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Abstract

This thesis tackles a problem of recovering a high resolution image from a single

compressed frame. A new image-prior that is devised based on Pearson type VII density is

integrated with a Markov Random Field model which has desirable robustness properties.

A fully automated hyper-parameter estimation procedure for this approach is developed,

which makes it advantageous in comparison with alternatives. Although this recovery

algorithm is very simple to implement, it achieves statistically significant improvements

over previous results in under-determined problem settings, and it is able to recover images

that contain texture.

This advancement opens up the opportunities for several potential extensions, of which

we pursue two: (i) Most of previous work does not consider any specific extra information

to recover the signal. Thus, this thesis exploits the similarity between the signal of interest

and a consecutive motionless frame to address this problem. Additional information of

similarity that is available is incorporated into a probabilistic image-prior based on the

Pearson type VII Markov Random Field model. Results on both synthetic and real data of

Magnetic Resonance Imaging (MRI) images demonstrate the effectiveness of our method

in both compressed setting and classical super-resolution experiments. (ii) This thesis

also presents a multi-task approach for signal recovery by sharing higher-level hyper-

parameters which do not relate directly to the actual content of the signals of interest

but only to their statistical characteristics. Our approach leads to a very simple model

and algorithm that can be used to simultaneously recover multiple natural images with

unrelated content. The advantages of this approach in relation to state-of-the-art multi-

task compressed sensing are investigated and findings are discussed.
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CHAPTER 1

INTRODUCTION

The aim of this research is to recover a high resolution (HR) version of one dimensional

(1D) (e.g: wave, spectra, spike signals) and two dimensional (2D) signals (e.g: image)

from a compressed or a low resolutin (LR) frame. The LR version is always contaminated

with some additive noise. This is a highly under-determined problem where the number of

observations in LR is much smaller than the number of unknowns (the HR pixels). Less

observations in LR data makes this problem difficult to be solved, because even if the

transformation is linear and is known, there are infinitely many high resolution signals

that are all compatible with the LR data. That is, the data alone cannot distinguish

which one of these is a meaningful signal. For this reason, the problem is ill-posed. To

overcome this problem, we need to specify additional information about the structure of

the high resolution signals of interest. Figure 1.1 illustrates an example of the problem

description. The following are the issues with existing approaches that motivated our

research:

• Most capturing processes introduce additive noise. Yet, most compressed sensing

algorithms assumed a noiseless setting.

• The transformation from the original unknown high resolution image to the ob-

served low resolution image degrades the information content of the image. A naive

upsampling is therefore inadequate to recover the full details of the high resolution

image. However, the more advance methods that use some former prior-knowledge
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Figure 1.1: Examples of image recovery task from a single-frame of low resolution. The
observed frame is compressed or has a low resolution and we try to recover its high
resolution version. The left low resolution frame is generated using a random matrix
with independent and identically distributed (i.i.d) standard Gaussian entries and the
right frame is generated using the blur and down-sampling transformations. The high-
resolution image is taken from the Matlab image database.
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have various tuning parameters that are hard to set.

• Edges are generally hard to recover in high resolution because they have high infor-

mation content that is hard to predict from the rest of the image.

This research develops novel alogorithms to recover the high resolution image, removes

the additive noise and deals with the outliers simultaneously. To achieve this aim, we will

formulate a flexible parameterised image-prior in a probabilistic framework that could

be seen as a generalisation and extension of several existing approaches. A flexibility is

achieved by automated estimation of higher level hyper-parameters.

1.1 Research Questions

This thesis is concerned with four main research questions; the first three questions are

focusing on a single task (ST) recovery from a single low resolution frame and the final

one addresses multi-task (MT) recovery.

• How to preserve the edges on the image when recovering the high resolution version

of the image?

In particular, different images contain different amounts of texture – How to devise

a generic algorithm that is tuned automatically to the right propotion of texture

versus smoothness? To solve this issue, we will devise a new flexible image model.

• How to estimate the parameters and hyper-parameters in the obtained model that

is now non-convex and has many local optima?

• Intituitively any recovery methods should work better if it is given more specific

extra information. Can we use available extra information to help recovering the

high resolution image from fewer measurements? How to incorporate such extra

information into our image-prior?
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• Can we use a notion of statistical similarity, as described by our higher level param-

eters, to efficiently recover multiple high resolution images simultaneously that do

not share semantic content?

Before proceeding to study these questions, we carried out an analysis of the natural

image statistics to help us devise the new image-prior. Through study, this signal recovery

application required the author to deal with several challenges.

1.2 Challenges

Development of the signal recovery algorithm is a challenging problem because it has to

handle the following:

• An ill-posed condition - This generally means the solution does not exist or it is

not unique, yielding highly noise sensitive solutions. In our case, it means the prob-

lem has too few observations, (measurements) on the low resolution frame because

the high resolution image has under gone down-sampling, blurring and additive

noise. Due to fewer pixels in the low resolution frame than in the high resolution

image that we wish to recover, the single-frame version is under-determined. This

makes the problem more challenging than classical super-resolution where several

low resolution frames are available.

• Requirement of robustness - Since the problem is ill-posed, we will have to use

an image-prior. It is crucial that this prior specifies correct information about the

statistical characteristics of the high resolution image that we want to recover. There

is a need to improve the existing prior-knowledge that is used in the existing state-

of-the-art in terms of robustness and flexibility. Robustness means that the data

contains outliers which corresponds to the edges on the image. Flexibility refers to

the fact that we do not know beforehand the proportion of edges in a particular

image. We want our approach to adapt itself to require level of texture within an
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image.

• Sparsity property - A vector has the sparsity property when its elements are mostly

zeros. For example, v = [v1, v2, ..., vi, ..., vN ] is sparse if many index of vi = 0.

The vector of neighbourhood features has many elements close to zeros because

the intensity of many pixels is close to the average intensity of its neighbouring

pixels. This is so because most images are locally smooth. It is a charatericstic

of natural images, hence a good image-prior need to reflect this. Therefore, vector

of the neighbourhood feature is almost a sparse vector. Smoothness or sparsity is

over emphasised in compressed sensing Bayes method and as a result, the texture

on the image cannot be recovered. In super-resolution approaches, the amount of

free parameters is prohibitive.

• No universally accepted image model - There is no ideal image model that can both

impose smoothness and preserve the edges in the image. This has motivated us to

formulate an image-prior which covers those attributes and is appropriate for many

natural images.

Once we are able to reconcile all of these requirements, the road will be open for many

potential extensions and developements, as we shall see later.

1.3 Thesis Contributions

This thesis makes four significant contributions in the field of image recovery:

• Devising and formulating a novel robust image-prior which is capable of capturing

the statistics of natural images using a probabilistic model based framework which

allows a flexible approach. This model allows for the level of smoothness in the

neighbourhood features to be estimated automatically. This is in contrast to pre-

vious methods which either fixed the hyper-parameters or required the user to set
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them. Our new image-prior has been tested and compared with the existing meth-

ods and the results have been documented in conference and journal Publications

in [4] and [5].

• A novel algorithm for single-frame image recovery that enables us to recover images

with more texture than is currently possible using state-of-the-art methods. The

performance of the proposed algorithm from our image recovery framework has

demonstrated that our approach is superior to the state-of-the-art. This has been

published in Publications [4] and [5].

• A similarity-prior is formulated and employed to include the similarity information

between the scene of interest and a consecutive scene that differs in colouring or

lighting. This prior enables a better accuracy from fewer measurements than a

general-purpose prior would, and enables us to solve very under-determined prob-

lems. The results are published in Publications [2] and [3].

• A new approach to multi-task signal recovery is devised where the target signals

need not have any overlap in their content but only share their higher level statistical

characteristics. This can be used for simultaneous recovery of sets of natural images

in a single run. Results and comparisons are presented in Publication [1].

1.3.1 Publications

Publications arising from the thesis are listed as follow:

• [1] S.A Pitchay and A Kabán. Multi-task Signal Recovery by Higher Level Hyper-

parameter Sharing. Proc. 211st of International Conference on Pattern Recognition

(ICPR’2012), Tsukuba, Japan, 11-15 November 2012, IEEE Computer Press, pp.

2246-2249. (oral presentation - 15% acceptance rate)

• [2] S. Ali-Pitchay and A Kabán. Single-frame Signal Recovery Using a Similarity-

Prior Based on Pearson type VII MRF. In Proceedings of the 1st International
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Conference on Pattern Recognition Applications and Methods, ICPRAM’2012, pp.

123-133, Sci-TePress. (full paper, oral presentation - 24% acceptance rate)

• [3] S. Ali-Pitchay and A Kabán. Single-frame Signal Recovery Using a Similarity-

Prior. Springer Proceedings in Mathematics & Statistics 30, Mathematical Method-

ologies in Pattern Recognition and Machine Learning, vol. 30, 2013, pp. 83-98, (c)

Springer, (invited extension of ICPRAM’2012 selected contribution).

• [4] A Kabán and S.A Pitchay. Single-frame Image Recovery using a Pearson type

VII MRF. Neurocomputing, 80: 111-119, 2012, (invited and referreed extension of

MLSP’2010 paper, 14 in print for the special issue out of 78 papers.)

• [5] A Kabán and S.A Pitchay. Single-frame Image Superresolution using a Pearson

type VII MRF. Proc. IEEE International Workshop on Machine Learning for Signal

Processing, MLSP, pp. 29-34, August 29 - September 1, 2010, Kittila, Finland, (oral

presentation - 30% acceptance rate1).

• [6] S.A Pitchay. Non-linear Image Recovery from a Single Frame Super Resolution

Using Pearson Type VII Density. Intelligent Automation and Systems Engineering,

pp. 295-307, Lecture Notes in Electrical Engineering 103, (c) Springer, 2011.

1.4 Overview of the Thesis

This thesis has seven chapters. The remainder of this thesis is structured as follows.

Chapter 2: Introduction to Signal Recovery

• Chapter 2 presents an introduction to signal recovery and super-resolution ap-

proaches. The chapter also discusses the inverse problem and introduces the proba-

bilistic model-based methodology for solving such problems that we will build upon

later. Several existing image-priors are reviewed and the strength and weaknesses

are discussed.
1Acceptance rates can be found at http://www.sciencedirect.com/science/article/pii/S0925231211005947
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Chapter 3: Single-frame Image Recovery using a Pearson type VII MRF

• Chapter 3 proposes the novel image-prior, the Pearson type VII Markov Random

Field, and provides details on constructing the main building blocks of this image-

prior. This chapter outlines the overall image recovery framework from a single-

frame. It also develops the signal recovery algorithm associated with the model and

is based on Publications [4] and [5] as mentioned in section 1.3.1.

Chapter 4: Investigating Alternative Hyper-parameters Estimation Approaches

• Chapter 4 formulates and develops the multivariate Pearson type VII that acts on

the entire image. We compare its performance with the univariate Pearson type VII

which acts on the pixel level and existing image-priors. This chapter also investigates

alternative approaches for estimating the hyper-parameters and demonstrates the

efficiency of this new approach through extensive experiments. This is based on

Publication [6] in section 1.3.1.

Chapter 5: Single-frame Signal Recovery Using a Similarity-Prior

• Chapter 5 considers specific extra information which we found to be useful for

recovering the high resolution scene of interest and devises the similiarity-prior that

incorporates the information into the Pearson type VII density model. The extra

information consists of a notion of similarity between high resolution images that

differ in colouring or lighting. An application to MRI images is presented where

this method is shown to greatly reduce the number of measurements needed for a

good recovery. This chapter is based on Publications [2] and [3] in section 1.3.1.

Chapter 6: Multi-task Recovery without Content Similarity

• Chapter 6 extends the work of single-task recovery into multi-task recovery by shar-

ing the hyper-parameters. The chapter provides extensive results that are additional

to Publication [1] in section 1.3.1.

Chapter 7: Summary and Conclusions
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• Finally chapter 7 concludes the thesis by summing up the achievements and listing

possible future avenues for further investigation.
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CHAPTER 2

INTRODUCTION TO SIGNAL RECOVERY

This chapter assumes no expert knowledge in signal recovery and therefore a very

brief introduction to signal recovery versus super-resolution approach is provided. This

chapter will first differentiate and relate the signal recovery and the super-resolution task

in section 2.1. Section 2.2 gives an overview of the sorts of problems when the additional

information is required. Section 2.3 describes briefly some of the parameter estimation

methods that will be utilised in the development. Next, in section 2.4 introduces a

statistical model, Markov Random Fields, and describes an example construction of a

neighbourhood matrix that will be utilised later in the additional information based on

this model. This section also studies the types of the distribution of the neighbourhood

features. A number of state-of-the-art image-priors are reviewed in section 2.5. Section

2.6 discusses the inadequacies of the previous work. Finally 2.7 summarises the chapter

and raises the issue that motivated the author on a further investigation.

2.1 Signal Recovery versus Super-resolution

The basic idea behind super-resolution (SR) [5] is to combine the information from

multiple low resolution frames to generate a high resolution image as shown in figure 2.1.

These frames contain non-redundant information [5] typically because of subpixel shifts

between them. In this case, the more details there are in the image the better. If we
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have sufficient number of low resolution frames, the problem is rather easy to solve as the

data contains all the necessary information for recovery. On the other hand, this thesis

focuses on recovering the signals from a single low resolution noisy frame. This is what

we referred to as the signal recovery problem.

Signal recovery is studied in this work in two instances: (i) Recovery from a randomly

compressed version, as in Compressed Sensing [6] (ii) Recovery from a sub-sampling and

blur as in the classical, but single-frame super-resolution setting. In both instances,

we only consider linear transformation models, which is indeed the form used in the

state-of-the-art in the literature since it is sufficient for many applications, and keeps the

problem manageable. In the field of compressed sensing [7] (or also know as compressive

sensing), the random matrix that compressed the high resolution image is also called the

compressive matrix.

Figure 2.1: Examples of the low resolution input for a signal recovery and super-resolution
application. The signal recovery shown in the top half of the figure utilises the compressive
matrices. In the second half of the figure refers to the super-resolution where the LR
frames are generated by utilising the transformation1operator.

Before we begin to outline the existing methods to recover the signals, an illustrative

example for both of these image observation models is presented. The general form of

the image observation model can be written as in equations (2.1) or (2.2) where y is the

low resolution frame, W is the transformation operator that acts on the high resolution

1http://www.robots.ox.ac.uk/∼vgg/research/SR/synthdata.html
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image z, and η is the additive noise of M -dimensional vector with i.i.d zero mean spherical

Gaussian elements of variance σ2.

y = Wz + η (2.1)

yk = DkBkM k
︸ ︷︷ ︸

W k

z + ηk, ∀ k=1,2,...,K (2.2)

where Dk encodes the down-sampling operator for the k -th low resolution frame, Bk

models the blurring effects, M k is the motion information for the k -th frame and ηk is

the noise term. As already mentioned, in classical multi-frame super-resolution, K is

bigger than one. But in this thesis, K is equal to one. Therefore these two equations

(2.1) and (2.2) have the same form but differ in the structure of W .

There are many theoretical works [2, 3, 6] in the literature of Compressed Sensing

(CS) that guarantee the recovery if the transformation W is a certain random matrix

(for example, i.i.d Gaussian entries) and z is sparse. However that theory does not fit

the other, more structured and deterministic W in equation (2.2). Although the theory

of CS is outside our scope, in this thesis we will utilise both of these W and will employ

a probabilistic model based approach as opposed to most CS algorithms (e.g. the ℓ1-

magic package1, based in ℓ1-regularisation). As a byproduct we will gain some insights

into whether the type of W makes any major difference to the ability of an algorithm to

recover a good quality image.

Note, these linear systems in equations (2.1) or (2.2), when K = 1, are under-

determined because the dimensionality of y is much smaller than the dimensionality

of z. Therefore, solving the system for z is ill-posed. The challenge is to come up with

additional information that constrains the problem in the right way; and the procedure

to do this will be pursued throughout the thesis.

We should mention that the matrix W may be partially unknown in certain applica-

tions and may need to be estimated. This can be done when K >> 1. Indeed, former

1The code can be found at http://users.ece.gatech.edu/∼justin/ℓ1magic/
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works [8, 9, 10] and more recently Pickup [4] have already tackled this when there is

sufficient data available. Since our scope is in the single-frame (K = 1) setting, we will

consider W to be known, as in compressed sensing, and focus on recovering z from the

under-determined system. The next section will introduce the reader to the problem

that requires the additional information. Before we proceed further, we highlight some

literature for the non-linear1 problem.

2.2 Introduction to the Problem

We already disccused that conventional SR approaches require multiple low resolution

frames. In reality, it is hard to find sufficient number of low resolution frames, so we

are left to solve an under-determined system. To overcome this problem, some form of

prior-knowledge is introduced to stabilize the inversion of the ill-posed system. A problem

is ill-posed [13] when the system does not have the well-posed properties: (i) a solution

exists, (ii) is unique and (iii) the solution depends continuously on the data.

The recovery approaches are divided into two major categories to stabilize the solution.

One by numerically stabilising the solution and the second category by exploiting some

additional information gained through building an image model (referred to as an image-

prior). To numerically stabilise the solution, we can use the pseudo-inverse. From equation

1A non-linear model could be formulated as y = f(z)+η where f(z) is some parameterised non-linear
function of z. However, signal recovery in non-linear compressed sensing (NLCS) literature is very scarce.
Some of the works [11, 12] introduce the concept of non-linear measurements into CS theory. Xu et al [11]
study sparse recovery by linearizing the equations and apply an iterative procedure to obtain a solution.
Blumensath [12] shows in theory that sparse or structured singals from few non-linear observations are
possible to be recovered under certain conditions.
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(2.1), we can define an objective function (2.3) to find the most probable z:

f(z) =
1

2
||y − Wz||2 (2.3)

∂f(z)

∂z
=

∂

∂z

(
1

2
(y − Wz)T (y − Wz)

)

=
1

2
(−2W )T (y − Wz)

= −W T y + W T W z (2.4)

By setting equation (2.4) to zero, the solution of z is as follows:

(W T Wz − W T y) = 0

W T Wz = W T y

z = (W T W )−1W T y (2.5)

However the inverse of the W T W (written in equation (2.5)) does not exist because the

determinant of this matrix is zero and the rank of this matrix is at most the dimensionality

of y which is much more smaller than the dimensionality of z. Therefore we could replace

the inverse by the pseudo-inverse. Another possibility is to add a full rank matrix to

W T W to make it invertible such as in equation (2.6).

z = (W T W + σ2
η
Ω

︸︷︷︸

regularisation

)−1W T y (2.6)

where Ω is a full rank matrix, e.g. N × N identity matrix. Both of these ideas will give

a unique solution, i.e stabilise numerically the solution of the original system. However,

this solution is quite arbitrarily picked from the infinitely many solutions of the original

system from equations (2.1) and (2.2).

For this reason, rather than choosing one of the above solutions, we should design how

to stabilise the solution. We can do this by exploiting some information about the struc-

ture of high resolution images in general. For this, we will need to review building blocks
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like Markov Random Fields and various probabilistic models that allow us to formulate

prior-knowledge in a consistent framework and derives method for image recovery that

exploits this framework.

The prior-knowledge will be built into an image-prior that plays an important role to

specify what makes a solution to the unknown (i.e: pixels in the high resolution image) in

general. An image-prior can help when (i) the number of samples is less than the number

of unknowns, (ii) an accurate prior model exists and is required and (iii) accuracy without

prior is poor. Before we proceed to formulise some image-prior, we will describe parameter

estimation methods that will deal with those priors.

2.3 Parameter Estimation Methods

Extensive work in super-resolution and signal recovery methods employ probabilistic ap-

proaches and have been the main key to initiating modelling the data. Probabilistic

models [14, 15] are a useful tool that allows us to infer data from the observed data based

on Bayesian theory [16]. Maximum Likelihood and Maximum A Posteriori are the two

estimators utilised in this approach. This section is restricted to methods of choosing

parameter and hyper-parameter value that we will use in this thesis.

