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Abstract 

The ecology of ponds is threatened by urbanisation and as cities expand pond habitats are 

disappearing at an alarming rate. Pond communities are structured by local (water quality, 

physical) and regional (land-use, connectivity) processes. Since ca1904 >80% of ponds in 

Birmingham, U.K., have been lost due to land-use intensification, resulting in an increasingly 

diffuse network. A survey of thirty urban ponds revealed high spatial and temporal 

variability in water quality, which frequently failed environmental standards. Most were 

eutrophic, although macrophyte-rich, well connected ponds supported macroinvertebrate 

assemblages of high conservation value. Statistically, local physical variables (e.g. shading) 

explained more variation, both in water quality and macroinvertebrate community 

composition than regional factors. Nonetheless, habitat availability within the wider 

landscape was important. Ecosystem functioning (leaf-litter breakdown) along a rural-urban 

gradient was confounded by habitat area, despite a decrease in functional redundancy. 

Ponds are identified that promote network connectivity and management of land-use 

within 100m may buffer against diffuse pollution with reductions in riparian shading 

required to improve growth conditions for oxygenating vegetation and to reduce nutrient 

levels. The results indicate that many urban ponds are threatened habitats that require active 

management to protect and restore water quality, biodiversity and ecosystem functioning. 

  



 

iii 

 

Acknowledgements 

I would like to thank the multitude of people who have provided me with support, advice, 

technical input or have lent a pair of hands for the many hours of labour behind this thesis - I 

could not have done this without you. 

First and foremost, thanks go to my family for providing consistent support, despite 

my changeable mood. Thanks to my supervisors Mark Ledger and Lesley Batty for their 

advice and editorial capacities, to Mel Bickerton and Richard Johnson of the Wolfson Labs, 

and to the students and volunteers that have given me invaluable assistance and allowed me 

to indulge in aspects of the study outside of the thesis scope; Lisa Anderson, Rachel Banks, 

Ifeyinwa Benyeogor, Danielle Cooper, Alison Fairbrass, Laura Gardner, James Hale, Nick 

Hale, Matthew Hewitt, Tom Matthews, Gareth Ridge, Vicky Thamia and Katherine Trigg. 

Finally, a big thank you to all the past and present members of Room 425 and the 4th 

floor who have invariably chipped in to field work, stats, GIS or simply to remind me that 

there is more to life than ponds!  

 

Many drops make a bucket, many buckets make a pond, many ponds make a lake, and 

many lakes make an ocean 

-Percy Ross 

 

 



 

iv 

Contents 

 Chapter 1: Introduction ...................................................................................................................... 2 

1.1. Key ecological processes ....................................................................................................................... 5 

1.1.1. Habitat loss .......................................................................................................................................... 5 

1.1.2. Disturbance regimes ........................................................................................................................... 5 

1.1.3. Metacommunity concepts .................................................................................................................. 6 

1.1.4. Ecosystem functioning ....................................................................................................................... 7 

1.1.5. Ecological resilience ............................................................................................................................ 7 

1.2. Thesis aim ................................................................................................................................................ 8 

1.3. Thesis outline .......................................................................................................................................... 8 

1.4. Study area .............................................................................................................................................. 10 

 Chapter 2: General methods ............................................................................................................ 13 

2.1. Site selection.......................................................................................................................................... 13 

2.1. Field sampling ...................................................................................................................................... 15 

2.2. Physico-chemical variables ................................................................................................................. 15 

2.2.1. In situ measurements ........................................................................................................................ 16 

2.2.2. Major ion analysis ............................................................................................................................. 16 

2.2.3. Suspended solids and chlorophyll ................................................................................................. 17 

2.2.4. Heavy metals ..................................................................................................................................... 18 

2.2.5. Physical characteristics ..................................................................................................................... 18 

2.3. Land use ................................................................................................................................................. 18 

2.4. Macroinvertebrate sampling and identification ............................................................................. 23 

 Chapter 3: A descriptive and historical overview of the Birmingham „pondscape‟ ................ 28 

3.1. Introduction ........................................................................................................................................... 28 

3.1.1. Objectives and hypotheses ............................................................................................................... 34 

3.2. Methods .................................................................................................................................................. 35 

3.3. Digitisation of the historical pondscape .......................................................................................... 35 



 

v 

3.3.1. Land-use correlates to pond density .............................................................................................. 36 

3.3.2. Connectivity analysis of the historical pondscape and identification of priority ponds ........ 37 

3.3.3. Potential habitat quality ................................................................................................................... 40 

3.4. Results .................................................................................................................................................... 43 

3.4.1. Characterisation of the historical pondscape ................................................................................ 43 

3.4.2. Land-use correlates to pond density .............................................................................................. 47 

3.4.3. Connectivity analysis of the historical pondscape ....................................................................... 51 

3.4.4. Identifying key habitats for connectivity ....................................................................................... 55 

3.5. Discussion .............................................................................................................................................. 63 

3.6. Conclusion ............................................................................................................................................. 66 

 Chapter 4: The water quality of ponds across an urban land-use gradient .............................. 69 

4.1. Introduction ........................................................................................................................................... 69 

4.1.1. Objectives and hypotheses ............................................................................................................... 76 

4.2. Methods .................................................................................................................................................. 77 

4.2.1. Study site selection............................................................................................................................ 77 

4.2.2. Field campaign .................................................................................................................................. 77 

4.2.3. Local factors ....................................................................................................................................... 77 

4.2.4. Regional factors ................................................................................................................................. 78 

4.2.5. Statistical analyses............................................................................................................................. 78 

4.3. Results .................................................................................................................................................... 84 

4.3.1. Performance of water quality against environmental guidelines .............................................. 84 

4.3.2. Spatial variation in water quality among ponds .......................................................................... 85 

4.3.3. Inter-seasonal water quality ............................................................................................................ 93 

4.3.4. Analysis of local physical and land-use upon water quality ...................................................... 95 

4.4. Discussion ............................................................................................................................................ 100 

4.4.1. Water quality in the ponds of Birmingham and the Black Country ........................................ 100 

4.4.2. Evaluation of the relevant spatial extent ..................................................................................... 104 

4.4.3. The influence of local physical factors and land-use on water quality.................................... 104 

4.5. Conclusion ........................................................................................................................................... 108 

 Chapter 5: Conservation value and determinants of macroinvertebrate community structure 

in urban ponds ................................................................................................................................. 111 

5.1. Introduction ......................................................................................................................................... 111 

5.1.1. Objectives and hypotheses ............................................................................................................. 115 

5.2. Methods ................................................................................................................................................ 116 



 

vi 

5.2.1. Study site selection.......................................................................................................................... 116 

5.2.2. Field campaign ................................................................................................................................ 116 

5.2.3. Local factors ..................................................................................................................................... 117 

5.2.4. Regional factors ............................................................................................................................... 118 

5.2.5. Statistical analyses........................................................................................................................... 119 

5.3. Results .................................................................................................................................................. 125 

5.3.1. Conservation value of urban ponds ............................................................................................. 125 

5.3.2. Spatial autocorrelation ................................................................................................................... 126 

5.3.3. Distinguishing urban pond macroinvertebrate assemblages and associated local and 

regional variables ............................................................................................................................................. 129 

5.3.4. Separating out the effects of local and spatial influences on the macroinvertebrate 

communities of urban ponds .......................................................................................................................... 137 

5.3.5. Predicting species richness within characteristic macroinvertebrate orders .......................... 139 

5.4. Discussion ............................................................................................................................................ 144 

5.4.1. The conservation value of urban ponds ....................................................................................... 144 

5.4.2. Factors determining macroinvertebrate community composition ........................................... 145 

5.4.3. Separating out the effects of local and spatial factors determining macroinvertebrate 

community composition .................................................................................................................................. 151 

5.5. Conclusion ........................................................................................................................................... 151 

 Chapter 6: Leaf litter breakdown as a measure of ecosystem function in ponds across an 

urban land-use gradient ................................................................................................................. 154 

6.1. Introduction ......................................................................................................................................... 154 

6.1.1. Research questions .......................................................................................................................... 156 

6.1. Methods ................................................................................................................................................ 157 

6.1.1. Study site selection.......................................................................................................................... 157 

6.1.2. Experimental outline ...................................................................................................................... 157 

6.1.3. Leaf decomposition ......................................................................................................................... 157 

6.1.4. Macroinvertebrates ......................................................................................................................... 160 

6.1.5. Water quality ................................................................................................................................... 160 

6.1.6. Local physical factors ..................................................................................................................... 160 

6.1.7. The urbanisation gradient .............................................................................................................. 161 

6.1.8. Statistical analyses........................................................................................................................... 161 

6.2. Results .................................................................................................................................................. 163 

6.2.1. Urbanisation and ecosystem functioning .................................................................................... 164 

6.2.2. The influence of macroinvertebrates on leaf breakdown rates ................................................. 164 

6.2.3. The influence of local environmental factors on leaf breakdown rates ................................... 174 



 

vii 

6.3. Discussion ............................................................................................................................................ 177 

6.4. Conclusion ........................................................................................................................................... 181 

 Chapter 7: Conclusions ................................................................................................................... 184 

7.1. Urban ponds are vulnerable systems.............................................................................................. 184 

7.2. Urban ponds as candidates for freshwater conservation in urban areas ................................. 188 

7.3. Research limitations........................................................................................................................... 189 

7.4. Suggestions for further research ...................................................................................................... 192 

 References ......................................................................................................................................... 196 

 

  



 

viii 

List of Figures 

Figure 1.3.1. Thesis research design and overview of the topics covered and their main 

linkages .................................................................................................................................................. 9 

Figure 2.1.1 Study area and selection of study ponds across Birmingham and the Black 

Country (BBC) a) BBC, it‟s districts and ponds (blue), b) The 30 selected pond site locations 

and the Owen et al. (2006) urban land-use classifications used to guide study pond selection

 ............................................................................................................................................................... 14 

Figure 2.3.1. Screenshots of each of the main GIS land-use data layers ..................................... 21 

Figure 3.1.1. Two metapopulation models invoked in graph theory as suggested by Urban et 

al. (2009; circles represent nodes (ponds) and the lines between nodes represent an exchange 

of individuals in a metapopulation. a) A digraph to represent source-sink dynamics after 

Pulliam (1988) where B nodes are net sources (births > deaths), hence larger nodes and node 

A a net sink (births < death) and therefore a smaller node. Arrows represent the direction of 

the net flow of individuals b) Spreading-of-risk (den Boer 1968) or long-distance rescue 

(Brown and Kodric-Brown 1977) where node A is vital for the maintenance of connectivity 

across the network ............................................................................................................................. 31 

Figure 3.3.1. An example of pond continuity throughout the study period and the historical 

maps utilised for the pond audit ...................................................................................................... 36 

Figure 3.4.1. Changes in surface area of ponds in Birmingham between ca1904 and 2009. .... 45 

Figure 3.4.2. Decline in total available pond habitat and pond numbers between ca1904 and 

2009 within Birmingham ................................................................................................................... 45 

Figure 3.4.3. The relationship between pond surface area and vegetation >0m (i.e. non-

floating) coverage in a) ponds present throughout the study, from ca1904 – 2009 b) pond 

present since ca1904 ........................................................................................................................... 46 

Figure 3.4.4. Number of ponds per km2 within each period a) ca1904 (County series) b) 

ca1962 (National Grid series) c) 2009 (Contemporary) ................................................................. 49 

Figure 3.4.5. Change in pond numbers per km2 between periods a) ca1904 to ca1962 b) ca1962 

to 2009 c) ca1904 to 2009 .................................................................................................................... 50 

Figure 3.4.6. Fitted smoothing functions from generalised additive models (GAMs), showing 

the relationship between land-use coverage and pond density (ponds /km2) within 

Birmingham and the Black Country GAMs fitted to a negative-binomial distribution, km 

squares with 0 coverage of land-use were omitted from the analyses. Arable Arable land, 

Wood Woodland (coniferous and broadleaved), Improved Improved grassland, Suburban 

Suburban land, Urban Urban land, PopDens Average population density, ImpSurf 

file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492448
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492448
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492451
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492451
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492451
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492451
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492451
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492451
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492451
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492451


 

ix 

Impermeable surface. Shaded areas represent ±1 SE, y axis, e.g. s(x, 2.17) = smoothing 

estimator with 2.17 d.f. ...................................................................................................................... 52 

Figure 3.4.7. Minimum spanning trees of the changing Birmingham pond network, with 

nodes sized in proportion to their betweeness centrality. Larger nodes have higher centrality 

and highlight the pattern of flow across the landscape (after Bodin and Norberg 2007) a) 

ca1904 b) ca1962 c) 2009 ..................................................................................................................... 53 

Figure 3.4.8. Network percolation; the relative vulnerability of historical pond networks to 

decreasing distance thresholds (measured from pond centroids), as indicated by the impact 

upon the greatest (functionally) connected component (GCC). .................................................. 56 

Figure 3.4.9. Historical pond networks of Birmingham. Ponds are shown as circles 

proportional to their BCIIC value and are increasingly dark according to their dIICconnector 

(dIICc) value. Red lines represent links (functional connections) between nodes that are 

below a distance threshold for aquatic insects with shorter (500m) and longer (1500m) 

dispersal traits. .................................................................................................................................... 57 

Figure 3.4.10.  The contemporary pond network of Birmingham.  Ponds are shown as circles 

proportional to their BCIIC (BCIIC) value and are increasingly dark according to their 

dIICconnector (dIICc) value.  Each graph is thresholded at different dispersal distances.  Red 

lines represent links (functional connections) between nodes that are below the distance 

threshold a) 250m b) 500m c) 1000m d) 1500m .............................................................................. 59 

Figure 3.4.11.  The contemporary pond network of Birmingham.  Ponds are shown as circles 

proportional to their BCIIC value and are increasingly dark according to their dIICconnector 

(dIIC) value.  Each graph is thresholded at different dispersal distances.  Red lines represent 

links (functional connections) between nodes that are below the distance threshold a) 2000m 

b) 2500m c) 5000m d) 10000m ........................................................................................................... 60 

Figure 4.3.1. Trophic State Index (TSI) derived from chlorophyll a analysis (Carlson 1977). 

The value indicated represents the approximate lower boundary for eutrophic conditions, 

after Carlson and Simpson (1996). ................................................................................................... 87 

Figure 4.3.2. Individual site values for water quality, June 2010 – February 2011 against 

environmental standard boundaries and thresholds (indicated by red dashed line(s), refer to 

Table 4.6 for sources). Sites are ranked left to right, highest to lowest values. Dark grey bars 

indicates sites failing >5 different standards .................................................................................. 88 

Figure 4.3.3. Principal components analysis (PCA) biplot for axes 1 and 2 showing spatial 

variation in water quality parameters and pond sites. Vectors are shown for significant 

parameters as per Table 4.8. .............................................................................................................. 92 

file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492462
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492462
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492462
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492462
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492462
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492463
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492463
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492463
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492463
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492463


 

x 

Figure 4.3.4. Principal components analysis (PCA) biplot for axes 3 and 4 showing spatial 

variation in water quality parameters and pond sites. Vectors are shown for significant 

parameters as per Table 4.8. .............................................................................................................. 92 

Figure 4.3.5. Proportion of sites where plant growth is limited by PO4 or NO3 using the 

Redfield (Redfield 1934) ratio 16 NO3 : 1 PO4 ................................................................................ 97 

Figure 4.3.6. Transitions in the fitness of models for explaining water quality variation. ...... 97 

Figure 4.3.7. RDA biplot of water quality constrained by land use at 100m only .................... 98 

Figure 4.3.8. RDA biplot of water quality constrained by local physical factors only ............. 98 

Figure 4.3.9. Mantel correlogram for water quality composition across 30 pond sites. Distance 

class refers to the geographical distance between sites (24 bins). Solid squares show 

autocorrelations significant at Bonferonni corrected level (none). ............................................. 99 

Figure 5.1.1. Conceptual framework for studies of community structure assembly and 

regulation adapted from Bohonak and Jenkins (2003)................................................................ 112 

Figure 5.2.1. Example calculation of area-proximity metric for a focal pond and neighbouring 

ponds within a 1km radius ............................................................................................................. 122 

Figure 5.2.2. Example result of least-cost paths and resistance landscape for a focal pond and 

neighbouring ponds within a 1km radius. Black lines indicate the least-cost paths (effective 

distance, ED) between any combinations of two ponds across the pond network ................ 122 

Figure 5.3.1.  Mantel correlogram for macroinvertebrate community composition across 30 

pond sites. Distance class refers to the geographical distance between sites (24 bins).  Solid 

squares show autocorrelations significant at Bonferroni corrected level (P = 0.05/5 – 0.01). 128 

Figure 5.3.2. Canonical correspondence analysis of macroinvertebrate taxa. ......................... 132 

Figure 5.3.3. Four types of urban pond distinguished by TWINSPAN ................................... 136 

Figure 5.3.4. a) Venn diagram displaying the partitioning of explained variance between local 

(water quality, local physical factors) and regional (land-use and connectivity) factors. 

Numbers represent the percentage of variance attributable to each variable set. b) 15 CCA 

analyses were performed and 27 subtraction equations to estimate the fractions a - o (see 

Appendix 17) c) The variance attributable to local and regional factors combined. .............. 138 

Figure 6.1.1  Example of leaf pack pair (without leaves), with brick weight attached and 

monofilament line ............................................................................................................................ 158 

Figure 6.1.2. Principal Components Analysis of 10 „urbanisation‟ indicators ......................... 162 

Figure 6.1.3. Pond groups along a gradient of urbanisation derived from axis 1 (PCA 1) of a 

principal components analysis of 10 „urbanisation indicators‟ within a 100m buffer ............ 162 

Figure 6.2.1 Total (ktotal), microbe only (kmicrobe), and macroinvertebrate only (kinvert), 

breakdown rate comparisons across the study sites (n = 59). .................................................... 166 

file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492473
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492473
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492476
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492476
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492476
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492480
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492480
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492483
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492483


 

xi 

Figure 6.2.2 Comparison of mean (+1 SE) breakdown rates per day in ponds along an urban 

land-use gradient a) total breakdown b) microbial breakdown c) macroinvertebrate only and 

d) the relative contribution to total breakdown made by microbial activity ........................... 167 

Figure 6.2.3. Comparison of mean (±1 SE) a) macroinvertebrate abundance, and b) density /g 

AFDMr and c) shredder abundance, and d) density /g AFDMr. Different letters indicate 

significant differences amongst land-use categories (post-hoc, Tukey-Kramer) ...................... 168 

Figure 6.2.4. Comparison of mean (±1 SE) shredder abundance (# individuals within leaf 

packs) for each urban land-use category (taxa occurring at 2 or more sites) .......................... 170 

Figure 6.2.5:  Redundancy analysis on functional group relative abundances against leaf 

breakdown rates. Circles represent ponds. .................................................................................. 171 

Figure 6.2.6:  Redundancy analysis on shredder species relative abundance against leaf 

breakdown rates (taxa occurring at 2 or more sites). Circles represent ponds........................ 171 

Figure 6.2.7. Relationship between leaf decomposition rates and a & c) shredder abundance 

(# individuals in leaf packs), b & d) shredder density (/g AFDMr) in individual leaf packs (n 

= 59) .................................................................................................................................................... 172 

Figure 6.2.8. Relationship between leaf decomposition rates (± 1SE) and a & c) shredder taxa 

richness, b & d) taxa richness in individual leaf packs (n = 59) ................................................. 173 

Figure 6.2.9. Redundancy analysis on local physical variables against leaf breakdown rates. 

Circles represent ponds. .................................................................................................................. 175 

Figure 6.2.10. Redundancy analysis on water quality variables against leaf breakdown rates. 

Circles represent ponds. .................................................................................................................. 176 

Figure 7.1.1. Potential vulnerability across a pond network a) A hypothetical pond network 

displaying relative ecological flux between ponds and the degree of shading caused by 

riparian vegetation (black border); smaller ponds have typically higher shading, b) the main 

observed impacts from tree shading, sunlight exclusion and leaf litter accumulation upon the 

main physico-chemical parameters, c) the main observed impacts from lower tree shading, 

greater euphotic depth and vegetation growth and consequent changes in the main physico-

chemical parameters ........................................................................................................................ 185 

 

 

 

  

file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492484
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492484
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492484
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492493
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492493
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492493
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492493
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492493
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492493
file:///Q:/Phd/Thesis/Corrected/Thesis.docx%23_Toc356492493


 

xii 

List of Tables 

Table 2.1. Distribution of ponds within Urban Land Classes (Owen et al. 2006) and overall 

coverage of classes within Birmingham and the Black Country ................................................. 15 

Table 2.2. Sampling periods and dates of sampling ...................................................................... 16 

Table 2.3. Summary of GIS derived measures. Measures in bold were used as an 

„urbanisation indicator‟ for assessment of urbanisation ............................................................... 24 

Table 2.4. Variance explained by, and variables correlated to axes 1 and 2 of a principal 

coordinates analysis (PCA) of 10 „urbanisation indicators‟ at different buffer distances 

(Pearson‟s correlation, r ≥ 0.30, unless stated in parenthesis). ..................................................... 25 

Table 3.1. Estimated pond loss within U.K. regions ...................................................................... 29 

Table 3.2. Definition of graph (or network) theory terms and metrics used here and 

associated references .......................................................................................................................... 41 

Table 3.3. Summary of dispersal abilities of some lentic macroinvertebrates ........................... 42 

Table 3.4. Declines in pond loss and pond density and changes in average pond surface area 

and total pond habitat availability within Birmingham ............................................................... 44 

Table 3.5. Changes in mean pond surface area and total habitat of persistent ponds i.e. 

present throughout the study period (n = 171) .............................................................................. 44 

Table 3.6. Pond origins (n=334) ........................................................................................................ 48 

Table 3.7. Land-use associated with ponds during each period.................................................. 48 

Table 3.8. Median (min and max) of predictor variables and results of generalised additive 

models (GAMs) describing pond density in terms of land-use and population density ........ 51 

Table 3.9. Minimum spanning tree network summaries (measured from pond centroids) ... 56 

Table 3.10. Thresholded network summaries ................................................................................ 56 

Table 3.11. Overall thresholded network summaries and priority ponds for the maintenance 

of connectivity and ecological flow across the Birmingham pond network .............................. 61 

Table 3.12. Habitat characteristic summary of priority ponds sorted by surface area ............. 62 

Table 4.1: Diffuse pollutants, sources, pathways and associated land-use in the urban 

landscape ............................................................................................................................................. 72 

Table 4.2. Adverse effects on freshwater ecosystems caused by eutrophication ...................... 73 

Table 4.3. Sampling periods and dates of sampling ...................................................................... 79 

Table 4.4. Brief summary of land-use types and their data sources calculated at 13 spatial 

extents (25m – 1,000m) to explain variance in water quality (also see Section 2.3). ................. 79 

Table 4.5. Interpretations of the Trophic State Index for lakes (TSI, Carlson 1977) and 

potential implications for aquatic biology, after Carlson and Simpson (1996). ........................ 82 



 

xiii 

Table 4.6: Environmental standards adopted from available freshwater guidance and 

legislation ............................................................................................................................................ 83 

Table 4.7. Summary of water quality parameters across the study sites (n=30). Mean values 

for each year and for the study duration, minimum and maximum given in parenthesis. .... 87 

Table 4.8. Water quality variables significantly correlated to at least one of the first four PCA 

axes (Pearson‟s correlation coefficient) ........................................................................................... 91 

Table 4.9. Water quality variables significantly correlated to at least one of the two significant 

RDA axes (Pearson‟s correlation coefficient) using land-use at 100m ........................................ 99 

Table 4.10. Water quality variables significantly correlated to at least one of the two RDA 

axes (Pearson‟s correlation coefficient) using local physical factors ........................................... 99 

Table 4.11. Comparison of average (minimum and maximum) values for water quality 

variables to 3 similar pond surveys ............................................................................................... 101 

Table 5.1. Sampling periods and dates of sampling .................................................................... 117 

Table 5.2. Summary of connectivity metrics ................................................................................. 121 

Table 5.3. Distribution of taxa between major taxonomic orders (spring and summer pooled 

presence/absence data) and diversity scores ............................................................................... 127 

Table 5.4. Rare and notable species found during the study ..................................................... 128 

Table 5.5. Average (minimum and maximum) values of environmental variables that were 

significantly different between pond types (ANOVA, post-hoc Tukey-Kramer P < 0.05). ..... 133 

Table 5.6. Mean relative abundance of core taxa (those >1% of total macroinvertebrate 

abundance) occurring within each pond type. Values in bold represent top three most 

common taxa within pond type ..................................................................................................... 134 

Table 5.7. Unique taxa to each pond type i.e. those exclusive to each pond. Number of sites at 

which the taxon is present is given in parenthesis. ..................................................................... 135 

Table 5.8. The four most parsimonious models predicting the relationship for species 

richness (response variable) for five macroinvertebrate orders and taxa richness from within 

each of the local factor (water quality, local physical) and regional factor (land-use, 

connectivity) datasets ...................................................................................................................... 143 

Table 5.9. Most relevant spatial extents for land-use and connectivity metrics for each of the 

macroinvertebrate groups studied as well as general dispersal traits ..................................... 150 

Table 6.1. Sampling periods and dates of sampling .................................................................... 158 

Table 6.2. Differences in land-use composition (proportional coverage) between 4 groups of 

ponds along a gradient of urbanisation within a 100m buffer. Bold type indicates an 

„urbanisation indicator‟ used to formulate the urbanisation gradient. Lettering denotes 

significant differences between groups (ANOVA post-hoc Tukey Kramer, P < 0.05) ............. 166 



 

xiv 

Table 6.3. Presence or absence of non-native species within land-use categories. Percentage of 

sites within each category is given in parenthesis. ...................................................................... 169 

Table 6.4. Mean (min and max) values of local physical variables. Bold denotes variables for 

which significant differences were found between the groups, lettering denotes between 

which groups the differences occur (ANOVA, post-hoc Tukey-Kramer, P < 0.05) ................. 175 

Table 6.5. Mean (min and max) values of water quality variables. Bold denotes variables for 

which significant differences were found between the groups, lettering denotes between 

which groups the differences occur (ANOVA, post-hoc Tukey-Kramer, P < 0.05) ................. 176 

Table 6.6. Breakdown rates (k) for leaf species of the family Fagaceae sourced from the 

scientific literature compared to this study .................................................................................. 180 

 

 

 

 

 

 

 

 

 

 

  



 

xv 

List of Appendices 

 Appendix 1. Priority pond criteria after BRIG 2008 .................................................................... 232 

 Appendix 2. Site summaries .......................................................................................................... 233 

 Appendix 3. Water quality limits of detection ............................................................................ 244 

 Appendix 4. The effect of filter size upon trace metal concentrations ..................................... 245 

 Appendix 5. Publication of historical maps ................................................................................ 246 

 Appendix 6. The effect of retaining larger connected ponds relative to smaller ponds ....... 247 

 Appendix 7. Identifying priority pond sites for connectivity in the Birmingham pondscape

 ............................................................................................................................................................ 249 

 Appendix 8. The potential for garden ponds to reconnect the „pondscape‟ following pond 

loss ..................................................................................................................................................... 253 

 Appendix 9. Water quality summary table for all study sites and overall study (8 samples 

per site unless otherwise stated, average ± 1SD) ........................................................................ 255 

 Appendix 10. Temporal variation of In situ measurements ..................................................... 256 

 Appendix 11. Temporal variation of major anion concentrations ........................................... 257 

 Appendix 12. Temporal variation of major cation concentrations ........................................... 258 

 Appendix 13. Temporal variation of trace metal concentrations (for samples >LOD) ......... 259 

 Appendix 14. Temporal variation of for chlorophyll a and suspended solids ....................... 260 

 Appendix 15. Pooled macrophyte species list from sampling periods, 20th May – 11th June /  

2nd August – 14th August 2009. ................................................................................................... 261 

 Appendix 16. Creation of a resistance landscape ....................................................................... 263 

 Appendix 16. JNCC threat category definitions and criteria, after Chadd and Extence (2004)

 ............................................................................................................................................................ 269 



 

xvi 

 Appendix 17. Formulas for calculation of explained variance fraction (varpart procedure 

Oksanen et al. 2012) ........................................................................................................................ 271 

 Appendix 18. Selection probabilities of explanatory variables for macroinvertebrate orders 

within local and regional factors sets ........................................................................................... 273 

 Appendix 19. Pooled macroinvertebrate species list from sampling periods, 20th May – 11th 

June /  2nd August – 14th August 2009. ...................................................................................... 275 

 Appendix 20. Two Way Indicator Species (TWINSPAN) dendrogram, indicator taxa and 

urban pond types. ........................................................................................................................... 284 

 Appendix 21. Mean (min and max) values of local (local physical and water quality) 

variables from 20th May -11th June and 3rd – 14th August 2009 sampling periods. ........... 285 

 Appendix 22. Comparison of the performance of the area informed, Euclidean (area-

proximity, AP) and effective distance metrics (AC) for predicting macroinvertebrate richness 

at 2km distance ................................................................................................................................ 286 

 Appendix 23. Composition of mature vegetation (>3m) within 10m of study pond margin

 ............................................................................................................................................................ 287 

 Appendix 24. Summary of taxon richness and abundance with functional feeding group, 

after Tachet et al. (2002) .................................................................................................................. 288 

 Appendix 25. Intercorrelates with pond surface area (Pearson‟s correlation) ....................... 290 

 
 

 

 

 



 

1 

 

 

 

 

 

 

 

 

 

 

 

1 
Introduction 



 
 

2 

Chapter 1: Introduction 

Urbanisation is a global anthropogenic phenomenon that dramatically alters the landscape 

(Grimm et al. 2008), generating impermeable surfaces and artificial structures (McDonnell 

and Hahs 2008) that result in habitat loss, fragmentation and disturbance (Wilby and Perry 

2006). Over half of the world‟s population now lives in urban areas as does 79.6% of the 

United Kingdom‟s population; numbers that by 2050 are predicted to rise to 67.2% and to 

85.9% respectively (UN 2012). Urbanisation results in air, water, noise and light pollution 

(Haughton and Hunter 1994) and an increased presence and persistence of non-native 

species (McKinney 2006). Land development during urban growth is typically long-lasting 

and intensifies over time (Scher and Thiery 2005; McKinney 2006), which has considerable 

implications for the ecology of a city (Dow 2000). Consequently, there is an urgent need to 

improve our understanding of the urbanisation process and its implications for biodiversity 

(McDonnell and Pickett 1990; McDonnell and Hahs 2008).  

To date, much urban ecological research has centred on terrestrial rather than aquatic 

systems, examining the value of parks and public spaces for mammals (e.g. Croci et al. 2008), 

birds (e.g. Savard et al. 2000; Sandstrom et al. 2006b) and bees, with particular regard to 

ecosystem services (e.g. Bates et al. 2011; Pellissier et al. 2012). Frequently the result is 

localised increases (e.g. Angold et al. 2006; Bates et al. 2011; Kowarik 2011) but overall 

declines in diversity, which become more pronounced towards the urban core (McKinney 

2002). However, the impact of moderate, suburban land-use is varied, with a number of 

researchers noting increases in diversity (Blair and Launer 1997; Leveau and Leveau 2005; 

Croci et al. 2008) whilst some indicate decreases (e.g. Sandstrom et al. 2006b; Hornung et al. 

2007). Increases in diversity have been explained by the intermediate disturbance hypothesis 

(Cornell and Lawton 1992), whereby low levels of urbanisation increase habitat 

heterogeneity and food resources (Blair and Launer 1997). Moreover, the number of non-

native species increases with urbanisation due to anthropogenic introductions, which can 

result in high local diversity (at the city-scale) but increasingly homogenous communities 

between cities (McKinney 2006).  
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Due to their position in the landscape, aquatic systems are more vulnerable to the 

impact of urban land-use than terrestrial systems as they can receive large loads of 

contaminants and pollution in run-off (Dudgeon et al. 2006) and may receive water from far 

beyond their wetted perimeter (Boothby and Hull 1997). Urban catchments are characterised 

by an increased coverage of impermeable surfaces such as roads, pavements and buildings 

(Walsh et al. 2001; Imberger et al. 2008; Brabec 2009), whilst the buffering capacity provided 

by vegetation and exposed soils is reduced (Hahs and McDonnell 2006). Consequently, 

catchment urbanisation creates flashier hydrographs, increases nutrient loads and other 

contaminants, and alters channel morphology, stability and the composition of flora and 

fauna (Paul and Meyer 2001; Roy et al. 2003; Allan 2004) i.e. the „urban stream syndrome‟ 

(Walsh et al. 2003), which may be exacerbated by the infilling of other natural sink holes by 

development and/or natural processes (Williams et al. 1998b; Gledhill et al. 2008). Urban 

aquatic systems typically have lower abundance of native species, are dominated by tolerant 

taxa (Roy et al. 2003; Mancini et al. 2005) and non-native species are more prevalent (Ourso 

and Frenzel 2003). Whilst research on the impact of urbanisation on streams has advanced 

markedly over the past twenty years, research on ponds is lacking (but see Gledhill et al. 

2008; Vermonden et al. 2009; Akasaka et al. 2010; Vermonden et al. 2010).  

A pond is defined as a natural or artificial body of water that is between 1m2 and 2ha in 

surface area that contains water for at least four months of the year (Biggs et al. 2005). They 

are ubiquitous landscape features (Downing et al. 2006), although their numbers have been 

in decline across the U.K. (Boothby 1999; Wood et al. 2003; Biggs et al. 2005), though recent 

evidence suggests a slight reversal in recent years (Williams et al. 2010; Jeffries 2012). There is 

global consensus that rural ponds can contribute a disproportionally large number of species 

to the regional pool relative to rivers, streams and lakes (Williams et al. 2004; Davies et al. 

2008a; Della Bella et al. 2008; Markwell and Fellows 2008). This has been attributed to their 

relatively small catchments (Davies et al. 2008b), which lead to physico-chemical conditions 

that reflect local variations in land-use, habitat complexity, hydrology and climate (Biggs et 

al. 2005). Urban ponds may contribute significantly to regional biodiversity (Scher and 

Thiery 2005; Gledhill et al. 2008; Le Viol et al. 2009; Vermonden et al. 2009), but research is 

limited and these systems are threatened by contaminant inputs, including nutrients (Birch 

and McCaskie 1999; Stoianov et al. 2000; Peretyatko et al. 2009), heavy metals (Stolyar et al. 

2008) and salt compounds (Marsalek 2003) (see Tixier et al. 2011 for a review). Furthermore, 

at the regional scale, habitat destruction leading to the loss of ponds (Wood et al. 2003; 

Huang et al. 2012; Jeffries 2012) may isolate populations in the remaining pond network, with 

largely unknown consequences for these increasingly disconnected communities. Although 
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the proximity of ponds to neighbouring habitats is known to be important for local 

biodiversity (Brönmark 1985; Gledhill et al. 2008; Zealand and Jeffries 2009), the relative 

importance of regional factors (dispersal, external forcing), compared to local (abiotic and 

biotic) is not well established. 

The composition of a local biological community reflects the interplay between local 

and regional processes. The local and regional aspect refers to the spatial scales at which 

ecological and biogeographic processes dominate (Cornell and Lawton 1992). Predation (top-

down and bottom-up effects), disease, competitive exclusion and stochastic disturbances are 

examples of local processes, which for a long time were thought to be the main determinants 

of local diversity (Ricklefs 1987; Holt 1993). The extent to which regional processes can 

influence a local community is dependent upon the dispersal of species from neighbouring 

habitat patches, the configuration of the habitat network and obstacles, or opportunities, for 

dispersal across the terrestrial matrix (Marsh and Trenham 2001; Jeffries 2005; Fahrig 2007). 

Studying the relative influence of local and regional processes is important for predicting the 

future effects, such as habitat loss, upon species and biological communities of interest 

(Lindenmayer and Possingham 1996). 

Urban-rural gradient studies provide a framework within which the relative effects of 

local and regional processes upon biological communities in an urban landscape can be 

assessed. Such studies were recognised in the early 1990s as being an unexploited 

opportunity to investigate ecological topics that not only have relevance in and urban 

setting, but also to the wider environment (McDonnell and Pickett 1990).  However, whilst 

the concept has received much attention, little consensus exists for determining how 

urbanisation should be quantified, and the advent of geographical information systems (GIS) 

has increased the number of possible measures (Hahs and McDonnell 2006). Hahs and 

McDonnell (2006) performed a principal components analysis (PCA) of 17 commonly used 

urbanisation measures in order to identify those that captured most of the observed patterns 

of urbanisation. The 17 measures included basic physical variables such as the proportional 

coverage of impermeable surface (e.g. Sponseller and Benfield 2001; Ourso and Frenzel 

2003), landscape metrics such as the proportional cover of urban land-use (e.g. Borgmann 

and Rodewald 2004) and demographic indicators such as household density (e.g. Tratalos et 

al. 2007). 

The Water Framework Directive (WFD, European Commission 2000) requires that all 

surface waters attain an ecological „good‟ status by 2015. Thus, the imminent implementation 

of the WFD presents clear imperative to improve the quality of pond habitats. However, 

despite their apparent importance for biodiversity at regional scales, ponds are generally 
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excluded from WFD research programmes, such as STAR, AQEM and ECOFRAME 

(Cereghino et al. 2008) and are functionally different to lakes which have received more 

attention (Oertli et al. 2002; Fairchild et al. 2005; Sondergaard et al. 2005). In addition, 

monitoring and assessment of water bodies < 50ha under the WFD will not occur under, 

with the exception of those > 1ha that are located within protected areas, of which there are 

around 250 sites within England and Wales (Williams et al. 2010). Nonetheless, ponds can be 

ascribed statutory protection if they meet criteria that could qualify them as a Priority 

Habitats (JNCC 2008) under the Biodiversity Action Plan (U.K. BAP), such as supporting Red 

Data Book species or exceptional assemblages of key biotic groups (Appendix 1).  Therefore, 

in order to conserve pond habitats research is needed to establish the main drivers of 

community dynamics at local to regional scales (Cereghino et al. 2008). This is particularly 

important in the face of climate change, which is likely to increase pressure upon aquatic 

systems (Brönmark and Hansson 2002; Dudgeon et al. 2006) that may need to accommodate 

more frequent dispersal events (Jeffries 2004). 

1.1. Key ecological processes 

1.1.1.  Habitat loss  

Pond numbers are in decline across the U.K. (Biggs et al. 2005), Europe (Indermuehle et al. 

2008) and globally (Huang et al. 2012). Habitat loss, whether by natural or anthropogenic 

processes, is considered the greatest threat to global biodiversity (Brooks et al. 2002; 

Millenium Ecosystem Assessment 2005; Hanski 2011). Habitat loss is often used 

interchangeably with habitat fragmentation, although an important distinction is that the 

latter refers to the break-up of a single habitat patch into multiple components (Fahrig 1997). 

Where habitat is lost or detrimentally impacted, species populations become extinct via 

demographic, environmental stochastic (Fahrig 1997) and/or deterministic events (Marsh 

and Trenham 2001). Species response to habitat loss may occur within or between 

generations; the phenomenon whereby time lags in ecological responses to habitat loss mask 

the full extent of its impact on biodiversity has been dubbed „extinction debt‟ by Tilman et al. 

(1994). In the longer term, habitat loss has profound genetic and evolutionary consequences 

for small populations, for example, via inbreeding (Cushman 2006). 

1.1.2.  Disturbance regimes 

The structure of ecological communities is shaped by the frequency, magnitude and duration 

of natural disturbances (Rebele 1994; Hooper et al. 2005; McDonnell and Hahs 2008). Perhaps 

the most well known disturbance model, the intermediate disturbance hypothesis (Connell 
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1978) suggests that at moderate levels of disturbance, diversity is maximised because both 

competitive/late-successional (k-selected) and opportunistic/early-successional (r-selected) 

species can co-exist. Lower levels of disturbance, therefore, favour competitive species 

offering few vacant niches for opportunistic, whereas high levels of disturbance, favour early 

successional species. At high levels of disturbance ecosystems are suggested to be more 

vulnerable to invasion from non-native species which are able to exploit the niches left open 

by removed natives (D'Antonio and Meyerson 2002). Anthropogenic activities may alter 

natural disturbance regimes, recasting community composition to the benefit of some species 

and detriment of others. For example, channelisation of urban rivers and increased runoff 

from impermeable surfaces increases the frequency and magnitude of high flow events, also 

increasing nutrient and sediment loads (Paul and Meyer 2001; Allan 2004). In ponds, regular 

disturbance may also be caused by management practices such as dredging or vegetation 

removal for the purposes of fisheries management (Biggs et al. 2005). 

1.1.3. Metacommunity concepts 

Ponds are discrete aquatic habitats within a terrestrial matrix, such that dispersal between 

them is an important process for the organisms they support (Jeffries 1994; Nurnberger 1996; 

Briers and Warren 2000). Many ponds are thought to form metapopulations (Levins 1969; 

Hanski and Gilpin 1991), whereby species exist in a number of spatially-separated 

populations that are linked by dispersal (Bohonak and Jenkins 2003). Multiple 

metapopulation-forming species that inhabit the same habitat patch form a metacommunity 

(Wilson 1992).  

The following four approaches to metacommunities have been proposed by Leibold et 

al. (2004), for which ponds provide an excellent opportunity for study (De Meester et al. 

2005). First, the patch dynamic perspective views patches as homogenous, and colonisation 

is balanced by interspecific interactions (e.g. competition and colonisation abilities) (Leibold 

et al. 2004). The species-sorting hypothesis (Leibold et al. 2004) suggests that local 

communities differ in response to resource gradients, where dispersal facilitates the tracking 

of species to changing local conditions and subsequent opening or closing of niches to which 

they are adapted. By contrast, neutral theory (Hubbell 2001) suggests that local communities 

are influenced by variation in dispersal traits amongst species that are ecologically 

equivalent i.e. they have the same competitive ability and fitness. Finally, the mass-effect 

concept (Shmida and Wilson 1985) considers patches to be heterogeneous, but for 

colonisation rates to be sufficiently high so as to diminish interspecific interactions. 

Consequently, by establishing the relative influence of local and regional factors it is possible 

to indicate whether species-sorting mechanisms or, should dispersal limitation be evident, 
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neutral theory concepts are more influential upon urban pond communities (Heino and 

Mykra 2008). 

1.1.4. Ecosystem functioning 

Urban ponds provide a novel system in which to assess ecosystem functioning. Urbanisation 

can decrease biodiversity in aquatic systems (Paul and Meyer 2001; Roy et al. 2003). 

Numerous studies have suggested that biodiversity loss can impair ecosystem functioning 

(Naeem and Li 1997; Tilman et al. 1997) and are founded on the premise that different species 

in a community fulfil functional roles that are important for the transformation of energy and 

matter cycling (Lawton 1994; Ghilarov 2000). An ecosystem high in functional redundancy 

contains several species that perform similar functional roles and may therefore be 

substitutable with little impact upon ecosystem processes (Lawton and Brown 1993). 

Consequently, high functional redundancy relates to high ecosystem reliability (Naeem and 

Li 1997), which improves the likelihood that a system will provide a consistently high level 

of performance (Naeem 1998). The extent to which the loss of species will impact upon 

ecosystem functioning, however, depends upon the ecosystem type, as well as the species 

abundance, functional role, contribution to functional processes and functional redundancy 

in the system (Hooper et al. 2005). It is not known whether urbanisation affects the functional 

resilience or ecosystem functioning of urban ponds.  

1.1.5.  Ecological resilience 

Ecological resilience relates to the capacity of an ecosystem to recover from deleterious 

impacts to ecosystem functioning and maintain stability before shifting to an alternative 

stable state (Holling 1973). The concept of functional redundancy is one such example of 

ecological resilience whereby functional processes may be maintained despite species loss 

(e.g. Hladyz et al. 2011), although this is dependent upon the number of species that are 

substitutable within each functional group (Walker 1995). 

Spatial resilience refers to the ability of connected ecosystems to persist on a regional 

level (Nystrom and Folke 2001). Improved connectivity between habitat patches, such as 

ponds, may improve population persistence by providing a larger, more abundant species 

pool from which an impacted habitat may source re-colonising individuals (Minor and 

Urban 2008) and in which genetic information can be exchanged (Bodin and Norberg 2007). 

Furthermore, increased heterogeneity of connected habitats has been argued to increase 

spatial aspects of resilience (Folke et al. 2004). Conversely, greater connectivity can facilitate 

the spread of some disturbances e.g. invasive species (Cumming 2002) or predators (Scheffer 

et al. 2006). New methodologies based around network (or graph) theory have been 
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proposed for assessing the spatial resilience of fragmented habitats (Bodin and Norberg 

2007; Urban et al. 2009; Saura et al. 2011) and could prove a useful tool for the maintenance of 

spatial resilience in pond networks. 

1.2.  Thesis aim 

The aim of this research is to assess the conservation value of urban ponds and identify the 

local and regional factors that control their biodiversity and ecosystem functioning such that 

future threats to urban pond networks from anthropogenic disturbances can be minimised. 

This aim is met through four objectives which evaluate local and regional processes at 

several different scales: 

 

 To assess how habitat loss and gain has impacted upon the spatial resilience of the 

pond network and the potential implications this may have for species that persist in 

metapopulations 

 To investigate the relative influence of local and regional factors upon water quality 

and its compliance with environmental guidelines 

 To investigate the relative influence of local and regional factors upon the 

macroinvertebrate community and its conservation value 

 To investigate the influence of urbanisation on ecosystem functioning and functional 

redundancy 

1.3. Thesis outline 

Chapter two details methods that apply to several chapters of this thesis and is included to 

avoid unnecessary repetition of methods in subsequent chapters. Importantly, chapter two 

describes the selection of 30 study ponds selected to span an urbanisation gradient that is 

referred to throughout the thesis. The subsequent five chapters interact within an analytical 

framework designed to meet the thesis aims (Figure 1.3.1).  

Chapter three explores how the contemporary (2009) Birmingham pond network has varied 

between three time periods, ca1904, ca1962 and 2009   in order to facilitate an in depth 

analysis of pond habitat gain and loss. The chapter shows how changes in land-use affected 

pond densities over time, revealing both significant habitat loss since the turn of the 20th 

century, and surprising changes in the spatial configuration of the remaining pond network. 

The impact of changing pond density is contextualised using a network theory approach to 

explore the potential for insect dispersal and pond connectivity across the Birmingham 

conurbation. Analysis of the impact from past land-use change to pond densities, 
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Figure 1.3.1. Thesis research design and overview of the topics covered and their main 
linkages 
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culminating in the contemporary pond network provides context for chapter four and spatial 

data which is incorporated into chapter five. 

Chapter four investigates the trophic status and spatial and temporal variation in 

water quality across the urban ponds. Water quality is assessed for compliance with 

freshwater standards that are gathered from the Environment Agency chemical standards 

database (EA 2012). Urban ponds often have artificial catchments due to the nature of the 

surrounding landscape and here I identify a spatial extent within which ponds are most 

sensitive to changes in land-use. This is achieved by a sequence of ordinations of land-use 

attributes derived from a GIS at consecutive spatial extents, with the effect of local physical 

factors partialled-out.   

In chapter five, macroinvertebrates are used as biological indicators of conservation 

value and environmental stress. The relative impacts of local and regional processes upon 

macroinvertebrate assemblages, which are informed by the work undertaken in chapters 

three and four, are evaluated in order to assess for the most pressing threats to biodiversity 

within urban ponds. Chapter five continues to consider differing controls upon taxa richness 

within five major macroinvertebrate orders that are characteristic of the pond environment. 

In doing so, the relevant landscape scale to taxa with contrasting dispersal traits is revealed. 

In chapter six, ponds are classified into four groups that span the urbanisation 

gradient. Moving beyond structural indices of ecological integrity i.e. chapter five, a leaf 

decomposition experiment was used to assess for the impact of urbanisation upon ecosystem 

functioning. Important local (water quality, local physical and macroinvertebrate species) 

variables are identified using ordination and revealed confounding factors that masked 

trends in ecosystem functioning across the gradient. Furthermore, chapter six explores the 

diversity and ecosystem function relationship in order to assess the appropriateness of 

conservation for the improvement of biodiversity and a consideration of functional 

redundancy indicates potential risks to ecosystem resilience and stability.  

Chapter seven summarises the research conclusions and uses the key findings to 

suggest strategies that may be employed by urban pond and landscape managers to improve 

the biodiversity, ecological resilience and conservation value of urban ponds in the future to 

the benefit of wildlife and people.   

1.4. Study area 

Birmingham and the Black Country (BBC) is an informal term for an area of the West 

Midlands conurbation comprising of the cities of Birmingham and Wolverhampton and the 

metropolitan boroughs of Sandwell, Walsall and Dudley. In all, BBC covers 62.5 km2 of 
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which around 55% is residential, 19% is urban or industrial and 13% is improved grassland, 

a further 3% is classified as either coniferous or deciduous woodland (data derived from 

Land Cover Map 2007). By population size, Birmingham is the second largest city in the UK 

after London (ONS 2011). 

The underlying geology of BBC is broadly split into a western and eastern component. 

The west comprises of Lower and Middle Coal measures and the Etruria Marl, of 

Carboniferous age (~ 300 million years ago). There are also a few small but notable Silurian 

limestone outcrops. The eastern area is dominated by younger rocks from late Carboniferous 

formations to Sherwood Sandstone and Mercia Mudstone of the Triassic (~ 220 million years 

ago). 

Historically, Birmingham and the Black Country was one of the most intensely 

industrialised regions within the U.K. and is considered to be the birthplace of the industrial 

revolution. Whilst the Black Country was known for coal mines and coal coking operations 

and for the vast number of iron foundries and steel mills, Birmingham was the centre of 

commerce for the sale and trade of locally manufactured goods. As a consequence, air 

pollution was considerable (Chitham 2009).  Charles Dickens once described how the local 

factory chimneys  

 

‘...poured out their plague of smoke, obscured the light, and made foul the melancholy air’. 

- Charles Dickens 

 

However, industry in BBC declined rapidly during the latter half of the 21st century, 

particularly in Birmingham, and the modern day landscape is a reflection of land-use 

exploitation and comprises a complex land-use that includes brownfield, canals, remnant 

ancient woodland patches and parklands. In Birmingham, manufacturing industries have 

been replaced by tertiary industries such as shopping centres, bars and restaurants, whereas 

a considerable number of manufacturing industries persist on the periphery of urban centres 

in the Black Country. 
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Chapter 2: General methods 

2.1. Site selection 

Thirty ponds of contrasting surrounding land-use were selected from an estimated 1023 sites 

in Birmingham and the Black Country (BBC) (Figure 2.1.1). Ponds were drawn from a range 

of landscapes from rural villages to heavily urbanized city centres, characteristic of the West 

Midlands. In selecting the sites, the land-use categories of Owen et al. (2006) were used to 

guide site selection (Figure 2.1.1b). Owen et al. (2006) categorised each 1km2 of the West 

Midlands, which includes BBC, into eight urban land-use classes. This was achieved by 

analysing the proportional cover of 25 land-use attributes such as open land, urban, villages 

and motorways within each 1km2 using a principal components analysis (PCA) and cluster 

analysis. The resulting urban land classes were: villages/farms, suburban, light suburban, 

dense suburban, urban transport, urban, woodland/open land and light urban/open water.  

A field survey of 111 ponds was undertaken to assess access and water chemistry e.g. pH, 

conductivity (not shown here). Selected from the initial 111, the final 30 study ponds were 

stratified across the urban land classes (Table 2.1) and selected on the basis of good access, 

geographical spread and representation of the water quality gradient. All subsequent 

analyses used new, more highly resolved, land-use coverage data derived by the author. 

A GIS dataset of water bodies less than 2ha in surface area was derived from Ordnance 

Survey MasterMap (Ordnance Survey (GB) 2008), which was subsequently edited through a 

combination of expert knowledge made available through the Birmingham and Black 

Country Wildlife Trust, field visits (conducted between 18th February 2009 and 1st May 2009) 

and aerial imagery (Google Inc. 2009). Consequently, new ponds were added and infilled 

ponds removed. Similarly, the accuracy of pond outlines was also improved. The final 

dataset suggested a total of 1023 ponds within BBC, although this figure was unlikely to 

account for a number of temporary water bodies and garden ponds.  

Further site detail and photographs is displayed in Appendix 2.  
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Figure 2.1.1 Study area and selection of study ponds across Birmingham and the Black 
Country (BBC) a) BBC, it’s districts and ponds (blue), b) The 30 selected pond site 
locations and the Owen et al. (2006) urban land-use classifications used to guide study 
pond selection 
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Table 2.1. Distribution of ponds within Urban Land Classes (Owen et al. 2006) and overall 

coverage of classes within Birmingham and the Black Country 

Urban Land Class % Coverage of total 

BBC area 

Number of study 

ponds 

% of study ponds  

Village/ farm 11 6 20  

Suburban 28 11 37  

Light suburban 4 1 0.3  

Dense suburban 20 2 0.7 

Urban transport 10 4 13  

Urban 25 6 20  

Totals: 88 30 100 

* 1km2 classifications of woodland/open land and light urban/open water were too few to be 
incorporated into pond selection 

2.1. Field sampling 

Beginning in May 2009, samples were collected on a quarterly basis to represent seasonal 

differences in water quality, the last sample having been collected in February 2011 (Table 

2.2). Macroinvertebrate assemblages were sampled twice, in late May/ early June and 

August 2009 i.e. just over two months apart as recommended by Biggs et al. (1998). This 

strategy gives adequate representation of the community and allow for species with differing 

phenology to be captured (Cayrou and Cereghino 2004). Therefore, the chances of catching 

species in later instars or adult form are improved, whilst allowing for recovery between 

samples. 

The time taken for each sampling period was kept to a minimum to reduce within 

sample variance caused by changes in weather. Sampling of all 30 sites took up to 14 days 

where macroinvertebrate samples were collected alongside those for water quality, and up to 

four days where water sample collection was the sole objective. 

2.2. Physico-chemical variables 

Where practicable, a composite water sample was collected at each site from the pond 

margins near the inflow, outflow and at an approximately equidistant point between the 

two. In the absence of a clear inflow or outflow, samples were evenly spread around the 

pond perimeter. Contact with vegetation or the bottom substrate was carefully avoided 

during sampling, as was collection of surface debris. Once collected, samples were kept cool, 

filtered (GF/C, 1.2µm) and returned to the laboratory for determinations of major ions, trace 

metals,  suspended  solids  and  chlorophyll  abundance. Samples  were  store  in   two   50ml  



 

16 

 

uncontaminated vials, one for anion analysis and a second, acidified (2% nitric acid) for 

cation and heavy metals analysis. 

2.2.1. In situ measurements 

Dissolved oxygen (% saturation), electrical conductivity (µS/cm), temperature (oC) and pH 

were measured in situ using a YSI 556 handheld multi-probe meter, calibrated daily before 

use (YSI, Yellow Springs, OH, USA). Triplicate measurements were taken around each pond 

perimeter in the same manner as for water sample collection. 

2.2.2. Major ion analysis 

Anions determined using a Dionex ICS2000 Chromatography System (Dionex Corporation, 

Sunnyvale, AC, USA) were Cl (chloride), NO3 (nitrate) and SO4 (sulphate). Cations measured 

using a Dionex DX500 (Dionex Corporation, Sunnyvale, AC, USA) were Na (sodium), NH4 

(ammonium), K (potassium), Mg (magnesium) and Ca (calcium).  PO4 (phosphate) was 

measured using a HI-93713 Phosphate Photometer (Hanna Instruments, Bedfordshire, U.K.) 

and alkalinity (CaCO3) was determined by titration (to pH 4.5; HACH, Dusseldorf, 

Germany).   

Samples were kept refrigerated at 5oC until analysis. Following unsatisfactory results 

from the first two surveys (contemporary with macroinvertebrate sampling in 2009) the 

method of analysis for PO4 analysis was changed from ion chromatography to colour 

photometry to reduce the delay between sample collection and analysis. Alkalinity was not 

analysed during the first survey. Consequently, data used for alkalinity and PO4 are those 

recorded in the equivalent period(s) for the following hydrological year (2010) where they 

Table 2.2. Sampling periods and dates of sampling 

Season and hydrological year Sampling dates Sample type 

Spring 2009 20th May  – 11th June 2009 Ma, WQ 

Summer 2009 3rd August – 14th August 2009 Ma, WQ 

Autumn 2009 3rd November – 17th November 2009 Ma*, WQ 

Winter 2009 27th February – 3rd March 2010 WQ 

Spring 2010 9th June – 11th June 2010 WQ 

Summer 2010 18th August – 25th August 2010 WQ 

Autumn 2010 10th November – 13th November 2011 WQ 

Winter 2010 21st February – 23rd February 2011 WQ 

Ma = Macroinvertebrate sample collected, WQ = Water quality assessed 

* Macroinvertebrate sample collected, but not processed 
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were not permissible in 2009. PO4 and alkalinity were sebsequently measured within 24 

hours of sample collection. 

Calibration standards of 2.5, 5, 10, 25 and 100 mg/l were used for ion chromatography 

analyses. Minimum detection limits were calculated as three times the standard error of 

blank samples (deionised water) analysed concurrent with pond water samples collected 

from each sampling period (Appendix 3). 

2.2.3. Suspended solids and chlorophyll 

In order to analyse for suspended solids and chlorophyll a, b and c, sufficient volume of 

pond water was filtered such that suspended material was clearly visible on the filter paper 

(Whatman GF/C, 1.2µm pore size). Prior to use, the filter papers were dried at a temperature 

of 105oC to correct for weight attributable to moisture content and were consequently frozen 

after filtration (-20oC) until analysis. Upon analysis the filters were freeze dried to a constant 

mass and weighed to calculate suspended solids accordingly (Eq. 2.2.1). 

Where f1 is the oven dried mass of the filter paper prior to use and f2 is the freeze- dried mass 

of the filter after use. V is the volume of water filtered. 

For chlorophyll analysis, the freeze-dried filters were folded and macerated for 30 

seconds each in 2ml, 90% acetone. The solution was then consolidated to 10ml 90% acetone, 

mixed, and centrifuged at 1500 x g for 5 minutes. For measurement, the trichromatic method 

was employed (Jeffrey and Humphrey 1975). A ultra-violet spectrophotometer with a path 

length of 1cm and a 1.5nm spectral bandwidth was used (Jenway 6800, Bibby Scientific Ltd, 

Staffordshire, U.K.). The concentration of chlorophyll a, b and c was calculated according to 

the equations of Jeffrey and Humphrey (1975) (Eq‟s. 2.2.2 ,2.2.3, 2.2.4) 

Where L is the cuvette light path in centimetres, Ve is the extraction volume in litres and Vf is 

the filtered volume in millilitres. Chlorophyll concentrations are calculated as parts per 

billion or µg/l. Chlorophyll a and suspended solids were not analysed during the first 

sampling period. Consequently, data were used that were recorded in the equivalent period 

from the following hydrological year (2010). Abundance of chlorophyll b and c was typically 

 
         

            

 
 2.2.1 

 

 
 hl a                                                            2.2.2 

 
 hl b                                                            2.2.3 

 
 hl c                                                           2.2.4 
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below instrumental detection limits and was excluded from any subsequent statistical 

analyses. 

2.2.4. Heavy metals 

Heavy metal concentrations determined using a Perkin Elmer AA300 (Perkin Elmer, 

Massachusettes, USA) were Fe (iron), Mn (manganese), Ni (nickel), Cu (copper), Co (cobalt), 

Cr (chromium), Pb (lead) and Zn (zinc).  

The dissolved metal fraction is defined as metal elements of a non-acidified sample 

that pass through a 0.45µm filter (Riley and Taylor 1968). Therefore, a sample filtered at 

1.2µm (prior to acidification) may contain some non-bioavailable particulate metal. 

Consequently, heavy metal concentrations in water samples filtered at 0.2µ, 0.45µm and 

1.2µm were compared to assess the biological relevance of the concentrations reported 

following 1.2µm filtration. No significant difference was found such that the concentrations 

reported give a good representation of the dissolved metal fraction (Appendix 4). 

Calibration standards of 0.01, 0.1, 0.5, 1 mg/l were used for heavy metals analysis. 

Minimum detection limits were calculated as three times the standard error of blank samples 

(deionised water) analysed concurrent with pond water samples collected from each 

sampling period (Appendix 3). 

