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Abstract

An analysis of some aspects of photon transport through cavities and emitters embedded in a

one-dimensional geometries is presented. The concept of photon blockade is defined for few-

photon states interacting with a single two-level atom and the strength of achievable blockade

is calculated in this setting. A brief review of some promising schemes for achieving photon

blockade from the literature is also provided. The conflict between linear and nonlinear

optical processes is studied for a novel version of the famous Hong-Ou-Mandel effect in a

photonic waveguide with a side-coupled two-level emitter.
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CHAPTER 1

INTRODUCTION

Under usual circumstances photons seldom interact. Effective interactions can be generated

with the help of optically nonlinear materials although often intense light fields are required.

It has been known since the earliest days of quantum optics that such interactions are often

enhanced if the light field is confined to a restricted geometry [1], such as an optical cavity

or a photonic waveguide. The last few decades have witnessed an explosive development of

nano-fabrication techniques which has in turn stimulated a considerable amount of interest

within the optical community concerning the transport properties of photons in these reduced

dimensions [2, 3, 4, 5].

It is widely believed that the combined fidelity of light as a carrier of information and the

newly discovered giant optical nonlinearities that can be achieved at the nano-scale make for

the most promising route to harnessing the computational benefits that can be afforded at

the quantum level [6, 7, 8]. Advances in this direction may also lead to a deeper insight into

the fundamental interpretation of the quantum world. In particular it has been proposed

that the cross-phase Kerr nonlinearities in certain crystals allow for non-demolition photon

detection [9, 10].

1



All-optical devices, inspired by existing electrical analogues; that operate at ultra-low light

intensities are now emerging from the vast body of research that has been invested. One of

the most actively sought-after technologies is a single-photon transistor, that either transmits

or reflects incident photons based on its interaction with another ‘control’ field. Photons are

bosons and as such exhibit a tendency to arrive in bunches; for this reason isolating individual

photons is especially challenging. A single-photon transistor would facilitate the conversion

of a bunched incoming flux of light into anti-bunched, even single-photon pulses. In the

mid-90s Imamoḡlu et al. [11] proposed a scheme that could harness the electromagnetically-

induced-transparencies [12] achievable in a particular resonantly driven cavity-confined atom

to generate giant optical nonlinearities with minimal losses. Photon transport through such a

cavity is expected to proceed one-by-one in analogy with the more familiar Coulomb blockade

effect found in electron transport through certain mesoscopic structures. This phenomenon,

aptly named photon blockade has since been generated in a large variety of other settings

[13, 14, 15, 16, 17], including in concert with Coulomb blockade [18].

The earliest observations of photon anti-bunching were made in the resonant fluorescence

from a two-level transition in a single atom. The origin of this anti-bunching in the scattered

field is well understood [19]; a single photon absorbed from the incident flux promotes an

atomic electron to the excited level. After some time the atom decays and following this

transition there is a zero probability that another photon will be scattered until the electron

is again promoted to the excited level. Consequently the scattered photons will be temporally

anti-bunched for intervals shorter than the characteristic atom decay time [20]. One of the

original contributions made in this thesis is an exact calculation of the strength of photon

blockade that can be achieved for few-photon pulses with a single atom when the light field

is constrained to just one dimension.
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The interaction of a light field confined to one dimension with a single two-level emitter

at optical frequencies is well described by the Dicke Hamilton [21]. The early sections of this

thesis are devoted to extracting the few-photon eigenstates for this model. Once the com-

plete set has been found the multi-photon scattering states in principle follow for arbitrary

initial configurations and turn out to be remarkably simple [22]. In the chiral case, where

all photons travel in one particular direction only, the evolution of each photon proceeds

independently of all others except for the deletion of photon paths where double occupation

of the emitter is implied.

A number of optical phenomena do not yield to a classical or semi-classical explanation

a classic example is the Hong-Ou-Mandel effect [23], which refers to the observation that

two photons with identical spectral composition and polarization arriving simultaneously at

a balanced beamsplitter from distinct incoming ports are always found exiting together in

one of the two possible outgoing ports. The coalescence of the two photons is attributed to a

quantum interference between possible photon paths. The second original contribution made

by this thesis is to determine the reduction in interference visibility that is suffered when a

single two-level atom replaces the usual (linear) beamsplitter in a one-dimensional analogue

of the Hong-Ou-Mandel geometry.
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CHAPTER 2

MULTI-PHOTON SCATTERING THROUGH A
TWO-LEVEL ATOM

2.1 Introduction

One of the simplest light-matter interactions conceivable is that of a light field nearly resonant

with a two-level atomic transition. If the characteristic wavelength of the incident radiation

is much longer than the atomic diameter then the dipole approximation can be made and

the following Hamiltonian becomes responsible for the dynamics:

Ĥ = ĤR + ĤA + d̂ · Ê (r = 0) . (2.1)

ĤR and ĤA encode for the free motion of the radiation and the two-level atom respectively;

their mutual interaction is described by the final term. The dipole operator d̂ contributes no

diagonal matrix elements in the basis of the atomic states and consequently d̂ = dŜ+ + d̄Ŝ−

with d = 〈e| d̂ |g〉 and where Ŝ+ is the pseudo spin-1/2 raising operator connecting the ground

state of the emitter with its excited state, that is Ŝ+ = | e〉〈g | . In the long-wavelength limit

only the amplitude of the electric field at the position of the atom, which for convenience is

set to be at the origin is relevant. Many more gauge-equivalent representations exist for the
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light-atom interaction but the above is most convenient for the current purposes.

Expanding the electric field into its normal modes and writing ĤR and ĤA explicitly provides

Ĥ = ω12Ŝ
z +

∑
k,µ

ωk,µ â
+
k,µâk,µ +

∑
k,µ

gk,µ (Ŝ+ + Ŝ−)(â+
k,µ + âk,µ), (2.2)

where ω12 is the atomic energy level spacing and k and µ refer to the momentum and polar-

ization of the radiation respectively. The coupling constant gk,µ can be chosen to be real, and

is the magnitude of the product of the radiation mode functions taken at the origin and the

dipole matrix element. A perturbative expansion in the interaction generates contributions

in increasing inverse powers of ω0 − ωk and ω0 + ωk. The first term corresponding to energy

conserving processes such as the creation of a photon at the expense of a de-excited emitter

â+
k,µŜ

− and vice-versa. Stimulated and spontaneous emission are examples of such processes

while the second term relates to virtual processes such as the simultaneous excitation of the

emitter and the creation of a photon, â+
k,µŜ

++ h.c. At optical frequencies and near resonance,

processes of the first type dominate and the others can be neglected, this elimination is often

referred to in the literature as the rotating-wave approximation [24].

Throughout this thesis the light field will be repeatedly considered in one dimension; this

will either be because only s-wave scattering is relevant or else the field is restricted to one

dimension by some confining geometry. After linearizing the photon spectrum, measuring

all energies with respect to the energy-level spacing and taking the value of the coupling

strength at resonance the Dicke Hamiltonian is derived. The aim of the current chapter is

to extract the multi-photon scattering eigenstates of this Hamiltonian so they can be used

in later sections to determine few-photon transport characteristics in various geometries.
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2.2 Eigenstates of the Multimode Dicke Hamiltonian

The one-dimensional multi-mode chiral Dicke Hamiltonian [21] can be represented as

Ĥ = −i
w
dx â+ (x) ∂x â (x)−√γ

[
Ŝ+â (0) + â+ (0) Ŝ−

]
. (2.3)

It belongs to the set of integrable models and its exact many-body eigenstates are given in the

form of a Bethe ansatz. This chapter introduces the Bethe ansatz and determines these states

explicitly. In the context of photon scattering these fully interacting eigenstates can then be

used to construct the many-body S-matrix. An essential property of the Hamiltonian (2.3)

that facilitates its integrability is that it preserves the total number of excitations represented

by the operator

N̂ =
w
dx â+ (x) â (x) + Ŝ+Ŝ−. (2.4)

This means that each particle number subspace can be diagonalized independently since they

are not coupled to one another by the interaction. The most general n-body state is

|ψn〉 =
w
dnx gn (x1, . . . , xn) â+ (x1) . . . â+ (xn) |〉

+
w
dn−1x en (x1, . . . , xn−1) â+ (x1) . . . â+ (xn−1) Ŝ+ |〉,

(2.5)

where the vacuum |〉 refers to the state containing no excitations, that is 0 photons, and

the atom in its lowest level; N̂ |〉 = 0. The requirement that (2.5) be an eigenstate of the

Hamiltonian, Ĥ |ψn〉 = En |ψn〉 , translates into the following set of equations

[
− i (∂x1 + · · ·+ ∂xn)− En

]
gn (x1, . . . , xn)

−
√
γ

n

[
δ (x1) en (x2, . . . , xn) + · · ·+ δ (xn) en (x1, . . . , xn−1)

]
= 0,[

− i
(
∂x1 + · · ·+ ∂xn−1

)
− En

]
en(x1, . . . , xn−1)− n√γ gn (0, x1, . . . , xn−1) = 0.

(2.6)
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The first of these generates a series of discontinuities in the wavefunction, gn (x1, . . . , xn); at

the site of the two-level impurity, xi = 0, i = 1, 2, . . . , n. The frequency-independence of the

coupling (an artefact of the resonance approximation) means that at these discontinuities

the value of the photon wavefunction is not properly defined. This ambiguity is fixed by the

additional definition gn (0, x2, . . . , xn) =
[
gn (0−, x2, . . . , xn) + gn (0+, x2, . . . , xn)

]
/2 which

extends to all other coordinates by virtue of Bose symmetry.

2.2.1 Single-Particle Eigenstate

In the single-excitation sector the equations (2.6) admit a solution of the form

gk (x) = eikxfk (x) , fk (x) = θ (x < 0) + sk θ (0 < x) , sk =
k − iγ/2
k + iγ/2

, (2.7)

with corresponding energy E1 = k. Throughout this thesis the notation θ (x1 < x2 < · · · xn) ≡

θ (xn − xn−1) · · · (x3 − x2) θ (x2 − x1) is adopted so that wavefunctions, which become more

complicated with larger numbers of excitations, may be written clearly and compactly. The

above state reveals that the effect of the emitter is to impart a phase-shift to the passing

photon. Taking (2.7) together with the connection between the atomic-excitation amplitude

and the photon wavefunction, ek = −√γgk (0) /k, it is straightforward to demonstrate the

following more compact representation of the single-particle eigenstates

|k+〉 = N1

w
dx eikxfk (x) r̂+

k (x) |〉, (2.8)

where N1 is set by normalization. The ‘+’ included in the labeling of (2.8) indicates that it

is a fully-interacting eigenstate, distinguishing it from the free-photon plane-waves that will

be referred to later and will be denoted by |kn, . . . , k1〉 = â+
kn
· · · â+

k1
|〉 . This notation will

be especially useful when asymptotic scattered states are introduced. The single-excitation
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operator is defined by

r̂+
k (x) = â+ (x)−

√
γ

k
δ (x) Ŝ+. (2.9)

Many-particle eigenstates defined by the system (2.6) are much more difficult to derive, before

presenting them it is necessary to give a brief review of the Bethe ansatz and its application

to the current problem.

2.2.2 Bethe Ansatz

In a groundbreaking 1931 paper, Bethe outlined a procedure that could generate the complete

and exact set of many-body eigenstates for a spin-1/2 periodic Heisenberg chain of arbitrary

length [25]. Each spin belonging to such a chain is projected either parallel or antiparallel

to a chosen quantization axis and the relative number of up and down spins is preserved

despite the Heisenberg interaction acting between nearest neighbours, Ĥ = −J
∑

i Ŝi · Ŝi+1.

The ferromagnetic case, J > 0, favours parallel spins, in this case the state with all spins

down which may be interpreted as a sort of vacuum out of which particle-like excitations

are created, each corresponding to an inverted spin. With negative spin-coupling, J < 0,

antiferromagnetic spin ordering is preferred and a corresponding vacuum state exists. Single

quasi-particle eigenstates are then represented by translation-symmetric plane-waves, their

energies parameterized by a wavenumber k which is quantized by the finite length of the

chain into units of the first periodicity-allowed non-zero k-point, 2π/L. The many-particle

eigenstates and eigenenergies are complicated by interaction and although in principle they

can be extracted with a brute force diagonalization of the Hamiltonian in each disconnected

particle-number subspace this naive approach soon becomes numerically intractable with the

increasing size of each subspace. Bethe’s penetrating insight was to point out that when

only one particle belongs to each site the wavefunction is simply a product of single-particle

plane-waves defined by a conserved set of quasi-momenta. In addition, scattering phase-shifts
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develop in this state whenever two adjacent particles exchange locations. Enforcing periodic

boundaries on the Bethe ansatz leads to a series of equations that determine the permissible

values of quasi-momenta. It can be shown that describing the many-body eigenstates of the

Heisenberg model in this way accounts for the entire spectrum.

This remarkable observation went largely ignored for over 30 years until in 1963 Lieb and

Liniger applied a similar ansatz to solve a one-dimensional model of spinless delta-function

interacting bosons [26]. Their result generated a surge of interest and prompted the discovery

of many more non-trivial exactly solvable one-dimensional problems from almost all areas of

theoretical physics (some examples can be found in [27] and references cited therein). In 1982

Rupasov found that the chiral Dicke Hamiltonian (2.3) also belongs to this set of integrable

models [28] in one of only a few instances where the Bethe ansatz has been employed in a

scattering context in contrast to its traditional thermodynamic setting.

Just as for the Heisenberg chain and Lieb-Liniger gas; the many-body eigenstates of the

Dicke model come in the form of superpositions of plane waves; the only additional feature

is a series of phase-shifts that are acquired by photons as they scatter past the two-level

impurity. These impurity-induced phase shifts are encoded in the functions fk(x) which are

defined in (2.7). Specifically, an n-photon eigenstate in the ordered sector x1 < x2 · · · < xn

has the following representation

gk1,...,kn (x1, . . . , xn) =
∑
P

A (P1 . . . Pn) fkP1 (x1) . . . fkPn (xn) eikP1x1+···+ikPnxn , (2.10)

the set P includes all permutations of the integers 1, . . . , n. The state in the remaining n!−1

regions corresponding to alternative particle orderings is determined by Bose-symmetry. It

will be shown that the requirement that the above ansatz be a properly normalized eigenstate
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of the Hamiltonian (2.3) happens to be sufficient to uniquely fix all of the amplitudes A (P ).

A characteristic feature of Bethe-solvable models is that they incorporate an infinite number

of independent constants of motion. These constants are often difficult to determine but

their existence in the case of the Dicke model forces the magnitude of every amplitude A (P )

to be equivalent; moreover, those that differ by permutations of adjacent indices are related

by two-particle scattering phases. The magnitude of every amplitude is then determined

by the normalization requirement. Physically an infinite set of hidden symmetries conspire

to render all interactions effectively pairwise, particles become limited to merely exchanging

quasi-momenta and in this sense scattering is non-diffractive.

Applying suitable boundary conditions to the photon wavefunction (2.10) will determine

the allowed values of quasi-momenta (or rapidities) which in turn specify the energy of each

state, En = k1 +k2 + · · ·+kn. It is worth emphasizing that they are not the actual momenta

carried by the individual photons and with interaction many of them will become complex-

valued, clustered in groups of conjugate pairs corresponding to bound multi-photon states.

Periodic boundaries are typically used in conjunction with the Bethe ansatz although open

boundaries are more suited to scattering problems. Here for convenience the permissible

rapidities are extracted according to conventional periodic boundaries and afterwards this

unphysical assumption is relaxed by extending the system size to infinity where boundary

effects are expected to be exponentially suppressed. This approach is not generally valid and

a justification is necessary a posteriori. For some models, especially in an out-of-equillibrium

context, the correct choice of boundary conditions remains essential even in the above limit

and an extension of the Bethe ansatz is currently being developed to deal with such cases [29].

