  The indenter can consist of a 

number of shapes including spherical or cylindrical to name but a few and is commonly 

referred to as “Hertzian contact” (Fischer-Cripps, 1999).   
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This project will be investigating a rigid sphere indenter on a flat surface scenario where 

Hertz (1896) found;  

 

Radius of the circle of contact  

     
 

  

   

 
                                                       (2. 5) 

Elastic mismatch factor   

   
 

   
           

 

  
                                                (2. 6) 

Maximum tensile stress of the specimen 

            
 

    
                                       (2. 7) 

Maximum tensile stress outside the indenter given in terms of indenter radius R 
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Mean contact pressure 

    
 

   
                            (2. 9) 

Indenter stress in terms of mean contact pressure, given by substituting equation 2.9 into equation 2.5  
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With regards to equation 2.5, a, is related to the indenter load p, radius R and the elastic 

properties of the indenter material.  Equation 2.6 expresses the elastic mismatch factor where; 

E is the Young’s modulus of the specimen, E’ is the Young’s modulus of the indenter and v, 

v’ represent the Poisson’s ratio of both the specimen and indenter respectively.  Poisson’s 

ratio, also known as the Poisson effect occurs when a sample is stretched and is the ratio of 

the transverse strain perpendicular to the applied load to the axial strain in the direction of the 

applied load (Lakes, 1987).   During the contact between the indenter and the specimen the 

maximal tensile stress of the specimen occurs at the edge of the circle of contact and is given 

in equation 2.7.  Due to the stresses that occur and act in a radial direction on the surface of 

the specimen, Hertzian Zone Cracks can occur if these stresses decrease to the inverse square 

of the distance away from the centre of contact (Fischer-Cripps, 1999).  The maximum tensile 

stress outside of the indenter can be expressed in terms of the indenter radius by combining 

Equations 1 and 3 and is shown in equation 2.8.  Hertz, 1896 found a normalising parameter, 

the mean contact pressure, Pm, given by the indenter load/contact area.  The mean contact 

pressure is expressed in equation 2.9.  With this information in hand it can be seen that the 

contact area is proportional to P2/3 and therefore Pm is proportional to P1/3.  We can then 

substitute equation 2.9 into equation 2.5 and the mean contact pressure can be referred to as 

the indenter stress and the quantity (a/R) as the indenter strain as shown in equation 2.10.  The 

relationship shown between Pm and a/R in infers to an existence of a similar stress – strain 

responses observed in traditional tensile and compression experiments (Fischer-Cripps, 1999).   

As the substrate ids viscoelastic, it is assumed that the critical depth is not reached and 

therefore plastic deformation does not take place.  
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3. Materials and experimental methods  

3.1 Sample preparation  

3.1.1 Polymer substrates 

Commercial polyethylene terephthalate (PET) polymer substrates that had been coated with 

Indium Tin Oxide (ITO) via sputtering techniques were placed under examination.  The 

samples were in the form of A4 sheets of three varying sheet resistances; 50 Ω/, 100 Ω/ 

and 300 Ω/.  The samples were provided by Dr. Darran Cairns of West Virginia University 

USA and were manufactured by Solutia Films Incorporated (USA) where they used a 

commercial magnetron sputtering machine, coating the polymer substrates in batches.   

 

The polymer sheets were separated from one another by paper sheets to avoid any surface 

damage to the surface layer.  Examination gloves were be worn at all times when carrying out 

experiments or in general handling of the films to avoid damage and contamination.  Samples 

were cut out of the A4 sheets using a sharp razor blade and a steel ruler.   

 

For optical transmission and sheet resistance measurements 29mm/29mm square samples 

were made.   The Moore hydraulic press was used with a cutting mould to produce the 

traditional dumbbell samples needed for tensile testing, monotonic bending and our designed 

fretting experiment.  A section of the film was cut out using a razor blade and steel ruler and 

is then placed on top of the cutting mould.  Thin card is then placed over the top of the sample 

so the process does not affect the polymer substrate and ITO coating properties.  The 

procedure was carried out until two tons of pressure was reached.  
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Table 3. 1displays the number of samples tested at each varying acidic concentration for the 

experiments used in this investigation.   

 

Table 3. 1 Sample numbers examined during this investigation  

Acidic Concentration  Optical 

Transmission  

Surface 

Resistance 

Tensile 

Testing  

Monotonic 

Bending  

Fretting  

No Acid  

0.1 Molar  

0.2 Molar 

0.3 Molar 

0.4 Molar 

0.5 Molar 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

30 

30 

30 

30 

30 

30 

9 

9 

9 

9 

9 

9 

 

Total 90 90 90 180 54 

 

3.1.2 Acidic corrosion  

Acrylic acid (C3H4O2) was used to corrode the ITO layer of the films.  It has a molecular mass 

of 72.06 g mol-1 and a relative density of 1.05 g/ml at 25oC.  The acid was supplied by Sigma 

Aldrich.  A stock solution was produced with a concentration of 1M.  From this stock 

solution, varying concentrations of 0.1 M to 1 M can be easily produced.  The samples were 

placed in a Petri dish submerged in 25ml of acrylic acid solutions from 0.1 M to 0.5 M and 

left in a well ventilated room and labelled accordingly.   
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3.2 Experimental methods  

3.2.1 Sheet resistance measurement  

The ITO-coated films were examined using a four point probe system.  The system was 

composed of four tungsten probes aligned linearly with 1 mm probe spacing, an ohm-meter, a 

DC current source and a volt meter.  The sample is placed on the base of the machine and the 

probe head is slowly driven down so the probes just come into contact with samples surface.  

With the probes aligned linearly, a current is applied to the outer probes and the two inner 

probes measure the voltage potential of the sample (Gutierrez, 2002).  From this, the sheet 

resistance, Rs
(Ω/) is calculated using equation 3.1 (Runyan and Shaffner, 1997).                            

532.4
2ln

 RRR s



                            
(3. 1) 

 

A schematic diagram of the four point probe can be seen in Figure 3. 1.  The resistance can 

vary slightly over the sample surface, so a minimum of ten measurements were taken on 

various areas of the samples at room temperature and an average was taken. 

 

 

Figure 3. 1 The 4 - point probe alignment courtesy of (Gutierrez, 2002). 
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3.2.2 Optical transmission measurement  

A Jenway 6315 spectrophotometer was used to measure the optical transmission of the 

samples.  The spectrophotometer has a wavelength scan range of 198 nm to 1000 nm using a 

monochromatic light beam with a bandwidth of 8nm and exhibits a wavelength accuracy of 

±2 nm.  The monochromatic light beam is generated by a lamp and is focused onto the grating 

and is reflected into the sample chamber where it penetrates the sample and reaches the 

detector where the optical transmission is calculated at the given wavelength.  A schematic 

diagram of this process can be seen in Figure 3. 2.  Before measurements can be taken the 

machine must complete a baseline calibration.    

