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Abstract 
The purpose of this thesis was to examine the role of orally ingested protein and branched 

chain amino acids (BCAA) in exercise recovery. The use of nutritional interventions to aid 

recovery from multiple lengthening contractions has received a considerable amount of 

attention. Specifically, investigations have focussed on the efficacy of protein and amino acid 

ingestion on exercise recovery, although the results of these studies are conflicting. Equivocal 

findings may be attributed to several discrepancies in study design and lack of adequate 

dietary control. Two studies included in this thesis were designed to examine the effect of 

ingesting amino acids following an intense bout of multiple lengthening contractions of the 

quadriceps muscle in untrained males. Ingestion of BCAA (chapter 2) resulted in decreased 

muscle soreness. Moreover, ingestion of whey protein isolate (chapter 3) resulted in reduced 

muscle soreness and a reduction in the decrement of superimposed electrically stimulated 

maximal force production. The exercise protocol was replicated in both studies to facilitate 

comparison between whey protein and BCAA ingestion. Furthermore, strict dietary control 

was implemented as an integral part of the study design. Our results suggest that ingestion of 

all amino acids are required to reduce decrements of maximal force production associated 

with intense lengthening contractions, whereas ingestion of only the BCAA results in 

decreased muscle soreness. 

The importance of protein feeding for maximising the anabolic effect of resistance exercise 

is well established. Ingestion of essential amino acids or intact protein sources during exercise 

recovery further stimulates muscle protein synthesis. Signalling proteins within the muscle 

influence the translation of messenger RNA and therefore muscle protein synthesis. It has 

been demonstrated in rodents and humans that ingestion of only BCAA leads to an altered 

phosphorylation status of signalling proteins. However, the effect on muscle protein synthesis 
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of ingesting only BCAA has not been investigated. This thesis demonstrates that following an 

acute bout of resistance exercise in the fed state, ingestion of BCAA resulted in a 22% 

increase in muscle protein synthesis (chapter 4). These results suggest that only the ingestion 

of BCAA is required to augment the response of muscle protein synthesis to resistance 

exercise. 
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Muscle protein metabolism during and after exercise and feeding is a popular topic in 

which there has been a plethora of research. Muscle contains ~40 % of the total protein in an 

adult male body and accounts for 25-30% of  whole body protein turnover. Protein consists of 

individual amino acids joined by peptide bonds. Amino acids can be subdivided into essential 

amino acids (EAA) or indispensible amino acids, and non essential amino acids (NEAA) or 

dispensable amino acids. Unlike NEAA, ESS cannot be synthesised by the human body, and 

must, therefore, be consumed in the diet. The branched chain amino acids (BCAA), leucine, 

isoleucine and valine are three EAA that can be oxidised within skeletal muscle. Currently it 

is the BCAA that are thought to be the most important for muscle protein synthesis and in 

exercise recovery. 

 

1.1 Muscle damage 
 

1.1.1 Mechanisms proposed to cause lengthening contraction induced muscle damage 

Skeletal muscle consists of both contractile and structural proteins, either of which may 

become damaged during unaccustomed lengthening contractions. Although the mechanisms 

behind lengthening induced muscle damage are yet to be fully elucidated, it is purported that 

there are 3 separate phases (8). It has been suggested that following lengthening contractions 

normal sarcomeres become disrupted due to overstretching leading to membrane damage, 

resulting in local contracture and then fibre death (115).  

1.1.1.1 Initial phase of lengthening contraction induced muscle damage 

During exercise, the mechanical stress from lengthening contractions stretch the myofibrils 

and sarcomeres within each muscle fibre (98). This leads to z line streaming, regional 

disorganisation of myofibrils, damage to t-tubules and loss of membrane integrity (115, 124). 
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The popping sarcomere hypothesis (103) suggests that the non-uniform stretching of 

sarcomeres results in the muscle being stretched beyond optimum length. The overstretched 

sarcomeres become progressively weaker until they reach their yield point, when they 

lengthen rapidly until there is little or no overlap between the myofilaments (51). This 

overstretching of sarcomeres occurs at random and is therefore distributed across the muscle 

fibre. Such non-uniform lengthening promotes shearing of the myofibrils, which may results 

in exposure of internal cell membranes, especially t-tubules and a disturbance in the 

intracellular calcium ion (Cai) homeostasis. When the muscle relaxes the majority of the 

overstretched sarcomeres re-interdigitate enabling normal function (127). However, a few 

myofilaments will not re-interdigitate and so become permanently disrupted.  

Disruption to sarcomeres can occur during the muscular contraction or relaxation, which 

influences the localisation of muscle damage. If the muscle is overstretched when actin and 

myosin are bound together, these contractile proteins become damaged and an increase in 

plasma concentrations of other proteins associated with actin (e.g troponin I) (120) and 

myosin (myosin heavy chain) (121) are observed. If the overstretching of sarcomeres occurs 

when actin and myosin are disassociated, tension of the overstretched sarcomeres may be 

transferred to cyoskeletal proteins (e.g desmin and titin) causing disruption to the structure of 

the myfibrils (127). Damage to titin, the elastic filament that secures the thick myosin 

filament to the Z line, may cause the next sarcomere to overstretch, thus propagating damage 

longitudinally (1). Desmin may be damaged by excessive forces early in exercise (90) and 

may cause the damage to spread laterally. Damage to the sarcoplasmic reticulum, transverse 

tubules or sarcolemma can occur if the longitudinal and lateral damage spreads to the adjacent 

areas of the muscle (1).  
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Damage to the sarcomeres can lead to problems with excitation-contraction coupling, 

thereby impairing the generation of force. If the cell membrane is disturbed there is leaking of 

some proteins into the extracellular space and eventually the circulation. Consequently, 

increased levels of these proteins in the blood indicate increased permeability of the muscle 

cell membrane (55). Mechanical damage also may promote an inflammatory response that 

involves an increase in fluid, plasma proteins, and inflammatory cytokines at the site of 

damage (95). 

1.1.1.2 Autogenic phase of lengthening contraction induced muscle damage 

The autogenic phase of muscle damage is caused by elevations in intracellular 

concentrations of Cai  (43). Whether the cause of the initial damage is metabolic or 

mechanical, there is diffusion of Cai ions into the sarcomeres (93). An early study 

demonstrated a degeneration of myofibrils when intracellular concentration of Cai was 

artificially increased through treatment with calcium ionophore (44). It was later established 

that, if the increase in intracellular Cai did not occur, muscle fibre damage was prevented (77). 

In a rodent model it was observed that exercise consisting of downhill walking resulted in 

increased Cai that accumulated within the mitochondria (43), and that this increase can alter 

the function of the sarcoplasmic reticulum as demonstrated in rodents (25).  

Failure of the sarcoplasmic reticulum to re-sequester Cai may lead to elevated intracellular 

Cai concentrations (8). It has been demonstrated that in single mouse muscle fibres, isolated 

muscles and rodents repeated stretches increase intracellular resting Cai (11, 74, 94). 

Increased concentration of intracellular Cai activates phospholipase A2, ubiquitin-proteosome 

and calpain-mediated proteases that primarily mediate degradation of the cell membrane and 

proteins, both structural and contractile (12, 147).  Phospholipase A2, activation promotes the 

production of arachidonic acid, which acts as a detergent to the cell membranes and results in 
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increased prostoglandins, leukotrienes and thromboxanes (8, 45). Treatment of muscle cells 

with cyclooxygenase inhibitors to reduce the formation of prostaglandins, leukotrienes and 

thromboxanes from arichidonic acid results in the prevention of leakage of muscle enzymes. 

Thus, it seems that enzyme leakage is not equivalent to physical damage to the plasma 

membrane (45, 76). Thus demonstrating that enzyme leakage is not caused by physical 

damage Acyl-CoA binding protein concentration can increase following sarcolemmal 

disruptions and can decrease the Cai
 concentration required for m-calpain activation from 300 

uM to around 10uM (99). Calpain Cai–dependant proteases degrade the z-disks, further 

disrupting the myofibrils (8). Additionally, stimulation of lysosomal proteases through 

calcium dependant mechanisms may play a role in the autogenic phase of muscle damage (8). 

Enhanced Cai-activated proteolytic activity results in further degradation of muscle proteins 

and lipid structures (56), which is evident in biopsy samples taken 2-5 days after exercise 

characterised high proportion of lengthening contractions that display more cellular disruption 

than those taken immediately after (49). Elevated resting intracellular Cai levels may lead to a 

greater number of cross-bridge formations, thus reducing the relaxation phase of contraction. 

This reduction in the relaxation phase of muscle contraction may be the cause of reduced 

range of motion of the associated joint and increased muscle stiffness following damaging 

exercise (89).  Furthermore, uncontrollable contraction of the muscle fibre may result in a 

depletion of local ATP stores, eliciting further structural damage due to both mechanical and 

metabolic stress (8, 26). However, it should be noted that the increases in Cai concentration 

have not been shown in humans and future studies are required to establish this. 

 

1.1.1.3 Phagocytic phase of lengthening contraction induced muscle damage 
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The phagocytic stage results in increased mobilisation of immune cells that are directed 

towards the injured tissue and is prevalent from 4-6 h to 2-4 d after the onset of damage (7). 

The tissue injury triggers the accumulation of bradykinin, histamine and prostaglandins that 

attract monocytes/macrophages and neutrophils. Neutrophils release chemo-attractants to 

promote the migration of other immune cells to the site of damage, however they are also a 

source of free radicals. The inflammatory cytokines, tumour necrosis factor-α (TNF- α), 

interleukin-1β (IL-1β) and interleukin-6 (IL-6)) are secreted by the immune cells (110). 

However, IL-6 also is released by exercising muscle (111). The infiltration of immune cells to 

the injured tissue is followed by a fluid influx and activation of type IV nerve endings, 

developing gradually over 3-4 days (115). 

Although resulting events from lengthening contractions are not completely understood, it 

is likely that there is mechanical stress that occurs immediately during the exercise resulting 

in metabolic homeostatic imbalance in the recovery period. There are many symptoms 

associated with unaccustomed lengthening contractions that include decreased muscle 

function (both reduced muscle force production and low frequency fatigue), increased muscle 

soreness, decreased range of motion and increased plasma concentrations of myofibre 

proteins. 

1.1.2 Methods to measure muscle damage 

It is difficult to directly measure muscle damage, however there are a wide variety of 

methods with which to assess it. Methods that have been used in previous studies include 

muscle function (usually measured by maximal voluntary contraction), 

immunohistochemistry (investigating membrane disruption), blood parameters (especially 

myofibre protein concentrations) and subjective measures of muscle soreness, such as a visual 
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analogue scale (139). The quantification of the observed magnitude and duration of damage 

can vary between the different methodologies (139).  

1.1.2.1 Muscle function 

A decrease in voluntary maximal force generation commonly occurs following 

unaccustomed exercise where there is a large number of lengthening contractions. It is 

generally the decrements in force production that cause reductions in athletic performance. 

Many studies have demonstrated significant reductions in power and strength following 

lengthening-based exercise protocols (29). Downhill running protocols produce damage and 

typically reduce maximal force production by 10-30% immediately following exercise (47, 

48). High-force, repeated lengthening contractions result in the greatest maximal force loss 

(35 – 50%) (105, 106, 117). Force loss resulting from intense exercise which has a high 

number lengthening contractions can last up to 2 wk (105).  

The force generation capacity of the muscle can be measured using maximal voluntary 

contraction (MVC). However, the subject’s motivation may have an influence on the outcome 

of an MVC measurement. Superimposition of an electrical stimulation to the muscle during 

the MVC will result in the production of maximal force by the muscle regardless of 

motivation. Thus, electrical stimulation during the MVC provides a indication of the impact 

of peripheral, rather than central, factors on muscle force production. However, even when 

this technique is adopted a reduction in force production following intense unaccustomed 

exercise still occurs (75). Therefore, it is likely that peripheral mechanisms (within the 

muscle) are the primary cause of the decline in muscle function following unaccustomed 

exercise involving a high frequency of lengthening contractions.  

The force frequency relationship of the muscle is another measure of muscle function. 

Comparison of force production at high and low frequencies indicates the force frequency 
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relationship of the muscle. A reduction in force at low frequencies indicates that there is an 

impairment of excitation-contraction coupling (141). This reduction is observed following 

intense exercise that has a high component of lengthening contractions. Muscle function is 

one of the most valid and reliable indirect measures of muscle damage in humans (139). 

Therefore, studies aiming to investigate injury from lengthening contractions should use 

muscle function as a marker of exercise-induced damage. We will implement two measures of 

muscle function, MVC with superimposed electrical twitch stimulation and low frequency 

fatigue in chapters 2 and 3. 

1.1.2.2 Muscle biopsies and myofibre proteins 

Many human studies have used both qualitative and quantitative histology analysis of 

muscle biopsies in an attempt to investigate disruption within the muscle tissue (34, 52-54, 

57-59, 65, 108, 123, 143). Within the biopsies the state of the fibres can be analysed to 

determine the amount of fibre degeneration and subsequently, the amount of regeneration. 

Furthermore, levels of enzyme activity and cellular membrane damage can be classified. It 

was recently demonstrated that the biopsy technique and / or the processing may lead to 

changes that can be mistakenly attributed to exercise-induced damage (96). Additionally the 

biopsy technique may lead to increases in myofibre proteins in the blood due to damage to 

muscle cell membranes, thus confounding other measurements (72). Furthermore, the muscle 

biopsy is small when compared to the whole muscle and quantification of damage of the 

whole muscle from a small sample is problematic, potentially under or over estimating 

damage (139). Often both the time-course and magnitude of disruption observed in muscle 

tissue biopsies correlate poorly with functional measurements of the muscle (139), so the 

practical meaning is difficult to interpret as people are often more concerned with functional 
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measures. However, the muscle biopsy technique is the only direct method in which to 

determine muscle structure disruption. 

Plasma concentrations or activity of myofibre proteins are often used as markers of muscle 

damage. These proteins include creatine kinase (CK), myoglobin and lactate dehydrogenase. 

CK is the most commonly measured of the myofibre proteins, although most of the proteins 

respond in a similar way. There is much debate surrounding myofibre proteins, in particular 

CK, as an indirect marker of muscle damage. It was suggested that CK appeared in the blood 

if there was muscle damage, however when measured there was no correlation between loss 

of muscle force production and the concentration of CK (27, 28, 105). Furthermore, the 

concentration of the myofibre proteins in the circulation is minimal in comparison to the total 

amount in the muscle and the permeability of the cellular membranes is mediated by 

arachidonic acid metabolites. Therefore it is not the physical breakdown of the membrane that 

is indicated by increased myofibre proteins in plasma, but if anything they may suggest 

increased membrane permeability (76). Nevertheless, changes in the plasma levels of these 

proteins are commonly used as an indicator of muscle damage.  

The greatest maximal force loss is generally seen immediately after the exercise bout, 

whereas CK levels have a biphasic response peaking at 24-48 h and then 96-120 h post 

exercise (139). Additionally, when repeated bouts of lengthening contractions are performed 

the maximum force decrement is less after each consecutive bout. However, the increase in 

CK concentrations remains large. Thus, there is no correlation between force decrement and 

CK concentrations following repeated eccentric exercise bouts. Furthermore, the response of 

CK to lengthening contractions is highly individualised (28). A difference in peak values for 

individuals has been shown to differ ~358% in response to the same relative intensity 

eccentric exercise bout (75). Therefore, comparisons between interventions are often 
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problematic, as it is difficult to decipher the effect of the intervention from that of individual 

responders and non-responders. Additionally, a one off measure of myofibre proteins in the 

blood does not only reflect their release into the blood stream but also their removal. CK is 

often measured to allow comparisons to previous studies, however it is not reflective of 

functional measures.  

1.1.2.3 Inflammation 

After muscle injury there is likely to be an inflammatory response. Magnetic resonance 

imaging can be used to determine swelling through measurements of the limb cross-sectional 

area. Alternatively, oedema within the limb can be calculated using T2 weighted contrast 

images or diffusion weighted images. Calculation of limb volume by measurement of the 

length and circumference of leg segments to calculate the volume of a cone (146) also may 

give an indication of swelling that has occurred to the limb. However, this measurement lacks 

resolution, thus small differences are unlikely to be detected. Due to the expense of the 

equipment required in chapters 2 and 3 we did not take any measures of limb swelling or 

oedema. 

Elevated levels of inflammatory cytokines, C-reactive protein and white blood cell counts 

in the blood are also consistent in an inflammatory response. Current evidence as to whether 

the response of cytokines in the blood is proportional to the damage is equivocal (97, 119). 

Therefore, studies should not only rely on the use of an inflammatory response to suggest 

damage. In chapters 2 and 3 we will measure interleukin 6 as an indicator of inflammatory 

cytokines in the plasma. However, this measurement may not be the most appropriate as IL-6 

is released from muscle in response to exercise and therefore is not be indicative of muscle 

damage. 

1.1.2.4 Muscle Soreness 
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Muscle soreness is associated with unaccustomed lengthening contractions and is the 

sensation of pain that usually peaks 2-3 d after the exercise bout. Soreness is frequently used 

as a measure of injury severity (139), and can be measured by application of pressure using a 

force transducer or by pain scales. The use of force transducers requires subjects to 

distinguish between pressure and pain, which is often difficult. Thus, there is a poor 

correlation between soreness values obtained from force transducers and soreness values for 

other measurement methods. Pain scales include rating of perceived soreness (RPS) and 

visual analogue scale (VAS). The RPS is a scale from 1 (not sore) to 10 (very very sore) in 

which subjects provide a value which best represents their perception of pain. The VAS can 

be either a 100 mm or 50 mm line anchored by ‘no soreness’ and ‘extremely sore’. Subjects 

mark the point along this line that best represents the soreness they feel. Scores are recorded 

by measuring the distance from the left hand anchor point (no soreness) to the marked point. 

It should be noted that whilst soreness scores are highly subjective, it has been shown that 

90% of pain ratings can be repeated within 9mm using a 10cm VAS (13). Thus, the VAS is 

considered effective in monitoring changes in perceived pain. In chapters 2 and 3 we will use 

a 10cm VAS to measure subjects pain. No numbers are recorded and therefore subjects are 

unlikely to be influenced by numbers they stated at the previous measuring point. 

 

1.1.3 Interventions to reduce muscle damage 

 Completing unaccustomed lengthening contractions can lead to a decrease in the 

ability to complete everyday activities. A premature return to strenuous activity, without 

recovery, may increase the risk of further injury (26). Therefore, it is important to restore 

maximal function as rapidly as possible. A range of treatments that may help alleviate 

symptoms associated with intense unaccustomed exercise have been suggested. These 
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treatments include the administration of nonsteroidal anti-inflammatory drugs, compression 

garments, cryotherapy,  and stretching (26). However, the efficacy of most treatment 

strategies across a range of populations (e.g. untrained, aging, athletes returning from injury) 

remains equivocal. Recently, studies have been performed in an attempt to investigate the 

potential impact of nutritional strategies in aiding the recovery from exercise-induced muscle 

damage. Specifically, the role of protein supplementation in attenuating muscle damage or 

speeding up the regeneration of new proteins to replace the damaged ones has been studied. 

However, these investigations provide equivocal results. 

1.1.3.1 Protein and amino acid sources 

Recent studies have focused on nutritional interventions during post exercise recovery 

in an attempt to alleviate muscle soreness and impairments in muscle function. An overview 

of studies that implemented a single bout of intense lengthening contraction-based resistance 

exercise with ingestion of protein and other amino acid sources is shown in Table 1.1. 

Although there are several studies investigating the efficacy of amino acids as a recovery tool, 

the results appear somewhat inconsistent. The effect of the ingestion of amino acid sources on 

muscle function, muscle soreness and blood parameters is equivocal. 

There are several reasons that may contribute to the differing results, including 

inconsistencies in exercise models, which prevent direct comparisons between studies. 

Exercise protocols previously implemented include arm curls (107), knee flexor/extensor 

exercise (24, 30, 31, 142), mixed lower limb exercise (33) and squats (81, 118). Furthermore, 

there are different types of supplements, including mixed amino acids (107, 125), 

carbohydrate with protein (30, 31, 142), milk (30, 31), single amino acids (81, 118), and 

different forms of whey protein, both isolate (24) and hydrolysate (24, 33). Additionally the 

controls vary from isoenergetic controls to flavoured water controls. The supplementation 
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pattern also has differed from a single bolus (31, 118) to 14 d of supplementation (33). 

Additionally, some studies measure muscle function with and without electrical stimulation. 

The type of subjects also varies between studies. Only two studies (30, 31) have investigated 

the effect of protein nutrition in trained subjects and only one study (118) has studied females. 

Lack of dietary control may help explain discrepancies between studies, as no study has 

strictly controlled diet of the subjects. Changes in energy and/or protein intake may have 

increased the variability in the response to the eccentric exercise that may have obscured any 

response to the interventions. Therefore it is difficult to determine whether discrepancies 

between studies are caused by the supplementation or variations in habitual energy and 

protein intake, thereby precluding the direct comparisons of inferences. 

1 
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1.1.4 Summary of muscle damage and nutrition 

Although exact mechanisms are not fully understood, unaccustomed lengthening 

contractions will induce muscle damage. Symptoms of muscle damage include increased 

soreness, loss of muscle force production, reduced LFF, inflammation, decreased range of 

motion and increased levels of myofibre proteins in the blood. These methods have their own 

limitations and the functional measures have been suggested as the most ecologically valid 

(139). Supplementation of protein and / or amino acids prior to and during recovery from 

eccentric exercise may speed up recovery. However dietary intake has not been sufficiently 

controlled in this area of research.  

Chapters 2 and 3 describe studies in which the effects of ingesting BCAA and whey 

protein on the detrimental effects associated with lengthening contractions were investigated. 