The relationship between so many exactly solvable models is intriguing yet, despite many
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attempts, a general method for predicting integrability has remained elusive. The only real

progress in this direction came with the discovery of the Yang-Baxter equations (YBEs)

which make it possible to unambiguously demonstrate that certain models do not permit a

solution of the Bethe ansatz sort. Initially formulated by Yang [30] as a consistency criterion

for the multi-component repulsive Bose gas, their ubiquity in the context of integrability was

soon realised by Baxter who applied them while calculating the exact free energy of the six-

and eight-vertex models of statistical mechanics (amongst others) [31, 32]. A general feature

of Bethe-integrable models is the complete factorization of the many-body interactions that

they describe into sequences of two-body scatterings. It is therefore essential for consistency

that these sequences be unique and this requirement is the content of the YBEs. In practice,

given a particular model its amenability to a Bethe solution is determined by extracting its

two-body scattering matrices by any available method; once found they can then be entered

into the YBEs and if they are found to be consistent then it is possible, but not guaranteed

that a Bethe ansatz solution exists. If they do not satisfy the YBEs then the model certainly

does not permit a solution of the Bethe type, irrespective of whether or not it is integrable.
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2.2.3 Two-Particle Eigenstate

The solution of problem (2.6) for two particles provides the essential irreducible scattering

matrices for the Dicke Model. This task is achieved most directly by postulating the following

representation for the photon wavefunction:

gk1,k2 (x1, x2) =
∑
P

A (P1P2) fkP1 (x1) fkP2 (x2) eikP1x1+ikP2x2 , (2.11)

expressed in the region x1 < x2. The first equation in (2.6) provides a connection between

the wavefunction (2.11) and the atomic-excitation amplitude, that is

e2 (x) =
−2i
√
γ

[
g2

(
0+, x

)
− g2

(
0−, x

) ]
=
−2i
√
γ

[
g2

(
x, 0+

)
− g2

(
x, 0−

) ]
, (2.12)

and the requirement that this amplitude be single-valued at the origin,

e2

(
0+
)

= e2

(
0−
)
, (2.13)

translates into a continuity condition for the field at the location of the emitter

g2

(
0+, 0+

)
− g2

(
0−, 0+

)
= g2

(
0−, 0+

)
− g2

(
0−, 0−

)
, (2.14)

which in turn establishes a connection between the amplitudes A (12) and A (21). Combining

the relations (2.11) and (2.14) reveals that

A (12) = Y12A (21) , A (21) = Y21A (12) , Yij =
ki − kj − iγ
ki − kj + iγ

; (2.15)

these are the required two-body scattering matrix elements. The Bethe ansatz (2.11) and

the connections between the amplitudes (2.15) specify a general two-particle eigenstate of
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the Dicke Hamiltonian (2.3) with corresponding energy E2 = k1 + k2. The state can be

represented more compactly as

|k2, k1+〉 = N2

w
d2x

[
θ (x2 < x1) + Y12 θ (x2 > x1)

] ∏
j=1,2

fkj (xj) e
ikjxj r̂+

kj
(xj) |〉, (2.16)

establishing contact with the result (2.8) for a single particle and revealing the significance

of the phase Y12 acquired by the state as the photons pass one another. This phase-shift

alone does not necessarily imply any effective interaction between the two photons since it

persists even when they are far from the scattering center, in fact it can be easily shown that

for arbitrary Y12 the symmetrized two-photon wavefunction satisfies

− i(∂x1 + ∂x2) gk2,k1(x1, x2) = E2 gk2,k1(x1, x2), x1, x2 6= 0. (2.17)

In general it can be shown that free particles with linear dispersion permit representations

with arbitrary phase-shifts [33]; the introduction of an impurity simply lifts this degeneracy.

Such phase-shifts are encountered in the solutions to both the Kondo [34] and more generally

the Anderson impurity problems [35].

It remains to be shown that all possible two-particle eigenstates of the Dicke Hamiltonian are

accounted for by the representation (2.16). The general complexity of Bethe states makes

confirming their completeness a challenging task and this issue has led to some apparent

contradiction in the literature [36, 37, 22]. A group of authors have asserted that at least for

two photons the Bethe states are not complete and that a two-photon bound state has to

be included to render them so. The following short section demonstrates that by applying

periodic boundaries to the general state (2.16) the bound state they suggest arises naturally.
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Complex Rapidities and the Two-Photon Bound State

Confining the system to a ring of length L, periodicity implies that g2(−L/2, x) = g2(L/2, x)

and g2(x,−L/2) = g2(x, L/2) which limits the allowed rapidities to those that satisfy the

following relations

eikjLskj = Yji → eikjL
kj − iγ/2
kj + iγ/2

=
kj − ki − iγ
kj − ki + iγ

, i 6= j. (2.18)

In addition to real solutions the above requirements do not exclude the existence of complex

quasi-momenta. The energy, E2 = k1 + k2 however must be real and as a consequence,

Im {k1} = −Im {k2}. In the limit of infinite system size only one complex valued solution is

permitted, k1 = (E2 + iγ)/2 and k2 = (E2− iγ)/2 that define a properly bounded eigenstate.

Substituting them into general wavefunction (2.11) and writing the resulting state in the

outgoing region 0 < x1, x2 reveals

gB2 (x,Xc) =
E2 − 2iγ

E2 + 2iγ
eiE2Xce−γ|x|/2, (2.19)

represented in terms of the centre-of-mass coordinate of the photons, Xc = (x1 + x2)/2,

and their relative coordinate, x = x2 − x1, in order to emphasise its bound character. The

amplitude of the state clearly diminishes with increasing photon separation. The state (2.19)

is identical to the one obtained by more careful considerations elsewhere [36, 37] with open

boundaries.
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2.2.4 Three-Particle Eigenstate and the Yang-Baxter Equations

The three-body problem represents the first non-trivial application of the Bethe ansatz to

the Dicke model; the absence of three-body scattering here is essential for the validity of the

ansatz. The relevant photon state expressed in the ordered region x1 < x2 < x3 is

gk1,k2,k3 (x1, x2, x3) =
∑
P

A (P1P2P3) fkP1 (x1) fkP2 (x2) fkP3 (x3) eikP1x1+ikP2x2+ikP3x3 . (2.20)

Once again the first equation in (2.6) connects the photon state with the atomic excitation

amplitude. Continuity of this amplitude on passing the origin

e3

(
0+, 0+

)
= e3

(
0−, 0+

)
= e3

(
0−, 0−

)
, (2.21)

amounts to the following restrictions on the three-photon wavefunction

g3

(
0+, 0+, 0+

)
− g3

(
0−, 0+, 0+

)
= g3

(
0−, 0+, 0+

)
− g3

(
0−, 0−, 0+

)
= g3

(
0−, 0+, 0−

)
− g3

(
0−, 0−, 0−

)
.

(2.22)

A quick check by direct substitution will confirm that this requirement is met when all A (P )

differing by a pairwise permutation of neighboring photons are related by the same two-body

phase defined in the previous section, that is when A (ijk) = YijA (jik) = YijYikA (jki)

and so forth. For four or more particles continuity conditions similar to (2.22) continue to

arise, each satisfied when the amplitudes in each ordered sector are related by the two-body

phases (2.15). In other words, it appears that a class of n-body eigenstates of (2.3) exist

that are representable in the form of a Bethe ansatz characterized by a set of n! amplitudes

A (P1, P2, . . . , Pn) such that for each pair differing by a single permutation of adjacent P
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labels, the following linear dependence is observed

A (. . . Pi+1, Pi . . . ) = YPi+1PiA (. . . Pi, Pi+1 . . . ) . (2.23)

There are n! (n− 1) /2 such connections which, for more than two particles, exceeds the

number of amplitudes that they define; mutual consistency is then ensured by the YBEs.

For identical particles they simply amount to the requirements

YijYji = 1, YijYikYjk = YjkYikYij. (2.24)

The first guarantees that permuting any pair of adjacent particles an even number of times

does not alter the state while the second is a sufficient condition ensuring the uniqueness

of all scattering factorizations. YBEs similar to those in (2.24) for the more general case of

distinguishable particles can be derived and are far more restrictive [34, 35]. Substituting the

known two-body scattering phases for the Dicke Model (2.15) into the Yang-Baxter equations

(2.24) confirms their consistency, indicating that the states (2.20) represent a set of exact

three-body eigenstates.

2.2.5 Many-Particle Eigenstates

The findings of the preceding sections lead to the conclusion that a class of many-body

eigenstates exists for the Dicke model that may be written in the form [33, 38, 39]

|k1, . . . , kn+〉 = Nn

w
dnx

∏
i<j

[
θ (xj < xi) + Yij θ (xj > xi)

]∏
j

fkj (xj) e
ikjxj r̂+

kj
(xj) |〉.

(2.25)

Applying the Dicke Hamiltonian (2.3) to the states (2.25) directly confirms their status as

eigenstates, Ĥ |k1, . . . , kn+〉 = En |k1, . . . , kn+〉 with corresponding energies given by the
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sum of their rapidities En = k1 + k2 + · · · + kn. The square brackets incorporate the only

non-factorizable terms that encode the entanglement developed between photons as a result

of their mutual interaction with the two-level impurity.

It can be shown that in the infinite-system-size limit all allowed quasi-momenta that are

consistent with periodicity come in the form of strings of two or more linked by a common

real component (or principal rapidity) [25]. To illustrate this point the solution to the four-

photon problem results in a sets of allowed rapidities each belonging to one of the five possible

configurations:

(i) : k1 = κi1, k2 = κi2, k3 = κi3, k4 = κi4,

(ii) : k1 = κii1 , k2 = κii2 , [ k3 = κii3 + iγ/2, k4 = κii3 − iγ/2 ] ,

(iii) : [ k1 = κiii1 + iγ/2, k2 = κiii1 − iγ/2 ] , [ k3 = κiii2 + iγ/2, k4 = κiii2 − iγ/2 ] ,

(iv) : k1 = κiv1 , [ k2 = κiv2 + iγ, k3 = κiv2 , k4 = κiv2 − iγ ] ,

(v) : [ k1 = κv1 + i3γ/2, k2 = κv1 + iγ/2, k3 = κv1 − iγ/2, k4 = κv1 − i3γ/2 ] ,

(2.26)

where all Im {κ} = 0. Square brackets enclose bound-state strings. In any given string,

adjacent quasi-momenta are separated in the complex direction by γ. The number of allowed

configurations corresponds to the number of partitions of n photons into m bound states

(where 2 6 m 6 n); the number of such partitions rapidly exceeds the number of particles.

In summary the previous few sections outline a procedure for obtaining a set of exact many-

body eigenstates for the Dicke Hamiltonian, although no proof of their completeness has been

given. This stumbling block will have to be addressed before it is possible to reliably extract

scattering properties of the Hamiltonian from these interacting states.
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2.3 Lippmann-Schwinger Scattering Theory

Given the set of exact eigenstates (2.25) it is then a nontrivial task to extract from them

the many-body S-matrices. An obvious approach would be to appeal to the well established

Lippmann-Schwinger scattering theory [40] that connects asymptotic incoming and outgoing

states to fully interacting scattering orbits. This procedure is however not without certain

subtleties and limitations [37, 41] which are the topic of this brief section which serves the

additional purpose of introducing some general ideas that will be required later.

In scattering theory one frequently encounters Hamiltonians that naturally separate into two

components, the first pertaining to the relevant free constituents; for example one can imagine

a flux of inert itinerant particles incident on a fixed, local scatterer. The second component

then accounts for any interactions between these two constituents, Ĥ = Ĥ0 + Ĥint. The state

of the system in a scattering experiment develops according to Û(t) |ψ〉 , where Û(t) = e−iĤt is

the unitary fully-interacting time evolution operator. In practice incident few-particle states

will be confined to wavepackets of finite duration and in the remote past, long before they

reach the scatterer they essentially propagate freely according to the non-interacting time

evolution operator, Û0(t) = e−iĤ0t. This observation motivates the introduction of so-called

in-states, defined in the following sense:

∣∣∣∣∣∣∣∣ Û(t) |ψ〉 − Û0(t) |ψin〉
∣∣∣∣∣∣∣∣→ 0 as t→ −∞. (2.27)

The two vectors, one a fully interacting orbit and the other a freely evolving incoming

wavepacket, become increasingly indistinguishable in the remote past. Likewise once all

the collision events are completed and the scattered particles have drifted far away from the

scattering centre, the contribution of the interaction component of the Hamiltonian to the

evolution of the state becomes insignificant; asymptotically free outgoing states, or out-states,
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are then approached according to

∣∣∣∣∣∣∣∣ Û(t) |ψ〉 − Û0(t) |ψout〉
∣∣∣∣∣∣∣∣→ 0 as t→∞. (2.28)

It does not necessarily follow that for every interacting orbit |ψ〉 there exist corresponding

freely evolving incoming and outgoing states |ψin〉 and |ψout〉 according to (2.27) and (2.28).

Such exceptions arise if, for example, Ĥint supports any bound states which remain forever

confined to the interacting region.

The relation between these states and their corresponding interacting orbits are encoded

in the so-called Møller wave operators; it follows from the definitions of the incoming and

outgoing states given in (2.27) and (2.28) that

|i+〉 = lim
t→−∞

Û+(t)Û0(t) |i〉 = Ω̂+ |i〉, (2.29)

that is, for each incoming state |i〉 the Møller operator Ω̂+ provides a corresponding fully

interacting state |i+〉 . Similarly for every outgoing state |f〉 there exists an actual scattering

orbit |f−〉 whence it came that is generated by the Møller operator Ω−

|f−〉 = lim
t→∞

Û+(t)Û0(t) |f〉 = Ω̂− |f〉. (2.30)

The possibility of bound states means that the Møller operators are not in general unitary.

Nonetheless, it can be shown that every fully interacting orbit with an incoming state also

has an outgoing state [42, 43], Ω̂+ |i〉 = |i+〉 = Ω̂− |fi〉 (where the subscript i in fi is used

to indicate its dependence on the initial state) and this property leads to the definition of

a scattering matrix Ŝ which maps between them, |fi〉 = Ω̂+
−Ω̂+ |i〉 = Ŝ |i〉 . The bulk of

scattering theory is concerned with calculating this matrix.
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The probabilistic interpretation of the quantum wavefunction implies that real scattering

states are both normalizable and non-stationary. The eigenstates of the non-interacting

Hamiltonian, Ĥ0 |pn . . . p1〉 = E(pn . . . p1) |pn . . . p1〉 furnish a convenient orthonormal basis

with which to expand incoming and outgoing states but when taken in isolation they satisfy

neither of these requirements and consequently they are never approached in the limits (2.27)

and (2.28). This problem is fixed by appreciating that since incoming/outgoing wavepackets

come with their own internal distribution of momenta, applying the Møller operators to a

proper state

Ω̂± |ξ〉 =
w
dnp ξ(pn . . . p1) Ω̂± |pn . . . p1〉, (2.31)

leads naturally to the introduction of the interacting basis vectors, |pn . . . p1±〉 = Ω̂± |pn . . . p1〉.

These vectors are eigenstates of the fully interacting Hamiltonian with the same energy as

their non-interacting counterparts; that is, if |pn . . . p1〉 is an eigenstate of Ĥ0 with energy E

then |pn . . . p1±〉 will be eigenstates of Ĥ with the same energy.

In a theoretical investigation of a scattering problem one typically begins with a complete

set of incoming plane waves |pn . . . p1〉 that are defined in the remote past; these are then

developed (in the context of a wavepacket) into fully interacting states expressible in terms

of |pn . . . p1+〉 at time t = 0. Thes fully interacting orbits can be derived with the help of

the following Lippmann-Schwinger relation which can be obtained from the definition of the

retarded Møller operator (2.29):

|i+〉 = |i〉 + ĜR
0 Ĥint |i+〉 → |i+〉 =

∞∑
n=0

[
ĜR

0 Ĥint

]n
|i〉, (2.32)
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where ĜR
0 = (E − Ĥ0 + i0+)−1 is the (free-particle) retarded Green’s function. Once these

interacting states are found a second Lippmann-Schwinger relation can be employed to de-

termine their corresponding outgoing states

|fi〉 = |i+〉 − Ĝ0
AĤint |i+〉, (2.33)

which is derived from the definition of the advanced Møller operator (2.30). The advanced

Green’s function is defined as ĜA
0 = (E− Ĥ0− i0+)−1. Repeating this process for all possible

incoming states yields all the information required to assemble a scattering matrix. The

unitarity of this matrix clearly relies on the completeness of the incoming states.

In the unusual case that fully interacting states are already known, with the Bethe ansatz for

example, then the corresponding incoming and outgoing states which are used to construct

the scattering matrix can also be derived from the above Lippmann-Schwinger relations.

However in contrast to the more conventional method (where the completeness of incoming

states is guaranteed beforehand) a nontrivial completeness check on the resulting asymptotic

states is now essential. This approach has already been followed by a group of authors [37] for

one and two photons, although the complexity of the completeness check makes the scheme

unsatisfactory.