 

Figure 3. 2 Schematic diagram of the Jenway spectrophotometer process adapted from www.jenway.com 

 
The samples were scanned between 250 nm and 1000 nm.  The software measures the 

absorbance of the sample and the data can be manually converted to transmittance in a spread 

sheet program using equation 3.2 where A is the absorbance and T is the transmittance;  

 

TA log
                                                                               

(3. 2)
 

 

http://www.jenway.com/
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3.2.3 Tensile testing  

Uniaxial tensile testing of the dumbbell samples were replicated using a modified Instron 

5520 tensile testing machine shown in Figure 3. 3 (Potoczny, 2011).  Two copper wires were 

connected to both the upper and lower grips of the Instron and are connected to resistance 

meter in order to measure the electro–mechanical properties in–situ.  For these measurements 

to be taken a closed electrical circuit must be made using polytetrafluoroethylene (PTFE) 

screws to the base of the machine.  The samples used in this method of testing are traditional 

dumbbell samples made using the Moore hydraulic press.  The samples dimensions consisted 

of; a thickness of 0.197 mm, a width of 4 mm and a length of 18 mm.  When mounting the 

samples within the grips care must be taken to ensure the film is completely vertical in the 

form of a 90o angle with respect to the base.  The applied stress - strain data points are 

collected by one computer using Merlin Software and the change in electrical resistance data 

points are collected via a separate computer running National Instruments Lab View software.  

The samples were subjected to strains at room temperature at a constant speed of 0.08mm/min 

to around 8% strain.  The Failure of the ITO/PET system was characterised by a 10% increase 

in the increment of electrical resistance (ΔR/Ro).  This 10% increase relates to the critical 

onset strain where crack initiation occurs and begins to propagate.   
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Figure 3. 3 Schematic diagram of the Instron Tensile Testing Experiment adapted from (Potoczny, 2011) 
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3.2.4 Monotonic bending  

A free supported ends device was designed in this project by Grzegorz Potoczny and was used 

to investigate the flexibility of ITO/polymer systems.  The designed grips were prepared and 

attached to the Instron tensile testing machine.  The designed grips consisted of small smooth 

“crocodile” clips that were attached to a PTFE rod.  These crocodile clips secure the sample 

during the experiment and are attached specifically so that they can freely rotate around their 

axis.  Copper wires similar to the wires used in the tensile testing experiment were used to 

measure the change in electrical resistance in situ.  This is achieved via the copper wires being 

attached to a resistance meter and any electrical resistance changes are again monitored by the 

Lab View software.  The experimental set up can be seen in Figure 3. 5 (Potoczny, 2011).   

 

The dumbbell samples with a dimension of 4 mm x 25 mm are then secured via the crocodile 

clips.  A ruler is placed next to the sample to represent a scale when analysing the results and 

a camera is placed in front of the device to record the deformation profile of the samples.  

During the experiment the top rod is driven down at a speed of 2 mm/min causing the sample 

to bend.  This device provides simple support for the sample’s ends to represent true bending 

conditions, rather than the traditional clamping methods which results in the ends of the 

sample being deformed, with strain being induced and therefore not representing true 

bending.   

 

                                      Simple supported end                                         Clamped ends   

Figure 3. 4 buckling testing scheme courtesy of (Chen et al., 2002) 
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The experimental set up can be seen in Figure 3. 5.  Figure 3. 4 displays the difference 

between the simple supported end technique and the traditional clamping technique.    The 

camera records images with a three second delay and we are able to measure the radius of 

bending curvature using equation 3.3; where K(k) and E(k) are the complete elliptic integrals 

of the first and second, k = sin(θ/2), L is the original length, R is the radius of curvature and    

λ = e/L the contraction ratio (Chen et al., 2002, Chen et al., 2001b).    The critical onset radius 

(COR) is given as a 10% increase in electrical resistance. 

 

Large deformation buckling theory of beams.   
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Figure 3. 5 Custom bending equipment with a buckled ITO/PET sample adapted from (Potoczny, 2011) 
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3.2.5 Tribological techniques  

The tribological properties of thin film samples were investigated in this project using a 

reciprocating wear test.   A High Frequency Reciprocating Rig (HFRR) was used to test the 

tribological properties and the change in electrical resistance was measured in situ using a 

resistance meter.  The HFRR is a commonly used technique in mechanical engineering to test 

diesel and bio fuel lubricity; however for this a number of customisations were applied to 

allow for wear testing of the thin film samples to take place.  Firstly, using computer aided 

design software (CAD) a customised specimen holder was produced with the help of Andrew 

Hoover from West Virginia University.  The specimen holder was manufactured out of a 

thermosetting resin, Phenol formaldehyde, commonly known as Tufnell as future experiments 

will require testing in wet sliding conditions; including acidic solutions and Tufnell’s material 

properties offer a high resistance to chemicals such as the acids we may be using.  The 

dimensions of the specimen holder match the requirements needed by the HFRR chamber to 

ensure compatible testing conditions and can be seen in Figure 3. 6. 

 

 

Figure 3. 6 A schematic diagram of the specimen holder and its dimensions 



  Materials and experimental methods 
 

___________________________________________________________________________ 
37 

In traditional HFRR testing a steel ball bearing is used, however in this project a 

Polytetrafluoroethylene (Teflon) ball with a diameter of 6 mm was used.  This allows us to 

easily detect any wear transfer via the detection of fluorine using energy-dispersive X-ray 

spectroscopy (EDS) and the softer surface of the polymer ball will not cause premature 

failure.  The sample is fixed into the specimen holder via conducting metal clamps which can 

be seen in Figure 3. 7. 

 

Figure 3. 7 Schematic diagram of the ITO/PET sample clamped into the specimen holder 

 
Electrodes attach to the specimen holders metallic clamps which are in turn connected to a 

resistance meter and Lab View software, the holder is then placed into the HFRR testing 

chamber and secured.  The PTFE ball is secured into a holder and then placed into the HFRR 

chamber.  The testing parameters can then be set using computer software compatible with the 

HFRR.  The following parameters were used;  

 A load of 100g.  

 A stroke length of 2 mm.   

 A testing frequency of 10 Hz.  

 Dry sliding conditions. 

 Testing at room temperature. 

 Time of the experiment was set to 30 minutes.   

 Hertzian contact pressure of 0.32 MPa 

 Assuming totally elastic deformation  
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Figure 3. 8 displays the schematic setup of the experimental process.   

 

Figure 3. 8 A schematic diagram of the fretting process. 

 

Surface analysis of both the thin film sample and the polymer ball can be examined using an 

optical microscope that is connected to the HFRR software.  This allows for immediate 

analysis of the wear scars of both samples.   
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3.3 Surface analysis  

3.3.1 Scanning Electron Microscopy (SEM)  

The SEM was used in this project to investigate the surface morphology of the samples.  SEM 

is a widely known and reputable technique that is commonly used in modern laboratories as it 

is able to produce a high lateral resolution with a combined good depth of focus.   A 

conventional Joel 6060 microscope with a tungsten gun was used for surface analysis.  