2.2.5. Physical characteristics 

Single measurements of pond surface area and percentages of surface area classified as open 

water, shaded, riparian vegetation and floating vegetation were all derived from a 

combination of digitised field notes and Normalised Difference Vegetation Index (NDVI) 

and photogrammetrically derived height GIS layers (Section 2.3.1.6) against digital pond 

outlines. The percentage of pond bank that was made from concrete was also calculated in a 

GIS from digitized field notes. Water sources (i.e. stream inflows, groundwater, surface run-

off or building run-off) and fish presence information was gathered from stakeholder 

knowledge and visual inspection. A water level fluctuation index (WLFI) was calculated as 

the standard deviation in depth between surveys (taken quarterly between 2010 – 2011) 

measured at set points within the wetted-perimeter of each pond. 

Macrophyte presence absence was recorded from within identified mesohabitats 

sampled for macroinvertebrates (Section 2.4) using Haslam et al. (1982) for identification. 

2.3. Land use 
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Within a GIS, several physical and demographic datasets were incorporated to characterise 

land-use. Each dataset is discussed below and all of the measures derived from the GIS 

dataset are summarised in Table 2.3. 

The artificial nature of urban pond inputs from infrastructure, for example surface 

drainage and sewer overflows, obscured delineation of catchments using traditional analyses 

of topology e.g. Digital Elevation Models (DEM). Consequently, land-use attributes were 

calculated within 13 cumulative spatial extents: 25m, 50m, 75m, 100m and then in 100m 

increments to 1000m. Greater resolution below 100m was included due to the known 

sensitivity of the pond environment to its immediate surroundings (Declerck et al. 2006; 

Akasaka et al. 2010). Land-use extracted from distances of more than 1000m from the pond 

edge was increasingly autocorrelated with those at preceding distances e.g. 1100m with 

1000m. Similarly, increased correlation was found between land use surrounding different 

sites where site buffers began to overlap. Analysis of land-use was therefore capped at 

1000m. 

2.3.1.1. Ordnance Survey MasterMap 

OS MasterMap is a close representation of real world objects (Figure 2.3.1a). The topographic 

features of the dataset include a breakdown of buildings, gardens, roads, pavements, 

railways, rivers, ponds and natural or manmade environments. The data used in this study 

was accessed in December 2008 (Ordnance Survey (GB) 2008) with the original MasterMap 

data amended to categorise road surfaces (Ordnance Survey (GB) 2009), accessed via EDINA 

Digimap (http://digimap.edina.ac.U.K.). 

2.3.1.2. Photogrammetrically derived height data 

The height of landscape features was derived using photogrammetry (Figure 2.3.1b), which 

is often more reliable than other techniques such as light detection and ranging (LiDAR) and 

interferometric synthetic aperture radar (IFSAR) in areas with steep or rapid changes in 

terrain such as built-up areas (Veneziano 2002). Photogrammetry is a technique for 

determining geometric properties from photographic images where the three-dimensional 

features of objects can be determined by measurements made in two or more photographs 

taken from different positions using the principles of triangulation. Data was available in 2m 

resolution (x and y direction), which was subsequently resampled in a GIS to 1m resolution 

(x, y and z directions), from aerial images taken on the 1st May and the 5th and 9th August 

2007, accessed via the Landmap service (http://www.landmap.ac.U.K.) and made available 

by Bluesky (Bluesky International Limited, Leicestershire). 

http://digimap.edina.ac.uk/
http://www.landmap.ac.uk/
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2.3.1.3. Land Cover Map 2007 

Land Cover Map 2007 (LCM2007) uses 23 habitat classes to map the U.K. (Figure 2.3.1c), 

which are based on the U.K. Biodiversity Action Plan (BAP) Broad Habitats (Jackson 2000). 

Such habitats include arable land, coniferous or broadleaved woodland and rough grassland. 

LCM2007 is created by classifying summer-winter composite images captured by satellite 

sensors with 20 - 30m pixels (Morton et al. 2011). The dataset was built using the same 

generalised spatial framework as OS MasterMap and as such the two have a good level of 

compatibility (Figure 2.3.1c). LCM2007 was sourced through the Centre for Ecology and 

Hydrology (NERC (CEH) 2011). 

2.3.1.4. Normalised Difference Vegetation Index  

The normalised difference vegetation index (NDVI) is a well established method that has 

been used to monitor plant growth, vegetation cover and biomass production from remotely 

sensed information (e.g. Zhou et al. 2001). First, the blue-band of (red, green, blue) aerial 

images was replaced by near infrared (NIR) which captures reflections of the sun‟s rays. NIR 

is reflected at the bottom of leaves after passing through, which allows for derivations of 

plant health and vigour. NDVI was subsequently calculated in a GIS by combining NIR and 

red bands (R); NDVI = (NIR – R) / (NIR + R). Data were available at 2m resolution, which 

was subsequently resampled in a GIS to 1m resolution in a 2-bit (binary) format from images 

taken on 12th May 2006 (Figure 2.3.1d). Aerial imagery and NIR data were accessed via the 

Landmap service (http://www.landmap.ac.U.K.) and made available by The 

GeoInformation Group (Fulbourn, Cambridge) and Bluesky (Bluesky International Limited, 

Leicestershire). 

2.3.1.5. Census 2001 

The 2001 U.K. Census of population was conducted on the 29th April 2001 (ONS 2011), 

although subtle changes from the 2001 dataset will have occurred it is likely to remain 

indicative of current demographic trends across the BBC. Data from the 2011 Census was 

taken on the 27th March 2011 and only piecemeal data were available at the time of writing. 

Key Statistics from the 2001 Census were obtained for postcode sectors in England and 

Wales and attributed to a GIS layer. Consequently the data could be extracted in the same 

manner as land-use data. Variables derived from the Census 2001 dataset were population 

density (number of people per hectare) and people aged 16-74 working in agriculture, 

hunting, forestry, fishing, mining and quarrying (rural employment). Household density 

http://www.landmap.ac.uk/
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was calculated by dividing the postcode sector area by the number of household spaces with 

residents, also available from the Census 2001 dataset (Table 2.3). 

 

Figure 2.3.1. Screenshots of each of the main GIS land-use data layers  
a) OS MasterMap b) Photogrammetrical height c) Land Cover Map 2007 d) NDVI 
vegetation, red lines indicate spatial extents at 25m, 75m, 100m and 100m increments to 
1000m. Blue polygons are ponds. 
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2.3.1.6. Land-use variables derived from multiple GIS sources 

Photogrammetry height was combined with buildings extracted from OS MasterMap in 

order to calculate a metric of building intensity (Bi) (Eq. 2.3.1). 

Where ∑B is the proportional coverage of buildings within a given spatial extent, ∑A is the 

total area and Bh is mean building height. The building intensity metric is designed to give a 

more balanced representation of the degree of urban intensity than building height alone. 

It was also possible to categorise NDVI derived vegetation cover by height. The 

categories consisted of vegetation at ground level at heights of ≤0m (i.e. grass, aquatic 

floating vegetation), low level vegetation between 0m and 3m (i.e. shrub, scrub and 

hedgerows), and mature trees between 3m and 60m. Errors were observed within the NDVI 

dataset where buildings with green roofs or green cars were present. Consequently a 4m 

buffer was projected around buildings (using OS MasterMap) and data was „clipped‟ 

(removed) from the vegetation dataset. Nonetheless, due to the presence of wells and 

structures other than buildings some error remained and implied the need for a height limit. 

An upper limit for vegetation data of 60m was established as the tallest tree species in the 

United Kingdom, the Douglas Fir (Pseudotsuga menziesii). Heights < 0m were included in the 

ground level vegetation dataset and those above 60m excluded. It should be noted that given 

the nature of the NDVI methodology in conjunction with photogrammetry data, only the 

uppermost vegetation was recorded at any one location. 

2.3.1.7. Establishing the degree of urbanisation 

For this study, five landscape, three demographic and two physical metrics („urbanisation 

indicators‟, Table 2.3) were used within a series of PCA ordinations, using data extracted 

from each of the 13 cumulative spatial extents at 25m, 50m, 75m, 100m and then in 100m 

increments to 1000m, in order to establish an urbanisation score for each site. Six of the ten 

metrics are directly referred to by the Hahs and McDonnell (2006) review, the remaining four 

(suburban cover, arable land, „towns and villages‟ and building intensity) capture further 

subtle urbanisation patterns. The resulting PCA scores extracted from axes 1 and 2 are 

suggested to give a better account of „environmental space‟ as opposed to geographic space 

(Hahs and McDonnell 2006) for the landscape surrounding each site. 

Prior to use in the PCA, variables were transformed to improve normality and 

homogeneity of variance where necessary. Proportional variables were typically arcsine 

 
   

  

  
    2.3.1 
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transformed, distance metrics were square-root transformed and building intensity was 

log(n+1) transformed. Data were then standardised to 0 mean and 1 standard deviation due 

to differences in scale. PCA ordinations were carried out using the function „rda‟ for PCA in 

the „vegan‟ package (Oksanen et al. 2012) for the R statistical program version 2.15.1 (R Core 

Team and contributors worldwide 2012). Normality and homogeneity of variance were 

tested by Shapiro-Wilk and Levene‟s tests carried out in IBM SPSS statistical package version 

19 (IBM, Armonk, New York). 

Between 64% and 75.7% of variation within the 10 urbanisation indicators was 

explained on the first two principal component axes (Table 2.4). Axis 1 (PCA 1) positively 

correlated to physical and landscape variables and to the proportion of impermeable surface 

in particular. Conversely, the proportion of arable land was negatively correlated to axis 1. 

Axis 2 (PCA 2) typically described demographic gradients. Variance explained by axis 2 

correlated to a measure of either population or housing density and, by contrast, the 

proportion of people employed in rural occupations. 

2.4. Macroinvertebrate sampling and identification 

Macroinvertebrates were used to determine the importance of urban ponds for biodiversity 

and as biological indicators of habitat quality. Macroinvertebrates are useful in this respect 

because of their ubiquity, relative ease of sampling and the variety of tolerance levels 

exhibited by different species (Metcalfe 1989). 

Odonata, Trichoptera, Megaloptera, Coleoptera, Malacostraca, Ephemeroptera, 

Hemiptera, Hirudinea, Mollusca, Tricladida were identified to species (Hammond and 

Merritt 1983; Elliott et al. 1988; Friday 1988; Savage 1989; Gledhill et al. 1993; Macan 1994; 

Edington and Hildrew 1995; Brooks 1997; Elliott and Mann 1998; Reynoldson and Young 

2000; Wallace et al. 2003; Cham 2007; Cham 2009; Elliott 2009). Diptera, were identified to 

family level (Tachet et al. 2002) and Sphaeridae and Oligochaetes were counted as such. 

Some trichopteran species (Oxyethira spp. and Hydroptila spp.) were identified to genus level 

due to a lack of published information to enable identification to a lower taxonomic level.  
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Table 2.3. Summary of GIS derived measures. Measures in bold were used as an 

‘urbanisation indicator’ for assessment of urbanisation 

Measure Scale or Unit Source(s) 

Landscape metrics   

Arable land Fraction (0 - 1) LCM2007  

Broadleaved woodland Fraction (0 - 1) LCM2007 

Coniferous woodland Fraction (0 - 1) LCM2007 

Improved grassland Fraction (0 - 1) LCM2007 

Suburban Fraction (0 - 1) LCM2007 

Urban1 Fraction (0 - 1) LCM2007 

Rough grassland Fraction (0 - 1) LCM2007 

Ground level vegetation (0m) Fraction (0 - 1) NDVI, photogrammetry 

Low level vegetation (≤3m) Fraction (0 - 1) NDVI, photogrammetry 

Mature vegetation (>3m ≤60m) Fraction (0 - 1) NDVI, photogrammetry 

All vegetation Fraction (0 - 1) NDVI 

Simpsons land-use diversity index   Fraction (0 - 1) LCM2007 

 

Demographic variables 

  

People in rural employment Fraction (0 - 1) Census 2001 

Population density People ha-1 Census 2001 

Housing density Households ha-1 Census 2001 

Roads2 Fraction (0 - 1) OS MasterMap 

Towns and villages3 Fraction (0 - 1) OS MasterMap 

 

Physical variables 

  

Impervious surface Fraction (0 - 1) OS MasterMap 

Other water4 Fraction (0 - 1) OS MasterMap 

Woodland5 Fraction (0 - 1) OS MasterMap 

Building intensity Unitless (min. 0, 

max. 2.64) 

OS MasterMap, photogrammetry 

Distance to nearest town hall m GIS 
1 Urban cover is included as a physical and landscape metric 

2 Combined OS MasterMap data: Motorways, A, B and minor roads 
3 Combined OS MasterMap data: Buildings, gardens, developing land, steps, pavements, paths, man-

made open space, man-made landforms and structures 
4 Combined OS MasterMap data: Ponds, lakes, canals, streams, rivers 

 5 Combined OS MasterMap data: natural roadside areas with trees, mixed natural habitat with trees 
and natural railway features with trees 
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Table 2.4. Variance explained by, and variables correlated to axes 1 and 2 of a principal 
coordinates analysis (PCA) of 10 ‘urbanisation indicators’ at different buffer distances 
(Pearson’s correlation, r ≥ 0.30, unless stated in parenthesis). 
 
Spatial Variance explained Explanatory variables 

extent Axis 1 Axis 2 Axis 1 Axis 2 

25m 39.9 24.1 +ve: Impervious surface, 

towns 

& villages, building 

intensity, 

suburban 

-ve: Rural employment 

+ve: Urban (0.05)* 

-ve: Housing density, 

population density, rural 

employment, suburban 

 

50m 42.7 23.1 +ve: Impervious surface, 

towns 

& villages, building 

intensity, 

suburban 

-ve: Rural employment 

+ve: Urban (0.19)* 

-ve: Housing density, 

population density, rural 

employment 

 

75m 43.9 23.7 +ve: Impervious surface, 

towns 

& villages, building 

intensity, 

suburban, roads 

-ve: Arable (0.28)* 

+ve: Urban (0.22)* 

-ve: Housing density, 

population density, rural 

employment 

 

100m 43.2 23.0 +ve: Towns & villages, 

impervious surface, 

suburban, 

building intensity, roads 

-ve: Arable 

+ve: Population density, 

housing density, rural 

employment  

-ve: Urban (0.21)* 

 

200m 44.3 20.6 +ve: Towns and & 

villages, 

impervious surface, 

suburban, 

building intensity, roads 

-ve: Arable 

+ve: Urban  

-ve: Population density, 

housing 

density 

 

300m 47.0 18.3 +ve: Towns and & 

villages, 

impervious surface, 

suburban, 

building intensity, roads 

-ve: Arable 

+ve: Urban, rural 

employment 

-ve: Population density, 

housing 

density 

 

400m 48.3 19.4 +ve: Impervious surface, 

towns 

& villages, suburban, road 

+ve: Rural employment, 

urban  

-ve: Population density, 
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Spatial Variance explained Explanatory variables 

surface, building intensity 

-ve: Arable 

housing 

density 

500m 51.5 20.3 +ve: Impervious surface, 

towns 

& villages, building 

intensity, 

roads, suburban 

-ve: Arable 

+ve: Rural employment, 

Urban  

-ve: Population density, 

housing 

density 

 

600m 52.7 21.0 +ve: Impervious surface, 

towns 

& villages, building 

intensity, 

roads, suburban 

-ve: Arable 

+ve: Rural employment  

-ve: Population density, 

housing 

density 

 

700m 53.5 20.7 +ve: Impervious surface, 

towns 

& villages, building 

intensity, 

roads, suburban 

-ve: Arable 

+ve: Rural employment  

-ve: Population density, 

housing 

density 

 

800m 53.9 20.8 +ve: Impervious surface, 

towns 

& villages, building 

intensity, 

roads, suburban 

-ve: Arable 

+ve: Rural employment  

-ve: Population density, 

housing 

density 

 

900m 53.8 21.1 +ve: Impervious surface, 

towns 

& villages, roads, 

building intensity, urban 

-ve: Arable 

+ve: Rural employment  

-ve: Population density, 

housing 

density 

 

1000m 54.2 21.5 +ve: Impervious surface, 

road 

surface, towns & villages, 

building intensity, urban 

+ve Arable 

+ve: Rural employment  

-ve: Population density, 

housing 

density 
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A descriptive and historical overview 

of the Birmingham „pondscape‟ 
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Chapter 3: A descriptive and historical overview of 

the Birmingham „pondscape‟ 

3.1. Introduction 

The loss of pond habitats has been reported across the U.K. (Biggs et al. 2005), Europe 

(Indermuehle et al. 2008) and globally (Huang et al. 2012). As land-use intensifies during 

urbanisation many ponds are no longer required for their original purpose and are lost to 

development (Boothby 1999). Furthermore, natural processes of pond creation are much 

reduced (Williams et al. 1998a; Indermuehle et al. 2008; Williams et al. 2010). Nevertheless, 

artificial habitats can form suitable surrogates where natural habitats are lost (Eversham et al. 

1996; Bilton et al. 2001; Le Viol et al. 2009).  

Biggs et al. (2005) described pond loss in the U.K. from 1880 to 2000, and revealed a 

mean annual decline in pond numbers of 0.27% per year i.e. a 32% loss of ponds over the 

period, although the rate of pond loss decreased in recent years. Other national studies have 

found annual pond loss to range from 0.78% to 1.23% (see Table 3.1), whilst regional studies 

report similar trends with losses ranging from 2.6% per year in Huddersfield (Wood and 

Barker 2000) to 0.04% in Edinburgh (Jeffries and Mills 1990). It is evident from the studies in 

Table 3.1 that this trend has occurred in both urban and rural areas, the largest loss occurring 

in London (>90% loss in numbers between 1870 and 1984). These estimates are also likely to 

mask a relatively high turnover of sites where ponds are lost and gained (Williams et al. 

1998b). By contrast, pond numbers in the most recent U.K. countryside survey (Williams et 

al. 2010) are estimated to have increased by 12.5% between 1998 and 2007, with an 18000 loss 

and 70600 gain in pond numbers due to the creation of new ponds associated with leisure 

activities such as on golf courses. For similar reasons a net gain in pond numbers was 

estimated in south-east Northumberland over the last 20 years, despite considerable pond 

loss (30%) between the mid-nineteenth century and 1992 (Jeffries 2012). This study focuses 

on habitat loss in the pond network within the heavily urbanised city of Birmingham, U.K., 

between ca1904 and 2009 (105 years).  
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Table 3.1. Estimated pond loss within U.K. regions 

Region Period Total 

loss (%) 

Annual loss 

(%) 

Change in 

numbers 

Land-use Source 

Huddersfield 1985 – 1997 31 2.60 60 – 42 Urban/ industrial Wood et al. 2003 

North Leicestershire 1934 – 1979 60 1.33 958 – 370 Mostly pasture Beresford and Wade 1982  

Bedfordshire 1910 – 1981 82 1.15 Not given Intensive arable Beresford and Wade 1982 

Sussex 1977 – 1996 21 1.10 33 – 26 Pasture (dewponds) Beebee 1997 

London region 1870 – 1984 >90 0.79 16000 – 1600 Mixed Langton 1985 

Huntingdonshire  1890 – 1980 56 0.68 Not given Mixed Beresford and Wade 1982 

Cheshire 1870 – 1993 61 0.50 41564 – 16728 Rural and urban Boothby and Hull 1997 

Essex (selected areas) 1870 – 1989 55– 69 0.46 - 0.58 1366 to 423 - 616 Mixed Heath and Whitehead 1992 

Cambridgeshire 1840/90 – 1990 68 0.45 – 0.68 Not given Intensive arable Jeffries and Mills 1990 

Leicestershire 1840/90 – 1990 60 0.40 – 0.60 Not given Intensive arable Jeffries and Mills 1990 

Durham 1840/90 – 1990 41 0.27 – 0.41 Not given Arable and pasture Jeffries and Mills 1990 

Clywd 1840/90 – 1990 32 0.21 – 0.32 Not given Arable and pasture Jeffries and Mills 1990 

Midlothian 1840/90 – 1990 23 0.15 – 0.23 Not given Arable and pasture Jeffries and Mills 1990 

Edinburgh 1840/90 – 1990 6 0.04 – 0.06 Not given Urban Jeffries and Mills 1990 

SE Northumberland 1846/69 – 2005/2008 +15.8 +0.10 - 11.6 222 - 257 Mixed Jeffries 2012 

England and Wales 1880 – 1920 57.5 1.41 800000 – 340000 Mixed Rackham 1986 

United Kingdom 1990 – 1996 7.4 1.23 230600 – 228900 Mixed (lowland ponds) Williams et al. 1998b 

United Kingdom 1900 - 1990 75 0.78 1189200 – 297300 Mixed Bailey-Watts et al. 2000 

United Kingdom 1998 - 2007 +12.5 +1.4 425000 - 478000  Mixed Williams et al. 2010 

Table adapted from Wood et al. 2003 
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Ponds can be regarded as aquatic islands within a terrestrial landscape. The pond 

landscape, or „pondscape‟ (Boothby 1996), therefore, is a naturally fragmented one. Pond-

dwelling fauna need to disperse between habitat patches to acquire resources, avoid 

predators and other agents of mortality, avoid competition and seek out conspecifics for 

mating (Fahrig 2007). The spatial configuration of ponds, therefore, is a necessary 

consideration for the conservation of pond biodiversity (Biggs et al. 1994; Boothby and Hull 

1997; Briers 2002; Lundkvist et al. 2002; Jeffries 2005) and is affected by pond loss and 

creation, which at any one time may be subjected to localised, rather than uniform changes 

due to anthropogenic activities i.e. it is not a static patchwork (Jeffries 2012). Nonetheless, the 

impact of pond loss on aquatic insect dispersal through the landscape is poorly understood 

(Rundle et al. 2002), not least because of the difficulty found in tracking small and short-lived 

animals (Bohonak and Jenkins 2003) over relatively large areas.  

Many aquatic insect populations that are spatially distributed across the landscape 

function as metapopulations (Jeffries 1994; Briers and Warren 2000; Caudill 2003; Briers et al. 

2004). The term metapopulation is used to describe a group of populations of a single 

species, subject to a temporally varying environment, linked by dispersal (Levins 1969); 

broadened to include any separate populations linked by dispersal (Hanski and Gilpin 1991). 

Habitat fragmentation reduces the likelihood of successful dispersal between habitats. 

Eventually, the requirements for successful dispersal between two neighbouring habitats 

outstrip the dispersal abilities of organisms present. Thus, multiple metapopulations result, 

affecting species with limited dispersal ability first. The extent of fragmentation will be 

contingent on the quality of the remaining pond habitat and that of the surrounding matrix 

(Jeffries 2005), such that ponds with low habitat quality support few species and an 

unfavourable intervening matrix increases resistance during dispersal. Isolated systems have 

fewer connected habitats from which to source recolonising organisms delaying recovery 

time from deterministic events (Briers and Warren 2000; Petersen et al. 2004; Caquet et al. 

2007). 

Two conceptual metapopulation models (Figure 3.1.1) are explicitly or implicitly 

invoked in a branch of mathematics called network or graph theory (Harary 1969), which is 

concerned explicitly with connectivity (Urban et al. 2009). The first is the source/sink model 

(Pulliam 1988), where sources are habitats in which the number of births outnumbers 

fatalities. The opposite trend occurs in sink habitats, which rely on immigration of 

individuals from source habitats to consolidate their populations. In the absence of data 

regarding pond productivity for historical landscapes, pond surface area may be used as a 

proxy as larger water bodies typically support a greater abundance and diversity of species, 
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in particular macrophytes, which increases habitat complexity (Oertli et al. 2002; 

Sondergaard et al. 2005). Urban et al. (2009) refer the second model to the 'spreading of risk' 

(den Boer 1968) or 'long distance rescue' (Brown and Kodric-Brown 1977) models, which are 

more concerned with long range network connectivity in order to ensure disturbance risk is 

spread across a many habitat patches, from which an impacted site can source recolonizing 

individuals. The two models are not competitors (Urban et al. 2009) and can be 

complementary approaches to assess the functionality of a habitat network. 

In network theory a graph conceptualizes the landscape as a set of points or „nodes‟ 

connected by edges or „links‟, considered to be functional connections. Ponds can thus be 

conceived of as nodes in the landscape linked by dispersal events that connect their spatially 

discrete populations. A pond, therefore, would be one node and the dispersal path to 

another pond a link. A directed graph, or digraph, is one whereby weight may be applied to 

Figure 3.1.1. Two metapopulation models invoked in graph theory as suggested by 
Urban et al. (2009; circles represent nodes (ponds) and the lines between nodes 
represent an exchange of individuals in a metapopulation. a) A digraph to represent 
source-sink dynamics after Pulliam (1988) where B nodes are net sources (births > 
deaths), hence larger nodes and node A a net sink (births < death) and therefore a 
smaller node. Arrows represent the direction of the net flow of individuals b) 
Spreading-of-risk (den Boer 1968) or long-distance rescue (Brown and Kodric-Brown 
1977) where node A is vital for the maintenance of connectivity across the network 
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each node (Figure 3.1.1a) e.g. habitat area. A graph in which each node can be reached via a 

link from any other node is connected, while an unconnected graph consists of multiple, 

separately connected components or subgraphs. The use of network theory in ecology has 

typically been associated in the formulation of food webs and the linkages between trophic 

levels (Krause et al. 2003; Luczkovich et al. 2003), but has found increasing applicability in the 

field of spatial ecology (Moilanen 2011).  

Recently, network theory has been applied to examine patterns of connectivity and to 

identify key habitat patches and dispersal pathways through the development of several 

connectivity indices (Bunn et al. 2000; Urban and Keitt 2001; Pascual-Hortal and Saura 2006; 

Saura and Pascual-Hortal 2007; Urban et al. 2009). For example, Laita et al. (2011) used graph 

theory to evaluate the performance of legally protected woodlands for connectivity; 

Gurrutxaga et al. (2011) examined the disconnection caused by highways through forest area 

networks; Decout et al. (2012) examined Rana temporaria (Linnaeus 1758) distributions in a 

human-dominated environment and Eros et al. (2012) highlighted the potential use of graph 

theory within riverine systems. The potential, therefore, for network theory to inform 

landscape managers of key habitats for the maintenance of connectivity within their pond 

network is clear (although see Moilanen 2011 for limitations). 

Many metrics can be calculated from network graphs, each representing a specific 

measure that captures a different aspect of connectivity (Laita et al. 2011). The different 

aspects of commonly used connectivity metrics are explored by Pascual-Hortal and Saura 

(2006) and Saura and Pascual-Hortal (2007). The „integral index of connectivity‟ (IIC, Pascual-

Hortal and Saura 2006; Saura and Pascual-Hortal 2007) integrates the amount of available 

habitat and the functional connections between habitats in a single measure for the entire 

network. Derived from the IIC are the metrics BC
   

 
 (Bodin and Saura 2010), referred to in 

this study as BCIIC and dIICconnector (Saura and Rubio 2010), referred to here as IICc. Both 

BCIIC and IICc have been shown to capture two unique aspects of connectivity provided by 

network nodes (Bodin and Saura 2010).  

The BCIIC metric is a derivation of the better known betweeness centrality (BC) metric 

(Freeman 1979), but is weighted by node attributes (e.g. surface area) and distance between 

patches, as well as the number of shortest paths between any two nodes in the network that 

use the focal patch as a stepping stone (Bodin and Saura 2010). Therefore, the BCIIC metric 

incorporates source-sink (Pulliam 1988) dynamics as well as spatial position. Contrastingly, 

IICc appears relevant to the importance of a node in spreading-of-risk (den Boer 1968) or 

long-distance rescue (Brown and Kodric-Brown 1977) models and corresponds to how much 

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae
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a focal habitat patch contributes to connectivity between other patches by serving as a 

stepping stone, that cannot be fully replaced by other patches in the network (Bodin and 

Saura 2010). As a non-weighted metric, IICc avoids the tendency of some metrics to simply 

attribute higher value to the largest nodes in the landscape (Ferrari et al. 2007). Therefore, 

two metrics can be used together to identify priority sites for the provision of connectivity 

(IICc) and ecological flux (BCIIC). 

The IIC metric considers the availability of functional connections i.e. links between 

habitat patches. A traditional measure of functional connectivity is a maximum dispersal 

threshold of a studied organism (Adriaensen et al. 2003). A distance threshold is applied 

which, if exceeded, two nodes are considered to be isolated from each other. Alhough ideal 

in principle, dispersal thresholds for many animals are poorly understood and difficult to 

establish as they require data that are prohibitively time-consuming or expensive to collect 

(Kupfer 2012). Estimations of maximum dispersal distance from mark-recapture studies may 

also be biased by the number of individuals collected and the size of the study area (Franzen 

and Nilsson 2007). Alternatively, several studies have applied a series of dispersal thresholds 

that cover a range of dispersal abilities present within an ecological community (Hinsley and 

Bellamy 2000; Gurrutxaga et al. 2011; Laita et al. 2011). In doing so, conservation initiatives 

can be informed according to potential functional connectivity of the studied landscape from 

a multi-species point of view (Hinsley and Bellamy 2000), rather than by the needs of a single 

species. A flexible approach such as this can highlight habitat patches that are essential for 

the maintenance of landscape connectivity for members of the ecological communities that 

vary in dispersal ability.  

This study combines the data gathered from a historical audit of the Birmingham pond 

network to analyse how the potential connectivity of the pond network has changed due to a 

loss in pond numbers and habitat area within a graph theoretic framework. The land-uses 

attributable to habitat loss and those land-uses that support the highest density of ponds in 

the contemporary landscape are also assessed. Finally, network theory metrics are used to 

identify ponds key to the maintenance of the pond network. 
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3.1.1. Objectives and hypotheses 

This chapter characterises changes in the Birmingham pond network over approximately 105 

years, covering three periods in time. The decline in pond numbers, area of available habitat 

and the connectivity between habitat patches is analysed with three specific objectives and 

hypotheses. 

 

1. To quantify the change in pond numbers and pond area between ca1904, ca1962 and 

2009. 

 

Hypothesis 1 

Pond loss between ca1904 and 2009 is extensive. The majority of ponds will have been 

lost between ca1904 and ca1962 due to urban development during this period 

 

2. To review the main drivers of pond creation and the impact of land-use types on 

pond creation and loss. 

 

Hypothesis 2 

The majority of ponds have been created for agricultural purposes and have since been 

lost due to urbanisation and changes in farming practices. The degree of urbanisation is a 

key determinant of pond density 

 

3. To assess how pond losses affect connectivity and ecological landscape resilience for 

organisms with differing dispersal abilities, and, highlight key sites for the ecological 

resilience of the contemporary Birmingham pond network in relation to aquatic 

organisms with differing dispersal abilities. 

 

Hypothesis 3 

The Birmingham pond network is more disconnected than ever before, with the distance 

between ponds increasing to an extent that could affect aquatic macroinvertebrate 

dispersal potential, particularly for those with poor dispersal abilities 
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3.2. Methods 

3.3. Digitisation of the historical pondscape 

Data for historical analyses of the pondscape in the Birmingham administrative area 

(267.8km2) were derived from two historical map layers, accessed and downloaded in 

individual 1km2 raster tiles from EDINA Digimap and processed in ArcGIS 10 (ESRI 2011). 

The County Series, 1st revision maps (EDINA Historic Digimap Service 2012b), within 

Birmingham, were published between 1904 ±2 years (Appendix 5) and are referred to as 

ca1904. The County Series maps were drawn at two scales, 1:10560 (6 inch to the mile) and 

1:2500, of which the latter has been used, and mapped landscape features with an area of 

16m2 or larger, although smaller, isolated or significant features may also be mapped (Oliver 

2005). Therefore, the majority of ponds should be recorded, although a single 1km2 map tile 

was unavailable. 

The National Grid overhaul and re-survey (Edition A) maps (National Grid EDINA 

Historic Digimap Service 2012a), at 1:2500 scale, were published between 1943 and 1995 and 

superseded those of the County Series after the Second World War. Within Birmingham, the 

maps were published between 1944 and 1977 (33 years), although the majority (97%) were 

published between 1951 and 1973 (22 years, Appendix 5). The mean year of publishing for 

these maps was 1962, thus they are referred to as ca1962. 

The contemporary, 2009, dataset was derived from Ordnance Survey MasterMap 

(Ordnance Survey (GB) 2008), which was subsequently edited using a combination of expert 

knowledge made available through the Birmingham and Black Country Wildlife Trust, 

preliminary field visits (conducted between 18th February 2009 and 1st May 2009) and aerial 

imagery (Google Inc. 2009) (Section 2.1). 

 Each historical map layer was digitised using a GIS. Ponds on each map were drawn 

digitally as both a single point and polygon using ESRI‟s ArcScan tool pack extension. Water 

bodies were included that were annotated on the maps as ‟ponds‟, ‟fish ponds‟, ‟mill ponds‟, 

‟lakes‟ and ‟pools‟ and where water body area was < 2ha. Water features annotated as 

‟reservoirs, ‟swimming pool‟ „bathing pool‟ were not included unless annotated as disused 

and likely to have developed to a more naturalised state. Similarly, those within the grounds 

of a sewage treatment works, for example, ‟sludge lagoons‟ and ‟tanks‟ were ignored unless 

disused. Ponds present in the ca1904 maps were not always annotated; consequently, 

curvilinear features or those too small to constitute field margins were classed as ponds (e.g. 

Figure 3.3.1). In addition, where possible, locations of ponds within a given dataset were 
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cross-checked with the other data layers to guide pond locations where uncertainty arose, for 

example, where a pond feature appeared to be drawn on the map, but not annotated. 

Similarly, map annotations were also used to record a broad description of the land use 

surrounding the pond.  

Figure 3.3.1. An example of pond continuity throughout the study period and the 
historical maps utilised for the pond audit 

a) ca1904* b) ca1962 c) 2009 (black) 

   

*Note the lack of annotation in the ca1904 map 

3.3.1. Land-use correlates to pond density 

In order to test the relationship between land-use coverage and pond density within the 

contemporary landscape, the number of ponds within 1 km squares was related to the 

percentage coverage of different land-use types derived from MasterMap and LCM2007 

coverage data and to population density (Section 2.2). Pond density per 1km square was 

quantified in ArcGIS 9.3 (ESRI 2008) using the package Hawth‟s Tools (Beyer 2004) points in 

polygon tool. The thematic raster summary tool in Hawth‟s Tools was used to extract the 

proportion of land-use classified as arable land, woodland, improved grassland, suburban, 

urban and impermeable surface within each 1 km square, as well as population density. 

Due to the uncertainties over the shape of relationships between land-use cover and 

pond density, generalised additive models (GAMs) were used. GAMs use a smoothing curve 

to model the relationship between the explanatory variable and the response variable and 

allow for non-linear relationships (Zuur et al. 2007). GAMs were constructed in the package 

„mgcv‟ (Wood 2011) in R statistical package version 2.15.1 (R Core Team and contributors 

worldwide 2012). As the seven land-use predictors were not normally distributed, cubic 

regression splines were fitted to each using a fixed amount of smoothing (k = 4) in order to 

capture trends with the least numbers of degrees of freedom (Fewster et al. 2000). This was 

achieved by producing multiple plots of the smoothing curve for different degrees of 

freedom and visually inspecting each curve (Zuur et al. 2009).  
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Where a 1 km square did not have any land-use coverage for those investigated, that 

data row was omitted from the analysis to avoid severe over-dispersion in the dataset due to 

the occurrence of zero values. GAMs were fitted to a negative-binomial distribution with log 

link. To improve the robustness of the analyses, the spatial coverage was extended to include 

Sandwell, Dudley, Wolverhampton and Walsall i.e. BBC, for which centroids (i.e. not 

polygons) of ponds in the contemporary pond network were available (Hewitt 2011).  

3.3.2. Connectivity analysis of the historical pondscape and identification of 

priority ponds 

The equivalent connected area index (EAC) (Saura et al. 2011) was used to assess whole scale 

pond network connectivity change over time and across different dispersal thresholds 

(discussed below). This can be interpreted as the effective amount of available habitat across 

a landscape with respect to connectivity. Here it was calculated based on binary inter-patch 

connections, i.e. patches are either connected or not, which is derived from the integral index 

of connectivity (IIC) (Pascual-Hortal and Saura 2006). The IIC is given by: 

 

 

     

  
     

      
 
   

 
   

  
  

      

  
  3.3.1 

 

 

And EAC is given by: 

 

        
     

      

 

   

 

   

 3.3.2 

 

Where ai and aj are the areas of the individual habitat patches and nlij is the number of links 

comprising the shortest path between patches i and j. AL is the study area, regardless of 

habitat. In this instance AL is given as the area of the Birmingham administrative area, 

267.79km2. The total number of nodes in the landscape is given by n. When patches i and j 

are disconnected nlij = ∞, when i = j, nlij = 0. The IIC index ranges from 0 to 1 and increases as 

connectivity improves.  

Two metrics were then used to establish the importance of individual nodes towards 

landscape connectivity. The first metric BCIIC (Bodin and Saura 2010) is a generalised version 

of the well established betweeness centrality metric (BCk) (Freeman 1979). BCk is the sum of 
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all shortest pathways between all pairs of nodes within a graph that pass through a given 

node as a proportion of all shortest paths. BCk is given by: 

 

 
       

      

   
  

 3.3.3 

 

Where gij(k) is the sum of all shortest paths that go through node k, and gij is the total number 

of shortest paths between all pairs of nodes. BCk does not consider individual node attributes 

such as habitat quality. Surface area, which was made available through the historical pond 

auditing process, was used as a proxy for pond productivity due to its relationships with a 

number of ecological aspects (Oertli et al. 2002; Sondergaard et al. 2005),. The BCIIC metric was 

proposed by Bodin and Saura (2010) in order to assess the ecological flux (flow of 

organisms), and not just dispersal possibility, through a patch. It is given by: 

 

 
        

   

 
        

     

      
 

  

                    3.3.4 

 

Where nm* represents the shortest pathways of i and j (i ≠ j) that utilise node k as a stepping 

stone in the landscape prior to the removal of node k i.e. those pairs of nodes whose 

connection is favoured by the presence of k (Bodin and Saura 2010). Consequently, the BCIIC 

metric considers more central those nodes that serve as stepping stones between large 

habitat patches, it is furthermore weighted by the length of the path between the nodes, 

favouring shorter paths as more likely to be fulfilled by dispersing organisms. 

The IIC metric (Eq. 3.3.1) can be used to inform the value of a node in the landscape by 

analysing the difference in IIC before and after the removal of a focal node. This is termed 

dIICk and can be further broken down in to three components, dIICintra, dIICflux and 

dIICconnector (IICc), as described by Saura and Rubio (2010), where the d refers to the 

difference in the given component. The latter component IICc provides information 

regarding the role of individual nodes as irreplaceable providers of connectivity between 

other habitat areas (Gurrutxaga et al. 2011). A given habitat patch will only contribute to 

dIICk through IICc when it is part of the shortest path for dispersal between any other two 

nodes. 

3.3.2.1. Network analysis 
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First, minimum spanning trees of each historical pond network were established to delineate 

the skeleton of the network and the 'backbone' that provides most of the traversibility (Urban 

and Keitt 2001). A minimum spanning tree links all nodes with the lowest accumulated 

distance (or cost) that visits every node on a graph once only i.e. does not allow for cycles 

(refer to Table 3.2 for terms). This analysis provides basic information on the threshold at 

which the network becomes fully connected (the percolation threshold). This is the longest, 

shortest path between two nodes in the network. Minimum spanning trees were produced 

using  the EDENetworks: Ecological and evolutionary networks (Kivela et al. 2011) program, 

freely available from http://becs.aalto.fi/edenetworks/. The program also calculates basic 

BCk values for each node using geographic coordinates of the pond centroids. 

Two dispersal distance thresholds were applied to the historical pond networks in 

order to assess the potential implications for metapopulations of organisms with differing 

dispersal capabilities. For aquatic insects, very few studies of dispersal abilities have been 

carried out. Despite spatial correlation in community structure existing between pond sites 

up to 13km apart (Briers and Biggs 2005), such community similarity may persist through 

the small percentile of aquatic insect populations that move considerably longer distances 

than the majority (e.g. Conrad et al. 1999; Angelibert and Giani 2003; Purse et al. 2003; Briers 

et al. 2004; Macneale et al. 2005). A more frequent exchange of individuals is required to 

recolonise ponds that have suffered a deterministic event or pulse disturbance. Therefore, 

the shorter 500m and longer 1500m dispersal distances are selected in light of those reported 

from previous studies listed in Table 3.3. The two dispersal thresholds are thought to 

represent the dispersal distances regularly achieved by the majority of aquatic insects with 

better and worse dispersal capabilities. Network connectivity metrics were calculated using 

the Conefor Sensinode 2.6 software package (Saura and Torne 2009), freely available from 

http://www.conefor.org/. The metrics calculated by Conefor Sensinode are wide-ranging, 

however, those used in this study are indicated in Table 3.2. 

Finally, the two metrics BCIIC and IICc were used in a complementary fashion to 

highlight those pond sites in the contemporary landscape which serve as important nodes 

for the connectivity of the pond network (IICc) and for the provision of ecological flux (BCIIC). 

This was performed at eight different dispersal thresholds to analyse the connectivity of the 

landscape from the perspective of a range of organisms with differing dispersal abilities, i.e. 

from a multi-species point of view (Hinsley and Bellamy 2000). The dispersal distances 

investigated were 250m, 500m, 1000m, 1500m, 2000m, 2500m, 5000m and 10000m. These 

dispersal thresholds were considered to be widely applicable to the dispersal abilities 

exhibited by aquatic insects in previous studies (Table 3.4). The 20 highest scoring ponds for 

http://becs.aalto.fi/edenetworks/
http://www.conefor.org/
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BCIIC and IICc were calculated for each dispersal distance and established as the candidate 

priority ponds that are integral to the network. From these, a sub-group of sites were 

selected that had markedly higher metric scores. These were considered priority ponds, 

although the approach may be used to highlight more or less sites as required. 

3.3.3. Potential habitat quality 

Single measurements of pond surface area and percentages of surface area classified as 

shaded or riparian vegetation were derived from a combination of Normalised Difference 

Vegetation Index (NDVI) and photogrammetrically derived height GIS layers (Section 

2.3.1.6) against digital pond outlines. 
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Table 3.2. Definition of graph (or network) theory terms and metrics used here and associated references 

Term Definition  

Component A sub-graph within a network that is not fully connected  
Cycle A closed path of three or more nodes  
Minimum 
spanning tree1 

A spanning tree with the lowest accumulated distance (or cost) that visits every node on a graph  

Path A path is a walk in which no node is revisited  
Spanning tree A tree that visits every node on a graph  
Tree A tree is a path without cycles and with only one link between any pair of nodes  

Metrics Definition Reference(s) 
IIC Integral index of connectivity. A habitat availability (reachability) index based on a binary network 

(unweighted links) as the underlying model of the fragmented landscape. This metric uses estimates of 
possibilities for dispersals between all pairs of patches. Hence, if direct dispersal between any two patches 
in the landscape is assessed as being possible, the link strength is set to unity. Otherwise, it is set to 0 (i.e. 
no link is assigned between the two patches).2 

Pascual-Hortal 
and Saura (2006) 

EAC Equivalent connected area. The size of a single habitat patch (maximally connected) that would provide 
the same value of the IIC metric as the actual habitat pattern in the landscape.2 

Saura et al. (2011) 

BCk Betweenness centrality. The sum of all shortest pathways between all pairs of nodes within a graph that 
pass through a given node (k) i.e. how much it serves as an intermediate stepping stone.2,1 

Freeman (1979) 

dIICk The loss of habitat availability (IIC) caused by the removal of patch k.2 Saura and Rubio 
(2010) 

BC
   

 
 (BCIIC) A metric that takes into account patch areas and geographical distances between patches instead of only 

the number of shortest paths as in BCk. In this way, this generalized metric assigns more weight to the 
paths that are expected to carry larger flows of organisms and that connect bigger and therefore likely 
more ecologically important patches.2 

Bodin and Saura 
(2010) 

dIICconnectork 

(IICc) 
The fraction of dIICk (the loss of habitat availability caused by the removal of patch k) corresponding to 
how much patch k contributes to connectivity between other patches by serving as an intermediate 
stepping stone (connecting element) that cannot be fully replaced by other patches in the network. A high 
value implies that the loss of k would severely reduce the connectivity between other habitat patches.2 

Saura and Rubio 
(2010) 

Programs used to calculate metric: 1 EDENetworks (Kivela et al. 2011) 2 Sensinode Conefor 2.6 (Saura and Torne 2009) 
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Table 3.3. Summary of dispersal abilities of some lentic macroinvertebrates 
Order Family Species Method Water body type and landscape Dispersal distances Source 

Odonata Coenagrionidae 
 
 
 
 
Lestidae 
Libellulidae 

C. puella 
C. pulchellum 
E. cyathigerum 
I. elegans 
P. nymphula 
L. sponsa 
S. sanguineum 

MRR Marl pits;  
arable and livestock; 
U.K. 

<1% > ca 600m  
(all species) 
 
 
 
 
Max. 1.2km  

Conrad et al. 1999 

Odonata Coenagrionidae 
 
Libellulidae 
 

C. puella 
C. scitulum 
L. depressa 

MRR Ponds; 
Arid, karstic; 
France 
 

0.9% >725m 
1.5% >725m 

Angelibert and Giani 
2003 
 

Odonata Coenagrionidae C. mercuriale MRR Water meadow carriers & ditches; 
Meadow, agriculture, urban; 
U.K. 

1.3% >500m 
0.1% >1000m 
65.7% <50m 

Rouquette and 
Thompson 2007 

Odonata Coenagrionidae I. pumilio MRR Springs & flushes; 
New Forest / Red River valley 
(rural-residential & agricultural); 
U.K. 

67.9% <50m / 
87.6% <50m 
Max. (♀) 575m /263m 
 

Allen and Thompson 
2010 

Odonata Coenagrionidae E. cyathigerum MRR Not stated 27% >100m Garrison 1978 (in Allen 
and Thompson 2010) 

Hemiptera Notonectidae N. maculata 
N. obliqua 

Exhaustive 
sweep-netting, 
seasonally 

Dewponds;  
Peak District National Park 
U.K. 

Max. >1.6km Briers 1998 

Diptera Culicidae Not stated Not stated Not stated Max. <5km 
Max. <1km 

Service 1997 (in 
Bohonak and Jenkins 
2003) 

Trichoptera 
 
 
 
 
Ephemeroptera 

Hydropsychidae 
 
 
 
 
Ephemeridae 

C. camplyal 
C. speciosa 
H. phalerata 
H. hageni 
M. zebratum 
Hexagenia spp. 

Malaise traps Lake St. Clair & Detroit River;  
Cropland; 
Canada 

502m1 
488m1 
1.47km1 
1.18km1 
1.558km1 
900m1 Max. >5km 

Kovats et al. 1996 
 
 
 
 
Kovats et al. (1996) 

1Distance travelled by 50% of collected animals (median) 
MRR – Mark-release-recapture  NR – Not reported  Max. – Study maximum 
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3.4. Results 

3.4.1. Characterisation of the historical pondscape 

Between ca1904 and 2009, there was an 82% reduction in the number of ponds within 

Birmingham (Table 3.4), leaving a total of 341 ponds in the contemporary (2009) landscape 

from a total of 1914 present in ca1904. Many of these ponds were lost before ca1962, by which 

time the number of ponds in Birmingham had fallen to 524, a 74% reduction. Pond density 

declined over the study period, from 7.1 ponds per km2 ca1904, to 2.0 by ca1962 and 1.3 in 

2009. 

Over time, there has been an increase in the mean surface area of ponds, reflecting the 

loss of the smallest water bodies, especially between ca1904 and ca1962 (Mann-Whitney, P < 

0.05, Figure 3.3.1, Table 3.4) and less pronounced between ca1962 and 2009 (Mann-Whitney, 

P = 0.12). The mean size of ponds retained in the landscape has increased over time (by 204% 

since ca1904). The total available pond habitat in Birmingham has declined (by 46% since 

ca1904); however, the retention of larger ponds has offset the rate of habitat reduction (Figure 

3.4.1). As a proportion of the entire Birmingham administrative area, ponds cover 3.6%, 2.2% 

and 2.0% in ca1904, ca1962 and 2009 respectively. 

As suggested by Williams et al. (1998b), the total number of ponds masks a 

considerable amount of turnover within the pond stock. The number of ponds that persisted 

throughout the study was 171, representing half (50.1%) of those in the contemporary 

landscape and 8.9% of the number present in ca1904. Of those ponds present in 2009, 173 

(50.7%) were present in ca1904, (two were absent in ca1962), 58 (17.0%) were present by 

ca1962 and 110 (32.3%) created between ca1962 and 2009. Therefore, 49.9% (170) of the ponds 

present today have been created since ca1904. Although there was not a significant difference 

between the time periods (ANOVA, P = 0.845), the average surface area of the ponds that 

were present in each of the study periods decreased over time (Table 3.5). This may suggest 

natural successional processes or the reduction of pond size for developmental or 

management purposes. In the contemporary landscape, analysis of the proportion of pond 

surface area as vegetation >0m (i.e. non-floating) using NDVI data (Section 2.3.1.4) suggested 

that many of the 171 persistent ponds are at risk of filling-in. Forty-one percent (70) had 

vegetation coverage in excess of 75%, indicating that they are heavily shaded, the mean 

surface area of which was 269m2. Fewer ponds created since ca1904 had >75% vegetation 

coverage (28.6%), however, considerably more had surface area ≤ 269m2 (58.7%) than 

persistent ponds. Therefore, many of the older, persistent ponds are at risk of infilling and, 
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despite less tree cover currently, the smaller size of ponds constructed since ca1904 may 

result in more rapid successional processes. 

There is a clear relationship between pond surface area and proportion of tree coverage 

in those ponds that were present throughout the study (r2 = 0.43, Figure 3.4.3a), although the 

pattern is still present in ponds that have been created since ca1904, the trend is much less 

clear (r2 = 0.06, Figure 3.4.3b). This may furthermore suggest vegetation development over a 

longer period of time, for example, the majority of persistent ponds <2500m2 appear to have 

high vegetation cover (Figure 3.4.3a), whereas the spread of vegetation coverage is much 

wider in ponds < 2500m2 created since ca1904 (Figure 3.4.3b). It is also clear that larger size 

ponds in the contemporary pondscape are remnants of past pond networks,  with only a 

handful of larger sites >1ha in surface area being created since ca1904.  

Whilst it was not possible to discern the creational process or reason for construction of 

many of the ponds in Birmingham, it was possible to establish the origins of 334 ponds 

present at some point since ca1904 to 2009, including those that have since been lost (Table 

3.6). Approximately one quarter (24.2%) originated from extraction activities such as brick 

and gravel workings and 19.9% were built for ornamental purposes, which were typically 

small (mean surface area 101m2). Ornamental ponds were those with distinctly geometric 

shapes in close proximity to buildings. The largest ponds were typically associated with 

industrial processes such as mill ponds and disused reservoirs and sludge lagoons. Very few 

ponds appeared to have been created through natural processes, however, 20 (6% of those 

with origins identified) were created from cut-off channels and stream backwaters. 

 

Table 3.4. Declines in pond loss and pond density and changes in average pond surface 
area and total pond habitat availability within Birmingham 

 ca1904 ca1962 ca2009 

Number of ponds 1914 524 341 

Ponds /km2 7.1 2.0 1.3 

Mean surface area 508.7 1123.0 1546.0 

Total surface area 982870 593894 528704 

Table 3.5. Changes in mean pond surface area and total habitat of persistent ponds i.e. 

present throughout the study period (n = 171) 

 ca1904 ca1962 ca2009 

Mean surface area 2143.3 1934.6 1919.0 

Total surface area 366500 330809 328157 
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Figure 3.4.1. Changes in surface area of ponds in Birmingham between ca1904 and 2009.  
Boxplots display minimum and maximum, 1st and 3rd quartile and median value for each 
period. Lettering denotes significant differences (Mann-Whitney, P < 0.05, used due to 
non-homogeneity of variances) 
 

 

 

Figure 3.4.2. Decline in total available pond habitat and pond numbers between ca1904 
and 2009 within Birmingham 

 

 

1

10

100

1000

10000

100000

ca
1

9
0

4

ca
1

9
6

2

2
0

0
9

S
u

rf
a

ce
 a

re
a 

(m
2
)

Ponds

A BB

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

10

20

30

40

50

60

70

80

90

100

ca
1

9
0

4

ca
1

9
6

2

2
0

0
9

T
o

ta
l p

o
n

d
 n

u
m

b
e

rs

T
o

ta
l 

p
o

n
d

 h
a

b
it

a
t 

(h
a

)

Period

Total pond habitat Pond numbers



 
  

46 

Figure 3.4.3. The relationship between pond surface area and vegetation >0m (i.e. non-
floating) coverage in a) ponds present throughout the study, from ca1904 – 2009 b) pond 
present since ca1904 
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A categorisation of land-use associated with pond presence was gathered using land-

use symbols present on the County (ca1904) and National Grid (ca1962) map series (Table 

3.7). Many ponds were originally associated with farmland, however, the number of such 

ponds decreased rapidly from 71% of total pond numbers to just 13% in 2009. This is likely to 

reflect an overall change in land-use within Birmingham as the proportion of land in 

agricultural use has much reduced. Conversely, the number of ponds associated with or 

enveloped by suburban areas and areas of grassland (including public parkland and golf 

courses) increased by 2009 to account for 59% of those present, from 3% in ca1904. The 

number of ponds associated with urban / industrial land-use is consistently low, at no point 

accounting for more than 8.2% of ponds present. Land-use relationships with pond density 

within the 2009 landscape are further explored in section 3.4.2. 

In ca1904, three distinct patches of high pond density were apparent within to the 

northeast, east and south of Birmingham centre (Figure 3.4.4). However, the numbers of 

ponds in these areas are much diminished by 2009, particularly to the east and represent 

areas of major pond loss (Figure 3.4.5). In some instances, pond losses are up to 30 ponds lost 

per 1km2 (Figure 3.4.5c). Interestingly, although much overshadowed by the impact of urban 

expansion affecting the wider pondscape, several new ponds have been created as part of 

modern developments since ca1962 that marginally improve pond density within some 

central areas of Birmingham.  

3.4.2. Land-use correlates to pond density 

The relationships between land-use parameters and pond density in the contemporary BBC 

landscape were explored using GAMs (Figure 3.4.6). The explanatory power of the models 

ranged considerably between 6.1% deviance explained (urban) to 24.7% (impermeable 

surface) (Table 3.8).  

Pond density peaks at approximately 40% and 30% coverage of arable land and 

woodland respectively before declining (Figure 3.4.6), although fewer 1 km2 have coverages 

beyond 60% arable and 30% wooded land. Thus, at low levels of arable land and woodland, 

the influence of other land-uses such as impermeable surfaces, cause pond density to decline. 

At mid-range coverages, the land-use is less intense and more akin to open countryside, 

which allows for more natural processes of pond creation to occur as well as providing 

protection against development for ponds which are no longer required for their original 

purpose. At high coverage, agricultural intensification and dense woodland are more likely 

to cause infilling, causing pond density to decline. 
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Table 3.6. Pond origins (n=334)  

 Origin  Mineral extraction 
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n  6 20 4 27 48 6 21 39 67 15 42 4 1 15 2 5 12 
% of total 1.8 6.0 1.2 8.1 14.3 1.8 6.5 11.9 19.9 4.5 12.5 1.2 0.3 4.5 0.6 1.5 3.6 
Average m2 3567 590 5318 3639 4246 1116 5287 1167 101 3683 663 684 72 5295 5287 293 331 

 

Table 3.7. Land-use associated with ponds during each period 

Land-use ca1904 ca1962 2009* 

Urban/ industrial 0.034 (66) 0.049 (26) 0.082 (28) 

Suburban 0.026 (50) 0.126 (67) 0.342 (117) 

Rural 0.090 (174) 0.128 (68) - 

Farmland 0.709 (1,366) 0.317 (170) 0.129 (44) 

Allotments 0.004 (7) 0.034 (18) - 

Orchard 0.010 (19) 0.006 (3) - 

Woodland 0.089 (171) 0.149 (80) 0.178 (61) 

Open land/ scrub 0.013 (26) 0.058 (31) 0.018 (6) 

Grassland 0.020 (39) 0.123 (66) 0.251 (86) 

Marsh 0.004 (7) 0.013 (7) - 

Number of ponds within each land-use are given in parenthesis 
*Land-use classifications given by Land Cover Map 2007 in the contemporary landscape, which excludes rural, 

allotments, orchard and marsh 
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Figure 3.4.4. Number of ponds per km2 within each period a) ca1904 (County series) b) 
ca1962 (National Grid series) c) 2009 (Contemporary) 
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Figure 3.4.5. Change in pond numbers per km2 between periods a) ca1904 to ca1962 b) 
ca1962 to 2009 c) ca1904 to 2009 
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Table 3.8. Median (min and max) of predictor variables and results of generalised additive 
models (GAMs) describing pond density in terms of land-use and population density 

Predictor Median (min – max) F statistic Deviance explained (%) 

Arable 0.12 (0.00 – 0.80) 9.0*** 13.2 
Woodland 0.02 (0.00 – 0.66) 11.6 *** 11.3 
Improved grassland 0.10 (0.00 – 0.69) 22.7*** 10.1 
Suburban 0.59 (0.00 – 0.99) 42.7*** 9.8 
Urban 0.13 (0.00 – 0.97) 18.8*** 6.1 
Population density 33.5 (1.1 – 87.6) 10.7*** 7.6 
Impermeable surface 0.27 (0.00 – 0.69) 27.2*** 24.7 

Cases excluded list-wise where zero values occurred in predictor, *** P < 0.001 
 

Approximately linear relationships exist between the remaining land-uses and pond 

density (Figure 3.4.6). The proportion of improved grassland is positively correlated to pond 

density, which includes public parks and golf courses, within which ponds are often built as 

features. The proportions of suburban, urban and impermeable surface have clear negative 

correlations with pond density. Therefore, in more developed areas pond numbers decline 

rapidly. Similarly, population density also has a negative relationship to pond density. The 

slight upturn at the tail end of the relationship between impermeable surface and pond 

density is likely reflective of the few newly created ponds within central areas such as those 

noted in Figure 3.4.5. 

3.4.3. Connectivity analysis of the historical pondscape 

3.4.3.1. Minimum spanning trees 

A minimum spanning tree was created for each historical pond network, which is the 

spanning tree with the shortest total length of edges, which only allows single linkages i.e. 

one node to one node (Figure 3.4.7, for terms see Table 3.2). For the Birmingham pond 

network the minimum spanning tree historically routed outside of the central area of 

Birmingham through areas of higher pond density to the south and to the east (Figure 3.4.7a 

& b). However, due to the loss of ponds to the east, and a slight gain in of the centre of 

Birmingham (Figure 3.4.5), the 2009 minimum spanning tree re-routes through the central 

area (Figure 3.4.7c).  
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Figure 3.4.6. Fitted smoothing functions from generalised additive models (GAMs), 
showing the relationship between land-use coverage and pond density (ponds /km2) 
within Birmingham and the Black Country GAMs fitted to a negative-binomial 
distribution, km squares with 0 coverage of land-use were omitted from the analyses. 
Arable Arable land, Wood Woodland (coniferous and broadleaved), Improved Improved 
grassland, Suburban Suburban land, Urban Urban land, PopDens Average population 
density, ImpSurf Impermeable surface. Shaded areas represent ±1 SE, y axis, e.g. s(x, 2.17) 
= smoothing estimator with 2.17 d.f. 
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Figure 3.4.7. Minimum spanning trees of the changing Birmingham pond network, with 
nodes sized in proportion to their betweeness centrality. Larger nodes have higher 
centrality and highlight the pattern of flow across the landscape (after Bodin and Norberg 
2007) a) ca1904 b) ca1962 c) 2009 

 

a) 

 
b) 

 
c) 
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The increase in average link length in the minimum spanning tree is indicative of 

reducing pond density over time, although the shorter distance required in the 2009 

compared to ca1962 to uphold a fully connected network i.e. maximum edge distance, 

suggests a more even spread of pond sites (Table 3.9). Nonetheless, it is clear that fewer sites 

sustain the minimum spanning tree since ca1904 (Figure 3.4.7b and c), i.e. there are very few 

spatially redundant ponds in the contemporary network. An increasing reliance on 

individual ponds is also clear from the increase in mean and maximum BC node values 

when expressed as a proportion of total paths between nodes that the entire network 

supports (Table 3.9). The greater resilience within the ca1904 network is reflected in the steep 

slope of the percolation line (Figure 3.4.8); ca1962 and 2009 networks are similarly vulnerable 

below a threshold distance of approximately 1500m.  