More recently a conventional application of the Lippmann-Schwinger relations, beginning

with a complete set of incoming plane waves has been used to calculate the fully interacting

orbits developed for a one-dimensional channel of photons interacting with an an ensemble

of n-level atoms [44].
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2.4 Yudson-Rupasov Technique

2.4.1 Introduction and Derivation

Assuming that the complete set of eigenstates for the Hamiltonian (2.3) have been found then

the time evolution of any given initial state ψn incorporating n-excitations can be determined

by simply inserting a resolution of the identity in terms of them

|ψn (t)〉 = e−iĤt |ψn〉 =
∑

allowed k

e−iEnt |k1, . . . , kn+〉〈k1, . . . , kn+|ψn〉. (2.34)

The allowed quasi-momenta appearing in (2.34) refer to a continuous spectrum of principal

rapidities and a discrete set of complex configurations (2.26). This representation for the

evolution is difficult to use; normalizing Bethe states is generally a formidable task [45] and

the sum over configurations is tricky in practice. Fortunately a much more powerful and

efficient procedure has been found that avoids such complications.

In the process of evaluating (2.34) with small numbers of particles Yudson and Rupasov

discovered a ‘latent simplicity’; cancellations between certain rapidity contributions occur

predictably in each excitation subspace and this observation led them to a more refined

representation for the time evolved state ψn(t) in terms of an n-fold contour integral [22, 39]

|ψn (t)〉 =
w

Cn

dnλ

(2π)n
e−iE

n
λ t
∣∣λ1, . . . , λn+〉

(
λ̄1, . . . , λ̄n

∣∣ψn〉; (2.35)

the states |λ1, . . . , λn+〉 are the generalized eigenstates (2.25) with Nn = 1 and corresponding

eigenenergies En
λ = λ1 + λ2 + · · · + λn. The auxiliary states, distinguished by a rounded
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parenthesis, are simply

|λ1, . . . , λn) =
w
dnx θ (xn < · · · < x1)

∏
j

fλj (xj) e
iλjxj r̂+

λj
(xj) |〉. (2.36)

A key distinction between (2.34) and (2.35) is that the rapidities belonging to the latter are

no longer restricted by periodicity. The contours of integration Cn depend on the particular

choice of initial state; a typical scattering scenario for example finds a train of n photons

impinging on an unexcited emitter:

|ψn〉 = â+(x0
n) · · · â+(x0

2)â+(x0
1) |〉, x0

n < · · · < x0
2 < x0

1 < 0. (2.37)

For such a configuration integration is performed over a series of contours parallel to the real

axis; more precisely the contours are arranged such that C : Im {λj+1} − Im {λj} > γ for

j = 1, . . . , n− 1 and Im {λ1} > −γ/2, as illustrated by figure 2.1.

The validity of the representation (2.35) will now be proved for the class of initial states

(2.37). A general proof for arbitrary initial states can be found in the original paper [39].

Following the authors [22] this task is achieved in two stages. Firstly it is demonstrated that

the representation faithfully returns the initial state at the initial instant, t = 0.

Due to the complementary ordering of the particle coordinates, the inner product between

the initial and auxiliary state is 〈ψn|λ1, . . . , λn) = exp (iλ1x
0
1 + · · ·+ iλnx

0
n) and the right
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Figure 2.1: Contours of Integration for (2.35) with the initial state (2.37)

hand side of (2.35) at the initial instant becomes

w
dnx

w

Cn

dnλ

(2π)n
∏
i<j

[
1− 2iγθ (xi < xj)

λi − λj + iγ

]∏
j

fλj (xj) e
iλj(xj−x0j)

[
â+(xj)−

√
γ

λj
δ(xj)Ŝ

+

]
|〉.

(2.38)

Before proceeding to explicitly integrate (2.38) it is necessary to mention that when dealing

with (2.35) one is often confronted with improperly defined integrals of the form

w dλ

2π
eiλxϕ (λ) (2.39)

with ϕ (λ)→ 1 as |λ| → ∞, which have to be interpreted in the sense that

w dλ

2π
eiλxϕ (λ) = δ (x)−

w dλ

2π
eiλx
[
ϕ (λ)− 1

]
. (2.40)

The contour integrals in (2.38) are calculated in the following way:
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Calculating the contour integrals from the bottom up

• Supposing that x1 < x0
1 (< 0) then closing the contour C1 in the lower half plane

incorporates no poles since the function fλ1 (x1 < 0) = 1 and the arrangement of the

contours, in particular the fact that Im {λ1} < Im {λj>1} − γ, prevents any instances

where λ1 = λj − iγ. Consequently x1 > x0
1 is essential if the representation (2.38) is to

be non-zero.

• Likewise if x2 < x0
2 < (x0

1 6 x1) then the contour C2 can be completed in the lower

half plane and the corresponding integral vanishes since the function fλ2 (x2 < 0) is

unity and θ (x1 < x2) = 0 which eliminates any singularities that would have arisen

when λ2 = λ1 + iγ. Therefore if any non-zero contributions exist then they are found

exclusively in the regions x2 > x0
2 and x1 > x0

1.

Continuing with this line of reasoning leads to the requirement xj > x0
j for all j.

Calculating the contour integrals from the top down

• Supposing that xn > x0
n the contour Cn may be completed in the upper half plane

without additional contribution. It follows by virtue of the ordering of the contours

that the region bounded does not include any instances where λn = λi<n + iγ, nor does

it incorporate the pole of the function fλn (xn) at λn = −iγ/2. It is therefore necessary

that xn 6 x0
n.

• Similarly, if xn−1 > x0
n−1 then completing contour Cn−1 in the upper half plane avoids

the pole of the function fλn−1 (xn−1). Moreover, since xn = x0
n < x0

n−1 < xn−1 any

divergences associated with λn−1 = λn − iγ are eliminated by θ (xn−1 > xn) = 0.

The above considerations reveal that any contributions to the contour integrals appearing

in the representation (2.38) are restricted to the singular regions xj = x0
j for all j, and are
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proportional to δ
(
xj − x0

j

)
. The result is a string of delta functions centred at the locations

of the photons at the initial moment confirming the representation (2.38) at the initial instant

for the class of states (2.37). In summary, the following observation has been made

|ψn〉 =
w

Cn

dnλ

(2π)n
∣∣λ1, . . . , λn+〉

(
λ̄1, . . . , λ̄n

∣∣ψn〉. (2.41)

Since |λ1, . . . , λn+〉 are eigenstates of the Hamiltonian, the proof of the relation (2.35) for a

train of incoming photons follows immediately by applying the time evolution operator to the

left hand side of (2.41). The representation (2.35) for the evolution circumvents the subtle

issue of completeness of the Bethe-states.

2.4.2 Single-Photon Scattering

Broadly two possibilities are open to a single photon incident on an unexcited atom: either

the photon passes the emitter without interacting or it is absorbed and subsequently emitted

after a delay (∼ γ−1). Since it is impossible to determine which of these paths is taken

without destroying coherence, both possibilities have to be accounted for at the level of the

wavefunction which leads to some interesting interference with no classical explanation; such

quantum interference effects will be the topic of subsequent sections. For a single photon

beginning with a precise initial location, x0 < 0, t = 0 the representation (2.35) predicts the

following time-evolved photon state

G1 (x, ξ) =
w

C1

dλ

2π

[
θ(x < 0) +

λ− iγ/2
λ+ iγ/2

θ(0 < x)

]
eiλ(x−ξ)

= δ (x− ξ)− γ (0 < x < ξ) eγ(x−ξ)/2,

(2.42)

where ξ = x0 + t. The first contribution to the evolution represents unhindered propagation

while the second term accounts for the radiation from the relaxation of the atomic excitation.
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The scattered component is characterized by an exponential decay of amplitude to the left

of the light cone. In practice a single incident photon can never be so well localized [46], but

this presents no real difficulty since it is possible to expand any wavepacket in the basis of

the elementary states that evolve according to (2.42).

Scattering matrices are typically given in the plane-wave basis; Fourier transforming (2.42)

reveals that the important case of an incoming free-photon state

∣∣i1〉 =
w
dx hk (x) â+ (x) |〉, (2.43)

where hk (x) = (2π)−1/2 eikx is scattered by the emitter into the outgoing free-photon state

∣∣f 1
i 〉 =

w
dx skhk (x) â+ (x) |〉, (2.44)

which follows from (2.42) taken in the limit t → ∞. The restriction 0 < x can be dropped

since once a long time has elapsed one can be sure that the entirety of any incident wavepacket

of finite duration will be found entirely to the right of scattering centre. An unimportant

time dependent factor e−ikt has been omitted in (2.44) and the scattering phase sk is given

in (2.7). With the results (2.43) and (2.44) a single photon S-matrix can be constructed, viz.

Ŝ1 =
∑
i

∣∣f 1
i 〉〈i1

∣∣ =
w
dk sk |k〉〈k| . (2.45)

In this case the unitarity of the scattering matrix is obvious.

27



2.4.3 Two-Photon Scattering

Much richer phenomena are to be expected for more than one incoming photon; the time

evolution of a multi-photon state cannot simply be a product of the results for individual

photon scattering since the finite spectrum of the emitter forbids double occupation. When

two photons with the initial locations x0
2 < x0

1 < 0, t = 0 are incident on an initially

unexcited emitter then the properly symmetrized photon wavefunction, G2
sym (x1x2, ξ1ξ2) in

the outgoing region 0 < x1, x2 is readily obtained from (2.35), with the result

1

2!

∑
Q

w

C2

d2λ

(2π)2

[
1− 2iγ θ (xQ1 < xQ2)

λ1 − λ2 + iγ

]∏
j

λj − iγ/2
λj + iγ/2

eiλj(xQj−ξj),

=
1

2!

∑
Q

[
G1 (xQ1 , ξ1)G1 (xQ2 , ξ2)− 2γ2θ (xQ1 < xQ2 < ξ2 < ξ1) eγ(xQ1

+xQ2
−ξ2−ξ1)/2

]
,

(2.46)

although it is slightly more physically insightful to write the state in the equivalent form

G2
sym (x2x1, ξ1ξ2) =

∑
Q′

θ
(
xQ′2 6 ξ2 6 xQ′1 6 ξ1

) 1

2!

∑
Q

G1 (xQ1 , ξ1)G1 (xQ2 , ξ2) . (2.47)

The first term in the state (2.46) is representative of independent scattering while the second

erases the possibility of finding two scattered photons in the regions xQ1 < xQ2 < ξ2 < ξ1.

The structure of the two-photon wavefunction (2.46) is easy to interpret; since in free space

photons do not disperse during propagation it is possible to trace their trajectories within

each ordered sector. Double occupation of the atom is then implied if both of them, having

been absorbed and subsequently emitted, are found to the left of the line x = ξ2 as illustrated

by the figure 2.2b. The impossibility of exciting the atom twice forbids such outcomes thereby

restricting outgoing photons to the regions xQ2 6 ξ2 6 xQ1 6 ξ1; otherwise they propagate

freely which is evidenced by the equivalent representation (2.47). In other words, the ordering

of jointly-scattered photons is prevented and this blockade-like effect is the essence of any

induced photon correlations.
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It follows from (2.46) that the incoming two-photon (plane wave) state

∣∣i2〉 =
w
d2x

1

2!

∑
Q

hk2 (xQ2)hk1 (xQ1) â
+ (x2) â+ (x1) |〉, (2.48)

is scattered by the emitter into the outgoing state

∣∣f 2
i 〉 =

w
d2x

1

2!

[∑
Q

sk2sk1hk2 (xQ2)hk1 (xQ1)

+
∑
P,Q

B2
kP2 ,kP1

(xQ2 , xQ1)

]
â+ (x2) â+ (x1) |〉,

(2.49)

where the non-factorizable contribution in (2.46) amounts to a two-photon bound state

B2
k2,k1

(x1, x2) = − (sk2 − 1) (sk1 − 1) θ (x2 > x1) hk2 (x2)hk1 (x2) e−γ|x2−x1|/2, (2.50)

which can be attributed to the stimulated emission of the already excited emitter by the

lagging photon. The state (2.50) derived from the Bethe ansatz is identical to the one

obtained elsewhere by an alternative approach [36, 37, 47]. The two-photon S-matrix that

follows from (2.48) and (2.49) is

Ŝ2 =
∑
i

∣∣f 2
i 〉〈i2

∣∣
=

1

2!

w
d2k sk2sk1 |k2, k1〉〈k2, k1|+

1

2!

w
d4k Bk′2,k

′
1,k2.k1

|k′2, k′1〉〈k2, k1| ,
(2.51)

where Bk′2,k
′
1,k2,k1

= 4 (πγ)−1 (tk′2+tk′1)tk2tk1δ(k
′
1+k′2−k1−k2) with tk = (sk−1)/2 is the bound

photon state (2.50) represented in momentum space. The first contribution to the scattering

matrix preserves the photons’ individual momenta and the second (inelastic) contribution

redistributes momenta amongst the photons while conserving their total energy.
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(a) Allowed path where both photons occupy the emitter.

(b) Forbidden path since it requires double occupation of the emitter.

Figure 2.2: Within the ordered sector x2 < x1 the scattering channel that leaves both photons
in the region 0 < x2 < x1 < ξ2 < ξ1 is forbidden since it requires the two-level system to
have been doubly occupied. A similar restriction exists for the alternative ordering x2 > x1

and follows directly from Bose symmetry.
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2.4.4 Multi-Photon Scattering

The multi-photon scattered states that result from the interaction of photons with the emitter

can be written in such a way as to yield a deeper insight into the essential physics at play

in the dynamics of the Dicke model. The unsymmetrized outgoing wavefunction (2.35) that

develops from a train of n incident photons (2.37) is

Gn (x1 . . . xn, ξ1 . . . ξn) =
w

Cn

dnλ

(2π)n
∏
i<j

[
1− 2iγθ (xi < xj)

λi − λj + iγ

]∏
j

λj − iγ/2
λj + iγ/2

eiλj(xj−ξj); (2.52)

the physical photon wavefunction is of course symmetrized, that is

Gn
sym (x1 . . . xn, ξ1 . . . ξn) =

1

n!

∑
Q

Gn (xQ1 . . . xQn , ξ1 . . . ξn) . (2.53)

Considered in the particular ordered sector xn 6 xn−1 6 · · · 6 x2 6 x1 photons are restricted

to the region xn 6 ξn 6 xn−1 6 · · · 6 ξ2 6 x1 6 ξ1 for precisely the same reasons as for the

two-photon case, namely that any other possibility would require the emitter to have been

doubly occupied, thus

Gn
sym (xn 6 · · · 6 x1, ξ1 . . . ξn)

= θ (xn 6 ξn 6 · · · 6 x1 6 ξ1)
1

n!

∑
Q

Gn (xQ1 . . . xQn , ξ1 . . . ξn) .
(2.54)

Since each Gn (xQ1 . . . xQn , ξ1 . . . ξn) vanishes outside the causal region, xQj 6 ξj, j = 1 . . . n

it can easily shown that the projection onto the permissible histories accounts for all of the

correlation between photons. In other words the restriction of scattered photons to the region

enforced by the global ordering in (2.54) renders the internal ordering, encoded by the theta
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functions present in the square brackets in (2.52), superfluous [39] and consequently

Gn
sym (xn 6 · · · 6 x1, ξ1 . . . ξn)

= θ (xn 6 ξn 6 · · · 6 x1 6 ξ1)
1

n!

∑
Q

G1 (xQn , ξn) · · ·G1 (xQ1 , ξ1) .
(2.55)

The full multi-photon wavefunction is then given by permuting over all sectors

Gn
sym (xn . . . x1, ξ1 . . . ξn)

=
∑
Q

θ (xQn 6 ξn 6 · · · 6 xQ1 6 ξ1)
1

n!

∑
Q′

G1(xQ′n , ξn) · · ·G1(xQ′1 , ξ1).
(2.56)

Despite the physical clarity and compactness of this expression it is still awkward to use for

calculating correlation functions and its representation in momentum space is untidy. For

the purposes of the next few sections it will be more convenient to represent the scattered

state in the equivalent form

Gn (xn 6 · · · 6 x1, ξ1 . . . ξn)

= G1 (xn, ξn) · · ·G1 (x1, ξ1)− [ implied double occupation ] ,

(2.57)

and then to sum over symmetric permutations. Such representations arise naturally when

the representation (2.52) is evaluated case by case, compare with (2.46). In this way it can

be shown that the n-photon incoming plane waves

in (x1, x2 . . . xn) =
1

n!

∑
Q

hkn (xQn) · · ·hk1 (xQ1) , (2.58)
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are mapped by interaction onto the following outgoing states (for n = 3, 4)

f 3
i (x1, x2, x3) =

1

3!