Microanalysis is also available through energy dispersive x-ray spectroscopy (EDS), enabling 

the chemical characterisation of the ITO layer.  Analysis was conducted with a working 

distance that was set to equal 10mm and the voltage can be changed between 0.5 – 30KV, 

however a standard voltage of 15KV was adopted.  Prior to SEM analysis the samples were 

placed onto an SEM ‘stub’ and adhered with an adhesive disk.  The samples are then gold 

sputter coated prior to investigation.  Silver dag lines are also placed down the side of the 

sample to ensure a continuous electrical path from the sample to the ‘stub’.   
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4. Results and discussion  

4.1 Opto-electrical properties 

4.1.1 Optical transmission   

Samples were placed under optical examination using a Jenway Spectrophotometer that has 

previously been discussed in section 3.2.2.  From each A4 sample sheet (OC50, OC100 and 

OC300) 30 smaller 29/29 mm square samples produced using a razor blade and a steel ruler.  

Of these samples, 25 were placed in an acrylic acid solution of 25ml varying from 0.1 to 0.5M 

for two hours and five reference samples were not exposed to any acidic environments.   

 

Figure 4. 1 displays the transparency spectra of the samples that were not exposed to any 

acidic environments in the wavelength range of 318 to 1000 nm.  It can be seen that the 

thickness of the brittle ITO layer has a direct effect on the optical transmission of the 

ITO/PET system in the visible wavelength spectrum 400 to 800 nm with the thinnest of the 

ITO layers (OC300) exhibiting the highest transparency spectra.  The effect of acrylic acid 

was then investigated on the OC50, OC100 and OC300 samples and the effects of varying 

acidic concentrations on these samples can be seen in Figure 4. 2, Figure 4. 3 and  

Figure 4. 4.  The apparent dip in optical transmission that can be observed between 318 to 418 

nm is insignificant, it is only present as a result of the configuration settings of the Jenway 

Spectrophotometer, and therefore should be ignored.  

 

It can be seen that the OC50 sample has been greatly affected by the influence of an acrylic 

acid environment, more so than the OC100 and OC300 samples.  Samples exposed to 0.1 to 
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0.4 M for two hours, although exhibiting a significant increase in the level of optical 

transmission to the reference sample, did not show any significant changes in optical 

transmission between the varying levels of acidic concentration.  However, samples exposed 

to an acrylic acid environment of 0.5 M for two hours, showed a significant increase not only 

from the reference sample, but also a greater degree of optical transmission than that of 

samples exposed to 0.1 to 0.4 M of acrylic acid.  The OC100 and OC300 samples shared 

similar transparency spectra traits, such as minor increases in optical transmission from the 

reference samples to acidic exposure up to a 0.4 M concentration.  Both samples also shared a 

significant increase in optical transmission when exposed to a 0.5 M concentration of acrylic 

acid, matching the results shown in the transparency spectra for the OC50 sample.  The 

average optical transmission values are displayed in Table 4.  1.  The increase in optical 

transmission for all samples due to the exposure to acrylic acid were confirmed as being 

statistically significant using the standardised two tier t-test, where the standardised value of 

probability, P ≤ 0.05 is adhered to.  This suggests that an ITO/PET system exposed to acrylic 

acid will exhibit a significant increase in optical transmission and it can be seen that the 

optical properties of the ITO/PET system are dependent upon the ITO layer thickness.  This 

increase in optical transmission is assumed to be a result of a reduction in ITO thickness due 

to acidic corrosion.   

Table 4.  1 Summary of ITO/PET systems mean transparency (%) values in the visible spectrum (400 to 800 nm)  

Sample Reference 0.1 M 0.2 M 0.3 M 0.4 M 0.5 M 

OC50 

 

OC100 

 

OC300 

76 ± 1.79 

 

76 ± 0.41 

 

84 ± 0.2 

81 ± 1.8 

 

76 ± 0.35 

 

84 ± 0.4 

81 ± 0.29 

 

77 ± 1.44 

 

84 ± 0.55 

81 ± 0.12 

 

78 ± 0.76 

 

85 ± 0.71 

81 ± 1.36 

 

77 ± 0.35 

 

85 ± 0.2 

83 ± 2.81 

 

84 ± 4.66 

 

88 ± 0.67 
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Figure 4. 1 Transparency of OC50, OC100 and OC300 samples exposed to no acid 

 

 

Figure 4. 2 Transparency spectra for OC50 samples exposed to acidic concentrations of 0.1 M to 0.5 M 
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Figure 4. 3 Transparency spectra for OC100 samples exposed to acidic concentrations of 0.1 M to 0.5 M 

 

 

Figure 4. 4 Transparency spectra for OC300 samples exposed to acidic concentrations of 0.1 M to 0.5 M  
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4.1.2 Electrical resistance  

The sheet resistance of the thin film samples in this project were investigated using the four 

point probe testing method (section 3.2.1).  From each of the A4 sample sheets (OC50, 

OC100 and OC300) 90 29/29 mm square samples were created and tested, 75 of which were 

placed in 25ml of acrylic acid varying in concentrations from 0.1 M to 0.5 M for two hours 

whilst 15 were used as reference samples.  Due to the variation in sheet resistance over the 

surface of the samples due to surface flaws, ten measurements were taken and an average 

sheet resistance for each sample was derived.  The mean sheet resistances of the samples can 

be seen in Table 4.  2. 

 
Table 4.  2 Mean sheet resistances of OC50, OC100 and OC300 samples 

Acidic Concentration  OC50 (Ω/)  OC100 (Ω/) OC300 (Ω/) 

No Acid  

0.1M 

0.2M 

0.3M 

0.4M 

0.5M 

51.45 ± 0.61 

52.72 ± 0.74 

54.18 ± 1.13 

56.35 ± 1.94 

56.53 ± 0.94 

58.09 ± 1.13 

70.56 ± 0.77 

73.26 ± 1.64 

73.96 ± 2.01 

72.74 ± 0.47 

74.64 ± 0.67 

76.81 ± 2.53  

312.28 ± 5.10 

715.1 ± 333.39 

775.25 ± 85.60 

1207.08 ± 109.26 

1000.27 ± 380.56 

1422.6 ± 413.98 

 

As previously stated, the OC50, OC100 and OC300 should exhibit sheet resistances of 50 

Ω/, 100 Ω/ and 300 Ω/ respectively according to Solutia Films Inc.  Whilst the four point 

probe confirms this for the OC50 and OC300 samples, it is important to note that the OC100 

sample actually exhibits a sheet resistance 70 Ω/.  This could be due to a number of 

problems during the deposition process such as; a variation in the sputter current, a low 

applied voltage or a change of pressure within the chamber.  It may also indicate a greater 

thickness of the ITO layer than originally anticipated.  The identification of the samples ITO 
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thickness was attempted using etched samples examined under a profilometer, however due to 

the samples being commercially manufactured and pre-deposited, this experimental was 

unable to provide a reliable set of data.   