3.4.3.2. Threshold analysis 

Two threshold distances were applied to each of the historical pond networks to represent 

habitat availability for species with weaker (500m) and stronger (1500m) dispersal abilities. 

The thresholds were based on the results of previous aquatic insect dispersal studies (Table 

3.3). The equivalent connected area (EAC) decreased over time due to direct habitat loss and 

the loss of connecting nodes (stepping stones) across the network. Between the 1500m and 

500m dispersal thresholds, EAC decreased by 47.5%, 55.5% and 59.6% in ca1904, ca1962 and 

2009 respectively, suggesting less resilience to habitat loss (Table 3.10). The greater reliance 

of individual nodes as stepping stones is also shown by an increase in the BCk metric when 

expressed as a proportion of the sum of all BCk metrics (x  BCk %) and by an increase in the 

average IICc value suggesting that fewer nodes are spatially positioned to compensate for the 

loss of others. Consequently, the relative numbers of components increase over time, whilst 

the number of nodes per component and the size of the largest component decrease.  

A dispersal threshold of 1500m maintains the pond network at a high level of 

connectivity, thus 99.9% of the ponds in the ca1904 landscape were connected in a single 

component at this threshold. Similarly, lowering of the dispersal threshold causes 

considerable disconnection within the subsequent networks, such that the number of 

components increase 24 fold in ca1962 (120) and 8 fold in 2009 (96) when the dispersal 

threshold is lowered to 500m. The degree of connectivity maintained with a dispersal 

threshold of 1500m helps to explain trends observed in mean BCIIC, which over time decrease 

with a 500m threshold and increase with a 1500m threshold.  

The BCIIC metric combines source-sink dynamics as well as the importance of a pond as 

a stepping stone within a network (Table 3.2). At a 500m dispersal threshold, larger ponds 
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that theoretically provide greater ecological flow i.e. habitat sources, become more isolated 

over time. This is indicated by ponds with above median surface area having a relatively 

lower BCk metric over time in comparison to those with less than median surface area 

(Appendix 6). The opposite trend is apparent if the dispersal distance is set to 1500m such 

that larger sites remain connected and relatively more so than smaller sites. Therefore, the 

greater connectivity provided by a 1500m dispersal threshold maintains the connection with 

larger habitats such that they contribute to increase mean BCIIC values i.e. at dispersal 

thresholds <1500m more large sites become isolated relative to the number of smaller sites 

over time.  

3.4.4. Identifying key habitats for connectivity  

Ponds were identified in the contemporary network that were important for connectivity 

and ecological flow. In order to do so, two metrics were used in a complementary fashion. 

The first, BCIIC, represents the usage of a habitat patch as a stepping stone and is weighted by 

habitat area (as a proxy for productivity) and the second, IICc, considers the spatial position 

of the patch and the degree to which the loss of the patch can be compensated by others; no 

weight is attributed to the node. This analysis was carried out using a range of dispersal 

distances in order to cover a range of dispersal abilities belonging to members of the aquatic 

community. Dispersal thresholds were applied of 250m, 500m, 1000m, 1500m, 2000m, 2500m, 

5000m and 10000m. 

The contemporary pond network experienced considerable changes with decreasing 

threshold distance (Figure 3.4.10 & Figure 3.4.11). The networks largely comprised of 

isolated patches at the shortest distance (250m) and as a completely connected network 

beyond 2500m (i.e. a single component, Table 3.11). At 250m an average of 1.9 ponds made 

up each component and 118 (35% of total) were completely isolated. The largest 

improvement in overall landscape connectivity was evident when the threshold was 

increased from 500m to 1000m where the percentage increase in EAC peaked at 38%. This 

indicates that, in its current spatial configuration, a large proportion of ponds become 

functionally connected to a greater number of sites when the dispersal threshold is increased 

from 500m to 1000m.  

The 20 highest scoring ponds for BCIIC and IICc were calculated for each dispersal 

distance (Appendix 7), from these, a sub-group of sites were selected that had markedly 

higher metric scores and were considered priority ponds (Table 3.11), added weight was 

given to ponds which had both a high BCIIC and IICc metric, which are listed in bold in Table 

3.11. Between two and 10  ponds  were  selected  as priority ponds at each threshold distance 
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Table 3.9. Minimum spanning tree network summaries (measured from pond centroids) 

 County series National Grid Contemporary 

Average edge distance 204.3 358.6 459.4 

Maximum edge distance 1591.8 2661.6 2360.8 

Average BC % 0.0005 0.0019 0.0029 

Max BC % 0.0038 0.0096 0.0146 

 

Figure 3.4.8. Network percolation; the relative vulnerability of historical pond networks to 
decreasing distance thresholds (measured from pond centroids), as indicated by the 
impact upon the greatest (functionally) connected component (GCC). 

 

 

Table 3.10. Thresholded network summaries 

 Shorter dispersal (500m) Longer dispersal (1500m) 

 ca1904 ca1962 2009 ca1904 ca1962 2009 

EAC 181550 100199 86392 382116 181905 144910 

x   BCk % 0.0000287 0.0019083 0.0029326 0.0005224 0.0019083 0.0029325 

x   IICc 0.003 0.016 0.021 0.003 0.019 0.080 

x   BCIIC 0.407 0.057 0.048 0.229 0.367 0.508 

Links 9795 1358 661 65234 6402 2915 

Components (%)* 70 (3.7%) 125 (23.9%) 108 (31.7%) 2 (0.1%) 5 (1.0%) 12 (3.5%) 

Nodes/component (%)* 27.3 (1.4) 4.2 (0.8) 3.2 (0.9) 957 (50.0) 104.8 (20.0) 28.4 (8.3) 

Largest component (%)* 1230 (64.3) 115 (21.9) 42 (12.3) 1913 (100) 237 (69.5) 157 (46.0) 

*Percentages given in parentheses are calculated relative to the total number of nodes i.e. the 
maximum possible number of components in a completely disconnected network 
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Figure 3.4.9. Historical pond networks of Birmingham. Ponds are shown as circles 
proportional to their BCIIC value and are increasingly dark according to their 
dIICconnector (dIICc) value. Red lines represent links (functional connections) between 
nodes that are below a distance threshold for aquatic insects with shorter (500m) and 
longer (1500m) dispersal traits.  
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 ca1904  ca1962 

500m 
IICc    0 – 3.83 
BCIIC  0 – 11.11 
 

1500m 
IICc    0 – 0.62 
BCIIC 0 – 8.37 
 

500m 
IICc    0 – 2.42 
BCIIC 0 – 2.42 
 

1500m 
IICc    0 – 2.78 
BCIIC 0 – 4.62 
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and between 0 and six were highlighted as having high BCIIC and IICc metrics. Few ponds 

were a repeated priority across different dispersal thresholds, although ponds 43, 186, 218, 

340, were. The use of the BCIIC metric did not simply highlight larger ponds as the range of 

surface areas were ranked between 13 (12216m2) to 340 (2m2) from the 341 ponds. Area 

appeared to have the greatest influence on priority pond selection at the shortest dispersal 

threshold (250m) where most ponds were isolated. At 250m the selected pond areas ranged 

between rank 12 (12345m2) to rank 75 (1320m2). Beyond this, spatial location and the 

ecological flux of the adjoining links and nodes became more influential. The value of the 

IICc metric reduced beyond 2500m as the entire network became connected and, from a 

spatial configuration perspective, an increasing number of ponds were able to compensate 

for the loss of others. By 10000m, only 24 nodes (7%) had a IICc value > 0, suggesting a high 

degree of spatially redundant nodes. 

Habitat within the priority ponds was briefly assessed using surface area and 

vegetation cover. Vegetation cover was split between 0m and 3m to represent low level 

riparian vegetation, and between 3m and 60m to represent mature tree cover. As established 

previously (section 3.4.1), larger ponds had reduced vegetation cover. Seven of the 37 

priority ponds were below 100m2 in surface area (Table 3.12), three of which had mature 

vegetation coverage of >75%, which suggests that, at the time of study, they may have 

supported few species, with the exception of certain specialist taxa. Nonetheless, mature 

vegetation cover was often low (mean 17.7%) and ranged considerably (minima 0, maxima, 

92%). The potentially most valuable pond for connectivity of the pond network (site 340), as 

it was identified as a priority at dispersal distances between 1500m – 2500m, is a very small 

(2m2) ornamental pond. At the opposite end of the scale three sites are in excess of 10000m in 

surface area, two are associated with public parks (sites 13, 17) and one with a disused 

wastewater treatment complex, now with extensive riparian growth (site 12). 
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Figure 3.4.10.  The contemporary pond network of Birmingham.  Ponds are shown as 
circles proportional to their BCIIC (BCIIC) value and are increasingly dark according to their 
dIICconnector (dIICc) value.  Each graph is thresholded at different dispersal distances.  
Red lines represent links (functional connections) between nodes that are below the 
distance threshold a) 250m b) 500m c) 1000m d) 1500m 
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500m 
IICc  0 – 1.96 
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IICc  0 – 9.78 
BCIIC 0 – 9.78 

1500m 
IICc  0 – 3.80 
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Figure 3.4.11.  The contemporary pond network of Birmingham.  Ponds are shown as 
circles proportional to their BCIIC value and are increasingly dark according to their 
dIICconnector (dIIC) value.  Each graph is thresholded at different dispersal distances.  
Red lines represent links (functional connections) between nodes that are below the 
distance threshold a) 2000m b) 2500m c) 5000m d) 10000m 
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2000m 
IICc  0 – 9.45 
BCIIC 0 – 11.69 

2500m 
IICc  0 – 4.20 
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10000m 
IICc  0 – 0.02 
BCIIC 0 – 1.21 
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Table 3.11. Overall thresholded network summaries and priority ponds for the maintenance of connectivity and ecological flow across the 
Birmingham pond network 

Threshold 

(m) 

Comp. Links Nodes/ 

Comp. 

Max. 

Comp. 

EAC % inc. 

EAC 

Priority ponds by BCIIC 

 

Priority ponds by IICc 

250m 309 184 1.9 18 80396 - 32, 36, 75, 24, 48, 45, 12 75 

500m 108 661 3.2 42 86392 7.5 292, 321 292, 321 

1000m 35 1663 9.7 111 118952 37.7 43, 276, 201, 108 43, 276 

1500m 12 2915 28 157 144910 21.8 276, 43, 93, 340, 170, 82, 245, 161, 248, 184 340, 170, 245, 161, 248, 184 

2000m 4 4266 85 190 183768 26.8 340, 79, 220, 186, 50 220, 186 

2500m 1 5781 341 341 236862 28.9 17, 179, 218, 340 17, 44 

5000m 1 14601 341 341 297880 25.8 26, 13, 218, 216, 236, 61 1, 340, 170, 27 

10000m 1 30086 341 341 341764 14.7 211, 172, 186, 106, 142 All ponds <0.025 

Comp Number of components (interconnected sub-networks), Links The number of Euclidean paths between nodes below the threshold distance 

(functional connections), Nodes/Comp The average number of nodes per component Max. Comp The number of nodes in the largest component EAC 

The size of a single habitat path (maximally connected) that would provide the same value of the IIC metric as the actual habitat pattern in the 

landscape (Saura and Torné 2012), % inc. EAC The percentage increase in EAC as a function of increasing threshold distance. Priority ponds are 

established as those that are an important stepping stone between other pairs of nodes in the landscape, where more weight is assigned to the links 

that are expected to carry larger flows of organisms and that connect bigger and potentially more productive ponds (BCIIC). Further prioritisation is 

given to ponds in bold that have a high BCIIC and IICc, which indicates those ponds that are important stepping stones between other nodes, the 

positioning of which is not readily replaced by other nodes in the landscape. Ponds underlined are those that were selected as priority ponds across 

two or more different dispersal thresholds. See Appendix 7 for the top 20 ranked ponds for each metric at each threshold. Pond numbers represent 

their surface area rank with one being the largest.  
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Table 3.12. Habitat characteristic summary of priority ponds sorted by surface area 

Priority 

pond 

number 

Relevant dispersal 

threshold(s) 

Surface area 

(m2) 

Proportional 

vegetation cover 

>3m 

Proportional 

vegetation 

cover 0m >3m 

12 250m 12345 0.000 0.135 

13 5000m 12216 0.023 0.011 

17 2500m 10848 0.139 0.033 

24 250m 6945 0.057 0.109 

26 5000m 6076 0.163 0.056 

32 250m 4066 0.023 0.111 

36 250m 3832 0.005 0.166 

43 1000m, 1500m 3312 0.115 0.009 

45 250m 3195 0.115 0.009 

48 250m 3030 0.000 0.278 

50 2000m 2956 0.000 0.028 

61 5000m 2149 0.086 0.079 

75 250m 1320 0.405 0.013 

79 2000m 1190 0.000 0.006 

82 1500m 1111 0.000 0.002 

93 1500m 949 0.506 0.440 

106 10000m 721 0.253 0.420 

108 1000m 718 0.000 0.208 

142 10000m 381 0.626 0.000 

161 1500m 308 0.000 0.081 

170 1500m 269 0.000 0.154 

172 10000m 261 0.000 0.000 

179 2500m 241 0.066 0.413 

184 1500m 221 0.471 0.071 

186 2000m, 10000m 216 0.189 0.023 

201 1000m 171 0.000 0.000 

211 10000m 148 0.000 0.006 

216 5000m 136 0.000 0.020 

218 2500m, 5000m 135 0.000 0.536 

220 2000m 130 0.085 0.901 

236 5000m 97 0.133 0.570 

245 1500m 84 0.717 0.283 

248 1500m 78 0.919 0.000 

276 1000m, 1500m 39 0.808 0.178 

292 500m 25 0.750 0.000 

321 500m 12 0.061 0.424 

340 1500m, 2000m, 2500m 2 0.000 0.000 

 Mean: 2191 0.177 0.152 
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3.5. Discussion 

Pond loss in Birmingham has been extensive. A rate of pond loss in Birmingham between 

ca1904 and 2009 of 0.78% per annum is comparable to that of London (0.79%) between 1870 

and 1984 (Table 3.4, Langton 1985), and the 82% total loss in pond numbers between ca1904 

and 2009 ranks Birmingham second highest, behind urban London and alongside an 

intensively agricultural landscape (Beresford and Wade 1982 ); although differences in 

survey methodologies are apparent (Wood et al. 2003). The analysis of three time periods 

revealed the extent of pond turnover, which may have been masked by a simple account of 

pond numbers (Williams et al. 1998b). Just over two thirds of the ponds present in the 

contemporary landscape are >50 years old and have considerable vegetation encroachment. 

Whilst some late stages of succession are likely to benefit specialist taxa, such as Coleoptera 

(Lundkvist et al. 2002), macroinvertebrate and macrophyte diversity has been shown to 

plateau around six years after pond creation (Williams et al. 2008), and younger ponds (six to 

12 years old) can be more species rich than older (Williams et al. 1998b).  

Since ca1962, the rate of annual pond loss has declined to 0.1%, consistent with the 

nationwide disappearance of ponds suggested by Biggs et al. (2005). The reduced rate of 

pond loss may be due to the retention of larger ponds, the longevity of which may be 

attributable to slow sedimentation rates (Moss 2010) and higher development costs due to 

their volume. Larger ponds typically have low tree cover and more macrophytes (Oertli et al. 

2002; Sondergaard et al. 2005), which provide habitat for macroinvertebrates, amphibians 

and fish (Gilinsky 1984; Diehl 1992; Williams 1997; Parris 2006; Scheffer et al. 2006). Larger 

ponds may also support larger populations of aquatic insects, however, they are also 

increasingly likely to support fish populations (Sondergaard et al. 2005), which may 

constrain taxon richness (Wood et al. 2001), particularly among the predatory Coleoptera 

(Fairchild et al. 2000; Hinden et al. 2004; Hassall et al. 2011), Odonata (McPeek 1990) and 

Hemiptera (Schilling et al. 2009), although the extent of impact is contingent on refugia 

provided by macrophytes (Gilinsky 1984). However the retention of larger ponds over small, 

vegetation rich and fishless ponds may impact upon regional biodiversity as such sites can 

be highly diverse in the absence of fish predation pressure (Scheffer et al. 2006). That the 

smallest ponds are at risk of infilling is not surprising given the dominance of the littoral 

zone in these systems (by % area) (Declerck et al. 2006), which may succumb to vegetation 

encroachment. However, a large proportion of the pond network comprises of small ponds, 

in a late successional stage (indicated by proportional tree cover), such that for many species 

the connectivity and ecological value of the pond network may be compromised. 
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Traditionally the majority of ponds were associated with farmland (Table 3.7), for the 

watering of livestock and the extraction of marl for fertilizer (Miller 1991). The considerable 

decrease in the number of ponds associated with farmland reflects overall changes in land-

use in BBC. Consequently, many old farm ponds now reside in a suburban landscape or 

have been lost due to urbanisation (e.g. Boothby and Hull 1997), as indicated by a negative 

correlation between pond density and impermeable surface, often used as a proxy for 

urbanisation (Walsh et al. 2001; Hahs and McDonnell 2006). Furthermore, increasing field 

sizes incumbent with agricultural intensification result in pond loss, consistent with Curado 

et al. (2011) and probably representative of an overall decline in habitat heterogeneity as 

observed in other studies (Dover and Sparks 2000; Hinsley and Bellamy 2000; Burel et al. 

2004). At moderate levels of agriculture, however, pond density increases, representing 

overall land de-intensification as the pressure for urban or agricultural development is 

reduced and habitat heterogeneity improves. Pond density also increased with the coverage 

of improved grassland, which includes parkland and golf courses, and therefore ponds in 

amenity use, consistent with Gledhill et al. (2008), who found the highest pond densities 

were associated with greater provision of open access greenspace. Although improved 

grassland also includes land for livestock and may also reflect an increasing likelihood of 

pond presence for livestock watering.  

The loss of ponds in the wider environment may be partially offset by the creation of 

small ponds within private gardens. A study by Davies et al. (2009), suggests that, on 

average, 10% of U.K. households have a garden pond, the average surface area of which is 

0.99m2. The mapping techniques in this study and those elsewhere, likely under represent 

such small water bodies. However, as recognised by Gledhill et al. (2008), although their 

quality may vary, garden ponds could provide vital stepping stones between those in the 

wider landscape, particularly as the proportion of households increase in urban areas as 

suggested by Swan and Oldham (1997 ) following the development of farmland in to 

residences. The 10% presence of ponds within households, taken at face value and modelled 

into the Birmingham landscape, show a great potential to act as compensatory habitats for 

the loss of ponds in the wider landscape (Appendix 8). However, much more field validation 

is required to understand this potential, particularly as garden pond presence is highly 

unlikely to be uniform across households (Loram et al. 2011). 

As illustrated in the minimum spanning tree (Figure 3.4.7c), connectivity of the 2009 

pond network relies on fewer, more isolated ponds to maintain connectivity. In addition, a 

potentially important role is played by a handful of newly created ponds located within 

central Birmingham. These sites are often ornamental ponds, built in association with new 
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developments for aesthetic purposes. Whilst their spatial location places them as new and 

potentially valuable refuges for aquatic insect dispersal in an otherwise intensely developed 

environment, their ecological importance may be undermined by unsympathetic design e.g. 

concrete engineering and management regimes such has been found elsewhere (Hamerlik et 

al. 2011). Furthermore, resistance to aquatic insect movement within the urban landscape 

may compound their geographical isolation, such that if the ease of movement (i.e. effective 

distance) was incorporated the minimum spanning tree may once more re route around the 

edge of the city centre where the landscape presents fewer obstacles.  

The changing spatial configuration of the pond network over time due to pond loss 

and gain affected the roles played by small and large ponds. At a short dispersal threshold 

(500m), more large sites became isolated relative to small sites, such that greater emphasis 

was placed on small sites for providing connectivity. By contrast, a longer dispersal 

threshold (1500m) maintained the connection of large sites to the network. This may mean 

that insects with good dispersal abilities are better able to utilise ponds with large surface 

areas whereas poor dispersers or species with high behavioural constraints to dispersal (e.g. 

Odonata, Conrad et al. 1999; Angelibert and Giani 2003) rely more on small sites to disperse 

in the modern landscape than they have in the past. This contrast in fortunes suggests a 

pinch point in the ecological resilience of the landscape between theoretical dispersal 

distances of 500m and 1500m that is further evidenced by a near ten-fold difference in the 

number of components created between the two thresholds. Further, future pond loss may 

increase the threshold distance required to maintain connection to larger sites such that the 

importance of smaller, more vulnerable ponds increases, posing greater risk to the 

connectivity of the pond network; although this is dependent upon changes in the spatial 

configuration of the network. 

Management effort, therefore, should be aimed at the improvement of currently 

existing ponds as well as the creation of new ponds in optimum locations for the 

improvement of connectivity (Williams et al. 2008), or managing for different levels of 

connectivity across the network (Scheffer et al. 2006). To this end, network theory may once 

more prove useful as a decision-making tool (Gurrutxaga et al. 2011). Whilst in rural areas 

the creation of new ponds may take preference over the restoration of old ponds, with such 

initiatives as the „Million Ponds Project‟ (Pond Conservation 2012). The restoration of ponds 

in an urban context may be a more viable alternative where land prices are high and 

resources for conservation are low (Sandstrom et al. 2006a). Traditionally, patch based 

analyses such as network theory have paid little attention to the internal habitat of the node 

(Urban and Keitt 2001), for example Bodin and Norberg (2007). Here the use of one 
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exclusive, spatially oriented metric alongside a habitat area weighted metric has provided 

some, albeit limited inclusion of intra-habitat quality. The priority sites identified vary in 

their size and current habitat quality. In their current state, the ponds identified may not 

realistically represent sites of high ecological flux. However, the process has provided a 

sound basis upon which to make landscape scale decisions for the conservation of 

biodiversity. The restoration goals of these sites should be based within an urban context, 

taking into account human related values such that restorative action is publicly accepted 

(Ehrenfeld 1998; Sandstrom et al. 2006a). 

3.6. Conclusion 

Ponds are becoming increasingly scarce in the contemporary Birmingham landscape as sites 

are lost to agricultural intensification and urban development. The loss of ponds since ca1904 

is considerable, but the rate of pond loss has shown slowed in recent times. This may be 

reflective of the types of ponds which are being retained as they are often in the public eye 

and form part of amenity parkland. It is apparent, however, that there is a critical threshold 

between 500m and 1500m at which many ponds become more isolated from their 

neighbouring habitats. If pond loss continues the distance of this critical threshold will 

increase, such that more ponds will become isolated by greater distances. With regard to the 

dispersal tendencies of many aquatic insects, the Birmingham pond network would appear 

at risk of becoming a disjointed network of components containing very few ponds each. 

Only a few individuals from each population will connect the sites through infrequent long 

distance dispersal events, much reducing the ecological resilience of the network. However, 

private garden ponds may play a pivotal role in maintaining connectivity between ponds in 

the public realm. 

The identification of priority ponds for the connectivity of the pond network is the 

beginning of a more holistic strategy for the conservation of aquatic fauna and flora than 

traditional single site management. Nonetheless, although this study was performed at a 

landscape scale, the pond network was restricted by an administrative area. An extended 

analysis should be carried out to include the wider pond network such that study 

boundaries are reflective of natural boundaries. This would provide a better representation 

of the pond network, although in doing so, create a need for greater cross administration 

cooperation.  

The biological relevance of the graph theoretic approach, as it has been applied here, 

can also be improved. Currently, there is no consideration of the inter-habitat landscape. In 

urban areas this is likely to form areas of high resistance to aquatic insects such that 
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Euclidean distance poorly represents dispersal potential. Incorporation of a landscape 

resistance matrix is likely to improve model realism, for example, calculation of least cost 

paths or attributing dispersal probabilities to graph links (e.g. Laita et al. 2010; Gurrutxaga et 

al. 2011). However, applications of least-cost paths are not without their own limitations 

(Sawyer et al. 2011). Similarly, whilst pond area provides some information with regard to 

intra-habitat quality, further measures to this end could be incorporated such as remotely 

sensed data. However, species distribution was not the aim of this study. This study 

highlights important nodes within the current pond stock to improve spatial resilience i.e. 

the priority sites are the first sites that landscape managers should consider improving or 

restoring to reduce the vulnerability of the pond network to habitat loss and an increasingly 

urbanised landscape. 

Finally, the manner in which this study has been carried out is stepwise and intuitive 

and can be undertaken with freely available software, as with several other recent studies 

(e.g. Gurrutxaga et al. 2011), such that it may be readily repeated across regions and adapted 

for other landscapes. 
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Chapter 4: The water quality of ponds across an 

urban land-use gradient 

4.1. Introduction 

Ponds are important contributors to regional biodiversity (Williams et al. 2004) and, as such, 

are a high priority for conservation. Many standing waters are threatened by human 

activities (Brönmark and Hansson 2002) and poor water quality, arising through chemical 

contamination (e.g. eutrophication), can severely impair pond communities (Roy et al. 2003; 

Mancini et al. 2005; Imberger et al. 2008). The environmental pollution of standing waters can 

increase susceptibility to invasion by exotic species (Vermonden et al. 2010) and also has 

implications for human health, especially as more people come into contact (e.g. via 

conservation, leisure activities), with standing waters (Birch and McCaskie 1999; Walsh 

2000). In urban areas, where land prices are at a premium and land ownership over large 

areas is complex, ponds are a popular focus for conservation, offering tractable management 

options due to their size and small catchment areas (De Meester et al. 2005; Davies et al. 

2008b). However, many ponds in urban areas are constructed without mind for conservation 

e.g. storm water retention (Tixier et al. 2011), and there is likely to be a trade-off between 

their intended purpose, water quality, and conservation value (Scher et al. 2004; Scher and 

Thiery 2005; Le Viol et al. 2009). 

Ponds differ from other freshwater habitats due to their small volume to edge ratio 

(Declerck et al. 2006) and relatively large littoral zones (Palik et al. 2006). They have a high 

terrestrial-aquatic exchange of both organisms and matter than that of larger lakes and tend 

to receive water predominately through surface water run-off, as opposed to riverine inputs 

(Sondergaard et al. 2005). Pond sediments will tend to accumulate high concentrations of 

nutrients from run-off and organic matter, including leaf litter (Jeppesen et al. 1995). 

However, ponds have a smaller volume of water in which to buffer against internal or 

external sources of contaminants. Consequently, chemical exchanges between the sediment 

and water column can be dominant processes in ponds (Sondergaard et al. 2002; Tessier and 
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Woodruff 2002) and can continue long after management of external inputs have been 

controlled (Scheffer and van Nes 2007; Boros et al. 2009; Peretyatko et al. 2009).  

Smaller systems are more likely to lack fish (De Meester et al. 2005; Sondergaard et al. 

2005; Scheffer et al. 2006), however, the presence of benthic-feeding fish in particular (e.g. 

Cyprinus carpio) can enhance sediment-water chemical exchanges through bioturbation 

(Ritvo et al. 2004). The increase in suspended sediment load as a result of bioturbation can 

have a marked influence on macrophyte community composition (Wood et al. 2001), 

particularly submerged species, due to increased water turbidity and a consequent reduction 

in light availability (Matsuzaki et al. 2007). Therefore, the action of fish can directly or 

indirectly influence dissolved oxygen levels, suspended solids and sediment-water chemical 

exchanges, including nutrients. Furthermore, fish impact upon other biological interactions 

through predation e.g. zooplankton and phytoplankton (Peretyatko et al. 2009).  

Macrophytes can reduce nutrient concentrations and improve water clarity. Nutrient 

uptake occurs through macrophyte root systems from the sediment and associated 

porewaters, and in the case of free-floating vegetation, from the water column (Henry-Silva 

et al. 2008). Water clarity can be improved by the reduction of phytoplankton biomass from 

macrophyte shading (Scheffer 1999). However, macrophyte diversity is generally lower in 

ponds than in larger water bodies (Oertli et al. 2002; Sondergaard et al. 2005), although a 

shallow water depth, which maximises light penetration potential, can enhance plant growth 

rates and over a larger proportion of their area (Declerck et al. 2006). Nonetheless, incident 

light availability varies as a function of shading by riparian trees (Lacoul and Freedman 

2006), which can also provide wind protection reducing turbulence and possible sediment 

resuspension (Scheffer et al. 1993). 

Anthropogenic activities affect the physical and chemical environment and the 

structure of the surrounding landscape (McDonnell and Pickett 1990). Surface waters in 

particular can be contaminated by human activities via point sources, such as sewage 

treatment discharge and by non-point, diffuse sources such as runoff from urban and 

agricultural areas (Sliva and Williams 2001). Negative impacts on water quality are 

frequently reported where urbanisation has occurred (Paul and Meyer 2001; Sonneman et al. 

2001; Roy et al. 2003; Walsh et al. 2003; Mancini et al. 2005; Vermonden et al. 2009), especially 

where impermeable surfaces (or impervious cover) such as buildings and roads are extensive 

(Beasley and Kneale 2002; Mancini et al. 2005; Schueler et al. 2009). The way urbanisation is 

quantified, however, varies considerably depending on the subject matter and question 

being asked (Hahs and McDonnell 2006), but is typically selected from land-use indicators or 

demographic information, such as census data. The proportion of impermeable surface 
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within a catchment has frequently been shown to have a low threshold of impact at around 

30% coverage (Brabec 2009). Above this threshold the impact on water quality can intensify 

(Osborne and Wiley 1988; Walsh 2000; Sliva and Williams 2001). The impact of catchment 

urbanisation can be further confounded by the number of drainage connections, which 

effectively bypass the catchment altogether (Osborne and Wiley 1988; Hatt et al. 2004). In 

doing so, vegetation and other permeable surfaces are avoided, which are important for 

controlling run-off and can provide buffering of contaminants (Osborne and Kovacic 1993; 

Ourso and Frenzel 2003; Hatt et al. 2004).  

The detection and control of diffuse pollution in ponds is an important focus for pond 

conservation (Biggs et al. 2005; Davies et al. 2008a) and there are many sources and pathways, 

which depend on surrounding land-use (Table 4.1). Both agricultural and urban activities 

can produce excessive N and P input to aquatic systems (Paul and Meyer 2001; Roy et al. 

2003; Mancini et al. 2005). N and P is added to agricultural land as fertilizer, a net surplus of 

which frequently remains post harvest and can subsequently be exported to surface waters 

(Carpenter et al. 1998) directly through surface water drainage or through the atmosphere 

from the volatilization of NH3 or N2O and atmospheric deposition (Howarth 1988; Eichner 

1990; Schlesinger and Hartley 1992). In a similar manner, fertilizers applied to manage green 

space such as lawns, public parks and amenity grassland can enter aquatic systems 

(Carpenter et al. 1998). Animal wastes (domestic and wild), for example, from Canada geese 

(Branta canadensis) (Stoianov et al. 2000; Chaichana et al. 2011), a considerable source of N and 

P (Manny et al. 1994) can be deposited on permeable and impermeable surfaces (Bryan-Ellis 

2004). In addition, erosion on construction sites can be extremely high and cause a severely 

elevated sediment input to receiving waters including particle associated P (Cowen and Lee 

1976).  

Drainage misconnections are another important source of polluting runoff to ponds, 

especially in urban areas (Edmonds-Brown and Faulkner 1995; Dunk et al. 2008). This 

incorrect, and usually accidental connection of household drainage (e.g. from toilets, 

showers, sinks and dishwashers), to the surface water drainage system rather than the foul 

water drain result in water, rich in PO4 and organic matter, being released in to surface 

waters. 

Excessive N and P inputs can lead to eutrophication, which has been a recognised problem 

within lakes for decades (Brönmark and Hansson 2002). Eutrophication can have multiple 

negative effects upon freshwater ecosystems (see Table 2.2). Excess nutrients cause dense 

algal and aquatic weed growth that increases oxygen levels during daylight, but rapidly 

depletes  them  over  night.  When  the  plants   senesce   and  decompose,  microbial  activity 



  

 

 72 

Table 4.1: Diffuse pollutants, sources, pathways and associated land-use in the urban landscape 

Land-use Source(s) Pathway(s) Pollutant(s) 

Impermeable surfaces 

(motorways, roads, 

pavements) 

Engines, brakes, exhaust fumes, 

tyres, bodywork 

Surface water drainage, 

atmospheric deposition, 

abandonment and dumping 

Poly-aromatic and mineral-oil hydrocarbons 

Ptot, NO3, NH4 

Na, Mg, Ca, K, SO4, Cl 

Cd, Cu, Pb, Zn, Cr, Fe, Ni, Mn 

 Road salts1 Surface water drainage Na, Cl, Ptot, S, N, Cu, Zn, Ca 

Landscaping Gardens, grassed areas, 

cultivated land 

Surface run-off, surface water 

drainage 

Poly-aromatic and mineral-oil hydrocarbons 

Ptot, NO3, NH4 

Na, Mg, Ca, K, SO4, Cl 

Cd, Cu, Pb, Zn, Cr, Ni 

Pesticides, herbicides 

Buildings Roofing Surface water drainage Poly-aromatic and mineral-oil hydrocarbons 

Ptot, NO3, NH4 

Ca, Cl, Mg, SO4 

Cd, Zn, Cu, Pb, Ni, Cr 

 Residential housing Foul water drainage 

misconnections 

(PO4) 

Data on pollutants and sources after Beasley and Kneale (2002) and Gobel et al. (2007). Pollutants in bold refer to a potential main source 
1Source: Marsalek 2003 
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Table 4.2. Adverse effects on freshwater ecosystems caused by eutrophication  

Increased biomass of freshwater phytoplankton and periphyton 

Shifts in phytoplankton species composition to taxa that may be toxic of inedible (e.g. bloom-

forming cyanobacteria 

Changes in vascular plant production, biomass, and species composition 

Reduced water clarity 

Decreases in the perceived aesthetic value of the water body 

Taste, odour, and water supply filtration problems 

Possible health risks in water supplies 

Elevated pH and dissolved oxygen depletion in the water column 

Increased fish production and harvest 

Shifts in fish species composition towards less desirable species 

Increased probability of fish kills 

after Smith et al. (1999) 
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further reduces oxygenation of waters to levels at which fish kills can occur (Scheffer and 

van Nes 2007). High nutrient addition can shift ponds from a clear water macrophyte-

dominated state to one of high turbidity where all but the most pollution tolerant 

macrophyte species are absent (Scheffer et al. 1993). As plant diversity is closely linked to 

macroinvertebrate diversity (Gledhill et al. 2008), a similar pattern in their diversity and 

abundance can be expected. Other trophic levels can also be affected by such cascading 

effects (Lodi et al. 2011). Eutrophication can interfere with the value of water for fisheries, 

recreation, industry, agriculture and drinking (Carpenter et al. 1998). 

Trace concentrations of many heavy metals are an important component for 

physiological processes in animals, but at increased concentrations they can become 

detrimental to animal health (Brönmark and Hansson 2005). For example, Cu, Ni and Zn are 

critical micro-nutrients, but also the most commonly detected metals in urban runoff 

(Marsalek 1990). Increased road traffic is a key source of increased trace metals loads within 

urban water bodies (see Table 4.1), for example brakes, tyres, bodywork, are sources of 

solids, ranging from rapidly soluble, submicron particles to insoluble size aggregates 

(Sansalone and Buchberger 1997). Concentrations of heavy metals found within organisms 

are related to environmental variables of the water body and its watershed including pH, 

temperature and land-use (Chen et al. 2000) and the mobility of different trace metals within 

pond sediments varies with their sensitivity to changes in physicochemical conditions 

(Durand et al. 2004). Metal elements do not degrade in the environment and are persistent 

contaminants of lake, stream and river sediments (Power and Worsley 2009).  

In the U.K., the Highways Agency has a duty to ensure, so far as reasonably 

practicable, that safe passage along a highway is not endangered by snow or ice (Railways 

and Transport Safety Act 2006). Birmingham City‟s opening rock salt stock is 7000 tonnes 

and road salting typically occurs 40-50 times a year (Birmingham City Council 2011). Rock 

salt consists primarily of Na and Cl together with impurities including P, S, N, Cu and Zn 

(Sliva and Williams 2001), which can represent up to 5% of the salt weight (Marsalek 2003). 

The application of road salt can subsequently increase the load of Na and Cl in water bodies 

receiving surface water, which can cause osmotic stress to organisms as well as increase 

concentrations of heavy metals in the aqueous phase (Mayer et al. 2008).  

Traditional diffuse pollution management practices occur at the catchment level (e.g. 

Walsh et al. 2001; Allan 2004; Donohue et al. 2006). However, catchment delineation in 

heavily altered and artificial landscapes is a difficult and costly process due to drainage 

infrastructure (Akasaka et al. 2010) and the un-natural position of many urban ponds away 

from natural sink holes. Recently, studies have incorporated land-use information at 
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different spatial extents, termed „concentric ring analysis‟ (Pellet et al. 2004), in order to 

establish the most relevant to a study organism or habitat (Pellet et al. 2004; Declerck et al. 

2006; Akasaka et al. 2010). The strongest influence of land-use on pond water quality has 

typically been found at close proximity to the sites. Akasaka et al. (2010) used generalized 

linear modelling (GLM) to relate land-use within increasingly distant spatial extents to a 

PCA score representative of turbidity and nutrient concentration and revealed that land-use 

nearest the ponds (i.e. 100m and 250m) explained most variation in pond water quality. 

Specifically, at the 100m extent, increasing proportions of urban land-use was correlated 

with higher nutrient concentrations and turbidity, whilst the coverage of freshwater habitat 

within 250m was associated with lower concentrations. Similarly, Declerck et al. (2006), in a 

non-urban landscape, found the effects of cropland and forest presence strongest up to 200m 

from the pond edge. Concentric ring analysis, therefore, is a valuable tool for establishing 

relevant spatial extents, within which ponds are most sensitive to change. This can provide a 

sound basis upon which to make effective management decisions. 

In summary, pond water quality can be affected by local physical factors that occur 

within the wetted perimeter and within the water column and by spatial, land-use factors, 

which can affect diffuse pollution sources. The two are inextricably linked, however, the 

relative influence of one over the other upon water quality and the strength of the linkages 

between them can provide valuable information to inform management strategies. Variance 

partitioning (Borcard and Legendre 2002), has previously been used to assess the relative 

influence of multiple explanatory variable groupings such as water quality and habitat for 

macroinvertebrate community composition (e.g. Bechara 1996; Trigal et al. 2007) and climate, 

resource use and urbanisation on fossilised aquatic communities (Sweetman and Smol 2006). 

Few studies have applied the technique to aspects of water quality (but see Kernan and 

Helliwell 2001; Stendera and Johnson 2006).  

This study investigates the spatial and temporal variation in water quality in ponds 

across an urbanisation gradient. Secondly, the water quality of urban ponds is compared to 

accepted environmental standards and contrasted to the results of pond studies within 

different regions and landscapes. Finally, the study combines concentric ring analysis and 

variance partitioning in a novel approach to assess the relative influence of land-use upon 

water quality at different spatial scales when the pure affects of local physical factors have 

been removed. In doing so the spatial extent at which pond water quality is most sensitive to 

alterations in land-use is identified.  
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4.1.1. Objectives and hypotheses 

This chapter presents data to characterise and relate the water quality and contemporary 

land-use surrounding 30 ponds along an rural-urban gradient in the West Midlands over 22 

months (May 2009 – February 2011). The following specific objectives were addressed: 

 

1. To characterise spatial and temporal variation in pond water quality in the 

Birmingham and Black Country (BBC) region. 

 

Hypothesis 1 

Due to local differences in habitat and land-use, water quality in urban ponds is spatially 

and temporally varied, exhibiting wide ranges in water quality parameters.  

 

2. Determine the spatial extent to which pond water quality is most sensitive to land-

use composition along a gradient of urbanisation. 

 

Hypothesis 2 

Land-use exerts the largest influence on water quality at a relatively small spatial extent 

that reflects the catchment area of ponds. 

 

3. Determine whether local features of ponds or surrounding land-use, or a combination 

of both control water quality. 

 

Hypothesis 3 

Local physical factors and land-use are both important for water quality. In terms of land-

use, the degree of urbanisation is the dominant influence. Local physical factors and land-

use are inextricably linked and share a large proportion of the explained variance in water 

quality. 

 

4. Relate water quality with other studies and to environmental standards in order to 

assess how the water quality of urban ponds compares to water quality in other 

landscapes and aquatic systems. 

 

Hypothesis 4 
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Due to the pervasive nature of urbanisation, water quality frequently exceeds 

environmental guidelines. However, these values are comparable to other pond studies 

within anthropogenically disturbed environments. 

4.2. Methods 

4.2.1. Study site selection 

Thirty ponds of contrasting surrounding land-use were selected from an estimated 1023 sites 

in Birmingham and The Black Country (BBC). For the full site selection process see Section 

2.1.  

4.2.2. Field campaign 

Field surveys were carried out on a quarterly basis to represent seasonal differences in water 

quality between May 2009 and February 2011 (Table 4.3). On each visit a water sample was 

collected and observations were made with regard to the local physical conditions. 

4.2.3. Local factors 

4.2.3.1. Water quality 

Once collected, samples were kept cool, filtered (GF/C, 1.2µm) and returned to the 

laboratory for determinations of major ions, trace metals, suspended solids and chlorophyll 

abundance. Triplicate in situ measurements of pH, electrical conductivity (µS/cm), 

temperature (oC) and dissolved oxygen (% saturation) were taken and the average 

measurements were calculated. Mean values of water quality determinands were used 

within ordinations. As the most contemporary, annual measurements from the 2010 

hydrological year only (9th June – 23rd February, Table 4.3) were used to test compliance with 

environmental standards. Further detail on water quality sampling and analysis methods are 

discussed in Section 2.2. 

4.2.3.2. Physical characteristics 

Single measurements of pond surface area and percentages of surface area classified as open 

water, shaded, riparian vegetation and floating vegetation were all derived from a 

combination of digitised field notes and Normalised Difference Vegetation Index (NDVI) 

and photogrammetrically derived height GIS layers (Section 2.3.1.6) against digital pond 

outlines. The percentage of pond bank that was made from concrete was also calculated in a 

GIS from digitized field notes. Water sources (i.e. stream inflows, groundwater, surface run-

off or building run-off) and fish presence information was gathered from stakeholder 
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knowledge and visual inspection. A water level fluctuation index (WLFI) was calculated as 

the standard deviation in depth between surveys (taken quarterly between 2010 – 2011) 

measured at set points within the wetted-perimeter of each pond. 

Macrophyte species presence absence was recorded from within identified 

mesohabitats sampled for macroinvertebrates (Section 2.4) using Haslam et al. (1982) for 

identification. 

4.2.4. Regional factors 

4.2.4.1. Land-use data 

A GIS combining four land cover layers was used to generate detailed land-use data (Section 

2.3). Land-use metrics were calculated for 13 cumulative spatial extents, measured from the 

pond edge in each case to 25m, 50m, 75m, 100m and then 100m increments to 1000m (Table 

4.4). 

Ten ‟urbanisation indicators‟, selected from the land-use variables (indicated by 1 in 

Table 4.4) were incorporated into a PCA to create a score of urbanisation at each spatial 

extent (Section 2.3.1.7). The indicators chosen were those that were used commonly to 

measure urbanisation (see Hahs and McDonnell 2006) and closely linked to a general 

perception of urbanisation. PCA 1 was related to a gradient from a high proportion of arable 

land to a large degree of impermeable surface, PCA 2 is a gradient between high population 

density and an increased percentage of people in rural employment.  

4.2.5. Statistical analyses 

4.2.5.1. Unconstrained and constrained ordination of water quality 

Water quality was examined using ordination. First, a principal components analysis (PCA) 

of measured water quality parameters was carried out to investigate spatial variability 

within the water quality dataset and to establish the underlying water quality gradients 

across the study sites. Second, a variance-partitioning approach (Borcard et al. 1992) using 

redundancy analysis (RDA), was used in order to examine the relative influence of local 

physical factors and land-use factors upon water quality. A set of RDAs were performed 

using land-use coverage data extracted at a series of distances of 25m, 50m and 75m and a 

further ten intervals of 100m from 100m to 1000m. Automatic forward stepwise model 

building was used for each RDA using the function „ordistep‟ in the vegan R package, which 
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Table 4.4. Brief summary of land-use types and their data sources calculated at 13 spatial 
extents (25m – 1,000m) to explain variance in water quality (also see Section 2.3). 
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Road1 ▪     
„Towns & villages‟1 ▪     
Impermeable surface1 ▪     
Water ▪     
Woodland ▪     
Private gardens ▪     
Green space ▪     
Suburban1  ▪    
Urban1  ▪    
Rough grassland  ▪    
Arable1  ▪    
Broadleaved woodland  ▪    
Coniferous woodland  ▪    
Improved grassland  ▪    
Simpsons (1/De)  ▪    
Vegetation >3m <60m   ▪ ▪  
Vegetation >0m < 3m   ▪ ▪  
Vegetation 0m   ▪ ▪  
All vegetation   ▪ ▪  
Building intensity1 ▪   ▪  
Rural employment %1     ▪ 
Population density1     ▪ 
Housing density1     ▪ 

Those greyed out were removed from analyses due to high occurrence of zero values 
1Land-use type used as an „urbanisation indicator‟ to derive a gradient of urbanisation 

Table 4.3. Sampling periods and dates of sampling 

Season and hydrological year Sampling dates 

Late spring/early summer 2009 20th May  – 11th June 2009 

Summer 2009 3rd August – 14th August 2009 

Autumn 2009 3rd November – 17th November 2009 

Winter 2009 27th February – 3rd March 2010 

Late spring/early summer 2010 9th June – 11th June 2010 

Summer 2010 18th August – 25th August 2010 

Autumn 2010 10th November – 13th November 2011 

Winter 2010 21st February – 23rd February 2011 
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uses permutation tests to obtain P values (<999 permutations). The first independent variable 

entered explains most of the variation in the dependent variables, the second one most of the 

remaining variation, and so forth. The procedure finishes when the next variable entered 

does not have a significant partial correlation, where P > 0.05. Using the variance-

partitioning approach (Borcard et al. 1992), four RDAs were carried out at each spatial extent 

to establish the variance in water quality independently attributed to local physical and land-

use factors and shared between the two where each RDA used; A) local physical factors 

alone (constant), B) land-use factors alone, C) local physical factors with the effect of land-use 

„partialled out‟ and, D) land-use factors with the effect of local environmental factors 

partialled out. Shared variance was then calculated by either A – C or B – D. Unexplained 

variance is 100 - (C + D + (A - C or B - D)). Significance of ordination axes in each RDA was 

assessed by ANOVA (<999 permutations, P < 0.05). 

Linear forms of ordination were employed following initial detrended correspondence 

analysis (DAC) using the „decorana‟ function in the vegan R package, which revealed a short 

maximum axis length of 1.58 (Lepš and Šmilauer 2003). Ordinations were carried out using 

the functions „rda‟ for PCA and RDA and „decorana‟ for DAC in the „vegan‟ package 

(Oksanen et al. 2012) for the R statistical program version 2.15.1 (R Core Team and 

contributors worldwide 2012). In the ordinations, mean water quality values from the whole 

field campaign were used and, if needed, transformed to improve normality and 

homogeneity of variance, as tested by Shapiro-Wilk and Levene‟s tests carried out in IBM 

SPSS statistical package version 19 (IBM, Armonk, New York). Data were standardised after 

transformation to 0 mean and 1 standard deviation due to different measurement scales. 

Data transformations were selected from log(n+1), square-root or arcsine transformations. 

Log(n+1) was used for most water quality parameters and arcsine for land-use data 

(proportional data). Variables were removed from the local physical and land-use datasets 

that were collinear. This was performed by removing one of any two variables that were 

greater than +/- 0.7 correlated (Pearson‟s correlation coefficients). The retained variable was 

the one considered most relevant and / or derived from the most contemporary land-use 

dataset (see Section 2.2 for dataset metadata).  

4.2.5.2. Spatial autocorrelation 

Spatial autocorrelation occurs when values at one locality are dependent on the values of 

another. For analysis of water quality this could be borne out of shared water sources, such 

as groundwater, urban drainage infrastructure, synchronous local climatic conditions or run-

off from surrounding land-use. In freshwater habitats, fluctuations in the environment are 

more likely to be correlated at small spatial scales (Bohonak and Jenkins 2003). The study 
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sites were tested for spatial independence at distance intervals using a Mantel correlogram 

using the function „mantel.correlog‟ in the vegan package (Oksanen et al. 2012) for R 

statistical package version 2.15.1 (R Core Team and contributors worldwide 2012). The 

Mantel correlogram is an effective tool for detecting correlation between datasets (Borcard 

and Legendre 2012) and tests for community similarity using Bray-Curtis dissimilarity as a 

function of geographic distance classes (24 classes used). Mantel tests (Mantel 1967) assess 

the magnitude of the correlation between two or more symmetric distance matrices. 

Significance of the matrix correlation coefficient was tested by 999 random permutations 

with a Bonferroni correction. Violations of spatial independence between the study sites 

would indicate the presence of spatial autocorrelation within the dataset, which may 

ultimately lead to biased conclusions. Spatial autocorrelation analysis was performed on 

normalised multivariate water quality data (all parameters) to allow for Bray-Curtis 

computation. 

4.2.5.3. Selection of environmental standards 

The environmental standards referred to here, which have been typically established for 

rivers and lakes, have been used in the absence of pond equivalents. Consequently they are 

seen as the best alternative in the absence of guidelines specifically set for small standing 

waters. The most notable are those used in testing requirements of ecological „good‟ status 

for all surface waters as outlined by the Water Framework Directive (WFD, European 

Commission 2000). The standards used and their sources are listed in Table 4.6.  

Trophic State Index (TSI, Carlson 1977) was calculated for each site to assess their 

nutrient status using the following formula. 

 

This is a measure of the trophic status of a body of water based on chlorophyll a (Chl - a) 

abundances (algal biomass). TSI ranges on a scale from 0-100 that is based upon relationships 

between secchi depth, surface water concentrations of algal biomass, and total phosphorus 

for a set of North American lakes (Carlson 1977). Sites closer to 100 are more eutrophic and 

each major division represents a doubling in algal biomass and can be interpreted according 

to more qualitative descriptions of trophic status (Table 4.5). 

 

 

 

                         (4.2.1) 
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Table 4.5. Interpretations of the Trophic State Index for lakes (TSI, Carlson 1977) and 
potential implications for aquatic biology, after Carlson and Simpson (1996). 

TSI Attributes 

<30 Oligotrophy: Clear water, oxygen throughout the year in the hypolimnion 

30-40 Hypolimnia of shallower lakes may become anoxic 

40-50 Mesotrophy: Water moderately clear, increasing probability of hypolimnetic 

anoxia during summer 

50-60 Eutrophy: Anoxic hypolimnia, macrophyte problems possible 

60-70 Blue-green algae dominate, algal scums and macrophyte problems 

70-80 Hypereutrophy: (light limited productivity). Dense algal and macrophytes 

>80 Algal scums, few macrophytes 
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Table 4.6: Environmental standards adopted from available freshwater guidance and legislation  

Variable Measure Standard Guidance / legislation 

pH ≥6 ≤9 5% and 95%ile values WFD, all rivers 

Conductivity <1,000 µS/cm Annual average WFD1, very shallow, high alkalinity lake 

Temperature <28oC 98%ile (good) WFD, warm water (cyprinid fishery) 

Dissolved oxygen >60% 10%ile (good) WFD1, lowland, high alkalinity river  

Cl <250 mg/l Annual average Council Directive (EC) 76/464/EEC 1976 

NO3 <30 mg/l Annual average (high2) GQA, National Rivers Authority 1994 

SO4 <400 mg/l Annual average Council Directive (EC) 76/464/EEC 1976 

PO4 <0.031 Geometric mean (good1) WFD1, very shallow, high alkalinity lake 

Na <200 mg/l Annual average Council Directive (EC) 98/83/EEC 1998 

NH4 <0.6 90%ile (good1) WFD1, lowland, high alkalinity river 

Mn <30 /300 µg/l Annual average / max. Council Directive (EC) 76/464/EEC 1976 

Fe <1,000 µg/l 95%ile Council Directive (EC) 76/464/EEC 1976 

Zn <1,000 µg/l  Annual average Council Directive (EC) 78/659/EEC 1978 

Suspended solids <25 mg/l Annual average Council Directive (EC) 98/83/EEC 1998 

Chlorophyll a >603 TSI - C = 30.6 + 9.81 Ln [Chlor-a] (in µg/L)  Carlson (1977) 

No appropriate standard for alkalinity (CaCO3), Mg, Ca or K  

1Taken from the UK TAG 2008b and UK TAG 2008c on the Water Framework Directive, standard required for „good‟ status for lakes with 

CaCO3>50mg/l or rivers <80m altitude, >50mgl CaCO3 

2Value at which water is considered to have a „high‟ NO3 concentration under the GQA scheme  

3Trophic State Index derived from chlorophyll a concentration at which lakes are considered eutrophic 
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4.3. Results 

Ponds were slightly alkaline pH (7.61), with relatively low dissolved oxygen (61.1%) and 

elevated PO4 (0.27 mg/l) and NH4 (0.77mg/l) concentrations (Table 4.7). It was apparent that 

most sites experienced dynamic changes in chemical characteristics with large deviations 

over the course of the study (Appendix 9). Across the study, most parameters exhibited wide 

ranges between their minimum and maximum measurements.  

4.3.1. Performance of water quality against environmental guidelines 

Carlson‟s Trophic State Index (TSI, Carlson 1977 Figure 4.3.1) indicated that the majority of 

ponds studied (18/30 sites) exceeded the lower boundary at which they may be considered 

eutrophic (Carlson and Simpson 1996). Above this level there are likely to be more frequent 

problems associated with excessive macrophyte growth, a dominance of blue-green algae 

and an anoxic hypolimnion (in deeper lakes with stratification) (Table 4.5). Six sites (6, 8, 11, 

16, 19 and 22) had a TSI > 70 and may be considered hypereutrophic, although two sites (9 

and 12) had a TSI <30, which suggests oligotrophic conditions with clear water and high 

oxygen conditions throughout the year. PO4, which frequently limits plant growth, and NH4 

concentrations were often in excess of or close to the proposed WFD standards for attaining 

„good‟ ecological status  (UK TAG 2008b; UK TAG 2008c) during 2010 (Figure 4.3.2h & k). In 

contrast, NO3 was consistently measured in lower concentrations than its 30 mg/l standard 

(National Rivers Authority 1994, Figure 4.3.2g). Site 13 had the largest annual geometric 

mean of PO4 in 2010 (1.96 mg/l) and is an ex-marl pit site fed solely from cemetery run-off 

and is almost entirely shaded. The next two sites with the highest annual geometric means 

for 2010, sites 4 and 19 (both 1.06 mg/l), were historically built as part of larger estates that 

have since become enveloped by modern residential housing and also have high levels of 

shading. Sites 4, 13 and 19 also have high 2010 mean concentrations of NH4 2.23 mg/l, 1.48 

mg/l and 1.83 mg/l respectively (Appendix 9). 

Tenth percentile dissolved oxygen levels reflected the eutrophic status of most the 

study sites and were frequently below the 60% saturation threshold set (22/30 sites) for 

attaining „good‟ status under the Water Framework Directive (UK TAG 2008b) (Figure 

4.3.2d), suggesting that most sites experienced periods of low dissolved oxygen levels that 

may be harmful to aquatic life. Suspended solid loads were occasionally in excess of the 25 

mg/l guideline for the protection of coarse fish (Council Directive (EC) 78/659/EEC 1978). 

High suspended sediment loads may also be indicative of high algal density, however, no 

significant correlation was found between suspended solids and chlorophyll a concentration 

(Pearson‟s correlation coefficient, r = 0.21, P > 0.05). 
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Sites 26 and 28 exceeded the 1000 µS/cm standard for conductivity proposed for use in 

the WFD (UK TAG 2008b). Site 26 is fed by a polluted brook whilst site 28 is very shallow 

and heavily shaded and therefore receives a large amount of leaf litter. Site 28 is also the sole 

site to exceed the standard for SO4 set for regulating potentially polluting chemicals (Council 

Directive (EC) 76/464/EEC 1976) (Figure 4.3.2i), which may have resulted from leaf litter 

decomposition. 

Concentrations of Ni, Cu, Co, Cr and Pb were typically below detection limits. Few, 

sites exceeded the standards for Fe (Figure 4.3.2o) and none for Zn (Figure 4.3.2q), however, 

the majority (26/30 sites) exceeded one or both of the standards set for Mn (Figure 4.3.2P). 

Study mean Mn concentrations were 328 µg/l, which is in excess of both aspects of the 

standard (annual mean < 30 µg/l and maxima < 300 µg/l, Council Directive (EC) 

76/464/EEC 1976). An important source of dissolved manganese is anaerobic environments 

where particulate manganese oxides are reduced (Howe et al. 2004). Mn levels within the 

sediments against a geoaccumulation index found sediments within the study ponds to be 

uncontaminated to moderately contaminated with Mn (Cooper 2011), which suggests that 

some urban pond sediments have the potential to provide elevated dissolved Mn 

concentrations when dissolved oxygen levels are reduced. However, water samples were 

taken at the water surface and, although water depth at the sampling point was typically 

shallow i.e. <0.5m, the mechanism behind such elevated Mn concentrations is unclear as 

sediment derived Mn may not necessarily impact upon the whole water column. 

Nonetheless, site 28 had high concentrations of Fe, Mn and Zn, possibly due to its more 

ephemeral nature and therefore enhanced sediment-water exchange and lower dilution 

potential. 

4.3.2. Spatial variation in water quality among ponds 

Spatial variation in water quality was assessed using a PCA of mean water quality data from 

across the study. The first four axes of the PCA of water quality were significant (<999 

permutations, P < 0.05) and cumulatively accounted for 67.7% of the overall variance. Those 

variables that were significantly related (Pearson‟s correlation coefficient, P < 0.05) to any of 

the first four axes are listed in Table 4.8. Axis 1 and 2 described 25.7% and 19% of the 

variation in water quality data respectively (Figure 4.3.3), revealing a strong gradient 

between high dissolved oxygen and pH to high PO4 across the sites (Figure 4.3.3). Also on 

axis 1 are the variables conductivity, CaCO3, Ca and Mg and SO4, which are significantly 

inter-correlated (r > 0.5, P < 0.05)  with the exception of CaCO3 with SO4 (r = 0.29, P > 0.05), 

but which group in a different area of the ordination space due to their relationship with axis 

2. Sites 23 and 29, both well vegetated ponds within nature reserves, are sites with high 
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dissolved oxygen (82.6% and 75.3% study means) and low PO4 (both 0.09 mg/l study means). 

Related to the second axis are sites 26 and 28, with high conductivities (1100 µS/cm and 822 

µS/cm study means). At the opposite end of the oxygen gradient are sites 4, 5, and 19 (35.6%, 

33.7% and 28.9% study means), each of these sites also have considerable tree cover and 

limited macrophytic growth. Concentrations of Mn in particular, and to a lesser extent NH4 

and K, differentiate the first two axes. Sites 28 and 30, which are 100% shaded by mature 

vegetation and site 26 have high NH4 concentrations, whilst the open waters of ponds 10, 14 

and 24 have low NH4 concentrations. 

