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Abstract 

Extra-renal synthesis of vitamin D3 has been reported in many tissues and cells 

including barrier sites where it induced immunomodulatory effects. I investigated local 

synthesis of vitamin D3 and its role in the induction of host defense peptides (HDPs) in 

human ocular barrier epithelial cells. I also examined the association between vitamin D 

receptor (VDR) single nucleotide polymorphism (SNP) with intermediate uveitis (IU) in 

Caucasians. 

Human corneal endothelial (HCEC-12), non-pigmented ciliary body epithelial (ODM-2), 

and adult retinal pigment epithelial (ARPE-19) cell lines, expressed mRNA and protein 

for VDR and vitamin D3 pathway elements and can locally synthesise 1,25(OH)2D3 in 

vitro. These cells upregulated mRNA, but not protein expression of HDPs in response to 

vitamin D3. IL-1β and TNF- did not synergise with vitamin D3 to upregulate HDPs in 

ocular barrier epithelial cells.   

VDR single nucleotide polymorphisms BsmI (rs1544410) is significantly associated with 

IU. Allele rs1544410-T and genotype rs1544410-CT were higher in IU patients than 

healthy controls. 

The results show that that extra-renal production of active vitamin D3 occurs in ocular 

barrier cells and may contribute to immune regulation in the eye. The association with 

SNP in the vitamin D3 receptor gene and intermediate uveitis suggests that genetic 

control of vitamin D3 may be linked to ocular inflammatory disease. 
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1 GENERAL INTRODUCTION 

 

1.1 Vitamin D 

1.1.1 Vitamin D metabolism 

Vitamin D is a secosteroid hormone required for bone health and mineralisation. 

Vitamin D can be ingested from diet containing oily fish and fortified food products as 

well as over the counter dietary supplements. Vitamin D exists as two biological forms, 

vitamin D2 (ergocalciferol) which can be obtained from plants and vitamin D3 which is 

synthesised in the skin upon exposure to sunlight. After exposure to solar ultraviolet B 

(UVB) radiation of wavelength 290 to 315 nm, vitamin D3 precursor 7-dehydrocholesterol 

(7DHC) in the skin is transformed into previtamin D3, which is converted into vitamin D3. 

Vitamin D3 is referred to as a secosteroid because it is closely related to steroid 

hormones, composed of 4 fused rings of cyclopentanoperhydro-phenanthrene (A, B, C, 

and D).  

When 7DHC is exposed to UV radiation, the B-ring is broken at 9,10 carbon-

carbon bond to produce previtamin D3. In a heat independent mechanism, the molecule 

undergoes further cis-trans isomerisation around carbon 6,7 single (s) bond to convert it 

to vitamin D3, a process that influences its conformation and stability. The trans 

conformation has been proposed as the preferred ligand for nuclear vitamin D receptor 

(nVDR) to deliver genomic functions while the cis conformation is the ligand required by 

membrane VDR (mVDR) to induce non-genomic responses (Norman, 2008) as will be 

explained later in this thesis (Figure 1.1).   
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Figure ‎1.1. The secosetroid structure of vitamin D. The vitamin D precursor 7DHC is 
formed of 4 4 fused cyclopentanoperhydro-phenanthrene rings (A-D). When exposed to 
UV radiation the B-ring is broken at 9,10 carbon-carbon bond to produce previtamin D3. 
This molecules further isomerises around carbon 6,7 single (s) bond to produce vitamin 
D3 of either 6-s-cis or 6-s-trans conformation. This conformation influences the stability 
and flexibility of the molecules required for its functional activities (Norman, 2008). 

Vitamin D3 produced in the skin is incorporated is stored in adipocytes while that 

obtained from diet (along with vitamin D2) is incorporated into chylomicrons before it is 

released into the circulation via lymphatic drainage (Holick, 2006;Holick, 2007). Vitamin 

D intoxication does not occur as a result of prolonged sun exposure. Vitamin D 

intoxication causes hypercalcaemia which can lead to calcification related complications 

in the gastrointestinal tract, kidneys, central nervous system, skin, muscles, and eyes 

(Ozkan et al., 2012). Excess previtamin D is converted by sunlight into lumisterol or 

tachysterol, components that do not bind DBP and are sloughed off with skin turnover 

(Chen and Holick, 2003;Shroff et al., 2010).  
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To produce the active form, vitamin D from skin or diet is subjected to two 

successive hydroxylations at carbons 25 and 1 (Figure 1.2). It is first hydroxylated to 25-

hydroxyvitamin D [25(OH)D] at carbon 25 in the liver by a cytochrome P450 (CYP) 

enzyme 25-hydroxylase. 25(OH)D is the major circulating form of vitamin D and is used 

as an indicator of vitamin D status. 25-hydroxylation can be a function of six CYP450 

isoforms; one mitochondrial CYP27A1, and five microsomal CYP3A4, CYP2R1, 

CYP2J2/3, CYP2D25, and CYP2C11 (Zhu and Deluca, 2012). The second 

hydroxylation step at carbon 1 occurs in the renal tubules by the mitochondrial enzyme 

25-hydroxyvitamin D-1--hydroxylase; also known as CYP27B1 to produce the 

biologically active form of vitamin D, 1,25-dihydroxyvitamin D [1,25(OH)2D].  

The level of 1,25(OH)2D is downregulated by a renal tubule enzyme known as 25-

dihydroxyvitamin-D-24-hydroxylase (24-hydroxylase) that converts 1,25(OH)2D into 

water-soluble, biologically inactive calcitroic acid (Holick, 2007). In the circulation, 

vitamin D is transported bound to vitamin D binding protein (DBP). DBP can bind both 

25(OH)D or 1,25(OH)2D and it determines their accessibility for cellular uptake through 

the multi-ligand endocytic receptors cubilin and megalin (Chapter 3). DBP belongs to the 

albumin superfamily and is structurally related to α-albumin and α-fetoprotein. These 

proteins have a unique structure with cysteine residues aligned next to each other linked 

by disulfide bonds that link them to each other and to the other cysteines. DBP has a 

shorter half-life than 25(OH)D of 2.5 days (Gomme and Bertolini, 2004). The majority of 

circulating 25(OH)D and 1,25(OH)2D (80-90%) is bound to DBP and to albumin (10-

20%), leaving a small free proportion (0.02-0.05%). To measure serum concentrations of 
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25(OH)D or 1,25(OH)2D, these molecules are either separated from DBP by 

immunoextraction or detected using antibodies against the metabolite to be measured 

and DBP (Gomme and Bertolini, 2004;Wootton, 2005;Zerwekh, 2008). 

Vitamin D3 is more potent than vitamin D2 in delivering the benefits to humans 

and it is the focus of this project. Higher doses of vitamin D2 are required to raise serum 

25(OH)D2 levels to those of 25(OH)D3. Vitamin D3 is converted to 25(OH)D3 five times 

faster than vitamin D2 by liver 25-hydroxylase and 25(OH)D3 has a higher affinity to DBP. 

Microsomal CYP2R1 can convert both forms of vitamin D equally while mitochondrial 

CYP27A1 performs hydroxylation only on vitamin D3. The potential of 1,25(OH)2D3 to 

bind VDR exceeds that of 1,25(OH)2D2 by 40% and this allows 1,25(OH)2D3 to be more 

efficient in delivering the biological benefits (Armas et al., 2004;Houghton and Vieth, 

2006).  
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Figure ‎1.2. Vitamin D metabolism. After exposure to UVB, 7DHC in the epidermis is 
converted to previtamin D which is further changed by sunlight to vitamin D. Vitamin D 
can also be obtained from diet and supplementation. Vitamin D from the skin is stored in 
fat cells and from the diet is incorporated into chylomicrons. It is released into the 
circulation via lymphatic drainage and circulates bound to DBP. In the liver it is 
converted by 25-hydroxylase (CYP27A1 or CYP2R1) to the major circulating form 
25(OH)D. This is activated in proximal renal tubules by 1-αhydroxylase (CYP27B1) to its 
active form 1,25(OH)2D. 24-hydroxylase (CYP24A1) from proximal renal tubules 
provides a negative feedback and degrades 1,25(OH)2D into calcitroic acid excreted in 
bile. 1,25(OH)2D is endocytosed by target cells where it binds to VDR that 
heterodimerises with RXR. VDR-RXR complex translocates to the nucleus to bind VDRE 
and modulate gene expression (Kitson and Roberts, 2012). 
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1.1.2 Vitamin D3 action  

1.1.2.1 Genomic responses 

Vitamin D3 mediates its action via a nuclear/cytoplasmic DNA-binding 

transcription factor vitamin D3 receptor (VDR), a member of the nuclear receptor 

superfamily. Upon binding to 1,25(OH)2D3, VDR heterodimerises with retinoic acid X 

receptor (RXR) to form a complex. This complex translocates to the nucleus, binds to 

vitamin D response element (VDRE) in target genes, and recruits regulatory protein 

coactivators (CoA) to induce gene transcription (Figure 1.3) or corepressors (CoR) to 

repress transcription (Carlberg and Campbell, 2013;Haussler et al., 2011). 

 

Figure ‎1.3. VDR activation. When 1,25(OH)2D3 is locally synthesised or supplied from 
the circulation, it enters the cell and binds to VDR in the ligand-binding pocket. VDR 
heterodimerises with RXR to form VDR-RXR complex. The complex translocates to the 
nucleus to bind VDRE and recruits coactivators to stimulate RNA polymerase II and 
initiate gene transcription (Kalb et al., 2012). 
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1.1.2.2 Non-genomic responses 

While genomic vitamin D3 actions take place within several hours to days, non-

genomic actions are rapid and can be generated within 1–2 min to 15–45 min. It has 

been reported that VDR can be localised to a lipid-raft caveolae (plasma membrane 

vesicle involved in signal transduction) in many cell types to which 1,25(OH)2D3  can 

bind. On binding of 1,25(OH)2D3 to caveolae-associated VDR, one or more second 

messenger systems can be activated (Figure 1.4).  

These second messenger systems include G-protein coupled receptor, 

phospholipase C (PLC), protein kinase C (PKC), and phosphatidylinositol-3′-kinase 

(PI3K). This can result in rapid responses like the promotion of calcium influx from 

extracellular space, enhanced insulin secretion and the generation of cyotosolic kinases 

required for rapid responses (Campbell et al., 2010;Haussler et al., 2011). 

1.1.2.3 Classical vitamin D3 action 

The primary role of vitamin D3 is calcium and phosphorus homeostasis, through 

which it maintains a healthy skeleton and ensures sufficient serum levels required for 

biological functions. Vitamin D3 maintains serum calcium and phosphorus by increasing 

intestinal absorption and facilitating bone mineralisation/demineralisation. Both the 

intestine and bone express VDR. In the intestine, 1,25(OH)2D3 induces the expression of 

calcium channel [transient receptor potential cation channel, subfamily V, member 6 

(TRPV6)] and a calcium binding protein, calbindin 9 K. This causes an increase in 

intestinal calcium and phosphorus absorption up to 30-40% and 80% respectively (Laird 

et al., 2010;Shroff et al., 2010).  
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Figure ‎1.4. Vitamin D3 genomic and non-genomic actions. Most vitamin D3 actions 

are mediated through the classical binding of 1,25(OH)2D3 to nuclear VDR (nVDR) to 

induce downstream signalling that will activate or repress gene transcription. Through 

this signalling pathway, vitamin D3 plays a role in calcium metabolism, 

immunomodulation, and tumour suppression. Alternatively, caveolae-associated 

membrane VDR (mVDR) binds 1,25(OH)2D3 to activate G-protein coupled receptor, 

phosphatidylinositol-3′-kinase (PI3K), protein kinase C (PKC), and phospholipase C 

(PLC) to induce rapid responses (Shin et al., 2010). 
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Renal production of vitamin D3 is under tight regulation by several factors. Low 

serum calcium levels are sensed by the calcium sensing receptor (CaR) in parathyroid 

gland which triggers the release of parathyroid hormone (PTH). PTH stimulates renal 

production of 1,25(OH)2D3 and increases intestinal absorption and renal reabsorption of 

calcium and phosphorus. It increases the expression of the receptor activator of nuclear 

factor-B ligand (RANKL) on osteoblasts to bind to its receptor RANK on 

preosteoclasts. This interaction induces the transformation of osteoblasts into mature 

osteoclasts which release calcium and phosphorus from bone to stabilise serum levels. 

The bone secretes fibroblast growth factor 23 (FGF-23) that downregulates 1,25(OH)2D3 

to reduce phosphorus and calcium absorption. Finally, 1,25(OH)2D3 provides its own 

negative feedback by inducing the expression of CYP24A1 (Holick, 2006;Shroff et al., 

2010).   

1.1.2.4 Non-classical vitamin D3 action 

Many cells and tissues express VDR, CYP27B1, and CYP24A1. This allows 

these cells not only to respond to VDR, but also to endogenously convert inactive 

25(OH)D3 into active 1,25(OH)2D3. Vitamin D3 has a range of functions beyond calcium 

homeostasis and can regulate more than 200 genes directly or indirectly (Ramagopalan 

et al., 2010). It can inhibit cell proliferation and induce differentiation, inhibit 

angiogenesis and enhance apoptosis. Vitamin D3 controls blood pressure by reducing 

renin and induces insulin production from β-islets in the pancreas. A major role played 

by vitamin D3 is the immunomodulation and induction of antimicrobial peptides (Holick, 

2011). Extra-renal vitamin D3 signalling pathway components expression has been 
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described in human epithelial cells of the lung, gingiva, urinary bladder, intestine, breast, 

endometrium, placenta, prostate, and skin (Chen and Holick, 2003;Hansdottir et al., 

2008;Hertting et al., 2010;Kemmis and Welsh, 2008;Kong et al., 2008;Liu et al., 

2009a;McMahon et al., 2011). Moreover, vitamin D3 expression has been identified in 

monocytes, macrophages, dendritic cells (DC), neutrophils and activated T and B cells 

(Hewison, 2012;Van Belle et al., 2011).  

1.1.3 Vitamin D3 status 

Vitamin D3 status is determined by serum concentration of 25(OH)D3 as 

sufficiency (30-100 ng/ml or 75-250 nmol/L), insufficiency (21-29 ng/ml or 52.5-72.5 

nmol/L), and deficiency (<20 ng/ml or 50 nmol/L). Vitamin D3 intoxication only occurs at 

levels above 100-200 ng/ml (Holick, 2009). Vitamin D3 production varies with different 

factors such as geographical location, skin colour, the use of sunscreens, lifestyle, and 

age. As we move away from the equator (e.g. latitude above 35º), UVB light decreases 

and so less vitamin D3 synthesis is expected. Factors that affect the angle at which the 

sun hits the earth (e.g. cloud cover, ozone, and air pollution) can reduce sunlight 

available for vitamin D3 synthesis. A sun protective factor of 15 (SPF) in sunblocks can 

significantly reduce vitamin D3. It has been suggested that people with darker skin have 

more melanin content and need longer UVB exposure to obtain sufficient vitamin D3 

(Kimlin, 2008;Laird et al., 2010). However, recent intriguing results negated the role of 

skin pigmentation effects on vitamin D3 synthesis after exposure to UVB. Vitamin D3 

synthesis correlated with baseline serum cholesterol and vitamin D3 levels but did not 

correlate with skin pigmentation. There was no difference in 25(OH)D3 increase between 
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people with dark skin and people with fair skin when exposed to identical periods of UVB 

(Bogh et al., 2010).  

In Tanzania, people from two tribes, the Maasai and Hazabe had serum 

25(OH)D3 levels of 115 nmol/L which is optimal for bone health and is aimed for by 

supplementation. These people are moderately covered with clothes and spend most of 

their time outdoors, but they try to avoid the sun at hot times (Luxwolda et al., 2012). 

Another study in Johannesburg measuring 25(OH)D3 in 10-year old black and white boys 

showed that vitamin D3 deficiency was not prevalent among the study population. 

Although the white boys had higher levels of 25(OH)D3, only 8% of black boys were 

deficient compared to 1% of white boys (Poopedi et al., 2011). African-Americans have 

low serum 25(OH)D3 (Liu et al., 2006), this may be because the amount and angle of 

sun light near the equator is optimal for sufficient vitamin D3 synthesis or that these 

people acquired genetic changes by moving north or by marriage with Western people.  

1.1.4 Vitamin D3 and the immune system 

The immune system comprises cells and tissue that protect the body against 

invading pathogens. The immune defence can be divided into three components, 

anatomical and physiological barriers, innate immunity, and adaptive immunity. Vitamin 

D3 has several effects on cells of both innate and adaptive immune responses. Unlike in 

the kidneys, in immune cells vitamin D3 is controlled by signals from the immune system 

and is not under calcium regulation (White, 2008). 
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1.1.4.1 Innate immunity 

Innate immunity acts as the first line defence and is composed of cellular and 

humoral components. Cells of the innate immune system include macrophages, 

dendritic cells (DCs), eosinophils, neutrophils, mast cells, natural killer (NK) cells, and 

NKT cells. Innate humoral components include complement proteins, antimicrobial 

peptides (cathelicidin and defensins), C-reactive protein, and lipopolysaccharide (LPS) 

binding protein (LBP). Innate immune cells do not show specificity to pathogens and do 

not have memory. They limit pathogen replication and set the scene for the development 

of specific adaptive immunity. When barriers are breached, innate immune cells rapidly 

arrive at the site of injury or infection in response to locally produced proinflammatory 

cytokines such as interleukin-1 (IL-1), tumour necrosis factor-α (TNF-α), and IL-6. Type I 

interferons (IFN-α and β) function to limit viral spread until more specific response is in 

place. The function of innate immune cells starts with the recognition of pathogens 

through the conserved pathogen associated molecular patterns (PAMPs) (Basu and 

Fenton, 2004;Turvey and Broide, 2010). 

1.1.4.1.1 Pathogen recognition receptors (PRR) 

PRR are germline encoded receptors expressed by innate immune cells (such as 

DCs, macrophages, and neutrophils) that sense conserved PAMPs. Engagement of 

these receptors with their cognate ligands activates the immune response through 

intracellular signalling pathways that eventually result in the elimination of the assaulting 

pathogen. Several PRR have been identified and characterised including Toll-like 

receptors (TLRs), retinoic acid inducible gene I (RIG-I) like receptors (RLRs), nucleotide 
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oligomerisation domain (NOD)-like receptors (NLRs), and DNA receptors  (Kumagai et 

al., 2008). 

1.1.4.1.2 TLRs 

To date, 10 TLRs have been identified in humans and 12 in mice. TLRs 1-9 are 

conserved in both humans and mice. TLR10 is only expressed in humans while TLR11 

is limited to mice (Kumar et al., 2011). TLR1, 2, 4, 5, and 6 are expressed on the cell 

surface and recognise products from bacteria, protozoa and fungi while TLR3, 7, 8, and 

9 are contained within endocytic compartments and recognise bacterial and viral nucleic 

acids. TLRs belong to type I membrane glycoproteins with an extracellular leucine rich 

domain and intracellular Toll/interleukin-1 receptor (TIR) required for the induction of 

downstream signalling. TLR2 heterodimerises with TLR1 or TLR6 to form two 

functionally distinct receptors, TLR2/1 or TLR2/6. TLRs build a signalling cascade by the 

recruitment of multiple adaptor molecules that will lead to the induction of 

proinflammatory cytokines (Yang and Seki, 2012) (Figure 1.5).  
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Figure ‎1.5. TLR ligands and signalling pathway. All TLRs except TLR3 signal through 

myeloid differential factor 88 (MyD88). Activation of MyD88 by TLR1, 2, 4, 5, and 6 

results in the recruitment of other adaptor molecules such as interleukin-1 receptor-

associated kinase 1 (IRAK1) and 4, tumour necrosis factor receptor-associated factor 6 

(TRAF6), and transforming growth factor-beta-activated kinase 1 (TAK1) that leads to 

the activation of the inhibitor of kappa B kinase (IKK) complex. IKK activates p38/JNK1/2 

and transcription factor nuclear factor-kappa B (NF-B) to induce the transcription of 

proinflammatory cytokines (TNF-α, IL-6, and IL-12). TLR7, 8, and 9 recruit MyD88 and 

the adaptor molecules IRAK1 and 4, TRAF6, and TAK1, which activate interferon 

regulatory transcription factor 7 (IRF-7) to induce the transcription of IFN-α. TLR3 

recruits TIR-domain-containing adapter-inducing interferon-β (TRIF) and TLR4 also 

recruits an adaptor molecule TRAM to use the TRIF signalling pathway. TRIF signalling 

pathway recruits TRAF3 and 6 that activate the IKK complex to induce the transcription 

of IFN-β. TRIF can also induce the transcription of proinflammatory cytokines through 

the adaptor molecules TRAF6 that induces downstream signalling of the TAK1 and IKK 

complexes (Yang and Seki, 2012). 
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1.1.4.1.3 RLRs 

RLRs are intracellular sensors of single stranded ribonucleic acid (ssRNA) and 

double stranded RNA (dsRNA). This group of PRR consists of three members, RIG-I, 

MDA5 (melanoma-differentiation-associated gene 5) and LPG2. RIG-I and MDA5 

contain N-terminal caspase recruiting domains (CARDs), a central helicase/ATPase 

domain, and a C-terminus regulatory domain (Figure 1.6). LPG2 lacks the CARDs 

necessary for signalling and plays a regulatory role in the RIG-I/MDA5 signalling 

pathway (Kumar et al., 2011).  

1.1.4.1.4 Antimicrobial peptides 

Antimicrobial peptides (AMPs) are positively charged amphipathic small cationic 

peptides [12-50 amino acids (aa)] rich in cationic and hydrophobic residues. They are 

produced by cells of the innate immune system and other cell types. They act as natural 

antibiotics killing many Gram negative as well as Gram positive bacteria, fungi, parasites 

and viruses. AMPs have roles to play in wound healing, immunomodulation, 

angiogenesis, and cell growth (Figure 1.7). Because they have multiple actions besides 

antimicrobial activity, they would be more appropriately called host defence peptides 

(HDPs) and this term will be used throughout the rest of this thesis. There exist two main 

classes of HDPs; α-helical structures lacking disulfide bonds (cathelicidin) and β-sheets 

with disulfide bonds (human α and β defensins). HDPs can be constitutively expressed 

or induced by microbial products, injury, or inflammation (Lai and Gallo, 2009;Yeung et 

al., 2011). 
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Figure ‎1.6. RIG-I/MDA5 signalling pathway. Upon activation, CARDs recruit 

mitochondrial adaptor protein interferon-beta promoter stimulator 1 (IPS-1) (also known 

as mitochondrial antiviral signalling adaptor [MAVS]) that activates the IKK complex. IKK 

activates NF-B and IRF3/7 to induce the transcriptional activation of proinflammatory 

cytokines and type I interferons (IFN-α and IFN-β) (Poeck and Ruland, 2012). 
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1.1.4.1.4.1 Cathelicidin 

Human cathelicidin (LL-37) is a 37-aa long linear peptide that consists of a 

conserved N-terminus with two leucines (LL) and a variable cationic C-terminus cathelin 

domain. The active peptide is located in the C-terminus and is released after cleavage of 

its inactive precursor human cationic antibacterial protein 18KD (hCAP-18, encoded by 

the gene CAMP) by serine proteases. LL-37 is mainly produced by neutrophils but also 

by other cells such as monocytes/macrophages, T cells, mast cells, and epithelial cells. 

LL-37 is also present in human sweat and alveolar lavage (Tjabringa et al., 2005).  

Besides its role in antimicrobial killing, LL-37 is a multifunctional molecule that 

can neutralise LPS, induce chemotaxis for neutrophils, monocyte/macrophages, mast 

cells, and T lymphocytes, and induce IL-6 and IL-8 production. LL-37 plays a role in DC 

differentiation and maturation and mast cell degranulation as well as promoting wound 

healing and modulating angiogenesis (Pistolic et al., 2009;Schiemann et al., 

2009;Tjabringa et al., 2005;Yeung et al., 2011). LL-37 is constitutively expressed in 

some tissues such as gastrointestinal, respiratory, and reproductive tract epithelial cells, 

salivary glands, and immune cells (such as neutrophil granules, monocytes and 

macrophages, mast cells, NK cells, and lymohocytes). Expression of LL-37 can be 

induced or enhanced by inflammatory stimuli, injury, and microbial products (Jager et al., 

2010;Steinstraesser et al., 2011). Induction of LL-37 expression is mediated through 

MEK1/2 and p38 MAPK signalling pathways (Mendez-Samperio et al., 2008;Schauber 

et al., 2003). 
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1.1.4.1.4.2 Defensins 

Defensins are 29-45 aa long peptides divided into two main classes, α and β 

defensins classified according to the arrangement of cysteine residues. They function as 

antimicrobial molecules, selectively inhibiting proinflammatory responses, and inducing 

chemotaxis and wound healing (Steinstraesser et al., 2011;Yeung et al., 2011). Human 

α-defensins (HD) are constitutively expressed and are mainly present in neutrophilic 

granules and Paneth cell granules of the small intestine. They are composed of six 

members. Human neutrophil peptides (HNP) 1-4 are mainly expressed by neutrophil 

azurohilic granules and to a lesser extent by monocytes, lymphocytes, and NK cells, 

while HNP5-6 are expressed by Paneth cells and the genitourinary tract of females.  

Human β-defensins (hBD) are predominantly expressed by epithelial cells in the 

skin and mucosal surfaces and are secreted in a mature form to the outside of the cells 

(Lehrer and Lu, 2012;Tecle et al., 2010). HBD-1 is consititutively expressed as the gene 

lacks the regulatory element for NF-B while hBD-2 and hBD-3 are inducible by bacterial 

components such as LPS (through TLR stimulation) and proinflammatory cytokines IL-

1β and TNF-α through the activation of NF-B pathway. The expression of hBD-4 is 

more limited to epithelial cells of testes and epididymis as well as monocyte, 

macrophages and DCs and can be induced by bacterial products such as bacteria 

phorbol myristate acetate (Hazlett and Wu, 2011). 
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Figure ‎1.7. Multi-functional HDPs. HDPs show antimicrobial properties and are 
involved in direct microbial killing. They also have a range of immunomodulatory effects 
including the recruitment of T cells and DCs, mast cell degranulation, anti-endotoxin 
activity,  neutralisation of proinflammatory cytokines release by macrophages and 
monocytes, and promotion of wound healing and angiogenesis (Lai and Gallo, 2009). 
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1.1.4.1.5 Antigen presentation 

DCs attracted to sites of inflammation by molecules induced by the  innate 

response process, degrade and present antigens as peptides to naïve T cells of the 

adaptive response bound to major histocompatibility complex class I and class II (MHCI 

and MHC II). These are human leukocytes antigens (HLA) class I (A,B, and C) or class II 

(DR, DP, or DQ) produced by genes located on chromosome 6 in humans. MHC I 

antigens are found on all nucleated cells of the human body, while MHC II are limited 

mainly to professional antigen presenting cells (APCs) such as DCs and macrophages 

(Ryan and Cobb, 2012). Extracellular antigens are presented by MHC class II to CD4+ 

helper T (Th) cells while intracellular antigens are presented by MHC class I to CD8+ T 

cells. This induces the activation and differentiation of T cells, thus bridging innate 

immunity to adaptive immunity.  

In addition to DCs and macrophages, B cells and epithelial cells can also act as 

APCs under certain conditions, but DCs are considered as the primary professional 

APCs. After activation through TLR, tissue resident DCs mature into professional APCs 

and migrate from tissue to peripheral lymph nodes to activate T cells. They upregulate 

the expression of costimulatory molecules (CD40, CD80 and CD86) necessary for T cell 

activation as well as chemokine receptor (CCR) CCR7 (receptor for homing to lymph 

node), and downregulate CCR2 and CCR5 (receptors for homing to inflammatory sites) 

(Toebak et al., 2009;Villadangos and Schnorrer, 2007). 
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Vitamin D3 has been shown to increase phagocytosis and chemotaxis in 

macrophages, decrease their expression of TLR2 and TLR4, and  induce the production 

of HDPs (Baeke et al., 2010). On the contrary, it prevents DCs maturation and reduces 

the expression of MHC II, co-stimulatory molecules (CD40, CD83 and CD86) turning 

them into tolerogenic DCs (Figure 1.8).  One study has shown that vitamin D3 inhibited 

chemotaxis of DCs, reduced IL-12 and TNF-α, but increased IL-6 and IL-1β production. 