2.3.1 Maximum Likelihood (ML) estimation

Maximum Likelihood [17] estimation is the most widely used method for estimating the

parameters of a statistical model. Examples of work that uses ML estimator can be

found in [18, 19, 20, 21, 22, 23, 24]. The maximum-likelihood estimator is obtained by

maximizing the log likelihood function. This is done in equation (2.7). In equation (2.7),

p(d|Θ) denotes a parameterised probability model where d is the data and Θ are the
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parameters, and we can maximise the log of p(d|Θ) with respect to Θ.

Θ̂ML = arg max
Θ

log p(d|Θ) (2.7)

Assume a particular form for the density (e.g: Gaussian, Poisson, Binomial), only the

parameters such as the mean and variance need to be estimated. ML has the advantage

of not requiring the expression of the prior distribution on the parameters. Nevertheless,

overfitting turns out to be the disadvantage, if the number of data points are small [25].

This is equivalent to an ill-posed problem in image recovery where the quality of the

recovered image becomes worse when there are infinitely many solutions. The factor [26]

that contributes to this poor quality is that the image recovery suffers when the number

of low resolution frames is small. To solve this problem, a solution is required to include

some prior information. We can do this by adopting the Maximum A Posteriori estimator.

2.3.2 Maximum A Posteriori (MAP) estimation

In Maximum A Posteriori [25, 27] framework, it assumed a prior distribution for the

parameters p(Θ) is available. Bayes’ theorem shows the way for incorporating prior in-

formation in the estimation process:

p(Θ|d) =
p(d|Θ)p(Θ)

p(d)
(2.8)

The left hand side of the equation is called the posterior. The term on the right hand

side is the numerator which is the product of the likelihood term and the prior term. The

denominator serves as a normalization term so that the posterior probability density func-

tion (PDF) integrates to unity. Thus, Bayesian inference [28, 29] produces the maximum

16



a posteriori estimate:

Θ̂MAP = arg max
Θ

p(d|Θ)p(Θ) (2.9)

= arg max
Θ

{log p(d|Θ) + log p(Θ)} (2.10)

When there is no available knowledge on Θ, this is equivalent assuming a non-informative

prior or an improper prior [30]. For that assumption, equation (2.10) reduces to ML

formulation. In our image recovery setting, MAP estimates is computed via numerical

optimisation such as conjugate gradient which requires the derivative of its objective

function. Many works [31, 32, 33, 34, 35, 24, 36, 37] have proposed to use MAP estimator

in super-resolution and image enhancement area.

2.3.3 Cross validation (CV)

Cross validation [38] is a method for estimating the performance of a predictive model

[39]. According to Arlot and Kei [40, 41], the main key behind cross validation is to divide

data, once or several times, for estimating the risk of each model. Part of the data will

be used to learn or train the model and the remaining part is used to validate the model.

Finally, the CV method selects the smallest error. To estimate the hyper-parameters

using this method is also challenging because we need to choose one from the three types

of CV wisely. It can be categorized into simple CV or random subsampling, K-fold CV

and leave-one-out CV(LOOCV) [41, 42]. CV method also can prevent the over-fitting

problem because the training data is independent from the validation data [41].

Simple CV also known as hold-out validation [43], where a single data sample is divided

into two groups, one for training and the remainder for testing. The advantage of hold-out

method is that it is usually a preferred choice to the residual method and consumes less

time to compute. However, its evaluation can have a large variance [40, 44]. For instance

when the training data is small, we may get an unfortunate split which results in high

error. Since this method is relies on a single division into training and test set, sometimes
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we may get lucky split or the unlucky split. Therefore there is a large variability of the

error. The evaluation relies on how the division is generated and therefore it could be

remarkably different. Yet, most recent theoretical results on any diverse CV procedures

are not accurate enough to differentiate which splitting strategy is the best [40].

In K-fold CV, the original sample is partitioned into K-samples randomly. Of the K

subsamples, a single subsample is retained as the validation data for testing the model, and

the remaining K-1 subsamples are used as training data. The process is repeated K times

(the folds), with each of the K subsamples used exactly once as the validation data. The

K results from the folds then can be averaged (or otherwise combined) to produce a single

estimation. The advantage [45] of this method over repeated random sub-sampling is that

all observations are used for both training and validation, and each observation is used

for validation exactly once. Therefore, it provides an accurate performance estimation

[46]. 10-fold cross-validation is commonly used, but in general K remains an unfixed

parameter. A good choice of K depends on the dataset size.

LOOCV[46] is a special case of K-fold cross-validation where k equals the number of

instances in the data. It involves using a single observation from the original sample as the

validation data, and the remaining observations as the training data. This is repeated such

that each observation in the sample is used once as the validation data. This method is

computationally expensive because it requires many repetitions of training. Algorithms for

seeking the parameter and hyper-parameters using cross validation methods are presented

in chapter 4.3.

In order to include the additional information that represents what the recovered

image looks like, a construction on the neighbourhood matrix D is implemented. The

following section describes a brief introduction to the Markov Random Fields which have

been employed in the image-prior. A study on the distribution of the neighbourhood

feature is conducted to analyse the type of the common distribution that is required for

building the image-prior.
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2.4 Introduction to Markov-Random Fields

Markov Random Fields (MRF) are kind of statistical model. It aims to model the local

structure or the interactions among random variable in a particular set. An illustra-

tion of the neighbourhood system for MRF is shown in figure 2.2. The structure of the

neighbourhood system determines the order of the MRF.

Figure 2.2: Neighbourhood system as function of Random Fields model order (right) and
on the left is the 1st order neighbourhood system. Adapted from:[1]

The 1st order neighbourhood system is also called the 4-neighbourhood system. Every

pixel has four neighbours except pixels that are on the top, bottom, the first left and the

last right side of an image. A first-order MRF assumes that for any pixel i its intensity

depends on the intensities of its closest cardinal neighbours but does not depends on any

other pixel of the image as illustrated in figure 2.2. Cardinal neighbour means pixel that

are nearby in the sense of location. The 2nd order neighbourhood system is known as the

8-neighbourhood system.

MRF are identified as well suited and widely used models that are able to capture

the local smoothness property. Therefore, in the image recovery case, local smoothness

corresponds to the neighbourhood intensity of each pixel. MRF plays a significant role

for modeling and estimation in a variety of fields within pattern recognition [47], object

classification [48, 49], object matching [50], image segmentation[1] and image restoration

[51].

We employ MRF as it allows us to built an image-model, taking advantage of what we

know about the images of the kind we are looking for (i.e: prior-knowledge). It has the

flexibility to exploit the prior-knowledge. There are some other image analysis method
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Figure 2.3: An illustration of the z coordinate for size(3,4).

such as interpolation [52, 53] that do not build a model of the high resolution image.

This method does not recover the images well compared to the methods [4] that employ

prior-knowledge. An example recovery using bicubic interpolation is shown in figure 3.3.

In addition, by being a probabilistic model, the MRF can be combined with the noise

model (i.e.: the likelihood model) to form our overall model of the SR problem. This

overall model can be used to estimate the high resolution image using Bayes rule by

maximising its posterior. Hence, the probabilistic framework of which the MRF of one

element offers a principled framework to include both prior-knowledge about the unknown

HR image as well as the characteristic of the observation noise and enables a principled

estimation of the high resolution image using the MAP estimation technique.

2.4.1 Constructing the neighbourhood matrix

In this section, an algorithm of constructing the neighbourhood matrix D is described

and an example of identifying the cardinal neighbours for each pixel z is presented. An

image z of size (3,4) is illustrated in figure 2.3 and the coordinate of the neighbourhood

D matrix is described in table 2.1. Each pixel of image is labelled from z1 to z12. Using

the pixel location, the four cardinal neighbours are identified. As shown in table 2.1, the

border of an image (e.g. z1, z2, z3, z4, z6, z7, z9, z10, z11 and z12) can only consist of two

or three cardinal neighbours. However for real data with higher dimensionality, there are

more intensity values in z or the pixel that relies on the four neighbours compared to the

pixels with two and three neighbours. Therefore, the algorithm neglects the minority of

the pixels since it does not affect the majority difference. Table 2.2 represents the entries

for all pixels in image (z) according to the image size (3,4).
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Table 2.1: An example of z(3,4) with its cardinal neighbours.

Pixel location Neighbours ID
z1 ID(2,4)
z2 ID(1,3,5)
z3 ID(2,6)
z4 ID(1,5,7)
z5 ID(2,4,6,8)
z6 ID(3,5,9)
z7 ID(4,8,10)
z8 ID(5,7,9,11)
z9 ID(6,8,12)
z10 ID(7,11)
z11 ID(8,10,12)
z12 ID(9,11)

Figure 2.4 displays their cardinal neighbours for each pixel location of an image size

(8,7). The red plot presents the pixel for each coordinate and the blue color indicates the

primary neighbours according to the given algorithm. Following the steps in algorithm
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Figure 2.4: An illustration of the cardinal neighbours.

1, each entry in the constructed D matrix is now filled by the entries defined in equation
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Table 2.2: The neighbourhood structure constructed for an image of size z(3×4).

row/col 1 2 3 4 5 6 7 8 9 10 11 12

1 1 −1
4

0 −1
4

0 0 0 0 0 0 0 0
2 −1

4
1 −1

4
0 −1

4
0 0 0 0 0 0 0

3 0 −1
4

1 0 0 −1
4

0 0 0 0 0 0
4 −1

4
0 0 1 −1

4
0 −1

4
0 0 0 0 0

5 0 −1
4

0 −1
4

1 −1
4

0 −1
4

0 0 0 0
6 0 0 −1

4
0 −1

4
1 0 0 −1

4
0 0 0

7 0 0 0 −1
4

0 0 1 −1
4

0 −1
4

0 0
8 0 0 0 0 −1

4
0 −1

4
1 −1

4
0 −1

4
0

9 0 0 0 0 0 −1
4

0 −1
4

1 0 0 −1
4

10 0 0 0 0 0 0 −1
4

0 0 1 −1
4

0
11 0 0 0 0 0 0 0 −1

4
0 −1

4
1 −1

4

12 0 0 0 0 0 0 0 0 −1
4

0 −1
4

1

(3.5).

Algorithm 1 : Constructing the neighbourhood matrix D.

Step 1: Define the row and column of the recovered image z

2: Step 2: Initialise the size of the neighbourhood matrix, row × column.
Step 3: Initialise the neighbourhood matrix as zeros entry.

4: for i = 1 to length(row) do
for j = 1 to length(column) do

6: Get the pixel ID
Fill in D(ID,:) with entry 1 if i = j

8: Obtain the ID’s of the neighbor of the ij-the pixel of z using the following entries described in
section 3.5.

end for
10: end for

2.4.2 What is the distribution of neighbourhood features?

In this section, we build understanding of the distribution of neighbourhood features by

looking at the histogram of neighbourhood features Diz. (Diz) means the difference

between each pixel of z and its four nearest neighbours or it is equivalently in this math-

ematical form, zi − 1
4

∑

j∈4neigb(i) zj. The details for this form are written in Appendix

A.

We investigate what the shape looks like and whether all the natural images exhibit

the same pattern. Before we proceed further, we need to define what we mean by natural
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images. The term itself is too subjective but examples include images of human beings,

animals and plants. Images of some buildings also have the characteristic of the natural

images. For that kind of images, if we look at the histogram of Diz, we observe a

heavy-tailed shape, a big peak at zero and almost symmetric on both sides. This big

peak corresponds to the local smoothness of the data where it captures the homogeneous

area in the image. Weiss and Freeman’s [54] also claim that natural images have those

properties.

We visualised the histogram of neighbourhood features for many images and we dis-

covered that most of the tested natural images have a common property. The resulting

histogram has a high peak at zero, almost symmetric and long tails. This histogram

shape is likely to fit a heavy-tail density that we will propose later in Chapter 3 of this

thesis. The high peak means it has a high probability of zeros and near-zeros, which

represent many areas of local smoothness in the image. At the same time, the long tails

allow outliers that correspond to the edges. From the observed data, we investigate and

instantiate the functional form of the probability densities that describe the shape of the

likely values of these features later in the thesis. Figure 2.5 shows a few examples of

observed histograms of these features, from natural images.

In this study, some peculiar histogram are visualised in section 4.5.2 in figure 4.14.

Those images represent examples where the images contain a lot of texture and a texture-

based prior is more preferable in this case. Therefore, the proposed image-prior is not

suitable for those kinds of image recovery.

2.5 Existing Image-priors

Throughout this section, relevant image-priors to this field are presented.
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Figure 2.5: Examples of histograms of the distribution of neighbourhood features Diz, i =
1, · · · , N from natural images.
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Figure 2.6: Examples of histograms of the distribution of neighbourhood features Diz, i =
1, · · · , N from natural images.
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2.5.1 Gaussian MRF

The Gaussian Markov Random Field (GMRF) is extensively used in statistical modelling

[55, 56, 57, 58] and most widely used as an image-prior density in [32, 59, 60, 61, 62, 63, 64].

It has the following form [32]:

Pr(z) ∝
N∏

i=1

exp

{

− 1

2λ
(Diz)2

}

(2.11)

= exp

{

− 1

2λ

N∑

i=1

(Diz)2

}

(2.12)

= exp

{

− 1

2λ
zTDT Dz

}

(2.13)

where λ is the variance parameter and ∝ denotes proportionality. Comparing the latter

expression to that of a multivariate Gaussian density we can read off the covariance matrix

induced by the employed neighbourhood definition:

Cov = (DT D)−1 (2.14)

Figure 2.7 illustrates the negative log Gaussian prior with several values of hyper-

parameter λ. The most horizontal with the strongest curve plots the larger λ and it

is far from the solution. The horizontal line denotes smaller value of λ are more appro-

priate to obtain a better solution. Despite the GMRF image-prior has many advantages

including its unique solution [65], it always tends to smooth and penalise the sharp edges

that we wish to recover. GMRF does not model edges well and in some applications such

as in image restoration, it blurs the edges and leaves excessive amounts of noise.

2.5.2 Huber MRF

Huber Markov Random Field (HMRF) image-prior is studied in [36, 66, 67, 68, 31].

Huber density is defined with the aid of the Huber function as in equation (2.15). The

Huber function is quadratic around the centre, and linear in the tails, with no gradient
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Figure 2.7: Illustration of Gaussian plot of 1D density for five values of λ.

discontinuity. It takes a threshold parameter δ, specifying the value at which it diverts

from being quadratic to being linear. If the threshold δ is large, then the HMRF prior

reduces to a GMRF image-prior. On the other hand, if δ → 0, the Huber prior is equivalent

to the total variation prior. A generic variable u in the definition of this function is used

and will be instantiated later as a neighbourhood-feature in chapter 3.

H(u|δ) =







u2, if |u| < δ

2δ|u| − δ2, otherwise.
(2.15)

The Huber-MRF prior is then defined as:

Pr(z) ∝
N∏

i=1

exp

{

− 1

2λ
H(Diz|δ)

}

(2.16)

= exp

{

− 1

2λ

N∑

i=1

H(Diz|δ)
}

(2.17)
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where λ is similar to a variance parameter and acts as the tuning parameter to control the

smoothness of the regions data. Figure 2.8 plots the Huber function for several different
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Figure 2.8: 1D Huber function plot for five values of δ.

values of the threshold, δ. This function is then applied to the Huber image-prior as the

edge penalty term in a distribution over the image edges. A major disadvantage of using

this prior is that it requires the choice of an edge threshold. Several examples of the

previous works [69, 33, 70, 21, 71, 72, 37] on estimating this parameter are discussed in

section 2.6.

2.5.3 Heavy-tail prior in Bayesian Compressed Sensing (BCS)

BCS is a recent state-of-the-art method for image recovery method in the compressed

sensing literature. Ji et al. [2] compare their method with the existing work (ℓ1-magic

[73]) and demonstrated superior results. They used the following heavy-tail prior as
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defined in equation (2.18).

p(θ|a, b) =
N∏

i=1

∫ ∞

0

N (θi|0, u−1
i )G(ui|a, b)dui (2.18)

where N is the Gaussian probability density function, G is the Gamma density, θ is the

sparse features of the high resolution image (for example we can use Dz or the wavelet

transform) and a, b are the hyper-parameters. This integral evaluates the t-distribution

as discussed in [2, 74].

However in the BCS work [2], the authors used the so-called ML type II estimation

which means they compute the most likely value of ui where i = 1, ..., N . This is equivalent

to taking the limit when a = b → 0. Therefore this setting removes a lot of the flexibility

of this distribution. That is, there is no flexibility to vary the tails and the general shape

of the prior. As a result, as we shall see in the later chapters, the recovered image will

be too smooth and will loose part of the edges. Hence, there is no flexibility to deal with

texture in the image. The estimation for hyper-parameters in t-prior could be automated.

However the authors of [2] did not proceed this way and they fixed the degrees of freedom

instead. We found in other literature about outlier detection [75] that it is hard to

automate the hyper-parameter estimation of the t-prior because of its complex expression

and estimating those hyper-parameters are time consuming as claimed in [75]. Therefore,

we proceed to formularise another heavy-tail prior that has not been employed in signal

recovery and we found that our Pearson prior is superior than t-prior in BCS work [2].

2.6 Inadequacies of Previous Work

We close this chapter by listing some open problems of interest in this area. There are

several shortcomings from the previous works in the area to be highlighted in this section

that relate to the existing working area. Various image-priors were developed in previous

works. Nevertheless, it is still vague which method is the best way to construct the edge-
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preserving image-prior. It is unclear which procedures can lead on preserving the edges

well in the image. These works [35, 36, 76, 77] and [78] claim that their method can

preserve the edges and smooth the noise and we review some of them.

He and Kondi [35] claim their method using Huber MRF preserves the image dis-

continuities better than the Gaussian prior when compared to a work by Hardie et al.

[32]. Both works [32, 35] lack automated hyper-parameter estimation which our work

overcomes. Hardie et al. [32] introduce proper choice term on the hyper-parameter. This

can be classified as trial and error by repeating the experiments. They then extended

the work in [62] but, they still do not provide a principle method on the hyper-parameter

estimation. They assume the value can be set between some range by conducting several

experiments to obtain the best result with good trial and error value. Therefore, it takes

time and is not feasible in practice. Later, He and Kondi [36] extend their work by intro-

ducing a method of choosing the threshold for the HMRF prior. They used a heuristic

method to estimate the threshold T from several synthetic tests and although it works

on two test images, there is no principled methodology behind it. Moreover, those works

are specialised for a selected image which limits their general use. The major drawback

of a manual search [79] is the difficulty in reproducing results.

Recent work, Pickup et al. [76] responded to this matter by employing the non-

Gaussian prior (Huber prior) and obtained better results by optimising SR image and

registration parameters simultaneously. They learnt prior parameters by using cross val-

idation which can be time consuming. In their setting, several low resolution frames

are considered where they can hold enough data when employing the cross validation.

Conversely in our setting, these multiple frames do not exist. We conject that the qual-

ity of the recovered image might not be as good as theirs when more data is available.

However, in chapter 4 we will investigate a cross validation method for estimating the

hyper-parameters in our image-prior in order to see the outcome of the recovered image.

The Huber MRF has state-of-the-art performance, provided that its parameters are

well chosen according to Pickup et al. [67]. A fixed value of the threshold, 0.4 is found
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from their provided code1. Nevertheless, automating this choice in a principled way is

not straightforward, and although the work in [80] has been able to develop an approx-

imate solution to estimating λ, the determination of the threshold parameter δ remains

somewhat problematic since the probabilitiy density function is not differentiable in δ.