PCA axes 3 and 4 (Figure 4.3.4) are gradients in salinity (Na and Cl) and turbidity (as 

described by suspended solids and chlorophyll a) and describe 13.6% and 9.4% of the 

variation respectively. On axis 3, sites 2 and 17 are sites with high Na and Cl concentrations 

(> 50 mg/l Na, > 95 mg/l Cl study means). Site 2 is immediately adjacent to the M6 

motorway and site 17 receives storm water; both receive run-off which likely includes salt 

compounds following de-icing activity. Sites 6 (139 µg/l) and 22 (127 µg/l) are those with 

high study mean chlorophyll a and suspended solids concentrations, 27 mg/l and 67 mg/l 

respectively. Site 6 is a heavily fished pond stocked with carp and other coarse fish where a 

large amount of bioturbation can be expected and site 22 is a very shallow and silted pond 

situated at a cross-road and is almost entirely choked with duckweed (Lemna spp.) and 

liverwort (Riccia fluitans). Conversely, site 5 is a heavily shaded pond that receives run-off 

and groundwater from the surrounding woodland (predominately English oak (Quercus 

robur) and has the lowest mean water temperature (11.2oC), which inhibits algal growth.  
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Table 4.7. Summary of water quality parameters across the study sites (n=30). Mean values 
for each year and for the study duration, minimum and maximum given in parenthesis. 

Variable Unit 2009 2010 Both years 

pH - 7.59 (6.2-10.0) 7.63 (6.7-9.1) 7.61 (6.2-10.0) 
Conductivity µS/cm 501.8 (191-1526) 554.3 (45-2418) 528.0 (45-24181) 
Temperature oC 12.6 (2.7-27.5) 12.1 (3.9-23.8) 12.3 (2.7-27.5) 
Alkalinity1 mg/l (CaCO3) 125.4 (28-310) 139.0 (40-342) 134.4 (28-342) 
Dissolved oxygen % saturation 64.4 (6.0-185.2) 57.7 (6.5-157.3) 61.1 (6.0-185.2) 
Cl mg/l 41.7 (1.7-377.7) 54.3 (0.7-251.0) 47.8 (0.7-377.7) 
NO3 mg/l 5.96 (0.0-77.5) 3.32 (0.01-25.2) 4.58 (0.01-77.5) 
PO42 mg/l 0.33 (0.01-2.63) 0.38 (0.00-2.63) 0.37 (0.00-2.63) 
SO4 mg/l 40.8 (0.93-183.3) 68.7 (1.54-1312) 54.7 (0.93-1312) 
Na mg/l 25.7 (4.24-209.3) 28.3 (5.93-142.2) 27.0 (4.24-209.3) 
NH4 mg/l 0.56 (0.0-6.55) 0.98 (0.03-8.21) 0.77 (0.03-8.21) 
K mg/l 4.91 (0.73-13.24) 6.10 (0.58-21.39) 5.50 (0.58-21.39) 
Mg mg/l 6.54 (1.56-28.14) 8.76 (2.94-41.36) 7.65 (1.56-41.36) 
Ca mg/l 50.3 (13.9-136.2) 56.4 (12.0-516.4) 53.3 (12.0-516.4) 
Fe µg/l 451 (0-8139) 284 (38-2181) 368 (38-8139) 
Mn µg/l 275 (0-3623) 381 (6-9211) 328 (6-9211) 
Zn µg/l 63 (0-803) 21 (12-57) 42 (12-803) 
Chlorophyll a2 µg/l 89.6 (0.6-1495) 39.3 (0.0-604.1) 60.7 (0.0-1495) 
Suspended solids2 mg/l 18.9 (0.0-109.8) 16.3 (0.0-77.8) 17.4 (0.0-109.8) 

* Zero values represent concentrations below detection limits (Appendix 3)  
1 Data collected from autumn 2009, 2 Data collected from summer 2009 

 

 

Figure 4.3.1. Trophic State Index (TSI) derived from chlorophyll a analysis (Carlson 1977). 
The value indicated represents the approximate lower boundary for eutrophic conditions, 
after Carlson and Simpson (1996). 

 

  

0

10

20

30

40

50

60

70

80

90

19 22 11 6 16 8 28 24 2 14 10 13 27 25 23 1 26 5 20 30 15 4 29 17 21 7 3 18 12 9

T
ro

p
h

ic
 S

ta
te

 I
n

d
e

x
 (

T
S

I)

Site

Eutrophic 



 
  

88 

Figure 4.3.2. Individual site values for water quality, June 2010 – February 2011 against 
environmental standard boundaries and thresholds (indicated by red dashed line(s), refer 
to Table 4.6 for sources). Sites are ranked left to right, highest to lowest values. Dark grey 
bars indicates sites failing >5 different standards 
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Figure 4.3.2 (cont) Individual site values for water quality, June 2010 – February 2011 
against environmental standard boundaries and thresholds (indicated by red dashed 
line(s), refer to Table 4.6 for sources). Sites are ranked left to right, highest to lowest 
values. Dark grey bars indicates sites failing >5 different standards 
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Figure 4.3.2 (cont) Individual site values for water quality, June 2010 – February 2011 
against environmental standard boundaries and thresholds (indicated by red dashed 
line(s), refer to Table 4.6 for sources) Sites are ranked left to right, highest to lowest 
values. Dark grey bars indicates sites failing >5 different standards 
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Table 4.8. Water quality variables significantly correlated to at least one of the first four 
PCA axes (Pearson’s correlation coefficient)  

Variable Axis 1 Axis 2 Axis 3 Axis 4 

Conductivity 0.66 -0.63   
Temperature 0.51    
pH 0.63 0.59   
Dissolved oxygen 0.70 0.53   
CaCO3 0.58    
NH4  -0.57   
Ca 0.67 -0.50   
Cl   0.87  
K  -0.66   
Mg 0.68    
Na   0.84  
PO4 -0.62    
SO4 0.67    
Mn  -0.84   
Zn -0.46    
Suspended solids    -0.87 

Chlorophyll a -0.53   -0.62 

Significant of relationship, P <0.1 = I, <0.05 = I, <0.01 = I 
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Figure 4.3.3. Principal components analysis (PCA) biplot for axes 1 and 2 showing spatial 
variation in water quality parameters and pond sites. Vectors are shown for significant 
parameters as per Table 4.8. 

 

Figure 4.3.4. Principal components analysis (PCA) biplot for axes 3 and 4 showing spatial 
variation in water quality parameters and pond sites. Vectors are shown for significant 
parameters as per Table 4.8. 
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4.3.3. Inter-seasonal water quality 

4.3.3.1. In situ measurements  

Site mean pH (range 6.2 – 10.0) and conductivity (45 – 2418 µS/cm) were relatively constant 

among seasons and years (Appendix 10a & b). Nevertheless, boxplots revealed strong 

temporal variation in pH and conductivity in some sites receiving storm water drainage (e.g. 

17, range 44.5 µS/cm to 1526 µS/cm).  

Water temperature varied seasonally, with summer maxima (2009 22.7oC, 2010 23.8oC) 

and winter minima (2009 2.7oC, 2010 3.9oC) and synchronicity between years (Appendix 10c). 

Dissolved oxygen concentrations were inversely related to water temperature i.e. lower in 

summer 2009 (mean 56.6%) and 2010 (mean 52.0%) highest in both the winter years when the 

temperature is at its lowest and biological uptake is reduced. Again, boxplots (Appendix 

10d) revealed marked variation about the mean, especially in summer 2009 and 2010 when 

both severely depleted (7.8%) and super-saturated (185.2%) oxygen levels were recorded in 

some ponds. The greatest temporal variation in oxygen saturation was recorded at site 15 

with an 11.9% minima (summer 2010) and 185.3% maxima (summer 2009) as a consequence 

of changing phytoplankton biomass.  

Site alkalinity varied considerably (range 28 – 342 mg/l CaCO3), although mean values 

remained relatively consistent (range 123 – 148 mg/l CaCO3). There was no clear seasonal 

trend in alkalinity values (Appendix 10e). 

4.3.3.2. Major anion analysis 

PO4 concentrations were consistently high across all seasons (Appendix 11c), 24 sites 

recorded PO4 concentrations in excess of 0.1 mg/l and 9 greater than 1 mg/l. However, PO4 

concentrations showed winter lows (mean values 0.22 mg/l winter 2009 and 0.17 mg/l 

winter 2010). The peak season for PO4 appeared to be spring. Although PO4 concentrations 

were not available for spring 2009 (refer to Section 2.2.2), spring 2010 concentrations (mean 

0.51 mg/l) were at least twice the concentration of winter 2009 or 2010. By contrast, NO3 

concentrations, although considerably lower than the 30 mg/l standard (National Rivers 

Authority 1994), tended to increase throughout the year to winter maxima (mean values 16.7 

mg/l winter 2009 and 7.31 mg/l winter 2010, Appendix 11b). Spring had the lowest NO3 

concentrations (0.25 mg/l spring 2009, 1.15 mg/l spring 2010). Using the Redfield ratio 

(Redfield 1934), the majority of systems switched from being NO3 limited during spring and 

summer to PO4 limited during autumn and winter (Figure 4.3.5).  
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Cl values in each year showed winter peaks (mean 71.4 mg/l 2009 and 56.8 mg/l 2010). 

In both 2009 and 2010 winters site 30 recorded extremely high Cl concentrations (370.1 mg/l 

and 172.7 mg/l), which may suggest surface water drainage entering site 30 following period 

of road gritting (Appendix 11c). 

SO4 was consistent between years with the exception of summer 2010 values (mean 125 

mg/l), which increased as consequence of several sites with very high concentrations (sites 

21, 23, 28 and 29 >200 mg/l, Appendix 11d).  

4.3.3.3. Major cation analysis 

Site mean Na (range 4.2 mg/l – 209.3 mg/l) showed winter maxima (mean values 42.7 mg/l 

winter 2009 and 31.2 mg/l winter 2010), and reflected that shown by Cl (Section 4.3.3.2). 

Similarly, this is likely as a consequence of road gritting for the protection of road surfaces 

from ice, which has subsequently been received within surface water drainage. Site 30 had 

high concentrations of Na in both years during winter (201.6 mg/l 2009 and 94.2mg/l 2010) 

and 17 has the highest concentration in winter 2009 (209.3mg/l). 

Elevated concentrations of Na, NH4, K, Mg and Ca were recorded during summer 2010 

(Appendix 12). However, there was no clear temporal trend in K, Mg or Ca across the study. 

Inter-quartile ranges in NH4 were reduced during autumn and winter and expanded during 

summer. NH4 is derived from the aerobic and anaerobic decay of organic material the highly 

variable concentrations during the summer sampling period (3rd – 19th August) coincided 

with the end of the growing season. The relative consistency of median concentrations across 

seasons, however, suggested that increases in NH4 were restricted to a subset of sites. 

4.3.3.4. Trace metals analysis 

Very few ponds had concentrations of Co, Cr, Cu, Ni or Pb above the detection limits. Fe and 

Zn concentrations were consistent between the seasons, with the exception of relatively high 

concentrations of Zn during spring 2009 (median 282 µg/l and 803µg/l maxima). Fe 

concentrations were typically below 1000 µg/l and median values fluctuated very little 

between seasons (median range 162 µg/l – 333 µg/l) (Appendix 13a). The majority of 

measurements that exceeded 1000 µg/l were restricted to sites 11 and 22. Mn values were in 

the same range as Fe, although showed a greater deal of variability across the sites within 

each season (Appendix 13b). Mn concentrations were lowest in both winter seasons (mean 

156 µg/l 2009 and 263 µg/l 2010), approximately half the peak mean concentration (578 µg/l 

summer 2010). Zn was rarely measured much above the detection limit (Appendix 13c) and 

average concentrations were an order of magnitude lower than Fe or Mn, with the exception 

of spring 2009. 
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4.3.3.5. Chlorophyll a and suspended solids 

Suspended solids and chlorophyll a showed a similar overall trend to each other, although 

chlorophyll a was considerably more variable (Appendix 14a). The similar trend is likely due 

to the inclusion of phytoplankton biomass within the suspended solids analysis. Chlorophyll 

a abundances peaked during the summer (maxima 604 µg/l and median values 22.2 µg/l 

2009 and 23.4 µg/l 2010) and winter, (maxima >1,000 µg/l and median values 84.1 µg/l 2009 

and 27.4 µg/l 2010). Similarly, suspended solids concentrations peaked during summer 

(median values 14.1 mg/l 2009 and 12.0 mg/l 2010) and winter seasons (median values 13.5 

mg/l 2009 and 15.2 mg/l 2010) and approximately doubled the concentrations measured in 

spring and autumn. 

4.3.4. Analysis of local physical and land-use upon water quality 

The variance partitioning approach suggested that, at all spatial extents, local physical 

factors were able to account for a greater proportion of variance in water quality than land 

use factors (Figure 4.3.6a). RDAs using land-use factors, with local physical factors partialled 

out revealed that an aspect of urbanisation i.e. PCA 1 (section 4.2.4.1), road surfaces or urban 

land-cover was important at each spatial extent from 25m up to 700m, with the exception of 

the model at 300m (Figure 4.3.6b). Overall, the difference in explanatory power of the models 

between the spatial extents is relatively small, the most powerful model being able to explain 

a further 11.2% of total water quality variance (explained + unexplained) than the least 

powerful. Nonetheless, taken in the context of explained variance only, the most powerful 

model (at 100m) is 37.2% more powerful than the least.  

The relative importance of local physical characteristics against land-use factors is 

greatest up to 25m from the pond edge and greater than 800m from the pond edge 

explaining between 22.9% and 23.2% of water quality variability (Figure 4.3.6a). Between 

50m and 700m the influence of the surrounding land use upon water quality increases and 

peaks at 100m where it accounts for 25.4% of water quality variation before reducing from 

400m onwards. At 100m, the local physical model explains 16.2% with land-use factors 

partialled out, which in turn explain 16.1% of the variation. In total, the model accounts for 

41.5% of variation in water quality (16.1 + 16.2 + 9.2 shared explained variance).  

At 100m, the urbanisation gradient, PCA 1, derived from 10 „urbanisation indicators‟ 

was the most powerful explanatory variable followed by the proportion of mature 

vegetation (Figure 4.3.6b). Figure 4.3.7 displays the RDA for land-use at 100m alone where 

the amount of explained variance by land-use factors peaked. The first two axes were 

significant (<999 permutations, P < 0.05). 53.1% of constrained variance was explained on the 
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first axis and 28.7% on the second axis. The first axis describes a gradient of urbanisation 

(Pearson‟s r = -0.90, P < 0.001) and the second axis describes a gradient of mature vegetation 

(Pearson‟s r = 0.83, P < 0.001). The water quality parameters significantly associated with 

each axis are listed in Table 4.9. Urbanisation had the strongest positive relationship with 

PO4 and chlorophyll a and conversely with the inter-correlated variables of conductivity, Mg, 

alkalinity, Ca and SO4. The proportion of mature vegetation was negatively correlated with 

temperature and dissolved oxygen, and to a lesser extent pH, whilst it was positively 

correlated with PO4. Mn concentrations, although highly variable (Figure 4.3.3), were only 

weakly associated with an increase in mature vegetation, similarly, concentrations of NH4 

and K were not significantly related to any of the three axes.  

The first two axes of the RDA of local physical factors were significant (999 

permutations, P < 0.05) (Figure 4.3.8). 59.1% of constrained variance was explained on the 

first axis and 26.2% on the second axis. The first axis describes a gradient of shading as a 

consequence of increasing tree cover (Pearson‟s r = -0.92, P < 0.001), through to high 

macrophyte richness (and lack of shading, Pearson‟s, r = -0.64, P <0.001), and the second axis 

describes a transition between sites that do and do not receive surface run-off (Pearson‟s r = -

0.84, P < 0.001). The water quality parameters significantly associated with each axis are 

listed in Table 4.10. Tree shading had a strong positive relationship with NH4, PO4 and Mn 

and a strong negative relationship with temperature, pH and dissolved oxygen. Dissolved 

oxygen in particular is related to macrophyte richness (Pearson‟s, r = 0.38, P <0.05). Tree 

coverage of 30% has previously been suggested to enhance macrophyte richness (Gee et al. 

1997), although such a pattern was not clear here. The two most macrophyte diverse sites 

(sites 2, 23) had 38% and 41% tree cover respectively. A negative relationship exists between 

tree cover and macrophyte richness (Pearson‟s, r = -0.40, P < 0.05). In addition, a strong 

relationship between macrophyte richness and percentage concrete edge was found 

(Pearson‟s r = 0.59, P < 0.001). Surface run-off was strongly related to increased 

concentrations of Na and Cl, whilst it was only weakly negatively correlated to temperature, 

alkalinity, K and Zn.  

The results of a Mantel correlogram suggested a lack of spatial autocorrelation in water 

quality composition between the study sites (Figure 4.3.9). At no distance was the 

relationship significant (Bonferroni correction, 999 permutations) and the Mantel correlation 

coefficients were low (maximum 0.065). Therefore, spatial independence amongst the study 

ponds was assumed. 
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Figure 4.3.5. Proportion of sites where plant growth is limited by PO4 or NO3 using the 
Redfield (Redfield 1934) ratio 16 NO3 : 1 PO4 

 

 

Figure 4.3.6. Transitions in the fitness of models for explaining water quality variation.  
a) Stacked bar charts representing the partition of variance explained by the local physical 
factors alone, land-use at a given spatial extent and variance shared between both local 
physical and land-use factors b) Significant explanatory variables, in order of appearance 
within each stepwise RDA of land use explaining water quality variation at a given 
spatial extent 
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Figure 4.3.7. RDA biplot of water quality constrained by land use at 100m only 

 

Figure 4.3.8. RDA biplot of water quality constrained by local physical factors only 
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Table 4.9. Water quality variables significantly correlated to at least one of the two 
significant RDA axes (Pearson’s correlation coefficient) using land-use at 100m 

 EC oC pH DO Alk Ca Cl Mg Na NO3 PO4 SO4 Fe Mn Zn Chla 

Axis 1 0.67   0.35 0.39 0.61 0.32 0.67 0.35  -0.50 0.79   -0.30 -0.50 

Axis 2  -0.70 -0.37 -0.56       0.42   0.36   

Significance of relationship, P < 0.1 = I, < 0.05 = I, <0.01 = I 

 

Table 4.10. Water quality variables significantly correlated to at least one of the two RDA 
axes (Pearson’s correlation coefficient) using local physical factors 

 oC pH DO Alk NH4 Cl K Na Mg NO3 PO4 Fe Mn Zn 

Axis 1 -0.75 -0.60 -0.78  0.51  0.34  0.30 -0.37 0.73 0.31 0.66 0.42 

Axis 2 -0.39   -0.37  0.53 -0.31 0.61      -0.37 

  Significance of relationship, P < 0.1 = I, < 0.05 = I, <0.01 = I 

 

Figure 4.3.9. Mantel correlogram for water quality composition across 30 pond sites. 
Distance class refers to the geographical distance between sites (24 bins). Solid squares 
show autocorrelations significant at Bonferonni corrected level (none). 
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4.4. Discussion 

4.4.1. Water quality in the ponds of Birmingham and the Black Country 

Water quality within urban ponds was extremely varied, possibly due to their small volume 

and catchment areas (Davies et al. 2008b). The ranges in water quality exhibited were more 

extensive than reported in other pond studies (Table 4.11), possibly due to increased 

complexity of land-use in BBC or accumulated contaminants from past pollution events 

(Durant et al. 2004; Graney and Eriksen 2004). Despite the difference in ranges, average 

values were consistent with those found in a similar study of urban drainage systems in the 

Netherlands (Vermonden et al. 2009). However, nutrient concentrations (NO3 and PO4) in 

our study were higher, and more similar to ponds in an agricultural landscape (Williams et 

al. 2004) and to those reported in a study of old industrial mill ponds (Wood and Barker 

2000).  

Urban ponds frequently failed to achieve environmental standards for water quality. 

The failings were particularly acute for PO4, dissolved oxygen, Mn and NH4. Against water 

quality standards for attaining „good‟ ecological status under the WFD for PO4 (for lakes), 

dissolved oxygen (for rivers) and NH4 (for rivers) all the ponds sampled failed on at least 

one occasion in 2010. The „good‟ ecological status of all surface waters by 2015 is a 

prerequisite of the WFD. However, the standards may be inappropriate for ponds, for 

example, average PO4 concentration in „minimally impaired‟ ponds was 0.07 mg/l (Table 

4.11) and would classify as „moderate‟ under the General Quality Assessment for rivers 

(National Rivers Authority 1994), suggesting relatively elevated levels in ponds are difficult 

to avoid. Eutrophication is a slow natural successional process in closed ponds over long 

periods of time (Khan and Ansari 2005) and in the absence of proactive management should 

be expected. Under the WFD, however, urban ponds such as studied here are likely to 

classify as artificial water bodies (AWB) as they exist through the creation of man where no 

water body previously existed (UK TAG 2008a). As such, AWBs will be required to achieve 

an alternate objective of at least „good ecological potential‟ (GEP), which is assessed against 

both physical-chemical characteristics of the pond and the mitigation measures that may 

practicably be implemented.  
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Table 4.11. Comparison of average (minimum and maximum) values for water quality 
variables to 3 similar pond surveys 

Variable Unit This study* 

(n=30) 

Urban drainage 

systems1 

(n=36) 

Agricultural 

landscape2 

(n=65) 

Irrigation 

ponds3 

 (n=55) 

pH - 7.6 (6.2-10) 7.6 (7.1-9.2) 8.1 (7.5-8.9) 7.2 (5.5 – 10.6) 

Temperature oC 12.3 (2.7-27.5) - - - 

Dissolved oxygen % sat. 61.1 (6.0-185.2) - 136 (63-255) - 

Conductivity µS/cm 528 (45-2418) 527 (288-667) 654 (322-1265) - 

Cl mg/l 47.8 (0.7-377.8) 44.7 (29.0-58.0) _ - 

NO3 mg/l 5.2 (0.0-77.5) 3.4 (0.0-10.3) 3.7 (0.1-38.3) - 

PO4 mg/l 0.32 (0.01-2.63) 0.11 (0.02-0.93) 0.27(0.00-2.49)3 0.14 (0.01 –1.28) 

SO4 mg/l 54.6 (0.9-1312) - - - 

Na mg/l 26.7 (15.0-209.3) 28.4 (18.0-36.0) - - 

NH4 mg/l 0.98 (0.07-8.21) - - - 

K mg/l 5.5 (0.6-17.1) 4.7 (0.8-10.6) - - 

Mg mg/l 7.6 (1.6-41.4) 8.9 (3.0-13.3) - - 

Ca mg/l 52.9 (12.0-413.1) 61.3 (14.0-88.0) - - 

Suspended solids mg/l 17.6 (0.9 –109.8) - 73.0 (1.0-794) 17.4 (1.7 – 135) 

Chlorophyll a µg/l 60.8 (0.0 – 1494) - - 129 (3.1 – 577) 

Fe µg/l 480 (0-8139) 116 (25-653) - - 

Mn µg/l 473 (0-9211) - - - 

Zn µg/l 80 (0-27) 31 (10-68) - - 

1 Vermonden et al. (2009), 2Williams et al. (2004), 3Akasaka et al. (2010) 
3Total phosphorus 

* Zero values represent concentrations below detection limits (Appendix 3) 
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Study mean NH4 concentration was more than three times elevated when compared to 

a ‟minimally-impacted‟ dataset (Biggs et al. 2005), although the values were similar to a study 

of two urban lakes in London (Birch and McCaskie 1999). In its own right NH4 is largely 

harmless, aside from its potential contribution to nitrification processes, however, in higher 

pH conditions, >8, it can switch to the more toxic ammonia form (NH3), which can be 

harmful to aquatic life. 50% of sites recorded pH values in excess of pH 8 at least once during 

the study, although the average was pH 7.6. High pH can be caused by photosynthesis in 

poorly buffered and nutrient-enriched lakes where carbon dioxide levels are reduced during 

photosynthesis (Lampert and Sommer 2007). The fluctuations in NO3 concentrations, 

combined with NH4 concentrations which generally reduced during autumn and winter may 

indicate a combination of reduced uptake by plant life and nitrification processes. Under oxic 

conditions NH4 is first oxidised to nitrite (NO2) and then to NO3.  

Low oxygen levels are frequently reported in shallow waters (Gee et al. 1997; Birch and 

McCaskie 1999; Angelibert et al. 2004) and typically occur during the summer months 

(Brönmark and Hansson 2005), the urban ponds studied here were no exception. Mean study 

dissolved oxygen levels were considerably lower than similar studies have reported, with 

the value from this study (61.1%) close to the minimum recorded in the study of ponds 

(Williams et al. 2004) within an agricultural region (63%, Table 4.11). Oxygen depletion 

during spring and summer is a consequence of a high density of primary producers, such as 

submerged macrophytes, phytoplankton and substrate-associated algae, which produce 

oxygen during the day and consume oxygen overnight. Many of the ponds studied here 

were nutrient enriched, which can encourage such conditions. The highest chlorophyll a 

concentrations were found on those sites with higher concentrations of PO4. During the 

daytime this can cause super saturation and oxygen levels well in excess of 100%, overnight 

however, levels can decline rapidly and therefore account for the wide range of oxygen 

conditions sampled.  

Chlorophyll a (algal biomass) did not appear to show a typical spring and summer 

maxima (Sommer 1986), instead, peak concentrations were recorded during the summer and 

winter months. On average, the study ponds had 30% tree coverage and 12 had coverage 

greater than 30%. During the summer and autumn months, high proportions of tree cover 

are likely to restrict light penetration to the water column and as a consequence, algal growth 

will be inhibited. As deciduous trees senesce, however, light exposure to the water surface 

will increase dramatically, and in nutrient rich environments dense stands of phytoplankton 

could be expected. Algal growth during winter periods may also be aided by PO4 released 

during leaf litter breakdown and higher latent temperatures due to the effects of the urban 
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heat island (UHI, Oke 1973). The reduction of PO4 during winter may be attributed to uptake 

by phytoplankton, rather than an overall reduction in PO4 availability. By comparison to an 

urban stream, Stoianov et al. (2000) found high summertime chlorophyll a concentrations 

between 100µg/l and 200µg/l. Chlorophyll a concentrations in this study are on average 

slightly lower, but considerably wider ranging, with a 1494µg/l maxima. 

Mn was frequently recorded at concentrations that exceeded the environmental 

standard of 30 mg/l annual mean (Council Directive (EC) 76/464/EEC 1976). Mn is an 

essential nutrient for microorganisms, plants and animals. Dissolved Mn concentrations 

>0.8mg/l, as was the case in seven ponds, may cause fatality in some aquatic invertebrates, 

e.g. Daphnia magna (Straus 1820) (Reimer 1999). In greater concentrations, >1.9mg/l, as at two 

ponds, freshwater algae Scenedesmus quadricauda (Meyen 1829) may also be impacted 

(Fargasova et al. 1999). Freshwater molluscs and crustaceans are the most Mn sensitive 

freshwater macroinvertebrates (Howe et al. 2004), but would require concentrations well in 

excess of those recorded here to be impacted, for example, LC50 for Asellus aquaticus over 96 

hours is 333mg/l (Martin and Holdich 1986).  

Cl had a considerably wide range, as did Na (see Table 4.11). NaCl is the main 

ingredient of de-icing salts used on road surfaces during winter (Gobel et al. 2007) and 

previous studies have recorded high concentrations of Na and Cl in urban streams (e.g. 

Peters and Turk 1981; Jackson and Jobbagy 2005; Cunningham et al. 2009) and highway 

retention ponds (Le Viol et al. 2009). Winter 2009 was unusually cold and snowfall had left 

many roads snow-covered and some ponds frozen such that de-icing salts were distributed. 

The maximum concentrations recorded in this study, however, (Na 209mg/l and 201mg/l, 

Cl 378mg/l and 370mg/l) are unlikely to be high enough to be toxic to aquatic 

macroinvertebrates e.g. Callibaetis fluctuans (Walsh 1862) and Physella integra (Haldeman 

1841) show considerable tolerance for increased Cl up to 5000 mg/l (Benbow and Merritt 

2004), however, concentrations in the same magnitude as those found here (645 mg/l) in a 

controlled experiment reduced zooplankton abundance and consequently increase algal 

biomass (Van Meter et al. 2011). Moreover, the potential for complexation of other more toxic 

substances from sediments may be increased under higher Na and Cl concentrations (Le Viol 

et al. 2009). There has been little consideration for accumulated concentrations of Cl in 

freshwaters globally (Jackson and Jobbagy 2005). 

Concentrations of suspended solids were generally lower and with a smaller range 

than that of agricultural ponds (Table 4.11) and comparable to that of the ‟unimpaired‟ 

dataset (Biggs et al. 2005). Nonetheless, five sites were in excess of the 25mg/l standard 

(Council Directive (EC) 78/659/EEC 1978). Bioturbation by fish is a possible cause but, of 
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these sites only one had fish presence and is therefore unlikely. However, the remaining four 

sites were typically unstable and had high wetland fluctuation index scores (WLFI), 

suggesting that the ponds received water from surface water run-off, which is likely to 

contain a high sediment load as particulate matter is washed off surrounding surfaces (Paul 

and Meyer 2001). Overall, a significant relationship was found between suspended solids 

and WLFI (Pearson‟s, r = 0.48, P = <0.01). Other potential sources of suspended solids may 

be wildfowl faeces or as a result of fish bioturbation (Ritvo et al. 2004).  

4.4.2. Evaluation of the relevant spatial extent 

Most variation was explained by models that included the physical urbanisation gradient 

derived from the 10 „urbanisation indicators‟ (PCA 1, Section 2.3.1.7). Peak explanatory 

power of the RDA process with variance partitioning was found at a 100m spatial extent 

(Figure 4.3.7). This result is consistent with others that have employed a similar analysis to 

the concentric ring approach here, albeit within agricultural landscapes (Declerck et al. 2006; 

Akasaka et al. 2010). Nonetheless, arable land-use is incorporated within the PCA of 

urbanisation indicators, represented by a low PCA 1 score. The urbanisation gradient, 

therefore, is a combination of increasing impermeable surface and decreasing proportion of 

arable land coverage. At close proximity from the pond edge (100m) a small amount of a 

land-use may exert a large influence within a small catchment (Davies et al. 2008b). This may 

indicates a need to reassess the landscape scale when considering ponds. Identification of the 

most meaningful spatial extent provides site managers information which can be 

incorporated in to management actions (Akasaka et al. 2010). However, the relatively small 

difference in variation explained by models between 100m and 300m suggests that 

individual sites may need further investigation within a range of spatial extents. It may also 

be necessary to conduct further study of relevant spatial extents if specific water quality 

variables are of concern, whereas this study considered the whole suite of water quality 

parameters. 

4.4.3. The influence of local physical factors and land-use on water quality  

The degree of urbanisation positively influenced nutrient concentrations, suspended solids, 

phytoplankton biomass and Fe and Zn concentrations (Figure 4.3.7). Impermeable surfaces 

are likely to form major sources of trace metals deposited by motorised vehicles (see Table 

4.1). Nutrients can be washed off impermeable surfaces into freshwater systems that were 

deposited as fertilizer for green space (Carpenter et al. 1998), animal waste (Stoianov et al. 

2000; Chaichana et al. 2011), or other organic matter e.g. leaf-litter. However, the impact of 

urbanisation may be twofold. More urban sites are likely to be under greater visitor pressure, 
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which may result in more intensive green space management and will generate more waste 

in the form of litter, from domestic pets and through feeding of wildfowl which not only 

inputs nutrients directly, but also from attracting wildfowl in greater numbers.  

Tree cover and macrophyte richness, which were inversely correlated (Figure 4.3.8), 

were found to be significant local physical factors in explaining variation in water quality; 

dissolved oxygen, pH, temperature, NH4, PO4 and Mn were all strongly interrelated (Table 

4.10). Tree cover can influence water chemistry, organic matter input and shading (Walsh et 

al. 2003). At 30%, average tree cover was similar to that found in the Lowland Pond Survey 

(Williams et al. 1998b), which also found 20% of ponds to be >75% shaded and less than half 

<25% compared to 10% and 57% found here. The negative relationship between tree shading 

and macrophyte richness is consistent with that of Akasaka et al. (2010) who found reduced 

submerged macrophyte presence with broad-leaved trees along the pond edge. A peak 

macrophyte richness at a lower percentage tree cover than the suggested 30% by Gee et al. 

(1997) may be representative of the capacity for macrophytic growth as a function of pond 

engineering. Hard engineering has been found to hinder vegetation development directly 

(Parris 2006; Hamasaki et al. 2011) and indirectly by increasing wave action (Scheffer 2004). 

Tree cover is also a function of pond surface area, smaller ponds have a reduced volume to 

edge ratio, which equates to a higher proportion of littoral zone (Declerck et al. 2006) and 

therefore, a greater propensity for higher tree cover. However, the relative impact upon 

emergent plants in the riparian edge from tree-shading may remain consistent if considered 

as the percentage of pond edge shaded as pond size increases.  

Tree cover can impact macrophyte growth by light exclusion, whether direct exclusion 

by tree canopy or through the accumulation of leaf litter. A lack of macrophytes can reduce 

oxygenation of the water column, as they produce oxygen through photosynthesis 

(Brönmark and Hansson 2005). Reduction of macrophytes from shading could cause a shift 

between macrophyte-rich clear water to a macrophyte-poor turbid state, dominated by 

floating plant species (Scheffer and van Nes 2007), though this is contingent on fish presence. 

Unlike Gee et al. (1997), who found no relationship between oxygenation and plant growth, 

dissolved oxygen concentrations were strongly related to macrophyte richness. Macrophyte 

species richness can increase along with pond surface area (Oertli et al. 2002; Sondergaard et 

al. 2005), here, peak macrophyte richness in a pond with surface area 4952m2 is consistent 

with the results of Akasaka et al. (2010) where peak macrophyte species richness occurred at 

approximately 5000m2. This may be explained by the presence of herbivorous fish in ponds 

of larger size (Scheffer et al. 2006), however, fish presence was not selected by the forward 

stepwise procedure for the RDA of local physical factors (Section 4.3.4). 
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Mature vegetation cover either directly over the pond or as land-use coverage within 

100m was associated with lower oxygen and pH and increased nutrient concentrations, 

specifically NH4 and PO4. Allochthonous inputs of organic matter (e.g. leaf litter) are 

important basal resources in freshwater systems (Oertli 1993). Leaf litter in ponds may be 

sourced from trees directly overhanging the pond margins or sourced from their catchments 

in surface water drainage or wind action. Both NH4 and PO4 are derived from the 

decomposition of leaf litter (Sondergaard et al. 2002). The large amount of deposited organic 

material being broken down by bacteria not only increases the available PO4 concentrations 

directly through nutrient recycling, but also by their oxygen consumption. As decomposing 

bacteria respire they deplete oxygen availability at the sediment surface. Under low oxygen 

conditions (low redox potential) complexation of trace metals, particularly Fe, with PO4 does 

not occur as Fe is present in its soluble form (Fe2+) rather than its non-soluble form (Fe3+), 

which would otherwise complex with PO4 and precipitate out of the water column. At the 

same time pH decreases with organic matter breakdown due to bacterial respiration which 

adds CO2 to the system and releases H+ ions. To further compound reduced oxygen levels, 

heavy shading prevents light from reaching the sediment, which inhibits oxygenating plant 

growth, which would reduce nutrient levels through uptake from both the sediment 

(Chambers et al. 1989) and the water column as with submerged vegetation (Cronk and 

Fennessy 2001). A reduced tree cover is likely to increase the abundance of algae upon 

organic sediments, which would produce oxygen and reduce PO4 flow from the sediment by 

increasing redox potential. High concentrations of PO4 in the urban ponds, therefore, could 

result from internal loading mechanisms, which can also release accumulated nutrients from 

the sediment that were as a result of past pollution episodes and leaf litter accumulation.  

In high oxygen concentrations, the insoluble forms of Fe (Fe3+) and Mn (Mn3+) react 

with oxygen to form precipitates. Under low oxygen conditions, however, both are present 

in their soluble forms (Fe2+ and Mn2+). Consequently, the relatively high concentration of 

both is indirectly attributable to tree cover, and hence the correlation observed with it, due to 

the respiration of decomposing bacteria on organic matter in the manner described above. 

Elevated winter oxygen levels resulted in more frequent Mn complexation reflected in the 

lower mean concentrations observed. 

Na and Cl concentrations periodically increased, particularly during winter periods 

and were strong negative correlates to the presence of surface water run-off sources. In 

addition, a positive relationship with urbanisation, and therefore impermeable surfaces 

which may have provided Na and Cl sources did not arise. A confounding factor may be 
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sites that receive storm water drainage from areas beyond the 100m scale. In this instance, a 

more detailed investigation into individual site infrastructure may be required. 

Instream shading is widely reported to reduce summer temperatures in aquatic 

systems (Allan 2004 and references therein). Tree cover strongly reduced water 

temperatures, however, an insulating winter effect as has been found in forested streams 

(Gordon et al. 2004) where ponds with greater tree cover experience increased average 

temperatures, was not apparent. The presence of mature vegetation in the surrounding land-

use, coupled with direct shading of the pond can create microclimates. Reduced 

temperatures can have implications for the physiological processes of aquatic organisms 

(Markarian 1980) and on the chemical composition of the pond environment due to its 

impact upon the oxygen capacity of the water i.e. lower temperatures increase oxygen 

capacity. 

Finally, increased levels across the suite of water quality parameters were observed 

during summer 2010. August 2010, when the summer field survey took place, was the 

wettest month of 2010, with the nearest Met Office weather station recording 91mm of 

rainfall (Met Office 2012). It is possible that such wet conditions exposed the study ponds to 

increased amounts of run-off from the surrounding landscape. As a consequence, a larger 

input of pollutants may be expected from frequent storm events and subsequent surface run-

off.  
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4.5. Conclusion 

Water quality failed to attain environmental standards for several key variables, particularly 

those related to the WFD. Such failings pose significant concerns for the future of urban 

ponds, where they may be required to achieve „good ecological potential‟ (GEP) by 2015 

under the WFD. Although the environmental standards used here provide a useful proxy, 

improvements in the appropriateness of environmental standards for small ponds would 

provide more realistic aims within the context of the highly dynamic and in many cases, 

naturally eutrophic conditions. 

Nonetheless, much of the variation in water quality can be explained by management 

of in situ local physical characteristics and land-use within close proximity of the ponds. 

Reduction in the amount of direct tree cover and the proportion of mature vegetation and 

impermeable surface within 100m is likely to result in a significant improvement in water 

quality, particularly in reducing PO4 concentrations. Reduction in direct tree cover would 

allow better light conditions and improve the potential for plant growth which would, in 

turn, improve oxygen conditions and increase habitat complexity. Management 

recommendations have often focussed on an optimum 30% tree coverage (Biggs et al. 1994), 

however, the results of this study recommend a coverage of around 15-20% for maximising 

macrophyte growth. This figure may be dependent on the degree of hard engineering 

present within the site and the subsequent potential for macrophyte establishment.  

Urbanisation was found to be a significant indicator of water quality, when considered 

at a small spatial extent. The most powerful model (<100m) in explaining water quality 

variability included a metric derived from 10 commonly used urbanisation metrics. 

However, a facet of urbanisation, for example, the proportion of urban areas (LCM 2007), 

remained in models up to 700m from the pond edge. Although the model that explained 

most variation in water quality was identified at 100m, a relatively small difference in 

explanatory power was found between 100m and 300m. As such, a conservative 

management approach would consider land-use up to 300m when identifying key land-use 

components. 

At 100m, the amount of variance in water quality explained by local physical factors 

alone, and by land-use alone was very similar. However, regardless of spatial extent, local 

physical factors were more powerful than land-use. Consequently, management priorities 

should consider first what improvements to in situ characteristics such as the proportion of 

tree cover can be made. However, the amount of shared variance, which at 100m accounted 

for 22% of the total explained variance, indicates the intrinsic link between land-use and 
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habitat. As such, pond management should not focus on either local physical factors or land-

use in isolation. 

This study has shown how the management of relatively small areas of land can 

improve conservation effort within urban areas with respect to aquatic resources. 

Improvement in the water quality of urban ponds is likely to improve biodiversity, amenity 

value and ecosystem services. The results here provide useful guidance to site managers. 

Individual sites will require further research in to water quality variation, using the 

implications of this study as a framework. This is particularly the case should the focus be on 

a particular variable or a few select variables which may be better controlled at longer or 

shorter spatial extents and by altering different components of the habitat. Even with 

appropriate management action, many ponds will remain susceptible to internal 

mechanisms for which more drastic action, such as dredging, may be required. Finally, 

management of land-use will be more relevant where much of the water source is from 

surface run-off. Pond sites receiving water from pipelines may render land-use largely 

irrelevant, in such circumstances investigation of infrastructure and drainage connections 

will be required to identify pollution sources. 
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Chapter 5: Conservation value and determinants of 

macroinvertebrate community structure in urban 

ponds 

5.1. Introduction 

The urbanisation of catchments has profoundly altered streams and rivers, known as the 

„urban stream syndrome‟ (Walsh et al. 2003), in which urban channels typically have flashy 

hydrographs, high concentrations of nutrients and other contaminants, altered channel 

morphology and low biodiversity (Wear et al. 1998; Paul and Meyer 2001; Roy et al. 2003; 

Walsh et al. 2003; Mancini et al. 2005). By comparison, knowledge of how urbanisation 

impacts upon ponds and their conservation value is poorly understood. In rural areas, ponds 

contribute more significantly to regional biodiversity than rivers and streams (Williams et al. 

2004; Davies et al. 2008a). Ponds in urban areas are valued for their aesthetics and amenity 

use (Gledhill and James 2008; Sayer et al. 2008), however, their potential conservation value is 

often overlooked. The few studies that have investigated the conservation value of urban 

ponds have found that they are often undervalued and can support rare species and 

diversity comparable to ponds in rural areas (Wood and Barker 2000; Gledhill et al. 2008; 

Vermonden et al. 2009). Moreover, they stress the need to consider urban ponds as part of a 

wider pond network (Boothby and Hull 1997; Gledhill et al. 2008), particularly as pond 

numbers decline rapidly with urbanisation (Chapter 3). Furthermore, urban ponds offer a 

great potential focus for nature conservation, being logistically and economically relatively 

manageable by virtue of their small volume and limited catchment area (Biggs et al. 2005; De 

Meester et al. 2005; Davies et al. 2008b).  

Ponds represent naturally isolated systems that rely on a frequent exchange of 

members of their ecological communities (Jeffries 1994; Briers and Warren 2000; Rundle et al. 

2002), as a consequence their inhabitants are considered to exist in metacommunities 

(Leibold et al. 2004). The shape of a local community is contingent upon the relative impact of 

local and regional factors that include or exclude members of the metacommunity (Figure 

5.1.1). Local factors refer to water chemistry, physical factors e.g. shading, habitat 
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Figure 5.1.1. Conceptual framework for studies of community structure assembly and 

regulation adapted from Bohonak and Jenkins (2003) 

 

 

 

Which processes are most 
important in regulating 

populations and communities?

Regional
• Dispersal

(includes colonisation, 
immigration, invasion, gene flow)

• Natural variation
(e.g., droughts, storms, climate 
change, etc.)

• Human activity
(e.g., habitat fragmentation, 
pollutants, land-use change)

Local
• Physical habitat conditions

(e.g., habitat complexity, shading, 
surface area etc.)

• Water quality
(e.g., nutrient content, pH, dissolve 
oxygen, etc.)

• Predator – prey interactions

Conditional regional and local
• Community assembly

• Metapopulation dynamics

• Metacommunity dynamics
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complexity, and predation. Regional factors refer to the availability of neighbouring habitats 

and the influence of surrounding land-use i.e. as a source of resistance to dispersal and of 

diffuse and point pollution.  

Some important local factors that shape pond macroinvertebrate assemblages have 

been identified, including pH (Friday 1987; Biggs et al. 2005; Becerra Jurado et al. 2009; 

Vermonden et al. 2009), nutrients (Declerck et al. 2005; Vermonden et al. 2009; Hassall et al. 

2011), shading (Gee et al. 1997; Lundkvist et al. 2002; Remsburg et al. 2008; Hassall et al. 2011), 

surface area (Brönmark 1985; Heino 2000; Biggs et al. 2005; Declerck et al. 2005), habitat 

complexity (Brönmark 1985; Wood et al. 2001; Bazzanti et al. 2003; Biggs et al. 2005; Declerck 

et al. 2005; Becerra Jurado et al. 2009) and fish presence (Fairchild et al. 2000; Wood et al. 2001; 

Scheffer et al. 2006). Interaction between local factors have also been highlighted, for 

example, the relationship between macroinvertebrate richness and nutrient concentration is 

likely mediated by the non-linear relationship between macrophyte richness and nutrient 

status (Declerck et al. 2005) such that the provision of habitat niches for macroinvertebrates 

peaks at mid-concentrations. Furthermore, as surface area increases so too does macrophyte 

species richness (and habitat complexity with the potential for macroinvertebrate diversity 

increase) and the probability of fish presence (Oertli et al. 2002; Sondergaard et al. 2005). 

Conversely, the degree of shading has an inverse relationship with surface area by virtue of a 

decreasing edge to volume ratio (Declerck et al. 2006). The relative influence of local factors 

can differ between systems, geographical regions and is dependent on the focal taxa. For 

example, no relationship between area and biodiversity was found in Alpine ponds (Hinden 

et al. 2004) and only for Odonata in Italian astatic ponds (Bazzanti et al. 2003). The presence of 

salmonid fish had no impact on macroinvertebrates (Gee et al. 1997) and certain species of 

coarse fish are known to preferentially target macroinvertebrate predators (Fairchild et al. 

2000; Schilling et al. 2009). Frequently, however, studies of factors that shape aquatic 

communities are confined to local scale influences and do not take in to consideration 

regional effects (Cottenie and De Meester 2003). 

Factors that impinge upon successful dispersal between communities are key to the 

balance between locally or regionally dominated metacommunities (Cottenie 2005). Yet, only 

recently have studies of pond macroinvertebrate communities begun to incorporate regional 

factors as determinants alongside local factors. Similarity in macroinvertebrate communities 

has been found to increase with decreasing spatial separation of sites (Oertli et al. 2008; 

Zealand and Jeffries 2009) and to exist up to 13km with the effect of local factors removed 

(Briers and Biggs 2005). Gledhill et al. (2008) found pond density within adjoining 1km grid 

squares to be a strong determinant of macroinvertebrate species richness in a study of urban 
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ponds in north west U.K. suggesting dispersal limitation. Conversely, a mean distance of just 

0.5km between ponds has been enough to shift the balance toward local factor dominance on 

macroinvertebrate community structure (Urban 2004) suggesting less dispersal limitation. 

Similarly, Heino and Mykra (2008) found a only very weak influence of spatial location on 

stream insect assemblages, whilst local factors were able to account for up to 31.7% of 

variation. Such differences in the influence of regional factors between studies may arise 

since the influence of neighbouring communities is mediated by the intra-habitat (patch) 

quality and inter-habitat distance (Jeffries 2005). Moreover, inter-habitat distance is affected 

by the intervening landscape (Leibold et al. 2004) i.e. different land-cover types present 

different levels of risk and benefit (Fahrig 2007). The inclusion of landscape resistance scores 

i.e. high scores for obstacles, facilitates the computation of „effective distance‟ (Spear et al. 

2010) between habitats. Least cost path analysis is one such method, within a geographical 

information system (GIS), by which this can be calculated. Least cost path analysis has 

already been used to identify optimum routes for the dispersal of a wide range of animals 

(Sutcliffe et al. 2003; Larkin et al. 2004; Desrochers et al. 2011), although use of least cost 

analysis has not yet been applied to aquatic communities due to the lack of empirical data on 

their terrestrial movement. However, the recent use of isotopic marking (Caudill 2003; Briers 

et al. 2004) and research into light pollution (e.g. Horvath et al. 2009; Kriska et al. 2009), which 

is particularly relevant in urban areas, are examples of recent research which can inform the 

application of landscape resistance scores to facilitate calculation of effective distance. Using 

a GIS in conjunction with sophisticated network analysis packages (e.g. EDENetworks, 

Kivela et al. 2011 and Conefor Sensinode, Saura and Torne 2009) it is now possible to 

calculate a suite of metrics that can incorporate effective distance and assess a variety of 

connectivity roles provided by a single pond within the wider pond network, as well as 

more conventional Euclidean distance and density based measures.  

The relevance of regional factors to habitat, species or communities has been 

investigated at multiple spatial extents i.e. distances from the pond edge (Pellet et al. 2004; 

Declerck et al. 2006; Gledhill et al. 2008; Akasaka et al. 2010; Yu et al. 2012), termed „concentric 

ring analysis‟ (Pellet et al. 2004). Similarly, several studies have applied a series of theoretical 

dispersal thresholds to assess the connectivity of current or proposed reserve networks 

(Hinsley and Bellamy 2000; Gurrutxaga et al. 2011; Laita et al. 2011). The relevant spatial 

extent for members of the aquatic community is likely to change with the focal organism(s) 

as a consequence of their individual dispersal traits and behavior during emergence and/ or 

dispersal. For example, Odonata are known to be highly philopatric and are unlikely to 

disperse far from their natal pond (Conrad et al. 1999), Coleoptera and Hemiptera, which are 
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known to be strong fliers (Davy-Bowker 2002), disperse solely for the purposes of finding 

new habitat (Briers and Warren 2000; Lundkvist et al. 2002) and Gastropoda are passive 

dispersers (Kappes and Haase 2012). Further breakdown of the macroinvertebrate 

community into groups that are characteristic of the pond environment could provide 

greater detail upon which to base management decisions for the conservation of specific 

target taxa. 

This study aims to provide information which can be readily incorporated to 

management practice. First, the conservation value of urban ponds is assessed and urban 

pond types that promote high conservation value and species richness are identified. 

Secondly, the most influential controls on overall macroinvertebrate community composition 

are considered and the relative importance of local (water quality and physical) and regional 

(land-use and connectivity) factors are established using variance-partitioning (Borcard et al. 

1992). Finally, the local and regional drivers of taxon richness within major 

macroinvertebrate orders are identified. 

5.1.1. Objectives and hypotheses 

This chapter characterizes macroinvertebrate assemblages in 30 ponds across an urbanisation 

gradient, and relates assemblage taxonomic composition and taxon richness to a suite of 

variables that characterise water quality, habitat, spatial connectivity and land-use, to test the 

following objectives and hypotheses. 

 

1. To characterize the macroinvertebrate communities of urban ponds and assess their 

conservation value. 

 

Hypothesis 1 

The conservation value of urban ponds is low due to the influence of urbanisation. 

Between-site diversity, however, is high due to local differences in habitat and land-use 

 

2. To assess the importance of local (water quality, habitat) and spatial (connectivity, 

land-use) variables to community structure. 

 

Hypothesis 2 

Local factors are relatively more influential than regional due to the generally strong 

dispersal abilities of aquatic insects; however, the traversibility of the landscape and 

spatial configuration of pond habitat across the landscape is also important 
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3. To predict within-order richness of characteristic pond macroinvertebrate groups. 

 

Hypothesis 3 

Important local and spatial factors differ between insect orders and are reflective of their 

dispersal traits and habitat requirements 

5.2. Methods 

5.2.1. Study site selection 

Thirty ponds of contrasting surrounding land-use were selected from an estimated 1023 sites 

in Birmingham and The Black Country (BBC). For the full site selection process see Section 

2.1.  

5.2.2. Field campaign 

Field surveys were carried out in late spring/early summer 2009 and late summer 2009 

(Table 4.3). On each visit macroinvertebrate and water samples were collected and 

observations were made with regard to the local physical conditions. 

5.2.2.1. Macroinvertebrates 

Macroinvertebrate sampling was based on the protocols of the National Pond Survey (Biggs 

et al. 1998). In each pond, sampling was conducted on a per unit effort basis (total 3-minute 

plunge/sweep sampling) with sampling time divided equally among mesohabitat patch 

types (e.g. 3 mesohabits identified = 60 seconds of sampling in each) in the pond. Within 

mesohabitats, sampling time was divided into replicated 10 second plunge/sweep samples, 

where each subsample was an initial „plunge‟ of the net onto the sediment followed by 10 

seconds of netting in a figure of eight motion just above the sediment surface. Each sample 

was collected and preserved in 70% Industrial Methylated Solution (IMS) for later sorting 

and identification. 

In the laboratory, macroinvertebrates were sub-sampled from each plunge/sweep 

sample due to the large volume of material collected, with a minimum of 25 individuals 

collected for each 10 second plunge/sweep sample, or a minimum of 450 individuals per 

pond on each sampling occasion. Macroinvertebrates were identified to the lowest 

practicable taxonomic unit (usually species, Section 2.4). Data from each 10 second sample 

were pooled to generate a single dataset for each pond on each sampling occasion. Unless 

stated, use of macroinvertebrate data also refers to pooled data from the two sampling 

periods.  
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Table 5.1. Sampling periods and dates of sampling 

Season and hydrological year Sampling dates 

Late spring/early summer 2009 20th May  – 11th June 2009 

Summer 2009 3rd August – 14th August 2009 

 

5.2.3. Local factors 

5.2.3.1. Water quality 

Where practicable, a composite water sample was collected at each site from the pond 

margins near the inflow, outflow and at an approximately equidistant point between the 

two. In the absence of a clear inflow or outflow, samples were evenly spread around the 

pond perimeter. Contact with vegetation or the bottom substrate was carefully avoided 

during water sampling, as was collection of surface debris. Once collected, samples were 

kept cool, filtered (GF/C, 1.2µm) and returned to the laboratory for determination of major 

ions, trace metals, suspended solids and chlorophyll abundance. Triplicate in situ 

measurements of pH, electrical conductivity (µS/cm), temperature (oC) and dissolved 

oxygen (% saturation) were taken and the average measurements were calculated. For each 

determinand, data were averaged across the two sampling periods to provide a single datum 

point for each site. Further detail on water quality sampling and analysis methods are 

discussed in Section 2.2.  

5.2.3.2. Physical characteristics 

Single measurements of pond surface area and percentages of surface area classified as open 

water, shaded, riparian vegetation and floating vegetation were all derived from a 

combination of digitised field notes and Normalised Difference Vegetation Index (NDVI) 

and photogrammetrically derived height GIS layers (Section 2.3.1.6) against digital pond 

outlines. The percentage of pond bank that was made from concrete was also calculated in a 

GIS from digitized field notes. Water sources (i.e. stream inflows, groundwater, surface run-

off or building run-off) and fish presence information was gathered from stakeholder 

knowledge and visual inspection. A water level fluctuation index (WLFI) was calculated as 

the standard deviation in depth between surveys (taken quarterly between 2010 – 2011) 

measured at set points within the wetted-perimeter of each pond. 
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Macrophyte presence absence was recorded from within identified mesohabitats 

sampled for macroinvertebrates (Section 2.4) using Haslam et al. (1982) for identification. A 

full macrophyte species list is included in Appendix  

5.2.4. Regional factors 

5.2.4.1. Land-use  

A GIS combining four land cover layers was used to generate detailed land-use data (Section 

2.3). Land-use metrics were calculated for 13 cumulative spatial extents, measured from the 

pond edge in each case to 25m, 50m, 75m, 100m and then 100m increments to 1000m. 

Ten ‟urbanisation indicators‟, selected from the land-use variables (indicated by 1 in 

Table 4.4) were incorporated into a PCA to create a score of urbanisation at each spatial 

extent (Section 2.3.1.7). The indicators chosen were those that were used commonly to 

measure urbanisation (see Hahs and McDonnell 2006 for a review) and closely linked to a 

general perception of urbanisation. PCA 1 was related to a gradient from a high proportion 

of arable land to a large degree of impermeable surface, PCA 2 is a gradient between high 

population density and an increased percentage of people in rural employment.  

Land-use coverage was extracted from a GIS using the thematic raster summary tool 

within the Hawth‟s Tools (Beyer 2004) extension for ArcGIS 9.3. 

5.2.4.2. Connectivity  

In total, eight connectivity metrics were derived for each pond (Table 5.2). Four were 

calculated within the spatial extents 50m, 100, 250m, 500m, 1000m, 1500m, 2000m, 2500m. 

These were the number of ponds to which a focal pond is within a specified distance (degree 

centrality, DC), the number of times a focal pond is used as a stepping stone between any 

two others to maintain connectivity in a network (betweeness centrality, BC), and the 

proportion of pond and wetland (non-specific) habitats were calculated separately at 

different spatial extents. BC scores were limited to extents up to 500m, beyond which the 

dataset could not provide complete coverage of the potential pondscape.  

Area-informed connectivity metrics have been shown to outperform distance metrics 

in ecological studies (Tischendorf et al. 2003). Therefore, in addition to the four metrics 

outlined above the area-informed metrics, area-proximity (AP) and effective distance-area 

(expressed as area-cost, AC) were derived that account for both the variability in inter-

habitat distance and the relative contribution made to the regional species pool using surface 

area as a proxy for productivity. First, for AP, the surface area of the none-focal pond, or 

source (e.g. A1, Figure 5.2.1) is divided by the Euclidean distance between it and the focal 
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pond (e.g. D1), which is calculated from pond edge to edge. The final metric is the sum of 

each of these separate calculations within a predefined radius i.e. AP = (D2/A2) + (D3/A3) 

+... (D7/A7) (Figure 5.2.1). For calculation of a metric that considered inter-habitat landscape 

resistance (AC), Euclidean distance (D) was substituted with effective distance (ED, Figure 

5.2.2) derived by the formulation of a resistance landscape where each land-use classification 

was scored between one and 1000. For example, tall buildings scored 1000 and vegetated still 

water one (Appendix 15). Least-cost paths were calculated using PathMatrix (Ray 2005) for 

ArcGIS 3.2 (ESRI 1999). The least cost paths represent a proxy for landscape resistance 

between ponds rather than a single preferred dispersal route. Area-informed metrics were 

calculated for 1km and 2km only, due to the disparate nature of the pond network i.e. the 

longest minimum distance between a studied pond and another was exactly 1000m. 

Consequently, below this distance calculation of the metric was not possible for all 30 study 

sites. To compensate for this, the AP and AC metrics were also calculated for the nearest 1, 2, 

3, 4, 5, 10, 25 and 50 neighbours. 

A final two connectivity metrics were none area informed connectivity metrics. These 

were the average Euclidean and cost distance to the nearest 1, 2, 3, 4, 5, 10, 25 and 50 

neighbours. 

5.2.5. Statistical analyses 

5.2.5.1. Characterizing urban pond types of high conservation value 

First, Two Way Indicator Species Analysis (TWINSPAN, Hill 1979) was used to identify site 

characteristics that were associated with high conservation value. TWINSPAN uses 

correspondence analysis to iteratively divide a set of sites into clusters that have similar 

ecological communities, based on taxa relative abundance. At a group split, the species that 

are typical of one side of the dichotomy and not the other are considered good indicators of 

the ecological conditions in the cluster of sites at which they are present (Lepš and Šmilauer 

2003). The predetermined identification of four TWINSPAN groups facilitated comparison of 

local and regional factors that were associated with the site clusters and contributed to 

shaping the macroinvertebrate communities. ANOVA was used to test for significant 

differences in local and regional factors between the TWINSPAN groups using the Tukey-

Kramer post-hoc test, which allows for unequal group memberships. TWINSPAN was carried 

out using Community Analysis Package 1.4 (Pisces Conservation Ltd. 1999). ANOVAs were 

carried out in IBM SPSS 19.0 for Windows (SPSS Inc., Chicago, IL, USA).  

Conservation value of the urban pond sites was assessed using the Community 

Conservation Index (CCI), which accounts for community richness, as well as the relative 
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rarity of species present (Chadd and Extence 2004). Using this measure, taxonomically rich 

sites can obtain very high values of CCI which are comparative to those obtained from sites 

supporting nationally rare species. The CCI method assigns a conservation score to each 

species based on their relative rarity, which is averaged across the site and then multiplied 

by a community score, derived from either the rarest taxon present in the community, or the 

Biological Monitoring Working Party (BMWP) score (Chesters 1980); the latter is used here. 

CCI was calculated in SAFIS (Site Analysis for Freshwater Invertebrate Surveys) (Chalkley 

2012).  Taxon  richness,  species richness  and  Simpsons   (E1-D)  evenness  measure  were also 

calculated using all individuals irrespective of the level of taxonomic identification. 

The Simpson‟s (E1-D) measure of evenness (Krebs 1999) is an extension of the original 

Simpson‟s diversity index (Simpson 1949) and measures community evenness on a scale 

between 0 and 1. As the community becomes more even, the Simpsons (E1-D)  increases 

(Magurran 2004). Rare species were identified as Red Data Book (1 – 3), Notable (A or B) or 

Regionally Notable (NR), the definitions of which are listed in Appendix 17, after Chadd and 

Extence (2004). 