Interestingly, these effects were induced by local conversion of 25(OH)D3 into active 

1,25(OH)2D3 (Bartels et al., 2010).  

1.1.4.2 Adaptive immunity 

Adaptive immunity provides a more specific response against an infection, and 

memory which allows a robust (high-affinity) and rapid response to future infections of 

the same pathogen. Cells of adaptive immunity are T and B lymphocytes which divide 

adaptive immunity into cellular and humoral components respectively. The activation of 

naive CD4+ T helper (Th0) cells causes differentiation into several effector and 

regulatory subtypes influenced by the microenvironment and cytokines (IL-12 and IL-4 

secreted by APCs) present during activation (Figure 1.8). Th1 cells secrete IFN- and 

activate macrophages and NK cells to kill intracellular bacteria, fungi and viruses. Th0 

cells differentiate into Th2 type in response to parasitic infections and allergies. Th2 cells 

stimulate mast cells, neutrophils and B cell production of immunoglobulin (Ig) G1 (IgG1) 

and IgE.  
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Th0 cells can also differentiate into Th17 and Th22 subsets in response to 

extracellular bacteria. Inducible regulatory T cells (Treg) produced from Th cells include 

Tr1 producing IL-10, Th3 producing transforming growth factor-β (TGF-β), and 

CD4+C25+Foxp3+ Tregs preventing the differentiation of effector T cells through direct 

cell-cell contact (Hesslein et al., 2011;la Sala A. et al., 2012). For T cell activation, CD28 

on T cells bind the costimulatory molecules CD80/CD86 whereas engagement of 

CD80/CD86 by cytotoxic T lymphocyte antigen-4  (CTLA-4) is inhibitory for T cell 

activation (Rudd et al., 2009).  

Vitamin D3 prevents B cell differentiation and proliferation and reduces IgG and 

IgM production. It directs the polarisation of Th cells towards Th2 and Treg phenotypes 

and not Th1 or Th17 by inhibiting IL-12 and IL-23 production by DCs. It reduces Th1 

cytokines IL-2 and IFN and Th17 cytokines (IL-17 and IL-21). It induces the 

development of Tregs expressing of CTLA4 and Foxp3 (Figure 1.9) (Baeke et al., 

2010;Jeffery et al., 2009). The promoter region of Foxp3 gene has VDRE through which 

vitamin D3 can modulate the immune system towards a regulatory response (Kang et al., 

2012). 

 

 

 



                            Chapter 1       Introduction                                                                   23 

 

 

Figure ‎1.8. Effector and regulatory T cell differentiation. Naïve CD4+ T cells 
differentiate into different subtypes according to the cytokines present in the 

microenvironment in which the stimulation occurs. IL-12 and IFN- causes the 
polarisation of T cells into Th1 whereas IL-4 induces Th2 differentiation. IL-6 with TGF-β 
and IL-6 with TNF-α, lead to the differentiation into Th17 and Th22 respectively. Tregs 
are IL-10 producing Tregs, TGF-β producing Tregs, and IL-10 producing 
CD4+C25+Foxp3+ Tregs (la Sala A. et al., 2012). 
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Figure ‎1.9. Effects of vitamin D3 on immune cells. Vitamin D3 increases chemotaxis 

and phagocytosis of macrophages, induces cathelicidin production and reduces the 

expression of TLR2 and TLR4. It converts DCs into tolerogenic phenotype by preventing 

their maturation and reducing the expression of MHC class II and co-stimulatory 

molecules. It reduces plasma cell differentiation and proliferation. Vitamin D3 inhibits the 

differentiation into Th1 and Th17 and directs the polarisation of Th2. It also induces the 

differentiation of Tregs by upregulating the expression of CTLA4 and Foxp3 (Baeke et 

al., 2010). 
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1.1.5 Extra-renal vitamin D3 synthesis 

The interest in the effects of vitamin D3 on the immune system started with the 

discovery of extra-renal expression of CYP27B1 in monocytes and macrophages in 

studies on Myobacterium tuberculosis (Mtb). Stimulation of TLR2/1 by 19 kDa triacylated 

lipopeptide of Mtb upregulated mRNA expression of VDR and CYP27B1. To understand 

the downstream signalling of VDR in these cells after TLR2/1 stimulation, monocytes 

were stimulated with TLR2/1L in the presence or absence of 25(OH)D3. 25(OH)D3 

synergised with TLR2/1 in the upregulation of CYP24A1 and cathelicidin mRNA.  

Stimulation of TLR2/1 alone in medium containing human serum (HS) also 

upregulated CYP24A1 and cathelicidin mRNA without the addition of exogenous 

25(OH)D3. This induction was not seen when cells were stimulated in the presence of 

fetal calf serum (FCS) and this could be due to the high levels of 25(OH)D3 in HS 

compared to FCS. VDR, CYP27B1, CYP24A1, and cathelicidin were all upregulated at 

mRNA level when TLR2/1 stimulation was performed in 25(OH)D3  sufficient sera from 

Caucasians, but not in serum from African-Americans which was found to have low 

serum 25(OH)D3 (Liu et al., 2006).  

Further work by the same group has demonstrated that TLR2/1L induced IL-15, a 

cytokine necessary for CYP27B1 and VDR induction, and cathelicidin production, with 

the latter two processes due to conversion of 25(OH)D3 to active 1,25(OH)2D3.  

Moreover, macrophages primed by IL-15 produced HDPs activity against Mtb when 

stimulated directly with 25(OH)D3 (Krutzik et al., 2008). TLR2/1L also led to the induction 

of IL-1β from monocytes. TLR2/1L needs IL-1β and VDR signalling to induce hBD-2 
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(encoded by DEFB4 gene) (Liu et al., 2009b). Finally, IFN- produced by T cell signalling 

through STAT1 induced IL-15 in monocytes, leading to increased vitamin D3 metabolism 

as discussed above, in synergy with signalling via TLR, leading to the uprergulation of 

cathelicidin and DEFB4. Moreover IFN- induced an autophagy pathway in Mtb-infected 

monocytes leading to increased phagosome maturation.  

Finally, only vitamin D3 sufficient sera could support IFN- induced HDPs 

production, which has implications for the effect of infection in different ethnic groups 

(Fabri et al., 2011). In monocytes and macrophages, vitamin D3 is not regulated by PTH 

and calcium, but by signals from the immune system. In macrophages, a splice variant 

of CYP24A1 was identified that limited the availability of 25(OH)D3 and 1,25(OH)2D3 for 

degradation by CYP24A1. The splice variant lacks a 150 aa sequence at the N-terminal 

containing mitochondrial targeting domain. This absence of negative feedback allows 

more synthesis of 1,25(OH)2D3 which may result in hypercalcaemia in inflammatory 

conditions (Ren et al., 2005).  

These interesting findings have encouraged many researchers to investigate the 

presence of extra-renal vitamin D3 production in other cells and tissues including those 

at barrier sites, and whether it affects the induction of HDPs. Local vitamin D3 synthesis 

and induction of cathelicidin have been identified in many epithelial cells including 

respiratory, urinary bladder, gingival, sinonasal, and colon epithelial cells,  as well as 

trophoblasts and skin keratinocytes (Hansdottir et al., 2008;Hertting et al., 

2010;Lagishetty et al., 2010;Liu et al., 2009a;McMahon et al., 2011;Schauber et al., 

2003;Schrumpf et al., 2012;Sultan et al., 2012;Sultan et al., 2013;Welsh, 2011). In skin, 
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placental, and respiratory epithelial cells, TLR synergised with VDR to induce HDPs 

expression whereas in urinary bladder, gingival, sinonasal, and colon epithelial cells 

local vitamin D3 synthesis alone induced HDPs.  

A genome wide analysis (GWAS) from peripheral blood mononuclear cells 

(PBMCs) revealed the presence of VDRE in more than 200 genes, including many 

identified related to autoimmune disease, including type 1 diabetes mellitus (T1DM) and 

systemic lupus erythematosus (SLE). Genes with VDRE including IRF8, PTPN2, CTLA-

4 and CD40 showed increased expression after vitamin D3 treatment. Therefore many 

single nucleotide polymorphisms (SNPs) identified as associated with autoimmune 

disease are located within VDR binding intervals, suggesting that vitamin D3 influences 

several pathways involved in immune responses (Ramagopalan et al., 2010).  

Other genes regulated by vitamin D3 are those of tight junction (TJ) proteins. 

Upon treatment of colonic carcinoma epithelial cell line (Caco-2) monolayer with 

1,25(OH)2D3, there was an upregulation of TJ proteins zo-1, caludin-1 and occludin. 

1,25(OH)2D3 increased transepithelial electric resistance (TEER) upon  treatment with 

dextran sodium sulfate (DSS) used to induce acute colitis in vivo and reduced their 

permeability to fluorescein isothiocyanate-D (FITC-D) dye. These findings were 

replicated in the C57BL/6 mouse model of inflammatory bowel disease (Zhao et al., 

2012). 
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1.1.6 Vitamin D3 deficiency 

The importance of vitamin D3 starts from early stages in life. In pregnant women, 

vitamin D3 deficiency can cause increased risk of gestational diabetes and preeclampsia 

(gestational hypertension). It can cause a delay in lung and bone development. Vitamin 

D3 deficiency can reduce body size and shape at birth and impair bone mineralisation. 

During childhood vitamin D3 deficiency can cause rickets (growth failure and bone 

deformities), growth retardation, increased risk of T1DM, asthma, respiratory tract 

infections and central nervous system disorders (Principi et al., 2013). In adults vitamin 

D3 deficiency has been linked to osteoporosis, osteomalacia, and increased risk of falls 

and fractures (Lips and van Schoor, 2011).  

Low serum vitamin D3 levels have been linked to many autoimmune conditions 

such as T1DM, inflammatory bowel disease (IBD), and systemic lupus erythematosus 

(SLE) as well as infectious diseases such as tuberculosis and seasonal influenza (Van 

Belle et al., 2011) . There is a geographical association where there is an increase in the 

incidence of multiple sclerosis (MS) in countries far from the equator. It has been 

suggested that the decrease of UVB in northern regions leads to less vitamin D3 

synthesis. This was further supported by low serum vitamin D3 found in MS patients 

(Summerday et al., 2012). HLA-DRB1*1501 has been associated with susceptibility to 

MS and recently VDRE have been found in the promoter region which indicates it is 

regulated by vitamin D3 (Ramagopalan et al., 2009).  



                            Chapter 1       Introduction                                                                   29 

 

However, if MS is an example of autoimmune disease linked to low UVB 

exposure and vitamin D3 levels, it is intriguing that MS prevalence is increasing in Arab 

countries (although still lower than Western countries) and it remains more frequent in 

females than in males (Benamer et al., 2009). One possible explanation is that 

difference in prevalence is related to differences in sex hormones, as autoimmune 

disease (such as RA and MS) onset appears in females as early as after puberty (18-

40), while in males the onset is delayed to the age of 30-40 years and could be as a 

result of the decline in testosterone (Voskuhl, 2011). It has been noticed that MS 

symptoms are suppressed during pregnancy and during contraceptive pill usage 

indicating a protective role for estrogen. Estrogen and vitamin D3 influence each other, 

as in murine studies estrogen downregulates CYP24A1 and vitamin D3 upregulates 

CYP19, the enzyme required for estrogen synthesis (Disanto et al., 2011;Holmqvist et 

al., 2010).  

An alternative hypothesis proposed by Albert et al. suggests that both 25(OH)D3 

and 1,25(OH)2D3 should be measured in the serum of patients with autoimmune 

diseases. According to them, low levels of 25(OH)D3 are due to increased consumption 

and that conversely serum 1,25(OH)2D3 would increase, which makes it a better marker 

of the disease than 25(OH)D3. They also believe that the relief of symptoms upon 

vitamin D3 supplementation is a temporary silencing of the innate immune response, and 

that bacteria use VDR to downregulate the immune system and inhibit HDPs, leaving 

them to grow over time eventually causing autoimmune diseases. Based on an in silico 

model, they suggest the following: (i) bacterial ligands bind to LBP of VDR and disable 
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CYP24A1 causing a rise 1,25(OH)2D3, (ii) supplementation with 1,25(OH)2D3 will not be 

able to activate VDR which has been dysregulated by bacterial ligands, (iii) and the high 

levels of 1,25(OH)2D3 will interfere with other nuclear receptors (such PPAR [the 

peroxisome proliferator-activated receptors] - and α, the GR, and the androgen 

receptor) involved in the induction of HDPs through binding to their natural receptors 

(Albert et al., 2009;Marshall, 2008).  

The authors suggest that bacterial dysregulation of VDR in women is the reason 

they are more susceptible to autoimmune diseases. Early during pregnancy, women 

with MS and RA will have a 40% increase in 1,25(OH)2D3 which will dysregulate VDR 

and other nuclear receptors and a temporary immunosuppression. After pregnancy 

when 1,25(OH)2D3 goes back to its previous levels, inflammatory symptoms of 

autoimmune disease will return (Proal et al., 2009). However it should be stated that the 

alternative hypothesis has little solid laboratory data to support it and remains highly 

controversial.  

1.1.7 VDR polymorphism 

Variations in DNA in the human genome are mostly SNPs. About 7 million 

common SNPs have been identified with a minimum allele frequency (MAF) of at least 

5% across the human population but in common SNPs MAF might vary between 

different populations (Hinds et al., 2005). SNPs are positions on the genome where 

there is variation of two alleles expressed by different populations. A person can either 

be homozygous or heterozygous for a certain SNP as each allele is inherited from one 

parent. Information on SNPs are collected by  organisations such as the International 
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Haplotype Map Project (Hapmap) Consortium including genomic location and allelic 

frequencies among different populations (LaFramboise, 2009). A database for SNP 

(dbSNP) is available for SNP genotyping assays at the National Center for 

Biotechnology Information (NCBI). The database has reference SNP (rs) numbers to 

identify each SNP assay (Hinds et al., 2005).  

The vitamin D3 receptor (VDR) gene extends over 100 kb (kilo base pair) located 

in the long arm of chromosome 12 locus 13.1 (12q13.1) downstream of collagen II-alpha 

1(COL2A1) (Uitterlinden et al., 2004b). VDR polymorphism has been associated with 

susceptibility to or protection from many conditions and diseases and varies among 

different ethnic backgrounds (Valdivielso and Fernandez, 2006). More than 470 VDR 

SNPs have been identified in the human VDR gene. Some SNPs can be associated with 

each other in certain populations and this is called linkage disequilibrium (LD). LD can 

be inherited as blocks referred to as haplotypes with an average of 10-20kb (Rukin and 

Strange, 2007). VDR polymorphisms were first identified using restriction fragment 

length polymorphisms (RFLPs) with the aid of restriction enzymes including EcoRV, 

BsmI, TaqI, and Tru9I (Uitterlinden et al., 2004b). VDR has been divided into three LD 

blocks A, B, and C where A is towards the 3’ exon 9 and C in the non-coding region 

(Figure 1.10).  
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Figure ‎1.10. VDR gene polymorphism. VDR is located on 12q13.1 and SNPs are 
shown as LD block A,B, and C with the most commonly studied SNPs. Cdx2  and GATA 
(A1012G) is in the 5’ promoter region, FokI is between blocks B and C while BsmI is 
closely associated with TaqI and ApaI in block B in the 3’UTR (Rukin and Strange, 
2007). 

 

A start codon polymorphism FokI (rs2228570) does not have an LD association 

and is located at the breaking point between LD blocks B and C. It is a T to C 

substitution (T/C) that alters the start codon resulting in a different size protein. The 

presence of FokI site (T allele) results in a 427 aa protein and the absence of FokI (C 

allele) results in a shorter 424 aa protein. FokI modulates transcription factors in the 

immune system. The C allele increased transcription by NF-B, nuclear factor of 

activated T-cells (NFAT), and promoter for IL-12 p40 subunit (IL-12p40) more than the T 

allele. Human PBMCs homozygous for the C allele expressed higher mRNA for IL-12 

(A1012)

G 
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and proliferated stronger upon stimulation with the mitogen phytohemagglutinin (van 

Etten et al., 2007). Patients with T1DM that were homozygous for FokI TT allele or 

heterozygous for FokI CT allele had lower pancreatic β-cell function (Mory et al., 2009). 

The most commonly studied LD SNPs in block B (intron 8 and exon 9) are the closely 

linked BsmI (C/T; rs1544410), ApaI (C/A; rs7975232), and TaqI (T/C; rs731236). No 

functional consequence has been reported for these SNPs but they are located in the 

3’untranslated region (3’UTR) that can influence mRNA stability and protein translation 

efficiency (Arai et al., 2001;Rukin and Strange, 2007;Uitterlinden et al., 2004b). Cdx2 

(G/A; rs11568820) is a promoter region SNP, a known binding site for the Cdx2-

intestinal transcription factor. It modulates intestinal VDR transcription and calcium 

absorption. The A allele increases while the G allele reduces VDR transcription and 

calcium absorption respectively (Arai et al., 2001). A1012G (rs4516035) SNP is (A to G) 

located in 1012 bp close to the exon 1a transcription start site. It is associated with the 

transcription of GATA3, a transcriptional factor for the differentiation of Th2 cells. The A 

allele of A1012G downregulates Th1 responses (Halsall et al., 2004).  

1.2 The human eye 

The human eye is a unique structure that receives and transmits light signals to 

the brain to be translated as images. It is in constant contact with the environment which 

renders it vulnerable to injury and infection. The eye has specific anatomical and 

physiological barriers to protect against potential damaging pathology that could lead to 

loss of visual acuity or even blindness.  
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1.2.1 Eye structure 

The human eye is a spherical structure with a diameter of 2.4 cm. It is composed 

of a three-layered outer compartment and an interior compartment (Figure 1.11). The 

three outer layers are the outermost corneosclera (cornea and sclera), the uveal tract 

(iris, ciliary body, and choroid), and the inner neural retina. The retina is supplied by the 

central retinal artery and the outer and middle layers are supplied by ciliary vessels. The 

inner compartment contains aqueous humour (AqH), lens, and vitreous. The AqH is a 

clear fluid secreted by the ciliary processes. The vitreous comprises two-thirds of the 

eye volume and it is a transparent avascular inert gel that gives the eye its shape. Vision 

is reflected by the integrity of a transparent visual axis that starts from the cornea and 

passes through the anterior chamber (AC), lens, and vitreous, to the retina (Caspi, 

2010;Chen et al., 2008). 

The cornea forms the outer avascular fibrous coat of the ocular surface acting at 

the front line to protect the eye against offending environmental and infectious factors. 

The cornea is made of corneal epithelium, stroma, and corneal endothelium. Corneal 

epithelium is composed of flattened stratified non-keratinised squamous epithelium. This 

layer is in continuity with the conjunctiva at the limbus (at corneal edge) from which stem 

cells arise to replace old or dead corneal epithelial cells. Corneal epithelium is separated 

from the stroma by Bowman’s layer (BL), an avascular basement membrane-like 

structure rich in collagen fibres. Corneal stroma is made of densely packed transparent 

regularly oriented collagen bundles. Next to the stroma, exists a thick Descemet’s 

membrane, a basement membrane secreted by the corneal endothelium. The corneal 
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endothelium consists of a monolayer of hexagonally oriented epithelial cells with a high 

density of mitochondria and functions to provide nutrients and dehydrates corneal 

stroma. Corneal endothelial cells do not undergo mitotic division and do not regenerate 

(Di Girolamo, 2011;Takacs et al., 2009).  

 

 

Figure ‎1.11. A schematic presentation of the human eye. The human eye is 
composed of an outer corneoscleral layer, uveal tract (iris, ciliary body, choroid), and 
retina. The AC is filled with aqueous humour produced in the posterior chamber by 
ciliary processes. The vitreous is located at the posterior of the eye, a gel substance that 
provides support and maintains the shape of the eye (Asadi et al., 2012). 
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In the uveal tract, the iris is a circular disk that acts as a diaphragm to regulate the 

amount of light that passes through to the retina by altering the size of the pupil through 

contraction of circular sphincter muscles (constricts the pupil) and radial dilator muscles 

(dilates the pupil). Surrounding the muscles is a stroma, an outer non-pigmented 

epithelium layer and inner pigment epithelium. The stroma is rich in melanocytes which 

determine the eye colour (Forrester et al., 2001). The ciliary body is a triangle shaped 

structure with two regions, anterior pars plicata where the ciliary processes are located 

and posterior pars plana at which it joins the choroid. The ciliary processes are made of 

two layers of epithelium that have their apical surfaces opposing each other, an inner 

non-pigmented ciliary body epithelium (NPE) in contact with AqH in the posterior 

chamber, and an external pigmented epithelium in contact with ciliary stroma. NPE 

secretes AqH and is the continuation of iris pigmented epithelium anteriorly and neural 

retina posteriorly while the pigmented epithelium is the continuation of retinal pigmented 

epithelium (RPE) (Goel et al., 2010).  

The AqH has a unidirectional flow (Figure 1.12) passing from posterior chamber 

(between the iris and the lens) through the pupil to the AC (between the cornea and the 

iris) and circulating towards the angle of the AC (trabecular meshwork). The blood 

supply to the iris and ciliary body is provided by anterior and posterior ciliary arteries as 

well as choroidal branches (Forrester et al., 2001). The choroid, the outermost region of 

the uveal tract is a vascular, highly pigmented tissue which provides a network of blood 

vessels that carry nutrients to the retina (Regatieri et al., 2012).  
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Figure ‎1.12. Aqueous humour flow. AqH is secreted in the posterior chamber (1) by 
ciliary processes. Some of it can pass through the vitreous cavity (2) and it is also 
released to fill the AC through the pupil (3). AqH causes fluid exchange with the cornea 
(4) and iris (5). The AqH drains into trabecular meshwork into Schlemm’s canal and to 
episcleral veins and blood circulation (6). The figure is taken with permission from (Toris, 
2008). 
 
 

The retina is located at the posterior of the eye and can be divided into outer 

retina and neuroretina. The outer retina is made of a monolayer of RPE and sits on the 

multilayered Bruch’s membrane, which allows the transfer of nutrients and oxygen from 

fenestrated choriocapillaries to RPE and waste from RPE to choriocapillaries. The apical 

surface of RPE faces the outer segment of photoreceptors (Mettu et al., 2012). RPE 

cells do not regenerate and decrease with age and their dysfunction could threaten 
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visual acuity such as in age-related macular degeneration (AMD) (Del Priore et al., 

2002).   

AMD is a chronic disease that occurs with aging and starts with the accumulation 

of drusen (extracellular deposits). Within drusen are amyloid-β (Aβ) and proinflammatory 

complement components that contribute to the pathogenesis of AMD. At later stages the 

degeneration of photoreceptors and RPE cells occurs (Ambati and Fowler, 

2012;Anderson et al., 2004). RPE has several functions including transport of nutrients 

and water to the inner retina, preventing light scatter and photooxidation, reisomerisation 

of retinoids necessary for vision, and phagocytosis of dead photoreceptors. Neuroretina 

is formed of photoreceptors (rods and cones) and a ganglion cell layer which transfers 

the visual signals to the optic nerve. The central retinal artery and choroidal capillaries 

supply nutrients that diffuse through RPE to the retina (Erickson et al., 2007;Simo et al., 

2010). 

1.2.2 Antigen presenting cells in the eye 

At the external surface of the eye, murine and human studies have shown that 

bone marrow (BM)-derived cells, mostly immature APCs, are recruited to the cornea 

from the limbus, the area between the vascularised conjunctiva and avascular cornea. 

Immature DCs express very low levels of MHC II and lack the expression of co-

stimulatory molecules (CD80, CD86, and CD40) which can result in T cell tolerance 

(Lutz and Schuler, 2002).  
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In mice, three groups of APCs exist in central corneal stroma; 

MHCII+CD11b+CD11c- monocytes/macrophages, MHCII-CD34+ myeloid precursor cells, 

and a small group of B220+CD11clo plasmacytoid DCs. CD11b+ cells are suggested to 

have the potential to form lymphatic vessels during corneal inflammation by 

differentiating into lymphatic vessel endothelial receptor 1+ (LYVE-1 +) cells. The corneal 

stroma expressed MHCII+CX3CR1+CD45+ (CD45 is lymphocyte common antigen) cells 

with cellular processes that bridge MHC II+ cells in vitro (Forrester et al., 2010). CX3CR1 

is a receptor for chemokine CX3CL-1 (fractalkine) and is expressed on myeloid cells 

such as monocytes, macrophages, DCs, NK cells, and microglia to recruit them to the 

site of inflammation (Chinnery et al., 2008).  

The cornea expresses soluble vascular endothelial growth factor receptor-1 

(sVEGFR-1) which neutralises vascular endothelial growth factor-A (VEGF-A), an 

angiogenesis stimulant. Moreover, the constitutive corneal expression of VEGFR-3 (the 

receptor for VEGF-C and VEGF-D), thrombospondin-1 (TSP-1), endogenous IL-1 

receptor antagonist (IL-1Ra), as well as tissue inhibitor of metalloproteinases-1 (TIMPs-

1) in tear film prevent hemangiogenesis and lymphangiogenesis (Barabino et al., 2012). 

TSP-1 is a potent anti-angiogenic factor and is also produced by mouse iris and cultured 

RPE  (Cursiefen et al., 2004;Zamiri et al., 2005). 

 MHCII+CD11c+Langerin/CD207+ langerhans cells (LCs) that also express CD1a 

(marker for LCs) and CD45 are present in human peripheral and paracentral corneal 

epithelium while human peripheral and paracentral anterior regions of corneal stroma 

contain DC-SIGN/CD209+ interstitial DCs (Mayer et al., 2007). BM derived DCs 
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(BMDCs) from CD45 knockout mice (CD45-/-) showed decreased cytokine production of 

IL-12, IL-6 and TNF-α after LPS (TLR4 ligand)-stimulation. In contrast, CD45-/- DCs 

showed increased IL-12, IL-6 and TNF-α production in response to stimulation of TLR2 

and TLR9. The lack of CD45 reduced IFN- producing Th1 cells in response to 

stimulation with LPS-activated DCs (Cross et al., 2008). MHCII+CD11b+CD11c-CD45+ 

monocyte/macrophages are also found in human corneal stroma (Mayer et al., 2007). 

Another population of APCs that was detected in mice corneal stroma is 

MHCII+CD11b+CD45+F4/80+ macrophages (Forrester et al., 2010). F4/80 is a marker of 

tolerogenic APCs mainly expressed on macrophages and on a small subset of DCs 

(Stein-Streilein, 2008). 

The uveal tract (iris, ciliary body, and choroid) of all mammalian species contains 

a similar population of APCs to that of the cornea. The iris contains CX3CR1+MHCII+ 

DCs and MHCII−CX3CR1+ macrophages. MHCII+CX3CR1+ DCs are present in the ciliary 

body epithelium. CD11b+CD11c+ DCs and macrophages are present in rat choroid as 

well as F4/80+ macrophages. Choroidal MHCII+CD11c+ DCs are localised at the basal 

surface of RPE where shed photoreceptors accumulate, a possible source of 

autoantigens. The retina in rats contains CD11c+CD45loF4/80+ microglial cells that are 

immunosuppressive and a small population of MHCII+ DCs and macrophages lining the 

blood vessels in meningeal extension that could play a role in inflammation (Forrester et 

al., 2010).  
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Under normal resting conditions, APCs in human and rat eye (e.g. ciliary body 

and choroid) are tolerogenic, but are motile and can be activated with proinflammatory 

cytokines during inflammation (Forrester et al., 2005). APCs from mouse retina could 

present antigen to antigen-experienced T cells, but failed to activate naïve T cells which 

is in agreement with the tolerogenic ocular environment (Gregerson et al., 2004). 

1.2.3 Immune regulation in the eye 

The eye has evolved to protect itself against injury including infections. The eye is 

provided with a set of anatomical and physiological barriers to divert or suppress 

destructive inflammatory responses. This renders the eye in a state referred to as ocular 

immune privilege. Other sites of the body that are considered immune privileged are 

testis, hair follicle, placenta, and the brain (Niederkorn, 2012). Immune privilege of the 

eye is a concept first introduced by Sir Peter Medawar in 1940 after the survival of a skin 

allograft in the AC of a rabbit eye. This was explained as immune ignorance that was a 

result of the lack of draining lymphatics that did not allow the escape of the antigen into 

peripheral lymph nodes to stimulate an immune response.  

