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Abstract 

 

The co-ordinated degradation of proteins is vital to all aspects of cellular activity. The 

main mechanism of intracellular protein degradation is the ubiquitin proteasome system 

(UPS) which labels target proteins with ubiquitin, thereby marking them for degradation 

by the 26S proteasome. Protein ubiquitination is mediated by three enzymes; E1, E2, E3. 

The largest family of E3’s is the cullin-RING E3 ubiquitin ligases (CRLs). CRLs require 

the cyclic addition and removal of a ubiquitin-like protein called NEDD8 to and from the 

cullin subunit. Removal of NEDD8 (deneddylation) is mediated by the eight subunit 

COP9 signalosome (CSN; CSN1-8). Cullin deneddylation by the CSN has been 

demonstrated to prevent the autocatalytic degradation of the substrate recognition subunit 

(SRS) of CRLs. The CSN has also been shown to associate with deubiquitinase and 

kinase activity and has thus been identified as a highly conserved key regulator of protein 

degradation. CSN subcomplexes have also been identified which function in protein 

degradation, and a direct role for the CSN complex in transcriptional regulation has been 

posited. Although the COP9 signalosome (CSN) has been studied in human cells, little is 

known of its role in haematopoietic cells or of any potential contribution to 

leukaemogenesis.  

 

In this study the deneddylase catalytic subunit CSN5 and the non-catalytic subunit CSN2 

were knocked down in the human haematopoietic cell line and chronic myeloid leukemia 

model, K562.  Both knockdowns had similar consequences for CRL activity whilst 

having divergent effects on the levels of SRS mRNA. Knockdown of either subunit also 



resulted in a common sequential proteasome-dependent loss of SRS proteins, an 

observation that had not been previously described. Although both knockdowns resulted 

in reduced cell proliferation followed by significant cell death, the cellular phenotypes 

and mechanisms of cell death were distinct. CSN5 knockdown was associated with 

mitotic defects, G2/M arrest, and culminated in apoptosis. In contrast, CSN2 knockdown 

resulted in autophagy inhibition and non-apoptotic cell death. This is the first time the 

CSN has been associated with autophagy. CSN2 and CSN5 knockdowns also had 

divergent effects on the intact CSN complex. CSN2 loss resulted in significant reduction 

of the intact CSN whilst, for the first time, the intact CSN complex was shown to be 

retained in CSN5 knockdown cells with loss of only monomeric CSN5. The common 

effect on CRL activity by either knockdown suggests a common loss of deneddylase 

activity, which was explained in CSN2 knockdowns with the loss of the intact CSN 

complex. However, in the case of CSN5 knockdown, in which the intact complex 

remained, the reason for loss of deneddylase activity is less easy to explain. The results of 

this study may indicate for the first time that sustained deneddylase activity is dependent 

on a novel mechanism requiring a pool of CSN5 monomer. Finally, the significance of 

monomeric CSN5 function loss to the differential phenotype of CSN5 knockdown cells 

to cells lacking CSN2 was tested by re-expression of both wild type and deneddylase 

dead CSN5 in a CSN5 knockdown background. Importantly, both approaches rescued the 

cellular phenotype to the same extent. Overall, the findings of this study provide novel 

insight into both the function and potential regulation of the CSN complex, whilst further 

suggesting that the CSN may be a target worthy of investigation in the treatment of 

chronic myeloid leukaemia.   
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General Introduction 
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1.1 Intracellular protein degradation 

 

The concentration of any protein within the cell at any given time is tightly regulated. 

This regulation is of primary biological importance and is mediated at multiple levels, 

including via gene transcription, mRNA translation and protein degradation. This project 

is concerned with the process of intracellular protein degradation, of which there are two 

key mechanisms within the cell, autophagy and the ubiquitin-proteasome system. These 

systems differentially degrade long-lived and short-lived proteins within cells.  

 

1.1.1 Autophagy 

 

Autophagy is the main mechanism of degradation of long-lived proteins within the cell 

(Doherty and Mayer, 1992, Levine and Klionsky, 2004). Protein degradation by 

autophagy culminates in proteolysis within the (autophago)lysosome, a single membrane 

vesicular structure which contains proteases active at the low pH of the lysosomal lumen 

(Doherty and Mayer, 1992). Macroautophagy, which has been the focus of the majority 

of autophagy research, involves the formation of a double membrane structure around 

cytosolic proteins which, when completed, forms a structure called the autophagosome 

(Levine and Klionsky, 2004). The outer membrane of the autophagosome fuses with the 

lysosome membrane resulting in the formation of a single membrane autophagic body 

within the lumen of the lysosome (figure 1) (Levine and Klionsky, 2004). In the final 

stage of autophagy the single membrane of the autophagic body is broken down and the  
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Figure 1. The autophagy mechanism of protein degradation.

Schematic depicting the process of macroautophagy. In macroautophagy
target proteins are surrounded by a double membrane structure called an 
autophagosome, the outer membrane of which fuses with the lysosome
membrane to yield an autophagolysosome. The inner membrane is then 
broken down, enabling lysosomal protease mediated protein degradation. 
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protein contents degraded by proteases within the lumen of the lysosome (figure 1) 

(Doherty and Mayer, 1992, Levine and Klionsky, 2004). 

 

1.1.2 The ubiquitin-proteasome system 

 

The ubiquitin-proteasome system (UPS) is the main mechanism of degradation of short-

lived proteins within the cell (Doherty and Mayer, 1992, Levine and Klionsky, 2004). 

Proteolysis is carried out by a multicatalytic protease, the 26S proteasome, present in 

both the cytoplasm and nucleus (Doherty and Mayer, 1992). The proteasome consists of a 

20S core particle and two 19S regulatory particles (figure 2). The core particle is a hollow 

cylinder whilst the regulatory particles form caps at either end of the core particle (figure 

2), with proteins being degraded in the hollow compartment which is formed (Alberts, 

2002). Proteins are recognised by the 19S cap and delivered to the 20S core for 

degradation (Alberts, 2002). Unlike autophagy, which tends to carry out bulk protein 

degradation, the UPS carries out specific protein degradation. The specificity of the UPS 

is conferred through specific target labelling with ubiquitin, a signal which is recognised 

by the 19S particle of the proteasome (Alberts, 2002, Doherty and Mayer, 1992).  

 

1.1.3 Protein ubiquitination 

 

Simpson demonstrated the requirement for ATP in protein degradation in 1953 (Simpson, 

1953). Hershko and co-workers later identified a heat-stable polypeptide which was 

essential for ATP-dependent proteolysis in rabbit reticulocytes (Ciehanover et al., 1978).  
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Figure 2. The ubiquitin proteasome system.

Schematic depicting the ubiquitin proteasome system. Initially, ubiquitin is 

activated by binding to E1 enzyme via a thiol ester linkage, a reaction 

dependant upon ATP. Ubiquitin is then transferred to an E2 ubiquitin 

conjugating enzyme. A specific E3 ubiquitin ligase then mediates the trans fer 

of ubiquitin from E2 to a specific target protein. Protein ubiquitination signals 

for protein degradation by the 26S proteasome. Target proteins are initially 

deubiquitinated by the lid of the proteasome and the ubiquitin recycled. The 

protein is then partially unfolded before translocation into the proteasome 

core where it is degraded. 
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protein is then partially unfolded before translocation into the proteasome 

core where it is degraded. 
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They then determined that this polypeptide was conjugated to proteins in an ATP-

dependent manner (Ciechanover et al., 1980), and that polypeptide conjugation to 

proteins resulted in their degradation (Hershko et al., 1984). This polypeptide, which was 

determined to be ubiquitin (Wilkinson et al., 1980), was shown to be activated by an E1 

ubiquitin activating enzyme, a process requiring ATP (Ciechanover et al., 1981, Haas et 

al., 1982). Following this, three enzymes required for ubiquitin conjugation to proteins 

were isolated; E1 as above, E2 ubiquitin conjugating enzyme which was shown to 

mediate the transfer of E1 activated ubiquitin to the target protein, and E3 which was 

primarily shown to function in the final, ligation step of ubiquitin conjugation (Hershko 

et al., 1983), and was later shown to be the substrate binding component of the ubiquitin 

conjugating system (Hershko et al., 1986). With this the ubiquitin proteasome system was 

identified, responsible for the majority of protein degradation (Bosu and Kipreos, 2008), 

in which proteins are targeted for 26S proteasome mediated degradation by a three step 

mechanism which covalently attaches ubiquitin molecules to target proteins (figure 2).  

 

As the E3 enzyme interacts with the substrate protein, the E3 is also responsible for 

conferring target specificity to the ubiquitin proteasome system. Two main classes of E3 

ubiquitin ligase have been identified; homologous to E6-associated protein C-terminus 

(HECT) domain and really interesting new gene (RING) ligases. The Cullin-RING E3 

ubiquitin ligases form the largest class of E3 ubiquitin ligases identified to date and 

specifically regulate the degradation of many proteins (Petroski and Deshaies, 2005). In 

the following section, the literature regarding the structure, function and regulation of the 

Cullin-RING E3 ubiquitin ligase family is reviewed. 
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1.2 The Cullin-RING E3 ubiquitin ligase (CRL) family 

 

1.2.1 The CRLs and their component subunits  

 

Cullin-RING E3 ubiquitin ligases (CRLs) comprise multiple subunits including a cullin, a 

RING finger protein and an adaptor protein which binds both the cullin and the variable, 

substrate specific CRL subunit, the substrate recognition subunit (SRS) (Bosu and 

Kipreos, 2008). Nayak et al have demonstrated, using phylogenetic analysis, that there 

are five metazoan cullin families (Cul1-Cul5) (Nayak et al., 2002).    

 

The most studied CRL is that containing Cul1 which, along with the RING finger protein 

Roc1, the adaptor protein S-phase kinase-associated protein 1 (Skp1) and an SRS known 

as an F-box protein, forms an SCF (Skp1, Cul1, F-box protein) complex (Petroski and 

Deshaies, 2005). The crystal structure of the SCF complex demonstrates that Cul1 acts as 

a scaffold for complex formation, binding Roc1 at its C-terminus and Skp1 at its N-

terminus (Zheng et al., 2002b). Roc1 recruits the E2 ubiquitin conjugating enzyme and 

Skp1 binds the F-box protein through an F-box motif. The F-box protein recruits a 

substrate through a substrate interaction motif, bringing the target protein into close 

proximity with the activated ubiquitin molecule (Petroski and Deshaies, 2005) (figure 3). 

The F-box protein is therefore responsible for conferring target specificity to the SCF 

complex. As humans have been shown to have approximately 70 F-box proteins (Jin et 

al., 2004), there is the potential for the formation of multiple SCF complexes with the 

Roc1/Cul1/Skp1 base in order to facilitate the degradation of a diverse array of specific  
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recruitment of ubiquitin charged E2 and substrate by this complex enables 
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target proteins. Indeed, multiple SCF complexes have been identified which target 

distinct proteins for degradation. These will be reviewed in the following section which 

looks at CRL function.  

 

CRLs containing Cul2 have a structure comparable to that of the SCF complex, with 

Roc1 also binding to the C-terminus of Cul2 and an adaptor binding to the N-terminus 

(Kamura et al., 1999, Pause et al., 1999). However, in the case of Cul2 based CRLs, the 

adaptor is a heterodimer of Elongin B and Elongin C and the SRS is a von Hippel-Lindau 

(VHL)-box protein which is recruited to the CRL by Elongin C through a VHL-box motif 

(Bosu and Kipreos, 2008) (figure 4).  

 

Cul5 containing CRLs have a structure and composition very similar to that of Cul2 

based CRLs, with Cul5 also binding an Elongin B/C heterodimer as an adaptor (Bosu and 

Kipreos, 2008). However, Cul5 recruits target proteins via a suppressor of cytokine 

signaling (SOCS)-box protein which binds to Elongin C through a SOCS-box motif, as 

opposed to the VHL-box protein utilised by Cul2 containing CRLs (Kamura et al., 2004). 

Furthermore, instead of Roc1, Cul5 based CRLs interact with the RING finger protein 

Roc2 (Petroski and Deshaies, 2005) (figure 4).  

 

Cul4 based CRLs continue the generic structure and composition of CRLs, with the 

binding of a Roc protein (Roc1) to Cul4 and the recruitment of an SRS via an adaptor 

protein (Bosu and Kipreos, 2008), although the adaptor has also been shown to recruit 

substrates directly (McCall et al., 2005). The adaptor protein in Cul4 based CRLs is DNA  
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damage binding protein 1 (DDB1), which recruits WD40 proteins (Angers et al., 2006, 

He et al., 2006) (figure 4).  

 

As with the majority of CRLs, CRLs which contain Cul3 utilise Roc1. However, they 

differ from all other cullin containing E3 ligases as they do not require a separate adaptor 

protein and SRS. Rather, SRSs called BTB (broad complex, tramtrack, bric-a-brac) 

proteins both interact directly with Cul3 and recruit target proteins (Geyer et al., 2003, 

Xu et al., 2003) (figure 4).   

 

More recently, a further cullin, Cul7, has been identified and found to form a complex 

with Roc1, Skp1 and the F-box protein Fbx29 (also called FBXW8; F-box and WD 

repeat domain containing 8) (Dias et al., 2002). However, research regarding Cul7 is 

relatively scant and Cul7 is yet to be shown to interact with any other F-box proteins. 

Nonetheless, Tsunematso et al, 2006 have suggested that the abnormalities observed in 

CUL7-/- mice which are not observed in mice lacking Fbx29 are indicative of Fbx29 

independent functions of the Cul7 containing CRL complex (Tsunematsu et al., 2006), 

suggesting that this cullin also interacts with other SRSs.     

 

1.2.2 CRL function 

 

The SCF has been shown to mediate the degradation of multiple cell cycle associated 

proteins, with the SCF complex containing the F-box protein Skp2 (S-phase kinase-

associated protein 2; SCFSkp2) regulating the cell cycle inhibitors p21 (Yu et al., 1998) 
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and p27 (Tsvetkov et al., 1999). In addition, SCFCdc4 (containing the F-box protein Cdc4; 

cell division cycle gene 4) facilitates the degradation of cyclin E, a mediator of the G1 to 

S phase transition of the cell cycle (Koepp et al., 2001), and the cell proliferation 

promoter, c-Myc (Yada et al., 2004). SCFβ-TrCP (containing the F-box protein β-TrCP; 

beta-transducin repeat containing protein) has been shown to ubiquitinate IκBα, an 

inhibitor of the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of 

activated B cells), in the presence of E1, E2 and ATP (Yaron et al., 1998). As NF-κB is a 

major regulator of the immune and inflammatory responses, such findings implicate this 

SCF complex in the regulation of both of these processes (Maniatis, 1999).  

 

VHL protein, in complex with elonginB/C, has been identified as a Cul2 interacting 

protein (Pause et al., 1997). This Cul2 based CRL has been shown to mediate the 

ubiquitination and degradation of the alpha subunit of the hypoxia inducible factor (HIF) 

complex in normoxic conditions (Leung and Ohh, 2002). The HIF complex is an integral 

oxygen dependent transcriptional regulator which, in response to conditions of low 

oxygen, activates the transcription of hypoxia inducible genes, including the angiogenic 

protein vascular endothelial growth factor (VEGF) (Leung and Ohh, 2002). Thus, the 

Cul2/VHL CRL is implicated in the regulation of angiogenesis. 

 

Four groups have independently demonstrated the potential function of Cul3 based CRLs 

in regulating oxidative and xenobiotic stress response via Nrf2 (NF-E2-related factor-2) 

degradation (Cullinan et al., 2004, Furukawa and Xiong, 2005, Kobayashi et al., 2004, 

Zhang et al., 2004). Kobayashi et al, 2004 showed that the oxidative stress sensing BTB 
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protein Keap1 (Kelch-like ECH-associated protein 1) binds to both Cul3 and the target 

protein Nrf2 and directly promotes Nrf2 ubiquitination and degradation (Kobayashi et al., 

2004), thereby determining Keap1 and Nrf2 as a Cul3 based CRL SRS and target, 

respectively.  

 

Cul3 based CRLs have also been shown to regulate mitotic processes, including mitotic 

spindle assembly (Pintard et al., 2004), and chromosome alignment in metaphase and 

completion of cytokinesis (Sumara et al., 2007). In C. elegans, the BTB protein MEL-26 

functions as an SRS and is required in a complex with Cul3 for ubiquitin mediated 

degradation of the microtubule severing protein MEI-1 for assembly of the mitotic 

spindle (Pintard et al, 2004). Cul3 knockdown in HeLa cells was demonstrated to result 

in chromosome misalignment, disorganized anaphase spindles and failure to complete 

cytokinesis (Sumara et al., 2007). Furthermore, the BTB proteins KLHL9 and KLHL13 

(Kelch-like protein 9 and 13) were shown to interact with Cul3 and mediate 

ubiquitination of Aurora B protein, a protein which functions in the attachment of the 

mitotic spindle to the centromere, potentially accounting for the mitotic defects observed 

in cells lacking a component of the Cul3/KLHL9/KLHL13 based CRL (Sumara et al., 

2007).    

 

Cul4 based CRLs have been implicated in the maintenance of DNA integrity, with the 

identification of the nucleotide excision repair (NER) proteins DDB2 (damage-specific 

DNA binding protein 2) and CSA (Cockayne syndrome protein A) as SRSs in Cul4 ligase 

complexes (Groisman et al., 2003). Groisman et al demonstrated that the WD40 proteins 
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DDB2 and CSA, which function in global genome repair (GGR) and transcription-

coupled repair (TCR) respectively, are associated with the same protein complex 

(including Cul4, Roc1 and DDB1) via interaction with DDB1. In addition, the DDB2 and 

CSA containing complexes were shown to possess ubiquitin ligase activity and were 

further demonstrated to rescue the GGR and TCR deficient phenotypes, respectively, 

when microinjected into corresponding mutant cells (Groisman et al., 2003).  

 

Cul5 has been demonstrated to function in neuron positioning during cortical 

development by regulation of Disabled-1 (Dab1) protein levels (Feng et al., 2007). The 

authors observed that SOCS proteins can bind specifically to Dab1 protein and that 

expression of SOCS1, SOCS2 or SOCS3 protein induces Dab1 degradation. Furthermore, 

transfection of embryonic cortical neurons with Cul5 shRNA protects Dab1 from 

degradation. This observation was also made in vivo using in utero microinjection and 

electroporation of the lateral ventricles of day 14.5 mouse embryos, with concomitant 

neuron displacement which could be rescued by Dab1 knockdown (Feng et al., 2007). 

Cullin 5 based CRLs have therefore been identified as a regulator of cortical neuron 

migration via, at least in part, degradation of Dab1.  

 

1.2.3 CRL regulation via cullin modification 

 

All of the human cullins analysed so far (Cul1, 2, 3, 4A, 4B and 5 i.e. all except Cul7) 

have been shown to be modified by the addition of a ubiquitin-like protein, Nedd8 

(neural precursor cell expressed, developmentally down-regulated 8) (Hori et al., 1999). 
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The neddylation process requires an E1 to activate Nedd8 and an E2 (UBC12 or UBE2F) 

that transfers Nedd8 to the cullin (Gong and Yeh, 1999, Liakopoulos et al., 1998, Huang 

et al., 2009). Furthermore, the E2 recruiting subunit of CRLs, Roc1, has been shown to 

be required for cullin neddylation (Kamura et al., 1999). More recently, cullin 

neddylation has also been shown to be upregulated by an E3 ligase, Dcn1, which 

promotes neddylation by binding to both the cullin target and UBC12 (Kurz et al., 2008, 

Kurz et al., 2005), thereby bringing the neddylation target into close proximity with the 

active Nedd8; suggesting a scaffold function for Dcn1 comparable to that of cullin based 

E3 ubiquitin ligases.  

 

The neddylation of CRLs increases ubiquitin ligase activity in vitro, with groups 

demonstrating the requirement for cullin neddylation in the ubiquitination of IκBα (Read 

et al., 2000, Wu et al., 2000) and others determining cullin neddylation as a promoter of 

p27 ubiquitination (Morimoto et al., 2000, Podust et al., 2000). Moreover, neddylation 

has been shown to be required for CRL function in vivo, including mammalian cells (Ohh 

et al., 2002).  The mechanisms behind Nedd8 promotion of CRL mediated protein 

ubiquitination have been investigated. Cullin neddylation has been shown to increase 

ubiquitin bound E2 binding to the E3 (Kawakami et al., 2001). Further, Nedd8 has been 

shown to directly interact with E2 ubiquitin conjugating enzyme and thereby recruit the 

E2 to cullin based E3 ligases, possibly in co-operation with Roc1 (Sakata et al., 2007). In 

addition, cullin neddylation has been shown to result in significant conformational 

alterations in the structure of Cul5 C-terminal domain (Cul5ctd)-Roc1 complex and 

Cul1ctd-Roc1 complex, resulting in the release of the Roc1 RING domain from a cullin 
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subdomain and allowing conformational flexibility within these complexes (Duda et al., 

2008). These Nedd8 induced conformational changes and increased flexibility are 

required for CRL activity (Duda et al., 2008), and may enhance E2 binding as above but 

may also bridge the predicted ~60Å gap between the E2 and substrate binding site (Duda 

et al., 2008), thereby enhancing CRL mediated protein ubiquitination.   

 

In addition to promoting CRL activity, cullin neddylation also prevents the binding of 

cullins to CAND1 (cullin-associated and deneddylation-dissociated 1) (Zheng et al., 

2002a), possibly by blocking a CAND1 binding site (Duda et al., 2008). CAND1 is an 

inhibitor protein which, in the absence of neddylation, binds to all cullins (Min et al., 

2003); although Cul7 has yet to be tested (Petroski and Deshaies, 2005). CAND1 has 

been shown to interact with the Cul1-Roc1 complex by wrapping around the cullin, with 

the N-terminus of CAND1 interacting with the C-terminal of the cullin and the C-

terminus of the inhibitor binding to the N-terminal of the cullin, blocking both the 

neddylation and Skp1 interaction sites (Goldenberg et al., 2004). Furthermore, increasing 

CAND1 in an in vitro system has been shown to result in a decreased association of Skp1 

with Cul1 and a concomitant decrease in IκBα ubiquitination (Min et al., 2003), thereby 

directly demonstrating the negative regulatory effect of CAND1 on CRL activity in vitro. 

In addition, a more recent manuscript presents data to suggest that a CAND1 paralogue, 

CAND2, found in mouse cardiac and skeletal muscle, accelerates myogenic 

differentiation of mouse myoblast C2C12 cells by inhibition of Cul1 mediated myogenin 

ubiquitination and subsequent proteasomal degradation (Shiraishi et al., 2007).  
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Overall, cullin neddylation appears to have a positive regulatory role on CRL activity, 

with neddylation promoting CRL activity and preventing interaction with the inhibitor 

CAND. However, as is discussed in the following sections, this is not the full story of 

cullin modification. The neddylation of cullins is reversible, with deneddylation being 

carried out by the COP9 signalosome (CSN) complex. 
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1.3 The COP9 signalosome (CSN) complex 

 

Initial studies by Wei and Deng identified a mutation in the COP9 (constitutive 

photomorphogenesis 9) gene (later identified as the gene encoding CSN8) in Arabidopsis 

thaliana, which resulted in constitutive photomorphogenesis in the absence of light (Wei 

and Deng, 1992). COP9 (CSN8) was then found to be a component of a complex 

(initially called the COP9 complex) identified in A. thaliana as a regulator of light 

controlled development (Wei et al., 1994). The eight subunit ~500kDa complex, now 

termed the COP9 signalosome (CSN), is highly conserved amongst eukaryotes and has 

been studied in a diverse array of organisms including humans (Seeger et al., 1998), mice 

(Lykke-Andersen et al., 2003), Drosophila melanogaster (Freilich et al., 1999, Oren-

Giladi et al., 2008), Aspergillus nidulans (Busch et al., 2003), Dictyostelium discoideum 

(Rosel and Kimmel, 2006), Schizosaccharomyces pombe (Mundt et al., 1999), 

Caenorhabditis elegans (Pintard et al., 2003) and Brassica oleracea (Chamovitz et al., 

1996). The study of this complex in such a wide variety of organisms resulted in a 

confusing array of names for the complex and its subunits such as COPS in mice, Sgn in 

humans and DCH in Drosophila. A unified nomenclature was thus determined in which 

COP9 signalosome was abbreviated to CSN and the subunits were designated CSN1-8 

according to their decreasing molecular mass (Deng et al., 2000a, Deng et al., 2000b) 

(figure 5).  

 

The CSN complex has been shown to be essential for the development of multiple 

organisms. Arabidopsis homozygous for the COP9 (CSN8) mutation do not survive past 
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Figure 5. Summary of alternative CSN nomenclature.

A table to summarise the alternative names for CSN subunits in Arabidopsis, 

human, mouse, Droshophila, S.pombe and A. nidulans. Adapted from Deng 

et al, 2000. 
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five weeks and do not undergo reproductive development (Wei and Deng, 1992). 

Similarly, homozygous CSN5 gene deletion or P-element insertion in Drosophila, both of 

which result in the loss of CSN5 protein, are lethal, with developmental retardation at the 

third larval or pupal stage (Freilich et al., 1999). Dictyostelium cell lines null for either 

CSN2 or CSN5 could not be recovered, suggesting that loss of the CSN complex in this 

organism is also lethal and that the CSN complex is vital for Dictyostelium development 

(Rosel and Kimmel, 2006). In addition, CSN2, CSN3 or CSN5 knockout in mice is 

associated with developmental defects and early embryonic lethality (Lykke-Andersen et 

al., 2003, Tomoda et al., 2004, Yan et al., 2003). Finally, although not lethal, CSN 

subunit gene deletion in A. nidulans and CSN5 knockdown by RNAi in C. elegans result 

in a block in sexual development and sterility of the organism, respectively (Busch et al., 

2003, Smith et al., 2002, Busch et al., 2007), again indicating the essential function of the 

CSN complex in developmental processes.  

 

Cell proliferation has been shown to be regulated by the CSN complex in several 

organisms. Disruption of CSN2 or CSN5 in mice results in deficient cell proliferation, 

increased levels of cyclin E and accumulation of p53 (Lykke-Andersen et al., 2003, 

Tomoda et al., 2004). In addition, CSN8 has been shown to be essential for antigen 

receptor-induced murine T-cell entry into the cell cycle from quiescence (Menon et al., 

2007). Reduction of CSN subunits 1-6 in C. elegans by RNAi all result in a similar 

phenotype of impaired microtubule function and defective spindle formation and 

orientation, with failure of cytokinesis (Pintard et al., 2003). In addition, Rosel and 

Kimmel demonstrated, using CSN5 RNAi, that reduction of the CSN severely effects the 
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proliferation of Dictyostelium (Rosel and Kimmel, 2006), whilst a function for the CSN 

complex in the regulation of S. pombe proliferation has been demonstrated, with the 

finding that a deletion mutant of CSN1 results in accumulation of cells in S phase (Mundt 

et al., 1999). More recently, the CSN complex has been shown to be integral for 

progression through the G2 phase of the cell cycle in Arabidopsis (Dohmann et al., 

2008). Finally, the CSN complex has been implicated in the positive regulation of human 

cell (HEK293T and HeLa) proliferation, with reduction of either CSN4 or CSN5 in 

human cells resulting in p27 accumulation and a significant reduction in cell proliferation 

(Denti et al., 2006).   

 

Although studies have investigated the subunit-subunit interactions in the CSN complex 

using yeast two-hybrid and filter-binding assays (Kapelari et al., 2000, Rosel and 

Kimmel, 2006, Wei and Deng, 2003), and low resolution electron microscopy images of 

the CSN have been generated (Kapelari et al., 2000), the precise structure of the CSN 

complex remains to be determined. The most recent progress in CSN structure 

delineation used mass spectrometry (MS), tandem MS and the algorithm SUMMIT to 

generate a CSN subunit topology model (figure 6) (Sharon et al., 2009). This model, 

generated from 35 identified subcomplexes, depicts the CSN complex as two 

symmetrical modules containing CSN1, 2, 3 and 8 and CSN4, 5, 6 and 7 which are 

connected through interaction between CSN1 and CSN6 (figure 6A). CSN1 and CSN6 

appear to be the core subunits, each forming interactions with four other subunits, whilst 

CSN2 and CSN5 are peripheral and were found to be the most readily dissociable 

subunits of the complex (figure 6A) (Sharon et al., 2009). The authors suggest that  
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between CSN1 and CSN6. (B) Additional interactions may occur between the 

distinct modules if they were to rotate through the CSN1/CSN6 interaction 
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further interactions may occur between the two 4 subunit modules (in accordance with 

earlier findings of yeast two-hybrid studies) if the two units were to rotate as shown in 

figure 6B (Sharon et al., 2009). The authors further suggest that the CSN complex, of 

which the constituent subunits add up to a mass of 321kDa, fractionates at the larger size 

of ~500kDa as a result of the irregular bi-modular shape of the complex (Sharon et al., 

2009). However, the association of the complex with other proteins or post-translational 

modification of CSN subunits may also be contributing factors to this phenomenon.   

 

Although the precise structure of the CSN complex remains undetermined, the 

contribution of each of the subunits to complex stability has been demonstrated. A 

mutation in Arabidopsis CSN1 results in CSN complex destabilisation as measured by 

comparative gel filtration analysis of CSN4, 5, 7 and 8 subunits from wild-type and 

CSN1 mutant seedling extracts (Wang et al., 2002). In addition, CSN3 knockout mice 

lack CSN8, implicating CSN3 in CSN complex stability (Yan et al., 2003). Furthermore, 

genetic mutations of CSN subunits 2, 4, 7 and 8 in Arabidopsis were shown to prevent 

CSN5 incorporation into the complex (Kwok et al., 1998). More recently, CSN5 and 

CSN6 have also been shown to be vital for CSN complex integrity in Arabidopsis 

(Gusmaroli et al., 2007). The requirement of all subunits for CSN complex integrity and 

function is also reflected in the finding that different CSN subunit knockout or mutation 

can result in similar phenotypes. For example, gene deletion of CSN1, 2, 4 or 5 in A. 

nidulans results in identical blocks in fungal fruit body formation (Busch et al., 2007) and 

multiple CSN subunit mutants result in the constitutive photomorphogenic phenotype in 

Arabidopsis (Schwechheimer, 2004, Dohmann et al., 2005).  
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Interestingly, it should be noted that CSN5 has been shown not to be integral for CSN 

complex integrity, both in vitro (Sharon et al., 2009) and in the model organisms 

Arabidopsis (Dohmann et al., 2005) and Drosophila (Oron et al., 2002) and the human 

cell line HeLa (Peth et al., 2007a), with CSN5 mutation or knockdown having no effect 

on the remaining CSN complex lacking CSN5 (Dohmann et al., 2005, Oron et al., 2002, 

Peth et al., 2007a). These data suggest that rather than CSN complex integrity, CSN5 

harbors the fundamental catalytic activity of the CSN complex. Indeed the cullin 

deneddylase activity of the CSN has been shown to reside within a particular domain of 

CSN5 (see next section).   

 

The fact that CSN5 cannot function in deneddylation as a monomer (Cope et al., 2002), 

together with the finding that CSN subunit deficiency in Arabidopsis and human cells 

result in accumulation of neddylated cullins (Denti et al., 2006, Dohmann et al., 2005, 

Schwechheimer et al., 2001) suggests that the phenotypes observed in CSN deficient 

organisms may be attributable to defects in CSN complex mediated CRL regulation. 

Indeed, connections have been made between CSN deficiency associated phenotypes 

such as reduced cell proliferation (Denti et al., 2006, Pintard et al., 2003), auxin 

resistance (Stuttmann et al., 2009) and a block in fungal fruit body formation (Busch et 

al., 2007), and the role of the CSN complex in CRL regulation (Denti et al., 2006, Pintard 

et al., 2003, Stuttmann et al., 2009, Busch et al., 2007).  
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1.4 Regulation of CRLs by the CSN complex 

 

1.4.1 Deneddylation of CRLs by the CSN complex 

 

Lyapina et al, 2001 first demonstrated the cullin deneddylation capability of the CSN 

complex. The authors clearly showed that the CSN associates with cullins (Cul1-3), and 

that disruption of the CSN complex results in accumulation of neddylated Cul1 in S. 

pombe (Lyapina et al., 2001). Furthermore, they demonstrated that purified CSN isolated 

from pig spleen, which deneddylates immunopurified neddylated Cul1, can restore Cul1 

deneddylation in CSN deficient S. pombe cell extracts (Lyapina et al., 2001). CSN5 was 

then shown to contain the deneddylase activity of the CSN complex, with the zinc 

binding Jab1 (Jun activator domain binding protein 1)/MPN (Mpr1p Pad1p N-terminal) 

domain metalloenzyme (JAMM) motif of CSN5 determined to be integral to cullin 

deneddylation (Cope et al., 2002). The addition of the metal chelator ethylene diamine 

tetraacetic acid to S. pombe lysates resulted in the accumulation of neddylated Cul1, and 

mutation in the JAMM motif of CSN5 in S. pombe, although not detrimental to CSN 

complex formation, abolished cullin deneddylation (Cope et al., 2002).     

 

The finding that neddylation enhances CRL activity suggested that deneddylation would 

have an opposing effect. However, studies regarding the effect of CSN mediated CRL 

deneddylation on CRL activity produced contradictory models of cullin regulation, with 

at least two reports suggesting a negative regulatory role for deneddylation and many 

groups reporting a positive function for cullin deneddylation in CRL activity. At least two 
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in vitro studies have presented data which implicate the CSN complex in the negative 

regulation of CRLs. For example, CSA and DDB2-containing CRL complexes lack 

ubiquitin ligase activity when complexed with the CSN complex (Groisman et al., 2003), 

and addition of the CSN complex to an in vitro degradation system results in inhibition of 

SCF mediated p27 ubiquitination and degradation (Yang et al., 2002). However, the vast 

majority of data is indicative of a positive regulatory role for deneddylation in CRL 

activity. For example, deletion of CSN5 in temperature sensitive S. cerevisiae SCF 

mutant strains exacerbated SCF mediated defects such as Sic1 protein turnover (Cope et 

al., 2002), whilst in C. elegans disruption of the CSN complex by RNA interference 

resulted in hyperneddylated Cul3 and accumulation of the Cul3 target protein, MEI-1 

(Pintard et al., 2003). Furthermore, in A. thaliana, the E3 ubiquitin ligases SCFTIR1, 

SCFCOI1 and SCFUFO have been shown to interact with, and be positively regulated by, 

the COP9 signalosome complex (Feng et al., 2003, Schwechheimer et al., 2001, Wang et 

al., 2003).  

 

The above data led to the proposal of a cycling model of CRL regulation in vivo, in which 

cycles of neddylation and deneddylation are required for optimal CRL activity. In an 

initial model, cullin neddylation was suggested to result in the recruitment of a ubiquitin 

loaded E2 enzyme whilst deneddylation was thought to release the non-ubiquitin charged 

E2 and thereby enable the “refreshment” of the CRL complex with another ubiquitin 

loaded E2 (Pintard et al., 2003). However, given that the SCF can ubiquitinate target 

protein in the absence of the CSN in vitro (Petroski and Deshaies, 2003) this cycling 

model was suggested to be unlikely (Cope and Deshaies, 2003). An alternative cycling 
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model was thus proposed by Cope and Deshaies, given the findings that CAND1 also 

functions in the positive regulation of CRLs (Zheng et al., 2002a) and that cullin 

neddylation results in CAND1 dissociation (Liu et al., 2002) and prevents CAND1 

binding to cullin (Zheng et al., 2002a). Unlike the initial model, this model does not 

implicate the CSN in the direct facilitation of protein ubiquitination per se. Rather, this 

model incorporates both cullin neddylation/deneddylation and CAND1 binding as 

requirements for the efficient recycling of CRLs (figure 7). In this model, deneddylation 

inactivates the CRL allowing for CAND1 displacement of Skp1 and the F-box protein. 

Cullin neddylation then occurs, allowing for CAND1 displacement and Skp1 and F-box 

protein recruitment, and enabling another round of substrate ubiquitination prior to cullin 

deneddylation (Cope and Deshaies, 2003) (figure 7). However, it should be noted that, 

with the findings that the deneddylating activity of the CSN complex facilitates CRL 

activity by preventing the autocatalytic degradation of F-box proteins (Galan and Peter, 

1999, Wee et al., 2005), and that cullin neddylation can only occur upon Skp1-F-box 

protein mediated CAND1-cullin dissociation (Bornstein et al., 2006), this cycling model 

could be modified as shown in figure 8.   

 

Interestingly, an alternative model of CRL regulation has been proposed more recently in 

which, rather than a cycle, CRL activity is regulated by two reversible processes; the 

dissociation of CAND1 from the cullin subunit and cullin neddylation (figure 9) 

(Bornstein et al., 2006). In this model, CAND1 dissociation is mediated by the F-box 

protein/adapter complex allowing for subsequent cullin neddylation (figure 9) (Bornstein 

et al., 2006). Further, the presence of substrate inhibits the deneddylase activity of the  
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Figure 7. The cycling model of CRL regulation.

Schematic of the cycling model of CRL regulation in which both cycles of cullin 

neddylation/deneddylation and CAND1 binding are required for efficient CRL 

activity with respect to F-box protein recycling. In this model, neddylation results in 

CAND1 displacement, allowing for F-box protein-adaptor binding. Protein 

degradation takes place within this active complex whilst cullin deneddylation by 

the CSN complex enables CAND1 binding and F-box protein-adaptor 

displacement, yielding an inactive complex. Modified from Cope and Deshaies, 

2003.
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CSN complex (figure 9) (Bornstein et al., 2006) presumably allowing for efficient 

substrate degradation, upon which the CSN complex deneddylates the cullin subunit in 

order to protect F-box proteins from degradation, and enabling CAND1 binding to the 

cullin.   

 

1.4.2 Deubiquitination of CRLs by the CSN complex 

 

F-box proteins have been shown to be unstable, and degraded in a ubiquitin proteasome 

system dependent manner by an autocatalytic mechanism within their cognate SCF 

complex (Galan and Peter, 1999). Furthermore, the CSN complex has been shown to 

recruit the deubiquitinating enzyme Ubp12 in S. pombe, and stabilize F-box proteins. 

Initially, the deubiquitinating activity of CSN-Ubp12 was shown to inhibit S. pombe Cul1 

and Cul3 based CRL activity in vitro as measured by ubiquitin ligase activity assays 

(Zhou et al., 2003). However, also documented in this report was the stabilization of the 

S. pombe F-box protein, Pop1, by CSN-Ubp12, as determined by the decreased half-life 

of Pop1 in CSN5 and Ubp12 mutants (Zhou et al., 2003). Subsequently, Wee et al, 2005 

also demonstrated the destabilization of Pop1 in S. pombe CSN5 and Ubp12 mutants and 

further showed that this destabilization resulted in the increased half-life of the Pop1 

target protein Rum1. In addition, ubiquitination and destabilisation of the Cul3 adaptor 

protein Btb3 was also observed in CSN-Ubp12 deficient cells (Wee et al., 2005). 

Altogether, these data suggest that, although CSN-Ubp12 has been associated with CRL 

inhibition in vitro, the deubiquitinating activity of CSN-Ubp12 facilitates CRL function 

in vivo by counteracting autocatalytic adaptor instability. Thus, cumulatively, data  
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Figure 8. A modified cycling model of CRL regulation.

Schematic of a modified cycling model of CRL regulation in which the more recent 

findings of CAND1 displacement by F-box protein-adaptor and CRL function 

facilitation by the prevention of F-box protein degradation are included. In this 

model, both cycles of cullin neddylation/deneddylation and CAND1 binding are 

required for the efficient functioning of CRLs and prevention of F-box protein 

autocatalytic degradation. Also shown is the CSN mediated deubiquitination of F-

box proteins, the second mechanism by which the CSN prevents F-box 

autocatalytic degradation. 
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required for the efficient functioning of CRLs and prevention of F-box protein 

autocatalytic degradation. Also shown is the CSN mediated deubiquitination of F-

box proteins, the second mechanism by which the CSN prevents F-box 
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indicates that both the deneddylation and deubiquitination activities of the CSN complex 

function to facilitate CRL activity in vivo by stabilising CRL substrate adaptor proteins 

and enabling adaptor protein recycling or switching (figure 8).    