5.2.5.2. Separating out local and regional effects 

Forward selected local (water quality and local physical) and regional (land-use and 

connectivity) factors from section 5.2.5.1 were used in variance partitioning (Borcard et al. 

1992). For regional factors the procedure was carried out for parameters derived at each of 

the spatial extents. The model with the highest explanatory power was retained for use in 

variance partitioning. This allowed the proportion of explained variance in 

macroinvertebrate community that was attributable to each of the four variable groups 

(water quality, local physical, land-use and connectivity) both alone and in combination to be 

calculated. This was achieved using the „varpart‟ procedure (for the full procedure, see 

Appendix 18) within the vegan package (Oksanen et al. 2012) for R statistical package version 

2.15.1 (R Core Team and contributors worldwide 2012), by undertaking 15 direct CCA 

analyses and 27 CCA analyses with the effects of one or more of the variable sets (e.g. local 

or regional factors) partialled out. A further 11 fractions of explained variance are estimated 

by subtraction. Automatic forward stepwise model building was used for the CCAs using 

the function „ordistep‟ in the vegan R package, which uses permutation tests to obtain P 

values (<999 permutations). 
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Table 5.2. Summary of connectivity metrics 

Metric Description Relative 

complexity 

Connectivity 

type 

Package used 

Degree centrality (DC) Pond counts within selected spatial extent (pond density) Low Structural Hawth‟s Tools (ArcGIS 9.3) 

Water Surface water as a proportion of spatial extent (irrespective of 

water boy type)  

Low Potential Hawth‟s Tools (ArcGIS 9.3) 

Pond Total surface water of ponds as a proportion of spatial extent Low Potential Hawth‟s Tools (ArcGIS 9.3) 

Euclidean distance to 

neighbour(s) 

Straight-line distance to nearest neighbour and average distance to 

nearest 1, 2, 3, 4, 5, 10, 25, 50 neighbours 

Medium Structural R, Excel 

Proximity/ area (AP) 

to neighbours 

Straight-line distance to nearest neighbour and average distance to 

nearest 1, 2, 3, 4, 5, 10, 25, 50 neighbours weighted by habitat area 

and within 1 and 2 km. 

Medium Structural R, Excel 

Betweeness centrality 

(BC) 

Count of the number of times focal pond is required as a stepping 

stone between any combination of 2 from the pondscape 

High  Structural EDENetworks 

Effective distance to 

nearest neighbour (s) 

(AC) 

Accumulated cost along least-cost distance path derived from 

resistance landscape to nearest neighbours and average effective 

distance to nearest 1, 2, 3, 4, 5, 10, 25 neighbours 

High Potential PathMatrix1 

(ArcGIS 3.2), Excel 

Effective distance/ 

area to neighbours 

Accumulated cost along least-cost distance path derived from 

resistance landscape to nearest neighbours and average effective 

distance to nearest 1, 2, 3, 4, 5, 10, 25 neighbours weighted by 

habitat area and within 1 and 2 km 

High Potential PathMatrix1 

(ArcGIS 3.2), Excel 

1Ray (2005) 

Table adapted from Magle et al. (2009)  
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Figure 5.2.1. Example calculation of area-proximity metric for a focal pond and 
neighbouring ponds within a 1km radius 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.2. Example result of least-cost paths and resistance landscape for a focal pond 
and neighbouring ponds within a 1km radius. Black lines indicate the least-cost paths 
(effective distance, ED) between any combinations of two ponds across the pond network 
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Example 

 

A1 / D1 = 389 /475  = 0.82 + 

A2 / D2 = 115 / 5  = 23.0 + 

A3 / D3 = 112 / 17  = 6.59 + 

A4 / D4 = 52 / 737 = 0.07 + 

A5 / D5 = 68 / 759 = 0.09 + 

A6 / D6 = 45 / 775 = 0.06 + 

A7 / D7 = 956 / 995 = 0.96 

 AP1km = 31.6 
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5.2.5.3. Key determinants of taxon richness within major macroinvertebrate 

orders  

In order to explore the associations of local and regional factors with the taxa richness of 

major macroinvertebrate orders, generalized linear models (GLMs) were fitted to counts of 

species within each of the orders Gastropoda, Coleoptera, Trichoptera, Odonata and 

Hemiptera using an information-theoretic approach (Burnham and Anderson 2002). The 

approach compares the fits of a suite of candidate models using Akaike‟s information 

criterion (AIC), corrected for overdispersion and small sample sizes (AICc, Burnham and 

Anderson 2002). All combinations of independent variables were ran within models with no 

more than three parameters in order to improve signal to noise ratios. Use of AIC allows for 

models with different numbers of independent variables to be directly compared to each 

other. The best fitting model has the smallest AICc value, although the absolute size of AICc 

is unimportant. The models are ranked according to their AICc score and the difference 

between the smallest and any other model indicates the relative support for each (termed 

∆AICc). To allow for model comparison, the Akaike weight was calculated for each (wAICc) 

(Burnham and Anderson 2002). The sum of Akaike weights is equal to one, such that they 

may have a probabilistic interpretation i.e. wAICc indicates the probability that the model in 

question would be selected as the best fitting if data were collected again (Whittingham et al. 

2005).  

The number of models that comprise the 95% confidence set fitted to each data set is 

also reported. This is the number of candidate models for which the sum of their wAICc is 

0.95 and is therefore the set of models within which there is 95% confidence that the best 

approximating model to the true model is contained. It is the best approximating model as it is 

unknown whether the set contains the true model (Whittingham et al. 2005). The size of the 

confidence set, relative to the total number of candidate models further indicates the relative 

importance of the predictor variables i.e. if the confidence set is small fewer variables have 

greater control on the response. 

A model averaging technique was applied in order to calculate the probability that a 

given variable would be selected within the best approximating model. Here, the sum of 

wAICc for the models containing a given variable denotes the likelihood of its selection 

within the best approximating model relative to all other variables and weighted by model 

plausibility. Calculation of selection probabilities (SP) for each variable provides extra 

information over the selection of a single model (as in stepwise) as it is feasible for a variable 

to attain a high SP without being selected in the most parsimonious model, with the lowest 

AICc. Conversely, a review of a number of the top ranked models can reveal variables that 
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without having being a significant parameter, by virtue of selection in the highest ranked 

model, has a high SP, despite a lack of inclusion in subsequent models.  

GLMs were fitted using the „glm‟ function implemented in the R stats package version 

2.15.1 (R Core Team and contributors worldwide 2012), with a Poisson distribution and a log 

link function. For Odonata, due to the high occurrence of zero counts (37% of sites) a zero-

inflated GLM model was fitted using the „zeroinfl‟ function implemented in package „pscl‟ 

(Zeileis et al. 2008). To correct for overdispersion detected in models for Coleoptera, 

Trichoptera, Hemiptera and taxa richness a negative-binomial model was subsequently used. 

Up to 317 candidate models were ran within each local and regional variable set, in total 8490 

GLM models were constructed. 

 

Prior to all statistical analyses, datasets were checked for outliers and statistical test 

assumption conformity according to Zuur et al. (2010). Macroinvertebrate species that were 

recorded in < 5% of the study sites were excluded from ordination and TWINSPAN analyses 

because rare species may confuse underlying patterns in community analysis (Faith and 

Norris 1989; Heino and Mykra 2008). Macroinvertebrate abundance data were transformed 

prior to CCA after Preston (1962): Preston class = 2log (abundance + 1). Independent 

variables used in CCA and GLMs were either log(n+1), square-root or arcsine transformed to 

improve normality and homogeneity of variance where necessary as tested by Shapiro-Wilk 

and Levene‟s tests carried out in using IBM SPSS statistical package version 19 (IBM, 

Armonk, New York). Water quality variables were typically log(n+1) transformed, arcsine 

transformation for land-use coverages (proportional data) and distance measures were 

usually square-root transformed. Collinearity in independent variables was minimized by 

removing one of any two variables that were greater than +/- 0.7 correlated (Pearson‟s 

correlation coefficients). The retained variable was the one considered most ecologically 

relevant and / or, if land-use, derived from the most contemporary land-use dataset (Section 

2.2 for dataset metadata). Prior to GLM construction, Variance Inflation Factors (VIFs) were 

also checked using the package „nlme‟ (Pinheiro et al. 2012), with reference to the pairwise 

plots, variables were removed until all VIF <  3 (Zuur et al. 2010). Models were validated by 

the production of histograms and normality plots to assess the spread of residuals, which 

were also checked for overdispersion by dividing the deviance statistic by the degrees of 

freedom. 

5.2.5.4. Spatial autocorrelation 

Spatial autocorrelation occurs when values at one locality are dependent on the values at 

another. For analysis of macroinvertebrate communities this could be borne out of frequent 
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exchanges of individuals by dispersal between two sites in close proximity. The study sites 

were tested for spatial independence at distance intervals using a Mantel correlogram using 

the function „mantel.correlog‟ in the vegan package (Oksanen et al. 2012) for R statistical 

package version 2.15.1 (R Core Team and contributors worldwide 2012). The Mantel 

correlogram is an effective tool for detecting correlation between datasets (Borcard and 

Legendre 2012) and tests for community similarity using Bray-Curtis dissimilarity as a 

function of geographic distance classes (24 classes used). Mantel tests (Mantel 1967) assess 

the magnitude of the correlation between two or more symmetric distance matrices. 

Significance of the matrix correlation coefficient was tested by 999 random permutations 

with a Bonferroni correction. Violations of spatial independence between the study sites 

would indicate the presence of spatial autocorrelation within the dataset, which may 

ultimately lead to biased conclusions.  

5.3. Results 

A total of 193 taxa from 14 orders were found across the 30 ponds, with data pooled from 

spring and summer 2009. 157 were identified to species level (full species list in Appendix 

19). The most species rich orders were Coleoptera (47 species), Hemiptera (31), Trichoptera 

(24), Gastropoda (17) and Odonata (15) (Table 5.3). Across ponds, taxon richness varied from 

17 to 82 (median 48). Seventeen of the 30 sites studied contributed at least one unique taxon 

to the overall taxonomic community. Hemiptera richness and Coleoptera richness showed 

the greatest ranges from one to 17 and 0 to 16 species per site respectively. Simpsons (E1-D) 

values (minima 0.05, maxima 0.24) suggested that most sites had an uneven community 

dominated by the high abundance of a few taxa. 

5.3.1. Conservation value of urban ponds 

Conservation value of the study sites was assessed using the Community Conservation 

Index (CCI), derived by Chadd and Extence (2004). Sites were generally of ‘fairly high 

conservation value’ according to the average CCI scores for pooled data across the two 

seasons. CCI scores in this range are typical of sites supporting at least one uncommon 

species, or several species of restricted distribution and or a community of high taxon 

richness. One Red Data Book (RDB3 – Nationally rare) (Hyman and Parsons 1992), four 

Notable B and three Notable Regional species were recorded (Table 5.4, for descriptions refer 

to Appendix 17). Pond 21 was the only site to be of potentially ‘very high conservation value’ 

(CCI = 26.4). Pond 21 has high taxon richness and supports the only RDB3 listed species 

found during the study Hydrochus elongatus (Schaller, 1783). H. elongatus, is a water 
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scavenger beetle characteristic of ponds and drains and often is found amongst reed habitats, 

which were abundant at site 21.  

Species classified as Notable B are Hydrochus lividus (Schaller 1783), a greenish-brown 

water scavenger beetle characteristic of ditches, fens and ponds, Rhantus suturalis (Macleay 

1825), a diving beetle of silt and detritus pools, Cercyon convexiusculus (Stephens 1829), a 

water scavenger beetle and Hydroglyphus geminus (Fabricius 1792) a lesser diving beetle 

associated with new ponds, heath pools and mossy ditches. The three species listed as 

Notable Regional are Mesovelia furcata (Mulsant & Rey 1852), a pondweed bug often found 

amongst surface vegetation and algal mats, Limnephilus decipiens (Kolenati 1848), a cased 

caddis fly found in rich water with abundant vegetation and Micronecta scholtzi (Fieber 1860) 

a lesser water boatman characteristic of ponds and lakes with bare mineral (e.g. gravel) 

bottoms, which was found at a number of sites. 

5.3.2. Spatial autocorrelation 

Spatial autocorrelation of macroinvertebrate communities was tested by the production of a 

Mantel correlogram (Figure 5.3.1). At no distance was the Mantel correlation coefficient 

significant (999 permutations, Bonferroni corrected). This suggests variation in local and 

regional factors was influential enough upon the macroinvertebrate community such that 

violations of spatial independence of the study sites were not encountered.  
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Table 5.3. Distribution of taxa between major taxonomic orders (spring and summer 
pooled presence/absence data) and diversity scores 
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1 10 2 10 6 3 2 1 2 10 1 2 58 38 16.4 0.103 

2 11 10 10 3 4 3 0 2 7 4 2 63 48 17.6 0.171 

3 0 2 0 0 7 1 0 1 5 2 1 19 13 9.2 0.097 

4 3 1 0 0 1 1 1 1 4 1 1 17 9 4.9 0.158 

5 2 2 0 0 1 1 3 1 7 1 1 28 11 5.1 0.156 

6 3 3 1 0 7 1 1 2 8 6 1 37 24 17.0 0.115 

7 0 1 0 0 8 0 4 2 1 2 1 25 17 19.8 0.158 

8 5 2 3 3 4 1 3 2 7 3 2 43 27 8.3 0.112 

9 9 0 4 0 8 2 2 2 8 4 2 48 32 9.5 0.217 

10 2 8 5 8 10 1 0 1 7 0 2 51 36 16.3 0.062 

11 5 5 1 0 13 1 1 2 6 3 2 46 32 11.6 0.131 

12 6 16 8 6 17 2 2 2 10 3 1 81 62 18.7 0.086 

13 1 5 2 0 10 1 3 2 9 5 1 45 29 10.0 0.111 

14 8 4 6 6 8 1 0 2 6 3 1 51 38 11.1 0.105 

15 5 0 0 0 1 1 1 1 5 2 2 20 12 4.8 0.149 

16 5 0 0 0 1 0 2 2 2 3 1 21 13 6.9 0.171 

17 8 2 2 1 5 3 2 3 6 4 1 43 30 10.7 0.149 

18 11 5 15 4 5 3 2 3 9 6 2 72 55 16.2 0.140 

19 5 10 1 1 7 1 3 2 10 4 1 54 34 13.4 0.120 

20 5 7 3 4 5 1 3 4 10 5 2 56 38 9.0 0.150 

21 8 13 5 4 9 2 4 3 9 6 2 73 55 26.4 0.240 

22 5 14 2 4 5 1 3 2 10 2 2 62 39 9.9 0.069 

23 12 14 8 4 11 2 2 4 7 7 2 82 65 14.8 0.153 

24 7 0 6 2 3 2 1 2 11 3 2 46 27 9.5 0.072 

25 9 9 11 5 8 3 2 4 8 4 2 72 56 15.3 0.062 

26 5 2 1 1 3 1 2 2 6 7 1 37 24 11.3 0.061 

27 11 5 7 3 8 2 1 2 11 7 2 70 47 17.0 0.048 

28 7 14 3 1 1 0 3 2 10 0 1 48 31 11.1 0.053 

29 5 10 3 4 5 1 1 2 7 3 1 47 34 10.6 0.102 

30 4 3 1 0 2 0 0 4 7 1 1 28 15 8.0 0.088 

Average3: 5 5 3 2 5 1 2 2 7 3 2 48 32 x   12.3 x   0.120 

Unique 17 47 24 15 31 4 5 4 15 8 2 - - - - 

1Members identified to family level only 
2Oligochaeta and Megaloptera 

3Median, unless otherwise stated 
CCI – Community Conservation Index, values between 0 and >40, low to high conservation value 
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Table 5.4. Rare and notable species found during the study 

Species Order Family RDB 3 NB NR CCI Site(s)  

Hydrochus elongatus Coleoptera Hydrochidae ▪   8 21 

Helochares lividus Coleoptera Hydrophilidae  ▪  7 10, 21 

Rhantus suturalis Coleoptera Dytiscidae  ▪  7 28 

Cercyon convexiusculus Coleoptera Sphaeridiidae  ▪  7 1,6 

Hydroglyphus geminus Coleoptera Dytiscidae  ▪  7 7 

Mesovelia furcata Hemiptera Mesoveliidae   ▪ 6 25 

Limnephilus decipiens Trichoptera Limnephilidae   ▪ 6 2,18 

Micronecta scholtzi Hemiptera Corixidae   ▪ 6 1,7,9,10,21, 

23,24,25 

RDB 3 – Red Data Book category 3 nationally rare 

NB – Notable B; thought to occur in 31-100 10km squares within GB   

NR – Notable Regional; Found in five or fewer GB localities  

Figure 5.3.1.  Mantel correlogram for macroinvertebrate community composition across 30 pond 
sites. Distance class refers to the geographical distance between sites (24 bins).  Solid squares 
show autocorrelations significant at Bonferroni corrected level (P = 0.05/5 – 0.01). 
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5.3.3. Distinguishing urban pond macroinvertebrate assemblages and 

associated local and regional variables 

Four macroinvertebrate communities were distinguished by TWINSPAN based on taxa and 

their abundances (Appendix 21). The first TWINSPAN division separated 12 sites from the 

30. Indicative of the 12 sites were Ischnura elegans (Odonata, Vander Linden 1820) and Radix 

balthica (Gastropoda, Linnaeus 1758). The second TWINSPAN division further divided the 12 

sites in to two groups comprised of four (Type 2, T2) and eight sites (Type 1, T1). Hygrobia 

hermanni (Coleoptera Fabricius 1781) and Corixa panzeri (Hemiptera, Fieber 1848) were 

indicative of T2 sites, whereas Potamopyrgus antipodarum (Gastropoda, J. E. Gray, 1843) was 

indicative of Type 1 sites. Of the remaining 18 sites, the second TWINSPAN division 

separated 11 sites (Type 3, T3) in which Sigara lateralis (Hemiptera, Leach 1817) was common 

and seven sites (Type 4, T4) indicative of Chaoboridae (Diptera) presence. Ordination of the 

pond types indicated good separation along the environmental gradients (Figure 5.3.2).  

The forward stepwise CCA procedure within each of the local (water quality, local 

physical) factor sets identified significant relationships between macroinvertebrate 

community composition and PO4 (mean 0.48 mg/l, range 0.01 to 2.62 mg/l, Appendix 22), 

dissolved oxygen (mean 65.9%, range 6.0 to 185.2%), fish presence or absence, percentage 

tree cover, macrophyte species richness (range 0 to 20 species) and suspended solids (mean 

17.9 mg/l, range 2 to 110 mg/l). For regional factors, a series of forward stepwise CCAs 

using data from each spatial extent revealed that most variation in macroinvertebrate 

community composition was explained using land-use data within 100m and connectivity 

metrics at 1000m. At 100m, mature vegetation coverage and extent of urbanisation (PCA 1, 

see 5.2.4.1) were significant land-use variables. The proportion of aquatic habitat, irrespective 

of the type of wetland, within 1000m and the area weighted, effective cost to all neighbours 

within 2km (AC) were influential connectivity metrics. The combined effect of all significant 

local and regional factors in a single CCA explained 43.98% of the overall variance in 

macroinvertebrate community composition (Figure 5.3.2). All variables were tested for 

significant differences between the pond types (ANOVA, post-hoc Tukey-Kramer). Those 

variables with significant differences are shown in Table 5.5.  

A small number of core taxa (> 1% total numbers) were common to all ponds, namely 

corixidae nypmhs, the crustaceans Asellus aquaticus (Linnaeus 1758) and Crangonyx 

pseudogracilis (Bousfield, 1958), the mayfly Cloeon dipterum (Linnaeus, 1761) and the dipterans 

of the Chironomidae and Chaoboridae (Table 5.6). I. elegans, a widespread and pollution 

tolerant odonate is the most frequently occurring odonate species in the dataset. The number 

of core taxa varied among pond types i.e. T1 > T2 >T3 > T4, reflecting increasing dominance 
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by fewer taxa from ponds T1 to T4. The majority of unique taxa consisted of Coleoptera 

species, particularly in T1 and T4 ponds, although T1 ponds also supported seven unique 

Trichoptera (Table 5.7). 

5.3.3.1. Type 1 (T1) ponds 

T1 ponds were associated with fish presence, high macrophyte richness, little shading, high 

oxygen and low PO4 concentration (Figure 5.3.3a). They were also well connected (within 

1000m) with a limited degree of urbanisation within 100m (Figure 5.3.2, Table 5.5). The mean 

CCI value of 16.9, meant that T1 sites were typically of high conservation value (Chadd and 

Extence 2004). The relatively intact communities were reflected by the number of core taxa 

(19), which was highest amongst the pond types, six of which were gastropods, including the 

TWINSPAN indicator taxon P. antipodarum (Table 5.6). The relative abundance of odonates 

was high in T1 ponds (2.3%) compared to T3 (1.8%) and T4 (0%). Trichoptera were well 

represented, with six of the eight unique species inhabiting more than one of the T1 ponds 

(Table 5.7). T1 ponds also supported the only unique Hirudinea, Piscicola geometra, a 

sanguivorous ectoparasite of freshwater fish and of highly oxygenized sites  (Elliott and 

Mann 1998). Amongst the 22 unique taxa to T1 ponds i.e. those that were not found in ponds 

of any other type, was a Red Data Book 3 coleopteran species (nationally rare) H. elongatus. 

Six of the eight ponds classified as T1 are regularly angled and managed to that end. 

Average macrophyte species richness in ponds that were regularly angled was 6.1 compared 

to those that were not, 3.7, however, the difference was not significant (ANOVA, P = 0.104). 

5.3.3.2. Type 2 (T2) ponds 

T2 ponds were without fish, had relatively low tree cover, high macrophyte richness and 

relatively high levels of dissolved oxygen (Figure 5.3.2 & Figure 5.3.3b, Table 5.5). The mean 

CCI of 14.1 meant T2 ponds were of fairly high conservation value (Chadd and Extence 2004). 

Chaoboridae were abundant in T2 fishless ponds, and on average constituted 16.2% of the 

total abundance (Table 5.6). Similarly, a number of Hemiptera made up the core taxa, 

particularly Corixidae nymphs. In all, mean hemipteran relative abundance was 16.9%, the 

largest representation from any of the four types. The odonates Lestes sponsa (Hansemann 

1823) and Libellula depressa (Linnaeus 1758), both unique to T2 ponds (Table 5.7), are often 

found in ponds without fish and with dense marginal vegetation, the latter tolerant of mildly 

polluted conditions (Brooks 1997). H. hermanii, which is known to prefer stagnant water, 

especially silt and detritus ponds and predates on oligochaetes (Holmen 1987), was found at 

three of the four T2 ponds. Mean odonate relative abundance was high in T2 (5.1%) ponds in 

comparison to T3 (1.8%) and T4 (0%). Four unique species of odonate were identified in T2 
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ponds: Anax imperator (Leach 1815), L. sponsa, L. depressa and Sympetrum fonscolombii (Sélys-

Longchamps 1840), suggesting that they are particularly favourable for Odonata. 

5.3.3.3. Type 3 (T3) ponds 

T3 ponds had larger surface areas, received surface water run-off, had more homogenous 

habitats and were more geographically isolated from other ponds (Figure 5.3.2 & Figure 

5.3.3c, Table 5.5). Concentrations of PO4 and suspended solids were generally high. Isolation 

of T3 sites was exacerbated by a high effective distance to neighboring habitats due to 

urbanisation within 100m.  

A mean CCI of 10.7 meant that T3 ponds were typically of low to moderate conservation 

value (Chadd and Extence 2004). Over 25% of the macroinvertebrate assemblage in these 

ponds comprised of Chironomidae, the high abundance of which likely contributes to the 

higher mean relative abundance (4.7%) of Helobdella stagnalis (Hirudinea, Linnaeus, 1758), 

which are known to predate on Chironomidae (Table 5.6). The core taxa comprise of 13 taxa, 

the second lowest of the pond types, which suggests that the community is more uneven, 

although this was not reflected by mean Simpsons (E1-D) values. Mean odonate relative 

abundance was low in T3 ponds (1.8%) in comparison to T1 and T2 ponds. During the study, 

five unique species were found in T3 ponds (Table 5.7), one in particular Hydroglyphus 

pusillus (Coleoptera, Fabricius 1792) is known to be an early colonizer of new reservoirs and 

lakes (Friday 1988). 

5.3.3.4. Type 4 (T4) ponds 

T4 sites were characterized by a high degree of shading, generally high PO4 concentration 

and lower pH, dissolved oxygen and temperature (Figure 5.3.2 & Figure 5.3.3d, Table 5.5). 

Ponds of T4 typically had a small surface area, had no fish, and were more ephemeral (high 

WLFI). Like ponds of T3, more intense urbanisation within the surrounding landscape 

resulted in greater isolation. A mean CCI of 8.8 meant that T4 ponds were typically of low to 

moderate conservation value (Chadd and Extence 2004). R. suturalis is unique to pond T4 (Table 

5.7), as is highest mean relative abundance of A. aquaticus, both species are associated with 

silt and detritus pools (Friday 1988). Also unique to T4 was Oecetis ochracea (Trichoptera, 

Curtis 1825), known to be an early colonizer of new reservoirs and lakes (Wallace et al. 2003). 

Despite the more ephemeral nature of ponds of T4, Velia caprai (Hemiptera, Tamanini 1947), 

which is associated with more stable sites (Savage 1989) is unique to pond T4. The 

characteristics of T4 ponds were poorly suited to supporting Odonata.  
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Figure 5.3.2. Canonical correspondence analysis of macroinvertebrate taxa.  
Pond types are represented by different symbols (Type 1 = Red, Type 2 = Green, Type 3 = Blue, Type 4 = Orange. Black dots represent species 
  

 

 

 

 

Key to species abbreviations 

ACIL.IUS Acilius sulcatus 

AESH.GRA Aeshna grandis 

AGRY.APG Agrypnia pagetana 

ANAB.NER Anabolia nervosa 

ATHR.ATE Athripsodes aterrimus 

BITH.LEA Bithynia leachii 

BITH.TEN Bithynia tentaculata 

CAEN.HOR Caenis horaria 

CALL.PRA Callicorixa praeusta 

COL_LAR Coleoptera larvae 
COLY.FUS Colymbetes fuscus 

CORI.PUN Corixa punctata 

EMPIDIDA Empididae 

ENAL.CYA Enallagma cyathigerum 

ERPO.TES Erpobdella testacea 

GAMM.PUL Gammarus pulex 

GERR.ODO Gerris odontogaster 

HALI.LLT Haliplus lineolatus 

HALI.LTC Haliplus lineatocollis 

HELO.GRD Helophorus grandis 

HELO.RUS Helophorus spp. 

HESP.SAH Hesperocorixa sahlbergi 

HOLO.DUB Holocentropus dubius 

HYDP.APL Hydroporus palustris 

HYDP.PLA Hydroporus planus 

HYDR.RIP Hydraena riparia 

ILYB.FUL Ilybius fuliginosus 

ILYB.QUA Ilybius quadriguttatus 

LACC.COL Laccobius colon 

LIMN.DEC Limnephilus decipiens 

LIMN.FLA Limnephilus flavicornis 

LIMO_PED Limonidae/Pedicidae 

MICR.POW Micronecta poweri 

MYST.LON_NIG Mystacides longicornis/nigra 

PISC.GEO Piscicola geometra 

PLEIDAE Pleidae nymph 

POTA.ANT Potamopyrgus antipodarum 

PTYCHOPT Ptychopteridae 

RADI.AUR Radix auricularia 

SCIOMYZI Sciomyzidae 

SIGA.CON Sigara concinna 

SIGA.DOR Sigara dorsalis 

SIGA.FNI Sigara falleni 

SIGA.FOS Sigara fossarum 

SIGA.LAT Sigara lateralis 

SIGA.NIG Sigara nigrolineata 

SYMP.SAN Sympetrum sanguineum 

SYRPHIDA Syrphidae 

TABANIDA Tabanidae 
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Table 5.5. Average (minimum and maximum) values of environmental variables that were 
significantly different between pond types (ANOVA, post-hoc Tukey-Kramer P < 0.05).  

 

 

  

Water quality Units Type 1 (n = 8) Type 2 (n = 4) Type 3 (n = 11) Type 4 (n = 7) 

pH - 7.8 (7.5-8.5)ab 8.2 (7.8-8.6)a 7.7 (7-9.1)ab 7.2 (6.7-7.6)b 

Temperature oC 18.9 (17.6-22.1)a 20.2 (17.5-24.2)a 18.2 (15.7-20.1)ab 16.1 (14.9-18.9)b 

Dissolved oxygen % Sat. 79.1 (45.3-112.2)a 88.9 (70.5-110.8)a 72.7 (18.8-175.6)a 26.9 (12.1-52.2)b 

PO43- mg l-1 0.05 (0.02-0.13)a 0.16 (0.02-0.33)ab 0.77 (0.15-2.46)b 0.7 (0.11-2.11)ab 

Mn1 µg l-1 175.6 (56-
342.3)ab 

71.6 (56-131.8)a 396.7 (56-1034)ab 615.5 (65.5-
1243.8)b 

Local physical         

Mesohabitats Count 5 (4-7)a 4 (4-6)ac 3 (2-4)b 3 (1-5)abc 

Surface area m2 3421 (721-
6963)ab 

3846 (692-
6423)ab 

5294 (1215-
14967)a 

989 (299-2108)b 

Open water % 0.62 (0.07-0.9)a 0.73 (0.46-0.96)a 0.61 (0.24-0.9)a 0.15 (0-0.39)b 

Tree cover % 0.07 (0-0.17)a 0.02 (0-0.06)abc 0.3 (0.04-0.65)b 0.73 (0.27-1)c 

Floating cover % 0.13 (0.01-0.47)a 0.07 (0-0.16)ab 0.01 (0-0.03)b 0.01 (0-0.07)b 

Macrophyte 
richness 

Count 7.6 (4-14)a 7.1 (5-9.5)a 1.3 (0-2.5)b 4.3 (1-10)a 

Water Level 
Fluctuation Index 

- 61.2 (4.1-168.8)ab 193.6 (18.6-
353.6)ab 

31.5 (6.4-119.4)a 1245 (24-
4698.4)b 

Spring source2 Binary 0.63 0.25 0.36 0.57 

Surface run-off 
source2 

Binary 0.38 0.5 0.82 0.57 

Stream source2 Binary 0.13 0 0.36 0 

Fish presence2 Binary 0.88 0 0.55 0 

Regional connectivity         

Effective 
distance/area 
within 2km 

- 22.15 (1.44-
92.87)a 

5.77 (1.4-15.9)ab 1.1 (0.18-4.1)b 2.67 (0.51-9.37)b 

Water within 
1000m 

% 0.029 (0.014 - 
0.049)a 

0.013 (0.01 - 
0.016)ab 

0.008 (0.001 - 
0.015)b 

0.018 (0.005 - 
0.046)ab 

Regional land-use           

PCA axis 1 within 
100m 

- -1.69 (-3.80 - 
2.22)a 

-1.37 (-2.81 – 
0.14)ab 

1.23 (-0.65 – 
3.44)b 

0.77 (-0.84 – 
3.11)ab 

Mature vegetation 
within 100m 

% 0.30 (0.07 – 0.76) 0.26 (0.06 – 0.50) 0.25 (0.10 – 0.53) 0.38 (0.11 – 0.64) 

Diversity metrics      

Species richness - 67.6 (51 - 82)a 55.5 (43 - 81)ab 35.2 (19 - 48)b 41.9 (17 - 62)b 

CCI - 16.85 (11.1 - 
26.4)a 

14.08 (10.6 - 
18.7)ab 

10.72 (4.8 - 
19.8)b 

8.76 (4.9 - 13.4)b 

a, b and c indicate where significant differences occur 

1Concentrations below limits of detection assigned limit of detection value (Appendix 3) 
2Binary; figures represent proportion of sites including the variable (not statistically tested for 

differences) 
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Table 5.6. Mean relative abundance of core taxa (those >1% of total macroinvertebrate 
abundance) occurring within each pond type. Values in bold represent top three most 
common taxa within pond type 

Core taxa Type 1 
(fish, low PO4, 
high macrophyte 
richness) 

Type 2 
(no fish, low tree 
cover, high 
macrophyte 
richness) 

Type 3 
(high PO4, 
isolated, low 
habitat 
diversity, 
large) 

Type 4 
(heavily 
shaded, no 
fish, low 
temp., small, 
high WLFI) 

Gastropoda     

Anisus vortex 0.019    

Armiger crista 0.019    

Bithynia tentaculata   0.012  

Gyraulus albus 0.035 0.013   
Hippeutis 
complanatus 

  0.015  

Lymnaea stagnalis 0.038    

Physa fontinalis  0.035   

Planorbarius corneus    0.014 
Potamopyrgus 
antipodarum 

0.038   0.014 

Radix balthica 0.022 0.047 0.039 0.052 

     

Crustacea     

Asellus aquaticus 0.145 0.063 0.113 0.245 
Crangonyx 
pseudogracilis 

0.043 0.111 0.039 0.046 

     

Hemiptera     

Cymatia coleoptrata  0.016   

Micronecta scholtzi  0.014   

Corixidae nymph 0.029 0.101 0.071 0.074 
Notonectidae 
nymph 

 0.013   

     

Coleoptera     

Beetle larvae 0.012   0.013 

     

Ephemeroptera     

Caenis horaria 0.012    

Cloeon dipterum 0.017 0.025 0.012 0.011 

     

Hirudinea     

Helobdella stagnalis   0.047  

     

Odonata     

Ischnura elegans 0.012 0.016   
Anisoptera, 
immature 

 0.010   

Zygoptera, 
immature 

0.011 0.025 0.018  

     

Diptera     

Ceratopogonidae 0.010    
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Core taxa Type 1 
(fish, low PO4, 
high macrophyte 
richness) 

Type 2 
(no fish, low tree 
cover, high 
macrophyte 
richness) 

Type 3 
(high PO4, 
isolated, low 
habitat 
diversity, 
large) 

Type 4 
(heavily 
shaded, no 
fish, low 
temp., small, 
high WLFI) 

Chaoboridae 0.010 0.162 0.038 0.086 
Chironomidae 0.182 0.145 0.261 0.202 

     

Bivalvia     

Sphaeriidae 0.022 0.024 0.045 0.044 

     

Oligochaeta 0.157 0.056 0.195 0.132 

Total: n = 19, ∑0.84 n = 17, ∑0.88 n = 13, ∑0.91 n = 12, ∑0.93 

 

  

Table 5.7. Unique taxa to each pond type i.e. those exclusive to each pond. Number of sites 
at which the taxon is present is given in parenthesis. 

Type 1 (n = 8) Type 2 (n = 4) Type 3 (n = 11) Type 4 (n = 7) 

Coleoptera    
Cercyon convexiusculus (1) Hygrobia hermanni (3) Anacaena globulus (1) Helophorus grandis (2) 
Coelambus  
    impressopunctatus (1) Suphrodytes dorsalis (1) Gyrinus substriatus (1) 

Hydroporus  
    angustatus (2) 

Haliplus lineolatus (2) Ochthebius minimus (1) Hydroglyphus pusillus (2) Hydroporus pubescens 
Hydraena riparia (2)   Ilybius fuliginosus (2) 
Hydrochus elongatus (1)   Rhantus exsoletus (1) 
Hygrotus versicolor (1)   Rhantus suturalis (1) 
Laccophilus hyalinus (1)    

Trichoptera    
Anabolia nervosa (2) Cyrnus trimaculatus (1)  Oecetis ochracea (1) 
Athripsodes aterrimus (2)    
Holocentropus dubius (2)    
Leptocerus tineiformis (4)    
Limnephilus decipiens (2)    
Lype reducta (1)    
Mystacides azurea (1)    
Cyrnus flavidus (4)    

Odonata    

Libellula quadrimaculata (1) Anax imperator (1)   

Orthetrum cancellatum (1) Lestes sponsa (1)   

 Libellula depressa (1)   

 Sympetrum fonscolombii (1)   

Hemiptera    
Mesovelia furcata (1)  Notonecta maculata (1) Callicorixa wollastoni (1) 
Plea leachi (1)   Velia caprai (2) 

Hirudinea    

Piscicola geometra (5)    

Gastropoda    

Radix auricularia (2)  Stagnicola palustris (1)  

Ephemeroptera    

Caenis luctuosa (1)    
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Figure 5.3.3. Four types of urban pond distinguished by TWINSPAN 

 

 

a)  Type 1:  b) Type 2 

c) Type 3 d) Type 4 
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5.3.4. Separating out the effects of local and spatial influences on the 

macroinvertebrate communities of urban ponds 

The forward selected variables from within each of the local (water quality, physical) and 

regional (land-use, connectivity) factors sets (section 5.3.3) were used within a variance 

partitioning procedure (Borcard et al. 1992) in order to isolate the amount of explained 

variance in macroinvertebrate composition that could be attributed to local and regional 

variables alone and in combination (Figure 5.3.4). 

The isolated influence of local physical, water quality, land-use and connectivity 

factors explained 16.5%, 5.45%, 6.33% and 7.47% of variance in the macroinvertebrate 

community respectively (Figure 5.3.4a), such that their explanatory power ranked: local 

physical > connectivity > land-use > water quality (i.e. a – d Figure 5.3.4b). In all, 43.98% of 

variance within the macroinvertebrate community was explained using local and regional 

factors alone and in combination. Local physical variables were clearly the most influential, 

in addition to the 16.5% explained purely by local physical factors, a further 7.53% of 

explained variance was shared between local physical and at least one other factor set, such 

that total potential explained variance by local physical factors alone was 24.03%. For 

example, the greatest shared variance was found between local physical, water quality, and 

land-use variables (1.58%, i.e. l Figure 5.3.4b), although the majority of this variance (1.49%, 

i.e. e Figure 5.3.4b) was shared between local physical and water quality variables alone. 

Over half (50.4%) of variance explained in the direct CCA (non-partial) by water quality, was 

subsequently identified as shared variance.  

Local factors alone were able to explain 23.4% of the total variance (Figure 5.3.4c), 

which equates to 53.3% of explainable variance, almost twice that explained by regional 

factors. The remaining 6.6% of explained total variance was shared amongst combinations of 

local and regional factors sets. 
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Figure 5.3.4. a) Venn diagram displaying the partitioning of explained variance between local (water quality, local physical factors) and regional 
(land-use and connectivity) factors. Numbers represent the percentage of variance attributable to each variable set. b) 15 CCA analyses were 
performed and 27 subtraction equations to estimate the fractions a - o (see Appendix 18) c) The variance attributable to local and regional factors 
combined. 

  

 

*A negative fraction indicates that the two groups together, explain 

the response variable better than the sum of the individual effects of 

these variables (Legendre and Legendre 1998)  
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5.3.5. Predicting species richness within characteristic macroinvertebrate 

orders 

Generalized Linear Models (GLMs) were used to explore patterns of taxon richness for the 

macroinvertebrate assemblage as a whole and that of five macroinvertebrate orders 

(Gastropoda, Coleoptera, Trichoptera, Odonata and Hemiptera).  

Local physical factors provided the best fitting model for predicting richness in three of 

the macroinvertebrate orders (Gastropoda, Coleoptera and Odonata) and for taxa richness 

(Table 5.8), whereas there was little difference between water quality and local physical 

models for Trichoptera and land-use provided the best-fitting model for Hemiptera; 

although all models for Hemiptera richness performed poorly. Macrophyte species richness 

had strong support for inclusion in the best approximating model for all macroinvertebrate 

orders (selection probability (SP) >0.95, Table A19.2), with the exception of Hemiptera.  

Of the connectivity metrics, many of the nearest neighbour metrics were collinear 

(Pearson‟s correlation coefficient > 0.7) and resulted in just three being retained for 

incorporation into the GLMs in addition to the amount of wetland and pond habitat within 

each spatial extent. These were the Euclidean distance to the nearest neighbour weighted by 

area (APNN), the effective distance to the nearest neighbour (CNN) and the cumulative cost 

to all neighbours within 2km weighted by area (AC2km). Of these, the latter was the most 

influential amongst macroinvertebrate orders, suggesting consideration of the wider pond 

network and the inter-habitat landscape is important. AC2km was also found to have a 

stronger relationship with taxa richness in all cases, with the exception of Odonata, than the 

non-landscape weighted AP2km metric (Appendix 23), thus was preferentially retained for 

model selection. 

5.3.5.1. Gastropoda 

Gastropod richness was best predicted by local physical variables (r2 = 0.7, Table 5.8). Twelve 

models made up the 95% confidence set, each of which included macrophyte richness (SP > 

0.99) and fish presence/absence (SP 0.97, Table A19.2) indicating strong support for their 

inclusion in the best approximating model. Interestingly, the relationship between fish 

presence and gastropod richness was positive, such that it is not likely to be a direct 

predator-prey relationship.  

Thirteen models were included in the 95% confidence set for connectivity, 11 of which 

included the proportion of aquatic habitat within 250m (SP 0.89, Table A19.4). CNN, the next 

important connectivity metric had only moderate support (SP 0.55). The most parsimonious 

water quality model has a good probability of resembling the best approximating model 
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(wAICc 0.42) from the 24 that made up the 95% confidence set, all of which included PO4 and 

nine included both Fe (mean 818.5 µg/l, Appendix 21) and K (mean 4.8 mg/l). 

Consequently, PO4 has very strong support for inclusion in the best approximating model for 

water quality (SP > 0.99). Support for Fe (SP 0.71) and K (SP 0.63) inclusion is somewhat 

lower (Table A19.1). Land-use variables were poor at predicting gastropod richness as 

demonstrated by a ∆AICc of 16.7 (r2 0.34). Nonetheless, the extent of urbanisation within 

200m was the most important land-use variable (SP >0.99). 

5.3.5.2. Coleoptera 

Coleoptera richness was best predicted by local physical variables (r2 0.56, Table 5.8). Thirty-

one candidate models made up the 95% confidence set, all of which included macrophyte 

richness indicating strong support for its inclusion in the best approximating local physical 

model (SP >0.99, Table A19.2), 15 included fish presence or absence as predictor variables (SP 

0.71).  

There was a considerable difference in the model fit between the local physical model 

and the next most powerful, land-use (∆AICc 12.2, r2 0.51). Nonetheless, the extent of 

urbanisation within 500m as indicated by PCA 1 (SP 0.80), as well as the proportion of tree 

cover (SP 0.95) were valuable predictors (Table A19.3), included in 18 and eight of the 21 

models in the 95% confidence set respectively. The connectivity model was weaker than both 

the habitat and land-use models, as shown by a ∆AICc of 14.1. The availability of pond 

habitat within 2500m was a good predictor and received strong support (SP > 0.99, Table 

A19.4) for inclusion in the best approximating model from the connectivity metrics. The 

water quality variables provided the poorest fitting model with a (∆AICc 23, r2  0.16).  

5.3.5.3. Trichoptera 

For Trichoptera the best model fit was provided by water quality variables (Table 5.8), with a 

good probability it resembles the best approximating water quality model (wAICc 0.71). Nine 

models made up the 95% confidence set, all of which included PO4 and NH4 resulting in 

strong support (both SP 0.98) for their inclusion in the best approximating water quality 

model (Table A19.1). Fe was only selected in the most parsimonious model of the 95% 

confidence set, undermining its relevance despite superficially strong support (SP 0.74). 

overall, the ∆AICc between the most parsimonious water quality and local physical models 

was just 1.8 indicating that there was little difference in their model fit, in addition, the 

relationship between predicted and observed values was stronger using either local physical 

factors (r2 0.59) or connectivity metrics (r2 0.57) than for water quality. The 95% confidence 

set of local physical variable models comprised of a relatively large number of all possible 
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model combinations (44/377) suggesting relatively small differences in their performance. 

Nonetheless, 36 included macrophyte richness (SP 0.95) and 12 included fish presence or 

absence (SP 0.78, Table A19.2). The percentage of tree cover, although appearing in the most 

parsimonious model, had weak overall support for inclusion in the best approximating local 

physical model (SP 0.35). 

The proportion of other wetlands within 500m from the pond edge had strong support 

for inclusion in the best approximating connectivity model (SP 0.87, Table A19.4). CNN had 

moderate support (SP 0.60). Within 500m, the proportions of wetland and pond habitat were 

highly collinear (Pearson‟s correlation coefficient 0.81, P < 0.001). Urbanisation within 200m 

was the most powerful land-use predictor of Trichoptera richness (SP > 0.99, Table A19.3). 

However, the most parsimonious land-use model exhibited the poorest model fit (∆AICc 

13.9, r2 0.47).  

5.3.5.4. Odonata 

Odonate richness was predicted best by local physical factors (AICc 88.0, r2 0.77), although all 

local and regional factors sets of variables performed relatively well (r2 0.60 to 0.77, Table 

5.8). Thirty-seven models comprised the 95% confidence set for local physical variables, all of 

which included macrophyte richness (SP >0.99, Table A19.2). The most parsimonious model 

suggested that percentage tree cover was the only significant local physical predictor (<999 

permutations, P < 0.05), however, a review of the 95% confidence set suggested less support 

as it only appeared in eight of the 37 models (SP 0.53). 

Connectivity metrics provided the second best-fitting model (∆AICc 7.9), with a good 

resemblance to the best approximating model (wAICc 0.58). AC2km (SP >0.99, Table A19.4) 

and the proportion of wetland within 250m (SP 0.96) were selected in all four of the 95% 

confidence set of connectivity models. For water quality PO4 (SP >0.99), which occurred in all 

21 of the 95% confidence set, and NH4 (mean 0.77 mg/l, Appendix 21, SP 0.62) were 

important (Table A19.1). Land-use variables had the lowest model fit (∆AICc 20.4, r2 0.60), 

nonetheless, the degree of urbanisation (SP >0.99) and proportion of mature vegetation 

within 100m (SP 0.98) received the greatest support, and the most parsimonious model likely 

represents the best approximating land-use model (wAICc 0.80). 

5.3.5.5. Hemiptera 

The performance of the models for predicting Hemiptera richness was poor. This is reflected 

by low wAICc scores, which suggests the lack of clear, powerful predictors within the 

explanatory variable groups (Table 5.8). Similarly, the percentage deviance explained and r2 

values are also small, the maximums being 35.1% and 0.32 respectively.  
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Little difference was found between the fit of land-use, local physical and water quality 

variables to hemipteran richness (∆AICc, 1.3). Within their respective variable sets, CaCO3 (SP 

0.76, Table A19.1), percentage tree cover (SP 0.92, Table A19.2) and the proportion of tree 

cover within 25m (SP 0.95) received the strongest support. The number of models in the 95% 

confidence sets of models relative to the total number of models, for water quality (97/175) 

and local physical factors (128/377), further indicates the lack of outstanding model fits.  

5.3.5.6. Taxon richness 

Macroinvertebrate assemblage richness was best predicted by local physical factors (Table 

5.8). All 63 of the 95% confidence models included macrophyte species richness (SP 

>0.99,Table A19.2), whilst all other habitat variables had low support for inclusion in a best 

approximating model (SP <0.36).  

All four local and regional factor sets performed well for predicting taxa richness (r2 

>0.50). The proportion of tree coverage (SP 0.98) and degree of urbanisation within 200m (SP 

>0.99) were the most important land-use variables (Table A19.3), occurring in all six of the 

95% confidence set of models. PO4 (SP 0.96, Table A19.1) and NH4 (SP 0.84) were the most 

important water quality variables, included in 30 and 13 of the 34, 95% confidence set. 

Relatively high wAICc values for the most parsimonious water quality (0.48) and land-use 

models (0.61) suggests the models show a good resemblance to the best approximating 

model. The connectivity metrics of most relevance were representative of the wider pond 

network. The availability of pond habitat within the maximum spatial extent studied here 

(2500m) was included in the top seven of 12 95% confidence set models (SP 0.88, Table A19.4) 

and AC2km included nine of 12 (SP 0.76). CNN had moderate support (SP 0.43) despite not 

being included in the most parsimonious model.  
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Table 5.8. The four most parsimonious models predicting the relationship for species 
richness (response variable) for five macroinvertebrate orders and taxa richness from 
within each of the local factor (water quality, local physical) and regional factor (land-use, 
connectivity) datasets 

Gastropoda   Group AICc ∆AICc wAICc %DE r2 

Mphyte + Fish Local phys. 134.1 0 0.193 58.0 0.70 
Wat_250m + CNN Connect. 139.8 5.7 0.255 49.2 0.61 
PO4 + Fe + K Water 143.2 9.1 0.421 47.8 0.54 
PCA1_200m Land-use 150.8 16.7 0.133 28.9 0.34 

Coleoptera       

Mphyte + Fish +%C Local phys. 146.7 0 0.317 63.2 0.56 
PCA1_500m + Tree +(E1/D) Land-use 158.9 12.2 0.259 45.8 0.51 
Pond_2,500m + (CNN) Connect. 160.8 14.1 0.187 38.1 0.42 
PO4 + (CaCO3) Water 169.7 23.0 0.050 18.4 0.16 

Trichoptera       

PO4 + NH4 + Fe Water 126.0 0 0.713 65.9 0.51 
Mphyte + Fish +%Tr Local phys. 127.8 1.8 0.271 63.8 0.59 
Wat_500m + AC2km Connect. 138.9 12.9 0.226 44.3 0.57 
PCA1_200m + (Tree_200m) Land-use 139.9 13.9 0.142 41.9 0.47 

Odonata       

%Tr + (Mphyte) + (Str.) Local phys. 88.0 0 0.307 NA 0.77 
AC2km + Pond_250m + (Wat_250m) Connect. 95.9 7.9 0.577 NA 0.61 
PO4 + (NH4) + (CaCO3) Water 99.5 11.4 0.260 NA 0.69 
Tree_100m + (PCA1_100m) + (Grass_100m) Land-use 105.4 20.4 0.800 NA 0.60 

Hemiptera       

Tree_25m  Land-use 157.2 0 0.153 27.4 0.29 
%Tr Local phys. 157.8 0.6 0.058 26.1 0.24 
CaCO3 + DO + Ca Water 158.5 1.3 0.113 35.1 0.32 
(Pond_2,500m) Connect. 163.4 6.2 0.253 11.7 0.11 

Taxa richness       

Mphyte + %Tr + Spr. Local phys. 238.0 0 0.098 66.3 0.66 
PCA1_200m + Tree_200m + Grass_200m Land-use 244.0 6.0 0.608 59.0 0.68 
PO4 + NH4 + CaCO3 Water 246.7 8.7 0.481 55.2 0.54 
Pond_2,500m + AC2km Connect. 251.0 13.0 0.305 44.0 0.50 

AICc Corrected Akaike‟s Information Criterion, ∆AICc difference in AICc between a given 
model and the most parsimonious, wAICc the model selection probability from all candidate 
models, %DE percent deviance explained in the response variable by the model under 
consideration, r2 of the relationship between model predicted against observed values, 
Mphyte Macrophyte species richness, Fish Fish presence/absence, %C Percentage of concrete 
edge,  %Tr Percentage tree Mean over pond, Str. Stream water source, Spr. Spring or 
groundwater source, PO4 Average phosphate concentration, Fe Mean iron concentration, K 
mean potassium concentration, CaCO3 Mean alkalinity, NH4 Mean ammonium concentration, 
DO Mean dissolved oxygen concentration, Ca Mean calcium concentration, Wat proportion 
of water within stated extent from the pond edge, Pond proportion of pond habitat within 
stated extent from the pond edge, CNN effective distance to the nearest neighbour, AC2KM 
Surface area of nearest neighbours divided by effective distance within 2km, PCA1 
urbanisation within stated extent from the pond edge, Tree Proportion of mature tree cover 
within stated extent from pond edge,  E1/D Simpsons index of land-use heterogeneity within 
stated extent from pond edge, Grass Proportion of ground level vegetation within stated 
extent from pond edge. Variables in parenthesis indicate a non-significant predictor (P > 
0.05). 
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5.4. Discussion 

5.4.1. The conservation value of urban ponds 

Despite the heavily altered and urbanized Birmingham and Black Country (BBC) landscape, 

many of the ponds studied supported a wide variety of macroinvertebrate life. Thus, the 

results are in agreement with those of Vermonden et al. (2009) that, contrary to previous 

studies that have found lower macroinvertebrate diversity in urban streams (Lenat and 

Crawford 1994; Paul and Meyer 2001; Walsh et al. 2001; Roy et al. 2003; Mancini et al. 2005), 

conservation value in urban ponds can be relatively high; although it is possible that BBC 

may be relatively less degraded than the areas investigated in previous studies. The discrete 

nature of ponds and the small size of their catchments (Davies et al. 2008b) results in ponds 

within the same region differing in local influences upon their physical and chemical 

environment. These localized conditions result in a greater variety of physical and chemical 

characteristics between ponds, the result of which is a greater diversity of niches for 

organisms to exploit (Biggs et al. 2005). Furthermore, the discrete nature of ponds is in 

contrast to riverine systems, where a single upstream disturbance may impact upon the 

entire downstream system. Therefore, greater resilience to disturbance may be present across 

pond networks that are able to support high regional biodiversity despite locally 

impoverished conditions. To date, however, no studies have directly compared taxon 

richness in pond habitats to riverine systems in an urban context.  

Pond studies in urban areas have emphasized their potential to support high regional 

diversity (Gledhill et al. 2008; Le Viol et al. 2009). In our study, a total of 193 

macroinvertebrate taxa were identified (157 to species), considerably more than a study of 36 

disused industrial mill ponds in Huddersfield, (taxa richness 124), although this may have 

been an underestimate due to the taxonomic level of identification (Wood and Barker 2000). 

A median species richness here of 32 is comparable to a study of 37 ponds in an urban 

northwest England landscape (median species richness = 28, Gledhill et al. 2008). Over half of 

the studied ponds supported one or more unique taxon, such that it was not only the most 

diverse and high quality habitats that contributed uncommon taxa. This strongly supports 

the proposal that a collection of ponds in different stages of succession (Williams et al. 1999; 

Biggs et al. 2005) and/ or maintaining a few in a turbid, pioneer state (Vermonden et al. 2009) 

increase s regional biodiversity.  

Despite the clear value of ponds at a regional scale, many of those studied here also 

supported diverse local communities. Only two ponds scored a CCI < 5, which as a general 

guide are sites that support only common species and/or a community of low taxon richness 
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and of low conservation value (Chadd and Extence 2004). The remaining sites were 

considered to be of moderate conservation value or above, largely as a consequence of the 

presence of at least one uncommon species. Site 21 had the highest conservation value (CCI 

26.4) and is located in within a Site of Special Scientific Interest (SSSI) designated for its 

mosaic of wetland habitats (Natural England 2012a). The designation of site 21 supports the 

guidelines provided by Chadd and Extence (2004) that such a macroinvertebrate assemblage 

as that found may merit statutory protection. Furthermore, site 21 supported H. elongatus, 

the only nationally rare species found (two individuals). The closest recordings of H. 

elongatus are approximately 33km away in Coventry (Warwickshire BRC 2012). However, the 

site is also noted for being in decline due to increasing abundance of a non-native invasive 

plant species Crassula helmsii (Natural England 2012b).  

5.4.2. Factors determining macroinvertebrate community composition 

The combination of TWINSPAN and CCA described the main environmental gradients that 

separated out groups of ponds with similar macroinvertebrate communities. The 

deconstruction of the assemblage, as suggested by Thompson and Townsend (2006)  further 

identified specific local and regional factors that showed greater relevance to the richness of 

different macroinvertebrate orders.  

GLMs performed well for each of the macroinvertebrate groups examined with the 

exception of Hemiptera. Hemipterans are invariably strong dispersers (Briers and Warren 

2000) and amongst the first to colonize new sites (Williams et al. 2008), it is feasible that 

sampled adults may not represent breeding populations reflective of the habitat. 

Alternatively, hemipterans show considerable variability in their functional traits, many of 

which are idiosyncratic by comparison to other macroinvertebrate orders, such that a further 

breakdown of Hemiptera to family level e.g. Corixidae, Notonectidae, may improve model 

fit. 

5.4.2.1. Influence of local factors 

Ponds that had the highest conservation value were associated with low nutrient status, high 

macrophyte complexity and little shading. Macrophyte richness was positively related to 

species richness in all the macroinvertebrate groups studied, with the exception of 

Hemiptera. Macrophyte complexity is well known to improve macroinvertebrate habitat by 

providing food and refuge from predation (Gilinsky 1984; Diehl 1992; Williams 1997) and 

positive relationships between macroinvertebrate and macrophyte richness are well known 

(Gledhill et al. 2008; Hassall et al. 2011). Macrophytes provide a substrate for epiphytic algal 

growth providing food for gastropods (Brönmark 1985) and a reduction in the risk of 
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predation by molluscivorous fish (Covich and Kneţević 1978). Zealand and Jeffries (2009) 

show that differences between gastropod diversity in their study of ponds in 

Northumberland can be attributed to habitat similarity (macrophtyte richness). The pattern 

is likely to be similar for Trichoptera, the cased forms of which frequently require plant 

material to build their cases and caseless forms are often found attached to macrophytes 

(Samways and Steytler 1996; Schindler et al. 2003; Hassall et al. 2011). Many odonates require 

emergent vegetation to complete their life cycle, for predation opportunities (Lombardo 

1997) and as perches in their adult form (Remsburg et al. 2008).  

The most species poor sites had high nutrient concentrations, had fewer macrophytes, 

high levels of shading and were in a „turbid‟ state (Scheffer et al. 1993). Overhanging trees 

impact macrophytic growth by excluding light from reaching the sediment directly or 

through the accumulation of leaf litter above the sediment. Fewer macrophytes reduce 

oxygenation of the water column, produced through photosynthesis (Brönmark and 

Hansson 2005), and nutrient uptake from the sediment (Chambers et al. 1989) and water 

column as with submerged vegetation (Cronk and Fennessy 2001). A reduction in 

macrophytes can encourage a shift between a macrophyte-rich clear water to a macrophyte-

poor turbid state, dominated by floating vegetation by promoting algal biomass (Scheffer 

and van Nes 2007). Gee et al. (1997) found a peak in macrophyte species richness with 

approximately 30% shade over the pond margins, comparable to macrophyte richness here, 

which peaked between 38% and 41% tree cover. Thus, some tree shading may be beneficial 

to habitat complexity (Biggs et al. 1994; Gee et al. 1997), although ponds with the highest 

conservation value had less tree shading (0 – 17%), suggesting the influence of other factors 

on the macroinvertebrate assemblages beyond habitat complexity, for example, tree shading 

can affect habitat selection from the outset by affecting visual cues sought by daytime 

dispersing insects (Remsburg et al. 2008). 

The effect of shading on nutrient status is multiplicative. Shading inhibits macrophyte 

growth, which would otherwise reduce nutrient concentrations and the decomposition of 

organic matter after deciduous trees senesce releases PO4 into the water column. Nutrient 

enrichment (PO4 concentration) was detrimental to species richness within each of the 

macroinvertebrate groups investigated, with the exception of Hemiptera, which showed 

little relationship with water quality. Although Diptera richness was not analysed, 

dominance and richness in this order is likely to increase with nutrient enrichment (Lenat 

and Crawford 1994; Hamerlik et al. 2011). The relevance of PO4 concentration to 

macroinvertebrates is likely realised through the detrimental impacts eutrophic conditions 

have upon aquatic habitats (Smith et al. 1999). 
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Fish were present in pond types with both high (T1) and low (T3) macroinvertebrate 

and macrophyte diversity. Previous studies have found fish presence to have a negative 

impact on macroinvertebrate species richness (Wood et al. 2001) and on Coleoptera, Odonata 

and Hemiptera species richness (Schilling et al. 2009), and this is likely due to predation 

pressure. However, the pond habitats with fish presence and high macrophyte richness may 

benefit from fishery management. Much fishery management aims to keep areas of open 

water for fishermen and  fine sediment is removed to maintain water depth in some places 

(Wood et al. 2001). Consequently, pond succession may be halted, which may otherwise 

increase the sediment to water depth ratio, nutrient content, produce a more homogenous 

macrophyte community as more tolerant species prevail and encourage a switch to a more 

turbid state (Scheffer et al. 1993). Ponds of low conservation value also supported fish but 

were typically associated with poor vegetation complexity and higher suspended sediment 

loads suggesting a switch to a turbid state has already occurred and was not halted by 

management intervention.  