[∑
Q

sk3sk2sk1 hk3 (xQ3)hk2 (xQ2)hk1 (xQ1)

+
∑
P,Q

skP3 hkP3 (xQ3)B
2
kP2 ,kP1

(xQ2 , xQ1) +
∑
P,Q

B3
kP3 ,kP2 ,kP1

(xQ3 , xQ2 , xQ1)

]
,

(2.59)

f 4
i (x1, x2, x3, x4) =

1

4!

[∑
Q

sk4sk3sk2sk1 hk4 (xQ4)hk3 (xQ3)hk2 (xQ2)hk1 (xQ1)

+
∑
P,Q

skP4skP3 hkP4 (xQ4)hkP3 (xQ3)B
2
kP2 ,kP1

(xQ2 , xQ1)

+
∑
P,Q

B2
kP4 ,kP3

(xQ4 , xQ3)B
2
kP2 ,kP1

(xQ2 , xQ1) +
∑
P,Q

skP4 hkP4 (xQ4)B
3
kP3 ,kP2 ,kP1

(xQ3 , xQ2 , xQ1)

+
∑
P,Q

B4
kP4 ,kP3 ,kP2 ,kP1

(xQ4 , xQ3 , xQ2 , xQ1)

]
,

(2.60)

where the n-photon bound states are

Bn
k1,...,kn

(x1, . . . , xn)

= −(−2)n−2

n∏
i=1

(ski − 1)
n−1∏
i=1

θ (xi+1 > xi)hki+1
(xi+1)hk1 (xn) e−γ|xn−x1|/2.

(2.61)

There is a one-to-one correspondence between the terms in the four photon outgoing states of

(2.60) and the allowed groups of complex rapidities (solutions of the Bethe-equations (2.26)).

The extension to incident states with n > 4 photons is straightforward; the resulting states

incorporate all possible partitions into bound states with any remaining photons written as

products of single photon states. Each term will be reflected in the complex solutions of

Bethe equations.

The outgoing states (2.59) and (2.60) are identical to those obtained in reference [47] that
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are derived by explicitly solving the equations of motion (2.6) with open boundary conditions

for each incoming photon number subspace. This further supports the conclusion that in the

limit of large system size the particular choice of boundary conditions becomes irrelevant.

Figure 2.3: Depiction of the bound states created in the scattering of four quasi-resonant
photons by a two-level impurity. There is a one-to-one correspondence between each of the
possible outgoing states on the left and the quasi-momentum configurations permitted by
the Bethe equations (2.26).
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2.5 Scattering and the Quantum Langevin Equations

2.5.1 Derivation of the Quantum Langevin Equations

An alternative, more efficient derivation of the few-photon scattering matrices for the Dicke

model has recently been found [48] by extending the standard input-output formalism of

Gardiner and Collett [49] in the theory of damped quantum systems. Here the quantum

Langevin equations for an arbitrary system linearly coupled to a bath of noninteracting

bosons are derived. The standard input and output operators are introduced and their

relation to the incoming and outgoing asymptotes of scattering theory is presented. The

relevant Hamiltonian with which the input-output formalism is developed naturally divides

into three terms:

Ĥ = Ĥsys +
w
dω ω b̂+

ω b̂ω +
w
dω κω

(
b̂+
ω ĉ+ ĉ+b̂ω

)
. (2.62)

The first is kept arbitrary and pertains to the system, while the second accounts for the bath

of particles with corresponding creation and annihilation operators b̂+
ω and b̂ω, which for any

given mode do not commute,
[
b̂ω, b̂

+
ω′

]
= δ(ω − ω′). The interaction between this bosonic

field and the system is then encoded in the final term where ĉ is one of the possible system

variables. For generality, the commutation relations between these variables which may be

spin-like or bosonic are left unspecified at this point. The Heisenberg equations of motion

for b̂ω and an arbitrary system operator â are

˙̂
bω = −iωb̂ω − iκω ĉ, ˙̂a = −i

[
â, Ĥsys

]
− i

w
dω κω

(
b̂+
ω

[
â, ĉ
]

+
[
â, ĉ+

]
b̂ω
)
. (2.63)

Formally integrating the equation for b̂ω gives

b̂ω (t) = e−iω(t−t0)b̂ω (t0)− iκω
tw

t0

dt′ e−iω(t−t′)ĉ (t′) , t0 < t. (2.64)
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The first contribution, proportional to the initial value of the bath operator, is associated with

the free evolution of the incident field, while second accounts for scattering from the system

and spontaneous emission. Substituting (2.64) into the second relation in (2.63) generates

the following representation for the evolution of â in terms of the incoming state of the field:

˙̂a =− i
[
â, Ĥsys

]
− i

w
dω κω

{
eiω(t−t0)b̂+

ω (t0)
[
â, ĉ
]

+
[
â, ĉ+

]
e−iω(t−t0)b̂ω (t0)

}
+

w
dω κ2

ω

tw

t0

dt′
{
eiω(t−t′)ĉ+ (t′)

[
â, ĉ
]
−
[
â, ĉ+

]
e−iω(t−t′)ĉ (t′)

}
,

(2.65)

where for compactness operators without time arguments are taken at time t.

Input Fields

In practice frequency integrals are taken over positive real values. However it is typical in

optics for a shift to be made into a rotating frame defined by some frequency Ω characteristic

of the the system; this alters the relevant frequency region to ω ∈ [−Ω,∞). When the

frequency Ω is much greater than the interaction bandwidth the range of integration may

be extended over the entire real line without introducing any significant error [50]. The

relation (2.65) is exact; however a great simplification is afforded when the coupling is roughly

independent of frequency, κω =
√
γ/2π within the relevant range. Then the relations

∞w

−∞

dω eiω(t−t′) = 2πδ(t− t′),
tw

t0

dt′ δ(t− t′) ĉ(t′) =
1

2
ĉ(t), (2.66)

can be applied to (2.65), resulting in

˙̂a = −i
[
â, Ĥsys

]
−
[
â, ĉ+

](γ
2
ĉ+
√
γ b̂in

)
+

(
γ

2
ĉ+ +

√
γ b̂+

in

)[
â, ĉ
]
, (2.67)
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where the input field is defined as

b̂in (t) =
1√
2π

w
dω e−iω(t−t0) b̂ω (t0) , (2.68)

with the commutation relations
[
b̂in (t) , b̂+

in (t′)
]

= δ(t − t′). The expression (2.67) is the

quantum equivalent of a Langevin equation for the variable â, with b̂in (t) and b̂+
in (t) replacing

classical noise terms. The consequence of having assumed a frequency independent coupling

is that the evolution of â follows independently of its history. This lack of memory is rarely

exact and is referred to as a Markov approximation.

Output Fields

A time-reversed version of the quantum Langevin equations can be found by representing the

bath operators in the following somewhat unnatural form, with their present state expressed

in terms of their future motion

b̂ω (t) = e−iω(t−t1)b̂ω (t1) + iκω

t1w

t

dt′ e−iω(t−t′)ĉ (t′) , t < t1. (2.69)

Substituted into (2.65) it generates

˙̂a = −i
[
â, Ĥsys

]
−
[
â, ĉ+

](
− γ

2
ĉ+
√
γ b̂out

)
+

(
− γ

2
ĉ+ +

√
γ b̂+

out

)[
â, ĉ
]
, (2.70)

with the output field is defined as

b̂out (t) =
1√
2π

w
dω e−iω(t−t1) b̂ω (t1) . (2.71)
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Input-Output Formula

A relation between the input and output fields can be obtained by integrating (2.64) and

(2.69) over all frequencies, that is

b̂in (t)− i
√
γ

2
ĉ (t) =

w
dω b̂ω (t) = b̂out (t) + i

√
γ

2
ĉ (t) . (2.72)

This relation is the basis of the scattering theory developed in the next section.

2.5.2 Application to Scattering Theory

Identification of the input and output operators of the quantum Langevin formalism with

the incoming and outgoing asymptotes of scattering theory can be exploited to provide the

S-matrices for a variety of scattering problems [48] although further approximations than

previously discussed are typically necessary. In the specific case of the Dicke model the

system operators ĉ and ĉ+ in (2.62) are replaced with the atomic psuedo-spin operators Ŝ−

and Ŝ+ respectively and the bosonic bath operators correspond to the photon annihilation

and creation operators, b̂ω → âk and b̂+
ω → â+

k . The Møller operators defined in (2.29) and

(2.30) facilitate a representation of scattering matrix elements in the basis of non-interacting

n-photon plane-wave states

Snk′n,...k′1,kn,...k1 = 〈k′n, . . . k′1| Ω̂+
−Ω̂+ |kn, . . . k1〉. (2.73)

Reference to the emitter has been suppressed since initially it is assumed to be unexcited

and once interactions are over it returns to its ground state via spontaneous emission; the

scatterer therefore has only intermediary significance, matching asymptotically free incoming

states to outgoing ones. It is helpful to define incoming and outgoing scattering operators
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respectively as

Â+
k = Ω̂+â

+
k Ω̂+

+, B̂+
k = Ω̂−â

+
k Ω̂+
−, (2.74)

which are constructed so as to generate fully interacting eigenstates from vacuum, that is

Â+
kn
· · · Â+

k1
|〉 = |kn . . . k1+〉 and B̂+

kn
· · · B̂+

k1
|〉 = |kn . . . k1−〉 . The interacting eigenstates

|kn . . . k1+〉 are those that develop from the plane-waves |kn . . . k1〉 while it is in the context

of a wavepacket of finite duration (2.31). In a similar sense, |kn . . . k1−〉 are the interacting

eigenstates that asymptotically approach the non-interacting plane-waves |kn . . . k1〉 once all

photons have passed through the interacting region. It follows from the unitarity of the

Møller transformation for the Dicke model (this will be proved later) that the scattering

operators conform to the commutation relations [Âk, Â
+
k′ ] = δ(k − k′), [B̂k, B̂

+
k′ ] = δ(k − k′).

In terms of these operators the scattering matrix elements have the succinct representation

Snk′n,...k′1,kn,...k1 = 〈| B̂k′n · · · B̂k′1
Â+
kn
· · · Â+

k1
|〉. (2.75)

Expressed in the time domain, Â+
k and B̂+

k are simply the input and output operators that

were defined in (2.68) and (2.71), viz.

âin(t) =
1√
2π

w
dk e−ik(t−t0)âk(t0) =

1√
2π

w
dk e−ikte−iĤt0e−iĤ0t0 âke

iĤ0t0e−iĤt0 ,

→ 1√
2π

w
dk e−iktΩ̂+â

+
k Ω̂+

+ = Â(t), t0 → −∞.
(2.76)

Similarly it can be shown that âout(t) → B̂(t) in the limit t1 → ∞ establishing a useful

connection between scattering theory and the quantum Langevin equations.

The results of the input-output formalism, principally the relations (2.67) and (2.72), provide

an efficient scheme for calculating the few-photon scattering matrices (2.73) [48]. It will be
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useful for subsequent analysis to rewrite the input-output formula (2.72) in momentum space

B̂k = Âk − i
√

γ

2π

w
dt eikt Ŝ−(t). (2.77)

Single-Photon S-matrix

A consequence of the relation (2.77) is that single-photon scattering matrix elements may be

written in the form

S1
k′,k = 〈| B̂k′Â

+
k |〉 = δ(k − k′)− i

√
γ

2π

w
dt eik

′t 〈| Ŝ−(t) |k+〉, (2.78)

with an obvious physical significance: the state of an incoming photon remains unchanged

unless at sometime during the interaction window the emitter is engaged. The amplitude

for finding the atom occupied in the fully interacting state is calculated from the Langevin

equation (2.67) for the atomic pseudo-spin operator Ŝ−, that is

〈| ˙̂
S−(t) |k+〉 = 2i

√
γ 〈| Ŝz(t)âin(t) |k+〉 − γ

2
〈|S−(t) |k+〉

= −i
√

γ

2π
e−ikt − γ

2
〈|S−(t) |k+〉,

(2.79)

where the final expression follows from the relation Ŝz(t) |〉 = −1/2. The solution to the

equation (2.79) that is bounded as t→∞ is

〈| Ŝ+(t) |k+〉 =

√
γ

2π

e−ikt

k + iγ/2
, (2.80)

which when substituted into (2.78) returns the following single photon scattering matrix

elements confirming the Yudson-Rupasov result (2.45):

S1
k′,k = sk′δ(k

′ − k), sk =
k − iγ/2
k + iγ/2

, (2.81)
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Two-Photon S-Matrix

The simplest route to the two-photon scattering matrix is achieved by inserting a resolution

of unity in terms of the interacting single excitation states

S2
k′2,k

′
1,k2,k1

= 〈| B̂k′2
B̂k′1

Â+
k2
Â+
k1
|〉 = 〈k′2−|

w
dp |p+〉〈p+| B̂k′1

|k2, k1+〉. (2.82)

Since 〈k′2 − |p+〉 = 〈| B̂k′2
Â+
p |〉 is simply the single-photon scattering matrix element (2.81)

the expression (2.82) reduces to

S2
k′2,k

′
1,k2,k1

= sk′2 〈k
′
2+| B̂k′1

|k2, k1+〉. (2.83)

The relation between incoming and outgoing scattering operators (2.77) can now be applied

effectively

〈k′2+| B̂k′1
|k2, k1+〉 =

∑
P

δ(k′2 − kP2)δ(k
′
1 − kP1)− i

√
γ

2π

w
dt eik

′
1t 〈k′2+| Ŝ−(t) |k2, k1+〉.

(2.84)

A naive substitution of both B̂k operators in (2.82) using the input-output formula without

having first substituted the resolution of the identity would have led to two-time averages,

〈| Ŝ−(t′)Ŝ−(t) |k2, k1+〉 that are difficult to deal with exactly. The excitation amplitude

〈k′2+| Ŝ−(t) |k2, k1+〉 in (2.84) is found by appealing to the the Langevin equation for Ŝ−

which in the current context gives

〈k′2+| ˙̂
S−(t) |k2, k1+〉 = 2i

√
γ

2π

∑
P

〈k′2+| Ŝz(t) |kP2+〉 e−ikP1 t −
γ

2
〈k′2+|S−(t) |k2, k1+〉.

(2.85)

The first term is simplified by employing the relation Ŝz(t) = Ŝ+(t)Ŝ−(t) − 1/2 and noting

that since there is only one emitter and the number of excitations is conserved during time
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evolution, then

〈k′+| Ŝ+(t)Ŝ−(t) |k+〉 = 〈k′+| Ŝ+(t) |〉〈| Ŝ−(t) |k+〉 =
γ

2π

eik
′t

k′ − iγ/2
e−ikt

k + iγ/2
, (2.86)

which follows from the relation (2.80). The above result completes the equation (2.85) for

the spin amplitude; the relevant solution is

〈k′2+| Ŝ−(t) |k2, k1+〉 =

√
γ

2π

∑
P

e−ikP1 t

kP1 + iγ/2
δ(k′2 − kP2)

+
8i

πγ2

√
γ

2π
t̄k′2tk2+k1−k′2(tk2 + tk1)e

−i(k2+k1−k′2)t,

(2.87)

where tk = (sk − 1)/2. Relations (2.87), (2.84) and (2.83) combine to provide the scattering

matrix elements [48]

S2
k′2,k

′
1,k2,k1

=
∑
P

sk2sk1δ(k
′
2 − kP2)δ(k

′
1 − kP1) +

8

πγ
tk′2tk′1(tk2 + tk1)δ(k

′
2 + k′1 − k2 − k1),

(2.88)

which are equivalent to those obtained by the Yudson-Rupasov (YR) technique (2.51). In

principle one could continue to use the input-output formula to determine S-matrix elements

for arbitrarily many photons, but the calculations required become increasingly cumbersome

and eventually it becomes much more straightforward to resort to the YR technique. The key

advantage of this scheme is its scope of applicability and its efficiency: it is readily adapted

to deal with other scattering problems and avoids any explicit representations of the fully

interacting many-body eigenstates of the Hamiltonian. Despite its efficiency and generality,

the underlying physics elucidated by the YR approach is much less transparent.
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CHAPTER 3

QUANTUM OPTICAL COHERENCE

3.1 Introduction

It was observations concerning light and not matter that launched us into the quantum era

with Planck’s realization that the absurd classical prediction concerning diverging radiation

intensities at short wavelengths for a blackbody is averted if the the amounts by which the

electromagnetic field can exchange energy with matter are quantized. Einstein developed

this idea further: with a minimum of assumptions he derived the entropy of this radiation

and observed its similarity to that of a gas of identical particles [51]. This photon paradigm

offered a powerful conceptual tool accounting for the then recently discovered photo-electric

effect and Compton scattering, and it is now indispensable in the field of quantum optics.