Fixed estimation refers to a method that estimates the regularization hyper-parameters

manually. There is no rigorous or formal definition of a hyper-parameter. Yet, Bergstra

and Bengio [79] and Molina et al. [81] interpret the hyper-parameter term as a parameter

of a prior distribution to differentiate them from parameters of the model. According to

Statisticat LLC [82], ‘the parameters of a prior distribution are called hyper-parameters,

to distinguish them from the parameters Θ of the model ’. The hyper-parameter is used

to control the actual parameter and according to fixed estimation, it is manually tuned

and the best value is found based on a particular random grid search. But consider the

t-prior in section 2.5.3, the authors [2] call the ui the hyper-parameters while fixing a and

b. There is no reason for this. We now indeed interpret a and b as hyper-parameters. This

will obviously increase flexibility. On the other hand, this is more easily said than done

with the complicated equations that result. However, as we shall see, a more convenient

alternative is offered by the Pearson type VII.

2.7 Conclusions and Motivation

In summary, the main components to differentiate signal recovery and super-resolution

applications have been described in this chapter. Both applications allow the recovery of

images whilst facing some challenging issues such as the ill-posed condition and robustness

aspect. In such situations where the low resolution frame suffers from the down-sampling,

the problem is under-determined and harder to be solved. Hence, there is a need for

employing a prior-knowlegde or an image-prior. The probabilistic model is applied in

formulating the image-prior as it is well-known to be the best on integrating an image-

1http://www.robots.ox.ac.uk/ ∼vgg/software/SR/index.html
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prior. Its flexibility on capturing any neighbourhood order of Markov Random Field

giving the advantage of modifying the feature according to the observed problem.

A study on existing image-priors are also discussed to understand the advantage and

disadvantage of each image-prior. The existing image-priors such as Gaussian, Huber and

t-prior are described. Lack of a robustness property in Gaussian image-prior, difficulties

on estimating the threshold parameter in Huber image-prior, the fixed hyper-parameters

in t-prior works motivate the author to improve the recovery edges and at the same time

estimating the hyper-parameters in image-prior model automatically.

This thesis aims to contribute towards understanding to the ill-posed problem, a sce-

nario when exploiting the additional information is necessary and highlights the existing

image-priors issues. It also points out the significance on having and formulating the

image-prior. The following chapter describes the proposed image recovery framework and

presents the outcome with supportive results in comparison to the existing image-prior.
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CHAPTER 3

SINGLE-FRAME IMAGE RECOVERY USING A

PEARSON TYPE VII MRF

In this chapter,1 a general framework for single image recovery using an image-prior

is presented. The primary motivation of this work is to provide a higher accuracy alter-

natively on the image recovery. This is achieved by devising and employing a heavy-tail

image-prior. Section 3.1 introduces the scenario problem for single image recovery and

highlights the significance of the proposed image-prior. In section 3.2, the proposed image-

prior is described in a mathematical form with reference to Pearson type VII density and

details the construction of the neighbourhood matrix. Section 3.3 describes the pseudo-

likelihood approximation and section 3.4 outlines the overall framework for the image

recovery including the observation and the joint model. In section 3.5, the estimation for

the high resolution image and hyper-parameters in the image-prior are explained. Sec-

tion 3.6 describes the algorithm and all experimental results are presented in section 3.7.

Finally, section 3.8 concludes the contribution of this chapter.

1A slightly shorter version of the work presented in this chapter appears in Proc. IEEE International

Workshop on Machine Learning for Signal Processing, MLSP, pp. 29-34, 2010 and in Neurocomputing,
80: 111-119, 2012, (invited and refereed extension of MLSP’2010 paper)
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3.1 Introduction

Compressive imaging and image super-resolution aim to recover a high-resolution scene

from its compressed or low resolution measurements. The main difficulty lies with the

ill-posedness of the problem, and there is no consensus as to how best to formulate image

models that can both impose smoothness and preserve the edges in the image. Here

we devise a new image-prior based on the Pearson type VII density integrated with a

Markov Random Field model, which has desirable robustness properties. We develop a

fully automated hyper-parameter estimation procedure for this approach, which makes

it advantageous in comparison with alternatives. Our recovery algorithm, although very

simple to implement, achieves statistically significant improvements over previous results

in under-determined problem settings, and it is able to recover images that contain texture.

The loss of resolution is often inevitable due to limitations of the camera source. In

addition, the capturing process introduces additive noise. Depending on the number of

low resolution frames of the scene available, we may talk about single-frame or multi-frame

version of the problem. In both cases, most often the observed frames are scarce and noisy,

which makes restoration an ill-posed problem. The single-frame version is necessarily

under-determined too. Therefore, additional information is required to obtain an adequate

solution. In a probabilistic model-based framework, this additional information may be

specified in the form of a prior distribution on the salient statistics that images are known

to have. The two main characteristics are somewhat conflicting ones: local smoothness

and the existence of edges. This makes the specification of a good image-prior challenging.

3.1.1 Previous work of Pearson type VII and motivation

In this chapter, we develop and investigate a perhaps less well-known, but quite convenient

robust density, the Pearson type VII, formulated as Markov Random Field (MRF) for

image recovery and super-resolution. The Pearson type VII has been used previously

in situations where robust, heavy-tail behaviour is required, such as in stock market
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modelling [83] and X-ray measurements [84], and for robust density estimation [85] as a

more convenient and numerically stable alternative to the t-mixtures. Yet this density has

never been formulated in a super resolution field or any image enhancement. Heavy-tail

behaviour means the non negligible probability to point far away from the bulk of the

density.

Moreover, this simple form of 1st order MRF has been previously employed with success

in [32, 35]. Based on this reasonable property, we have studied and formulated a novel

image-prior, Pearson type VII based MRF. This allows for greater variability by having

larger tails than the standard normal distribution. In this work we exploit the robustness

of this density to balance predominant smoothness of images with some allowance for

edges or discontinuities. Besides, at the same time we have focused on estimating the

hyper-parameters automatically. We devise an alternative robust image-prior, the 1st

order of MRF made of univariate Pearson type VII distribution. As shown in chapter 2,

figure 2.2 illustrates the region of 1st order neighbourhood and its neighbourhood size.

We employ a Maximum A Posteriori method for parameter estimation, which gives

us the most probable high resolution image. Once we have formulated and employed

these new priors, we then study which one preserves the image better in terms of mean

square error. We also exploit the property of the new research in compressive sensing

application [86] to find out how good our proposed image-prior is. More experimentation

on this is presented and discussed in the following chapter. Coping with multiple tasks

by employing this image-prior will be presented in chapter 6.

3.2 The formulation of the Pearson type VII density

According to Pearson [87], the N -dimensional zero-mean Pearson type VII density is

defined as follows:

p(u|C,m) =
Γ(m)

π
N
2 Γ(m − N

2
)
|C|− 1

2

[
1 + uT C−1u

]−m
(3.1)
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where u denotes a random variable, C is a N × N matrix (i.e: covariance matrix), m

is the degree of freedom represented by the Gamma Γ function that controls the degree

of robustness that must satisfy 2m > N , and N is the dimensionality of the recovered

image of z. It subsumes the Gaussian when m approaches infinity and the Student-t

density. For convenience, the ν notation is denoted as ν := 2m−1, so that the parameter

ν is subject to positivity constraint only, and the univariate Pearson type VII density is

written (so, N = 1, m = (ν + 1)/2) as:

p(u|λ, ν) =
Γ(1+ν

2
)λν/2(λ + u2)−( 1+ν

2 )

Γ(ν/2)
√

π
(3.2)

where the parameter λ replaces C and controls the width of the density, and ν is the

degrees of freedom. An illustration of the effect when using the hyper-parameters of λ

and ν is shown in figure 3.1.
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Figure 3.1: Plot of the log Pearson type VII for various values of ν when the hyper-
parameter of λ is fixed to a certain value.

As we can see in figure 3.1, either λ is getting smaller or larger (i.e: λ=0.01 and 5)

and the ν is increasing, highest peak is obtained. The hyper-parameters λ and ν play an
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important role to shrink the density and controls the level of the peak and the tails. It

becomes less heavy-tail when the ν is large and vice versa. Therefore, these two hyper-

parameters are connected to each other so that the density is balance to cover the edges

when it is translated on the neighbourhood feature histogram.

3.2.1 The Pearson type VII MRF as an image-prior

The main characteristic of any natural image is a local smoothness. That is, the intensities

of neighbouring pixels tend to be similar. Any reasonable image model needs to be able

to capture this property. As mentioned in chapter 2, Markov Random Fields are well

suited and broadly used models that formalise this. For this reason, the Pearson type VII

is devised and formulated as an image-prior to capture the local smoothness property and

with its heavy-tail property allows to preserve the edges on an image.

A very simple form of 1st order MRF, previously employed with success for image

recovery in e.g. [35, 32], is to condition each pixel intensity on its four cardinal neighbours

in the following way. For any one pixel zi define:

p(zi|z−i) = p(zi|z4neighb(i))

∝ g(zi −
1

4

∑

j∈4neighb(i)

zj) (3.3)

where the notation z−i means all the pixels excluding the i-th, and the set of four cardinal

neighbours of zi was denoted as 4neighb(i). g is a function that does not to be a normalised

density. For example in case of Pearson type VII density, the function g will take the

following form g(u)= (u2 + λ)−( 1+ν
2 ). These are univariate probability distributions. We

should mention that alternatives include the so-called total variation model, employed in

[67], which is based on image gradients. The experimental comparison in [35] suggests

that the model in eq.(3.3) and total variation behave in a very similar manner, the former

being slightly superior however.

Using eq.(3.3), for an image z of N pixels, the MRF represents the joint probability
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over all the pixels on the image — a multivariate probability distribution:

p(z) =
1

Z

N∏

i=1

g(zi −
1

4

∑

j∈4neighb(i)

zj) (3.4)

where Z =
∫

dz
∏N

i=1 g(zi − 1
4

∑

j∈4neighb(i) zj) is the normaliser (or partition function)

of the MRF. This is independent of z but depends on the hyper-parameters of the con-

stituent probability density building blocks. Equation (3.4) needs to normalise because

the multivariate density of p(z) has to integrate to one with respect to z. Even if the

g would be normalised separately for each pixel, it would not be sufficient because the

pixels are not statistically independent from each other.

The simplicity of (3.4) is also intuitively appealing. One can think of the difference be-

tween a pixel intensity and the average intensity of its neighbours, i.e. zi− 1
4

∑

j∈4neighb(i) zj,

as a feature. However, the partition function Z is intractable to compute analytically, ex-

cept for a very few specific cases. Therefore, approximations may be employed. For

notational convenience, it is handy to create the symmetric N × N matrix D to encode

the above neighbourhood structure, with the following entries:

dij =







1 if i = j;

−1/4 if i and j are neighbours;

0 otherwise.

(3.5)

Then we may write the i-th feature in a vector form, with the aid of the i-th row of this

matrix (denoted Di) as the following:

zi −
1

4

∑

j∈4neighb(i)

zj =
N∑

j=1

dijzj = Diz (3.6)

In Appendix A, the example of image size (3,4) derives the final equation (3.6). Diz is

the difference between the ith pixel of z and the average of its 4 neighbours. Diz gives
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the smaller value of its difference when the average of four neighbours are almost similar

to the pixel itself. It means that the z ith neighbourhood tends to be similar and this

characteristic known as local smoothness. It will produce a bigger difference when the

average of four neighbours are not the same. This shows that neighbourhood of the pixel

itself has different edges. Essentially in this image model, each image is represented by a

histogram of Diz with the aid of the neighbourhood feature. Previously in section 2.4.2,

figures 2.5 and 2.6 present some of the histograms of the natural images that have been

investigated.

3.3 The Pearson type VII MRF

We now propose to employ the Pearson type VII density with an MRF to provide a

novel robust image model. One option would be to use its multivariate form as given

in eq.(3.1) by encoding the neighbourhood structure in C−1 = DT D. However, this

multivariate heavy-tail distribution would then be asserted on whole images (or possibly

image patches) rather than tiny pixel neighbourhoods. We do not pursue this option

here since our goal is to give non-zero probability to edges in the image, which requires a

pixel-level modelling. Neighbourhood features that correspond to pixels that are situated

at an edge may be thought of as spikes or outliers that our heavy-tail prior will account

for, and this is what enables us to preserve the edges in the recovered image. To achieve

this, we build up our MRF prior from univariate PearsonVII densities, as the following:

p(z) =
1

ZP (λ, ν)

N∏

i=1

{
λ + (Diz)2

}−( ν+1

2 )
(3.7)

where ZP (λ, ν) =
∫

dz
∏N

i=1 {λ + (Diz)2}−( ν+1

2 ) is the partition function, and this mul-

tivariate integral does not have an analytic form.

As with all MRF priors, the partition function may be neglected as long as we are

interested in a maximum a posteriori estimate of z with some known and fixed hyperpa-
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rameters. However, the partition function does depend on the hyper-parameters, hence

for an automated estimation of these based on the model, the partition function must

be approximated and taken into account. Notice that, in the case of a Pearson type VII

MRF, the partition function is smooth w.r.t. both λ and ν — unlike the Huber MRF,

which is non-smooth in δ. Hence, with a suitable analytic approximation of ZP (λ, ν) this

may be used for hyper-parameter estimation.

3.3.1 Pseudo-likelihood approximation

We shall employ a pseudo-likelihood approximation to the partition function ZP (λ, ν). It

consists of taking each Diz as if it were independent of Djz, for all j 6= i to break down

the intractable multivariate integral into tractable univariate integrals. Thus, we have the

following:

ZP (λ, ν) ≈
N∏

i=1

∫

dzip(zi|z−i) =

{
Γ(ν/2)

√
π

Γ(1+ν
2

)λν/2

}N

(3.8)

i.e. the inverse of the product of the normalising terms of the univariate Pearson type

VII density building blocks.

Replacing this into the definition (3.7), we have the following approximate image

model:

p(z|λ, ν) ≈
N∏

i=1

Γ(1+ν
2

)λν/2((Diz)2 + λ)−
1+ν
2

Γ(ν/2)
√

π
(3.9)

We are now ready to employ this in the overall model for super-resolution, and use this

to infer z simultaneously with estimating our hyperparameters λ and ν.

3.4 The Overall Framework for Image Recovery

3.4.1 Observation model

Denoting the vectorised high-resolution image by z, as before, this is now a hidden vari-

able. Instead, some low resolution version of it is observed. The degradation process will

40



be taken as a linear transform, and we should note that, although this is a simplifying

assumption, it has worked well in many super-resolution application so far [32, 35, 67].

y = Wz + η (3.10)
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where η ∼ N (0, σ2I) is an additive noise. Equivalently, we can write p(y|z) = N (Wz, σ2I),

where y is the observed version of the image, with M < N pixels, and σ2 is the observation

noise variance. In single-frame super-resolution, the transform W typically contains blur

and down-sampling. In the multi-frame case we also have shift that varies between the

observed frames and in that case y is a concatenation of all the vectorised low resolution

frames observed from the scene of interest. The single-frame problem is more challenging

in that the system is under-determined (i.e. there are less observed pixel intensities than

there are unknown ones).

3.4.2 Joint model

In this section, a joint probability is adopted to find out how likely it is that two (or more)

events happen at the same time. The overall model is the joint model of the observations

y and the unknowns z. That is, Pr(y, z). To assemble this from the previously presented

components, we first rewrite the observation model given in equation (2.2) in the form

of a probability distribution of the observations y given the ground truth z. That is,

Pr(y|z). Using this, the joint probability is written as follows:

p(y,z|W , σ2, λ, ν) = p(y|z,W , σ2)p(z|λ, ν) (3.11)
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The overall working model consists of the first term which is the observation model and the

second term which is the image-prior model. So we now have the pseudo-joint likelihood,

assuming η ∼ N (0, σ2 · I) the additive observation noise was assumed to be zero mean

spherical Gaussian.

3.5 MAP-based Estimation in the model with Pear-

son type VII MRF

We will use the joint probability (3.11) as the objective to be maximised. Maximising this

w.r.t. z is also equivalent to finding the most probable image z, i.e. the maximum a pos-

teriori (MAP) estimate, since (3.11) is proportional to the posterior p(z|y). Equivalently,

the negative log of this expression will be defined as our minimisation objective:

Obj(z, σ2, λ, ν) = − log[p(y|z, σ2)] − log[p(z|λ, ν)] (3.12)

Plugging in the functional forms of the two density functions, we then minimise this w.r.t.

z and the hyper-parameters in turn.

3.5.1 Estimating the most probable z

Putting all the terms in objective (3.12) will yield equation (3.13). The terms in the

objective (3.12) that depend on z are the following:

Obj(z, σ2, λ, ν) =
1

2σ2
(y − Wz)2 + N log(π) +

1

2
log |Σ| + N log Γ

(
ν + 1

2

)

+ N log(λ)ν/2

− N log Γ
(ν

2

)

− N log(π)1/2 −
(

ν + 1

2

) N∑

i=1

log
{
λ + (Diz)2

}
(3.13)
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By collecting the terms that depend on z, the objective function of z is written as follows:

Objz(z) =
1

2σ2
(y − Wz)2 +

(
ν + 1

2

) N∑

i=1

log
{
λ + (Diz)2

}
(3.14)

The optimisation of (3.14) w.r.t. z may be done employing any nonlinear optimiser,

the objective is differentiable. We employed a conjugate gradient type method1, which

requires gradient information. The gradient is derived as the following.

∇zObjz =
1

σ2
W T (Wz − y) + (ν + 1)

N∑

i=1

DT
i

Diz

(Diz)2 + λ
(3.15)

3.5.2 Estimation of σ2

Similarly writing out the terms in (3.12) that depend on σ2, objective function for σ2 can

be written as following:

Objσ2(z, σ2, λ, ν) =
1

σ2
W T (Wz − y) +

1

2
log |Σ|

=
1

σ2
W T (Wz − y) +

1

2
log |σ2I| (3.16)

By taking derivative and solving the equation (3.16), we get a closed form estimate for

σ2:

σ̂2 =
1

M

(
M∑

i=1

(yi − W iẑ)2

)

(3.17)

3.5.3 Estimation of λ and ν

The terms that depend on λ and ν can be written as follows in equation (3.18) and (3.19):

Objλ(z, σ2, λ, ν) =
Nν

2
log λ −

(
1 + ν

2

) N∑

i=1

log((Diz)2 + λ) (3.18)

1We made use of the efficient implementation available from
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/

43



Objν(z, σ2, λ, ν) = N log Γ

(
ν + 1

2

)

+ N log(λ)ν/2 − N log Γ
(ν

2

)

− N log(π)1/2

+
N∑

i=1

log
{
λ + (Diz)2

}
(3.19)

Both of these hyper-parameters need to be positive valued. To ensure our estimates are

non-negative, we parametrise the log probability objective (3.18) and (3.19) such as to

optimise for the (±) square root of these parameters. Taking derivatives w.r.t.
√

λ and

√
ν, we get:

d

d
√

λ
Objλ =

N∑

i=1

ν(Diz)2 − λ

((Diz)2 + λ)
√

λ
(3.20)

d

d
√

ν
Objnu =

[

N log λ −
N∑

i=1

log
(
(Diz)2 + λ

)

+ Nψ

(
1 + ν

2

)

− Nψ
(ν

2

)]√
ν (3.21)

where ψ(·) is the digamma function. The zeros of these functions give us the estimates

of ±
√

λ and ±√
ν. Although there is no closed-form solution, these can be obtained

numerically using any unconstrained nonlinear optimisation method. The square of these

estimates give us the estimates of λ and ν respectively.

3.6 The Algorithm

• Initialise the estimate ẑ, e.g. as some combination of the solution of a Gaussian

MRF and random noise.

• Iterate until convergence:

– Estimate σ2 using (3.17).

– Perform iterations to update λ and ν in turn, using (3.20) and (3.21), keeping

the current estimate ẑ fixed.