The influence of fish is not uniform across taxa, which agrees with the findings of 

Hassall et al. (2011). Where fish were absent, Chaoboridae abundance was high. Fish are well 

known to out-compete Chaoboridae for zooplankton prey, which are frequently found in 

greater abundance in the absence of fish (Sweetman and Smol 2006; Schilling et al. 2009). For 

Gastropoda and Trichoptera the relationship was positive and for Coleoptera, negative. 

Coleoptera, particularly predatory Dysticidae (Fairchild et al. 2000; Schilling et al. 2009), 

which are active in the water column are probably more vulnerable to fish predation than 

other macroinvertebrates (Heino 2000). Similarly, hemipteran abundance was reduced in 

ponds with fish, which is most likely due to their conspicuous, active nature, which makes 

them an obvious target for insectivorous fish (Cook and Streams 1984). The negative 

relationship between fish presence and Coleoptera richness has been noted in several further 

pond studies (Hinden et al. 2004; Hassall et al. 2011). Insectivorous fish have been shown to 

have a major impact upon some odonate species (McPeek 1990), although no relationship 

between odonate richness and fish was found. The strong positive relationships between fish 

presence and gastropod and trichopteran richness are unlikely to be direct. Where complex 

marginal habitats exist, predation pressure on macroinvertebrates can be ameliorated 

(Gilinsky 1984). Angled ponds tended to have higher macrophyte complexity, such that 

some regularly angled ponds may provide incidental benefits to gastropods and 

trichopterans by the maintenance of marginal vegetation complexity for the benefit of the 

fishery. Data on the composition of fish may also provide further insight, for example, 

benthic feeding fish such as Carp (Cyprinus carpio) and Bream (Abramis brama), both popular 
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fishing quarry, can have a considerable impact upon macrophyte growth by increasing water 

turbidity and reducing light availability (Wetzel 2001) whereas impacts by salmonids, for 

example, may be negligible (Gee et al. 1997). 

The GLM process was more subtle and highlighted taxa specific factors which were not 

influential on the macroinvertebrate community as a whole. Fe concentration was important 

for Gastropod species richness. Fe has been found to be an important control on overall 

macroinvertebrate composition in urban streams in concentrations > 440 µg/l (Beasley and 

Kneale 2002; Freund and Petty 2007). At the study median concentration (250 µg/l, 

Appendix 21), direct effects of Fe on aquatic macroinvertebrates such as those on vertebrates 

(Vuori 1995) are unlikely, although Fe concentration ranges are considerable (maxima site 

mean 7672 µg/l). Moreover, Fe can react with dissolved oxygen to produce iron hydroxides, 

which precipitate in the water column and settle on the sediment surface (e.g.Younger et al. 

2002 ). Macroinvertebrate grazers, the feeding guild to which most gastropods are assigned 

(Cummins and Klug 1979), have been reported to be the first invertebrates eliminated by 

increasing Fe concentrations (Rasmussen and Lindegaard 1988).  

NH4 concentration was important for trichopteran and odonate richness and 

frequently exceeded the concentration related to ecological „good‟ status under the Water 

Framework Directive (WFD) (Chapter 4 and Appendix 21). In its own right NH4 is largely 

harmless, aside from its potential contribution to nitrification processes, however, in higher 

pH conditions, >8, it can switch to the more toxic ammonia form (NH3), which can be 

harmful to aquatic life (Brönmark and Hansson 2005).  

5.4.2.2. Influence of regional factors 

The impact of urbanisation on the macroinvertebrate community as a whole at a relatively 

small spatial extent i.e. 100m (Figure 5.3.2), may be reflective of increasing numbers of 

diffuse and point pollution sources. Diffuse pollution may result from impermeable surfaces 

through surface water run-off and point sources from buildings, e.g. residential housing. The 

relevance of urbanisation within 100m may also be reflective of isolation in the wider 

environment inhibits he exchange of individuals between separate communities. The 

importance of effective distance, rather than Euclidean (straight-line), for macroinvertebrate 

dispersal has rarely been considered in studies of insect dispersal (Fahrig 2007). Yet, inter-

habitat urbanisation can increase the influence of dispersal limitation upon 

macroinvertebrate communities above that of local environmental conditions (Urban et al. 

2006). AC2km was an important connectivity metric to community composition and richness 

and performed better than the equivalent Euclidean metric (AP2km, Appendix 23). Urban 

areas in particular provide considerable resistance to dispersing aquatic insects. Polarized 
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light pollution (Horvath et al. 2009), interferes with insects ability to locate aquatic habitat. 

Plastics, glass buildings, metal exteriors of cars, green metal roofs, oil lakes, and solar panels 

may all act as polarized ecological traps for a range of polarotactic insects including 

ephemeropterans, coleopterans and odonates (Ladócsy 1930; Horvath et al. 1998; Larson et al. 

2000; Kriska et al. 2006b; Kriska et al. 2007; Stevens et al. 2007; Malik et al. 2008; Horvath et al. 

2010; Malnas et al. 2011). The differences in spatial extent between the macroinvertebrate 

groups were more pronounced for connectivity metrics than for land-use (Table 5.9).  

Aquatic gastropod dispersal is passive, as such they are largely incapable of dispersing 

themselves between habitats and rely on agents such as animal vectors (Bilton et al. 2001). 

For example, eggs and adults of the river limpet (Ancylus fluviatilis) have been found 

attached to the wing cases of a water beetle (Acilius sulcatus) (Davies et al. 1982). Dispersal 

therefore, is contingent on the dispersal abilities of the hosts, which may vary widely from 

amphibians to waterfowl (see Kappes and Haase 2012 for review). The value of connectivity 

to water bodies within 250m therefore (Table 5.9), is uncertain but may represent a 

combination of the average dispersal of the host and the survival of the snail in the terrestrial 

environment, although this may be possible for several days e.g. Dreissena polymorpha 

(Kappes and Haase 2012). 

The strong dispersal abilities of Coleoptera and Hemiptera are reflected in the selection 

of the most distant spatial extent selected in the GLM models (2500m). Coleoptera and some 

families of Hemiptera (for example Corixidae and Notonectidae) are generally considered to 

be strong fliers, capable of dispersing several kilometers and among the first to colonize new 

sites (Briers and Warren 2000; Davy-Bowker 2002; Lundkvist et al. 2002; McAbendroth et al. 

2005). Most flight by Hemiptera and Coleoptera is for the purpose of finding new habitat 

(Lundkvist et al. 2002), although this may be tempered by behavioral constraints, for 

example, Agabus bipustulatus (Linnaeus, 1767) did not disperse from ponds which had all but 

dried up (Davy-Bowker 2002). By reviewing isolation of ponds with Notonecta spp. present, 

Briers (1998) suggested that such species were able to disperse at distances greater than 

1.6km.  

Trichoptera species richness was more closely linked to connectivity metrics at 500m. 

Median dispersal distances of Trichoptera away from Lake St. Clair and the Detroit River, 

Canada, were recorded up to 1.558km (Kovats et al. 1996), suggesting considerable dispersal 

potential, especially in light of their relatively long adult life span (up to one month,  Merritt 

and Cummins 1996). However, within streams at least, Trichoptera have typically exhibited 

a propensity to remain within the riparian zone (for example Collier and Smith 1998), as is 

the case for many aquatic insects (Merritt and Cummins 1996).  
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For odonates, connectivity metrics were most important at 250m distance, similarly, 

land-use, which is particularly relevant to odonate foraging during their adult form was 

most relevant within 100m. Odonates have a strictly terrestrial life-stage and display a high 

degree of philopatry (Angelibert and Giani 2003) meaning that they may move away to 

forage before returning to develop territories (Conrad et al. 1999). Although possessing long 

dispersal capabilities (e.g. > 1km, Rouquette and Thompson 2007) odonates do not, in 

general, fulfill their dispersal potential. This reflects behavioral constraints to dispersal 

(Macneale et al. 2005), which maintains the general consensus that long range dispersal in 

adult aquatic insects is a typically rare event (Bohonak and Jenkins 2003). Many recaptures of 

odonates in mark-recapture studies have occurred less than 100m from initial capture 

locations. For example, only 27% of marked Enallagma cyathigerum (Charpentier, 1840) 

moved a distance greater than 100m (Garrison 1978) and between 65.7% and 87.6% of 

Coenagrion mercuriale (Charpentier, 1840) and Ischnura pumilio (Charpentier, 1825) moved a 

distance less than 50m.  

 

 

 

 

 

 

 

 

  

Table 5.9. Most relevant spatial extents for land-use and connectivity metrics for each of 

the macroinvertebrate groups studied as well as general dispersal traits 

Taxa Land-use Connect. Dispersal characteritics 

Gastropoda 200m 250m Passive, host dependent 

Coleoptera 500m 2500m High 

Trichoptera 200m 500m Medium 

Odonata 100m 250m Low 

Hemiptera 25m 2500m* High 

* Model not significant 
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5.4.3. Separating out the effects of local and spatial factors determining 

macroinvertebrate community composition 

Variance partitioning (Borcard et al. 1992) revealed the proportion of explained variance in 

macroinvertebrate composition that was shared between local (water quality and local 

physical factors) and regional (land-use and connectivity) factors. Urban pond 

macroinvertebrate assemblages tended to exhibit niche-based species-sorting as the driving 

structural mechanism (e.g. Leibold et al. 2004), although there was some support for 

dispersal limitation-related neutrality (e.g. Volkov et al. 2003). This result agrees well with a 

review of 158 datasets that found that most ecological communities had a significant 

environmental component and therefore, species sorting dynamics were often dominant 

(Cottenie 2005). In order for dispersal to show little to no relationship with community 

composition it must not be limited (Fuentes 2002). Although local factors were the most 

influential, the importance of the connectivity component indicated dispersal limitation was 

present for some members of the macroinvertebrate community. 

Local physical factors were more relevant than water quality, explaining 

approximately three times as much variation in community assemblage. This suggests that 

the influence of water quality did not outweigh the effects of habitat factors. In effect, the 

restrictions to habitat development, for example, from light exclusion and hard engineering 

preceded the impact of water quality despite highly eutrophic conditions and widely 

fluctuating temporal water quality at many sites. Nonetheless, local physical factors and 

water quality are inextricably linked and dependent on each other, as suggested by their 

shared variance (also see Chapter 4). 

5.5. Conclusion 

The results of this study have important implications with respect to the management of 

urban ponds. First, urban ponds have the capacity to support highly diverse 

macroinvertebrate communities and to support rare species. Despite previous studies 

highlighting the negative effect of management for angling (Wood et al. 2001), careful 

management of sites used for amenity purposes such as angling, could also promote species 

richness by encouraging complex macrophyte growth. Macrophyte complexity, as well as 

providing good macroinvertebrate habitat (Williams et al. 1999) will provide food and 

protection for juvenile fish and consequently improve the quality of the fishery. The 

encouragement of macrophyte habitat will help to ameliorate the impact of nutrient 

enrichment. Improved vegetation complexity can delay the switch to a turbid state (Scheffer 

et al. 1993) and an associated decrease in flora and fauna diversity. Management of nutrient 
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input in many instances requires immediate attention in the sites studied here. However, the 

overall taxonomic community richness found during the study is representative of the 

heterogeneity of the sites studied; even nutrient rich and macrophyte poor sites contributed 

unique taxa. 

The study adds further weight to the need to consider the wider pond network and 

beta rather than alpha diversity (Williams et al. 2004). Although local factors were more 

influential on the macroinvertebrate community, spatial factors were important indicating 

some dispersal limitation is apparent. Urbanisation increases isolation, whether by 

increasing distances between pond habitats or increasing inter-habitat landscape resistance. 

Managers should, therefore, assess the availability of habitat beyond a single site and aim to 

increase ecological resilience within the landscape by improving the provision of quality 

pond habitats.  

The spatial scale on which managers should focus depends on the taxa they wish to 

promote. The overall macroinvertebrate community is likely to benefit from considerations 

of land-use within 100m and availability of habitats within 1000m. A more complex, but 

potentially more beneficial strategy would be to better facilitate aquatic insect dispersal 

through the urban landscape, as well as consider the quality of neighbouring habitats 

(although only area was as used a proxy used here) within 2000m (as indicated by AC2km). 

Macroinvertebrates that are known to be strong dispersers are likely to be more sensitive to 

connectivity within the wider landscape, at least to 2500m, those that are poor dispersers or 

whose dispersal is behaviourally constrained (e.g. Odonata) are likely to benefit from a 

consideration of habitat availability within shorter distances (e.g. 250m).
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6 
Leaf litter breakdown as a measure of 

ecosystem function in ponds across 
an urban land-use gradient 



  

154 

Chapter 6: Leaf litter breakdown as a measure of 

ecosystem function in ponds across an urban land-

use gradient 

6.1. Introduction 

Macroinvertebrate diversity declines with catchment urbanisation because polluted sites are 

dominated by tolerant species (e.g. Chironomidae and Oligochaeta) with few sensitive taxa 

(Roy et al. 2003; Walsh et al. 2003; Moore and Palmer 2005; Carroll and Jackson 2008). 

Furthermore, the biomass of tolerant taxa increases relative to more sensitive taxa of the 

orders Ephemeroptera, Plecoptera and Trichoptera (Paul and Meyer 2001) and similar trends 

have been noted for microbes (Lecerf and Chauvet 2008). Declining species diversity may 

have severe implications for the functional integrity of aquatic ecosystems (Chapin et al. 

2000) since lost functional redundancy may constrain compensatory processing by the 

remaining tolerant species. Macroinvertebrates are categorised into functional feeding 

groups depending on their modality of feeding i.e. shredders, deposit and filter feeders, 

scrapers, piercers and predators (Usseglio-Polatera 1994; Tachet et al. 2002). Some urban 

streams have been found to be devoid of shredders (Paul et al. 2006), which are litter-feeding 

macroinvertebrates important for the decomposition process of organic matter (Cummins 

and Klug 1979; Tachet et al. 2000), and populations of scrapers, gatherers and filterers can be 

impoverished (Roy et al. 2003). In contrast, urbanisation frequently results in a greater 

abundance of non native species (McKinney 2006). Vermonden et al. (2010), for example, 

found five non-native Crustacea species with shredder traits in a study of urban drainage 

systems. In these systems, non-native Crustacea were the only species present in the most 

turbid, nutrient-rich water-bodies (Vermonden et al. 2010), consistent with the suggestion 

that highly disturbed ecosystems are more vulnerable to invasion (Elton 1958; Tilman 1999). 

Under such circumstances it is possible for pollution tolerant non-native species to 

functionally compensate for the loss of a native species. 

Research addressing the impact of urbanisation on ecosystem functioning in aquatic 

systems is relatively new, emerging over the past decade (Wenger et al. 2009). Historically, 
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structural metrics (e.g. taxon richness) were used to monitor freshwater pollution (Paul and 

Meyer 2001; Moore and Palmer 2005), but more recently leaf litter decomposition 

experiments have been promoted to assess the functional implications of anthropogenic 

impacts to streams and rivers (Gessner and Chauvet 2002; Pascoal et al. 2003; Chadwick et al. 

2006; Wenger et al. 2009). Allochthonous inputs of leaf litter are an important basal resource 

in most freshwater systems (Gregory et al. 1991) and the rate at which leaf litter is broken 

down influence nutrient cycling and secondary production (Oertli 1993). The decomposition 

process is carried out by microorganisms (bacteria and fungi) and shredding 

macroinvertebrates (Gessner et al. 1999) and initial colonisation by microbial decomposers 

(e.g. hyphomycetes) promotes the palatability of leaf litter to macroinvertebrate shredders 

(Suberkropp and Wallace 1992). Consequently, the rate of leaf decomposition depends on the 

microbial and macroinvertebrate communities and the relationships between the two. The 

relative contribution made to leaf breakdown rates by each can be assessed by using leaf 

packs of differing mesh size to include or exclude macroinvertebrates (Boulton and Boon 

1991).  

Leaf litter decomposition is controlled by a variety of factors including water 

chemistry, hydrology (particularly in riverine systems) and the abundance and taxonomic 

composition of macroinvertebrate and microbial assemblages. Leaf breakdown rates in 

urban streams have been shown to increase (Collier and Winterbourn 1986; Walsh et al. 2003; 

Meyer et al. 2005) or show no detectable change with the degree of urbanisation (Sponseller 

and Benfield 2001; Huryn et al. 2002). Increased breakdown in urban streams may be 

attributable to flashy flow regimes and the physical fragmentation of leaf litter from more 

abrasive flow (Paul et al. 2006). Imberger et al. (2008), found that breakdown rates by 

microbes increased with increasing catchment impermeability and consequent elevated 

phosphate concentrations and water temperature, a result consistent with Pascoal et al. 

(2005). Microbial activity in these urban streams outstripped contributions to breakdown 

rates by macroinvertebrate shredders and abrasive flow. Microbial decomposition rates are 

thought to be contingent on nutrient concentrations (i.e. P and N) (Gulis and Suberkropp 

2003; Pascoal et al. 2003; Pascoal et al. 2005; Goncalves et al. 2006). For example, aquatic 

hyphomycetes growing on leaves take up nutrients from the surrounding water (Suberkropp 

1998). However, Pascoal et al. (2005) found that lower current velocity and increased 

sedimentation in one study stream masked the influence of nutrient enrichment. In contrast, 

Chadwick et al. (2006) found peak breakdown rates at intermediate levels of urbanisation (i.e. 

~40% catchment impermeability) driven by abundant fungi and macroinvertebrates. Studies 

finding little difference between breakdown rates in areas of differing land-use may be 
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confounded by agricultural run-off (Hagen et al. 2006; Paul et al. 2006), which can also 

increase stream nutrient concentrations, thereby masking the impact of catchment 

urbanisation. 

Very few studies have undertaken leaf decomposition experiments in ponds or lakes. 

Ponds are small systems, in which aquatic-terrestrial linkages are more pronounced 

(Declerck et al. 2006), for example, in small streams, overhanging vegetation can shade a 

relatively large proportion of the aquatic habitat than in larger systems (Vannote et al. 1980). 

Consequently, riparian vegetation can reduce solar energy available for primary production 

(Hill et al. 1995) and provide a greater input of allochthonous material (e.g. leaves, woody 

debris). Littoral zones of ponds are often oxygen deficient, and is exacerbated by lower light 

conditions (Birch and McCaskie 1999; Fairchild et al. 2005). Bjelke (2005) studied the effect of 

low oxygen levels on the leaf processing efficiency of five lake-dwelling macroinvertebrate 

shredders, finding that at 1 mg/l O2, none of the species fed and levels of 2 mg/l O2 and 

normoxia (9 mg/l O2) affected species to different extents (also see Bjelke and Herrmann 

2005). Temporal niches of shredders, i.e. the timing of their growth to different periods of 

detritus input and composition has also been observed (Bjelke et al. 2005). Further effects to 

leaf processing rates within ponds are likely to arise from increased sedimentation due to the 

lack of flow, as in pools within river systems (Cummins et al. 1980) and similar to beaver 

ponds (Hodkinson 1975a), in which much of the allochthonous energy budget is accrued in 

the sediments (Hodkinson 1975b).  

This study investigates leaf decomposition rates across an urbanisation gradient 

derived from a GIS at a spatial scale (100m from the pond edge) known to be relevant to both 

water quality (Chapter 4) and macroinvertebrate community composition (Chapter 5), 

consistent with several other studies (Declerck et al. 2006; Akasaka et al. 2010; Williams et al. 

2010). Analysis of both structural indicators (macroinvertebrates) and a direct functional 

indicator (leaf decomposition rates) sheds light on the ecological integrity of urban pond 

systems, which have received scant attention to date.  

6.1.1. Research questions 

Research in this chapter investigates how the rates of an important ecosystem process, leaf 

litter decomposition, varies along an urbanisation gradient. The research posed four key 

questions: 

 

1. Does urbanisation alter ecosystem functioning and what are the relative effects on 

leaf litter decomposition by microbes and macroinvertebrates in ponds? 
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2. How important are local environmental factors such as water quality and physical 

habitat in shaping leaf-litter breakdown rates in ponds? 

 

3. Which macroinvertebrate species are important for leaf litter decomposition in urban 

ponds and how are they affected by urbanisation? 

 

4. Are macroinvertebrate assemblages good indicators of ecosystem functioning in 

urban ponds?   

6.1. Methods 

6.1.1. Study site selection 

Thirty ponds of contrasting surrounding land-use were selected from an estimated 1023 sites 

in Birmingham and The Black Country (BBC). For the full site selection process see Section 

2.1.  

Mature vegetation >3m in height within 10m of the study pond edges typically 

comprised of hawthorn (Crataegus spp.), silver birch (Betula pendula), crack (Salix fragilis) and 

grey willow (Salix cinerea), holly (Ilex aquifolium) and alder (Alnus glutinosa) (Appendix 25). 

6.1.2. Experimental outline 

A leaf breakdown experiment was conducted over four months in late summer 2010 (July - 

October). Abscised beech (Fagus sylvatica) leaves were collected from Winterbourne Botanical 

Gardens, Edgbaston, Birmingham once in December 2009. Water samples were collected 

from each pond in June and August 2010 (Table 6.1). Mean values were calculated from the 

two sampling periods for all water quality variables. 

6.1.3. Leaf decomposition 

Beech leaves were air-dried in laboratory conditions and 5g (± 0.05g) of leaf litter was placed 

in each leaf pack (15 cm x 15cm plastic mesh). The air-dried leaves were wetted with 

deionised water before being deposited in the pack in order to increase their flexibility and 

avoid leaf breakage. The mean air dry mass of a single leaf was 0.0065g (n = 76, 1 pack). Leaf 

packs of two mesh sizes were used. Coarse leaf packs and fine leaf packs had a 5mm and 

0.25mm mesh respectively. The fine mesh packs excluded the vast majority of 

macroinvertebrates; however, a limited number of very small macroinvertebrates (e.g. 

Oligochaeta, chironomidae) gained access. The leaf packs were closed in a disphenoid-like 

shape in order to avoid artificial leaf compaction that may otherwise limit macroinvertebrate 
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access (Figure 6.1.1). At each site, three pairs of leaf packs (one fine, one coarse) were 

anchored by a brick weight and, where necessary, fixed in position using a peg and 

monofilament line.  

 

 

 

 

 

  

Coarse mesh (5mm)

Fine mesh (0.25mm)

Brick weight

Monofilament 
fishing line

Table 6.1. Sampling periods and dates of sampling 

Season and hydrological year Sampling dates 

Early summer 2010 9th June – 11th June 2010 

Summer 2010 18th August – 20th August 2010 

Figure 6.1.1  Example of leaf pack pair (without leaves), with brick weight attached and 
monofilament line 
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6.1.3.1. Conversion factors and leaching 

In addition to the experimental leaf packs that were used in the study, four leaf packs were 

used to calculate the initial oven-dry mass of each leaf pack, by correcting for moisture 

content and leaching effects. To do so, two non-experimental air-dry leaf packs were oven 

dried (105oC, 48 hours) and individually weighed, to correct the air-dry masses of the 

experimental leaf packs for moisture content, using the following correction factor: m = mean 

oven-dry mass/mean air-dry mass. A further two bags were used in a laboratory test to 

correct for losses due to leaching (the loss of soluble organic and inorganic components), 

these leaf packs were submersed in deionised water for 72 hours, oven-dried (105oC, 48 

hours) and then weighed to the nearest 0.01 g. The conversion factor for correcting leaf packs 

for leaching processes is: l = (mean post-leaching oven-dry mass) / (mean air-dry mass*m), 

where m corrects for moisture content as above. 

To correct for the non-organic, ash component of leaves, one conversion factor was 

applied to the initial air-dry leaf mass and a second was applied to the leaf mass remaining 

after the study period. The first was achieved by reducing 5 x 0.5g (±0.025g) non-

experimental samples of ground leaf in a muffle-furnace at 550oC for two hours and 

calculating the mean remaining weight. The second was achieved by reducing a subsample 

of 0.5g (±0.025g) of the remaining leaf litter from each experimental leaf pack post-

submersion using the same method. The following conversion factor was then applied to the 

initial and post-study oven-dry leaf mass: a = (post furnace ash mass) / (oven dried 

subsample mass).  

In total, the initial pre-submersion air-dry mass of leaf packs for the determination of 

breakdown rates was corrected from 5.0g (±0.05g) to 4.139g (±0.05g), a 17% reduction to 

account for moisture content, leaching effects and ash content. All values used throughout 

the chapter have been corrected for moisture content and leaching processes. 

6.1.3.2. Calculation of leaf processing rate 

Processing rates were calculated for each leaf bag using the exponential decay coefficient, „k‟ 

(Petersen and Cummins 1974). This commonly used measure of decomposition rate assumes 

that for any amount of material at any time there is a constant fractional loss. Calculating k 

values is useful in that it allows processing rates to be comparable among different aquatic 

systems. k was calculated following the formula. 

 
   

                    

 
 Eq. 6.1.1 
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Alternatively written as: 

 

Where in Eq. 6.1.1, dmi is the initial mass in the leaf pack in grams and dmr is the mass 

remaining in grams of the leaf pack once removed from the pond. The operators m (moisture 

content), l (leaching) and a (ash component) are described in section 6.1.3.1. Time (d) was 

expressed as the number of days submersed. In Eq. 6.1.2, AFDMr is the ash-free dry mass of 

the leaf litter remaining post-experiment and AFDMi is the ash-free dry mass prior to 

submersion. Breakdown rates were calculated for total breakdown (macroinvertebrate and 

microbial breakdown) in the coarse bags (ktotal) and microbial only breakdown in the fine 

mesh bags (kmicrobe). Macroinvertebrate only breakdown (kinvert) was determined by subtracting 

the coarse mesh breakdown rate by the fine mesh breakdown rate for each leaf pack pair 

(ktotal – kmicrobe). 

6.1.4. Macroinvertebrates 

All leaf packs were collected after a mean of 80 days incubation, transferred to plastic bags, 

and stored at -15oC. In the laboratory, leaves were removed from each pack and rinsed over a 

0.5mm sieve, and any macroinvertebrates sorted from leaf debris identified and counted. 

Macroinvertebrates were later classified to functional feeding groups (FFG) after Tachet et al. 

(2002). Tachet et al. (2002) use fuzzy coding, such that macroinvertebrates may be classified 

to more than one FFG, here, the FFG was selected to which the taxa had highest affinity i.e. 

highest rank. Leaf material was oven-dried to constant mass at 105oC and weighed to the 

nearest 0.001g. 

6.1.5. Water quality 

Samples were kept cool, filtered (GF/C, 1.2µm) and returned to the laboratory for major ion 

analysis. Triplicate in situ measurements of pH, electrical conductivity (µS/cm), temperature 

(oC) and dissolved oxygen (% saturation) were taken and the average measurements were 

calculated. For each determinand, data were averaged for the two sampling periods to 

provide a single datum point for each site. Further detail on water quality sampling and 

analysis methods are discussed in Section 2.2.  

6.1.6. Local physical factors 

Single measurements of pond surface area and percentages of surface area classified as open 

water, shaded, riparian vegetation and floating vegetation were all derived from a 

 
   

                

 
 Eq. 6.1.2 
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combination of digitised field notes and Normalised Difference Vegetation Index (NDVI) 

and photogrammetrically derived height GIS layers against digital pond outlines. The 

percentage of pond bank that was made from concrete was also calculated in a GIS from 

digitized field notes. Water sources (i.e. stream inflows, groundwater, surface run-off or 

building run-off) and fish presence information was gathered from stakeholder knowledge 

and visual inspection. A water level fluctuation index (WLFI) was calculated as the standard 

deviation in depth between surveys (taken quarterly between 2010 – 2011) measured at set 

points within the wetted-perimeter of each pond. Mean values for suspended solids and 

chlorophyll a were calculated from the two sampling periods (Section 2.2.3). Further detail 

on the derivations of local physical factors is given in Section 2.2.  

6.1.7. The urbanisation gradient 

Chapters 4 and 5, as well as previous pond research (Declerck et al. 2006; Williams et al. 

2010), have highlighted the 100m scale as being relevant to both water quality and 

macroinvertebrate community composition of ponds. Thus, land-use, and thus urbanisation, 

at the 100m scale was considered relevant to urban ponds as a catchment proxy, and it is at 

this scale that the impact of urbanisation is tested here. Using land-use data within 100m, a 

PCA of „urbanisation indicators „(see Section 2.3.1.7) explained 43.3% of variance on axis one 

(PCA 1), which was positively correlated with the proportional coverage of towns and 

villages, impermeable surfaces, suburban, building intensity and roads, and negatively 

correlated to the proportion of arable land-use (Figure 6.1.2). Axis 2 (PCA 2) explained 23% 

of the variance and was related to social indicators such as housing and population density. 

Four groups of ponds were identified using the PCA 1 scores as follows: rural (n = 7), 

suburban (n = 10), dense suburban (n = 7) and urban (n = 6) (Figure 6.1.3). 

6.1.8. Statistical analyses 

Differences in ktotal, kmicrobe, kinvert, macroinvertebrate and macroinvertebrate shredder 

abundance and density were compared among ponds in the four urbanisation categories 

using 1-way analysis of variance (ANOVA) followed by Tukey or Tukey-Kramer post-hoc 

multiple comparison tests. The Tukey-Kramer post-hoc test is the equivalent Tukey test for 

comparisons between uneven group sizes.  

Ordination was employed in order to analyse relationships between physical and 

chemical variables, functional feeding groups and shredder community composition with 

leaf breakdown rates. Macroinvertebrate species that were recorded in < 5% of the study 

sites were  excluded  from  the  shredder  community  ordination  because  rare  species  may  

  



  

162 

Figure 6.1.2 Principal Components Analysis of 10 ‘urbanisation’ indicators 
TwnVill ‘Towns & villages’, IS Impermeable surface, BdInt Building intensity, Suburb 
Suburban coverage, Road Road coverage, HsDens Housing density, PopDens Population 
density, RurEmp % people in rural employment, Urban Urban land coverage, Arable 
Arable land-use coverage 

 

 

Figure 6.1.3. Pond groups along a gradient of urbanisation derived from axis 1 (PCA 1) of a 
principal components analysis of 10 ‘urbanisation indicators’ within a 100m buffer 
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confuse underlying patterns in community analysis (Faith and Norris 1989; Heino and 

Mykra 2008).  

The linear form of ordination, redundancy analysis (RDA), was used rather than 

unimodal canonical correspondence analysis (CCA) because preliminary detrended 

correspondence analysis (DAC) indicated a short maximum gradient length (DAC axis 1 SD 

< 2, 0.85) (Lepš and Šmilauer 2003). In order to analyse the relationship between functional 

feeding groups with breakdown rates, the relative abundance of taxa belonging to each 

functional feeding group was summed for each pond. Significance of ordination axes in each 

RDA was assessed by ANOVA (<999 permutations, P < 0.05). 

Prior to all analyses breakdown rates were square-root transformed to improve 

normality and homogeneity of variance for use in parametric tests, as tested by Shapiro-Wilk 

and Levene‟s tests carried out in using IBM SPSS statistical package version 19 (IBM, 

Armonk, New York). Similarly, water quality and local physical variables were square-root 

or log(n+1) transformed where necessary. Prior to ordination, physical and chemical 

variables were standardised to 0 mean and one standard deviation to account for different 

measurement units. Collinearity amongst independent variables was assessed by production 

of pairwise plots (Pearson‟s correlations), retaining one variable from any two where r > 0.7. 

Variance Inflation Factors (VIFs) were also checked using the package „nlme‟ (Pinheiro et al. 

2012). With reference to pairwise plots, variables were removed until all VIF < 5. Several 

threshold values for detecting multicollinearity with VIFs have been proposed, for example, 

10 (Quinn and Keough 2002; Oksanen et al. 2012), 5 (Montgomery and Peck 1982; ter Braak 

and Šmilauer 2002) or 3 or lower (Zuur et al. 2010). The selection of a moderate threshold 

value means that variables with a VIF >5 have <20% of unique variance within a set of 

predictors.  

Multiple comparison tests were carried out using IBM SPSS statistical package version 

19 (IBM, Armonk, New York). VIFs were calculated in the package „rms‟ (Harrell 2011) for R 

statistical program version 2.15.1 (R Core Team and contributors worldwide 2012). 

Ordinations were carried out within the R package „vegan‟ (Oksanen et al. 2012) using the 

functions „rda‟ for PCA and RDA and „decorana‟ for DAC and tests of significance within 

ordinations were carried out using the „anova‟ function. 

6.2. Results 

Mean ktotal was 0.0020/d (range 0.0001 – 0.0077), whilst kmicrobe and kinvert both averaged 

0.0010/d. Maximum kmicrobe and kinvert was 0.0036/d and 0.0055/d respectively. Breakdown 

rates did not differ significantly between kmicrobe and kinvert (ANOVA, post-hoc Tukey, Figure 
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6.2.1). Analysis of the relative contributions to total breakdown made by kmicrobe and kinvert 

revealed an equal split between the numbers of study sites at which each was the main 

driver of leaf decomposition. Mean percentage contribution to ktotal by kmicrobe was 49.2% 

(range 5.6% - 100%) and mean percentage contribution to ktotal by kinvert was 50.8% (range 0% 

- 94.4%). Consequently, neither macroinvertebrates nor microbes dominated breakdown 

processes across the study. Mean total mass loss due to the action of both macroinvertebrates 

and microbes was 13.8% (range 1.5% - 40.9%). Mean mass loss due the action of microbes 

only was 7.4% (range  0% - 24.8%). Mean mass loss by macroinvertebrates only was 6.4% 

(range 0% - 27%).  

6.2.1. Urbanisation and ecosystem functioning 

Significant differences in land-use composition between the land-use categories validated the 

grouping methodology (Table 6.2), in particular all four groups had statistically different 

(and increasing across the gradient) proportional coverage of impermeable surface within 

100m. No statistically significant effect of urbanisation on ktotal was found or to that 

attributable to kinvert or kmicrobe (ANOVA, P > 0.05, Figure 6.2.2). There was, however, a 

statistically significant effect of land-use on macroinvertebrates, both in terms of their total 

abundance within the leaf packs (ANOVA P < 0.05) and their total absolute density in leaf 

packs (ANOVA, P < 0.01). Post-hoc (Tukey-Kramer) tests revealed that macroinvertebrate 

numbers were greater in the urban group than in suburban (P < 0.05), reflecting increases in 

A. aquaticus, chironomids, oligochaetes and the gastropod, Hippeutis complanatus (Linnaeus 

1758), but not between rural and dense suburban (P > 0.05). Mean total macroinvertebrate 

abundance was 2.8 and 2.5 times greater in the urban than the rural and suburban groups 

respectively. Nevertheless, there was no evidence that numbers of shredders varied among 

ponds of contrasting land-use (Figure 6.2.3). 

6.2.2. The influence of macroinvertebrates on leaf breakdown rates 

Macroinvertebrate abundance within the 5mm mesh leaf packs ranged between nine 

individuals to >1000 individuals. The core taxa (those comprising, on average, >1% of the 

macroinvertebrate community) comprised of the water hoglouse Asellus aquaticus (Linnaeus 

1758), non-biting midges Chironomidae, a leech of macroinvertebrates Helobdella stagnalis 

(Linnaeus 1758), an introduced freshwater shrimp Crangonyx pseudogracilis (Bousfield 1958), 

two snail species; the flat ramshorn Hippeutis complanata (Linnaeus 1758) and Bithynia 

tentaculata (Linnaeus 1758) and the lake limpet Acroloxus lacustris (Linnaeus 1758). Six 

functional feeding groups (after Tachet et al. 2002) were identified; shredders, piercers, 

deposit feeders, predators, scrapers and filter feeders (Appendix 25).  

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae
http://en.wikipedia.org/wiki/Carl_Linnaeus
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Fourteen shredder taxa were collected from the 30 ponds and shredder density varied 

considerably (minima 0.25, maxima 196 ind./g AFDM). The most frequently occurring and 

abundant taxa were A. aquaticus (28 sites, mean 82 individuals) and C. pseudogracilis (16 sites, 

mean 24 individuals). A. aquaticus was the only shredder species to show an increase in 

numbers as the groups became more urban. All other shredder taxa were relatively 

uncommon and contributed <1% total shredder community; seven were present at single 

sites only. At single sites, uncommon shredder taxa contributed <23.7% to total shredder 

numbers (Tipulidae, site 28, suburban), although few contributed >2%.  

Within each pond group, A. aquaticus was the most abundant shredder species, 

followed by C. pseudogracilis, which are both approximately an order of magnitude greater in 

mean relative abundance than the next most common (Figure 6.2.4). The richness of 

shredders occurring at more than one site decreases with increasing urbanisation from seven 

to three, and if extended to include those occurring at one site only, from 11 to three.  

Two non-native shredder species are shared across the pond groups and one non-

native predator was recorded (Dugesia tigrina, Girard, 1850) (Table 6.3). The native shrimp G. 

pulex was only found within the two most rural groups and at a total of just two sites (Figure 

6.2.4), whereas C. pseudogracilis was present in 16, 62% of the study ponds. Of all the 

shredders, five were of the order Trichoptera, suggesting their functional importance within 

the shredder group, however, no Trichoptera were found in the most urban of sites. 

The first two axes of an RDA of functional feeding group mean relative abundance 

against leaf breakdown rates were significant (ANOVA, P < 0.05, Figure 6.2.5). The first axis, 

to which shredders were strongly correlated (Pearson‟s correlation: r = 0.87, P < 0.01), 

explained 42.4% of variance. The second axis, to which filterer collectors were correlated 

(Pearson‟s correlation: r = 0.78, P < 0. 01), explained a further 7.7%. Shredder density (/g 

AFDM) was correlated to ktotal and kinvert (Figure 6.2.7a & b).  

Further breakdown of species within the shredder group in a second RDA revealed 

important macroinvertebrate taxa for decomposition rates (Figure 6.2.6). The first two axes 

were significant (ANOVA, P < 0.05). The first axis, to which the mean relative abundance of 

A. aquaticus (Pearson‟s correlation: r = 0.77, P < 0.01) and C. pseudogracilis (Pearson‟s 

correlation: r = 0.73, P < 0.01) were strongly correlated, explained 52.4% of variance. The 

second, to which G. pulex (Pearson‟s correlation: r = -0.45, P < 0.05) and P. antipodarum 

(Pearson‟s correlation: r = 0.39, P < 0.05) were weakly correlated, explained a further 13.7%. 
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Table 6.2. Differences in land-use composition (proportional coverage) between 4 groups 
of ponds along a gradient of urbanisation within a 100m buffer. Bold type indicates an 
‘urbanisation indicator’ used to formulate the urbanisation gradient. Lettering denotes 
significant differences between groups (ANOVA post-hoc Tukey Kramer, P < 0.05) 

 1, „rural‟ 2, „suburban‟ 3, „dense suburban‟ 4, „urban‟ 

Arable 0.32 ± 0.32a 0.11 ± 0.19ab 0.00 ± 0.00b 2e-4 ± 5e-4b 
Suburban 0.05 ± 0.07a 0.25 ± 0.22a 0.62 ± 0.17b 0.89 ± 0.24c 
Urban 0.01 ± 0.02 0.05 ± 0.09 0.003 ± 0.008 0.08 ± 0.20 
% rural employment 0.07 ± 0.15 0.004 ± 0.003 0.007 ± 0.008 0.004 ± 0.002 
Population density 33.2 ± 11.5 32.6 ± 13.3 32.8 ± 9.4 38.0 ± 2.7 
Housing density 13.4 ± 4.0 13.3 ± 4.1 13.3 ± 4.4 16.1 ± 1.6 
Road 0.003 ± 0.006a 0.046 ± 0.046b 0.063 ± 0.017b 0.081 ± 0.037c 
‘towns & villages’ 0.71 ± 0.25a 0.72 ± 0.15b 0.56 ± 0.12c 0.65 ± 0.21c 
Impermeable surface 0.06 ± 0.06a 0.13 ± 0.12b 0.15 ± 0.05c 0.21 ± 0.07d 
Building intensity 0.01 ± 0.03a 0.16 ± 0.12a 0.46 ± 0.10b 0.83 ± 0.46c 

Improved grassland 0.21 ± 0.30ab 0.32 ± 0.27b 0.26 ± 0.16b 0.01 ± 0.03a 
Water 0.087 ± 0.055a 0.044 ± 0.059ab 0.007 ± 0.012b 0.021 ± 0.046b 
Woodland 0.6e-3 ± 0.002a 0.012 ± 0.017ab 0.085 ± 0.145ab 0.077 ± 0.092b 
Vegetation, 0m 0.16 ± 0.10 0.27 ± 0.22 0.24 ± 0.11 0.20 ± 0.08 
Vegetation, 0-3m 0.42 ± 0.23 0.24 ± 0.13 0.32 ± 0.17 0.44 ± 0.16 
Vegetation, 3-60m 0.42 ± 0.25 0.49 ± 0.26 0.45 ± 0.14 0.36 ± 0.12 

*Proportional coverages do not equal 1 due to the presence of other land-uses aside from those listed 
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Figure 6.2.3. Comparison of mean (±1 SE) a) macroinvertebrate abundance, and b) density 
/g AFDMr and c) shredder abundance, and d) density /g AFDMr. Different letters indicate 
significant differences amongst land-use categories (post-hoc, Tukey-Kramer) 
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For urban ponds, the taxon richness of shredders showed a strong positive relationship 

to ktotal and weaker, but still significant, to kinvert (Figure 6.2.8a & c) within individual leaf 

packs and macroinvertebrate community taxon richness captured within the leaf packs was 

strongly correlated to leaf breakdown rates (Figure 6.2.8b). 

 

 

 

 

Table 6.3. Presence or absence of non-native species within land-use categories. 
Percentage of sites within each category is given in parenthesis. 

Non-native species 1, „rural‟ 2, „suburban‟ 3, „dense 
suburban‟ 

4, „urban‟ 

Dugesia tigrina 0 (0) 1 (12.5) 0 (0) 0 (0) 
Crangonyx pseudogracilis 5 (83.3) 6 (75.0) 4 (57.1) 1 (20.0) 
Potamopyrgus antipodarum 3 (50.0) 1 (12.5) 1 (14.3) 1 (20.0) 
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Figure 6.2.4. Comparison of mean (±1 SE) shredder abundance (# individuals within leaf packs) for each urban land-use category (taxa occurring 

at 2 or more sites) 
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Figure 6.2.5:  Redundancy analysis on functional group relative abundances against leaf 
breakdown rates. Circles represent ponds. 

  

Figure 6.2.6:  Redundancy analysis on shredder species relative abundance against leaf 
breakdown rates (taxa occurring at 2 or more sites). Circles represent ponds. 
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Figure 6.2.7. Relationship between leaf decomposition rates and a & c) shredder 
abundance (# individuals in leaf packs), b & d) shredder density (/g AFDMr) in individual 
leaf packs (n = 59) 
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Figure 6.2.8. Relationship between leaf decomposition rates (± 1SE) and a & c) shredder 
taxa richness, b & d) taxa richness in individual leaf packs (n = 59) 
 

  

  y = 0.00x + 0.00
R² = 0.97

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 1 2 3 4 5 6 7

L
e

a
f 

d
e

co
m

p
o

si
ti

o
n

 r
a

te
 k

to
ta

l
(/

d
a

y
)

Shredder taxa richness

a)

y = 0.00x - 0.00
R² = 0.91

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 1 2 3 4 5 6 7

L
e

a
f 

d
e

co
m

p
o

si
ti

o
n

 r
a

te
 k

in
v

e
rt

 (/
d

a
y

)

Shredder taxa richness

c)

y = -2E-06x3 + 7E-05x2 - 0.0005x + 0.0022
R² = 0.43

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21

L
e

a
f 

d
e

co
m

p
o

si
ti

o
n

 r
a

te
 k

to
ta

l
(/

d
a

y
)

Taxa richness

b)

y = -3E-06x3 + 7E-05x2 - 0.0005x + 0.0013
R² = 0.23

0

0.001

0.002

0.003

0.004

0.005

0.006

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21

L
e

a
f 

d
e

co
m

p
o

si
ti

o
n

 r
a

te
 k

in
v

e
rt

(/
d

a
y

)

Taxa richness

d)



  

174 

6.2.3. The influence of local environmental factors on leaf breakdown rates 

6.2.3.1. Local physical  

The first two significant axes of an RDA (ANOVA, P < 0.05) (Figure 6.2.9) of local physical 

factors against leaf breakdown rates explained 49.3% and 16.0% of variance respectively. The 

first axis was most strongly correlated with surface area (Pearson‟s correlation: r = 0.92, P < 

0.01), the second axis did not provide a clear gradient, but was most correlated to the 

presence of stream water inputs (Pearson‟s correlation: r = 0.46, P < 0.05). 

Between the pond groups, surface area did not differ significantly (ANOVA, P > 0.05). 

Only the percentage of tree cover (i.e. shading) and the proportion of pond edge constructed 

from concrete statistically differed, where there was more tree cover in dense suburban sites 

than in rural (ANOVA, P < 0.05) and more concrete edge in urban than in rural (ANOVA, P 

< 0.05) (Table 6.4). 

Significant positive correlations were observed between pond surface area and 

dissolved oxygen (Pearson‟s correlation: 0.61, P < 0.01) and negatively with tree cover 

(Pearson‟s correlation: -0.59, P < 0.01) and NH4 (Pearson‟s correlation: -0.46, P < 0.05) 

(Appendix 26). 

6.2.3.2. Water quality 

The first and only significant axis of an RDA (ANOVA, P < 0.05) (Figure 6.2.6) of water 

quality against leaf breakdown rates explained 30.3% of variance and was strongly 

correlated to dissolved oxygen (Pearson‟s correlation: r = -0.72, P < 0.01). 

Dissolved oxygen levels decreased from rural to urban groups and were statistically 

different between rural and both dense suburban and urban groups (ANOVA, P < 0.05) 

(Table 6.5). The rural group recorded the highest mean dissolved oxygen levels at any one 

site (118.5%, site 12) and dense suburban the lowest (10.9%, site 13). Conductivity and SO4 

concentrations were statistically significantly lower, and NH4 and PO4 concentrations higher 

in dense suburban sites than rural (ANOVA, P < 0.05). Mg concentration typically decreased 

across the groups from rural to urban, the difference between which was significantly 

different (ANOVA, P < 0.05). 
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Figure 6.2.9. Redundancy analysis on local physical variables against leaf breakdown 
rates. Circles represent ponds. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4. Mean (min and max) values of local physical variables. Bold denotes variables 
for which significant differences were found between the groups, lettering denotes 
between which groups the differences occur (ANOVA, post-hoc Tukey-Kramer, P < 0.05) 

 Unit 1, „rural‟ 2, „suburban‟ 3, „Dense 
suburban‟ 

4, „Urban‟ 

Area m2 3648 (1123-5992) 3536 (299-14923) 3122 (408-12078) 2291 (1010-5499) 
Open % 0.71 (0.49-0.9) 0.47 (0-0.96) 0.31 (0.07-0.76) 0.54 (0.32-0.75) 
Concrete % 0 (0-0)a 0.22 (0-1)ab 0.11 (0-0.38)ab 0.32 (0.19-0.58)b 
TreeCov % 0.06 (0-0.17)a 0.41 (0-1)ab 0.51 (0.09-0.93)b 0.32 (0.2-0.42)ab 
RipCov % 0.17 (0.02-0.37) 0.08 (0-0.32) 0.1 (0-0.37) 0.13 (0.01-0.41) 
FltCov % 0.06 (0.01-0.18) 0.04 (0-0.16) 0.08 (0-0.47) 0.01 (0-0.01) 
WLFI - 110.2 (18-354) 684 (12-4698) 42.9 (4-119) 735.7 (6-3558) 
SS mg/l 11.1 (4.7-25.8) 18.7 (5.8-53.9) 11.7 (2.8-24.1) 29.8 (5.3-64.9) 
Chla µg/l 14.4 (0.3-44.4) 14 (0.5-44.5) 70.8 (8-302.6) 100 (3.4-176.7) 
Spring Binary 0.67 (0-1) 0.25 (0-1) 0.57 (0-1) 0.6 (0-1) 
RainRun Binary 0.33 (0-1) 0.75 (0-1) 0.43 (0-1) 0.8 (0-1) 
RdBldRun Binary 0.17 (0-1) 0.25 (0-1) 0.43 (0-1) 0.2 (0-1) 
Stream Binary 0.17 (0-1) 0 (0-0) 0.14 (0-1) 0.4 (0-1) 
Fish Binary 0.67 (0-1) 0.13 (0-1) 0.43 (0-1) 0.6 (0-1) 
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Figure 6.2.10. Redundancy analysis on water quality variables against leaf breakdown 
rates. Circles represent ponds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Zero values represent concentrations below detection limits (Appendix 3) 

  

Table 6.5. Mean (min and max) values of water quality variables. Bold denotes variables 
for which significant differences were found between the groups, lettering denotes 
between which groups the differences occur (ANOVA, post-hoc Tukey-Kramer, P < 0.05) 

 Unit 1, „rural‟ 2, „suburban‟ 3, „Dense 
suburban‟ 

4, „Urban‟ 

pH - 7.98 (7.6-8.5) 7.84 (7.3-8.5) 7.44 (6.7-8.1) 7.6 (7.2-8.5) 
EC µS/cm 653.7 (392-869)a 654.1 (352-1445)ab 364.4 (290-475)b 455.7 (249-834)ab 
oC oC 18.8 (15.8-21.4) 17.4 (15-19.7) 17.3 (15.8-18.7) 18.1 (17.2-18.5) 
DO% % 79.7 (49-119)a 48.4 (21-98)ab 28.1 (11-55)b 34.3 (14-93)b 
CaCO3  mg/l 156.8 (76-236) 126.1 (72-168) 116.1 (48-210) 119.2 (94-142) 
Na mg/l 45.6 (9.7-82.7) 29.5 (9.6-62.3) 15.7 (7.2-22.6) 36.5 (12.1-114) 
NH4 mg/l 0.12 (0-0.3)a 0.8 (0-2.6)ab 1.93 (0.1-4.1)b 1.18 (0.5-2.1)ab 
K mg/l 5.9 (2.9-9.1) 6.1 (2-15.4) 6 (1.3-12.8) 5.9 (2.2-11) 
Mg mg/l 15 (6.6-26.3)a 9.5 (3.9-14.5)ab 7.5 (3.6-13.6)ab 4.8 (3.1-7.1)b 
Ca mg/l 58.5 (36.8-84.3) 85.7 (24.8-287.6) 35.2 (21.1-55.5) 38.9 (24.4-51.2) 
Cl mg/l 88.3 (11.7-189.1) 62.7 (14.3-126.5) 32.9 (15.3-52.1) 67.4 (17.5-200.1) 
NO3 mg/l 1.32 (0-4.2) 0.93 (0-6.7) 0.03 (0-0.2) 0.64 (0-2.5) 
SO4 mg/l 109.3 (39-229)a 161.8 (17-706)a 25.6 (3-62)b 23.2 (4-44)ab 
PO4 mg/l 0.1 (0-0.3)a 0.32 (0-0.8)ab 1.1 (0.1-2.5)b 0.66 (0.1-1.8)ab 
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6.3. Discussion 

Leaf breakdown rates did not suggest a reduction in ecosystem functioning across the rural-

urban gradient as breakdown rates did not vary significantly, or with any clear trend among 

the land-use groups. Similarly, the relative contributions to breakdown by microbes or 

macroinvertebrates showed no clear pattern. Potential impacts to ecosystem functioning 

from urbanisation were masked by the presence of a habitat-area effect and changes in 

shredder community composition. 

Surface dissolved oxygen levels were a function of surface area. Oxygen levels within 

the studied urban ponds frequently fall below the proposed annual values for attaining good 

ecological status under the Water Framework Directive (60% saturation, European 

Commission 2000; UK TAG 2008b) (Chapter 4). Leaf decomposition rates decrease under low 

oxygen conditions (Anderson and Sedell 1979; Piscart et al. 2011) and are likely as a result of 

lower abundances and activity of shredding macroinvertebrates (Bjelke 2005) and microbial 

decomposers (e.g. hyphomycetes, Medeiros et al. 2009). The influence of area on dissolved 

oxygen conditions stems from a greater exchange of organic matter between smaller ponds 

and their riparian zone than larger ponds (Declerck et al. 2006; Palik et al. 2006). Therefore, 

the same proportion of riparian shading will have a greater influence upon a small pond 

than a large one. Overhanging vegetation reduces light penetration to the sediment surface 

by direct blocking of sunlight and the accumulation of leaf litter. In doing so, growth of 

oxygenating macrophytes is inhibited (Gee et al. 1997; Jeffries 1998), as is the growth of 

phytoplankton (Scheffer 1999) and algae on the sediment surface, the establishment of which 

would provide an oxygenated layer above the sediment and reduce the potential for the 

release of nutrients from the sediment. Under shade, microbial activity further depletes 

oxygen levels, especially where leaf litter accumulation is high (Birch and McCaskie 1999).  

Oxygen depletion and high PO4 concentrations, which frequently exceeded the 

proposed annual values for attaining good ecological status under the Water Framework 

Directive (European Commission 2000; UK TAG 2008b) (Chapter 4) are indicative of 

eutrophic conditions. Thus, considerable stress is placed upon aquatic organisms and can 

lead to the increased dominance of a few tolerant taxa (Spieles and Mitsch 2003; Walsh et al. 

2003). The increase in macroinvertebrate abundance from rural to urban pond groups was 

attributed to greater abundance of Chironomidae and the shredder A. aquaticus, which are 

highly tolerant to low oxygen levels, as indicated by Biological Monitoring Working Party 

(BMWP) scores of two and three respectively, which range up to 10 for the most sensitive 

taxa (Armitage et al. 1983). A. aquaticus is recognised as being omnivorous and is known to 

feed on microorganisms and living plant material (Gledhill et al. 1993) leading to its 
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classification as a shredder, grazer and detritivore by some (Moog 2002). Consequently, A. 

aquaticus is a relatively inefficient shredder (Bjelke 2005). By contrast, two species of 

Crustacea, G. pulex and C. pseudogracilis are obligate shredders, but decrease in number (G. 

pulex entirely) as urbanisation intensifies. Conversely, the increase in A. aquaticus abundance 

from rural to urban pond groups offsets numbers loss of other more efficient 

macroinvertebrate shredders. To further compound the issue, although A. aquaticus is often 

tolerant of conditions which exclude other crustaceans (Gledhill et al. 1993), laboratory tests 

have demonstrated that the species does not feed on leaf litter under low oxygen conditions 

(1 mg/l, Bjelke 2005), which are encountered in the BBC ponds. The cascading impact of 

habitat area upon physical and chemical characteristics and subsequent changes in the 

macroinvertebrate shredder community are consistent with Sangiorgio et al. (2010), who 

found similar impacts in a study of habitat area of freshwater springs on detritus processing. 

As the pond groups became more urban, leaf decomposition was increasingly reliant 

upon fewer macroinvertebrate shredder taxa i.e. there was lower functional redundancy 

whereby multiple species perform similar roles in the community, and may therefore be 

substitutable with little impact on ecosystem processes (Lawton and Brown 1993). High 

levels of functional redundancy are important for ecosystem reliability (Naeem 1998). 

Therefore, ecosystem functioning would appear to be at higher risk in more urban ponds. 

However, an increased abundance of more tolerant shredder species (i.e. A. aquaticus), 

compensated for the loss of others such that leaf breakdown rates were not concurrent with a 

loss in shredder species number along the gradient, despite the observed correlation within 

the leaf packs (Figure 6.2.8). This is consistent with Downing and Leibold (2002), who found 

that composition can have an equal or more marked effect on ecosystem functioning than 

richness. Nonetheless, richness of the wider macroinvertebrate community within the leaf 

packs was a good indicator of breakdown rates. Biodiversity is frequently associated with 

ecosystems health and integrity (Loreau et al. 2001; Hooper et al. 2005) on the basis that 

functional redundancy is improved. Therefore, for urban ponds the safeguarding of 

biodiversity remains a prudent objective for the conservation and maintenance of ecological 

functioning (Loreau 2000; Balvanera et al. 2006). 

Two non-native shredder species are present across the land-use categories, C. 

pseudogracilis and P. antipodarum. The crustacean, C. pseudogracilis is native to North America 

and was first detected by England in 1936 (Crawford 1937). It is now found throughout 

Europe, even in relatively isolated sites, which is attributed to intentional or unintentional 

introduction by anglers (Holland 1976). The gastropod P. antipodarum (Jenkin‟s spire shell), 

was first recorded in the River Thames in 1889 (Smith 1889) and originates from Australasia 
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(Ponder 1988). The increased abundance of exotic species in urban areas is well recognised 

(McKinney 2006). Several factors related to the disturbance of ecosystems from urbanisation 

can contribute to the success of non-native species such as more favourable habitat (Kowarik 

1990), anthropogenic introduction (Ruesink et al. 2005), vacant niches resulting from reduced 

native species richness (Elton 1958), disturbance impacts upon the natural selection regime 

(Byers 2002) and low habitat heterogeneity (Vermonden et al. 2010). Several similarities are 

observed between this study and a study on the invasibility of urban drainage systems by 

Vermonden et al. (2010). First, native species were more abundant in ponds with lower 

nutrient concentrations, whilst in more turbid (indicated here as suspended solids, Table 6.5) 

and eutrophic ponds, non-native species dominanted. Finally, both studies share the non-

native species C. pseudogracilis and P. antipodarum. These findings are consistent with those of 

Vermonden et al. (2010), who suggest that the function provided by non-native species may 

compensate for the loss of native species in highly disturbed systems. 

Finally, leaves from plants within the family Fagaceae, such as oak (Quercus spp.) and 

beech (Fagus spp.) are classified as slow degraders, k < 0.005 (Petersen and Cummins 1974). 

This study agrees with the suggestion by Suberkropp and Chauvet (1995) that the 

decomposition rate of a given leaf species can vary greatly due to the influence of 

environmental factors such as water chemistry. The average ktotal here (0.002/d) is slow by 

comparison to the Petersen and Cummins (1974) classifications and may immediately 

represent the impoverished condition within the ponds studied. However, few studies have 

assessed leaf litter breakdown rates within lentic environments and the lack of flow, which 

has been suggested as an influential factor in leaf decomposition experiments (Hodkinson 

1975a; Benfield and Webster 1985; Paul et al. 2006), may be an obvious differential between 

breakdown rates in flowing and still water systems. In lotic conditions small leaf fragments 

will be consistently washed out that are created by shredders or broken off by current 

and/or abrasives after being softened following microbial activity (Webster and Benfield 

1986). In addition, the rate of sedimentation in rivers will be lower, which might otherwise 

hinder colonisation of the leaf material by microbes or macroinvertebrates (Webster and 

Benfield 1986). The breakdown rates, however, remain broadly consistent with those 

reported elsewhere (Table 6.6) and to the average rates reported in a review of vascular plant 

breakdown by Webster and Benfield (1986), which included both lotic and lentic studies. 