Given the history it is then perhaps surprising that a complete quantum theory of light

took much longer to get established than its condensed matter counterpart. This is due in no

small part to the absence of an unambiguous definition for the photon position operator [46],

a stumbling block eventually sidestepped in the mid 1960s when Glauber devised a quantum

description of optical coherence that closely resembles classical theory [52]. Central to this

theory is the concept of an ideal photon detector that absorbs and registers incident photons.
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In a typical interference experiment light from several sources is mixed and field correlations

are then measured between various locations and times. Optical coherence is characterized

by the dependence of these correlations on optical path length, phase shifts and/or times

of measurement. This chapter categorizes a few relevant types of interference, highlighting

some essential quantum aspects. Photon bunching and anti-bunching is briefly discussed in

preparation for later sections and the classic Hong-Ou-Mandel experiment is introduced [23],

a landmark in quantum optics illustrating a quintessentially quantum interference effect. In

this experiment two photons arriving simultaneously at a lossless balanced beamsplitter from

distinct incoming ports are always found exiting together in one of the two possible outgoing

ports. This coalescence is associated with the indistinguishability of the photons and the

resulting interference of Feynman paths. The final section determines the extent to which

the nonlinearity introduced by a single two-level atom operating as a beamsplitter alters this

phenomena.

3.2 Single-Photon Interference

Single-photon interference refers to two-point correlations of the electric field exhibited in

both Young’s and Michelson’s interferometry. All classical interference is of this type and it

will be shown that at this level interference between different photons can not be inferred.

Instead all observations are explained with the assumption that each photon interferes only

with itself [53], a principle that fails to properly account for some aspects of higher order

coherence. Before introducing the theory of Glauber it is appropriate to define what is meant

by an ideal photon detector. A detailed theory of photo-detection is well established in the

literature (a thorough review can be found in [54] and citations contained therein). For the

purposes of the following sections it is sufficient to provide a brief heuristic analysis.
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In vacuum the quantum electric and magnetic field operators satisfy a quantized version

of Maxwell’s equations and separate naturally into contributions from positive and negative

frequencies, for example

Ê (r, t) = i
∑
k

√
~ωk
2ε0

uk(r)e−iωktâ+
k + h.c. = Ê(−) (r, t) + Ê(+) (r, t) ; (3.1)

the vectors uk(r) are transverse orthonormal mode functions. In free space they satisfy,

∇2uk− (ω2
k/c

2)uk = 0, supplemented by the appropriate boundary conditions. The resulting

modes are indexed by k which may refer to several distinct variables (discrete or continuous)

such as polarization and momentum. When the field is confined to a cube with side length L

the relevant modes are uk(r) = L−3/2êk,µe
ik·r where the field polarization is encoded in the

unit vectors êk,µ; the transversality requirement means that êk,µ · k = 0. For the quantized

field the positive and negative frequency components Ê(−) (r, t) and Ê(+) (r, t) take on the

role of real space creation and annihilation operators [55] respectively. The essential property

of the quantum field distinguishing it from its classical counterpart is that the positive and

negative frequency components taken at different time-like separated regions do not generally

commute, in particular the operators âk and â+
k can be shown to exhibit Bose commutation

relations. In the interaction and Heisenberg pictures the interaction of light field with matter

gets encoded in the time development of these operators.

A wide variety of techniques have now been developed that are capable of detecting light

with single-photon resolution, including some quantum non-demolition schemes that employ

highly sensitive Kerr nonlinearities to achieve single photon detection while leaving the state

of the detected photon intact [56]. The majority of measurements however are absorptive

and rely on some variant of the photo-electric effect. Electrons bound to a photoemissive

surface are exposed to incident light; a single incoming photon with energy above a certain
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threshold is then likely to be absorbed by an electron, imparting sufficient energy for it to es-

cape. Liberated electrons can then be amplified by electrical means into a detectable current

(photo-count). It can be shown that once the typical incident photon frequencies are great

enough such a detector will be sensitive to two-point correlations of the electric field. For

polarized quasi-monochromatic incident light the probability that a photo-count is registered

by a detector at r, t within some short time interval ∆t is proportional to the light intensity

p1 (r, t) ∆t = η∆t 〈Î (r, t)〉, (3.2)

where Î (r, t) = Ê− (r, t) Ê+ (r, t) and η = αSc, where α is the dimensionless detector effi-

ciency and S is the area of the absorbing surface [54]. The intensity, 〈Î (r, t)〉 = Γ
(1,1)
µ,µ (r, t; r, t)

belongs to a much wider class of single-photon coherence functions

Γ
(1,1)
µ′,µ (r′, t′; r, t) = Tr

{
ρ̂ Ê

(−)
µ′ (r′, t′) Ê(+)

µ (r, t)
}
, (3.3)

where the density matrix ρ̂ describes the state of the light field before detection and µ and

µ′ are polarization indices. Interference that may be present in observables of the type (3.3)

offers no information about any correlations that may or may not exist between photons.

This point is relevant for later sections of this thesis and can be easily demonstrated in the

context of Young’s double slit interference experiment where polarized monochromatic light

is channelled through two pinholes where their separation is much grater than their diameter

(so that the diffraction pattern from individual pinholes can be reasonably ignored). The

field at the detector is then the sum of two spherical waves

Ê(+) (r, t) = Ê
(+)
1 (r, t) + Ê

(+)
2 (r, t)

= i

√
~ωk
2ε0

uk,1 (r) â1e
−iωkt + i

√
~ωk
2ε0

uk,2 (r) â2e
−iωkt,

(3.4)
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the mode functions are

uk,j (r) =
1√
2πR

eik|r−rj |

|r− rj|
, (3.5)

where R is the radius of the normalization volume. The annihilation operators â1 and â2 are

associated with the radial modes of the field for photons arriving from the pinholes located

at r1 and r2 respectively. If the distance from the pinholes to the detector is much greater

the pinhole separation, then |r− rj| may be replaced by |r| in the denominator of (3.5) and

the average intensity recorded by a detector located at r is found to be

〈Î (r)〉 = |f (r)|2
[
〈â+

1 â1〉+ 〈â+
2 â2〉+ 2

∣∣〈â+
1 â2〉

∣∣ cosφ(r)

]
. (3.6)

where f (r) follows from the foregoing discussion. The cross term, responsible for interference,

is generally complex, 〈â+
1 â2〉 =

∣∣〈â+
1 â2〉

∣∣ eiδ, and contributes to a phase shift between photon

paths φ(r) = k |r− r2| − k |r− r1| + δ. The degree of first order mutual coherence between

the light arriving from each slit is captured by the normalized correlation ratio

∣∣∣γ(1,1)
1,2

∣∣∣ =

∣∣〈â+
1 â2〉

∣∣√
〈â+

1 â1〉〈â+
2 â2〉

, (3.7)

which lies between 0 and 1 and is directly related to the degree of path indistinguishability

[57]. In instances where it is possible, even if only in principle, to determine which of the two

pinholes each photon arriving at the detector passed through then interference will not be

observed, irrespective of whether this which-path information is actually gathered [58]. For

example no interference of the type (3.6) will be observed for the fock state |11, 02〉 where

a single photon is somehow known to have arrived at the detector from slit 1. In contrast

interference is often exhibited where which-path information can not be determined or is

only partial. In such cases it is natural to make a shift to modes with even and odd parity,
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â± = (â1 ± â2) /
√

2. The optimally indistinguishable single-photon state

|1+, 0−〉 =
1√
2

[
|11, 02〉 + |01, 12〉

]
, (3.8)

has
∣∣∣γ(1,1)

1,2

∣∣∣ = 1 and generates an interference pattern with maximum fringe visibility

〈Î1 (r)〉 = |f (r)|2
[

1 + cosφ(r)

]
. (3.9)

The mutual exclusivity of interference and which-path information is generally referred to as

the complementarity principle. Interference is lost even when which-path knowledge is gained

without ever directly probing the state of the light in the interferometer, in other words it is

not simply that there is no device so sensitive as to detect the paths of each photon without

disturbing them, but rather that complementarity is a fundamental aspect of reality. This

point is perhaps best demonstrated by the fascinating experiment of Zou, Wang and Mandel

with two-photon sources [59] depicted in figure 3.2.

The mode (3.8) shared by n-photons |n+, 0−〉 produces an intensity 〈În (r)〉 = n〈Î1 (r)〉

which appears to suggest that each photon interferes only with itself although it will soon be

clear that this assumption is false. A very different configuration of the field is generated by

a single-mode laser operating above threshold which for short times is well approximated by

the coherent state

|α〉 = e−|α|
2/2
∑
n

αn√
n!
|n〉. (3.10)

The number of photons represented by the state (3.10) is poisson distributed, pn = α2ne−|α|
2

/n!

with mean photon number 〈n〉 = |α|2. If such a state is incident on the two pinholes in equal

proportion, for example via the indistinguishable mode |α+, 0−〉 then the intensity at the

detector will be 〈Îα (r)〉 = |α|2 〈Î1 (r)〉. Consequently, a Fock state containing precisely n
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photons and a coherent state that only on average contains n photons (that is, |α| = n)

cannot be distinguished by appealing to first order correlations alone. It is generally true

that the information gathered by an average of single detections is “insufficient to distinguish

between states with identical spectra but differing photon number distributions” [60].

3.3 Multi-Photon Interference

Semi-classical theories, where matter is quantized and the radiation field is treated classi-

cally, have received a great deal of success describing non-classical optical phenomena. In

order to expose the quantum nature of light one has to work hard to ensure that mea-

surements made truly reflect the character of the field rather than merely being an artifact

of the particular way in which radiation interacts with a detector. In practice this means

that detections at multiple times and locations have to be taken in any given realization of

an experiment; certain correlations between them can then be representative of the field only.

One of the simplest such experiments able to discriminate between the semi-classical and

quantum descriptions of light was performed by Grangier, Roger and Aspect in 1974 [61].

In this experiment single photons are sent through a balanced beam splitter with detectors

stationed at both exit ports (i.e a single photon is sent along arm 1 of the interferometer

depicted in figure 3.1a for example, while the arm 2 remains empty). A two-photon source

is chosen, such as an atomic cascade or parametric converter, and a third ‘trigger’ detector

is placed near to the source so as to detect one photon from the pair thereby heralding the

arrival of the other, which is then directed through the beam splitter towards one of the exit

detectors, D3 or D4. The experiment reveals that a detection at the trigger is accompanied

by a detection at only one of the exit detectors; triggering of both exit detectors never occurs.

The result confirms the existence and indivisibility of single photons.
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(a) A typical beamsplitter arrangement

(b) Photonic crystal waveguide

Figure 3.1: (a) An illustration of the four-port beamsplitter arrangement adopted for both the
Clauser and Hong-Ou-Mandel experiments with photon detectors placed at the ends of each
of the outgoing arms. (b) A 1D channel defect in a periodic 3D photonic crystal will guide
light at frequencies otherwise forbidden by an optical band gap. A single two-level emitter
placed within the waveguiding structure couples strongly to guided light. The numbering of
incoming and outgoing directions on either side of the atom to be compared with (a) makes
clear the sense in which it behaves as a beamsplitter in this restricted geometry.
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Figure 3.2: A classic experiment performed by Zong, Wang and Mandel [59] illustrating the
complementarity principle. A laser beam (pump) is directed at two down-converting crystals
that spontaneously generate photon pairs - in so-called signal and idle modes. This process
is extremely rare: typically one pair is ejected from each crystal for every 1012 incoming
photons from the pump field, in other words it is highly unlikely that more than one photon
occupies the interferometer during each trial. A signal photon, which may have come from
either of the two crystals, travels along s1 or s2 and contributes to an interference pattern
which is visible after repeated measurements at the detector Ds with different phases ϕ.
These phases are added to the photon state occupying the mode s2 by adjusting the path
length along this route. If the opaque block labelled B is shifted so as to obstruct the path of
i1 then a detection of a photon at Di indicates that the signal photon in the interferometer
must have been generated by the second crystal and interference is lost since which-path
information is gained. This is despite the fact that no direct measurements are made on the
interfering beams s1 and s2.
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3.3.1 Photon Counting Statistics

The probability that n photon counts are recorded at one or more detectors, the first made

at r1, t1 within an interval ∆t1, the second at r2, t2 within an interval ∆t2 and so forth is

pn(r1, t1; . . . ; rn, tn)∆t1 . . .∆tn = η1∆t1 · · · ηn∆tn

〈
O
[
Î(r1, t1) · · · Î(rn, tn)

]〉
, (3.11)

The above probability generalizes (3.2) to multiple detections [54] where O performs a normal

ordering of creation and annihilation operators while anti-time ordering the creation sector

and time ordering annihilation sector so as to properly incorporate the adjustment of the

field following each detection.

Photon Bunching and Anti-Bunching

The first observations of the sort (3.11) were recorded by Hanbury Brown and Twiss in the

mid 1950s [62] in the field of astronomy. They measured intensity-intensity correlations in

the light arriving from the very brightest stars with the aim of determining their size. An

unexpected feature in their results was a temporal bunching in the arrival of photons within

intervals shorter than the coherence time, τc = 1/∆ω where ∆ω is the spectral width of

the detected light. Their discovery is often credited as the dawn of experimental quantum

optics. The strength of the bunching can be quantified by first writing the two-photon

detecton probability in the form

p2(r1, t1; r2, t2)∆t1∆t2 = g2(r1, t1; r2, t2) p1(r1, t1) p1(r2, t2)∆t1∆t2. (3.12)

For a stationary field and with fixed detectors, the probability (3.12) is dependent solely on

the delay between detections, τ = t2−t1. The temporal bunching of photons is then indicated

by an enhancement in the probability of simultaneous over delayed detections, g2(0) > g2(τ).
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This tendency toward bunching is also found in light from many other sources, including

thermal sources where the observation is made more challenging by much shorter coherence

times [63]. The observation is often attributed to the Bose-statistical exchange effect be-

tween identical photons but a straightforward application of the Schwarz inequality reveals

that the only restriction for classical probabilities is that g2(0) > g2(τ) and consequently

photon bunching is not in conflict with semi-classical theory [60]. In contrast, anti-bunching

which refers to instances when the likelihood of simultaneously detecting two photons is less

than the likelihood of delayed detection, g2(0) < g2(τ) can only be interpreted within the

context of quantum optics. The quantum character of photon anti-bunching has made it the

subject of intense investigation and it has now been observed in a great variety of scenar-

ios, most notably in light resonantly scattered from a two level atom (resonance fluorescence)

[19]. The resonance florescence problem will be dealt with more thoroughly in a later chapter

where the definition of anti-bunching will be adapted for non-stationary, few-photon pulses.

The probabilities (3.11) are differential and do not normalize to unity when integrated over

all times. Time intervals have to be chosen sufficiently small to ensure that the probability of

a detection during the specified interval is much less than unity, and any detections that may

occur between noncontiguous intervals are not incorporated. A formula for the probability

that exactly n photons are detected at r within [t, t+ τ ] in an open system has been derived

by Kelly and Kleiner [64]: they find that

Pn(t, t+ τ) =

〈
O

[
Ω̂n (t, t+ τ)

n!
exp

[
−Ω̂ (t, t+ τ)

]]〉
, (3.13)

where Ω̂(ti, tj) =
r tj
ti
dt Î(r, t). This result has been used to show that resonantly scattered

light from a two level atom is both sub-poissonian and significantly antibunched [65].
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3.3.2 The Hong-Ou-Mandel Effect

In this section the classic Hong-Ou-Mandel two-photon interference effect is briefly discussed

with particular attention to its purely quantum mechanical origin. This is in preparation

for subsequent sections where an extension of the effect to correlated photon pulses will be

addressed.

Two identical photons arriving simultaneously from the input ports labelled 1 and 2 of the

lossless balanced beamsplitter depicted in figure 3.1a are always found leaving together in

only one of the two possible outgoing ports; in particular, counts at both D3 and D4 do not

occur. The essential physics is illustrated when the incoming state at the beam splitter is

characterized in the following way

∣∣i2〉 = |11, 12〉, (3.14)

which specifies a configuration with precisely one photon in each incoming port. In this

context the action of a symmetric beamsplitter is encoded by a scattering matrix linking

incoming photon states to outgoing ones, in general

 â3

â4

 =

 t r

r t


 â1

â2

 , (3.15)

where âi is the operator responsible for the annihilation of a photon in the ith port. It can

be shown, based on the principle of energy conservation alone, that the following reciprocity

relations apply [66]

|t|2 + |r|2 = 1, r̄t+ rt̄ = 0. (3.16)
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The joint probability that a photon is detected on each outgoing port is proportional to the

average P34 = 〈: n̂3n̂4 :〉 taken over the outgoing state corresponding to (3.14), found with

the help of the scattering matrix (3.15) and the above reciprocity relations (3.16):

P34 =
(
|t|2 − |r|2

)2
. (3.17)

When incident photons are equally likely to be transmitted or reflected, |t|2 = |r|2, then

the probability of joint detection vanishes, P34 = 0. Interestingly this kind of destructive

interference is not found for the coherent incident states |α1, α2〉 irrespective of their intensity.