More recently, it was revealed that ocular immune privilege is a product of many 

active immunosuppressive mechanisms in the ocular environment to limit ocular 

damage by innate and adaptive immunity (Hori, 2008;Taylor, 2009). These mechanisms 

include the lack of lymphatic drainage and physical barriers, immunosuppressive 

microenvironment, and regulation of systemic immune response (Zhou and Caspi, 

2010).  
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1.2.3.1 Lack of lymphatic drainage and physical barriers 

The cornea is avascular and lacks lymphatic vessels. Lymphatics are also absent 

in the AC and the retina. Lymphatic drainage is only available for the conjunctiva, sclera, 

and choroidal capillaries (Barabino et al., 2012;Streilein, 2003;Yucel et al., 2009) . 

Recently using fluorescent tracers for lymphatic markers such as LYVE-1  in human and 

sheep eyes, lymphatics were identified in the ciliary body (Yucel et al., 2009). The 

contribution of this pathway to AqH drainage is still unclear (Kim et al., 2011;Yucel et al., 

2009). By injecting a fluorescently labelled antigen into rat AC, Camelo et al. 

demonstrated that soluble antigen can leave the eye to regional lymph nodes of the 

head and neck, as well as in the marginal zone of the spleen, without being associated 

with ocular APCs (Camelo et al., 2006). 

The eye is designed with external barriers to protect it against traumatic damage 

such as the bony orbit, eye lids, and eye lashes. The tear film flushing foreign particles 

and containing antimicrobial substances (such as lysozymes and lactoferrin) as well as 

IgG and IgA, can neutralise bacteria and viruses to protect the ocular surface (Akpek 

and Gottsch, 2003). Additional ocular physical barriers are present which include 

corneal endothelium, blood-aqueous barrier, and blood-retinal barrier. These barriers 

not only physically prevent passage of immune cells, but also have an active role in 

suppressing the immune response. Corneal epithelium represents an essential physical 

barrier with immunomodulatory properties (Akpek and Gottsch, 2003;Hori, 2008) but 

only structures which are critical to this project will be discussed. 
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1.2.3.1.1 Corneal endothelium 

The role of corneal endothelium is to keep a state of dehydration in the cornea to 

preserve its transparency. It works as an active fluid pump between the cornea and 

AqH. Fluid leak to corneal stroma is tightly controlled by the integrity of tight and 

adherens junctions in corneal endothelium. This integrity might be weakened or lost in 

inflammatory conditions such as uveitis (Srinivas, 2012). Rauz et al. have identified the 

mRNA expression of apical epithelial sodium channel (ENaC) and the enzyme serum 

and glucocorticoid regulated kinase isoform 1 (SGK1) in human corneal endothelium. 

These molecules might support the function of  corneal endothelium in sodium transport 

and maintaining corneal transparency (Rauz et al., 2003).  

Moreover, human corneal endothelium expresses the enzyme 11β- 

hydroxysteroid dehydrogenase 2 (11β-HSD2) as well as glucocorticoid receptor (GR) 

and mineralocorticoid receptor (MR) (Rauz et al., 2001;Stokes et al., 2000). MR is also 

known as aldosterone receptor while GR is a receptor for cortisol. These two receptors 

have 90% aa homology in the DNA binding domain (DBD) and about 50% in the ligand 

binding domain (LBD). The enzyme 11β-HSD2 acts to prevent binding of glucocorticoids 

(such as cortisol which is present in high concentrations in plasma) to MR leaving it 

available for aldosterone (Odermatt and Kratschmar, 2012). Cortisol and aldosterone 

may induce the expression of SGK1 which in turn activates ENaC to facilitate sodium 

pumping across the apical surface of corneal endothelium (Rauz et al., 2003).  
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1.2.3.1.2 Blood-aqueous barrier 

Blood aqueous barrier (BAB) is composed of TJs between NPE cells and TJs 

between vascular endothelial cells of the iris. Leakiness of BAB could allow access of 

inflammatory cells as well as plasma proteins into the AC (Chen et al., 2008). GR, MR, 

and 11β-HSD1 are expressed in the non-pigmented ciliary body epithelium (Rauz et al., 

2001;Stokes et al., 2000). 11β-HSD1 is the enzyme that catalyses the interconversion 

between inactive cortisone and active cortisol (Odermatt and Kratschmar, 2012). The 

production of AqH requires a metabolically active process that involves the transport of 

water and ions (Kiel et al., 2011). 11β-HSD1 may play a role with GR and MR in sodium 

transport and AqH production by ciliary epithelium (Rauz et al., 2001). 

1.2.3.1.3 Blood-retinal barrier 

Blood-retinal barrier (BRB) is made by TJs between retinal pigment epithelial cells 

and TJs between endothelial cells of retinal vessels. Only small molecules such as 

glucose and ascorbate are allowed to diffuse through these TJs. A breach of this barrier 

may occur in conditions such as uveoretinitis, diabetic retinopathy, and AMD (Crane and 

Liversidge, 2008). 

1.2.3.2 Immunosuppressive microenvironment 

Breakdown of ocular barriers can occur and can cause the infiltration of immune 

cells into the eye resulting in a sight damaging inflammatory response. In addition to 

barriers the eye is rich in soluble and membrane bound molecules that can affect innate 

and adaptive immune cell activation.    
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1.2.3.2.1 AqH 

AqH contains a range of neuropeptides that diffuse from sensory nerve endings 

to the eye and cytokines, including alpha-Melanocyte-stimulating hormone (α-MSH), 

vasoactive intestinal peptide(VIP), somatostatin (SOM), TGF-β2, calcitonin gene-related 

peptide (CGRP), macrophage migration inhibitory factor (MIF), all can regulate immune 

cells to suppress inflammation in the AC (Taylor, 2009).  

α-MSH is a peptide mainly expressed in the hypothalamus, pituitary gland, and 

skin with antiinflammatory properties that range from the suppression of proinflammatory 

(TNF-α and IL-1β) and upregulation of antiinflammatory (IL-10) cytokines (Brzoska et al., 

2008). α-MSH binds to melanocortin-1 receptor (MC-1R) on macrophages and dendritic 

cells differentiated from human monocytic cell lines and neutrophils to mediate the 

suppression of their production of proinflammatory cytokines, nitric oxide (NO), and 

reactive oxygen intermediates (Manna et al., 2006). When murine lymph node primed T 

cells were incubated with α-MSH, there was an 80% reduction of IFN- production. 

APCs treated with α-MSH caused a reduction in IFN- by T cells (Taylor et al., 1994a).  

In another murine study, AqH inhibited the maturation of LPS-stimulated DCs. 

AqH downregulated the expression of MHC II, CD80, and CD86 and inhibited their 

ability to activate T cells. These inhibitory effects on DC maturation were reversed upon 

blocking TGF-β2 (Wang et al., 2011). Recently, Denniston et al. showed that human 

naïve CD4+T cells failed to proliferate when co-cultured with noninflammatory AqH. AqH 

treated DCs had a significant reduction in the expression of CD86. Endogenous cortisol 

and TGF-β both contribute to the suppressive activity of AqH (Denniston et al., 2011).  
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VIP is a neuropeptide present in the nervous and endocrine systems as well as 

the lungs and intestine. It posseses immunomodulatory properties as many cells in the 

body including immune cells such as monocytes and lymphocytes expressed receptors 

for VIP. In murine studies, VIP has been shown to inhibit macrophage proinflammatory 

cytokine production (Chorny et al., 2006;Delgado et al., 2004) and in the eye it is 

produced by human corneal endothelium, iris, ciliary body, and has been detected in 

AqH (Koh, 2012). VIP in AqH inhibited in vitro poliferation and IFN- production by 

antigen stimulated lymphonuclear cells (LNC) in rabbits. Absorbing VIP reversed the 

inhibitory effect on LNC (Taylor et al., 1994b). The injection of liposome containing VIP 

into rat vitreous suppressed endotoxin (LPS) induced uveitis (EIU). There was a 

reduction in the EIU clinical score, the number of infiltrating inflammatory cells to the 

anterior segment, and mRNA expression of IFN-, TNF-α and IL1β (Lajavardi et al., 

2007). 

The release of some neuropeptides is affected by light/dark conditions which in 

turn modulate the immune response in the eye. Mice reared in the light (diurnal) showed 

high levels of VIP in the iris and ciliary body and low levels of another neuropeptide, 

substance P (SP). In contrast, mice reared in the dark, showed low levels of VIP and 

increased amounts of SP. This effect seemed to be an adaptation process and could be 

reversed by putting mice under diurnal conditions (Ferguson et al., 1995). CGRP is 

present in the AqH of humans and other species and at concentrations present in AqH, 

inhibited NO production from mouse macrophages (Taylor et al., 1998). MIF is a 

multifunctional molecule that plays a role as a proinflammatory cytokine and contributes 
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to the immune privilege of hair follicles by suppressing cytolysis by NK cells (Calandra et 

al., 2003;Ito et al., 2007). Recombinant murine MIF (rMIF) and rabbit AqH both inhibited 

macrophage migration in vitro and NK-mediated lysis of murine corneal endothelial cell 

line (Apte et al., 1998). 

1.2.3.2.2 Corneal endothelium 

Like many cells in the cornea, corneal endothelial cells lack MHC II and only 

weakly express MHC I. They express CD95L, which upon binding to CD95 on T cells 

induces T cell apoptosis (Hori, 2008). In mice, corneal endothelial cells constitutively 

express B7-H1 (programmed death-1 molecule ligand; PD-L1), a member of the 

CD28/CTLA-4 family and a ligand for programmed death-1 molecules (PD-1) on T cells 

that downregulates T cell receptor signalling (Hori et al., 2006). When cultured in the 

presence of human corneal endothelial (HCE) cell line, there was a reduction in the 

proliferation of all T cells, specifically CD4+ T cells, and Th1 T cells. This inhibition was 

cell-cell contact dependent. HCE cells suppressed proliferation and IFN- production 

from infiltrating Th1 T cell clones (TCC) prepared from AqH of patients with different 

inflammatory eye diseases (Behçet’s disease [BD] and uveitis). HCE express PD-L1 and 

PD-L2 and when incubated with Th1 TCC, there was an increase in PD-1 expression on 

T cells. The ability of HCE to reduce IFN- production by Th1 cells was blocked by anti-

PD-L1 but not anti-PD-L2. Interestingly, HCE incubated in IFN- containing Th1 cultures 

supernatants upregulated PD-L1 expression indicating the role of inflammation in the 

expression of these molecules on HCE (Sugita et al., 2009).  
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When co-cultured in the presence of HCE, human CD8+ T cells had a reduced 

proliferation. Unlike CD4+ T cells, CD8+ T cells had a poor expression of PD-1 which 

suggests another molecule is involved. It appeared that the cell-cell contact dependent 

inhibition of CD8+ T cell proliferation was mediated by membrane bound TGF-β2, highly 

expressed by HCE. TGF-β2 not only enabled HCE to suppress T cell proliferation, but 

allowed them to convert both CD4+ and CD8+ T cells into CD25+Foxp3+ Tregs. CD4+ 

and CD8+ HCE-induced Tregs inhibited the proliferation of CD4+ and CD8+ effector T 

cells respectively, via TGFβ1 in both cases (Yamada et al., 2010). 

1.2.3.2.3 Intraocular compartments 

A suppressive microenvironment is created in the intraocular compartments by 

pigmented epithelium of the iris, ciliary body, and retina. These tissues although in 

different locations and functions in the eye, all have immunomodulatory properties that 

play a role in ocular immune privilege (Zamiri et al., 2007). Murine iris and ciliary body 

pigmented epithelium (I/CBE PE) inhibited ovalbumin (OVA) stimulated T cell 

proliferation and reduced production of IL-2, IFN-, IL-4, and IL-10 in vitro. This inhibition 

was dependent on direct contact between these cells. This inhibition was not mediated 

by Fas (CD95)-Fas ligand (FasL; CD95L) interaction and T cell apoptosis was not 

induced. When cultured with T cells, I/CBE PE produced TGF-β which mediated the 

inhibitory effect on T cells (Yoshida et al., 2000b;Yoshida et al., 2000a).  

Subsequent experiments by Sugita et al. have demonstrated the expression of 

soluble and membrane bound TGF-β (TGF-β1 and TGF-β2) in B7+ (CD80/86) iris PE 

(IPE). Through membrane bound TGF-β, IPE cells increased the expression of B7, 
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TGF-β and CTLA-4 on CD8+ T cells and converted them into Tregs (IPE Tregs). IPE 

Tregs used cell-cell contact and membrane bound TGF-β to inhibit bystander T cell 

proliferation. By comparison, CB PE cells were not able to convert either CD4+ nor CD8+ 

T cells into Tregs (Sugita et al., 2006;Sugita et al., 2008) 

Murine RPE and ARPE-19 (human adult retinal pigment epithelium cell line) 

express PD-L1 and PD-L2. In the supernatants of mixed cultures of ARPE-19 and T 

cells, PD-L1 mediated a reduction in the levels of IFN-, IL-8, and monocyte chemotactic 

protein-1 (MCP-1) produced (Usui et al., 2008). Immortalised murine RPE cells 

upregulated MHC II expression after treatment with TNFα and IFN- and constitutively 

expressed CD80 but they could not process the antigen β-galactosidase (β-gal) and 

present it to naive T cells from β-gal-TCR transgenic mice. When these T cells were 

stimulated with irradiated APCs with β-gal on a monolayer of RPE cells, RPE cells 

induced T cells to become anergic by inhibiting their proliferation and the production of 

IFN- and IL-2. Anergic T cells recovered from RPE co-cultures and activated with 

splenic APCs on a monolayer of RPE cells in the presence of β-gal failed to proliferate 

and showed suppressed IL-2, IFN-, and IL-17 production. Although Foxp3 expression 

was induced on these T cells, they did not become Tregs (Gregerson et al., 2007).  

Sugita and colleagues were able to show that RPE cells can induce Tregs. CD4+ 

T cells cultured in the presence of murine RPE cells showed reduced proliferation, and 

converted into Tregs. RPE induced Tregs were CD4+CD25+Foxp3+ and were 

suppressive of bystander T cell activation. A novel inhibitory factor CTLA-2α discovered 

on murine RPE cells was essential for RPE conversion of Tregs in vitro (Sugita et al., 
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2008). Ocular pigment epithelial cells constitutively express FasL (Sugita, 2009). In 

ARPE-19 cells, the expression of FasL was increased after treatment with IFN- or 

infection with cytomegalovirus (CMV). ARPE-19 express both Fas ligand in soluble and 

microvesicle membrane bound forms but it is not clear how FasL is released with 

microvesicles to induce target cell apoptosis (McKechnie et al., 2006).  

Murine primary RPE cultured cells secrete immunomodulatory molecules 

including TSP-1, TGF-β, SOM, and pigment epithelial derived factor (PEDF). TSP-1 and 

TGF-β produced in RPE cell supernatants cause the suppression of T cells activation 

and reduced IFN- production. TSP-1 is required for the activation of TGF-β and both 

are important for the induction of T cell suppression (Zamiri et al., 2005). PEDF 

suppressed IL-12 and augmented IL-10 production in LPS-stimulated macrophages. 

PEDF and SOM synergised to suppress NO produced by murine macrophages. When 

injected simultaneously with LPS into mice ears, PEDF reduced the inflammatory 

response (Zamiri et al., 2006). PEDF contributes to the prevention of angiogenesis and 

the survival of retinal stem cells and may contribute to therapeutic treatments of 

neovascular disease or AMD (Liu et al., 2012a). A murine study (Kawanaka and Taylor, 

2011) showed that α-MSH and neuropeptide Y (NPY) produced in supernatants of 

primary RPE upregulated the expression of Arginase1 (ARG1) and nitric oxide 

synthetase (NOS2) in primary murine macrophages. These are called alternatively 

activated macrophages (M2) which are usually induced by Th2 cytokines IL-4 and IL-13 

rather than classically activated macrophages (M1) induced by Th1 IFN- (Gordon and 

Martinez, 2010).  
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1.2.3.3 Regulation of systemic immune response 

AC associated immune deviation (ACAID) is a phenomenon characterised by the 

development of antibody and suppression of cell mediated inflammatory responses after 

the soluble antigen is injected or shed from tumour in the AC in experimental animals. 

For ACAID to occur it requires the eye, thymus, spleen, and sympathetic nervous 

system where removal of any of them within 72 hours after injection inhibits ACAID. It is 

believed that within 48 hours F4/80+ macrophages in the iris and ciliary body pick up the 

antigen, transport it to the venous circulation, and lead to the generation of CD8+ T cells 

that can suppress inflammation. F4/80+ macrophages induce the development of CD4-

CD8-NK1.1+ thymocytes which migrate to the spleen where they participate with CD1d+ 

B cells, CD4+ NKT cells, and CD8+ T cells in the generation of ACAID by inducing CD8+ 

the development of regulatory T cells that inhibit Th1 and Th2 inflammatory responses 

and the production of antibodies IgM and IgG1 (Camelo et al., 2005;Niederkorn, 2006). 

 T cells also play a role in the process by producing IL-10 necessary for the induction 

of ACAID (Ashour and Niederkorn, 2006). As it is vital for the eye to maintain clear 

vision, ACAID is an example of how the eye can induce systemic immune tolerance.  

1.2.4 Uveitis 

Uveitis is a group of inflammatory conditions in the eye. Uveitis does not only 

affect the uveal tract, it may involve the sclera, retina, and optic nerve. It is a cause of 5-

20% of legal blindness in the United States and Europe and 25% in the developing 

world (de Smet et al., 2011). Uveitis is classified anatomically according to the primary 

site of inflammation as anterior (AC), intermediate (vitreous, pars plana), posterior 
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(retina or choroid), and pan (AC, vitreous, and retina or choroid) uveitis (Jabs et al., 

2005). Patients with uveitis may present with photophobia, red eye, floaters, and blurred 

vision (Guly and Forrester, 2010). 

In intermediate uveitis (IU) inflammation can involve AC, ciliary body, and the 

retina. It can either be infectious or non-infectious (idiopathic or autoimmune). Infectious 

IU can occur in toxoplasmosis, tuberculosis, lyme disease, human T lymphotropic virus 

Type 1 (HTLV-1), and syphilis. Non-infectious IU can be associated with systemic 

diseases such as sarcoidosis, intraocular lymphoma, and multiple sclerosis. When IU is 

not associated with an underlying infection or systemic disease but with the presence of 

snow banks (white exudates) at pars plana, it is referred to as pars planitis (Babu and 

Rathinam, 2010;de Smet et al., 2011).  

Anterior uveitis has been linked to be ankylosing spondylitis and birdshot 

choroidopathy while posterior uveitis has been linked to sarcoidosis, BD, and Chron’s 

disease. IU has been associated with MS and sarcoidosis (Barisani-Asenbauer et al., 

2012). Uveitis has been associated with MHC antigens. Of class I, HLA-B*27 is 

associated with anterior uveitis, HLA-B*51 with BD, and HLA-A*29.2 with birdshot 

retinochoroidopathy. With regards to MHC class II, HLA-DRB1*03 has been linked to 

anterior uveitis whereas HLA-DR2, HLA-DR51, HLA-DR17, and HLA-DRB1*15 have 

been linked with intermediate uveitis (Du et al., 2009;Tang et al., 1997;Zamecki and 

Jabs, 2010). 
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The antigens inducing uveitis have, in most cases, not been identified but 

experimental autoimmune uveitis (EAU) can be induced in animal models using retinal S 

antigen or interphotoreceptor retinoid binding protein (IRBP) (Caspi et al., 2008). 

Humanised models of EAU have been established where mice are made transgenic (Tg) 

with human MHC II antigens after deleting mouse class II antigens. Several Tg human 

MHC molecules have been created (e.g. HLA-DR3, HLA-DR4, HLA-DQ6 and HLA-DQ8) 

and are injected with IRBP or S antigen to induce EAU. This will allow a better human 

relevant understanding of immune mechanisms and therapeutic targets for the treatment 

of uveitis (Levy et al., 2011). EAU involves inflammation in the iris, ciliary body, retina, 

and choroid (Babu and Rathinam, 2010), and involves breakdown in ocular barriers 

which allows the infiltration of immune cells to the eye. Animal studies and samples from 

AqH, vitreous, and peripheral blood from patients have allowed an understanding of the 

cellular types and mechanisms involved in uveitis.  

In EAU models, Th1 and Th17 cell mediated responses have been observed but 

with Th1 IFN- being the predominant cytokine locally and in the peripheral lymph nodes 

(Caspi et al., 2008). In humans, both Th1 IFN- and Th2 IL-4, IL-10, and IL-13 cytokines 

play a role in the pathogenesis of uveitis (Horai and Caspi, 2011). CD4+ CD25+ Tregs 

induced during the recovery from EAU play an important role in the resolution of 

intraocular inflammation. They are regulated by IL-10 and other suppressive inhibitory 

molecules in AqH (Ke et al., 2008). While treatment of PBMCs from patients with BD 

uveitis with IFN- increases NO production, IL-10 reduces NO suggesting its protective 

role in uveitis (Belguendouz et al., 2011). In humans, myeloid DCs have been isolated 
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from AqH samples of uveitic patients and showed high MHC I and II expression, but 

decreased CD86 compared to DCs from peripheral blood of the same patients, a 

combination which led to reduced activation of naïve T cells (Denniston et al., 2012). 

Interestingly, this did not involve endogenous cortisol, which was responsible for a 

similar effect of noninflammatory AqH (Denniston et al., 2011). 

TNF-α plays an important role in uveitis and high levels can be found in AqH and 

serum from patients with uveitis. It is one of the molecules targeted for immunotherapy 

of uveitis (Khera et al., 2010). TNF-α and its soluble receptors TNF-α receptor I and 2 

(TNF-α R1 and TNF-α R2) are significantly elevated in AqH and vitreous fluid from 

patients with active uveitis compared to controls. Soluble TNF-αRs stimulated  increased 

TNF-α production by infiltrating T cells present in ocular fluids increasing inflammation in 

this model system (Sugita et al., 2007). Neutralisation of TNF-α reduces retinal 

inflammation in uveitic patients and the EAU model (Dick et al., 2004;Murphy et al., 

2004).  

TNF-α represent an important therapeutic target for the treatment of uveitis and 

ocular inflammation in BD. Monoclonal antibodies against TNF-α such as infliximab and 

adalimumab have been shown to be effective in treatment of uveitis and BD (Deuter et 

al., 2008;Gueudry et al., 2012). AqH from patients with idiopathic uveitis had significant 

increase in the concentrations of IL-6, IL-8, IFN-γ, and CCL2/MCP-1 (chemokine ligand 

2 or MCP-1) compared to noninflammatory controls. IL-8 and CCL2/MCP-1 were higher 

in AqH from BD and herpes-viral uveitis while TGFβ2 and CXCL12 (chemokine ligand 

12) were reduced (Curnow et al., 2005). In the AqH of patients with IU, TNF-α, IL-6, IL-8, 



                            Chapter 1       Introduction                                                                   55 

 

IL-1β, IL-12 p70 subunit (IL-2p70), IL-10, and CCL2/MCP-1 are higher than in controls. 

IL-6 and IL-8 levels in these patients were even higher in AqH samples than in sera 

(Valentincic et al., 2011).  

Cytokine polymorphisms play a role in susceptibility and pathogenesis of uveitis. 

Polymorphisms in IL-10 and TNF-α have been associated with uveitis in patients in the 

UK, these SNPs were in loci previously linked to immune mediated inflammation (Atan 

et al., 2010;Haukim et al., 2002). Another study in Austria has shown an association 

between a SNP in IL2RA and the risk for intermediate uveitis where G allele is protective 

(Lindner et al., 2011). A meta-analysis study has shown an association of one SNP in 

IL10 and a variant between IL23R and IL12R β2 and BD. Monocytes from individuals 

expressing A allele of IL-10 variant express less mRNA and produce less IL-10 protein 

compared to those with the G allele (Remmers et al., 2010).  

1.2.5 The role of vitamin D3 in the eye 

Very early studies have shown the presence of VDR, calcium-binding protein 

(vitamin D-dependent), and plasma membrane calcium pump by immunostaining of 

sections of the different layers of the human eye (Johnson et al., 1995). Treatment with 

vitamin D3 reduced the growth of human retinal blastoma cell line Y-79 in vitro (Saulenas 

et al., 1988). Topical treatment of mice cornea with 1,25(OH)2D3 reduced LC migration 

into the cornea and neovascularisation (Suzuki et al., 2000).  

Later research has demonstrated some of the immunomodulatory effects of 

vitamin D3 in the eye. When a human corneal epithelial cell line was infected with 
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Pseudomonas aeruginosa in the presence of 1,25(OH)2D3, the expression of IL-1β, IL-6, 

and IL-8 was suppressed (Xue et al., 2002). Oral treatment with vitamin D3 abrogated 

inflammation and reduced proinflammatory cytokines in lymph node supernatants from 

mice with EAU. Treatment with vitamin D3 in vivo reduced the expression of RORt 

(transcription factor for Th17) and the production of IL-17 when CD4+ T cells from mice 

lymph nodes were stimulated in vitro (Tang et al., 2009). 

 Similar results were seen in  humans where the addition of vitamin D3 to naïve 

stimulated CD4+ T cells from patients with BD, upregulated IFN regulatory factor 8 (IRF-

8), a transcription factor that negatively regulated Th17 in vitro. This was reflected by 

suppressing the expression of RORt, IL-17, and CCR6. It reduced the production of 

IFN- by CD4+ T cells cultured in Th17 polarising conditions and to the contrary, it 

increased IL-10 production. Vitamin D3 suppressed the production of IL17 and IFN- by 

CD4+ T cells co-cultured with DCs pretreated with Vitamin D3 compared to those co-

cultured with untreated DCs (Tian et al., 2012). Vitamin D3 genes were recently identified 

in human, mouse and rabbit corneal epithelial cells. 25(OH)D3 and 1,25(OH)2D3 were 

detected in rabbit tears, AqH and vitreous. 25(OH)D3 and 1,25(OH)2D3 increased TEER 

and upregulated the expression of occludin in human corneal epithelial cell line (Lin et 

al., 2012;Yin et al., 2011).  

Vitamin D3 rich food and supplement intake correlated inversely with the onset of 

early AMD in a survey among 40 years and older participant (Parekh et al., 2007). In a 

recent study, vitamin D3 intake in women younger than 75 years correlated with 
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decreased odds of early AMD which suggests a protective role of vitamin D3 (Millen et 

al., 2011).  

Interestingly, the protective effect of vitamin D3 has been confirmed in vivo. A 

group of twelve-month old C57BL/6 mice injected with vitamin D3 emulsified in safflower 

oil was compared with a group injected with safflower oil alone and were followed for 6 

weeks. Vitamin D3 treatment significantly reduced the number and morphology of 

inflammatory macrophages and decreased complement deposits in the subretinal 

space. Vitamin D3 markedly reduced Aβ along Bruch's membrane and other neurotoxic 

oligomers and this was reflected by an improved visual function of mice treated with 

vitamin D3 (Lee et al., 2012). By comparison, analysis of sib pairs found that while UV 

exposure was protective for the development of AMD, serum levels of 25(OH)D3 were 

not significantly different between patients and controls. After controlling for known risk 

factors, such as smoking a SNP in CYP24A1 was associated with onset of disease 

(Morrison et al 2011). 

Low serum 25(OH)D3 levels were associated with an increase in BD (Karatay et 

al., 2011). This was associated with decreased Treg and predominating Th1 responses 

indicating an immunomodulatory role of vitamin D3 in the eye (Hamzaoui et al., 2010). 

There was an association between VDR SNP FokI and BD in a group of Tunisian 

patients (Karray et al., 2012;Morrison et al., 2011). 
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1.2.6 Hypothesis and aims 

The eye is constantly exposed to the environment and inflammation as a result of 

a physical assault or infection can lead to blindness. The eye is protected with epithelial 

physical barriers (corneal endothelium, BAB, and BRB) at the front and the back to 

prevent the entry of inflammatory cells to the eye. It is also equipped with physiological 

molecules to maintain an immunosuppressive environment and clear vision. One 

potential molecule is vitamin D3. Vitamin D3 has many immunomodulatory properties 

and many epidemiological studies suggest an association between low serum vitamin D3 

levels and a range of inflammatory and autoimmune diseases. 

A vitamin D3 extra-renal system has been characterised in 

monocytes/macrophages and many epithelial cells. It promotes barrier function at 

different sites in the body and modulates both the innate and adaptive immune 

responses by suppressing inflammation and inducing antimicrobial peptides. Thus 

vitamin D3 appears to provide a mechanism by which the cells/tissues can still defend 

themselves against pathogens and at the same time limit the damage caused by 

inflammatory responses. Gene polymorphisms of VDR and related genes have been 

linked to different inflammatory and autoimmune disorders and they determine with other 

factors individual responses to inflammation. 