Equivalent ktotal rates were typically higher in riverine studies, although in the same order of 

magnitude (Lecerf et al. 2007; Sanpera-Calbet et al. 2009; Schindler and Gessner 2009; Swan et 

al. 2009), with the exception of acidified mountain streams (Dangles and Chauvet 2003). 
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Table 6.6. Breakdown rates (k) for leaf species of the family Fagaceae sourced from the scientific literature compared to this study 

Species System Total length of 
study (days) 

Breakdown rate (k) Mesh size Reference 

F. sylvatica Mountain streams (ph 6.4 – 7.1), France 154 ≥0.00175 5mm Dangles and Chauvet 2003 
F. sylvatica Mountain streams (ph 4.7 – 4.9), France  ≤0.00100 “  
Q. rubra Forested stream, Germany 55 0.0052 

0.0031 
10mm 
0.5mm 

Schindler and Gessner 2009 

F. sylvatica Forested stream, Germany 55 0.0037 
0.0007 

10mm 
0.5mm 

 

F. sylvatica Forested streams: Massif Central, France 
                                Carpathians, Romania 

31 
81 

16.3%     Mass loss 
11.5%      “ 

10mm 
“ 

Lecerf et al. 2007 

Q. rubra Forested streams: Massif Central, France 
                                Carpathians, Romania 

31 
81 

25.0%      “ 
14.8%      “ 

“ 
“ 

 

Q. robur Forested streams: Massif Central, France 
                                Carpathians, Romania 

31 
81 

41.6%      “ 
22.9%      “ 

“ 
“ 

 

F. grandiflora 
Q. prinus 

Spring-fed headwater tributary of 
Patapsco River, USA 

28 ~0.0051,2 
~0.0091,2 

7 x 11mm 
“ 

Swan et al. 2009 

F. sylvatica Forested stream, France 81 ~0.00651,2 10mm Sanpera-Calbet et al. 2009 
F. sylvatica 
Q. robur 

Temporary pond microcosms, Germany 70 16.0%     Mass loss 
~27.0%1  “ 

12 x 12mm (over 
containers) 

Schadler et al. 2005 

Fagaceaea Literature review, lentic and lotic systems NA ~0.00251 Various Webster and Benfield 1986 

F. sylvatica Urban ponds  80 0.0020 
0.0010 
13.8%     Mass loss 
7.4%        “ 

5mm 
0.25mm 
5mm 
0.25mm 

This study 

Breakdown rates (k) represent the study mean unless otherwise stated 
1 by graphical interpretation, 2 when in a single species leaf litter mix 
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6.4. Conclusion 

The results of the study imply that ecosystem functioning in urban ponds is maintained in 

larger ponds and could be improved by the removal of overhanging vegetation in smaller 

ponds. Improved light conditions will encourage aquatic vegetation growth, thereby 

reducing nutrient concentrations and increasing dissolved oxygen levels such that the 

abundance, diversity and efficiency of macroinvertebrate shredders and microbial 

decomposers increase. In some sites, more drastic management practices may be required, 

such as dredging, in order to reduce the ongoing threat of internal nutrient loading, which 

may recast sites to a more turbid state. 

The effect of urbanisation on ecosystem functioning was confounded by the effect of 

habitat size and its physicochemical correlates such as shading and dissolved oxygen and 

changes in the composition of macroinvertebrate shredders. Decreasing dissolved oxygen 

levels from rural to urban pond groups, despite being the only significant water quality 

parameter, were not reflected in leaf breakdown rates across the groups. This suggests that 

the accumulated impacts of other correlates to habitat area and changes within the shredder 

community outweighed the influence of dissolved oxygen conditions. The influence of 

increased nutrient conditions across the urbanisation gradient, which has been noted in other 

freshwater rural-urban gradient studies (Gulis and Suberkropp 2003; Pascoal et al. 2003; 

Pascoal et al. 2005; Goncalves et al. 2006) was also unclear. Sampling at a greater resolution 

may have picked up on water quality that is likely to fluctuate widely within pond 

environments (Biggs et al. 2005). Similarly, 25% of leaf packs were not recovered and 

removed by members of the public, anglers or lost due to the action of wildfowl. In future, a 

different tactic for the installation of such an experiment in the public realm as well as a 

larger initial sample outlay would greatly improve the resolution of information gained. 

Urbanisation did, however, appear to impact upon functional redundancy within the 

shredder functional feeding group. In the most urban sites leaf decomposition was 

increasingly reliant on a generalist species A. aquaticus, and lower abundances of a non-

native species C. pseudogracilis. There is a suggestion that the presence of a non-native species 

has exploited a functional niche left open by the loss of native shredder species. Shredder 

taxon richness and community taxon richness was positively related to leaf decomposition 

rates in the individual leaf packs. Consequently, taxon richness remains a useful indicator of 

ecosystem functioning in these systems and should remain a conservation aim for pond 

managers. Macroinvertebrate richness, abundance and density all had a weaker relationship 

with macroinvertebrate only breakdown rate (kinvert), which may indicate at the reciprocal 
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relationship between microorganisms and macroinvertebrates. Further investigation into 

microbial abundance, density and diversity within both the coarse and fine mesh leaf packs 

would contribute to a better understanding of this relationship.  

The structure of beech leaves makes them less amenable to quick breakdown 

compared with other native tree leaf species (Sanpera-Calbet et al. 2009). Selection of a more 

labile leaf species, such as alder (Alnus glutinosa) may have provided a stronger indicator of 

the processes that took place during this study.  
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Chapter 7: Conclusions 

This research identified the major threats to the urban pond network and ecosystem. It 

achieved this by analysing local and spatial scale processes with respect to water quality, 

biodiversity and ecosystem functioning. Understanding how these ecosystems are being 

placed under increased pressure by habitat loss and urbanisation (and its incumbent 

physical effects) highlights possibilities to improve ecological resilience within pond 

networks which are applicable to future pond conservation strategies within urban 

landscapes and beyond. 

Ponds have been lost from the Birmingham and Black Country (BBC) landscape at an 

alarming rate (Chapter 3). Pond loss was a consequence of urban expansion and agricultural 

intensification, which have left a diffuse habitat network comprising of larger remnant 

ponds. Water quality in those remaining ponds is varied, but is often degraded, being high 

in nutrients and low in oxygen, which is indicative of eutrophic conditions (Chapter 4). 

Nonetheless, provided an urban pond has good habitat complexity and is well connected to 

neighbouring ponds, they are able to support diverse macroinvertebrate communities and 

rare species of high conservation value (Chapter 5). Whilst some shading is beneficial, 

increased habitat complexity is likely to follow an improvement in light conditions brought 

about by the removal of overhanging vegetation, thereby stimulating aquatic vegetation 

growth. Leaf decomposition rates were contingent on shredder community composition and 

the combined effects of habitat area (and therefore shading) and lower dissolved oxygen 

levels rather than the degree of urbanisation (Chapter 6). 

7.1. Urban ponds are vulnerable systems 

The vulnerability of urban pond ecosystems was evident on several levels. Significant habitat 

loss between ca1904 and 2009 has reduced spatial resilience in the pond network and 

network analyses indicate that ecological flow across the contemporary pond network is 

increasingly reliant on fewer pond sites. The key threats to those ponds present in the 

contemporary network are highlighted in Figure 7.1.1. These environmental stressors 

compromise the capacity of the pond network to support diverse metacommunities. 
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Figure 7.1.1. Potential vulnerability across a pond 
network a) A hypothetical pond network displaying 
relative ecological flux between ponds and the degree 
of shading caused by riparian vegetation (black 
border); smaller ponds have typically higher shading, 
b) the main observed impacts from tree shading, 
sunlight exclusion and leaf litter accumulation upon 
the main physico-chemical parameters, c) the main 
observed impacts from lower tree shading, greater 
euphotic depth and vegetation growth and consequent 
changes in the main physico-chemical parameters 

a) 
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Cascading effects of a high degree of shading are particularly acute within small sites 

which make up a considerable percentage of the contemporary pond stock (Figure 7.1.1). 

Vegetation encroachment is more notable in ponds that have persisted throughout the last 

~105 years and is likely to represent natural successional processes. Associated with shading 

was reduced habitat complexity, reflected by a decline in macrophyte richness, which was an 

important feature of sites with high conservation value, lower dissolved oxygen levels and 

higher nutrient concentrations (PO4). Furthermore, ecosystem functioning was improved in 

larger ponds by a combination of reduced riparian shading and improved oxygen 

conditions, and consequently, a richer diversity of macroinvertebrates within the leaf litter, 

which in smaller sites was likely to be anoxic. 

The process outlined contributed to all of the 30 studied ponds failing to attain at least 

one accepted environmental standard. All but two sites failed to achieve PO4 concentrations 

recommended for attaining ecological „good‟ status in lakes under the WFD. Nonetheless, 

ponds are too small to qualify for regular monitoring and assessment and do not fit the lake 

model upon which the WFD requirements are made (Boix et al. 2012). Moreover, urban 

ponds are likely to be identified as artificial water bodies (AWBs) under the WFD due to the 

artificial nature of their creation, (UK TAG 2004); thereby they would be subject to a less 

stringent set of standards. This research therefore adds further backing for the establishment 

of a new pond typology in order to delineate more appropriate targets for pond habitats 

(Boix et al. 2012). The high conservation value of some sites may qualify them for protection 

as Priority Habitats (BRIG 2008) under the U.K. Biodiversity Action Plan (UK BAP). 

However, ponds should not be viewed in isolation (Jeffries 2012). Local sites rely on a 

healthy exchange of individuals from the regional species pool, and many pond-dwelling 

organisms exist in metapopulations (Briers and Warren 2000; Jeffries 2005). The conservation 

value of one site is contingent upon its connectivity to the wider pond network. 

Sites with the highest conservation value were those that had rich macrophyte 

complexity, little shading, lower nutrient concentrations and were well connected to the 

wider pond network (up to 2km), although this was mediated by the intervening terrestrial 

matrix. When sampling of taxon richness was not restricted to potentially anoxic sediments 

(as per the leaf pack experiment), the effect of habitat area was much reduced, such that 

small sites were just as likely to support macroinvertebrate assemblages of high conservation 

value as large. Land-use had most effect upon both water quality and macroinvertebrate 

community composition within 100m from the pond margin. In terms of water quality this 

represents an area within which site managers should investigate sources of diffuse 

pollution. For example, the number of impermeable surfaces should be reduced to allow 
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infiltration of surface water into bare soils, concomitantly, encouraging vegetation growth 

will not only increase interception of surface water runoff, but also provide opportunities for 

emerged aquatic insects to forage (e.g. odonates, Remsburg et al. 2008), rest and find refuge 

from predation (from birds, bats). Although different macroinvertebrate orders were 

sensitive to different landscape scales in line with their dispersal traits, land-use within 100m 

is likely to give a reasonable representation of the wider landscape and should be a priority 

for land-use management. The effect of mature vegetation within 100m was not clear and 

although related to decreased dissolved oxygen and increased PO4 it was also strongly 

correlated to overhanging vegetation such that the impact of mature vegetation coverage 

may, in effect, be replicated in the analysis. Nonetheless, greater habitat heterogeneity within 

the ponds and in the surrounding land should be encouraged. 

Poor dispersers, such as odonates (behaviourally constrained) were more sensitive to 

habitat availability within short range, whereas strong dispersers (e.g. Coleoptera) were 

more sensitive to habitat availability in the wider landscape. However, the latter facet is 

somewhat counterintuitive because, if habitat quality and quantity is sufficient, strong 

dispersers should show little preference to landscape scale. Consequently, this result 

suggests that strong dispersers are more sensitive to the wider landscape as they are 

required to explore longer distances in order to find suitable habitat. For Coleoptera, this 

seems plausible given their often specific habitat requirements, which may not be readily 

met by habitats within a heavily disturbed urban environment (Lundkvist et al. 2002). Taxa 

that often exhibit poor dispersal ability may be more vulnerable to increased distance 

between neighbouring sites in the contemporary landscape. Therefore, odonates and to a 

lesser extent, trichopteran richness may be improved by the provision of clusters of ponds in 

relatively close proximity. Consequently, the landscape extent managers need to consider 

may be dependent upon the target taxa. 

Urbanisation appeared to lower functional redundancy as shredder taxon richness 

decreased along the rural-urban gradient. In the most urban sites leaf decomposition was 

mostly reliant upon greater abundances of a single inefficient but pollution tolerant shredder 

species A. aquaticus. Thus, ecosystem functioning was increasingly vulnerable due to 

urbanisation. The main determinants of leaf decomposition rates were habitat area and 

dissolved oxygen, which were again linked in the manner described (Figure 7.1.1). The 

number of taxa within the leaf pack i.e. benthic taxon richness, was a good overall indicator 

of ecosystem functioning. Sites with high benthic taxon richness were typically larger and 

more open which likely improved oxygen conditions in the benthos. Improved oxygen 
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conditions are also likely to improve the efficiency of shredders and decomposing micro 

organisms (Bjelke 2005; Medeiros et al. 2009).  

7.2. Urban ponds as candidates for freshwater conservation in urban 

areas 

 Despite considerable historical pond loss, the rate of pond loss has decreased since 

ca1962, with nearly a third of those in the contemporary landscape created since that 

period. Most notably, several new ponds have been constructed in the most urban 

landscapes and have to some extent offset the loss of ponds from more rural areas. 

The development of these new ponds for aesthetic value alongside new developments 

is an example of how pond numbers can be increased in the heart of cities because of 

the perceived benefits to people from exposure to wildlife. In urban areas this presents 

a good opportunity to reverse the trend of pond density decrease due to urbanisation. 

Furthermore, the potential role garden ponds could play as stepping stones should 

not be understated. Although the productivity of individual garden ponds may be 

small, their cumulative effect may be considerable and emphasized if public pond and 

private (garden) ponds are managed in conjunction as sub networks. Management of 

pond clusters (Gledhill et al. 2008; Jeffries 2012) may be a more feasible objective than 

whole scale „pondscape‟ management and help avoid managed ponds conforming to a 

predefined pond image (Wood et al. 2003). Moreover, a diverse regional species pool is 

dependent upon habitat heterogeneity within the pond network, such that the 

numbers of environmental niches proliferate.  

 

 Although their small volume and surface area make ponds more vulnerable to 

external and internal factors, it also makes them a tractable management option such 

that small changes can make a big impact (Davies et al. 2008b). Local physical factors 

were statistically more influential than regional scale factors for water quality and 

macroinvertebrate community composition. Consequently, physical habitat 

management should take priority over landscape scale factors in order to improve 

biodiversity potential. The research suggested that provided local physical habitat is 

good, sites can be colonised by a highly diverse regional species pool. At several sites 

this is already apparent where ponds are regularly angled, such that tree cover is 

reduced in order to improve bankside access and vegetation is managed to provide 

refugia for juvenile fish and to improve accessibility for fishing. With this in mind the 

presence of a large proportion of contemporary ponds within public parks and golf 
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courses suggests that informed management action, rather than a lack of management, 

is the necessary step. Conversely, sites outside of public spaces may be suffering from 

neglect, with mixed consequences for their ecology, and without management will 

eventually succumb to natural successional processes, with increases in tree cover and 

lower macrophyte diversity and ultimately lost to sedimentation. 

 

 This research suggests site managers should focus upon land-use within 100m of the 

pond edge, although urban infrastructure can convolute the influence of land-use. 

Within this distance, investigations of diffuse, or point, sources of pollution should fall 

under relatively simple land ownership. Difficulties may arise in more urban areas 

where the problems are more acute and may require closer liaison with homeowners 

and drainage personnel. Nonetheless, by comparison to stream catchments, the 

management of pollution entering ponds should be much more feasible; with the 

exception of those with a prominent stream water source. 

 

 Compared to urban streams and rivers, the urban pond network may be more 

resilient and able to recover from frequent temporary disturbances such as storm 

water run-off and pollution incidents. Entire lengths of urban rivers may be impacted 

by a single upstream disturbance.  In contrast, a deterministic event in one 

hydrologically isolated pond will have a minimal impact upon others in the network, 

save for a temporary reduction in the number of potential immigrants. In the ponds 

studied, wide ranges in spatial and temporal water quality and seasonal peaks in 

several determinands suggested high stochastic variability and regular deterministic 

events in some sites. However, provided the pond network is well connected, pond-

dwelling organisms, evolved to have generally good dispersal abilities (Bilton et al. 

2001) can quickly recover impacted ecosystems i.e. strength in numbers. In summary, 

urban pond habitats appear to be in a constant state of flux with habitats being 

consistently gained and lost, largely through the action of man, and with a range of 

habitat qualities at any one time. However, provided that a sufficient proportion is in 

good ecological health at any one time, the regional species pool remains intact. 

7.3. Research limitations 

This research has contributed to the understanding of local and regional stressors to the 

urban pond environment and has identified key issues which should be addressed to 

improve their ecological integrity. It has also highlighted opportunities for freshwater 
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conservation in urban areas and is the first to assess ecosystem functioning in urban ponds. 

However, limitations were observed within the research, which should be taken into 

consideration prior to any further urban pond studies and application of the research 

findings: 

 

 Analysis of the historical pond network unavoidably used maps that were derived 

using different methodologies. As such, the accuracy and detail may not be strictly 

comparable between datasets, for example, the earliest County Series dataset did not 

consistently annotate aquatic features. Furthermore, pond network analyses were 

restricted to the Birmingham administrative boundary due to computational 

constraints. Ideally, pond networks should be examined according to more natural 

boundaries e.g. a river catchment, or delineated from the wider pondscape according 

to a predefined distance threshold. Nonetheless, the use of an administrative area 

likely complies with the remit of biodiversity officers. Similar analyses carried out by 

neighbouring administrative units would be to the benefit of both and encourage 

cross-boundary cohesion between administrative teams. 

 

 Habitat quality in the pond network was assessed using remotely sensed NDVI and 

photogrammetry data. Consequently, they provide a snapshot from the time of their 

respective aerial flights. Field derived data for all sites across the contemporary 

network (341 sites) was infeasible; however, across the 30 studied ponds this may 

have provided some further insights into the habitat complexity in terms of 

vegetation coverages. As it is, only the uppermost layer of vegetation can occupy any 

one location i.e. there was no account of emergent vegetation cover if it is obscured 

by mature vegetation. However, a record of macrophyte richness is likely to serve as 

a good indicator of vegetation coverage due to species-area relationships i.e. greater 

coverage is likely to result in higher species diversity. 

 

 A multi-species approach was used in order to assess for potential impacts to pond 

network connectivity. By using this conservative approach a sequence of distance 

thresholds were applied as a representation of dispersal abilities possessed within the 

community. However, aquatic insect dispersal abilities are notoriously difficult to 

assess, and it is known that a small proportion of aquatic insect populations can 

travel considerable distances further than the population mean. In addition, a 

resistance landscape was derived from a limited amount of literature on potential 
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obstacles to dispersal. Although it was shown that a cost-informed metric performed 

better than the same metric using Euclidean distance, there is much room for 

improvement. 

 

 Several further factors could influence the physical and chemical composition of 

urban ponds that were not considered here. Geology in BBC is varied; however, this 

was not included in any analyses. The rationale for its omission is that many of the 

urban ponds studied are hard engineered and lined, such that the influence of 

groundwater is minimal. However, it was acknowledged that several sites did receive 

groundwater such that the potential influence of geology cannot be excluded and 

requires further examination. Water sources overall were not self-evident, and local 

stakeholder knowledge was often piecemeal, including local council drainage plans. 

Drainage in urban areas is at best complex, and considerable resources would be 

required to provide a complete account of water sources. Consequently, the 

effectiveness of land-use management as recommended by this study is contingent 

upon knowledge of water sources. 

 

 The presence of internal loading mechanisms was suggested to be influential on 

water quality, particularly where dissolved oxygen levels were low and nutrient 

concentrations high. Although this may be so, chemical fluxes between the sediment 

and water column were not assessed. As above, the effectiveness of management 

strategies based upon this research may be compromised by internal loading 

mechanisms from sediment contamination, which may have accumulated over many 

years and has the potential to reset sites to a turbid state long after supposed 

successful management action. Nonetheless, improvements in oxygen conditions in 

particular, will help to lock contaminants within the pond sediments. 

 

 Macroinvertebrate assemblages were sampled in a single year (2009). Changes in 

physical and chemical characteristics within an urban pond are likely to change year 

to year and result in shifts in macroinvertebrate community composition. The 

National Pond Survey methodology was labour intensive and time-consuming. 

Alternative, more rapid, assessment methods e.g. PLOCH (Oertli et al. 2005) or the 

use of indicator taxa (Briers and Biggs 2003) could have been employed in order to 

sample changes in macroinvertebrate assemblages between years and across more 

seasons and/or sites. Conversely, whilst rapid assessment techniques may have 
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sufficed for biological assessment, they may not have provided the same amount of 

biodiversity detail (King and Richardson 2002). 

 

 This study was the first to undertake a leaf decomposition experiment in an urban 

pond environment and provided some useful results. However, around a quarter of 

the initial leaf pack outlay was not recovered and four study sites were lost from the 

analysis completely due to interference from passers-by, wildfowl or site managers 

(despite close liaison). The use of a more labile leaf species may have provided 

greater resolution than beech leaf, which was a slow degrader and water quality was 

sampled on two occasions during the experiment. A higher resolution of water 

quality sampling may have captured a greater range in water quality than was 

observed. Similarly, although relevant, dissolved oxygen was measured at the water‟s 

surface, a measurement of oxygen conditions at the sediment-water interface would 

have been more appropriate and shed-light on the presence or absence of anoxia. 

7.4. Suggestions for further research 

This research is one of few that have ventured to consider a highly disturbed aquatic 

ecosystem. In doing so, more questions of applicability to urban and exurban pond systems 

have been highlighted. 

 

 Is there a need for a paradigm shift when considering urban pond networks? 

Urban ponds are predominately man made, but the natural processes of pond 

creation are inhibited by land-use intensification. Nonetheless, whilst some ponds 

e.g. farmland ponds, are no longer required for their original purpose, new ponds are 

being created for their aesthetic or amenity purpose e.g. golf courses. Considerable 

biodiversity has been highlighted in urban ponds (Vermonden et al. 2009, this study), 

highway retention ponds (Le Viol et al. 2009), golf course ponds (Colding et al. 2009) 

and old industrial mill ponds (Wood and Barker 2000; Scher and Thiery 2005) 

amongst others (Gledhill et al. 2008; Sayer et al. 2008). Furthermore, garden ponds are 

largely unresearched and may play a pivotal role as stepping stones. Therefore, in 

our quest to understand aquatic insect dispersal in urban environments we may need 

to be more broad-minded as to the adaptability of aquatic organisms and take a more 

all-encompassing approach that includes a wide variety of aquatic habitats). 

 

 What is the effect of the habitat matrix on aquatic insect dispersal? 
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Least-cost-path analyses, amongst others (McRae et al. 2008), are being increasingly 

used to aid decision-making for reserve networks (e.g. Verbeylen et al. 2003; 

Desrochers et al. 2011; Gurrutxaga et al. 2011). Despite the relevance of ponds to 

island-biogeography theory and the accepted view that many pond organisms exist 

in metacommunities, there is a considerable lack of knowledge regarding their 

dispersal abilities and how they are impacted, if at all, by different land-uses. 

Considering the well known risk to insects from urban areas e.g. light pollution 

(Horváth et al. 2009), we are still largely unaware of the real cost to aquatic insect 

populations. Recent stable isotope techniques may be one method to aid future 

research (Caudill 2003; Briers et al. 2004). 

 

 What is the comparative diversity of different aquatic systems in urban landscapes? 

Rural ponds are known to contribute significantly to regional biodiversity (Williams 

et al. 2004), however, although this research has again highlighted that urban ponds 

can support highly diverse macroinvertebrate assemblages it is not clear how 

valuable they are in the context of other urban aquatic systems or against rural 

ponds. A comparative study of regional biodiversity and the contributions made by 

urban ponds, rural ponds, lakes, rivers and streams would be valuable in this regard. 

Any such study should also be set in the context of the national diversity of 

macroinvertebrates. 

 

 What life traits are required by macroinvertebrates to succeed in urban pond networks? 

This research suggested a high degree of stochastic variability within urban ponds. 

They are dynamic systems within a dynamic network which has a continual turnover 

in the number and spatial configuration of pond sites. In order to survive in such a 

changeable environment the species they support may need a different set of survival 

traits than in a less disturbed, more stable environment. 

 

 What is the impact of non-native species in urban ponds? 

Although it was beyond the study scope, three non-native macroinvertebrate species 

and ten non-native macrophyte species were recorded, although not all were 

invasive. C. pseudogracilis was the only obligate shredder that was tolerant of the 

conditions in the most urban sites and coexisted with native shredder species in less 

urban sites. Under certain circumstances, can non-native species compensate for the 

functional role, lost with the removal of a native species? Conversely, the site of 
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highest conservation value was threatened by C. helmsii, which if unchecked can 

choke native macrophyte species and lower macrophyte complexity; an important 

variable for macroinvertebrate richness. 
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Appendix 1. Priority pond criteria after BRIG 2008 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ponds, for the purpose of UK BAP priority habitat classification, are defined as 

permanent and seasonal standing water bodies up to 2 ha in surface area, which meet one 

or more of the following criteria:  

 Habitats of international importance: Ponds that meet criteria under Annex I of the 

Habitats Directive.  

 Species of high conservation importance: Ponds supporting Red Data Book species, 

UK BAP species, species fully protected under the Wildlife and Countryside Act 

Schedule 5 and 8, Habitats Directive Annex II species, a Nationally Scarce wetland 

plant species, or three Nationally Scarce aquatic invertebrate species. 

 Exceptional assemblages of key biotic groups: Ponds supporting exceptional 

populations or numbers of key species. Based on (i) criteria specified in guidelines for 

the selection of biological SSSIs (currently amphibians and dragonflies only), and (ii) 

exceptionally rich sites for plants or invertebrates (i.e. supporting ≥30 wetland plant 

species or ≥50 aquatic macroinvertebrate species). 

 Ponds of high ecological quality: Ponds classified in the top PSYM category (“high”) 

for ecological quality (i.e. having a PSYM score ≥75%).   

PSYM (the Predictive SYstem for Multimetrics) is a method for assessing the 

biological quality of still waters in England and Wales; plant species and / or 

invertebrate families are surveyed using a standard method; the PSYM model makes 

predictions for the site based on environmental data and using a minimally impaired 

pond dataset; comparison of the prediction and observed data gives a % score for 

ponds quality.  

 Other important ponds: Individual ponds or groups of ponds with a limited 

geographic distribution recognised as important because of their age, rarity of type or 

landscape context e.g. pingos, duneslack ponds, machair ponds. 
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Appendix 2. Site summaries 

Site Site photo Aerial image (with concentric rings) 
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Site Site photo Aerial image (with concentric rings) 
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Site Site photo Aerial image (with concentric rings) 
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Site Site photo Aerial image (with concentric rings) 
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Site Site photo Aerial image (with concentric rings) 
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Site Site photo Aerial image (with concentric rings) 
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Site Site photo Aerial image (with concentric rings) 
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Site Site photo Aerial image (with concentric rings) 
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Site Site photo Aerial image (with concentric rings) 
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Site Site photo Aerial image (with concentric rings) 
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Table A2.1. Site summary table of main local physical factors. m2 Pond surface area, Tree 

Percentage tree cover, Spr Approximate percentage of water sourced from groundwater, 

Rain Approximate percentage of water sourced from rainwater run-off, RdBld 

Approximate percentage of water sourced from road and building run-off, Stream 

Approximate percentage of water sourced from stream input, Storm Approximate 

percentage of water sourced from storm water storage, Bore Approximate percentage of 

water sourced from borehole input, WLFI Wetland Fluctuation Index, Fish Fish presence / 

absence. 

Site x y m2 Tree Spr Rain RdBld Stream Storm Bore WLFI Fish 

1 397642 291856 1822 0.03 50 50 0 0 0 0 72.8 1 

2 398519 301654 4942 0.17 100 0 0 0 0 0 111.6 1 

3 402986 280070 1215 0.38 0 0 0 100 0 0 16.0 0 

4 404342 285615 925 0.69 0 0 100 0 0 0 41.2 0 

5 402938 283702 408 0.93 75 25 0 0 0 0 24.0 0 

6 403200 284982 2224 0.42 75 25 0 0 0 0 28.1 1 

7 403140 283725 1499 0.42 0 25 75 0 0 0 14.1 0 

8 403313 290445 1327 0.65 75 25 0 0 0 0 15.5 1 

9 400512 288765 14923 0.09 75 25 0 0 0 0 12.0 1 

10 400095 299680 2281 0.00 0 100 0 0 0 0 154.3 0 

11 402168 302673 1774 0.06 0 50 25 0 0 25 20.4 0 

12 401939 302131 5987 0.00 100 0 0 0 0 0 353.6 0 

13 407231 280055 1226 0.51 0 100 0 0 0 0 119.4 0 

14 409639 289193 721 0.00 0 100 0 0 0 0 168.8 1 

15 405047 291599 1505 0.32 75 25 0 0 0 25 6.4 1 

16 402431 288266 5499 0.20 0 25 0 75 0 0 69.8 1 

17 403816 294543 6423 0.03 0 0 0 0 100 0 18.6 0 

18 402401 291441 6963 0.15 100 0 0 0 0 0 8.9 1 

19 405514 282619 2108 0.50 25 0 75 0 0 0 66.3 0 

20 404722 293626 1464 0.75 75 25 0 0 0 0 199.8 0 

21 403157 304684 5992 0.00 0 75 25 0 0 0 87.8 0 

22 402316 304215 1010 0.27 25 25 50 0 0 0 3558.2 0 

23 403073 299968 2023 0.15 0 0 0 100 0 0 18.1 1 

24 404369 278777 12078 0.19 0 0 0 100 0 0 29.5 1 

25 401801 299936 1123 0.00 100 0 0 0 0 0 17.7 1 

26 400203 293942 14967 0.04 0 25 0 75 0 0 15.5 0 

27 396817 296552 3784 0.09 3 0 25 0 0 0 4.1 1 

28 402162 291482 299 0.95 0 100 0 0 0 0 4698.4 0 

29 393963 288745 692 0.06 0 100 0 0 0 0 248.1 0 

30 404004 295942 710 1.00 0 0 100 0 0 0 126.9 0 
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Appendix 3. Water quality limits of detection 

Table A3.1. Limits of detection for ion analyses. Values listed are 3 x SD of blank 
(deionised water) sample within each survey analysis, for each determinand. Values are in 
mg/l. 

 Cl NO3 SO4 PO4 Na NH4 K Mg Ca 

20th May  – 11th June 2009 0.103 0.272 0.032 NA 0.231 0.033 0.206 0.372 0.231 

3rd August – 14th August 2009 0.023 0.019 0.026 NA 0.023 0.026 0.041 0.420 0.023 

3rd November – 17th November 2009 0.073 0.033 0.117 0.01 0.090 0.069 0.060 0.087 0.090 

27th February – 3rd March 2010 0.068 0.281 1.606 0.01 0.039 0.080 0.025 0.133 0.039 

9th June – 11th June 2010 0.068 0.007 0.125 0.01 0.021 0.048 0.005 0.110 0.021 

18th August – 25th August 2010 0.095 0.529 0.322 0.01 0.186 0.134 0.022 0.191 0.186 

10th November – 13th November 2011 0.512 0.119 0.689 0.01 0.036 0.021 0.006 0.190 0.036 

21st February – 23rd February 2011 0.548 0.123 0.938 0.01 0.061 0.049 0.075 0.519 0.279 

*PO4 measured using Hanna Instruments Phosphate Photometer, which has a 0.01mg/l 
resolution and ±0.04mg/l accuracy  
 

 

Table A3.2. Limits of detection for trace metals analysis (flame atomic absorption 
spectrometry). Values listed are 3 x SD of blank (deionised water) sample within each 
survey analysis, for each determinand. Values are in mg/l. 

 Co Cr Cu Fe Mn Ni Pb Zn 

20th May  – 11th June 2009 0.153 0.113 0.023 0.097 0.092 0.082 0.032 0.078 

3rd August – 14th August 2009 0.032 0.054 0.022 0.096 0.019 0.073 0.155 0.034 

3rd November – 17th November 2009 0.121 0.038 0.013 0.059 0.023 0.047 0.084 0.012 

27th February – 3rd March 2010 0.116 0.025 0.021 0.076 0.020 0.051 0.190 0.052 

9th June – 11th June 2010 0.035 0.063 0.016 0.093 0.025 0.081 0.116 0.028 

18th August – 25th August 2010 0.035 0.068 0.028 0.047 0.007 0.054 0.088 0.015 

10th November – 13th November 2011 0.108 0.089 0.039 0.038 0.121 0.084 0.058 0.012 

21st February – 23rd February 2011 0.023 0.033 0.019 0.081 0.006 0.079 0.127 0.014 
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Appendix 4. The effect of filter size upon trace metal concentrations 

a) Fe (n = 29)  b) Mn (n = 23) c) Zn (n = 7) 

 

* As per the main study, few samples contained concentrations of Ni, Cu, Co, Cr or Pb above detection 

limits 
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Appendix 5. Publication of historical maps 

Figure A7.4.1. County Series map publication 

 

Figure A7.4.2. National Grid series map publication 
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Appendix 6. The effect of retaining larger connected ponds relative to 

smaller ponds  

 

a) ca1904, 500m threshold 
Median dA = 0.0148 

x   BCk % > 0.0148 = 0.000404 

x   BCk % > 0.0148 = 0.000611 

b) ca1904, 1500m threshold 
Median dA = 0.0148 

x   BCk % < 0.0148 = 0.000549 

x   BCk % > 0.0148 = 0.000493 

 

  

 

c) ca1962, 500m threshold 
Median dA = 0.0351 

x   BCk % < 0.0351 = 0.001978 

x   BCk % > 0.0351 = 0.001838 

d) ca1962, 1500m threshold 
Median dA = 0.0351 

x   BCk % < 0.0351 = 0.001598 

x   BCk % > 0.0351 = 0.002219 

 

  

 

e) 2009, 500m threshold 
Median dA = 0.0509 

x   BCk % < 0.0509 = 0.003538 

x   BCk % > 0.0509 = 0.002343 

f) 2009, 1500m threshold 
Median dA = 0.0509 

x   BCk % < 0.0509 = 0.002555 

x   BCk % > 0.0509 = 0.003327 
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Table A6.1. Average BCk values for ponds greater than, and smaller than median surface 
area between ca1904, ca1962 and 2009. dA is the pond surface area expressed as a 
proportion of total habitat area.  

  1500m   500m   

Period >Med. dA <Med. dA >Med. dA <Med. dA 

1904 0.48 0.53 0.61 0.42 

1962 0.58 0.42 0.48 0.52 

2009 0.57 0.43 0.40 0.60 
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Appendix 7. Identifying priority pond sites for connectivity in the 

Birmingham pondscape 
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e)  2000m f)  2500m 

  
g)  5000m h)  10000m 
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k) 1000m l)  1500m 
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Appendix 8. The potential for garden ponds to reconnect the 

‘pondscape’ following pond loss 

The possible presence of garden ponds was modelled based upon the results of a study by 

Davies et al. (2009), which suggests that, on average, 10% of U.K. households have a garden 

pond, with a surface area of 0.99m2. OS MasterMap delineates private gardens but does not 

make explicit to which building each garden belongs, and one garden may be represented by 

several polygons. Consequently, permanent roofed constructions (OS MasterMap definition) 

were selected within Birmingham which shared a boundary with a private garden. An initial 

587379 features were selected, which at this stage included duplicates. Small and large 

buildings such as garages and warehouses were removed by imposing a lower limit of 29m2 

and an upper limit of 300m2 derived from aerial image inspections, nonetheless it is 

acknowledged that some none residential buildings remained. Subsequently, 347314 such 

buildings remained to represent households after duplicates were removed. A random 

selection of 10% (34731) of households were selected using Hawths Tools ArcGIS extension 

(Beyer 2004) and their centroids were used to represent garden pond potential. 

Unfortunately, due to the computing power it was not possible to include garden size as a 

weighting factor toward pond presence, as suggested by Loram et al. (2011). 

The density of possible garden ponds, and ponds within the public realm (i.e. Section 

2.1), was extracted from a GIS for each 1 km2, as was the proportional cover of impermeable 

surface. An inverse correlation between the two types of urban ponds was revealed up until 

the 50 – 60% impermeable surface cover, after which, numbers of both decline (Figure 

A7.4.1). A non-linear, unimodal relationship was exhibited between the proportion of 

impermeable surface and the number of possible garden ponds, the peak density in which 

occurs at around 50% impermeable surface cover. Plotting the number of public ponds 

directly against possible garden ponds reveals the inverse relationship more clearly (Figure 

A7.4.2). 

The peak in possible garden ponds, around 50%, is broadly consistent with the 

percentage cover of impermeable surface found within LCM2007 suburban „habitats‟ 

(Section 2.3.1.3) in Birmingham (36.1%). The 50% figure likely represents densely populated 

residential areas. The inverse relationship between the number of possible garden ponds and 

public ponds suggests the potential for garden ponds to act as stepping stones to enable 

aquatic organisms to penetrate deeper into urban areas than public ponds alone. 

Nonetheless, the modelling methodology leaves much room for improvement and field 

validation is necessary in order to form any reliable conclusions. 
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Figure A7.4.1. Mean counts of possible garden ponds and public ponds within 1km2 
regions of Birmingham 

 

Figure A7.4.2. Public pond density vs. possible garden pond density within 1km2 regions 

of Birmingham 
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Appendix 9. Water quality summary table for all study sites and overall study (8 samples per site unless otherwise stated, average ± 1SD) 

Site pH EC  Temp. DO Cl NO3 PO4 SO4 CaCO3* Na NH4 K Mg Ca Fe** Mn** Zn** Chl-a*** SS*** 
 - µS/cm oC % mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l µg/l µg/l µg/l µg/l mg/l 

1 8.0±0.3 431±60 13.4±8.0 84.0±14 9.7±3 0.99±1.8 0.04±0.03 47.2±21 172±52 9.6±2.8 0.07±0.07 8.0±0.8 8.2±2.5 58.7±23 90±8.4 128±75.1 101±- 12.6±10 8.7±6 
2 7.6±0.2 695±57 12.3±7.1 71.3±21 131.3±57 2.06±2.7 0.02±0.01 39.7±16 72±14 74.3±7.6 0.18±0.33 3.4±0.8 5.8±1.1 36.7±4 229±161 95±44.7 87±- 25.6±35 9.4±9 
3 7.2±0.2 352±103 12.5±6.6 44.1±28 24.6±11 5.69±5.6 0.81±0.99 22.9±6 100±26 14.7±5.4 0.80±0.63 2.5±1.1 5.8±2.6 42.7±22 572±285 225±201 71±105 9.4±15 20±14 
4 7.4±0.2 357±64 11.3±4.9 35.6±23 23.8±12 2.31±3.7 1.30±0.92 29.5±14 95±24 12.6±5.4 2.23±2.16 4.7±0.9 3.9±0.8 38.5±8 120±35.2 165±82.0 116±135 8.6±10 6.1±2 
5 6.8±0.3 349±22 11.2±5.4 33.7±28 30.0±8 1.29±2.3 0.44±0.34 56.6±16 46±11 14.7±1.4 0.83±0.94 12.6±0.7 7.0±1.8 23.3±3 369±132 547±255 219±339 38.2±57 11±16 
6 8.2±0.5 411±48 12.8±6.5 88.5±35 29.3±8 1.07±1.8 0.63±0.81 27.6±10 139±16 15.4±2.1 0.50±0.54 5.2±1.1 4.3±1.2 51.4±5 547±- 104±- 72±84.9 139±196 27±22 
7 7.3±0.3 524±90 11.8±6.5 47.7±33 64.5±25 1.86±3.0 0.71±0.57 40.1±17 117±39 31.0±16 1.49±2.19 6.7±2.2 6.4±1.7 43.8±5 540±411 446±286 63±57.4 60.4±80 10±8 
8 7.3±0.1 419±27 11.6±5.7 42.5±24 44.1±9 2.31±3.3 0.14±0.08 46.7±7 91±18 21.2±2.1 0.32±0.44 4.2±0.7 4.5±0.7 42.5±4 377±329 965±596 63±88.5 49.5±50 12±8 
9 7.8±0.4 550±62 12.4±6.9 87.1±22 37.7±10 10.8±18.0 0.28±0.22 54.4±19 176±33 13.0±3.8 0.21±0.26 3.8±3.0 7.7±1.8 70.7±10 158±110 139±106 803±- 25.9±41 7.5±5 
10 8.1±0.4 333±35 12.3±7.0 82.2±20 18.7±17 14.5±26.2 0.08±0.13 43.4±21 105±15 6.7±2.0 0.14±0.14 4.1±0.8 7.4±2.1 39.3±6 336±418 75±- 63±84.1 38.1±59 47±31 
11 7.3±0.4 382±117 12.5±7.3 65.0±30 39.0±23 2.13±3.9 0.12±0.11 28.6±10 106±30 14.6±3.8 1.93±1.29 8.3±1.6 5.5±1.9 36.9±14 2405±3283 155±102 160±191 320±535 30±23 
12 7.8±0.8 586±70 13.9±9.4 88.9±38 46.7±19 4.08±8.0 0.19±0.19 76.0±46 146±25 26.6±5.5 0.19±0.33 4.5±0.8 9.3±1.7 61.2±8 225±56.4 143±84.9 21±1.3 6.7±11 7.0±4 
13 7.6±0.4 422±37 11.4±6.2 46.7±33 15.0±9 1.27±2.1 1.72±0.88 8.6±12 191±30 6.1±1.1 1.48±1.94 6.9±1.6 10.2±2.0 47.9±11 257±279 550±497 45±20.5 162±262 16±10 
14 7.7±0.3 334±33 13.6±6.5 63.1±10 12.4±7 2.21±3.9 0.03±0.02 8.9±18 142±24 6.6±1.3 0.10±0.08 3.0±1.4 4.9±1.0 45.5±4 126±48.3 83±27.4 31±14.8 26.7±30 13±7 
15 8.1±0.7 459±72 13.1±6.5 88.1±65 29.2±14 9.82±19.3 0.69±0.92 37.8±26 112±18 17.4±5.2 0.66±0.93 4.6±0.6 6.9±1.3 49.4±7 225±122 158±138 34±17.2 22.7±37 14±12 
16 7.5±0.3 449±71 12.9±6.4 37.4±18 37.8±21 2.84±3.7 0.11±0.09 29.6±20 145±20 17.0±7.2 1.47±0.98 5.0±0.9 5.7±1.2 49.2±11 365±252 557±332 27±- 84.7±120 13±12 
17 8.1±1.0 573±441 12.5±6.9 62.0±25 95.6±121 3.60±6.3 0.10±0.08 25.1±14 99±27 56.8±66 0.24±0.25 2.8±1.2 3.9±1.1 36.2±16 248±69.9 58±25.7 40±24.3 152±340 15±12 
18 7.8±0.3 488±66 12.5±6.9 72.2±28 21.8±9 1.31±1.8 0.08±0.02 41.2±21 175±25 20.4±32 0.16±0.13 1.9±0.9 5.2±1.4 60.4±18 198±- 69±38.7 134±- 22.3±33 7.0±6 
19 7.2±0.1 274±23 11.0±6.0 28.9±16 18.1±15 6.44±14.5 1.38±0.62 11.1±24 112±19 7.1±1.6 1.83±1.41 6.2±1.1 4.5±0.7 28.2±2 224±72.2 407±195 125±89.1 164±241 21±14 
20 7.4±0.3 539±57 11.4±5.2 54.4±8 60.4±19 5.36±3.4 0.19±0.15 58.3±22 112±16 34.1±8.4 0.21±0.23 3.2±0.4 9.8±1.8 49.0±9 832±1076 548±577 21±- 5.8±5.3 19±22 
21 7.9±0.8 603±253 13.7±7.8 100±27 89.0±52 2.31±3.5 0.04±0.02 92.8±66 129±69 43.0±17 0.17±0.21 6.2±2.8 13.8±11 46.7±20 584±227 354±161 82±111 27.2±32 24±15 
22 7.3±0.4 679±171 12.4±7.4 35.2±25 124.5±67 2.56±4.7 0.12±0.11 5.7±3 129±17 76.1±34 0.23±0.37 9.5±4.3 3.3±1.0 31.3±6 1447±403 265±229 34±8.3 127±118 64±17 
23 7.8±0.2 719±94 11.6±5.9 82.6±16 51.5±36 9.69±8.0 0.09±0.04 127±105 183±53 27.1±12 0.14±0.13 4.7±2.0 15.6±7.0 79.2±17 94±- 458±715 - 23.6±35 7.3±4 
24 7.6±0.4 297±96 11.9±6.8 65.9±25 39.8±23 1.29±1.5 0.50±0.62 13.5±6 72±13 20.8±13 0.11±0.15 2.6±0.7 4.7±1.1 20.9±6 220±123 85±58.0 110±149 59.8±65 13±3 
25 7.6±0.3 629±33 12.3±6.9 65.1±16 57.9±14 9.18±9.0 0.04±0.02 98.6±22 119±17 41.8±6.4 0.12±0.16 3.7±1.0 8.6±1.4 56.5±8 168±113 161±54.9 - 49.8±93 12±8 
26 7.4±0.1 1100±258 14.0±5.3 55.7±14 65.5±31 9.98±6.5 0.12±0.06 138.9±36 265±53 51.1±17 5.54±1.48 10.7±2.2 16.1±3.6 107.3±23 167±81.5 843±232 52±34.4 10.5±12 17±6 
27 7.9±0.3 461±85 13.0±6.7 67.0±30 37.6±8 13.2±28.5 0.07±0.04 35.8±10 138±22 20.5±5.5 0.10±0.19 3.4±2.1 10.7±1.9 47.6±9 460±565 334±- 322±- 36.0±48 6.6±5 
28 7.3±0.3 822±659 11.0±5.4 28.1±17 25.6±14 1.37±2.1 0.46±0.39 225±440 180±113 12.3±5.2 0.67±1.23 7.8±6.4 8.9±5.7 147±152 556±472 2863±3028 48±29.3 46.0±65 33±10 
29 7.8±0.2 809±260 12.4±6.4 75.3±32 31.2±17 2.76±3.7 0.09±0.07 143±169 218±100 17.0±9.0 0.08±0.09 9.0±3.5 16.1±7.7 87.3±46 167±51.3 134±73.4 34±14.1 58.5±125 7.7±5 
30 7.5±0.2 800±167 10.5±5.3 33.3±22 123.2±115 3.17±5.4 0.40±0.30 28.3±21 149±47 80.6±51 0.86±0.76 6.2±1.5 4.8±1.3 63.8±18 213±83.3 394±292 38±25.7 7.6±8.9 25±28 
Av. 7.61 528.0 12.31 61.1 47.82 4.58 0.37 54.74 134 27.00 0.77 5.50 7.65 53.3 480 473 80 92.3 17.4 
Min 6.23 44.5 2.67 6.0 0.73 0.00 0.00 0.93 28 4.24 0.00 0.58 1.56 12.0 81 40 20 0.0 0.0 
Max 10.01 2418.0 27.5 185.2 377.78 77.50 2.63 1312.18 342 209.32 8.21 21.39 41.36 516.4 8139 9211 803 1495 109.8 

*Analysis began autumn 2009; 6 samples analysed **Figures do not include concentrations below the limit of detection ***Analysis began summer 2009; 7 samples analysed 
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Appendix 10. Temporal variation of In situ measurements  

a) pH b) electrical conductivity c) temperature d) dissolved oxygen e) alkalinity and study 
median (red dashed line) 
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Appendix 11. Temporal variation of major anion concentrations  

a) Cl b) NO3 c) PO4 d) SO4 e) CaCO3 and study median (red dashed line) 
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Appendix 12. Temporal variation of major cation concentrations  

a) Na b) NH4 c) K d) Mg e) Ca and study median (red dashed line) 
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Appendix 13. Temporal variation of trace metal concentrations (for 

samples >LOD) 

a) Fe b) Mn c) Zn and study median (red dashed line) 
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Appendix 14. Temporal variation of for chlorophyll a and suspended 

solids  

a) Suspended solids b) Chorophyll a and study median (red dashed line) 
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Appendix 15. Pooled macrophyte species list from sampling periods, 20th May – 11th June /  2nd August – 14th 

August 2009. 

Species Common name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ∑ 

Alisma plantago-aquatica Water plantain 
             

• 
        

• 
 

• 
  

• 
  

4 

Apium nodiflorum Fools watercress 
 

• 
         

• 
       

• 
          

3 

Azolla filiculoides Water fern 
                     

• 
        

1 

Berula erecta Water parsnip 
           

• 
          

• 
   

• 
 

• 
 

4 

Callitriche spp. Water-starwort • • 
                 

• 
  

• • 
     

• 6 

Callitriche stagnalis Common water-starwort 
 

• 
                 

• • • • 
    

• 
  

6 

Carex spp. Sedge • 
        

• 
       

• 
      

• 
  

• 
  

5 

Carex riparia Greater pond sedge 
                   

• 
       

• 
  

2 

Ceratophyllum spp. Hornwart • • 
           

• 
  

• • 
        

• 
  

• 7 

Crassula helmsii New Zealand Pygmyweed 
             

• 
      

• 
   

• 
     

3 

Eleocharis spp. Spike rush 
         

• 
            

• 
       

2 

Elodea canadensis Canadian waterweed • • 
           

• 
  

• 
  

• 
    

• 
     

6 

Elodea nuttallii Nuttalls waterweed • 
            

• 
                

2 

Glyceria fluitans Floating sweet-grass 
         

• 
         

• 
          

2 

Hippuris vulgaris Mares' tail 
 

• 
                  

• 
 

• 
     

• 
 

4 

Hydrocotyle ranunculoides Floating pennywort 
 

• 
                            

1 

Hydrocotyle vulgaris Marsh pennywort 
 

• 
                            

1 

Iris pseudocorus Yellow flag iris • 
 

• 
  

• 
 

• 
  

• 
 

• 
     

• • 
   

• 
 

• • 
 

• 
 

12 

Iris setosa Blue flag iris 
       

• 
                      

1 

Juncus effusus Soft rush 
         

• 
 

• 
         

• • 
       

4 

Juncus articulatus Jointed rush 
         

• 
                    

1 

Lagarasiphon major Curly water-thyme 
                   

• 
    

• 
     

2 

Lemna minor Common duckweed 
     

• 
  

• • • • 
    

• 
 

• • • • • 
   

• • • • 15 

Lemna triscula Ivy-leaved duckweed 
 

• 
         

• 
 

• 
   

• • 
  

• 
    

• • • 
 

9 

Mentha aquatica Wild mint 
                      

• 
    

• • 
 

3 

Myosotis sp. Water forget-me-not 
                 

• 
    

• 
       

2 

Myriophyllum aquaticum Parrots feather 
                  

• 
           

1 

Myriophyllum spicatum Water milfoil 
 

• 
           

• 
      

• • 
        

4 

Nuphar lutea Yellow pond-lily 
       

• 
  

• 
   

• 
  

• 
            

4 

Nymphaea alba White water-lily • • 
                

• 
   

• 
   

• 
   

5 
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Species Common name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ∑ 

Nymphoidea peltatus Fringed water-lily 
                 

• 
        

• 
 

• 
 

3 

Persicaria amphibia Amphibious bistort • • 
                    

• 
       

3 

Phragmites australis Common reed • 
       

• 
  

• 
             

• 
  

• 
 

5 

Potamogeton crispus Curly-leaf pond weed 
 

• 
              

• • 
     

• 
      

4 

Potamogeton natans Broad-leaved pond weed • 
        

• 
   

• 
       

• • 
 

• 
     

6 

Potamogeton berchtoldii Small pondweed 
         

• 
                    

1 

Potamogeton pusillus Small pondweed 
         

• 
                    

1 

Potamogeton perfoliatus Perfoliate pondweed 
         

• 
                    

1 

Ranunculus spp. Water crowfoot 
 

• 
                  

• 
       

• 
 

3 

Ranunculus circinatus Fan-leaved water crowfoot 
 

• 
                            

1 

Ranunculus peltatus Pond water-crowfoot 
 

• 
                  

• • 
      

• 
 

4 

Ranunculus repens Creeping buttercup 
                     

• 
        

1 

Riccia fluitans Liverwort 
                     

• 
        

1 

Rorippa nasturtium aquaticum Water cress 
             

• 
     

• 
          

2 

Schoenoplectus lacustris Bulrush 
         

• • • 
            

• 
   

• 
 

5 

Typha sp. Reedmace 
 

• 
       

• 
 

• 
 

• 
      

• 
 

• 
 

• 
  

• • 
 

9 

Utricularia sp. Bladderwort 
         

• 
                  

• 
 

2 

V. beccabunga/ M. aquatica 
                       

• 
       

1 

Zanichellia palustris Horned pondweed 
           

• 
             

• 
    

2 

 
Bryophyte 1 (small) • • 

 
• • • 

 
• 

 
• • • 

 
• • 

 
• • 

 
• 

 
• • • 

    
• • 19 

 
Bryophyte 2 (large) 

    
• 

             
• 

   
• 

       

3 

 
Bryophyte 3 

 
• 

                            

1 

 
Emergent unk. 

    
• 

                         

1 

 
Unknown small broadleaved 

                
• 

             

1 

 
Unknown #1 

 
• 

      
• 

           
• 

         

3 

Veronica spp. (Veronica anagallis-aquatica?) Unknown #2 
             

• 
                

1 

 
Unknown #5 

                            
• 

 

1 

 
Unknown #6 

                           
• 

  

1 

 
Unknown #7 

                 
• 

   
• 

        

2 

 
Unknown #8 

                   
• • 

         

2 

 
Taxa richness: 11 20 1 1 3 3 0 4 3 14 5 10 1 12 2 0 6 9 6 12 10 12 17 4 8 3 7 9 15 4  
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Appendix 16. Creation of a resistance landscape 

Landscapes are rarely homogeneous and aquatic insect flights paths are likely to reflect this. 

The „effective distance‟ (Spear et al. 2010), therefore, incorporates the ease at which landscape 

features are to traverse. Least cost path (LCP) analysis is one means by which resistance in 

the landscape can be incorporated into dispersal. For aquatic insect dispersal, this has rarely 

been considered (Fahrig 2007). However, the lack of studies incorporating LCP analysis into 

aquatic insects is probably due to the lack of empirical evidence to suggest the relative cost of 

crossing differing land-uses. Expert opinion is typically the main method employed to assign 

resistance scores (Spear et al. 2010), which may be incorporated within this study in the 

future. Presently, resistance scores were based on a review of the potential influence of broad 

land-use categories on aquatic insect dispersal, derived from scientific literature. The 

objective is not to delineate exact flight paths; however, the resulting non-linear LCPs 

provide a suggestion of how the connectivity of a landscape could change if the inter-habitat 

terrestrial matrix is considered.  

16.1.1. Applying resistance to the landscape for aquatic insects 

16.1.1.1. Surface water 

Areas of surface water are intrinsically linked to aquatic insect presence, as such they were 

attributed a low resistance score. Many features of riparian stream corridors, such as the 

presence of surface water, greater soil moisture, greater humidity, taller, more dense 

vegetation and/or more abundant plant resources, could be predicted to contribute to 

greater terrestrial arthropod abundances in these areas (Lynch et al. 2002). Furthermore, 

some authors have suggested a safety in numbers aspect to surface water areas whereby the 

increased abundance of potential predators such as bats, birds and Odonates may be negated 

by mass emergence  (Sweeney and Vannote 1982). 

16.1.1.2. Urban areas 

Urban areas comprise of a number of land-use features, such as buildings, structures, 

developing land, manmade open space and landforms. High resistance was attributed to 

urban areas, although the values were reduced where features were associated with 

vegetation. Direct physical pressure of traversing a landscape of tall buildings may increase, 

mayflies and caddisflies, for example have rarely been observed at heights of 60 - 1525m 

(Johnson 1969). During their upstream compensation flight P. Longicauda females were 

recorded at a maximum height of 20 – 25m and 5 – 15m (Malnas et al. 2011) and in an 

experimental setting the same species were recorded at heights of between 15 – 30m whilst in 
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„water-seeking‟ flight (Kriska et al. 2007). In any case, the extra energy required to scale tall 

buildings likely makes them a less favourable land–use to traverse, with adjacent gardens or 

vegetated features a more likely prospect in this regard. Tall buildings, close to small ponds, 

may also hinder detection of a pond habitat, as with mature vegetation (Remsburg et al. 

2008).  

Perhaps the greatest concern is the phenomenon known as „polarized light pollution‟ 

(Horvath et al. 2009). Many insects identify habitats by means of a horizontal polarization of 

water-reflected light (Schwind 1991). Plastics, glass buildings, green metal roofs, oil lakes, 

and solar panels may all act as polarized ecological traps for a range of polarotactic insects 

including, but not restricted to mayflies, beetles and dragonflies (Horvath et al. 1998; Larson 

et al. 2000; Kriska et al. 2007; Stevens et al. 2007; Malik et al. 2008; Horvath et al. 2010). 

Furthermore, many insects are attracted to artificial light (Schwind 1991; Kovats et al. 

1996). Consequently street lighting may also create an ecological trap. This may be 

considerable in dawn emergences such as some Caenis spp. (Bradbeer and Savage 1980). In 

the study by Kovats et al. (1996), low catches in light traps at one location was related to the 

traps proximity to a crossroads illuminated by brighter streetlights than that of the light trap 

itself. Greater attraction of females by ultra-violet light has been reported for Hexagenia spp. 

mayfly adults (Hunt 1953), which may have significant implications for egg dispersal. 

16.1.1.3. Roads 

Similar to the surfaces noted above, interpretation of road surfaces as habitat for mayflies has 

long been recognised (Ladócsy 1930), for example, oviposition on wet and dry asphalt 

(Malnas et al. 2011). Similar behaviour has been exhibited by Coleoptera (Larson et al. 2000) 

and the metal exteriors of cars, and cars of dark and red colours, have been found to attract 

aquatic insects (Larson et al. 2000; Kriska et al. 2006a). The effect of the construction of a 

bridge over a stream was found to act as a barrier to compensation flight in a mayfly species 

(Palingenia longicauda) due to its polarizing properties. The impact was particularly notable to 

females of the species, of which 86% were impacted (Malnas et al. 2011).  

Traffic may also be a direct source of mortality, particularly for Odonates (Rao and 

Girish 2007). Research by Soluk et al. (2011) found fatality following collision with road 

traffic of two species of Odonates (Plathemis lydia and Libellula luctuosa) accounted for 14 and 

31% of Odonate activity. In a similar study in Austria,  collision risk was calculated to be 

between 5.9 to 7.6% for S. vulgatum and S. striolatum at a motorway feeder road (Staufer 

2010). 

16.1.1.4. Vegetated areas 
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Vegetation can provide food, shelter from the elements, protection from predators and 

resting places, for example for mayfly maturation (Kovats et al. 1996). Where trees occur, the 

atmospheric boundary layer (ABL) is thicker (Jackson and Resh 1989) and may consequently 

aid insect movement. Although, thickening of the ABL may also occur around buildings and 

other structures. 

Some stonefly species have been found more numerous in deciduous woodland than 

on open heath land (Petersen et al. 1999) and dense riparian forest revealed the highest 

densities of caddis fly (Collier and Smith 1998). This suggests the importance of riparian 

forest for Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa but mostly refer to the 

riparian vegetation in close proximity to the stream edge rather than between habitats. 

Various caddis fly families were found up to 200m inland within riparian forest (Collier and 

Smith 1998), relatively small by comparison to open cropland (Kovats et al. 1996). However, 

Petersen et al. (2004) found no differences in the decline of catch with distance from stream 

between a coniferous plantation forest, cleared forest and moorland, although fewer 

individuals dispersed a substantial distance in forested catchments than in the cleared or 

moorland one. In densely vegetated landscapes, adult chironomids appeared to be mainly 

confined to the stream from which they emerged (Delettre and Morvan 2000). Relatively 

open forest, however, was more likely to result in large dispersal distance by caddisflies 

(Jackson and Resh 1989). Large dispersal distances, by fewer individuals of caddis fly across 

cropland has also been found (Kovats et al. 1996). Furthermore, in open landscapes, 

chironomid species assemblages were maintained when compared to those in dense riparian 

vegetation (Delettre and Morvan 2000).  

The degree of vegetation appears to be influential in structuring species distribution in 

the landscape (Collier and Smith 1998; Delettre and Morvan 2000). Dense woodland may 

provide shelter, food and protection, however, this appears suited for those engaged in 

mating and maturation processes rather than in the act of dispersal. Greater dispersal 

distances, although lower densities, have typically been noted in more open environments. 

Logically, a compromise between fully cleared grassland and dense woodland would appear 

to be the more suited land-use to dispersal providing food, shelter and protection, but less 

physical obstruction, for example, the presence of hedgerows for chironomidae (Delettre and 

Morvan 2000). Higher temperatures from reduced cover may also promote greater dispersal 

distances due to metabolic effects. 

16.1.1.5. Agricultural land 

Intensive agricultural land has been shown to increase resistance between two patches 

functionally connected by distance alone, i.e. known to be within dispersal abilities of a focal 
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species (C. mercuriale, Rouquette and Thompson 2007). Furthermore, the presence of 

pesticides and floral monocultures across much agricultural landscape may hinder insect 

dispersal. Nonetheless, field margins may provide more naturalised dispersal corridors, 

although overall habitat heterogeneity may be reduced (Curado et al. 2011). 