The precise origin of the effect is made especially clear when the outgoing state corresponding

to (3.14) is written explicitly,

∣∣f 2
i 〉 = tr |23, 04〉 + rt |03, 24〉 + r2 |13, 14〉 + t2 |13, 14〉. (3.18)

For a balanced beamsplitter r2 + t2 = 0 and the terms that have one photon in each outgoing

port mutually cancel. This so-called Hong-Ou-Mandel effect [23] is therefore a consequence

of indistinguishability and the resulting quantum interference between photon paths. It is

not possible to explain the phenomenon on the basis that each photon interferes only with

itself.

In practice single photons are confined to wavepackets of finite duration (∆τ ∼ 15 fs for

those generated in a spontaneous parametric down-conversion (SPDC) crystal for example

[23]); they are therefore composed of a range of frequencies and the transmission and reflec-

tion properties of a real beamsplitter depend on these incident frequencies (and in some cases

even the polarization of each photon). A proper treatment of the Hong-Ou-Mandel effect

should take into account these complications. With this aim in mind it is noted that in the

original experiment a type-I SPDC is employed to generate the requisite photons. A coherent
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laser beam applied to such a nonlinear crystal leads to the spontaneous creation of correlated

photon pairs, ejected simultaneously in concentric cones emerging from the crystal about the

lasing axis. Photons belonging to each pair are generated with identical polarization and

are further entangled by the so-called phase-matching conditions that ensure conservation

of energy and momentum (approx.) during each down-conversion process [67]. One conse-

quence of these conditions is that photons belonging to each pair emerge on opposite sides

of the emission cones, in so-called signal and idle modes, although the choice of labelling is

arbitrary. Apertures and filters are often employed to select photons traveling in particular

directions with certain frequency distributions, effectively reducing the description of the

problem to one dimension. The relevant class of incoming state can be written in the form

∣∣i2〉 =
w
d2ω Cω,ω′ e

i(ω−ω′)τ/2 â+
ω,1â

+
ω′,2 |〉, (3.19)

representing two photons (which may have been selected from the signal and idle modes of

an SPDC) which have been directed into the incoming ports of a beamsplitter and prepared

with relative delay τ . The probability that the photons are later found in distinct outgoing

ports, regardless of their frequency, is simply

P34 =
w
d2ω 〈f 2

i

∣∣ : n̂ω,3 n̂ω′,4 :
∣∣f 2
i 〉,

=
w
d2ω

∣∣∣tωtω′ Cω,ω′ ei(ω−ω′)τ/2 + rωrω′ Cω′,ω e
−i(ω−ω′)τ/2

∣∣∣2 . (3.20)

The spectral entanglement shared by photon pairs generated in an SPDC is not essential for

Hong-Ou-Mandel interference; a symmetric joint-frequency distribution for the two-photon

state and the equivalence of the transmission and reflection probabilities over the frequency

region spanned by the incident photon wavepackets is sufficient. Wavefunctions representing

photons with identical frequency distributions but no mutual entanglement factorize, Cω,ω′ =

gωgω′ . Assuming Gaussian distributions with central frequency ω0/2 and bandwidth ∆ω one
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obtains the following probability for eventually finding one photon in each outgoing port of

an ideal balanced beamsplitter

P34 =
1

2

(
1− e−(∆ω τ)2/2

)
, (3.21)

which has been derived with the assumption that the magnitudes of the transmission and

reflection coefficients are equal, |tω| = |rω| = 1/
√

2. The result reveals the characteristic

Hong-Ou-Mandel dip corresponding to a complete loss of coincidence counts at zero delay;

a qualitatively similar result would have been obtained from the entangled two-photon state

generated by an SPDC.

3.4 The Hong-Ou-Mandel Effect with a Single Atom

It follows from the probability (3.21) that the greatest Hong-Ou-Mandel interference is found

when two identical photons arrive at a balanced beamsplitter simultaneously. The aim of the

current section is to determine the extent to which the strength of the interference is altered

when a single two-level atom is used in place of the beamsplitter. The degree of coupling that

can be achieved between light and a single dipole in free space is limited by the large density

of states available to scattered photons. It was first realised by Purcel [1] that the rate of

spontaneous emission of an atom can be enhanced (or suppressed) when it is placed in a

resonant (off-resonant) cavity. This led to the wider appreciation that light-matter coupling

is often strengthened by reducing the phase-space volume/number of dimensions available

for the coupled light to explore. The recent and rapid developments in the field of nano-

photonics have provided a great number of ways to achieve this goal. One method that is

particularly relevant to the current discussion is photonic waveguiding.

Drawing upon elementary ideas from condensed matter, most notably Bloch’s theorem, it

57



has been shown that sizable one-, two- or even three-dimensional optical band gaps can be

generated in photonic crystals by periodically modulating the dielectric constant in the bulk.

Defects in these otherwise periodic structures allow many of the forbidden modes to be re-

populated in the defected regions. Channel defects are particularly useful because they can

operate as waveguides with minimal losses. If the width of such a channel is comparable to

the characteristic wavelength of the guided light then the motion of the field in transverse

directions is restricted and a one-dimensional continuum is approached. The near-resonant

interaction of a single two-level emitter with such a continuum is then well described by the

multimode Dicke Hamiltonian for a side-attached impurity

Ĥ =
∑
σ

w
dk ωk,σ â

+
k,σâk,σ +

√
γ
∑
σ

w
dk (Ŝ+âk,σ + â+

k,σŜ
−). (3.22)

The first term relates to the free propagation of radiation where all photon energies are

referenced with respect to the two-level energy separation ω12 and incoming frequencies are

assumed quasi-resonant, |ωk,σ − ω12| � ω12. Furthermore, ω12 is considered to be well within

the optical band gap of the bulk crystal and far from any upper or lower cut-offs for guided

frequencies. In the above limits the standard rotating-wave approximation can be made and

the coupling of the atom with the field can be replaced by the constant value γ = 4ω3
12d/3

taken at resonance, where d is the magnitude of the dipole matrix element connecting the

two atomic levels. The polarization of the incident light is taken to be both linear across

all frequencies and parallel to the dipole orientation. It is also implicitly assumed that the

typical wavelength of the coupled light is much greater than the atomic dimension.

Since the only active frequencies are those within a narrow region centred on resonance

two unrelated chiral modes have been defined, right travelling photons with linear disper-

sion, ωk,R = vgk where vg is the (on-resonance) group velocity (which can be appreciably
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lower than the speed of light in vacuum) and left traveling photons with ωk,L = −vgk. The

separation of right and left traveling modes is in the same spirit as the linearization of the

spectrum that is often performed about the Fermi points for electron liquids in one dimen-

sion. Although technically the approximation introduces an infinite number of modes with

arbitrarily large negative energies no unphysical artifacts are expected to be incurred since

these unphysical modes never become occupied; all scattered photons remain close to reso-

nance.

The Hong-Ou-Mandel geometry is achieved in the current setting if two photons are in-

troduced from each end of the waveguide, are sent toward the atom such that they arrive

with some relative delay τ = v−1
g δ. It is further supposed that there exists a set of frequen-

cies for which the single-photon transmission and reflection probabilities are equal and the

frequencies of the incident photons are tuned near to these duality points. The two-level

approximation for the atom is valid when the incident light is near resonance with a well

isolated dipole transition: in this case only one resonant photon can be absorbed at any given

time and the simultaneous processing of both photons that results in the most complete in-

terference is forbidden.

The most direct way to extract the scattering properties from the Hamiltonian (3.22) is by

first executing a transformation to modes of even and odd parity, âk,± = (âk,R ± â−k,L)/
√

2.

In terms of them the Hamiltonian separates:

Ĥ = Ĥ− + Ĥ+

=
w
dk vgk â

+
k,−âk,− +

w
dk vgk â

+
k,+âk,+ +

√
2γ

w
dk (Ŝ+âk,+ + â+

k,+Ŝ
−).

(3.23)

The evolution of photons belonging to the odd-parity modes is straightforward since they

do not couple to the atom. Photons in the even modes on the other hand do interact and

59



their scattering is encoded in the n-photon scattering matrices, Ŝn+, which for one and two

photons are given by (2.45) and (2.51) (respectively) with the replacement γ → 2γ and the

group velocity vg set to unity.

To illustrate how the known scattering properties of the chiral Dicke model can be used

to determine the transmission and reflection amplitudes of the related Hamiltonian (3.22)

the state corresponding to a single right-travelling photon impinging on an initially unexcited

atom is taken and written in the even-odd representation

∣∣i1k〉 =
∣∣kR〉 =

1√
2

∣∣k+〉 +
1√
2

∣∣k−〉, (3.24)

where the notation |kσnn , . . . , k
σ1
1 〉 = â+

kn,σn
· · · â+

k1,σ1
|〉 has been adopted for compactness. The

evolution of the even sector is then determined by the application of the scattering matrix

given in (2.45) while the odd sector remains unaltered, the resulting outgoing state is then

∣∣f 1
k 〉 =

1√
2
sk
∣∣k+〉 +

1√
2

∣∣k−〉 = tk
∣∣kR〉 + rk

∣∣−kL〉. (3.25)

In the final expression the photon state has been re-represented in terms of the original right

and left propagating basis. Comparing the outgoing state (3.25) with (3.24) reveals that an

incident right-traveling photon is transmitted with amplitude tk = (sk + 1)/2 = k/(k + iγ)

and reflected with amplitude rk = (sk − 1)/2 = −iγ/(k + iγ). Identical amplitudes would

have been obtained for the transmission of a photon through a single resonant energy level

(Fano resonance) which is entirely expected since a single resonant photon is insensitive to

the finite spectrum of the two-level system.

Equal transmission and reflection probabilities necessary for complete interference are achieved

when k = ±γ and since the photon energies are measured with respect to the energy spacing

60



of the two-level atom the corresponding incident-photon momenta are ±v−1
g ω0 ± γ. The

goal of the subsequent analysis is to assess the outcome when single photons, arriving from

either end of the waveguide, meet the atom with arbitrarily narrow distributions of momenta

centred on these duality points. Generalising the previous result (3.25) it can be shown the

evolution of a single photon is summarised in the following expression

Ŝ1 |kσ〉 =
∑
µ

w
dp Sµ,σp,k |p

µ〉, (3.26)

where the matrix elements are SR,Rp,k = S̄L,Lp,k = tkδ(k−p) and SL,Rp,k = S̄R,Lp,k = rkδ(k+p). In one

dimension, scattered and un-scattered light coherently superimpose to form outgoing states;

an interesting consequence of the light-atom coupling (3.22) is the total reflection of resonant

single photons, |rk=0|2 = 1, despite the comparative smallness of the atom with respect to

the light wavelength. This is interpreted in terms of an interference between two Feynman

paths: when an incoming photon interacts with an atom that is initially in its ground state

the photon receives a delay in propagation encoded in the phase-shift sk developed by the

even sector of the state (3.25). Alternatively the photon passes the emitter without ever

interacting and this possibility is recorded by the odd sector. Since the incident photon

occupies a mixture of these modes the probability amplitudes for both of these processes

combine to give the reflection and transmission coefficients. At resonance the phase shift

accumulated by the interacting component is sk=0 = −1 and consequently the two pathways

that lead to transmission mutually cancel leaving reflection as the only remaining possibility.

The evolution of n incident photons can be determined in an analogous way, by representing

incoming configurations in terms of their occupation of the even and odd modes and then

applying the following scattering matrix that is suited to this basis and easily constructed
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from the known properties of the chiral Dicke model:

Ŝn =
n∑

m=0

Ŝn−m+ ⊗ Ŝm− . (3.27)

Since photons in the odd parity modes do not scatter, the matrices Ŝn− can be replaced by

the unit operation. Once the outgoing state is found it can then be re-represented in terms

of the original right and left traveling modes. For the following analysis it is more convenient

to have the two-photon scattering matrix written in the right-left basis. This is achieved

by calculating the evolution of all possible incoming two-photon states; the results are then

assembled into the following relation

Ŝ2 |kσ22 , k
σ1
1 〉 =

∑
µ2,µ1

w
d2p

[
Sµ2,σ2p2,k2

Sµ1,σ1p1,k1
+Bµ2,µ1,σ2,σ1

p2,p1,k2,k1

]
|pµ22 , p

µ1
1 〉. (3.28)

The structure is intuitive: the first term corresponds to independent scattering while the

second, entangled contribution is the bound state developed in response to the restrictions

placed on the photon dynamics by the finite spectrum of the emitter. The relation (3.28)

applies to monochromatic incident photons; a more realistic incoming state incorporates a

range of frequencies/momenta, for example

∣∣i2〉 =
w
d2k Cδ

k2,k1

∣∣kR2 , kL1 〉. (3.29)

Next, the (pure) state (3.29) together with the representation (3.28) for the evolution of two

photons is used to determine the probability that the outgoing photons are found leaving

the atom in opposite directions. A suitable choice for the momentum distribution of both

photons would be Cδ
k2,k1

= N2 exp(−(k2−γ)2/2∆k2) exp(−(k1 +γ)2/2∆k2) exp(i(k2 +k1)δ/2)

where N2 is the appropriate normalization constant. In other words the incoming photons

are prepared with Gaussian distributions, the right-traveling photon with momentum peaked
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at v−1
g ω0 + γ and the left-traveling photon at −v−1

g ω0 − γ, the widths of both distributions

are equivalent and the two photons are separated by an interval τ = v−1
g δ. It follows from

result (3.28) that the outgoing photon state divides naturally into two components

∣∣f 2
i 〉 =

w
d2k Cδ

k2,k1

[
|PWk2,k1〉 + |BSk2,k1〉

]
. (3.30)

The first term stems from the independent scattering of both photons and will be called the

plane-wave component, the second term is the two-photon bound state. The explicit form of

the plane-wave component is

|PWk2,k1〉 =
∑
µ

w
d2p Sµ2,Rp2,k2

Sµ1,Lp1,k1
|pµ22 , p

µ1
1 〉,

= tk2 t̄k1
∣∣kR2 , kL1 〉 + rk2 r̄k1

∣∣−kL2 ,−kR1 〉 + tk2 r̄k1
∣∣kR2 ,−kR1 〉 + rk2 t̄k1

∣∣−kL2 , kL1 〉
(3.31)

Neglecting the bound-state contribution the probability that the two scattered photons

emerge from the emitter traveling in opposite directions is calculated based solely on (3.31):

P PW
RL =

w
d2k

∣∣w d2p Cδ
p2,p1
〈kR2 , kL1 |PWp2,p1〉

∣∣2. (3.32)

In the limit that γ � vg∆k, when the spectral width of each photon wavepacket is much

narrower than the coupling with the emitter a Hong-Ou-Mandel interference equivalent to

the result (3.21) is predicted, since in this (quasi-monochromatic) limit the incident photons

experience equal transmission and reflection probabilities. Alternatively, when the width of

distribution of incoming frequencies greatly exceeds the coupling energy the strength of the

interference is eroded by the variation of the transmission and reflection amplitudes with

respect to incoming frequencies. The inclusion of the the bound state further deteriorates
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the strength of the interference. The precise form of the bound state contribution is

|BSp2,k2,p1,k1〉 =
w
d2p

∑
µ2,µ1

Bµ2,µ1,R,L
p2,p1,k2,k1

|pµ22 , p
µ1
1 〉

=
1

4

w
d2p

[
Bp2,−p1,k2,−k1

∣∣PR
2 , P

L
1 〉 +B−p2,p1,k2,−k1

∣∣PL
2 , P

R
1 〉

+Bp2,p1,k2,−k1
∣∣PR

2 , P
R
1 〉 +B−p2,−p1,k2,−k1

∣∣PL
2 , P

L
1 〉
]
.