We measured muscle soreness using a VAS, maximal isometric strength with electrical 

stimulation, force frequency, plasma concentrations of CK and myoglobin and serum IL6 

concentration as an indirect marker of inflammation. Furthermore, we strictly controlled 

subjects’ diets. Resistance based exercise protocols were implemented as they produce the 

greatest decrements in force production and therefore maximise the chance of observing an 

effect of nutritional intervention. 

 

1.2 Muscle protein metabolism 
Muscle protein turnover refers to the constant and concurrent synthesis and degradation of 

muscle protein. Net muscle protein balance (NBAL) is the term used to describe the algebraic 

difference between muscle protein synthesis (MPS) and muscle protein breakdown (MPB) 

(136). A positive NBAL over a given time period is required to build muscle proteins. To 

achieve a positive NBAL the rate of MPS must exceed MPB. Conversely, if MPB exceeds 

MPS muscle protein loss occurs.  
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1.2.1 Control of muscle protein synthesis 

 

1.2.1.1 Anabolic signalling 

Protein synthesis involves translation of a messenger RNA (mRNA) into a sequence of 

amino acids to form a polypeptide chain and then a functioning protein. Control of gene 

transcription and translation collectively regulate the synthesis rate of specific proteins. Gene 

transcription is the copying of DNA through complementary base pairing to form mRNA. 

This mRNA molecule is then transported out of the nucleus into the cytoplasm of the cell 

where translation of this mRNA molecule occurs.  

Translation is a process in which the mRNA is used as the template to form a polypeptide 

chain. Translation can be subdivided into three steps, initiation, elongation and termination. 

The purpose of initiation is for a translationally competent ribosome and the start codon 

(AUG) near the 5’ end of the mRNA to become joined together (109). Translation initiation 

can be categorised into three stages (80). Firstly, the specific inhibitor methionyl-tRNA has to 

bind to the small 40S ribosomal subunit forming the 43S preinitiation complex. The 43S 

preinitiation complex combines with the mRNA which is capped with eukaryotic initiation 

factor (eIF) 4F forming the 48S preinitiation complex. The combining of eIF4E, eIF4A and 

eIF4G into eIF4F is partially regulated by the reversible association of eIF4E with binding 

proteins, e.g. eIF4E binding protein (4E-BP1). The larger 60S ribosomal subunit then attaches 

to the 48S preinitiation complex creating the 80S active initiation complex.  The second stage 

of mRNA translation is elongation. Elongation involves reading the mRNA base sequence 

while building the polypeptide chain. The final stage of mRNA translation is termination. 

Termination occurs when the ribosome reaches the stop codon.  Usually, post-translational 

modifications occur to the polypeptide chain to form a functioning protein. 
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Translation initiation and elongation are the main regulatory steps (138) and are controlled 

through signalling proteins. Mammalian target of rapamycin (mTOR) is controlled by the 

phosphorylation of a series of upstream proteins including phosphoinositol-dependent kinase 

1 (PDK1) and protein kinase B (Akt). During basal conditions mTOR and PDK1 are inactive, 

causing downstream molecules including p70-S6 protein kinase (S6K1) to be in their inactive 

form. Exercise and nutrition both have effect on the phosphorylation status of proteins 

associated with translation initiation. Similar to initiation, translation elongation is controlled 

by phosphorylation of proteins called eukaryotic elongation factors (eEF). eEF1A and eEF1B 

are active when they are phosphorylated and are involved in recruitment of the amino acyl-

tRNAs to the ribosome. The translocation of the ribosome along the mRNA is inhibited if 

eEF2 is phosphorylated (23). By measuring the phosphorylation status of signalling proteins, 

simultaneously with MPS, mechanisms of MPS in response to exercise and nutrition can be 

investigated. 

 

1.2.2 Measurement of muscle protein synthesis 

 

There are several methods that are used in order to measure muscle protein metabolism. 

Using a continuous infusion of an amino acid tracer is one of the more commonly applied 

methods to measure MPS. The tracer amino acid that is infused enriches the amino acid pools 

and proteins. The enrichments are then measured on a mass spectrometer. The rate at which 

amino acids are converted into proteins is calculated by the change in the enrichment of the 

tracer in the bound muscle over a given time period. Recently, the majority of studies 

implementing the precursor-product method have used labelled leucine or phenylalanine as 

the tracer. 
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When using the continuous infusion precursor-product method measurement of MPS can 

be completed using the infusion of a tracer over several hours. Usually this method involves 

priming of the amino acid pool to achieve a steady state plateau of the infusion more quickly. 

Percutaneous muscle biopsies are obtained at two time points. The difference between the 

enrichment in the two biopsies over a period of time and the measurement of a precursor 

allows calculation of fractional synthetic rate (FSR). FSR is an expression of MPS and is 

calculated using the following formula: 

𝐹𝑆𝑅  % ⋅ ℎ!! =
△ 𝐸!
𝐸! ∙ 𝑡

  ∙ 100 

where Em is the bound protein enrichment in the muscle and Ep is the precursor enrichment.  
 

The advantage of the precursor-product method is that it allows simultaneous measurement 

of whole body and muscle protein turnover. Furthermore, the synthesis rate of specific types 

of protein (e.g sarcoplasmic, myofibrillar) within the muscle can be calculated. The 

measurement of different protein fractions within the muscle is important as the turnover rates 

are different and the responses to exercise and nutrition differ (22, 102). In chapter 4 we will 

measure FSR using a primed continuous infusion of 13C6 phenylalanine. This method will 

allow us to measure myofibrillar protein synthesis. We will measure the tracer enrichment in 

the intracellular and extracellular fluid over the incorporation period to ensure that over the 

period of FSR measurement (i.e. the time between the biopsies) an isotopic steady state is 

achieved. Muscle intracellular free enrichments will be used as the precursor.  We will use 

phenylalanine as the tracer as it may be considered the best amino acid for measurement of 

FSR for several reasons (146). Phenylalanine has one of the smallest gradients between extra- 

and intracellular enrichments, thus minimizing possible errors in measurement of precursor 

enrichments. Moreover, phenylalanine has a relatively low endogenous turnover rate. Thus, 
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only a small amount of tracer is necessary. Leucine is often an alternative chosen to measure 

FSR, since whole body protein synthesis and breakdown may be measured simultaneously 

with leucine. However, phenylalanine is a better choice for our study, since the subjects will 

be ingesting leucine, thus making maintenance of an isotopic steady-state problematic.  

 
1.2.3 Muscle protein synthesis, exercise and nutrition 

Exercise of sufficient intensity can be a powerful stimulus to increase rates of MPS in the 

post-exercise period. However, following resistance exercise, despite increases in MPS, 

NBAL remains negative (14, 113, 114). In order to obtain a positive NBAL ingestion of an 

amino acid source is required (15, 116, 134). Therefore, a combination of exercise and 

provision of amino acids leads to the greatest increase in NBAL. Thus, in order to maximise 

muscle mass gain a combination of exercise and amino acid ingestion is required. 

1.2.3.1 Protein and amino acid ingestion 

Increased circulating amino acids are critical for increases in MPS. Both intravenous 

infusion (15) and ingestion (134) of crystalline amino acids created hyperaminoacidemia 

which resulted in positive NBAL and increased MPS following exercise. Further research 

demonstrated that NEAA were not required for increases in MPS either at rest (135) or 

following resistance exercise (21, 100, 134). Thus, the EAA are critical for increasing MPS. 

Furthermore, large increases in MPS were observed with only small amounts of EAA (21, 

100, 130). However, the practicality of ingesting pure amino acids may be questioned due to 

taste and expense. Therefore, studies have been performed in an effort to investigate the 

effects of ingesting proteins on muscle protein metabolism. Ingestion of intact proteins also 

increases MPS. Ingestion of whey, soy, casein and egg protein as well as milk and beef have 

all been shown to increase muscle anabolism (101, 126, 128, 129, 131, 132, 144). 
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1.2.3.2 Co-ingestion of carbohydrate and amino acids 

The ingestion of carbohydrate alone has been proposed to enhance MPS at rest (64). The 

responsible mechanism is likely through the enhanced delivery of nutrients to the muscle, 

secondary to the insulin induced vasodilation and capillary recruitment (32, 63). However, 

without provision of amino acids the stimulatory effect of carbohydrate is reduced (16). 

Previous studies have been designed to determine the effect of MPS following resistance 

exercise when carbohydrate is co-ingested with amino acids or protein. Ingestion of oral 

amino acids and carbohydrate following resistance exercise also has been shown to increase 

MPS during the post exercise period (100, 116). However, comparison of protein ingestion to 

the ingestion of protein plus high or low carbohydrate demonstrated no additional benefit on 

MPS of the carbohydrate (82). Furthermore, a bolus ingestion of carbohydrate and protein 

resulted in no further increases in MPS when compared to protein only (122). Glynn and 

colleagues (67) demonstrated no differences in MPS or MPB when a low or high 

carbohydrate dose was added to a high dose of EAA. Thus, in situations where there is ample 

protein provided carbohydrate does not play a synergistic or additive role on rates of MPS 

(67, 122).   

1.2.3.3 Effect of branched chain amino acids 

Following exercise, several studies have reported greater increases in MPS when higher 

plasma leucine concentrations are observed (101, 112, 129, 140). Different types of protein 

have different amino acid compositions. The ingestion of different types of protein results in 

different rates of MPS (112, 129, 144). For example whey protein ingestion following 

resistance exercise has been shown to increase MPS to a greater extent than casein or soy 

(112, 129). It has been suggested that it is the higher leucine content in whey protein that may 

be the cause of the higher MPS rates (112, 129). However, there appears to be a maximal rate 

of MPS even with increased leucine content. This notion was demonstrated by Moore and 
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colleagues (101) who showed that when egg protein dose was doubled from 20 to 40 g there 

were no further increases in MPS despite increases in leucine availability. Studies have 

investigated the effects of combining the ingestion of leucine with whey protein or EAA (38, 

61, 68, 84-86, 133). Leucine ingestion did increase MPS rates when compared to a non amino 

acid containing control (38, 61, 84). However, the muscle anabolic response was not greater 

when leucine was added to whey protein or EAA if compared to protein/EAA intake at rest 

(68) or following exercise (85, 86, 133). Therefore, it appears there is no further effect of 

leucine ingestion in situations where there is already ample amino acids ingested. Rodent 

studies have suggested that ingestion of BCAA, and in particular leucine, results in increased 

rates in MPS (2, 3). In humans there are limited studies that have focussed on the effects of 

BCAA ingestion alone on muscle protein metabolim. When measured by phenylalanine 

disposal and branched chain keto acid release there was no increase in protein synthesis, 

however proteolysis was reduced with BCAA infusion (92). Furthermore, Nair and colleagues 

(104) demonstrated that an infusion of leucine decreased protein degradation more than a 

saline infusion. Thus, there appears to be a role for BCAA in reducing MPB. The effect of 

BCAA ingestion alone, compared to a placebo, on MPS has never been investigated. Thus, in 

chapter 4 of this thesis the effect of BCAA ingestion following resistance exercise will be 

investigated. 

 

1.2.4 Anabolic signalling 

Following exercise, the response of MPS to exercise and nutrition is due to increased 

translation initiation (80). Rodent models have provided the majority of data examining the 

effect of nutrition and exercise on anabolic signalling (2, 3, 5, 17, 19, 20, 50, 88). Only 

recently have studies in humans measured the phosphorylation status of signalling proteins 
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simultaneously with MPS in an attempt to mechanistically determine the cause of increased 

MPS with exercise and nutrition. 

For many signalling proteins there is more than one site that can be phosphorylated. The 

phosphorylation status of S6K1 is commonly measured at two sites, Thr421/Ser424 and 

Thr389. It has been shown that muscular contractions have more influence on 

phosphorylation at Thr421/Ser424 (87, 145) and is not heavily influenced by circulating 

insulin or amino acid concentrations (83). Conversely phosphorylation of S6K1 at Thr389 is 

influenced by amino acid availability following exercise (38, 78, 83). Therefore, it is 

important to measure phosphorylation at the site that is appropriate for the assessment of the 

response of interest. For example, if a nutritional intervention is being investigated the 

phosphorylation status of S6K1 at Thr 389 should be measured. In chapter 4, we were 

interested in investigating the response to ingestion of BCAA following resistance exercise. 

Thus, we measured phosphorylation status of S6K1 at both Thr389 and Thr421/Ser424. 

Furthermore it appears there are many different signalling proteins which interact with 

each other. An insulin infusion alone resulted in increased phosphorylation of Akt, however 

leucine infusion did not (70), yet both resulted in increased phosphorylation of the 

downstream signalling protein S6K1. Thus, the data from that study (70) suggest that insulin 

and leucine result in phosphorylation of S6K1 via different signalling pathways. Thus in 

chapter 4 we measured an assortment of signalling proteins associated with mTOR including 

mTOR, Akt, Pras40, 4E-BP1, S6K1 and eEF2. 

1.2.4.1 Anabolic signalling: the effect of nutrition  

There are several studies that have measured the effect of nutritional intake only on 

intracellular signalling proteins (61, 66, 69-71, 73). Amino acids have been shown to activate 

mTOR with only basal insulin levels (71, 73, 138). However, many studies provide additional 
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carbohydrates that would enhance the insulin-stimulated phosphorylation of mTOR by the 

upstream kinase Akt (61, 69). The presence of insulin results in enhanced phosphorylation of 

signalling molecules both upstream and downstream of mTOR (40, 73).  However , in vitro 

studies (79, 148) have demonstrated that amino acids can activate mTOR independently of 

insulin, thus explaining how in the absence of hyperinsulinemia mTOR associated signalling 

proteins have enhanced phosphorylation when only amino acids are ingested (35, 70, 91). 

There appears to be some inconsistencies in the findings of nutrition on signalling proteins 

and this may be related to the inherent difficulties with the measurements or differences in 

biopsy timing or the composition of the nutrient intake. Several authors have demonstrated an 

increased S6K1 phosphorylation with amino acid feeding/infusion (61, 69-71, 73), conversely 

others have shown no differences in phosphorylation status (66). Furthermore, Fujita et al. 

(61) demonstrated that a leucine-enriched EAA and carbohydrate beverage increased 

phosphorylation status of S6K1, demonstrating the requirement of elevated insulin levels. 

Conversely, Greenhaff et al (69) reported that an intravenous infusion of amino acids without 

elevated insulin levels increased phosphorylation status of S6K1 above basal levels. Other 

signalling proteins (mTOR, Akt, 4EBP1) have also been shown to both increase and decrease 

in phosphorylation status in response to nutrient intake only (61, 66, 69-71, 73), for review 

see (41). Pras40 is another signalling protein that is influenced by insulin levels and 

influences the phosphorylation of mTOR through Akt (137). Thus, the measurement of the 

phosphorylation status of pras40 in chapter 4 will allow us to determine if changes in mTOR 

are via insulin mediated pathway and Akt. 

Of interest to the current thesis is the effect of ingesting only the BCAA on signalling 

proteins. It is proposed that leucine can regulate rodent MPS via enhancement of translation 

initiation (2-6, 18). Specifically leucine is involved in the phosphorylation of proteins which 
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control the 40S ribosomal subunit and mRNA binding. Furthermore, leucine has been shown 

to increase hyperphosphorylation of 4E-BP1 and increase phosphorylation of S6K1 (2, 5, 6), 

and will therefore both will be measured in chapter 4. Additionally, leucine exerts its’ effect 

directly on eIF4E and therefore, the eIF4F complex (2). 

The chosen methodological design implemented in chapter 4 did not allow us to measure 

the impact of nutrition alone on intracellular signalling proteins as we did not take biopsies 

from the rested leg. However, in the supplement we provided post exercise there were only 

the BCAA to allow for determination the signalling response without provision of additional 

insulin. 

1.2.4.2 Anabolic signalling: the effect of resistance exercise 

The mTOR signalling pathway has also been demonstrated to play a role in the regulation 

of MPS following resistance exercise. Drummond and colleagues (42) demonstrated that an 

infusion of a mTOR inhibitor resulted in a lack of increased post exercise MPS. During 

resistance exercise the increase in AMPK phosphorylation inhibits mTOR (37). However, in 

the recovery period from resistance exercise performed in a fasted state there are many studies 

that show an altered phosphorylation status of mTOR and downstream signalling proteins. 

(mTOR (39, 60), S6K1Thr421/Ser424 (46, 66, 87) and ribosomal protein S6 (rpS6) (66)). 

Phosphorylation of S6K1 is markedly increased following resistance exercise (36, 39, 46, 60, 

66, 87).  Several studies (9, 39, 42) have demonstrated that eEF2 is dephosphorylated 

following resistance exercise. These results suggest that resistance exercise also influences the 

elongation phase of translation.  

In chapter 4 although a placebo trial will be implemented, participants will have had a 

breakfast prior to the exercise and therefore we will be unable to determine the effect on 

signalling proteins of exercise alone. 
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1.2.4.3 Anabolic signalling: the effect of exercise and nutrition 

The combination of exercise and nutrition can influence MPS by regulating intracellular 

signalling proteins that control translation initiation. In general, there is a synergistic action of 

exercise and nutrition on phosphorylation status of mTOR associated signalling proteins (21, 

38, 62, 78, 86, 100, 116). Following resistance exercise protein and EAA ingestion have been 

demonstrated to alter phosphorylation status of S6K1 and 4E-BP1 (38, 62, 66, 78, 83). 

However, it should be noted that several studies have included carbohydrate in the feeding 

strategies (38, 66, 83). Thus, the altered phosphorylation status may be induced through 

insulin mediated pathways. Therefore, further studies are required, where only amino acids 

are provided, to fully elucidate the synergistic effect of resistance exercise and amino acid 

ingestion. Interestingly resistance exercise appears to maximally stimulate eEF2, with no 

additional effect observed when amino acids are ingested (38, 39, 66, 83). These results (38, 

39, 66, 83) suggest that there is no synergistic effect of resistance exercise and nutrition on the 

elongation phase of translation. There are very few studies that have investigated the 

combination of resistance exercise and BCAA ingestion on various mTOR related signalling 

proteins (78). In this study (78) it was demonstrated that repeated ingestion of branched chain 

amino acids led to an increased phosphorylation of S6K1 at both Thr 389 and Ser424/Thr 421 

sites. Additionally rpS6 was stimulated with BCAA ingestion. In chapter 4 we are going to 

measure Akt and mTOR associated signalling proteins following resistance exercise and 

BCAA ingestion. 

1.2.5 MPS and intracellular signalling 

To try and correlate differences in MPS and anabolic signalling, recent studies have 

combined the two measurements. Mixed muscle FSR was shown to increase by 41% 

alongside increases in phosphorylation of both mTOR and S6K1 2 h following exercise (39).  
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However, there is not always a correlation between MPS and signalling (69, 101, 122). 

Initially, increases in MPS following protein ingestion are associated with increases in 

phosphorylation of signalling proteins (10). However, these authors (10) demonstrated that 

when MPS returned to basal levels the phosphorylation status of signalling proteins remained 

elevated. The association of phosphorylation status and MPS when there is a combination of 

exercise and nutrition has not yet been fully investigated in humans. Thus, the relationship 

between signalling proteins and MPS still requires further investigation. mTOR signalling 

was enhanced and increased MPS rates were reported when a leucine, EAA and CHO drink 

was ingested and compared to a placebo (38). However, the measurement of MPS alongside 

signalling proteins, following the ingestion of BCAA following exercise has not been 

completed in humans. Thus, in chapter 4 we will simultaneously measure FSR and 

phosphorylation status of signalling proteins that are suggested to be influenced by both 

resistance exercise and BCAA ingestion. 
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2.1 Abstract 
 

Background: Inadequate recovery from unaccustomed exercise can limit exercise 

performance and also the ability to perform habitual activities. Repeated lengthening 

contractions or unaccustomed exercise leads to loss of muscle strength, an increase in muscle 

soreness and putative blood markers of muscle damage. Recently, nutritional interventions 

including branched-chain amino acids (BCAA) have been suggested to alleviate these 

symptoms. However, supplementation with BCAA has led to equivocal findings. Purpose: 

The purpose of this study was to examine the role of branched chain amino acid (BCAA) 

supplementation during recovery from intense lengthening contraction based exercise. 

Methods: Twenty-four non-weight trained males were assigned to one of two groups; one 

group (SUP) ingested BCAA beverages (n=12); a second group (PLA) ingested artificially 

flavoured water (n=12). Diet was controlled throughout the testing period to match habitual 

intake. The exercise protocol consisted of 12x10 lengthening contractions of unilateral knee 

extension at 120% concentric one repetition maximum. On the day of the exercise 

supplements were consumed 30 min before exercise, 1.5 h following exercise, between lunch 

and dinner and before bed. On the following two days four supplements were consumed 

between meals. Muscle soreness, muscle function and putative blood markers of muscle 

damage were assessed pre and post (1, 8, 24, 48, 72 h) exercise. Results: Maximal muscle 

force production decreased after the exercise bout (P<0.0001) but was unaffected by BCAA 

ingestion (-51± 3% with SUP versus -48 ± 7% with PLA). A decrease in flexed muscle 

soreness was observed in SUP compared to PLA at 48 h (21 ± 3 mm vs. 32 ± 3 mm; P=0.02) 

and 72 h (17 ± 3 mm vs. 27 ± 4 mm; P=0.038). Flexed muscle soreness, expressed as area 

under the curve, was lower in SUP than PLA (P=0.024). Conclusions: BCAA 

supplementation may attenuate muscle soreness, but does not ameliorate lengthening 
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contraction-induced decrements in muscle function or increases in reputed blood markers of 

muscle damage, when consumed pre and for 3 days after a bout of multiple lengthening 

contractions. 