 

It is also noteworthy that the human homolog of Ubp12, USP15, has been shown to 

associate with the CSN complex from human erythrocytes (Hetfeld et al., 2005). 

However, although CSN-USP15 has been shown to deubiquitinate the CRL substrate 

IκBα (Schweitzer et al., 2007), CSN-USP15 mediated stabilisation of F-box proteins is 

yet to be directly determined in human cells.  

 

1.4.3 A third function for the CSN complex in CRL regulation? 

 

Recently, a novel function of the CSN complex in the regulation of CRLs has been 

proposed. This mechanism involves the facilitation of CRL activity via CSN mediated 

dissociation of ubiquitinated substrate from the CRL, allowing for the binding of non-

ubiquitinated substrate (Miyauchi et al., 2008). The data presented suggests that the 

activity of the Cul2/elonginB/C/VHL CRL is enhanced by the CSN complex 

independently of both the deneddylating and USP15 deubiquitinating activities of the 

CSN. Furthermore, they demonstrate that the CSN complex causes the dissociation of 

ubiquitinated substrate from Cul2/elonginB/C/VHL and that CSN knockdown in human 

cells impairs the degradation of the Cul2/elonginB/C/VHL substrate HIF-1α, potentially 

as a result of an increased association between HIF-1α and the Cul2 based CRL complex 

(Miyauchi et al., 2008). However, the contribution of this function of the CSN complex  
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Figure 9. An alternative model of CRL regulation.

A series of reversible protein interactions/modifications has been implicated in the 

regulation of CRLs. In this model, Skp1-F-box protein binding to the cullin 

dissociates CAND1 from the cullin and neddylation follows this. Substrate binding 

ensues and inhibits cullin deneddylation, presumably enabling efficient breakdown 

of substrate, upon which deneddylation can occur to protect the F-box protein from 

autocatalytic degradation. Image adapted from Bornstein et al, 2006. 
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to the regulation of other CRLs remains to be determined. Further, given that proteins can 

be efficiently ubiquitinated both in vitro (Cope and Deshaies, 2003, Miyauchi et al., 

2008) and in vivo (Miyauchi et al., 2008) in the absence of CSN, with the addition of the 

CSN complex having a relatively small effect (Miyauchi et al., 2008), the physiological 

relevance of CSN in the direct facilitation of protein ubiquitination remains to be 

determined.  

 

1.4.4 Consequences of CSN impairment on CRL function 

 

Consistent with the cycling model, impairment of CSN function results in the loss of F-

box proteins. For example, disruption of CSN2 in Neurospora results in the loss of the F-

box protein FWD-1, the β-TrCP homolog (He et al., 2005). This loss is prevented by 

mutation of the F-box motif, through which the F-box protein is recruited into the SCF 

complex. Furthermore, a CSN2 mutant A. thaliana has been identified in which the F-box 

protein TIR1 (transport inhibitor response protein 1) is unstable; an instability dependent 

on the proteasome (Stuttmann et al., 2009). These findings are consistent with the cycling 

model in which the CSN complex facilitates SCF function by preventing autocatalytic F-

box protein degradation within its cognate SCF complex. The proteasome dependent 

degradation of F-box proteins in the absence of CSN activity has also been demonstrated 

in human cells by multiple laboratories. Cumulatively, CSN5 knockdown has been 

shown to result in the loss of the F-box proteins Skp2, Cyclin F, Cdc4 and Fbx7 (F-box 

protein 7), with the addition of the proteasome inhibitor MG132 inhibiting CSN5 

knockdown mediated F-box protein loss (Cope and Deshaies, 2006, Denti et al., 2006). 
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Furthermore, as a consequence of the loss of the F-box proteins Skp2 and Cdc4, the 

target proteins p27, cyclin E and c-myc have been shown to accumulate in cells lacking 

CSN5 (Cope and Deshaies, 2006, Denti et al., 2006).  

 

In addition to the loss of F-box proteins, the stability of other components of the SCF 

complex has been shown to be affected by the loss of CSN function. For example, CSN2 

knockout in Neurospora results in the loss of the adaptor protein Skp1 which links the F-

box protein to the cullin subunit (He et al., 2005). Furthermore, the instability of the 

cullin subunit of the CRL has been observed in cells lacking a CSN subunit. In addition 

to cullin hyperneddylation, knockout of either CSN4 or CSN5 in Drosophila resulted in 

the loss of cullin protein; Cul1 protein was lost in CSN4 knockouts whilst Cul1, Cul3 and 

Cul4 protein was lost as a result of CSN5 knockout (Wu et al., 2005). Interestingly, cullin 

stability was found to be restored with a double knockdown of CSN5 and Nedd8, 

indicating that the intrinsic instability of cullins is conferred by the attachment of Nedd8 

(Wu et al., 2005), and further demonstrating the function of CSN deneddylase activity in 

the stability and recycling of cullins. The instability of Cul1 has also been demonstrated 

in a Neurospora CSN2 knockout (He et al., 2005), whereas a study in human cells 

concluded that there was no effect of CSN knockdown on cullin stability (Cope and 

Deshaies, 2006). However, although there was no reduction in the levels of either Cul1 or 

Cul3 protein in HEK293 cells lacking CSN5 reported in this manuscript, it could be 

argued that the loss of Cul2 observed is indeed significant, particularly if densitometry 

was used to analyse this data set. Finally, loss of the RING finger protein Roc1/Rbx1, 

responsible for E2 recruitment to the E3 ligase, has been reported in HeLa cells lacking 
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CSN5 (Peth et al., 2007a). Cumulatively, data suggests that the CSN complex is not only 

required for the protection of F-box proteins from autocatalytic degradation, but may also 

be fundamental, in a cell type and organism dependent manner, to the stability of all CRL 

components.             



 36

1.5 Other functions of the CSN complex 

 

1.5.1 The CSN and protein phosphorylation 

 

The CSN complex isolated from human erythrocytes has been demonstrated to mediate 

protein phosphorylation (Seeger et al., 1998). As none of the CSN subunits contain a 

defined kinase domain, this kinase activity was referred to as a CSN associated kinase 

activity (Naumann et al., 1999). The CSN complex was subsequently shown to co-purify 

with inositol 1,3,4-trisphosphate 5/6-kinase (5/6-kinase) from calf brain (Wilson et al., 

2001); an association later identified in human cells (Sun et al., 2002) and Arabidopsis 

(Qin et al., 2005). Further, the protein kinases CK2 and protein kinase D (PKD) have 

been shown to co-purify with the CSN complex from human erythrocytes (Uhle et al., 

2003). These three kinases have been shown to phosphorylate previously described 

targets of CSN associated kinases (Bech-Otschir et al., 2001, Seeger et al., 1998, Sun et 

al., 2002, Uhle et al., 2003), and to be inhibited by curcumin (Sun et al., 2002, Uhle et al., 

2003), the yellow pigment in turmeric which is known to inhibit CSN associated kinases 

(Henke et al., 1999). These data verify that these kinases are indeed CSN associated 

kinases, although they do not rule out the possibility that there are other kinases that 

associate with the CSN complex which remain to be identified.  

 

CSN associated kinase activity has been demonstrated to regulate the function or stability 

of several proteins. For example, c-jun (Naumann et al., 1999, Uhle et al., 2003) and 

microtubule end-binding protein 1 (EB1) (Peth et al., 2007b) phosphorylation by CSN 
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associated kinases results in stabilisation of these proteins and protection from ubiquitin-

proteasome mediated degradation, whilst CSN mediated phosphorylation of p53 and 

estrogen receptor alpha (ERalpha) signals these proteins for degradation (Bech-Otschir et 

al., 2001, Callige et al., 2005). Additionally, Cohen and colleagues have provided data to 

suggest that CSN mediated phosphorylation of interferon consensus sequence-binding 

protein (ICSBP) at serine 260 facilitates the transcriptional repressor activity of ICSBP 

(Cohen et al., 2000).  

 

Multiple observations collectively appear to implicate the requirement of the intact CSN 

complex for kinase activity. Firstly, the CSN associated kinases identified to date, CK2, 

PKD and 5/6-kinase, interact with CSN3/7, CSN3 (Uhle et al., 2003) and CSN1 (Sun et 

al., 2002), respectively. Secondly, p27 (Tomoda et al., 1999), c-jun (Claret et al., 1996), 

p53 (Bech-Otschir et al., 2001), EB1 (Peth et al., 2007b) and ERalpha (Callige et al., 

2005) have been shown to interact with the CSN via CSN5, whilst ICSBP interacts with 

CSN2 (Cohen et al., 2000). Finally, CSN5 expression in a siCSN5 background which 

seems to have no significant effect on the remaining CSN complex rescues c-jun protein 

levels (Peth et al., 2007a), whilst CSN5 expression in a siCSN1 background which has a 

reduced level of intact CSN complex (Peth et al., 2007b) fails to rescue c-jun protein 

(Peth et al., 2007a). It is also noteworthy that the kinase activity of the CSN complex has 

been shown to be independent of CSN deneddylase activity, with the expression of the 

D151N deneddylase dead CSN5 in a siCSN5 background retaining the ability to rescue c-

jun protein (Peth et al., 2007a). 
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1.5.2 The CSN and deubiquitination 

 

The CSN complex has been associated with deubiquitinase activity (Groisman et al., 

2003, Zhou et al., 2003). The CSN complex has also been shown to associate with the 

deubiquitinase Ubp12p in S. pombe (Zhou et al., 2003) and the human ortholog, ubiquitin 

specific protease 15 (USP15) (Hetfeld et al., 2005). Ubp12p has been demonstrated to 

depolymerise polyubiquitin chains in vitro (Zhou et al., 2003), whilst USP15 associated 

CSN purified from human erythrocytes was shown to both depolymerise polyubiquitin 

and cleave ubiquitin from a model substrate of the 26S proteasome (Hetfeld et al., 2005). 

In accordance with this, the human CSN complex was shown to deubiquitinate 

polyubiquitinated Cul4A in vitro to yield non-ubiquitinated Cul4A (Groisman et al., 

2003), suggesting that the CSN mediates both depolymerisation of polyubiquitin and 

cleavage of mono/polyubiquitin from protein substrates.  

 

Interestingly, a deneddylase dead CSN complex, although retaining the ability to 

depolymerise polyubiquitinated Cul4A, failed to cleave monoubiquitin from Cul4A in 

vitro (Groisman et al., 2003). These data suggest that the CSN complex is associated with 

two separate deubiquitinase activities, and further indicate that the metalloprotease 

domain of CSN5, responsible for deneddylation, may also deubiquitinate target proteins 

by a similar mechanism. Similar findings were made in vivo, with an increase in 

ubiquitinated exosomal heat shock protein 70 (HSP70) protein being demonstrated in a 

human cell line transfected with mutant CSN5 expressing plasmid relative to cells 

expressing wild-type CSN5 (Liu et al., 2009). It is noteworthy that this study also 
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determined the requirement for the intact CSN complex for deubiquitination, with the 

addition of CSN5 to an in vitro deubiquitination assay yielding no effect on the level of 

ubiquitinated HSP70 protein (Liu et al., 2009). Although a direct function of the CSN 

complex in protein deubiquitination via the metalloprotease domain of CSN5 has been 

suggested, further work would have to be carried out in order to rule out the possibility 

that a yet unidentified deubiquitinase associates with the CSN complex through this 

domain. Nonetheless, the CSN complex has been demonstrated to deubiquitinate multiple 

protein targets, including CRL substrate adapter proteins (Wee et al., 2005) and IκBα 

(Schweitzer et al., 2007), both of which are protected from degradation by 

deubiquitination (Schweitzer et al., 2007, Wee et al., 2005), and HSP70 (Liu et al., 2009).  

 

More recently, the CSN complex has been shown to associate with a lysine 63 (K63) 

specific deubiquitinase, Brcc36 (Cooper et al., 2009). Whilst K48 linked ubiquitin chains 

signal for protein degradation (Pickart, 2004), K63 linked ubiquitin chains have non-

proteolytic functions (Cooper et al., 2009). This association is therefore indicative of a 

role for the CSN associated deubiquitinase activity not only in the regulation of protein 

degradation but also in the modulation of protein function.  

 

1.5.3 The CSN and transcriptional regulation 

 

As a regulator of the function and/or stability of a myriad of proteins, including 

transcription factors, the finding that the CSN complex regulates transcription 
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(Chamovitz, 2009, Su et al., 2009) is not surprising. However, the question remains as to 

whether the nuclear CSN complex can regulate transcription directly (Chamovitz, 2009).  

 

The CSN has been shown in multiple systems to associate with chromatin (Groisman et 

al., 2003, Menon et al., 2007, Ullah et al., 2007), implying a potential direct role for the 

CSN in regulating transcription. In two of these systems the CSN likely functions at 

chromatin to regulate protein function or stability rather than having a direct function in 

transcriptional regulation (Groisman et al., 2003, Ullah et al., 2007). However, the study 

by Menon and colleagues suggests a direct role for the CSN complex in transcriptional 

regulation. CSN8 deficient CD4+ T cells failed to accumulate all G1 cyclins and cyclin 

dependent kinases (CDKs) studied upon T cell antigen receptor (TCR) stimulation 

(Menon et al., 2007). If this finding were attributable to altered protein degradation in the 

absence of CSN8 then proteasome inhibition should restore protein levels of cyclins and 

CDKs. However, this study demonstrated that treatment with the proteasome inhibitor 

MG132 could not rescue these proteins (Menon et al., 2007), indicating a proteasome 

independent function of the CSN complex in the regulation of these proteins. Further, 

given the findings that mRNA levels of cyclins could not be upregulated upon TCR 

stimulation in CSN8 deficient cells and that both CSN1 and CSN8 (and probably the 

entire CSN complex) precipitate with a cyclin promoter in chromatin 

immunoprecipitation (ChIP) assays (Menon et al., 2007), it is probable that the CSN 

complex can function in the direct regulation of transcription via a proteasome 

independent mechanism. It is noteworthy that in this instance an indirect function of the 

CSN complex in transcriptional regulation cannot be completely ruled out. For example, 
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transcription factor activity modification could occur as a result of CSN associated kinase 

activity at the promoter. Nonetheless, these data do implicate the CSN complex in the 

direct regulation of transcription, with the exact mechanism still to be elucidated.     

 

Although CSN subunits have been shown to interact with chromatin, a direct interaction 

between the CSN complex and DNA has not been demonstrated. Interestingly, however, 

the recent elucidation of the structure of CSN7 has demonstrated that the winged helix 

subdomain of the PCI domain has a structure comparable to that of winged helix nucleic 

acid binding proteins (Chamovitz, 2009, Dessau et al., 2008), whilst modelling shows 

that this domain of CSN7 has the potential to interact with DNA (Dessau et al., 2008). 

Although a direct interaction between the CSN complex and DNA remains to be 

demonstrated experimentally, these data suggest that the CSN complex has the potential 

to bind DNA with enhanced affinity via its six PCI domains (Dessau et al., 2008) and 

may therefore directly regulate transcription.      

 

1.5.4 CSN subcomplexes 

 

Although the CSN complex is ~500kDa, a ~100kDa cytoplasmic CSN5 containing 

complex was identified in mammalian cells. The occurrence of this subcomplex was 

inhibited by the nuclear export inhibitor leptomycin B (LMB), suggesting that this 

subcomplex is produced from nuclear COP9 signalosome (Tomoda et al., 2002). 

Immunoprecipitation of this subcomplex with an antibody specific for the subcomplex 

bound CSN5 co-immunoprecipitated CSN4, 6, 7 and 8, but not subunits CSN1, 2 or 3 
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(Tomoda et al., 2002). Several findings implicate this CSN5 containing subcomplex in 

the nuclear export of p27 protein. First, mutation of the nuclear export signal (NES) of 

CSN5 resulted in nuclear accumulation of both CSN5 and p27. Second, expression of a 

dominant negative CSN5 N-terminus (lacking the C-terminus NES), which did not affect 

the intact CSN complex and fractionated in smaller complexes, also resulted in an 

increase in nuclear p27 protein (Tomoda et al., 2002). Third, overexpression of 

components of this subcomplex resulted in reduced p27 protein, and further, CSN7 

overexpression was shown to result in the LMB sensitive redistribution of CSN5 to the 

cytoplasm and loss of nuclear p27 signal (Tomoda et al., 2002). However, it is important 

to note that this study did not address whether CSN5 interacts with the other CSN 

subunits together, or in various combinations to produce multiple subcomplexes. The 

latter is probable as suggested by both the small size of the identified 

subcomplex/subcomplexes and given the finding that overexpression of CSN4, which co-

immunoprecipitated with the CSN5 containing subcomplex, does not affect p27 protein 

(Tomoda et al., 2002). Further, a more recent report has demonstrated using native-PAGE 

that CSN subunits occur in multiple distinct subcomplexes (Fukumoto et al., 

2005).Collectively, these data implicate a CSN5/6/7/8 ~100kDa containing CSN 

subcomplex in the nuclear export of p27 and further suggest the occurrence of other CSN 

subcomplexes with unidentified functions.  

 

A CSN5 containing CSN subcomplex, which negatively regulates p27 protein, has also 

been identified in both chronic myeloid leukaemia (CML) cell lines and primary CMLs 

(Tomoda et al., 2005), although the constituent subunits were not identified. Interestingly, 
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this CSN subcomplex has been shown to be a downstream mediator of BCR-ABL kinase 

activity (Tomoda et al., 2005); this topic is discussed in section 1.8. These data suggest 

that the activity of a CSN subcomplex has the potential to contribute to leukaemogenesis.   

 

The function of a CSN subcomplex in regulating the level of p27 protein has also been 

demonstrated in vivo. Embryonic fibroblasts (MEFs) from CSN5 heterozygous mice, in 

which downstream proteins of the CSN complex including Cul1, Skp2 and p53 were 

unaffected, contained only 40% of the CSN subcomplex relative to wild-type mice and 

demonstrated p27 accumulation (Tomoda et al., 2004). In accordance with this, CSN5 

heterozygous MEFs grew significantly slower than wild-type MEFs and, at 15 weeks, 

heterozygous mice were significantly smaller (~15%) than wild-type mice (Tomoda et 

al., 2004).   

 

Although this is not an exhaustive review of CSN subcomplexes, the above data provides 

strong evidence for both the occurrence and functionality of CSN subcomplexes. In 

addition, many substoichiometric complexes were identified in a recent structural study 

of the CSN complex (Sharon et al., 2009). However, much more work is required to 

determine the precise function, regulation and physiological relevance of CSN 

subcomplexes.    

 

The alternative functions of the CSN/CSN subcomplexes discussed above may explain 

why, in some organisms, different CSN subunit disruption results in divergent 

phenotypes. For instance, CSN4 and CSN5 null mutations in Drosophila result in 
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different phenotypes, with that of CSN4 mutation appearing more severe (Oron et al., 

2002). These differences may be attributable to the fact that these mutations have 

divergent effects on the stability of the intact CSN complex (Oron et al., 2002), and that 

in CSN5 mutants, the retained CSN complex lacking CSN5 possibly still functions in 

deneddylation independent processes such as phosphorylation and deubiquitination. 

Further, although null mutation in CSN subunits 1, 2, 4 and 5 in S. pombe all result in 

hyperneddylated Cul1, CSN4 and CSN5 mutants do not have the same phenotype as 

CSN1 and CSN2 mutants (Mundt et al., 2002), suggesting that CSN1 and CSN2 function 

as a subcomplex independent of CSN4 and CSN5. However, these differences may also 

be explained by the CSN independent functions of CSN subunits (see section 1.7).      

 

1.5.5 The CSN as an alternative lid for the proteasome? 

 

As already discussed, the 19S regulatory particle of the 26S proteasome is important for 

substrate recognition and delivery to the 20S core particle where substrates are 

subsequently degraded. Interestingly, the 19S particle has been shown to be formed from 

two subcomplexes called the base and the lid (Glickman et al., 1998). The base is 

sufficient to activate the protein degradation activity of the 20S core particle but ubiquitin 

mediated protein degradation requires both the base and lid of the regulatory particle 

(Glickman et al., 1998), with the Rpn11 subunit of the lid being responsible for target 

protein deubiquitination prior to proteasomal degradation (Sharon et al., 2009, Verma et 

al., 2002).  
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The CSN complex displays homology to the lid of the proteasome (Glickman et al., 

1998). Further, there is data to suggest that the CSN complex interacts with the 

proteasome in plant (Peng et al., 2003), human (Seeger et al., 1998) and mouse (Huang et 

al., 2005) cells. These observations, together with the findings of both CSN associated 

deubiquitinase activity (see 1.5.2) and a possible competition between the lid and CSN 

complex for proteasome binding (Huang et al., 2005), have led to the suggestion that the 

CSN complex may be an alternative lid of the proteasome (Li and Deng, 2003). 

However, it is important to note that the replacement of the proteasome lid with the CSN 

complex and any functional significance of this replacement remains to be 

experimentally determined in vivo. Nonetheless, the identified interactions of the CSN 

complex with the proteasome and CRLs (Huang et al., 2005, Peng et al., 2003) suggest 

that the CSN may function to bring the processes of protein ubiquitination and 

degradation into close proximity, thereby increasing the efficiency of ubiquitin mediated 

protein degradation, whilst also regulating both of these processes via the identified CSN 

associated deneddylase and deubiquitinase activities.  
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1.6 The regulation of CSN activity 

 

Given the diverse functions of the CSN complex and the plethora of proteins for which 

the CSN regulates stability or activity, it would seem extremely probable that the 

activities of the CSN complex are tightly regulated. However, this topic remains 

relatively unstudied and subsequently, little is known of the mechanisms of CSN activity 

regulation.  

 

Several studies have demonstrated the sequestration of CSN5 by protein interaction, 

suggesting this as a mechanism of CSN activity regulation. CSN5 has been shown by 

yeast-two hybrid, GST pulldown and co-immunoprecipitation assays to interact with the 

integrin LFA-1 (Bianchi et al., 2000), the lutropin/choriogonadotropin receptor (LHR) 

(Li et al., 2000) and the cytokine macrophage inhibitory factor (MIF) (Kleemann et al., 

2000). The sequestration of CSN5 at peripheral membranes by unliganded LFA-1 has 

been demonstrated, whilst CSN5 was redistributed to the nucleus upon LFA-1 

stimulation, with a concomitant increase in AP-1 transcriptional activity (Bianchi et al., 

2000). In addition, CSN5 interacts with the endoplasmic reticulum localised protein 

LHR, an interaction which reduces AP-1 promoter driven luciferase reporter activity (Li 

et al., 2000). Finally, MIF binding to CSN5 in the cytosol has also been shown to reduce 

c-jun mediated transcriptional activity at AP-1 sites, and further result in reduced c-jun 

phosphorylation and inhibition of CSN5 dependent p27 protein degradation (Kleemann et 

al., 2000). Collectively, these data suggest that multiple functions of the CSN and its 

subunits may be downstream mediators of multiple signalling pathways, and that 
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cytosolic sequestration of CSN5 may be a mechanism of regulating multiple functions of 

the CSN complex.      

 

Interestingly, double mutation of CSN5 (a reduction of function mutation generated by T-

DNA insertion into a CSN5 intron) and Cul3 in Arabidopsis resulted in an increase in the 

level of CSN5 protein relative to CSN5 mutation alone, and a concomitant increase in 

deneddylation activity (Gusmaroli et al., 2007). Along with the finding that CSN5/Cul3 

double mutation has no significant effect on CSN5 mRNA (Gusmaroli et al., 2007), these 

data suggest that a Cul3 based E3 ubiquitin ligase may mediate the degradation of CSN5 

and thus the activity of the CSN complex. Although this is an interesting possibility, 

particularly given the prospect of a negative feedback mechanism of CRL regulation, 

further work is required to exclude any possible indirect effects of Cul3 loss on CSN5 

protein level and to determine the specific adapter protein responsible for CSN5 protein 

degradation.        

 

Overexpression of 1,3,4-trisphosphate 5/6-kinase (5/6-kinase) in HEK293 cells has been 

shown to result in an increase in CSN5 protein relative to vector control transfected cells 

by western blot analysis, although a loading control was not shown (Sun et al., 2002). 

The authors suggest 5/6-kinase induction of CSN5 as a possible regulatory mechanism 

for CSN5 activity, however much more work would be required to both confirm CSN5 

induction by this kinase and to determine the mechanism by which 5/6-kinase increases 

CSN5 i.e. CSN5 phosphorylation, CSN5 mRNA increase or CSN5 protein stabilisation as 

examples.      
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CSN2 and CSN5 appear to be relatively stable outside of the CSN complex (Gusmaroli et 

al., 2007), are the most readily dissociable subunits of the CSN (Sharon et al., 2009) and 

have well documented CSN independent functions (see 1.7). Thus, a key mechanism of 

CSN/CSN subunit function regulation may be dependent upon the level of other CSN 

subunits and therefore whether CSN2/CSN5 are monomeric or incorporated into the CSN 

complex. The same can also be said for CSN subcomplexes. Although the occurrence, 

composition and function of such subcomplexes remains to be elucidated fully, it is 

plausible that the availability of each of the eight subunits would have great influence on 

CSN/CSN subcomplex formation and therefore CSN function.  

 

Finally, CSN activity may be regulated by post-translational modification of CSN 

subunits. For example, the cleavage of CSN6 has been shown to occur upon apoptosis 

induction in a caspase dependent manner; a modification which increases the 

deneddylase activity of the CSN complex without affecting CSN mediated protein 

deubiquitination or phosphorylation (Hetfeld et al., 2008).  In addition, CSN2 and CSN7 

have been shown to be phosphorylated by CSN associated kinases (Uhle et al., 2003), 

suggesting another potential mechanism of CSN activity regulation. Further, 

phosphorylation sites have also been identified in CSN subunits 1, 3 and 8 (Fang et al., 

2008). Although the possibility of phosphorylation dependent CSN activity regulation 

has not been investigated in detail, curcumin treatment has been shown to result in 

complete loss of the reported CSN subcomplex (Tomoda et al., 2005, Fukumoto et al., 

2005) and the collapse of CSN supercomplexes (Fukumoto et al., 2005), implicating the 
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CSN associated kinases in the regulation of CSN subcomplex/supercomplex formation, 

possibly via CSN subunit phosphorylation. 
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1.7 CSN independent functions of CSN subunits 

 

Individual subunits of the CSN complex have been shown to have alternative functions 

independent of the CSN complex. The discussion here will be of CSN2 and CSN5, as 

these subunits have been suggested to be relatively stable outside of the CSN complex 

(Gusmaroli et al., 2007), have recently been shown to be the most readily dissociable, 

peripheral subunits of the CSN complex (Sharon et al., 2009), and have the most well 

documented CSN independent functions.  

 

1.7.1 CSN2 

 

Two different splice variants are generated from the CSN2 locus, one encoding the 

50kDa CSN2 and the other encoding the ~36kDa Alien protein which consists of the N-

terminal 300 amino acids of CSN2 (Chamovitz, 2009, Tenbaum et al., 2003). 

Interestingly, part of the PCI domain of CSN2 is lacking from Alien (Chamovitz, 2009) 

and the intracellular distribution of Alien has been shown to be distinct from that of CSN 

subunits (Eckey et al., 2007), making incorporation of this isoform into the CSN complex 

unlikely, although not experimentally determined. Any potential CSN independent 

function of CSN2 remains relatively unstudied, whilst the function of Alien has 

undergone significant investigation. Given that the amino acid sequence of Alien is 

identical to the N-terminal of CSN2 and the probable independence of Alien from the 

CSN, it remains possible that CSN2 and Alien have overlapping functions independent of 

the CSN complex. The function of Alien is thus worthy of discussion here.  
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Alien was initially shown to interact with thyroid hormone receptor (TR) by yeast two-

hybrid, GST pull-down and co-immunoprecipitation assays; an interaction shown to be 

thyroid hormone sensitive (Dressel et al., 1999). Further, Alien was shown to enhance TR 

mediated transcriptional repression in the absence of thyroid hormone, thus identifying 

Alien as a transcriptional corepressor (Dressel et al., 1999). Alien has since been 

demonstrated as an interacting partner for multiple nuclear hormone receptors including 

the ecdysone receptor (Dressel et al., 1999), the vitamin D receptor (Polly et al., 2000), 

DAX-1 (Altincicek et al., 2000) and the androgen receptor (Moehren et al., 2007).  

Interestingly, in addition to gene silencing at nuclear hormone receptors, Alien has also 

been shown to both interact with and repress the transcriptional activation activity of the 

transcription factor E2F1 (Tenbaum et al., 2007).  

 

The mechanisms by which Alien mediates transcriptional repression have been 

investigated (Papaioannou et al., 2007). Initially, Alien was shown to interact with a 

known component of a large histone deacetylase complex, SIN3A, by both yeast two-

hybrid and co-immunoprecipitation assays (Dressel et al., 1999) and GST pull-down 

assay (Moehren et al., 2004). Further, co-expression of SIN3A with Alien resulted in 

increased transcriptional repression relative to Alien expression alone (Moehren et al., 

2004). Together with the finding that Alien also interacts with histone deacetylase 

(HDAC) proteins (Papaioannou et al., 2007), these data indicate that one mechanism by 

which Alien mediates transcriptional repression is via recruitment of HDAC machinery. 

However, addition of a HDAC inhibitor reduced Alien mediated transcriptional 

repression only partially (Dressel et al., 1999), suggesting at least a second mechanism by 
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which Alien silences transcription. Indeed, interaction between Alien and nucleosome 

assembly protein 1 (NAP1) has been demonstrated, with the addition of Alien to a 

supercoiling assay resulting in a dose dependent increase in NAP1 mediated DNA 

supercoiling (Eckey et al., 2007). Collectively, these data suggest that Alien mediates 

transcriptional repression by at least two mechanisms, both HDAC dependent and 

independent, and both of which rely upon chromatin modification for DNA compaction.     

 

1.7.2 CSN5    

 

CSN5 was identified in a yeast two hybrid screen of a human B lymphocyte cDNA 

library as a c-jun interacting protein, and this interaction further verified in co-

immunoprecipitation assays (Claret et al., 1996). Subsequently, CSN5 was shown to 

increase DNA binding of the transcription factor c-jun to its cognate AP-1 transcription 

activation sites, and increase c-jun mediated transcriptional activity (Claret et al., 1996). 

Similar findings were also made regarding junD, but not v-jun or junB (Claret et al., 

1996), indicating that, through selective interaction with members of the jun family of 

transcription factors, CSN5 (or jun activation domain binding protein 1; JAB1) increases 

the specificity of transcriptional activation at AP-1 transcription sites. Through this 

function CSN5 has been implicated in both the integrin LFA-1 (Bianchi et al., 2000) and 

the cytokine macrophage migration inhibitory factor (MIF) (Kleemann et al., 2000) 

signalling pathways. In addition to c-jun mediated transcription, CSN5 has also been 

shown to potentiate the hormone dependent transcriptional activation activity of steroid 

hormone nuclear receptors (Chauchereau et al., 2000).  
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CSN5 has been implicated in the nuclear export of proteins such as Smad7 (Kim et al., 

2004), p53 (Oh et al., 2006a) and West Nile virus capsid (WNVCp) (Oh et al., 2006b). 

However, it is important to note with JAB1 associated literature that many publications 

do not discern between CSN5 monomer function and CSN5 function within the CSN 

complex. For example, although Oh and colleagues demonstrated that the fragment of 

CSN5 required for p53 nuclear export does not interact with other CSN subunits, 

suggesting that CSN5 mediated p53 nuclear export is independent of the CSN complex 

(Oh et al., 2006a), others have not investigated whether CSN5 mediated protein nuclear 

export is dependent on the CSN complex/subcomplex rather than monomeric CSN5 (Kim 

et al., 2004, Oh et al., 2006b). Indeed, a CSN subcomplex is implicated in the nuclear 

export of p27 protein (Tomoda et al., 2002).   

 

Similar caution should also be used when interpreting data regarding JAB1 function as a 

transcriptional coactivator. For instance, the increased c-jun dependent AP-1 directed 

transcriptional activity observed in the presence of CSN5/JAB1 (Claret et al., 1996) could 

be attributable to a function of CSN5 within the intact CSN complex as opposed to a 

function of JAB1 monomer. In support of this, the stabilisation of c-jun protein towards 

the ubiquitin-proteasome system by CSN associated kinase mediated c-jun 

phosphorylation has been demonstrated (Uhle et al., 2003). Moreover, the observed 

increase in AP-1 driven luciferase activity in the presence of c-jun and JAB1 (Claret et 

al., 1996, Wang et al., 2004) was reduced to the level of luciferase activity in the 

presence of c-jun alone upon treatment with the CSN associated kinase inhibitor 

curcumin (Wang et al., 2004). Collectively, these data suggest that the positive effect 
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exerted on c-jun mediated transcriptional activation at AP-1 sites by CSN5 may be 

mediated through the CSN complex rather than CSN5/JAB1 function as a monomer.   
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1.8 The CSN and leukaemia 

 

A role for the CSN in cancer is emerging, with aberrant expression of CSN subunits 

identified in multiple cancers (Richardson and Zundel, 2005, Adler et al., 2008, Patil et 

al., 2005, Yan et al., 2007). Indeed, the deneddylase activity of the CSN has been shown 

to be essential for breast epithelial cell transformation and in vivo tumour progression 

(Adler et al., 2008), whilst inhibition of CSN associated kinases resulted in reduced 

pancreatic cell proliferation (Li et al., 2009). However, to date the links between the CSN 

complex and leukaemia are limited. Nevertheless, associations are beginning to be made 

and are therefore of interest for discussion here.  

 

Myeloid leukaemia factor 1 (MLF1) has been shown to regulate the level of p53 via CSN 

subunit 3 (CSN3) (Yoneda-Kato et al., 2005). The NPM (nucleophosmin)/MLF1 fusion 

protein, generated by the chromosomal translocation t(3;5)(q25.1;q34) (Yoneda-Kato et 

al., 1996), is associated with myelodysplastic syndrome, often resulting in progression to 

acute myeloid leukaemia (Raimondi et al., 1989). Yonedo-Kato et al, 2005 demonstrated 

that MLF1 induces p53 mediated cell cycle arrest via CSN3-directed downregulation of 

COP1 (an E3 ligase which targets p53 for degradation). They suggest therefore, that the 

inactivation of MLF1 by formation of the NPM/MLF1 fusion protein would result in 

potentially tumourigenic dysregulated p53 degradation. These data further suggest a 

potential role for CSN3 in leukaemogenesis. However, it remains to be determined 

whether COP1 mediated p53 degradation is regulated via CSN3 alone or as a component 

of the intact CSN complex.  
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A small CSN subcomplex has been shown to be a downstream mediator of BCR-ABL 

kinase activity (Tomoda et al., 2005). BCR-ABL is an oncogenic fusion protein with 

constitutive tyrosine kinase activity, formed as a result of the Philadelphia chromosome 

translocation, which is present in 90% of chronic myeloid leukaemia (CML) patients 

(Rowley, 1980). A 100kDa CSN subcomplex was identified in CML cell lines and 

primary CML samples which was not detectable in other cell lines or primary cells tested. 

This complex was found to be upregulated by BCR-ABL, with BCR-ABL kinase 

inhibition resulting in a reduced level of the CSN subcomplex and a concomitant increase 

in p27. Furthermore, targeted degradation of CSN5, a component of the CSN 

subcomplex, resulted in the loss of BCR-ABL mediated p27 degradation (Tomoda et al., 

2005). Together, these results suggest that the cytoplasmic shuttling and subsequent 

degradation of p27 associated with the CSN subcomplex (Tomoda et al., 2002) is a 

contributing factor to the oncogenic transformation mediated by the BCR-ABL fusion 

protein in CML.  

 

The above observations, along with the recent association of CSN5 with non-Hodgkin’s 

lymphoma (Qi et al., 2006, Wang et al., 2008), are suggestive of a role for the CSN 

complex in haematological malignancy, including leukaemia. However, observations to 

date have been made regarding either a CSN subcomplex or an individual subunit of the 

CSN. The intact CSN complex has not, therefore, been associated with leukaemia per se. 

Nonetheless, with the plethora of proteins known to be degraded by CRLs and the diverse 

cellular processes which they regulate, and given the multitude of activities associated 
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with the CSN complex, it is not difficult to envisage a role for dysregulated CSN 

complex activity in leukaemia.   
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1.9 Chronic myeloid leukaemia 

 

Chronic myeloid leukaemia (CML) is a disease of haematopoietic stem cells 

predominantly arising from a genetic aberration called the Philadelphia chromosome 

(Hehlmann et al., 2007). The Philadelphia chromosome is formed from the translocation 

t(9;22)(q34;q11), which results in the production of the BCR-ABL oncogene on 

chromosome 22. This oncogene encodes the BCR-ABL fusion protein, a tyrosine kinase 

with aberrant activity (Hehlmann et al., 2007) which is the underlying cause of CML 

(Weisberg et al., 2007). Therapy targeting the activity of this fusion protein has 

revolutionised CML treatment. Treatment with imatinib, an ABL kinase inhibitor which 

competitively binds at the ATP-binding site, yields good responses in patients with early 

phase, chronic CML (Hehlmann et al., 2007). However, problems have arisen with 

imatinib treatment including the limited response of later stage blast crisis CML to 

imatinib (Sawyers et al., 2002), the development of imatinib resistant disease (Gorre et 

al., 2001) and the insensitivity of CML stem cells to imatinib treatment (Graham et al., 

2002). As a result, other inhibitors of BCR-ABL kinase activity have been developed 

(Weisberg et al., 2007). However, a limited response in blast crisis CML still appears to 

be a problem, and mutations have also been identified which confer resistance to these 

inhibitors (Weisberg et al., 2007).   

 

As the above problems with BCR-ABL targeting in the treatment of CML persist, studies 

have begun into the use of other compounds in combination with imatinib to overcome 

resistant disease, gain greater responses in blast crisis CML, and target the CML stem 
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cell. Three key findings suggest the CSN complex may be a viable target in CML. First, 

one process being targeted in combination with imatinib in CML is intracellular protein 

degradation (Bellodi et al., 2009, Gatto et al., 2003). Second, a CSN subcomplex has 

been shown to be a downstream mediator of BCR-ABL kinase activity in CML (Tomoda 

et al., 2005). Third, ectopic CSN5 expression in mice, shown to incorporate into CSN 

complexes, resulted in progressive myeloid hyperplasia with overproduction of 

granulocytes, resembling chronic phase CML (Mori et al., 2008).  
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1.10 Project aims 

 

As discussed, the CSN is a highly conserved complex with a multitude of functions, and 

is thus studied in a wide variety of organisms. Studies of the CSN complex in human 

cells to date are generally limited to the use of cell lines such as HeLa and HEK293. This 

study aimed to investigate the function of the CSN in a haematological setting and in 

relation to human leukaemia. This study thus used a cell line model of human blast crisis 

CML, K562, derived from a 53 year old female with CML that had progressed to blast 

crisis following splenectomy (Lozzio and Lozzio, 1975).   

 

In order to achieve this aim, first the non-catalytic subunit CSN2 and the deneddylase 

activity containing subunit CSN5 were knocked down in K562 cells using a short hairpin 

RNA (shRNA) technique. Once CSN subunit knockdowns were established, studies were 

carried out in an to attempt to answer the following questions: 

 

1. Does CSN subunit knockdown in K562 result in aberrant CRL activity and if so, 

is this aberrant activity similar to that observed in other organisms and human cell 

lines?  

2. With the emerging function of the CSN in transcriptional regulation, either direct 

or indirect, does CSN subunit disruption in K562 have any effect on the level of 

F-box protein or CSN subunit mRNA? 

3. Given that CSN subunit loss is lethal in higher eukaryotes and that CSN subunit 

disruption has been associated with reduced proliferation and cell death, what are 
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the consequences of CSN subunit knockdown for K562 cell proliferation and 

death?  