 

The results displayed in Table 4.  2 initially suggest that the OC50 and OC100 samples sheet 

resistances are not affected to the same degree as the OC300 sample by the influence of 

acrylic acid exposure up to 0.5 M.  However via the use of the standardised two-tier t-test 

theses results indicate that exposure to even low concentrations of acrylic acid such as 0.1M, 

has a statistically significant effect on the ITO/PET systems sheet resistance with average 

values of  P ≤ 0.01 for both the OC50 and OC100 samples.  The OC300 sample displays a 

more obvious significant change in sheet resistance.  It can be seen that even at very low 

acidic concentrations (0.1 M) the average sheet resistance had shown an increase of over 

100%.  It is also important to note the extremely high standard deviation values for the 

OC300 samples, indicating that the influence of acrylic acid does not systematically affect the 

ITO/PET system, but rather causes random flaws within its sheet resistance.  Furthermore, the 

results show that the electrical properties of these ITO/PET systems are dependent upon the 

ITO layer thickness.   The two-tier t-test confirms the previous results as statistically 

significant.   
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4.2 Mechanical properties 

4.2.1 Uniaxial tensile testing  

The uniaxial tensile test was conducted by using the Instron tensile testing machine at a 

crosshead speed of 0.08 mm/min.   75 ‘dumbbell’ samples were placed in an acrylic acid 

solution of 25 ml varying from 0.1 to 0.5 M for five hours and 15 reference samples were not 

exposed to any acidic environments.  The tensile test was conducted with  in  situ monitoring 

of the samples electrical resistance to evaluate the critical onset strain (COS) at which the 

ITO/PET systems begin to lose their electrical functionality and to observe any changes in the 

resistance behaviour after exposure to a range of acrylic acid concentrations.   

 

It can be seen that with an increase in tensile strain the normalised resistance of the ITO/PET 

system remains constant up to a certain strain percentage, known as the critical onset strain 

(COS).  This strain percentage promotes the onset crack formation within the brittle ITO 

layer.  With a further increase in strain, the normalised resistance gradually increases as a 

result of crack formation and propagation within the ITO layer.  In addition to this, it can be 

seen that the COS is dependent upon the ITO thickness where the thinner the ITO film, the 

higher the COS observed at a relative strain percentage.   

 

The electro-mechanical behaviour of the ITO/PET samples (OC50, OC100 and OC300) 

without exposure to acrylic acid environments can be seen in Figure 4. 5, Figure 4. 6 and  

Figure 4. 7.  These figures indicate a relative COs of 1.3%, 2.3% and 2.1% for the OC50, 

OC100 and OC300 samples respectively.  Analysis of these results indicates that the COs of 

the ITO film layer shares a relation to the elongation at the yield point of the PET substrate 

and also indicates that the failure of the ITO film initiates at the onset of plastic deformation 
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region of the PET substrate.  These results conform to the notion that the COS is dependent of 

the thickness of the ITO film layer.  Also it can be noted that the thickness of the ITO layer 

also affects the modulus of elasticity of the PET substrates, where a thick ITO layer such as 

the OC50 sample results in a lower modulus of elasticity.  

 

 

 

 

 

Figure 4. 5 Electro-mechanical behaviour of the OC50 reference sample under uniaxial tensile strain 
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Figure 4. 6 Electro-mechanical behaviour of the OC100 reference sample under uniaxial tensile strain 

 

Figure 4. 7 Electro-mechanical behaviour of the OC300 reference sample under uniaxial tensile strain 
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The effects of acrylic acid on the electro-mechanical properties of these ITO/PET systems 

were also systematically investigated.  Table 4.  3 displays the mean critical onset strain 

values for all the samples tested in both acidic and non acidic conditions and Figure 4. 9, 

Figure 4. 10 and Figure 4. 11 display the change in the increment of electrical resistance for 

the OC50, OC100 and OC300 samples respectively.  Previous work (Morris et al., 2008) 

showed that increasing the acidic concentration resulted in a decrease in the samples ability to 

resist strain.  However it can be seen that these samples displayed fluctuating results.  Firstly 

with regards to the OC50 and OC100 samples, a statistically significant effect was not seen to 

be present when increasing the acrylic acid concentration from 0.1 M to 0.5 M.  Moreover, 

the data displayed in Table 4.  3 imply that the exposure to acrylic acid has increased the 

mean critical onset strain for the OC50 sample.  For the OC300 sample however, increasing 

the concentration of acrylic acid above 0.1 M resulted in total film failure as no resistance 

measurement could be recorded.   

 

At this point it is important to note that this was the first experiment to be investigated and 

therefore is the only experiment where the samples were exposed to varying acrylic acid 

concentrations for five hours.  After noting no electrical resistance could be monitored above 

0.1 M for the OC300 sample, exposure time was reduced to two hours for the remaining 

experiments.  This increased exposure time may be the reason for the fluctuating critical onset 

strains.  Further analysis using SEM showed that the reason for the increased critical onset 

strains may be due to high corrosion of the ITO layer at the edge of the sample resulting in 

cracking and delamination.  This edge corrosion was seen to form cracks before any strain 

was induced and was seen to cause delamination at the edge as a result of induced strain.   
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The Kelly-Tyson cracking model displayed in Figure 4. 8 indicates that at each crack there is 

non conducting gap between the two sides of the ITO surface, however there is also a small 

interfacial conducting layer that binds these two sides (Leterrier et al., 1997).  The exact 

composition of this interface is not known, however it is assumed to be a combination of both 

the ITO layer and the PET substrate.  An increase in strain will result in the crack width also 

increasing, from this further cracks will initiate and propagate and transverse cracks will 

propagate perpendicular to the load direction.  This is assumed to account for the reduction in 

conductivity and may be masking the point at which the actual critical onset strain takes 

place, and therefore the increase of the critical onset strains seen, should be disregarded.   

It can therefore be seen that exposure to acrylic acid has detrimental effects to these ITO/PET 

systems.  The experiment however also gave supported the notion that exposure to acrylic 

acid results in a decrease in the ITO/PET systems ability to resist strain as previously claimed 

(Morris et al., 2008).   