 

Keywords: Nutrition, unaccustomed exercise, delayed onset muscle soreness, muscle 

function  
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2.2 Introduction 
 

Unaccustomed lengthening contractions result in decreased maximal force production (10, 

20), increased muscle soreness lasting several days (18) and increased concentrations of 

myofibre proteins (creatine kinase (CK) and myoglobin (Mb)) in the blood (6, 18). Thus, an 

impaired functional capacity of the muscle may prevent repeated exercise sessions which are 

required for adaptations to training i.e. an improved tolerance to the stress of resistance 

exercise or muscle hypertrophy. Nutritional strategies aimed at reducing the deleterious 

impact of lengthening contractions may be advantageous by allowing repeated exercise bouts 

of a superior quality to be performed.  

Recent studies have focused on nutritional interventions during exercise recovery in an 

attempt to alleviate muscle soreness and impairments in muscle function (18, 22, 24). Post 

exercise supplementation of protein and amino acids has been suggested to reduce the 

negative impact of lengthening contractions (6, 18, 23). However the results of these studies 

are equivocal. Muscle soreness and blood concentrations of myofibre proteins were decreased 

with supplementation of mixed free amino acids ingested in a fed state 30 min pre exercise, 

post exercise and during the 4-day recovery period (18). Supplementation of mixed amino 

acids twice a day for 10 days resulted in an attenuated loss of isometric contraction force 

following lengthening contractions (24). Similarly, during the first week of a 4-week 

intensified training resistance protocol impairments in maximum strength of squat and bench 

press were attenuated with 0.4g·kg-1·day-1 of amino acid supplementation (11).  

Conversely, mixed amino acid supplementation of shorter duration pre and post exercise in 

a fasted state had no impact on muscle soreness or blood myofibre proteins (18). Likewise, 

White et al. (31) demonstrated no differences in muscle function or soreness when comparing 

a protein/carbohydrate supplement to a placebo administered in a fasted state pre or post 
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lengthening contraction quadriceps exercise. Discrepancies between studies may be caused by 

the type or amount of amino acids in the supplements, whether the supplements are 

coingested with other nutrients, the duration of supplementary period, the degree of dietary 

control or the measurement tool used to assess the negative indices associated with intense 

lengthening contractions. Therefore, the effectiveness of amino acid or protein 

supplementation on attenuating muscle function loss, and elevation in muscle soreness and 

blood myofibre proteins appears somewhat equivocal at present. 

Positive effects of amino acid supplementation have been claimed to be related to the 

branched-chain amino acids (BCAA) (18). Recent interest has focused on the effectiveness of 

BCAA for reducing the negative symptoms associated with intense exercise (6, 8). To our 

knowledge only one preliminary study has investigated BCAA supplementation and recovery 

from intense lengthening contractions (23). These authors reported a reduction in muscle 

soreness following squat exercise with supplementation of only 5g BCAA in females (23). 

However, BCAA were ingested only once. At present no data examining the effect of 

ingestion of multiple supplements containing BCAA following multiple lengthening 

contractions in males. Therefore despite some evidence for the efficacy of BCAA in 

amelioration of adverse indices associated with intense exercise, the effectiveness of BCAA is 

not clearly established.  

Pilot data from our laboratory suggest high doses of whey protein ingestion may impact 

muscle soreness following resistant exercise. Mixed amino acids have also been shown to 

impact muscle soreness (18). BCAA have been suggested to be the active ingredient (18, 23). 

The aim of this study was to investigate the effectiveness of BCAA supplementation for the 

attenuation of the deleterious impact of an intense lengthening contractions in healthy males 

with no previous experience of regular resistance exercise. In accordance with Nosaka et al. 
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(18) showing an effect of amino acid supplementation, we provided supplements before, and 

in the four days following the exercise bout. In contrast to many previous studies, this study 

implemented strict dietary control, in order to ensure any differences that were observed could 

be attributed to the additional BCAA intake. 

 

2.3 Method  
 
2.3.1 Participants 

Twenty-four non-weight trained males were recruited for this study, which was approved 

by the University of Birmingham, School of Sport and Exercise Sciences Ethics 

Subcommittee. Subjects were made aware of procedures including the risks and benefits, gave 

written informed consent (Appendix A) and completed a general health questionnaire 

(Appendix B). Participants were able to withdraw from the study at any point without 

provision of reason. All participants refrained from physical activity and alcohol consumption 

for two days prior to testing and throughout the testing period. Participants were excluded if 

they had previous history of resistance training or had completed high intensity lengthening 

contraction based exercise within the last 6-9 wk (5).  

 

2.3.2 General Design 

Subjects were assigned to either a supplementary (SUP) or placebo (PLA) group and 

performed one single-blind experimental trial. Groups were matched for weight and one 

repetition maximum (1RM). Subject characteristics are shown in Table 2.1. An exercise 

protocol  consisting of lengthening contractions was implemented to allow comparison of 

putative blood markers of muscle damage, muscular dysfunction and muscle soreness 
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between SUP and PLA. Subjects consumed four supplements daily between meals. The 

composition of the supplement consumed by participants in SUP was 3.5 g leucine, 2.1 g 

isoleucine and 1.7g  valine mixed in 300ml artificially sweetened and flavoured water. The 

control supplement contained 300 mL of artificially sweetened and flavoured water. The 

artificial sweetener was free of amino acids. 

Table 2.1: Participant characteristics  

 Weight (kg) Height (m) 1 RM (kg) Leg Volume (ml) 

SUP 72.8 ± 10.4 1.80 ± 0.1 61.2 ± 9.3 5512 ± 1353 

PLA 74.9 ± 9.1 1.80 ± 0.1 62.3 ± 9.5 5725 ± 1094 

Values are expressed as means ± SD 
1RM = one repetition maximum 
Leg volume = volume of upper leg which was exercised calculated via anthrompetry (32). 
 

2.3.3 Pre testing 

Subjects visited the laboratory for preliminary measurements on two occasions. On the 

first, leg volume of the non-dominant leg was calculated (32). Determination of 1 RM of their 

non-dominant leg followed using a Cybex leg extension machine (Cybex international, USA). 

Subjects lifted an initial load which was then increased in increments of 2.5 kg. The subjects 

were instructed to lift the weight, hold it out-stretched for 2 s and then slowly lower it. 

Subjects rested for 3 min between lifts to minimise the impact of fatigue. Subjects were given 

a second attempt after the rest period if they failed with any given lift. This session also 

served as familiarization for the exercise protocol that followed. The familiarisation involved 

two lifts at 50% of their concentric 1 RM in which the weight was lifted by the researchers for 

the subject to lower. Subjects were strapped into the chair to ensure that the weight was lifted 

using only their leg. The subjects’ non-dominant leg was positioned at 90o to their torso with 

their knee flexed to approximately 110o. The lift started with the exercising leg positioned at 

approximately 15o of flexion. Two testers lifted the weight to its full extension; a ‘contract’ 
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command prepared the subject for the weight to be lowered. This command was followed by 

the command ‘release’ and the weight was released onto the subjects’ leg, and was then 

lowered by the subject, resisting the load. The weight was then lowered through 95o to bring 

the weight back to rest. Participants aimed to control the weight in the downward movement 

for 4 secs, if the movement was shorter in duration another repetition was completed. On the 

second visit to the laboratory, preliminary measurements were taken. These involved the 

measurements taken at each time-point, i.e. visual analogue scale (VAS), a blood draw and 

muscle function tests. 

 

2.3.4 Experimental Protocol 

On the day of the exercise protocol, subjects reported to the laboratory at ~06.00 h 

following an overnight fast (Figure 2.1). The subjects ingested their first supplement followed 

by a 30 min rest. The exercise protocol was then performed which lasted approximately 45 

minutes. Subsequently, subjects rested for an hour before the first measurements occurred. 

Pain was assessed using the VAS, followed by a blood draw. Finally, participants’ muscle 

function was assessed via maximal isometric strength (MIS) and low frequency fatigue (LFF) 

as described below. The order of these measurements was standardised for the 8, 24, 48, and 

72 h post exercise to eliminate measurement order from confounding results. Following 

completion of the 1 h testing, participants consumed another supplement before breakfast. A 

third supplement was ingested between lunch and dinner and the fourth at bedtime. On the 

three days following the exercise bout, all measurements were taken in the morning in the 

fasted state with the exception of the 8 h time-point. To maximise measurement reliability, all 
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measurements were carried out by the same investigator for each subject. 

 

Figure 2.1: Schematic protocol depicting the duration of the study.  
Criterion measures include; muscle soreness measures, blood draw, muscle function tests.   Exercise = 12 sets of 
10 repetitions of lengthening contractions of the quadriceps at 120% concentric 1RM. Supplements were 
consumed 4 times on the day of and two days following the exercise and were either BCAA or placebo. 
 
2.3.5 Diet and activity 

Prior to each trial, subjects were instructed to record a weighed three day diet record 

including at least one week day and one weekend day. An average energy intake from these 

three days was calculated and used to determine individuals’ energy requirements. All food 

was prepared and supplied to the subjects to ensure that any differences observed could be 

attributed to the supplements and diets were comparable between subjects. The diet was 

composed of 55% carbohydrates, 1.5 g protein / kg body mass (BM) with the remainder of the 

energy from fat. Prepared food was administered the day before, the day of, and two days 

following the exercise protocol. Food composition for the study is shown in Table 2.2. 

 
Table 2.2: Diet composition of food provided to the subjects  

 Energy Protein Carbohydrate Fat 

 kJ  g/kgBM/d  % En  g/kgBM/d  % En  g/kgBM/d  % En  

SUP 12305 ± 1677 1.5 ± <1 15 ± 3 5.7 ± 1.1 55 ± <1 1.4 ± 0.4 30 ± 3 

PLA 12026 ± 2074 1.5 ± <1 16 ± 3 5.3 ± 0.8 55 ± 4 1.3 ± 0.4 29 ± 6 

Values are expressed as means ± SD. 
% En: percentage of total energy intake. 
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2.3.6 Exercise protocol 

Subjects were seated as described previously and completed 12 sets of 10 lengthening at 

120% concentric 1RM, with 5 s rest between each repetition and 1 min rest at the end of each 

set. If the subject failed to control the weight for two consecutive repetitions, a rest period of 

30 s was given. During each contraction the subject was verbally encouraged to aid maximum 

effort. 

 

2.3.7 Muscle function 

Maximal isometric strength (MIS) was assessed using electrical stimulation with a 

Tornvall chair (7). Participants were seated so the knee was at 90o with a cord fastened round 

the ankle. This cord was attached to a strain gauge interfaced with a computer. Two arm 

straps held the subject in place in the chair. Damp electrodes (13 by 8 cm) were secured to the 

thigh over the proximal and distal ends of the quadriceps. Participants were electrically 

stimulated at their maximal electrical stimulation three times before being encouraged to push 

out with their leg against the cord as hard as possible. Three electrical stimulations were 

superimposed while contraction was occurring to ensure that the contraction was maximal. 

This procedure occurred three times at each time-point. The highest force obtained for each 

leg represented the subjects’ MIS. Another measurement of muscle function is LFF, i.e. a loss 

of force at low frequency stimulation common in damaged muscle (7, 10). Force frequency 

measurements occurred at one third of maximal electrical stimulation current. Electrical 

stimulation of the quadriceps at 20 and 100Hz for 2 s was performed in random order. The 

relationship between 20 and 100 Hz was used as an assessment of LFF. This procedure with 

electrical stimulation has been shown to not affect the response to initial exercise bout (14). 
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2.3.8 Muscle soreness 

Subjects rated general muscle soreness and soreness with the knee flexed and extended 

using a VAS. The VAS consisted of a 50mm line with anchor points of ‘no soreness’ on the 

left and ‘extremely sore’ on the right. Subjects marked a point along the line which 

represented the perceived soreness felt in the quadriceps muscle group. Pain was given a 

value by measuring the distance from the left anchor point. It has been shown that 90% of 

pain ratings can be repeated within 9mm using the VAS (2). 

 

2.3.9 Blood Analysis 

Plasma concentrations of CK and Mb were used to assess commonly measured putative 

markers of muscle damage. Serum was collected and analysed for interleukin-6 (IL-6) as an 

indirect marker of inflammation. Blood was drawn from the forearm vein of each subject at 

each testing point. Plasma samples were placed on ice, and serum samples were left at room 

temperature for 30 min to allow clotting. Samples were centrifuged at 3000 revolutions per 

min for 10 min at 4oC. Plasma and serum were extracted and stored in the freezer at -20oC 

until further analysis. Enzymatic analysis for plasma concentrations of CK (CK NAC CP, 

ABX diagnostics, UK) and Mb (myoglobin CP, ABX diagnostics, UK) were performed in 

duplicate at each time-point using a semi-automated analyser (COBAS MIRA S-plus, ABX, 

UK). Serum concentrations of IL-6 were analysed using commercially available sandwich 

enzyme-linked immunoabsorbent assay’s (ELISA’s) [High sensitivity Human IL6 assay, 

R&D systems, UK]. Plates were read in duplicate on a Labsystems Original Multiskan MS at 

selected wavelengths (490nm with correction at 630nm) Reported sensitivity of the ELISA is 

0.039 pg/mL. 
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2.3.10 Data presentation and statistical analysis. 

Data were analysed using statistical package for social sciences (SPSS) 15.0 for Windows 

(SPSS Inc., Chicago, IL). Differences across time for blood concentrations, force loss and 

VAS scores were analysed by a mixed design, two-way ANOVA with two between (SUP, 

PLA) and six or four (depending on variable analysed) within (time-points) subject variables. 

Significance was set at the 0.05 level of confidence. Where significance was found, least 

significant difference (LSD) post hoc tests were run to distinguish differences between 

supplementary groups. Missing data points were averaged from the other data sets for that 

time-point and group. This manipulation allowed a higher number of subjects to be included 

in the analysis to improve statistical power. VAS scores are shown as raw values and area 

under the curve (AUC) to give an indication of soreness over the 72 h experimental period. 

AUC baseline values were taken as a mean of preliminary values). Force frequency data were 

obtained by averaging values over a 1 s time period (0.8-1.8 s). Force frequency is shown as 

the percentage change from pre of the ratio between force value at 20Hz and 100Hz. Due to 

technical difficulties in this measure, data are shown for only n=10 in each group. MIS data 

were taken from the best value of three attempts and converted into Newtons from the volts 

value obtained. MIS values are shown as a percentage of the pre-exercise value to show the 

force that was lost, and using the pre value as a baseline. It was not possible to collect blood 

from one subject in PLA. Plasma CK, and Mb are depicted as percentage of each individual 

participants maximum. Serum IL-6 concentrations are shown as the mean concentrations. 

Data were also analysed using inferential statistics using 90% confidence limits to produce 

magnitude-based values about the probabilities of the outcome (1). For overall flexed 

soreness, an effect was assumed to be a change of 143mm*72h, and for extended soreness 

this value was 137mm*72h. These values were derived from the smallest standardized 
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(Cohen) difference in mean (0.2) multiplied by the standard deviation of PLA. The likelihood 

of the outcome being of beneficial or detrimental nature was also determined using a 

published spreadsheet (9). When the value is determined to be <1% detrimental or beneficial 

it is almost certainly not; 1-5% very unlikely, 5-25% unlikely, 25-75% possible, 75%-95% 

likely, 95-99% very likely and >99% almost certain. 

 

2.4 Results 
 
2.4.1 Muscle Function 

A decrease in MIS (Figure 2.2a) and in force frequency ratio (Figure 2.2b) was apparent in 

all subjects following exercise without difference between groups. The maximal percentage of 

force loss assessed using MIS was observed 48 h post exercise in both groups (SUP -51 ± 3 

%, PLA -48 ± 7 %). The lowest force frequency ratio was observed at 1 h post the exercise 

bout(SUP -42 ± 6 %, PLA -47 ± 5 %). 

 

Figure 2.2: Percentage change in leg muscle function pre and following 120 lengthening contractions. 
Depicted as a) electrically stimulated maximal isometric strength, b) 20:100Hz force frequency 
relationship.   
SUP = closed circles (Figure 2.2a, n=12, Figure 2.2b n=10) and PLA = open circles (Figure 2.2a, n=12, Figure 
2.2b n=10). Data expressed as means ± SE. * signifies significant difference from baseline in both groups. 
 

2.4.2 Muscle Soreness and Inflammatory Responses 



Chapter 2: BCAA ingestion and lengthening contractions 

 51 

The response of muscle soreness to the exercise bout is illustrated in Figure 2.3. The 

exercise protocol resulted in increased overall soreness in both groups. However no statistical 

differences were detected between SUP and PLA. Muscle soreness was also increased both 

with the knee flexed and extended. Soreness ratings tended to be lower at 8 h compared with 

1 h. Soreness then continued to significantly increase to peak soreness observed at 48 h. A 

main effect of SUP was observed (P<0.05). SUP resulted in a decrease in quadriceps muscle 

soreness with the knee flexed compared to PLA at both 48 h (21 ± 3 mm vs. 32 ± 3 mm; 

P=0.02) and 72 h (17 ± 3 mm vs. 27 ± 4 mm; P=0.038) post exercise (Figure 3a). There were 

no significant differences between SUP and PLA with the knee in an extended position. Over 

the total 72 h experimental period when data are expressed as AUC, muscle soreness with the 

knee flexed was 64% less for SUP compared to PLA (P=0.024) (Figure 2.3a). There were no 

statistical differences between SUP and PLA AUC with the knee in an extended position.  

Evaluation using inferential statistics showed SUP was 96.7% very likely beneficial, (700 
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± 490 mm, 90 % CL) for amelioration of muscle soreness with the knee flexed. Furthermore, 

the positive effects of BCAA in the extended position was 78.5 % likely beneficial effect (300 

± 420 mm 90 % CL) (Figure 2.3b). 

 
Figure 2.3: Muscle soreness pre and following 120 lengthening contractions measured using a 50mm 
visual analogue scale (VAS). a) knee in a flexed position, insert shows area under the curve b) knee in an 
extended position, insert shows area under the curve.  
SUP black bar/closed circles (n=12) and PLA white bar/open circles (n=12). * signifies significant difference 
from baseline. # significant difference of SUP from PLA. 
 
 
 
2.4.3 Blood parameters  

Serum IL-6 data are depicted in Figure 2.4. IL-6 concentrations significantly increased 

following the exercise protocol in both groups (P=0.02). At 24 h post exercise IL-6 

concentration had returned to normal. There were no differences in IL-6 concentrations 

observed between SUP and PLA. 

Figure 2.4: Serum interleukin-6 concentration measured pre-, 1, 8 and 24 h post 120 lengthening 
contractions.  
SUP closed circles (n=12) and PLA open circles (n=11). Data is means ± SE. * significant difference from 
baseline in both groups 

 

Plasma CK (P<0.001) and Mb (P<0.001) concentrations increased post exercise and 

remained elevated throughout the testing period (Figure 2.5a and 2.5b respectively). Peak CK 
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concentrations were observed between 8 and 24 h post exercise. Peak Mb concentrations were 

observed between 1 and 8 h post exercise. There were no significant differences observed 

between groups for plasma concentration of CK or Mb. In both blood metabolite 

concentrations a large inter-subject variability was observed.  

 

Figure 2.5: Myofibre concentrations in the plasma pre and following 120 lengthening contractions, 
expressed as raw values a) Creatine kinase concentration, b) Myoglobin concentration. 
SUP closed circles (n=12) and PLA open circles (n=11). Data is means ± SE. * significant difference from 
baseline 
 

2.5 Discussion 
 

In the present study we investigated the effects of BCAA supplementation on recovery 

from multiple lengthening contractions under conditions of strict dietary control. Our findings 
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are the first to suggest a beneficial role for BCAA supplementation following intense 

lengthening contraction based exercise in males. We observed a reduction of overall soreness 

in the quadriceps muscle with the knee in the flexed position. Additionally, we calculated that 

there was a likely beneficial effect of BCAA supplementation with the knee in an extended 

position. No differences in plasma myofibre concentrations, indirect measurement of 

inflammation or muscle function were detected between BCAA or placebo supplementary 

conditions when supplements were provided pre and for three days following multiple 

lengthening contractions. 

Amino acids intake may have an impact on muscle soreness. Supplementation with mixed 

amino acids (9 essential and 3 non essential) has previously been reported to decrease muscle 

soreness (18). In the present study, non trained subjects ingested only three amino acids 

(leucine, valine and isoleucine) at multiple time points post ex. Our results demonstrated that 

muscle soreness following the exercise bout was attenuated in the supplementation group, 

suggesting that BCAA are the active ingredient in protein for reducing muscle soreness. 

Interestingly, no effect of nutritional supplements containing BCAA in combination with 

other amino acids on muscle soreness have been observed in other studies (18, 31). Reasons 

for this discrepancy may be related to length of supplementary period and the total quantity of 

BCAA ingested. It would be of interest to determine if the beneficial effect on soreness we 

observed was replicated in a situation where only one of the BCAA were ingested. 

The amount of BCAA ingested may be a particularly important factor for amelioration of 

muscle soreness. Conflicting findings between present and previous studies may be explained 

by the length of supplementary period and consequently total intake of amino acids. Our 

subjects consumed supplements pre exercise and throughout the three day recovery period 

resulting in reductions in muscle soreness. Conversely, previous studies (18, 31) which 
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supplemented on only one or two occasions observed no differences in muscle soreness 

between experimental and control conditions. Interestingly, data in a review paper (23) 

demonstrated reduced muscle soreness following squat exercise with only a single bolus (5g) 

of BCAA. However this effect was observed in females but not males. The authors (23) 

attributed the difference to the fact that the females consumed a larger amount of BCAA 

relative to their muscle mass compared to the males, rather than a sex effect per se. Despite 

not having female subjects our findings may lend some support to this assertion. In our male 

subjects the total amount of BCAA intake per kg BM was even greater than in the females in 

the aforementioned study (23) resulting in decreased soreness. Thus, it seems feasible to 

suggest that a larger BCAA intake than in the previous study (23) may be necessary for any 

reductions in muscle soreness. 