4. Are the molecular and cellular effects of CSN2 and CSN5 knockdown in K562 

the same, and if not, what may be the cause of any divergence? 
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2.1 Cell culture and treatments 

 

2.1.1 Maintenance of cell lines 

 

Cell lines were maintained in RPMI 1640 (Invitrogen Gibco, Paisley, U.K.) 

supplemented with 100U/ml penicillin, 100µg/ml streptomycin and 10% v/v foetal 

bovine serum (all Invitrogen Gibco). Cultures were maintained at 37oC with 5% CO2. 

Cells were diluted one part in three parts media every 48 hours to maintain a cell density 

between 2x105 and 1x106 cells/ml, to maintain cells in exponential growth. 

 

2.1.2 Storage of cell lines in liquid nitrogen 

 

1x107 cells were harvested by centrifugation at 1500 rpm for 5 minutes (FALCON 6/300, 

MSE, London, U.K.). The supernatant was discarded, the cell pellet resuspended in 1ml 

freezing mix (95% FBS, 5% DMSO) and the cell suspension transferred to a cryovial. 

Cells were slowly frozen by placing the vials in a sealed polystyrene container and 

incubating this at -20oC for 60 minutes and -80oC overnight. Cells were stored in liquid 

nitrogen thereafter.  

 

2.1.3 Recovery of cell lines from liquid nitrogen 

 

A vial containing 1x107 cells (see above) was removed from liquid nitrogen and thawed 

rapidly in water (50oC) for 2-3 minutes. Cells were transferred to a 25ml universal and 



 64

0.5, 1, 2, 5 and 10ml aliquots of cold media added drop wise to gradually dilute the 

freezing mix and prevent apoptotic shock. The cell suspension was centrifuged at 1500 

rpm for 5 minutes (FALCON 6/300, MSE) and the supernatant discarded. The cell pellet 

was resuspended in 2ml cold media, transferred to a 24 well plate and maintained as in 

2.1.1.  

 

2.1.4 Treatment of cells with MG132 

 

Transfected cells were set at a density of 3x105 cells/ml in a total volume of 4ml and this 

volume split equally into two wells of a 24 well plate. DMSO (0.2µl) was added to the 

control well and 10µM MG132 (BIOMOL, Exeter, U.K.; 0.2µl of a 100mM stock in 

DMSO) added to the other. Cells were cultured for 18 hours with treatment before being 

harvested for western blot analysis. Time points for MG132 treatment are as indicated in 

the results sections. 

 

2.1.5 Treatment of cells with 3-methyladenine  

 

3-methyladenine (3-MA, Sigma, Dorset, U.K.) powder was added to media and this mix 

incubated at 100oC for 10 minutes to give a 1x stock solution (10mM). Control media 

was also incubated at 100oC for 10 minutes. Day 3 post transfection, 2.4x106 transfected 

cells were pelletted by centrifugation at 1500rpm for 5 minutes (FALCON 6/300, MSE) 

and the supernatant discarded. Half of the cells were resuspended in 3ml control media 

(see 2.1.1) and the other half resuspended in 3ml media supplemented with 10mM 3-MA. 
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Cells were plated in a 12 well plate and all cells/treatments maintained in the same 

volume and same size culture vessel until they were harvested day 7 post transfection.   

 

2.1.6 Treatment of cells with Bafilomycin A1 

 

To determine optimal concentrations to be used, wild-type K562 cells were plated at 

4x105 cells/ml in 4ml in a 12 well plate and treated with either DMSO (control), 1nM, 

10nM, 100nM or 1µM Bafilomycin A1 (Axxora, Nottingham, U.K.; 1mM stock in 

DMSO). Cells were cultured for 48 hours until harvested for analysis.  

 

In subsequent experiments, day 5 post transfection, transfected cells were plated at 4x105 

cells/ml in 2ml in a 24 well plate and either DMSO (control) or 1µM Bafilomycin A1 

(1mM stock in DMSO) added. Cells were cultured for 48 hours until harvested for 

analysis.   

 

2.1.7 Treatment of cells with rapamycin 

 

Wild-type K562 cells were set at 4x105 cells/ml in 6ml in a 25cm2 flask and treated with 

either DMSO (control), 20nM, 50nM or 100nM rapamycin (Sigma; 200µM stock in 

DMSO). Cells were cultured as in 2.1.1 for six days, with rapamycin supplementation 

into the media as appropriate, and then cells harvested for analysis.  
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2.2 shRNA construct production 

 

2.2.1 shRNA sequence design 

 

Knockdown sequences were designed using a QIAGEN siRNA tool 

(http://www1.qiagen.com/products/genesilencing/customsirna/sirnadesigner.aspx). These 

sequences (shown in bold below), flanked by the appropriate hairpin and restriction site 

sequences were ordered from Sigma Genosys (Sigma). 

Vector control scramble: 5’GTACCAAGCGGGATTCAGTAGTTACGTTCAAGAG 

ACGTAACTACTGAATCCCGCTTTTTTTGGAAAT 3’ (Forward),  

5’CTAGATTTCCAAAAAAAGCGGGATTCAGTAGTTACGTCTCTTGAACGTAA

CTACTGAATCCCGCTTG 3’ (Reverse),  

shCSN2: 5’GTACCAAGCGGCATTAAGCAGTTTCCTTCAAGAGAGGAAACTG 

CTTAATGCCGCTTTTTTTGGAAAT 3’ (Forward), 

5’CTAGATTTCCAAAAAAAGCGGCATTAAGCAGTTTCCTCTCTTGAAGGAAA

CTGCTTAATGCCGCTTG 3’ (Reverse),  

shCSN5: 5’GTACCAAGGGCTACAAACCTCCTGATTTCAAGAGAATCAGGAG 

GTTTGTAGCCCTTTTTTTGGAAAT 3’ (Forward), 

5’CTAGATTTCCAAAAAAAGGGCTACAAACCTCCTGATTCTCTTGAAATCAG

GAGGTTTGTAGCCCTTG 3’ (Reverse).   
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2.2.2 Oligonucleotide annealing 

 

Lyophilised oligonucleotides (Sigma Genosys, see above) were reconstituted to 100µM 

stock concentration in TE pH8 (10mM Tris HCl pH 8, 1mM EDTA pH 8, in distilled 

water). An annealed oligonucleotide stock (10µM) was produced by mixing 5µl of each 

oligonucleotide with 40µl TE pH 8, heating the mix to 70oC for 10 minutes and allowing 

them to cool slowly by incubating at room temperature for 45 minutes.  

 

2.2.3 Vector preparation 

 

Multi-core buffer (5µl) was mixed with 2.5µl Acc65I, 2.5µl XbaI (all from Promega, 

Southampton, U.K.), 6µg vector DNA (modified pcDNA3.1 vector developed by Heiko 

Lickert (Kunath et al., 2003) and the volume made up to 50µl with DNase RNase free 

water (Invitrogen Gibco). Vector was digested by 3 hour incubation at 37oC.  

 

Digestion products (40µl) were mixed with 10µl 5x DNA gel loading buffer (Bioline, 

London, U.K.) and samples separated by electrophoresis on a 1.5% agarose (Invitrogen, 

Paisley, U.K.) gel with 0.4µg/ml ethidium bromide (Sigma). 5µl each of Hyperladder I 

(Bioline) and Hyperladder IV (Bioline) markers were used and the gel electrophoresed in 

1xTBE (89mM Tris, 89mM boric acid and 2mM EDTA pH8 in distilled water) at 70V 

for 30 minutes. DNA was visualised under UV transillumination with a Geneflash 

Syngene Bio Imager (Geneflow, Fradley, U.K.).  
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The linear vector DNA fragment was excised from the gel and the DNA extracted using a 

QIAquick gel extraction kit (Qiagen, Crawley, U.K.). Briefly, the gel slice was weighed, 

three volumes of buffer QG added and the gel slice incubated at 50oC for 10 minutes. 

One volume of isopropanol was added, the sample mixed and applied to a QIA quick 

column. The column was centrifuged for 1 minute at 14,000 rpm (Centrifuge 5415C, 

Eppendorf, Cambridge, U.K.) and the flow through discarded. 0.75ml of buffer PE was 

added to the column and the column centrifuged as previous. The flow through was 

discarded and the tube spun as previous. The column was placed into a 1.5ml centrifuge 

tube, 50µl water applied to the column and the column spun as previous. DNA was 

quantified as in 2.2.8 and stored at -20oC.  

 

2.2.4 Ligation of linear vector and shRNA insert 

 

The ligation reaction was set up in a final volume of 10µl as follows: 

 

Vector only Vector plus insert 

                            (annealed oligos) 

10x ligase buffer (Invitrogen)          1                         1 

Vector             5   5 

Annealed oligos (10µM)          0   2 

DNase RNase free water          3   1 

T4 DNA ligase (Invitrogen)          1   1 

 

The reaction mix was incubated overnight at 4oC.  
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Ligation reactions were monitored by agarose gel electrophoresis. 2µl ligation product 

was mixed with 0.5µl 5x DNA gel loading buffer and samples separated by 

electrophoresis on a 1% agarose gel with 0.4µg/ml ethidium bromide. 5µl each of 

Hyperladder I and Hyperladder IV markers were used and the gel electrophoresed in 

1xTBE at 70V for 30 minutes. DNA was visualised under UV transillumination with a 

Geneflash Syngene Bio Imager.  

 

2.2.5 Bacterial transformation with plasmid DNA 

 

An aliquot of the competent bacterial strain DH5α (50µl, Novogen, Windsor, U.K.) was 

added to plasmid DNA (100ng), mixed and incubated on ice for an hour. Bacterial cells 

were heat shocked at 37oC for 20 seconds, transferred to ice for 5 minutes and 1ml L-

Broth added (L-Broth; 20.6g LB Broth (Sigma) in 1L distilled water). Cells were 

incubated at 37oC for 1 hour with shaking (225rpm), centrifuged at 14,000rpm for 1 

minute (Centrifuge 5415C, Eppendorf) and the supernatant removed. The pellet was 

resuspended in 50µl L-Broth and the cells spread onto an ampicillin containing agar plate 

(Agar; 20.6g LB Broth, 15g Agar technical (Oxoid, Basingstoke, U.K.) in 1L distilled 

water containing 1ml 1000x stock ampicillin (Sigma) to a final concentration of 

100µg/ml) using aseptic technique. Plates were incubated at 37oC overnight.  
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2.2.6 Amplification of plasmid DNA 

 

A single colony was picked and used to inoculate 3ml LB medium containing ampicillin 

(100µg/ml) and incubated for 6 hours at 37oC with shaking (225rpm). This starter culture 

(250µl) was subsequently added to 250ml LB supplemented with 100µg/ml ampicillin in 

a 2L flask, and incubated overnight at 37oC with shaking (225rpm).  

 

2.2.7 Isolation of plasmid DNA  

 

Cells were harvested by centrifugation at 6000rpm for 15 minutes at 4oC (Mistral 300i, 

MSE). Isolation of plasmid DNA from bacterial cells was carried out using a QIAfilter 

Plasmid Purification Kit (Qiagen) according to manufacturer instructions. Briefly, the 

bacterial pellet was resuspended in 10ml buffer P1, 10ml buffer P2 added, mixed 

thoroughly and incubated at room temperature for 5 minutes. 10ml chilled buffer P3 was 

added, the tube inverted vigorously and the lysate poured into the barrel of the QIAfilter 

cartridge, with incubation at room temperature for 10 minutes. A QIAGEN-tip 100 was 

equilibrated with the addition of 10ml buffer QBT. The plunger was inserted into the 

QIAfilter cartridge and the lysate filtered into the pre-equilibrated QIAGEN-tip 100. 

Once the lysate had cleared the tip was washed with 2 x 30ml buffer QC. The DNA was 

eluted with the addition of 15ml buffer QF and the DNA precipitated with the addition of 

10.5ml isopropanol. After mixing, the mix was centrifuged at 6000g for 30 minutes at 

4oC (Mistral 300i, MSE), and the supernatant removed. The pellet was washed with 5ml 

70% ethanol and centrifuged at 6000g for 10 minutes (Mistral 300i, MSE). The 
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supernatant was removed, the pellet air-dried for 10 minutes and the DNA resuspended in 

300µl RNase-DNase free water.  

 

2.2.8 Quantification of plasmid DNA  

 

Samples were diluted 1 in 20 with DNase RNase free water in a total of 100µl. The 

absorbance was determined at both 260 and 280 nm. The purity of the plasmid 

preparation was determined by dividing the value at 260nm by the value at 280nm. A 

figure between 1.8 and 2.0 defines a pure plasmid preparation. The concentration of 

plasmid was determined as follows: 

 

Plasmid concentration (µg/µl) = (OD260 x dilution factor x 50)/1000 

 

2.2.9 Plasmid sequencing 

 

0.5µg plasmid DNA and 3.2pmol BGH reverse primer (Alta Bioscience, Birmingham, 

U.K.) were mixed and made up to 10µl with DNase RNase free water. Sequencing was 

carried out by the proteomics service at the University of Birmingham. Briefly, Big Dye 

Terminator Kit V3.1 was added to the DNA/primer mix, the PCR cycle carried out and 

samples purified for sequencing. Labelled DNA was loaded into the analyser and 

sequencing carried out using an ABI 3700 sequencer (Applied Biosystems, California, 

USA). Sequencing data was analysed using Chromas Pro software.   
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2.3 CSN5 protein expression construct production  

 

2.3.1 CSN5 coding sequence primer design 

 

Webcutter software was used to determine which restriction sites do not occur in CSN5 

protein coding sequence and two restriction sites (BamHI and EcoRI) were selected for 

use in CSN5 protein coding sequence (cds) primer design and subsequent ligation of 

CSN5 coding sequence with pcDNA3.1 plasmid. Primers used were as follows: 

 

      Cap  BamHI site   First 17 bases of CSN5 cds  

5’ GCAGGGATCCATGGCGGCGTCCGGGAG 3’ (Forward) 

 

      Cap   EcoRI site   Rev. Comp. of final 26 bases of CSN5 cds 

5’ GCAGGAATTCTTAAGAGATGTTAATTTGATTAAACA 3’ (Reverse)  

 

The melting temperatures of the primers were calculated to determine similarity and 

sequences ordered from SigmaGenosys. 

 

2.3.2 CSN5 coding sequence amplification  

 

CSN5 coding sequence was amplified from oligo dT cDNA (provided by Dr Farhat 

Khanim) in a 50µl reaction containing 1x Accuzyme buffer (Bioline), 2µl cDNA, 400µM 

dNTPs (Bioline), 2mM MgCl2 (Bioline), 400nM forward primer, 400nM reverse primer 
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and 5U Accuzyme DNA polymerase (Bioline). The PCR reaction included initial 

incubation at 94oC for 5 minutes, 10 cycles of 94oC for 30 seconds, 54oC for 30 seconds 

and 72oC for 1 minute 45 seconds, 30 cycles of 94oC for 30 seconds, 68oC for 30 seconds 

and 72oC for 1 minute 45 seconds and a final incubation of 72oC for 7 minutes. PCR 

products were separated by electrophoresis on an agarose gel and the band corresponding 

to the length of the CSN5 coding sequence was identified, cut out and the DNA 

extracted, all as in 2.2.3.  

 

2.3.3 CSN5 coding sequence PCR product digestion 

 

The isolated CSN5 coding sequence was digested in a 30µl reaction containing 1x multi-

core buffer (Promega), 20µl DNA, 10U BamHI (Fermentas) and 10U EcoRI (Fermentas), 

and this mix incubated for 2 hours at 37oC.  

 

2.3.4 pcDNA3.1 plasmid digestion 

 

pcDNA3.1 was digested in a 20µl reaction containing 1x multi-core buffer (Promega), 

5µl DNA, 10U BamHI (Fermentas) and 10U EcoRI (Fermentas), and this mix incubated 

for 2 hours at 37oC. Calf intestinal phosphatase (New England Biolabs; 10U) was added 

for 40 minutes at 37oC and the phosphatase removed using the gel extraction kit as in 

2.2.3.  
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2.3.5 Ligation of CSN5 coding sequence with pcDNA3.1 

 

Ligation was carried out in a 10µl reaction containing 1x ligation buffer (Invitrogen), 1µl 

T4 DNA ligase (Invitrogen), 3µl digested plasmid and 3µl digested insert, with overnight 

incubation at 4oC. Ligated plasmid was then transformed into DH5α and plasmid DNA 

amplified, isolated, quantified and sequenced as in 2.2.5-2.2.9.  

 

2.3.6 CSN5 shRNA/deneddylase mutation primer design 

 

Primers were designed according to QuikChange XL Site-Directed Mutagenesis Kit 

manufacturer instructions (Stratagene, California, USA). Briefly, selected codons were 

mutated (shown in bold below) to give a codon with a comparable usage value. This 

sequence was made up to ~45 bases with extension either side of the mutated region and 

the sequence checked by blast analysis (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi? 

PAGE=Nucleotides&PROGRAM=blastn&MEGABLAST=on&BLAST_PROGRAMS=

megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on) to ensure gene 

specificity. Finally, primer melting temperatures were determined and optimised as per 

manufacturer instructions and the following sequences (forward and reverse complement) 

ordered from SigmaGenosys: 

shRNA sequence mutation primers: 5’ AGGACATACCCAAAGGGATACAAGCCA 

CCAGATGAAGGACCTTC 3’ (Forward), 

5’ GAAGGTCCTTCATCTGGTGGCTTGTATCCCTTTGGGTATGTCCT 3’ (Reverse 

complement),  
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Deneddylase dead mutation primers: 5’ CTGCTGGCTTTCTGGGATTAATGTTAG 

TACTCAGATGCTC 3’ (Forward), 

5’ GAGCATCTGAGTACTAACATTAATCCCAGAAAGCCAGCAG 3’ (Reverse 

complement).    

 

2.3.7 CSN5 expression plasmid mutation 

 

Plasmid mutation was carried out according to QuikChange XL Site-Directed 

Mutagenesis Kit manufacturer instructions (Stratagene). Briefly, plasmid mutation was 

carried out in a 50µl PCR reaction containing 1x reaction buffer (Stratagene), 5ng 

plasmid DNA, 125ng forward primer, 125ng reverse primer, 1µl dNTP mix (Stratagene) 

and 3µl QuikSolution (Stratagene), which was mixed before the addition of 2.5U Pfu 

Turbo DNA polymerase (Stratagene). The PCR reaction included initial incubation at 

95oC for 1 minute, 18 cycles of 95oCfor 50 seconds, 60oC for 50 seconds and 68oC for 6 

minutes, and a final incubation of 68oC for 7 minutes. The reaction was then incubated on 

ice for 2 minutes and 10U Dpn1 restriction enzyme (Stratagene) added before mixing and 

incubation at 37oC for 1 hour.  

 

2.3.8 Mutated CSN5 expression plasmid transformation into XL10-Gold cells 

 

Transformation of XL10-Gold Ultracompetent cells was carried out according to 

QuikChange XL Site-Directed Mutagenesis Kit manufacturer instructions (Stratagene). 

Briefly, XL10-Gold Ultracompetent cells (Stratagene; 45µl) were mixed with 2µl β-
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mercaptoethanol and incubated on ice for 15 minutes with mixing every 2 minutes. 

Mutation PCR product (2µl) was added and the mix incubated on ice for 30 minutes. The 

mix was heated to 42oC for 30 seconds and incubated on ice for 2 minutes before the 

addition of 0.5ml prewarmed NZY+ broth. Cells were incubated at 37oC with shaking 

(225rpm) for 1hour and cells spread onto an ampicillin plate as in 2.2.5. Plasmid DNA 

was amplified, isolated, quantified and sequenced as in 2.2.6-2.2.9.  
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2.4 Co-transfection of cell lines 

 

2.4.1 Cell preparation 

 

Three days prior to transfection, cells were counted and set at a density of 2.5x105 

cells/ml. Cells were diluted 1:1 in media the following day and cells counted and set back 

to 2.5x105 cells/ml the day before transfection.  

 

2.4.2 Cell transfection 

 

A cell count was taken and 5x106 cells harvested by centrifugation at 1500rpm for 5 

minutes (FALCON 6/300, MSE), and the resultant pellet washed in 1ml PBS and 

centrifuged as previous. The supernatant was discarded and cells resuspended in 100µl 

Solution V (Amaxa, Cologne, Germany). For co-transfection, pMACS Kk.II plasmid 

(5µg) and 10µg shVC, shCSN2 or shCSN5 plasmid were aliquotted into an 

electroporation cuvette (Amaxa) and 100µl cell suspension added. For double 

knockdown transfections, 2.5µg pMACS Kk.II plasmid was used with either 10µg shVC 

or 5µg each of shCSN2 and shCSN5 plasmid. For CSN5 re-expression transfections, 

2.5µg pMACS Kk.II plasmid was used with either 10µg shVC, 10µg shCSN5, or 5µg 

each of shCSN5 and wild-type/deneddylase dead CSN5 re-expression plasmid. Cells 

were electroporated using programme T-16 on Nucleofector I (Amaxa). Prewarmed 

media (0.5ml) was added to the cuvette and the mix transferred to 1.5ml media in a 24 
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well plate. Four hours post transfection, cells were transferred to a 12 well plate and 2ml 

media added. 

 

2.4.3 Analysis of transfection efficiency  

 

24 hours post transfection an 80µl aliquot of transfected cells was mixed with 5µl anti-H-

2Kk-FITC antibody (Miltenyi Biotec, Surrey, U.K.) and incubated at room temperature 

for 15 minutes.  3ml PBS was added and cells centrifuged at 1500 rpm for 5 minutes 

(FALCON 6/300, MSE), the supernatant removed and the cells resuspended in 300µl 

FACS fix (1% formaldehyde (v/v) and 2% FBS (v/v) in PBS). Staining was analysed by 

FACS flow cytometry using FACS Calibur and Cell Quest Pro software (Becton 

Dickinson, Oxford, U.K.) within two weeks.  

 

2.4.4 Cell sorting 

 

A schematic of the co-transfection and cell sorting techniques is shown in figure 10. 

Transfected cells were sorted 24 hours post transfection using MACSelect microbeads 

(Miltenyi Biotec) according to manufacturer instructions. Briefly, cells were harvested by 

centrifugation at 1500 rpm for 5 minutes (FALCON 6/300, MSE) followed by a PBS 

wash and centrifugation as previous. The pellet was resuspended in 320µl PBE (PBS plus 

2mM EDTA) and 80µl MACSelect microbeads added to the suspension. This mix was 

incubated for 15 minutes on ice and the volume adjusted to 2ml with PBE. A MACS 

column MS (Miltenyi Biotec) was placed in the magnetic field of a MACS separator  
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Figure 10. Schematic of the co-transfection and cell sorting technique s. 

K562 cells are co-transfected with two plasmids, one encoding the shRNA of 

interest and the other encoding a truncated murine cell surface protein (HKK). 

Trans fected cells transiently express this protein on the cell surface. An 

antibody specific for this protein with a bead attached is used to label 

transfected cells. Cells are then applied to a column placed in a magnet, with 

the labelled cells being retained and the unlabelled, untransfected cells being 

washed through the column. The column is then removed from the magnet 

and the trans fected cells eluted.  
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Figure 10. Schematic of the co-transfection and cell sorting technique s. 

K562 cells are co-transfected with two plasmids, one encoding the shRNA of 

interest and the other encoding a truncated murine cell surface protein (HKK). 

Trans fected cells transiently express this protein on the cell surface. An 

antibody specific for this protein with a bead attached is used to label 

transfected cells. Cells are then applied to a column placed in a magnet, with 

the labelled cells being retained and the unlabelled, untransfected cells being 

washed through the column. The column is then removed from the magnet 

and the trans fected cells eluted.  
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magnet (Miltenyi Biotec) and 500µl PBE applied to the column. The cell suspension was 

then added to the column and the negative fraction discarded. The column was washed 

four times with 500µl PBE. The column was removed from the magnetic field and placed 

into a collection tube. 1ml PBE was added to the column, the plunger firmly applied and 

the positive fraction collected in the tube. A cell count was taken, the cells harvested by 

centrifugation at 1500 rpm for 5 minutes (FALCON 6/300, MSE) and the cells 

resuspended in the appropriate volume of media to set the cells at a density of 3x105/ml. 

Cells were cultured as in 2.1.1 and harvested for analysis at the appropriate time point. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 81

2.5 Assessment of cell proliferation and death 

 

2.5.1 Cumulative cell growth 

 

All co-transfections were maintained in the same size culture vessel and same volume 

throughout culture. Cell counts were taken and cultures set back to 3x105 cells/ml daily. 

Cumulative cell growth for each time point was determined by multiplying cell count by 

both culture volume and the cumulative dilution factor. The average cumulative cell 

growth of three co-transfections and the standard error of this average were calculated 

using Microsoft Office Excel. The significance of any difference in cumulative cell 

growth between vector control and knockdown cells was also determined using the t-test 

function in Microsoft Excel. This data was then plotted using SigmaPlot.  

 

2.5.2 Cell cycle analysis 

 

200µl cells were transferred to a FACS tube and 2ml PBS added. Cells were pelletted by 

centrifugation at 1500rpm for 5 minutes (FALCON 6/300, MSE). The supernatant was 

removed and cells resuspended in 300µl cell cycle buffer (10µg/ml propidium iodide, 

0.1% triton X100, 0.1mM NaCl, in distilled water). Staining was analysed using a FACS 

Calibur (Becton Dickinson) within 24 hours (samples were stored at 4oC if staining was 

analysed the next day) and data evaluated using Cell Quest Pro software (Becton 

Dickinson).  
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2.5.3 Thymidine incorporation assay 

 

2x104 cells were transferred to a 96 well plate in triplicate wells and the volume made up 

to 200µl with media. Cells were incubated at 37oC with 5% CO2 for 2 hours prior to the 

addition of 2µCi/ml tritiated thymidine (20µCi/ml stock in RPMI 1640, Amersham, 

Buckinghamshire, U.K.). Cells were further incubated for 18 hours and the plate then 

stored at -20oC. Samples were transferred to a filter mat (Wallac, Massachusetts, USA) 

using a Skatron cell harvester (Skatron Instruments, Bath, U.K.) and readings taken using 

a Beta-Plate scintillation counter (Skatron Instruments). The average thymidine 

incorporation of three co-transfections and the standard error of this average were 

calculated using Microsoft Office Excel. The significance of any difference between 

thymidine incorporation in vector control and knockdown cells was also determined 

using the t-test function in Microsoft Excel. This data was then plotted using SigmaPlot.  

 

2.5.4 Annexin V staining 

 

1x105 cells were transferred to a FACS tube and 1ml cold PBS added. Cells were 

centrifuged for 5 minutes at 1500rpm (FALCON 6/300, MSE). The supernatant was 

removed and cells were washed again in PBS as previous. Annexin V binding buffer (BD 

Biosciences, Oxford, U.K.) was diluted 1 in 10 in distilled water and cells resuspended in 

100µl of this buffer. 5µl each of annexin V FITC and Propidium Iodide stain (both BD 

Biosciences) were added to the cells prior to incubation at room temperature for 15 
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minutes. Staining was analysed using a FACS Calibur (Becton Dickinson) within 1 hour 

and data evaluated using Cell Quest Pro software (Becton Dickinson).  
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2.6 Morphological analysis of cells 

 

2.6.1 Cytospins 

 

Cytospins were produced using a Shandon Cytospin3 (Thermo, Loughborough, U.K.), 

Shandon filter cards (Thermo) and glass slides (VWR, Lutterworth, U.K.) according to 

manufacturer instructions. 5x104 cells were spun onto a slide by spinning at 500rpm for 3 

minutes. Slides were then allowed to dry at room temperature for 15 minutes.  

  

2.6.2 Jenner-Giemsa staining 

 

Slides were fixed in methanol for 5 minutes at room temperature. Giemsa buffer (200mM 

sodium phosphate pH5.6) was diluted 1 in 25 in distilled water and this diluted buffer 

used to dilute Jenner stain (VWR) 1 in 3 and Giemsa stain (VWR) 1 in 20. Diluted Jenner 

stain was applied to the slides and incubated at room temperature for 5 minutes. Jenner 

stain was washed off with distilled water and Giemsa stain applied to the slides and 

incubated for 10 minutes at room temperature. Giemsa stain was washed off with distilled 

water, slides wiped to remove excess liquid and allowed to dry for 15 minutes at room 

temperature. Slides were mounted with 20µl DePeX mounting medium (VWR) and 

22mm x 22mm cover slips (VWR). Jenner-Giemsa staining was viewed using an 

Olympus BX40 microscope (Olympus, Watford, U.K.) and images captured using an 

Olympus Chameleon digital SLR camera (Olympus).   

 



 85

2.6.3 Immunofluorescent staining 

 

Slides were fixed in 4% paraformaldehyde in PBS for 10 minutes at room temperature. 

Slides were washed twice in PBS and incubated for 10 minutes in room temperature 

ammonium chloride (50mM in PBS). Slides were washed twice more in PBS and 

incubated in 0.1% Triton X-100 in PBS for 4 minutes at room temperature. Cells were 

rinsed in PBS and staining carried out.  

 

Primary anti-tubulin antibody (Sigma) was diluted 1 in 500 in PBS and 40µl applied to 

the cell spot. Slides were incubated at room temperature for 1 hour in a humid chamber 

and then washed three times in PBS. Secondary antibody (FITC conjugated anti-mouse; 

Jackson Laboratories) was diluted 1 in 500 in PBS and Hoechst (Sigma) added to a final 

dilution of 1 in 1000 (1mg/ml stock and 1µg/ml final concentration). Excess liquid was 

removed from slides and 40µl secondary antibody/Hoechst mix applied to the cell spot. 

Slides were incubated at room temperature for 40 minutes and washed three times in 

PBS. Excess liquid was removed and slides were allowed to dry for 15 minutes at room 

temperature, prior to mounting with 5µl Moviol mounting medium (6g glycerol, 2.4g 

Moviol-4-88, 12ml 0.2M Tris HCl pH8.5, 6ml dH2O, three p-phenyldiamine crystals) and 

22mm x 22mm cover slips (VWR). Immunofluorescent staining was visualised using an 

Axioskop2 microscope (Zeiss, Hertfordshire, U.K.) and images captured with a 

Qimaging 12-bit QICAM camera (Media Cybernetics, Bethesda, USA) and Openlab 

software (Improvision, Coventry, U.K.).  
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2.6.4 Monodansylcadaverine staining 

 

5x104 cells were centrifuged for 15 seconds at 14,000 rpm (Centrifuge 5415C, 

Eppendorf), resuspended in 300µl PBS and incubated with 0.05mM 

monodansylcadaverine (Sigma; 5mM stock in DMSO) at 370C for 10 minutes. Cells were 

washed 4 times by centrifugation for 15 seconds at 14,000 rpm (Centrifuge 5415C, 

Eppendorf) and resuspension in 0.5ml PBS. Cells were resuspended in 100µl PBS and 

cytospins made as above. Staining was analysed immediately using a DMIRE2 system 

(Leica, Milton Keynes, U.K.). Analysis of this staining was carried out by Dr Simon 

Johnston.  

 

2.6.5 Visualisation of propidium iodide retention in cells 

 

1x105 cells were transferred to a FACS tube and 1ml cold PBS added. Cells were 

centrifuged for 5 minutes at 1500rpm (FALCON 6/300, MSE). The supernatant was 

removed and cells were washed again in PBS as previous. Annexin V binding buffer (BD 

Biosciences, Oxford, U.K.) was diluted 1 in 10 in distilled water and cells resuspended in 

100µl of this buffer. 5µl of Propidium Iodide stain (BD Biosciences) was added to the 

cells prior to incubation at room temperature for 15 minutes. Cytospins were then made 

as in 2.6.1 and propidium iodide retention visualised using a DMIRE2 system (Leica, 

Milton Keynes, U.K.). Analysis of this staining was carried out by Simon Johnston. 
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2.7 Protein analysis: Western blotting and Blue Native gels  

 

2.7.1 Protein extraction and quantification 

 

For protein extraction, 1-3x106 cells were resuspended in 50µl lysis buffer (10% 10x 

complete protease inhibitor (Roche diagnostics, West Sussex, U.K.), 90% RIPA buffer 

(1% v/v NP40, 0.5% w/v sodium deoxycholate, 0.1% w/v SDS in distilled water)). Cells 

were incubated for 30 minutes on ice, centrifuged at 14,000rpm at 4oC for 10 minutes 

(Hawk 15/05, Sanyo, Watford, U.K.) and the supernatant transferred to a 1.5ml 

centrifuge tube (eppendorf).  

 

For protein quantification, the Dc protein assay protocol was followed according to 

manufacturer instructions (Bio-Rad, Hemel Hempstead, U.K.). Briefly, 5µl standards (0, 

0.625, 1.25, 2.5, 5 and 10mg/ml BSA in distilled water) were added to duplicate wells 

and 2µl of each protein sample was added to 3µl distilled water in replicate wells. 20µl 

reagent S was added to each ml of reagent A required to make solution A’, and 25µl A’ 

added to each well. 200µl reagent B was then added to each well, the wells mixed, and 

the reaction allowed to develop for 15 minutes before the optical density was measured at 

645nm using a plate reader (BIO-TEK, Vermont, USA) and KC4 software (BIO-TEK). 

These readings were transferred to Microsoft Excel and used to calculate sample protein 

concentration.   
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2.7.2 Calculating the amount of protein per cell 

 

The total amount of protein in the extract was determined by multiplying the extraction 

volume by the protein concentration. The final cell count before cell harvesting was 

multiplied by the culture volume harvested to determine the total number of cells from 

which protein was extracted. Total protein was then divided by total cell number to give 

protein per cell. The average and standard error of the mean of three vector control and 

three knockdown samples was determined and this data plotted using Sigma Plot. The 

significance of any difference between protein levels in vector control and knockdown 

cells was also determined using the t-test function in Microsoft Excel.  

 

2.7.3 Sample preparation and protein separation by SDS PAGE 

 

Protein samples (20-40µg) were mixed in a 3:1 ratio with 4x SDS gel loading buffer 

(62.5mM Tris HCl pH6.8, 25% v/v glycerol, 2% SDS, 5% 2-β-ME, Bromophenol Blue, 

in distilled water), heated to 100oC for 10 minutes and centrifuged for 15 seconds at 

14,000rpm (Centrifuge 5415C, Eppendorf).  
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Resolving gel mixes (10ml final volume) were prepared as follows: 

       10%  12.5%  15% 

30% Acrylamide/Bis-Acrylamide 37.5:1 (Geneflow)3.3ml  4.2ml  5.0ml 

1.5M Tris HCl pH8.8      2.5ml  2.5ml  2.5ml    

10% Sodium dodecyl sulphate                                   0.1ml  0.1ml  0.1ml 

(SDS; Fisher Scientific)       

distilled water      4.1ml  3.2ml  2.4ml 

10% Ammonium persulphate (APS; Sigma)  60µl  60µl  60µl 

TEMED (VWR international)    4.5µl  4.5µl  4.5µl 

 

Once the resolving gel was set a stacking gel was added. The stacking gel consisted of 

the following: 

30 % Bis/Acrylamide   440µl 

0.5M Tris HCl pH6.8    830µl 

10% SDS        33µl 

distilled water              2.03ml 

10% APS              16.7µl 

TEMED     1.7µl 

 

Protein samples, and 5µl prestained precision blue markers (Bio-Rad) were loaded onto 

the gel and separated by electrophoresis at 120V with 1x SDS gel running buffer (25mM 

Tris, 192mM glycine, 3.5mM SDS in distilled water) for 90 minutes.   

 

2.7.4 Protein transfer 

 

PVDF membrane (Millipore, Watford, U.K.) was soaked in methanol for 15 seconds, 

dH2O for 2 minutes and equilibrated in transfer buffer (25mM Tris, 192mM glycine, 20% 
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Methanol in distilled water) for 10 minutes. Then layered onto the black side of the 

transfer cassette was the following: 

 

Blotting pad 

Wet 3mm filter paper 

The gel with the stacking gel removed 

PVDF membrane 

Wet 3mm filter paper 

Blotting pad 

 

The transfer was carried out using a Mini-Protean transfer tank (Bio-Rad) at 80V for 1 

hour with cooling.  

 

2.7.5 Immunodetection of proteins 

 

The membrane was rinsed in TBS-T (137mM NaCl, 20mM Tris HCl pH 7.6, 0.2% 

Tween20 in distilled water) and then blocked for 45 minutes in 5% dried milk solution 

(5% milk powder (Marvel) in TBS-T). Primary antibodies were diluted 1 in 1000 (except 

for the anti β-actin antibody (Sigma) which was diluted 1 in 10,000) in 5% milk, and the 

membrane incubated for an hour in this solution at room temperature. The membrane was 

washed three times in TBS-T, each wash for 5 minutes, the secondary antibody 

(horseradish peroxidase (HRP) conjugated anti-rabbit, Pierce (Illinois, USA) or HRP 

conjugated anti-mouse, Sigma) diluted 1 in 1000 (except for when following incubation 

with anti β-actin antibody when secondary antibody was diluted 1 in 10,000) in 5% milk 

and the membrane incubated for 45 minutes in this solution at room temperature. The 
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membrane was washed as above and signal developed using Supersignal West Pico 

Chemiluminescent substrate (Pierce) and signal detected by exposure to Xomat scientific 

imaging film (Kodak, Sigma) for 5 minutes. Films were developed using an AGFA 

CURIX 60 (Agfa, Mortsel, Belgium).  

 

2.7.6 Western blot densitometry 

 

Quantitative analysis of western blots was carried out using Image J software 

(http://rsb.info.nih.gov/ij/download.html) and Microsoft Office Excel. Briefly, the density 

of each band was measured and background density subtracted. The ratio of protein band 

density to corresponding β-actin band density was then calculated to give a value 

corrected for loading. The appropriate ratios of corrected band density in control and 

treated cells were then calculated, and the average and standard error of the mean of three 

vector control and three knockdown samples determined. This data was then plotted, 

along with the standard error of the mean, using Sigma Plot. The significance of any 

difference between protein levels in vector control and knockdown cells was also 

determined using the t-test function in Microsoft Excel.  

 

2.7.7 Blue native gels 

 

Blue native gels were carried out using a NativePAGE Novex Bis-Tris Gel System 

(Invitrogen) according to manufacturer instructions. Briefly, 1 x 106 cells were 

resuspended in 100µl mild lysis buffer (1x NativePAGE sample buffer (Invitrogen), 1% 
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digitonin (Sigma), 1x protease inhibitor, in distilled water), incubated on ice for 30 

minutes, centrifuged for 20 minutes at 14,000 rpm and 4oC (Hawk 15/05, Sanyo), and the 

supernatant collected. A final concentration of 0.25% NativePAGE 5% G-250 sample 

additive (Invitrogen) was added to native protein extract, 25µl sample loaded onto a 

NativePAGE Novex 3-12% Bis-Tris gel (Invitrogen), and 10µl NativeMARK protein 

markers (Invitrogen) loaded onto the gel. Samples were separated by electrophoresis for 

45 minutes at 150V with 1x NativePAGE Anode Buffer (1x NativePAGE Running 

Buffer (Invitrogen) in distilled water) and dark blue NativePAGE Cathode Buffer (1x 

NativePAGE Running Buffer (Invitrogen) and 1x NativePAGE Cathode additive 

(Invitrogen) in distilled water), followed by 45 minutes electrophoresis at 250V with 

anode buffer as above and light blue NativePAGE Cathode Buffer (1x NativePAGE 

Running Buffer (Invitrogen) and 0.1x NativePAGE Cathode additive (Invitrogen) in 

distilled water). The western protocol was then followed from 2.7.4 with the addition of a 

10 minute incubation of the membrane in 100% methanol between the transfer and 

blocking steps to prevent the interference of coomassie with protein immunodetection.   

  

2.7.8 2-Dimensional blue native gels 

 

A schematic of the 2-dimensional NativePAGE/SDS-PAGE technique is shown in figure 

11. The first dimension was carried out as in 2.6.9 and the gel cut into individual lanes. 

The native gel slice was incubated in 1x SDS gel loading buffer (15.6mM Tris HCl 

pH6.8, 6.25% glycerol, 0.5% SDS, 1.25% 2-β-ME, Bromophenol Blue in distilled water) 

for 30 minutes at room temperature, the gel slice placed horizontally onto a 12.5% SDS  
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Figure 11. The NativePAGE/SDS PAGE 2-D gel analysis technique.