– Perform iterations to update ẑ using (3.15)
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Note that, the inner loops need not completely converge. It is sufficient to increase, not

necessarily to minimise the objective at each intermediate step. However, we observed

faster overall convergence by letting the inner iterations make more progress. The reason is

probably that the overall objective is complex, with multiple local optima, while the indi-

vidual updates break it down into simpler objectives in a greedy manner. Our MatLab im-

plementation is available from http://www.cs.bham.ac.uk/∼sxa814/codes/PearsonMRF code/

3.7 Experiments and Results

We conducted experiments with both classical super-resolution (SR) matrices where W

comprises blur and down-sampling, as well as with random Gaussian compressive sensing

(CS) matrices where W has random entries sampled i.i.d. from a standard Gaussian.

The latter is of interest in the light of new research in compressed sensing and signal pro-

cessing [86, 2] directed towards devising hardware that can exploit some good theoretical

properties of certain random matrices.

The observation data was generated starting from a ground truth real image via the

matrix W and additive noise. Working on synthetic data allows us to compare the recov-

ered image against the ground truth, so that we can measure our recovery performance

quantitatively.

3.7.1 Illustrative experiments

We start by demonstrating the working of our algorithm. Figure 3.2 shows an example of

under-determined case, where we recover a [80× 70] ‘cameraman’ image (that is, N=5600

pixels) from its M=4000 randomly compressed measurements and additive noise of σ =

0.5. We will be concerned with under-determined systems in this paper, however for

the sake of completeness, we next show an overdetermined case as well, derived from

a classical multi-frame super-resolution task, i.e. the transformation (or measurement)

matrix consists of random shifts, Gaussian blur with point spread function set to 0.4 and
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Figure 3.2: Example recovery of ‘cameraman’ (5600 pixels) from random linear mapping
to 4000 pixels and additive noise with σ = 0.5.

down-sampling. Here we generated 18 low resolution images with a zoom factor of 3, so

the overall system is over-determined in this case. Figure 3.3 shows the ground truth, a

straw-man recovery by averaged bi-cubic interpolation from the individual low resolution

frames (which we use as an initial guess to seed our algorithm in this experiment), and the

obtained recovered image, along with the evolution of the objective over the iterations.

It is easy to see from the evolution of the objective function over the iterations (and

the quality of recovered image) that having access to more observation frames makes the

recovery task much easier.

In the remainder of the chapter we will focus on recovery from a single-frame, i.e.

under-determined systems — such as recovering a 5600 pixels [80 × 70] image from a

single M ≤ 4000-pixel frame. Quite obviously, without the specification of a prior, such a

system would have infinitely many solutions, hence under-determined systems are much

more reliant on the prior image model. In addition, the observations are subject to

Gaussian additive noise, and this makes the recovery problem even harder.

In the case of CS-type W , the noise standard deviations that we tested were σ ∈

{4 × 10−5, 0.5, 1, 2 }. In the case of SR-type W these values were divided by 0.8
√

N to
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Figure 3.3: Example recovery from multiple (18) low resolution (zoom factor of 3) frames,
which together represent an over-determined system.

make the signal-to-noise ratios roughly the same for the two matrix types. This is still

relatively high noise, considering that we scaled the pixel intensities in the generating

ground truth image to the interval [−0.5, 0.5].

From each low-resolution data set, we then try to recover the ground truth image,

and we assess the performance by measuring the mean square error (MSE) between the

recovered image ẑ and the ground truth z — that is, MSE = mean((z − ẑ)2).

Initialisation

Given that we optimise a non-convex objective, the initialisation scheme may impact the

solution and the speed of convergence. Empirically we found that using CS-type matrices

W the quality of the solution is much less sensitive to initialisation than it is in the

case of SR-type matrices. The main issue, for SR-type, is to avoid starting it off from a

neighbourhood of a local optimum. Therefore, in the case of under-determined problems

we need to avoid using the output of a simpler super-resolution recovery method as an

initial guess, as it often turns out to lead to an unwanted local optimum. On the other

hand, a completely random initialisation would take longer to converge. Based on these
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considerations, in all our experiments we adopted the following scheme. In experiments

with SR-type matrices we initialise z with the average between the minimum energy

estimate (W T y) and a random guess drawn from standard Gaussians. For CS-type

matrices, since we did not experience any local optima issues, we opted to use a ridge

regression to produce the initial guess (although other schemes that we tried did not

make any noticeable difference). In both cases, we initialised the hyper-parameters with

ν = 10, λ = 1, σ2 = 0.001.

3.7.2 Assessment of the modelling power of the Pearson-type-
VII image-prior

Before diving into the assessment of our full algorithm, we switch off the automated

hyper-parameter estimation in this subsection. Here we assess the Pearson type VII based

image model by comparing it with state-of-the-art alternative image-priors when each of

the competing prior models is supplied their best hyperparameters. For this purpose we

select the best hyperparameters for each competing model based on the MSE with the

ground truth. This, of course is not feasible in practice since the ground truth is not

available, but it provides us information on what each model can achieve at its best. We

will then move on to assess our automated hyperparameter estimation procedure against

these idealised best results in section 3.7.3. We used CS-type matrices W in this set

of experiments. The competing methods are: Gaussian-MRF, a multivariate-Student-t

based MRF that we also experimented with, and the Huber-MRF.

Figure 3.4 summarises the results obtained for the ‘church’ image1 against varying

noise conditions. Figure 3.5 shows the best recovery for the setting with σ = 0.5. We see

from the figure 3.4 that the Pearson type VII based MRF model can achieve state-of-the-

art performance in all noise levels tested, comparable to that of Huber-MRF, while the

other priors tested perform worse. However, as already mentioned, for the Huber-MRF,

a principled determination of both of its hyper-parameters would not be straightforward.

1http://www.robots.ox.ac.uk/∼vgg/research/SR/synthdata.html

48



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
3.5

4

4.5

5

5.5

x 10
−3

σ

M
S

E

MSE vary with σ for W[4000,5600]

 

 

Gaussian
Multivariate t
Univariate t
Huber

Figure 3.4: Comparative MSE performance for the under-determined system in progres-
sively increasing noise conditions, using the best hyperparameter values (i.e. the value
that produces the smallest MSE).

Figure 3.5: On the left plot is the best recovered with manual tuning; and on the right
plot is the ground truth.
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The next question is then, how does the automated hyper-parameter estimation of our

Pearson type VII based MRF prior compare to these hand-picked best results?

3.7.3 Assessment of the automated hyperparameter estimation
procedure

Keeping the same experimental conditions set out in the previous section, figure 3.6 shows

the MSE achieved by our recovery algorithm that includes automated hyperparameter

estimation, superimposed with the best manually picked results (of the same prior) from

figure 3.4 for reference. We see that, except for very high levels of noise, the agreement
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Figure 3.6: Comparing the performance of the fully automated Pearson type VII based
MRF approach with the best result found by manual tuning of the hyperparameters. Top
left : The distribution of MSE; Top right : The distribution of the values of the objective
function; The boxplots represent 10 independent repeats where in each trial the additive
noise and the transform W were randomly drawn anew. Bottom left : Best result out
of the 10 repeats with σ = 0.5, picked by lowest MSE. Bottom right : Best result out of
the 10 repeats, picked by lowest values of the objective function. We see the MSE of the
latter is very close to that of the former.

is remarkable. In fact, the MSE at the highest of the noise levels is still comparable with
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that of the best manual tuning of Huber MRF. Hence, we can conclude that, in these

experiments the Pearson type VII based MRF is preferable as a fully automatic method.

In addition, the good agreement between the MSE and the values taken by the ob-

jective function is notable. Note that the calculation of the MSE requires access to the

ground truth image, while the objective does not. Hence, the agreement between these

two quantities represent further evidence for the appropriateness of our proposed model

and automated estimation procedure. In other words, the best (or close to best) results

in terms of agreement with the ground truth can be found by accessing the objective

function independently of the ground truth. Indeed, the MSE of the recovered image

selected solely on the basis of the objective function (MSE=0.0036) is not far off from the

best MSE across the 10 repeats (MSE=0.0034).

3.7.4 Comparison with Bayesian Compressed Sensing (BCS)

A recent technique that is also fully automated has been proposed in the field of com-

pressed sensing [2], called Bayesian Compressed Sensing (BCS), which is based on the

Automatic Relevance Determination (ARD) principle. It is interesting to compare our

results with those of this method, since modelling-wise BCS is somewhat related to our

approach in that it targets the solution of an under-determined linear system with the use

of a probabilistic model and a prior. The prior they employ is the improper uninformative

limit of a Student-t prior. To make the link, we note that the Pearson type VII density

subsumes the Student-t if we set λ to λν. However, the algorithmic solution of BCS differs

from ours, and so does the authors [2, 3] choice to use the non-informative limit of the

prior. Hence, it is of interest to see the effect of these differences comparatively1. Unless

stated otherwise, we will use the authors improved version of BCS from [3].

Figure 3.7 shows results obtained with BCS on the same data and experimental setup

as we used in figure 3.6. Although the performance seems to be not hugely different, it

1We used the authors implementation that is available from
http://people.ee.duke.edu/∼lcarin/BCS.html
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is still worse than what we had achieved. From the figure we see the MSE values over

10 repeats are higher, and the best MSE (0.0081) is still worse than the MSE of our

choice based solely on our objective function in figure 3.6 (MSE=0.0036). Looking at the
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church MSE = 0.0081231

Figure 3.7: Results obtained with the Bayesian Compressed Sensing (BCS) algorithm
of [2], to be compared with figures 3.5 and 3.6. Left: The distribution of MSE over 10
independent repeats; Right: The best recovery across all these repeats. Observe the best
MSE is still higher than the MSE of the Pearson-VII result picked cf. the best value of
the objective function.

recovered image (Fig.3.7) we notice that BCS tends to discard part of the edges in favour

of more homogeneous areas, and this degrades performance when there is insufficient data.

It should be pointed out that the same over-sparsifying problem associated with the use

of the non-informative limit of Student-t priors in under-determined systems has been

also reported in [88] in the context of logistic regression-based classification problems.

A general theory that explains the behaviour of promoting local strong homogeneity by

log-priors that are non-smooth at zero can be found in [89]. It may be interesting to

note that our log Pearson prior is actually smooth everywhere, but may exhibit a sharp

curvature at zero when ν is small. Hence it is flexible enough to be able to promote local

homogeneity without over-emphasising it.

We observed similar results on several different images in our experiments, with both

CS-type and SR-type instantiations of W . In figures 3.8-3.9 we give results on another

image (‘castle’) where we used SR-type W and the same noise conditions as before.

The observations made earlier are apparent again. From these results it seems that our

algorithm is indeed able to recover a good quality high resolution image even when the

52



1.5

2

2.5

3

3.5

4

x 10
−3

1 2 3 4
Level of noise

M
S

E

castle

−2.2

−2.1

−2

−1.9

−1.8

x 10
5

1 2 3 4
Level of noise

O
bj

ec
tiv

e:
 −

lo
g 

p(
y,

z)

castle

MSE = 0.0016172 MSE = 0.0018757

Figure 3.8: Top left : The distribution of MSE for our Pearson-VII based approach; Top
right : The distribution of the objective functions values for our Pearson-VII based ap-
proach; The boxplots represent 10 independent repeats. Bottom left : Best result with
Pearson-VII, out of the 10 repeats, picked by lowest MSE at noise level σ = 0.5. Bottom
right : Best result with Pearson-VII, out of the 10 repeats, picked by lowest values of the
objective function at noise level σ = 0.5.

2.5

3

3.5

4

4.5

5

x 10
−3

1 2 3 4
Level of noise

M
S

E

castle
MSE = 0.0028269

Figure 3.9: Left : The distribution of MSE for the BCS approach. Right : Best result
with BCS, out of the 10 repeats, picked by lowest MSE at noise level σ = 0.5. The
best recovery from BCS (MSE=0.0028) is higher than the pick that only uses the Ob-
jective (MSE=0.0018). BCS tends to discard part of the edges in favour of strong local
homogeneity.
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image contains more texture.

Systematic experimental validation

Next we validate our findings by performing a battery of comparative experiments between

our Pearson-type-VII based recovery algorithm and BCS method. Before doing this on

image data, we find it instructive to take the one dimensional (1D) sparse spiky signal

used as a first test benchmark for compressed sensing algorithms (e.g. in [2] and [3]). It

is known that the less sparse the signal is and the less observation measurements we have

the more difficult the recovery problem. As in [3] (Fig.2 in [3]), we take signals of length

N = 512 having 20 non-zero entries of ±1, random Gaussian compressive transform, we

vary the number of observations, and measure the reconstruction error of the two recovery

algorithms.

Figure 3.10 shows an example of recovery, where the number of observations are too

few for BCS to cope with. In turn, our algorithm manages to recover the signal to a great

extent. In figure 3.11, we give the full picture of this comparison for the recovery of the

spike signal. As before, BCS refers to the improved version of BCS described in [3], and

we also tried the previous version of this method, described in [2], which is referred to as

BCSo in the legend of our figure. We did not consider multi-task settings in this work

though.

We see that our Pearson-VII is able to recover the signal from fewer measurements than

BCS can. This also means that given the same number of measurements it can recover

signals up to a larger number of spikes. This in turn implies in an image-reconstruction

context that it can recover more edges, i.e. it can deal with more textured images.

Returning to image recovery, we now conduct experiments varying the number of mea-

surements, and fixing the noise level to σ = 0.005. Figure 3.13 shows the comparative

results obtained on four different natural images1 for both types of W (CS-type, and

SR-type). The images are: ‘cameraman’ (104× 94 pixels), ‘castle’, ‘face’, and ‘flower’

1http://www.cs.bham.ac.uk/∼axk/Sakinah/PearsonMRF code/
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Figure 3.10: Reconstruction of the ‘spikes’ signal of length N = 512 having 20 non-zero
entries from only M = 90 random compressive measurements. The first two subplots are
reproduced from Fig.2 of [3] whereas the last subplot shows our recovery result.

(90 × 90 pixels each). We vary the number of compressive / low resolution observations

down to 300 pixels. From these figures, in each experiment our algorithm achieves

a statistically significant improvement over BCS in severely under-determined problem

settings.
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Figure 3.11: Comparison of recovering the ‘spikes’ signal from its CS measurements and
additive noise of σ = 0.005 (the same setting as in Fig.2 of [3]). The error bars represent
one standard error about the mean, from 25 independent repeats. We see that PearsonVII
can recover the signal from fewer measurements than BCS.

3.8 Conclusions

In this chapter we formulated a new image-prior based on Pearson type VII densities

integrated with a MRF. Our main motivation has been to exploit the heavy-tail property

of this density, which indeed seems to be a good way of preserving edges while impos-

ing smoothness. The form of this prior has the additional advantage of allowing us to

perform a fully automated hyperparameter estimation. Our recovery algorithm, although

very simple to implement, achieves statistically significant improvements over Bayesian

Compressed Sensing in under-determined problem settings, and is also able to recover

more textured images than BCSg can. Future work inludes multi-task extensions of this

approach, where the hyperparameters would be shared accross tasks while other similar-
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Figure 3.12: Comparative results on five different images, when W is CS-type and the
number of observation is varied. The error bars represent one standard deviation from 10
independent repeats. We see the Pearson-based algorithm performs better than BCS in
the under-determined regime.
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Figure 3.13: Comparative results on five different images, when W is SR-type that con-
sists of blur and down-sampling, and the number of observation is varied. The error bars
represent one standard deviation from 10 independent repeats. We see the Pearson-based
algorithm performs better than BCS in the under-determined regime.

58



ities may or may not be present. In the following chapter, the joint probability model

as described in this chapter will be used to investigate the alternative hyper-parameters

estimation.
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CHAPTER 4

INVESTIGATING ALTERNATIVE

HYPER-PARAMETER ESTIMATION

APPROACHES

In this chapter,1 we formulate another different version of Pearson type VII image-

prior, one that acts on the pixel level and another one that acts on the entire image.

Having a single down-sampled and noisy version of low resolution frame, we aim to obtain

the high resolution image using Maximum A Posteriori method. We compare the state-

of-the-art of image-priors in super-resolution application and we discover that our image

prior Pearson-MRF achieves the best performance in terms of quantitative measurement.

This chapter also concentrated on recovering the high resolution image and the hyper-

parameter using an alternative method. The contribution of this chapter is to show the

assessment of the modelling power of the developed image-prior Pearson type VII using

several alternative methods when it is compared to the existing image-priors.

4.1 Introduction and Overall Framework

In chapter 3, we proposed a robust density, the univariate version of Pearson type VII

formulated as Markov Random Field in image recovery approach. Previuos research [90]

1A slightly shorter version of the works presented in this chapter have been accepted for publication in
the Intelligent Automation and Systems Engineering, pp. 295-307, Lecture Notes in Electrical Engineering
103, (c) Springer, 2011.
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based their comparisons on compressive matrices transformation. Due of curiosity, we

formulate and examine the multivariate of Pearson type VII and compare it with the

state-of-the-art approach using the classical super-resolution technique.

We will use the same observation and joint model as presented in chapter 3. Note

that the type of W in this tested case is a product of blurring and down-sampling matrix

of size [M×N], usually ill-conditioned matrix that models a linear blur operation and the

down-sampling by row and column operator. The blur operation is a linear blur of a

2-dimensional convolution matrix from an averaging filter matrix of 3-by-3. The down-

sampling operator discards some of the row and column elements of the matrix while

others remain unchanged.

4.1.1 The multivariate Pearson type VII MRF

The probability density function given in equation (4.3) is a multivariate density that

is instantiated here on the level of the full image. Meanwhile the previous version in

equation (3.1) is parameterised differently but is the same as in equation (4.3) and we

can see this as follows. Let denotes C as (DT D)−1λ and m=(ν + N)/2. Now, look at

the right hand side of equation (3.1) apart from the normalising constants:

[1 + uT C−1u]−m =

(
1

λ
[λ + uT DT Du]

)−( ν+N
2

)

=

(
1

λ

)−( ν+N
2

)

︸ ︷︷ ︸

constant

[λ + uT DT Du]−( ν+N
2

) (4.1)

Plugging the the equation in (4.1) into the full right hand side equation of (3.1), we will

get:

Pr(u) =
Γ(ν+N

2
)

π
N
2 Γ

(
ν+N

2
− N

2

) |(DT D)−1λ|− 1

2

(
1

λ

)−( ν+N
2

)

︸ ︷︷ ︸

constant

[λ + uT DT Du]−( ν+N
2

) (4.2)
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From equation (4.2), we replace u with the variable of interest z and get the multivariate

Pearson type VII as in equation (4.3):

Pr(z) ∝
{
zT DT Dz + λ

}−( ν+N
2 )

∝
{

N∑

i=1

(Diz)2 + λ

}−( ν+N
2 )

(4.3)

The univariate version devised in equation (3.7) may be regarded as having independent

Pearson-priors on each neighbourhood-feature. Of course, we ought to point out that

the neighbourhood features are not independent in reality. However, since each pixel

only depends on four others, it may be a reasonable approximation. The version given

in equation (4.3), in turn, does not allow such independence interpretation. Conversely,

this can has the advantage that the spatial dependencies are not broken up, but more

reliably accounted for. On the downside, the heavy-tail behaviour is more advantageous

to have on the pixel level, i.e., on the distribution of neighbourhood features. Indeed, it

is the distribution of neighbourhood features the one in which the edges from the image

creates outliers. In turn, the multivariate Pearson-MRF is a density on images. Hence,

its heavy-tail behaviour would be well suited to account for outlying or a typical images.

Including both of these versions in our comparison will therefore uncover which of these

pros or cons are more important for recovering quality high resolution images.

4.2 Experiments

We present two sets of a single-frame image super resolution experiments illustrating the

performance of the hyper-parameters for testing the Pearson prior. We compare the state-

of-the-art image priors such as Gaussian [32] and Huber [35]. The LR image is blurred

by the unifrom blur matrix of size [3×3], down-sampled by factor 4 and contaminated by

standard deviation of Gaussian noise of 0.001, 0.01, 0.05 and 0.1. All images are in size

[100×100] and the pixel intensities are scaled to interval [-0.5, 0.5]. The initial guess is
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initialized with Gaussian-MRF with σ2/λ set to 1 and was used as a starting point for

the recovery algorithm.