Taken together the results of our study and those reported by Shimomura et al. (23) may 

suggest a threshold amount of BCAA relative to individuals muscle mass and to observe a 

decrease in muscle soreness this threshold must be reached. Therefore future studies should 

investigate BCAA intake relative to muscle mass 

The exact mechanism by which BCAA supplementation decreases muscle soreness cannot 

be deduced by our study design. Intense lengthening contractions are known to lead to an 

inflammatory response and an increased concentration of IL-6 (3). The exact cause of muscle 

pain is unknown, however it has been suggested that inflammation of the perimysium or 

epimysium may be causing the pain (12). The inflammatory response results in a sensitization 

of the muscle noiceptors leading to the common feeling of soreness (20). In the present study 

we measured circulating IL-6 concentrations. In accordance with previous studies which 

implemented carbohydrate feeding, no differences in IL-6 concentration were observed at any 

time-point with BCAA supplementation when compared to the placebo condition (13). Our 
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results suggest that BCAA supplementation did not alter this Il-6 response and therefore the 

BCAA are unlikely to mediate soreness via an IL-6 inflammatory pathway. Alternatively, 

soreness was reduced in both groups at the 8 h post exercise when subjects were in an early 

postprandial state. It may therefore be suggested that the extra energy intake from the 

supplements of ~117 kcal/day in SUP may have led to the decrease in soreness observed, 

however no mechanism is clearly indicated. 

Soreness may be modulated by feeding. Lower muscle soreness scores were recorded at 8 

h compared to 1 h post exercise in 19 of the 24 subjects. Measurements collected 8 h 

following the exercise were typically performed at ~ 15:00 h when participants were in a 

postprandial state, having eaten lunch within the previous 3 hours. We therefore propose that 

feeding may be responsible for this temporary reduction in perceived feelings of soreness. 

The present study is the first to record criterion measurements within 3 h of a meal. Recently, 

a novel experimental design was implemented (18) whereby lengthening contractions were 

performed in a fed and supplemented state. Analogous to our findings, mixed amino acid 

supplementation provided pre- and for four days post-exercise attenuated muscle soreness 

compared to a placebo group (18). Taken together, these data suggest amino acid 

supplementation combined with food intake may attenuate muscle soreness, possibly due to a 

larger availability of all amino acids. The association between soreness and feeding is an 

interesting concept; future studies should investigate whether there is a synergistic 

relationship. Other nutrients including carbohydrate and fat particularly in association with 

protein or amino acids should be investigated with regards to the impact on muscle soreness 

following intense lengthening contractions. Alternatively the delivery pattern of the amino 

acids may be modulated when combined with other nutrients, thus resulting in the reduced 

soreness observed in this study following a meal. 
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Intense bouts of lengthening contractions induce decrements in muscle force production in 

untrained individuals (18, 24, 31). In the present study, BCAA supplementation failed to 

ameliorate impairments in MIS. However previously Sugita et al. (24) exercised the elbow 

extensor muscles and provided a mixture of 12 amino acids for 10 days post exercise 

consisting of lengthening contractions.  These authors (24) reported attenuations in reductions 

of strength on days 2 and 3 post exercise. Some additional amino acids were ingested in the 

aforementioned study compared to the present study. It may be suggested that all essential 

amino acids, not only BCAA, may be necessary for successful amelioration of loss of muscle 

function. However, more recent studies (18, 31) that supplemented a mixture of amino acids 

or protein showed no effect on muscle function compared to placebo. Thus, future studies are 

required to fully elucidate how muscle function can be improved via nutritional interventions 

following intense lengthening contractions.  

The shift in force frequency relationship we observed mirrors those associated with LFF 

that is common with damaged muscle. Consistent with previous studies (14-16, 21) these data 

in the present study demonstrated a greater reduction in force at low frequencies compared to 

high frequencies following intense lengthening contractions (10). A comparison between the 

force production at the two frequencies may indicate if there has been greater reductions in 

force at lower frequencies. Reduction in force at low frequencies indicates that there is an 

impairment of excitation-contraction coupling (30). The present study was the first to 

investigate the effect of amino acid supplementation on LFF. However, BCAA ingestion did 

not impact upon the observed effect. Thus in the present study we observed no effect of 

BCAA on either measure of muscle function. Therefore our data demonstrating BCAA 

ingestion decreased soreness but had no effect on decrements in muscle function supports 
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previous research (29) which suggests that the relationship between muscle function and 

soreness is unclear.  

Muscle function following intense exercise may be, decreased due to increased muscle 

soreness. Twist and Eston (27) demonstrated that exercise-induced muscle damage increases 

perceived exertion and decreases performance during intense exercise. Whereas our study was 

not designed to investigate a relationship between muscle soreness and function, our result 

may offer some insights into this relationship. In the present study, soreness increased and 

muscle function decreased following the exercise bout as expected. However, whereas BCAA 

supplementation decreased muscle soreness, it has no impact on impaired muscle function. 

The most likely explanation for the apparent disconnect between the alleviation of muscle 

soreness with impaired muscle function is methodological. We used electrically-stimulated 

maximal voluntary contraction to test function of the muscle independent of motivation - or 

lack thereof - thus minimizing, if not eliminating, any reluctance to exert maximal force due 

to elevated muscle soreness. Alternatively, or additionally, the decrease in muscle soreness 

with BCAA supplementation may not have been sufficient to influence muscle function. 

More investigations specifically designed to investigate the relationship between soreness and 

function should be conducted. 

Previous authors attributed the attenuation of deleterious indices of lengthening 

contractions with amino acid supplementation to a modulated protein turnover (23). It is clear 

that essential amino acids stimulate muscle protein synthesis following exercise (25, 26), and 

resistance exercise with lengthening component stimulates muscle protein synthesis (19). 

Muscle protein turnover rates are low compared with other tissues (28) thus increases in the 

rate of muscle protein remodelling is likely to be insufficient to remodel enough proteins to 

explain these results in the short recovery period implemented in the present and previous 
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studies. No study to date has measured protein synthesis and breakdown in an experimental 

model of lengthening contraction based exercise and nutrition supplementation. It is difficult 

to comprehend that increased protein synthesis would account for improvements observed 

during only 2-3 days of recovery. Furthermore, it is difficult to imagine how increased net 

muscle protein balance could alleviate soreness even if turnover rates were very high. 

Intense lengthening contractions are known to elicit the release of CK and Mb into the 

blood. In the present study we observed increased plasma concentrations of both CK and Mb 

following exercise, however, BCAA ingestion did not alter the response. When comparing the 

magnitude of the CK response to endurance exercise in previous studies (6) with that 

observed in the present study, lengthening contractions if induces a higher CK response than 

the majority of endurance exercise. A reduction in CK activity with BCAA supplementation 

has previously been observed following lengthening contractions (6). CK and Mb levels are 

often erroneously considered as markers of muscle damage, in fact they are actually indicative 

of membrane disruption and ‘leaking’ of proteins from the muscle cell into the circulation. 

We measured myofibre concentrations to allow comparisons between other studies however, 

results showed a large variation in CK values between individuals. We demonstrate the peak 

response to be at 8 h post the exercise protocol which is earlier than previously demonstrated 

(29). However, within our results some subjects showed very high levels of CK compared to 

other individuals that showed very little increase in CK. Large inter-individual variability 

often observed in CK concentrations (4) may have accounted for the discrepancies in peak 

between this and previous studies (29). There were no correlations between the increase in 

CK and loss of muscle force, which is a more practical measure of the ability of the muscle to 

perform. These data add to existing data which suggest that myofibre protein responses are 

individualised and therefore may be considered weak predictors of muscle damage (29).  
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It is important to consider the practical implications of these results. Any attempt to 

extrapolate data generated in the present study to a trained population maybe non-sensical 

since untrained subjects were recruited. Athletes may respond differently due to the repeated 

bout effect (5, 14, 17) and the associated adaptations. However, these data may be applied to 

individuals starting an exercise regime or athletes returning to training following injury or off-

season may benefit from supplementing their diet with BCAA’s.  

In summary, supplementing a controlled diet with 29.2g/day of BCAA directly before and 

during short term recovery resulted in a decrease in soreness with the knee flexed and 

extended. However BCAA supplementation failed to ameliorate impairments in muscle 

function typically associated with intense lengthening contractions. No alterations in levels of 

myofibre proteins were observed in the plasma with BCAA supplementation. In conclusion 

BCAA is an effective aid in reducing soreness following intense lengthening contractions in 

healthy, untrained males. However, further studies are required to determine the mechanisms 

by which BCAA ingestion may lead to reductions in muscle soreness following multiple 

lengthening contractions. 
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3.1 Abstract 
Purpose: Repeated lengthening muscle contractions or unfamiliar exercise leads to loss of 

muscle strength, an increase in muscle soreness and elevated concentrations in the blood of 

myofibre proteins. Recently, nutritional interventions, including protein, have been suggested 

to alleviate these symptoms. The aim of the present study was to measure the impact of whey 

protein supplementation on the negative indices associated with multiple lengthening 

contractions under controlled conditions. Method: The present study was a parallel, matched, 

single-blind design. Twenty four non-weight trained males ingested either whey protein 

beverages (WP) or carbohydrate beverages (CHO) for 3 d following an intense bout of 

lengthening contractions. Diet was controlled throughout the testing period to match habitual 

energy intake. The exercise consisted of 12x10 repetitions of unilateral lengthening 

contractions of the knee extensor muscles at 120 % concentric one repetition maximum. Four 

supplements were consumed each day over a 3 d recovery period. Muscle soreness, muscle 

function and putative blood markers of muscle damage were assessed pre and post (1, 8, 24, 

48, 72 h) exercise. Results: Maximal isometric strength decreased after the exercise bout 

(P<0.001). Additionally, there was a beneficial effect of ingesting WP on muscle function at 

all time-points post exercise. Protein ingestion resulted in reduced muscle soreness compared 

to carbohydrate ingestion at 8 h in general (WP: 10 ± 3 mm; CHO: 19 ± 3 mm) and in the 

flexed (WP: 12 ± 2 mm; CHO: 22 ± 4 mm) and extended (WP: 19 ± 3 mm; CHO: 32 ± 4 mm) 

positions. There were no differences in creatine kinase or interleukin-6 concentrations 

between conditions. Conclusion: These data suggest that protein supplementation may 

alleviate muscle soreness and reduce decrements in maximal force production. 

Keywords: Nutrition, unaccustomed exercise, delayed onset muscle soreness, muscle 

function  
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3.2 Introduction 
It is well established that unaccustomed lengthening contractions results in temporary 

decrements in maximal force production, low frequency fatigue, reduced range of motion, 

increased muscle soreness, increased inflammation and an increase in concentrations of 

myofibre proteins in the blood (6, 12, 18, 20). Recently, nutritional interventions, including 

protein and /or amino acids, aimed to reduce the negative indices associated with intense 

lengthening contractions have received considerable attention.  

Whereas the effectiveness of ingesting a source of amino acids to attenuate the decrease in 

muscle force production following lengthening contractions has been investigated, the effect 

of these amino acids remains equivocal. Whey protein hydrolysate was shown to accelerate 

the recovery of muscle force production following 100 lengthening contractions (4). 

Impairments in maximum strength of squat and bench press were attenuated with 0.4 g⋅kg⋅d-1 

of amino acid supplementation in the first week of a 4 wk overreaching resistance protocol 

(14). Similarly, supplementation with a selection of 12 amino acids resulted in a decrease in 

the loss of muscle force following exercise involving lengthening contractions (23). However, 

in another study (18), when these 12 amino acids were ingested pre and post lengthening 

contractions and when supplementation was continued over 4 d following the exercise bout 

no improvements were observed in maximal voluntary contraction compared to a placebo. We 

previously demonstrated that there were no differences in strength loss when branched chain 

amino acid (BCAA) beverages were compared with a placebo four times a day over a 3 d 

recovery period (11). Differing results between studies may be attributed to the differences 

between the methods used to measure muscle function, the type of supplement and length of 

supplementation. In the present study, we replicated the exact exercise protocol that we 

previously implemented (11) to allow for comparison between our present and previous 
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results. Additionally, we used electrical stimulation when measuring maximal muscle force 

productions to ensure that the values obtained were not influenced by voluntary effort or 

soreness of the subjects.  

In addition to differences in the exercise bout (intensity, muscles exercised), dietary control 

may help explain discrepancies between studies. Many studies did not control diet. Changes 

in energy and/or protein intake may have increased the variability in the response to the 

multiple lengthening contractions that may have obscured any response to the interventions. 

Therefore it is difficult to determine whether discrepancies between studies are caused by the 

supplementation or variations in habitual energy and protein intake. Thus, we provided all 

food for all subjects during the entire period of the study.  

Despite equivocal findings in relation to amino acid ingestion and the effect on muscle 

force production following lengthening contractions, evidence suggests that muscle soreness 

can be attenuated with amino acid supplementation. We recently demonstrated that under 

conditions of strict dietary control, supplementation of BCAA resulted in decreased muscle 

soreness (11). Other authors also have observed decreased soreness with supplementation of 

BCAA (22) and mixed amino acids that included BCAA (18). Thus, it is possible that the 

BCAA are the active ingredient in amino acid mixtures shown to attenuate soreness. On the 

other hand, other studies contradict these findings (18, 29). Different findings between studies 

may be due to the length of supplementation. The studies that observed no differences in 

muscle soreness with amino acid supplementation only provided supplements on the day of 

the exercise (18, 30), whereas those that reported decreased soreness provided the amino acid 

source for at least 3 d following the exercise (11, 18). Therefore in the present study we had a 

3 d supplementary period and matched the BCAA content to that of our previous study. 
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The aim of the current study was to determine if whey protein supplementation could 

attenuate the loss in maximal force production, rise in soreness and rise in inflammation when 

diet was controlled over a 3 d recovery period from intense exercise bout consisting of 

lengthening contractions. We hypothesised that similar to BCAA ingestion whey protein 

supplementation would ameliorate the increased muscle soreness observed following the 

exercise bout. 

 

3.3 Method  
 

3.3.1 Participants 

Non–resistance trained males (n=24) were recruited for this study, which was approved by 

the University of Birmingham, School of Sport and Exercise Sciences Ethics Subcommittee. 

Subjects were made aware of procedures including the risks and benefits, gave written 

informed consent (Appendix A) and completed a general health questionnaire (Appendix B). 

Participants were able to withdraw from the study at any point without provision of reason. 

All participants refrained from physical activity and alcohol consumption for 2 d prior to 

testing and throughout the testing period. Participants were excluded if they had a previous 

history of resistance training or had completed high intensity lengthening contractions within 

the last 6 wk. 

 

3.3.2 General Design 

Subject characteristics are shown in Table 3.1. Subjects were assigned to either a whey 

protein (WP) or iso-energetic carbohydrate (CHO) group and performed one single-blind 

experimental trial. Groups were matched for weight and one repetition maximum (1RM). An 
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intense exercise protocol consisting of lengthening contractions was implemented to allow 

comparison of putative blood markers of muscle damage, muscular dysfunction and muscle 

soreness between WP and CHO. Subjects consumed four supplements daily between meals. 

The composition of the supplement consumed by participants is detailed in Table 3.2. 

Table 3.1: Composition of supplements 

 Body mass (kg) Height (m) 1RM (kg) Leg volume (mL) 
WP 71.3 ± 4.3 182 ± 2.5 59.7 ± 9.2 5617 ± 1354 

CHO 72 ± 10.8 177 ± 4.3 62.5 ± 9.8 5795 ± 1289 
Values are expressed as means ± SD 
1RM = one repetition maximum 
Leg volume = volume of upper leg which was exercised calculated via anthrompetry (31). 
 
 
Table 3.2: Composition of supplements 

 Protein (g) Carbohydrate (g) Flavouring (g) Water (mL) 
WP 25.8 0 3.5 300 

CHO 0 25.8 3.5 400 
 

3.3.3 Preliminary testing 

Subjects visited the laboratory for preliminary measurements on two occasions. On the 

first, leg volume of the non-dominant leg was calculated (31). Determination of concentric 

1RM of their non-dominant leg followed using a leg extension machine (Cybex international, 

USA). Subjects lifted an initial load that was then increased in increments of 2.5 kg. The 

subjects were instructed to lift the weight, hold it out-stretched for 2 s and then slowly lower 

it. Subjects rested for 3 min between lifts to minimise the impact of fatigue. Subjects were 

given a second attempt after the rest period if they failed with any given lift. This laboratory 

visit also served as familiarisation for the lengthening contractions exercise protocol that 

followed. The familiarisation involved two lifts at 50 % of their concentric 1RM in which the 

weight was lifted by the researchers for the subject to lower. Subjects were secured into the 

chair to ensure that the load was lifted using only their leg. The subjects’ non-dominant upper 

leg was positioned at 90o to their torso with their knee flexed to ~110o. The lift started with 
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the exercising knee positioned at ~15o of flexion. Two testers lifted the weight to its full 

extension; a ‘contract’ command prepared the subject for the weight to be lowered. This 

command was followed by the command ‘release’ and the weight was released onto the 

subjects’ leg, and was then lowered by the subject while resisting the load. The weight was 

then lowered through 95o to bring the load back to its resting position. Subjects aimed to 

control the weight in the downward movement for 4 s. On the second visit to the laboratory, 

preliminary measurements were taken. These involved the measurements taken at each time-

point, i.e. visual analogue scale (VAS), a blood draw and a muscle function test. 

 

3.3.4 Diet and activity 

Prior to each trial, subjects were instructed to record a weighed 3 d diet record. An average 

energy intake from these 3 d was calculated and used to determine the energy requirements of 

each subject. All food was prepared and supplied to the subjects to ensure that i) any 

differences observed could be attributed to the supplements and ii) diets were comparable 

between subjects. The diet was composed of 55 % carbohydrates, 1.5 g protein/kg body mass 

(BM) with the remainder of the energy from fat, which was similar to their habitual diet. 

Prepared food was administered the day before, the day of, and 2 d following the exercise 

protocol.  

 

3.3.5 Experimental Protocol 

On the day of the exercise protocol, subjects reported to the laboratory at ~06:00 h 

following an overnight fast (Figure 3.1). The subjects ingested their first supplement followed 

by 30 min rest. The exercise protocol was then performed which lasted ~45 min. 

Subsequently, subjects rested for 60 min before the first measurements were carried out. Pain 
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was assessed using the VAS, followed by a blood draw from a forearm vein using a 

standardised venepuncture technique. Finally, muscle function was assessed via maximal 

isometric strength (MIS) as described below. The order of these measurements was 

standardised for the 8, 24, 48, and 72 h post exercise. Following completion of the 1 h testing 

period, participants consumed another supplement before breakfast. A third supplement was 

ingested between lunch and dinner and the fourth at bedtime. On the following 2 d 

supplements were consumed between meals. All measurements were taken in the morning in 

the fasted state with the exception of the 1 and 8 h time-point. To maximise measurement 

reliability, the same investigator carried out all measurements for each subject. 

 

Figure 3.1: Schematic protocol depicting the duration of the study.  
Criterion measures include; muscle soreness, blood draw, muscle function test.   Exercise = 12 sets of 10 
repetitions of lengthening contractions of the knee extensor muscles at 120% concentric 1RM. Supplements were 
consumed 4 times on the day of and two days following the exercise and contained either protein (WP) or 
carbohydrate (CHO). 
 

3.3.6 Lengthening contractions protocol 

Subjects were seated as previously described (11) and completed 12 sets of 10 lengthening 

contractions at 120 % concentric 1RM, with 5 s rest between each repetition and 1 min rest at 

the end of each set. If the subject failed to control the weight for two consecutive repetitions, a 

rest period of 30 s was enforced. During each lengthening contraction subjects were verbally 

encouraged to aid maximum effort. 
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3.3.7 Muscle function 

MIS was assessed using electrical stimulation with a Tornvall chair (7). Participants were 

seated so the knee was at 90o with a cord fastened round the ankle. This cord was attached to 

a strain gauge interfaced with a computer. Two arm straps held the subject in place in the 

chair. Damp electrodes (13 by 8 cm) were secured to the thigh over the proximal and distal 

ends of the quadriceps. On the first visit the subjects were familiarised to the electrical 

stimulation and current was increased until there was no further increases in force production. 

1.3 times greater than this current was then used for the superimposed electrical twitch 

simulations. Participants were electrically stimulated at their maximal electrical stimulation 

three times before being encouraged to push out with their leg against the cord with as much 

force as possible. Three electrical twitch stimulations were superimposed during muscle 

contraction to ensure that the contraction was maximal. This procedure occurred three times 

at each time-point with a rest of 3 min between attempts. The highest force obtained for each 

leg represented the subjects’ MIS. 

 

3.3.8 Muscle soreness 

Subjects rated muscle soreness generally and with the knee flexed and extended using a VAS. 

The VAS consisted of a 50 mm line with anchor points of ‘no soreness’ on the left and 

‘extremely sore’ on the right. Subjects marked a point along the line that represented the 

perceived soreness experienced in the quadriceps muscle group. Pain was given a value by 

measuring the distance from the left anchor point. It has been shown that 90% of pain ratings 

can be repeated within 9mm using the VAS (2). 

3.3.9 Blood Analysis  
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Plasma concentration of CK was measured as a putative marker of muscle damage. Serum 

was collected and analysed for interleukin-6 (IL-6) as an indirect marker of inflammation. 

Plasma samples were placed on ice, and serum samples were left at room temperature for 30 

min to allow clotting. Samples were centrifuged at 3000 revolutions per min for 10 min at 4 

oC. Thereafter, plasma and serum were extracted and stored in the freezer at -20 oC until 

further analysis. Enzymatic analysis for plasma concentrations of CK (CK NAC CP, ABX 

diagnostics, UK) was performed in duplicate at each time-point using a semi-automated 

analyser (COBAS MIRA S-plus, ABX, UK). Serum concentrations of IL-6 were analysed 

using a commercially available sandwich enzyme-linked immunoabsorbent assay (ELISA) 

(High sensitivity Human IL6 assay, R&D systems, UK). Plates were read in duplicate on a 

Labsystems Original Multiskan MS at selected wavelengths (490 nm with correction at 630 

nm). Reported sensitivity of the IL-6 ELISA is 0.039 pg/mL. 