(3.33)

Figure 3.4 depicts the probability that two photons that are simultaneously incident (δ = 0)

on the atom are later detected traveling in opposite directions. In order to distinguish the

reduction of the interference strength due to the frequency dependence of the transmission

and reflection amplitudes from that caused by the blockade-like nonlinearity introduced by

the emitter, a plot of P PW
RL is included. Finally, in the quasi-monochromatic limit, it can be

shown that

PRL =
w
d2k

∣∣〈kR2 , kL1 ∣∣f 2
i 〉
∣∣2 =

1

2
− 1

2

(
1− 1

Γ

√
2

π

)
exp

(
−∆2/2Γ2

)
, Γ� 1, (3.34)

where Γ = γ/vg∆k. The above probability highlights the dominance of the nonlinearity of

the atom over the imperfectly balanced transmission coefficients at reducing the visibility of

the Hong-Ou-Mandel dip.
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Figure 3.3: The probability of transmission for a monochromatic single photon through a two-
level impurity versus incident frequency (relative to the atomic energy level spacing). The
narrow bands of frequencies are highlighted near the duality points where the probability of
transmission and reflection are approximately equal.

Figure 3.4: The probability that two photons, one incident from either end of the emitter
and timed to arrive simultaneously (∆ = 0) are later detected travelling in opposite direc-
tions versus the ratio of atom-field coupling to the wavepacket bandwidth. The plane-wave
contribution to the probability is given (to illustrate the effects of the frequency dependence
of transmission) together with a plot of the full probability in the monochromatic limit.
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3.5 Concluding Remarks

In the early part of this chapter various aspects of quantum optical coherence were consid-

ered. The general inadequacy of single-photon correlation functions such as the intensity for

revealing photon number distributions and effects such as bunching and anti-bunching that

has been demonstrated will be important for later work.

In the conventional Hong-Ou-Mandel scenario the probability of the two photons leaving

the beamsplitter on separate leads exactly vanishes when they arrive simultaneously. Using

the exact scattering states for the Dicke model the loss of interference has been calculated

when the single two-level atom assumes the role of a beamsplitter. The loss is appreciable

and persists for a large range of coupling strengths.

In a similar study published recently [68] the strength of the Hong-Ou-Mandel visibility

is investigated for the scattering of two photons through an on-site impurity with an associ-

ated optical nonlinearity. A discretized version of the following model was proposed to model

the structure of a saturable impurity and its interaction with the light field

Ĥ =
∑
σ

w
dk ωk â

+
k,σâk,σ +

√
γ
∑
σ

w
dk (b̂+âk,σ + â+

k,σ b̂
−) + U b̂+b̂ (b̂+b̂− 1) (3.35)

where âk and b̂ mutually commute but obey Bose commutation relations amongst themselves.

Apart from the standard reduction of interference visibility associated with the frequency

dependence of the transmission and reflection coefficients their numerical investigation also

quantified the loss of visibility that stems from the saturation of the impurity. For large

nonlinearities, U → ∞, the above Hamiltonian is formally equivalent to the Dicke model,

and in this limit their findings agree with ours.
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CHAPTER 4

PHOTON BLOCKADE

4.1 Introduction

Photons do not interact directly; instead their interactions have to be mediated by optically

nonlinear materials, although the correlations generated between photons in this way are

typically very weak. The description of an optically nonlinear device is often reducible to a

series of active energy levels: the strongest nonlinearities are then found as the frequency of

incident light approaches resonance with any allowed transitions between these levels. It is

unfortunate that this increase in nonlinearity on approach to resonance is often accompanied

by an enhancement in linear susceptibility. In other words, when the effective interaction

between photons is strongest, the single photon absorption and associated loss rate is also

maximal and until relatively recently this has been a significant obstacle to the development

of all-optical devices.

One of the strongest effective interactions conceivable between photons is a photon block-

ade, where the absorption of a single control photon by a device is sufficient to prevent the

otherwise near-perfect transmission of another. The term photon blockade was introduced

by Imamoḡlu et al. [11] (in analogy with the more familiar Coulomb blockade effect found
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in the charge transport though a mesoscopic quantum dot) in order to describe the lossless

giant optical nonlinearities achievable with a particular low-density cavity-confined atomic

medium in the regime of electromagnetically-induced transparency (EIT). In this section

Coulomb and photon blockade will be introduced and compared and a number of scenarios

will be presented where photon blockade has either been observed or predicted. Finally the

simplest scheme where photon blockade can be expected is examined, namely two-photon

scattering through a single resonantly attached two-level atom. The strength of the blockade

in this case is quantified exactly for non-monochromatic incident photons.

4.1.1 Coulomb Blockade

At low temperatures electron transport through a nanoscale metallic island (quantum dot)

can exhibit peculiar dependency on a gate voltage capacitevly applied to the dot. Ultimately

a regime can be reached where the conductance g(Vg) = dI/dVg exhibits a series of regular

peaks separated by shallow valleys. The phenomenon is understood in terms of the Coulomb

repulsion between electrons entering from the leads and those belonging to the island. The

spikes in conductivity occur when the gate voltage passes through regions where the energies

corresponding to having N and N + 1 electrons confined to the island become degenerate.

A slightly more quantitative description is provided by considering the electrostatic energy

associated with a charge Q on the dot

E = QVg +
1

2

Q2

C
, (4.1)

where it is assumed that the coupling to the leads is weak enough that the dot electrons

are tightly confined and where the frequency over which electrons are phase coherent greatly

exceeds the mean electron energy spacing on the dot. The energy (4.1) is minimal when the

charge Q = Q0 = −CVg. However Q is not a continuous variable, rather it is quantized into
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units of the fundamental charge associated with each electron. A mathematical minimum of

the energy is therefore only possible when the voltage happens to be some integer multiple

of e/C. When the voltage is near one of these degeneracy points, that is Vg = (N + δ)e/C

then

EN =
1

C

(
Q(N + δ)e+

1

2
Q2

)
, (4.2)

and the difference in energy between having N and N + 1 electrons occupying the island is

∆E = EN+1 − EN =
e2

C

(
1

2
− δ
)
. (4.3)

Thus for δ < 1/2 there is an energy penalty - a Coulomb blockade where the electrostatic

repulsion between electrons on the island suppresses transmission. Near δ ∼ 1/2 the gap

is negligible and charge transport proceeds one electron at a time. A substantial review of

Coulomb blockade and related phenomena can be found elsewhere [69], the additional spin

degree of freedom for electrons leads to much richer physics (including the Kondo effect) than

has so far been possible with light.

(a) Quantum dot (b) Coulomb blockade conductance oscillations

Figure 4.1: (a) Optical microscope image of a quantum dot together with leads and gating
electrode. (b) Conductance versus gate voltage in the Coulomb blockade regime reproduced
from [70].
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4.2 Cavity Photon Blockade

One of the most elementary schemes where a photon blockade has been experimentally

achieved exploits the anharmonicity of polariton energy levels in an optical cavity containing

a single near-resonant two-level emitter. The relevant Hamiltonian in this case is

Ĥ = ω12Ŝ
z + (ω12 + δω)â+â+ g(â+Ŝ− + Ŝ+â), (4.4)

which commutes with operator for the total number of excitations, N̂ = Ŝ+Ŝ− + â+â and

consequently the Hamiltonian (4.4) can be block-diagonalized; the states associated with

each block are the eigenstates of N̂ that have the same eigenvalue n. Explicitly, all blocks

have the following structure

Hn =

 〈e, n− 1| Ĥ |e, n− 1〉 〈e, n− 1| Ĥ |g, n〉

〈g, n| Ĥ |e, n− 1〉 〈g, n| Ĥ |g, n〉

 ,

= (ω12 + δω)

(
n− 1

2

) 1 0

0 1

+

 −δω/2 g
√
n

g
√
n δω/2

 .
(4.5)

The resonant light-atom interaction in the cavity connects the ‘bare’ states |e, n− 1〉 and

|g, n〉 that correspond to an excited atom with n− 1 cavity photons and an unexcited atom

with n cavity photons respectively. The result is the formation of dressed states (polaritons)

with both photonic and atomic characteristics, denoted by |n,±〉 when n > 1. The energy

spectrum of these polaritons follows from (4.5)

E±n = (ω12 + δω)

(
n− 1

2

)
± 1

2
Ωn, Ωn =

√
4g2n+ δω2, n = 1, 2, . . .∞. (4.6)
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with the non-degenerate ground state energy, E0 = −ω12/2. The Hamiltonian is diagonalized

by the following transformation

Ĥ = T̂+
[
ω0 â

+â+ (ω0 + Ωn)Ŝz
]
T̂ , (4.7)

where ω0 = ω12 + δω is the cavity level spacing in the absence of coupling. The explicit form

of the unitary operator T̂ is [71]

T̂ = exp
[
ĵ θ̂
]

= cos θ̂ + ĵ sin θ̂, (4.8)

The ‘angle’ of rotation is such that sin θ̂ = 2gN̂1/2 Ω̂−1 and cos θ̂ = −δω Ω̂−1 and where

ĵ = N̂−1/2(Ŝ+â− â+Ŝ−); with this definition for ĵ it is clear that [ĵ, N̂ ] = 0 and the following

psuedo-complex properties apply; ĵ2 = −1, ĵ+ = −ĵ.

(a) Atom-Cavity geometry (b) Jaynes-Cummings ladder

Figure 4.2: (a) A single atom contained in a resonant optical cavity, in the regime of photon
blockade transmitted photons are significantly anti-bunched. (b) The anharmonicity of the
Jaynes-Cummings ladder can be exploited to generate a photon blockade.
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The foregoing analysis reveals that the otherwise equidistant spacing of energy levels in an

empty optical cavity is modified by the introduction of a two-level atom. At resonance the

interaction between the cavity modes and the atom lifts the degeneracy between the state

containing n cavity photons and an unexcited atom and the state with one less photon and an

excited atom. The Jaynes-Cummings Hamiltonian (4.4) has been known, since the early days

of quantum optics, to describe a wide range of coherent phenomena including the periodic

Rabi-flopping and the spontaneous collapse and revivals of a two-level atom in a resonant

cavity [72]. It has been suggested [73] and confirmed experimentally [14] that transmitted

light through such a cavity-atom system can exhibit a highly non-classical character. The

greatest nonlinearities are expected in the strong-coupling limit when the coupling between

the atom and the cavity modes g exceeds both the transverse decay rate of the emitter γ

and the loss rate through the cavity walls κ. Ultimately a regime of photon blockade can be

reached where light transport through the cavity proceeds one photon at a time.

The energy level diagram in figure 4.2b illustrates how resonant absorption of a single photon

with frequency ωp = ω0 − g to reach the state |1,−〉 blocks the absorption of another at the

same frequency since the transitions to the levels |2,±〉 are detuned from resonance, in other

words absorption at ωp is single photon limited.

In a recent experiment investigating the optical nonlinearities achievable in an optical cavity

containing a single trapped two-level atom Birnbaum et al. [14] were able to demonstrate a

significant reduction in the value of g2(0) as compared to g2(τ) over a time interval consistent

with the lifetime of the state |2,−〉 responsible for the photon blockade. In addition they

found that g2(0) � 1 for the transmitted field indicating the conversion (in the context of

photon counting statistics) of the incoming Poissonian into outgoing sub-Poissonian light, as

depicted in figure 4.3
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Figure 4.3: Experimental measurement of the second-order intensity correlation function for
transmitted light through an optical cavity containing a single caesium atom [14]. The cavity
mode is near resonant with the 6S1/2, F = 4→ 6P3/2, F

′ = 5 transitions, the relevant energies
are (g, κ, γ)/2π = (33.9, 4.1, 2.6) MHz. The plot clearly illustrates both photon anti-bunching
and sub-Poisonian photon counting statistics. The noise in the signal is associated with the
thermal motion of the atom in the cavity (T ∼ 250 mK).

A complete theoretical picture of light transport through a cavity containing a single two-level

atom is now established. Employing a combination of the Lehmann-Symanzik-Zimmermann

reduction formalism relating n-body S-matrices to the dynamical Green’s functions for the

photons and functional-integral techniques, Shi et al. [74] have derived exact expressions for

the scattered wavefunctions of one, two and in principle arbitrarily many photons through

such an optical cavity+atom embedded in a one-dimensional waveguide geometry. It would

be straightforward to use these exact results to calculate the probability for the transmission

of incoming few-photon states, and thereby quantify the strength of blockade achievable in

this ultra-low intensity limit.
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4.3 Photon Blockade with a Resonantly Attached Atom

4.3.1 Resonance Fluorescence

Photon anti-bunching has been predicted for light resonantly scattered from a two-level atom

in free space [75], albeit with the scattered photons distributed over the full 4π solid angle.

This prediction was later confirmed experimentally in 1977 by the Mandel group [20] by

investigating the statistical properties of the scattered light from a beam of sodium atoms

irradiated by a frequency and intensity stabilized dye-laser tuned to the particular hyperfine

two-level transition (3P3/2, F = 3,MF = 2 to 32S1/2, F = 2,MF = 2). The intensity of the

atomic beam is low enough to ensure that only one atom is irradiated at any given time.

It has been shown that for low radiation intensities, when the coupling between the emitter

and the field γ greatly exceeds the Rabi frequency Ω, the stationary normalized second-order

correlation function fits to

g2(τ) =
[
1− exp

(
−γτ

2

)]2

, (4.9)

whereas in the opposite limit of strong radiation intensities (Ω� γ).

g2(τ) = 1− exp

(
−3γτ

2

)
cos (Ωτ), (4.10)

In either regime g2(0) < g2(τ). The above correlation functions can be derived from the Dicke

model (2.3) by assuming a resonant, monochromatic coherent state for the incident radiation

field. The reduction of the three-dimensional resonance fluorescence problem to only one

dimension is accomplished by recognizing that in the context of the dipole approximation it

is only necessary to account for s-wave scattering. Although multi-time averages such as the

above correlation functions can be calculated using the exact Bethe ansatz wavefunctions [76]

little more is gained in comparison to the conventional approach of combining established

density matrix techniques with the so-called quantum-regression hypothesis [20, 77].
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Figure 4.4: A comparison of experimentally determined second-order intensity correlation
functions versus delay for various values of incident field intensity (ratio of Rabi frequency to
coupling energy) in the resonance fluorescence from a single, coherently irradiated two-level
atom. The theoretical predictions are given by the solid curves. Plots taken from Dagenais
and Mandel [20].
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4.3.2 Blockade with Few-Photon Pulses

Given that photon anti-bunching is known to occur in the context of resonance fluorescence

it is perhaps natural to question whether a complete blockade can be achieved with only a

couple of incident photons. If the required nonlinearity persists at such low intensities then

anti-bunching is expected to be found in the scattered field. One possible way to isolate

this purely scattered field would be to resonantly couple the two-level system to two chiral

channels that would be otherwise unconnected, for example by placing the atom between two

semi-infinite nano-wires each capable of supporting a one-dimensional continuum of surface

plasmon modes [4]; this ensures that for any photon to switch leads it must first interact with

the atom. Alternatively the reflected light from an atom embedded in a channel waveguide

must also have been purely scattered. In either case the relevant Hamiltonian takes the form

Ĥ =
∑
σ

w
dk ωk â

+
k,σâk,σ +

√
γ
∑
σ

w
dk (Ŝ+âk,σ + â+

k,σŜ
−). (4.11)

In this chapter we will deal with the so-called resonantly attached geometry where the atom

bridges the the gap between two nearby semi-infinite leads which are labeled by, σ = R/L

depending on whether the lead is to the left or right of the emitter. The surface plasmon

dispersion near resonance with the emitter is taken to be ωk = vgk. Making a transformation

to the modes âk,± = (âk,R±âk,L)/
√

2 decouples the Hamiltonian in a similar fashion to (3.23).

Care should be taken to ensure that the reflection phases acquired as photons reflect from

the ends of each lead without interacting with the emitter are accounted for. It can be shown

that these bare reflection phases (with a suitable unitary rotation of the field operators) can

be shifted to the atomic sector of each eigenstate, and since the contributions to one-time

averages from the atomic sector always vanish in the long-time limit these phases can be

safely disregarded [79].