 

 

Figure 4. 8 Schematic indicating a thin conductive material bridging ITO crack, adapted from (Cairns et al., 2000).  
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Table 4.  3 Mean critical onset strains of ITO/PET systems under tensile strain (%) 

Sample   Reference   0.1 M  0.2 M  0.3 M  0.4 M   0.5 M  

OC50  

 

OC100   

 

OC300 

1.3 ± 0.24 

 

2.3 ± 0.33 

 

2.1 ± 0.20 

2.9 ± 0.82 

 

2.5 ± 1.57 

 

2.6 ± 0.98  

2.1 ± 1.25 

 

0.36 ± 0.8 

 

NA 

3.1 ± 0.28 

 

1.6 ± 1.48 

 

NA 

2.6 ± 1.13 

 

0.9 ± 1.92  

 

NA 

2.9 ± 1.16 

 

1.9 ± 2.00 

 

NA 

 

 

 

 

Figure 4. 9 Electro-mechanical behaviour of the OC50 sample after exposure to differing concentrations of acrylic 

acid (no-acid to 0.5 M) under uniaxial tensile strain 
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Figure 4. 10 Electro-mechanical behaviour of the OC100 sample after exposure to differing concentrations of acrylic 

acid (no-acid to 0.5 M) under uniaxial tensile strain 

 

 

Figure 4. 11 Electro-mechanical behaviour of the OC300 sample after exposure to differing concentrations of acrylic 

acid (no-acid to 0.5 M) under uniaxial tensile strain 
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4.2.2 Monotonic bending  

Monotonic bending of the ITO/PET thin film samples was conducted using a device that was 

designed and developed by Grzegorz Potoczny (Potoczny, 2011) which has been previously 

discussed in section 3.2.4.  75 ‘dumbbell’ samples were placed in an acrylic acid solution of 

25ml varying from 0.1 to 0.5M for two hours and 15 reference samples were not exposed to 

any acidic environments.  The experiment was performed in order to investigate the flexibility 

characteristics of ITO/PET thin films whilst being subjected to tensile and compressive 

stresses.  The influence of acrylic acid on the flexibility characteristics of these samples has 

also been investigated.   

4.2.2.1 Monotonic bending under tensile stress  

The monotonic bending experiment enables analysis of the increment of resistance as a 

function of radius of bending curvature and can be seen in Figure 4. 12.  The results showed 

that with a decrease in the radius of curvature, the electrical resistance displayed a sudden 

increase at a critical radius point, exhibiting a similar resistance failure curve of that seen in 

tensile tests when the COR is reached and is due to crack formation and propagation in the 

ITO layer.    

 

During monotonic bending whilst the sample is under tensile stress, conductive failure occurs 

at around 5, 5.6 and 2.3mm for the OC50, OC100 and OC300 samples respectively.  As 

previously discussed the samples have differing ITO layer thicknesses, the thickest of which 

is the OC50 sample (OC100 sample shares a similar ITO thickness), where the thinnest layer 

is seen within the OC300 sample.  Therefore, during monotonic bending under tensile stress, 

it can be seen that ITO/PET systems with thin ITO layers display a greater degree of 

flexibility that that of ITO/PET systems with a thick ITO layer.  With this in mind it can be 
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said that during monotonic bending under tensile stress, the mechanical properties of the 

ITO/PET systems are dependent on the ITO film thickness.   

 

After exposure to varying concentrations of acrylic acid it can be seen that the degree of 

flexibility is negatively affected for all samples and an example of which can be seen in 

Figure 4. 13.  Even at low concentrations such as 0.1M, the average critical onset radius 

(COR) had dramatically increased from 5.6mm ±0.1 to 18.6mm ±5.11 for the OC100 sample 

and from 2.3mm ±1.23 to 18mm ±10.63 for the OC300 sample.  The data for these results has 

been validated as a significant statistical increase using the two tiered t-test where the 

standardised value of probability, P ≤ 0.05 is adhered to.  The OC100 and OC300 samples 

exhibited values of P ≤ 0.002 and P ≤ 0.05 respectively.  It can also be noted from  

Table 4.  4, that although the exposure to acrylic acid has resulted in a significant decrease in 

the degree of flexibility for all samples, the effects do not seem to be dependent upon the 

acidic concentration.  Moreover this suggests that alone acidic corrosion is not the sole cause 

for failure, it does however facilitate failure.  Therefore it can be seen that stress-corrosion 

cracking is the primary failure mechanism exhibited. 

Table 4.  4  Average values of the critical radius of curvature (mm) for ITO/PET systems shown in both acidic and 

non-acidic conditions under tensile stress. 

 

Sample   Reference   0.1 M  0.2 M  0.3 M  0.4 M   0.5 M  

OC50  

 

OC100   

 

OC300 

5±1.49 

 

5.6±0.1 

 

2.3±1.23 

6.7±5.92 

 

18.6±5.11 

 

18±10.63 

13.3±7.15 

 

7.8±2.66 

 

5.8±2.2 

16.6±9.96 

 

22.8±15.5 

 

5±2.96 

26±31.62 

 

7±5.31 

 

4±1.96 

13.5±3.56 

 

22.03±12.76 

 

4±3.04 
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Figure 4. 12 Increase in resistance as a function of radius of bending curvature for the OC50 sample flexed in tension. 

 

Figure 4. 13 The effect of acrylic acid on the increment of resistance as a function of radius of bending curvature for 

the OC50 sample flexed in tension. 
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4.2.2.2 Monotonic bending under compressive stress  

Compared to the samples tested under tension, the ITO/PET systems examined under 

compressive loads show low critical radius of curvature values in the vicinity of 2mm for all 

samples.  Post critical radius the increment of resistance sharply increases in the same manner 

as the samples examined under tension.  The samples do however display a small decrease in 

resistance prior to the critical onset radius being met and can be seen in Figure 4. 14.  The 

reason for the reduction in resistance may be that; due to the sample being compressed, the 

distance between the grains within the ITO film will become reduced, this in turn will result 

in a reduction of possible physical barriers and facilitate the mobility of electrons.  Therefore 

it can be stated that ITO/PET systems that are flexed in compression display a greater degree 

of flexibility than if they were flexed in tension.  A contributing factor to this may be due to 

the fact that; when samples are flexed in tension, the mechanical properties of the ITO layer 

are greatly affected by surface flaws such as poor surface roughness, residual stress, sub-

microscopic cracks and poor adhesion between the ITO and the PET substrate.  However 

when the sample is flexed in compression, these flaws and cracks are pushed together rather 

than being forced apart.  This suggests that samples in flexed compressive conditions are 

determined via both the ITO and PET materials intrinsic properties, where as in tension they 

are determined by the defects present and the thickness of the ITO layer.   

 

Furthermore it can be seen from Figure 4. 14 and Table 4.  5 that unlike the samples tested in 

tension, exposure to acrylic acid does not have any significant effect on the degree of 

flexibility for the ITO/PET systems examined in compression.  Whilst it was noted that under 

tension exposure to acrylic acid was a contributory factor for failure, Figure 4. 14 indicates 

that when flexed in compression even at high acidic concentrations such as 0.5M no 
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significant effect could be seen.  The data for these results have been validated to show no 

significant statistical change using the two tiered t-test where the standardised value of 

probability, P ≤ 0.05 is adhered to.  No sample examined in compression issued a 

standardised probability value of P ≤ 0.05.  This confirms that unlike when the samples are 

subjected to tension where stress-corrosion cracking is the primary failure mechanism, during 

compression electro-mechanical failure is dependent upon the intrinsic material properties of 

the ITO/PET system.   
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Table 4.  5  Average values of the critical radius of curvature (mm) for ITO/PET systems shown in both acidic and 

non acidic conditions under compressive stress. 