Previous studies of vitamin D3 in the eye have demonstrated extra-renal 

expression of vitamin D3 in ocular cells, but did not show the ability of ocular cells to 

endogenously produce 1,25(OH)2D3. Ocular cells can produce HDPs that can also be 

detected in ocular fluids where they mediate antimicrobial and immunomodulatory 
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properties (Garreis et al., 2010a;McDermott, 2009). To date there is no evidence if the 

ocular HDP production is mediated by endogenous vitamin D3. VDR SNPs were studied 

in BD and AMD (Karray et al., 2012;Morrison et al., 2011) but no information on VDR or 

related genes in IU was available. 

It is against this background that I hypothesise that extra-renal vitamin D3 exists 

in ocular barrier epithelial cells, it induces HDPs production, and that genetic control of 

this process contributes to uveitis.  

Therefore to address the hypothesis I aim to:  

1. Investigate and characterise the expression of vitamin D3 machinery in ocular barrier 

cells and if they can convert inactive to active vitamin D3. 

2. Study the role of vitamin D3 in the induction of HDPs in the eye and if vitamin D3 

synergises with Toll-like receptor signalling to upregulate proinflammatory cytokine 

production. 

3. Study the association of genetic variation in VDR with intermediate uveitis in 

Caucasians. 
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2 MATERIALS AND METHODS 

2.1 Cell lines 

All cells were grown in a humidified chamber at 37°C with 5% CO2 and passaged 

by trypsinisation. Penicillin (100 units/ml) and streptomycin (100 µg/ml) solution were 

added to all growth media (PAA Laboratories, Yeovil, UK). All cells were grown in 10% 

heat inactivated fetal calf serum (HIFCS) except human corneal endothelial cells and 

HKC-8 which were grown in 5% HIFCS (Biosera Ltd, Ringmer, UK). 

2.1.1 Human conjunctival cell line (CCL-20.2) 

The work described using this cell line was from the project done by a Medical 

student (Deepali Patel) in our group in 2011, whom I was involved in supervising. CCL-

20.2: clone 1-5c-4 previously charachetrised (Chang, 1954) and obtained from American 

Type Culture Collection, ATCC (Manassas, VA, US) were grown in medium 199 

(Invitrogen, Paisley, UK) containing Earle’s Balanced Salt Solution (Sigma-Aldrich, 

Dorset, UK) and 2.2 g/L sodium bicarbonate (Sigma-Aldrich).  

2.1.2 Human corneal endothelial cell line (HCEC-12)  

  HCEC-12 were purchased from the German Resource Centre for Biological 

Material; DSMZ, Germany. The cell line was established by simian virus (SV) 40 

transformation and characterised as immortalised corneal endothelial cells (Bednarz et 

al., 2000). HCEC-12 were cultured in flasks (Sarstedt,Leicester, UK) precoated with a 

mixture of laminin and chondroitin sulfate (Sigma-Aldrich, Dorset, UK) in F99 basal 

medium (Gibco, Invitrogen, Paisley, UK) supplemented with 20 g/ml ascorbic acid,  20 

http://www.google.co.uk/url?sa=t&source=web&cd=1&ved=0CBYQFjAA&url=http%3A%2F%2Fwww.dsmz.de%2F&ei=Lv2QTcWrCceLhQfH0smhDw&usg=AFQjCNF6WbBQ8ifKSMN7N209Y56MHNqP5w&sig2=wkwWpD7bLBsMD2XweC5XvA
http://www.google.co.uk/url?sa=t&source=web&cd=1&ved=0CBYQFjAA&url=http%3A%2F%2Fwww.dsmz.de%2F&ei=Lv2QTcWrCceLhQfH0smhDw&usg=AFQjCNF6WbBQ8ifKSMN7N209Y56MHNqP5w&sig2=wkwWpD7bLBsMD2XweC5XvA
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g/ml human recombinant insulin, and 10 ng/ml basic fibroblast growth factor (bFBF) (all 

Sigma-Aldrich, Dorset, UK) 

2.1.3 Adult retinal pigment epithelial cell line (ARPE-19)  

Adult retinal pigment epithelial (ARPE-19) a spontaneously immortalised human 

RPE cell line, were obtained from American Type Culture Collection (ATCC number: 

CRL-2302, Middlesex, UK). These were developed and characterised as a model of 

retinal pigment epithelial cells (Dunn et al., 1996). Cells were cultured in Dulbecco's 

Modified Eagle Medium:Nutrient Mixture F-12 (DMEM/F12), with glutamax (Gibco, 

Invitrogen, Paisley, UK).  

2.1.4  Non-pigmented ciliary body epithelial cell line (ODM-2) 

ODM-2, an SV40 transformed cells originally established and described as a cell 

line for non-pigmented ciliary body epithelium (Martin-Vasallo et al., 1989), were a kind 

gift from Dr. Coca Prados (Department of Ophthalmology and Visual Sciences, Yale 

University, US). Cells were cultured in DMEM, high glucose (4 g/L) (PAA Laboratories, 

Yeovil, UK).  
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2.1.5 Human kidney cell line (HKC-8) 

HKC-8, an SV40 transformed cell line was established and characterised to be 

used as a proximal renal tubule cell line (Racusen et al., 1997). The cell line was kindly 

provided by Dr. Rosemary Bland from the University of Warwick, UK. Cells were grown 

in DMEM/Hams F12 (PAA Laboratories, Yeovil, UK).  

2.2 Macrophage isolation and differentiation 

Donation Component cones from healthy donors were obtained from National 

Blood Services (NBS), Birmingham, UK. Cones containing 10-15 ml of blood were 

emptied into a 50 ml centrifuge tube (BD, Oxford, UK) and topped up with phosphate 

buffered saline (PBS) to 50 ml. PBMCs were separated using density-gradient 

centrifugation. In two 50-ml centrifuge tubes, diluted blood was layered onto 15 ml of 

density-gradient centrifugation medium (GE Healthcare, Buckinghamshire, UK), and 

centrifuged for 30 min at 400g. PBMCs were collected and washed a few times with 

RPMI 1640. Monocytes were isolated using a commercial CD14+ cells separation kit 

(MACS CD14 MicroBeads; Miltenyi Biotec, Surrey, UK) according to manufacturer’s 

instructions.  

Briefly, PBMCs were incubated with anti-human CD14 magnetic microbeads in a 

column placed on a magnetic separator. CD14+ cells were retained in the column while 

others were washed through. CD14+ cells were eluted in MACS buffer and washed. 

Cells were counted and placed in 12-well plates with a density of 1x106 cells per well in 

RPMI 1640 supplemented with 10% HIFCS. Granulocyte-macrophage colony-

stimulating factor (GM-CSF) (10 ng/ml) and macrophage colony-stimulating factor (M-
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CSF) (50 ng/ml) were added to monocyte cultures to differentiate M1 and M2 types 

respectively (Peprotech, London, UK). Medium and cytokines were replaced on day 3 

and after 6 days, M1 and M2 differentiated cells were used for experimental purposes. 

2.3 Isolation of RNA from primary human corneal endothelial cells 
(PHCend)  

Primary human corneal endothelial cells were generated from redundant donated 

corneo-scleral tissue following corneal transplant surgery. Donor peripheral corneal rims 

and central corneal buttons (transplant waste) from penetrating and lamellar 

keratoplasty surgical procedures, where the donor had given consent for research were 

used. According to the United Kingdom Guidelines for Organ Donation, only those 

patients with normal eyes in the absence of absolute exclusion criteria including active 

transmissible disease or infection, Creuzfeldt-Jakob Disease, intravenous drug abuse, 

and neurodegenerative disorders, are suitable to donate organs and tissues for 

transplantation. Additional exclusions include previous ocular surgery, inflammation and 

tumours such as retinoblastoma. The study was undertaken after formal ethics approval 

from the Black Country Research Ethics Committee (incorporating the Dudley Research 

Ethics Committee (LREC 06/Q2702/44)), and all experiments were carried out in 

accordance with the Tenets of the Declaration of Helsinki. Under a dissecting 

microscope, Descemet’s membrane and corneal endothelial cells were stripped from the 

posterior surface of the peripheral corneo-scleral region and placed into lysis buffer.  

Lysate was stored at -20º C until RNA extraction.  
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2.4 Cell stimulation  

Cells were plated in 12-well plates and allowed to grow to confluence. Cells were 

then washed and placed in fresh serum free medium. Cells were either left untreated 

(control) or treated with the different TLR1-9 ligands (Axxora Ltd., Exeter,UK), or RIG-I 

and MDA5 (Invivogen, San Diego, US) or cytokines (Peprotech, London, UK) alone or 

together with 25(OH)D3 or 1,25(OH)2D3 for the required time points (Table 2.1). Cell 

culture supernatants were collected in 1.5 ml Eppendorf tubes and stored at -20 C until 

analysis. Adherent cells were washed with PBS and RNA lysis buffer or Trizol were 

added and stored at -20 C for RNA extraction.  

Table ‎2.1. TLR ligands and concentrations. 

TLR Ligand Receptor Concentration/ml 

Pam3cys TLR2/1 1 µg 

Poly I:C TLR3 10 or 100 µg 

LPS TLR4 10 µg 

Imiquimod TLR7 1 µg 

ODN 2216 TLR9 3 µg 

Poly (I:C)/LyoVec RIG-I 1 µg 

Poly (I:C)/LyoVec MDA5 1 µg 
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2.5  RNA extraction 

RNA extraction was initially performed using RNeasy Mini Kit but Trizol reagent 

was used subsequently to obtain better RNA yields. 

2.5.1 RNeasy Mini Kit 

Total RNA was isolated using RNeasy Mini Kit (Qiagen, Crawley, UK) according 

to manufacturer’s instructions. Briefly, RNA was lysed in a guanidine isothiocyanate 

containing lysis buffer and vortexed. One volume of 70% ethanol was added and mixed 

carefully by pipetting. The mixture was transferred to an RNeasy Mini spin column with 

silica-based membrane to ensure better RNA binding to the column. RNA was subjected 

to several washes to remove contaminants before it was resuspended in RNase free 

water and stored at -20º C. 

2.5.2 Trizol extraction 

Cells were lysed in 1 ml Trizol (phenol and guanidine isothiocyanate) reagent 

(Sigma-Aldrich, Dorset, UK) and stored at -20º C until RNA extraction. Lysates were 

transferred to 1.5 ml Eppendorf tubes. Chloroform (Sigma-Aldrich, Dorset, UK) was 

added (200 µl) and vortexed for 15 s. Tubes were allowed to stand for 10 min followed 

by centrifugation at 12,000g for 30 min at 4º C to separate RNA containing aqueous 

from organic phase. Aqueous phase was transferred to fresh tubes and 1 µl of 

Glycoblue (Invitrogen, Paisley, UK) was added to bind and precipitate RNA. 

Isopropanaol alcohol (Sigma-Aldrich, Dorset, UK) was added (200 µl) to the aqueous 

phase to facilitate RNA precipitation and stored at -20º C. Tubes were centrifuged at 
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12,000g for 30 min at 4ºC and supernatants were carefully removed by vacuum suction. 

RNA was further precipitated by the addition of 70% ethanol (500 µl), vortexted and 

centrifuged at 12,000g for 5 min at 4º C. Supernatants were removed and RNA was 

resuspended in 12-20 µl of RNase free water and stored at -20º C. 

RNA obtained from both methods was quantified and checked for purity using 

Nanodrop spectrophotometer (Thermo Fisher Scientific, UK).  

2.6 Reverse transcription-polymerase chain reaction (RT-PCR) 

Total RNA (1 µg) was reverse transcribed to cDNA using Taqman Reverse 

Transcription Kit (Applied Biosystems, Warrington, UK) following manufacturer’s 

instructions. PCR was performed using GoTaq Flexi DNA polymerase system 

(Promega, Southampton, UK) in a total volume of 20 µl containing cDNA (1 l for 18S 

and 2 l for all other genes), 0.8 mM MgCl2, 0.25x GoTaq Green Flexi Buffer, GoTaq 

DNA polymerase (0.01 U/l), 10 mM dNTP mix ((Promega, Southampton, UK), 1 pmol 

(0.05 µM) of 18S and 2 pmol (0.1 µM) of other forward and reverse primers (Alta 

Bioscience, Birmingham, UK). PCR was performed using Gene Amp PCR System 2700 

(Applied Biosystems, Warrington, UK) as follows: 5 min at 94 C, followed by three 

temperature cycles of 1 min at 94 C, annealing for 60 s for vitamin D3 genes (Table 2.2) 

and 40 s for TLRs1-10, RIG-I and MDA5 (Table 2.3), and extension at 72 C for 1 min. 

For cubilin and megalin, pre-amplification was carried out at 95 C for 5 min followed by 

cycles of denaturation at 94° C for 45 s, annealing for 45 s, and extension at 72° C for 
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45 s. All PCR reactions ended with a final extension step at 72° C for 7 min. Primer 

sequences and cycling condition were as shown in Table 2.2 and Table 2.3. 

Table ‎2.2. Vitamin D3 genes PCR primer sequence and cycle conditions. 

Gene* 
Forward primer 

5’-3’ 
Reverse primer 

5’-3’ 
Cycles 

Annealing 
Temperatur

e 
(Cº) 

Product 
(bp) 

VDR CGCTCCAATGAGTCCTTCACC GCTTCATGCTGCACTCAGGC 33 61 421 

CYP27B1 CACCTGACCCACTTCCTGTT TCTGGGACACGAGAATTTCC 35 58 302 

CYP24A1 CCCACTAGCCACCTCGTACCAAC CGTAGCCCTTCTTTGCGGTAGTC 35 60 485 

CYP2R1 AGAGACCCAGAAGTGTTCCAT GTCTTTCAGCACAGATGAGGTA 40 62 259 

CYP27A1 GGCAAGTACCCAGTACGG AGCAAATAGCTTCCAAGG 40 62 292 

18S GTTGGTGGAGCGATTTGTCT GGCCTCACTAAACCATCCAA 20 55 400 

Cubilin GCGGCTTCACTGCTTCCTA GAGTGATGGTGTGCCCTTGT 35 53 518 

Megalin TAAGTCAGTGCCCAACCTTT GCGGTTGTTCCTGGAG 35 53 290 

 

*VDR and CYP24A1 (Lechner et al., 2007), CYP27B1(Bland et al., 2004), CYP2R1, 
CYP27A1 (Blomberg et al., 2010), cubilin and megalin (Tsaroucha et al., 2008). 
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Table ‎2.3. TLR PCR primer sequence and cycle conditions. 

Gene 
Forward primer 

5’-3’ 
Reverse primer 

5’-3’ 
Cycles 

Annealing 
Temperature 

(Cº) 

Product 
(bp) 

TLR1 ACC AAG TTG TCA GCG ATG TGT T GAT TGT CCC CTG CTT TTA TTG A 35 61 659 

TLR2 GAG TGA GTG GTG CAA GTA TGA GGG CCA CTC CAG GTA GGT CT 35 61 168 

TLR3 TCC CAA GCC TTC AAC GAC TG TCC TGA AAG CTG GCC CGA AAA 35 61 470 

TLR4 TGC GGG TTC TAC ATC AAA CCA TCC GAA ATT ATA AGA AAA 35 55 412 

TLR5 CTC CTT TGA TGG CCG AAT AGC CCC AAA TGA AGG ATG AAG GTA 35 61 429 

TLR6 CAA GGC CCT GCC CAT CTG TAA TTG GGC CAA AGA AAT TGA AAG 35 61 428 

TLR7 CCC CAG CGT CCT TTC ACA GA CGA GGG CAA TTT CCA CTT AGG 35 61 543 

TLR8 ATG CGT GCC TTG TGA TGG TG GCA ATG CCC GTA GAG ACA AAA 35 61 319 

TLR9 CTA CAA CCG CAT CGT CAA AC ATC GAG TGA GCG GAA GAA GA 35 61 456 

TLR10 ACC CCA GCC ACA ACG ACA C ATC ACG CAA AAG AAC CCA GAA 35 61 488 

RIG-I GAT AGC AAC AGT CAA ACA CAA TCG GAC ATT GCT GAA GAA GT 35 55 411 

MDA5 GCC ACG AAG CAA GCC AAA GTT CTT TGC GAT TTC CTT CT 35 55 306 

18S GTTGGTGGAGCGATTTGTCT GGCCTCACTAAACCATCCAA 20 55 400 

GAPDH CCA CCC ATG GCA ATT CCA TGG CA TCT AGA CGG CAG GTC AGG TCC AC  35 61 350 

2.7 Real-time PCR 

Reactions were performed in 96-well plates using reagents and primers (Table 2.4) 

from Applied Biosystems (AB). Each reaction was carried out in a total volume of 20µl 

containing 10 µl Taqman Universal Master Mix (2x), 1 µl endogenous control 18S primer 

(VIC/TAMRA 20x), 1 µl specific primers 20x TaqMan gene expression assay (Applied 

Biosystems, Warrington, UK)  and 7 µl RNase free water. Relative gene expression was 

measured and analysed using a LC-480 PCR system (Roche, West Sussex UK). Gene 

expression was obtained as Ct values (the cycle number at which the log PCR plots 

intersect with a calculated threshold value) and ΔCt was calculated (Ct of target-Ct of 
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control gene) and relative gene expression of treated samples compared to untreated 

controls was calculated as ΔΔCt values (2^-(Ct treated sample-Ct untreated sample). 

Table ‎2.4. Applied Biosystems gene expression assay ID used for real-time PCR. 

Gene Assay 

VDR Hs01045840_m1 

CYP27B1 Hs00168017_m1 

CYP24A1 Hs00167999_m1 

CAMP Hs01011707_g1 

BD-1 Hs00608345_m1 

BD-2 Hs00175474_m1 

BD-3 Hs04195435_g1 

BD-4 Hs00414476_m1 

2.8 Cytokine and HDP enzyme linked immunosorbent assay (ELISA)  

ELISA was used to measure cytokines in cell culture supernatants. IL-8 was 

measured using Human CXCL8/IL-8 DuoSet ELISA Development Kit (R&D Systems, 

Abingdon, UK), IL-6 using Human IL-6 ELISA Set OptEIA (BD, Oxford, UK), and HDPs 

with Standard ELISA Development Kits for hBD-1, 2, and 4 respectively (Peprotech, 

London, UK). Briefly, 96-well plates were coated with antihuman capture antibody 

overnight at room temperature (RT) for IL-8 and hBDs and at 4º C for IL-6. Plates were 

washed several times and blocked with blocking buffer at RT for 1 h. After washing, 

biotinylated antihuman cytokine was added for IL-8 and hBDs for 2h at RT. This was 
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followed by several washes and streptavidin conjugated to horseradish peroxidase 

enzyme (HRP) was added and incubated for 20 min at RT. For IL-6 the detection system 

(biotinylated antihuman cytokine mixed streptavidin-HRP conjugate) was added for 1 h 

at RT. At the end of the incubation, the plates were washed and tetramethylbenzidine 

(TMB) substrate was added for 20 min in the dark. The reaction was stopped with 2N 

H2SO4 and absorbance was measured by spectrophotometry at 450 nm for IL-6 and IL-8 

and 405 nm for hBDs. Standard curves were constructed and sample concentrations 

were extrapolated from a standard curve. 

2.9 1,25(OH)2D3 enzyme immunoassay (EIA) 

Cells were grown to confluency in 12-well culture plates. Cells were placed in 

serum free medium and were either left untreated or treated with a physiological 

concentration of 25(OH)D3 (10-7 M) with or without pre-treatment with itraconazole or 

ketoconazole (10-6 M), chemical inhibitors of 1α-hydroxylase (CYP27B1) (both Sigma-

Aldrich, Dorset, UK) for 2 h. After 24 h cell culture supernatants were collected for the 

measurement of 1,25(OH)2D3 and cells were processed for protein extraction and 

quantification.  

1,25(OH)2D3 concentration was measured by 1,25-Dihydroxy Vitamin D EIA  

(Immunodiagnostics Systems Limited, Tyne & Wear, UK) according to the 

manufacturer’s instructions. Briefly, supernatants were delipidated and centrifuged at 

2000g for 15 min. Immunoextraction of 1,25(OH)2D3 was performed by transferring the 

delipidated samples to immunocapsules containing gel coated with specific antibody for 

1,25(OH)2D3. Samples were placed in a foam rack on a blood tube rotator (5-20 
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revolutions) at RT for 90 min. After several washes (1000 g for 1 min), 1,25(OH)2D3 was 

eluted with an elution reagent containing ethanol into glass tubes. Tubes were placed in 

a heating block at 40º C for 20-30 min to evaporate the elution reagent. Immunopurified 

1,25(OH)2D3 residues were dissolved in assay buffer and used for ELISA. Antisheep 

1,25(OH)2D3 antibody was added to calibrators and samples and incubated at 4-8º C 

overnight. Part of the mixture was transferred to a 96-well plate coated with antisheep 

1,25(OH)2D3 antibody and incubated at RT for 90 min with shaking. Biotinylated 

1,25(OH)2D3 was added to the plate and incubated with shaking for further 60 min. After 

several washes, HRP-labelled avidin conjugate was added and incubated at RT for 30 

min. Unbound conjugate was washed several times and TMB substrate was added and 

incubated for 30 min. Reaction was stopped with 0.5M HCl and absorbance with 

measured by spectrophotometry at 450 nm. Concentrations from 1,25(OH)2D3 were 

obtained from a standard curve of the calibrators. 

2.9.1 AqH Samples 

 AqH (50-150 μl) and serum samples (500 μl) were collected from 7 healthy 

subjects undergoing cataract surgery at the Birmingham & Midland Eye Centre. All 

human samples were taken after informed consent approved by the Birmingham East, 

North and Solihull (BENS) Research Ethics Committee (LREC 08/H1206/165) and from 

the Black Country Research Ethics Committee (incorporating the Dudley Research 

Ethics Committee (LREC 06/Q2702/63). Concentrations of 1,25(OH)2D3 in AqH were 

measure by 1,25(OH)2D3 EIA as described below. 
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2.10 VDR SNPs 

VDR SNPs were selected according to HapMap (www.hapmap.org) and their 

relevance to the immune system according to epidemiological studies (Arjumand et al., 

2012;Orlow et al., 2012;Sanchez-de la Torre et al., 2008). 

SNPs FokI, BsmI, and A1012G were selected (Table 2.5). Three VDR SNP 

genotyping assays: FokI (rs2228570) (Poon et al., 2004;Sanchez-de la Torre et al., 

2008), BsmI (rs1544410) (Al-Daghri et al., 2012), and A1012G (rs4516035) (Sanchez-

de la Torre et al., 2008) were purchased from Applied Biosystems, Warrington, UK and 

were tested in 165 patient and 100 control Caucasian samples (Table 2.6). Study 

population was disease free and was not matched on other criteria. PCR was performed 

in 384-well plates with a 10 µl total reaction volume containing 20 pg/ml DNA (samples) 

or water (controls) and 2x LC-480  probe master (Roche, West Sussex UK) followed by 

endpoint genotyping analysis using the LC-480 system (Roche, West Sussex UK). 

Genotypes were determined as either homozygous (e.g. AA or GG) or heterozygous 

(e.g. AG) according to the presence or absence of fluorescence for each genotype.  

http://www.hapmap.org/
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Table ‎2.5. Selected VDR SNPs location and functional relevance. 

SNP Location Function References 

FokI Start 

codon 

Affects vitamin D protein size 

Modulates mRNA expression 

of NFAT, IL-12, and regulates 

pancreatic function 

(Mory et al., 2009;van Etten et 

al., 2007) 

BsmI 3’UTR mRNA expression and stability (Arai et al., 2001;Rukin and 

Strange, 2007;Uitterlinden et al., 

2002) 

A1012G Promoter associated with the 

transcription of GATA3, 

transcription factor for Th1 

(Halsall et al., 2004) 

 

Table ‎2.6. VDR SNP location, type, and Applied Biosystem assay ID#.  

SNP dbSNP Location Polymorphism Assay ID 

FokI* rs2228570 Coding region A/G Transition C__12060045_20 

BsmI rs1544410 3' UTRs C/T Transition C___8716062_10 

A1012G rs4516035 promoter 5' UTRs C/T Transition C___2880805_10 

*FokI (r2228570) is a C/T transition on the forward strand but the assay has been 

designed on the reverse strand. 
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2.11 Immunofluorescence 

Ocular barrier cells were cultured on glass chamber slides (BD Bioseciences, 

Oxford, UK), fixed for 20 min with cold methanol at 4º C and rinsed with PBS. Cells were 

blocked with 5% BSA in PBS for 1 hour, then treated with mouse-antihuman VDR clone 

H4537 (R&D Systems, Abingdon, UK), sheep-antimouse CYP27B1 PC290 (The Binding 

Site Ltd., Birmingham, UK)  mouse-antihuman CYP24A1 clone 1E1 (Novus Biologicals, 

Cambridge, UK), mouse-antihuman mannose-6-phosphate receptors (M6P) (Abcam, 

Cambridge, UK, clone 2G11), or mouse-antihuman trans-Golgi network 38 (TGN38) 

clone 2F7.1 (Novus Biologicals, Cambridge, UK) respectively (1:100 in PBS blocking 

solution) for 1 h at room temperature (RT). Cells were washed several times with PBS 

then incubated with FITC conjugated antimouse or FITC conjugated antisheep 

secondary antibody (The Binding Site Ltd., Birmingham, UK), or Texas Red (TR) 

conjugated antimouse antibody (Abcam, Cambridge, UK) diluted 1:250 in blocking 

solution for 1 hour at RT. Cells were briefly counter stained with 4',6-diamidino-2-

phenylindole (DAPI) (Invitrogen, Paisley, UK) and mounted (Vectashield, Vector 

Laboratories, Peterborough, UK). Staining was detected using a fluorescent microscope 

(AxioPlan2 Imaging, Ziess, Cambridge, UK). 

2.12 Statistical analysis 

Statistical analyses were performed using commercial statistical package software 

Graphpad Prism 5. Details of statistical calculations are explained in figure legends.
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3 CHARACTERISATION OF VITAMIN D3 PRODUCTION BY HUMAN 
OCULAR BARRIER CELLS 

3.1 Introduction  

Extra-renal synthesis of vitamin D3 has been reported in many tissues and cells 

including barrier sites. VDR and CYP27B1 have been described in epithelial cells of 

skin, lung, intestine, prostate, endometrium, and breast as well as cells of the immune 

system such as macrophages and dendritic cells (Agic et al., 2007;Brozyna et al., 

2011;Flanagan et al., 2006;Hansdottir et al., 2008;Hewison et al., 2003;Larriba et al., 

2011). Extra-renal vitamin D3 metabolism extends to the liver 25-hydroxylases involved 

in the first hydroxylation step in the activation of vitamin D3. CYP2R1 is suggested to be 

the major 25-hydroxylase in humans. It has higher affinity than CYP27A1 towards 

vitamin D3 and mutations in the CYP2R1 gene cause disturbance of vitamin D3 

metabolism (Zhu and Deluca, 2012). In the circulation, 25(OH)D3 is bound to vitamin D3 

binding protein (DBP) which facilitates its cellular uptake by multi-ligand endocytic 

receptors megalin/cubilin expressed on the apical surface of polarised epithelial cells in 

many tissues (Christensen and Birn, 2002).  

Local conversion of 25(OH)D3 into 1,25(OH)2D3 has been shown in respiratory, 

urinary bladder and colonic epithelial cells, osteoclasts, and macrophages (Gottfried et 

al., 2006;Hansdottir et al., 2008;Hertting et al., 2010;Kogawa et al., 2010;Lagishetty et 

al., 2010). Of note, VDR is critical for barrier formation in human skin and the integrity of 

the mucosal barrier in mouse intestine. In a mouse model of DSS induced colitis, VDR 

knockout (KO) mice (VDR-/-) compared to VDR+/+, suffered severe diarrhea and 
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intestinal bleeding. Their intestines showed reduced TEER that progressed into 

ulceration and confocal microscopy revealed disrupted TJs. The addition of 1,25(OH)2D3 

in vitro to human colonic cancer epithelial cell lines SW480 and Caco-2 increased the 

expression of TJ proteins  ZO-1, claudin-1, claudin-2, and E-cadherin. TJ occludin was 

not induced by 1,25(OH)2D3 but it was completely absent from VDR-/- intestinal mucosa 

after treatment with DSS. In the presence of 1,25(OH)2D3, a monolayer of Caco-2 cells 

was protected from damage by the addition of 5% DSS (Kong et al., 2008). Interestingly, 

silencing of VDR and steroid receptor coactivators (SRC) in primary normal human 

keratinocytes resulted in a compromised keratinocytes differentiation and hence barrier 

function. VDR-/-  mice also showed a compromised barrier formation as shown by 

decreased epidermal lamellar body density and reduced lipid secretion (Oda et al., 

2009).  