 

3.3.10 Data presentation and statistical analysis. 

MIS data were taken from the best value of three attempts and converted into Newtons 

from the volts value obtained. MIS values are displayed as a percentage of the pre-exercise 

value to show the force that was lost. The MIS value recorded at pre was used as the baseline.  

VAS scores are shown over the course of the study period. Moreover, we calculated area 

under the curve (AUC) to give an indication of soreness over the total 72 h experimental 

period. Since any differences between groups seemed to be due primarily to changes in the 

first 24 h, we also chose to calculate AUC of soreness for only the first 24 h period. AUC 

baseline values were calculated from the mean of preliminary values. Plasma CK 

concentrations and serum IL-6 concentrations are shown as the mean of the raw 

concentrations.  
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Data were analysed using statistical package for social sciences (SPSS) 17.0 for Mac 

(SPSS Inc., Chicago, IL). Differences across time for blood concentrations, force loss and 

VAS scores were analysed by a mixed design, two-way ANOVA with two between (WP, 

CHO) and six or four (depending on variable analysed) within (time-points) subject variables. 

AUC values were compared using an unpaired students t-test. Significance was set at the 0.05 

level of confidence. Where significance was found, least significant difference (LSD) post 

hoc tests were run to distinguish differences between supplementary groups. Missing data 

points were averaged from the other data sets for that time-point and group. This 

manipulation allowed a higher number of subjects to be included in the analysis to improve 

statistical power. 

Data also were analysed using inferential statistics with 90 % confidence limits to produce 

magnitude-based values about the probabilities of the outcome (1). The likelihood of the 

outcome being of beneficial or detrimental nature also was determined using a published 

spreadsheet (9). The P value (Probability value), , degrees of freedom, percentage level for 

confidence, threshold values (meaning of an effect) and an effect statistic were entered. The 

value of an effect statistic was calculated as the difference between the mean of each group. 

For overall general soreness, an effect was assumed to be a change of 137 mm * 72 h and 50 

mm * 24 h for flexed soreness, this value was 146 mm * 72 h, and 54 mm * 24 h and for 

extended soreness this value was 137 mm * 72 h and 50 mm * 24 h. These values were 

derived from the smallest standardized (Cohen) difference in mean (0.2) multiplied by the 

standard deviation of CHO (control condition). For MIS each time-point post exercise was 

compared back to the corresponding pre value and inferences were made on the comparison 

of these differences between groups. Inferential values were derived from the log of raw data 

and calculated using a published spreadsheet (8). When the value is determined to be <1% 



Chapter 3: Whey protein ingestion and lengthening contractions 

 74 

detrimental or beneficial it is almost certainly not; 1-5 % very unlikely, 5-25 % unlikely, 25-

75 % possible, 75%-95 % likely, 95-99 % very likely and >99 % almost certainly. 

3.4 Results 
 

3.4.1 Muscle Function 

A decrease in MIS (Figure 3.2) was apparent in all subjects following exercise. The mean 

maximal percentage of force loss assessed using MIS was observed 24 h post exercise in WP 

(-59 ± 7 %) and 48 h post exercise in CHO (-57 ± 7 %). Using inferential statistics protein 

ingestion was likely beneficial at 1 (95 % beneficial) and 8 h (80% beneficial) post exercise.  

 

Figure 3.2: Percentage change in leg muscle function pre and following  120 lengthening contractions.  
Depicted as electrically stimulated maximal isometric strength. Data expressed as means ± SE. * significant 
difference from baseline in both groups. Supplements were consumed 12 times over the testing period and 
contained either protein (WP) or carbohydrate (CHO). Inferential statistics show a beneficial effect of WP 
compared to CHO at 1 and 8 h. 
 

3.4.2 Muscle Soreness 

The temporal pattern of muscle soreness to multiple lengthening contractions over the 72 h 

period was similar in all three positions. Soreness with the knee in a flexed position is shown 

in Figure 3.3A. The exercise protocol resulted in increased overall soreness in both groups. 

Soreness ratings were lower at 8 h compared with 1 h (p=0.03) in both groups. In all positions 

of the leg, peak soreness was observed at 1 h in CHO and at 48 h in WP. Additionally 
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soreness was significantly lower in an extended position at 1 h post exercise in WP compared 

to CHO. 

Over the total 72 h experimental period when data are expressed as AUC, muscle 

soreness with the knee flexed was 30 % less for WP compared to CHO (Figure 3.3B). 

However, t-test indicated no statistical difference between groups. Inferential statistics 

showed WP was likely beneficial for amelioration of overall muscle soreness in all knee 

positions (Table 3.3).  

 

Figure 3.3: Muscle soreness pre and following 120 lengthening contractions measured using a 50 mm 
visual analogue scale (VAS). a) knee in a flexed position over 72 h, b) area under the curve of flexed 
muscle soreness over the entire 72 h period.   
Data are expressed as means ± SE. * significant difference from baseline in both groups.  Supplements were 
consumed 12 times over the testing period and contained either protein (WP) or carbohydrate (CHO). Inferential 
statistics show a beneficial effect of WP compared to CHO. 
 

Table 3.3: Muscle soreness inferentials for 72h  period 

Knee 
position 

P value Value ± 90% 
confidence limits 

Outcome 

General 0.1369 290 ± 320 79% (likely) beneficial 
Flexed 0.1 340 ± 340 83% (likely) beneficial 

Extended 0.1848 330 ± 420 79% (likely) beneficial 
 

Over the first 24 h period only, total soreness in all three positions expressed as AUC 

was significantly lower in WP than CHO (Figure 3.4). Evaluation using inferential statistics 

showed WP was very likely beneficial for amelioration of overall muscle soreness in the first 

24 h following the exercise bout with the knee in all positions (Table 3.4). 



Chapter 3: Whey protein ingestion and lengthening contractions 

 76 

 

Figure 3.4: Muscle soreness with knee flexed for the first 24 h as area under the curve (AUC) following  
120 lengthening contractions measured using a 50 mm visual analogue scale (VAS).  
Data are expressed as means ± SE. # significant difference between groups. Supplements were consumed 12 
times over the testing period and contained either protein (WP) or carbohydrate (CHO). Inferential statistics 
show a beneficial effect of WP compared to CHO. 
 
Table 3.4: Muscle soreness inferentials for the 24h period 

Knee 
position 

P value Value ± 90% 
confidence limits 

Outcome 

General 0.0153 190±130 97% (very likely) beneficial 
Flexed 0.0077 220 ±130 98% (very likely) beneficial 

Extended 0.004 250±130 99% (almost certainly) beneficial 
 

3.4.3 Blood parameters  

Serum IL-6 data are depicted in Figure 3.5. IL-6 concentrations significantly increased 

following the exercise protocol in both groups. IL-6 concentration had returned to baseline by 

24 h post exercise. No differences in IL-6 concentrations were observed between WP and 

CHO. 

 

Figure 3.5: Serum interleukin-6 concentration measured pre-, 1, 8 and 24 h post- exercise.  
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Data are expressed as means ± SE. * significant difference from baseline in both groups. Supplements were 
consumed 12 times over the testing period and contained either protein (WP) or carbohydrate (CHO). 
 

Plasma CK concentration increased post exercise and remained elevated throughout the 

recovery period (Figure 3.6). Peak CK concentrations were observed at 8 h post exercise in 

CHO and 72 h post exercise in WP. No significant differences were observed between groups 

for plasma concentration of CK. A large inter-subject variability was observed in CK 

responses, with peak values ranging 100-fold (184 -18150 U/L).  

 

Figure 3.6: Plasma creatine kinase concentrations in the plasma pre and following 120 lengthening 
contractions.  
Data are expressed as means ± SE. * significant difference from baseline in both groups. Supplements were 
consumed 12 times over the testing period and contained either protein (WP) or carbohydrate (CHO). 
 

3.5 Discussion 
The present study investigated whether the ingestion of whey protein, providing 

BCAA in amounts previously demonstrated (11) to reduce muscle soreness before and 

following intense lengthening contractions, improved indices of recovery when compared to 

an isoenergetic beverage. We observed a reduction in overall soreness in the quadriceps 

muscle over the first few hours following the exercise bout with whey protein 

supplementation. Furthermore, we determined that there was a likely beneficial effect of whey 

protein supplementation on muscle soreness over the entire 72 h period. Additionally, there 
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was a likely beneficial effect of whey protein on muscle function at 1 and 8 h post exercise. 

However, no differences in plasma concentration of a putative marker of muscle damage 

(CK), or an indirect measurement of inflammation (IL-6) were detected between whey protein 

and an isoenergetic placebo when supplements were provided pre and for 3 d following an 

intense bout of lengthening contractions. Thus, it seems whey protein ingestion following 

multiple intense lengthening contractions impacts muscle soreness and muscle function within 

the first few hours of recovery. 

The impact of whey protein ingestion on muscle soreness seems to be due primarily to 

the amino acid content of the protein rather than other factors such as energy content. In the 

present study we aimed to compare the effects of a complete amino acid source with that of an 

isoenergetic non amino acid containing beverage. We recently demonstrated that 

supplementing a controlled diet with BCAA’s only resulted in reduced overall soreness at 48 

h and 72 h post exercise (11). Additionally, a preliminary study (22) reported reduced muscle 

soreness following squat exercise. Supplementation with mixed amino acids (9 essential and 3 

non essential), including BCAA, has previously been reported to reduce muscle soreness (18). 

In the present study untrained subjects ingested all amino acids, including the same amount of 

BCAA as in our previous study (11) and we observed a reduction in muscle soreness. 

Therefore, taken together, these data suggest that the beneficial effect of the whey protein on 

muscle soreness may be related to the BCAA content. Moreover, the addition of other amino 

acids as in the present and a previous study (18) do not hinder this amelioration of muscle 

soreness. It would be interesting to compare the effects of a whey protein containing beverage 

with a beverage containing only the NEAA to see if the NEAA are required. 

Negligible effects of supplementation on muscle soreness also have been previously 

reported. Interestingly, mixed amino acids (18) and protein plus carbohydrate (30) 
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supplements have been shown to have no influence on muscle soreness. The reason for the 

discrepancy between the present and previous studies is unknown. Careful comparison 

between study designs reveals a range of exercise intensities, limbs used, supplements 

provided, timing of supplementation and, for many, a lack of dietary control. Another factor 

that seems to be important is the length of supplementation period. When protein was 

provided pre or post exercise only no effect was observed on muscle soreness (30). We 

provided multiple supplements over a 3 d recovery period and observed improvements in 

soreness in the present and previous study The importance of an extended supplementary 

period is further supported by Nosaka et al (18), who demonstrated that with the same 

supplement content and exercise implemented (intensity and limb used), there was only a 

reduction in soreness when supplements were provided over 3 d of recovery. Thus, even 

within the same research group and when the same supplement is used the length of 

supplementation appears to influence the results. However, there are some studies that 

observed decreased soreness with only one dose of amino acid ingestion (21, 22). Therefore, a 

systematic investigation of the various aspects of study design and effect on muscle soreness 

should occur before solid recommendations can be made. 

Whereas in the present study we observed a reduction in soreness with whey protein 

supplementation, the mechanism cannot be deduced using our data. It previously has been 

suggested that the feeling of pain is caused by inflammation of the perimysium or epimysium 

(15). A sensitization of the muscle nociceptors caused by the inflammatory response results in 

the common feeling of soreness (20). Intense lengthening contractions are known to lead to an 

inflammatory response which may be represented by an increased the circulating 

concentrations of the inflammatory cytokine IL-6 (3). However, as in previous studies (11, 

16) in the present study we observed no differences between supplementation groups in the 
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response of IL-6 when whey protein or carbohydrate was ingested.  Thus, our data do not 

support the suggestion that reduced muscle soreness with whey protein supplementation was 

modulated via an inflammatory response. However, the measurement of IL-6 is only looking 

at one inflammatory pathway, and does not solely represent muscle inflammation. Future 

studies are required to fully elucidate the mechanisms that result in the decreased soreness 

with amino acid supplementation, these studies may include other measures of inflammation 

including magnetic resonance imaging to measure oedema or swelling in the exercised limb. 

It is possible that muscle soreness may contribute to the reduction of muscle function. 

It is known that an increase in perceived pain decreases performance (26). It also has been 

suggested that the cause of force loss with lengthening contractions, as in the present study, is 

partially driven by central mechanisms, but mainly caused by peripheral mechanisms (10). In 

the current study we employed electrical stimulation to obtain MIS. The use of electrical 

stimulation allowed us to measure muscle function independently of motivation, therefore 

likely diminishing resistance to maximally exert force due to pain. Hence, we attempted to 

reduce central mechanisms that might confound results. Thus, we compared force generated 

with whey protein supplementation and the control condition observing only peripheral 

mechanisms. Even when using electrical stimulation, we still observed decrements in muscle 

force in both conditions, suggesting that the force loss was caused by a peripheral mechanism. 

Furthermore, there was a reduced loss of muscle function and amelioration in soreness with 

whey protein ingestion compared with carbohydrate. Therefore, protein may impact 

peripheral mechanisms that cause decreased muscle force following intense lengthening 

contactions. However, from the data collected in the current study we are unable to deduce 

mechanisms to explain how ingestion of whey protein impacts peripheral mechanisms related 

to force production. 
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The timing of supplementation or the form of ingested protein may be important for 

attenuating force loss from lengthening exercise. In the present study we provided whey 

protein isolate and observed an amelioration of the decrement in muscle function over the first 

few hours following resistance exercise. Our results contradict those of Buckley et al. (4) who 

demonstrated that whey protein hydrolysate, but not whey protein isolate, resulted in an 

attenuation of the decrement in muscle function following lengthening contractions. We 

provided supplements pre and post exercise, however Buckley et al. (4) provided the first 

supplement after the post exercise measurements. Thus, it is possible that the provision of 

whey protein isolate post the exercise bout only, does not effectively attenuate decrements in 

muscle function. Thus, we suggest whey protein isolate may be effective for attenuating loss 

of maximal force production after intense lengthening contractions if provided both pre and 

post exercise. However, more studies should be completed in order to fully understand if there 

are any differences in muscle function recovery between ingesting whey protein hydrolysate 

and isolate following lengthening contractions.  

From our data the cause of improved muscle function over the first few hours of 

recovery with ingestion of whey protein compared to carbohydrate is unclear. Previous 

authors attributed the attenuation of deleterious indices of multiple lengthening contractions 

with amino acid supplementation to a modulated protein metabolism (22). However, it is 

highly unlikely that any differences in muscle function in the first few hours can be attributed 

to increased protein synthesis. It is known that protein ingestion can stimulate muscle protein 

synthesis (13, 24, 25). However, the turnover rate of muscle protein synthesis is low (28), thus 

any increases in muscle protein synthesis is unlikely to remodel proteins sufficiently in the 

short time frame in which we observed changes in muscle function. Therefore, future studies 
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should look to examine the mechanisms by which decrements in muscle function are reduced 

with whey protein ingestion. 

Plasma CK concentration increases following lengthening contractions. Myofibre 

proteins are often used as markers of muscle damage. However, elevated concentrations of 

myofibre proteins in the blood are more likely indicative of loss of membrane integrity due to 

disruption of structural elements within the muscle (29). This notion is further supported by 

evidence that the release of myofibre proteins into the blood can be prevented in rats if 

vitamin E is provided (27) due to the interaction with the membrane phospholipids (19). In 

our hands, whey protein had no impact on reducing CK concentrations following intense 

lengthening contractions. Previously, blood concentrations of myofibre proteins were 

decreased with supplementation of mixed free amino acids ingested in a fed state 30 min pre 

exercise, post exercise and during a 4 d recovery period (18). However, various other amino 

acid supplementation strategies have failed to reduce the increase in myofibre proteins 

observed following intense lengthening contractions (11, 18). Reasons for these discrepant 

findings are likely due to substantial variability observed between individual CK responses to 

eccentric exercise. We observed a wide variation in responses - up to 100-fold. Our 

observation of high inter-subject differences is consistent with existing literature (29) and 

further highlighted the inherent problems associated with using CK as a predictor of muscle 

damage. We used parallel group design, thus different subjects in each group may have 

contributed to the lack of observed differences between experimental groups.  

 The practical implications of the results from this study are not entirely clear. These 

results suggest that ingestion of whey protein, as a supplement, may be beneficial for reducing 

soreness and decrements in muscle function primarily during the first few hours following 

exercise when compared to ingestion of carbohydrate. However, if compared to previously 
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published data (11) ingestion of whey protein reduces the decrement in muscle function more 

than water in the later stages of recovery. We chose to measure the responses in untrained 

individuals to maximise our ability to detect any differences. The responses may very well be 

different in those individuals more accustomed to this type of exercise (5, 17). Thus, the 

impact of whey protein on soreness and muscle function may be limited to untrained 

individuals and may not apply to those who train regularly. It is possible that individuals 

beginning a training regime or athletes returning to training following an injury may show 

similar responses and therefore benefit from whey protein ingestion. However, as discussed 

previously (11), the physiological relevance of this finding may be questioned. Particularly 

for previously sedentary individuals, it is possible that reduced soreness immediately 

following exercise from ingesting whey protein may help to increase exercise adherence. 

Thus, our results may be used to suggest ingestion of whey protein as an aid to help increase 

exercise participation. 

In summary, supplementing a controlled diet with 103 g/d of whey protein directly 

before and during short-term recovery from multiple lengthening contractions resulted in a 

decrease in muscle soreness and attenuated decrements in muscle function over the first few 

hours of recovery. In conclusion whey protein is an effective aid in reducing soreness and 

reducing muscle function decrements following intense lengthening contractions in healthy, 

untrained males. 
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4.1 Abstract 
Purpose: Ingestion of essential amino acids are known to stimulate muscle protein 

synthesis. It is often speculated that BCAA ingestion is important for increases in muscle 

protein synthesis (MPS). However, no study has investigated the effect of ingesting only 

BCAA following resistance exercise on MPS. Therefore, the purpose of this study was to 

investigate the effect of ingesting BCAA on MPS, in association with leg resistance exercise. 

Method: Using a counterbalanced, crossover, double blind design, ten weight-trained males 

completed two trials consuming either a BCAA containing beverage or a placebo (PLA) post 

resistance exercise. Diet was controlled for two days prior to each infusion trial to match 

habitual caloric intake and dietary composition. The exercise consisted of 4 x 10 repetitions at 

70 % one repetition maximum on a leg press machine and 75 % on a leg extension machine. 

Trials were performed following intake of a high protein (30 % energy) breakfast. Protein 

synthesis was measured over the 4 h recovery period by a primed, constant infusion of L-[ring 

13C6]phenylalanine. Muscle biopsies were obtained from the vastus lateralis immediately, 1 h 

and 4 h post resistance exercise and blood samples were collected throughout the trial. 

Western blotting was used to determine the phosphorylation status of P70 ribosomal protein 

S6 kinase (p70S6K) (Thr389 and Ser424/Thr421), ribosomal protein S6 (Ser235/236), 4E-

binding protein (Thr37), protein kinase B (Thr308) and pras 40 (Thr246). Results: Plasma 

BCAA concentrations were significantly higher in BCAA than PLA following drink 

ingestion. Peak leucine (652 ± 43 nmol/L), isoleucine (355 ± 24 nmol/L) and valine (785 ± 47 

nmol/L) were observed at 0.5 h post drink ingestion in BCAA and remained elevated for 3 h. 

FSR was 22 % higher in BCAA (0.11 ± 0.009%/h) than PLA  (0.09 ± 0.006 %/h) over the 4 h 

recovery period. There were no differences between conditions in any of the signaling 



Chapter 4: BCAA ingestion and MPS 

 88 

proteins measured. Conclusion: Our results indicate that MPS can be further increased from 

resistance exercise by ingesting BCAA. 

Keywords: Nutrition, intracellular signaling, protein, fractional synthetic rate 
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4.2 Introduction 
Branched chain amino acids have long been associated with muscle anabolism. In vitro 

studies demonstrated that there was no increase in protein synthesis when the branched chain 

amino acids were omitted from amino acid perfusions (24). Studies in resting humans 

demonstrated a role of ingesting a specific branched chain amino acid, leucine, in muscle 

anabolism (29). In a rats leucine supplementation increased muscle protein synthesis 

following a running exercise above exercise alone (1, 2). However, the exercise resulted in 

decreased muscle protein synthesis, leaving the rats in a catabolic state. Therefore, leucine 

ingestion returned muscle protein synthesis levels to pre exercise levels, rather than increasing 

muscle protein synthesis above basal levels. The restoration of muscle protein synthesis rates 

was accompanied by increases in phosphorylation status of intracellular signalling proteins 

(1). In humans a decrease muscle protein synthesis has never been shown in the recovery 

period following exercise.. Additionally, the effect of leucine or branched chain amino acids 

on muscle protein synthesis in humans following exercise is unknown. 

The exact mechanisms by which leucine or the branched chain amino acids exert their 

anabolic action remain unclear. However, increases in intracellular signalling lead to 

increased protein synthesis through elevated translation initiation and elongation in vitro and 

in animals. Leucine increases translation initiation and elongation signalling in resting 

humans (12). A recent study by Karlsson et al. (17) demonstrated that repeated ingestion of 

branched chain amino acids led to increase in phosphorylation of p70 protein kinase S6 

(S6K1) at both Thr 389 and Ser424/Thr 421 sites following resistance exercise. Additionally, 

ribosomal protein S6 (rpS6) was stimulated with branched chain amino acid ingestion. 