Native proteins are extracted from cells and electrophoresed on a non-

denaturing gel in order to separate proteins on the basis of their complexed, 

native state in the first dimension. This gel is then cut into individual lanes and 

proteins denatured. Each individual gel lane is rotated by ninety degrees and 

lay onto an SDS gel. Proteins are thus electrophoresed in the second 

dimension based on monomeric size.  
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Figure 11. The NativePAGE/SDS PAGE 2-D gel analysis technique.

Native proteins are extracted from cells and electrophoresed on a non-

denaturing gel in order to separate proteins on the basis of their complexed, 

native state in the first dimension. This gel is then cut into individual lanes and 

proteins denatured. Each individual gel lane is rotated by ninety degrees and 

lay onto an SDS gel. Proteins are thus electrophoresed in the second 

dimension based on monomeric size.  
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gel and overlaid with 1ml 1x SDS gel loading buffer. 5µl prestained precision blue 

markers (Bio-Rad) were loaded onto the SDS gel, proteins separated by electrophoresis 

as in 2.7.3 and the western protocol followed from 2.7.4.  

 

The NativeMARK lane of the native gel was coomassie stained. Briefly, the gel was 

stained with coomassie stain (50% methanol, 0.05% coomassie, 10% acetic acid, in 

distilled water) for 2 hours at room temperature and incubated in destain (7% acetic acid, 

5% methanol, in distilled water) overnight at room temperature.   

 

2.7.9 2-Dimensional blue native gel densitometry  

 

Quantitative analysis of 2-D gels was carried out using Image J software 

(http://rsb.info.nih.gov/ij/download.html) and Microsoft Office Excel. Briefly, the density 

of each band was measured and background density subtracted. The ratio of protein band 

density in knockdown cells to that of vector control cells was calculated and this value 

converted to percent by multiplication by 100. The average and standard error of the 

mean of three CSN2 and three CSN5 knockdown samples were then determined and data 

plotted using Sigma Plot. The significance of any difference between protein levels in 

vector control and knockdown cells was also determined using the t-test function in 

Microsoft Excel.  
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2.8 mRNA analysis: Quantitative real-time polymerase chain reaction 

(QRT-PCR) 

 

2.8.1 RNA extraction 

 

RNA was extracted from a pellet of 2x106 cells using a Qiagen RNeasy mini kit 

according to the manufacturer instructions. Briefly, cells were resuspended in 350µl 

buffer RLT (plus β-mercaptoethanol). The sample was then homogenized using a 

QIAshredder spin column (Qiagen). One volume of 70% ethanol was added to the 

homogenized sample and 700µl of this mixture added to an RNeasy mini column. The 

column was centrifuged for 15 seconds at 14,000 rpm (Centrifuge 5415C, Eppendorf). 

On column DNA removal was carried out using the RNase-Free DNase set (Qiagen). 

350µl buffer RW1 was added to the column and the column centrifuged for 15 seconds at 

14,000 rpm (Centrifuge 5415C, Eppendorf). The DNase I stock solution was added to 

buffer RDD according to manufacturer instructions and 80µl of this mix added to the 

column and incubated for 15 minutes at room temperature. 350µl buffer RW1 was added 

to the column and the column centrifuged for 15 seconds at 14,000 rpm (Centrifuge 

5415C, Eppendorf). Buffer RPE (500µl) was added to the column and centrifuged for 15 

seconds at 14,000 rpm (Centrifuge 5415C, Eppendorf). Another 500µl RPE was applied 

to the column and the column centrifuged for 2 minutes at 14,000 rpm (Centrifuge 

5415C, Eppendorf). The RNeasy column was transferred to a 1.5ml collection tube, RNA 

eluted with the addition of 30µl RNase-free water and centrifugation for 1 minute at 

14,000 rpm (Centrifuge 5415C, Eppendorf), and RNA stored at -20oC.  
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2.8.2 RNA quantification 

 

RNA samples were diluted 1 in 50 in RNase-free water in a total volume of 100µl. The 

absorbance at 260nm was measured using a spectrophotometer and the RNA 

concentration calculated using the following equation: 

 

RNA concentration (µg/µl) = (OD260 x 40 x dilution factor)/1000 

 

2.8.3 Reverse transcriptase PCR  

 

cDNA was produced from 1µg RNA using reverse transcription. All constituents were 

obtained from Invitrogen and the procedure carried out as follows: 1µl of both random 

primers (Promega, 500µg/ml) and dNTP's (Bioline, 10mM stock) were added to 1µg 

RNA, the volume made up to 12µl with DNase RNase free water, and the mix heated to 

65oC for 5mins, transferred to ice and centrifuged for 15 seconds at 14,000rpm 

(Centrifuge 5415C, Eppendorf). A master mix was made as follows: 

      1x (µl) 

5xbuffer (Invitrogen)    4   

0.1M DTT (Invitrogen)   2 

RNase Out (Promega, 40U/µl)  1 

Superscript (Invitrogen, 200U/µl)  1 

 

After centrifugation, 8µl of master mix was added to the RNA, primer, dNTP mix. The 

mix was incubated at 25oC for 10 minutes, 42oC for 90 minutes and 70oC for 15 minutes.  
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2.8.4 β-actin PCR 

 

All constituents were obtained from Bioline with the exception of the primers which were 

obtained from Alta Biosciences (The University of Birmingham). The sequence of these 

primers is as follows: 

 

Forward 5’ GTCACCAACTGGGACGACA  3' 

Reverse 5’ TGGCCATCTCTTGCTCGAA  3' 

 

The reaction mix was set up as follows: 

            1x (µl) 

10x Taq buffer  5 

Primers (33µM)  1 

dNTP's (10mM)  1 

MgCl2 (50mM)  1 

DNase RNase free water 40 

Taq polymerase (1U/µl) 1 

cDNA    1 

 

The PCR cycle included an initial denaturation step (95oC for 2 minutes) followed by 38 

cycles of 94oC for 20 seconds, 55oC for 30 seconds and 72oC for 60 seconds. The cycle 

was completed with a final incubation at 72oC for 5 minutes.  

 

β-actin PCR products were separated by electrophoresis on a 1% agarose gel with 

0.4µg/ml ethidium bromide. The sample (6µl) was mixed with 2µl 5x DNA gel loading 

buffer and 8µl loaded into the well. Gels were electrophoresed in 1xTBE at 60V for 45 
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minutes and products visualised under UV transillumination with a Geneflash Syngene 

Bio Imager. 

 

2.8.5 Neomycin PCR 

 

All constituents were obtained from Bioline with the exception of the primers which were 

obtained from Alta Biosciences (The University of Birmingham). The sequence of these 

primers is as follows: 

 

Forward 5’ ATGAACTGCAAGACGAGGCAG  3’ 

Reverse 5’ CATTGCATCAGCCATGATGGAT  3' 

 

A 50µl reaction was set up as follows: 

                                  1x (µl) 

10x Taq buffer  5 

Primers (10µM)  2 

dNTP's (10mM)  1 

MgCl2 (50mM)  1 

DNase RNase free water         37 

Taq polymerase (1U/µl) 1 

cDNA    3 
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The PCR cycle was as follows (temperatures are in oC): 

94 – 3mins 

94 – 20secs 

58 – 20secs          x 35 

72 – 60secs 

72 – 7mins 

4 – hold  

 

Neomycin PCR products were separated by electrophoresis on a 1% agarose gel with 

0.4µg/ml ethidium bromide. The sample (6µl) was mixed with 2µl 5x DNA gel loading 

buffer and 8µl loaded into the well. Gels were electrophoresed in 1xTBE at 60V for 45 

minutes and products visualised under UV transillumination with a Geneflash Syngene 

Bio Imager.   

 

2.8.6 QRT-PCR primer and probe design and verification 

 

QRT-PCR primers and probes were designed using Primer Express software (Applied 

Biosystems). Briefly, the coding sequence of the gene of interest was copied into Primer 

Express and potential primer/probe sequences identified. These sequences were checked 

by blast analysis (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PAGE=Nucleotides& 

PROGRAM=blastn&MEGABLAST=on&BLAST_PROGRAMS=megaBlast&PAGE_T

YPE=BlastSearch&SHOW_DEFAULTS=on) to ensure gene specificity, and a set of 

primers and probe selected which crossed an exon boundary. Primers were ordered from 
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either Alta Bioscience at the University of Birmingham or Sigma Genosys, and 

FAM/TAMRA labelled probes were ordered from Eurogentec (Southampton, U.K.).   

 

Primers were tested in the following 20µl reaction: 

    1x  

2x master mix   10 

(Eurogentec, containing dNTP/dUTP, HotGoldStar, UNG, MgCl2, stabilizers and ROX 

passive reference) 

Forward primer (9µM) 2 

Reverse primer (9µM)  2 

cDNA    1 

DNase RNase free water 5  

 

The PCR cycle included an initial hot start step (50oC for 2 minutes) followed by 95oC 

for 10 minutes. This was followed by 44 cycles of 95oC for 15 seconds and 60oC for 60 

seconds.  

 

Sample (6µl) was mixed with 2µl 5x DNA gel loading buffer and 8µl loaded into the 

well. Gels were electrophoresed in 1xTBE at 60V for 45 minutes and products visualised 

under UV transillumination with a Geneflash Syngene Bio Imager.  

 

2.8.7 Optimisation of primers and probe for QRT-PCR 

 

In order to optimise the amount of probe for use in QRT-PCR, reactions were set up as 

follows: 
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                     1x (µl) 

2x master mix   10 

Forward primer (9µM) 2 

Reverse primer (9µM)  2 

cDNA    1 

 

µl probe (1.25µM stock) µl DNase RNase free water 

0    5 

0.5    4.5 

1    4 

1.5    3.5 

2    3 

2.5    2.5 

3    2 

3.5    1.5 

 

Each amount of probe was tested in triplicate in a total reaction volume of 20µl. The PCR 

cycle included an initial hot start step (50oC for 2 minutes) followed by 95oC for 10 

minutes. This was followed by 44 cycles of 95oC for 15 seconds and 60oC for 60 seconds.  

 

2.8.8 Verifying primers and probe can be multiplexed with 18S internal control 

 

In order to verify primers and probe can be multiplexed with 18S control reactions were 

set up as follows: 
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18S alone: 

      1x (µl) 

2x master mix     10 

18S  mix      1 

(50nM forward primer, 50nM reverse primer, 200nM probe, Applied Biosystems)   

 

µl cDNA  µl DNase RNase free water 

0.25   8.75 

0.5   8.5 

1   8 

2   7 

3   6 

4   5 

 

Gene of interest alone:  

    1x (µl) 

2x master mix   10 

Forward primer (9µM) 2 

Reverse primer (9µM)  2 

Probe (1.25µM)  2 

 

µl cDNA  µl DNase RNase free water 

0.25   3.75 

0.5   3.5 

1   3 

2   2 

3   1 

4   0 
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18S and gene of interest combined: 

    1x (µl) 

2x master mix   10 

Forward primer (9µM) 2 

Reverse primer (9µM)  2 

Probe (1.25µM)  2 

18S mix   1 

 

µl cDNA  µl DNase RNase free water 

0.25   2.75 

0.5   2.5 

1   2 

2   1 

3   0 

4   0 

 

Each cDNA amount was carried out in duplicate in a total volume of 20µl. The PCR 

cycle included an initial hot start step (50oC for 2mins) to activate the polymerase, 

followed by 95oC for 10 minutes to denature DNA. This was followed by 44 cycles of 

95oC for 15 seconds and 60oC for 60 seconds, which denature DNA and anneal and 

extend primers, respectively.  

 

2.8.9 TAQMAN based QRT-PCR 

 

For TAQMAN assays, QRT-PCR was carried out in duplicate 20µl reactions containing 

1x qPCR Mastermix Plus (Eurogentec), 20-40ng cDNA, 18pmoles each primer and the 
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optimal concentration of FAM/TAMRA dual labeled probes (see 2.7.7). QRT-PCR was 

carried out in a 96 well optical plate and a plastic seal used to cover the plate. 

 

QRT-PCR was performed using an ABI Prism 7000 (Applied Biosystems) according to 

manufacturer instructions. The PCR cycle included incubation at 50oC for 2 minutes 

followed by incubation at 95oC for 10 minutes. QRT-PCR was completed with 44 cycles 

of 95oC for 15 seconds and 60oC for 60 seconds.   

 

The following primers (Sigma Genosys) and FAM/TAMRA labeled probes (Eurogentec) 

were used in TAQMAN QRT-PCR:  

CSN2: 5’-CCTCATCCACTGATTATGGGAGT-3’ (forward),  

5’-CATCATAATTCTTGAAGGCTTCAAAA-3’ (reverse),  

5’-CCCTCAAGTGCATTTTACCACCACATTCTCT-3’ (probe);  

CSN5: 5’-ATATCCGCAGGGAAAG-3’ (forward),  

5’-GGTCCTTCATCAGGAGGTTTGT-3’ (reverse), 

5’- TGGCGCCTTTAGGACATACCCAAAGG-3’ (probe). 

 

Preoptimised primers and probes to 18S ribosomal RNA were used as internal standards 

in TAQMAN QRT-PCR (Applied Biosystems). 
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2.8.10 SYBR-Green based QRT-PCR 

 

For SYBR-Green based assays, QRT-PCR was carried out in duplicate 25µl reactions 

containing 1x Sensimix (Quantace), 20-40ng cDNA, 9pmoles each primer, 1x SYBR-

Green solution (Quantace), 4mM MgCl2 and 0.5 units UNG (Quantace). QRT-PCR was 

carried out in a 96 well optical plate and a plastic seal used to cover the plate. 

 

QRT-PCR was performed using an ABI Prism 7000 (Applied Biosystems) according to 

manufacturer instructions. The PCR cycle included incubation at 37oC for 10 minutes 

followed by incubation at 95oC for 10 minutes. QRT-PCR was completed with 40 cycles 

of 95oC for 15 seconds, 58oC for 30 seconds and 72oC for 30 seconds.  

 

The following primers (Sigma Genosys) were used in SYBR-Green based QRT-PCR:  

Skp2: 5’-CGCTGCCCACGATCATTT-3’ (forward),  

5’-CCATGTGCTGTACACGAAAAGG-3’ (reverse);  

Cdc4: 5’-ACGACGCCGAATTACATCTGT-3’ (forward),  

5’-ACTCCAGCTCTGAAACATTTTTAGC-3’ (reverse); 

β-TrCP: 5’-GAGGCATTGCCTGTTTGCA-3’ (forward) 

5’-TGTCCCATAATCTGATAGTGTTGTCA-3’ (reverse) 

18S: 5’-GCCGCTAGAGGTGAAATTCTTG-3’ (forward), 

5’-CATTCTTGGCAAATGCTTTCG-3’ (reverse).  
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2.8.11 QRT-PCR data analysis 

 

QRT-PCR data was first analysed using ABI Prism 7000 software (Applied Biosystems) 

according to manufacturer guidelines. Briefly, cycle threshold (Ct) values were 

determined for both 18S internal control and gene of interest in each sample by placing a 

threshold line through the exponential phase of the PCR cycle profiles. This data was 

then exported to Microsoft Office Excel where the average Ct values were calculated 

from the duplicates. The 18S internal control value was then subtracted from the value 

for the gene of interest to give ∆Ct values. A control transfection ∆Ct value was 

subtracted from sample ∆Ct values to give ∆∆Ct values. This value was converted to fold 

change in gene expression relative to control using the equation: fold change=2-∆∆Ct, and 

fold change converted to percentage expression relative to control via multiplication by 

100. The average and standard error of the mean of three vector control and three 

knockdown samples was calculated and data plotted as a bar chart using Sigma Plot. The 

significance of any difference between gene expression in vector control and knockdown 

cells was also determined using the t-test function in Microsoft Excel. 
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2.9 Statistical Analysis of data 

 

The average and standard error of the mean of n=3 experiments was determined using 

Microsoft Excel. Data was plotted as the average ± standard error of the mean using 

Sigma Plot. The significance of any differences between control and treated cells was 

determined using the t-test function in Microsoft Excel. 
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Chapter 3.0: 

Analysis of the molecular and cellular 

effects of CSN2 knockdown 
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3.1 Introduction 

 

In order to answer the questions set out in the project aims, interfering RNA approaches 

were used to generate CSN subunit knockdown in the CML cell line K562. However, as 

K562 cells have a relatively low transfection efficiency, this study began with the 

generation of highly efficient shRNA mediated CSN subunit knockdown using a co-

transfection technique. This chapter describes the development of this procedure and the 

molecular and cellular consequences of using this approach to knockdown expression of 

CSN2 in K562 cells. 
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3.2 Results  

 

3.2.1 Construction of plasmid encoding CSN subunit specific shRNA 

 

Due to the relatively low transfection efficiency of K562 cells a technique was required 

to permit the isolation of homogenous knockdown populations. To do this a dual 

transfection approach was used in which shRNAs targeted against either CSN2 or CSN5 

were delivered together with the pMACS Kk.II vector. The pMACS Kk.II plasmid 

produces a truncated murine MHC class I cell surface protein, H-2Kk that is transiently 

expressed on the cell surface of transfected cells. The cell surface expression of this 

protein allows for the purification of transfected cells as described in materials and 

methods.   

 

Figure 12 A & B show representations of the human H1 promoter modified pcDNA3.1 

plasmid used to deliver shRNAs and the pMACS Kk.II plasmid (hereafter called HKK) 

respectively. In order to clone the silencing sequences into pcDNA3.1-H1, shRNA 

forward and reverse oligonucleotide sequences targeting CSN2 or CSN5 were first 

designed, incorporating the loop sequence (shown for CSN2 in figure 12C) and flanked 

by Acc65I and XbaI sites, and the oligonucleotides annealed. pcDNA3.1-H1 (figure 12A) 

was then digested using the restriction enzymes Acc65I and XbaI, and efficient digestion 

verified (figure 13A). The annealed targeting oligos and digested vector were ligated and 

the ligation verified (figure 13B). The plasmid was then transformed into dH5α and  



 111

B

U
U C

A

AA
G

G

AAGCGGCAUUAAGCAGUUUCC

UUCGCCGUAAUUCGUCAAAGG

Target sequence

9 base loopA

C

Figure 12. Schematic diagram of plasmids and short hairpin structure.

A, Human H1 promoter modified pcDNA3.1 plasmid into which the required 

shRNA sequence is cloned at the Acc65I and XbaI restriction sites. Image 

generated using pDRAW32 software. B, pMACS Kk.II plasmid which encodes the 

truncated H-2Kk cell surface protein. Image obtained from www.miltenyibiotec.co

m/pid/ProductGroupImageView.aspx?id=26&l=1&opid=16624. C, The 9 base 

sequence which forms the hairpin and an example target sequence specific for 

CSN2.    

pcDNA3.1 H1
4555 bp

Acc65I - 100 - G'GTAC_C
XbaI - 106 - T'CTAG_A

BGH

S
V

4
0
 O

ri

Neom

y
c
in

R

A
m

pR

p
U

C
 O

ri

A

SV40 pA

Human H1 promoter

shRNA cloning site

B

U
U C

A

AA
G

G

AAGCGGCAUUAAGCAGUUUCC

UUCGCCGUAAUUCGUCAAAGG

Target sequence

9 base loopA

C
U

U C
A

AA
G

G

AAGCGGCAUUAAGCAGUUUCC

UUCGCCGUAAUUCGUCAAAGG

Target sequence

9 base loopA

C

Figure 12. Schematic diagram of plasmids and short hairpin structure.

A, Human H1 promoter modified pcDNA3.1 plasmid into which the required 

shRNA sequence is cloned at the Acc65I and XbaI restriction sites. Image 

generated using pDRAW32 software. B, pMACS Kk.II plasmid which encodes the 

truncated H-2Kk cell surface protein. Image obtained from www.miltenyibiotec.co

m/pid/ProductGroupImageView.aspx?id=26&l=1&opid=16624. C, The 9 base 

sequence which forms the hairpin and an example target sequence specific for 

CSN2.    

pcDNA3.1 H1
4555 bp

Acc65I - 100 - G'GTAC_C
XbaI - 106 - T'CTAG_A

BGH

S
V

4
0
 O

ri

Neom

y
c
in

R

A
m

pR

p
U

C
 O

ri

A

SV40 pA

Human H1 promoter

shRNA cloning site

pcDNA3.1 H1
4555 bp

Acc65I - 100 - G'GTAC_C
XbaI - 106 - T'CTAG_A

BGH

S
V

4
0
 O

ri

Neom

y
c
in

R

A
m

pR

p
U

C
 O

ri

A

SV40 pA

Human H1 promoter

shRNA cloning site



 112

A
n

n
e

a
le

d
 o

li
g

o
s

V
e

c
to

r 
d

ig
e

s
t

U
n

d
ig

e
s

te
d

 v
e

c
to

r 

U
n

d
ig

e
s

te
d

 v
e

c
to

r 

P
o

s
it

iv
e

 c
o

n
tr

o
l 

P
o

s
it

iv
e

 c
o

n
tr

o
l 

L
ig

a
ti

o
n

 

L
ig

a
ti

o
n

 

N
e

g
a

ti
v

e
 c

o
n

tr
o

l

Figure 13. Short hairpin vector preparation and validation.

A, Modified pcDNA3.1 vector was digested and the products separated by 

electrophoresis on a 1% agarose gel along with positive and negative controls to 

determine plasmid digestion. B, Annealed oligonucleotides and digested vector 

were ligated and the products separated by electrophoresis on a 1% agarose gel 

along with a negative control to determine oligo and digested plasmid ligation. C, 

Following amplification of plasmid DNA in DH5α, plasmid DNA was isolated and 

sequenced. The shCSN5 plasmid insert sequence is shown. Images shown are 

representative of several digestions, ligations and sequencing reactions. 
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electrophoresis on a 1% agarose gel along with positive and negative controls to 

determine plasmid digestion. B, Annealed oligonucleotides and digested vector 

were ligated and the products separated by electrophoresis on a 1% agarose gel 

along with a negative control to determine oligo and digested plasmid ligation. C, 

Following amplification of plasmid DNA in DH5α, plasmid DNA was isolated and 

sequenced. The shCSN5 plasmid insert sequence is shown. Images shown are 

representative of several digestions, ligations and sequencing reactions. 

A

C

B



 113

colonies screened for correct sequence insertion by sequencing of purified plasmid DNA 

(figure 13C).  

 

3.2.2 Determination of transfection efficiency and verification of co-transfection  

 

The truncated murine major histocompatibility (MHC) class I cell surface protein, H-2Kk, 

is transiently expressed on the cell surface of transfected cells between 6 and 48 hours 

post-transfection with HKK plasmid. The transfection efficiency of K562 cells was 

therefore determined by flow cytometry following H-2Kk staining of mock transfected 

and HKK transfected cells 24 hours post transfection. As can be seen in figure 14A, a 

significant proportion of HKK transfected cells stained positive for the cell surface 

protein relative to mock transfected cells, demonstrating that, prior to H-2Kk mediated 

cell sorting, the HKK plasmid was present in around 27% of K562 cells.  

 

As a co-transfection technique was being used, it was important to verify that both 

plasmids had been efficiently transfected into cells. Post enrichment for H-2Kk positive 

cells by magnetic bead sorting, cells were harvested, RNA extracted and quantified, and 

cDNA produced using 1µg RNA. As the pcDNA3.1-H1 plasmid contains the neomycin 

resistance gene, PCR was carried out in order to detect the presence of this gene in 

transfected cells. Figure 14B shows that mock transfected cells and cells transfected with 

HKK alone do not contain the neomycin resistance gene, whereas those cells co-

transfected with HKK and pcDNA3.1-H1 are positive for the neomycin resistance PCR  
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Figure 14. Validation of K562 cell co-transfection.

Data demonstrating how efficient K562 co-trans fection was determined. A, A 

representative histogram is shown of flow cytometry data demonstrating the HKK 

positive staining of K562 cells trans fected with HKK plasmid relative to mock 

transfected cells. Data shown is the average of n=5 trans fections ±SEM. B, PCR 

for the neomycin resistance gene was carried out on mock, HKK and co-

transfected K562 cells, and products separated by electrophoresis on a 2% 

agarose gel along with both a positive and negative control. K562 cells co-

transfected with the modified pcDNA3.1 plasmid (either vector cont rol or plasmid 

containing short hairpin insert ) were positive for the neomycin resistance gene 

product. Images shown are representative of n=5 transfections. 
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positive staining of K562 cells trans fected with HKK plasmid relative to mock 

transfected cells. Data shown is the average of n=5 trans fections ±SEM. B, PCR 
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product, thereby demonstrating successful co-transfection of cells with both the HKK and 

pcDNA3.1-H1 plasmids.  

 

3.2.3 Assessment of cDNA quality and optimization of primers and probe for QRT-PCR 

 

Prior to mRNA quantification by QRT-PCR, the quality and relative quantities of cDNA 

in each sample was assessed by performing β-actin PCR. As can be seen in figure 15, the 

amount of PCR product produced was relatively equal between samples, indicating that 

cDNA generation had occurred with relatively equal efficiency between samples and that 

the cDNA was of sufficient quality to continue to QRT-PCR. 

 

QRT-PCR primers and probes were designed, verified and optimised prior to 

measurement of gene expression in samples. First, the primers were demonstrated to 

amplify only one specific product of the correct size (figure 16A). Secondly, the optimum 

amount of probe for use in QRT-PCR was determined. This was achieved by adding 

increasing amounts of probe to the QRT-PCR mastermix, and plotting cycle threshold 

(Ct) values against volume of probe. As can be seen in figure 16B, increasing the amount 

of probe in a QRT-PCR reaction reduced the Ct value obtained. The optimal volume of 

probe was identified as the point where the graph reaches a plateau. Finally, the effect of 

multiplexing the gene of interest primer/probe mix with the primer/probe mix for the 18S 

internal control was determined. The highest accuracy is achieved in QRT-PCR by 

measuring the expression of the internal control gene and gene of interest in the same 

reaction mix, known as multiplexing. However, not all primers and probes can be  
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Figure 15. Asse ssment of cDNA quality using β-actin PCR.

Trans fected cells were harvested, RNA extracted, cDNA generated and β-actin

PCR carried out. A representative image of β-actin PCR products separated by 

electrophoresis on a 1% agarose gel is shown. 
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Figure 15. Asse ssment of cDNA quality using β-actin PCR.

Trans fected cells were harvested, RNA extracted, cDNA generated and β-actin

PCR carried out. A representative image of β-actin PCR products separated by 

electrophoresis on a 1% agarose gel is shown. 
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Figure 16. Validation and optimisation of QRT-PCR primers and probe.

A, Primers for the gene of interest were designed, a PCR carried out using these 

primers and the PCR products separated by electrophoresis on a 2% agarose 

gel. A representative image is shown. B, QRT-PCR was carried out using the 

pre-validated primers and 0.5, 1, 1.5, 2, 2.5 and 3µl probe and average cycle 

threshold (CT) values plotted against amount of probe. C, QRT-PCR was carried 

out using the validated primers, the optimised amount of probe and increasing 

amounts of cDNA. The validated primers/probe and 18S internal control 

primers/probe mix were tested both individually and in combination and average 

CT values plotted against amount of cDNA. Representative graphs are shown in 

B and C. 
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multiplexed with 18S primers/probe. In order to determine whether a primers/probe mix 

can be multiplexed, 18S and gene of interest primers and probe were used in both 

singleplex and multiplex QRT-PCR reactions with increasing amounts of cDNA, and Ct 

values plotted against volume of cDNA (figure 16C). The incompatibility of a 

primers/probe set with multiplexing is determined by significant alteration in the 

multiplex Ct values obtained with increasing cDNA compared to singleplex reactions. As 

can be seen in figure 16C, no significant changes in Ct values were observed, indicating 

that the gene of interest primers/probe set can be multiplexed with 18S internal control.    

  

3.2.4 Assessment of target mRNA knockdown 

 

The knockdown plasmids used here produce a specific short hairpin RNA (an example is 

shown in figure 12C), which is processed in the cell by DICER to remove the loop 

sequence, and is in turn integrated into the RISC complex where the resulting double 

stranded RNA sequence targets complementary cellular mRNA sequences for 

degradation. This degradation subsequently results in the loss of the cellular protein 

encoded by this mRNA, thereby generating a knockdown. In order to determine CSN2 

mRNA levels in mock, vector control and shCSN2 K562 cells, cells were harvested day 6 

post transfection, RNA extracted, quantified and cDNA produced using 1µg RNA. Once 

the quality of the sample cDNA was determined and the QRT-PCR protocol optimised, 

CSN2 expression was determined. Co-transfection of cells with HKK and empty vector 

had no significant effect on the expression of CSN2 (figure 17A) relative to expression in 

mock transfected cells. However, co-transfection with HKK and shCSN2 resulted in a  
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Figure 17. Determination of CSN2 mRNA and protein knockdown.

A, Mock, vector control and CSN2 knockdown transfected cells were harvested 

day 6 post transfection, RNA extracted, cDNA generated and QRT-PCR carried 

out. Data shown is the mean CSN2 mRNA expression relative to mock 

transfected cells of n=3 transfections ±SEM. * indicates p<0.05. B, Transfected 

cells were harvested day 6 post transfection, protein extracted and CSN2 protein 

levels in mock, HKK alone, vector control and CSN2 knockdown cell extracts 

determined by western blot. Even loading was determined by β-actin western 

blot. The image shown is representative of five sets of n=3 transfections. 
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Figure 17. Determination of CSN2 mRNA and protein knockdown.

A, Mock, vector control and CSN2 knockdown transfected cells were harvested 

day 6 post transfection, RNA extracted, cDNA generated and QRT-PCR carried 

out. Data shown is the mean CSN2 mRNA expression relative to mock 

transfected cells of n=3 transfections ±SEM. * indicates p<0.05. B, Transfected 

cells were harvested day 6 post transfection, protein extracted and CSN2 protein 

levels in mock, HKK alone, vector control and CSN2 knockdown cell extracts 

determined by western blot. Even loading was determined by β-actin western 

blot. The image shown is representative of five sets of n=3 transfections. 
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day 6 post transfection, RNA extracted, cDNA generated and QRT-PCR carried 

out. Data shown is the mean CSN2 mRNA expression relative to mock 

transfected cells of n=3 transfections ±SEM. * indicates p<0.05. B, Transfected 

cells were harvested day 6 post transfection, protein extracted and CSN2 protein 

levels in mock, HKK alone, vector control and CSN2 knockdown cell extracts 

determined by western blot. Even loading was determined by β-actin western 

blot. The image shown is representative of five sets of n=3 transfections. 
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significant reduction in the level of CSN2 mRNA (figure 17A; P=0.001), with only 0.5% 

CSN2 mRNA remaining in CSN2 knockdowns.   

 

3.2.5 Assessment of target protein knockdown 

 

In order to determine CSN2 protein knockdown, shCSN2 cells were harvested day 6 post 

transfection, protein extracted, quantified, and 20µg used in western blot analyses. 

Importantly, transfection of cells with HKK alone or co-transfection with HKK and 

empty vector (shVC) had no effect on the level of CSN2 protein relative to mock 

transfected cells (figure 17B). However, when cells were co-transfected with HKK and 

shCSN2, CSN2 protein could not be detected, indicating a highly efficient knockdown at 

the protein level (figure 17B).  

 

3.2.6 Assessment of the effect of CSN2 knockdown in K562 cells on SCF
 
components and 

activity 

 

CSN mediated cullin deneddylation has been shown to stabilise F-box proteins and 

protect them against autocatalytic degradation within their respective SCF complex (Wee 

et al., 2005). In accordance with this, knockdown of either CSN4 or CSN5 in human cells 

resulted in an increase in the level of neddylated Cul1, reduction of the F-box protein 

Skp2 and accumulation of the SCFSkp2 target protein p27 (Denti et al., 2006). As CSN2 

has been shown to be integral to the integrity of the CSN complex (Kwok et al., 1998), it 
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was predicted that the CSN2 knockdown achieved in K562 cells would result in similar 

alterations to SCFSkp2 and its target p27.  

 

In order to determine the effect of CSN2 loss on the level of Cul1, Skp2 and p27 proteins, 

vector control and CSN2 knockdown cells were harvested 6 days post transfection, 

protein extracted and the level of proteins in these samples determined by western blot 

analysis.  As shown in figure 18A, knockdown of CSN2 caused a marked increase in 

neddylated Cul1 relative to vector control cells, at the expense of the deneddylated form 

of Cul1. This was confirmed using densitometry which demonstrated that the 

Cul1:Neddylated Cul1 ratio in cells lacking CSN2 was significantly less than that of 

vector controls (figure 18B; P=0.008). Furthermore, western blot analysis of Skp2 protein 

levels showed apparent total loss of Skp2 in cells lacking CSN2 (figure 18C), whilst p27 

western blot analysis demonstrated p27 accumulation in CSN2 knockdown cells relative 

to vector control cells (figure 18D). This data suggests that loss of CSN2 results in 

deregulation of Cul1 neddylation and therefore, aberrant SCFSkp2 activity in K562 cells.  

 

The stability of cullin proteins has also been shown to be dependent on CSN mediated 

cullin deneddylation (Wu et al., 2005). The effect of CSN2 loss on the level of both Cul1 

and Cul3 protein was therefore studied. In this case transfected cells were harvested at the 

later time point of day 9 post transfection and the level of Cul1 protein determined by 

western blot. In accordance with published data, Cul1 protein was significantly decreased 

in CSN2 knockdown cells relative to vector control cells day 9 post transfection (figure 

19). Furthermore, Cul3 protein was also reduced in cells lacking CSN2 compared to  
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Figure 18. CSN2 knockdown results in accumulation of neddylated Cul1, 

loss of the F-box protein Skp2 and accumulation of p27.

Trans fected cells were harvested day 6 post transfection, protein extracted and 

Cul1 (A), Skp2 (C) and p27 (D) protein levels in vector control and CSN2 

knockdown cell extracts determined by western blot. Even loading was 

determined by β-actin western blot. The images shown are representative of 

three sets of n=3 trans fections. B, Densitometry was carried out on the Cul-1 

western blot and the Cul-1 to neddylated Cul-1 ratios of vector control and CSN2 

knockdown cells calculated. Data shown is the average of n=3 transfections 

±SEM. * indicates p<0.05. 
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Figure 18. CSN2 knockdown results in accumulation of neddylated Cul1, 

loss of the F-box protein Skp2 and accumulation of p27.

Trans fected cells were harvested day 6 post transfection, protein extracted and 

Cul1 (A), Skp2 (C) and p27 (D) protein levels in vector control and CSN2 

knockdown cell extracts determined by western blot. Even loading was 

determined by β-actin western blot. The images shown are representative of 

three sets of n=3 trans fections. B, Densitometry was carried out on the Cul-1 

western blot and the Cul-1 to neddylated Cul-1 ratios of vector control and CSN2 

knockdown cells calculated. Data shown is the average of n=3 transfections 

±SEM. * indicates p<0.05. 
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Figure 19. CSN2 knockdown results in significant loss of Cul1 protein.

Trans fected cells were harvested day 9 post transfection, protein extracted and 

Cul1 protein levels in vector control and CSN2 knockdown cell extracts 

determined by western blot. Even loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN2 

knockdown transfections.
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Figure 19. CSN2 knockdown results in significant loss of Cul1 protein.

Trans fected cells were harvested day 9 post transfection, protein extracted and 

Cul1 protein levels in vector control and CSN2 knockdown cell extracts 

determined by western blot. Even loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN2 

knockdown transfections.
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vector controls at day 6 post transfection (figure 20A). Densitometry of this western blot 

demonstrated that this loss in total Cul3 protein is significant (figure 20B; P=0.0007), 

whilst densitometry also showed that there was a significant reduction in the 

Cul3:Neddylated Cul3 ratio as observed for Cul1 (figure 20C; P=0.0009). These data 

confirm that the CSN is vital for cullin protein stability and further suggest that loss of 

CSN2 affects multiple cullins/CRL complexes and therefore the degradation of a plethora 

of proteins.  

 

3.2.7 Assessment of the effect of CSN2 knockdown on the level of F-box proteins 

 

There appear to be discrepancies within the literature with respect to the effect of CSN 

disruption on the level of particular F-box proteins. For example, the stability of the 

Neurospora β-TrCP homolog, FWD-1, has been shown to be dependent on CSN activity, 

with CSN2 knockout resulting in a significant increase in FWD-1 protein degradation 

(He et al., 2005), whilst others have reported no effect of CSN disruption on the level of 

this F-box protein in HEK293 cells (Su et al., 2008). In order to compare the effect of 

CSN2 knockdown on the level of multiple F-box proteins, protein levels of Skp2, Cdc4 

and β-TrCP were determined over time following knockdown of CSN2 in K562 cells. 

Vector control and CSN2 knockdown cells were harvested 2, 3, 6 and 9 days post 

transfection, proteins extracted and the levels of F-box proteins determined by western 

blot analyses. By day 9 post transfection, all three F-box proteins were undetectable in 

the CSN2 knockdown cells (Figure 21). However, the loss of these F-box proteins was 

found to occur sequentially. Densitometry was carried out on all F-box protein westerns  
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Figure 20. CSN2 knockdown results in a significant decrease in the 

Cul3:Nedd8 Cul3 ratio and loss of Cul3 protein.

A, Transfected cells were harvested day 6 post transfection, protein extracted 

and Cul3 protein levels in vector control and CSN2 knockdown cell extracts 

determined by western blot. Even loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN2 

knockdown transfections. Densitometry was carried out on the Cul3 western blot 

and the total Cul3 protein (B) and the Cul3 to neddylated Cul3 ratio (C) of vector 

control and CSN2 knockdown cells calculated. Data shown is the average of n=3 

transfections ±SEM. * indicates p<0.05. 
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Figure 20. CSN2 knockdown results in a significant decrease in the 

Cul3:Nedd8 Cul3 ratio and loss of Cul3 protein.

A, Transfected cells were harvested day 6 post transfection, protein extracted 

and Cul3 protein levels in vector control and CSN2 knockdown cell extracts 

determined by western blot. Even loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN2 

knockdown transfections. Densitometry was carried out on the Cul3 western blot 

and the total Cul3 protein (B) and the Cul3 to neddylated Cul3 ratio (C) of vector 

control and CSN2 knockdown cells calculated. Data shown is the average of n=3 

transfections ±SEM. * indicates p<0.05. 
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Figure 21. CSN2 knockdown results in the sequential loss of F-box 

proteins.

A, Trans fected cells were harvested day 6 and day 9 post-transfection, protein 

extracted and Skp2, Cdc4 and β-TrCP protein levels in vector control and CSN2 

knockdown cell extracts determined by western blot. Even loading was 

determined by β-actin western blot. B, Transfected cells were harvested day 2, 3, 

6 and 9 post-transfection, protein extracted and Skp2, Cdc4 and β-TrCP protein 

levels in vector control and CSN2 knockdown cell extracts determined by western 

blot. Densitometry was used to determine the level of each of the proteins, 

normalised for loading using β-actin, in CSN2 knockdowns at each time point. 

Data was normalised to protein levels in vector control cells and the data plotted 

as the mean ±SEM. 
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Figure 21. CSN2 knockdown results in the sequential loss of F-box 

proteins.

A, Trans fected cells were harvested day 6 and day 9 post-transfection, protein 

extracted and Skp2, Cdc4 and β-TrCP protein levels in vector control and CSN2 

knockdown cell extracts determined by western blot. Even loading was 

determined by β-actin western blot. B, Transfected cells were harvested day 2, 3, 

6 and 9 post-transfection, protein extracted and Skp2, Cdc4 and β-TrCP protein 

levels in vector control and CSN2 knockdown cell extracts determined by western 

blot. Densitometry was used to determine the level of each of the proteins, 

normalised for loading using β-actin, in CSN2 knockdowns at each time point. 