Recently, vitamin D3  has been recognised as an immunomodulatory hormone 

that regulates both innate and acquired immune responses (Hewison, 2012). One 

regulatory role of 1,25(OH)2D3 in the immune system (in vitro) involves the inhibition of 

proinflammatory cytokine production from CD4+ T cells and the induction of a regulatory 

T cell phenotype and a suppressive function (Jeffery et al., 2009). Endogenous 

conversion of 25(OH)D3 has been shown to inhibit DC antigen presentation and 

chemotaxis (Bartels et al., 2010). The ability to induce the production of HDPs in blood 

monocytes also supports an interaction between 1,25(OH)2D3 and the immune system. 

The HDPs LL-37 and hBD1-4 are antimicrobial and immunomodulatory molecules. They 
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can act as chemotactic agents for T and dendritic cells as well as their ability to induce 

Th 1 and 2 cytokines (Oppenheim et al., 2003). 

As stated in Chapter 1, ocular immune privilege is maintained by a set of 

anatomical and physiological processes that protect the eye from sight threatening 

infections and inflammatory responses (Streilein, 2003). The conjunctiva, composed of 

layers of epithelial cells and a sophisticated stroma forming a mucosal surface that 

contains a heterogeneous population of lymphoid cells playing an important role in the 

defense against infections (Fukuda et al., 2006). The sclera is the fibrous support to the 

global structure of the eye composed of a rich extracellular matrix (ECM) of collagen and 

elastic fibers together with fibroblasts that are responsible for tissue remodeling and the 

regeneration of the ECM (Rada et al., 2006). On the posterior surface of the cornea, 

endothelial cells contribute to barrier function by mediating sodium transport that 

maintains the cornea in a relatively dehydrated state thereby preserving corneal 

transparency (Mergler and Pleyer, 2007).  

Physical barriers that prevent the entry of immune cells from blood to the eye 

include BAB and BRB. The BAB is made of TJs between vascular endothelial cells of iris 

and ciliary body vessels and the non-pigmented ciliary body epithelial cells, while  the 

BRB is composed of TJs between endothelial cells in retinal blood vessels and those 

between the retinal pigment epithelial cells (Hornof et al., 2005). AqH is produced by the 

ciliary processes and is secreted into the posterior chamber. This active process is 

mainly a function of the blood-aqueous barrier which prevents the passage of proteins to 
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AqH to maintain its transparency (Kiel et al., 2011). AqH flows in a unidirectional 

movement from the posterior chamber through the pupil to the anterior chamber. It is 

drained through trabecular meshwork until it ends in episcleral veins (Goel et al., 2010).  

To date very few studies have examined the presence of vitamin D3 synthesising 

and metabolising pathways and whether human ocular barrier epithelial cells are 

capable of producing vitamin D3. This study shows the expression and functionality of 

the vitamin D3 system in human ocular barrier epithelial cells. Vitamin D3 may be 

important to the ocular barrier function and ocular immune privilege. 

3.2 Results 

3.2.1 Ocular barrier epithelial cells constitutively express mRNA for 
vitamin D3 metabolism 

Extra-renal expression of vitamin D3 synthesising and metabolising components 

has been described in many organs. To examine the presence of these elements in 

ocular barrier cells, mRNA expression was examined by RT-PCR. The VDR was 

strongly expressed in all ocular cells tested except in primary human corneal 

endothelium (PHCend). This could be due to the little amount of tissue and low RNA 

obtained from corneal rims (Figure 3.1 A). CYP27B1 was expressed markedly by 

CCL20.2, HCEC-12, ODM-2, and ARPE-19 cells and weakly by PHCend. The weak 

expression by PHCend could be due to the scarcity of sample size and low RNA 

concentration obtained. In contrast, CYP24A1 mRNA was strongly expressed only by 

CCL20.2 cells and weakly by all other cell types. CYP27A1 was weakly expressed in 

HCEC-12, ARPE-19 and ODM-2, and undetected in CCL20.2. Furthermore, CCL20.2, 
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HCEC-12, and ARPE-19 highly expressed CYP2R1 whereas ODM-2 showed weak 

expression. We also investigated the mRNA expression of cubilin and megalin, which 

are required for the internalisation of 25(OH)D3 through DBP. Cubilin was strongly 

expressed in all cells except CCL20.2 which had a weak expression, while only CCL20.2 

weakly expressed megalin (Figure 3.1 B). To summarise, ocular barrier epithelial cells 

constitutively express mRNA for vitamin D3 metabolism.  

 

 

 

 

 

 

 

Figure ‎3.1. Ocular barrier epithelial cells express mRNA for vitamin D3 elements. 
Total RNA was isolated from 80-90% confluent ARPE-19 (adult retinal pigment 
epithelial), ODM-2 (non-pigmented ciliary body epithelial), HCEC-12 (human corneal 
endothelial) cell lines, PHCend (freshly isolated RNA from primary human corneal 
endothelium), and CCL20.2 (conjunctival cell line). Conventional RT-PCR was 
performed for mRNA expression of VDR, CYP27B1, CYP24A1, CYP27A1, CYP2R1 (A), 
and for cubilin, and megalin (B) compared to 18S as an internal control. HKC-8 (human 
kidney cell line), M1 (classically activated macrophages), and M2 (alternatively activated 
[noninflammatory] macrophages) cells were used as positive controls for vitamin D3 
pathway molecules, RNA from primary thyroid cells was used as a positive control for 
cubilin and megalin, and H2O was used as a negative control. ND: not done. 

HKC-8    ARPE-19   ODM-2   HCEC-12    H2O     Thyroid 
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3.2.2 Ocular barrier epithelial cells express proteins for vitamin D3 
metabolism  

Immunofluorescent staining of all cell types for the different vitamin D3 elements 

was performed. The intensity of staining varied between cell types but all cells were 

positive for all vitamin D3 proteins. VDR showed a diffuse cytoplasmic and abundant 

speckled nuclear staining in all cells types. The expression was the strongest in HCEC-

12 and ODM-2 and weaker in CCL20.2 and ARPE-19 (Figures 3.2-3.5). CYP24A1 was 

also present in the cytoplasm where HCEC-12 and ODM-2 showed a strong signal 

(Figures 3.3 and 3.4), and there was a moderate signal in CCL20.2 (Figure 3.2). 

CYP27B1 showed an intense cytoplasmic pattern with denser staining in the peri-

nuclear area of ODM-2 and ARPE-19 (Figures 3.4 and 3.5), while CCL20.2 (Figure 3.2) 

showed moderate staining. Interestingly, in HCEC-12 cells, diffuse cytoplasmic staining 

was present but most of the enzyme appeared within a peri-nuclear vesicle (Figure 3.3).  
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Figure ‎3.2.CCL20.2 cells express proteins for vitamin D3 pathway elements. Cells 

were grown to 40-50% confluency in 8-well chamber slides. Cells were fixed and 

processed for immunofluorescence staining. Cells were treated with antibodies against 

VDR, CYP27B1and CYP24A1 and visualised with FITC-conjugated secondary 

antibodies (green) compared to negative control (primary antibody omitted). DAPI was 

used as a counter nuclear stain (blue). VDR showed nuclear/cytoplasmic while 

CYP27B1 and CYP24A1 showed cytoplasmic staining. Pictures are shown as 20x 

magnification. 
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Figure ‎3.3. HCEC-12 cells express proteins for vitamin D3 pathway elements. Cells 

were grown to 40-50% confluency in 8-well chamber slides. Cells were fixed and 

processed for immunofluorescence staining. Cells were treated with antibodies against 

VDR, CYP27B1and CYP24A1 and visualised with FITC-conjugated secondary 

antibodies (green) compared to negative control (primary antibody omitted). DAPI was 

used as a counter nuclear stain (blue). VDR showed nuclear/cytoplasmic while and 

CYP24A1 showed cytoplasmic staining. CYP27B1 appeared as a vesicle near the 

nucleus. Pictures are shown as 40x magnification. 
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Figure ‎3.4. ODM-2 cells express proteins for vitamin D3 pathway elements. Cells 

were grown to 40-50% confluency in 8-well chamber slides. Cells were fixed and 

processed for immunofluorescence staining. Cells were treated with antibodies against 

VDR, CYP27B1and CYP24A1 and visualised with FITC-conjugated secondary 

antibodies (green) compared to negative control (primary antibody omitted). DAPI was 

used as a counter nuclear stain (blue). VDR showed nuclear/cytoplasmic while 

CYP27B1 and CYP24A1 showed cytoplasmic staining. Pictures are shown as 40x 

magnification. 
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 Figure ‎3.5. ARPE-19 cells express proteins for vitamin D3 pathway elements. Cells 

were grown to 40-50% confluency in 8-well chamber slides. Cells were fixed and 

processed for immunofluorescence staining. Cells were treated with antibodies against 

VDR, CYP27B1and CYP24A1 and visualised with FITC-conjugated secondary 

antibodies (green) compared to negative control (primary antibody omitted). DAPI was 

used as a counter nuclear stain (blue). VDR showed nuclear/cytoplasmic while 

CYP27B1 and CYP24A1 showed cytoplasmic staining. Pictures are shown as 40x 

magnification. 
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3.2.3 CYP27B1 co-localises with mannose phosphate receptors 
(MPRs) and trans-Golgi network (TGN) in HCEC-12 (human 
corneal endothelial cells). 

CYP27B1 is normally located in the inner membrane of the mitochondria (Adams 

and Hewison, 2012;Seliskar and Rozman, 2007). All the ocular epithelial cells tested 

demonstrated a staining pattern consistent with this expression i.e. cytoplasmic. The 

exception was HCEC-12 cells, which not only expressed CYP27B1 in the cytoplasm, but 

the majority of the enzyme appeared as a vesicle adjacent to the nucleus. To further 

identify the nature of this vesicle-like structure, HCEC-12 were stained for Mannose 6 

phosphate (M6P) receptors that are known to play a role in the transport of enzymes 

from the trans-Golgi network (TGN) to lysosomes (Ghosh et al., 2003) and typically 

shows peri-nuclear localisation. In addition, TGN38 protein, part of the TGN that directs 

proteins to secretory vesicles, lysosomes, or plasma membrane, was also examined (Gu 

et al., 2001). CYP27B1 co-localised to both M6P receptors and TGN38 in HCEC-12 

(Figure 3.6 A, B, and C). HECE-12 cells stained for CYP27B1 with FITC were also 

viewed by confocal microscopy which confirmed the peri-nuclear localisation of this 

enzyme (Figure 3.7). The cytoplasmic staining, together with the peri-nuclear punctuated 

presence confirms CYP27B1 presence in the TGN in HCEC-12 cells.  
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Figure ‎3.6. CYP27B1 co-localises with Mannose-6-Phosphate (M6P) receptor and 
trans-Golgi network protein 38 (TGN38) in HCEC-12. HCEC-12 cells were grown to 
40-50% confluence in 8-well chamber slides. Cells were fixed with methanol at 4º C for 
20 min and processed for immunofluorescence staining. Cells were treated with 
antibodies against VDR, CYP27B1, and (A) M6P or (B) TGN38 and visualised with FITC 
(green) or Texas red (TR) (red) conjugated secondary antibodies compared to (C) 
negative control (primary antibody omitted). DAPI was used as a counter nuclear stain 
(blue). CYP27B1 co-localised with both M6P and TGN38 in HCEC-12. Pictures are 
shown as 100X (A and B) and 40X (C) magnification respectively.  

CYP27B1                           M6P                               TGN38                             Merge                         
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      CYP27B1                               M6P                              DAPI                             Merge 
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      CYP27B1                           TGN38                              DAPI                             Merge 

B 
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Figure ‎3.7. CYP27B1 shows a peri-nuclear localisation in HCEC-12. HECE-12 cells 
were grown to 40-50% confluency in 8-well chamber slides. Cells were fixed and 
processed for immunofluorescence staining. Cells were treated with antibodies against 
CYP27B1 and visualised with FITC-conjugated secondary antibodies (green) compared 
to negative control (primary antibody omitted). DAPI was used as a counter nuclear stain 
(blue). CYP27B1 co-localised in the peri-nuclear space in HCEC-12. Images were 
obtained from confocal microscopy and are shown as 40x magnifications.  
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3.2.4 Ocular barrier epithelial cells can convert inactive vitamin D3 to 
the active form 1,25(OH)2D3 

Ocular barrier cells have the molecular components necessary to produce 

1,25(OH)2D3 locally. We next examined the functional capacity of CYP27B1 and its 

ability to convert inactive 25(OH)D3 (10-7 M) into active 1,25(OH)2D3. The rate of 

conversion was variable amongst the different cells and can be broadly summarised with 

the highest rates in HCEC-12 and the lowest in ARPE-19 cells (Figure 3.9). 

To determine the best time point for 1,25(OH)2D3 measurement in culture 

supernatants, we started with time course conversion experiments using HKC-8 control 

cells and ARPE-19. Although ARPE-19 cells did not show significant conversion, the 

highest levels were at 24 h (Figure 3.8). Likewise, HKC-8 cells showed the highest 

1,25(OH)2D3 levels at 24 h, so a 24 h time point was chosen for all the succeeding 

conversion experiments. Substrate conversion was inhibited by pretreatment with 

itraconazole (10-5 M). Itraconazole did not give consistent inhibition so we changed it to 

ketokonazole (10-6 M). Conversion was inhibited by ketoconazole and the inhibition was 

statistically significant in cells that produced more than 200 pmol/L/mg protein of 

1,25(OH)2D3 (CCL20.2, HCEC-12, and ODM-2).  

CCL20.2 (conjunctiva) produced significant amounts of 1,25(OH)2D3 compared to 

untreated control cells (421.4 pmol/L/mg protein) (p<0.01) and double that made by 

HKC-8 positive control cells (195.4 pmol/L/mg protein) (p<0.05) (Figure 3.9). While 

ARPE-19 had minimal levels of conversion (25.0 pmol/L/mg protein), HCEC-12 were the 
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most efficient of all cell types at converting the substrate into the active form of 

1,25(OH)2D3 (2068.1 pmol/L/mg protein, p< 0.01) i.e. 10 times HKC-8 whereas ODM-2 

cells produced lower levels (640.1 pmol/L/mg protein).  

 

 

 

 

 

 

 

 

 

 

Figure ‎3.8. ARPE-19 and HKC-8 show the highest 25(OH)D3 conversion rates at   
24 h. ARPE-19 and HKC-8 (control) cells were grown to 80-90% confluence. Cells were 
either untreated (control) or treated with 25(OH)D3 (10-7 M) for 12, 18, and 24 h with or 
without pre-treatment with CYP450 inhibitor (10-5 M) itraconazole (IC) for 2 h. Cell 
culture supernatants were collected and stored at -20º C until measurement. 
1,25(OH)2D3 was determined by enzyme immunoassay and the results were obtained 
from a standard curve as pmol/L. HKC-8 showed the highest conversion rate at 24 h. 
ARPE-19 did not show high conversion rates at all time points but the levels at 24 h 
were relatively higher and following from HCK-8, 24 h time point was selected for 
conversion experiments. HKC-8 and ARPE-19 n=1 except ARPE-19 24 h n=3. Graphs 
show mean 1,25(OH)2D3 concentration pmol/L for each treatment (except ARPE-19 at 
24 h shows mean±SD).  
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Figure ‎3.9. Ocular barrier epithelial cells can convert 25(OH)D3 into active 
1,25(OH)2D3. Cells were grown to 80-90% confluence and were either untreated 
(control) or treated with 25(OH)D3 (10-7 M) for 24 h in serum free conditions with or 
without pretreatment with CYP450 inhibitor (10-6 M) ketoconazole (KC) for 2 h. Cell 
culture supernatants were collected and stored at -20º C until measurement. 
1,25(OH)2D3 was determined by enzyme immunoassay and the results were obtained 
from a standard curve as pmol/L then corrected per mg of protein. HKC-8 cells were 
used as a positive conversion control. HCEC-12 cells showed the highest conversion 
rates followed by ODM-2 then CCL20.2, whereas the lowest rates were found in ARPE-
19 cells. The bottom right graph compares the conversion rates between cell types. 
Each experiment was performed at least 3 times. Graphs show mean±SD 1,25(OH)2D3 
per mg protein for each treatment.  * p<0.05, **p<0.01 and *** p<0.001 Kruskal-Wallis 
test.   
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3.2.5 Macrophages convert inactive vitamin D3 to the active form 
1,25(OH)2D3 

Macrophages express VDR and CYP27B1 and have been shown to upregulate 

genes downstream of 1,25(OH)2D3 activation (Liu et al., 2006).  Twenty years earlier, a 

study (Reichel et al., 1987) showed that activated macrophages were able to convert 

25(OH)D3 into active 1,25(OH)2D3. Macropahges can also contribute to local 

1,25(OH)2D3 production as either infiltrating inflammatory classically activated 

macrophages (M1) or resident noninflammatory alternatively activated macrophages 

(M2). To confirm the ability of macrophages to locally convert 25(OH) D3 into 

1,25(OH)2D3, M1 and M2 macrophages were isolated, differentiated (as described in 

section 2.2) and tested (Beyer et al., 2012;Schwartz and Svistelnik, 2012). Our results 

show that M1 and M2 cells can both metabolise 25(OH)D3 and convert it into 

1,25(OH)2D3 (Figure 3.10) although there was no statistically significant difference from 

control cells. The rates of conversion shown by HCEC-12 and ODM-2 above were even 

higher than the levels produced by M1 and M2 cells respectively. 
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Figure ‎3.10. Macrophages polarised to M1 and M2 phenotypes convert inactive 
vitamin D3 to the active form 1,25(OH)2D3. M1 and M2 macrophages prepared as 
described in section 2.2 were either untreated (control) or treated with 25(OH)D3 (10-7 M) 
for 24 h in serum free conditions with or without pretreatment with CYP450 inhibitor (10-6 

M) ketoconazole (KC) for 2 h. Cell culture supernatants were collected and stored at -
20º C until measurement. 1,25(OH)2D3 was determined by enzyme immunoassay and 
the results were obtained from a standard curve as pmol/L then corrected per mg of 
protein. Both M1 and M2 macrophages show similar conversion rates although there 
was no statistically significant difference from control cells. Each experiment was 
performed at least 3 times. Graphs show mean±SD 1,25(OH)2D3 per mg protein for each 
treatment. * p<0.05 Kruskal-Wallis test.   
 

3.2.6 1,25(OH)2D3 can be detected in human AqH and serum samples 

To confirm the production of 1,25(OH)2D3 in the eye, 7 AqH samples from normal 

controls (age 46-84) were tested. AqH samples showed detectable levels of 

1,25(OH)2D3 (1.9-4.8 pmol/L). These levels were compared to matched serum samples 

(Figure 3.11). Serum levels were higher (49.9-89.9 pmol/L) than levels in AqH (p<0.01).  

Serum levels did not show a correlation to AqH i.e. the highest serum level does not 

necessarily match with the highest levels in AqH. Samples with zero values had a 

volume of <50µl (Table 3.1).  

M1 M2 
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Figure ‎3.11. 1,25(OH)2D3 can be detected in human AqH. Matched AqH and serum 
samples from normal controls undergoing cataract surgery were collected, processed, 
and stored at -80º C until measurement. 1,25(OH)2D3 concentrations (pmol/L) were 
measured by enzyme immunoassay and the results were obtained from a standard 
curve as pmol/L. AqH showed detectable levels of 1,25(OH)2D3 but very low compared 
to those present in serum (**P <0.01 Mann-Whitney test). Graph shows mean±SD.  
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Table ‎3.1. Concentrations of 1,25(OH)2D3 in aqueous humour (AqH) do not 

correlate with age or serum which supports local production. Matched AqH and 

serum from healthy controls undergoing cataract surgery (five females and two males) of 

ages between 46 and 84 were collected and tested for 1,25(OH)2D3 by enzyme 

immunoassay (pmol/L). Concentrations of 1,25(OH)2D3 in AqH did not correlate with age 

or the levels present in serum. 

 

 

 

 

 

 

 

 

 

 

3.3 Discussion  

This study shows that human ocular barrier epithelial cells constitutively express 

mRNA and protein for the receptor and the metabolic enzymes required in the vitamin 

D3 pathway, and can endogenously produce 1,25(OH)2D3 when treated with 

physiological concentrations of its precursor 25(OH)D3 (Table 3.2).  

Until recently, vitamin D3 has not been reported in ocular surfaces. Previous 

studies have only shown that human primary RPE-choroid expressed mRNA for VDR 

and CYP27A1 while retinal tissue expressed CYP27B1 and CYP27A1 (Morrison et al., 

Gender Age 1,25(OH)2D3 (pmol/L) 

AqH Serum 

F 69 4.81 78.99 

F 46 1.99 49.92 

F 76 00 89.93 

F 84 00 77.85 

M 60 3.27 60.47 

F 81 3.31 84.35 

M 57 3.99 55.06 
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2011). Cultured primary rabbit, mouse, and human corneal epithelial cells expressed 

VDR and CYP27B1. Similar expression was seen in mRNA freshly collected from 

mouse and rabbit corneal epithelial tissues but there are no data on 25(OH)D3 

conversion (Lin et al., 2012). 

In agreement with the speckled cytoplasmic and nuclear VDR staining in ocular 

barrier cells, VDR has been described in cytoplasm and nucleus of urinary bladder 

epithelium (Hertting et al., 2010;Midorikawa et al., 1999). The cytoplasmic expression of 

CYP27B1 in most of the ocular barrier epithelial cell lines is in accordance with similar 

expression in urinary bladder epithelium (Hertting et al., 2010). Conversely, the 

punctuated peri-nuclear staining of CYP27B1 in HCEC-12 can be compared to the 

cytoplasmic localisation in the peri-nuclear space seen in human tumour prostate 

epithelial cell line (LNCaP) transfected with CYP27B1 (Chen and Holick, 2003). LNCaP 

cells express CYP27B1 as multiple vesicular structures. The expression of CYP27B1 in 

TGN could be part of this enzyme’s trafficking in these cells which are highly metabolic 

in nature supplying nutrients to the cornea and dehydrating the stroma (Bonanno, 2012). 

HCEC-12 were the most efficient in 25(OH)D3 conversion among ocular barrier epithelial 

cells tested. It could be that CYP27B1 localisation to TGN is part of its trafficking to get 

to the cell membrane making it readily available to bind and convert its substrate. 

Membrane bound CYP450 proteins can recycle through Golgi before reaching their 

destined locations. Some CYP450 enzymes can exist in the mitochondria and 

endoplasmic reticulum (ER), an example is rat CYP27B1. At the N-terminus (amino 

acids 20-36) of rat CYP27B1, there is a targeting signal for mitochondria and 
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endoplasmic reticulum. Phosphorylation of serine 128 (Ser128) activates a cryptic 

mitochondrial signal and modulates CYP27B1 destination to the mitochondria or ER 

(Seliskar and Rozman, 2007). A final possibility is that HCEC-12 cells are not primary 

and this expression could be an inherent characteristic of this cell line.  

Although ocular barrier epithelial cells show constitutive expression of mRNA and 

protein for CYP24A1, this mitochondrial enzyme is not constitutively expressed in all 

peripheral organs and tissues. Some cells such as skin keratinocytes, respiratory 

epithelial cells, and colonic epithelial cell line (Bar et al., 2007;Hansdottir et al., 

2008;Peric et al., 2009) only express CYP24A1 in response to 25(OH)D3 or 

1,25(OH)2D3. Keratinocytes demonstrate a strong upregulation following exposure to 

UVB light in the presence of 7DHC (Bar et al., 2007). CYP24A1 is also induced after 

treatment with 25(OH)D3 sufficient serum in macrophages (Liu et al., 2006).  

Our study also shows that human ocular barrier epithelial cells can convert 

inactive vitamin D3 to its active form. It also shows 1,25(OH)2D3 can be measured in 

human AqH samples. With the exception of ARPE-19, ocular barrier epithelial cells, are 

able to produce significant levels of active 1,25(OH)2D3 > 0.4x10-9 M at 24 h. This rate of 

conversion is comparable to that of human primary respiratory epithelial cells, urinary 

bladder epithelial cell line, and mammary epithelial cells (Hansdottir et al., 2008;Hertting 

et al., 2010;Kemmis and Welsh, 2008). These rates are much higher than those 

produced by human kidney cortical collecting duct (HCD) cell line (Bland et al., 2001). 

Starting from the conjunctiva, ocular barrier conversion is higher in primary human 
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corneal epithelial cells (PHCEC) (Susarla et al. and Alsalem et al. manuscripts 

submitted), reaches a peak in corneal endothelium, and starts to decrease in non-

pigmented ciliary body epithelium reaching the lowest levels at retinal pigmented 

epithelium (Figure 3.12).  

Ocular barrier epithelial cells appear to be efficient in producing 1,25(OH)2D3 

provided they have the substrate available. Despite the requirement of 25(OH)D3 for 

CYP27B1 to convert it to 1,25(OH)2D3, ocular barrier cells can potentially initiate the 

vitamin D3 pathway as early as the first 25-hydroxylation step via CYP27A1 and 

CYP2R1. Extra-hepatic expression of CYP27A1 and CYP2R1 has also been reported 

previously in other tissues (Blomberg et al., 2010;Ellfolk et al., 2009;Matusiak and 

Benya, 2007;Shinkyo et al., 2004). CYP27A1 is expressed in human RPE tissue and 

with its broad substrate specificity, is also involved in cholesterol metabolism. and 

protects the retina from the toxic 7-ketocholesterol, a metabolite of 7-DHC as a result of 

photooxidation (Heo et al., 2012). CYP2R1 is expressed in primary human prostate 

epithelium and thyroid epithelium cell line and tissue, and primary renal kidney epithelial 

tissue (Bieche et al., 2007;Blomberg Jensen, 2012;Blomberg et al., 2010). Although 

CYP27A1 was weakly expressed by ocular barrier cells, the expression of microsomal 

CYP2R1 was considerably greater. Moreover, the 25-hydroxylation activity of CYP2R1 

is 26-fold higher than that of CYP27A1 (Shinkyo et al., 2004). This suggests that there is 

a possibility that ocular cells might be able to synthesise vitamin D3 directly after 

exposure to sunlight.   
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The expression of megalin and cubilin in ocular barrier cells indicate the 

importance of these receptors in vitamin D3 metabolism. Megalin has been identified in 

rat alveolar epithelial cell line, Caco-2 human intestinal epithelial cell line, and co-

localised with cubilin in rat epithelial cells of uterus and oviduct (Argraves and Morales, 

2004;Oda et al., 2011) but the relevance to the vitamin D3 pathway has not been 

investigated in these cells. In mouse gall bladder (GB) epithelium, the expression of 

megalin and cubilin was distorted in calcuclous GB epithelium. Megalin and cubilin are 

multi-ligand receptors and may contribute to cholesterol uptake and prevent bile 

accumulation. Therefore, their disrupted expression or absence may suggest their 

involvement in gallstone formation (Tsaroucha et al., 2008). Although megalin is more 

widely expressed in different tissues (Christensen and Birn, 2002), the expression of 

cubilin is much more pronounced in ocular barrier epithelial cells.  