In this section, we present the manual selection and cross validation to address the issue

of parameter selection for estimating λ and ν. For the automated estimation (referring

to cv), we initialised the initial z with a product of the inverse transformation matrix W

and the low resolution y. We employed a conjugate gradient type method, which requires

the gradient vector of the objectives. Before we proceed on presenting all the alternative

methods that we have developed, a summary of the findings based on two types of cross

validation methods (section 4.3.1 and 4.3.2), manually tuned (section 4.4) and manual

method using a grid search (section 4.5) are presented in table 4.1.

Table 4.1: The table presents a summary of the findings on estimating the hyper-
parameters using alternative methods.

Method Optimal λ Optimal ν Outcome
Hold out estimation 0.001 0.101, 0.151, Good recovery as shown

0.801, 09.51 in figure 4.2
k -folds cv 0.951 0.001 Good recovery as shown

in figure 4.5
Manually tuned 0.1 to 100 1-10 Good recovery as shown

(i.e: 1) (i.e: 0.05) in figure 4.9
Grid search based on 50 images 0.0013 2 Bad recovery as shown
(brute-force algorithm) in figure 4.13
Grid search based on 20 images 0.00012 0.8 Bad recovery
(brute-force algorithm) in figure 4.13

4.3 Cross Validation

This section is devoted to investigating alternative methods for estimating the hyper-

parameters. To automate the search, we developed cross validation method. Validation

is done by computing the minimum error of the mean square error on the similarity of

the observed data y, with the model Wz. On the other hand, k -folds cross validation

was developed for the classical transformation because its component is sparse1 and this

1a matrix populated primarily with zeros
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meant that algorithm could be executed faster. To reduce variability, five rounds of cross

validation were performed using different folds, and the validation results were averaged

over the rounds. Both forms of the algorithms are as follows in Algorithms 2 and 3.

Indeed, in the described approach as shown in figures 4.1 and 4.4, the algorithm is less

expensive and a more precise search space has been tested.

4.3.1 Hold out estimation

The performance of the image recovery of high resolution depends on how good the

selection value of the hyper-parameters in image-prior. In this section, we developed hold

out estimation and the algorithm is described as follows and the comparison result with

the state-of-the-art methods is displayed in figure 4.3.

Algorithm 2 : Hold out estimation

1: Goal: To find optimal values for ν and λ by training a model using the training data
set and its minimum error using the validation data set.

2: Inputs: training data, validation data, number of k -groups, ν and λ range, variance
σ2

3: Outputs: optimal ν, optimal λ, optimal error
4: Randomize and divide the data set into two groups: 5% for validation and the re-

mainder for the training set.
5: for i = 1 to length(ν) do
6: for j = 1 to length(λ) do
7: Minimize wrt z using training set.
8: Compute performance: mean((y(validate)- W (validate) × z(training))2)
9: Record the performance matrix error.

10: end for
11: end for
12: Find ν and λ that belong to the minimum error.
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Figure 4.1: Examples of 3-dimensional plot varying ν, λ and its mean squared error was
computed at 5% of ‘cameraman’ (5600 pixels) from random transformation to 4000 pixels.
Additive noise with σ2: (a) 0.005, (b) 0.01, (c) 0.05 and (d) 0.1 . We demonstrate the
search space for ν from range 0.001 to 1 (with the interval 0.05) and λ from range 0.001
to 10 (with the interval 0.5) using 95% data set. This range was chosen based on the best
manual selection range that we achieved for the ‘cameraman’ image. Optimal values for ν
were found best (a) ν = 0.101, (b) ν=0.151, (c) ν=0.801, (d) ν=0.951 and λ remained its
optimal for every level of noise, λ = 0.001. This experiment was performed to automate
the hyper-parameters without gaining access to the true image and was able to recover
the image well.
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True image MSE=0.00068

True image MSE=0.00061

Figure 4.2: Examples image recovery of ‘cameraman’ (5600 pixels) from random projection
to 4000 pixels in the top subplot and a ‘woman’s face’ (10000 pixels) from random
projection to 3000 pixels in the final subplot. ν and λ are found using hold out estimation
and both additive noise, σ=0.05
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Figure 4.3: Comparative MSE performance for underdetermined system for ‘cameraman’
and ‘woman’s face’, varying four levels of noise using the best values of hyper-parameter
for every image-prior found using hold out estimation. These results demonstrate that our
proposed prior, u-Pearson type VII is competitive with the state-of-the-art approach on
that type of data considered here (i.e: low observations, 4000 and 3000 pixels, distorted
data, random transformation).

66



4.3.2 k-fold cross validation

To asses the goodness of the proposed method, Pearson MRF estimation results are

compared with image enhancement state-of-the-art methods in [32, 35, 67] using the

quantitative measurement, mean square error. Our proposed algorithm for parameter

estimation illustrates the performance result over 5-folds cross validation. To compare

the quality of the recovered image across the four image-priors (e.g: univariate Pearson

MRF, multivariate Pearson MRF, Huber MRF and Gaussian MRF), we used automated

estimation of the hyper-parameters. These results are presented in figure 4.6 and we

can see that the univariate Pearson type VII based MRF can achieve state-of-the-art

performance and give a competitive solution to Huber MRF across the four levels of

noise. Finally we also illustrated two set of image recovery in figure 4.5.

Algorithm 3 : k -fold cross validation for estimating ν and λ

1: Goal: To find optimal ν and λ by training a model using the training data set and
its minimum error using 5-folds cross validation.

2: Inputs: training data, validation data, number of k -groups, ν and λ range, variance
σ2

3: Outputs: optimal ν, optimal λ, optimal error
4: Randomize and divide the data set into k -groups.
5: for k = 1 to k − groups do
6: validate = find(group==k)
7: training = find(group=̃k)
8: for i = 1 to length(ν) do
9: for j = 1 to length(λ) do

10: Minimize wrt z using training set.
11: Compute the performance found using the k -th set: mean((y(validate)-

W (validate) × z(training))2)
12: Record the performance matrix error.
13: end for
14: end for
15: Report the mean error over all k test sets.
16: end for
17: Find ν and λ that belongs to the minimum 5-folds error value.
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Figure 4.4: Example of mean error over all k test sets (left) and mean and standard
deviation over 5-folds repetition (right) for variance= 0.005 using classical transformation
matrix in [4] for ‘Phantom’ [100×100] image. This plot illustrates the performance of
mean square error at 5% data set.

True image Recovered

True image Recovered

Figure 4.5: Examples image recovery of ‘cameraman’ and ‘panda’ images (10000 pixels)
from blurred and down-sampled to 2601 pixels and additive noise with σ2 = 1e-3 using
univariate Pearson type VII based MRF.
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Figure 4.6: Comparative MSE performance for under-determined system for ‘cameraman’
and ‘woman’s face’, varying four levels of noise using the best values of hyper-parameter
for every image-prior using 5-folds cross validation technique. The error bars are over 10
independent trials. The experiments were performed using conventional transformation
which consists of blurred and down-sampled operators. Pearson prior maintains its good
performance on the left figure for every level of noise. However, it does not seem to
recover well for the second image, especially for greater noise. The right plot illustrates
that this prior is not always best for every data and condition. Nonetheless, our proposed
image-prior is still competitive with the state-of-the-art method for smaller noise.

4.4 Manually Tuned

In this section, two types of manual settings are examined. First, we used manual tuning

and secondly using a grid search for estimating the hyper-parameters. The manual tuning

can be categorized into two different objective functions to find out the optimal values for

both parameters. The first objective function finds the lowest mean square error from the

search space of ν= 5e-20 - 50000 and λ from 0.001 - 10000. The second objective function

finds the maximum score of the log probability density function of Pearson type VII as

the optimal value. The performance of the image recovery of high resolution depends on

how good selection value of hyper-parameters in image-prior. We also want to compare

the outcome from the manual search with the automated version.
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4.4.1 Pseudocode

• Goal: The optimal values of hyper-parameters λ and ν are manually tuned to get

the best(lowest) mean square error(MSE).

• Search range: ν=5e-20, 5e-18, 5e-15, 5e-13, 5e-10, 5e-8, 5e-7, 5e-5, 5e-3, 5e-2, 5e-1,

1, 10, 100, 1000, 10000 and 50000, λ = 0.001,0.01,0.1,1,10, 10,100,1000 and 10000

• Under-determined problem where W of size [2500,10000] is tested.

• Outputs: νopt range from 1-10, λopt range from 0.1 to 100

From the observation using the constructed blur and down-sampling matrix W , we found

practical range of λ and ν. The results are presented in figure 4.7. Too small λ (0.001) and

ν values reduce the effect of prior and the solution approaching the Maximum Likelihood,

whilst too big of λ such as 10000 will blur the edges. The overall performance of the

recovered image depends strongly on the selection of λ.

We can conclude that ν can be fixed into a practicable range (i.e:1-10) so that the

iteration could terminate earlier and the λ is found best from 0.1 to 100. Two set of images

(‘cameraman’ and ‘panda’ images) are examined to analyse the best performance based on

manual tuning. Figure 4.8 shows the variation performance varying several λ and figure

4.9 shows the effect of the bad and good selection of hyper-parameters. From figure 4.7,

we also investigate on how another image behaves from that stable range. Figure 4.10

shows those values still practicable on selected range. Besides, the performance of several

level of noise is investigated using one of the stable range of ν and the results are presented

in figure 4.11.

4.5 Manual Method Using a Grid Search

Manual method using a grid search allows us to find the optimal value on a larger scale.

This could be achieved by finding the optimal value using the brute-force algorithm [91],
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Figure 4.7: Top: Test image of ‘cameraman’, bottom: test image of panda are used to
inspect the best value of hyper-parameters by computing the MSE performance varying
several fixed λ and the algorithm is provided the true noise variance, σ2=0.001. The
range of ν are 5e-20, 5e-18, 5e-15, 5e-13, 5e-10, 5e-8, 5e-7, 5e-5, 5e-3, 5e-2, 5e-1, 1, 10,
100, 1000, 10000 and 50000.
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Figure 4.9: Subplot (a) and (c) show examples of bad image recovery when λ = 0.01
and nu = 5e − 15). Subplot (b) and (d) represent good image recovery when λ=1 and
ν=0.05 using manual tuning hyper-parameters. The problem is under-determined where
W [2500,10000].
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parameters by computing the MSE performance varying several fixed λ and the algorithm
is provided the true noise variance, σ2=0.001. The range of ν are from 5e-7 to 1.
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Figure 4.11: Test set on a different level of noise for four type of images varying several
fixed λ using one of the optimal value found (ν = 0.05). Different set standard deviation
of additive noise, from top left: σ=0.001, σ=0.01 and from bottom left: σ=0.05, σ=0.1
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although it requires long computation time. It searches exhaustively in a range of possible

values by trying all combinations of ν and λ on a grid search. We consider 100000 possible

values in this algorithm. All these combinations will generate in a 1-dimensional density

form.

4.5.1 Pseudocode

The pseudocode based on the brute-force algorithm is described as follows:

• Goal: To estimate optimal value of hyper-parameters λ and ν using brute-froce

algorithm

• Inputs: vectorised image(z), number of rows(r) and columns(c) of the image(z), D

matrix, neighbourhood features(x), ν range, λ range and Pearson type VII density

function

• Search range: ν = 0.0001 - 100, λ = 1e-13 - 10

• Outputs: λopt, νopt and maximum scorepdf

• Algorithm:

1. Construct D matrix according to the image(z) size.

2. Compute neighbourhood features, x=D × z

3. Initialise the variables ν and λ range for 100000 possible values.

4. Initialise νopt, λopt, scoreopt.

5. Compute the sum of Pearson log function.

for i=1:length(ν)

for j=1:length(λ)

scorepdf (i, j) = sum[log
(

Γ
(

1+ν(i)
2

))

× log(λ(j))

−
(

(1+ν(i)
2

) × log(x2 + λ(j))
)

− log
(

Γν(i)
2

)

− 1
2
log(π)]
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6. Obtain the maximum scoreopt

for i=1:length(ν)

for j=1:length(λ)

if scorepdf (i, j) > scoreopt;

νopt = ν(i);

λopt = λ(j);

scoreopt = scorepdf (i, j);

end

end

end

7. Obtain the optimal values for ν and λ by finding the maximum score on the

grid search of 3-dimensional plot.

4.5.2 Results and discussion

The optimal value is obtained from the probability density function (PDF) which gener-

ates the highest score. In other words, the highest score of the PDF is the most probable

solution that matches the histogram of Dz. We obtained the optimal value for these

hyper-parameters by computing the average of 50 natural images with various sizes. The

test set images are taken from Matlab and internet database (Google1). Unfortunately,

the optimal values for ν=2 and λ=0.0013 obtained from the average of 50 natural im-

ages did not recover the images well when we employed these values. An inspection has

been done and we discovered almost half of the randomly chosen natural images have the

peculiar shapes of the neighbourhood feature as shown in figure 4.14.

Once we eliminated the unusual natural images which are distant from the rest of

the data, we computed the average for those hyper-parameters again and the results are

1http://www.google.com
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presented in figure 4.12. Then, we inserted these values (λ=1.2e-4, ν =0.8) into our

recovery algorithm again to estimate the high resolution images. However, this modified

solution did not recover as good as the manual selection, and we found that it is worse

than the average of the 50 images. This is because the optimal λ now is decreasing and

from the previous tuning method, we learned that too small λ will reduce the effect of

the image-prior.
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Figure 4.12: On the left, the optimal values for λ and ν obtained from 50 natural images
of neighbourhood features. On the right plot, the optimal values for λ and ν obtained
from 20 natural images of neighbourhood features. The blue circle indicates the average
of the optimal values from a different set of natural images.

When we inspected the reason behind the failure, we noticed that the density itself is

a non-convex solution. This function has several local minima and it is possible for the

search algorithm to get stuck in the early local minima. To solve this, the first attempt

was to repeat the experiments for several times (i.e:20) with the hope that one of the

optimisation will reach the global optimum. Unfortunately, the results turned out to be

almost the same all the time. Then we continued with the second attempt by carrying

out this grid search using the convex density function such as Gaussian and Huber on the

‘cameraman’ image. We discovered that optimal result for Gaussian prior is λ=1, and that

the value we obtained using the manual selection (λ = 0.8) is very close and is capable of

recovering the images well.

In summary, the average of optimal values from several images or even the optimal
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(a) (b)

Figure 4.13: Subplot (a) shows the recovered image using the average optimal values based
on 50 images and subplot (b) displays the recovered image using the average optimal values
based on 20 images. Both results are based on manual method using a grid search. The
problem is under-determined where W [2500,10000].

values from a specific image still does not produce a better result for the Pearson type

VII case. The recovered image is not as good as the results of the algorithm manually

tuned because this method does not have access to the ground truth image. However,

both optimal values of ν are still found in a good range but both values of λ are under-

estimated which makes the image recovery worse.
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Figure 4.14: Examples of the peculiar histograms of the distribution of neighbourhood
features Diz, i = 1, · · · , N .
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4.6 Conclusions

In this chapter, we formulated the multivariate of Pearson MRF image-prior, and con-

ducted a comparative experimental study among state-of-the-art methods of image-prior

from a single noisy version of low resolution image. We discovered that the quality of

the recovered image performed better on the pixel level when we employed our univariate

Pearson MRF in comparison to the performance of the multivariate Pearson image-prior.

We demonstrated that our proposed prior, univariate Pearson Type VII MRF is likewise

comparable with Huber MRF for all levels of noise and we assessed on four different im-

ages. The quality of the recovered image is always consistent although it has several local

optima.

We also developed some of the alternative methods and compared it with the optimi-

sation approaches in chapter 3. Our main motivation is to avoid the crucial initialisation

of the hyper-parameters in the conjugate gradient method. Secondly, we compare how

the alternative methods such as cross validation, hold-out estimation and manual tuning

estimation to recover the signals. The alternative way using cross validation obtained a

good recovery and is superior in comparison to the existing image-priors such as Huber

and Gaussian MRF. Although it is quite simple to implement, the challenges is to provide

it with a good search range for the hyper-parameters. Otherwise, the signal recovery will

be a time consuming process.
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CHAPTER 5

SINGLE-FRAME SIGNAL RECOVERY USING A

SIMILARITY-PRIOR

This chapter1 presents a similarity-prior framework with the aid of extra information.

We consider the problem of signal reconstruction from noisy observations in a highly

under-determined problem setting. Most of previous work does not consider any specific

extra information to recover the signal. Here we address this problem by exploiting

the similarity between the signal of interest and a consecutive motionless frame. We

incorporate this extra information of similarity that is available into a probabilistic image-

prior based on the Pearson type VII Markov Random Field model. Results on both

synthetic and real data of MRI images demonstrate the effectiveness of our method in

both compressed setting and classical super-resolution experiments.

5.1 Introduction to Similarity-Prior

As mentioned in previous chapters, the main focus of this thesis is to consider the problem

of signal reconstruction from noisy observations in a highly under-determined problem set-

ting. In this chapter, we tackle the problem using more specific prior information, namely

the similarity to a motionless consecutive frame as the additional input for recovering the

1A shorter version of the work presented in this chapter has been accepted for publication in Springer
Proceedings in Mathematics for Mathematical Methodologies in Pattern Recognition and Machine Learn-
ing, ICPRAM’2012 special issue.
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signals of interest in a highly under-determined setting. This has real applications e.g.

in medical imaging where such frames are obtained from several scans. Recent work by

Vaswani and Lu [92] found the average frame from those scans to be useful for recovery.

In principle, the more information we have about the recovered signal, the better the

recovery algorithm is expected to perform. This hypothesis seems to work in [92, 93],

however they require us to tune the free parameters of the model manually, and Giraldo

et al. [93] mentioned that the range of parameter values was not exhaustively tested.

Vaswani and Lu [92] also mentioned that they were not able to attain exact reconstruction

using fewer measurements than those needed by compressed sensing (CS) for a small

image. In contrast, we will demonstrate a good recovery from very few measurements

using a probabilistic model that includes an automated estimation of its hyper-parameters.

Related works on sparse reconstruction gained tremendous interest recently and can

be found in [2, 6, 94, 95]. The sparser a signal is, in some basis, the fewer random

measurements are sufficient for its recovery. Somewhat related, the recent work by Lu

and Vaswani [96] exploits partial erroneous information to recover small image sequences.

However, previous research does not consider any specific extra information that could be

used to accentuate the sparsity, which is our focus.

This chapter is aimed at taking these ideas further through a more principled and more

comprehensive treatment. We study the case when the observed frame contains too few

measurements, but with an additional motionless consecutive scene in high resolutions is

provided as an extra input. This assumption is often realistic in imaging applications.

Our aim is to reduce the requirements on the number of measurements by exploiting the

additional similarity information. To achieve this, we employ a probabilistic framework,

which allows us to estimate all parameters of our model in an automated manner. We

conduct extensive experiments that show how our approach not only bypasses the re-

quirement of tuning free parameters but is also superior to a cross validation method in

terms of both accuracy and computation time. Results on both synthetic and real data

of MRI images demonstrate the effectiveness of our method in both compressed setting
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and classical super-resolution experiments.

5.2 Image Recovery Framework with Similarity In-

formation

In this section, the observation model, joint model, similarity-prior and its approximation

are presented.

5.2.1 Observation model

A model is good if it explains the data. The following linear model has been used widely

to express the degradation process from the high resolution signal z to a compressed or

low resolution noisy signal y [67, 36, 35, 32]:

y = Wz + η (5.1)

where the high resolution signal denoted by z is an N -dimensional column vector and y

is an M × 1 matrix representing the noisy version of the signal, with M < N .