Sample   Reference   0.1 M  0.2 M  0.3 M  0.4 M   0.5 M  

OC50  

 

OC100   

 

OC300 

2.1±0.22 

 

2.7±3.07 

 

1.8±1.11 

2.6±0.77 

 

2.4±1.62 

 

1.2±1.06 

2.1±0.28 

 

2.3±1.48 

 

2.2±3.7 

2.1±0.31 

 

4.9±5.08 

 

1.3±1.21 

2.7±1.88 

 

2.4±0.57 

 

2.3±1.69 

2.5±1.21 

 

2.9±3.10 

 

1.9±1.89 

 

 

 

Figure 4. 14 The effect of acrylic acid on the increment of resistance as a function of radius of bending curvature for 

the OC50 sample flexed in both compression and tension.  
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4.2.3 Tribological properties  

The tribological properties of these ITO/PET systems were investigated via the use of a 

reciprocating wear test with a mean Hertzian contact pressure of 0.32MPa.  The test was 

conducted after adding a number of customizations to a High Frequency Reciprocating Rig 

(HFRR), details of which can be seen in section 3.2.5.  A total of 45 ‘dumbbell’ samples were 

placed in an acrylic acid solution of 25ml varying from 0.1 to 0.5M for two hours and nine 

reference samples were not exposed to any acidic environments.  The experiment was 

conducted with in – situ monitoring of the samples electrical resistance to evaluate the point at 

which the ITO/PET systems begin to lose their electrical functionality.  It is important to note 

at this stage that; due to the structure of the ITO/PET system consisting of a hard brittle layer 

deposited onto a soft polymer substrate, there is a resulting high modulus mismatch, meaning 

the response of the polymer substrate during contact cannot be ignored, as is the case with 

commonly used rigid substrates such as glass.  Therefore this experimental technique cannot 

be used to obtain the mechanical properties of the ITO layer nor does it replicate typical user 

interaction such as a finger swipe.  It does however enable one to develop the understanding 

of the wear failure mechanisms involved during reciprocating motions that may be found in 

future manufacturing processes, more so than what can be found with a traditional stylus 

technique and the effects, if any, that exposure to acrylic acid environments may have on the 

next generation of flexible thin film devices.  

 

An optical microscope is connected to the HFRR and allows immediate ex-situ surface 

analysis of both the ITO/PET sample and also the PTFE ball.  From the optical micrographs 

taken it can be seen that the wear scar displayed on the ITO/PET sample correlates with the 

wear scar shown on the PTFE ball, as shown in Figure 4. 15.  From these micrographs we can 
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also notice a difference in the area of these wear scars, where; the ITO/PET sample displays a 

smaller affected area (575 μm) than the affected wear area of the PTFE ball (603 μm).  This 

indicates that although of the PTFE ball is in contact with the surface of the sample, only a 

certain part within the area of contact contributes to the formation of a wear scar.   

Further analysis of these micrographs coupled with the change in the samples electrical 

conductivity, indicates the possible wear mechanisms of ITO/PET systems.  Traditionally, 

electro-mechanical failure of the ITO layer has been determined by a critical point at where 

there is a noticeable 10% increase in the increment of electrical resistance (ΔR/Ro), such as 

critical onset strain (Cairns et al., 2000).  However, Figure 4. 17 to Figure 4. 22 display both 

the optical micrographs and the number of cycles to failure for all three samples (OC50, 

OC100 and OC300).  It can be seen that crack formation and propagation occurs before a 10% 

increase in the increment of resistance, with some samples displaying the start of critical 

failure at increases as low as 0.40%.  This is due to the wear interaction of the PTFE ball with 

the ITO surface.  In this experiment, the reciprocating motion did not span the entire width of 

the sample (edge to edge).  The reciprocating motion only occurred in the middle of sample, 

resulting in crack initiation and propagation from the wear site perpendicular to the wear 

direction.    Due to the wear in this centralised location micrographs indicated that only the 

part of the sample subjected to wear exhibited crack formation and propagation, resulting in 

the sample displaying affected and non affected regions as shown in Figure 4. 16.  The 

resulting resistance graphs shown in Figure 4. 20, Figure 4. 21 and Figure 4. 22 correlate to 

this notion of differing affected regions within the sample.  The resistance graphs indicate an 

increase in electrical resistance, followed by levelling off to a plateau.  
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This is due to the sample working as a simple parallel circuit and can be explained via 

equation 4.1. 

 

       
  

 

        
  

 

          
                       (4. 1) 

 

The flow of electrons through the sample is affected by crack formation and results in a small 

increase in electrical resistance; as crack propagation occurs due to continued wear, 

catastrophic failure can be observed within the affected region where electrical resistance 

reaches infinity, the recorded resistance from this point is then monitored via the unaffected 

region.  Therefore the normalised indication of electro-mechanical failure by an increase in 

electrical resistance of 10% cannot be applied here.   

The start of critical failure within the damaged region for all samples (OC50, OC100 and 

OC300) was analyzed.  The results showed that; the OC50 samples critical failure occurred at 

around 500 cycles before exposure to acrylic acid solutions, OC100 reached failure at around 

220 cycles and the OC300 sample accomplished around 570 cycles before reaching critical 

failure within the affected region.  After acrylic acid exposure a decrease in the number of 

cycles for all samples was observed.  Even at concentrations as low as 0.1M, the OC50 

sample’s cycles to failure was reduced from 500 cycles to 250 cycles and the OC300 sample 

was reduced from 570 cycles to 200 cycles.  The OC100 sample showed a reduction from 220 

cycles to around 200 cycles when exposed to an acrylic acid concentration of 0.2M.  

Increasing the concentration of acrylic acid was not seen to have a significant effect on the 

number of cycles that critical failure started to occur in the affected region.  At high 

concentrations of 0.5M the number of cycles to failure was found to be around; 215, 190 and 

195 cycles to failure for the OC50, OC100 and OC300 samples respectively.  This implies 
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that acrylic acid exposure is not the cause for failure, moreover it merely facilitates the wear 

failure mechanism.  It was also noticed that past this initial critical failure point within the 

affected region, exposure to any acrylic acid solutions resulted in a large increase in the 

increment of resistance shown.  For the OC50 and OC100 samples, the increases shown were 

similar for all samples up to 0.4 M, and at 0.5 M an even greater increase was seen.  For the 

OC300, all acidic concentrations caused a high, non uniform increase in resistance.  This 

indicates that the acrylic acid exposure affects the unaffected region as well as facilitating 

failure via stress corrosion cracking within the affected region.  Furthermore the optical 

micrographs of the OC300 samples show more prominent wear scars than those of the OC50 

and OC100 samples that contain a thicker ITO layer, indicating that the degree of wear is 

dependent on the ITO film thickness.    
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Figure 4. 15 Ex situ optical micrographs displaying the wear scar on both the ITO/PET sample and the PTFE ball.  