An immune privileged organ such as the eye requires efficient strategies that can 

protect optical clarity from sight-threatening infections and damaging inflammatory 

responses. Decreased serum levels in humans of 25(OH)D3 have been correlated with 

increased early AMD and low visual acuity in the elderly (Beauchet et al., 2011;Millen et 

al., 2011). This was further investigated by calculating UVB exposure index which 

correlated with reduced neovascular AMD. Moreover, SNPs in human CYP24A1 have 

been shown to be linked to  neovascular AMD (Morrison et al., 2011). 
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Table ‎3.2. A summary of gene and protein expression for vitamin D3 elements by ocular barrier cells as well as the rate 

of 25D3 conversion. Ocular barrier epithelial cell lines are shown with mRNA expression, immunofluorescence staining 

intensity, and rate of 25D3 conversion with the highest as +++ and the lowest as +. HKC-8 cell line was used as a positive 

control for the expression of vitamin D3 pathway components and 25(OH)D3 conversion. Thyroid mRNA was used a positive 

control for the expression of cubilin and megalin. 
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Figure ‎3.12. The rate of 25(OH)D3 conversion by ocular barrier epithelial cells 
according to their anatomical location from the outside to the inside of the eye. A 
schematic diagram showing 1,25(OH)2D3 concentrations in the different ocular barrier 
epithelial cells from the exterior to the interior following their anatomical location. 
25(OH)D3 conversion starts at the conjunctiva, increases at corneal epithelium, reaches 
a peak at corneal endothelium, decreases at the ciliary body and diminishes at the 
retina. 

To date, there is no mention of the presence of 1,25(OH)2D3  in human AqH. Yin 

et al. measured vitamin D3 metabolites including 25(OH)D3 and 1,25(OH)2D3 in rabbit 

AqH and vitreous samples (Yin et al., 2011). The levels of 1,25(OH)2D3 obtained in the 

current study in human AqH (0.004 nM) were lower than those shown in rabbit AqH 

(0.04 nM). Rabbit AqH levels were measured by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS), a more sensitive technique suitable for the measurement of 

vitamin D3 in a sample size as low as 100 µl (Vogeser, 2010).  

There are several reasons why human aqueous levels of 1,25(OH)2D3  are lower 

than serum; (i) the recommended sample volume for the enzyme immunoassay is at 

least 500 µl and the sample volume available from AqH was between 50-150 µl which 

could have been a limitation for these results.  (ii) Aqueous humour is in constant 
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movement and has a high turnover (2.4 ± 0.6 μl/min) to provide nutrients to and remove 

waste from the avascular cornea and lens (Goel et al., 2010), therefore the large 

amounts of 1,25(OH)2D3 produced by corneal endothelium and ciliary body may be used 

up by the cells or washed away with AqH movement to keep a clear fluid consistency; 

(iii) as AqH contains less than 1% of proteins in plasma (Freddo, 2001) it may not cross 

the iris/ciliary body barrier efficiently. Nevertheless, the levels in AqH did not directly 

match their counterparts in serum which may suggest local synthesis of 1,25(OH)2D3 

that is secreted into AqH. Moreover, although vitamin D3 synthesis is believed to 

decrease with age (Laird et al., 2010), serum vitamin D3 levels of patients with ages 69-

84 were higher than patients with ages 46-56. 

The ability of ocular barrier epithelial cells to locally produce large amounts of 

1,25(OH)2D3 may be important for their barrier function. For example, corneal endothelial 

cells are highly metabolic and represent an important barrier at the anterior segment of 

the eye and producing large amounts of 1,25(OH)2D3 may help maintain this function. 

More than 200 genes were significantly upregulated or downregulated in response to 

stimulation of lymphoblastoid cell line with 1,25(OH)2D3 including several involved in the 

immune response (Ramagopalan et al., 2010). Similarly the induction of HDPs by 

1,25(OH)2D3 may be of importance to ocular barrier function (Liu et al., 2006). 

The main caveat in this work is the use of cell lines rather than primary cells. 

Some attempts were carried out to isolate and grow primary human corneal endothelial 

cells without success.  Several emails were sent to eye banks in Bristol and Manchester 

to obtain eyes not suitable for transplantation and use them to isolate non-pigmented 

ciliary body and retinal pigment epithelium without response. However the lines used are 
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well-established and regarded as good correlates for freshly –isolated ocular cells 

(Bednarz et al., 2000;Dunn et al., 1996;Martin-Vasallo et al., 1989;Racusen et al., 1997).  

In conclusion, this study has demonstrated the expression of vitamin D3 pathway 

molecular components by in vitro models of ocular barrier epithelial cells and that these 

cells can convert inactive 25(OH)D3 into active 1,25(OH)2D3. This study has also shown 

that 1,25(OH)2D3 is present in detectable levels in human AqH. Further work will show if 

these cells can create an environment rich in 1,25(OH)2D3  and if this has an effect on 

ocular immune protection and immune privilege. 
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4 THE ROLE OF 1,25(OH)2D3 IN OCULAR EPITHELIAL BARRIER 
CELLS 

4.1 Introduction 

 Vitamin D3 directly or indirectly influences many immune cells. This is facilitated 

by the wide expression of VDR in immune cells including neutrophils, macrophages, 

DCs, as well as activated T and B cells. Vitamin D3 prevents DC maturation, skews T 

cell development into regulatory phenotypes, and inhibits B cell proliferation (Baeke et 

al., 2010). Stimulation of CD4+CD25- T cells with 1,25(OH)2D3  resulted in an inhibition of 

proinflammatory cytokines such as IFN- and IL-17. At the same time it increased the 

expression of CTLA4 and FoxP3 (Jeffery et al., 2009). Further investigations showed 

that endogenous production of 1,25(OH)2D3 caused the conversion of DC into 

tolerogenic phenotype and enabled them to alter T cell responses (Jeffery et al., 2012). 

B cell stimulation with 1,25(OH)2D3 prevented plasma cells differentiation and Ig class 

switching (Chen et al., 2007). This was translated in vivo where patients with SLE 

supplemented with vitamin D3 had decreased Th1 and Th17, restored regulatory T cells, 

and decreased memory B cells and anti-inflammatory antibodies (Terrier et al., 2012).  

 As stated in Chapter 1, HDPs are short cationic peptides produced by cells of the 

immune system and various cell types. They are known for exhibiting antimicrobial as 

well as immunomodulatory activities (Steinstraesser et al., 2011;Yeung et al., 2011).  

The immunomodulatory role of vitamin D3 became very clear in studies linking vitamin 

D3 deficiency to susceptibility to infection with Mtb (Gibney et al., 2008;Williams et al., 
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2008). When macrophages were stimulated with a TLR2/1 mycobacterial ligand in the 

presence of vitamin D3, there was an upregulation of LL-37 genes and increased 

antimicrobial activity against Mtb. African-Americans have higher melanin levels in their 

skin and thus become less capable of obtaining sufficient vitamin D3 from UV exposure 

(Macdonald, 2012). When macrophages were stimulated in the presence of vitamin D3 

insufficient African-American serum, there was a significant reduction in mRNA levels of 

LL-37 compared to Caucasians (Liu et al., 2006). This was mediated by TLR2/1 induced 

IL-15 which lead to the induction of CYP27B1 and cathelicidin (Krutzik et al., 2008).  

 The activation of TLR2/1 also induced IL-1β which together with VDR were 

required to induce DEFB4 (Liu et al., 2009b). In contrast to enhanced macrophage 

antimicrobial response to Mtb, vitamin D3 induced LL-37 increased virulence and 

promoted resistance to killing of Group A Streptococcus by oropharyngeal keratinocytes, 

macrophages and neutrophils (Love et al., 2012). IFN- produced by T cells needs 

vitamin D3 to result in subsequent autophagy, autophagosome-lysosome fusion and 

even the induction of HDPs such as cathelicidin and BD-4 (Fabri et al., 2011). 

  Skin injury is known to induce HDPs. Injury was induced using sterile incisions in 

healthy human skin and Streptococcal injections in C57BL/6 mice. Human cathelicidin 

(LL-37) and mouse cathelicidin-related HDP (CRAMP) proteins were expressed in the 

extracellular space and granulation tissues. This indicates their synthesis by 

keratinocytes and granulocytes migrating to the site of injury (Dorschner et al., 2001). 
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 This work was followed further. Injury of human skin induced mRNA expression of 

TLR2, CD14 (a TLR cofactor), and CYP24A1. Treatment of keratinocytes with TLR2 

ligand in the presence of TGF-β released in response to injury induced mRNA 

expression of CYP27B1. When keratinocytes were treated simultaneously with TGF-β1 

and 25(OH)D3, cathelicidin, CD14, and TLR2 were induced. TGF-β1 or 25(OH)D3 alone 

could not induce the same genes. CYP27B1 deficient mice were used to confirm the 

results in vivo.  Mouse CD14 is regulated by 1,25(OH)2D3 and it was absent compared to 

wild type. In contrast, mouse CRAMP was induced in both CYP27B1 deficient and wild 

type mice as this gene does not contain VDRE. Keratinocytes transfected with CAMP 

with disrupted VDRE could not induce cathelicidin in response to 1,25(OH)2D3. TLR2 

synegised with 1,25(OH)2D3 to induce mRNA expression of cathelicidin, an effect that 

diminished with VDR antagonist (Schauber et al., 2007).  

 The production of HDPs appears to be a key function of vitamin D3 in 

macrophages and epithelial cells. In respiratory epithelial cells, TLR2/1 has the same 

role as in macrophages. In addition, stimulation of TLR3 increased endogenous 

1,25(OH)2D3 production and both synergised to enhance the expression of LL-37 

(Hansdottir et al., 2008). In contrast, in urinary bladder epithelial cells, both exogenous 

and endogenous 1,25(OH)2D3 were able to upregulate LL-37 in the absence of TLR 

stimulation.  

Vitamin D3 proves to be important for barrier function. In a mouse model of IBD, 

oral supplementation with vitamin D3 abrogated the inflammatory response in the colon. 
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Furthermore, vitamin D3 maintained intestinal barrier integrity by reducing permeability 

and upregulating the expression of TJ proteins (Zhao et al., 2012). Vitamin D3 also 

upregulated TJ proteins in corneal epithelium (Yin et al., 2011) but its role in the 

induction of HDPs in the eye has not been investigated. HDPs have been detected in 

ocular cells and fluids (Garreis et al., 2010b;Huang et al., 2007), but it is not clear if 

vitamin D3 plays a role in their induction. 

In this study, we investigated the role played by vitamin D3 in the induction of 

HDPs and if vitamin D3 synergises with TLR to upregulate proinflammatory cytokines.  

4.2 Results 

4.2.1 Ocular barrier epithelial cells upregulate vitamin D3 elements 
genes in response to 25(OH)D3 or 1,25(OH)2D3 

To confirm that ocular barrier cells have a functional system that can induce the 

upregulation of vitamin D3 induced genes such as VDR, CYP27B1, and CYP24A1, cells 

were treated with physiological concentrations of either inactive 25(OH)D3 (10-7 M) or 

active 1,25(OH)2D3 (10-8 M). HCEC-12, ODM-2, and ARPE-19 cells showed an induction 

of vitamin D3 element genes upon treatment with 25(OH)D3 and 1,25(OH)2D3 (Figures 

4.1-4.3) but this induction was not statistically significant except in HCEC-12 at 1 h.   

HCEC-12 cells showed a significant 4-fold increase in VDR at 1 h in response to 

1,25(OH)2D3 (p<0.01) that declined afterwards and about 2-fold increase with 25(OH)D3 

at 8 h. In ODM-2 cells, VDR showed a 2- fold increase at 1 h with 25(OH)D3. Stimulation 

with 1,25(OH)2D3 induced a 2-fold increase at 4 and 8h, a peak of 3 fold at 16 h and 
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back to 2 fold at 24 h. In contrast to HCEC-12 and ODM-2, VDR was not highly 

upregulated in ARPE-19 cells. There was a minimal increase at all time points with 

1,25(OH)2D3 but not with 25(OH)D3 (Figure 4.1).  

In HCEC-12 cells, CYP27B1 showed a 4-fold change at 4 h and decreased at 8 

and 16 h to 1.5 fold. At 24 h, CYP27B1 expression increased by 2 fold and 1.6 fold with 

25(OH)D3 and 1,25(OH)2D3 respectively. CYP27B1 showed a gradual increase in ODM-2 

cells until it reached 2 fold and 2.5 fold with 25(OH)D3 and 1,25(OH)2D3 respectively at 8 

h. At 16 h there was no induction of CYP27B1 but there was a slight increase of 1.5 fold 

at with 25(OH)D3 24 h. CYP27B1 showed a slight 1.5-fold increase in ARPE-19 at 1 h 

with both 25(OH)D3 and 1,25(OH)2D3. At 4 h there was a  2-fold change with 

1,25(OH)2D3 followed by a 1.5 fold change at 8 and 16 h that declined at 24 h. 25(OH)D3 

induced an upregulation of 1.5 fold at 1 and 4 h that declined at 8 h. At 8 h there was 2.5 

fold change which decreased at 24 h (Figure 4.2).  

CYP24A1 was gradually induced in HCEC-12 cells at 4 h (2 fold), 8 h (4 fold), and 

16 h (10 fold) in response to both 25(OH)D3  and 1,25(OH)2D3. This dropped at 24 h to 3 

and 4 fold with 25(OH)D3 and 1,25(OH)2D3 respectively. In ODM-2 cells, CYP2A1 

expressed a 1.5 and 2 fold change at 1 h with 25(OH)D3 and 1,25(OH)2D3 respectively. 

While at 4 h there was a 10-fold increase with both, stimulation with 25(OH)D3 

maintained about 4 fold increase at 8 and 16 h. There was no upregulation caused with 

1,25(OH)2D3 at 8 h but at 16 h there was a 4 fold increase at 16 h that declined again at 

24 h. ARPE-19 cells showed an induction of CYP24A1, 1.6 fold change, with both 
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25(OH)D3 and 1,25(OH)2D3 at 4 h. This increased to 3 fold for 1,25(OH)2D3 but remained 

about 1.6 fold for 25(OH)D3 at 8 h. At 16 and 24 h there was no induction of CYP24A1 

with both treatments (Figure 4.3). 

In conclusion, ocular barrier epithelial cells showed a trend towards an 

upregulation of vitamin D3 element genes in response to 25(OH)D3 and 1,25(OH)2D3. 

HCEC-12 cells appear to be the quickest to upregulate the expression of CYP27B1 at 4 

h while CYP24A1 is only induced after 24 h which gives them more time for synthesis of 

1,25(OH)2D3. ODM-2 cells showed a slight induction at 4 h increasing its highest 

expression at 8 h. CYP24A1 is induced as early as 4 h with its highest expression 

decreasing at 8 h and increasing again at 16 h. This may indicate a tighter regulation of 

1,25(OH)2D3 synthesis in these cells. ARPE-19 only showed a slight upregulation of 

CYP27B1 and a modest induction of CYP24A1 compared to the other cell lines. This fits 

in with the conversion rates obtained in these cells. We have shown that HCEC-12 cells 

had the highest 25(OH)D3 conversion rates followed by ODM-2 then ARPE-19 cells. 

However, due to the lack of statistical significance more repeats are required to provide 

conclusive results.  
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Figure ‎4.1. Ocular barrier epithelial cells show a higher upregulation of mRNA for 
VDR in response to 1,25(OH)2D3 than 25(OH)D3. HCEC-12, ODM-2, and ARPE-19 
cells were grown to 80-90% confluence and were either left untreated (control) or 
treated with 25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8 M) for 1, 4, 8, 16, or 24 h in serum 
free conditions. Total RNA was isolated and real-time PCR was used to measure 
relative fold change increase in treated samples compared to control (untreated cells) for 
VDR. VDR showed a significant upregulation only in HCEC-12 cells with 1,25(OH)2D3 at 
1 h and a slight upregulation with 25(OH)D3 at 8 h. ODM-2 cells showed a slight 
upregulation with 25(OH)D3 at 1 h and with 1,25(OH)2D3 16 h while ARPE-19 cells did 
not show an upregulation of VDR mRNA expression. This upregulation is not statistically 
significant. Graphs show mean±SD (at least 3 experimental repeats). Two-way ANOVA 
with Bonferroni’s post test were perfomed, ** p<0.01. 
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Figure ‎4.2. Ocular barrier epithelial cells upregulate mRNA for CYP27B1 in 
response to 25(OH)D3 and 1,25(OH)2D3. HCEC-12, ODM-2, and ARPE-19 cells were 
grown to 80-90% confluence and were either left untreated (control) or treated with 
25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8 M) for 1, 4, 8, 16, or 24 h in serum free 
conditions. Total RNA was isolated and real-time PCR was used to measure relative fold 
change increase in treated samples compared to control (untreated cells) for CYP27B1. 
CYP27B1 was upregulated with both 25(OH)D3 and 1,25(OH)2D3 in HCEC-12 cells at 4 
and 24 h. CYP27B1 showed a slight with 1,25(OH)2D3 at 4 h and with both 25(OH)D3 
and 1,25(OH)2D3 at 8 h. ARPE-19 cells slightly upregulated CYP27B1 mRNA expression 
with 1,25(OH)2D3 at 4 h and with 25(OH)D3 at 16 h. However, this upregulation is not 
statistically significant. Graphs show mean±SD (at least 3 experimental repeats). Two-
way ANOVA with Bonferroni’s post test were performed. 
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Figure ‎4.3. Ocular barrier epithelial cells upregulate mRNA for CYP24A1 in 
response to 25(OH)D3 and 1,25(OH)2D3. HCEC-12, ODM-2, and ARPE-19 cells were 
grown to 80-90% confluence and were either left untreated (control) or treated with 
25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8 M) for 1, 4, 8, 16, or 24 h in serum free 
conditions. Total RNA was isolated and real-time PCR was used to measure relative fold 
change increase in treated samples compared to control (untreated cells) for CYP24A1. 
CYP24A1 showed an upregulation in HCEC-12 with both 25(OH)D3 and 1,25(OH)2D3 at 
8 and 16 h and in ODM-2 cells at 4 and 16 h. ARPE-19 cells only upregulated CYP24A1 
with 1,25(OH)2D3 at 8. However, this upregulation is not statistically significant. Graphs 
show mean±SD (at least 3 experimental repeats). Two-way ANOVA with Bonferroni’s 
post test were performed. 
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4.2.2 Vitamin D3 does not synergise with TLR in the production of 
proinflammatory cytokines 

It has been shown in macrophages that TLRs synergise with vitamin D3 to induce 

downstream effects of VDR activation (Liu et al., 2006). To investigate if VDR behaves 

similarly in ocular barrier cells, we first screened the cells for the expression of TLR1-10, 

RIG-I, and MDA5 (Figure 4.4). TLR1, 3, 4, 10, RIG-I, and MDA5 were strongly 

expressed by all the cell lines. TLR2 was not expressed by HCEC-12 and very weakly in 

ODM-2 and ARPE-19. TLR5 was absent in HCEC-12 but expressed by ODM-2 and 

ARPE-19. While TLR6 was expressed in HCEC-12 and ARPE-19, it showed a weak 

expression in ODM-2. TLR7 and 8 were absent in all cell lines. Likewise, TLR9 was 

strongly expressed by ODM-2 and ARPE-19 but absent in HCEC-12.  

 Next the ability of TLR and 25(OH)D3 to induce proinflammatory cytokines such 

as IL-6, IL-8, TNF-, and IFN- was measured by ELISA. As 25(OH)D3 (10-7 M) had to 

be added in serum free conditions (to avoid additional 25(OH)D3 present in serum), we 

questioned whether TLRs especially TLR4 would be able to respond in the absence of 

LPS-binding protein (LPS-LBP) present in serum (Figure 4.5).  

When ARPE-19 were treated with different concentrations of Pam3Cys, Poly I:C, 

and LPS in the presence or absence of serum, ARPE-19 cells responded variably to 

TLR stimulation through the production of IL-6 and IL-8. There was a 2-fold increase in 

IL-8 concentrations after treatment with Pam3Cys (1 and 10 µg) and Poly I:C (20 µg) 

while Poly I:C (100 µg) caused a 4-fold increase in serum free conditions. Stimulation of 
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ARPE-19 with LPS (10 ng and 1 and 5 µg) caused a 3-fold increase in IL-8 

concentrations compared to control cells. The addition of serum increased the 

background but did not prevent the cells from responding to LPS.  

Stimulation of ARPE-19 with Pam3Cys (1 and 10 µg), Poly I:C (20 µg), and LPS 

(10 ng and 5 µg) doubled IL-6 concentrations while Poly I:C (100 µg) caused a 3-fold 

increase. Similar to IL-8, the addition of serum increased the background without 

preventing the cells from responding to LPS. Based on these findings, we decided to 

carry out the experiments in serum free (SF) conditions.  

HCEC-12 cells showed a baseline production of IL-8 but the concentrations were 

only increased in response to Poly I:C (100 µg). Treatment with 25(OH)D3 does not 

seem to affect the response of these cells to TLR ligands. ODM-2 cells initially produced 

high concentrations of IL-8 which were not changed by 25(OH)D3. Untreated ARPE-19 

cells produced a higher baseline concentration of IL-8 than HCEC-12 but lower than 

ODM-2 cells. ARPE-19 cells showed the highest IL-8 production in response to Poly I:C 

and RIG-I/MDA5 both of which doubled IL-8 concentrations (Figures 4.6). 

Also HECE-12 cells produced IL-6 constitutively and there was a slight increase 

in response to Poly I:C (100 µg) but this was not influenced by 25(OH)D3. There was no 

increase in IL-6 in ODM-2 cells in response to any of the TLR ligands used and the 

addition of 25(OH)D3 did not alter this response. ARPE-19 cells produced very low levels 

of IL-6 compared to HCEC-12 and ODM-2. Consistent with HCEC-12 cells, ARPE-19 
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cells showed the highest IL-6 amounts upon treatment with Poly I:C. The response to 

TLR ligands was not affected by the addition of 25(OH)D3 in ARPE-19 (Figure 4.7). 

To conclude, ocular barrier cells responded to TLR ligand treatment by the 

production of IL-8 and IL-6 (except ODM-2) but this response was not affected by the 

addition of 25(OH)D3. TNF- and IFN- were not detected in ocular barrier cells by 

ELISA. However, due to the low number of repeats and the lack of statistical 

significance, these results are inconclusive.  
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Figure ‎4.4. Ocular barrier epithelial cells express mRNA for TLRs, RIG-I, and 
MDA5. HCEC-12, ODM-2, and ARPE-19 cells were grown to 80-90% confluence, and 
total RNA was extracted. Conventional RT-PCR was performed for mRNA expression of 
TLR1-10, RIG-I, and MDA5. Expression bands are shown with their corresponding sizes 
(bp). HCEC-12 cells expressed all TLRs except TLR2, 7, and 9 while ODM-2 and ARPE-
19 cells expressed all TLRs except TLR2, 7, and 8. HCEC-12, ODM-2, and ARPE-19 
cells expressed RIG-I and MDA5. 18S or GAPDH were used as internal controls and 
H2O as a negative control.  

 

 

 

bp 
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Figure ‎4.5 ARPE-19 cells produce IL-8 and IL-6 in response to TLR stimulation in 

the absence and presence of serum by ELISA with or without the addition of 

25(OH)D3. ARPE-19 cells were grown 80-90% confluence and were either left untreated 

(control) or treated with TLR ligands with or without serum in growth media in the 

presence or absence of 25(OH)D3 (10-7 M) for  24 h. Supernatants were collected and 

cytokine were measured by ELISA. ARPE-19 cells produced IL-8 after treatment with 

Pam3Cys, Poly I:C, and LPS in serum free medium in the presence or absence of 

25(OH)D3. These levels increased in the presence of serum. IL-6 was also produced by 

ARPE-19 cells after treatment with Poly I:C (100 µg) and LPS (10 ng) in the presence or 

absence of 25(OH)D3. Similarly, the addition of serum increased IL-6 concentrations but 

the addition of serum did not alter this response. Graphs show mean cytokine 

concentrations (n=1).  
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Figure ‎4.6. Vitamin D3 does not influence IL-8 production after stimulation with 
TLR and RIG-I/MDA5 ligands in ocular barrier epithelial cells. HCEC-12 (n=2), 
ODM-2 (n=2), and AREP-19 (n=3 except RIG-I/MDA5 n=1) were grown to 80-89% 
confluence and were either unstimulated (control) or stimulated with TLR and RIG-
I/MDA5 ligands in the absence or presence of 25(OH)D3 (10-7 M) for 24 h in serum free 
conditions. Supernatants were collected and cytokine IL-8 production was measured by 
ELISA. IL-8 was produced by HECEC-12 in response to Poly I:C and ARPE-19 in 
response to Poly I:C and RIG-1/MDA5 which was not affected by the addition of 
25(OH)D3. ODM-2 showed a constitutive production of IL-8 and that was not influenced 
by TLR or RIG-I/MDA5 ligands or the presence of 25(OH)D3. Graphs show mean±SD 
cytokine production compared to untreated control cells (HCEC-12 and ODM-2 n=2 and 
ARPE-19 n=2 except RIG-I/MDA5 n=1). Two-way ANOVA and Bonferroni’s post test 
were performed. 

HCEC-12 ODM-2 
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Figure ‎4.7. Vitamin D3 does not influence IL-6 production after stimulation with 
TLR and RIG-I/MDA5 ligands in ocular barrier epithelial cells. HCEC-12 (n=2), 
ODM-2 (n=2), and AREP-19 (n=3 except RIG-I/MDA5 n=1) were grown to 80-89% 
confluence and were either unstimulated (control) or stimulated with TLR and RIG-
I/MDA5 ligands in the absence or presence of 25(OH)D3 (10-7 M) for 24 h in serum free 
conditions. Supernatants were collected and cytokine IL-6 production was measured by 
ELISA. HCEC-12 cells constitutively produced IL-6 and this was slightly increased in 
response to Ply I:C. ODM-2 cells initially produced high amounts of IL-6 but these levels 
were not upregulated by TLR stimulation. ARPE-19 cells produced lower levels of IL-6 
and these levels were increased after treatment with Poly I:C. Treatment with 25(OH)D3 
did not influence IL-6 levels. Graphs show mean±SD cytokine production compared to 
untreated control cells (HCEC-12 and ODM-2 n=2 and ARPE-19 n=2 except RIG-
I/MDA5 n=1). Two-way ANOVA and Bonferroni’s post test were performed. 
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4.2.3 Ocular barrier epithelial cells upregulate genes for HDPs in 
response to locally produced as well as exogenous 1,25(OH)2D3 
by real-time PCR 

To further determine the ability of ocular barrier cells to use downstream 

signalling of VDR to produce HDPs (CAMP [cathelicidin, LL-37], BD1-4), these cells 

were tested in the presence of 25(OH)D3 (10-7 M) and 1,25(OH)2D3 (10-8 M) at 1, 4, 8, 

16, and 24 h by real-time PCR.  

HCEC-12 showed a gradual increase in the expression of CAMP starting from 4 h 

reaching a peak at 8 h, then declined at 16 h and low at 24 h. Treatment with 

1,25(OH)2D3 induced moderately higher CAMP than 25(OH)D3 at 4 h. ODM-2 did not 

show any induction of CAMP at 1, 4, 8 h. There was no induction with 25(OH)D3 and a 

decrease (0.5 fold) with  1,25(OH)2D3 at 16 h and a 1.5 fold-change at 24 h. ARPE-19 

showed a slight increase with both 25(OH)D3 and 1,25(OH)2D3 at 1 and 4 h but 4-fold 

increase induction of CAMP with 25(OH)D3 at 8 h that declined at 16, and 24 h (Figure 

4.8). 

In HCEC-12 cells, BD-1 was induced by 1,25(OH)2D3 (2.5-fold change) at 4 h, 

while both 25(OH)D3 and 1,25(OH)2D3 caused about 3-fold increase in its expression at 

24 h. ODM-2 cells showed a 2-fold increase by 1,25(OH)2D3 at 1 h, but no change was 

noticed upon treatment with 25(OH)D3 at all time points. In contrast, at 4 h ARPE-19 

cells showed a 3-fold change and 4-fold change in response to 25(OH)D3 and 

1,25(OH)2D3 respectively. For all other time points, 25(OH)D3 and 1,25(OH)2D3 showed 

around 1.5 fold-change (Figure 4.9). 
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In HCEC-12 cells, BD-2 was increased by 7 fold at 8 h and decreased to 2 fold at 

1 h and 5 fold at 16 h in response to 25(OH)D3. At 16 and 24 h, levels declined to 2.5 

and 2 fold respectively. Upon treatment with 1,25(OH)2D3, BD-2 was increased 2.5 fold 

at 4 h and 10 fold at 8 h then decreased to 3 fold at 16 h. ODM-2 cells showed a 2-fold 

change in BD-2 at 4 h with both 25(OH)D3 and 1,25(OH)2D3, a decline at 8 h, followed 

by a 3-fold increase by 25(OH)D3 at 16 h and 1,25(OH)2D3 at 24 h. ARPE-19 showed a 

1.5 fold change at 4 h with both 25(OH)D3 and 1,25(OH)2D3. At 8 h, treatment with 

25(OH)D3 maintained a 1.5 fold change while it decreased with 1,25(OH)2D3. There was 

a noticeable 10-fold change and 4 fold-change at 16 h in response to 25(OH)D3 and 

1,25(OH)2D3 respectively then levels declined at 24 h with both treatments (Figure 4.10). 