16.1.2. Creating a land-use mosaic for Birmingham 

The first step towards LCP analysis is the formulation of a land-use mosaic for the study area 

to which resistance scores can be attributed. This was achieved by combining the four GIS 

layers (refer to Section 2.3), in raster format, within a GIS using the raster calculator function 

within ArcGIS 9.3 (Figure A7.4.1) and a sequence of spatial calculations and reclassifications. 

Despite a complicated process, a simple objective was retained throughout, whereby each 

land-use combination was kept unique, such that it was possible to reclassify according to 

the desired resistance scores. 

16.1.2.1. Land-use resistance scores  

Forty-five different land-use categories, each with its own characteristics and potentially 

differing resistance to adult aquatic insects dispersal were established. The subsequent costs 

applied are not absolute values, but are better served as relative costs to aquatic insect 

dispersal.  

Due to computational limitations, it was not possible to compute least-cost paths across 

the entire Birmingham landscape unless a coarse resolution was used. Therefore, LCP 

analysis was undertaken within the maximum spatial extent required for connectivity 

analyses (Section 5.2.4.2). To improve computational efficiency the resistance raster was 

clipped to the maximum spatial extent and resampled from a 2m x 2m resolution to a 4m x 

4m using bilinear interpolation, by which four 2m x 2m cells were averaged within a single 

4m x 4m cell. This remains a resolute representation of the terrestrial matrix when compared 

to other studies (e.g. 250m, Gurrutxaga et al. 2011), although it was accepted that an element 

of data smoothing would occur. 

Effective distances between ponds were calculated in Pathmatrix 1.1 (Ray 2005) within 

ArcGIS 3.2. In doing so, a LCP is plotted as well and the accumulated cost along that path is 

calculated. 
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Figure A7.4.1 Land-use mosaic raster creation process in ArcGIS for resistance landscape mapping 

R4 – LCM2007

R4a (trees)
coniferous = 3
broadleaved = 2
none = 1
R4b
woodland = 1000
other values as 
specified1

1 Unique values attributed to each OS MasterMap or LCM2007  
feature prior to processing
2 Greenspace reclassified as 1500 to avoid loss of definition against 
other land-use classes and a NoData result following division by 
R3a.  Values of 1500 and 750 within R6 then reclassified to 0.

3Here where NDVI registered green at a height >60m (UK max. tree 
height), it was presumed green atop a building and classified 
accordingly
4Where discrepancies arose between LCM2007 not identifying a 
wooded area and a combination of NDVI and photogrammetry
suggested woodland, the latter was preferred and classified as 
mixed woodland
5Where LCM2007 suggests woodland, but not by NDVI and height 
combined, classified to low level and ground level semi natural 
grassland.  Also includes rough low productivity grassland

R1 – OS MasterMap

R1a 
builds & gspace = 0
Other values as specified1

R1b
gspace =1  
other values = 0
R1c
builds =1  
other values = 0

R3 – NDVI

R3a
vegetation = 2
non-vegetation = 1

R2 – Photogrammetry

R2a
<7m = 500
>7m = 1000
R2b
0m = 1
0≤3m = 2
>3 ≤60m = 3
>60m = 4

R2a XR1c = R4
builds <7m = 500
builds >7m = 1000
all others = 0

+ R1a = R5
buildings <7m = 500
buildings >7m = 1000
gspace = 15002

÷ R3a = R6
vegetation associated non-
greenspace values/2
gspace = 02

XR1b R7
gspace valued as
0m = 1
0≤3m = 2
>3 ≤60m = 3
>60m = 4
all others = 0

= R7a
>60m = 5003

All others = 0

R7b
>3m ≤60m = 1
All others = 999

X R4a

R8 (mature trees)
dis.4= 999
broadleaved = 2
coniferous = 3

R8a (mature trees)
mixed4= 85
broadleaved = 100
coniferous = 70

R7c
gspace:
0m = 2
0≤3m = 1
>3 ≤60m = 0
>60m = 0
All others = 0

X R4b

R9
adjusted LCM2007 values

+

+

+

+

R10 – finalised raster, with 
values assigned for each 
classification

Reclassification of 
resistance scores can be 
undertaken as necessary

=

=

=

R2b 

Key to raster groups 

Land-use mosaic creation process undertaken in raster calculator

Process components that are 
highlighted in red text-boxes 
included a reclassification 
process prior to the next 
phase

0m 0m≤3m
Arable 100 50
Improved grassland 20 10
Semi-natural grassland54 2
Mountain, heath, bog 200 100
Freshwater 20 10
Urban 20 10
Suburban 20 10
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Table A16.1 Resistance scores applied to 45 classes of land-use 

Land-use Resistance score 

Non-residential buildings (>7m) 1000 
Structures 1000 
Motorway 600 
Residential buildings (<7m) 500 
A road 500 
Vegetated non-residential buildings (>7m) 500 
Vegetated structures 400 
B road 300 
Minor road 300 
Vegetated motorway 300 
Developing land 250 
Steps 250 
Pavements 250 
Paths 250 
Manmade open space 250 
Manmade landforms 250 
Vegetated residential buildings 250 
Vegetated A road 250 
Railway 200 
Vegetated B road 200 
Vegetated minor road 150 
Vegetated developing land 125 
Vegetated steps 125 
Vegetated pavements 125 
Vegetated paths 125 
Vegetated manmade open space 125 
Vegetated manmade landforms 125 
Vegetated railway 100 
Broadleaved woodland 100 
Arable (0m) 100 
Mixed woodland 85 
Coniferous woodland 70 
Gardens 50 
Arable (<3m) 50 
Vegetated gardens 25 
Improved grassland (0m) 20 
Freshwater 20 
Semi-natural grassland (0m) 16 
Improved grassland (<3m) 10 
Semi-natural grassland (scrub, <3m) 10 
Freshwater (riparian vegetated, <3m) 8 
Canals and rivers 2 
Still waters 2 
Vegetated canals and rivers 1 
Vegetated still water 1 
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Appendix 17. JNCC threat category definitions and criteria, after 

Chadd and Extence (2004) 

Red Data Book 1 (RDB1): Endangered 

Taxa in danger of extinction, the survival of which is unlikely if causal factors to its decline 

continue to operate. Taxa whose numbers have been reduced to a critical level or whose 

habitats have been so dramatically reduced that they are deemed to be in immediate danger 

of extinction. Included are taxa that are known only as a single population in only one 10 km 

square, taxa that only occur in habitats known to be especially vulnerable, or taxa that have 

shown a continuous decline over the last 20 years and now exist in five or fewer 10 km 

squares. 

 

Red Data Book 2 (RDB2): Vulnerable 

Taxa believed likely to designated RDB1 in the near future. Included are taxa of which most 

or all of the populations are decreasing because of overexploitation, extensive destruction of 

habitat or other environmental disturbance. Also included are taxa with populations that 

have been seriously depleted, the ultimate security of which is not yet assured. Finally, taxa 

with populations that may still be abundant but which are under threat from serious adverse 

factors throughout their range. 

 

Red Data Book 3 (RDB3): Rare 

Taxa with small populations, which are risk, but not at present designated as RDB1 or RDB2. 

RDB3 taxa are usually localized within restricted geographical areas or habitats, or are thinly 

scattered over a more extensive range. Usually, such taxa are not likely to exist in more than 

15 x 10 km squares of the National Grid. This criterion may be relaxed where populations are 

likely to exist in more than 15 x 10km squares but occupy small areas of especially vulnerable 

habitat. 

 

Notable A (NA) and Notable B (NB) 

Taxa that do not fall within RDB categories 1–3 but which are nonetheless scarce in the 

United Kingdom. For some well-recorded groups of invertebrates (e.g. Coleoptera) this 

category has been subdivided; Notable A taxa are present in 30 or fewer 10 km squares, 

Notable B taxa are present in 31 to 100 x 10 km squares nationwide 

 

Notable Regional (NR) 

Taxa that are too common nationally to fall within the Notable category, but which are 
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uncommon in some parts of the country. „Uncommon‟, in this case, means found in five or 

fewer localities. The region to which this status applies is described for individual species. 
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Appendix 18. Formulas for calculation of explained variance fraction (varpart procedure Oksanen et al. 2012) 

Matrix Y = Assemblage structure, a = water quality variables, b = habitat characteristics, c = land-use, d = connectivity metrics 
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Appendix 19. Selection probabilities of explanatory variables for 

macroinvertebrate orders within local and regional factors sets 

Table A19.1. Model selection probabilities for water quality variables for predicting 
macroinvertebrate richness, calculated as the sum of GLM model weights (wAICc) in 
which each explanatory variable occurs. Selection probabilities >0.7 are highlighted in 
bold. 

Order DO K Mg Ca PO4 SO4 NH4 CaCO3 Fe Mn 

Gastropoda 0.07 0.63 0.09 0.07 1.00 0.05 0.17 0.06 0.71 0.06 

Coleoptera 0.16 0.15 0.23 0.16 0.59 0.23 0.32 0.42 0.14 0.14 

Trichoptera 0.06 0.04 0.03 0.03 0.98 0.03 0.98 0.04 0.74 0.04 

Odonata 0.27 0.11 0.07 0.08 1.00 0.14 0.62 0.28 0.32 0.03 

Hemiptera 0.49 0.09 0.11 0.35 0.12 0.10 0.16 0.76 0.38 0.20 

Taxa  0.06 0.08 0.13 0.06 0.96 0.05 0.84 0.60 0.06 0.06 

 

Table A19.2. Model selection probabilities for local physical factors for predicting 
macroinvertebrate richness, calculated as the sum of GLM model weights (wAICc) in 
which each explanatory variable occurs. Selection probabilities >0.7 are highlighted in 
bold. 

Order %Con %Tree %Rip %Flt Mphyte Spr. RunOff RdBld Str. WLFI Fish Chla SS 

Gastropoda 0.07 0.11 0.06 0.07 0.99 0.06 0.09 0.09 0.06 0.10 0.97 0.06 0.09 

Coleoptera 0.40 0.05 0.04 0.07 0.99 0.05 0.10 0.06 0.06 0.26 0.71 0.05 0.05 

Trichoptera 0.17 0.35 0.03 0.25 0.95 0.07 0.08 0.10 0.04 0.04 0.78 0.04 0.04 

Odonata 0.24 0.53 0.18 0.08 1.00 0.06 0.02 0.29 0.40 0.03 0.02 0.04 0.02 

Hemiptera 0.13 0.92 0.19 0.12 0.12 0.12 0.13 0.18 0.14 0.12 0.23 0.12 0.12 

Taxa  0.30 0.36 0.10 0.19 0.99 0.30 0.08 0.07 0.07 0.08 0.09 0.08 0.08 

%Con Percentage of concrete edge, %Tree Percentage tree cover over pond, %Rip Percentage 
of riparian vegetation cover over pond, %Flt Percentage of floating vegetation cover over 
pond, Mphyte Macrophytes species richness, Spr. Spring or groundwater source, RunOff 
Surface water run-off source, RdBld Road or building run-off source, Str. Stream water 
source, WLFI Wetland Fluctuation Index, Fish Fish presence/absence, Chla Average 
chlorophyll a concentration, SS Average suspended solids load. 
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Table A19.3. Model selection probabilities for land-use variables for predicting 
macroinvertebrate richness, calculated as the sum of GLM model weights (wAICc) in 
which each explanatory variable occurs. Selection probabilities >0.7 are highlighted in 
bold. Distance (m) is the spatial extent at which the most parsimonious (by AICc) model 
was found. 

Order Distance (m) TH Gard. IG Tree PCA1 PCA2 E1/D Grass 

Gastropoda 200m 0.16 - 0.23 0.38 1.00 0.15 0.16 0.36 

Coleoptera 500m 0.14 - 0.09 0.80 0.95 0.13 0.40 0.26 

Trichoptera 200m 0.14 - 0.16 0.52 1.00 0.27 0.16 0.24 

Odonata 100m 0.03 - 0.00 0.98 1.00 0.01 0.07 0.82 

Hemiptera 25m 0.20 0.21 0.18 0.95 0.42 0.18 0.20 - 

Taxa  200m 0.06 - 0.07 0.98 1.00 0.05 0.05 0.64 

TH Distance to nearest town hall, Gard. Proportional coverage of gardens, IG Proportional 
coverage of improved grassland, Tree Proportional coverage of mature vegetation, PCA1 
Urbanisation, PCA2 Social gradient (housing density, percentage people in rural 
employment), E1/D Index of land-use heterogeneity, Grass Proportional coverage of all 
ground level vegetation. 
 

Table A19.4. Model selection probabilities for connectivity metrics for predicting 
macroinvertebrate richness, calculated as the sum of GLM model weights (wAICc) in 
which each explanatory variable occurs. Selection probabilities >0.7 are highlighted in 
bold. Distance (m) is the spatial extent at which the most parsimonious (by AICc) model 
was found. 

Order Distance (m) Pond Water APNN CNN AC2km 

Gastropoda 250m 0.23 0.89 0.24 0.55 0.53 

Coleoptera 2500m 0.99 0.20 0.20 0.37 0.37 

Trichoptera 500m - 0.87 0.29 0.48 0.60 

Odonata 250m 0.44 1.00 0.09 0.08 0.95 

Hemiptera 2500m 0.75 0.28 0.27 0.29 0.27 

Taxa  200m 0.88 0.19 0.19 0.43 0.76 

Pond Proportional coverage of pond habitat, Water Proportional coverage of water, APNN 
Distance to nearest neighbour weighted by neighbour surface area, CNN Effective cost to 
nearest neighbour, AC2km Effective cost weighted by surface area of all pond habitat within 
2km of focal pond 
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Appendix 20. Pooled macroinvertebrate species list from sampling periods, 20th May – 11th June /  2nd August – 

14th August 2009. 

 
Symbols represent proportional abundance  • >25%   ○ > 1 < 25%   ▪ <1%   Blank or dash = not present  

 

Order/Family Species                     Site no: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Amphipoda 
                               

Crangonyctidae Crangonyx pseudogracilis ○/○ ○/○ ○/○ 
  

▪/▪ ○/▪ ▪/○ ○/○ ▪/▪ ▪/▪ •/○ ○/• ○/○ 
 

▪/- ○/○ ○/○ ○/○ ▪/○ ○/▪ ○/○ ○/○ ○/▪ ▪/▪ ▪/○ ○/▪ ○/○ ○/○ ○/○ 

Gammaridae Gammarus lacustris 
                   

▪/- 
  

▪/▪ 
 

-/▪ 
    

▪/- 

Gammaridae Gammarus pulex 
                

▪/○ ▪/- 
 

▪/○ -/▪ 
 

▪/▪ 
 

▪/▪ 
    

▪/▪ 

Annelida 
                               

Oligochaeta Oligochaeta ○/• ○/○ •/○ ○/○ ▪/• •/○ ▪/○ ○/○ ○/○ ○/○ ○/• -/▪ ○/○ ○/○ ○/• ○/▪ ▪/▪ ○/○ ○/• •/○ ○/○ ▪/○ ○/○ ○/• •/• ○/• •/○ ○/▪ ○/○ ○/- 

Bivalvia 
                               

Sphaeriidae Sphaeriidae ▪/○ ▪/▪ ○/- 
 

▪/- ▪/- 
 

▪/○ ○/▪ -/▪ -/▪ ▪/- -/▪ ▪/- -/▪ ▪/• ○/○ ○/○ ○/○ ○/○ ○/○ ○/○ ○/▪ ○/▪ 
 

-/▪ ▪/▪ ▪/- ○/○ ○/- 

Coleoptera 
                               - Larvae -/○ ▪/- 

 
-/○ ○/▪ 

 
-/▪ ▪/▪ ▪/▪ ○/▪ ▪/○ ▪/▪ ▪/▪ ▪/- 

 
-/▪ ▪/▪ ▪/▪ ▪/▪ ○/▪ ○/▪ ▪/○ ○/- ▪/○ ▪/▪ -/▪ ▪/○ ○/▪ ▪/▪ ▪/- 

Dytiscidae Acilius sulcatus 
    

▪/- 
       

-/▪ 
     

-/▪ 
  

-/▪ 
        Dytiscidae Agabus bipustulatus 

 
-/▪ 

       
▪/- 

           
▪/- 

   
▪/- 

 
▪/▪ 

  
Dytiscidae Agabus sturmii 

                  
▪/- ▪/▪ 

  
-/▪ 

    
-/▪ 

  Dytiscidae Colymbetes fuscus 
            

-/▪ 
     

▪/▪ 
        

-/▪ 
 

-/▪ 

Dytiscidae Dytiscus marginalis 
                        

-/▪ 
    

-/▪ 

Dytiscidae Hydroglyphus geminus 
     

▪/- ▪/- 
                       

Dytiscidae Hydroporus angustatus 
                  

▪/- 
        

▪/- 
  Dytiscidae Hydroporus palustris 

   
▪/- ▪/▪ 

       
▪/▪ 

        
▪/- ▪/▪ 

    
▪/- ▪/▪ ▪/- 

Dytiscidae Hydroporus planus 
          

-/▪ 
        

▪/- 
       

-/▪ 
  Dytiscidae Hydroporus pubescens 

                           
▪/- 
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Order/Family Species                     Site no: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Dytiscidae Hygrotus impressopunctatus 
                    

▪/▪ 
         

Dytiscidae Hygrotus inaequalis 
     

▪/- 
    

▪/- ▪/▪ 
      

▪/▪ 
 

○/▪ -/▪ 
      

▪/▪ 
 

Dytiscidae Hygrotus versicolor 
 

-/▪ 
                            

Dytiscidae Hyphydrus ovatus 
           

▪/▪ 
      

▪/- 
   

▪/▪ 
     

▪/▪ 
 

Dytiscidae Ilybius ater 
           

-/▪ 
      

-/▪ -/▪ 
          

Dytiscidae Ilybius fuliginosus 
                   

-/▪ 
       

▪/- 
  

Dytiscidae Ilybius quadriguttatus 
           

-/▪ 
        

-/▪ 
         

Dytiscidae Laccophilus hyalinus 
                      

-/▪ 
       

Dytiscidae Laccophilus minutus 
 

▪/- 
         

▪/▪ 
         

▪/▪ 
        

Dytiscidae Rhantus exsoletus 
                     

▪/▪ 
        

Dytiscidae Rhantus suturalis 
                           

▪/- 
  

Dytiscidae Suphrodytes dorsalis 
           

▪/- 
                  

Gyrinidae Gyrinus substriatus 
       

-/▪ 
                      

Haliplidae Haliplus confinis 
 

-/▪ 
         

▪/- 
                  

Haliplidae Haliplus immaculatus 
           

-/○ 
     

▪/▪ 
    

▪/▪ 
   

▪/- 
   

Haliplidae Haliplus lineatocollis 
 

-/○ 
                          

-/▪ 
 

Haliplidae Haliplus lineolatus 
                 

▪/- 
    

▪/- 
       

Haliplidae Haliplus ruficollis ▪/▪ ▪/○ 
         

○/○ -/▪ ▪/▪ 
   

▪/▪ ○/▪ 
 

▪/▪ -/▪ ▪/▪ 
 

-/▪ 
 

▪/▪ ▪/- ▪/▪ 
 

Helophoridae Helophorus aequalis 
         

▪/- 
           

▪/- 
  

▪/- 
   

▪/- 
 

Helophoridae Helophorus brevipalpis 
  

▪/- 
      

▪/- ▪/- ▪/- 
    

▪/- 
 

-/▪ ▪/- ▪/- ▪/- ▪/- 
 

○/- 
 

▪/- ▪/- 
  

Helophoridae Helophorus flavipes 
         

-/▪ 
 

▪/- 
       

▪/- ▪/- 
         

Helophoridae Helophorus grandis 
                  

▪/- 
        

▪/- 
  

Helophoridae Helophorus minutus 
                      

▪/- 
 

▪/- ▪/- 
  

▪/- 
 

Helophoridae Helophorus spp. 
    

-/▪ 
                

▪/- 
        

Hydraenidae Hydraena riparia 
 

-/▪ 
                      

-/▪ 
     

Hydraenidae Ochthebius minimus 
                            

▪/- 
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Hydrochidae Hydrochus elongatus 
                    

▪/▪ 
         

Hydrophilidae Anacaena globulus 
       

▪/- 
                      

Hydrophilidae Anacaena limbata 
         

-/▪ 
           

-/▪ -/▪ 
    

▪/- 
  

Hydrophilidae Anacaena lutescens 
         

▪/- 
   

-/▪ 
      

▪/- ▪/▪ ▪/- 
 

-/▪ 
     

Hydrophilidae Enochrus testaceus 
 

-/▪ 
         

-/▪ 
 

-/▪ 
   

-/▪ 
  

▪/- 
 

▪/- 
   

▪/▪ 
   

Hydrophilidae Helochares lividus 
         

▪/- 
          

-/▪ 
         

Hydrophilidae Hydrobius fuscipes 
           

▪/- 
       

▪/- ▪/- -/▪ 
  

▪/▪ 
  

▪/▪ 
  

Hydrophilidae Laccobius colon 
           

▪/- 
          

▪/▪ 
       

Hydrophilidae Laccobius minutus 
 

▪/- 
        

▪/- 
         

-/▪ ▪/- 
        

Noteridae Noterus clavicornis 
 

-/▪ -/▪ 
  

▪/- 
   

-/▪ ▪/▪ ▪/○ -/▪ ▪/▪ 
   

▪/▪ 
  

▪/▪ ▪/▪ ▪/- 
 

▪/▪ 
 

▪/▪ 
 

▪/- 
 

Paelobiidae Hygrobia hermanni 
           

-/▪ 
    

▪/▪ 
           

-/▪ 
 

Sphaeridiidae Cercyon convexiusculus -/▪ 
                             

Diptera Family level only 
                              

Ceratopogonidae - ▪/○ ○/- 
  

-/○ 
  

-/▪ ▪/○ ▪/▪ ▪/▪ 
 

-/▪ ▪/▪ ▪/- 
 

▪/- ▪/○ ▪/- -/▪ ○/▪ ▪/○ ▪/- ▪/○ ○/- 
 

▪/- -/▪ ▪/- ▪/- 

Chaoboridae - 
 

-/▪ 
 

-/• ○/- -/▪ 
   

-/• •/▪ ○/• •/▪ ▪/- 
  

-/▪ ▪/○ ○/- ▪/- -/○ ○/▪ 
    

-/▪ ▪/○ ○/○ ○/- 

Chironomidae - •/○ ○/○ •/• •/○ ○/○ ○/○ ○/• •/○ •/○ ○/○ ○/○ -/▪ ○/○ ○/• •/• •/○ ○/○ ○/○ •/○ ○/○ ○/○ ○/○ ○/○ •/○ ○/• ○/○ ○/▪ ○/○ ○/• •/- 

Culicidae - 
  

-/▪ 
     

-/▪ -/▪ 
 

▪/▪ ▪/- ▪/- 
   

-/▪ -/▪ 
 

▪/▪ -/○ 
 

-/▪ ▪/▪ -/▪ ▪/▪ ○/▪ -/▪ ▪/- 

Dixidae - -/▪ 
 

-/▪ ▪/- -/▪ ▪/- 
 

▪/- -/○ 
 

-/○ ▪/- -/▪ ▪/▪ 
   

▪/○ ▪/▪ ▪/▪ ▪/▪ -/○ -/▪ -/○ ○/▪ -/▪ ▪/- -/▪ 
 

▪/- 

Empididae - 
                       

-/○ ▪/- 
     

Ephydridae - ▪/- 
      

-/▪ 
                  

-/▪ 
   

Limonidae/Pedicidae - 
     

-/▪ 
 

-/▪ -/▪ ▪/▪ 
 

-/▪ 
     

-/▪ -/▪ ▪/- 
   

-/▪ -/▪ 
     

Psychodidae - ▪/- 
   

-/▪ ▪/- 
     

-/▪ 
  

▪/- 
 

-/▪ -/▪ ▪/▪ ▪/▪ -/▪ ▪/- ▪/- -/▪ 
 

-/▪ ▪/○ -/▪ -/▪ 
 

Ptychopteridae - ○/- ▪/- 
                 

▪/- 
       

-/▪ 
  

Sciomyzidae - -/▪ 
                      

-/▪ ▪/- 
     

Stratiomyidae - 
           

-/▪ -/▪ 
    

-/▪ 
   

-/▪ ▪/- 
   

▪/- 
   

Syrphidae - 
  

▪/- ▪/- -/▪ ▪/- 
     

▪/- ▪/- 
     

▪/- -/▪ 
 

▪/- 
 

-/▪ 
  

-/▪ ▪/- 
 

▪/- 
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Tabanidae - -/○ ▪/- 
      

-/▪ 
           

▪/▪ 
         

Tipulidae - ▪/▪ ▪/- 
   

▪/▪ 
 

-/○ -/▪ ▪/▪ -/▪ -/▪ -/▪ 
 

-/▪ 
 

-/▪ 
 

-/▪ ▪/▪ ▪/- ▪/▪ ▪/- -/○ ▪/- ▪/▪ ▪/○ ▪/- ▪/- 
 

Ephemeroptera 
                               

Baetidae Cloeon dipterum ▪/○ ○/○ -/▪ ▪/○ ▪/▪ ▪/○ 
 

○/▪ -/▪ ○/▪ ▪/▪ -/○ ▪/▪ ▪/○ ▪/○ 
 

▪/○ ○/○ ○/○ ▪/▪ ▪/○ ▪/▪ ▪/○ ○/▪ -/▪ -/▪ ▪/○ 
 

▪/○ 
 

Baetidae - 
           

▪/- 
                 

▪/- 

Caenidae Caenis horaria ▪/○ ○/▪ 
      

▪/▪ 
  

○/▪ 
    

▪/- ○/▪ 
    

○/▪ ○/▪ ○/▪ 
     

Caenidae Caenis luctuosa 
                        

▪/- 
     

Caenidae Caenis robusta 
 

-/▪ 
              

▪/- -/▪ 
  

▪/- 
     

▪/- 
   

Gastropoda 
                               

Acroloxidae Acroloxus lacustris -/▪ ▪/▪ 
   

▪/○ 
 

▪/▪ 
      

▪/▪ ▪/- 
 

○/○ ▪/▪ 
  

-/▪ ▪/○ ○/▪ -/▪ 
 

-/▪ 
  

▪/- 

Bithyniidae Bithynia leachii 
        

-/▪ 
               

▪/- 
     

Bithyniidae Bithynia spp. 
                          

▪/- 
   Bithyniidae Bithynia tentaculata 

 
▪/○ 

      
○/○ 

    
○/▪ ○/○ 

 
▪/○ 

  
-/▪ ▪/○ 

  
▪/○ -/○ ▪/▪ ▪/○ 

   
Hydrobiidae Potamopyrgus antipodarum ○/- ▪/• 

     
▪/- 

       
▪/- 

 
○/▪ 

 
-/▪ ▪/○ 

 
▪/○ -/▪ -/▪ 

 
▪/- 

  
○/○ 

Lymnaeidae Lymnaea peregra ▪/▪ ▪/▪ 
     

-/▪ -/▪ 
 

-/▪ ○/○ 
 

○/○ ▪/▪ 
 

○/○ -/▪ 
  

○/○ •/○ ○/○ 
  

•/○ ▪/▪ ▪/▪ ▪/- 
 

Lymnaeidae Lymnaea stagnalis ○/○ -/▪ 
      

▪/- ▪/- 
 

○/○ 
 

•/○ 
  

-/▪ ○/○ 
    

○/○ 
 

○/○ 
 

○/▪ ▪/- -/▪ 
 Lymnaeidae Radix auricularia -/▪ 

                         
-/▪ 

   
Lymnaeidae Stagnicola palustris 

        
-/▪ 

                     Physidae Physa fontinalis ○/○ -/▪ 
 

▪/- ▪/▪ 
     

▪/▪ 
     

○/○ ▪/○ -/▪ -/▪ ▪/○ 
 

▪/▪ 
  

○/○ 
   

▪/▪ 

Planorbidae Anisus vortex 
        

○/○ 
     

○/▪ 
  

▪/○ 
  

○/○ 
 

○/○ ▪/- 
   

▪/▪ 
  Planorbidae Armiger crista ▪/▪ ○/○ 

 
▪/- -/▪ -/▪ 

     
-/▪ 

   
-/▪ 

 
○/▪ ▪/▪ ▪/○ ▪/○ 

 
○/○ ▪/▪ -/▪ 

   
▪/▪ ▪/▪ 

Planorbidae Gyraulus albus ○/○ ○/○ 
     

▪/- ▪/▪ -/▪ -/▪ -/○ 
 

-/▪ 
  

▪/○ ○/▪ -/▪ 
 

○/○ 
 

○/○ ▪/▪ ○/○ 
 

-/○ ▪/▪ ▪/- 
 Planorbidae Hippeutis complanatus 

 
○/○ 

   
○/○ 

 
▪/▪ ▪/▪ 

 
▪/▪ 

 
▪/▪ ▪/- ○/○ -/○ ▪/▪ ○/▪ ▪/▪ 

   
▪/▪ ○/▪ 

 
-/▪ -/▪ 

   
Planorbidae Planorbarius corneus ○/▪ 

         
-/▪ ▪/▪ 

 
▪/▪ 

 
○/- ▪/○ 

  
○/○ 

 
▪/▪ ▪/- 

 
▪/- ▪/○ ○/▪ ▪/▪ -/▪ 

 Planorbidae Planorbis carinatus 
             

-/▪ 
   

▪/- 
   

-/▪ 
    

▪/- -/▪ 
  

Planorbidae Planorbis planorbis -/▪ -/▪ 
         

-/▪ 
 

○/○ 
   

▪/○ 
  

▪/○ ▪/▪ -/▪ 
 

▪/- 
 

-/▪ ○/○ 
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Valvatidae Valvata piscinalis 
 

-/▪ 
 

▪/- 
    

○/○ 
       

▪/○ 
     

▪/○ 
       

Hemiptera 
                               

Corixidae Callicorixa praeusta 
      

▪/▪ 
 

▪/- ▪/- ▪/▪ -/▪ ▪/▪ 
        

-/▪ 
      

-/▪ 
 

Corixidae Callicorixa wollastoni 
                  

-/▪ 
           

Corixidae Corixa dentipes 
      

▪/- 
   

▪/- -/▪ 
                  

Corixidae Corixa panzeri 
        

▪/- -/▪ 
 

-/▪ ▪/- 
   

-/▪ 
             

Corixidae Corixa punctata 
          

-/▪ ▪/○ ▪/○ 
     

-/▪ 
           

Corixidae Cymatia bonsdorffii 
     

▪/- 
     

▪/▪ 
    

▪/- 
             

Corixidae Cymatia coleoptrata 
           

○/○ 
          

○/○ 
  

-/▪ 
    

Corixidae Hesperocorixa linnaei 
   

▪/- 
       

▪/▪ 
 

▪/▪ 
    

▪/- 
 

▪/- 
 

-/▪ 
       

Corixidae Hesperocorixa sahlbergi 
  

▪/- 
 

▪/▪ 
       

▪/▪ 
     

▪/▪ ▪/▪ 
 

▪/- 
 

▪/- 
     

-/○ 

Corixidae Micronecta poweri 
         

-/▪ 
       

▪/- 
    

▪/▪ 
       

Corixidae Micronecta scholtzi -/▪ 
     

○/- 
 

▪/○ ○/▪ 
          

○/○ 
 

▪/▪ ○/○ ▪/▪ 
     

Corixidae Sigara concinna 
      

▪/▪ 
    

▪/▪ 
                  

Corixidae Sigara distincta 
  

▪/- 
  

-/○ -/▪ 
 

-/▪ ▪/▪ ▪/- -/▪ -/▪ 
   

▪/- ▪/- 
  

▪/▪ 
       

▪/▪ 
 

Corixidae Sigara dorsalis ▪/- -/▪ -/▪ 
  

▪/▪ ▪/▪ 
 

▪/- ▪/▪ ▪/▪ -/▪ ▪/○ ▪/▪ ▪/- 
 

▪/▪ ▪/- 
  

▪/○ -/▪ ▪/▪ 
     

▪/▪ 
 

Corixidae Sigara falleni 
  

-/▪ 
  

○/▪ ▪/▪ 
 

-/▪ ○/▪ ▪/▪ -/▪ -/▪ ▪/- 
      

▪/▪ 
 

-/▪ ▪/- 
      

Corixidae Sigara fossarum 
          

▪/- -/▪ 
          

▪/○ 
       

Corixidae Sigara lateralis 
  

▪/▪ 
  

▪/- ▪/▪ 
 

▪/▪ 
 

▪/▪ 
 

-/▪ 
  

▪/▪ 
    

-/▪ 
    

-/▪ 
    

Corixidae Sigara limitata 
 

-/▪ 
        

▪/- 
         

-/▪ 
    

-/▪ 
  

▪/▪ 
 

Corixidae Sigara nigrolineata 
  

▪/- 
                          

▪/- 

Corixidae (nymphs) ○/○ ○/- 
 

○/▪ •/○ •/▪ ○/- ▪/○ ○/○ ○/○ ○/○ ○/○ •/○ ○/▪ ▪/▪ ▪/○ •/▪ ○/○ ○/▪ ▪/○ ○/▪ ○/○ ○/○ ○/▪ ▪/- 
  

▪/▪ ○/- ▪/- 

Gerridae Gerris lacustris 
     

▪/▪ 
 

-/▪ -/▪ -/▪ ▪/▪ 
  

-/▪ 
     

▪/▪ 
  

-/▪ 
 

-/▪ 
 

-/▪ 
   

Gerridae Gerris odontogaster 
           

▪/- 
 

▪/- 
        

-/▪ 
       

Gerridae (nymphs) -/▪ 
   

-/▪ ▪/- -/▪ -/▪ -/▪ ▪/- -/○ ○/- -/▪ ○/- 
   

-/▪ -/▪ -/▪ ▪/▪ -/▪ ▪/- -/○ ○/- -/▪ ○/- -/▪ -/▪ 
 

Hydrometridae Hydrometra stagnorum 
       

-/▪ 
 

-/▪ ▪/▪ 
 

-/▪ 
    

-/▪ -/▪ -/▪ 
 

▪/- -/▪ 
 

▪/- 
 

▪/▪ ▪/▪ 
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Hydrometridae (nymphs) -/▪ 
     

-/▪ -/▪ 
 

-/▪ 
 

-/▪ 
   

-/▪ -/▪ -/○ -/▪ 
 

-/▪ -/○ -/▪ -/▪ 
 

-/▪ -/▪ 
   

Mesoveliidae Mesovelia furcata 
                        

-/▪ 
     

Naucoridae Ilyocoris cimicoides 
           

-/▪ 
 

▪/- 
      

-/▪ 
     

▪/- 
   

Naucoridae (nymphs) 
          

-/▪ 
 

-/▪ 
      

-/○ ○/- -/▪ 
    

▪/- 
   

Nepidae Nepa cinerea 
       

▪/- 
           

-/▪ 
    

▪/- 
 

-/▪ 
   

Nepidae Ranatra linearis -/▪ 
          

-/▪ 
 

-/▪ 
      

-/▪ 
   

-/▪ 
 

▪/▪ 
   

Nepidae (nymphs) -/▪ 
      

-/▪ -/▪ 
   

-/▪ 
     

-/▪ 
      

-/▪ -/▪ 
   

Notonectidae Notonecta glauca 
 

-/▪ ▪/- 
  

▪/▪ 
 

▪/- 
 

-/▪ ▪/▪ -/○ -/▪ -/▪ 
  

-/▪ -/▪ -/▪ 
  

-/▪ -/○ 
 

▪/- 
 

▪/- 
 

-/▪ 
 

Notonectidae Notonecta maculata 
          

-/▪ 
                   

Notonectidae (nymphs) 
 

▪/- 
 

-/▪ ▪/▪ ○/- ▪/- ▪/- ▪/▪ ○/▪ ▪/▪ ▪/▪ 
 

○/- 
   

○/▪ ▪/- 
 

▪/- ▪/▪ ○/- 
 

▪/- 
 

▪/- -/▪ ○/▪ 
 

Pleidae Plea minutissima 
                          

▪/- 
   

Pleidae (nymphs) 
 

▪/- 
                 

-/▪ 
          

Veliidae Microvelia reticulata 
 

-/▪ 
         

▪/- 
            

▪/- 
 

▪/- 
   

Veliidae (nymphs) 
    

▪/- 
  

▪/- 
  

-/▪ 
       

▪/▪ 
  

-/▪ ▪/- -/▪ ▪/- 
 

-/▪ ▪/- 
 

▪/- 

Veliidae Velia caprai 
                  

▪/- -/▪ 
          

Hirudinea 
                               

Erpobdellidae Erpobdella octoculata 
 

-/▪ 
   

▪/○ ▪/- -/▪ ▪/- 
   

▪/▪ 
    

-/▪ ▪/- ▪/○ ▪/▪ 
 

▪/▪ ▪/▪ -/▪ -/▪ 
    

Erpobdellidae Erpobdella testacea 
 

-/▪ 
   

-/○ 
  

-/○ 
   

-/▪ -/▪ 
    

▪/○ -/▪ -/▪ 
    

-/▪ -/▪ 
   

Erpobdellidae Erpobdella spp. 
    

-/▪ 
                

▪/- 
        

Glossiphoniidae Glossiphonia complanata 
            

-/▪ 
   

-/▪ ▪/▪ 
 

▪/▪ 
  

-/▪ 
  

-/▪ ▪/▪ 
   

Glossiphoniidae Glossiphonia heteroclita 
 

▪/▪ 
   

○/○ 
     

-/▪ 
 

-/▪ 
 

-/▪ -/▪ 
   

▪/▪ 
 

▪/○ 
  

-/▪ ▪/○ 
 

▪/- 
 

Glossiphoniidae Helobdella stagnalis 
 

▪/○ ○/○ -/▪ ▪/○ ○/○ ○/○ ▪/○ ○/○ 
 

○/○ ▪/▪ ○/○ 
 

▪/▪ ○/○ ▪/▪ ▪/○ ○/○ ▪/○ ▪/▪ ▪/- ▪/▪ ○/▪ ▪/▪ ▪/▪ ▪/▪ 
 

○/▪ ▪/▪ 

Glossiphoniidae Hemiclepsis marginata 
     

○/○ 
 

-/▪ 
  

-/▪ 
    

▪/- 
 

▪/▪ 
    

-/▪ 
 

-/▪ -/▪ ▪/▪ 
   

Glossiphoniidae Glossiphonia spp. 
 

-/○ 
                            

Glossiphoniidae Theromyzon tessulatum -/▪ 
 

-/▪ 
  

-/○ 
  

-/▪ 
 

-/▪ -/▪ -/▪ -/▪ -/▪ 
 

▪/▪ -/▪ -/▪ -/▪ ▪/○ -/▪ -/▪ -/▪ 
 

-/▪ ○/▪ 
 

-/▪ 
 

Piscicolidae Piscicola geometra 
                 

▪/▪ 
  

▪/- 
 

▪/▪ 
 

-/▪ 
 

▪/▪ 
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Isopoda 
                               

Asellidae Asellus aquaticus ○/○ ○/○ 
 

▪/- ○/○ ○/○ •/- •/• ○/○ 
 

○/▪ ○/○ ○/○ ○/○ ○/▪ ○/▪ ○/○ ○/○ ○/○ ○/○ ○/○ ○/○ ○/○ ○/○ ○/▪ ○/• •/• •/• ○/○ •/• 

                                
Megaloptera 

                               
Sialidae Sialis lutaria ▪/▪ -/▪ 

     
▪/- -/▪ ▪/- -/▪ 

   
-/▪ 

  
▪/▪ 

 
-/▪ ▪/▪ -/▪ ▪/▪ -/▪ -/▪ 

 
▪/▪ 

   
Odonata 

                               (Anisoptera) (early instar/damaged) ▪/▪ ▪/- 
   

▪/- 
 

▪/- ▪/▪ ○/- 
 

○/- 
 

▪/- ▪/- 
 

▪/- 
 

-/▪ -/▪ ▪/- 
 

▪/- 
 

▪/- 
 

▪/- 
   

(Zygoptera) (early instar/damaged) ○/○ ▪/- 
  

-/▪ 
 

-/▪ 
 

-/○ ○/- -/○ ○/- -/○ ▪/- 
 

-/▪ -/○ ○/- -/▪ ▪/▪ ○/○ -/○ ▪/▪ -/○ ○/- -/○ ▪/- -/▪ 
  Aeshnidae Aeshna cyanea 

         
-/▪ 

        
-/▪ 

  
-/▪ 

     
-/▪ 

  
Aeshnidae Aeshna grandis 

       
-/▪ 

 
-/▪ 

 
-/▪ 

 
-/▪ 

   
-/▪ 

 
-/▪ 

 
-/▪ ▪/▪ ▪/- -/▪ 

 
▪/- 

 
-/▪ 

 Aeshnidae Anax imperator 
                            

-/▪ 
 

Coenagrionidae Coenagrion puella ▪/- 
      

▪/- 
 

-/▪ 
 

-/▪ 
 

○/▪ 
   

▪/- 
 

▪/▪ 
    

▪/- 
     Coenagrionidae Enallagma cyathigerum ▪/▪ 

          
▪/- 

        
▪/- 

 
▪/- 

       
Coenagrionidae Erythromma najas ○/○ ▪/▪ 

         
-/▪ 

 
▪/▪ 

   
▪/○ 

   
▪/- 

    
▪/▪ 

   Coenagrionidae Ischnura elegans ○/○ ○/▪ 
     

▪/- 
 

○/○ 
 

▪/▪ 
 

○/▪ 
  

▪/▪ ▪/▪ 
 

▪/- ▪/▪ ▪/- ○/▪ ▪/▪ ▪/○ ▪/- ▪/▪ 
 

▪/- 
 

Coenagrionidae Pyrrhosoma nymphula 
                   

▪/▪ 
    

-/▪ 
     Lestidae Lestes sponsa 

                            
▪/- 

 
Libellulidae Libellula depressa 

         
▪/▪ 

                    Libellulidae Libellula quadrimaculata 
                    

-/▪ 
         

Libellulidae Orthetrum cancellatum 
                        

-/▪ 
     Libellulidae Sympetrum fonscolombii 

         
-/▪ 

                    
Libellulidae Sympetrum sanguineum ▪/- ▪/- 

       
▪/- 

 
▪/- 

 
▪/- 

      
▪/- 

 
▪/- 

       Libellulidae Sympetrum striolatum -/▪ 
        

○/▪ 
   

-/▪ 
                

Trichoptera 
                               

Hydroptilidae Agraylea multipunctata -/▪ -/▪ 
      

-/▪ -/▪ 
 

-/▪ 
     

▪/- -/▪ 
 

-/▪ 
   

-/▪ 
 

▪/▪ 
 

-/▪ 
 

Hydroptilidae Agraylea sexmaculata 
 

-/▪ 
       

-/○ 
 

-/▪ 
        

▪/- 
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Order/Family Species                     Site no: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Hydroptilidae Hydroptila spp. -/▪ 
      

-/▪ -/○ 
   

-/▪ 
        

-/▪ ▪/- -/▪ ▪/- 
     

Hydroptilidae Oxyethira spp. ○/○ ○/- 
               

▪/- 
     

-/○ 
 

-/▪ ○/- 
   

Leptoceridae Athripsodes aterrimus 
                 

-/▪ 
    

▪/▪ 
       

Leptoceridae Leptocerus tineiformis ▪/- ▪/▪ 
               

▪/- 
        

▪/- 
   

Leptoceridae Mystacides azurea 
                        

▪/- 
     

Leptoceridae Mystacides longicornis/nigra ▪/○ ▪/▪ 
   

▪/▪ 
  

▪/▪ 
  

▪/▪ 
    

▪/▪ 
   

-/○ 
 

-/▪ ○/▪ -/▪ 
     

Leptoceridae Oecetis lacustris 
           

○/- 
            

▪/- 
     

Leptoceridae Oecetis ochracea 
                   

-/▪ 
          

Leptoceridae Triaenodes bicolor -/▪ ○/- 
        

-/▪ 
 

-/▪ ▪/- 
   

▪/- 
 

-/▪ -/○ ▪/▪ ▪/- -/▪ ▪/- 
  

-/▪ ▪/- 
 

Limnephilidae Anabolia nervosa 
                 

▪/- 
      

▪/- 
     

Limnephilidae Limnephilus decipiens 
 

▪/- 
               

▪/- 
            

Limnephilidae Limnephilus flavicornis 
       

▪/- 
     

▪/- 
   

▪/- 
        

▪/- ▪/- 
  

Limnephilidae Limnephilus lunatus 
 

▪/- 
     

○/- ▪/- ○/- 
   

▪/- 
   

○/- 
 

○/▪ ▪/▪ 
 

▪/▪ ▪/- ○/- 
 

▪/- ▪/- ▪/- ▪/- 

Limnephilidae Limnephilus marmoratus 
           

▪/- 
 

▪/- 
            

▪/- 
   

Limnephilidae (early instar/damaged) 
                              

Molannidae Molanna angustata 
                 

-/▪ 
    

-/▪ -/▪ 
      

Phryganeidae Agrypnia pagetana ▪/▪ 
          

-/▪ 
    

▪/- -/▪ 
            

Phryganeidae Phryganea bipunctata 
 

-/▪ 
       

-/▪ 
 

▪/▪ 
 

-/▪ 
   

-/▪ 
    

-/▪ 
 

-/▪ 
 

-/▪ 
   

Polycentropodidae Cyrnus flavidus -/▪ 
                

-/▪ 
    

-/▪ 
 

-/▪ 
     

Polycentropodidae Cyrnus trimaculatus 
         

-/▪ 
                    

Polycentropodidae Holocentropus dubius ▪/- 
                

▪/- 
            

Polycentropodidae Holocentropus picicornis -/▪ 
          

▪/○ 
 

-/▪ -/▪ 
  

▪/▪ 
      

-/▪ 
     

Psychomyiidae Lype reducta 
 

▪/- 
                            

Tricladida 
                               

- 
(damaged during 
preservation) ▪/- 

   
▪/- 

          
-/▪ ▪/▪ -/▪ 

   
▪/▪ ▪/- -/▪ 

 
▪/- ▪/- 

 
▪/- ▪/- 

Dendrocoelidae Dendrocoelum lacteum 
      

-/▪ -/▪ -/▪ 
  

-/▪ -/▪ 
   

-/▪ 
   

-/▪ -/▪ 
   

-/▪ -/▪ -/▪ 
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Order/Family Species                     Site no: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Dugesiidae Dugesia lugubris/polychroa 
    

-/▪ -/▪ -/○ 
    

▪/- -/▪ 
 

-/○ -/○ 
 

▪/▪ -/▪ -/▪ -/▪ -/▪ -/▪ 
 

-/○ 
  

-/▪ ▪/- 
 

Dugesiidae Dugesia spp. ▪/- 
                             

Dugesiidae Dugesia tigrina ▪/▪ 
   

-/▪ 
 

-/▪ -/○ -/○ 
 

-/○ 
 

-/▪ 
  

-/▪ -/▪ -/○ -/▪ -/▪ -/▪ 
  

-/▪ -/▪ 
     

Planariidae Planaria torva 
                         

▪/- 
    

Planariidae Polycelis nigra/tenuis 
   

-/○ ▪/- 
 

-/▪ -/▪ 
          

-/○ -/▪ -/▪ -/▪ ▪/- 
    

-/▪ 
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Appendix 21. Two Way Indicator Species (TWINSPAN) dendrogram, indicator taxa and urban pond types.  
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Radix balthica -

+

Potamopyrgus antipodarum
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Appendix 22. Mean (min and max) values of local (local physical and 

water quality) variables from 20th May -11th June and 3rd – 14th 

August 2009 sampling periods.  

* Sum total from the two sampling periods 
**Data from the equivalent period(s) in the 2010  hydrological year (as described in Section 

2.2) 
 

  

 Unit 20th May -11th June 3rd – 14th August Study mean 

Water quality     
pH - 7.86 (6.8 – 10.0) 7.51 (6.6 – 8.8) 7.68 (6.6 – 10.0) 
EC µS/cm 505.4 (247 – 1442) 453.8 (205 – 981) 479.6 (205 – 1442) 
Temp. oC 17.5 (13.1 – 27.5) 18.8 (15.7 – 22.7) 18.2 (13.1 – 27.5) 
DO% % 75.2 (11.2 – 166.0) 56.6 (6.0 – 185.2) 65.9 (6.0 – 185.2) 
CaCO3  mg/l 123.9 (46 – 230)* 148.1 (50 – 342) 136.0 (46 – 342) 
Na mg/l 23.1 (6.1 – 88.3) 19.8 (4.5 – 71.3) 21.5 (6.1 – 88.3) 
NH4 mg/l 0.77 (0.0 – 6.6) 0.78 (0.0 – 4.8) 0.77 (0.0 – 6.6) 
K mg/l 5.75 (1.4 – 12.5) 3.85 (0.7 – 12.3) 4.80 (0.7 – 12.5) 
Mg mg/l 8.20 (3.0 – 19.0) 6.36 (1.9 – 18.3) 7.28 (1.9 – 19.0) 
Ca mg/l 53.86 (20.0 – 110.5) 50.56 (20.0 – 111.9) 52.21 (20.0 – 111.9) 
Cl mg/l 36.88 (4.2 – 144.8) 29.93 (6.3 – 88.4) 33.41 (4.2 – 144.8) 
NO3 mg/l 0.25 (0.01 – 6.43) 3.45 (0.01 – 70.26) 1.85 (0.01 – 70.26) 
SO4 mg/l 38.32 (2.7 – 126.6) 30.08 (1.2 – 87.6) 34.2 (1.2 – 126.6) 
PO4 mg/l 0.51 (0.02 – 2.62) 0.46 (0.01 – 2.51) 0.48 (0.01 – 2.62) 
Fe µg/l 862.6 (101 – 7204) 774.4 (87 – 8139) 818.5 (87 – 8139) 
Mn µg/l 627.3 (118 – 2283) 309.3 (66 – 984) 468.3 (66 – 2283) 
Zn µg/l 209.7 (45 – 803) 26.1 (23 – 29) 117.9 (23 – 803) 

Local physical     
Habitats Count 3 (1 – 6) 4 (1 – 7) 3.6 (1 – 6.3) 
Surface area m2 - - 3597 (299 – 14967) 
Concrete % - - 15 (0 – 100) 
Open water % - - 52 (0 – 96) 
Tree cover % - - 30 (0 – 100) 
Riparian veg. % - - 13 (0 – 41) 
Floating veg. % - - 5 (0 – 47) 
Macrophytes Count 4.4 (0 – 16) 4.4 (0 – 15) 7 (0 – 20)* 
Spring Binary - - 0.47 (0 – 1) 
RainRun Binary - - 0.60 (0 – 1) 
RdBldRun Binary - - 0.27 (0 – 1) 
Stream Binary - - 0.17 (0 – 1) 
WLFI - - - 344 (4.0 – 4698.4) 
Fish Binary - - 0.43 (0 – 1) 
Chlorophyll a µg/l 1.5 (0.0 – 11)** 55.8 (0.6 – 259) 28.6 (0.0 – 259) 
Suspended solids mg/l 14.0 (2 – 52)** 21.7 (3 – 110) 17.9 (2 – 110) 
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Appendix 23. Comparison of the performance of the area informed, 

Euclidean (area-proximity, AP) and effective distance metrics (AC) for 

predicting macroinvertebrate richness at 2km distance 

a,b) Gastropoda, c&d) Coleoptera, e,f) Trichoptera, g,h) Odonata, i,j) Hemiptera, k,l) Taxa 
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Appendix 24. Composition of mature vegetation (>3m) within 10m of 

study pond margin 

Species Common name % Species Common name % 
Crataegus spp. Hawthorn 11.1 Sambucus nigra Elder 2.62 
Betula pendula Silver birch 9.97 Rhododendron ponticum Rhododendron 2.14 
Salix fragilis Crack willow 8.00 Corylus avellana Hazel 1.80 
Salix cinerea Grey willow 7.99 Prunus spp. Laurel 1.71 
Ilex aquifolium Holly 7.93 Taxus baccata Yew 1.50 
Alnus glutinosa Alder 7.92 Populus tremula Aspen 1.29 
Acer pseudoplatanus Sycamore 5.21 Pinus nigra Corsican pine 1.21 
Fraxinus excelsior Ash 4.66 Acer platanoides Norway maple 1.11 
Quercus robur English Oak 3.59 Acer campestre Field maple 1.09 
Salix caprea Goat willow 3.15 Tilia x europaea Lime 1.07 
Salix × sepulcralis Weeping willow 2.86 Aesculus hippocastanum Horse chestnut 0.92 

   Fagus sylvatica* Beech 0.83 
    Others 10.3 

*with reference to Chapter 6 
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Appendix 25. Summary of taxon richness and abundance with 

functional feeding group, after Tachet et al. (2002) 

Taxa FFG 1 2 3 4 5 6 7 8 9 10 12 13 15 16 17 19 20 21 22 23 24 25 27 28 29 30 

CRUSTACEA                              
A. aquaticus SHR • • ▪ 

 
○ • • • • ○ • ○ ○ ○ • ○ ○ • • • • 

 
• ○ ○ • 

C. pseudogracilis SHR ○ ○ 
 

○ 
    

○ ○ ○ ▪ 
  

○ 
 

○ ○ ○ ○ ○ 
 

○ ○ 
 

○ 

G. pulex SHR               
○ 

    
▪ 

      

TRICHOPTERA 

 
                          

A. sexmaculata PIE         
▪ 

 
▪ 

               
A. multipunctata PIE         

○ 
 

▪ 
        

▪ 
 

○ 
    

A. varia SHR           
○ 

               
P. bipunctata SHR ○ 

                  
▪ 

  
▪ 

   
M. longicornis SHR         

▪ 
     

▪ 
  

▪ 
 

▪ ▪ 
     

T. waeneri SCR                    
▪ 

      
C. flavidus PRED  

▪ 
                 

▪ 
      

C. trimaculatus PRED          
○ 

          
▪ 

     
H. dubius PRED                      

▪ 
    

H. piccicornis PRED           
▪ 

        
▪ 

      
A. aterimmus SHR ○ 

                         
T. bicolor SHR  

▪ 
                        

GASTROPODA 

 
                          

B. tentaculata FF  
○ 

      
○ 

   
○ 

 
○ 

  
○ 

  
○ 

 
○ 

   
B. leachi FF ○ 

       
▪ 

            
▪ 

    
P. carinatus SCR ○ 

                      
○ 

  
P. corneus SHR           

▪ 
   

▪ 
    

▪ 
      

H. complanata SCR  
○ 

   
▪ 

 
▪ ○ 

   
• ○ ○ ○ 

   
▪ ▪ 

     
G. albus SCR ▪ ▪ 

      
▪ 

 
○ 

  
▪ ○ 

  
▪ ▪ ○ 

 
○ ○ 

   
P. fontinalis SCR ○ 

 
○ 

 
○ 

        
▪ 

   
▪ 

 
▪ 

     
○ 

R. balthica SCR  
▪ 

        
○ 

       
▪ ▪ 

      
L. stagnalis SCR           

○ 
          

▪ 
    

A. vortex SCR      
▪ 

  
▪ 

        
▪ 

    
▪ ○ 

  
A. crista SCR  

○ 
        

▪ 
     

○ ▪ 
 

○ ○ ○ ○ 
   

A. lacustris SCR ○ ○ 
   

▪ 
              

○ • ○ 
   

P. antipodarum SHR ▪ ▪ ▪ 
                

▪ ▪ 
    

○ 

BIVALVIA 

 
                          

Sphaeridae FF  
○ 

      
▪ 

    
▪ ○ 

 
○ ▪ ○ ○ ▪ 

 
○ 

  
○ 

TRICLADIDA 

 
                          

D. tigrina PRED         
▪ 

                 
D. lacteum PRED         

○ 
                 

D. polychroa/lugribris* PRED   
▪ 

     
○ 

  
▪ 

          
▪ 

   
Tricladida* PRED                       

▪ 
   

HIRUDINEA 

 
                          

H. stagnalis PRED  
▪ ○ ○ • • • ○ ○ 

 
○ • ○ ▪ 

 
• ○ ○ ▪ ▪ ○ ▪ ○ 

  
○ 

E. octoculata PRED  
▪ 

   
▪ 

  
○ 

       
○ ▪ 

 
▪ 

      
E. testacea PRED      

▪ 
         

○ 
          

T. tessulatum APRA   
▪ 

 
▪ ▪ ▪ ▪ ▪ 

 
○ 

  
▪ 

  
○ ▪ ▪ 

   
▪ 

   

Taxa FFG 1 2 3 4 5 6 7 8 9 10 12 13 15 16 17 19 20 21 22 23 24 25 27 28 29 30 



 

A289 

H. marginata APRA ○ 
    

▪ 
           

▪ 
    

○ 
   

G. heteroclita PIE      
▪ 

                    
G. complanata PIE         

▪ 
                 

E. octoculata/testacea* PRED      
▪ ▪ 

 
▪ 

        
▪ 

  
▪ ▪ 

    

HEMIPTERA 

 
                          

S. dorsalis SHR                    
▪ 

      
H. stagnorum PRED                        

○ 
  

EPHEMEROPTERA 

 
                          

C. horaria DF  
○ 

                 
○ ▪ ○ 

 
○ 

  
C. dipterum DF ▪ ▪ 

     
○ 

  
▪ 

 
○ 

      
○ ▪ ▪ 

    

ODONATA 

 
                          

A. grandis PRED          
○ ▪ 

   
▪ 

     
▪ ▪ 

    
I. elegans PRED ○ ○ 

       
○ ○ 

   
○ 

    
○ ▪ ○ ▪ 

  
○ 

E. cyathigerum PRED         
▪ 

           
▪ 

     
C. puella PRED ○ ○ 

        
○ 

               
E. najas PRED ○ ▪ 

       
○ 

       
▪ 

        
P. nymphula PRED                    

▪ 
      

Zygoptera* PRED  
○ 

       
○ ○ 

        
▪ ▪ 

 
▪ 

   

MEGALOPTERA 

 
                          

S. lutaria PRED                 
○ 

  
▪ 

      

COLEOPTERA 

 
                          

A. limbata SHR                        
○ 

  
Larvae -         

▪ 
 

▪ 
      

▪ 
 

▪ 
      

DIPTERA 

 
                          

Chironomidae DF ○ ○ • • • ○ ▪ ○ ○ • ○ ○ • • ○ ○ ○ ○ ○ ○ • ○ ○ ○ ○ ○ 

Ceratopogonidae DF  
○ 

        
▪ 

 
▪ 

   
○ 

   
▪ ○ 

  
○ 

 
Chaoboridae PRED           

▪ 
     

○ 
         

Tipulidae SHR                        
○ 

  
Psychodidae SHR                        

○ 
  

OLIGOCHAETA DF ○ ▪ ○ ○ 
 

○ 
  

▪ 
  

• ▪ ○ ○ ○ ○ ○ ○ 
 

▪ 
 

○ • • ○ 

•   Taxa contribute >25% to total macroinvertebrate abundance 
○   Taxa contribute between 1 and 25% to total macroinvertebrate abundance 
▪   Taxa contribute <1% to total macroinvertebrate abundance 
*  Individuals too immature or poorly preserved to be identified further 

SHR Shredder, PIE Piercer, SCR Scraper, PRED Predator, FF Filter feeder, DF Deposit feeder 
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Appendix 26. Intercorrelates with pond surface area (Pearson’s 

correlation) 

P value of relationships >0.1 = I, <0.1 = I, <0.05 = I, <0.01 = I 

TreeCov Percentage coverage of vegetation >3m height, Fish Fish presence 

 Area TreeCov Fish pH oC DO K NH4 

Area -        

TreeCov -0.59 -       

Fish 0.41 0.23 -      

pH 0.60 -0.69 0.20 -     

oC 0.52 -0.69 0.38 0.48 -    

DO 0.61 -0.70 0.32 0.82 0.54 -   

K -0.52 0.29 -0.35 -0.32 -0.08 -0.22 -  

NH4 -0.46 0.68 -0.29 -0.60 -0.42 -0.75 0.35 - 