Data was normalised to protein levels in vector control cells and the data plotted 

as the mean ±SEM. 
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at all time points assessed, with normalization to β-actin signal for loading correction. 

Values obtained for CSN2 knockdown samples were normalized to vector control values 

and the data plotted as a line graph ± the standard error of the mean (figure 21B). Skp2 

protein was reduced by ~60% by day 2 and over 90% by day 6, whereas Cdc4 was lost at 

a slower rate with 30-40% lost by day 3 increasing to ~70% by day 6 post transfection 

(Figure 21B). Loss of β-TrCP was still more retarded with ~70% protein remaining at 

day 6 (Figure 21B). Importantly, treatment of shCSN2 cells with the proteasome inhibitor 

MG132 (10µM; (Naujokat et al., 2000, Su et al., 2008)) resulted in the rescue of F-box 

protein levels in these cells relative to vector controls (figure 22). This data suggests that 

these F-box proteins are, at least in part, degraded by the 26S proteasome in the absence 

of CSN2; degradation which is most likely mediated by the autocatalytic degradation 

mechanism reported previously (Wee et al., 2005, Galan and Peter, 1999).  

 

3.2.8 Assessment of the effect of CSN2 knockdown on F-box protein mRNA 

 

Although proteasome inhibition rescued F-box proteins in CSN2 knockdown cells, rescue 

was only partial, suggesting that CSN2 loss may also affect F-box protein expression as 

well as degradation. The effect of CSN2 knockdown on the level of F-box protein mRNA 

was therefore investigated. Vector control and shCSN2 cells were harvested at the time 

points indicated and Skp2, Cdc4 and β-TrCP mRNA measured by QRT-PCR. Skp2 

mRNA was significantly reduced at all time points studied, whilst Cdc4 and β-TrCP 

mRNA were significantly increased at day 3 and day 6 post transfection, respectively 

(figure 23). These data suggest that both decreased transcription and increased protein  
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Figure 22. F-box protein loss in CSN2 knockdowns is rescued with the 
addition of the proteasome inhibitor MG132. 

Transfected cells were treated with either DMSO (control) or 10µM MG132 for the 
final 18 hours of culturing and cells harvested, protein extracted and Skp2, Cdc4 
and β-TrCP protein levels in cell extracts determined by western blot. Even 
loading was determined by β-actin western blot. 
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Figure 22. F-box protein loss in CSN2 knockdowns is rescued with the 
addition of the proteasome inhibitor MG132. 

Transfected cells were treated with either DMSO (control) or 10µM MG132 for the 
final 18 hours of culturing and cells harvested, protein extracted and Skp2, Cdc4 
and β-TrCP protein levels in cell extracts determined by western blot. Even 
loading was determined by β-actin western blot. 
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Figure 22. F-box protein loss in CSN2 knockdowns is rescued with the 
addition of the proteasome inhibitor MG132. 

Transfected cells were treated with either DMSO (control) or 10µM MG132 for the 
final 18 hours of culturing and cells harvested, protein extracted and Skp2, Cdc4 
and β-TrCP protein levels in cell extracts determined by western blot. Even 
loading was determined by β-actin western blot. 
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Figure 23. CSN2 knockdown results in significant alteration to the level of 

F-box mRNA.  

The level of Skp2, Cdc4 and β-TrCP mRNA in shCSN2 cells was determined at 

each time point post transfection relative to expression in vector cont rol scramble 

cells by QRT-PCR. Data shown is the mean ± SEM of n=3 transfections.         * 

indicates significant difference to vector controls with p<0.05.
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Figure 23. CSN2 knockdown results in significant alteration to the level of 

F-box mRNA.  

The level of Skp2, Cdc4 and β-TrCP mRNA in shCSN2 cells was determined at 

each time point post transfection relative to expression in vector cont rol scramble 

cells by QRT-PCR. Data shown is the mean ± SEM of n=3 transfections.         * 

indicates significant difference to vector controls with p<0.05.
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degradation contribute to the reduced Skp2 protein level in CSN2 knockdown cells, 

whilst indicating that loss of Cdc4 and β-TrCP protein is not attributable to altered 

transcription. Finally, these data suggest a role, either direct or indirect, for the CSN 

complex in the regulation of F-box protein expression.  

 

3.2.9 Assessment of the effect of CSN2 knockdown on cell growth and cell death 

 

In order to determine the effects of CSN2 loss on cell growth and viability, cell counts 

were taken day 2-7 and day 9 post transfection, the cumulative cell growth for both 

vector control and CSN2 knockdown cells was calculated and the data plotted ± the 

standard error of the mean of n=3 transfections. Knockdown of CSN2 caused 

dramatically reduced cell growth followed by loss of cell numbers mediated by loss of 

cell viability (Figure 24). The proliferation of cells lacking CSN2 was significantly less 

than that of shVC by day 4 post transfection (Figure 24, P=0.034), as determined using 

the t-test. These findings were corroborated by thymidine incorporation data. At day 3 

post-transfection, there was no significant difference in the incorporation of tritiated 

thymidine into cellular DNA between shVC and CSN2 knockdown cells (Figure 25; 

P=0.195). However, by day 5 the CSN2 knockdown cells demonstrated a significant 

decrease in thymidine incorporation (P=0.007) which decreased even further by day 7 

post transfection (Figure 25; P=1.1x10-5).   

 

The cumulative growth profile of CSN2 knockdown cells (figure 24. Insert) suggests that 

the absence of CSN2 results in either slower passage through the cell cycle or cell cycle   
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Figure 24. CSN2 knockdown results in significantly reduced cell growth.
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control data. Data shown are the mean ± SEM of n=3. * indicates a significant 

difference to vector control cell growth with p<0.05. 
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Figure 25. CSN2 knockdown results in significantly reduced thymidine 

incorporation into cellular DNA.

Thymidine incorporation in shCSN2 and vector control cells was measured day 3, 

5 and 7 post transfection. Data shown are the mean ± SEM of n=3 transfections.
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day 3 day 5 day 7

T
h

y
m

id
in

e
 I

n
c

o
rp

o
ra

ti
o

n
 (

c
p

m
)

0

10000

20000

30000

40000

50000

60000
shVC

shCSN2

*

*

day 3 day 5 day 7

T
h

y
m

id
in

e
 I

n
c

o
rp

o
ra

ti
o

n
 (

c
p

m
)

0

10000

20000

30000

40000

50000

60000
shVC

shCSN2

*

*

Figure 25. CSN2 knockdown results in significantly reduced thymidine 

incorporation into cellular DNA.

Thymidine incorporation in shCSN2 and vector control cells was measured day 3, 

5 and 7 post transfection. Data shown are the mean ± SEM of n=3 transfections.

* indicates p<0.05. 



 133

inhibition. In order to discern between these two possibilities, the cell cycle profiles of 

both vector control cells and cells lacking CSN2 were determined day 6 post transfection 

(figure 26). The percentage of cells in subG1, G1, S, and G2M in vector control and 

CSN2 knockdown cells was determined using flow cytometry and plotted as pie charts. 

Data shown is the mean ± the standard error of the mean of n=3 transfections. The 

significance of any differences was determined using the t-test. As can be seen in figure 

26, the cell cycle profiles of vector control and CSN2 knockdown cells were relatively 

similar, with no significant differences detected in the G1, S or G2M phases of the cell 

cycle. However, an approximately twofold increase in subG1 cells relative to vector 

control cells was observed (figure 26B; P=0.0003). As accumulation of cells in subG1 is 

indicative of cell death, this finding is in accordance with the onset of cell death at day 6 

post transfection observed from the cumulative growth data. Together, the cumulative 

growth, thymidine incorporation and cell cycle flow cytometry data suggest that loss of 

CSN2 results in a slowed cell proliferation rate of K562s followed by cell death.    

 

3.2.10 Determination of the mechanism of CSN2 knockdown induced cell death 

 

In order to determine whether the loss of viability in CSN2 knockdown cells was due to 

apoptosis, vector control and CSN2 knockdown cells were harvested day 6 post 

transfection, protein extracted and caspase-9 cleavage determined by western blot 

analysis. As can be seen in figure 27, equivalent amounts of caspase-9 were present in 

vector control and CSN2 knockdown cells, and no caspase-9 cleavage product was 

detected. As a second measure of apoptosis, cells were co-analysed for annexin V  
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Figure 26. CSN2 knockdown has no significant effect on the cell cycle.

A, A representative image of CSN2 knockdown (black line) cell cycle profiles day 

6 post transfection relative to vector control (light grey in fill). B, Statistical 

analysis of cell cycle data is shown as pie charts. Data shown are the mean ± 

SEM of n=3. * indicates p<0.05.
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Figure 26. CSN2 knockdown has no significant effect on the cell cycle.

A, A representative image of CSN2 knockdown (black line) cell cycle profiles day 

6 post transfection relative to vector control (light grey in fill). B, Statistical 

analysis of cell cycle data is shown as pie charts. Data shown are the mean ± 

SEM of n=3. * indicates p<0.05.
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Figure 27. CSN2 knockdown has no effect on ca spase-9 activation.

Trans fected cells were harvested day 6 post transfection, protein extracted and 

caspase-9 protein levels in vector control and CSN2 knockdown cell extracts 

determined by western blot. Even loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN2 

knockdown transfections.
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Figure 27. CSN2 knockdown has no effect on ca spase-9 activation.

Trans fected cells were harvested day 6 post transfection, protein extracted and 

caspase-9 protein levels in vector control and CSN2 knockdown cell extracts 

determined by western blot. Even loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN2 

knockdown transfections.
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staining and propidium iodide uptake day 7 and day 9 post transfection (Figure 28). 

Annexin V binds phosphatidylserine, a phospholipid which is translocated from the inner 

to the outer leaflet of the plasma membrane during apoptosis; annexin V staining is 

therefore a measure of apoptosis. Propidium iodide is taken up by all cells but is 

efficiently effluxed by viable cells, whereas dead/dying cells remain PI-positive. In K562 

cells, knockdown of CSN2 led to an increase in late apoptotic (annexin V+ve:PI+ve) cells 

(12.5%±0.9; P=0.023) compared to shVC cells (5.5%±2.2; figure 28A) day 7 post 

transfection, and resulted in no change in the proportion of early apoptotic (annexin 

V+ve:PI-ve) cells relative to vector control cells (5.5%±0.8 and 5.9%±1.9, respectively, 

P=0.826; figure 28A). However, by day 9 post transfection over two thirds of cells 

lacking CSN2 were annexin V positive (52%±2.4 annexin V+ve:PI+ve; P=4.1x10-5, and 

16.8±1.8 annexin V+ve:PI-ve; P=0.001), indicative of significant apoptosis in these cells 

relative to vector control cells (7.2%±1.5 late apoptotic and 5%±0.2 early apoptotic, 

figure 28B). Although CSN2 loss resulted in a dramatic increase in the proportion of 

apoptotic cells by day 9 post transfection, the cell death apparent in CSN2 knockdown 

cells between days 5 and 7 (37.2%±6.6; P=0.015, figure 24) cannot be adequately 

accounted for by increased apoptosis during this time as measured by caspase-9 western 

and annexin V staining (figures 27 & 28A). Together, these data suggest that the cell 

death which ensues as a consequence of CSN2 loss involves a mix of both apoptotic and 

non-apoptotic cell death.    

 

Annexin V and propidium iodide staining of CSN2 knockdown cells demonstrated that 

there was a significant shift to greater PI positivity in annexin V negative cells resulting  
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Figure 28. CSN2 knockdown results in a significant increase in annexin V 

positivity.

Binding of Annexin V and uptake of propidium iodide in vector control (left) and 

CSN2 knockdown (right) cells day 7 (A) and day 9 (B) post transfection was 

analysed by flow cytometry. The lower left quadrant encompasses the viable 

population of cells, the lower right quadrant contains early apoptotic cells, the 

upper right quadrant contains late apoptotic cells and the upper left quadrant 

contains the necrotic cell population. Dot plots shown are representative of n=3 

transfections. The mean of three data sets was taken and the values shown in the 

corresponding quadrant ± SEM. * indicates significance with p<0.05. 
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Figure 28. CSN2 knockdown results in a significant increase in annexin V 

positivity.

Binding of Annexin V and uptake of propidium iodide in vector control (left) and 

CSN2 knockdown (right) cells day 7 (A) and day 9 (B) post transfection was 

analysed by flow cytometry. The lower left quadrant encompasses the viable 

population of cells, the lower right quadrant contains early apoptotic cells, the 

upper right quadrant contains late apoptotic cells and the upper left quadrant 

contains the necrotic cell population. Dot plots shown are representative of n=3 

transfections. The mean of three data sets was taken and the values shown in the 

corresponding quadrant ± SEM. * indicates significance with p<0.05. 
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in a significant increase in cells arising in the upper left quadrant relative to vector 

controls day 7 post transfection (6.5%±0.1 in CSN2 knockdowns compared to 0.5%±0.02 

in vector controls, P=0.0018; figure 28A). This shift was also observed day 9 post 

transfection (figure 28B). These data are better displayed as a histogram of cell count 

against propidium iodide, in which only the annexin V negative population is considered. 

This analysis demonstrates that over 25% of annexin V negative CSN2 knockdown cells 

were propidium iodide positive by day 7 post transfection (figure 29A; P=3.3x10-5). This 

shift increased by day 9 post transfection, with over half of annexin V negative CSN2 

knockdown cells retaining propidium iodide (figure 29B; P=5.5x10-6). CSN2 knockdown 

cells were also associated with the formation of large vacuoles (see below) which raised 

the possibility that the accumulation of propidium iodide (PI) positive cells in a 

population lacking CSN2 was an artifact of PI retention within vacuoles. However, 

visualization of PI stained shCSN2 cells demonstrated there was no PI retention within 

vacuoles (figure 29C). These data are further indicative of the occurrence of both non-

apoptotic and apoptotic cell death in cells lacking CSN2.  

 

3.2.11 Morphological analyses of CSN2 knock down in K562 cells 

 

Both vector control and CSN2 knockdown cell cytospins were stained with Jenner-

Giemsa in order to observe cell morphology. This staining identified large vacuoles in a 

significant proportion of CSN2 knockdown cells which were not present in vector control 

cells (figure 30A). It was considered that these vacuoles may be autophagosomes. To test 

this, cells were stained with the autophagosome marker monodansylcadaverine (MDC).  
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Figure 29. CSN2 knockdown results in a significant increase in the 

proportion of propidium iodide+ve:annexin V-ve cells, not caused by 

propidium iodide retention within vacuoles. 

The histograms shown are representative of the propidium iodide+v e:annexin V-v e

staining of n=3 vector controls (light grey in fill) and CSN2 knockdowns (black 

line) day 6 (A) and day 9 (B) post transfection. The mean percentage of 

propidium iodide positive staining in annexin V-v e shCSN2 cells is shown ±SEM.   

* indicates p<0.05. C, shCSN2 cells were stained with propidium iodide and 

cytospins made to determine any retention of the stain within the vacuoles of 

shCSN2 cells day 6 post transfection. The image shown is representative of n=3 

transfections.
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Figure 29. CSN2 knockdown results in a significant increase in the 

proportion of propidium iodide+ve:annexin V-ve cells, not caused by 

propidium iodide retention within vacuoles. 

The histograms shown are representative of the propidium iodide+v e:annexin V-v e

staining of n=3 vector controls (light grey in fill) and CSN2 knockdowns (black 

line) day 6 (A) and day 9 (B) post transfection. The mean percentage of 

propidium iodide positive staining in annexin V-v e shCSN2 cells is shown ±SEM.   

* indicates p<0.05. C, shCSN2 cells were stained with propidium iodide and 

cytospins made to determine any retention of the stain within the vacuoles of 

shCSN2 cells day 6 post transfection. The image shown is representative of n=3 

transfections.
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Figure 30. CSN2 knockdown cells contain autophagosomes. 

A, Cytospins were stained with Jenner-Giemsa for visualisation of vector control 

and shCSN2 cell morphology day 6 post transfection. B, Vector control and 

shCSN2 cells were stained with the autophagosome marker 

monodansylcadaverine day 6 post transfection and cytospins made for the 

visualisation of autophagosomes. All images shown are representative of n=3 

transfections. 
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Figure 30. CSN2 knockdown cells contain autophagosomes. 

A, Cytospins were stained with Jenner-Giemsa for visualisation of vector control 

and shCSN2 cell morphology day 6 post transfection. B, Vector control and 

shCSN2 cells were stained with the autophagosome marker 

monodansylcadaverine day 6 post transfection and cytospins made for the 

visualisation of autophagosomes. All images shown are representative of n=3 

transfections. 
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MDC staining and DIC imaging identified these vacuoles as autophagosomes, whilst the 

staining of vector control cells with MDC was minimal (figure 30B). To further validate 

the association of autophagy with CSN2 knockdown cells, both vector control and CSN2 

knockdown cells were harvested day 6 post transfection, protein extracted and the level 

of the autophagy marker protein light chain 3-II (LC3-II) determined by western blot 

analysis. As shown in figure 31, there was a highly significant accumulation of LC3-II 

protein in cells deficient in CSN2 relative to vector control cells. Thus, CSN2 knockdown 

cells were associated with autophagy.  

 

3.2.12 Autophagy inhibition recapitulates shCSN2 cell growth, morphology and LC3-II 

accumulation 

 

Although the observed significant loss of cell viability, MDC+ve vacuolar morphology 

and LC3-II accumulation in CSN2 knockdowns suggests that these cells were undergoing 

autophagic cell death, current literature indicates that the large vacuoles and LC3-II 

accumulation observed in shCSN2 cells could be attributable to either autophagy 

induction or inhibition (Mizushima and Yoshimori, 2007, Klionsky et al., 2008). 

Autophagy inhibitors (3-methyl adenine, 3-MA; Bafilomycin A1, Baf A1) and an inducer 

(rapamycin) were therefore used in order to provide insight into the phenotype observed 

in shCSN2 cells.  

 

The concentration of 3-MA used was determined from associated literature (Yan et al., 

2006). Surprisingly, treatment of vector control cells with the early stage autophagy  
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Figure 31. CSN2 knockdown results in accumulation of the autophagy 
marker protein LC3-II.

Transfected cells were harvested day 6 post transfection, protein extracted and 
LC3-II protein levels in vector control and CSN2 knockdown cell extracts 
determined by western blot. Even loading was determined by β-actin western 
blot. The image shown is representative of three sets of n=3 transfections.
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Figure 31. CSN2 knockdown results in accumulation of the autophagy 
marker protein LC3-II.

Transfected cells were harvested day 6 post transfection, protein extracted and 
LC3-II protein levels in vector control and CSN2 knockdown cell extracts 
determined by western blot. Even loading was determined by β-actin western 
blot. The image shown is representative of three sets of n=3 transfections.
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inhibitor 3-MA recapitulated the cumulative cell growth kinetics of shCSN2 cells, whilst 

having a relatively small effect on the growth of shCSN2 cells (figure 32). These findings 

suggested that CSN2 loss may result in autophagy inhibition. For this to be consistent 

with the occurrence of large vacuoles in shCSN2 cells, such autophagy inhibition would 

have to be occurring at a late stage. The late stage autophagy inhibitor Baf A1 was thus 

used to further investigate the possibility of late stage autophagy inhibition in shCSN2 

cells. The concentration of Baf A1 to be used had to first be determined experimentally 

due to variation in the literature (Fader et al., 2008, Jones et al., 1999, Savina et al., 2003, 

Shacka et al., 2006). Treatment of wild-type K562 cells for 48 hours with either 10nM, 

100nM or 1µM Baf A1 resulted in a significant amount of apoptotic cell death at this 

time point (figure 33A) with a significant reduction in cell number (figure 33B), most 

likely attributable to the associated toxicity of the compound. It was therefore concluded 

that, rather than a time course, a 48 hour treatment would be optimal. Interestingly, it was 

observed during dose titration experiments that treatment of wild-type K562 cells for 48 

hours with 1µM Baf A1 resulted in a dramatic accumulation of LC3-II protein (figure 

33C) and the formation of large vacuoles (figure 33D). This finding was also confirmed 

in vector control cells, with treatment of shVC cells with 1µM Baf A1 for 48 hours also 

recapitulating both the vacuolar morphology (figure 34A) and the LC3-II protein 

accumulation (figure 34B) observed in shCSN2 cells. Cumulatively, autophagy inhibitor 

data suggests that cells lacking CSN2 undergo autophagy inhibition at a late stage.  

 

For further indication of the effect of CSN2 loss on autophagy, the autophagy inducer 

rapamycin was also used. Cells were treated with three different concentrations of  
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Figure 32. Treatment of vector control cells with 3-methyladenine 

recapitulates the cell growth pattern of CSN2 knockdown cells, whilst 

having little effect on cells lacking CSN2. 

Cell counts were taken daily and the cumulative growth calculated. The 

cumulative growth of vector controls and CSN2 knockdowns treated with either 

DMSO (cont rol) or the autophagy inhibitor 3-ma is shown. The insert has had the 

DMSO treated vector control data removed. Data shown are the mean ± SEM of 

n=3.
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Figure 32. Treatment of vector control cells with 3-methyladenine 

recapitulates the cell growth pattern of CSN2 knockdown cells, whilst 

having little effect on cells lacking CSN2. 

Cell counts were taken daily and the cumulative growth calculated. The 

cumulative growth of vector controls and CSN2 knockdowns treated with either 

DMSO (cont rol) or the autophagy inhibitor 3-ma is shown. The insert has had the 

DMSO treated vector control data removed. Data shown are the mean ± SEM of 

n=3.
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Figure 33. Dose titration of bafilomycin A1. 

K562 cells were treated for 48 hours with either DMSO (control) or bafilomycin A1 

and Annexin V flow cytometry (A), cell counts (B) LC3-II western blotting (C) and 

Jenner-Giemsa staining (D) carried out. Data shown is representative of n=3.       

* indicates p<0.05. 
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Figure 33. Dose titration of bafilomycin A1. 

K562 cells were treated for 48 hours with either DMSO (control) or bafilomycin A1 

and Annexin V flow cytometry (A), cell counts (B) LC3-II western blotting (C) and 

Jenner-Giemsa staining (D) carried out. Data shown is representative of n=3.       

* indicates p<0.05. 
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Figure 34. Treatment of vector control cells with bafilomycin A1 

recapitulates the vacuolar morphology and LC3-II accumulation observed 

in shCSN2 cells. 

A, Jenner-Giemsa staining of shVC +/- 48 hour 1µM bafilomycin A1 treatment. 

Images shown are representative of n=3 trans fections. B, Vector control cells 

treated with either DMSO (cont rol) or the autophagy inhibitor bafilomycin A1 for 

48 hours were harvested and the level of LC3-II and β-actin protein determined 

by western blot. 
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Figure 34. Treatment of vector control cells with bafilomycin A1 

recapitulates the vacuolar morphology and LC3-II accumulation observed 

in shCSN2 cells. 

A, Jenner-Giemsa staining of shVC +/- 48 hour 1µM bafilomycin A1 treatment. 

Images shown are representative of n=3 trans fections. B, Vector control cells 

treated with either DMSO (cont rol) or the autophagy inhibitor bafilomycin A1 for 

48 hours were harvested and the level of LC3-II and β-actin protein determined 

by western blot. 
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rapamycin for 6 days and the level of LC3 protein determined by western blot. The data 

demonstrates that no accumulation of LC3-II occurs with rapamycin treatment (figure 

35). However, a dose dependent increase in the LC3-II precursor protein LC3-I was 

observed, demonstrating that the compound is functional with respect to autophagy 

induction (figure 35). Collectively, these data imply strongly that CSN2 knockdown 

results in autophagy inhibition followed by apoptotic or non-apoptotic cell death.  

 

It was hypothesized that the inhibition of autophagy in CSN2 knockdown cells may result 

in the accumulation of cellular protein, particularly in the absence of functional CRL 

complexes. To test this hypothesis, vector control and CSN2 knockdown cells were 

harvested day 6 post transfection and the amount of protein per cell calculated. Data was 

plotted as the average of n=3 transfections ± the standard error of the mean and the 

significance of any changes determined using the t-test (figure 36). As can be seen in 

figure 36, there was a significant increase in the amount of cellular protein in cells 

lacking CSN2 compared to vector control cells (P=0.017).    

 

3.2.13 Analysis of the effect of a vector control scramble sequence 

 

The use of interfering RNA has been associated with off target effects (Fedorov et al, 

2006). In order to demonstrate that the knockdowns generated here are due to the 

presence of a specific shRNA sequence, a vector control scramble sequence which 

encodes a non-targeting shRNA was generated, cloned into pcDNA3.1-H1 and co-

transfected into cells together with HKK. Figure 37A demonstrates that there is no effect  
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Figure 35. Treatment of K562 cells with the autophagy inducer rapamycin 

does not recapitulate the LC3-II accumulation observed in shCSN2 cells. 

K562 cells were treated with either DMSO (control) or the autophagy inducer 

rapamycin for 6 days and the level of LC3-I, LC3-II and β-actin protein 

determined by western blot. 
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Figure 35. Treatment of K562 cells with the autophagy inducer rapamycin 

does not recapitulate the LC3-II accumulation observed in shCSN2 cells. 

K562 cells were treated with either DMSO (control) or the autophagy inducer 

rapamycin for 6 days and the level of LC3-I, LC3-II and β-actin protein 

determined by western blot. 
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Figure 36. CSN2 knockdown results in a significant increase in total cellular 

protein.

Trans fected cells were counted, harvested day 6 post transfection and protein 

extracted and quantified. The amount of protein per cell in both vector control and 

CSN2 knockdown cells was determined. Data shown is the mean ±SEM of n=3 

transfections. * indicates p<0.05. 
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Figure 36. CSN2 knockdown results in a significant increase in total cellular 

protein.

Trans fected cells were counted, harvested day 6 post transfection and protein 

extracted and quantified. The amount of protein per cell in both vector control and 

CSN2 knockdown cells was determined. Data shown is the mean ±SEM of n=3 

transfections. * indicates p<0.05. 
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Figure 37. A vector control scramble sequence has no signi ficant effect on 

the level of CSN2 or CSN5 protein or mRNA.

A, Trans fected cells were harvested day 9 post transfection, protein extracted 

and CSN2 and CSN5 protein levels in empty vector and vector control scramble 

cell extracts determined by western blot. Even loading was determined by β-actin

western blot. The image shown is of three independent empty vector and vector 

control scramble transfections. B, Empty vector and vector control scramble 

transfected cells were harvested day 9 post transfection, RNA extracted, cDNA

generated and QRT-PCR carried out. CSN2 and CSN5 mRNA expression in 

vector control scramble cells relative to empty vector transfected cells is shown. 

Data is the mean of n=3 trans fections ±SEM.
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Figure 37. A vector control scramble sequence has no signi ficant effect on 

the level of CSN2 or CSN5 protein or mRNA.

A, Trans fected cells were harvested day 9 post transfection, protein extracted 

and CSN2 and CSN5 protein levels in empty vector and vector control scramble 

cell extracts determined by western blot. Even loading was determined by β-actin

western blot. The image shown is of three independent empty vector and vector 

control scramble transfections. B, Empty vector and vector control scramble 

transfected cells were harvested day 9 post transfection, RNA extracted, cDNA

generated and QRT-PCR carried out. CSN2 and CSN5 mRNA expression in 

vector control scramble cells relative to empty vector transfected cells is shown. 

Data is the mean of n=3 trans fections ±SEM.
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on the level of CSN2 or CSN5 protein in vector control scramble cells relative to empty 

vector, determined by western blot. Furthermore, relative to empty vector, no significant 

effect is seen on CSN2 or CSN5 mRNA levels in vector control scramble cells as 

measured by QRT-PCR (figure 37B; P=0.826 and 0.684 respectively). These data clearly 

show that the high level of CSN2 and CSN5 protein and mRNA knockdown generated 

here are the result of the presence of a specific shRNA and not due to off target effects.  

 

It was also important to assess any effect of non-targeting scramble sequence on K562 

cell growth and death, and SCF activity, relative to empty vector control. Cell counts of 

empty vector and vector control scramble transfected cells were taken daily (day 3-9 post 

transfection) and the cumulative growth calculated. The data was plotted as a line graph ± 

the standard error of the mean of n=3 transfections (figure 38). As can be seen in figure 

38, there was no significant difference between the cumulative cell growth of empty 

vector and vector control scramble transfected cells, indicating that a non-targeting 

shRNA had no effect on cell growth or death.  

 

In order to determine any effect of non-targeting shRNA on CRL activity, transfected 

cells were harvested day 9 post transfection, protein extracted and the level of Cul1, 

Skp2, p27 and protein determined by western blotting. Figure 39 demonstrates that the 

introduction of a non-targeting shRNA into K562 cells had no significant effect on the 

levels of these proteins. Conversely to CSN subunit targeting shRNA, the vector control 

scramble sequence did not increase the level of neddylated Cul1 and did not result in 

reduction of Skp2 or accumulation of p27 protein (figure 39). These data indicate that the 
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findings made following knockdown of CSN subunits in K562 cells are attributable to 

CSN subunit deficiency in these cells, and are not mediated by off target effects of the 

shRNA.   
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Figure 38. A vector control scramble sequence has no signi ficant effect on 

cell growth.

Cell counts were taken daily and the cumulative growth calculated. The 

cumulative growth of empty vector and vector control scramble sequence 

transfected cells is shown. Data shown are the mean ± SEM of n=3 transfections. 
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Figure 38. A vector control scramble sequence has no signi ficant effect on 

cell growth.

Cell counts were taken daily and the cumulative growth calculated. The 

cumulative growth of empty vector and vector control scramble sequence 

transfected cells is shown. Data shown are the mean ± SEM of n=3 transfections. 
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Figure 39. A vector control scramble sequence has no effect on the SCF or 

the SCF target p27.

Trans fected cells were harvested day 9 post transfection, protein extracted and 

Cul1, Skp2, and p27 protein levels in empty vector and vector control scramble 

cell extracts determined by western blot. Even loading was determined by β-actin

western blot. The image shown is of three independent empty vector and vector 

control scramble transfections.
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Figure 39. A vector control scramble sequence has no effect on the SCF or 

the SCF target p27.

Trans fected cells were harvested day 9 post transfection, protein extracted and 

Cul1, Skp2, and p27 protein levels in empty vector and vector control scramble 

cell extracts determined by western blot. Even loading was determined by β-actin

western blot. The image shown is of three independent empty vector and vector 

control scramble transfections.
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Chapter 4.0: 

Analysis of the molecular and cellular 

effects of CSN5 knockdown 
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4.1 Introduction 

 

Although the loss of CSN deneddylase activity was confirmed in shCSN2 cells, it was 

possible that the cellular phenotype of these cells was not attributable to the loss of cullin 

deneddylation. Indeed, although both resulting in defective cullin deneddylation, a S. 

pombe CSN2 null mutant does not share the same phenotype as a CSN5 null mutant 

(Mundt et al., 2002). It was thus important to determine whether loss of CSN5, which 

contains the cullin deneddylase activity of the CSN (Cope et al., 2002), resulted in the 

same phenotype as that observed in shCSN2 cells. To this end, CSN5 was targeted in 

K562 cells and the same analyses carried out as in the previous chapter.      
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4.2 Results 

 

4.2.1 Assessment of target mRNA knockdown 

 

In order to determine CSN5 mRNA levels in mock, vector control and shCSN5 cells, 

transfected cells were harvested day 4 post transfection, RNA extracted, quantified and 

cDNA produced using 1µg RNA. Once the quality of the sample cDNA was determined 

and the QRT-PCR protocol optimised (see 3.2.3), CSN5 expression was then determined. 

As shown in figure 40A, co-transfection of cells with HKK and empty vector had no 

significant effect on the expression of CSN5 relative to expression in mock transfected 

cells. However, co-transfection with HKK and shCSN5 resulted in only 5% CSN5 

mRNA remaining relative to mock transfected cells (figure 40A; P=3.12x10-5).        

 

4.2.2 Assessment of target protein knockdown 

 

In order to determine CSN5 protein knockdown, vector control and shCSN5 cells were 

harvested day 4 post transfection, protein extracted, quantified, and 20µg protein used in 

western blot analyses. K562 cells co-transfected with HKK and shCSN5 plasmids had 

significantly less CSN5 protein than HKK and vector control plasmid transfected cells, 

with CSN5 protein undetectable in CSN5 knockdown cells (figure 40B). These data 

indicate a highly efficient knockdown at the protein level.  
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Figure 40. Determination of CSN5 mRNA and protein knockdown.

A, Mock, vector control and CSN5 knockdown transfected cells were harvested 

day 4 post transfection, RNA extracted, cDNA generated and used in QRT-PCR. 

Data shown is the mean CSN5 mRNA expression relative to mock transfected 

cells of n=3 transfections ±SEM. * indicates p<0.05. B, Transfected cells were 

harvested day 4 post trans fection, protein extracted and CSN5 protein levels in 

vector control and CSN5 knockdown cell extracts determined by western blot. 

Even loading was determined by β-actin western blot. The image shown is 

representative of three sets of n=3 transfections.
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Figure 40. Determination of CSN5 mRNA and protein knockdown.

A, Mock, vector control and CSN5 knockdown transfected cells were harvested 

day 4 post transfection, RNA extracted, cDNA generated and used in QRT-PCR. 

Data shown is the mean CSN5 mRNA expression relative to mock transfected 

cells of n=3 transfections ±SEM. * indicates p<0.05. B, Transfected cells were 

harvested day 4 post trans fection, protein extracted and CSN5 protein levels in 

vector control and CSN5 knockdown cell extracts determined by western blot. 

Even loading was determined by β-actin western blot. The image shown is 

representative of three sets of n=3 transfections.
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4.2.3 Assessment of the effect of CSN5 knockdown on SCF components and activity 

 

In order to determine the effect of CSN5 loss on the level of Cul1, Skp2 and p27 proteins, 

vector control and CSN5 knockdown cells were harvested day 4 post transfection, protein 

extracted and the level of proteins in these samples determined by western blot analysis. 

As seen in figure 41A, knockdown of CSN5 resulted in an increase in neddylated Cul1 

relative to vector control cells, at the expense of the deneddylated form of Cul1. This was 

confirmed by densitometry which demonstrated that the Cul1:Neddylated Cul1 ratio in 

cells lacking CSN5 was significantly less than that of vector controls (P=0.010; figure 

41B). 

  

Western blot analysis of Skp2 protein levels showed a complete loss of detectable Skp2 

in cells lacking CSN5 (figure 41C), whilst p27 western blot analysis demonstrated 

significant p27 accumulation in CSN5 knockdown cells relative to vector control cells 

(figure 41D). As seen in CSN2 knockdowns, this data suggests that loss of CSN5 in 

K562 cells also results in deregulation of Cul1 neddylation and therefore, aberrant 

SCFSkp2 activity in K562 cells. 

 

The effect of CSN5 loss on Cul3 protein was also investigated. CSN5 knockdown 

resulted in the marked accumulation of neddylated Cul3 protein relative to vector control 

cells (figure 42A). Quantitative analysis of this data demonstrated a significant reduction 

in the Cul3:Neddylated Cul3 ratio in cells lacking CSN5 (figure 42B; P=0.012). 

Furthermore, densitometric analysis also revealed a relatively small but significant loss of  
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Figure 41. CSN5 knockdown results in accumulation of neddylated Cul1, 

loss of Skp2 and accumulation of p27.

Transfected cells were harvested day 4 post transfection, protein extracted and 

Cul1 (A), Skp2 (C) and p27 (D) protein levels in vector control and CSN5 

knockdown cell extracts determined by western blot. Even loading was 

determined by β-actin western blot. The images shown are representative of 

three sets of n=3 transfections. B, Densitometry was carried out on the Cul-1 

western blot and the Cul-1 to neddylated Cul-1 ratios of vector control and CSN5 

knockdown cells calculated. Data shown is the average of n=3 trans fections 

±SEM. * indicates p<0.05. 
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Figure 41. CSN5 knockdown results in accumulation of neddylated Cul1, 

loss of Skp2 and accumulation of p27.

Transfected cells were harvested day 4 post transfection, protein extracted and 

Cul1 (A), Skp2 (C) and p27 (D) protein levels in vector control and CSN5 

knockdown cell extracts determined by western blot. Even loading was 

determined by β-actin western blot. The images shown are representative of 

three sets of n=3 transfections. B, Densitometry was carried out on the Cul-1 

western blot and the Cul-1 to neddylated Cul-1 ratios of vector control and CSN5 

knockdown cells calculated. Data shown is the average of n=3 trans fections 

±SEM. * indicates p<0.05. 
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Figure 42. CSN5 knockdown results in the significant accumulation of 

neddylated Cul3 protein and loss of Cul3 protein.

A, Transfected cells were harvested day 4 post transfection, protein extracted 

and Cul3 protein levels in vector control and CSN5 knockdown cell extracts 

determined by western blot. Even loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN5 

knockdown transfections. Densitometry was carried out on the Cul3 western blot 

and the Cul3 to neddylated Cul3 ratios (B) and total Cul3 protein (C) of vector 

control and CSN5 knockdown cells calculated. Data shown is the average of n=3 

transfections ±SEM. * indicates p<0.05. 
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Figure 42. CSN5 knockdown results in the significant accumulation of 

neddylated Cul3 protein and loss of Cul3 protein.

A, Transfected cells were harvested day 4 post transfection, protein extracted 

and Cul3 protein levels in vector control and CSN5 knockdown cell extracts 

determined by western blot. Even loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN5 

knockdown transfections. Densitometry was carried out on the Cul3 western blot 

and the Cul3 to neddylated Cul3 ratios (B) and total Cul3 protein (C) of vector 

control and CSN5 knockdown cells calculated. Data shown is the average of n=3 

transfections ±SEM. * indicates p<0.05. 
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total Cul3 protein in shCSN5 cells (figure 42C; P=0.035). Collectively, these data suggest 

that, as in CSN2 knockdown cells, CSN5 loss results in the defective deneddylation of 

cullins, thus potentially altering the activity of multiple CRLs and therefore the 

degradation of many proteins. It is also important to note that the similar results obtained 

with CSN2 and CSN5 knockdowns with respect to CRL activity suggests that both 

knockdowns have the same effect on CSN deneddylase activity.  

 

4.2.4 Assessment of the effect of CSN5 knockdown on the level of F-box proteins 

 

In order to assess the effect of CSN5 knockdown on the level of multiple F-box proteins, 

protein levels of Skp2, Cdc4 and β-TrCP were determined day 4 post transfection. Figure 

43 demonstrates the differential loss of F-box proteins in CSN5 knockdowns relative to 

vector control cells. At day 4 post transfection, Skp2 protein was undetectable in cells 

lacking CSN5 whilst Cdc4 protein was reduced by an average of 82%, as determined by 

densitometry. Furthermore, no significant effect on the level of β-TrCP protein was 

observed at this time point (figure 43). Addition of the proteasome inhibitor MG132 to 

cells at a time point at which these F-box proteins were found to be reduced restored the 

level of these proteins at least partially (figure 44; For Skp2, Cdc4 and β-TrCP protein 

rescue experiments vector control and CSN5 knockdown cells were treated with 10µM 

MG132 for 18 hours day 1, 3 and 6, respectively). These data suggest, in accordance with 

the CSN2 knockdown data, that F-box proteins are degraded in K562 cells in the absence 

of CSN deneddylase activity.     
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Figure 43. CSN5 knockdown results in the sequential loss of F-box 

proteins.

Trans fected cells were harvested day 4 post-transfection, protein extracted and 

Skp2, Cdc4 and β-TrCP protein levels in vector control and CSN5 knockdown cell 

extracts determined by western blot. Even loading was determined by β-actin

western blot. The image shown is of three independent vector cont rol and CSN5 

knockdown transfections.
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Figure 43. CSN5 knockdown results in the sequential loss of F-box 

proteins.

Trans fected cells were harvested day 4 post-transfection, protein extracted and 

Skp2, Cdc4 and β-TrCP protein levels in vector control and CSN5 knockdown cell 

extracts determined by western blot. Even loading was determined by β-actin

western blot. The image shown is of three independent vector cont rol and CSN5 

knockdown transfections.
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Figure 44. F-box protein loss in CSN5 knockdowns is rescued with the 
addition of the proteasome inhibitor MG132. 