5.2.2 The similarity-prior

The Pearson type VII MRF prior presented in [90] is used to the construction of a generic

prior for images. D matrix is a N ×N size that encodes the cardinal neighbour relation-

ship. The elements in D matrix is filled by the entries defined in equation (3.5). This D

matrix is multiplied by a vector z of size N × 1 (i.e: Dz). D makes the signal sparse

because the intensity difference between each pixel in z with the average of its cardinal

neighbours is close to zero. In this chapter, we aim to recover both 1D and 2D signals
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(a)

(b)

Figure 5.1: An illustration of a signal recovery process from a noisy version of low resolu-
tion for 1D signals in subplot (a) and 2D signals in subplot (b) with the aid of informative
input.
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using the additional similarity information. We define the entries of D , i.e dij as follows:

dij =







1 if i = j;

−1/N if i and j are neighbours;

0 otherwise.

where N denotes the number of cardinal neighbours; 4 for images and 2 for 1D signals.

In general, the main characteristic of any natural image is a local-smoothness. This

means that the intensities of neighbouring pixels tend to be very similar. Hence, Dz

will be sparse. Therefore, we propose an enhanced prior to exploit more information

that leads to more sparseness. By employing the given additional information of the

consecutive image or signal, we will employ the difference f , between the recovered image

z, and the extra information denoted as s. Obviously the more pixels z and s have

in common, the more smooth their difference will be. Figure 5.2 shows a few examples

of histograms of the neighbourhood features Dz from real images, where the sparsity is

entirely the consequence of the local smoothness. We also show the histograms of the new

neighbourhood features Df that includes the additional similarity information. We see

the latter (e.g. Dif) is a lot sparser than the former (e.g. Diz). Then we can formulate
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Figure 5.2: Example histograms of the distribution of neighbourhood features Diz in the
top subplot, and Dif in the last subplot where i = 1, ..., N from a MRI real data.

the i-th feature in a vector form, with the aid of the i-th row of this matrix (denoted Di)
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as the following:

fi −
1

N

∑

j∈N neighb(i)

fj =
N∑

j=1

dijfj = Dif (5.2)

Since our task is to encode the sparse property of signals, therefore this feature is useful

when the difference between a pixel of the difference image f and the average of its

neighbours is close to zero, almost everywhere except the edges of the dissimilarity areas.

Replacing f with the notation (Di(z − s) and plugging this (5.2) into the Pearson-MRF

density, we have the following prior that we refer to as a similarity-prior:

Pr(z) =
1

ZPr(λ,ν)

N∏

i=1

{(Di(z − s))2 + λ}− 1+ν
2 (5.3)

where ZPr(λ,ν) =
∫

dz
∏N

i=1{(Di(z−s))2+λ}− 1+ν
2 is the partition function that makes the

whole probability density function integrate to one, and this multivariate integral does

not have an analytic form.

5.2.3 Pseudo-likelihood approximation

As in our previous work [90], we employ a pseudo-likelihood approximation to the partition

function Zp(λ,ν). Replacing the approximation using the extra information into (5.3), we

obtain the following approximate image model:

Pr(z|λ, ν) ≈
N∏

i=1

Γ
(

1+ν
2

)
λν/2{(Di(z − s))2 + λ}− 1+ν

2

Γ(ν
2
)
√

π
(5.4)

We shall employ this to infer z simultaneously with estimating our hyper-parameters λ,

ν and σ.
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5.2.4 Joint model

The entire model is the joint model of the observations y and the unknowns z.

Pr(y,z, f |W , σ2, λ, ν) = Pr(y|z,W , σ2)Pr(z|f, λ, ν) (5.5)

where the first factor is the observation model and the second factor is the image-prior

model with its free parameters defined as λ and ν.

5.3 MAP Estimation

We will employ the joint probability (5.5) as the objective to be maximised. Maximising

this w.r.t. z is also equivalent to finding the most probable image ẑ, i.e. the maximum a

posteriori (MAP) estimate, since (5.5) is proportional to the posterior Pr(z—y).

ẑ = arg min
z

{− log[Pr(y|z)] − log[Pr(z)]} (5.6)

Namely, the most probable high resolution signal is the one for which the negative log of

the joint probability model takes its minimum value. Hence, our problem can be solved

through minimisation. The expression for the negative log of the joint probability model

will then be defined as our minimisation objective and also called as the error-objective.

It can be written as:

Obj(z, σ2, λ, ν) = − log[Pr(y|z, σ2)] − log[Pr(z|f, λ, ν)] (5.7)

Equation (5.7) may be decomposed into two terms: the first one that contains all the en-

tries that involve z and the second one contains the terms that do not — i.e. Obj(z,σ2, λ, ν)

= Objz(z) + Obj(λ,ν)(λ, ν).
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5.3.1 Estimating the most probable z

The observation model is also called the likelihood model because it expresses how likely

it is that a given z produced the observed y through the transformation W . Hence we

have for the first term in (5.5):

Pr(y|z) ∝ exp

{

− 1

2σ2
(y − Wz)T (y − Wz)

}

(5.8)

By plugging in the term for the observation model and the prior into (5.7), we obtain the

objective function. The terms of the objective (5.7) that depend on z are as follows:

Objz(z) =
1

2σ2
(y − Wz)2 +

ν + 1

2

N∑

i=1

log{(Di(z − s))2 + λ} (5.9)

The most probable estimate is the ẑ that has the highest probability in the model. It

is equivalently the one that achieves the lowest error. Recap, our model has two factors

which depend on the likelihood (or also known as the observation model), and the image-

prior that assists the signal recovery. Thus, our error models both the mismatch of the

predicted model Wz with the observed data y and the determinant for allowing the

free parameters to control the smoothness and the edges encoded in the image-prior.

The objective is differentiable; therefore any non-linear optimiser could be practical to

optimise the term (5.9) w.r.t. z. The gradient of the negative log likelihood term is given

by:

∇(z)Objz =
1

σ2
W ′(Wz − y) + (ν + 1)

N∑

i=1

DT

i

Di(z − s)

(Di(z − s))2 + λ
(5.10)
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5.3.2 Estimation of σ2, λ and ν

Writing out the terms in (5.7) that depend on σ2, we obtain a closed form for estimating

the σ2.

σ2 =
1

M

(
M∑

i=1

(yi − W iz)2

)

(5.11)

Terms that depend on λ and ν are given by:

Obj(λ,ν) = N log Γ

(
1 + ν

2

)

− N log Γ
(ν

2

)

+
Nν

2
log λ − 1 + ν

2

N∑

i=1

log((Di(z − s))2 + λ)

(5.12)

Again, both of these hyper-parameters need to be positive values. To ensure our estimates

are actually positive, we parameterise the log probability objective (5.12) such that we

optimise the +/- square root of these parameters. Taking derivatives w.r.t
√

λ and
√

ν,

we obtain:

d log p(z)

d
√

λ
=

N∑

i=1

ν(Di(z − s))2 − λ

((Di(z − s))2 + λ)
√

λ
(5.13)

d log p(z)

d
√

ν
=

[

N log λ −
N∑

i=1

log((Di(z − s))2 + λ) + Nψ

(
1 + ν

2

)

− Nψ
ν

2

]√
ν (5.14)

where ψ(.) is the digamma function. The zeros of these functions give us the estimates

of ±
√

λ and ±√
ν. Although there is no closed-form solution, these can be obtained

numerically using any unconstrained non-linear optimisation method1, which requires the

gradient vector of the objectives.

1We made use of the efficient implementation available from http://www.kyb.tuebingen.mpg.de/
bs/people/carl/code/minimize/
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5.3.3 Recovery algorithm

Our algorithm described in Algorithm 4 implements the equations given in the previous

section. At each iteration of the algorithm, two smaller gradient descent problems have

to be solved; namely one for λ, ν and one for z. However, our experiment in 5.4 suggests

that it is not necessary to estimate the minimum with high accuracy. We noticed that

the inner loops do not require the entire convergence. It is sufficient to increase but not

necessarily minimise the objective at each intermediate step.

Algorithm 4 : Recovery algorithm

1: Initialise the estimates z

2: iterate until convergence: do
3: estimate σ2 using equation (5.11)
4: iteratively update λ and ν in turn using definiton
5: (5.13) and (5.14), with the current estimate z.
6: iterate to update z using equation (5.10)
7: end

5.4 Experiments and Discussion

We devise the following two hypotheses to investigate the role of the new prior and we

test those using synthetic 1D and 2D signals and real MRI signals:

1. The quality of the recovered signal using the additional information is no worse

than the one without the extra information provided, that the extra information is

useful. This is when the number of zero entries in the new form of the neighbourhood

feature, i.e Df is larger than the number of zero entries in Dz, that is the generic

feature that has not been given the extra similarity information.

2. The fewer the edges in f (that is, the non-zeros in Df), the fewer measurements

are sufficient for enabling a successful recovery.

We should mention the construction of the measurement matrix W from CS-type W is a

random Gaussian matrix (M × N) with i.i.d entries. The SR-type W is a deterministic
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Figure 5.3: (a) The original spike signal; the extra similarity information; and an example
of recovered signal from 190 measurements. (b) Comparing the MSE performance of 1D
spike signal recovery with and without the extra information. The error bars are over 10
independent trials and the level of noise was σ=8e-5.

transformation that blurs and down-samples the image1.

5.4.1 Illustrative 1D experiments

In this section, we implement our recovery algorithm on the 1D data, derived from a

spike signal2 of size 512 × 1 as shown in figure 5.3(a). We proceed by plugging the extra

signal into our image-prior and varying the number of measurements using randomly

generated measurement matrices W with i.i.d Gaussian entries as in CS. The recovery

results are summarised in figure 5.3(b). We see our enhanced prior is capable of achieving

a good recovery and has a lower mean square error (MSE) than the one without extra

information. We also examine the MSE performance as a function of the number of zero

entries in the relevant feature vectors (i.e. Df in our case). Figure 5.4 shows MSE results

when varying the number of zero entries by constructing variations on the signals. We see

when the recovery algorithm received sufficient measurements, for example when M=250

in Figure 5.3, the role of the proposed similarity prior gradually reduces. In other words,

this similarity-prior is useful in massively under-determined problems and provided that

1Code to generate the SR-type matrices can be found from
http://www.robots.ox.ac.uk/∼elle/SRcode/ index.html

2Data is taken from http://people.ee.duke.edu/∼lcarin/ BCS.html
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Figure 5.4: (a) Linear scale. (b) Log scale. MSE performance of 1D spike signal using
the extra information. The number of zero entries in D(z-s) is varied. The error bars
represent one standard error about the mean, from 50 independent trials. The level of
noise was σ=8e-5.

the given extra information has the characteristics described previously in section 5.4.

A widely used alternative way to set hyper-parameters is cross-validation. It is there-

fore of interest to see how the automated estimation of the hyper-parameters of our

Pearson type VII based MRF compares to a cross-validation procedure. We address this

by looking at two aspects: MSE performance, and central processing unit (CPU) time.

We use the same spike signal for this purpose. For our comparison, we have chosen 5-folds

cross validation method for estimating the hyper-parameters λ and ν and the noise vari-

ance is assumed to be known for this method. A sensible search range is pursued to avoid

a long execution time as we are aware that this method can be extremely time-consuming

if the search space is too large.

Figure 5.5 shows the MSE performance and the associated values for the four levels of

noise using the CS-type W . It is interesting to see that our fully automated parameter

estimation turns out to be superior to 5-folds cross validation and it has fast convergence

and less execution time.

5.4.2 2D experiments

Following the thorough understanding gained in the previous section regarding the situ-

ation when the extra information is helpful on the spike signal test cases, we conducted
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Figure 5.5: (a) Comparing the MSE performance of the fully automated Pearson type
VII based MRF approach with the 5-folds cross validation, tested with four levels of noise
(σ= 0.005, 0.05, 0.5, 1). (b) CPU time performance against the same four levels of noise.
We see that our automated estimation and recovery is significantly faster than the 5-
folds cross validation method. The error bars are over 10 repeated trials for each level of
noise. Three sets of measurements (M=100, 240, 300) have been tested for this accuracy
comparison.

experiments with both compressive sensing (CS) matrices where W contains random

entries and also the classical super-resolution matrices where W consists of blur and

down-sampling. In this set of experiments, we consider a motionless scene as the extra

information. More precisely, the extra information that we employ in our similarity-prior

consists of a change in the lighting of some area in the image.

We start by conducting the recovery algorithm on a synthetic data of size [50×50]. The

noise variance σ tested in all experiments are set to a smaller range in order to tally the

general noise in real data. Figures 5.6 and 5.7 show examples of vastly under-determined

problems using the extra information for recovery in comparison with the previous prior

devised in [90].

The MSE performance results are given in figure 5.8, and we see the MSE drops rapidly

with as the measurement size is increased. Figure 5.9 shows examples of recovered images

from this process. We observe that the quality of the recovered image increases rapidly for

all 5 levels of noise tested. This contrasts with the recovery results from the general prior,

which needs a lot more measurements to perform well. From these findings, the degree
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Ground truth a)MSE=1e−001 b)MSE=4e−002 d)MSE=2e−002 e)MSE=6e−012

Sample image recovery without extra information.

Extra info. a)MSE=1e−002 b)MSE=6e−013 d)MSE=3e−013 e)MSE=2e−013

Sample image recovery using extra information of lighting change 1.

Extra info. a)MSE=2e−002 c)MSE=4e−013 d)MSE=3e−013 e)MSE=3e−013

Sample image recovery using extra information of lighting change 2.

Figure 5.6: Examples recovery of 2D synthetic data of size [50×50] in the case of using
SR-type W , and given two slightly different light changes as extra similarity information.
The number of measurements (M) are: a) M=60, b) 460, c) 510, d) 960, e) 1310. The
additive noise level was σ=8e-5.

92



Ground truth a)MSE=9e−002 b)MSE=4e−002 d)MSE=2e−002 e)MSE=1e−002

Sample image recovery without extra information.

Extra info. a)MSE=1e−002 b)MSE=8e−004 c)MSE=5e−004 d)MSE=4e−005

Sample image recovery using extra information of lighting change 1.

Extra info. a)MSE=1e−002 b)MSE=1e−003 c)MSE=7e−004 d)MSE=2e−005

Sample image recovery using extra information of lighting change 2.

Figure 5.7: Examples recovery of 2D synthetic data of size [50×50] in the case of using
SR-type W , and given two slightly different light changes as extra similarity information.
The number of measurements (M) are: a) M=9, b) 441, c) 784, d) 1296, e) 1849. The
additive noise level was σ=8e-7.
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Figure 5.8: MSE performance of synthetic data [50×50] in comparison with the two types
of extra information. Here, both types of W were tested and the noise standard deviation
was σ=8e-5.
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Figure 5.9: Recovery of a [50x50] size image from random measurements (top) and blurred
and down-sampled measurement (bottom). The MSE is shown on log scale against varying
the number of measurements, in 5 different levels of noise conditions. The noise levels
were as follows. Top: σ ∈ {σ1=0.005, σ2=0.05, σ3=0.5, σ4=1, σ5=2}; Bottom: {σ1=8e-5,
σ2=8e-4, σ3=8e-3, σ4=0.016, σ4=0.032} — that is the previous noise levels were divided
by 0.8

√
N to make the signal-to-noise ratios roughly the same for the two measurement

matrix types.

of similarity of the available extra information offers a significant impact on the recovery

from insufficient measurements. We find that without informative extra information the

recovery algorithm does not perform well with such few measurements. The recovered

signal and the MSE using the artificial Phantom data in figures 5.6 and 5.8 demonstrate

that the fewer the edges in the difference image f the better the recovery, or the smaller

the number of measurements needed for a good recovery. This result validates our second

hypothesis.

In the remainder of the experiments, we will now focus on image recovery using real

image data of MRI. We obtained this data from the Matlab image database and we

created the additional similarity information from it by changing the lighting of an area

on the image. Next we validate our second hypothesis on a variety of MRI images and its

lighting changes. The recovery results for both types of W are presented in figures 5.11

and 5.12. The MSE performance for the CS-type W is shown in figure 5.10. Interestingly,

we observe that the log scale in that figure is in more direct correspondence with our

visual perception rather than using the standard linear scale, and this will be seen by the
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Figure 5.10: From left: MSE performance of real MRI images of size [70×57], [70×57]
and [100×80] in comparison with three types of extra information on the three different
sets of data. CS-type W was used and the noise standard deviation was σ=8e-5.

comparison in figures 5.11 and 5.12.

We observed that more than 6000 measurements are required for a good recovery

without the extra information in this example. However, from these results we see that

our similarity-prior achieves high quality recovery from an order of magnitude less mea-

surements. The recovered images are presented in figures 5.11 and 5.12 for a visual

comparison. Finally, we also show a running example of our automated parameter es-

timation algorithm in figure 5.13 for completeness. As one would expect, the speed of

convergence varies with the difficulty of the problem.

In closing, we should comment on the possibility of using the other types of extra

information for signal recovery. Throughout this paper we exploited the similarity created

by a lighting change. Depending on the application domain, one might consider a small

shift or rotation instead. However, we have seen that the key for the extra information to

be useful in our similarity prior is that the difference image must have fewer edges than

the original image. This is not the case with shifts or rotations. Therefore to make such

extra information useful we would need to include an image registration model into the

prior. This is subject to future work.
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(A)

Ground truth a)MSE=1e−002 d)MSE=4e−003 g)MSE=6e−009

(B)

Extra info. a)MSE=2e−008 d)MSE=5e−009 g)MSE=9e−012

Sample image recovery of size [70×57] (A)without extra information and (B)using the extra information.

(A)

Ground truth c)MSE=7e−003 e)MSE=5e−003 h),MSE=2e−007

(B)

Extra info. c)MSE=2e−008 e)MSE=1e−008 h)MSE=3e−011

Sample image recovery of size [100×80] (A)without extra information and (B)using the extra information.

(A)

Ground truth b)MSE=9e−003 e)MSE=5e−003 i)MSE=2e−007

(B)

Extra info. b)MSE=4e−008 e)MSE=2e−008 f)MSE=1e−009

Sample image recovery of size [100×80] (A)without extra information and (B)using the extra information.

Figure 5.11: Examples of MRI image recovery in the case CS-type W , given a motionless
consecutive frame with some contrast changes. The number of measurements (M) were:
a) M=310, b) 460, c) 560, d) 610, e) 760, f) 1310, g) 3010, h) 5610 i) 7610 and additive
noise with σ = 8e-5.
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Ground truth a)MSE=51.588 d)MSE=0.100 g)MSE=5e−005 h)MSE=5e−005

(B)

Partial info. a)MSE=0.00036d)MSE=7e−005 g)MSE=4e−005 h)MSE=4e−005

Sample image recovery of size [70×57] (A)without extra information and (B)using the extra information.

(A)

Ground truth a)MSE=139.047 c)MSE=1.273 e)MSE=0.004 i)MSE=0.00371

(B)

Partial info. a)MSE=0.00071c)MSE=0.00018e)MSE=0.00011 i)MSE=0.00011

Sample image recovery of size [100×80] (A)without extra information and (B)using the extra information.

(A)

Ground truth a)MSE=133.6 b)MSE=3.5 f)MSE=0.0180 i)MSE=0.01799

(B)

Partial info. a)MSE=8e−004 b)MSE=5e−004 f)MSE=1e−004 i)MSE=1e−004

Sample image recovery of size [100×80] (A)without extra information and (B)using the extra information.