The red lines show the area of the wear scar and the red arrows indicate matching wear features on a) ITO/PET 

sample and b) PTFE ball 

 

 

 

Figure 4. 16 Optical micrograph and schematic diagram indicating affected regions of the sample 
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Figure 4. 17 Ex situ optical micrographs presenting the wear scars and crack formation for the OC50 sample exposed 

to an acrylic acid solution for two hours at; a) no acid, b) 0.1 M, c) 0.2 M, d) 0.3 M, e) 0.4 M, f) 0.5 M. 
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Figure 4. 18 Ex situ optical micrographs presenting the wear scars and crack formation for the OC100 sample 

exposed to an acrylic acid solution for two hours at; a) no acid, b) 0.1 M, c) 0.2 M, d) 0.3 M, e) 0.4 M, f) 0.5 M. 
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Figure 4. 19 Ex situ optical micrographs presenting the wear scars and crack formation for the OC300 sample 

exposed to an acrylic acid solution for two hours at; a) no acid, b) 0.1 M, c) 0.2 M, d) 0.3 M, e) 0.4 M, f) 0.5 M.  
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Figure 4. 20 Number of cycles to failure for the OC50 sample up to an acrylic acid solution of 0.5 M. 

Figure 4. 21 Number of cycles to failure for the OC100 sample up to an acrylic acid solution of 0.5 M. 
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Figure 4. 22 Number of cycles to failure for the OC300 sample up to an acrylic acid solution of 0.5 M 
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4.3 Surface analysis  

4.3.1 ITO surface investigation after acrylic acid exposure 

Surface analysis of the ITO layer was conducted using a conventional Joel 6060 SEM before 

and post acrylic acid exposure to investigate any surface changes due to corrosion prior to any 

experiments had taking place.  Figure 4. 23 displays SEM micrographs of the OC50 sample 

prior and post acrylic acid exposure at a concentration of 0.1 M.  It can be seen that even at 

low acidic concentrations, corrosion takes place via acidic spot formation.  These corrosion 

spots may form crack initiation sites on the ITO layer and result in a reduction of the electro-

mechanical properties of the ITO/PET system.   

 

 

Figure 4. 23 SEM micrographs of indicating acidic corrosion at a) no acid, b) and c) 0.1 M for two hours.   

 



  Results and discussion 
 

___________________________________________________________________________ 
70 

4.3.2 Ex situ SEM investigation after uniaxial tensile testing   

All samples were investigated after uniaxial tensile testing using the SEM technique to reveal 

details of the ITO/PET systems failure mechanisms.  The following micrographs display 

samples that were strained to ~ 8%.  Channel cracking of the ITO layer is evident which are 

parallel to one another and perpendicular to the load direction, which is consistent with 

previous research.  

 

As previously discussed in section 4.2.1, exposure to acrylic acid can result in corrosive 

attacks at the edge of the ITO/PET system and can lead to misleading critical onset strains.  

Evidence of this can be seen in the SEM micrographs displayed in Figure 4. 24 where 

corrosion is clearly displayed by the black arrow.  These micrographs show the ITO/PET 

system pre and post uniaxial tensile testing.  It can be seen that corrosion has taken place at 

the edge of the sample and small cracks have already began to form prior to any induced 

strain.  After tensile testing large degrees of cracking and delamination can be seen as shown 

by the red arrow in a sample that inferred it was able to resist strain to a higher degree to that 

of its reference counterpart.  This failure mechanism was not seen however in any of the 

samples that exhibited decreased critical onset strains due to the exposure of acrylic acid.   

 

Figure 4. 24 SEM micrographs indicating edge corrosion on the OC50 sample after exposure to an acrylic acid 

concentration of 0.3, a) pre tensile testing b) post tensile testing.  Black arrow indicates acidic corrosion, red arrows 

indicate cracking and delamination.  
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With regards to the samples that exhibited reduced critical onset strains, the SEM 

micrographs in Figure 4. 25 indicate that the corrosive spot formation may act as crack 

initiation sites and also result in greater crack propagation.  They also show that acidic 

corrosion occurs in a non uniform manner across the sample.  It can also be seen that cracking 

of the ITO layer is more prominent in samples that have been subjected acidic exposure, 

compared to the reference samples that were not exposed to any acrylic acid.  This adds 

weight to the notion that when tested in tension, the exposure to acrylic acid reduces the 

ITO/PET systems ability to resist strain.   

 

 

Figure 4. 25 SEM micrographs comparing the reference sample to a sample exposed to an acidic concentration of 0.3 

M for two hours on the OC100 sample, a) no acid b) and c) 0.3 M acrylic acid. 
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4.3.3 Ex situ surface analysis after monotonic bending  

Surface analysis of the ITO/PET systems after monotonic bending in both tension and 

compression were investigated using an ex–situ SEM technique.   

 

Figure 4. 26 displays the surface of the OC100 sample after monotonic bending and exposure 

to acrylic acid.  The sample was flexed to in tension to a radius of 4 mm radius of curvature.  

From this channelling cracks and delamination can be clearly seen via black and red arrows 

respectively.  The crack formation in this experiment is consistent with the uniaxial tensile 

test, as the cracks are parallel to one another and are perpendicular to the load direction.  It 

can also be seen that the acrylic acid corrosion sites are facilitating failure.  Furthermore the 

micrographs indicate catastrophic delamination in a sample exposed to an acrylic acid 

concentration of 0.2 M, whilst this is not seen at the higher concentration of 0.5 M.  This 

indicates that acrylic acid is not the primary failure mechanism, moreover it supports the 

indication that stress corrosion cracking as the primary failure mechanism when these 

ITO/PET systems are monotonically bent in tension.   

 

Figure 4. 26 SEM micrograph of the OC100 sample after monotonic bending in tension, a) no acid, b) 0.1 M, c) 0.5 M 

d) 0.2 M.  Red arrow indicates catastrophic delamination, black arrows indicate cracking at corrosion sites. 
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Figure 4. 27 shows an SEM micrograph of the OC100 sample after monotonic bending under 

compression to a radius of curvature of 1mm.  From these micrographs buckling delamination 

can be clearly seen.  At some points over the sample, the buckled ITO film had actually 

detached from the substrate, resulting in a large gap formation between the ITO fragments.  

This delamination is the cause of the sharp increase in the increment of electrical resistance 

above the critical bending radius.  It can also be seen that exposure to acrylic acid has not 

facilitated failure nor has it induced crack formation.  This supports the claim that when an 

ITO/PET system is subjected to monotonic bending under compression, the failure 

mechanism is dependent upon the intrinsic properties of the ITO/PET system. 

 

 

Figure 4. 27 SEM micrographs of OC100 sample after monotonic bending in compression, a) no acid b) 0.5 M.  Black 

arrows indicate channelling cracks and red arrows indicate delamination. 