Whereas no measure of synthesis was made by Karlsson et al. (17), it was assumed that this 

difference in phosphorylation of S6K1 and rpS6 would result in differences in muscle protein 
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synthesis (6, 15). However, it is important to note that assessment of anabolic signalling only 

provides a snapshot of potential translational control. It is for these reasons that direct 

measurements of muscle protein synthesis through stable isotopic tracer methodology are now 

widely employed in parallel with measures of signalling protein phosphorylation status. 

It is well known that the ingestion of essential amino acids and protein following resistance 

exercise results in increases in muscle protein synthesis (8, 36, 42, 44). Whereas, the ingestion 

of leucine alone following resistance exercise has never been studied, the co-ingestion of 

leucine with both essential amino acids (EAA) (10) and whey protein (20-22, 41) has been 

investigated. However, the effect on muscle protein synthesis of ingesting additional leucine 

remains equivocal (10, 20-22, 41). The ingestion of leucine with protein or EAA resulted in 

greater post exercise muscle protein synthesis rates compared to exercise alone (10, 20). 

However, in these studies (10, 20) the effect of leucine is difficult to distinguish from that of 

the protein or EAA that was co-ingested, as there was no comparison to the ingestion of only 

EAA or protein following exercise. However, other studies that have investigated muscle 

protein synthesis rates following exercise after ingestion of leucine plus protein have made 

comparisons to protein ingestion alone and exercise (21, 22).  This comparison allows the 

effect of leucine to be determined. These studies (21, 22) suggest that there was no additional 

effect on muscle protein synthesis with the ingestion of leucine plus protein compared to 

protein only. Similarly there is no further increase in muscle anabolism following exercise 

when leucine is added to whey protein compared to whey protein alone (41).  

To date no studies have investigated the effect of branched chain amino acids ingestion 

alone following resistance exercise. There is reason to believe the ingestion of leucine alone 

results in a fall in the concentrations of other branched chain amino acids (41) likely due to 

increased branched chain alpha keto acid dehydrogenase activity (5). Therefore, to prevent a 
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fall in the concentrations of isoleucine and valine it would be logical to provide all branched 

chain amino acids within a supplement investigating the muscle protein synthesis. Hence, we 

provided all branched chain amino acids following a bout of resistance exercise. Branched 

chain amino acids have been shown to increase phosphorylation status of signalling proteins, 

however not alongside a measure of muscle protein synthesis. Thus, we measured signalling 

proteins simultaneously with muscle protein synthesis in trained human males. Resistance 

trained athletes typically train 2 -3 h after a meal. Hence, for practical reasons the study 

design was such that we provided a high protein breakfast so that the exercise would be 

completed following food intake. We hypothesised that the ingestion of branched chain amino 

acids following resistance exercise would not only increase the phosphorylation status of 

mammalian target of rapamycin (mTOR) related signalling proteins, but also increase muscle 

protein synthesis. 

 

4.3 Method 
4.3.1 Subjects 

Eleven healthy males who completed regular resistance training of the lower body (≥ 2/ wk 

≥ 6 mo) were recruited for the present study. Due to subject illness only 10 subjects 

completed both trials. Therefore data are shown only for 10 subjects. The mean (± SD) age 

was 20.1 (± 1.3) y, body mass 83.3 (± 11.7) kg, and percentage lean mass 86.1 (± 4.1) %. The 

design, purpose and potential risks associated with the study were explained to the subjects 

before obtaining written, informed consent (Appendix C). Exclusion criteria were metabolic 

disorders (as determined by health questionnaire (Appendix B)), food intolerances/allergies, 

allergies to local anaesthetic, current participation in other clinical trials, blood donations 

within three months of the initial screening visit and the prescription of medication or 
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nutritional/dietary supplements suggested to affect protein metabolism. All trials were 

conducted in the laboratories of the School of Sport and Exercise Sciences, University of 

Birmingham, following ethical approval by National Research Ethics Service ethics board 

(Warwickshire). 

 

4.3.2 Study Design 

Subjects reported to the laboratory on five separate occasions including two experimental 

trials separated by ≥ 3 wk. During the initial visit body composition was assessed using Dual-

Energy X-ray Absorptiometry (DEXA) and one repetition maximum (1RM) was predicted for 

each leg individually. Approximately 1 wk later, subjects returned to the laboratory to 

confirm their 1RM on one leg. Two days later subjects performed their first blinded trial in 

which they consumed either a branched-chain amino acid containing beverage (BCAA) or a 

placebo (PLA) (Lucozade, GlaxoSmithKline, Brentford, UK) (Table 4.1). Subjects performed 

a unilateral bout of resistance exercise prior to consuming the test drink in each trial. 

Myofibrillar protein synthesis was determined by measurement of the incorporation of L- 

[ring-13C6] phenylalanine into muscle protein during a primed continuous infusion and urea 

production was measured through infusion of 15N2 urea. The complete testing procedure was 

repeated on the contralateral leg ~3 wk after the first trial. Trial and exercised leg order were 

counter-balanced and randomised. 

Table 4.1: Contents of test drinks 
 BCAA PLA 
Calories (Kcal) 39 13 
Leucine (g) 2.6 0 
Isoleucine (g) 1.4 0 
Valine (g) 1.6 0 
Carbohydrate (g) 3.1 4.6 
Fat (g) 0.01 0.02 
Sodium (g) 0.2 0.2 
Drinks were consumed after the unilateral bout of resistance exercise and were either a branched chain amino 
acid containing beverage (BCAA) or a placebo (PLA). 
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4.3.3 Preliminary testing 

4.3.3.1 Exercise sessions  

At least 6 d before and < 2 wk prior to the first infusion trial session, 1RM was predicted 

for both legs of each subject using a previously published method (45). Subjects warmed up 

each leg, before completing the maximum number of repetitions at 80 % of the subjects own 

prediction of 1RM. This load was then inserted into equation 1 to estimate 1RM (30).  

       (1) 

Three days prior to the infusion trial days subjects returned to the laboratory to confirm 

their 1RM (23) on the leg that was to be exercised in the forthcoming trial. Briefly, the load 

was set to 90 % of the estimated 1RM from equation 1. Subjects completed the maximum 

number of repetitions possible. The load was then increased by 5-10% until only one 

repetition could be completed. A rest period of 3 min was given between each load.  

4.3.3.2 Diet and physical activity:  

Participants completed a weighed 3 d diet record prior to commencement of the testing 

period to provide an estimate of habitual macronutrient composition as analysed by a 

commercially available software program (Wisp V3.0, Tinuviel software). Food was provided 

for 2 d prior to the infusion trial and matched that of their individual habitual intake. Subjects 

were instructed to consume all food provided and asked to refrain from eating after 22:00 on 

the evening prior to the infusion trial.  During this 2 d period subjects were asked to refrain 

from exercise and alcohol.  

4.3.3.3 Body Composition:  

Body composition was assessed using DEXA (Hologic Discovery W, Hologic Inc., 

Bedford, Massachusetts, USA). 

 

1RM =
load

1.0278! 0.0278( )•reps
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4.3.4 Experimental Protocol 

A schematic of the trial protocol is displayed in Figure 4.1. Subjects reported to the 

laboratory at ~ 06:15 following an overnight fast where standard measures of height and 

weight were taken. A cannula was inserted into a forearm vein of one arm, and a resting blood 

sample was obtained. Thereafter, subjects were fed breakfast (30 kJ/kg body mass (BM)) with 

30% total energy provided by protein. After breakfast a primed, continuous infusion of 15N2 

Urea (Cambridge Isotope Laboratories Inc, Andover, Massachusetts, USA) was started and 

continued throughout the protocol. The priming dose relative to body mass was 88 

µmol/kgBM and the infusion rate 0.227 µmol⋅min -1⋅kgBM-1. Subjects rested for ~ 75 min 

before a primed (2 µmol/kgBM) constant infusion (0.050 µmol⋅min-1⋅kgBM-1) of L-ring 13C6 

phenylalanine (Cambridge Isotope Laboratories Inc, Andover, Massachusetts, USA) was 

started.  

105 min later, subjects performed a single bout of unilateral leg resistance exercise which 

lasted ~25 min. Subjects completed a warm up on the leg press machine (Cybex VR3, Cybex 

International, Medway, Massachusetts, USA), which consisted of 12 repetitions at 40 % 

1RM, 10 repetitions at 50 % 1RM, eight repetitions at 60 % 1RM and two repetitions at 70 % 

1RM. The warm up was followed by a 2 min rest period. The resistance exercise protocol 

consisted of four sets of 10 repetitions at 70 % and 75 % 1RM on the leg press and leg 

extension machine (Cybex VR3, Cybex International, Medway, Massachusetts, USA), 

respectively. Subjects rested for 2 min between each set and were free to consume water ad 

libitum. A floor standing fan was used to cool subjects and verbal encouragement was 

provided to all subjects throughout the protocol. If a subject could not complete a full set, the 

load was lowered by 4.5 kg. On completion of each set subjects were asked to rate their 

perceived exertion using a Borg scale (BORG). Immediately after exercise (t=0 min), an 
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arterialised blood sample and a muscle biopsy were collected followed by the ingestion of the 

test drink. Arterialised blood samples were also collected at t = -240, -145, -85, -25, 0, 15, 30, 

45, 60, 75, 90, 120, 150, 180, 240 min. Two further muscle biopsies were collected at t = 60 

and 240 min.  

 

 

 
 
 
 
 
 
 
Figure 4.1: Schematic diagram of the infusion protocol.  
Drink ingestion was of either a placebo or branched chain amino acid containing beverage. 
 
4.3.5 Muscle biopsy collection and analysis 

Muscle biopsies were obtained from the vastus lateralis of the exercised leg under local 

anaesthesia (1 % lidocaine) using 5 mm Bergstrom needles with suction. Different incisions 

(~1 cm apart) were used for each biopsy in an attempt to minimize the impact of local 

inflammation from the previous biopsy sample. Biopsy samples were immediately rinsed, 

blotted of excess blood, removed of visible fat and connective tissue and divided into aliquots, 

before being frozen in liquid nitrogen, and stored at -80°C until later analysis. Muscle 

samples were analysed for enrichment of L- [ring-13C6] phenylalanine in the intracellular pool 

and bound myofibrillar protein fractions, Furthermore, muscle was analysed to measure 

phosphorylation of mTOR related signalling proteins. 

4.3.5.1 Myofibrillar protein enrichment 

Muscle tissue was analysed for enrichment of L- [ring-13C6] phenylalanine in the 

myofibrillar protein fraction. Myofibrillar proteins were isolated from ~30 mg tissue as 

previously described (32). Briefly muscle was snipped in ice-cold homogenizing buffer (50 
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mM Tris-HCL, 1 mM EDTA, 1 mM EGTA, 10 mM β-glycerophospahte and 50 mM sodium 

fluoride). The homogenate was shaken for 10 min prior to being centrifuged at 1000 g for 10 

min at 4 oC. The pellet was then re-suspended in homogenisation buffer, before being and 

shaken and centrifuged as above. The myofibrillar fraction was separated from any collagen 

by dissolving the pellet in 0.3 M NaCl and heating for 30 min at 37 oC. The proteins were 

then precipitated by combining the supernatant with 1M PCA before being centrifuged for 20 

min at 3500 rpm at 4 oC. The pellet was then washed with 70% ethanol. The remaining 

myofibrillar pellet was hydrolysed overnight at 110 ºC in 0.1 M HCl/Dowex 50W-X8 100-

200 (Bio-Rad laboratories INC, USA) and the liberated amino acids purified on cation-

exchange columns (Bio-Rad laboratories INC, USA). Amino acids were then converted to 

their N-acetyl-n-propyl ester derivative and the phenylalanine labelling determined by gas-

chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS, Delta-plus XL, 

Thermofinnigan, Hemel Hempstead, UK). Ions 44/45 were monitored for unlabelled and 

labelled CO2 respectively. 

4.3.5.2 Intracellular protein enrichment 

Intracellular amino acids were liberated from ~20 mg of muscle. The frozen tissue was 

powdered under liquid nitrogen using a mortar and pestle and 500 µL of 1 M perchloric acid 

(PCA) was added. The mixture was centrifuged at 10,000 g for 10 min. The supernatant was 

then neutralised with 2 M potassium hydroxide and 0.2 M PCA and combined with 20 µL of 

urease for removal of urea. The free amino acids from the intracellular pool were purified on 

cation-exchange columns as described above. Intracellular amino acids were converted to 

their MTBSTFA derivative and 13C6 phenylalanine enrichment determined by monitoring at 

ions 234/240 using gas chromatography mass spectrometry (GCMS) (model 5973; Hewlett 

Packard, Palo Alto, CA). 
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4.3.5.3 Western blots:  

20-30mg of muscle tissue was powdered on dry ice. Approximately 20mg of powdered 

muscle was homengised in lysis buffer (50mM Tris pH 7.5; 250mM Sucrose; 1mM EDTA; 

1mM EGTA; 1% Triton X-100; 1mM NaVO4; 50mM NaF; 0.50% PIC), using a hand-held 

homogenizer (PRO200, UK). Samples were shaken for 1h at 4oC, before being centrifuged for 

5min at 6000g. The supernatant was then used for determination of protein. A DC protein 

assay (Bio Rad, Hertfordshire, UK) was used for protein concentration. Equal amounts of 

protein were then boiled in Laemmli sample buffer (250mM Tris-HCl, pH 6.8; 2% SDS; 10% 

glycerol; 0.01% bromophenol blue; 5% β-mercaptoethanol) and separated on SDS 

polyacrylamide gels (10-15%) for ~1h at 58mA. Proteins were then transferred to a protran 

nitrocellulose membrane (Whatman, Dassel, Germany) at 100V for 1h. Membranes were 

blocked using milk solution and then incubated overnight at 4oC with the appropriate primary 

antibody. The primary antibodies used were, rpS6Ser235/236 (Cell signalling 2217), S6K1Thr389 

(Cell signalling 9234), S6K1 Ser421/Thr424 (Cell signalling 9204), AktThr308 (Cell signalling 

4056), Aktser473
 (Cell signaling 3787), 4E-BP1Thr37 (Santa Cruz SC6025), eEF2Thr56 (Cell 

signalling 2332), and PRAS40Thr246 (Cell Signalling 2610). The following morning the 

membrane was rinsed in wash buffer (TBS with 0.1% Tween-20). The membrane was then 

incubated for 1h at room temperature with the appropriate secondary antibody, either 

horseradish (HRP)-linked anti-mouse IgG (New England Biolabs, 7072; 1:1,000) or anti-

rabbit IgG (New England Biolabs, 7074; 1:1,000) diluted in wash buffer. The membrane was 

then cleared of the antibody using wash buffer. Antibody binding was detected using 

enhanced chemiluminescence (Millipore, Billerica, MA). Imaging and band quantification 

were carried out using a Chemi Genius Bioimaging Gel Doc System (Syngene, Cambridge, 

UK). 
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4.3.6 Blood collection and analysis 

Blood was collected in LH- and EDTA-containing and serum separator tubes and 

centrifuged at 3500 rpm for 15 min at 4 °C. Blood was collected into the different tubes for 

different analysis, some of which my be affected by the anticoagulants within the tubes. 

Aliquots of plasma and serum were then frozen at -80 °C until later analysis. Plasma glucose 

and urea concentrations were analysed using an instrumentation laboratory automated blood 

metabolite analyser (Instrumentation Laboratory 650, Instrumentation Laboratory, Cheshire, 

UK). Serum insulin was measured using a commercially available ELISA (DRG Diagnostics, 

USA) following manufacturers instructions.  

4.3.6.1 Amino acid concentrations and enrichments 
13C6 enrichments of tyrosine and phenylalanine were determined by GCMS (model 5973; 

Hewlett Packard, Palo Alto, CA) by monitoring ions 234/240. Once thawed, plasma samples 

were mixed with diluted acetic acid and purified using a cation-exchange column (Bio-Rad 

laboratories INC, USA). The amino acids were then converted to their N-tert-butyldimethyl-

silyl-N-methyltrifluoracetamide derivative. Simultaneously, concentrations of phenylalanine, 

leucine, threonine, isoleucine and valine were determined using an internal standard method 

(42, 44). Briefly, plasma samples were weighed to obtain ~ 300 µL, 30 µL of an internal 

standard containing U-13C9-15N phenylalanine (ions 336/346), U-13C6 leucine and isoleucine, 

(ions 302/308), U-13C4-15N threonine (ions 405/409) and U-13C5 valine (ions 288/293) was 

then added and weighed. From knowing the weight of both sample and internal standard we 

could obtain a tracer to tracee ratio. As we also knew the concentration of the amino acids in 

the internal standard we converted the tracer to tracee ratio into a concentration of each amino 

acid in the plasma.  
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4.3.6.2 Urea enrichments 
15N2 enrichments of urea were determined from plasma collected in LH vacutainers. Once 

thawed, plasma samples centrifuged at 3500 rpm for 10 min at 4 oC. 10 µL of plasma was 

then mixed with 120 µL ethanol. Samples were then left in the fridge for 30 min prior to 

centrifugation at 13000 rpm for 20 min at 4 oC. The supernatant was then removed and dried 

under nitrogen. TBDMS and acetonitrile were then added to the dried sample prior to heating 

at 90 oC for 90 min. Samples were then run on GCMS (model 5973; Hewlett Packard, Palo 

Alto, CA) and ions 231 and 233 were monitored. 

 

4.3.7 Calculations 

4.3.7.1 Fractional synthetic rate 

The fractional synthetic rate (FSR) of myofibrillar proteins was calculated using the 

standard precursor-product method:  

𝐹𝑆𝑅  % ⋅ ℎ!! = △!!
!!∙!

  ∙ 100        (2) 

Where ΔEm is the change in bound 13C6 phenylalanine enrichment between two biopsy samples, Ep is the 
intracellular precursor enrichment and t is the time between muscle biopsies. 
 
4.3.7.2 Urea production 

The contribution of labelled urea infusion to endogenous production of urea was calculated 

as previously (16) described (equation 3). 

        (3) 

where i is the infusion rate of the urea tracer (µmol.h-1.kgBM-1) and Eup and Eui  are the enrichments of urea in the 
plasma and infusate respectively. 
 
4.3.7.3 Phenylalanine kinetics 
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Phenylalanine was chosen as the tracer as it is not oxidised in the muscle or synthesized in 

the body. Therefore new appearance of phenylalanine in the blood can be attributed to protein 

breakdown. Whole body phenylalanine appearance was calculated according to equation 4 

(43). 

          (4) 

where i is the infusion rate of the tracer (µmol.h-1.kgBM-1) and Ep is the enrichment of phenylalanine. 
 

Phenylalanine oxidation was calculated by using the phenylalanine balance model (40). 

Briefly, whole body phenylalanine oxidation (Qpt ) was determined from the calculation of the 

hydroxylation of L-[ring- 13C6]phenylalanine to L-[ring- 13C6]tyrosine using the equation 5 

(40). 

        (5) 

where Pt/Pp is estimated to be 0.73 (40). Qp is the phenylalanine flux  (µmol.h-1.kgBM-1), i is the infusion rate of 
the tracer (µmol.h-1.kgBM-1) and Ep and Et are the respective enrichments of phenylalanine and tyrosine.  
 
4.3.7.4 Area under the curve 

Area under the curve (AUC) has previously been used to detect differences in situations 

that have multiple time points (35). The benefit of using AUC is that the magnitude of 

response and changes over time are represented as a single number, irrespective of differing 

time intervals between measurements (11, 35).  Hence, calculation of AUC allows 

comparison between interventions of a physiologically interesting time frame.  

AUC for serum insulin concentrations and phenylalanine Ra and oxidation rates were 

calculated using Graphpad Prism V5.0 (Graphpad software incorporation, La Jolle, 

Ra =
i

Ep

Qpt =
Pt

Pp

•
Qp

2

Ep

Et

!1
"

#
$

%

&
'• ip +Qp( )



Chapter 4: BCAA ingestion and MPS 

 101 

California, USA). Baseline values for insulin AUC were set at the concentration of insulin at 

t=0. A value of zero was used when calculating AUC for phenylalanine Ra and oxidation. 

4.3.8 Statistical analyses and data presentation 

Plasma concentrations were analysed using a two-way repeated measures analysis of 

variance (ANOVA). Exercise variables, FSR and AUC of serum insulin concentrations and 

phenylalanine kinetics for the post exercise period were analysed using a paired samples one-

tailed t-test. Western blot data are expressed as percentage change from t=0, and data were 

analysed using two way repeated measure ANOVAS. Significance for all analyses was set at 

P <0.05. Where significance was observed a least significant difference correction was used 

in post hoc analysis. All statistical tests were completed using statistical package for social 

sciences version 17.0 (Chicago, Illinois, USA). All values unless otherwise stated are 

presented as means ± standard error of the mean (SEM) unless otherwise stated. 

 

4.4 Results 
4.4.1 Exercise variables:  

There were no differences between conditions in the mass of lean tissue in the exercised 

leg (P >0.05). There were no between-trial differences in RPE or total exercise volume (P 

>0.05). An RPE of at least 19 was reached in all trials. Total exercise volume completed, 

including the warm up, was 11055±837 kg in BCAA and 11089±913 kg in PLA. 

4.4.2 Blood analytes 

Taken together urea concentrations significantly decreased in both drink conditions (main 

effect of time) towards the end of the recovery period. However no differences were observed 

between BCAA and PLA (Figure 4.2). 
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Figure 4.2: Plasma urea concentrations pre and post either a branched chain amino acid (BCAA) or 
placebo (PLA) beverage consumed following resistance exercise. 
 

There were no differences between BCAA and PLA in the production of urea (Figure 4.3). 

Taken together, urea production significantly decreased (main effect of time) from 

immediately post exercise to the end of the 4h recovery period.  