Figure 5.12: Examples of MRI image recovery in the case of SR-type W , given a motion-
less consecutive frame with some contrast changes. The number of measurements (M)
were: a)M=6, b) 99, c) 154, d) 396, e) 918, f) 1462, g) 1505, h) 2000, i) 4234. The
additive noise is σ=8e-5.
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Figure 5.13: Examples evolution of the hyper-parameter updates (σ, λ, ν) and objective
function versus the number of iterations of the optimisation algorithm while recovering
a 2D signal: from the left, random measurements; and from the right, a blurred and
down-sampled low resolution frame. In both experiments, the noise level is σ=8e-5.
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5.5 Conclusions

In this chapter, we have formulated and employed a similarity-prior based Pearson type

VII Markov Random Field to include the similarity information between the scene of

interest and a consecutive scene that has a lighting change. This prior enables us to recover

the high resolution scene of interest from fewer measurements than a general-purpose prior

would, and this can be applied, e.g. in medical imaging applications. Also in this chapter,

we found out using quantitative measurements that our automated parameter estimation

is superior to the 5-folds cross validation method, with respect to 1D signals recovery and

computational speed. In the next chapter, we consider several tasks to be employed into

our novel image-prior algorithm.
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CHAPTER 6

MULTI-TASK RECOVERY WITHOUT CONTENT

SIMILARITY

In this chapter1, multi-task recovery is an extended version from the single task re-

covery. Sharing of hyper-parameters is often useful for multi-task problems as a means of

encoding some notion of task similarity. This chapter presents a multi-task approach for

signal recovery by sharing higher-level hyper-parameters which do not relate directly to

the actual content of the signals of interest but only to their statistical characteristics. Our

approach leads to a very simple model and algorithm that can be used to simultaneously

recover multiple natural images with unrelated content. We investigate the advantages of

this approach in relation to state-of-the-art multi-task compressed sensing and we discuss

our findings. Section 6.2 describes the multi-task recovery framework and section 6.3

presents the quantitative measurements and the visual results in comparison with the ex-

isting work in multi-task Bayesian Compressive Sensing [3]. Further investigation on the

relatedness between the tasks and length of the recovered signals are presented. Finally,

the last section concludes the contribution of this chapter.

1Part of the work presented in this chapter has been accepted for publications in print in Proc. 211st of

International Conference on Pattern Recognition (ICPR’2012), Tsukuba, Japan, 11-15 November 2012,
IEEE Computer Press, pp. 2246-2249.
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6.1 Introduction to Multi-task Recovery

Multi-task signal recovery aims to perform several single-frame recovery tasks simulta-

neously by exploiting some form of similarity between the tasks. A recent paper tackles

this complex problem by an approach termed as Multi-Task Bayesian Compressed Sens-

ing (MT-BCS) [3]. In this approach the similarity of tasks is defined as a percentage

of overlapping content — i.e. the positions of edges or smooth regions should have a

non-negligible overlap. By its construction, MT-BCS is able to exploit this definition of

similarity to recover multiple signals simultaneously in a single run more efficiently than

multiple runs of a single-task recovery method [2] would.

Here we propose and investigate a complementary approach in which we seek to exploit

a much weaker notion of similarity that is unrelated to the actual content but only depends

on the statistical characteristics of the signals to be recovered. We achieve this by building

the model of MT-BCS to a further level and sharing higher level hyper-parameters in the

resulting model. This turns out to yield a very simple model in terms of its model and

experimental design. It has fewer hyper-parameters in which the edge-content related

parameters are integrated out and the remaining shared higher-level hyper-parameters

can be estimated automatically in a similar manner to what we have tackled previously

[97, 90]. The next section describes our multi-task recovery approach and its relation to

MT-BCS.

6.2 Multi-task Recovery Framework

Consider K different (though related) recovery tasks. We will denote by z(k) the k-th high

resolution signal (scene) of length N that we aim to recover. The observed low resolution

(or compressed) signal y(k) has length M < N and is described by the following forward
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model:

y(k) = W (k)z(k) + η(k) ∀ k=1,...,K (6.1)

where η is a mean-zero i.i.d. additive Gaussian noise with variance σ2I. From eq. (6.1),

we can write the likelihood as:

p(y(k)|z(k),W (k), σ2) = N (W (k)z(k), σ2) (6.2)

and in order to infer z(k), k = 1, ..., K, we need to specify a model on these, which we do

in the next subsection.

6.2.1 Prior for multiple signals

The gist of multi-task recovery is to exploit similarities between the multiple tasks in

order to gain efficiency against performing the tasks individually. There are many ways

to define similarity though, and this is a crucial aspect of designing a suitable prior.

Before proceeding we define the notation θ(k) = Dz(k) where D could be a wavelet

transform as in [3], or another linear transform that makes the representation of z(k)

sparse. In particular, we used a simple linear transform from pixel brightness values

into neighbourhood-features by taking the difference between pixel brightness and the

average of its four cardinal neighbours (see e.g. [90]). With this latter choice of course

the components of θ(k) are not completely statistically independent, however a pseudo-

likelihood approximation (as in [90]) makes it possible to treat them as if they were. The

transform D is invertible, so estimating θ(k) is equivalent to estimating z(k), which allows

us to simplify the exposition and make the link between the multi-task image-prior of [3]

and ours in the sequel.
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Hyper-parameter sharing in [3]

Previous work by Ji et al. [3] posited the following Gaussian scale-mixture as a multi-task

image-prior:

p(θ(k)|α) =
N∏

i=1

N (θ
(k)
i |0, α−1

i ) (6.3)

p(αi|c, d) = Ga(αi|c, d) (6.4)

where α are hyper-parameters shared across the tasks. They then propose to let c = d →

0, which corresponds to a fat-tail uninformative improper prior. The estimates of α are

then obtained by the so-called Type II Maximum Likelihood approach:

α = arg max
α

K∑

k=1

log

∫

dθ(k)p(y(k)|θ(k))p(θ(k)|α) (6.5)

Now, since the components of α are inverse variances of the (zero-mean) pixel neighbour-

hood features, a large entry in this hyper-parameter vector means a nearly zero variance

i.e. a locally smooth region, whereas a small entry signifies a large departure from smooth-

ness i.e. a spike or an edge. Sharing of this parameter vector across all the recovery tasks

therefore defines a very strong and very specific kind of similarity: the positions of edges

and smooth regions must have a considerable overlap. Hence, whenever we know a-priori

that the high resolution images that we try to recover are similar to each other in this

sense then we can expect that the method in [3] is best placed to exploit it. However,

when the notion of similarity defined above is not satisfied, e.g. the images have inde-

pendent content, then we conjecture that a weaker, higher level similarity of the natural

image statistics could be exploited instead. This is what we investigate next.

Higher-level hyper-parameter sharing

We make two important changes to the model in [3]. First, we will not share the inverse-

variances of θ because we want to relax the definition that the extent of overlap in the
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positions of edges and smooth regions is what defines similarity. Secondly, we build the

model further: Instead of letting hyper-parameters of the Gamma hyper-prior to zero,

we will share these among the tasks and estimate them from all the data of the multiple

recovery tasks. In addition, we make the model more flexible by introducing a width

parameter λ. Summing up, our model is the following:

p(θ(k)|α(k)) =
N∏

i=1

N (θ
(k)
i |0, λ/α

(k)
i ) (6.6)

p(α
(k)
i |ν) = Ga(α

(k)
i |ν/2, 1/2) (6.7)

To estimate the remaining high-level hyper-parameters ν and λ we will use a type-II

Maximum Likelihood (ML) on the prior term alone1, and this will yield a simple and

computationally convenient algorithm. That is, we take:

{ν, λ} = arg max
ν,λ

K∑

k=1

log

∫

dα(k)p(θ(k)|α(k), λ)p(α(k)|ν) (6.8)

The reason is, the integral in eq.(6.8) is analytically tractable and yields a product of

Pearson type VII densities:

∫

dα(k)p(θ(k)|α(k), λ)p(α(k)|ν) = ...

N∏

i=1

1

Z(ν, λ)
[(θ

(k)
i )2 + λ]−

1+ν
2 =: p(θ(k)|λ, ν) (6.9)

where Z(ν, λ) = Γ(ν/2)
√

π

Γ( 1+ν
2 )λν/2

1Although a direct extension of the estimation approach in the previous section i.e. an evidence
maximisation in the sense of a type-III ML would be interesting to investigate as well, our approach fits
with the MAP estimation that we do for finding the most probable images z(k), and we found it to work
well in practice as we shall see in the experimental section.

104



6.2.2 The joint model and parameter estimation

Putting everything together, our joint model for K recovery tasks are defined by:

p(y(1), ...,y(K),θ(1), ...,θ(K)|W (1), ...,W (K), σ2, λ, ν)

=
K∏

k=1

p(y(k)|θ(k),W (k), σ2)p(θ(k)|λ, ν) (6.10)

where we assume that all the tasks are independent to each other.

The negative log of this joint probability will be our objective function that we min-

imise to get the MAP estimates of all θ(k), k = 1, ..., K and ML estimates of λ, ν and σ2.

Note that we have now integrated out the full set of hyper-parameters α (that appeared

in [3]) and these do not need to be estimated at all in our approach.

Part of the assignment is to find the minimum value as possible between the observed

data, y and the error model, Wz. Therefore, the likelihood model for K tasks:

K∏

k=1

p(y(k),θ(k)|W (k), σ2, λ, ν) ∝
K∏

k=1

exp

{
1

2σ2
(y(k) − W (k)θ(k))2

}

(6.11)

As the signal recovery requires a prior-knowledge, independent Pearson type-VII image-

priors for K the tasks will be employed as following:

p
(

θ(1), ...,θ(K)
)

=
K∏

k=1

p
(

θ(k)|λ, ν
)

p
(

θ(k)
)

= Pearson (6.12)

As we already mentioned, this, and our sharing of only ν and λ means a weaker and higher

level notion of task similarity than that of [3]) — essentially we only assume similarity

of the statistics of θ(k) and allow the content of the target signals to be different. We

carried out the minimisation of the above objective using conjugate gradients in much

the same way as described in our previous works [90]. Therefore, the negative log of the

joint probability model for multi-task recovery now can be defined as the minimisation
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objective:

Obj(θ(1), ...,θ(K), σ2, λ, ν) =
K∑

k=1

{

− log[p(y(k)|θ(k), σ2)] − log[p(θ(k)|λ, ν)]
}

(6.13)

Writing out the second term of equation (6.13) yields the details of the negative log prior

as written in (6.14).

− log p(θ(k)|λ, ν) =
K∑

k=1

{

N log Γ

(
1 + ν

2

)

+ N log(λ)ν/2 − N log Γ
(ν

2

)

−N log(π)1/2 −
N∑

i=1

log
(

(θ
(k)
i )2 + λ

)− 1+ν
2

}

=
K∑

k=1

{

N log Γ

(
1 + ν

2

)

+
Nν

2
log λ − N log Γ

(ν

2

)

− N

2
log(π)

−1 + ν

2

N∑

i=1

log
(

(θ
(k)
i )2 + λ

)
}

(6.14)

By taking the log of equation (6.11) for the observation model and the possible prior

(6.14), we now obtain the definition form of this objective function. The terms of the

objective (6.13) that depend on θ(K) can be written as follows:

Objθ(θ
(1), ...,θ(K)) =

K∑

k=1

{

1

2σ2
(y(k) − W (k)θ(k))2 +

ν + 1

2

N∑

i=1

log[(θ
(k)
i )2 + λ]

}

(6.15)

The gradient for the MT recovery of the negative log likelihood term is given by:

∇w.r.t θ Objθ(θ
(1), ...,θ(K))

=
K∑

k=1

{

1

σ2
W ′(k)(W (k)θ(k) − y(k)) + (ν + 1)

N∑

i=1

θT

i

θ
(k)
i

(θ
(k)
i )2 + λ

}

(6.16)

Writing out the terms in (6.13) that depend on σ2, are as following (6.17). Full derivation
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can be found in Appendix B.0.1.

Obj(σ2) =
K∑

k=1

{
1

2σ2

(

y(k) − W (k)θ(k)
)2

+ M log π +
1

2
log[Σ]

}

∂Obj(σ2)

∂
(

1
σ2

) =
K∑

k=1

{

1

2

(

y(k) − W (k)θ(k)
)2

+ 0 +
1

2

∂[log Σ]

∂
(

1
σ2

)

}

where Σ = σ2I

=
K∑

k=1

{

−M

2
σ2 +

1

2

(

y(k) − W (k)θ(k)
)2

}

(6.17)

Finally, writing out equation (6.17) and equating to zero to solve, yields closed form

estimation for σ2 in (6.18) and the term that depends on σ2 for multi-task recovery is

written by:

σ2 =
K∑

k=1

{
1

M

(

y(k) − W (k)θ(k)
)2

}

(6.18)

From equation (6.14), terms that depend on λ are:

Obj(λ) =
K∑

k=1

{

Nν

2
log λ − 1 + ν

2

N∑

i=1

log[(θ
(k)
i )2 + λ]

}

(6.19)

Both of these hyper-parameters need to be positive valued. To ensure our estimates are

actually positive, we parameterise the log probability objective (6.19) and (6.21) such as

to optimise for the ± square root of these parameters. Taking derivatives w.r.t
√

λ and

√
ν, we obtain equations (6.20) and (6.22). The details derivation of λ is presented in

Appendix B.0.2. We derive the derivative of
√

λ as in (6.20):

∂Obj(λ)

∂
√

λ
=

K∑

k=1

{
N∑

i=1

ν((θ
(k)
i )2 − λ

((θ
(k)
i )2 + λ)

√
λ

}

(6.20)
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From equation (6.14), terms that depend on ν are defined by:

Obj(ν) =
K∑

k=1

{

N log Γ

(
1 + ν

2

)

− N log Γ
(ν

2

)

+
Nν

2
log λ

−1 + ν

2

N∑

i=1

log[(θ
(k)
i )2 + λ]

}

(6.21)

Finally, we get the derivative of
√

ν as in (6.22). Each term derivation is derived in

Appendix B.0.3.

∂Obj(ν)

∂
√

ν
=

K∑

k=1

{(

Nψ

(
1 + ν

2

)

− Nψ
ν

2
+ N log λ −

N∑

i=1

log
(

(θ
(k)
i )2 + λ

)
)

√
ν

}

(6.22)

6.3 Experiments

We investigate three research questions as follows: (i) To what extent our definition of

relatedness can be exploited for multi-task recovery? (ii) How does the existing work in

MT-BCS [3] perform on data that only has our weaker notion of relatedness? (iii) What

do we lose by exploiting only our weaker notion of similarity when the data really has the

stronger one exactly as defined in MT-BCS [3]?

6.3.1 Results and discussion

(i) To gain insight into our first question, we conduct experiments to compare the perfor-

mance of multiple runs of a single-task recovery algorithm with the performance of one

run of our multi-task recovery method. In both methods we use the Pearson type VII

image model, however the single-task approach estimates the hyper-parameters ν, λ and

the noise variance σ2 separately for each task whereas the multi-task approach uses all

the data to estimate these.
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From our experiments we found that multiple runs of single task recovery already

performs very well in terms of means square error (MSE). Nevertheless, the multi-task

approach works in a single run and from our experiments it performs no worse for a

class of signals (e.g. natural images have similar statistics even when they have different

content), and it may even yield a slight improvement in the quality of recovery since it

has more data to estimate these hyper-parameters. Figure 6.1, shows the MSE results
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Figure 6.1: Comparing three separate runs of single-task (ST)-Pearson based recovery
against one run of multi-task (MT)-Pearson based recovery. The task is to recover three
different high resolution images from only one randomly compressed and noisy frame of
each. The noise standard deviation was σ = 8 × 10−5.

of three single-task recoveries versus one multi-task recovery of the same target images

— natural images of size [80 × 80] pixels each, which have no overlapping content other

than their naturally similar image statistics: ‘woman face’, ‘cameraman’, and ‘castle’.
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We varied the number of measurements (extent of compression), and we worked with

W (k) randomly generated matrices with i.i.d. standard Gaussian entries. We see the

multi-task approach is able to get good recovery in a single run and it needs slightly less

measurements for good recovery in this example.

(ii) Next, we compare our multi-task approach presented in the earlier section against

M-BCS [3] on data that has no overlapping content but exhibits only our weaker notion

of similarity. To perform a systematic study, we first use synthetic 1D spikes signals

modified from [3]. We try to recover two signals simultaneously, each having length 512,

of which 20 entries are spikes (+1 or -1) and the rest of entries are zero. However,

contrary to [3] the positions of these spikes are generated randomly for both signals, with

no planned overlap in their positions. Figure 6.2 shows an example of the data, as well

as the results of an extensive comparison when the number of measurements available is

varied. Clearly, our MT-Pearson approach that only shares high level hyper-parameters

performs significantly better in this problem setting. It achieves lower MSE and needs

less measurement to recover the high resolution signals. MT-BCS looses out because it

expects a content-wise overlap, which is not present in the true signals in this setup.

To further validate this conclusion, figure 6.3 shows multi-task comparison results on

image recovery experiments where the task is to recover pairs of natural images simulta-

neously. Again, we see that our MT-Pearson approach outperforms MT-BCS, and this is

because these images have similar statistics but no overlap in their content.

(iii) Finally, we test our approach in scenarios that do have content overlap of the

kind that is hard-wired into MT-BCS. We use exactly the same 1D spike signals and use

exactly the same experimental setup as [3], and also employ their experimental protocol:

That is, the task is to recover two spike signals simultaneously when they have 25%, 50%

or 75% of their spikes in the same positions, and the noise level is set to 0.005. By the

design of MT-BCS, the larger the percentage of overlap the better MT-BCS will perform,

whereas our MT-Pearson does not depend on any content-wise overlap but only on higher

level statistical similarity. The upper plot of Figure 6.4 shows the results of MT-BCS
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Figure 6.2: First 4 plots: Examples of input measurements and high resolution of 1D
signals to be recovered. Last plot: Comparison of our MT-Pearson approach against
MT-BCS [3] on recovering two spike signals simultaneously.
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Figure 6.3: Plot represent three sets of experiments simultaneously recovering pairs of
natural scenes of size [50 × 50].
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Figure 6.4: Upper plot : Reconstruction errors of MT-Pearson and MT-BCS [3], as a
function of the number of compressive measurements. Lower plots : The variance of
reconstruction errors for 25%, 50% and 75% similarity over 100 independent runs.
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superimposed with our MT-Pearson. Interestingly, we see that our MT-Pearson is only

outperformed by MT-BCS in 75% spike-overlap conditions. It comes out statistically

equal to MT-BCS in the 50% overlap setting and it is significantly superior to MT-BCS

in settings that have less content-wise overlap. The lower plots of Figure 6.4 detail all

pairwise comparisons separately with error bars shown for completeness.

6.3.2 Further investigations on relatedness

We investigate to what extent our definitions of relatedness can be exploited for a multi-

task recovery. Previous work of MT-BCS in [3], relatedness is defined as having a fraction

of the non-zeros (e.g; edges on 2D) data, spikes on 1D data) in exactly at the same

positions. MT-BCS built on this assumption and hence it is able to exploit this kind

of relatedness. In order to investigate this relatedness, a hypothesis is devised. Signals

that do not satisfy the above definition of relatedness (e.g., spike signals that have their

non-zeros in different positions, images that differ in their content) might still be related

on the higher level. For instance, the relatedness can also be defined by having similar

distributions on the neighbourhood feature with similar levels of sparsity.

The main characteristic of any natural image is a local-smoothness [90, 97], which

means that intensities of neighbouring pixels tend to be very similar. Hence, the neigh-

bourhood feature will be sparse. The distributions of the neighbourhood feature in the

first image will look similar with the distribution of the second image in term of the his-

togram shape although the entire content would be different. The same thing goes to 1D

signal case. Two different signals are given to be recovered where some of the spikes in

1D are generated randomly and some of the spikes remain at the same positions to retain

the relatedness of the previous spike. We assumed that having a similar shape of the dis-

tribution may lead to a good recovery on sharing the hyper-parameters than estimating

it individually. Therefore, sharing the hyper-parameters (α, ν in [3]) of the image-prior

and the noise level sigma is preferable.