Transfected cells were treated with either DMSO (control) or 10µM MG132 for the 
final 18 hours of culturing. For Skp2, Cdc4 and β-TrCP protein rescue 

experiments vector control and CSN5 knockdown cells were treated day 1, 3 and 
6, respectively. Cells were harvested, protein extracted and Skp2, Cdc4 and β-
TrCP protein levels in cell extracts determined by western blot. Even loading was 
determined by β-actin western blot. 
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Figure 44. F-box protein loss in CSN5 knockdowns is rescued with the 
addition of the proteasome inhibitor MG132. 

Transfected cells were treated with either DMSO (control) or 10µM MG132 for the 
final 18 hours of culturing. For Skp2, Cdc4 and β-TrCP protein rescue 

experiments vector control and CSN5 knockdown cells were treated day 1, 3 and 
6, respectively. Cells were harvested, protein extracted and Skp2, Cdc4 and β-
TrCP protein levels in cell extracts determined by western blot. Even loading was 
determined by β-actin western blot. 
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4.2.5 Assessment of the effect of CSN5 knockdown on F-box mRNA 

 

Recently, a novel function of the CSN complex in the regulation of transcription has been 

suggested (Su et al., 2008, Ullah et al., 2007). The effect of CSN5 knockdown on the 

level of F-box protein mRNA was therefore investigated. Vector control and shCSN5 

cells were harvested days 2, 3 and 6 and Skp2, Cdc4 and β-TrCP mRNA measured by 

QRT-PCR. β-TrCP mRNA was significantly reduced at all time points studied (figure 45; 

P= 0.015, 0.027 and 0.015 for day 2, 3 and 6, respectively) even though no difference in 

β-TrCP protein was observed by day 4 (figure 43), whilst Skp2 and Cdc4 mRNA were 

significantly reduced at day 6 post transfection (figure 45; P=0.009 and P=0.044, 

respectively). These data suggest that reduced F-box mRNA expression may in part 

account for the observed reduction in F-box proteins in CSN5 knockdown cells, and 

further implicate CSN5 or indeed the CSN complex in the regulation of F-box protein 

expression.  

 

4.2.6 Assessment of the effect of CSN5 knockdown on cell growth and cell death   

 

In order to determine the effects of CSN5 loss on cell growth and viability, cell counts 

were taken day 2-7 post transfection, the cumulative cell growth for both vector control 

and CSN5 knockdown cells was calculated and the data plotted ± the standard error of 

the mean of n=3 transfections. The results demonstrate that knockdown of CSN5 resulted 

in the substantial reduction of cell growth followed by loss of cell viability (Figure 46).  

Analysis of cumulative growth demonstrated that proliferation of cells lacking CSN5 was  
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Figure 45. CSN5 knockdown results in significant alteration to the level of 

F-box mRNA.  

The level of Skp2, Cdc4 and β-TrCP mRNA in shCSN5 cells was determined at 

each time point post transfection relative to expression in vector cont rol scramble 

cells by QRT-PCR. Data shown is the mean ± SEM of n=3 transfections.         

* indicates a significant difference to vector controls with p<0.05.
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Figure 45. CSN5 knockdown results in significant alteration to the level of 

F-box mRNA.  

The level of Skp2, Cdc4 and β-TrCP mRNA in shCSN5 cells was determined at 

each time point post transfection relative to expression in vector cont rol scramble 

cells by QRT-PCR. Data shown is the mean ± SEM of n=3 transfections.         

* indicates a significant difference to vector controls with p<0.05.
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Figure 46. CSN5 knockdown results in significantly reduced cell growth.

Cell counts were taken daily and the cumulative growth calculated. The 

cumulative growth of CSN5 knockdowns and vector controls is shown. The insert 

shows a close up of the CSN5 knockdown cumulative growth profile in the 

absence of vector cont rol data. Data shown are the mean ± SEM of n=3.              

* indicates a significant difference to vector control cell growth with p<0.05.
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Figure 46. CSN5 knockdown results in significantly reduced cell growth.

Cell counts were taken daily and the cumulative growth calculated. The 

cumulative growth of CSN5 knockdowns and vector controls is shown. The insert 

shows a close up of the CSN5 knockdown cumulative growth profile in the 

absence of vector cont rol data. Data shown are the mean ± SEM of n=3.              

* indicates a significant difference to vector control cell growth with p<0.05.
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significantly less than that of shVC by day 4 post transfection (Figure 46, P=0.0002), as 

determined using the t-test. This data was corroborated by thymidine incorporation data 

which shows that, at day 3 post-transfection, there was a significant reduction in the 

incorporation of tritiated thymidine into cellular DNA between shVC and CSN5 

knockdown cells (P=0.001), which decreased even further by day 4 post transfection 

(Figure 47; P=0.007).  

 

The cell cycle profiles of both vector control cells and cells lacking CSN5 were 

determined day 4 post transfection (figure 48). The percentage of cells in subG1, G1, S, 

and G2M in vector control and CSN5 knockdown cells was calculated, plotted as pie 

charts and the significance of any differences determined using the t-test. As can be seen 

in figure 48, the cell cycle profile of CSN5 knockdown cells differed significantly to that 

of vector control cells in all phases. Differences included an increase in the subG1 

fraction (P=0.0005), a significant reduction in the proportion of cells in the G1 and S 

phases of the cell cycle in CSN5 knockdowns (P=0.004 and 3.4x10-6, respectively) and 

an accumulation of CSN5 knockdown cells in G2M (P=0.001; figure 48). This data 

suggests that cells deficient in CSN5 are subject to a block in mitosis, thereby 

corroborating the cumulative growth data. Furthermore, the cumulative growth profile 

and subG1 accumulation of CSN5 knockdown cells indicates reduced viability of CSN5 

cells, which may potentially ensue as a consequence of the observed mitotic block.   

 

In order to investigate the apparent mitotic block in CSN5 knockdown cells further, 

vector control and CSN5 knockdown cell cytospins were Jenner-Giemsa stained to  
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Figure 47. CSN5 knockdown results in significantly reduced thymidine
incorporation into cellular DNA.

Thymidine incorporation in shCSN5 and vector control cells was measured day 3 
and 4 post transfection. Data shown are the mean ± SEM of n=3. * indicates 
p<0.05.
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Figure 47. CSN5 knockdown results in significantly reduced thymidine
incorporation into cellular DNA.

Thymidine incorporation in shCSN5 and vector control cells was measured day 3 
and 4 post transfection. Data shown are the mean ± SEM of n=3. * indicates 
p<0.05.
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Figure 48. CSN5 knockdown results in significant changes in cell cycle.

A, A representative image of CSN5 knockdown (black line) cell cycle profiles day 
4 post transfection relative to vector control (light grey in fill). B, Statistical 
analysis of cell cycle data is also shown as pie charts. Data shown are the mean 
± SEM of n=3 transfections. * indicates p<0.05.
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observe cell morphology. This staining clearly shows a significant number of cells in the 

CSN5 knockdown population which contained condensed, misaligned chromosomes, 

which were not present in the vector control population (figure 49A). To investigate this 

phenomenon further, vector control and CSN5 knockdown cells were immunostained for 

tubulin. As can be seen in figure 49B, shVC cells retained the ability to form a mitotic 

spindle and correctly aligned chromosomes at various stages of mitosis were observed. In 

contrast, the majority of cells lacking CSN5 demonstrated either aberrant or absent 

microtubule structures. In these cells, the condensed chromatids appeared to be either 

misaligned or indeed not associated with the spindle structures at all (figure 49B). The 

substantial numbers of cells showing this morphology are consistent with cell cycle arrest 

at G2/M. Altogether, this data suggests that loss of CSN5 in K562 cells results in reduced 

cell proliferation and subsequent cell death as a consequence of a mitotic block, possibly 

caused by aberrant mitotic spindle formation.   

 

4.2.7 Determination of the mechanism of CSN5 knockdown induced cell death 

 

To assess whether cell death in CSN5 knockdowns occurred via an apoptotic mechanism, 

vector control and CSN5 knockdown cells were harvested day 4 post transfection, protein 

extracted and caspase-9 protein levels determined by western blot analysis. As shown in 

figure 50, the caspase-9 cleavage product (indicative of apoptosis) is readily detectable in 

CSN5 knockdown cell extracts, the production of which occurs at the expense of the 

uncleaved form, whereas no caspase-9 cleavage is detectable in vector control cells 

(figure 50). To further validate apoptosis as the mechanism of CSN5 deficient cell death,  
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Figure 49. CSN5 knockdown results in altered cell morphology and aberrant 
mitotic spindle formation.

A, Cytospins were stained by Jenner-Giemsa for visualisation of vector control 

and shCSN5 cell morphology day 4 post transfection. B, Cytospins were stained 
with mouse anti-tubulin primary antibody, anti-mouse FITC secondary antibody 
and Hoescht for visualisation of both tubulin and DNA in vector control and 
shCSN5 cells day 4 post transfection. All images shown are representative of n=3 
transfections. 
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Figure 49. CSN5 knockdown results in altered cell morphology and aberrant 
mitotic spindle formation.

A, Cytospins were stained by Jenner-Giemsa for visualisation of vector control 

and shCSN5 cell morphology day 4 post transfection. B, Cytospins were stained 
with mouse anti-tubulin primary antibody, anti-mouse FITC secondary antibody 
and Hoescht for visualisation of both tubulin and DNA in vector control and 
shCSN5 cells day 4 post transfection. All images shown are representative of n=3 
transfections. 

shVC shCSN5
A

B shVC

shCSN5



 173

β-actin

Pro Caspase-9

Caspase-9

shVC shCSN5

Figure 50. CSN5 knockdown results in caspase-9 activation.

Transfected cells were harvested day 4 post transfection, protein extracted and 
caspase-9 protein levels in vector control and CSN5 knockdown cell extracts 
determined by western blot. Even loading was determined by β-actin western 
blot. The image shown is of three independent vector control and CSN5 
knockdown transfections.
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Figure 50. CSN5 knockdown results in caspase-9 activation.

Transfected cells were harvested day 4 post transfection, protein extracted and 
caspase-9 protein levels in vector control and CSN5 knockdown cell extracts 
determined by western blot. Even loading was determined by β-actin western 
blot. The image shown is of three independent vector control and CSN5 
knockdown transfections.
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cells were co-analysed for annexin V staining and propidium iodide uptake day 6 post 

transfection (Figure 51). CSN5 knockdown resulted in a large and highly significant 

increase in both early (annexin V+ve:PI-ve) and late (annexin V+ve:PI+ve) apoptotic cells 

relative to vector control cells (P=0.0015 and 0.0006, respectively; figure 51). Altogether, 

these data indicate that K562 cells lacking CSN5 die by apoptosis.  

 

Annexin V and propidium iodide staining of CSN5 knockdown cells demonstrated that, 

contrary to the observations made in CSN2 knockdown cells, there was no shift to greater 

PI positivity in the annexin V negative cell population (figure 51). These data are better 

displayed as a histogram of cell count against propidium iodide, in which only the 

annexin V negative population is considered (figure 52). To further demonstrate the 

distinction between the phenotypes which occurred as a result of CSN2 and CSN5 

knockdown, LC3-II protein levels day 4 post transfection were determined in vector 

control and CSN5 knockdown cells. Indeed, there was no accumulation of the autophagy 

marker protein LC3-II in CSN5 knockdown cells compared to vector controls (figure 53). 

It is important to note that the exposure time in figure 53 is 12 hours, compared to an 

exposure time of 1 minute in figure 31. Conversely to CSN2 knockdown cells (figure 31), 

an exposure time of 1 minute detected no LC3-II protein in CSN5 knockdown cells (data 

not shown). A longer exposure was therefore carried out in order to determine that there 

was no accumulation of LC3-II in shCSN5 cells relative to vector controls (figure 53). 

Cumulatively, these data indicate that, conversely to CSN2 knockdown cells, cells 

lacking CSN5 are not associated with autophagy and do not undergo non-apoptotic cell 

death but are instead subject to a mitotic block and die by apoptosis.        
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Figure 51. CSN5 knockdown results in a significant increase in annexin V 

positivity.

Binding of Annexin V and uptake of propidium iodide in vector control (left) and 

CSN5 knockdown (right) cells day 6 post transfection was analysed by flow 

cytometry. The lower left quadrant encompasses the viable population of cells, 

the lower right quadrant contains early apoptotic cells, the upper right quadrant 

contains late apoptotic cells and the upper left quadrant contains the necrotic cell 

population. Dot plots shown are representative of n=3 transfections. The mean of 

three data sets was taken and the values shown in the corresponding quadrant ± 

SEM. * indicates significance with p<0.05. 
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Figure 51. CSN5 knockdown results in a significant increase in annexin V 

positivity.

Binding of Annexin V and uptake of propidium iodide in vector control (left) and 

CSN5 knockdown (right) cells day 6 post transfection was analysed by flow 

cytometry. The lower left quadrant encompasses the viable population of cells, 

the lower right quadrant contains early apoptotic cells, the upper right quadrant 

contains late apoptotic cells and the upper left quadrant contains the necrotic cell 

population. Dot plots shown are representative of n=3 transfections. The mean of 

three data sets was taken and the values shown in the corresponding quadrant ± 

SEM. * indicates significance with p<0.05. 
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Figure 52. CSN5 knockdown has no significant effect on propidium

iodide+ve:annexin V-ve staining.

The histogram shown is representative of the propidium iodide staining within the 

annexin V negative fraction of n=3 vector controls (light grey in fill) and CSN5 

knockdowns (black line) day 6 post transfection. 
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Figure 52. CSN5 knockdown has no significant effect on propidium

iodide+ve:annexin V-ve staining.

The histogram shown is representative of the propidium iodide staining within the 

annexin V negative fraction of n=3 vector controls (light grey in fill) and CSN5 

knockdowns (black line) day 6 post transfection. 
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Figure 53. CSN5 knockdown has no effect on the level of the autophagy 
marker protein LC3-II. 

Transfected cells were harvested day 4 post transfection, protein extracted and 
LC3-II protein levels in vector control and CSN5 knockdown cell extracts 
determined by western blot. Even loading was determined by β-actin western 
blot. The image shown is of three independent vector control and CSN5 
knockdown transfections. Note that the exposure time used to generate figure 31 
was 1 minute whilst the exposure time used here was much longer (12 hours). 
This longer exposure time was used here to permit detection of LC3-II in both 
vector control and CSN5 knockdown cells, whilst the short exposure time was 
used previously in figure 31 to show the clear accumulation of LC3-II in shCSN2 
cells. 
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Figure 53. CSN5 knockdown has no effect on the level of the autophagy 
marker protein LC3-II. 

Transfected cells were harvested day 4 post transfection, protein extracted and 
LC3-II protein levels in vector control and CSN5 knockdown cell extracts 
determined by western blot. Even loading was determined by β-actin western 
blot. The image shown is of three independent vector control and CSN5 
knockdown transfections. Note that the exposure time used to generate figure 31 
was 1 minute whilst the exposure time used here was much longer (12 hours). 
This longer exposure time was used here to permit detection of LC3-II in both 
vector control and CSN5 knockdown cells, whilst the short exposure time was 
used previously in figure 31 to show the clear accumulation of LC3-II in shCSN2 
cells. 
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Chapter 5.0: 

Analysis of the effect of CSN2 and CSN5 

knockdown on CSN complex integrity 
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5.1 Introduction  

 

The knockdown of CSN2 and CSN5 in K562 cells produced distinct phenotypes despite 

having comparable effects on cullin deneddylation. Similar findings have been reported 

previously in organisms such as S. pombe (Mundt et al., 2002) and Drosophila (Oron et 

al., 2002). The authors of these manuscripts suggested that the divergent phenotypes may 

be attributable to the fact that CSN subunits may function in distinct subcomplexes 

(Mundt et al., 2002) or may be due to the activity of a retained CSN complex (lacking 

CSN5) in the absence of CSN5 (Oron et al., 2002). In order to assess this possibility in 

K562 cells, a 2-dimensional gel technique was optimised for the study of the intact CSN 

complex and any CSN subcomplexes in shCSN2 and shCSN5 cells. A CSN subcomplex 

was identified in cells lacking CSN2 whilst shCSN5 cells were shown to retain the CSN 

complex and lose only monomeric CSN5. The contribution of these identified complexes 

to the phenotype of shCSN2 and shCSN5 cells was assessed by CSN2/CSN5 double 

knockdown experiments.      
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5.2 Results 

 

5.2.1 Optimisation of the 2-Dimensional NativePAGE/SDS-PAGE gel electrophoresis 

protocol 

 

A 2-D gel analysis technique was developed, in which proteins were separated in their 

native, complexed state in the first dimension, to enable assessment of the effect of CSN 

subunit knockdown on CSN complex integrity. In order to ensure that any variation in 2-

D gel analysis was minimal, it was important to determine the effect of freezing either a 

cell pellet or protein extract prior to use in 2-D gel analysis, relative to the use of fresh 

cell lysate. To this end, three aliquots of K562 cells were harvested and, from one pellet, 

native proteins were extracted (fresh lysate, figure 54), whilst the second pellet was 

frozen for two weeks and then native proteins extracted from the thawed pellet (frozen 

pellet, figure 54). Finally, protein was extracted from the third pellet and the lysate frozen 

for a two week period (frozen lysate, figure 54). The distribution of CSN5 containing 

protein complexes within these samples was then analysed by 2-D gel analysis and CSN5 

western blot analysis (figure 54). From these analyses it was determined that, at this 

exposure time of 10 minutes, CSN5 occurred only in complexes of approximately 

550kDa and greater in the fresh lysate and frozen pellet samples, whereas CSN5 occurred 

in smaller complexes (<480kDa) in the frozen lysate (figure 54). This data indicates that 

the use of cell lysate from a frozen cell pellet has no significant effect on native protein 

complexes relative to fresh lysate. However, the process of freezing and thawing cell 

lysate results in the significant degradation of protein complexes. Therefore, in order to  
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Figure 54. Optimisation of the 2-Dimensional NativePAGE gel protocol. 

Three aliquots of 1x106 K562 cells were harvested. Native protein was extracted 
from the first pellet for immediate use (top panel). The second pellet was snap 
frozen in liquid nitrogen and native protein extracted from the thawed pellet two 
weeks later for immediate use (middle panel). Native protein was extracted from 
the third pellet immediately, the protein frozen and then thawed two weeks later 
for use (lower panel). CSN5 distribution in these samples was determined by 2-
Dimensional Native-PAGE/SDS-PAGE and western blot analysis. 
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Figure 54. Optimisation of the 2-Dimensional NativePAGE gel protocol. 

Three aliquots of 1x106 K562 cells were harvested. Native protein was extracted 
from the first pellet for immediate use (top panel). The second pellet was snap 
frozen in liquid nitrogen and native protein extracted from the thawed pellet two 
weeks later for immediate use (middle panel). Native protein was extracted from 
the third pellet immediately, the protein frozen and then thawed two weeks later 
for use (lower panel). CSN5 distribution in these samples was determined by 2-
Dimensional Native-PAGE/SDS-PAGE and western blot analysis. 
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minimise any sample variation which may potentially have occurred frozen lysates were 

not used for native gel analysis.  

 

5.2.2 Determination of the effect of CSN2 knockdown on CSN complex integrity 

 

In order to determine the effect of CSN2 knockdown on CSN complex integrity, vector 

control and CSN2 knockdown cells were harvested day 3 post transfection, native 

proteins extracted and the distribution of CSN2 amongst cellular protein complexes 

determined by 2-D gel and western blot analysis. Figure 55 demonstrates that in CSN2 

knockdown cells there was significant loss of CSN2 from the CSN complex (~500kDa) 

and super complexes (~700kDa) relative to vector controls. Therefore, to study CSN 

complex formation in the absence of CSN2, the distribution of CSN5 containing 

complexes was assessed in vector control and CSN2 knockdown cell extracts. CSN5 

protein was also lost from the CSN complex in CSN2 knockdowns (figure 56), indicating 

the loss of the intact CSN complex in the absence of CSN2.  

 

As the loss of CSN5 protein from the CSN complex did not result in a concomitant 

increase in monomeric CSN5 (figure 56), the possibility of an effect of CSN2 loss on the 

level of CSN5 was investigated. Cells were harvested day 6 post transfection, protein 

extracted and CSN5 western blot carried out. Figure 57A shows that cells lacking CSN2 

have significantly less CSN5 protein relative to vector control cells. Densitometry was 

used to determine that on average cells lacking CSN2 had only 10.4±2.9% CSN5 relative 

to vector control cells (P=0.0001). This loss was also determined at the level of mRNA.  
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Figure 55. CSN2 knockdown results in a significant loss of CSN2 from the 
CSN complex.

Transfected cells were harvested day 3 post transfection and CSN2 distribution in 

vector control and CSN2 knockdown cells determined by 2-Dimensional Native-
PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 
n=3 transfections. β-actin loading controls are also shown.
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Figure 55. CSN2 knockdown results in a significant loss of CSN2 from the 
CSN complex.

Transfected cells were harvested day 3 post transfection and CSN2 distribution in 

vector control and CSN2 knockdown cells determined by 2-Dimensional Native-
PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 
n=3 transfections. β-actin loading controls are also shown.
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Figure 56. CSN2 knockdown results in a significant loss of CSN5 from the 

CSN complex.

Trans fected cells were harvested day 3 post transfection and CSN5 distribution in 

vector control and CSN2 knockdown cells determined by 2-Dimensional Native-

PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 

n=3 transfections. 
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Figure 56. CSN2 knockdown results in a significant loss of CSN5 from the 

CSN complex.

Trans fected cells were harvested day 3 post transfection and CSN5 distribution in 

vector control and CSN2 knockdown cells determined by 2-Dimensional Native-

PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 

n=3 transfections. 
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Figure 57. CSN2 knockdown results in a significant reduction of both CSN5 

protein and mRNA.

A, Trans fected cells were harvested day 6 post transfection, protein extracted 

and CSN5 protein levels in vector control and CSN2 knockdown cells determined 

by western blot. Even western blot loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN2 

knockdown transfections. B, Mock, vector control and CSN2 knockdown 

transfected cells were harvested day 6 post transfection, RNA extracted, cDNA

generated and QRT-PCR carried out. Data shown is the mean CSN5 mRNA 

expression relative to mock transfected cells of n=3 transfections ±SEM.              

* indicates p<0.05.
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Figure 57. CSN2 knockdown results in a significant reduction of both CSN5 

protein and mRNA.

A, Trans fected cells were harvested day 6 post transfection, protein extracted 

and CSN5 protein levels in vector control and CSN2 knockdown cells determined 

by western blot. Even western blot loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN2 

knockdown transfections. B, Mock, vector control and CSN2 knockdown 

transfected cells were harvested day 6 post transfection, RNA extracted, cDNA

generated and QRT-PCR carried out. Data shown is the mean CSN5 mRNA 

expression relative to mock transfected cells of n=3 transfections ±SEM.              

* indicates p<0.05.
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The level of CSN5 mRNA in vector control cells did not differ from that of mock 

transfected cells, whereas CSN2 knockdown cells had a significant reduction in CSN5 

mRNA of ~50% (P=0.011) relative to vector control transfected cells (figure 57B).   

 

Interestingly, a longer exposure of the western blot in figure 56 demonstrated the 

formation of a CSN5 containing subcomplex (~242kDa) in cells lacking CSN2, which 

was not apparent in vector control cells (figure 58). Cumulatively, these data suggest that 

the loss of CSN2 results in the loss of the intact CSN complex, formation of a CSN5 

containing CSN subcomplex, and loss of CSN5. Thus, these data are indicative of a role 

for CSN2 in CSN complex integrity.  

 

5.2.3 Assessment of the effect of CSN2/5 double knockdown on CSN subcomplex 

formation and the occurrence of autophagy 

 

The occurrence of a CSN5 containing subcomplex in the absence of CSN2 raised the 

possibility that the difference between the phenotypes of CSN2 and CSN5 knockdown 

cells is a consequence of the activity of this subcomplex in cells lacking CSN2. If this 

were the case, then loss of both CSN2 and CSN5 should not be associated with 

autophagy. To investigate this possibility, CSN2/CSN5 double knockdown was 

attempted in K562 cells by triple transfection of cells with HKK, shCSN2 and shCSN5 

plasmids. Efficient double knockdown was confirmed by QRT-PCR which demonstrated 

97.2% loss of CSN2 mRNA (P=0.001; figure 59) and 87.1% loss of CSN5 mRNA 

(P=0.005; figure 59) relative to vector controls.  
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Figure 58. CSN2 knockdown results in the formation of a CSN5 containing 
CSN subcomplex.

Transfected cells were harvested day 3 post transfection and CSN5 distribution in 
vector control and CSN2 knockdown cells determined by 2-Dimensional Native-
PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 
n=3 transfections. This is the same blot as in figure 56. However, the exposure 
time in figure 56 was 30 minutes whilst the exposure time here was 12 hours.  
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Figure 58. CSN2 knockdown results in the formation of a CSN5 containing 
CSN subcomplex.

Transfected cells were harvested day 3 post transfection and CSN5 distribution in 
vector control and CSN2 knockdown cells determined by 2-Dimensional Native-
PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 
n=3 transfections. This is the same blot as in figure 56. However, the exposure 
time in figure 56 was 30 minutes whilst the exposure time here was 12 hours.  
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Figure 59. Determination of CSN2 and CSN5 mRNA knockdown in double 

knockdown cells.

Vector control and CSN2/CSN5 double knockdown transfected cells were 

harvested day 6 post trans fection, RNA extracted, cDNA generated and QRT-

PCR carried out. Data shown is the mean CSN2/CSN5 mRNA expression relative 

to vector control transfected cells of n=3 transfections ±SEM. * indicates p<0.05.
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Figure 59. Determination of CSN2 and CSN5 mRNA knockdown in double 

knockdown cells.

Vector control and CSN2/CSN5 double knockdown transfected cells were 

harvested day 6 post trans fection, RNA extracted, cDNA generated and QRT-

PCR carried out. Data shown is the mean CSN2/CSN5 mRNA expression relative 

to vector control transfected cells of n=3 transfections ±SEM. * indicates p<0.05.
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The distribution of CSN5 in double knockdown cells was determined by 2-D gel and 

western blot analysis of native proteins extracted from vector control and double 

knockdown cells harvested day 3 post transfection. As observed in CSN2 knockdown 

cells, a significant reduction in the amount of the intact CSN complex was observed in 

double knockdown cells relative to vector control cells (figure 60A). However, a CSN5 

containing subcomplex could not be detected in double knockdown cells (figure 

60A).This finding was made with a 12 hour film exposure time as used to detect 

subcomplex formation in cells lacking CSN2 (figure 58). These data imply that, unlike 

CSN2 knockdown cells, cells lacking both CSN2 and CSN5 do not form a CSN5 

containing subcomplex.  

 

In order to determine the effect of CSN2/5 double knockdown on cell morphology, 

double knockdown cell cytospins were made day 6 post transfection and Jenner-Giemsa 

stained. Interestingly, this analysis demonstrated a vesicular morphology of a proportion 

of double knockdown cells (figure 60B); a morphology comparable to that of CSN2 

knockdown cells (figure 30A). This data suggests that the morphology associated with 

the loss of CSN2 is not a consequence of the activity of a CSN5 containing subcomplex. 

It should also be noted that within the double knockdown population a subset of cells also 

have what appears to be the same morphology as CSN5 knockdown cells (figure 60B).    
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Figure 60. Cells lacking both CSN2 and CSN5 do not form CSN5 containing 

subcomplexes but do have a mixed phenotype associated with the loss of 

these subunits.

A, Transfected cells were harvested day 3 post transfection and CSN5 

distribution in vector control and double knockdown cells determined by 2-

Dimensional Native-PAGE/SDS-PAGE and western blot analysis. Data shown is 

representative of n=3 trans fections. B, Cytospins were stained by Jenner-Giemsa

for visualisation of vector control and double knockdown cell morphology day 6 

post transfection. The images shown are representative of n=3 transfections. 
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Figure 60. Cells lacking both CSN2 and CSN5 do not form CSN5 containing 

subcomplexes but do have a mixed phenotype associated with the loss of 

these subunits.

A, Transfected cells were harvested day 3 post transfection and CSN5 

distribution in vector control and double knockdown cells determined by 2-

Dimensional Native-PAGE/SDS-PAGE and western blot analysis. Data shown is 

representative of n=3 trans fections. B, Cytospins were stained by Jenner-Giemsa

for visualisation of vector control and double knockdown cell morphology day 6 

post transfection. The images shown are representative of n=3 transfections. 
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5.2.4 Determination of the effect of CSN5 knockdown on CSN complex integrity 

 

In order to determine the effect of CSN5 knockdown on CSN complex integrity, vector 

control and CSN5 knockdown cells were harvested day 3 post transfection, native 

proteins extracted and the distribution of CSN5 amongst cellular protein complexes 

determined by 2-D gel and western blot analysis. Surprisingly, this analysis demonstrated 

that CSN5 knockdown had no significant effect on the level of CSN5 within the intact 

CSN complex (figure 61). Indeed, quantitative analysis of 2-D gels investigating the 

distribution of CSN5 in CSN2 and CSN5 knockdowns relative to vector controls 

indicates significant loss of the intact CSN complex in cells lacking CSN2 (P=0.015), 

whilst also demonstrating that CSN5 loss had no significant impact on the intact CSN 

complex (figure 62; P=0.619). However, interestingly CSN5 knockdown resulted in the 

significant loss of the free form of CSN5 (37kDa; figure 63). These observations were 

surprising given the finding of apparent complete CSN5 protein loss by SDS-PAGE 

western blot (figure 40). This finding raised the possibility that the RIPA buffer 

extraction used for SDS-PAGE failed to extract the entire cellular pool of CSN5. To 

investigate this possibility, vector control and shCSN5 transfected cells were harvested 

day 3 post transfection and proteins extracted using either the RIPA buffer extraction 

protocol or by directly boiling the harvested cell pellet in SDS gel loading buffer. 

Determination of the level of CSN5 protein in these samples by western blot analysis 

demonstrated that RIPA buffer does not appear to extract the entire cellular pool of CSN5 

(figure 64). Together, these data suggest that only the monomeric form of CSN5 may be 

present in RIPA buffer protein extractions.  
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Figure 61. CSN5 knockdown has no significant effect on CSN5 within the 

intact CSN complex.

Trans fected cells were harvested day 3 post transfection and CSN5 distribution in 

vector control and CSN5 knockdown cells determined by 2-Dimensional Native-

PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 

n=3 transfections. 

1
2

3
6

1
0

4
8

7
2

0

4
8

0

2
4

2

1
4

6

6
6

shVC

shCSN5

αCSN5 WB

1
2

3
6

1
0

4
8

7
2

0

4
8

0

2
4

2

1
4

6

6
6

shVC

shCSN5

αCSN5 WB

Figure 61. CSN5 knockdown has no significant effect on CSN5 within the 

intact CSN complex.

Trans fected cells were harvested day 3 post transfection and CSN5 distribution in 

vector control and CSN5 knockdown cells determined by 2-Dimensional Native-

PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 

n=3 transfections. 



 193

shCSN2 shCSN5

P
e

rc
e

n
ta

g
e

 i
n

ta
c

t 
C

S
N

 c
o

m
p

le
x

 r
e

la
ti
v

e
 t

o
 v

e
c

to
r 

c
o

n
tr

o
ls

 
a

s
 m

e
a

s
u

re
d

 b
y

 a
n

ti
 C

S
N

5
 w

e
s

te
rn

 d
e
n

s
it

o
m

e
tr

y

0

20

40

60

80

100

120

140

*

Figure 62. CSN2 knockdown results in a significant reduction of the intact 

CSN complex, whist CSN5 knockdown has no significant effect on the 

intact CSN complex.

Trans fected cells were harvested day 3 post transfection and CSN5 distribution in 

vector control, CSN2 knockdown and CSN5 knockdown cells determined by 2-

Dimensional Native-PAGE/SDS-PAGE and western blot analysis. Densitometry 

was carried out on these membranes and data plotted as average percentage of 

intact CSN complex relative to vector control ±SEM. * indicates p<0.05. Data 

shown is representative of n=3 transfections. 
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Figure 62. CSN2 knockdown results in a significant reduction of the intact 

CSN complex, whist CSN5 knockdown has no significant effect on the 

intact CSN complex.

Trans fected cells were harvested day 3 post transfection and CSN5 distribution in 

vector control, CSN2 knockdown and CSN5 knockdown cells determined by 2-

Dimensional Native-PAGE/SDS-PAGE and western blot analysis. Densitometry 

was carried out on these membranes and data plotted as average percentage of 

intact CSN complex relative to vector control ±SEM. * indicates p<0.05. Data 

shown is representative of n=3 transfections. 
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Figure 63. CSN5 knockdown results in loss of the free form of CSN5.

Trans fected cells were harvested day 3 post transfection and CSN5 distribution in 

vector control and CSN5 knockdown cells determined by 2-Dimensional Native-

PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 

n=3 transfections. 
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Figure 63. CSN5 knockdown results in loss of the free form of CSN5.

Trans fected cells were harvested day 3 post transfection and CSN5 distribution in 

vector control and CSN5 knockdown cells determined by 2-Dimensional Native-

PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 

n=3 transfections. 
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CSN complex formation in CSN5 knockdown cells was further studied by assessment of 

CSN2 integration into the CSN complex in the absence of CSN5. There appears to be no 

significant difference in CSN2 incorporation into either the CSN complex or 

supercomplexes in CSN5 knockdown cells relative to vector controls (figure 65). 

Furthermore, conversely to the observation regarding CSN5 loss in CSN2 knockdown 

cells, there appeared to be no effect on the level of CSN2 protein in CSN5 knockdown 

cells. This was confirmed by western blot analysis. Cells were harvested day 4 post 

transfection, protein extracted and CSN2 levels determined by western blot. Figure 66A 

demonstrates that vector control cells and CSN5 knockdown cells contained similar 

amounts of CSN2 protein, with densitometry confirming that there was indeed no 

significant difference in the level of CSN2 protein in vector control and shCSN5 cell 

lysates (P=0.587). In addition, determination of the level of CSN2 mRNA by QRT-PCR 

in vector control and CSN5 knockdown cells demonstrated that there was no significant 

effect of CSN5 loss on the quantity of CSN2 mRNA in cells lacking CSN5 relative to 

vector controls (figure 66B; P=0.861).  

 

Collectively, 2-D gel analyses of CSN2 and CSN5 knockdown samples demonstrated that 

loss of these subunits differentially affects CSN complex and CSN subunit stability, and 

that the half life of monomeric CSN5 protein is significantly shorter than that of CSN 

complex bound CSN5 protein.     
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Figure 64. RIPA buffer does not extract the entire cellular CSN5 pool.

Trans fected cells were harvested day 3 post transfection and protein extracted 

using either RIPA buffer extraction or by boiling the cell pellet in gel loading 

buffer. The level of CSN5 protein in these samples was determined by western 

blot and even gel loading determined by β-actin western blot.
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Figure 64. RIPA buffer does not extract the entire cellular CSN5 pool.

Trans fected cells were harvested day 3 post transfection and protein extracted 

using either RIPA buffer extraction or by boiling the cell pellet in gel loading 

buffer. The level of CSN5 protein in these samples was determined by western 

blot and even gel loading determined by β-actin western blot.
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Figure 65. CSN5 knockdown has no significant effect on CSN2 integration 

into the CSN complex. 

Trans fected cells were harvested day 3 post transfection and CSN2 distribution in 

vector control and CSN5 knockdown cells determined by 2-Dimensional Native-

PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 

n=3 transfections. 
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Figure 65. CSN5 knockdown has no significant effect on CSN2 integration 

into the CSN complex. 

Trans fected cells were harvested day 3 post transfection and CSN2 distribution in 

vector control and CSN5 knockdown cells determined by 2-Dimensional Native-

PAGE/SDS-PAGE and western blot analysis. Data shown is representative of 

n=3 transfections. 
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Figure 66. CSN5 knockdown has no significant effect on the level of CSN2 

protein or mRNA.

A, Trans fected cells were harvested day 4 post transfection, protein extracted 

and CSN2 protein levels in vector control and CSN5 knockdown cells determined 

by western blot. Even western blot loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN5 

knockdown transfections. B, Mock, vector control and CSN5 knockdown 

transfected cells were harvested day 4 post transfection, RNA extracted, cDNA

generated and QRT-PCR carried out. Data shown is the mean CSN2 mRNA 

expression relative to mock transfected cells of n=3 transfections ±SEM. 
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Figure 66. CSN5 knockdown has no significant effect on the level of CSN2 

protein or mRNA.

A, Trans fected cells were harvested day 4 post transfection, protein extracted 

and CSN2 protein levels in vector control and CSN5 knockdown cells determined 

by western blot. Even western blot loading was determined by β-actin western 

blot. The image shown is of three independent vector control and CSN5 

knockdown transfections. B, Mock, vector control and CSN5 knockdown 

transfected cells were harvested day 4 post transfection, RNA extracted, cDNA

generated and QRT-PCR carried out. Data shown is the mean CSN2 mRNA 

expression relative to mock transfected cells of n=3 transfections ±SEM. 
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Chapter 6.0: 

Expression of wild-type and 

deneddylase dead CSN5 in shCSN5 

expressing cells 
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6.1 Introduction 

 

The results of the double knockdown study clearly indicated that the shCSN2 and 

shCSN5 associated phenotypes cannot be explained by the activity of a CSN5 containing 

subcomplex or remnant CSN complex, respectively. However, the findings of the 2-D gel 

analyses suggested that the CSN5 associated phenotype may occur as a result of the loss 

of monomeric CSN5 function. If this were the case then re-expression of deneddylase 

dead CSN5 which retains monomeric function would rescue the shCSN5 cell phenotype 

to the same extent as wild-type CSN5. In order to test this hypothesis, both wild-type and 

deneddylase dead CSN5 were re-expressed in a shCSN5 background and the rescue of 

the shCSN5 cell phenotype assessed. Unfortunately, due to time constraints, these 

experiments are only n=1, but they do provide interesting preliminary insights into the 

potential basis of the shCSN5 cell phenotype.  
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6.2 Results 

 

6.2.1 Preparation of plasmids 

 

The entire CSN5 protein coding sequence was amplified (figure 67) using CSN5 primers 

designed to include a BamHI and EcoRI restriction site, along with a GCAG cap, at the 

5’ end of the forward and reverse primers, respectively. The CSN5 coding sequence PCR 

product was purified, and this insert and pcDNA3.1 (+) vector digested with the 

restriction enzymes BamHI and EcoRI, the digestion products ligated and the ligation 

verified (figure 68A). The ligation reaction product was transformed into dH5α and 

plated onto ampicillin containing agar plates. Colonies were screened by BamHI/EcoRI 

digestion of miniprep plasmid DNA and separation of digestion products by 

electrophoresis (figure 68B). Correct insertion of CSN5 coding sequence was verified by 

sequencing of plasmid DNA (figure 68C).  

 

Site-directed mutagenesis was used to incorporate four silent mutations into the shRNA 

target sequence in the CSN5 coding sequence in pcDNA3.1-CSN5. This resulted in a 

mutated CSN5 expression plasmid which produces CSN5 mRNA which is not targeted 

for degradation by the CSN5 targeting shRNA, but also produces CSN5 protein with 

unaltered amino acid sequence. The mutation of four bases within the shRNA sequence 

was confirmed by plasmid sequencing (figure 69A). This plasmid was then used in a 

second round of plasmid mutation with a set of primers designed to generate a point 

mutation which resulted in aspartic acid 151 replacement with asparagine, culminating in  
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Figure 67. Amplification of CSN5 coding sequence.

The whole coding sequence (1004 bases) of CSN5 was amplified from Oligo dT

cDNA using pre-designed primers and Accuzyme.

1
0

0
0

b
p

 m
a

rk
e

r

C
S

N
5

 c
d

s
a

m
p

li
fi

c
a

ti
o

n

N
e

g
a

ti
v

e
 c

o
n

tr
o

l

1
0

0
0

b
p

 m
a

rk
e

r

C
S

N
5

 c
d

s
a

m
p

li
fi

c
a

ti
o

n

N
e

g
a

ti
v

e
 c

o
n

tr
o

l

Figure 67. Amplification of CSN5 coding sequence.