HCEC-12 cells showed about 1.5-fold and 2-fold change in the expression of BD-

3 at 24 h in response to both 25(OH)D3 and 1,25(OH)2D3 respectively while there was no 

induction at other time points. ODM-2 showed a 1.5 fold change with 25(OH)D3  at 4 and 

8 h that declined at 16 and 24 h. BD-3 was upregulated in response to 1,25(OH)2D3 at 8 

and 24 h while there was no induction at 16 h. In ARPE-19 cells, BD-3 induction was the 

highest with 5 fold in response to 25(OH)D3 at 4 h that declined to 3 fold at 8 h. 

Treatment with 1,25(OH)2D3 caused a 3-fold increase at 4 h that declined to about 1.5 

fold  at 8, 16, and 24 h (Figure 4.11).  

BD-4 showed a 2-fold increase in HCEC-12 cells at 1 and 4 h by 1,25(OH)2D3 that 

decreased at 8 h then increased again to 3 fold at 16 h and 4 fold at 24 h. BD-4 was not 

induced in response to 25(OH)D3 at early time points but showed a 3 fold change at 24 h 
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in HCEC-12 cells . ODM-2 cells also showed a 1.5 fold induction at 8 h that increased to 

6 fold at 16 h with 25(OH)D3. Treatment with 1,25(OH)2D3 induced a 3 fold-change at 1 

and 4 h followed by a decline at 8 and 16 h, and up to 2.5-fold change at 24 h. In ARPE-

19 cells, BD-4 expressed a 5.5 fold-change with 25(OH)D3 and decreased to 3 fold-

change at 16 h and declined at 24 h. Treatment with 1,25(OH)2D3 induced a 3 fold-

change at 8 h, increased to 5 fold-change at 16 h and declined at 24 h (Figure 4.12). 

To conclude, ocular barrier epithelial cells showed a trend towards the 

upregulation of mRNA expression of hBD1-4 but more repeats are required to draw 

conclusive results. Raw data are shown in the appendix. 
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Figure ‎4.8. Vitamin D3 upregulates mRNA expression of cathelicidin antimicrobial 
peptide (CAMP) in ocular barrier epithelial cells. HCEC-12, ODM-2, and ARPE-19 
cells were grown to 80-90% confluence and they were either left untreated (control) or 
treated with 25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8 M) for 1, 4, 8, 16, and 24 h in serum 
free conditions. Total RNA was isolated and real-time PCR was used to measure 
relative fold change increase in treated samples compared to controls for CAMP. CAMP 
was only upregulated in HCEC-12 cells in response to both 25(OH)D3 and 1,25(OH)2D3 
at 4, 8, and 16 h. ODM-2 cells did not upregulate CAMP but ARPE-19 cells slightly 
upregulated CAMP with 25(OH)D3 at 8h. This upregulation was not statistically 
significant (for raw data please see appendix). Graphs show mean±SD (results of at 
least 3 experiments are shown). Two-way ANOVA and Bonferroni’s post test were 
performed. 
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Figure ‎4.9. Vitamin D3 upregulates mRNA expression of human beta defensin-1 
(hBD-1) in ocular barrier epithelial cells. HCEC-12, ODM-2, and ARPE-19 cells were 
grown to 80-90% confluence and were either left untreated (control) or treated with 
25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8  M) for 1, 4, 8, 16, and 24 h in serum free media. 
Total RNA was isolated and real-time PCR was used to measure relative fold change 
increase in treated samples compared to controls for hBD-1. HECE-12 cells slightly 
upregulated hBD-1 with 25(OH)D3 at 4 h and with both 25(OH)D3 and 1,25(OH)2D3 at   
24 h. ODM-2 cells did not upregulate hBD-1 whiles ARPE-19 cells showed an 
upregulation with both 25(OH)D3 and 1,25(OH)2D3 at 4 h. This upregulation was not 
statistically significant (for raw data please see appendix). Graphs show mean±SD 
(results of at least 3 experiments are shown). Two-way ANOVA and Bonferroni’s post 
test were performed. 
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Figure ‎4.10. Vitamin D3 upregulates mRNA expression of human beta defensin -2 
(hBD-2) in ocular barrier epithelial cells. HCEC-12, ODM-2, and ARPE-19 cells were 
grown to 80-90% confluence and were either left untreated (control) or treated with 
25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8 M) for 1, 4, 8, 16, and 24 h in serum free media. 
Total RNA was isolated and real-time PCR was used to measure relative fold change 
increase in treated samples compared to controls for hBD-2. HCEC-12 cells showed an 
upregulation of hBD-2 with both 25(OH)D3 and 1,25(OH)2D3 at 8 h and with 25(OH)D3 at 
a6 h. ODM-2 did not show an upregulation of hBD-2 but ARPE-19 cells upregulated 
hBD-2 with both 25(OH)D3 and 1,25(OH)2D3 at 16 h. This upregulation was not 
statistically significant (for raw data please see appendix). Graphs show mean±SD 
(results of at least 3 experiments are shown). Two-way ANOVA and Bonferroni’s post 
test were performed. 
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Figure ‎4.11. Vitamin D3 upregulates mRNA expression of human beta defensin -3 
(hBD-3) in ocular barrier epithelial cells. HCEC-12, ODM-2, and ARPE-19 cells were 
grown to 80-90% confluence and were either left untreated (control) or treated with 
25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8  M) for 1, 4, 8, 16, and 24 h in serum free 
media. Total RNA was isolated and real-time PCR was used to measure relative fold 
change increase in treated samples compared to controls for hBD-3. HCEC-12 and 
ODM-2 cells did not upregualte hBD-3 while ARPE-19 cells showed an upregulation with 
25(OH)D3 at 4 and 8 h. This upregulation was not statistically significant (for raw data 
please see appendix). Graphs show mean±SD (results of at least 3 experiments are 
shown). Two-way ANOVA and Bonferroni’s post test were performed. 
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Figure ‎4.12. Vitamin D3 upregulates mRNA expression of human beta defensin -4 

(hBD-4) in ocular barrier epithelial cells. HCEC-12, ODM-2, and ARPE-19 cells were 

grown to 80-90% confluence and were either left untreated (control) or treated with 

25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8  M) for 1, 4, 8, 16, and 24 h in serum free 

media. Total RNA was isolated and real-time PCR was used to measure relative fold 

change increase in treated samples compared to controls for hBD-4. HECE-12 and 

ODM-2 cells did not show any upregulation of hBD-4 while ARPE-19 cells showed an 

upregulation with 25(OH)D3 at 8 h and 1,25(OH)2D3 at 16 h. This upregulation was not 

statistically significant (for raw data please see appendix). Graphs show mean±SD 

(results of at least 3 experiments are shown). Two-way ANOVA and Bonferroni’s post 

test were performed. 
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4.2.4 Ocular barrier cells do not increase HDP proteins in response to 
endogenous and exogenous 1,25(OH)2D3  by ELISA. 

To investigate whether ocular barrier cells can translate HDP mRNA into protein 

in response to 25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8 M), we measured HDPs in the 

culture supernatants after 24 h of treatment.  

HCEC-12 showed higher baseline production of BD-1 compared to ODM-2 and 

ARPE-19 cells but there was no significant difference between control cells or those 

treated with either 25(OH)D3 or 1,25(OH)2D3 in all cell types. Similar results were 

observed in M1 and M2 (Figures 4.13 and 4.16). HCEC-12 followed by ODM-2 produced 

higher amounts of BD-2 compared to ARPE-19 cells. Again there was no significant 

difference between control and treated cells in all cell types. M1 and M2 cells hardly 

produced any BD-2 (Figures 4.14 and 4.16). HCEC-12 and ODM-2 cells produced 

higher BD-4 than ARPE-19 cells. There was a slight increase in BD-4 in response to 

1,25(OH)2D3 in ODM-2 cells. Similar to BD-1 and 2, there was no significant difference 

between control and treated cells in all cell types (Figure 4.15). Macrophages seem to 

produce higher BD-4 than BD-1 and 2. There was a slight increase in BD-4 produced by 

M1 and M2 in response to 1,25(OH)2D3 (Figure 4.16).  

To conclude, there was a wide-range of protein expression between different 

experiments which is surprising for cell lines. However the data taken together shows 

that ocular barrier cells did not upregulate protein for HDPs in response to 25(OH)D3 or 

1,25(OH)2D3 respectively. 

HCEC-12 
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Figure ‎4.13. Ocular barrier epithelial cells do not upregulate human β definsin-1 
(hBD-1) protein in response to 25(OH)D3 or 1,25(OH)2D3. HECE-12, ODM-2, and 
ARPE-19 cells were grown to confluence and they were wither left untreated (control) or 
treated with 25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8  M) for 1, 4, 8, 16, and 24 h in serum 
free media. Supernatants were collected and ELISA was performed to measure the 
concentrations of hBD-1. Minimum amounts of hBD-1 were produced by ocular barrier 
epithelial cells and there was no difference in hBD-1 concentrations between control 
(untreated) cells or those treated with 25(OH)D3 or 1,25(OH)2D3. Graphs show 
mean±SD (each experiment was performed at least 3 times except HCEC-12 n=1). 
Kruskall-Wallis test with Dunn’s post test were performed. 

HCEC-12 ODM-2 

ARPE-19 
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Figure ‎4.14. Ocular barrier epithelial cells do not upregulate human β definsin-2 
(hBD-2) protein in response to 25(OH)D3 or 1,25(OH)2D3. HECE-12, ODM-2, and 
ARPE-19 cells were grown to confluence and they were wither left untreated (control) or 
treated with 25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8  M) for 1, 4, 8, 16, and 24 h in serum 
free media. Supernatants were collected and ELISA was performed to measure the 
concentrations of hBD-2. There was a constitutive protein expression of hBD-2 in 
HCEC-12, ODM-2, and ARPE-19 cells but this was not upregulated upon treatment with 
25(OH)D3 or 1,25(OH)2D3. Graphs show mean±SD (each experiment was performed at 
least 3 times). Kruskall-Wallis test with Dunn’s post test were performed. 
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Figure ‎4.15. Ocular barrier epithelial cells do not upregulate human β definsin-4 
(hBD-4) protein in response to 25(OH)D3 or 1,25(OH)2D3. HECE-12, ODM-2, and 
ARPE-19 cells were grown to confluence and they were wither left untreated (control) or 
treated with 25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8  M) for 1, 4, 8, 16, and 24 h in serum 
free media. Supernatants were collected and ELISA was performed to measure the 
concentrations of hBD-4. There was a constitutive protein expression of hBD-2 in 
HCEC-12, ODM-2, and ARPE-19 cells but this was not upregulated upon treatment with 
25(OH)D3 or 1,25(OH)2D3. Graphs show mean±SD (each experiment was performed at 
least 3 times). Kruskall-Wallis test with Dunn’s post test were performed. 
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Figure ‎4.16. Macrophages do not upregulate HDP proteins in response to 
25(OH)D3 or 1,25(OH)2D3. M1 and M2 were differentiated from CD14+ monocytes. On 
day 6 they were wither left untreated or treated with 25(OH)D3 (10-7 M) or 1,25(OH)2D3 
(10-8 M) for 24h in serum free media. Supernatants were collected and ELISA was 
performed to measure the concentrations of BD-1 (top panel), 2 (middle panel), and 4 
(bottom panel). M1 and M2 macrophages did not produce hBD1, 2, and 4 and these 
levels were not upregulated upon treatment with 25(OH)D3 or 1,25(OH)2D3. Graphs 
show mean±SD (Experiments with SD bars represents triplicates while the absence of 
SD indicates a single experiment). Kruskall-Wallis test with Dunn’s post test were 
performed. 

M1 M2 
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4.2.5 Proinflammatory cytokines did not induce HDP proteins in 
ocular barrier cells. 

In macrophages, IL-1β mediated the vitamin D3 induced upregulation of DEFB4 

(Liu et al., 2009b). Previous work in our lab has also shown the same results (Susarla et 

al. manuscript submitted). We tested the ability of IL-1β and TNF- to synergise with 

25(OH)D3 (10-7 M) or 1,25(OH)2D3 (10-8 M) to upregulate HDP proteins. As shown above, 

both ODM-2 and ARPE-19 cells did not produce high amounts of BD-1, 2, and 4 in their 

supernatants.  

Untreated HCEC-12 produced higher constitutive levels of BD-1 compared to 

ODM-2 and ARPE-19 cells. Treatment with IL-1β did not alter this production when 

added alone or with 25(OH)D3 or 1,25(OH)2D3 in all cell types. In contrast treatment 

TNF- doubled the concentration of BD-1 when added alone and in with 1,25(OH)2D3 

respectively and induced a slight increase when added with 25(OH)D3 in HCEC-12 cells. 

In ARPE-19 cells, TNF- showed a slight increase in BD-1 production alone or with  

25(OH)D3 respectively but no change with 1,25(OH)2D3. In ODM-2 cells, there was no 

change upon the addition of either IL-1β or TNF- alone or with 25(OH)D3 or 

1,25(OH)2D3 respectively (Figure 4.17).  
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ODM-2 and ARPE-19 produced a higher baseline production of BD-2 than 

HCEC-12 cells. BD-2 concentrations increased 2 and 3 fold upon treatment with IL-1β or 

TNF- alone in HCEC-12 cells. In the presence of 25(OH)D3, TNF- doubled the 

concentration of BD-2 while IL-1β did not show any change. Both cytokines did not alter 

BD-1 production in the presence of 1,25(OH)2D3 in HCEC-12 cells. When IL-1β or TNF-

 were added alone to ODM-2 and ARPE-19 cells, there was a slight decrease in the 

concentration of BD-2 compared to untreated cells. Both cytokines induced a slight 

decrease in BD-2 when added in the presence of 25(OH)D3 and a slight increase with 

IL-1β  and IL1,25(OH)2D3 respectively in ODM-2 cells (Figure 1.18).  

HCEC-12, ODM-2, and ARPE-19 cells produced similar levels of BD-4 and the 

treatment with IL-1β or TNF- in the presence or absence of 25(OH)D3 or 1,25(OH)2D3 

did not cause any change in BD-4 concentration (Figure 1.19).  

In conclusion, the results show only HCEC-12 upregulated BD-1 and 2 production 

in response to TNF- alone and BD-2 in response to IL-1β alone respectively. TNF- 

synergised with1,25(OH)2D3 to increase BD-1 levels and with 25(OH)D3 to upregulate 

BD-2. Due to the low number of repeats and the lack of statistical significance, more 

experiments are required to confirm these results. 
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Figure ‎4.17. IL-1β‎ and‎ TNF-α‎ did not upregulate protein‎ production‎ of‎ human‎β‎

defensin-1 (hBD-1), in the presence of vitamin D3 in ocular barrier epithelial cells. 

HCEC-12, ODM-2, and ARPE-19 Cells were grown to confluence and were either 

treated with IL-1β (1 ng/ml) or TNF-α (5 ng/ml) in the presence or absence of 25(OH)D3 

(10-7 M) or 1,25(OH)2D3 (10-8 M) for 24 h in serum free conditions. Supernatants were 

collected and hBD-1 concentrations were measured by ELISA. Treatment of ocular 

barrier epithelial cells with IL-1β or TNF-α did not alter hBD-1 production. Graphs show 

mean±SD (HCEC-12 n=2, ODM-2 n=1, and ARPE-19 n=2).  
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Figure ‎4.18. IL-1β‎ and‎ TNF-α‎ did not upregulate protein‎ production‎ of‎ human‎β‎

defensin-2 (hBD-2), in the presence of vitamin D3 in ocular barrier epithelial cells. 

HCEC-12, ODM-2, and ARPE-19 Cells were grown to confluence and were either 

treated with IL-1β (1 ng/ml) or TNF-α (5 ng/ml) in the presence or absence of 25(OH)D3 

(10-7 M) or 1,25(OH)2D3 (10-8 M) for 24 h in serum free conditions. Treatment of ocular 

barrier epithelial cells with IL-1β or TNF-α did not alter hBD-2 production. Supernatants 

were collected and hBD-2, was measured by ELISA. Graphs show mean±SD (HCEC-12 

n=2, ODM-2 n=1, and ARPE-19 n=2).  
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Figure ‎4.19. IL-1β‎ and‎ TNF-α‎ did not upregulate protein‎ production‎ of‎ human‎β‎

defensin-4 (hBD-4), in the presence of vitamin D3 in ocular barrier epithelial cells. 

HCEC-12, ODM-2, and ARPE-19 Cells were grown to confluence and were either 

treated with IL-1β (1 ng/ml) or TNF-α (5 ng/ml) in the presence or absence of 25(OH)D3 

(10-7 M) or 1,25(OH)2D3 (10-8 M) for 24 h in serum free conditions. Treatment of ocular 

barrier epithelial cells with IL-1β or TNF-α did not alter hBD-4 production.Supernatants 

were collected and hBD-4, was measured by ELISA. Graphs show mean±SD (HCEC-12 

n=2, ODM-2 n=1, and ARPE-19 n=2).  
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4.3 Discussion 

This study shows that ocular barrier cells can signal through VDR to upregulate 

the downstream vitamin D3 elements genes. It also shows that like exogenous 

1,25(OH)2D3, local activation of vitamin D3 by ocular barrier cells showed a trend 

towards the induction of mRNA of HDPs but not proteins at the time point tested. IL-1β 

and TNF- did not significantly upregulate hBD-1, 2 and 4 ocular barrier epithelial cells 

tested in the presence of vitamin D3. TLR signalling does not seem to synergise with 

vitamin D3 in the induction of proinflammatory cytokines.  

Extra-renal expression of vitamin D3 elements has been described in many 

epithelial cells such as primary respiratory epithelial cells, urinary bladder intestinal, 

mammary, endometrium, and prostate epithelial cell lines and skin keratinocytes (Chen 

and Holick, 2003;Hansdottir et al., 2008;Hertting et al., 2010;Kemmis and Welsh, 

2008;Kong et al., 2008). In the kidneys, synthesis of 1,25(OH)2D3 is tightly regulated by 

serum levels of calcium, phosphorous, and fibroblasts growth factor-23 (FGF-23). 

Additionally, 1,25(OH)2D3 provides its own negative feedback by decreasing the 

secretion of parathyroid hormone (PTH) from parathyroid gland (Holick, 2007).  

In contrast, extra-renal 1,25(OH)2D3 synthesis is regulated by inflammatory 

cytokines such as IFN- and IL-15 and through the induction of CYP24A1 (Adams and 

Hewison, 2012). In epithelial cells such keratinocytes, mammary, prostate and 

respiratory epithelial cells, CYP24A1 was only induced after local conversion of 

25(OH)D3 into 1,25(OH)2D3 or stimulation with 1,25(OH)2D3 (Flanagan et al., 

2006;Hansdottir et al., 2008;Welsh, 2011;Xie et al., 2002) . Ocular barrier epithelial cells 
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are no different from these cells where they appear to constitutively express CYP24A1 

which was upregulated in response to local synthesis of 1,25(OH)2D3.  

A growing body of evidence in literature has confirmed the importance of extra-

renal vitamin D3 system for host protection mainly through the induction of HDPs. In 

macrophages, skin, gingival, placenta, and respiratory epithelial cells, vitamin D3 acted 

with TLR to induce protective mechanisms (Hansdottir et al., 2008;Liu et al., 2009a;Liu 

et al., 2006;McMahon et al., 2011;Schauber et al., 2007). We know that ocular cells from 

the cornea to the retina express a range of PRR including TLR1-10 (Brito et al., 

2004;Chang et al., 2006;Kumar and Yu, 2006;Kumar et al., 2004;Ueta and Kinoshita, 

2010). RIG-I and MDA5 have been detected in human conjunctival epithelial and RPE 

cells (Ueta et al., 2010;Ueta et al., 2011;Wornle et al., 2011).  

Our results confirm the expression of TLR1-10, RIG-I, and MDA5 in ocular barrier 

cells and that these receptors are functional upon stimulation. We approached this by 

the measurement of IL-8 and IL-6 which are produced in response to TLR stimulation in 

the eye (Cook et al., 2005;Jin et al., 2010;Kumagai et al., 2005;Ueta et al., 2005). 

Human corneal endothelial cell line increased the production of IL-6 after stimulation of 

TLR9 (Takeda et al., 2011). Primary human non-pigmented ciliary body epithelial cells 

produced IL-6 in response to LPS (25 ng) (Brito et al., 2004).  

We could show that HCEC-12 and ARPE-19 cells produced the highest levels of 

IL-8 and IL-6 in response to Poly I:C. In contrast, ODM-2 cells did not upregulate IL-8 or 

IL-6 after treatment with TLR ligands including LPS. ARPE-19 cells produced high 

amounts of IL-6 in response to LPS (1ug) (Paimela et al., 2007). We could not replicate 
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these results with LPS as we used very low concentrations of LPS to try and simulate 

what can happen in real life.  ARPE-19 cells were the only cells that produced high 

amounts of IL-8 and slightly increased IL-6 in response to RIG-I/MDA5. This has been 

seen before in ARPE-19 cells that showed a similar increase in IL-8 and IL-6 expression 

after treatment with Poly I:C that can bind both TLR3 and RIG-I  (Wornle et al., 2011). 

We previously showed that TLR stimulation increased IL-8 and IL-6 but this was not 

influenced by vitamin D3 in primary human corneal epithelial cells (PHCEC) and corneal 

fibroblasts (HKF) (Susarla et al. manuscript submitted). Although some TLR are 

expressed strongly in ocular barrier cells, we could not detect any synergy between TLR 

signalling and vitamin D3 in the production of proinflammatory cytokines.  

Ocular barrier cells very poorly express TLR2 which is predominantly expressed 

in high levels in CD14+ monocytes (Flo et al., 2001;Foster et al., 2007). This may be part 

of vitamin D3 role as an immunomodulatory hormone to suppress destructive 

inflammatory responses to the eye. In PBMC, 1,25(OH)2D3 suppressed the expression 

of TLR2 and TLR4 and reduced their induction of IL-6 without reducing their ability to 

induce HDPs (Khoo et al., 2011a). Although one study showed that stimulation of TLR2 

in human corneal epithelial cell line increased the production of IL-8 and IL-6 (Kumar et 

al., 2006), another earlier study showed TLR2 and TLR4 expression was suppressed 

and stimulation with the corresponding ligands did not increase IL-8 or IL-6 production 

(Ueta et al., 2004).  

HDPs are essential players of innate immunity that imply protective and 

immunomodulatory properties to affected tissues. TLR2 stimulation induced mRNA and 

protein of hBD-2 in human corneal epithelial cell line (Kumar et al., 2006).  TLR3, 5,and 



              Chapter 4   The role of 1,25(OH)2D3 in ocular barrier epithelial cells              140 

 

 

6/2 stimulation increased mRNA and protein expression of hBD-2 while TLR3 induced 

LL-37 in primary human corneal epithelial cells (Redfern et al., 2011). Furthermore pre-

exposure of human corneal epithelial cell line to TLR5 ligand impaired the signalling 

pathway downstream of TLR5 stimulation in a dose dependent manner. It reduced IL-8 

secretion but supported mRNA expression and secretion of hBD-2 and LL-37 (Kumar et 

al., 2007).  

Based on work from monocytes, TLR synergised with vitamin D3 in the induction 

of HDPs. Similar interaction was found in respiratory epithelial cells, colonic epithelial 

cell lines, and skin keratinocytes (Hansdottir et al., 2008;Lagishetty et al., 

2010;Schauber et al., 2007). We have shown previously that 1,25(OH)2D3 could induce 

HDPs in PHCEC. 1,25(OH)2D3 induced cathelicidin mRNA alone and in synergy with 

TLR3 and TLR4. It also induced hBD-1 and hBD-2 alone and in synergy with TLR3 and 

TLR3 and TLR4 respectively (Susarla et al. manuscript submitted). In this study, local 

synthesis of vitamin D3 was as good as exogenous supplementation in the induction of 

HDPs. This did not require TLR activation. This is in concordance with results from 

trophoblasts, gingival, sinonasal, bronchial, and urinary balder epithelial cells (Hertting et 

al., 2010;Liu et al., 2009a;McMahon et al., 2011;Schrumpf et al., 2012;Sultan et al., 

2013) where vitamin D3 alone can induce HDPs. Even in the skin, where vitamin D3 

synergised with TLR2/1, vitamin D3 could induce HDPs without TLR activation (Peric et 

al., 2010).  

In inflammatory conditions, cytokines such as IL-13 and IL-17 were found to 

enhance vitamin D3 mediated induction of HDPs such as hBD-2 and LL-37 in skin 

keratinocytes and bronchial epithelial cells (Peric et al., 2008;Schrumpf et al., 2012). 
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Conflicting data have been shown in TLR2/1 induced vitamin D3 dependent DEFB4 and 

LL-37 in monocytes. These responses were augmented by IFN- and IL-4 while IL-17 

had no effect (Edfeldt et al., 2010). In macrophages, it was previously shown that 

expression of DEFB4 required IL-1β (Liu et al., 2009b). HBD-1 is constitutively 

expressed in primary human ciliary body epithelium and ODM-2 while hBD-2 was 

induced by IL-1 β in ODM-2 and RPE cell line (Haynes et al., 2000). In ODM-2 and 

ARPE-19 cells we did not see a significant difference in the production of hBDs when we 

added IL-1β and TNF- alone or together with 25(OH)D3 and 1,25(OH)2D3.  

The discrepancy in my results between mRNA upregulation and serum 

concentrations could be due to the short half-life of hBD peptides (Yount et al., 1999) 

which means that earlier time points should be examined. It may also indicate that these 

cells produce HDPs constitutively as part of homeostatic function and they do not 

increase upon stimulation. Although more experiments are required, we can see that IL-

1β and TNF- could show some synergy with vitamin D3 to upregulate hBD-1 and 2 

protein production in HCEC-12 cells which may indicate the importance of vitamin D3 

during inflammation in these barrier cells at the back of the cornea. Cathelicidin has a 

longer half-life of 3.4 days (Bals et al., 1999), but we did not measure serum 

concentration in the current study. The mRNA expression of cathelicidin in HCEC-12 at 

8 h were equal to or higher than those shown in respiratory, urinary bladder, gingival 

epithelial cells at 24h (Hansdottir et al., 2008;Hertting et al., 2010;McMahon et al., 

2011). Human BD-2 and 3 were induced by 1,25(OH)2D3 in primary human keratinocytes 

to levels similar to ocular barrier epithelial cells but the expression was boosted by the 
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simultaneous stimulation of the pathogen recognition receptor NOD2/CARD15 (Wang et 

al., 2010).  

The eye is constantly exposed to sunlight. It has been shown in rabbits cornea 

exposed to UVB light could locally covert inactive to active vitamin D3 in the presence of 

7DHC. Vitamin D3 metabolites were also detected in tears, AqH, and vitreous (Lin et al., 

2012;Yin et al., 2011). In the Netherlands, vitamin D3 effects were influenced by 

seasonal variations. Treatment of PBMCs with 1,25(OH)2D3 in vitro, caused a reduction 

of IL-6 and TNF- induced by TLR2 and TLR4 stimulation. When tested in the summer, 

PBMCs showed a pronounced decrease in IL-β, TNF-, IFN-, IL-6, and IL10 after TLR4 

stimulation while moderate effects were seen for TLR2. Apparently high vitamin D3 

levels in the summer decreased TLR2 and TLR 4 expression and consequently their 

downstream effects upon stimulation (Khoo et al., 2011b). Vitamin D3 interestingly, in 

hypoxic conditions upregulated hBD-2 in macrophages (Nickel et al., 2012). Hypoxic 

conditions are created by the immune system in response to inflammation to allow a 

microenvironment that can resolve the infection and protect local tissue damage 

(Olender et al., 2003). 