Validating the hypothesis can be obtained by comparing the recovery between single
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task Pearson algorithm and the multi-task Pearson on 1D spike signals for noise level,

σ=0.005. The original signals are illustrated in figure 6.5. In the first investigation, two

signals recovery are obtained with the aid of estimating the hyper-parameters individually.

For the second finding, two recoveries are obtained simultaneously in a single run by

sharing the hyper-parameters. The quantitative results are over 100 independent trials

for each measurement presented in figure 6.5 and a visual comparison between single task

and multi-task recovery is displayed in figure 6.6. Based on the quantitative results and
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Figure 6.5: Original signal of the 1D spikes of length N = 512. The two original signals
have random spikes. Comparing the ST-Pearson with the MT-Pearson algorithm using
signal 1 and 2 when the number of spike (T ) is set to 20.

the visual comparison, the differences on the mean square error are too small. Therefore, a

statistical test is performed to compare over the two related samples and to assess whether
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Figure 6.6: Visual comparison for Figure 6.5.
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their population mean ranks differ. Rank sum tests are used and presented in Table 6.1

and 6.2 from M=105 until M=200 for both methods, ST-Pearson and MT-Pearson for

1D signal 1. We perform rank sum test [98] that returns the result of the hypothesis test,

performed at the 5% significance level, in H as shown in Table 6.1 and 6.2. The null

hypothesis for the test is that the median are equal for both methods. As we see from the

table, the test rejects the null hypothesis. Therefore, the two methods are not statistically

equal. We conclude that MT-Pearson method is slightly better than the ST-Pearson in

highly insufficient measurements for both recover signals.

Table 6.1: Rank sum test over 100 independent trials shows the probability (P) of observ-
ing the given result for each method. H=0 indicates that the null hypothesis cannot be
rejected at the 5% level and when H=1 indicates that the null hypothesis can be rejected
at the 5% level.

Number of measurements Method 1 Method 2 P H

M ST-Pearson MT-Pearson
(MSE mean) (MSE mean)

105 6.3773e-004 3.2724e-004 5.3229e-033 1
110 3.5300e-004 1.3274e-005 2.9772e-034 1
115 3.6792e-005 1.3090e-005 2.7208e-034 1
120 3.5273e-005 1.3218e-005 3.2577e-034 1
125 3.5499e-005 1.2924e-005 4.9545e-034 1
130 3.5326e-005 1.3463e-005 3.8992e-034 1
135 3.5119e-005 1.3638e-005 2.8036e-034 1
140 3.5128e-005 1.2561e-005 3.8997e-034 1
145 3.5178e-005 1.2326e-005 2.8037e-034 1
150 3.5225e-005 1.2247e-005 2.5621e-034 1
155 3.6230e-005 1.1940e-005 2.7208e-034 1
160 3.7221e-005 1.1955e-005 2.7208e-034 1
165 3.7688e-005 1.2290e-005 2.8037e-034 1
170 3.8084e-005 1.1741e-005 2.8037e-034 1
175 3.8250e-005 1.1563e-005 2.5621e-034 1
180 3.8705e-005 1.1248e-005 2.5621e-034 1
185 4.1924e-005 1.1911e-005 2.5608e-034 1
190 4.2315e-005 1.0976e-005 2.5621e-034 1
195 4.4065e-005 1.1360e-005 2.5621e-034 1
200 4.5187e-005 1.0675e-005 2.5621e-034 1

Rank sum test from M=105 until M=200 for both methods, ST-Pearson and MT-

Pearson for 1D signal is presented in table 6.2. The noise level conducted in this experi-

ment is 0.005.

We then proceed to test on 2D signal where the natural images were chosen randomly
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Table 6.2: Rank sum test over 100 independent trials shows the probability (P) of observ-
ing the given result for each method. H=0 indicates that the null hypothesis cannot be
rejected at the 5% level and when H=1 indicates that the null hypothesis can be rejected
at the 5% level.

Number of measurements Method 1 Method 2 P H

M ST-Pearson MT-Pearson
(MSE mean) (MSE mean)

105 4.4751e-004 5.3848e-004 8.7440e-032 1
110 3.8571e-004 1.3141e-005 7.0919e-034 1
115 3.6544e-005 1.3182e-005 2.7208e-034 1
120 3.5165e-005 1.3584e-005 1.4927e-033 1
125 3.5143e-005 1.3843e-005 6.8834e-034 1
130 3.5143e-005 1.3843e-005 6.8834e-034 1
135 3.5394e-005 1.3624e-005 6.6809e-034 1
140 3.5705e-005 1.3348e-005 4.6672e-034 1
145 3.3885e-005 1.3073e-005 3.2577e-034 1
150 3.5664e-005 1.2665e-005 5.3229e-033 1
155 3.6080e-005 1.1643e-005 1.0091e-033 1
160 3.6576e-005 1.2182e-005 2.9772e-034 1
165 3.7659e-005 1.2238e-005 4.6672e-034 1
170 3.9024e-005 1.2012e-005 8.4817e-034 1
175 3.8426e-005 1.1771e-005 3.3569e-034 1
180 4.0533e-005 1.1951e-005 2.7208e-034 1
185 4.0420e-005 1.1416e-005 2.5621e-034 1
190 4.0894e-005 1.0851e-005 2.5621e-034 1
195 4.4254e-005 1.1563e-005 2.5621e-034 1
200 4.5510e-005 1.1768e-005 2.5617e-034 1
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for noise level, σ=0.005. Experiments are presented in figures 6.7, 6.8 and 6.9 on compar-

ing the ST-Pearson with the MT-Pearson algorithm. From the results, we can see that

most of the time when using the ST-Pearson achieved a good recovery than using the

MT-Pearson as illustrated in figures 6.7-6.9 in highly under-determined setting. However,

we also observed that by using the MT-Pearson, a better recovery can be obtained than

the ST-Pearson in certain test cases. It would be caused by accidental recovery. Majority

of the performances in figures 1D and 2D signals are matched where ST-Pearson result is

always better than the multi-task recovery method.

As a conclusion, both 1D and 2D signals required individual estimating parameters

using a single-task recovery algorithm when no information of the spike or edges are

shared. We also suggest that the multi-task recovery on sharing the hyper-parameters is

more useful for 1D spike signals compared to the 2D signals. It is because in 2D signals,

the second task recovery is entirely different and makes the problem more difficult to

be solved by sharing the hyper-parameters. Our hypothesis states that having a similar

distribution can lead to a better recovery when sharing the hyper-parameters on 1D signal

and it is invalid for 2D signals. This is because in 1D signal, the dissimilarity is represented

by a few spikes and made the MT-Pearson recovery achieve a slightly better performance

in terms of quantitative measurement.
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Figure 6.7: Experiments (a) and (b) recover two scenes simultaneously. (c) Recover three
scenes simultaneously. Error bars are over 10 independent trials.
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Figure 6.8: Experiment on recovering the two scenes of size [80×80] simultaneously on a
three different test cases of 2D images. The level of noise is 8e-5. From three different test
cases on recovering the two scenes, test case 1(a) shows the capability of the MT-Pearson
is always better than the ST-Pearson. In test case 2 (b), the ST-Pearson performs better
than MT-Pearson especially on recovering the second scene. However, test case 3(c)
shows almost similar performance for both methods and seems that MT-Pearson achieves
a slightly better performance on recovering the second scene. We conclude that test case
1(a) is a rare case and we classified it as an outlier.
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Figure 6.9: Experiment on recovering two scenes simultaneously. The noise level, σ is
0.005.

6.3.3 Further investigations on the length (N)

Next, we investigated the effects on the dimensionality N that was used to recover the

high dimensional of 1D signals. We devised experiments where the proportion number

of the spike for each test case measurement tested was given equally. Five types of

measurements (N=100, 200, 300, 400 and 512) are conducted and results are presented

in figure 6.10. From the outcome, the 1D signal does not show any significant result when

comparing the single task with the multi-task recovery for all tested measurements. We

notice a significant result in 2D signals case as illustrated in figure 6.1 where it shows that

the multi-task recovery algorithm performs better than the single task recovery for three

different tasks. However, this is not the case as illustrated in figure 6.9 when two tasks

are recovered simultaneously. These could be different images that may contain extra

texture decrease the performance of the MT-Pearson when sharing the hyper-parameters.

For 1D signals performance as shown in figure 6.10, we observe both methods (ST and

MT-Pearson) behave equally. We can conclude that sharing hyper-parameters are more

useful for the 2D signals compared to the 1D signals with a condition that those different

images exhibit a similar pattern on its histogram of the neighbourhood feature.
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Figure 6.10: The results are averaged over one standard error from 100 independent trials.

6.4 Conclusions

We presented a new approach to multi-task signal recovery where the target signals need

not have any overlap in their content but only share their higher level statistical char-

acteristics. This can be used for simultaneous recovery of sets of natural images in a

single run. We compared our MT-Pearson approach with multi-task BCS, which is the

state-of-the-art for multi-task signal recovery and we highlighted the settings in which

our approach is advantageous.

In this chapter, we also investigated the relatedness by devising a hypothesis where

signals that do not satisfy the relatedness definition might still be related on the higher

level (e.g., spike signals that have their non-zeros in different positions or images that

differ in their content). We conclude that signals with non-similarity recovered effectively

with individual estimation of the hyper-parameters. Nevertheless in some cases where

three different images were recovered simultaneously by sharing the hyper-parameters in

the image-prior, a significant finding shows that multi-task Pearson type VII is superior

compared to the single task Pearson recovery.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

This chapter presents a summary of the thesis and outlines some potential future

directions.

7.1 Concluding Remarks

This thesis provides the following achievements:

• We formulated a new image-prior based on Pearson type VII densities integrated

with a MRF. Our main motivation has been to exploit the heavy-tail property of this

density, which indeed seems to be a good way of preserving edges while imposing

smoothness. The form of this prior has the additional advantage of allowing us

to perform fully automated hyper-parameter estimation. Our recovery algorithm,

although very simple to implement, achieves statistically significant improvements

over Bayesian Compressive Sensing in under-determined problem settings, and is

able to recover more textured images than Bayesian Compressive Sensing can.

• We devised and employed a similarity-prior based on Pearson type VII with a

Markov Random Field to include the similarity information between two consec-

utive scenes that differ in colouring or lighting. This prior enables us to recover

from fewer measurements than a general-purpose prior would, and can be applied,

e.g. in medical imaging applications. We tested our methods both on 1D and 2D
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signals in highly under-determined systems. Our results show that when the re-

covery algorithm received useful additional information, we were able to recover

good quality signals from their linear transforms using either compressive matri-

ces or classical super-resolution matrices W in highly under-determined conditions.

We also demonstrated in low noise case that our automated parameter estimation

is superior with respect to MSE in comparison with the well-known 5-folds cross

validation method.

• We presented a new approach to multi-task signal recovery where the target signals

need not have any overlap in their content but only share their higher level statistical

characteristics. This can be used for simultaneous recovery of sets of natural images

in a single run. We compared our approach with multi-task BCS, which is the state-

of-the-art for multi-task signal recovery and we highlighted the settings in which our

approach is advantageous.

7.2 Further Works

There are many avenues for future works for examples:

• Although the prior enables us to recover the high resolution image, the algorithm

is still quite sensitive to the initialisation of the parameters. On the good side,

we have a flexible model, but on the other side it has a wiggly objective function

that is non-convex and hence it is hard to optimise. So far in our work, we found

out empirically how to initialise the parameters but in order to remedy this issue,

we would need a global optimisation technique. Evolutionary Algorithms (EA)

are heuristic global optimisers that have the ability to find good quality solution

(approximate solution) to difficult optimisation problem. However, the performance

in EA is degrades in high dimensional problems. Indeed, scaling up evolutionary

algorithms to high dimensions is recognise to be a major challenge and contests
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are organised at the CEC conference1. The larger the dimensionality in the latest

competition was 1000. This would corresponds to recovering an image no larger

than 31 × 32. However in this thesis, we tackled a problem for 100 × 100 images

where the number of pixels are 10 times bigger than the largest problem so far

attempted by the best evolutionary algorithm in the competition.

• Image recovery from compressive or low information content measurements has a

number of applications in areas as diverse as medical imaging and video surveil-

lance. Deploying our results to such real-world applications would be an interesting

direction for further work.

• A more distant future goal would be to incorporate super-resolution or compressive

recovery into other probabilistic models that are used for clustering, visualisation,

or data mining. This would allow taking low quality data and coming up with

high quality cluster prototypes for example. We believe our probabilistic framework

makes a step towards such applications.

1http://staff.ustc.edu.cn/∼ketang/cec2012/cec2012lsgo.htm
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APPENDIX A

Neighbourhood feature

Using the example size of image z (3 × 4), the neighbourhood feature Dz is computed

as follows:

Dz = Dij × [z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12]
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From the details above, we can see only z5 and z8 contain four neighbours which can be simplify

into this notation zi − 1
4

∑

j∈4neigb(i) zj . However the real data is an image with higher dimensionality

where there are more intensity value in z with four neighbours compared the pixels with two and three

neighbours. Therefore, we can neglect the minority pixels since it does not affect the majority difference.
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APPENDIX B

Derivation

B.0.1 Derivative of σ

The objective function for σ is written in (6.17) and we solve it as follow. Notice that M
2 log(2π) does

not depend on the σ2, therefore we can ignore this as a constant and remains 1
2 log[Σ]. Denoting the

likelihood term that depends on σ2 by Obj(σ2),

Obj(σ2) =

K∑

k=1

{
1

2σ2

(

y(k) − W (k)θ(k)
)2

+ M log π +
1

2
log[Σ]

}

∂Obj(σ2)

∂
(

1
σ2

) =

K∑

k=1

{

1

2

(

y(k) − W (k)θ(k)
)2

+ 0 +
1

2

∂[log Σ]

∂
(

1
σ2

)

}

where Σ = σ2I

=
K∑

k=1

{
1

2
log

(
det(σ2I)

)
+

1

2

(

y(k) − W (k)θ(k)
)2

}

=
K∑

k=1

{
1

2
log

{
(σ2)M (det(I))

}
+

1

2

(

y(k) − W (k)θ(k)
)2

}

=

K∑

k=1

{(
M

2
log σ2

)

(1) +
1

2

(

y(k) − W (k)θ(k)
)2

}

=

K∑

k=1

{(

−M

2
log

1

σ2

)

+
1

2

(

y(k) − W (k)θ(k)
)2

}

=

K∑

k=1

{

−M

2
σ2 +

1

2

(

y(k) − W (k)θ(k)
)2

}
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Equate the above to zero, yields a closed form estimate for σ2 in (6.18) and the term that depends on σ2

for multi-task recovery is written by:

K∑

k=1

{

−1

2
Mσ2 +

1

2

(

y(k) − W (k)θ(k)
)2

}

= 0

K∑

k=1

{
1

2

(

−Mσ2 +
(

y(k) − W (k)θ(k)
)2

)}

= 0

K∑

k=1

{

−Mσ2 +
(

y(k) − W (k)θ(k)
)2

}

= 0

σ2 =

K∑

k=1

{
1

M

(

y(k) − W (k)θ(k)
)2

}

B.0.2 Derivative of λ

There are two terms that involve λ from this equation (6.19). Recall the objective function of λ as follow:

Obj(λ) =

K∑

k=1







Nν

2
log λ

︸ ︷︷ ︸

term1

− 1 + ν

2

N∑

i=1

log[(θ
(k)
i )2 + λ]

︸ ︷︷ ︸

term2







Then we solve the derivative for the first term of λ. Denote
√

λ=a, therefore λ = a2.

∂Objterm1(a
2)

∂a
=

K∑

k=1

{
Nν

2

∂ log a2

∂a

}

=

K∑

k=1

{
Nν

2

1

a2

∂a2

∂a

}

=

K∑

k=1

{
Nν

2

1

a2
2a

}

=

K∑

k=1

{
Nν

a

}

=

K∑

k=1

{
Nν√

λ

}

142



Now, solve the second term that consists of λ:

∂Objterm2(a
2)

∂a
=

K∑

k=1

{

−1 + ν

2

N∑

i=1

∂ log{θ2
i + a2}

∂a

}

=

K∑

k=1

{

−1 + ν

2

N∑

i=1

1

θ2
i + a2

2a

}

=

K∑

k=1

{

−1 + ν

2

N∑

i=1

2
√

λ

θ2
i + λ

}

=
K∑

k=1

{
N∑

i=1

− (1 + ν)
√

λ

θ2
i + λ

}

=
K∑

k=1

{

−
√

λ − ν
√

λ

θ2
i + λ

}

Finally sum up both terms, the derivative of
√

λ can be obtained as in (6.20):

∂Obj(λ)

∂
√

λ
=

K∑

k=1

{

Nν√
λ

N∑

i=1

−
√

λ − ν
√

λ

θ2
i + λ

}

=

K∑

k=1

{
N∑

i=1

ν(θ2
i + λ) + (

√
λ × (−

√
λ)) + (

√
λ ×−(ν

√
λ))

(θ2
i + λ)

√
λ

}

=

K∑

k=1

{
N∑

i=1

νθ2
i + νλ − λ − νλ

(θ2
i + λ)

√
λ

}

=

K∑

k=1

{
N∑

i=1

νθ2
i − λ

(θ2
i + λ)

√
λ

}

B.0.3 Derivative of ν

There are four terms that involve ν from this equation (6.21). Recall the objective function of ν as follow.

Obj(ν) =
∑K

k=1







N log Γ

(
1 + ν

2

)

︸ ︷︷ ︸

term1

−N log Γ
(ν

2

)

︸ ︷︷ ︸

term2

+
Nν

2
log λ

︸ ︷︷ ︸

term3

−1 + ν

2

N∑

i=1

log[(θ
(k)
i )2 + λ]

︸ ︷︷ ︸

term4






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Again, solve the first term that consists of ν. Denotes the
√

ν=b, therefore ν = b2.

∂Objterm1(b
2)

∂b
=

K∑

k=1






N

∂ log Γ
(

1+b2

2

)

∂b







=
K∑

k=1






Nψ

(
1 + b2

2

)

× ∂

(
1+b2

2

)

∂b







=

K∑

k=1

{

Nψ

(
1 + b2

2

)

× 2b

2

}

=

K∑

k=1

{

Nψ

(
1 + ν

2

)√
ν

}

Again, solve the derivative of the second term that consists of ν:

∂Objterm2(b
2)

∂b
=

K∑

k=1






−N

∂ log Γ
(

b2

2

)

∂b







=

K∑

k=1

{

−Nψ
b2

2

∂ b2

2

∂b

}

=

K∑

k=1

{

−Nψ
b2

2

2b

2

}

=

K∑

k=1

{

−Nψ
ν

2

√
ν
}

The derivative of the third term that consists of ν, yields:

∂Objterm3(b
2)

∂b
=

K∑

k=1

{

∂ Nb2

2 log λ

∂b

}

=

K∑

k=1

{
N2b

2
log λ

}

=

K∑

k=1

{
N
√

ν log λ
}
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Next, the derivative of the final term that consists of ν:

∂Objterm4(b
2)

∂b
=

K∑

k=1







∂
(

− 1+b2

2

∑N

i=1 log(θ2
i + λ)

)

∂b







=

K∑

k=1

{

−2b

2

N∑

i=1

log(θ2
i + λ)

}

=

K∑

k=1

{

−b

N∑

i=1

log(θ2
i + λ)

}

=
K∑

k=1

{

−√
ν

N∑

i=1

log(θ2
i + λ)

}

Finally, summing up all the terms, the derivative of
√

ν can be obtained as in (6.22):

∂Obj(ν)

∂
√

ν
=

K∑

k=1

{

Nψ

(
1 + ν

2

)√
ν − Nψ

ν

2

√
ν + N

√
ν log λ −√

ν

N∑

i=1

log(θ2
i + λ)

}

=
K∑

k=1

{(

Nψ

(
1 + ν

2

)

− Nψ
ν

2
+ N log λ −

N∑

i=1

log(θ2
i + λ)

)

√
ν

}
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