The whole coding sequence (1004 bases) of CSN5 was amplified from Oligo dT

cDNA using pre-designed primers and Accuzyme.
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Figure 68. CSN5 re-expression pla smid preparation and validation.

(A) BamHI and EcoRI digested pcDNA3.1 vector and CSN5 coding sequence 

were ligated and the products separated by electrophoresis on a 1% agarose gel 

along with a vector only negative control to determine ligation. (B) Empty 

pcDNA3.1 and pcDNA3.1 plus insert were digested with BamHI and EcoRI and 

products separated by electrophoresis on a 1% agarose gel to determine plasmid 

insertion. (C) pcDNA3.1 plus insert was sequenced to determine the correct 

insertion. 
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Figure 68. CSN5 re-expression pla smid preparation and validation.

(A) BamHI and EcoRI digested pcDNA3.1 vector and CSN5 coding sequence 

were ligated and the products separated by electrophoresis on a 1% agarose gel 

along with a vector only negative control to determine ligation. (B) Empty 

pcDNA3.1 and pcDNA3.1 plus insert were digested with BamHI and EcoRI and 

products separated by electrophoresis on a 1% agarose gel to determine plasmid 

insertion. (C) pcDNA3.1 plus insert was sequenced to determine the correct 

insertion. 
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Base mutations Point mutation

Figure 69. Determination of CSN5 re-expression plasmid shRNA sequence 

and deneddylation dead mutations.

Plasmid sequencing was carried out in order to determine that the required 

mutations of the CSN5 shRNA sequence (A) and the D151N mutation (B) were 

achieved.   
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Figure 69. Determination of CSN5 re-expression plasmid shRNA sequence 

and deneddylation dead mutations.

Plasmid sequencing was carried out in order to determine that the required 

mutations of the CSN5 shRNA sequence (A) and the D151N mutation (B) were 

achieved.   
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the production of CSN5 protein lacking deneddylase activity. This point mutation was 

confirmed by plasmid sequencing (figure 69B).  

 

6.2.2 Assessment of CSN5 protein levels 

 

In order to determine the CSN5 protein level in vector control, CSN5 knockdown and 

either wild-type (WT) or deneddylase dead (dd) CSN5 expressing cells, transfected cells 

were harvested day 7 post transfection, protein extracted and quantified and CSN5 

protein level assessed by western blot. The level of CSN5 protein was reduced in CSN5 

knockdown cells, whilst transfection of cells with shCSN5 plasmid plus either wild-type 

or deneddylase dead CSN5 expression plasmid rescued the level of CSN5 protein (figure 

70A). Quantitative analysis of this western blot demonstrated greater than 80% CSN5 

protein loss in shCSN5 cells and restoration of CSN5 protein level to a level comparable 

to that seen in vector control cells in both wild-type and deneddylase dead CSN5 re-

expressing cells (figure 70B).     

 

6.2.3 Assessment of the cumulative growth of cells expressing CSN5 in a shCSN5 

background 

 

Transfected cells were counted daily, the cumulative growth calculated and the data 

plotted as a line and dot plot. Expression of neither wild-type nor deneddylase dead 

CSN5 in shCSN5 expressing cells restored the cumulative growth to that of vector 

control cells (figure 71A). However, cells expressing either wild-type or deneddylase  
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Figure 70. CSN5 protein expression in a shCSN5 background.

(A) Transfected cells were harvested day 7 post transfection, protein extracted 

and CSN5 protein levels in vector control, CSN5 knockdown and both wild-type 

(+WT) and deneddylase dead (+dd) CSN5 re-expression cell extracts determined 

by western blot. Even loading was determined by β-actin western blot. (B) 

Densitometry was carried out on the CSN5 western blot and the percentage of 

CSN5 in CSN5 knockdown, WT CSN5 expressing and dd CSN5 expressing cells 

relative to vector control cells calculated and plotted.  
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Figure 70. CSN5 protein expression in a shCSN5 background.

(A) Transfected cells were harvested day 7 post transfection, protein extracted 

and CSN5 protein levels in vector control, CSN5 knockdown and both wild-type 

(+WT) and deneddylase dead (+dd) CSN5 re-expression cell extracts determined 

by western blot. Even loading was determined by β-actin western blot. (B) 

Densitometry was carried out on the CSN5 western blot and the percentage of 

CSN5 in CSN5 knockdown, WT CSN5 expressing and dd CSN5 expressing cells 

relative to vector control cells calculated and plotted.  
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Figure 71. Expression of either wild-type or deneddylase dead CSN5 

partially rescues cell growth.

Cell counts were taken daily and the cumulative growth calculated. The 

cumulative growth of wild-type CSN5 expressing and deneddylase dead CSN5 

expressing cells is shown relative to CSN5 knockdown cumulative cell growth in 

the presence (A) or absence (B) of the vector control cell cumulative growth 

curve. 

Day

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

C
u

m
u

la
ti

v
e

 g
ro

w
th

 (
x
1

0
6

)

0

2

4

6

8

10

12
shVCS 

shCSN5 

shCSN5 +WT CSN5 

shCSN5 +DD CSN5 

Day

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

C
u

m
u

la
ti

v
e

 g
ro

w
th

 (
x
1

0
6
)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
B

A

Figure 71. Expression of either wild-type or deneddylase dead CSN5 

partially rescues cell growth.

Cell counts were taken daily and the cumulative growth calculated. The 

cumulative growth of wild-type CSN5 expressing and deneddylase dead CSN5 

expressing cells is shown relative to CSN5 knockdown cumulative cell growth in 

the presence (A) or absence (B) of the vector control cell cumulative growth 

curve. 
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Figure 71. Expression of either wild-type or deneddylase dead CSN5 

partially rescues cell growth.

Cell counts were taken daily and the cumulative growth calculated. The 

cumulative growth of wild-type CSN5 expressing and deneddylase dead CSN5 

expressing cells is shown relative to CSN5 knockdown cumulative cell growth in 

the presence (A) or absence (B) of the vector control cell cumulative growth 

curve. 
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dead CSN5 had a greater cumulative growth than that of shCSN5 cells at the latest time 

point investigated (day 6 post transfection; figure 71B). Given that this data is n=1 these 

findings should be interpreted with caution, and it is possible that this difference may 

hold no significance. Alternatively, the expression of either wild-type or deneddylase 

dead CSN5 in a shCSN5 background may have partially rescued cumulative cell growth 

relative to CSN5 knockdown cells by day 6 post transfection (figure 71B). If this were 

the case, the deneddylase dead form of CSN5 would appear to rescue the cumulative cell 

growth to the same extent as wild-type CSN5 (figure 71B). Importantly, the partial rescue 

of cell growth upon re-expression of either form of CSN5 is supported by the 

observations made regarding the morphology of cells in which either wild-type or 

deneddylase dead CSN5 is re-expressed (see below).   

  

6.2.4 Assessment of the morphology of cells expressing CSN5 in a shCSN5 background 

 

In order to compare the morphology of cells lacking CSN5 with cells expressing either 

wild-type or deneddylase dead CSN5, cytospins were made of transfected cells day 4 post 

transfection and these cytospins Jenner-Giemsa stained. Visualisation of this staining 

suggested that there may be fewer cells containing disorganised, fragmented DNA in 

cells expressing either form of CSN5 compared to shCSN5 cells (figure 72A). In order to 

confirm this initial observation, cell counts were taken from six fields of each slide and 

the average percentage of cells with aberrant nuclear staining calculated and plotted ± 

SEM. Less than 1% of vector control cells had aberrant nuclear staining, whilst almost 

20% of cells lacking CSN5 contained fragmented, disorganized DNA (figure 72B;  
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Figure 72. Expression of either wild-type or deneddylase dead CSN5 

reduces the proportion of cells with disorganised, fragmented DNA.

(A) Cytospins were stained by Jenner-Giemsa for visualisation of cell morphology 

day 4 post transfection. (B) Counts were taken from Jenner-Giemsa stained 

cytospins of the number of cells containing aberrant nuclear staining per 100 

cells. The data shown is the average count of 6 fields per slide ± SEM. * indicates 

p<0.05. 
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Figure 72. Expression of either wild-type or deneddylase dead CSN5 

reduces the proportion of cells with disorganised, fragmented DNA.

(A) Cytospins were stained by Jenner-Giemsa for visualisation of cell morphology 

day 4 post transfection. (B) Counts were taken from Jenner-Giemsa stained 

cytospins of the number of cells containing aberrant nuclear staining per 100 

cells. The data shown is the average count of 6 fields per slide ± SEM. * indicates 

p<0.05. 
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P=1.69x10-7). Expression of either wild-type or deneddylase dead CSN5 resulted in a 

significant reduction of cells with aberrant nuclear staining (9.5% P=0.0002 and 8.8% 

P=9.3x10-5, respectively), although, in accordance with the partial rescue of cell growth, 

neither wild-type nor deneddylase dead CSN5 rescued this phenotype completely (figure 

72B).    

 

6.2.5 Assessment of the effect of CSN5 protein expression in a shCSN5 background on 

SCF
Skp2

 activity  

 

In order to determine the effect on SCFSkp2 activity of wild-type and deneddylase dead 

CSN5 expression in a shCSN5 background, vector control, CSN5 knockdown and either 

wild-type or deneddylase dead CSN5 expressing cells were harvested, protein extracted 

and quantified and Nedd8, Skp2 and p27 protein levels assessed by western blot. CSN5 

knockdown resulted in the accumulation of a Nedd8 bound protein which migrated at a 

rate corresponding to that of neddylated Cul1 (figure 73A). Expression of wild-type 

CSN5 restored the level of what was predicted to be neddylated Cul1 to a level 

comparable to that of vector control cells (figure 73A). However, as would have been 

predicted, expression of deneddylase dead CSN5 failed to reduce the level of neddylated 

protein (figure 73A). Quantitative analysis of this western blot demonstrated a 4 fold 

increase in the level of supposed neddylated Cul1, which is restored by wild-type, but not 

deneddylase dead, CSN5 (figure 73B).  
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Figure 73. Expression of wild-type CSN5, but not deneddylase dead CSN5, 

restores Cul1 deneddylation. 

(A) Transfected cells were harvested day 3 post transfection, protein extracted 

and Nedd8-Cul1 protein levels in vector control, CSN5 knockdown and both wild-

type (+WT) and deneddylase dead (+dd) CSN5 re-expression cell extracts 

determined by western blot. β-actin western blot was used as a loading control. 

(B) Densitometry was carried out on the Nedd8 western blot and the percentage 

of Nedd8-Cul1 in CSN5 knockdown, WT CSN5 expressing and dd CSN5 

expressing cells relative to vector control cells calculated and plotted.  
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Figure 73. Expression of wild-type CSN5, but not deneddylase dead CSN5, 

restores Cul1 deneddylation. 

(A) Transfected cells were harvested day 3 post transfection, protein extracted 

and Nedd8-Cul1 protein levels in vector control, CSN5 knockdown and both wild-

type (+WT) and deneddylase dead (+dd) CSN5 re-expression cell extracts 

determined by western blot. β-actin western blot was used as a loading control. 

(B) Densitometry was carried out on the Nedd8 western blot and the percentage 

of Nedd8-Cul1 in CSN5 knockdown, WT CSN5 expressing and dd CSN5 

expressing cells relative to vector control cells calculated and plotted.  



 212

The level of Skp2 protein in vector control, shCSN5 and either wild-type or deneddylase 

dead CSN5 re-expressing cells was then determined by western blot. At an earlier time 

point, day 3 post transfection, both wild-type and deneddylase dead CSN5 protein 

expression rescued the Skp2 protein loss observed in CSN5 knockdown cells (figure 74). 

However, by day 7 post transfection, rescue of Skp2 protein was only observed in wild-

type CSN5 expressing cells, with deneddylase dead CSN5 expressing cells having a Skp2 

protein level comparable to that of CSN5 knockdown cells (figure 75). Finally, the level 

of p27 was determined by western blot. As determined previously, CSN5 knockdown 

resulted in the accumulation of p27 protein (figure 76). Interestingly, by day 7 post 

transfection, expression of neither wild-type nor deneddylase dead CSN5 reduced the 

level of p27 protein to that of vector control cells (figure 76).     
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Figure 74. Expression of either wild-type or deneddylase dead CSN5 

rescue s Skp2 protein day 3 post transfection.

Trans fected cells were harvested day 3 post transfection, protein extracted and 

the level of Skp2 protein in vector control, CSN5 knockdown and both wild-type 

(+WT) and deneddylase dead (+dd) CSN5 re-expression cell extracts determined 

by western blot. β-actin western blot was used as a loading control.
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Figure 74. Expression of either wild-type or deneddylase dead CSN5 

rescue s Skp2 protein day 3 post transfection.

Trans fected cells were harvested day 3 post transfection, protein extracted and 

the level of Skp2 protein in vector control, CSN5 knockdown and both wild-type 

(+WT) and deneddylase dead (+dd) CSN5 re-expression cell extracts determined 

by western blot. β-actin western blot was used as a loading control.
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Figure 75. Expression of wild-type, but not deneddylase dead, CSN5 

rescues Skp2 protein day 7 post transfection.

(A) Transfected cells were harvested day 7 post transfection, protein extracted 

and the level of Skp2 protein in vector control, CSN5 knockdown and both wild-

type (+WT) and deneddylase dead (+dd) CSN5 re-expression cell extracts 

determined by western blot. β-actin western blot was used as a loading control. 

(B) Densitometry was carried out on the Skp2 western blot and the percentage of 

Skp2 in CSN5 knockdown, WT CSN5 expressing and dd CSN5 expressing cells 

relative to vector control cells calculated and plotted.  
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Figure 75. Expression of wild-type, but not deneddylase dead, CSN5 

rescues Skp2 protein day 7 post transfection.

(A) Transfected cells were harvested day 7 post transfection, protein extracted 

and the level of Skp2 protein in vector control, CSN5 knockdown and both wild-

type (+WT) and deneddylase dead (+dd) CSN5 re-expression cell extracts 

determined by western blot. β-actin western blot was used as a loading control. 

(B) Densitometry was carried out on the Skp2 western blot and the percentage of 

Skp2 in CSN5 knockdown, WT CSN5 expressing and dd CSN5 expressing cells 

relative to vector control cells calculated and plotted.  
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Figure 76. Expression of either wild-type or deneddylase dead CSN5 fails to 

restore the basal level of p27 protein.

Trans fected cells were harvested day 7 post transfection, protein extracted and 

the level of p27 protein in vector control, CSN5 knockdown and both wild-type 

(+WT) and deneddylase dead (+dd) CSN5 re-expression cell extracts determined 

by western blot. β-actin western blot was used as a loading control.
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Figure 76. Expression of either wild-type or deneddylase dead CSN5 fails to 

restore the basal level of p27 protein.

Trans fected cells were harvested day 7 post transfection, protein extracted and 

the level of p27 protein in vector control, CSN5 knockdown and both wild-type 

(+WT) and deneddylase dead (+dd) CSN5 re-expression cell extracts determined 

by western blot. β-actin western blot was used as a loading control.
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Chapter 7.0: 

General discussion 



 217

This study investigated the function and potential regulation of the CSN in the 

haematopoietic cell line and CML model, K562. Highly efficient knockdown of CSN2 

and CSN5 was achieved, with both knockdowns resulting in aberrant CRL activity and 

the sequential loss of F-box proteins. However, the phenotypes of the knockdowns were 

distinct. CSN2 loss resulted in autophagy inhibition and non-apoptotic cell death, whilst 

loss of CSN5 resulted in a mitotic block, aberrant mitotic spindle formation and apoptotic 

cell death. The intact CSN complex was shown to be lost in cells lacking CSN2, and a 

CSN5 containing subcomplex formed. The possible dependence of the CSN2 knockdown 

associated phenotype on the activity of this subcomplex was ruled out. Conversely, the 

intact CSN complex was shown to persist in CSN5 knockdown cells, with loss of only 

monomeric CSN5. Re-expression of either wild-type or deneddylase dead CSN5 in 

shCSN5 cells partially rescued the CSN5 knockdown associated phenotype.     

 

7.1 CSN subunit knockdown results in aberrant CRL activity 

  

The achievement of almost complete CSN2 and CSN5 knockdown in this study has 

provided a powerful tool to study the function of these subunits and the CSN complex in 

K562 cells. At the molecular level, CSN2 and CSN5 knockdowns resulted in identical 

aberrant SCF activity. This complements another report in which CSN4 and CSN5 

knockdown also resulted in increased neddylation of Cul-1 with a concomitant loss of 

Skp2 and increase in p27 protein in human epithelial cell lines rather than haemopoietic 

cells (Denti et al., 2006). Similar cullin hyperneddylation and aberrant CRL activity as a 

result of CSN subunit loss has also been observed in other organisms such as mice 
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(Lykke-Andersen et al., 2003), A. thaliana (Stuttmann et al., 2009) and S. pombe (Wee et 

al., 2005). The instability of cullin proteins has also been demonstrated in other 

organisms including Drosophila (Wu et al., 2005) and Neurospora (He et al., 2005). Thus 

it appears that the CSN complex has CRL regulatory activities which are conserved 

between organisms and across cells from different cell lineages, and that disruption of the 

complex by loss of any subunit causes derangement of CRL activity.   

 

7.2 Targeting the CSN results in the sequential loss of F-box proteins  

 

The finding that F-box protein levels were at least partially restored in both knockdowns 

upon treatment with the proteasome inhibitor MG132 are in accordance with the finding 

that F-box proteins are autocatalytically degraded in the presence of hyperneddylated 

Cul-1 (Cope and Deshaies, 2006). However, this study has been the first to identify the 

sequential loss of F-box proteins following knockdown of CSN subunits. This is of great 

interest as it may explain published results which document the loss of particular F-box 

proteins at a specific time point post CSN manipulation, but no reduction in other F-box 

proteins (Cope and Deshaies, 2006, Su et al., 2008).  

 

There are at least two explanations for the sequential loss of F-box proteins. First, given 

that binding of F-box proteins to the SCF has been suggested to be competitive (Patton et 

al., 1998, Bosu and Kipreos, 2008), it is possible that the rapid loss of Skp2 reflects high 

Skp2 expression in K562 cells and therefore preferential binding of Skp2 to the SCF. In 

support of this, the level of Skp2 mRNA in K562 was found to be greater than that of 
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Cdc4 and β-TrCP (data not shown). This finding was not surprising given that the fusion 

protein associated with CML, BCR-ABL, has been shown to induce Skp2 expression 

(Andreu et al., 2005). On the other hand, Cdc4 and β-TrCP were found to be expressed at 

the same level in K562 (data not shown). The disparate rates of Cdc4 and β-TrCP protein 

loss may be attributable to the potentially different affinities of these F-box proteins for 

the SCF. However, an alternative explanation is that some F-box proteins, such as β-

TrCP, may not be as susceptible to autocatalytic degradation. Recently, a similar 

hypothesis has been put forward regarding the Drosophila β-TrCP homolog, Slimb 

(Knowles et al., 2009). In favour of this is the finding herein that whilst β-TrCP mRNA 

was reduced day 4 post transfection in CSN5 knockdown cells the level of β-TrCP 

protein was unaltered, suggesting that this protein is relatively stable. If this were the case 

then it is possible that SCFβ-TrCP activity is retained in CSN subunit knockdowns, as 

presented by E.Bianchi at the recent Zomes symposium (Pick and Pintard, 2009), at early 

time points post transfection. Although further work would be necessary to test this 

hypothesis, the findings to date give rise to the possibility that the CSN may function in 

determining SCF target specificity in human cells, as has been postulated in Drosophila 

(Doronkin et al., 2003, Harari-Steinberg et al., 2007, Knowles et al., 2009).   

 

7.3 The CSN and F-box protein/CSN subunit transcription  

 

Both CSN2 and CSN5 knockdown resulted in temporal alterations to F-box protein 

mRNA. Further, CSN2 knockdown was associated with a significant loss of CSN5 

mRNA. Together with other recent reports (Su et al., 2008, Ullah et al., 2007), these data 
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suggest that the CSN complex may have a direct role in the transcriptional regulation of 

CSN subunits and F-box proteins, independent of CSN deneddylase activity. For 

instance, it is possible from the findings regarding Skp2 mRNA levels in both CSN2 and 

CSN5 knockdown cells that the intact CSN complex functions directly in the 

transcriptional activation of Skp2. In support of this, the identical effect of CSN2 and 

CSN5 loss on SCFSkp2 activity suggests that the different rates of Skp2 mRNA reduction 

observed between the knockdowns most likely results from the loss of a deneddylase 

independent function of the CSN complex. The same can also be said for the alterations 

in Cdc4 and β-TrCP mRNA levels. In addition, the slower rate of Skp2 mRNA loss in 

shCSN5 cells relative to shCSN2 cells may reflect a delayed loss of the intact CSN 

complex in these cells. Although this would further implicate the CSN in the deneddylase 

independent regulation of transcription, the stability of the intact CSN complex in 

shCSN5 cells at a later time point (such as day 6 post transfection) remains to be 

experimentally determined.  

 

It is important to note that the altered mRNA levels observed may be an indirect result of 

the aberrant degradation of proteins which may occur upon loss of other CSN functions 

such as protein phosphorylation and deubiquitination. In addition, the contribution of 

CSN subcomplexes or the CSN independent functions of CSN2 and CSN5 to the altered 

mRNA levels of Skp2, Cdc4 and β-TrCP cannot be ruled out. To further investigate the 

possibility that the CSN complex directly regulates CSN subunit and F-box protein 

transcription, chromatin immunoprecipitation (ChIP) could be used to determine 

promoter binding. MG132 and curcumin, which inhibit the proteasome and CSN 
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associated kinases respectively, could also be used to assess any contribution of aberrant 

protein degradation or CSN associated protein phosphorylation to altered CSN subunit or 

F-box protein mRNA levels.      

 

7.4 CSN2 knockdown  

 

This is the first study to show an association between the CSN complex and autophagy. 

The phenotype of K562 cells in which CSN2 had been knocked down included features 

of autophagy, and treatment of K562 cells with autophagy inhibitors recapitulated this 

phenotype. These findings suggest that CSN2 knockdown in K562 cells causes an 

arrested autophagic process resulting ultimately in cell death. 

 

The autophagy inhibition and mitotic defects which arose from the loss of CSN2 and 

CSN5, respectively, raised the question of why knockdown of two subunits of the same 

complex should result in divergent phenotypes? It was predicted that the disparate 

consequences of CSN2 and CSN5 knockdown may be attributable to the effect of the 

knockdowns on the intact CSN complex, as has been postulated for the divergent 

phenotypes observed in Drosophila CSN4 and CSN5 mutations (Oron et al., 2002, Oron 

et al., 2007). Initially, CSN2 knockdown was shown to result in significant loss of the 

intact CSN complex and CSN5 protein. Interestingly, cells lacking CSN2 were also 

shown to be associated with the formation of a CSN5 containing subcomplex. It was thus 

postulated that the phenotype of shCSN2 cells may arise as a result of aberrant CSN5 

activity within this subcomplex. However, a significant number of double knockdown  
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Figure 77. Diagram depicting the possible consequences of CSN2 or CSN5 

loss for the functions of the intact CSN complex.

Diagram to show that in CSN2 knockdown cells, in which the CSN complex is 

lost, all functions of the intact CSN are likely to be lost. Further, CSN5 knockdown 

cells, which retain the intact CSN complex until at least day 3 post transfection

but lose monomeric CSN5, may retain both deneddylase independent 

deubiquitinase and CSN associated kinase functions. It is thus postulated here 

that the inhibition of autophagy occurs as a result of the loss of a deneddylase

independent function of the CSN, whilst the CSN5 associated phenotype is 

mediated by loss of a CSN independent function of CSN5.   
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Figure 77. Diagram depicting the possible consequences of CSN2 or CSN5 

loss for the functions of the intact CSN complex.

Diagram to show that in CSN2 knockdown cells, in which the CSN complex is 

lost, all functions of the intact CSN are likely to be lost. Further, CSN5 knockdown 

cells, which retain the intact CSN complex until at least day 3 post transfection

but lose monomeric CSN5, may retain both deneddylase independent 

deubiquitinase and CSN associated kinase functions. It is thus postulated here 

that the inhibition of autophagy occurs as a result of the loss of a deneddylase

independent function of the CSN, whilst the CSN5 associated phenotype is 

mediated by loss of a CSN independent function of CSN5.   
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cells lacking both CSN2 and CSN5, in which this subcomplex was not detected, 

demonstrated a vacuolar morphology comparable to that of shCSN2 cells. These findings 

indicate that the phenotype of shCSN2 cells is not attributable to the function of this 

CSN5 containing subcomplex.  

 

As the intact CSN complex was lost in CSN2 targeted cells, it is possible that the CSN2 

knockdown phenotype is attributable to the loss of a function of the intact CSN complex. 

However, as both CSN2 and CSN5 knockdowns appear to have the same affect on CRL 

activity it seems unlikely that the shCSN2 associated phenotype occurs as a result of the 

loss of cullin deneddylation. Rather, autophagy inhibition may occur due to the loss of a 

deneddylase independent function of the intact CSN complex such as protein 

phosphorylation or deubiquitination (figure 77). These functions are possibly retained in 

shCSN5 cells with the retention of the intact CSN complex until at least day 3 post 

transfection (figure 77), thus potentially giving rise to the divergent phenotypes observed. 

Alternatively, the inhibition of autophagy may be a consequence of the loss of CSN2 

monomer function. In order to discern between these two possibilities, CSN2 re-

expression studies should be carried out.    

 

7.5 CSN5 knockdown 

 

Previous studies in Drosophila (Oron et al., 2002), Arabidopsis (Dohmann et al., 2005) 

and HeLa cells (Peth et al., 2007a) have demonstrated the retention of a high molecular 

weight complex in the absence of CSN5. However, this is the first study to demonstrate 
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the longevity of the intact CSN complex including CSN5 in CSN5 knockdown cells. 

Initially, these data suggested that the shCSN5 associated phenotype may occur as a 

result of an activity of the surviving CSN complex. However, this was proven to be 

unlikely with the finding that a proportion of double knockdown cells, which lack the 

intact CSN complex, demonstrated a morphology comparable to that of shCSN5 cells.  

 

Although the level of CSN complex bound CSN5 was unaltered in shCSN5 cells at day 3 

post transfection, a significant proportion of monomeric CSN5 was lost. This indicates 

that complex bound and monomeric CSN5 have different half lives, with CSN5 

potentially being protected from degradation when bound to the CSN complex. This 

finding also led to the hypothesis that the phenotype of CSN5 targeted K562 cells is 

mediated by the loss of a CSN complex independent function of CSN5. In support of this, 

Tomoda and colleagues demonstrated that a 22% CSN5 protein knockdown in K562 

cells, which did not affect the level of the intact CSN, resulted in a similar cell cycle 

profile to that reported here, with loss of cells from the S phase of the cell cycle and an 

accumulation of cells in the G2M phase (Tomoda et al., 2005). In order to test this 

hypothesis both wild-type and deneddylase dead CSN5 were expressed in a shCSN5 

background. Although performed only once, the cumulative growth and cell morphology 

data together suggest that re-expression of either WT or dd CSN5 rescues the CSN5 

knockdown phenotype to the same extent, independently of their ability to restore cullin 

deneddylation and rescue Skp2 protein. Together with the finding that shCSN5 cells 

retain the intact CSN complex and thus potentially the deneddylase independent 

functions associated with the CSN, these results suggest that the shCSN5 associated 
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phenotype most likely occurs as a result of the loss of a CSN independent function of 

CSN5.  

 

CSN5 knockdown was associated with reduced cell proliferation and apoptosis. These 

data complement previous studies demonstrating that CSN5 loss inhibits proliferation and 

induces apoptosis (Panattoni et al., 2008, Fukumoto et al., 2006). Closer analysis of 

CSN5 knockdown cells identified a G2/M cell cycle arrest and abnormal mitotic spindles.  

Microtubule stability (Peth et al., 2007b, Pintard et al., 2003) and progression through the 

G2/M phase of the cell cycle (Dohmann et al., 2008, Li et al., 2009) have been shown to 

be dependent on CSN deneddylase activity (Dohmann et al., 2008, Pintard et al., 2003) or 

CSN associated kinase activity (Li et al., 2009, Peth et al., 2007b). However, as the 

phenotype associated with the loss of CSN5 is most probably attributable to the loss of 

monomeric CSN5 function the precise mechanism accounting for the observed phenotype 

remains to be determined.    

 

It is important to note that both CSN2 and CSN5 have been shown to function in distinct 

subcomplexes (Mundt et al., 2002, Tomoda et al., 2002) and that CSN5 has been shown 

to function within a CSN subcomplex in K562 (Tomoda et al., 2005). Although such 

subcomplexes were not consistently detected in the NativePAGE/SDS-PAGE studies, the 

possible contribution of either the CSN independent function of CSN2 or CSN 

subcomplexes to the phenotypic differences observed between the knockdowns cannot be 

ruled out. Indeed, Tomoda and colleagues have published data to suggest that the loss of 

a CSN subcomplex in K562 cells results in a similar cell cycle profile to that 
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demonstrated here for shCSN5 K562 cells (Tomoda et al., 2005). However, importantly 

this study does not document the effect of CSN5 knockdown on monomeric CSN5 and 

thus does not rule out the possible contribution of monomeric CSN5 function to this cell 

cycle profile.   

 

7.6 CSN5 re-expression results in partial rescue of the shCSN5 phenotype 

 

It should be noted that expression of neither WT nor dd CSN5 rescued the shCSN5 

phenotype fully, even though the CSN5 protein level was comparable to that of vector 

control day 7 post transfection. This could be explained if CSN5 protein was found to be 

initially lost relatively rapidly in response to shRNA expression whereas vector-driven 

CSN5 re-expression only fully restored CSN5 protein at a later time point. In favour of 

this possibility, only partial rescue of Skp2 was observed day 3 post transfection, and 

although Skp2 protein was rescued day 7 post transfection, CSN5 re-expression failed to 

rescue p27 protein at this time point. However, further work would be needed to test this 

hypothesis. Such work may include earlier time point analysis of CSN5 protein, and an 

extended time course to confirm whether the re-expression of CSN5 restores p27 protein 

level and continues to rescue cumulative cell growth and cell morphology at later time 

points at which shCSN5 knockdown is lethal.   

 

 

 

 



 227

7.7 ddCSN5 expression rescues Skp2 protein levels 

 

It is interesting to note that dd CSN5 expression was also found to rescue Skp2 protein 

levels. Although the incorporation of dd CSN5 into the CSN complex has not been 

demonstrated here, the incorporation of mutant CSN5 into the CSN complex has been 

described previously (Cope et al., 2002). It is thus possible that the expression of dd 

CSN5 resulted in increased deneddylase independent CSN associated deubiquitinase 

activity. Such an activity may reverse Skp2 autoubiquitination within the SCF and thus 

prevent the autocatalytic degradation of Skp2, thereby rescuing Skp2 protein. However, 

the deneddylase independent deubiquitination of Skp2 by the CSN would have to be 

demonstrated in order to verify this possibility.  

 

7.8 A novel mechanism of CSN deneddylase activity regulation?  

 

An important observation made here is that although the intact CSN complex was 

retained in shCSN5 cells until at least day 3 post transfection, SCFSkp2 activity was found 

to be aberrant at this time point. Intriguingly, this data suggests that the sustained 

deneddylase activity of the CSN complex may be dependent on the availability of 

monomeric CSN5. This finding gives rise to a novel potential mechanism of CSN 

deneddylase activity regulation in which CSN5 subunit refreshment may be required for 

continued cullin deneddylation. If this were the case, the absence of monomeric CSN5 

would inhibit the deneddylase activity of the CSN, as is suggested by the findings of this 

study. However, in order to directly test this hypothesis the deneddylase activities of both 
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the shCSN5 and vector control CSN complex should be compared both in the presence 

and absence of recombinant CSN5.  

 

7.9 The CSN and CML 

 

Overall, the data presented here suggest that the CSN complex/CSN subunits may be 

viable targets in the treatment of CML. For instance, as ectopic CSN5 expression results 

in a myeloproliferative disorder resembling CML (Mori et al., 2008), the finding of a 

lethal phenotype of shCSN5 K562 cells implies that CSN5 may be a novel target in CML 

treatment. The modulation of autophagy in combination with imatinib as a possible CML 

treatment has been reported (Bellodi et al., 2009, Burchert et al., 2005, Dengler et al., 

2005). In particular, imatinib treatment of both CML cell lines and primary CML cells 

has been shown to induce BCR-ABL dependent autophagy as a survival mechanism. 

Autophagy inhibition was subsequently shown to potentiate imatinib induced cell death 

in CML cell lines, primary CML cells and importantly, the CML stem cell population 

(Bellodi et al., 2009). This study together with the finding of CSN2 knockdown induced 

autophagy inhibition suggest that targeting CSN activity in combination with imatinib 

treatment may represent a novel treatment in CML. However, a significant amount of 

work would be required in order to verify the CSN as a novel target in CML, including 

studies into the effect of CSN subunit knockdown on primary CML cells and their non-

malignant counterparts. Further, it would be of interest to determine the precise 

mechanism of autophagy inhibition in shCSN2 cells and mitotic defects in shCSN5 cells 

in order to allow more specific targeting of CSN function in CML.      
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Abstract
Background: The COP9/signalosome (CSN) is a highly conserved eight subunit complex that, by
deneddylating cullins in cullin-based E3 ubiquitin ligases, regulates protein degradation. Although
studied in model human cell lines such as HeLa, very little is known about the role of the CSN in
haemopoietic cells.

Results: Greater than 95% knockdown of the non-catalytic subunit CSN2 and the deneddylating
subunit CSN5 of the CSN was achieved in the human myeloid progenitor cell line K562. CSN2
knockdown led to a reduction of both CSN5 protein and mRNA whilst CSN5 knockdown had little
effect on CSN2. Both knockdowns inhibited CSN deneddylase function as demonstrated by
accumulation of neddylated Cul1. Furthermore, both knockdowns resulted in the sequential loss
of Skp2, Cdc4 and β-TrCP F-box proteins. These proteins were rescued by the proteasome
inhibitor MG132, indicating the autocatalytic degradation of F-box proteins upon loss of CSN2 or
CSN5. Interestingly, altered F-box protein gene expression was also observed in CSN2 and CSN5
knockdowns, suggesting a potential role of the CSN in regulating F-box protein transcription.

Loss of either CSN subunit dramatically reduced cell growth but resulted in distinct patterns of cell
death. CSN5 knockdown caused mitotic defects, G2/M arrest and apoptotic cell death. CSN2
knockdown resulted in non-apoptotic cell death associated with accumulation of both the
autophagy marker LC3-II and autophagic vacuoles. Treatment of vector control K562 cells with the
autophagy inhibitors 3-methyladenine and bafilomycin A1 recapitulated the growth kinetics,
vacuolar morphology and LC3-II accumulation of CSN2 knockdown cells indicating that the cellular
phenotype of CSN2 cells arises from autophagy inhibition. Finally, loss of CSN2 was associated with
the formation of a CSN5 containing subcomplex.

Conclusion: We conclude that CSN2 is required for CSN integrity and the stability of individual
CSN subunits, and postulate that CSN2 loss results in a phenotype distinct from that of cells lacking
CSN5 possibly as a consequence of altered CSN5 activity within a resultant CSN subcomplex. Our
data present the first evidence for the sequential loss of F-box proteins upon CSN manipulation
and are the first to identify a potential link between CSN function and autophagy.
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Background
The regulated expression and degradation of proteins are
critical to all aspects of cell development and prolifera-
tion. The two main routes for eukaryotic intracellular pro-
tein clearance are the ubiquitin-proteasome system (UPS)
and the autophagy-lysosome pathway. A key component
involved in regulating degradation of proteins by the UPS
is the COP9 signalosome (CSN). The CSN is an eight-sub-
unit (CSN1-8) protein complex, highly conserved
amongst eukaryotes [1-5] originally identified in Arabi-
dopsis as a negative regulator of photomorphogenesis [6].
Through its function in the regulation of the UPS, the CSN
has been implicated in the regulation of biological proc-
esses as diverse as DNA replication and repair, cell-cycle
progression and cell development [7-9].

Degradation of cellular proteins by the 26S proteasome
[10-13] is preceded by ubiquitination of target proteins
[14], a process mediated by three enzyme complexes; a
ubiquitin activating enzyme (E1), a ubiquitin conjugating
enzyme (E2) and a ubiquitin ligase (E3) [15]. The E3
ligase interacts with the protein substrate and thus confers
the specificity of the UPS [16]. The largest known class of
E3 ubiquitin ligases comprises the Cullin-RING ligases
(CRLs) of which the best studied is the SCF (Skp1, Cul1,
F-box protein) complex [16]. The cullin subunit (Cul1) of
the SCF forms a scaffold to recruit and bring into close
proximity the E2 and its substrate, thereby facilitating
ubiquitin transfer from the E2 to target proteins (SCF
structure reviewed in [16]). The RING protein (Hrt1/
Roc1/Rbx1) is the fourth subunit of the SCF and is respon-
sible for E2 recruitment, whilst the variable F-box protein
subunit, recruited to the SCF complex via the adaptor pro-
tein Skp1, binds substrates selectively [17-19]. In yeast,
over 19 F-box proteins are known, over 400 in A. thaliana,
and ~70 in humans [16]. Since each cullin (Cul1-5) forms
complexes with a variable substrate recognition subunit
(SRS) (F-box proteins for Cul1 as above, VHL box proteins
for Cul2, BTB proteins for Cul3, WD40 proteins for Cul4
and SOCS box proteins for Cul5, reviewed in [20]) specif-
icity in CRL target protein recruitment is achieved by the
large number of variable SRS containing CRLs. It is
thought that, altogether, the human genome may have
the capacity to code for as many as 350 different CRLs.

Given the potential number and diversity of target pro-
teins requiring CRL mediated ubiquitination for degrada-
tion, dynamic regulation of the CRL complex repertoire in
a cell at any given time is essential. All cullins studied
(Cul1-5) have been shown to be modified by neddylation
[21], which facilitates their ubiquitin ligase activity [22]
possibly via increased E2 affinity [23,24]. The deneddyla-
tion of cullins is mediated by the CSN complex [25].
Although initial studies indicated a negative role for
deneddylation, further studies have implicated dened-

dylation in the positive regulation of CRL activity [3,4,26].
It has since been proposed by several groups that optimal
CRL activity requires the cyclic neddylation and dened-
dylation of the cullin subunit [4,7,27]. Although the exact
mechanisms are not fully understood, it is thought that F-
box proteins themselves are targeted for degradation in
part by autoubiquitination within the SCF complex [28].
The deneddylation of cullins by the CSN is believed to
regulate the autoubiquitination of SRSs [28,29], thereby
modulating CRL composition and activity. Furthermore,
the CSN has been shown to be associated with a deubiq-
uitinase activity which may further stabilize autoubiquiti-
nated SRSs [27,29]. The CSN complex is therefore an
integral regulator of CRL activity and subsequent protein
degradation.

In this present study we have investigated the effects of
knocking down CSN2 and CSN5 in the model K562 cell
line, a model of human erythrocyte and megakaryocyte
progenitors [30,31]. Whilst knockdown of either CSN2 or
CSN5 resulted in common changes including the sequen-
tial loss of F-box proteins Skp2, Cdc4 and β-TrCP other
important differences occurred. For example CSN5 knock-
down resulted in apoptotic cell death associated with
aberrant mitosis, whereas CSN2 knockdown cells under-
went non-apoptotic cell death that was associated with
both inhibition of autophagy and the formation of a
novel CSN5 containing CSN subcomplex.