Figure 4.3: Urea production following either a branched chain amino acid (BCAA) or placebo (PLA) 
beverage consumed following resistance exercise. 

 

Glucose concentrations did not change over time and were not different between groups 

(Figure 4.4). Serum insulin concentrations increased in both trials following breakfast 

ingestion. There were no differences in serum insulin concentrations following drink 

ingestion (Figure 4.5). 

 
 



Chapter 4: BCAA ingestion and MPS 

 103 

 

Figure 4.4: Plasma glucose concentrations pre and post either a branched chain amino acid (BCAA) or 
placebo (PLA) beverage consumed following resistance exercise 

 
Figure 4.5: Serum insulin concentrations pre and post either a branched chain amino acid (BCAA) or 
placebo (PLA) beverage consumed following resistance exercise 
 

4.4.2.1 Amino acid concentrations 

Amino acid concentrations across time are shown in Figure 4.6. Branched chain amino 

acid concentrations were significantly higher following drink ingestion in BCAA than PLA. 

Peak branched chain amino acid concentrations were observed 30 min following drink 

ingestion. Plasma valine concentration increased 3-fold, isoleucine and leucine concentration 

increased 4-fold at 30 min following drink ingestion compared to basal. Threonine and 

phenylalanine concentrations were significantly increased post breakfast and decreased 

following the exercise. There were no differences in threonine concentrations between trials. 
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Phenylalanine concentrations were significantly higher towards the end of the recovery period 

in PLA compared to BCAA. 

 

Figure 4.6: Plasma concentrations of A) leucine, B) isoleucine, C) valine, D) threonine and E) 
phenylalanine both pre and following either a branched chain amino acid (BCAA) or placebo (PLA) 
beverage consumed following resistance exercise.  
* significant difference between trials 
 

4.4.2.2 Plasma 13C6 phenylalanine and tyrosine enrichments 

Plasma 13C6 phenylalanine enrichment was stable across the time of tracer incorporation, 

immediately post-exercise to 4 h post-exercise for BCAA and PLA (Figure 4.7). Plasma 13C6 

tyrosine enrichment increased throughout the testing period. Intracellular 13C6 phenylalanine 
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enrichment was stable across the time of tracer incorporation for BCAA and PLA (3.9 ± 0.2 

and 3.8 ± 0.2% t/T, respectively). Trial order did not influence the tracer enrichment in 

plasma or in intracellular samples. 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: Plasma enrichment of 13C6 both pre and following either a branched chain amino acid (BCAA) 
or placebo (PLA) beverage consumed following resistance exercise. 
 
4.4.3 Phenylalanine kinetics 

No difference in phenylalanine Ra was detected over the 4 h recovery period (Figure 

4.8A). However, the overall phenylalanine Ra (AUC) was 6% (P =0.0028) lower in BCAA 

compared to PLA (Figure 4.8B). 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8: Phenylalanine rate of appearance following either a branched chain amino acid (BCAA) or 
placebo (PLA) beverage consumed following resistance exercise, depicted A) over time and B) as area 
under the curve.  
* significant difference between trials 
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There was a tendency (P =0.055) for a time by trial interaction for phenylalanine oxidation 

(Figure 4.9A). Additionally, AUC of phenylalanine oxidation was 16% (P =0.0006) lower in 

BCAA compared to PLA (Figure 4.9B).  

 

 

 

 

 

Figure 4.9: Phenylalanine oxidation following either a branched chain amino acid (BCAA) or placebo 
(PLA) beverage consumed following resistance exercise, depicted A) over time and B) as area under the 
curve.  
* significant difference between trials 
 

4.4.4 Anabolic signalling proteins 

There were no statistical differences between BCAA and PLA in the phosphorylation 

status of S6K1Ser421/Thr424, 4E-BP1Thr37, AKTThr308 or rpS6(Ser235/236) . When the trials were 

taken together there was a significant effect of time on the phosphorylation status of 

PRAS40Thr246 (P=0.025) (Figure 4.10). Additionally, the phosphorylation of AKT(Ser473) was 

significantly higher compared to immediately post drink at 60 min than 240 min. There was a 

strong tendency (P =0.058) in the phosphorylation status of (Figure 4.11), at 60 min. The 

phosphorylation of S6K1Thr389 in BCAA was 12 ± 6 % higher than PLA at 60 min post drink 

ingestion.  
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Figure 4.10: Percentage change from immediately post exercise in phosphorylation status (means ± SE) of 
PRAS40Thr246 60 and 240 min following either a branched chain amino acid (BCAA) or placebo (PLA) 
beverage consumed following resistance exercise.  
 

 

 

 

 

 

 

 
Figure 4.11: Percentage change from immediately post exercise in phosphorylation status (means ± SE) of 
S6K1Thr389 60 and 240 min following either a branched chain amino acid (BCAA) or placebo (PLA) 
beverage consumed following resistance exercise.  
 
 

4.4.5 Myofibrillar protein synthetic response 

Myofibrillar fractional synthetic rate (FSR) was ~22% greater (P =0.012) over the 4h 

recovery period in BCAA compared to PLA (Figure 4.12).  
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Figure 4.12: Fractional synthetic rate following either a branched chain amino acid (BCAA) or placebo 
(PLA) beverage consumed immediately following resistance exercise  
* significantly higher in BCAA 
 

4.5 DISCUSSION 
 

 The present study is the first to investigate the response of muscle myofibrillar protein 

synthesis to the ingestion of branched chain amino acids alone following resistance exercise 

with intake of a high protein breakfast. Our primary finding was that post-exercise 

myofibrillar muscle protein synthesis was greater with ingestion of a branched chain amino 

acid containing drink compared with a placebo. Additionally, the increased muscle protein 

synthesis was accompanied by a 12 % greater phosphorylation of S6K1Thr389. 

These data are the first to report that muscle protein synthesis can be increased following 

resistance exercise in trained human males with the ingestion of branched chain amino acids 

alone. Of all branched chain amino acids it is suggested that leucine is the most important as 

an anabolic agent. Studies that provided leucine plus protein (21, 22) observed no increase in 

muscle protein synthesis, when compared to protein alone. Furthermore, there was no greater 

anabolic response when leucine was added to whey protein (41). We provided only the 

branched chain amino acids and observed increases in synthesis above exercise alone. 

Therefore, taken together these data suggest that when muscle protein synthesis is already 
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stimulated with exercise and amino acids there is no further benefit of leucine. However, 

when only the branched chain amino acids are ingested muscle protein synthesis in increased 

above exercise alone.  

Ingestion of essential amino acids is known to increase muscle protein synthesis. The 

ingestion of as little as 5 g protein following exercise has been demonstrated to increase 

muscle protein synthesis above exercise alone (31). Furthermore, these authors (31) reported 

that 20 g of egg protein, containing 10 g EAA (4.3 g branched chain amino acids), maximally 

stimulated muscle protein synthesis. Thus, ingestion of 20g of whey protein may be classed as 

optimal to stimulate muscle protein synthesis. Previously when leucine has been co-ingested 

with both EAA (10 and ~ 21.7 g) (10, 14) and protein  (33.3 g) (22) there has been no further 

increase in muscle protein synthesis. However, in these studies (10, 14, 22) there was a 

greater than optimal amount of EAA or protein ingested. In situations where there are 

suboptimal (< 20 g protein) amounts of protein ingested muscle protein synthesis rates are 

lower (31). Therefore, muscle protein synthesis can be further increased. We demonstrated 

that branched chain amino acids ingestion alone increased muscle protein synthesis. In 

situations where there are suboptimal values of protein ingested it is unknown if additional 

branched chain amino acids would increase muscle protein synthesis. Thus, it would be 

interesting to investigate the effects of branched chain amino acids in combination with 

suboptimal levels of protein or essential amino acids. 

It is well known that ingestion of amino acids post exercise increases phosphorylation 

status of several signalling proteins (10, 13, 19). Leucine specifically is known to activate 

mTOR signalling cascade (1, 3, 7). Recently Karlsson et al. (17) demonstrated increased 

phosphorylation of S6K1Ser421/Thr424, S6K1Thr389 (~3.5 fold increase) and the downstream rpS6 

with branched chain amino acid ingestion and exercise compared to a placebo. In addition to 
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an augmentation of muscle protein synthesis we observed an ~ 5 fold increase above exercise 

in phosphorylation of S6K1Ser389 with branched chain amino acid ingestion. However, the data 

failed to reach statistical significance. Our results may lack statistical significance due to a 

lack of power, for most of the signalling proteins observed power < 0.05. The lack of 

statistical difference and low power could be attributed to a large inter-individual difference 

or the large differences in responses to branched chain amino acid ingestion. Our data suggest 

there to be a difference in the individual response of phosphorylation of signalling proteins to 

branched chain amino acid ingestion. This difference in response is prevalent in S6K1Thr389. 

The range in change of phosphorylation status between the two conditions over the first hour 

was ~2 – 50 arbitrary units. Therefore there are large changes between subjects in their 

response to branched chain amino acids. These data add to the growing body of evidence 

highlighting the differential response of signalling proteins in humans to anabolic stimuli, 

such as exercise and nutrition. 

The amount and feeding pattern of branched chain amino acids may influence 

phosphorylation status of signalling proteins. We saw a 12 % increase in phosphorylation 

status of S6K1Thr389 at 60 min post exercise. However, there were no differences in 

S6K1Thr421/Ser424 and rpS6 phosphorylation at 60 min post exercise. In contrast, Karlsson et al. 

(17) reported increases in S6K1Thr389, S6K1Thr421/Ser424 and rpS6 phosphorylation at 60 min 

and 120 min post exercise. The timing and amount of nutrient ingestion differed between the 

present study and Karlsson et al. (17). We provided 5.6 g of branched chain amino acids 

following resistance exercise. In contrast, Karlsson et al. (17) provided branched chain amino 

acids totalling ~ 7.4 g before during and after resistance exercise. The contrasting feeding 

pattern may have accounted for the different results in phosphorylation status of signalling 
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proteins between the current and previous study (17). Perhaps, more amino acids are required 

in regular doses to increase phosphorylation status of S6K1Thr421/Ser424 and rpS6. 

Feeding prior to exercise may minimise the chance of observing the effect of nutritional 

interventions following exercise. In the present study, we provided a high protein breakfast, to 

make our findings more practical. This breakfast may have altered the phosphorylation status 

of the signalling proteins. It is known that in humans following ingestion of protein the 

phosphorylation status of some signalling proteins remain elevated for > 3 h (4). If the 

phosphorylation status of signalling proteins had not returned to basal levels when the 

branched chain amino acids were ingestion, this could explain why there was not a difference 

between groups in the signalling proteins that we monitored. Therefore, the ingestion of 

breakfast may have masked any differences in phosphorylation status of signalling proteins 

between branched chain amino acid ingestion and placebo.  

Furthermore, the breakfast pre exercise may have reduced the effect of branched chain 

amino acids ingestion on muscle protein synthesis. Following resistance exercise, in a fasted 

state, protein ingestion increases muscle protein synthesis between ~35 and 90 % (20-22, 31, 

32, 38, 39). In the present study ingestion of amino acids increased muscle protein synthesis 

by ~22 % over a placebo. Qualitatively at least, our findings suggest that branched chain 

amino acids do not increase muscle protein synthesis to the same extent as complete or 

essential amino acid sources. However, feeding and high protein breakfast pre resistance 

exercise increases muscle protein synthesis above breakfast alone (47). Thus, muscle protein 

synthesis rates in the placebo condition of the present study may have been stimulated 

through a combination of the high protein breakfast and exercise. Therefore, the effect of 

ingesting branched chain amino acids on muscle protein synthesis may have been diminished 

through the ingestion of breakfast. At present it is unclear as to whether protein ingestion 
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stimulates muscle protein synthesis more than branched chain amino acids. Therefore, further 

studies are required to make a direct comparison between the effect of branched chain amino 

acid ingestion and protein on muscle protein synthesis. 

Leucine has been ingested in all previous studies that have reported increases in muscle 

protein synthesis with exercise and provision of amino acids. The importance of leucine also 

may be highlighted when the effects of whey and casein protein on muscle protein synthesis 

are compared. Whey protein has higher leucine content than casein. Ingestion of whey protein 

results in greater muscle protein synthesis than casein (34). It is suggested that the increase in 

blood leucine concentration needs to reach a threshold in order to reach a maximal rate of 

muscle protein synthesis.  Thus, the leucine content of casein is insufficient for blood leucine 

concentrations to reach this threshold. A recent study (46) compared whey protein supplied as 

a bolus ingestion or in small pulses. Total amount of amino acids and leucine ingested were 

the same in each condition. However, when the amino acids were given as 10 individual 

doses, the increase in synthesis was less than when a bolus of whey was ingested. Blood 

leucine concentrations peaked at a lower level with separated ingestion than bolus ingestion 

(46). The lower increase in blood leucine concentrations may have meant that blood leucine 

concentrations did not reach the threshold. Therefore, muscle protein synthesis was not 

increased as much with repeated ingestion compared to bolus ingestion. As may be expected 

with our higher dose of leucine provided in this study, our data show a greater peak in leucine 

concentrations than those observed by West and colleagues (46).  Hence, we suggest that 

perhaps the increase in plasma leucine concentrations we observed reached the threshold 

value. Therefore, the increase in plasma leucine concentrations we observed was important in 

our observation of increased muscle protein synthesis with branched chain amino acid 

ingestion. 
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Our data further support the suggested notion that the availability of leucine drives muscle 

protein synthesis. Many studies have suggested that leucine concentrations are important for 

muscle protein synthesis (9, 12, 18, 37, 39). In the present study when branched chain amino 

acids were ingested, there was a rapid rise in plasma leucine concentrations. Leucine 

concentrations were then elevated for 4 h of recovery. The rise in plasma leucine 

concentrations indicates an increased availability of leucine. Thus, the increase in muscle 

protein synthesis we observed with branched chain amino acid ingestion may have been 

partially caused by increased leucine availability. 

Infusion of leucine decreases protein degradation to a greater extent than a saline infusion 

(33). Furthermore proteolysis is suppressed with a branched chain amino acid infusion 

(25).However, the impact of branched chain amino acid ingestion, on muscle protein 

breakdown following resistance exercise, remains unknown. Muscle anabolism depends on 

both muscle protein synthesis and muscle protein breakdown. Leucine ingestion has been 

suggested to reduce muscle protein breakdown in resting conditions (33). However, protein 

containing an artificially increased leucine content did not influence net balance despite 

increasing the insulin response (14). To date no study has measured muscle protein 

breakdown following resistance exercise with the ingestion of branched chain amino acids 

only. In the present study we did not measure protein breakdown on a muscle level. However, 

we demonstrated a reduced whole body phenylalanine Ra and oxidation when branched chain 

amino acids were ingested, suggesting that whole body protein breakdown may be reduced. 

These findings are in line with Koopman et al. (22) who demonstrated that the ingestion of 

carbohydrate, protein and leucine resulted in a lower amino acid oxidation rate. The reduction 

in phenylalanine oxidation and Ra may suggest that ingesting branched chain amino acids 

results in amino acids being synthesised into proteins and not broken down. Our data suggest 
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that branched chain amino acids may have a role in reducing protein breakdown on a whole 

body level. However, it is unclear as to whether whole body measures are representative of 

what is happening in the muscle. Therefore future studies also should aim to investigate 

muscle protein breakdown, to determine a greater understanding of muscle anabolism with 

branched chain amino acid ingestion. 

Our urea production data show no differences between the two conditions, and therefore 

may suggest a lack of support for reduction in whole body protein breakdown with ingestion 

of branched chain amino acids. Ingestion of branched chain amino acids leads to an increase 

in ammonia (26-28). Whereas, not measured in the current study the lack of differences in 

urea production and urea concentrations between the two drink conditions suggest that 

ammonia concentration may not have increased with 5.6 g of branched chain amino acids. 

Our data may indicate that if proteins are being broken down the nitrogen is not being used 

for urea synthesis. Therefore, the nitrogen from amino acids may be used for synthesis of 

other nitrogen containing compounds. Thus, perhaps ingestion of branched chain amino acids 

perhaps maintains the nitrogen within body compounds. Hence, there was not an increase in 

urea production when branched chain amino acids were ingested. Alternatively the provision 

of the high protein breakfast may have caused a lack of difference between the two trial 

conditions. It is likely that some of the protein from the breakfast will be broken down, 

possibly creating urea, increasing urea production. This increase in urea production would 

have occurred in both trials. Thus, differences attributed to branched chain amino acid 

ingestion may be masked. 

In conclusion our results demonstrate that ingesting branched chain amino acids following 

a breakfast and resistance exercise increase myofibrillar muscle protein synthesis.  
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CHAPTER 5: General Discussion 



Chapter 5: General Discussion 

 

5.1 Summary and overview 
This thesis describes experiments that investigated the whole body and muscle response to 

ingestion of branched chain amino acids (BCAA) and protein following intense exercise. The 

aim of the first study (chapter 2) was to assess whether BCAA could reduce the negative 

symptoms that are associated with intense lengthening contractions. These negative indices 

included decreased muscle function, increased muscle soreness, inflammation and increased 

plasma concentration of myofibre proteins. The findings provide novel data for the current 

literature as it was demonstrated that BCAA was effective at reducing muscle soreness 

following intense lengthening contractions when compared to a placebo. However, there were 

no differences between BCAA and placebo ingestion regarding the decrement of 

maximalforce production, inflammation or myofibre protein concentration in the blood.  

The second study (chapter 3) in this thesis was designed to obtain further information 

about nutritional interventions aimed at reducing negative indices associated with muscle 

damage. In chapter 3 the same experimental approach as chapter 2 was adopted. However, a 

whey protein source, containing the same amount of BCAA, as in chapter 2 was compared to 

an isoenergetic control. The findings demonstrated that whey protein ingestion resulted in a 

reduced decrement in maximal muscle force production. Furthermore, whey protein ingestion 

had a likely beneficial effect, compared to an isoenergetic control, of attenuating the decrease 

in force production; however, whey protein ingestion did not ameliorate rises in inflammation 

or myofibre protein concentrations in the blood. 

The third study of this thesis (chapter 4) is the first study that has investigated muscle 

protein synthesis (MPS) with ingestion of only BCAA following resistance exercise. The 

main finding from this investigation was that ingestion of BCAA following resistance 

exercise increased rates of MPS.  
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5.2 Amino acid ingestion and eccentric exercise 
 
5.2.1 Summary 

Unaccustomed, exercise consisting of lengthening contractions leads to decreased maximal 

force production and range of motion and increased muscle soreness, plasma concentrations 

of myofibre proteins and inflammation. There has been much interest in the use of amino acid 

sources to alleviate these negative indices associated with lengthening contractions (10, 12-

14, 26, 37, 42, 44, 51). However, the results of these studies offer little agreement over the 

efficacy of amino acid sources to ameliorate the negative indices associated with lengthening 

contractions. Two studies (Chapters 2 and 3) from this thesis contribute novel data to this 

sector of literature. The same exercise protocol, supplementary pattern, and method of 

assessing recovery from the exercise bout were employed and most importantly diet was 

strictly controlled in both studies. Both whey protein and BCAA ingestion reduced muscle 

soreness following intense lengthening contractions. However, only whey protein ingestion 

resulted in an attenuated decrement in maximal force production. The mechanisms 

underpinning the reduction in soreness and attenuation of force production decrements with 

nutritional interventions remain unclear. 

The dose of amino acids may be important for reductions in negative indices associated 

with lengthening contractions. In chapter 2 we provided 7.3 g of BCAA in each dose as four 

doses per day for 3 d totalling 87.6 g. A more recent study by Kirby and colleagues (26) 

provided 250 mg/kg body mass, which equated to ~ 19 g BCAA within each dose. Kirby et al 

(26) provided supplements pre and post exercise and the in the morning of the following day 

so total leucine ingestion was ~57 g. However, taken together, differences in experimental 

design in addition to the amount of BCAA ingested do not allow a direct comparison between 
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the outcomes. Kirby et al. (26), provided more leucine but less amino acids than the 

experiment described in chapter 2. Leucine ingestion resulted in a better maintenance of force 

production compared to the control group (26). Therefore when taken together, these data 

support the notion that perhaps when consuming leucine or the BCAA, a bigger dose at the 

start of the day results in better maintenance of strength. Alternatively, smaller boluses 

throughout the day reduce muscle soreness.  

5.2.1.1 Muscle soreness and function 

Habitual movement may help to reduce muscle soreness. In both studies (chapter 2 and 3) 

indices of muscle soreness were assessed 8 h following the exercise bout. Interestingly 

soreness was lower in all four groups at 8 h compared with 1 h post exercise. Two factors 

make this time point unique in relation to the other time points we chose in the study design. 

First, the 8 h time point is measured with the volunteers in a post-prandial/fed state. 

Therefore, it is possible that feeding can influence subjective feelings of soreness. However, 

the 8 h measurement was completed when the subjects had been weight bearing and 

completing light exercise on the exercised muscle. In contrast, the morning measurements 

were taken in a situation after the exercised leg muscle had not been moved for approximately 

8 h. Light exercise has been shown to be effective in reducing symptoms commonly 

associated with muscle damage (5).  Therefore, performing activities of daily living may be 

effective at reducing muscle soreness. Thus, decrease in muscle soreness at 8 h may be 

attributed to daily exercise.   

There is a difference in the temporal pattern of soreness and muscle function between 

ingesting BCAA (chapter 2) and whey protein (chapter 3) pre and post exercise. In chapter 2 

when only BCAA were ingested, reductions in muscle soreness were reported at 48 h and 72 

h post exercise compared with placebo. In contrast, ingestion of whey protein reduced muscle 
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soreness only within the first 24 h following the exercise protocol compared to carbohydrate 

ingestion. Furthermore, from 24 -72 h post exercise onwards soreness scores reported with 

carbohydrate and whey protein ingestion were similar. Additionally, BCAA ingestion did not 

impact muscle function (low frequency fatigue or maximal isometric strength), however whey 

protein ingestion resulted in reductions in the decrements of maximal force production 

compared to carbohydrate. Thus, it appears that whey protein ingestion only affects the initial 

24 h period and fails to ameliorate feelings of soreness or decrements in maximal muscle 

force production thereafter.  