 

At this point it should also be noted that the largest amount of damage for the ITO/PET 

systems tested in both tension and compression was seen in the middle of the sample.  This 

region of damage is consistent with previous work (Park, 2004) where the stress that is 

induced through bending in either tension or compression is position dependent.  This 

indicates that curvature created through bending is not uniform throughout its length, with the 

highest strains located at the centre of the sample.  

a) 
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4.3.4 Ex situ SEM observations of ITO/PET systems after High Frequency 

Reciprocating Rig wear test 

The ITO coated films were investigated after tribological testing using the SEM technique 

combined with energy-dispersive X-ray spectroscopy in order investigate if any wear transfer 

had taken place.  After ex-situ EDS, it can be confirmed that wear transfer from the PTFE ball 

to the ITO/PET system had taken place as a result of the HFRR wear test.  Figure 4. 28 

displays the wear scar where wear debris can be seen and Figure 4. 29 can statistically 

confirm the presence of fluorine at this targeted point.   

 

Figure 4. 28  SEM micrograph indicating wear transfer from PTFE ball.  "Spectrum" indicates the site at which EDS 
had taken place, red arrows indicate wear debris.  

 

Figure 4. 29  Statistical confirmation of wear transfer via Inca EDS that Fluorine (F) Indium (In) Tin (Sn) and 
Oxygen (O) are present.  
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5. Conclusions  

Through the work of this study the optical, electro-mechanical and tribological properties of 

commercial ITO/PET systems have been thoroughly investigated.  It can be seen that whilst 

commercial ITO/PET systems can be viable candidates for flexible display technologies, great 

care and understanding of the systems properties must be taken into account during the design 

phase for their use in service and during the manufacturing process.  From the work 

conducted in this study, the following conclusions can be made;  

 
 When exposed to acrylic acid ITO/PET systems show an increase in optical 

transmission in the visible spectrum due to corrosion of the ITO layer.  Furthermore as 

the concentration of acrylic acid is increased, the optical transmission also increases. 

 The effect of acrylic acid exposure on the optical properties of these systems creates a 

major problem; as visual detection of failure would most likely not occur due to an 

increase in optical transmission, which may allow for harmful corrosion to go 

unnoticed.   

 Even at low acidic concentrations such as 0.1 M a significant increase in electrical 

resistance could be seen for all samples.  Furthermore an increase of over 100% shown 

at 0. 1M for the 300 Ω/  sample.  It was shown that by increasing the acidic 

concentration, the surface resistance will also increase.  It was also noted that exposure 

to acrylic does not systematically affect the ITO/PET system, but rather causes 

apparently random damage throughout the ITO surface and the electrical properties of 

these commercial ITO/PET systems are dependent on the ITO layer thickness.   

 Commercial 50 Ω/, 100 Ω/  and 300 Ω/ samples displayed critical onset strains of 

1.3%, 2.3% and 2.1% respectively.   
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 Exposure to acrylic acid prior to induced uniaxial strain results in a significant 

reduction of the samples ability to resist strain due to weakening of the ITO film as a 

result of stress corrosion cracking.   

 During monotonic bending whilst the sample is under tensile stress, conductive failure 

occurs at around 5, 5.6 and 2.3 mm for the 50 Ω/, 100 Ω/  and 300 Ω/ samples 

respectively.  It was seen that ITO/PET systems with thin ITO layers display a greater 

degree of flexibility under tension than ITO/PET systems with a thick ITO layer.  

Thus it can be said that during monotonic bending under tensile stress, the mechanical 

properties of the ITO/PET systems are dependent on the ITO film thickness.   

 Whilst subjected to bending in tension exposure to acrylic acid results in a significant 

increase in the critical onset radius, even at low concentrations such as 0.1 M.  

Although acidic corrosion was not seen to be the sole cause for failure, it does 

however facilitate failure.  Therefore it can be seen that stress-corrosion cracking is 

the primary failure mechanism exhibited. 

 Compared to the samples tested under tension, the ITO/PET systems examined under 

compressive loads show low critical radius of curvature values (in the vicinity of  

2 mm for all samples).  Post critical radius the increment of resistance sharply 

increases in the same manner as for the samples examined under tension.  Results 

showed that unlike samples tested in tension, exposure to acrylic acid does not have 

any significant effect on the degree of flexibility for the ITO/PET systems examined in 

compression. 

 Reciprocating wear was located in a centralised location; micrographs indicated that 

only the part of the sample subjected to wear exhibited crack formation and 



  Future work 
 

___________________________________________________________________________ 
77 

propagation, resulting in the sample displaying affected and non affected regions.  

Critical failure was seen at around 500, 220 and 570 sliding cycles for the 50 Ω/,  

100 Ω/  and 300 Ω/ samples respectively.  

 Exposure to acrylic acid resulted in the number of cycles to failure being reduced for 

all samples and increasing the concentration of acrylic acid was not seen to have a 

significant effect on the number of cycles to critical failure.  

 Ex situ EDS of the wear scar confirmed that wear transfer had taken place.   

To conclude; the exposure of acrylic acid has a significant detrimental effect on the ITO/PET 

systems ability resist strain under tensile loads, even at low concentrations such as 0.1M, it 

decreases the ITO/PET systems tribological properties and furthermore it corrodes the ITO 

layer which in turn increases the ITO/PET systems optical transmission.  This increase in 

optical transmission can causes an area for concern as the detrimental effects of acrylic acid 

exposure may go un-noticed.  However, acrylic acid exposure was not seen to cause any 

significant effect on the degree of flexibility of these ITO/PET systems when subjected to 

compressive strains.   
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6. Future work  

Commercial ITO coated PET substrates were used within this investigation to display the 

effects of acrylic acid on their electro-mechanical behaviour.  Future work is recommended 

on polymer substrates coated via other techniques such as pulsed laser deposition, sol gel 

processing or controlled magnetron sputtering.  This would allow for full control over 

deposition parameters and give a greater range of ITO thicknesses.    

 

Furthermore, depositing ITO on polymer substrates could also allow the deposition of buffer 

layers, such as aluminium oxide (Al2O3). This would allow for an investigation into their 

influence on the electro-mechanical properties of these thin film systems.   

 

A range of polymer substrates could also be investigated in the future such as PEN or PC to 

allow a comparison against the ITO/PET system.  Moreover, conductive polymers such as 

poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (PEDOT:PSS) have 

been discussed as possible candidates to replace ITO films for flexible displays and could be 

investigated in future studies.  

 

Due to the high costs involved with manufacturing ITO layers, alternative TCO’s such as zinc 

oxide (ZnO) could be used.  Once these alternative TCO’s have been effectively deposited 

onto a polymer substrate, results of opto-electrical and electro-mechanical tests can be 

compared with those for ITO/PET systems.   
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Tribo-corrosion of thin films for flexible displays has been investigated in this work.  

However, only dry sliding conditions were introduced.  Future work is encouraged to include 

both dry and wet sliding conditions to develop further knowledge of the tribological 

properties of these thin films.   

 

Finally, during acrylic acid exposure, any change in electrical resistance could be monitored 

in relation to time via in-situ electrical resistance measurements using appropriate beakers and 

π-shaped samples.   
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