76



4.3.3 Single-Photon Transmission Probability

Just as for the Hong-Ou-Mandel geometry the scattering properties of few-photon states are

calculated by representing incoming states in terms of the even and odd modes. The known

scattering matrices applied in each sector provide the corresponding outgoing states which

can then be re-expressed in terms of the occupation of the right and left leads. Suppose a

single photon is incoming from the left lead. In terms of the even and odd basis

∣∣i1k〉 =
∣∣kL〉 =

1√
2

∣∣k+〉 − 1√
2

∣∣k−〉, (4.12)

applying the single-photon scattering matrix results in the following outgoing state reveals

∣∣f 1
k 〉 = S1

∣∣i1〉 =
1√
2
sk
∣∣k+〉 − 1√

2

∣∣k−〉 = tk
∣∣kR〉 + rk

∣∣kL〉; (4.13)

in particular, an incident photon with frequency v−1
g ω0+k will be transmitted with amplitude

tk = (sk − 1)/2 = −iγ/(k + iγ) and reflected with amplitude rk = (sk + 1)/2 = k/(k + iγ)

which exposes a duality between the transmission and refection amplitudes for the resonant

and anti-resonant geometries. Since any photon is in practice a wavepacket, the probability

that the photon is eventually found on the right lead can be calculated explicitly assuming

a Gaussian pulse centred on resonance, that is

PR =
w
dk
∣∣ w dp Cp 〈kR

∣∣f 1
p 〉
∣∣2 =

w
dk |Ck tk|2 =

√
πΓeΓ2

Erfc(Γ). (4.14)

with Ck = N1 exp (−ak2/2) and where Γ = aγ = γ/vg∆k is the dimensionless coupling.

The above probability is proportional to the transmitted intensity IR. When the bulk of the

frequencies that contribute to the photon wavepacket are near resonance, which is the case

when Γ� 1, then incident photons are almost always transmitted.
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4.3.4 Two-Photon Transmission Probability

When two near-resonant photons are incident on a two-level atom from the same lead with

some relative delay, then it is expected that the absorption of the leading photon will prevent

the absorption and subsequent transmission of the other when the delay between the photons

is less than the characteristic decay time of the emitter. The strength of this blockade is

quantified by comparing the two-photon transmission probability to the probability that two

photons are transmitted independently [47]. The state with two monochromatic photons

incident from the left lead on an initially unexcited emitter has the following representation

in terms of the even and odd modes

∣∣i2k2,k1〉 =
∣∣kL2 , kL1 〉 =

1

2

[ ∣∣k+
2 , k

+
1 〉 −

∣∣k+
2 , k

−
1 〉 −

∣∣k−2 , k+
1 〉 +

∣∣k−2 , k−1 〉 ]; (4.15)

applying the two-photon scattering matrix to the above state provides

∣∣f 2
k2,k1
〉 = S2

∣∣i2k2,k1〉 =
1

2

[
sk2sk1

∣∣k+
2 , k

+
1 〉 − sk2

∣∣k+
2 , k

−
1 〉 − sk1

∣∣k−2 , k+
1 〉 +

∣∣k−2 , k−1 〉
+

w
d2p Bp2,p1,k2,k1

∣∣p+
2 , p

+
1 〉
]
,

(4.16)

which can then be re-written in terms of right-left lead occupation

∣∣f 2
k2,k1
〉 = tk2tk1

∣∣kR2 , kR1 〉 + rk2tk1
∣∣kL2 , kR1 〉 + tk2rk1

∣∣kR2 , kL1 〉 + rk2rk1
∣∣kL2 , kL1 〉

+
1

4

∑
µ,µ′

w
d2p Bp2,p1,k2,k1

∣∣∣pµ2 , pµ′1 〉.
(4.17)

Neglecting the contribution of the bound state then it follows that two resonant photons

would be transmitted entirely, since |tk=0|2 = 1. Next the probability that both photons

are transmitted is calculated assuming that they come with identical Gaussian momentum
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distributions and are separated by a delay τ = v−1
g δ, in this case

PRR =
w
d2k

1

2!

∣∣ w d2p Cδ
p2,p1
〈kR2 , kR1

∣∣f 2
p2,p1
〉
∣∣2, (4.18)

where Cδ
k2,k1

= N2 Ck2Ck1 exp(i(k2 − k1)δ/2). It follows that

w
d2p Cδ

p2,p1
〈kR2 , kR1

∣∣f 2
p2,p1
〉 = 2Cδ

k2,k1
tk2tk1 +

1

2

w
d2k′ Cδ

k′2,k
′
1
Bk′2,k

′
1,k2,k1

, (4.19)

illustrating the plane-wave and bound-state contributions to the transmission probability.

The plane-wave component can be determined analytically

P PW
RR = 2

w
d2k

∣∣Cδ
k2,k1

tk2tk1
∣∣2

=
1

1 + exp (−∆2/2Γ2)

[
P 2
R +

Γ2e−∆2/2Γ2

4

(
DΓ+∆/2Γ +DΓ−∆/2Γ

)2

]
,

(4.20)

where the dimensionless delay is ∆ = γδ and DΓ = PR/Γ. In the limit ∆ = 0 the contribution

to the probability from the plane-wave sector, P PW
RR reduces to independent single-photon

scattering, P 2
R. Including the bound state is more tricky to accomplish analytically, however

with an exponential parameterization of the delta function the inner product (4.19) can be

rewritten as

2Cδ
k2,k1

tk2tk1 +
1

Γ

w
dx (tk2 + tk1) e

−ia(k2+k1)xE∆,Γ (x)E−∆,Γ (x) , (4.21)

where the following function has been defined due to its ubiquity in subsequent correlation

functions

E∆,Γ(x) =

√
a

2π

w
dk Cktke

ik(ax+δ/2)

= − Γ√
2

exp

[
Γ2 +

Γ2

2
+ xΓ +

∆

2

]
Erfc

[
1√
2

(
Γ + x+

∆

2Γ

)]
.

(4.22)
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The contribution to PRR from the bound state alone is then

1

Γ2

w
d2k

w
d2x |t̄k2 + t̄k1|

2 e−ia(k2+k1)(x2−x1)E∆,Γ(x2)E−∆,Γ(x2)E∆,Γ(x1)E−∆,Γ(x1)

=
1

1 + exp (−∆2/2Γ2)

2π

Γ

w
dx E2

∆,Γ(x)E2
−∆,Γ(x).

(4.23)

The cross terms t̄k2tk1 can be ignored in the integral (4.23) since their poles lie in opposite

half planes. The above results can now be combined to give the full two-photon transmission

probability

PRR = P PW
RR +

1

1 + exp (−∆2/2Γ2)

2π

Γ

w
dx

[
E2

∆,Γ(x)E−∆,Γ(x)E∆,Γ(−x)

+ E2
−∆,Γ(x)E∆,Γ(x)E−∆,Γ(−x)− E2

∆,Γ(x)E2
−∆,Γ(x)

]
.

(4.24)

The probability that the lagging photon is transmitted given that the leading photon was

also transmitted is then simply PRR/PR. The strength of the photon blockade is indicated

by the ratio of this conditional probability to the single-photon transmission probability PR.

Defining P21 = PRR/P
2
R it follows that the blockade is strongest when P21 = 0; independent

photon scattering is identified by P21 = 1. Figures 4.2 and 4.3 below depict P21 versus both

delay and coupling strength. Plots of the bound-state (PBS
RR = PRR − P PW

RR ) and plane-wave

contributions are included. To our knowledge such a calculation has not been made elsewhere.

It might seem intuitive to suppose that the strength of photon blockade is also indicated by

the ratio of the two-photon and single-photon transmitted intensities, I21 = IRR/2IR since

‘current’ correlations such as these are already used as a measure of the strength of Coulomb

blockade. Writing the intensity of the transmitted field explicitly in terms of averages over
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the quantum state it follows that

IRR =
w
dk 〈f 2

i

∣∣ â+
k,Râk,R

∣∣f 2
i 〉 =

∑
σ

w
d2k 〈f 2

i

∣∣ â+
k1,R
|kσ2 〉〈kσ2 | âk1,R

∣∣f 2
i 〉,

=
w
d2k

∣∣〈kR2 , kR1 ∣∣f 2
i 〉
∣∣2 +

w
d2k

∣∣〈kL2 , kR1 ∣∣f 2
i 〉
∣∣2 = 2PRR + PLR.

(4.25)

and of course, IR = PR.

Mean transport measurements such as I21 however are poor indicators of photon blockade.

It was demonstrated in the previous chapter that in optics, first-order correlation functions

are insensitive to photon number distributions since they do not distinguish them from the

spectral properties of the photon state.

The ratio of two-photon to single-photon transmitted intensities, I21 fails most noticeably as

an indicator of blockade for weak valises of dimensionless coupling strength and short delays

Γ� 0.1 and ∆ < 1. Figures 4.7a and 4.7b reveal that I12 can be greater than unity (which

would naively be taken to indicate bunching) in regions where P21, which is the most reliable

of the two measures, indicates blockade, P21 � 1. The failure of the intensity ratio as a

measure of blockade can be attributed to Bose-statistical bunching of the incoming photons.

Each photon in a symmetrized two-photon state is conditionally more likely to be resonant in

comparison to if they were independent. To make this statement more precise, consider the

following state describing two photons with temporal delay τ = v−1
g δ and identical spectral

profiles peaked at resonance

∣∣i2〉 =
w
d2k Cδ

k2,k1
|k2, k1〉. (4.26)
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From this state it follows that the probability to find one photon with momentum k and

another with momentum k′ is

Pk,k′ =
∣∣〈k, k′ | i2〉∣∣2 =

∣∣Cδ
k,k′

∣∣2 (4.27)

and the probability that at least one photon has momentum k is given by

Pk =
w
dk Pk,k′ =

w
dk
∣∣Cδ

k,k′

∣∣2 . (4.28)

If Pk is interpreted as a single-photon frequency distribution then when the relative delay, δ

is finite but less than the width of each photon pulse then the resonant, near k = 0 portion of

the packet is greater than would it would be if the photon were isolated. The likelihood of any

one of the two photons being resonant and subsequently transmitted is therefore enhanced

by Bose-statistical bunching. In particular, in the region where blockade is most effective the

probability PRL exceeds PRPL. For this reason the ratio of intensities I21 does not adequately

quantify blockade.

To conclude this section we note that the effectiveness of the two-level scheme for achieving

photon blockade is severely limited by spontaneous emission, no such a limitation is present in

Coulomb blockade. The two-level emitter, having accepted a photon does not remain excited

indefinitely but instead decays in response to its interaction with vacuum field fluctuations.

Maximum photon blockade is achieved when the arrival of the lagging photon is less than

the decay time of the emitter, that is τ . γ−1 or written in the dimensionless variables an

appreciable blockade is only expected for ∆ . 1, which is confirmed by our findings.
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(a) Γ = 0.1 (b) Γ = 0.3

(c) ∆ = 0 (d) ∆ = 0

Figure 4.5: (a)-(b) Strength of blockade versus dimensionless delay between the incoming
photons. (c) Blockade strength versus dimensionless coupling at zero delay. (d) Two-photon
transmission probability versus dimensionless coupling. Included in each graph are separate
plots of the plane-wave and bound-state contributions to the relevant observable.

(a) Intensity Ratio (b) Normalized Conditional Probability

Figure 4.6: Comparison between the intensity ratio and normalized conditional probability as
indicators of blockade illustrating the failure of the former particularly at weak dimensionless
coupling.
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4.4 Photon Blockade Enhanced by Electromagnetically

Induced Transparency

In a pioneering paper by Imamoḡlu et al. [11] it has been suggested that a photon blockade

could be achieved in a cavity-confined dilute atomic gas with an associated optical Kerr-type

nonlinearity in the regime of electromagnetically-induced-transparency (EIT). Typically a

medium becomes opaque to incident radiation at frequencies near to resonance with some

optical transition; however, when three or more nearby atomic levels are engaged then it is

possible for a destructive interference to develop between the possible excitation pathways,

opening up a window of transparency. The utility of EIT stems from the fact that in the

region where resonant absorption vanishes the optical nonlinearities may instead undergo a

constructive interference [12]. It is these (essentially) absorption-free nonlinearities that are

exploited by Imamoḡlu et al. to achieve an efficient photon blockade mechanism.

Ordinarily, the strength of effective photon interactions that can be achieved in a Kerr-

nonlinear atomic medium are not sufficiently great for a photon blockade, even with the

enhancement offered by EIT. A breakthrough came when Imamoḡlu and Harris [80] noticed

that two nearby lifetime-broadened atomic energy levels are formally equivalent to the dressed

states formed by a non-perturbative coupling field in resonance with a pair of well-separated

energy levels.

Engineering EIT schemes with the aid of non-perturbative coupling fields has been shown to

lead to Kerr-type nonlinearities that are many orders of magnitude greater than previously

possible with conventional EIT. In particular for the four-level scheme depicted in figure 4.7a

it can be shown that a (perturbative) signal field ωs with Rabi-frequency Ωs, near resonant

with the transition |2〉 −|4〉 induces a phase shift in the probe field at ωp with Rabi-frequency
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Ωp (also perturbative) tuned to |1〉 − |2〉 that can be as great as π for only a single incident

photon. In addition, the self-phase modulation Kerr-nonlinear coefficients vanish for both

the signal and probe fields and the linear susceptibility vanishes for the signal and probe

fields in the limit that the decay rate from the state |2〉 vanishes, Γ2 = 0.

(a) Driven four-level EIT system. (b) Three-level and dressed four-level schemes.

Figure 4.7: (a) A driven four-level system exhibiting both EIT and a giant cross-phase Kerr-
nonlinearity between the perturbative pump and signal fields. (b) Left: Three-level EIT
scheme. Right: Driven four-level scheme in dressed-state picture [12].

To gain some insight into the enhancement in nonlinearity achievable with the coherently

driven 4-level scheme its strength will be compared to that generated by the 3 levels (which

also exhibit EIT) depicted on the left-hand-side of figure 4.7b. By expanding the atomic

polarizability to third order in the electric field it can be shown (for a dilute gas) that the

self-phase Kerr-coefficients for the three-level scheme do not vanish and that the real part of

the cross-phase Kerr-nonlinearities in both cases are as follows [12]

Re
{
χ

(3)
4−level

}
=
|µ13|2 |µ24|2 ρ

2ε0~3

1

Ω2
c∆ω

2
42

. (4.29)

where µij and ∆ωij are the dipole matrix elements of and detuning between the transition

|i〉 -|j〉 and ρ is the atomic number density. For 3 levels without any classical pumping field
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(analogous to Ωc) the real part of the cross-phase third order susceptibility is

Re
{
χ

(3)
3−level

}
=
|µab|2 |µbc|2 ρ

2ε0~3

1

∆ω2
ab∆ωbc

. (4.30)

The two coefficients are almost identical except the replacement of ∆ωab by Ωc in going from

three-levels to four (with coherent pumping). Whereas for three levels it is necessary that

∆ω2
ab > Γ2

b to avoid absorption, no such limit exists in the driven four-level scheme, which is

the key reason that stronger effective photon interactions can be achieved there.

A classically pumped dilute gas of four-level atoms (see figure 4.7a) when confined to an

optical cavity with optical finesse F ∼ 104 is expected to exhibit nonlinearities that are as

much as 10 orders of magnitude greater than have previously been thought possible [11]. In

this regime the transmission of light through the cavity is predicted to be one-photon limited

and the following effective Hamiltonian (after adiabatically eliminating the atomic degrees

of freedom) is derived for the light transport

Ĥ =
(
ωcav − i

g

2

)
â+â+

√
2g(β∗â+ â+β) + Uâ+â+â â, (4.31)

where ω0 is the cavity mode frequency, β is the classical driving field and â is the cavity

mode photon annihilation operator. The above Hamiltonian is reminiscent of the Coulomb

blockade problem where the nonlinearity

U =
3 ω2

cav

2ε0Vcav

Re
{
χ

(3)
4−level

}
(4.32)

replaces the ‘charging energy’. It has subsequently been pointed out that the elimination of

atomic variables above imposes additional, rather stringent limits on the coupling strength

that is required for blockade [81]. This problem is overcome when only a single atom is used.
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More recently few-photon transport through a single driven four-level atom (as above) has

been considered in a one-dimensonal photonic waveguide setting [47]. In this case the strength

of the photon blockade, P21, is determined numerically for simultaneously incident two-photon

pulses near resonance with both the |1〉 − |2〉 and |3〉 − |4〉 transitions. It is found that P12

monotonically increases with coupling strength despite being in the EIT regime.

4.5 Conclusions

One of the key purposes of the preceding chapter was to introduce a number of existing

schemes where photon blockade has been predicted and or detected. The strength of photon

blockade is defined and calculated for two photons resonantly transmitted through a single

two-level atom. The blockade in this setting is severely inhibited by the competing process of

spontaneous emission; a reasonable blockade is only achieved for photon delays much shorter

than the typical atom decay time.

The advantages of working with a multi-level emitter for generating blockade has also been

discussed, in particular the absorption-free giant optical nonlinearities that can be achieved in

the regime of electromagnetic-induced-transparency. Few photon transport has been recently

investigated in this setting. If the optical nonlinearities offered by single emitters interacting

with few photon states are to be exploited in the field of quantum computing then it will

almost certainly be necessary to shift beyond two-level schemes.
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