On the other hand the isoenergetic control (i.e. the carbohydrate) may influence the 

observed findings, hence, making the temporal pattern of BCAA and whey protein effect 

appear different. The same experimental design was implemented in both experiments, thus, 

permitting a direct comparison of the data from all four groups. Comparison of the complete 

recovery period is shown in Figure 5.1. Whey protein and BCAA ingestion results in similar 

muscle soreness over the whole recovery period. Carbohydrate ingestion results in the largest 

initial increase in muscle soreness scores post exercise and then decreased to similar scores as 

both whey protein and BCAA ingestion. Ingestion of the flavoured water placebo resulted in 

higher soreness scores than BCAA, carbohydrate and placebo ingestion towards the end of the 

recovery period. Thus, our results suggest that perhaps early in the post exercise period 

carbohydrate has a negative impact on feelings of muscle soreness. However, in the later part 

of recovery whey protein, BCAA and carbohydrate are effective at reducing muscle soreness. 

Therefore, it would appear that whey protein actually has the same temporal pattern as BCAA 

when compared to the same control condition. 

.   
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Figure 5.1: Muscle soreness shown as A) raw values and B) area under the curve of flexed muscle soreness 
over the entire 72 h period. 
Data are expressed as means ± SE. Supplements were consumed 12 times over the testing period and contained 
branched chain amino acids (BCAA), placebo (PLA), whey protein (WP) or carbohydrate (CHO).  

 

Resistance exercise, particularly lengthening contractions, results in the deformation of the 

proteins responsible for maintaining the structural integrity of the skeletal muscle architecture. 

The findings in this thesis suggest all amino acids are required for recovery of maximal 

muscle force production. Chapter 2 demonstrated that ingestion of BCAA had no effect on 

maximal muscle force production. However, the ingestion of whey protein when compared to 

a carbohydrate control, showed a likely beneficial effect on minimising the loss in maximal 

muscle force production, although the significance of this is questionable as this reduction in 

force production was apparent only over the first few hours. 

The control condition may affect the interpretation of results. As with muscle soreness the 

results of maximal force production can be combined (Figure 5.2). There is a likely 

detrimental effect of carbohydrate compared to whey protein, BCAA and flavoured water 1 h 

post exercise. However, when comparing between supplements at the end of the recovery 

period there is a likely beneficial effect of both carbohydrate and whey protein compared with 

BCAA and the flavoured water placebo. In chapter 3 when carbohydrate and whey protein are 

compared there is no effect on maximal isometric strength at the end of the experimental 

period. However, when compared to a flavoured water placebo there is an effect at reducing 
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the decrements in maximal force production with whey protein ingestion. Therefore, these 

data further support the importance of drawing conclusions about nutritional interventions 

when differing control conditions are employed. 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 5.2: Muscle function shown percentage force loss over the entire 72 h period.   
Data are expressed as means ± SE. Supplements were consumed 12 times over the testing period and contained 
branched chain amino acids (BCAA), placebo (PLA), whey protein (WP) or carbohydrate (CHO) 
 

5.2.1.2 Future studies 

If comparisons between nutritional conditions are being investigated, extrinsic factors, 

such as diet, should be strictly controlled to avoid confounding results. Therefore, future 

studies should aim to strictly control diet. Diets should be controlled so that the energy intake 

matches the individual’s habitual intake, thus ensuring subjects remain in energy balance 

during the testing period. 

There appears to be a difference in how male and females respond to nutritional 

interventions following lengthening contractions. There is only one study (42) that has 

investigated the impact of nutritional interventions following lengthening contractions in 

females. This study (42) investigated females since the authors’ preliminary study (43) had 

demonstrated the effect of supplementation was more pronounced in females compared to 
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males. Thus, further work should investigate these potential sex differences in effectiveness of 

supplementation following intense resistance exercise.  

The beneficial effects of exercise on human health have been widely explored. However, 

as we have demonstrated, an unaccustomed exercise bout is often accompanied by negative 

symptoms, including muscle soreness, decreased muscle function and possibly inflammation. 

Recommendations have suggested that aged individuals should adopt exercise programmes to 

allow them to live a healthy, independent and greatly improved quality of life (32). 

Unaccustomed exercise can be related to an unaccustomed length of the muscle, 

unaccustomed number of repetitions or unaccustomed forces (45). Aged individuals that start 

an exercise programme are likely to experience symptoms similar to those reported in 

chapters 2 and 3. Therefore, it may be useful if nutritional and dietary interventions are 

developed to reduce the negative indices associated with skeletal muscle damage for 

individuals to ingest after their first few exercising sessions. The nutritional effects on the 

negative indices associated with lengthening contractions is yet to be elucidated in aged 

individuals. It may therefore be interesting to see if supplementation of BCAA or whey 

protein reduces these negative symptoms especially that of muscle function and muscle 

soreness in an aged population. Thus, future studies should investigate the response of BCAA 

or whey protein following multiple lengthening contractions in aged individuals. 

In chapters 2 and 3 we measured interleukin 6 (IL-6) as a marker of inflammation. 

However it may not have been the most suitable in response to the lengthening contractions as 

elevated levels are observed after many exercise modalities. The inflammatory response can 

be described as acute or prolonged, and relate to a muscle or whole body level. IL-6 and pre 

albumin have been shown to increase and return to baseline levels following a long distance 

triathlon (21). However, levels of C-reactive protein increased gradually after exercise 
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cessation and were at the peak values measured 16 h after exercise cessation (21). Thus, it 

may be interesting to measure the effect of whey protein and BCAA ingestion on other 

inflammatory markers which have a more delayed response following lengthening 

contractions. Additionally, the use of magnetic resonance imaging to monitor swelling and or 

oedema may also assist in understanding what is happening in the muscle when nutritional 

interventions are provided as a method to alleviate symptoms associated with lengthening 

contractions. 

Muscle damage has been associated with whole body and myofibrillar protein breakdown 

(16, 17). Furthermore, animal studies indicate that damaging exercise increases muscle 

protein breakdown (MPB) and transiently decreases MPS resulting in loss of muscle proteins, 

particularly the force-generating myofibrillar proteins (20, 31). Myofibrillar protein synthesis 

was shown to be elevated at 8.5 h following damaging exercise in humans (34), but MPB was 

not examined. Furthermore, these measures were made shortly (up to 8.5h) following exercise 

and no study has examined later time points in humans as has been done in rats. Thus, no 

systematic examination of protein metabolism associated with muscle damage in humans has 

yet been made. Therefore, it would be of interest to quantify MPS and MPB in response to 

damaging exercise. It is important to know what happens to MPS and MPB as well as net 

protein synthesis to develop feeding strategies that optimise net protein synthesis and improve 

recovery from damaging exercise. 

 

5.3 Branched chain amino acid ingestion and muscle protein synthesis 
 

5.3.1 Summary 
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Resistance exercise combined with ingestion of BCAA increases myofibrillar MPS. 

Exercise of sufficient intensity (30) is known to stimulate mixed MPS in young healthy 

males. Ingestion of amino acids is required for a positive net balance, resulting in muscle 

mass gain (7, 40, 50). In a fasted state, the combined effect of nutrition and exercise to 

stimulate MPS is well established (7, 9, 15, 19, 28, 29, 35, 38, 40, 46-50). However, many 

athletes will consume a meal prior to their workout and an amino acid source following their 

exercise session. However, no study had investigated the combined effect of two nutritional 

interventions (meal before and amino acid source post) with resistance exercise. Therefore in 

chapter 4 we provided a high protein breakfast prior to the exercise bout. Following exercise 

BCAA or a placebo beverage was provided. We demonstrated that myofibrillar MPS could be 

increased in a postprandial state with the ingestion of BCAA. 

The control condition may influence the outcome of the experiment. In chapter 4 the 

subjects were provided with a breakfast. The combination of exercise and breakfast has 

previously been shown to increase MPS more than feeding alone (53). Thus, the MPS rates in 

the placebo condition (feeding and exercise) potentially were elevated above those commonly 

reported with exercise alone. Therefore, the relatively small difference in MPS between 

placebo and BCAA in chapter 4 may be explained by the elevated MPS in the placebo 

condition. It may be difficult to compare the effect of interventions between studies that have 

a different control condition. For example Moore et al. (36) showed an ~93% increase in MPS 

comparing an exercised leg with an exercised leg and the ingestion of 25 g egg protein. The 

comparison in this study (36) was between an exercised and an exercised-fed situation. 

Consequently, until a study has made a direct comparison between the ingestion of protein 

and BCAA, it is unknown which nutritional intervention would result in higher MPS rates. 
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There are many signalling proteins that control both transcription and translation. The 

phosphorylation status of some signalling proteins were measured in chapter 4 when either a 

placebo or 5.6 g of BCAA were ingested following resistance exercise. We observed a strong 

tendency for higher phosphorylation of S6K1Thr389 at 60 min with BCAA ingestion following 

exercise. This is consistent with observations by Karlsson et al (22). However, these authors 

(22) also observed differences in phosphorylation status of S6K1Thr421/Ser424 and rpS6 with 

BCAA ingestion and resistance exercise compared with exercise alone. These authors (22) 

provided BCAA before, during and after exercise totalling ~7.4 mg. Therefore a greater 

amount of BCAA were ingested in Karlsson et al. (22) than our study in chapter 4. This 

ingestion of greater amounts of BCAA may have been a reason for the discrepancies observed 

in signalling. Alternatively, the inconsistencies in the findings between the two studies could 

be attributed to various the feeding strategies employed, including bolus vs frequent feeding. 

On the other hand contradicting conclusions between the results in chapter 4 and Karlsson et 

al. (22) may be due to wide variations in the measurements of signalling proteins. It is 

important to note that current methods to assess phosphorylation status of signalling proteins 

are highly qualitative. Furthermore, phosphorylation of a protein only represents one form of 

activation for review see Kimball et al. (24).  

Similarly to results of MPS, the phosphorylation status of signalling proteins may have 

been influenced by the breakfast we provided. It is known that in humans following ingestion 

of protein the phosphorylation status of some signalling proteins remain elevated for > 3 h (6).  

Furthermore, the synergistic effect of exercise and nutrition on S6K1Thr389 has been shown to 

occur 5 h post protein ingestion (33). The 1 h biopsy in chapter 4 was 5 h post ingestion of the 

high protein breakfast. Therefore the phosphorylation status may have been elevated in both 

conditions at 1 h due to the combined effect of the breakfast and the exercise. Hence we 
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observed no difference in phosphorylation status of S6K1Thr389 when the BCAA were ingested 

compared to the placebo condition. The elevation in phosphorylation status of signalling 

proteins from the breakfast may have minimised the chance of observing an effect of BCAA 

ingestion. Hence, our results showing no difference between the conditions in 

phosphorylation status of the measured signalling proteins. 

 
5.3.2 Future studies 

Of interest to many exercisers is the dose of protein that is required to maximally stimulate 

MPS. Two studies investigating the ingestion of egg (35) and whey (52) protein have 

demonstrated that 20 g of protein maximally stimulates MPS. This equates to ~ 4.3 - 4.6 g of 

BCAA, which is less than was used in chapter 4. In chapter 4 it was demonstrated that 5.6 g 

BCAA were all that was required to stimulate MPS. If only the BCAA are required for 

increases in MPS it would be of interest to investigate the dose response of BCAA alone. 

There is no effect on MPS or muscle anabolism of ingesting leucine plus either protein (28, 

29, 49) or essential amino acids (EAA) at rest or following exercise when compared to protein 

/ EAA only (19, 28, 29, 49). When a difference in MPS has been observed with ingestion of 

leucine and an amino acid source ingestion the control group does not ingest protein / EAA, 

thus the effect of the leucine is difficult to determine from the protein (15, 18, 27). Previous 

studies have suggested that 20 g protein is optimal to maximally stimulate MPS following 

resistance exercise (35, 52). In the studies that have investigated leucine plus amino acid 

sources >20 g protein or amino acids were ingested. Therefore, it seems that when leucine has 

been co-ingested with protein and EAA there have been optimal amounts of protein / EAA 

ingested. Thus, MPS may not have been increased with the addition of leucine since the rate 

of MPS was already maximised due to the protein / EAA ingestion. No study has combined 
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doses of protein that may be classed as suboptimal (< 20 g protein) and additional leucine. 

Thus, based on the findings in chapter 4, that BCAA can stimulate MPS, it may be interesting 

to combine BCAA and suboptimal amounts of protein / EAA. The combination of protein and 

leucine may result in increases in MPS and phosphorylation status of signalling proteins.  

Of all three BCAA, leucine has received the most attention as an anabolic stimulus in rats 

(1, 2). Recent studies have suggested that the availability of leucine is important (11, 18, 25, 

41, 47).  Furthermore, studies have shown that ingestion of leucine up regulates signalling 

proteins (3, 8, 15).  However, in humans the effect on MPS of ingesting leucine alone has 

never been investigated. Thus, a study that would add further information to the current 

thoughts on the requirements for leucine would be to investigate the effect on MPS of 

providing only leucine. If successful, the dose that provides a maximal protein synthetic rate 

could be sought. 

A recent study combined the ingestion of carbohydrate, protein and leucine (28). These 

authors (28) suggested that the extra leucine would increase phosphorylation of signalling 

proteins and therefore increase MPS. These authors (27, 28) found no further increase in MPS 

with the additional leucine than when compared to protein and carbohydrate alone, and there 

were no differences in the response between young and aged. Furthermore, a study completed 

by the same research group (27) observed no difference in the response of protein plus leucine 

on MPS following exercise. Conversely, Katsanos et al. (23) demonstrated greater MPS in 

elderly at rest when an EAA mixture was enriched to 41 % leucine. When providing BCAA 

post exercise we observed a greater increase in MPS than exercise alone (chapter 4). To date 

no study has investigated the effect of BCAA and exercise in the elderly. Therefore, it would 

be of interest to investigate if the effect of BCAA on MPS would be present in an aged 

population.  
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During prolonged exercise the muscle may become catabolic. MPS is reduced in rats 

following prolonged exercise (2). Leucine has been shown to restore MPS back to baseline 

levels following exercise that resulted in decreased MPS (2, 25). The restoration of MPS was 

associated with a restoration of intracellular signalling leading to enhanced translation 

initiation (2, 4, 25). These data suggest that leucine (BCAA) may have a greater impact on 

muscle during catabolic situations, such as prolonged, intense exercise. In chapter 4 we 

demonstrated that BCAA increased MPS during an anabolic situation. A future study could be 

designed to investigate the effect of BCAA or leucine on MPS following prolonged intense 

exercise. 

As previously discussed the breakfast that was provided in chapter 4 may have had an 

influence on the phosphorylation status of the signalling proteins and MPS. However, with 

the experimental design implemented in chapter 4 it was not possible to determine if the 

breakfast influenced our findings. Therefore, a future study could be designed to compare the 

effect of BCAA ingestion and resistance exercise on MPS and phosphorylation status of 

intracellular signalling proteins with and without the provision of a breakfast. 

The exact mechanisms that orchestrate molecular signalling activity are yet to be fully 

elucidated. Although there has been a great deal of work completed in rodent models, the 

exact time course for signalling protein in humans has only recently been investigated (6, 33). 

Atherton and colleagues (6) demonstrated a disconnect between changes in phosphorylation 

status of signalling proteins and changes in MPS. The peak in MPS was observed ~ 90 min 

after ingestion of a high dose (48 g) of whey protein (6). The phosphorylation status of 

signalling proteins matched the increase in synthesis, however as the rate of synthesis 

declined there was little change in the phosphorylation status of the cell. Therefore, the 

change in phosphorylation status of signalling proteins has a longer duration than the increase 
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in synthesis. Conversely, the phosphorylation of S6K1Thr389 has been shown to follow a 

similar pattern to MPS after resistance exercise and ingestion of 25 g of whey protein. If the 

peak in phosphorylation of signalling proteins is at 90 min post drink ingestion we may have 

missed the peak in phosphorylation of signalling proteins. However, it should be noted that 

the peak at 90 min in phosphorylation status was observed in a rested situation (6). Exercise 

alone can increase mTOR related signalling proteins (39). As the present study included 

exercise the combined stimulus of exercise and BCAA ingestion may have altered the time 

course of phosphorylation of mTOR related signalling proteins. Further work should 

investigate the time course of signalling proteins phosphorylation alongside MPS following 

exercise and amino acid ingestion. 

 
5.4 Summary and Conclusions 

The data from this thesis point towards current thoughts that BCAA are important, but may 

not be all that is needed for complete recovery. We have shown in untrained males that 

BCAA reduces muscle soreness, but not muscle function, following multiple lengthening 

contractions. However both muscle function and muscle soreness are reduced with whey 

protein ingestion. BCAA ingestion in trained males increases MPS rates, however perhaps not 

to the same extent as essential amino acids (EAA) or protein.  

• BCAA ingestion reduces muscle soreness in untrained subjects following a bout of 

intense lengthening contractions. 

• Whey protein reduces muscle soreness and results in reduced decrements in muscle 

function in untrained subjects following a bout of lengthening contractions. 

• BCAA ingestion increases MPS following resistance exercise. 
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The data from this thesis suggest that BCAA have a role in recovery from damaging 

exercise and the growth of myofibrillar tissues. 
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Appendix A 

 

School of sport and exercise sciences 
 

Consent form 
 
 
 
Investigation; Effect of ingestion of an amino acid source on muscle function and 
markers of muscle damage and soreness. 
 
 
Investigators:  Dr Kevin Tipton, Mr Oliver Witard, Miss Sarah Jackman,  
 
Subject Number: 
 
 
Name:  
 
 
Address:  
 
 
DOB: 
 
 
 
I have read the attached information sheet and discussed the investigation with 
………. ………….who has explained the procedures to my satisfaction.  I am willing 
to undergo the investigation but understand that I am free to withdraw at any time 
without having to give an explanation and that doing so will not affect my treatment or 
care I receive 
 
 
Signed……………. 
 
Witnessed………….. 
 
Date……………. 
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The University of Birmingham 
School of Sport and Exercise Sciences 

General Health Questionnaire 
 
Name:  .................................................................................... 
Address: .................................................................................... 
  .................................................................................... 
  .................................................................................... 
Phone: .................................................................................... 
 
Name of the responsible investigator for the study: 
 
  ................................................................................... 
Please answer the following questions.  If you have any doubts or difficulty with the 
questions, please ask the investigator for guidance.  These questions are to determine 
whether the proposed exercise is appropriate for you.  Your answers will be kept strictly 
confidential. 
1.  You are.......  Male  Female 

2.  What is your exact date of birth?   

Day........... Month...........Year..19........ 

So your age is........................... Years 

   

3.  When did you last see your doctor?     In the: 

Last week............ Last month.......... Last six months............ 

Year................. More than a year........... 

   

4.  Are you currently taking any medication?  YES  NO 

5.  Has your doctor ever advised you not to take vigorous 

exercise? 

YES  NO 

6.  Has your doctor ever said you have “heart trouble”?  YES  NO 

7.  Has your doctor ever said you have high blood pressure?  YES  NO 

8.  Have you ever taken medication for blood pressure or 

your heart? 

YES  NO 

9.  Do you feel pain in your chest when you undertake 

physical activity? 

YES  NO 

10.  In the last month have you had pains in your chest when 

not doing any physical activity? 

 

YES 

 

NO 

11.  Has your doctor (or anyone else) said that you have a 

raised blood cholesterol? 

 

YES 

 

NO 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12.  Have you had a cold or feverish illness in the last month?  YES  NO 

13.  Do you ever lose balance because of dizziness, or do you 

ever lose consciousness? 

YES  NO 

14.  a) Do you suffer from back pain 

b)  if so, does it ever prevent you from exercising? 

YES 

YES 

NO 

NO 

15.  Do you suffer from asthma?  YES  NO 

16.  Do you have any joint or bone problems which may be 

made worse by exercise? 

YES  NO 

17.  Has your doctor ever said you have diabetes?  YES  NO 

18.  Have you ever had viral hepatitis?  YES  NO 

19.  If you are female, to your knowledge, are you pregnant?  YES  NO 

20. 

 

Do you know of any reason, not mentioned above, why 

you should not exercise? 

YES  NO 

21.  Are you accustomed to vigorous exercise (an hour or so a 

week)? 

YES  NO 

 
I have completed the questionnaire to the best of my knowledge and any questions I had 
have been answered to my full satisfaction. 
 
Signed: .............................................................   
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Study Number:  
 
Patient Identification Number for this trial:  
 
 
CONSENT FORM  
 
Title of Project: ‘Effects of branched chain amino acid supplementation on post- exercise 
muscle protein metabolism’ 
 
Name of Researcher:  

Please 
initial box  

 
1. I confirm that I have read and understand the information sheet 
dated....................  
(version............) for the above study. I have had the opportunity to consider the 
information, ask questions and have had these answered satisfactorily.  
 
2. I understand that my participation is voluntary and that I am free to withdraw at 
any time without giving any reason, without my medical care or legal rights being 
affected.  
 
3. I understand that relevant sections of my medical notes and data collected 
during the study, may be looked at by individuals from GlaxsoSmithKline, from 
regulatory authorities or from the NHS Trust, where it is relevant to my taking 
part in this research. I give permission for these individuals to have access to my 
records.  
 
4. I agree to my GP being informed of my participation in the study.  
 
5. I agree to take part in the above study.  
 

 
 
 
 
Name of participant    Date    Signature  
 
 
 
 
 
 
Name of Person taking consent  Date    Signature 
 
 