Results
CSN2 and CSN5 knockdown and resulting aberrant SCF 
activity
Plasmids encoding short hairpin RNA (shRNA) to either
CSN2 or CSN5 were electroporated into K562 cells
together with H-2Kk plasmid and transfected cells sorted
by anti- H-2Kk magnetic beads. Three days post transfec-
tion, neither CSN2 nor CSN5 protein could be detected by
western blot analysis in their respective knockdown pro-
tein extracts (Fig. 1A). Furthermore, CSN2 knockdown of
over 99% and CSN5 knockdown of over 95% was
achieved at the mRNA level relative to mock transfectants
as measured by quantitative real-time PCR (QRT-PCR)
(Fig. 1B). This level of knockdown was maintained
throughout the time course of the experiments (data not
shown). Transfection with either the H-2Kk plasmid alone
or co-transfection with H-2Kk plasmid and empty vector
(shVC) had no effect on the level of CSN2 or CSN5 mRNA
or protein relative to mock transfected cells (Fig. 1A &1B
and data not shown). Co-transfections with H-2Kk and a
vector encoding a control scrambled shRNA sequence had
no effect on the level of CSN2 or CSN5 mRNA or protein
relative to cells co-transfected with empty vector (Addi-
tional file 1), demonstrating that the results were specific
and not due to off-target effects.
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The instability of particular CSN subunits in the absence
of another subunit has been reported previously. For
example, CSN8 knockdown has been shown to result in
the loss of CSN3, CSN5 and CSN7 protein [32]. We there-
fore determined CSN5 and CSN2 protein levels in CSN2
and CSN5 knockdown cells, respectively, by western blot-
ting. A significant reduction in CSN5 protein was
observed in cells lacking CSN2, whilst depletion of CSN5
had no effect on CSN2 protein or mRNA levels relative to
vector control cells (Fig. 1C and data not shown). Interest-
ingly, CSN2 knockdown not only resulted in loss of CSN5
protein, but also in the significant reduction of CSN5
mRNA as determined by QRT-PCR (Fig. 1D, P = 0.011).

Consistent with previous studies of CSN deregulation
[28,33], both CSN2 and CSN5 knockdowns were associ-
ated with accumulation of neddylated Cul1 (Fig. 1E) indi-
cating functional dysregulation of the CSN following
knockdown of either subunit. Studies demonstrating
Cul1 hyperneddylation in CSN deficient cells have also
demonstrated degradation of the F-box protein Skp2
[28,33]. In agreement with these observations, complete
loss of Skp2 protein was observed in both the CSN2 and
CSN5 knockdown cells (Fig. 1E). Skp2 binds to and medi-
ates the ubiquitination of multiple proteins, including the
cyclin dependent kinase inhibitor p27kip1 [34]. Consistent
with loss of Skp2, knockdown of CSN2 and CSN5
resulted in the accumulation of p27 (Fig. 1E).

Loss of CSN2 and CSN5 results in the sequential loss of F-
box proteins
Skp2 is one of many F-box proteins that can bind to the
Cul1/Roc1/Skp1 complex, thereby altering the substrate
specificity of the SCF (F-box proteins reviewed in [19]).
Analysis of three such F-box proteins, Skp2, Cdc4 and β-
TrCP revealed a sequential loss of protein in CSN2 and
CSN5 knockdown cells (Fig. 2A &2B and Additional file 1,
part D). In CSN2 knockdown cells, Skp2 protein was
reduced by ~60% by day 2 and over 90% by day 6,
whereas Cdc4 was lost at a slower rate with 30–40% lost
by day 3 increasing to ~70% by day 6 (Fig. 2B). Loss of β-
TrCP was still more retarded with ~70% protein remain-
ing at day 6 (Fig. 2B). By day 9, all three F-box proteins
were undetectable in CSN2 knockdown cells (Fig. 2A).
Similar sequential loss of F-box proteins was observed in
CSN5 knockdown cells. At day 4 post transfection Skp2
protein could not be detected, Cdc4 protein was greatly
reduced but remained detectable, and β-TrCP was largely
unaffected (Additional file 1, part D).

In order to determine the mechanism of F-box protein
loss in both CSN2 and CSN5 knockdown cells, we inves-
tigated the rescue of F-box proteins by the proteasome

CSN2 and CSN5 knockdowns result in Cul-1 hyperneddyla-tion, loss of Skp-2 and accumulation of p27Figure 1
CSN2 and CSN5 knockdowns result in Cul-1 hyper-
neddylation, loss of Skp-2 and accumulation of p27. 
K562 cells were transiently transfected in the absence of 
plasmid DNA (mock), with pMACS Kk.II plasmid alone 
(HKK) or transiently co-transfected with HKK plasmid 
together with either vector control (shVC), CSN2 knock-
down (shCSN2) or CSN5 knockdown (shCSN5) plasmid. 
HKK positive cells were sorted 24 hours post-transfection, 
re-cultured and harvested for analysis. (A) CSN2 (left) and 
CSN5 (right) protein knockdown was determined by west-
ern blot in three independent transfectants. (B) mRNA levels 
in vector control and knockdown cells were determined by 
QRT-PCR (CSN2, left, P = 0.0012; CSN5, right, P = 
0.000031). Data represents 3 independent sets of triplicate 
transfections. (C) CSN5 and CSN2 protein levels were 
determined by western blot in n = 3 CSN2 (top) and CSN5 
(bottom) knockdowns, respectively. (D) CSN5 mRNA levels 
in n = 3 vector control and CSN2 knockdown cells were 
determined by QRT-PCR (P = 0.011). (E) The level of Cul1 
neddylation (top panels, † indicates neddylated Cul-1), Skp2 
protein (second panels) and p27 protein (third panels) was 
determined in n = 3 shCSN2 (left) and shCSN5 (right) sam-
ples by western blot. Even gel loading was determined by β-
actin signal. Graphical data indicates the mean ± s.e.m. * indi-
cates significance with a p value of less than 0.05.
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inhibitor MG132 (Fig. 2C) and measured the levels of F-
box mRNA over time (Fig. 2D &2E). Treatment of both
CSN2 and CSN5 knockdown cells with MG132 resulted
in Skp2, Cdc4 and β-TrCP protein rescue (Fig. 2C), indi-
cating involvement of the proteasome in the loss of these
F-box proteins. However the strength of the observed res-
cue varied. Importantly, CSN subunit depletion also
affected levels of F-box mRNA. CSN2 knockdown resulted
in a significant reduction of Skp2 mRNA by day 2 post
transfection. Thus it is likely that transcriptional changes
also contribute to loss of Skp2 protein in these cells. In
contrast Cdc4 and β-TrCP mRNAs were significantly
increased following CSN2 knockdown despite clear loss
of protein (Fig. 2D). CSN5 depletion resulted in a modest
reduction of all three F-box protein mRNAs but not
enough to account for the observed loss of protein (Fig.
2E). Collectively these data indicate that, with the possi-
ble exception of Skp2 in CSN2 knockdown cells, proteas-
omal degradation rather than transcriptional repression
was the main driver of F-box protein loss in CSN2 and
CSN5 knockdown K562 cells.

Both CSN2 and CSN5 knockdowns result in reduced cell 
growth and cell death
Knockdown of either CSN2 or CSN5 dramatically dimin-
ished cell proliferation, followed by loss of cell viability
(Fig. 3A). Analysis of cumulative growth demonstrated
that proliferation of cells lacking CSN2 was significantly
reduced when compared to that of shVC cells by day 4
post transfection (Fig. 3A, P = 0.034), whilst loss of prolif-
eration following CSN5 knockdown was even more
marked (Fig. 3A insert, P = 0.0023). This difference in
diminished proliferation was corroborated by measure-
ment of thymidine incorporation. At day 3 post-transfec-
tion, there was no significant difference in the
incorporation of tritiated thymidine into cellular DNA
between shVC and CSN2 knockdown (Fig. 3B) whereas
the CSN5 knockdown cells already had markedly reduced
thymidine incorporation (Fig. 3C, P = 0.0012). However,
by day 5 the CSN2 knockdown cells also had a significant
decrease in thymidine incorporation (Fig. 3B, P = 0.0072)
which decreased even further by day 7 (P = 1.1 × 10-5).
Thus, although the changes in Cul1 neddylation and F-
box protein levels are very similar between the CSN2 and
CSN5 knockdowns, differences were apparent in the
growth kinetics of the cells.

Knockdown of CSN5 but not CSN2 is associated with cell 
cycle arrest and defects in mitotic spindle formation
Cell cycle analyses revealed striking differences between
the profiles of CSN2 and CSN5 knockdown cells. Despite
leading to significantly reduced cell proliferation, loss of
CSN2 did not affect the cell cycle distribution of K562
cells as compared to shVC K562 cells by day 6 post trans-
fection (Fig. 4A). Given the significantly reduced cell
numbers in CSN2 knockdown by day 6, this would sug-

gest that these cells are growing more slowly, rather than
arresting at any stage in the cell cycle. In contrast, CSN5
knockdown resulted in a reduction in cells in G1 (25.7%
compared to shVC 35.5%, P = 0.0044), loss of cells from
S phase (21% compared to shVC 45.7%, P = 3.4 × 10-5)
and accumulation in G2/M (33.5% compared to shVC
15.7%, P = 0.0011) by day 4 post transfection (Fig. 4A).
Morphological analysis of Jenner-Giemsa stained CSN5
knockdown cells identified a significant number of large
cells which appeared to be arrested in late mitosis with
chaotically organized condensed chromosomes (Fig. 4B).
Cells of these morphologies were not observed in either
shVC (Fig. 4B) or CSN2 knockdown (Fig. Six A) cells. To
investigate this morphology further, shCSN5 cells were
immunostained for tubulin. As can be seen in Fig. 4C,
shVC cells retained the ability to form a mitotic spindle
and correctly aligned chromosomes at various stages of
mitosis were observed. In striking contrast, cells lacking
CSN5 demonstrated either aberrant or absent microtu-
bule structures. In these cells, the condensed chromatids
appeared to be either misaligned or indeed not associated
with the spindle structures at all (Fig. 4C). This aberrant
cellular phenotype is in accordance with cell cycle arrest at
G2/M.

Knockdown of CSN5 but not CSN2 results in apoptotic cell 
death
In order to determine whether the subsequent loss of via-
bility in CSN2 and CSN5 knockdown cells was due to
apoptosis, cells were co-analysed for annexin V staining
and propidium iodide uptake day 7 and day 6 post trans-
fection, respectively (Fig. 5A). Annexin V binds phos-
phatidylserine, a phospholipid which is translocated from
the inner to the outer leaflet of the plasma membrane dur-
ing early apoptosis. Propidium iodide is taken up by all
cells but is efficiently effluxed by viable cells, whereas
dead/dying cells remain PI-positive. In accordance with
the marked increase in the sub-G1 fraction of shCSN5
cells (Fig. 4A), knockdown of CSN5 lead to significant
increases in both early apoptotic (annexin V+ve:PI-ve) (21.9
± 1.8%, P = 0.0015) and late apoptotic (annexin
V+ve:PI+ve) cells (42.3 ± 2.5%, P = 0.0006) compared to
shVC cells (5.9 ± 1.9% and 5.5 ± 2.2%, respectively; Fig.
5A). Furthermore, CSN5 knockdown cells demonstrated
cleavage of caspase 9 (Fig. 5B), consistent with death by
apoptosis in these cells. In marked contrast, CSN2 knock-
down showed only a relatively small increase in annexin
V positive cells (5.5 ± 0.8% and 12.5 ± 0.9%, respectively;
Fig. 5A) and no caspase 9 activation (Fig. 5B). Instead, the
CSN2 knockdown cells demonstrated increased retention
of PI in the annexin V-ve cell population (Fig. 5C, P = 3.3 ×
10-5). This large shift in PI single-positivity relative to
shVCs was not observed in CSN5 knockdown cells (Fig.
5A &5C). Thus knockdown of CSN2 in K562 cells did not
result in overt apoptosis. Taken together these data indi-
cate that knockdown in K562 cells of CSN5, but not
Page 4 of 12
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CSN2, resulted in apoptotic cell death and that loss of cell
viability in the CSN2 knockdowns was likely to be by a
non-apoptotic mechanism.

CSN2 but not CSN5 knockdown is associated with 
autophagy
Whilst culturing the transfectants, marked differences in
cell morphology were noted in the CSN2 knockdown
cells. Jenner-Giemsa staining of cytospins identified large

vacuoles in a significant proportion of CSN2 knockdown
cells which were not present in either shVC or shCSN5
cells (Fig. 6A). Staining with the autophagosome/
autophagic vacuole marker monodansylcadaverine
(MDC, [35]) identified these large vacuoles as autophagic
bodies (Fig. 6B). Moreover, western blotting identified a
highly significant accumulation of the autophagy associ-
ated LC3-II protein [36] in CSN2 knockdown cells relative
to shVC cells (Fig. 6C). In contrast, no increase of LC3-II
was detected in CSN5 knockdown cells. To demonstrate
this we used a prolonged exposure (12 hours) of autora-
diographs that allowed detection of basal expression of
LC3-II in shVC cells and demonstrated that this was not
increased in shCSN5 knockdown cells (Fig. 6C). Thus,
knockdown of CSN2, but not CSN5, appeared strongly
associated with autophagy. However, LC3-II accumula-
tion can occur as a result of either enhanced autophagy or
inhibition of autophagy dependant LC3-II degradation
[37]. Indeed, treatment of vector control cells with the
autophagy inhibitor 3-methyladenine (3-MA) resulted in
a growth pattern almost identical to that of shCSN2 cells,
whilst having a relatively small additional effect on
shCSN2 cells (Fig. 6D). Furthermore, treatment of vector
control cells with the late stage autophagy inhibitor
bafilomycin A1 recapitulated both the vacuolar morphol-
ogy (Fig. 6E) and the LC3-II protein accumulation (Fig.
6F) observed in cells lacking CSN2 (Fig. 6A &6C). These
observations suggest that CSN2 knockdown is associated
with the inhibition of autophagy.

Loss of CSN2 results in the formation of an alternative 
CSN5 containing complex
The above data indicate that knockdown of CSN2 or
CSN5 in K562 cells results in common derangement of
SCF activity as measured by accumulation of hyperned-
dylated Cul1, accumulation of p27 and the sequential loss
of Skp-2, cdc4 and β-TrCP. However, the cellular
responses to CSN2 or CSN5 knockdown were markedly
different. Since it has previously been shown that deple-
tion of individual subunits can destabilize the CSN holo-
complex [38-40] we reasoned that one explanation for the
differences between CSN2 and CSN5 knockdown cellular
responses may be due to the generation, in CSN2 knock-
downs, of CSN5 containing CSN subcomplexes with
altered activities. To investigate this, 2-dimensional native
gel electrophoresis was performed on knockdown cells
day 3 post transfection (Fig. 7).

Immunoblotting of extracts from shVC cells with either
CSN2 or CSN5 antibody identified 2 major complexes,
one of approximately 500 KDa, correlating in size with
the CSN holocomplex, and the second of 750 KDa (Fig.
7A &7B). A multitude of proteins have been shown to
associate with CSN subunits [41] and larger complexes
have previously been observed. Monomeric CSN2 and
CSN5 were also observed in the shVC cell extracts (Fig. 7C

Loss of CSN2 and CSN5 results in sequential loss of F-box proteinsFigure 2
Loss of CSN2 and CSN5 results in sequential loss of 
F-box proteins. K562 cells were transiently co-transfected 
with HKK plasmid together with either shVC, shCSN2 or 
shCSN5 plasmid. HKK positive cells were sorted 24 hours 
post-transfection and cells re-cultured. (A) shVC and 
shCSN2 cells were harvested day 6 and 9 post transfection 
and the level of Skp2, Cdc4, β-TrCP and β-actin protein 
determined by western blot. (B) The level of Skp2, Cdc4 and 
β-TrCP proteins (normalised for loading using β-actin) in 
shCSN2 at each time point was normalised to expression in 
shVC cells and the data plotted as the mean ± s.e.m. (C) 
shVC, shCSN2 and shCSN5 cells were treated with DMSO 
(control) or the proteasome inhibitor MG132 (10 μM) for 
the final 18 hours of culturing and the level of Skp-2, Cdc4, β-
TrCP and β-actin protein determined by western blot. (D, E) 
The level of Skp2, Cdc4 and β-TrCP mRNA in shCSN2 (D) 
and shCSN5 (E) cells was determined at each time point post 
transfection relative to expression in vector control scram-
ble cells by QRT-PCR. Data shown is the mean ± s.e.m of n 
= 3 transfections. * indicates a significant difference to vector 
controls with a p value of less than 0.05.
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and data not shown). Following knockdown of CSN2,
CSN2 protein was no longer detectable (Fig. 7A). CSN5
protein, as also shown in Fig. 1C, was greatly reduced in
cells lacking CSN2, with significant loss of the CSN com-
plex relative to vector controls (Fig. 7B). Interestingly, a
longer exposure of the autoradiograph identified a CSN5
containing subcomplex of ~242 KDa in cells lacking
CSN2 (Fig. 7C).

Discussion
The achievement of almost complete CSN2 and CSN5
knockdown in this study has provided a powerful tool to
study the function of these CSN subunits more closely. At
the molecular level, CSN2 and CSN5 knockdowns
resulted in aberrant SCF activity, with the accumulation of
neddylated Cul-1, loss of the F-box protein Skp2 and an
increase in the Skp2 target protein, p27. This comple-
ments another report in which CSN4 and CSN5 knock-
down also resulted in increased neddylation of Cul-1 with
a concomitant loss of Skp2 and increase in p27 protein in
human epithelial cell lines rather than haemopoietic cells
[33]. Thus it appears that the CSN complex has highly
conserved activities across cells from different cell lineages
and that disruption of the complex by loss of any subunit
causes derangement of these activities.

It was also observed that CSN2 knockdown not only
results in loss of CSN5 protein but also results in a signif-
icant reduction of CSN5 mRNA. Moreover, both CSN2
and CSN5 knockdown resulted in temporal alterations of
F-box protein mRNA. Together with other recent reports
[32,42], this data suggests that CSN subunits or the CSN
complex as a whole may have a direct role in transcrip-
tional regulation of CSN subunits and F-box proteins.
However, it is also possible that the altered mRNA levels
observed are due to secondary effects of aberrant CRL
mediated protein degradation such as accumulation of
proteins involved in transcriptional regulation.

Here we show for the first time sequential loss of F-box
proteins following knockdown of CSN subunits. Moreo-
ver, protein levels were at least partially restored in both
knockdowns upon treatment with the proteasome inhib-
itor MG132. These observations are in accordance with
the finding that F-box proteins are autocatalytically
degraded in the presence of hyperneddylated Cul-1 [28].
However, the three f-box proteins studied were each lost
at a different rate, with the loss of Skp2 protein being the
most rapid. The sequential loss of F-box proteins is of
great interest as it may explain published results which
document the loss of particular F-box proteins at a specific
time point post CSN manipulation, but no reduction in
other F-box proteins [28,32].

The CSN5 knockdown cultures contained aberrantly large
cells and were associated with G2/M arrest and apoptosis.

This data complements previous studies demonstrating
that CSN5 loss inhibits proliferation and induces apopto-
sis [43-45]. Closer analysis of CSN5 knockdown cells
identified disorganized condensed chromatids and
abnormal mitotic spindles in the large cells. A recent
report described stabilization of the microtubule end-
binding protein 1 (EB1) by the CSN complex in human
cells [46]. EB1, which is a master regulator of microtubule
dynamics, was shown to bind the CSN via CSN5, and was
also shown to be reduced in cells lacking CSN1 or CSN3
[46]. EB1 has recently been shown to directly interact with
and regulate the activity of Aurora B, one essential compo-
nent of the chromosomal passenger complex that is
required for correct chromosomal alignment and spindle
assembly checkpoint [47,48]. Furthermore, the dynamic
behaviour of Aurora B on mitotic chromosomes has been
shown to be regulated by a Cul3 E3 ligase [48]. Given that
we observed hyperneddylated Cul3 in the CSN5 knock-
down cells (data not shown), our data suggests that
CSN5/the CSN complex is integral to the regulation of
multiple components of the mitotic machinery.

K562 cells in which CSN2 had been knocked down did
not display apoptosis markers as in CSN5 knockdown
cells, but were instead associated with features of
autophagy. Interestingly, autophagy inhibitors recapitu-
lated the cell growth kinetics, vacuolar morphology and
LC3-II accumulation of cells lacking CSN2, whilst treat-
ment of CSN2 knockdown cells with one of these inhibi-
tors (3-MA) had a comparatively mild effect on cell
growth. These findings suggest that CSN2 knockdown
K562 cells undergo autophagy inhibition resulting in
non-apoptotic cell death. This is the first data to show an
association between the CSN complex and autophagy.

The distinct phenotypes observed between CSN2 and
CSN5 knockdowns may arise as a result of aberrant CSN5
activity within the observed CSN subcomplex in cells lack-
ing CSN2. However, it is important to note that both the
CSN subunits studied here have CSN independent func-
tions [49-54], and that CSN5 has been shown to function
within a CSN subcomplex in K562 [55]. Therefore, we
cannot rule out the possible contribution of the inde-
pendent functions of CSN2 and CSN5 to the phenotypic
differences observed between the knockdowns. It is also
noteworthy that the subcomplex observed in this study
may be a result of CSN complex breakdown in the
absence of CSN2 [54], rather than a functional complex
contributing to the observed phenotypic differences
between knockdowns. Moreover, as we see no effect of
CSN5 loss on the level of CSN2 protein, one possibility
not investigated here is the formation of a CSN2 contain-
ing subcomplex in the absence of CSN5. This is an intrigu-
ing possibility, particularly given the recent findings of Su
et al who demonstrated an increase in the proportion of
CSN2 residing in mini-complexes upon CSN8 knock-
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down [32]. It will be of great interest to determine the pre-
cise mechanism accounting for the divergent phenotypes
encountered here, and is something which is currently
under investigation.

Conclusion
In conclusion, we have shown that loss of either CSN2 or
CSN5 in human K562 cells results in significant loss of
viability but by very different mechanisms, potentially
attributable to the formation of a CSN5 containing sub-
complex in the absence of CSN2. Furthermore, we have
provided data to suggest a possible function of the CSN
complex in the transcriptional regulation of both its own
components and CRL subunits. Finally, we have demon-
strated here for the first time the sequential loss of F-box
proteins in the absence of the CSN complex and have pro-
vided the first evidence of a link between the CSN com-
plex and autophagy.

Methods
Cell culture and treatments
K562 cells were cultured in RPMI 1640 supplemented
with 100 U/ml penicillin, 100 μg/ml streptomycin and
10% v/v foetal bovine serum (Invitrogen, Gibco) and
maintained at 37°C with 5% CO2. For proteasome inhi-
bition, cells were treated with 10 μM MG132 for the final
18 hours of culturing. For autophagy inhibition, cells
were treated in culture with either 10 mM 3-methylade-
nine from day 3-day 7 post transfection or 1 μM bafilomy-
cin A1 for 48 hours day 5-day 7 post transfection.

shRNA constructs
The shRNA vector used was a modified pcDNA3.1 vector
(pcDNA3.1-H1) developed by Heiko Lickert [56] (kind
gift from Heiner Schrewe) in which the CMV promoter
has been replaced by the human RNAse P RNA H1 pro-
moter [56]. CSN2 and CSN5 silencing sequences were
selected using a siRNA design tool available on
http:www1.qiagen.com/products/genesilencing/custom
siRNA/siRNA designer.aspx and cloned into the Asp718
and XbaI restriction enzyme sites of pcDNA3.1-H1. The
target sequences are as follows:

CSN2 knockdown 5'AAGCGGCATTAAGCAGTTTCC3'

CSN5 knockdown – 5'AAGGGCTACAAACCTCCTGAT3'

shRNA scramble control – 5'AAGCGG GATTCAGTAGT
TACG3'

Transfections and cell sorting
Transfection efficiencies in K562 cells vary between 20–
50%. Therefore, to allow enrichment of transfected cells,
5 × 106 K562 cells were electroporated in Nucleofector kit
V solution (Amaxa) using a Nucleofector I (Amaxa) and

Both CSN2 and CSN5 knockdowns result in reduced cell growthFigure 3
Both CSN2 and CSN5 knockdowns result in reduced 
cell growth. K562 cells were transiently co-transfected with 
HKK plasmid together with either shVC, shCSN2 or 
shCSN5 plasmid. HKK positive cells were sorted 24 hours 
post-transfection and cells re-cultured. (A) Cell counts were 
taken daily and the cumulative growth calculated. The cumu-
lative growth of shCSN2 and shCSN5 cells is shown relative 
to shVC. The insert graph has a different Y scale to highlight 
the differences between shCSN2 and shCSN5 cumulative 
growth profiles. Data shown are the mean ± s.e.m. of n = 3. * 
indicates a significant difference to shVC cell growth with a p 
value of less than 0.05. (B) Thymidine incorporation in 
shCSN2 cells relative to shVC cells was measured day 3, 5 
and 7 post transfection. Data shown are the mean ± s.e.m. of 
n = 3. (C) Thymidine incorporation in shCSN5 cells relative 
to shVC cells was measured day 3 and 4 post transfection. 
Data shown are the mean ± s.e.m. of n = 3. * indicates signif-
icance with a p value of less than 0.05.

C

day 3 day 5 day 7

T
h

ym
id

in
e 

In
co

rp
o

ra
ti

o
n

 (
cp

m
)

0

10000

20000

30000

40000

50000

60000 shVC
shCSN2

B

*
*

Day
0 2 4 6 8 10

C
u

m
u

la
ti

ve
 G

ro
w

th
 (

x1
06

 c
el

ls
)

0

20

40

60

80

100

120

140

shVC
shCSN2
shCSN5

0 2 4 6 8 10
0

1

2

3

4

5

6

*
*

*

** * *
*

A
*

day 3 day 4

T
h

ym
id

in
e 

in
co

rp
o

ra
ti

o
n

 (
cp

m
)

0

5000

10000

15000

20000

25000

30000

35000
shVC
shCSN5

*

*

Page 7 of 12
(page number not for citation purposes)

http://www1.qiagen.com/products/genesilencing/customsiRNA/siRNA
http://www1.qiagen.com/products/genesilencing/customsiRNA/siRNA


BMC Cell Biology 2009, 10:31 http://www.biomedcentral.com/1471-2121/10/31
file T16, with 5 μg pMACS Kk.II and 10 μg of the relevant
knockdown pcDNA3.1-H1 plasmid according to manu-
facturer guidelines. The pMACS Kk.II produces a truncated
murine MHC class I cell surface protein, H-2Kk, which
lacks the cytoplasmic domain and is transiently expressed
on the cell surface of transfected cells between 6 and 48

hours post-transfection. Transfected cells were sorted 24
hours post transfection using anti-H-2Kk antibody conju-
gated to magnetic beads, MACS MS columns and a MACS
magnet (Miltenyi Biotec) according to manufacturer
instructions. Post sorting, cells were set at 3 × 105/ml daily
and cells harvested for protein and mRNA analysis as indi-
cated in results.

Thymidine incorporation assay
2 × 104 cells were pulsed with 2 μCi/ml 3H-thymidine
(Amersham) for the final 18 hours of culture leading up
to each time point. Samples were transferred to a filter mat
(Wallac) using a Skatron cell harvester (Skatron Instru-
ments) and read using a beta-plate scintillation counter
(Skatron Instruments).

Immunofluorescence and Jenner-Giemsa staining
Cytospins were made with 5 × 104 cells in 80 μl, using a
Shandon cytospin 3 (Shandon). For immunofluorescence
staining, cytospins were fixed in 4% paraformaldehyde
and stained using anti-β-tubulin antibody (Sigma, 1/500
dilution) followed by FITC labelled secondary antibody
(Jackson Laboratories, 1/500 dilution). DNA was counter-
stained using Hoescht 33342 (Sigma, 1/1000 dilution).
All reagents were diluted in PBS and slides mounted using
Mowiol (6 g glycerol, 2.4 g Moviol-4-88 (Sigma), 12 ml
0.2 M Tris HCl pH8.5, anti-fade crystal (Sigma), 6 ml dis-
tilled water). Slides were viewed using an Axioskop2
microscope (Zeiss) and images captured with a Q-imaging
12-bit QICAM (Media Cybernetics) and Openlab soft-
ware (Improvision).

For Jenner-Giemsa staining, cytospins were air-dried,
methanol fixed and stained; First with Jenner staining
solution (VWR, UK) diluted 1/3 in 1 mM sodium phos-
phate buffer pH5.6 (5 mins) and second with Giemsa
stain (VWR, UK) diluted 1/20 in 1 mM sodium phosphate
buffer pH5.6 (10 mins). Slides were dried and then
mounted onto coverslips using DePex (VWR, UK). Slides
were viewed with an Olympus BX40 microscope (Olym-
pus) and images captured using an Olympus Chameleon
digital SLR (Olympus).

Staining of autophagosomes
For visualisation of autophagic vacuoles, 5 × 104 cells were
incubated with 0.05 mM monodansylcadaverine (MDC,
Sigma) in 0.5 ml PBS for 10 minutes at 37°C. Cells were
washed four times with PBS, cytospins made as above and
cells viewed immediately using a Leica DMIRE2 system.

Fluorescence flow cytometry
For Annexin V labelling, 1 × 105 cells were stained using
Annexin V-FITC Apoptosis Detection Kit I (BD Bio-
sciences) according to manufacturer instructions, and
staining analysed within 1 hour by flow cytometry. For
cell cycle analysis 1 × 105 cells were resuspended in cell

Cell cycle arrest in CSN5 knockdowns is associated with mitotic defectsFigure 4
Cell cycle arrest in CSN5 knockdowns is associated 
with mitotic defects. K562 cells were transiently co-trans-
fected with HKK plasmid together with shVC, shCSN2 or 
shCSN5 plasmid. HKK positive cells were sorted 24 hours 
post-transfection and cells re-cultured. (A) Representative 
images of shCSN2 (left, dark grey line) and shCSN5 (right, 
dark grey line) cell cycle profiles relative to shVC cells (light 
grey fill). Pie charts show data as the mean ± s.e.m. of n = 3. 
* indicates significance with a p value of less than 0.05. (B) 
Cytospins of shVC and shCSN5 cells were stained by Jenner-
Giemsa day 4 post transfection. (C) Cytospins were immu-
nostained for tubulin (FITC) and Hoescht (blue) for visualisa-
tion of DNA in shVC and shCSN5 cells day 4 post 
transfection. All images shown are representative of n = 3 
transfections.
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cycle buffer (10 μg/ml propidium iodide, 0.1 mM sodium
chloride, 1% Triton X100) and samples analysed within
24 hours by flow cytometry. All staining was analysed
using a FACS Calibur (Becton Dickinson) and the data
evaluated using Cell Quest Pro software (Becton Dickin-
son).

Western blot analysis
Whole cell lysates were prepared using RIPA buffer (1% v/
v NP40, 0.5% w/v sodium deoxycholate, 0.1% w/v 10%
SDS, in distilled water) and protein quantified using the
Dc protein assay according to manufacturer instructions
(Bio-Rad). Forty micrograms of protein were boiled for 10
minutes in 1× SDS gel loading buffer (15.6 mM Tris HCl
pH6.8, 6.25% v/v glycerol, 0.5% SDS, 1.25% v/v 2-mer-

captoethanol, Bromophenol Blue, in distilled water). Pro-
teins were separated by SDS-PAGE and transferred to
PVDF membrane (Millipore). For western blot analysis,
the following antibodies were used at 1:1000 dilution:
CSN2 (Bethyl), CSN5 (Bethyl), Cul-1 (Zymed), Skp2
(Zymed), p27 (Santa Cruz), caspase-9 (Cell Signalling),
LC-3 (Novus Biologicals) and β-actin (Sigma). Proteins
recognized by these antibodies were detected using ant-
mouse (Sigma, 1/1000 dilution) or anti-rabbit (Pierce, 1/
1000 dilution) HRP conjugated secondary antibody fol-
lowed by enhanced chemiluminescence (SuperSignal
West Pico Chemiluminescent Substrate, Pierce) and auto-
radiography (Kodak X-Omat LS film, Sigma). Quantita-
tive analysis of western blots was carried out using ImageJ
software http://rsb.info.nih.gov/ij/download.html and
protein levels normalized by comparison to β-actin sig-
nals on the same membrane.

2-Dimensional gel analysis
Native protein extracts were obtained from 2.5 × 105 cells
by resuspending cells in 50 μl mild lysis buffer (25% 4×
NativePAGE sample buffer (Invitrogen), 1% digitonin,
10% 10× protease inhibitor, in distilled water). Extracts
were separated out in the first dimension using a
NativePAGE Novex Bis-Tris Gel System (Invitrogen)
according to manufacturer instructions. The gel was then
cut into individual lanes, proteins denatured by incuba-
tion in 1× SDS gel loading buffer and resolved in the sec-
ond dimension by electrophoresis through 12.5% SDS-
polyacrylamide gels. Proteins were transferred to PVDF
membrane (Millipore) and immunoblotting performed
as above.

Quantitative real-time PCR analysis (QRT-PCR)
RNA was extracted using the Qiagen RNeasy kit according
to manufacturer instructions and cDNA generated using 1
μg RNA, random hexamers (Promega) and Superscript II
reverse transcriptase (Invitrogen). Quantitative real-time
PCR was carried out using either TAQMAN or SYBR-Green
based assays. For TAQMAN assays, QRT-PCR was carried
out in duplicate 20 μl reactions containing 1× qPCR Mas-
termix Plus (Eurogentec), 20–40 ng cDNA, 18 pmoles
each primer and 2.5 pmoles FAM/TAMRA dual labeled
probes. For SYBR-Green assays, QRT-PCR was carried out
in duplicate 25 μl reactions containing 1× Sensimix
(Quantace), 20–40 ng cDNA, 9 pmoles each primer, 1×
SYBR-Green solution (Quantace), 4 mM MgCl2 and 0.5
units UNG (Quantace). QRT-PCR was carried out on an
ABI Prism 7000 sequence detector (Applied Biosystems).
The following primers (Sigma Genosys) and FAM/TAMRA
labeled probes (Eurogentec) were used:

CSN2, 5'-CCTCATCCACTGATTATGGGAGT-3' (forward),

5'-CATCATAATTCTTGAAGGCTTCAAAA-3' (reverse),

CSN5, but not CSN2, knockdown results in apoptotic cell deathFigure 5
CSN5, but not CSN2, knockdown results in apoptotic 
cell death. K562 cells were transiently co-transfected with 
HKK plasmid together with either shVC, shCSN2 or 
shCSN5 plasmid. HKK positive cells were sorted 24 hours 
post-transfection and re-cultured. (A) Binding of Annexin V 
and uptake of propidium iodide were analysed by flow 
cytometry. The lower left quadrant encompasses the viable 
population of cells, the lower right quadrant contains early 
apoptotic cells, the upper right quadrant contains late apop-
totic cells and the upper left quadrant contains the necrotic 
cell population. Dot plots shown are representative of n = 3 
transfections. The mean of three data sets was taken and the 
values shown in the corresponding quadrant ± s.e.m. * indi-
cates significance with a p value of less than 0.05. (B) Cells 
were harvested day 6 (shCSN2, top panels) or day 4 
(shCSN5, bottom panels) post transfection and the level of 
caspase-9 cleavage determined by western blot. (C) Propid-
ium iodide uptake was determined day 6 post transfection. 
The histogram shown is representative of n = 3 shVC (light 
grey in fill), shCSN2 (dark grey line) and shCSN5 (black line). 
The significant shift in propidium iodide staining in shCSN2 
cells is shown ± s.e.m. * indicates significance with a p value 
of less than 0.05.
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5'-CCCTCAAGTGCATTTTACCACCACATTCTCT-3'
(probe);

CSN5, 5'-ATATCCGCAGGGAAAG-3' (forward),

5'-GGTCCTTCATCAGGAGGTTTGT-3' (reverse),

5'- TGGCGCCTTTAGGACATACCCAAAGG-3' (probe);

Skp2, 5'-CGCTGCCCACGATCATTT-3' (forward),

5'-CCATGTGCTGTACACGAAAAGG-3' (reverse);

Cdc4, 5'-ACGACGCCGAATTACATCTGT-3' (forward),

5'-ACTCCAGCTCTGAAACATTTTTAGC-3' (reverse);

β-Trcp, 5'-GAGGCATTGCCTGTTTGCA-3' (forward)

5'-TGTCCCATAATCTGATAGTGTTGTCA-3' (reverse)

18S, 5'-GCCGCTAGAGGTGAAATTCTTG-3' (forward),

5'-CATTCTTGGCAAATGCTTTCG-3' (reverse).

Preoptimised primers and probes to 18S ribosomal RNA
were used as internal standards in TAQMAN QRT-PCR
(Applied Biosystems). Cycle threshold (Ct) values were

Loss of CSN2 results in the formation of CSN5 containing CSN subcomplexesFigure 7
Loss of CSN2 results in the formation of CSN5 con-
taining CSN subcomplexes. K562 cells were transiently 
co-transfected with HKK plasmid together with either shVC 
or shCSN2 plasmid. HKK positive cells were sorted 24 hours 
post-transfection, re-cultured and harvested day 3 post 
transfection. Both CSN2 (A) and CSN5 (B, short exposure; 
C, long exposure) distribution in shVC and shCSN2 cells was 
determined by 2-Dimensional Native-PAGE/SDS-PAGE and 
western blot analysis. All data shown is representative of n = 
3 transfections.
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Cells lacking CSN2, but not CSN5, are associated with autophagyFigure 6
Cells lacking CSN2, but not CSN5, are associated 
with autophagy. K562 cells were transiently co-transfected 
with HKK plasmid together with either shVC, shCSN2 or 
shCSN5 plasmid. HKK positive cells were sorted 24 hours 
post-transfection and re-cultured. (A) Jenner-Giemsa staining 
of shVC and shCSN2 cytospins day 6 post transfection. (B) 
shVC and shCSN2 cells were stained with the autophago-
some marker monodansylcadaverine day 6 post transfection. 
All images shown are representative of n = 3 transfections. 
(C) Cells were harvested day 6 (shCSN2, top panels) or day 
4 (shCSN5, bottom panels) post transfection and the level of 
LC3-II protein determined by western blot. Even loading was 
determined by β-actin signal. (D) Cell counts were taken 
daily and the cumulative growth of shVC cells and shCSN2 
cells +/- 3-MA calculated. The insert has had the untreated 
shVC data removed in order to demonstrate the similarity 
between the shVC +3-MA and shCSN2 cumulative growth 
profiles. Data shown is the mean of n = 3 ± s.e.m. (E) Jenner-
Giemsa staining of shVC +/- 1 μM bafilomycin A1 cytospins 
day 7 post transfection. Images shown are representative of 
n = 3 transfections. (F) Cells were harvested day 7 post 
transfection and the level of LC3-II and β-actin protein deter-
mined by western blot.
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obtained graphically for test genes and 18S internal stand-
ards. ΔCt values were calculated by subtracting 18S Ct
from test gene Ct, and average ΔCt values obtained from
duplicates. Relative mRNA levels were determined by sub-
traction of mock transfection ΔCt values from shVC/
shCSN2/shCSN5 ΔCt values to give a ΔΔCt value and con-
version through 2-ΔΔCt.
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Vector control scramble sequence has no effect on protein levels, 
mRNA expression or cell growth, whilst CSN5 knockdown resulted in 
the sequential loss of F-box proteins. K562 cells were transiently co-
transfected with HKK plasmid together with either empty vector or vector 
control scramble plasmid. HKK positive cells were sorted 24 hours post-
transfection, re-cultured and harvested day 9 post transfection. (A) The 
levels of CSN2, CSN5, Cul1, Skp2, p27, LC3-II and caspase-9 protein 
was determined by western blot. (B) CSN2 and CSN5 mRNA levels in 
vector control scramble cells relative to empty vector transfected cells were 
determined by QRT-PCR. Data is the mean of n = 3 transfections ± s.e.m. 
The dashed line indicates mRNA expression in empty vector transfected 
cells. (C) Cell counts were taken daily and the cumulative growth calcu-
lated. The cumulative growth of shVC scramble cells is shown relative to 
empty vector transfected cells. Data shown are the mean ± s.e.m. of n = 
3. (D) shVC and shCSN5 cells were harvested day 4 post transfection and 
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