In conclusion, although we could not detect an upregulation of HDPs with vitamin 

D3 at the protein level, the ability of the eye to locally utilise vitamin D3 provided the 

availability of circulating 25(OH)D3 or even 7DHC and to translate that into the 

expression of HDPs may indicate the important role of vitamin D3 in the eye. The 

constitutive expression of CYP24A1 indicates a tight regulation of this hormone to allow 

activation just long enough to mediate the required tasks before degradation. With all 
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the anti-inflammatory properties and the induction of antimicrobial responses, vitamin D3 

may be involved in the immune surveillance and homeostasis in the eye. 
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5 VDR POLYMORPHISM IN INTERMEDIATE UVEITIS 

5.1 Introduction 

Uveitis is a wide range of intraocular inflammatory conditions that accounts for  

about 5-20% of blindness in Western countries and 25% in the developing world (de 

Smet et al., 2011). Uveitis is classified anatomically by the Standardisation of Uveitis 

Nomenclature (SUN) uveitis according to the primary site of inflammation (Jabs et al., 

2005). Anterior uveitis involves the anterior chamber, while in IU the vitreous is affected. 

Posterior uveitis is the inflammation of the retina or choroid and panuveitis involves the 

anterior chamber, vitreous, retina, and choroid. (Chapter 1 Figure 1.11) 

IU can affect young and middle age adults which can create an economical and 

social burden. Patients present with blurry vision, floaters and distorted central vision. IU 

can occur without a known cause and is known as iodiopathic or pars planitis referring to 

snowbanks (white exudates) on pars plana in the ciliary body. IU can be associated with 

a systemic inflammatory diseases such as multiple sclerosis (MS), sarcoidosis, or 

infectious conditions like human T lymphotropic virus Type 1 (HTLV-1) and Lyme 

disease (Babu and Rathinam, 2010;Bonfioli et al., 2005;de Smet et al., 2011). In uveitis, 

IL-12, IFN-, TNF-α, and IL-17 are associated with pathogenesis while IL-4 and IL-10 

are found to be protective (Atan et al., 2010;Horai and Caspi, 2011). 

IU has been linked to HLA-DRB1*15 (Du et al., 2009;Wallace and Niemczyk, 

2011). HLA-DRB1*15 is also associated with MS (Gourraud et al., 2012;Zivkovic et al., 

2009) and this association has recently been suggested  to be female specific, but this 

will require validation in other disease cohorts (Irizar et al., 2012). Database analysis of 
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French patients with MS showed that 0.65% had uveitis. In 46% of patients uveitis 

preceded onset of MS, in 18% it was diagnosed simultaneously and 36% after the onset 

of MS (Le Scanff et al., 2008).  

MS is an inflammatory disease that affects the central nervous system (CNS) and 

many environmental and genetic factors are believed to be involved (Koch et al., 2013). 

Uveitis is not regarded as gender specific but studies from different countries have 

shown a slight increase in females with male to female ratios 1:1.8 in Italy, 1:1.1 in 

Tunisia, 1.04:1 in Turkey, and 1.2:1 in India (Kazokoglu et al., 2008;Khairallah et al., 

2006;Modorati et al., 2004;Parchand et al., 2011). Among MS-associated uveitis, a 

study in Caucasians have shown that women were mostly affected with a male to female 

ration 1:2.1 (Le Scanff et al., 2008).  

SNPs in different regions of VDR have been linked with autoimmune diseases. As 

explained in chapter 1, FokI (rs2228570) is known as a start codon polymorphism where 

ATG is changed to ACG and this leads to a different VDR protein size. In the 3’ 

untranslated region (3’UTR), polymorphisms identified were BsmI (rs1544410), ApaI 

(rs7975232), and TaqI (rs731236). This is a regulatory region involved in mRNA stability 

and expression (Fernandes de Abreu et al., 2010;Uitterlinden et al., 2004a;Uitterlinden 

et al., 2004b;Valdivielso and Fernandez, 2006). Cdx2 and A1012G polymorphisms were 

identified in the 5’ promoter region. Cdx2 (G to A) polymorphisms affects intestinal 

calcium absorption and body mass density (Arai et al., 2001) while A1012G regulates 

the expression of GATA3, a transcription factor for the polarisation of T helper 1 (Th1) 

cells (Halsall et al., 2004).  
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As mentioned in Chapter 1, low serum 25(OH)D3 levels were associated with an 

increase in BD (Karray et al., 2012). This was associated with decreased Treg and 

predominating Th1 responses indicating an immunomodulatory role of vitamin D3 in the 

eye (Hamzaoui et al., 2010). VDR SNP FokI was associated with BD in a group of 

Tunisian patients (Karray et al., 2012;Morrison et al., 2011). FokI is a start codon SNP 

that affects the size of vitamin D protein and has been shown to modulate mRNA 

expression of NFAT, IL-12, and regulates pancreatic function (Mory et al., 2009;van 

Etten et al., 2007). BsmI is in the 3’UTR (regulatory region) that influences mRNA 

stability and expression (Arai et al., 2001;Rukin and Strange, 2007;Uitterlinden et al., 

2002). BsmI-CT genotype coincided with the presence of higher numbers of IL-12 

producing CD14+ cells in T2DM (Al-Daghri et al., 2012). T cells from T1DM patients 

homozygous for BsmI minor allele (TT) produced higher IFN- than other genotypes 

(Shimada et al., 2008). A1012G a promoter region SNP that has been linked to the 

expression of GATA3 and the differentiation of T helper 1 (Th1) cells (Halsall et al., 

2004).  

In this project we studied VDR SNPs FokI (rs2228570), BsmI (rs1544410), and 

A1012G (rs4516035) for association with IU in a cohort of patients with idiopathic IU. 

These SNPs have been chosen based on their functional relevance to the expression 

and production of vitamin D and effects on the immune response. Controls were disease 

free and were matched to patients according to ethnicity but not any other criteria. 
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5.2 Results 

5.2.1 Endpoint genotyping 

To study VDR SNPs, endpoint genotyping assay was performed. The assay allows 

an amplification of DNA followed by endpoint genotyping analysis that separates the 

different genotypes in clusters according to the fluorescent probe in an X-Y plot. 

Homozygous individuals cluster towards Y or X axis while heterozygotes cluster in the 

middle for SNPs FokI (rs2228570) (Figure 5.1), BsmI (rs1544410) (Figure 5.2), A1012G 

(rs4516035) (Figure 5.3). 
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Figure ‎5.1. Endpoint genotyping allele distribution of VDR SNP FokI (rs2228570) in 
IU patients vs. healthy controls. The plots show the frequency of FokI (rs2228570) 
alleles A and G. Each dot represents one sample. Individual samples clustered towards 
the Y-axis are homozygous for A allele (green), X-axis are homozygous for G allele 
(blue), and in the middle are heterozygous for AG alleles (red). Gray dots are negative 
controls and pink dots represent undetected samples by the assay.  
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Figure ‎5.2. Endpoint genotyping allele distribution of VDR SNP BsmI (rs1544410) 
in IU patients vs. healthy controls. The plots show the frequency of BsmI (rs1544410) 
alleles C and T. Each dot represents one sample. Individual samples clustered towards 
the Y-axis are homozygous for C allele (green), X-axis are homozygous for T allele 
(blue), and in the middle are heterozygous for CT alleles (red). Gray dots are negative 
control while Pink dots represent undetected samples by the assay.  
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Figure ‎5.3. Endpoint genotyping allele distribution of VDR SNP A1012G 
(rs4516035) in IU patients vs. healthy controls. The plots show the frequency of 
A1012G (rs4516035) alleles C and T. Each dot represents one sample. Individual 
samples clustered towards the Y-axis are homozygous for C allele (green), X-axis are 
homozygous for T allele (blue), and in the middle are heterozygous for CT  alleles (red). 
Gray dots are negative controls. 
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5.2.2 VDR genotype and allele frequencies 

The results in Table 5.1 show allele and genotype frequency in patients with IU 

compared to HC. VDR BsmI (rs1544410) is significantly different between patients with 

IU and HC. Allele rs1544410-T and genotype rs1544410-CT were significantly 

associated with IU (OR 1.56 95% CI 1.06-2.32, p=0.0325 and OR 1.88 95% CI 1.08-

3.27, p=0.0332 respectively). Conversely, VDR rs1544410-CC genotype was more 

frequent in healthy controls than IU patients (OR 0.44 95% CI 0.25- 0.78, p=0.007). 

There was no significant difference found in VDR FokI (rs2228570) and A1012G 

(rs4516035). The minor allele in FokI (rs2228570) is the A allele, (BsmI (rs1544410) is 

the T allele, and in A1012G (rs4516035) is the C allele. 

5.2.3 Gender difference between VDR genotypes and alleles 

To determine if there are differences between females and males in VDR SNPs, we 

compared between genotypes and alleles in IU patients and healthy controls (Table 

5.2). FokI (rs2228570) showed no differences between females and males in IU. In 

contrast, among healthy controls, genotype rs2228570-AG was significantly more 

frequent in males (OR 0.24 95% CI (0.01-0.60), p=0.0034) whereas genotype 

rs2228570-GG was significantly more frequent in females (OR 2.82 95% CI (1.09-7.27), 

p=0.0493). Although BsmI (rs1544410) was significantly associated with IU, there was 

no gender difference in both groups. Similarly, there was no difference between females 

and males in both groups in A1012G (rs4516035). 



                  Chapter  5    VDR polymorphism in intermediate uveitis                             152 

 

Table ‎5.1 VDR SNP BsmI (rs1544410) is associated with Intermediate uveitis (IU) in 
Caucasians. VDR SNPs FokI (rs2228570), BsmI (rs1544410), and A1012G 
(rs4516035) were analysed using real-time PCR and endpoint genotyping in a study 
population of Caucasians (only matched for ethnicity but no other criteria). Table shows 
genotype and allele frequency in IU patients vs. healthy controls (HC).  

SNPs 
Allele/Genotype 

IU  HC OR (95% CI) p value 

FokI (rs2228570) N=158 N=92   

A 112 (35.4) 73 (39.7) 0.83 (0.57-1.21)  

G 204 (64.5) 111 (60.3) 1.19 (0.82-1.74) 0.395 

AA 24 (15.1) 17 (18.5) 0.791 (0.39-1.56) 0.617 

AG 64 (40.2) 39 (42.4) 0.92 (0.55-1.6) 0.873 

GG 70 (22.0) 36 (39.1) 1.24 (0.73-2.1) 0.506 

BsmI (rs1544410) N=139 N=85   

C 150 (53.9) 110 (64.7) 0.64 (0.43-0.95)  

T 128 (46.0) 60 (35.3) 1.56 (1.06-2.32) 0.0325* 

CC 38 (27.3) 39 (45.8) 0.44 (0.25- 0.78) 0.007 ** 

CT 74 (53.2) 32 (37.65) 1.88 (1.08-3.27) 0.033* 

TT 27 (19.4) 14 (16.47) 1.22 (0.600-2.49) 0.706 

A1012G (rs4516035) N=140 N=86   

C 105 (37.5) 63 (36.62) 1.04 (0.70-1.54)  

T 175 (62.5) 109 (63.37) 0.96 (0.65-1.43) 0.9314 

CC 21 (15) 14 (16.28) 0.91 (0.43-1.89) 0.945 

CT 63 (45) 35 (40.70) 1.19 (0.69-2.05) 0.620 

TT 56 (40) 37 (43.02) 0.88 (0.51-1.52) 0.757 

Analysis was done using 2x2 tables and Chi-squared test with Yate’s correction: * 

p<0.05 and ** p<0.01. 
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Table ‎5.2 VDR SNP BsmI (rs1544410) shows no difference in between males and females in Caucasian IU patients and 
healthy controls (HC). VDR SNPs FokI (rs2228570), BsmI (rs1544410), and A1012G (rs4516035) were analysed using real-
time PCR and endpoint genotyping in a study population of Caucasians (only matched for ethnicity but no other criteria). Table 
shows genotype and allele frequency in males and femles of Caucasian IU patients vs. healthy controls (HC).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    

Analysis was done using 2x2 tables and Chi-squared test with Yate’s correction: * p<0.05 and ** p<0.01. 

SNPs Allele/Genotype IU  OR (95% CI) p value HC OR (95% CI) p value 

FokI (rs2228570) F (N=84 ) M (N=53 )   F (N=55 ) M (N=30 )   

A 65 (36.9) 42 (32.8) 1.18 (0.73-1.91)  44 (37.3) 29 (43.9) 0.76 (0.41-1.40)  

G 111 (63.1) 86 (67.2) 0.85 (0.52-1.37) 0.578 74 (62.7) 37 (56.1) 1.32 (0.71-2.43) 0.4670 

AA 15 (17.0) 8 (12.5) 1.44 (0.57-3.63) 0.587 13 (22.0) 4 (12.1) 2.05 (0.61-6.89) 0.371 

AG 35 (39.7) 26 (40.6) 0.96 (0.50-1.86) 0.9508 18 (30.5) 21 (63.6) 0.24 (0.01-0.60) 0.0034** 

GG 38 (43.2) 30 (46.8) 0.86 (0.45-1.65) 0.774 28 (47.5) 8 (24.2) 2.82 (1.09-7.27) 0.0493* 

BsmI (rs1544410) F (N=83 ) M (N=52 )   F (N=55) M (N=37 )   

C 88 (53.0) 58 (55.7) 0.89 (0.55-1.46)  73 (66.3) 44 (59.4) 1.34 (0.73-2.47)  

T 78 (47.0) 46 (44.2) 1.12 (0.68-1.83) 0.7513 37 (33.6) 30 (40.) 0.74 (0.40-1.37) 0.4248 

CC 23 (27.7) 14 (0.26) 1.04 (0.47-2.27) 0.9216 25 (45.4) 14 (37.8) 1.37 (0.58-3.20) 0.6102 

CT 42 (50.6) 30 (57.7) 0.75 (0.37-1.51) 0.5311 23 (41.8) 16 (43.2) 0.94 (0.41-2.19) 0.9366 

TT 18 (21.7) 8 (15.4) 1.52 (0.61-3.81) 0.4969 7 (12.7) 7 (18.9) 1.60 (0.51- 5.02) 0.6067 

A1012G (rs4516035) F (N=63 ) M (N=73 )   F (N=54) M (N=32 )   

C 54 (42.8) 50 (34.2) 1.44 ( 0.88-2.35)  36 (57.1) 27 (42.80 0.68 ( 0.36-1.29)  

T 72 (57.1) 96 (65.7) 0.69 ( 0.42-1.14) 0.1828 72 (66.1) 37 (33.9) 1.46 ( 0.77-2.76) 0.3167 

CC 10 (15.9) 11 (15.1) 1.06 ( 0.42-2.70) 0.9136 8 (14.8) 8 (18.8) 0.75 ( 0.24-2.41) 0.8606 

CT 34 (53.9) 28 (38.4) 1.88 ( 0.95-3.73) 0.0989 20 (37.0) 15 (46.8) 0.66 ( 0.27-1.62) 0.5025 

TT 19 (30.2) 34 (46.5) 0.49 ( 0.24-1.00) 0.0749 26 (48.1) 11 (34.4) 1.77 ( 0.72-4.38) 0.3069 
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5.3 Discussion 

Results in this chapter showed an association between BsmI (rs1544410) and IU 

in a cohort of Caucasians. Allele rs1544410-C and genotype rs1544410-CT were 

significantly increased in patients with IU compared to healthy controls. Conversely, the 

rs1544410-CC genotype was more frequent in healthy controls. There was no difference 

in genotype and allele frequency between females and males in BsmI (rs1544410).  

Extra-renal expression of vitamin D3 identified a wide range of immunomodulatory 

functions of this hormone in many organs. In the eye, we and others have shown that 

many ocular cells express vitamin D3 pathway components (Lin et al., 2012;Yin et al., 

2011) and can locally convert inactive vitamin D3 to its active form (Alsalem et al. this 

thesis and manuscript submitted). IU has been linked with MS through HLA-DRB1*15, a 

molecule that is regulated by vitamin D3 (Ramagopalan et al., 2009).  

FokI (rs2228570) and A1012G (rs4516035) did not show any difference between 

patients with IU and healthy control group in this thesis although FokI (rs2228570)-AG 

and FokI (rs2228570)-GG were significantly more frequent in healthy males and females 

respectively. BsmI is located in intron 8 in the regulatory region of VDR and it may affect 

mRNA stability (Uitterlinden et al., 2002). SNPs in this region might not have an effect 

individually but may do as a haplotype with the closely linked SNPs.  

Studies on haplotype constructs from 3’UTR of VDR in human osteoblast cell line 

MG63 showed that minor alleles of BsmI-ApaI-TaqI (CCT) haplotype, which is more 

common in Caucasians, resulted in a 30% faster decay of VDR protein and may result in 



                  Chapter  5    VDR polymorphism in intermediate uveitis                             155 

 

lower protein level of VDR available in the cells (Fang et al., 2005;Grundberg et al., 

2007). The same haplotype was associated with asthma and atopy in a familial cohort in 

Canada (Poon et al., 2004). 

In PBMCs from a study group in India, CCT haplotype was associated with 

decreased IL-12p40 and IFN- in response to challenge with complete Freund's 

adjuvant, and 1,25(OH)2D3 in vitro and increased IL-10 levels in response to live Mtb and 

1,25(OH)2D3 in the control group (Selvaraj et al., 2008). SNPs in VDR have been linked 

to susceptibility to both T1DM and T2DM in different populations. In a recent meta-

analysis on papers up to November 2011, there is a significant association between 

BsmI (especially in East Asia) and increased risk to T1DM whereas BsmI (only in East 

Asia) and FokI (especially in East Asia) was significantly associated with T2DM (Wang 

et al., 2012).  

In concordance with our results, BsmI (rs1544410)-CT genotype was associated 

with T2DM in Saudi patients, BsmI-CT genotype was associated with the presence of 

higher numbers of IL-12 producing CD14+ cells (Al-Daghri et al., 2012). T cells from 

T2DM patients with genotype BsmI-TT produced higher IFN- than other genotypes 

(Shimada et al., 2008).  

Inflammation in uveitis in mouse models is driven by Th1 cells leading to the 

production of IFN- (Horai and Caspi, 2011). This association may indicate a role of 

VDR polymorphism in the pathogenesis of human uveitis by upregulating inflammatory 

Th1 response. In contrast to our results, BsmI was not associated with BD uveitis in 

Tunisian patients, but FokI was significantly associated (Karray et al., 2012) and this 
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could be due to the fact that VDR polymorphisms vary with ethnic background . We 

could not detect any difference in FokI and A1012G between controls and patients with 

IU in our patients. FokI polymorphism has been found to influence VDR mRNA copy 

numbers and may regulate CYP27B1 expression to increase active vitamin D3 

production in deficient patients (Ogunkolade et al., 2002). The A allele of A1012G 

increases the expression of GATA3 and directs the polarisation of Th0 cells to Th2 

phenotype and it was protective against the inflammatory skin disease psoriasis (Halsall 

et al., 2004).  

Although vitamin D3 levels have been strongly linked to MS, VDR polymorphisms 

studies showed no association between SNPs in VDR or other vitamin D3 related genes 

such as metabolic enzymes CYP27B1 and CYP2R1, catabolic enzyme CYP24A1, or 

vitamin D3 binding protein (DBP) with the aetiology of the disease (Huang and Xie, 

2012;Irizar et al., 2012;Simon et al., 2010). Nevertheless, the coexistence of TaqI and 

HLA-DRB1*15 correlated with protection against MS, and only a rare variant of 

CYP27B1 was associated with MS (Agliardi et al., 2011;Ramagopalan et al., 2011). It 

would be worth while investigating the expression of HLA-DRB1*15 in our cohort and try 

to explain its role with VDR SNPs in the protection against and progression to MS.  

Other VDR SNPs and vitamin D3 related genes polymorphisms may have a role 

in eye diseases. Polymorphism (G allele at rs4752) in DBP increased risk for uveitis in 

with ankylosing spondylitis in Korean patients (Jung et al., 2011). Another association 

between SNPs in IL-2 receptor alpha (IL-2RA) and IL-7 receptor alpha (IL-7RA) and risk 

of MS (Weber et al., 2008). A SNP in IL-2RA has recently been reported to be 
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associated with IU (Lindner et al., 2011). Several SNPs in CYP24A1 SNPs were 

associated with neovascular AMD while VDR, CY27A1, and CYP27B1 were not 

associated (Morrison et al., 2011). In IU, the inflammation extends to ciliary body and 

peripheral retina (Babu and Rathinam, 2010). We have shown that non-pigmented 

ciliary body cells can locally convert 25(OH)D3 into active 1,25(OH)2D3 (Alsalem et al. 

manuscript submitted). BsmI polymorphisms may affect local production of 1,25(OH)2D3 

and increase the risk of developing a stronger Th1 response that can worsen the 

pathogenesis by the production of IL-12 and IFN-.  

In conclusion, we have shown that VDR BsmI is associated with IU but there was 

difference among alleles and genotypes between males and females. FokI and A1012G 

did not show any association with disease. Following the genetic basis that link uveitis to 

MS would help get a deeper insight into the pathogenesis and outcome of IU. BsmI 

might have a function in IU alone or in conjunction with closely linked SNPs in VDR or 

vitamin D3 related genes. 
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6 GENERAL DISCUSSION 

 In this thesis, results have shown (i) that human ocular barrier epithelial cells 

express the molecular components capable of local conversion of inactive 25(OH)D3 into 

active 1,25(OH)2D3; (ii) local vitamin D3 synthesis upregulated mRNA expression of 

HDPs but did not synergise with TLR to induce proinflammatory cytokines; and (iii) a 

significant association between VDR SNP BsmI (rs1544410) and genotype rs1544410-

CT was significantly increased in Caucasian patients with intermediate uveitis compared 

to healthy controls (Figure 6.1) 

 

Figure ‎6.1. A model for the role of 1,25(OH)2D3 in ocular barrier epithelial cells. 

Local synthesis of 1,25(OH)2D3 (from 25(OH)D3 or potentially 7DHC) by ocular barrier 

epithelial cells controls the production of HDPs during homeostasis to keep a state of 

immune surveillance. During inflammation, local 1,25(OH)2D3 controls the production of 

HDPs and cytokine production by infiltrating macrophages. Infiltrating macrophages also 

contribute to local 1,25(OH)2D3 synthesis and provide a positive feedback to the 

process. 
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6.1 Extra-renal vitamin D3 synthesis by ocular barrier epithelial cells 

Consistent with many human epithelial cells, ocular barrier epithelial cells express 

all the genes for the molecules and enzymes required for the uptake and local synthesis 

of vitamin D3. The activity of these genes is reflected by the ability of these cells to take 

up 25(OH)D3 and convert it into 1,25(OH)2D3, whereas the constitutive expression of 

CYP24A1 suggests a controlled negative feedback mechanism to regulate the levels of 

1,25(OH)2D3 produced. As stated earlier, there was a conversion gradient with HCEC-12 

cells having the highest rates followed by ODM-2 and ARPE-19. 

Corneal endothelium is at the front of the eye and from these data, we can see 

that endogenous 1,25(OH)2D3 production decreases as we go from the front to the back 

of the eye. We are not sure if this is related to the amount of UV light available for these 

cells. It could also be related to the role of corneal endothelium as an important barrier 

between AqH and corneal stroma followed by ciliary body in BAB and that constitutive 

1,25(OH)2D3 production may be required for their protective functions in the eye from 

front to back.  

The localisation of VDR and CYP24A1 was similar between ocular barrier 

epithelial cells, but CYP27B1 had a different expression pattern in HCEC-12 indicative 

of its localisation to the TGN. We still have no explanation for this pattern and as we 

mentioned in Chapter 3, that this enzyme may follow a different trafficking pathway 

inside these cells. Human breast cancer epithelial cells T-47D internalised Alexa-DBP in 

the peri-nuclear which colocalised with lysosomes which suggested that DBP traffics 

through endosomes and lysosomes (Rowling et al., 2006). This may indicate that due to 



                            Chapter  6    General discussion                                                       160 

 

the presence of CYP27B1 in TGN in HCEC-12, these cells can readily and efficiently 

convert 25(OH)D3 delivered by DBP in endocytic vesicles.  

The expression of CYP27B1 was detected in untreated cells and it may be helpful 

to compare it to the expression in cells treated with 25(OH)D3 or 1,25(OH)2D3 or even to 

add labelled 25(OH)D3 and follow its fate inside the cell. Extra-renal vitamin D3 may be 

essential as ocular barrier epithelial cells and many others express CYP2R1 needed for 

the conversion of vitamin D3 from the circulation into 25(OH)D3. A more immediate 

source of 1,25(OH)2D3 is needed to resolve infection or inflammation to maintain optical 

clarity or homeostatic conditions independent of the liver and kidneys.  

The main function of 1,25(OH)2D3 is to support bone growth and health, and 

extra-renal synthesis of 1,25(OH)2D3 may also contribute to increase the concentrations 

of 1,25(OH)2D3 required for bone health. Serum 1,25(OH)2D3 concentrations range from 

50 to 150 pmol/L (Lips, 2007), however 1,25(OH)2D3 in culture supernatants from ocular 

barrier epithelial cells does not reflect in vivo levels of vitamin D3.  

To overcome this limitation, we measured 1,25(OH)2D3 in AqH from normal 

healthy individuals. The levels that we obtained (1.9-4.8 pmol/L) were much lower than 

in serum and cell culture supernatants. When 1,25(OH)2D3 was measured in synovial 

fluids, the levels were not very different from those in serum (50-100 pmol/L) (Inaba et 

al., 1997). In the cerebrospinal fluid (CSF) of normal people, levels above 50 pmol/L of 

1,25(OH)2D3 were detected (Balabanova et al., 1984). The levels of 1,25(OH)2D3 found 

in pleural fluid from Mtb patients were 100% higher than serum levels (Barnes et al., 

1989). It would be interesting to investigate uveitic AqH to identify whether similar 



                            Chapter  6    General discussion                                                       161 

 

increases in vitamin D3 are seen in the eye in the context of intraocular inflammation, or 

tear film in ocular surface disease. This variation between the amounts of 1,25(OH)2D3 in 

the eye and other biological fluids may be a result of the difference in organ size and 

volume, turnover of these fluids, and the very limited amount of protein allowed into AqH 

(Freddo, 2001), as the other tissues are not protected by tissue barriers. 

Unlike monocytes/macrophages and epithelial cells, fibroblasts, are unable to 

convert inactive 25(OH)D3 into active 1,25(OH)2D3 although they express vitamin D3 

metabolic and catabolic enzymes. We have previously shown that primary human 

scleral fibroblasts express CYP27B1 but did not convert 25(OH)D3 into 1,25(OH)2D3 

(Susarla et al. manuscript submitted). Similarly, dermal fibroblasts express CYP2R1 but 

not CYP27B1 and can produce 25(OH)D3 upon UVB irradiation but not 1,25(OH)2D3 

(Vantieghem et al., 2006). Primary synovial fibroblasts also failed to endogenously 

synthesise 1,25(OH)2D3 in vitro. Synovial fibroblasts are thought to regulate synovial 

levels of 1,25(OH)2D3 with their CYP24A1 activity (Hayes et al., 1992;Smith et al., 1999).  

In contrast, primary human gingival fibroblasts express CYP2R1, CYP27A1, and 

CYP27B1 and can locally synthesise both 25(OH)D3 and 1,25(OH)2D3 upon treatment 

with vitamin D3 and 25(OH)D3 (Liu et al., 2012b;Liu et al., 2012c). With the exception of 

gingival fibroblasts, it seems that epithelial cells, which act as the first line of defence as 

barriers in different sites in the body, are designed with the ability to produce 

1,25(OH)2D3 that contributes to their protective function against pathogens. This includes 

epithelial cells in the lung, colon, skin, gingival, breast, placenta, and cornea (Bikle et al., 

2004;Halhali et al., 1999;Hansdottir et al., 2010;Kong et al., 2008;Markov et al., 
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2012;McMahon et al., 2011;Yin et al., 2011). At least in primary mouse mammary 

epithelium, mouse intestinal epithelium in vivo, Caco-2 cell line, and primary rabbit 

corneal epithelial cells, vitamin D3 promotes barrier function by upregulating TJ proteins 

and barrier formation (Bikle et al., 2004;Kong et al., 2008;Markov et al., 2012;Yin et al., 

2011). 

6.2 The immunomodulatory role of locally synthesised 1,25(OH)2D3 in 
ocular barrier epithelial cells 

The ability of ocular barrier epithelial cells to convert 25(OH)D3 into the active 

metabolite, 1,25(OH)2D3, prompted us to ask if locally synthesised 1,25(OH)2D3 has any 

immunomodulatory role in these cells. We first tested the ability of the cells to upregulate 

vitamin D3 genes (VDR, CYP27B1, and CYP24A1) in response to local conversion of 

25(OH)D3 or to 1,25(OH)2D3. Local 25(OH)D3 conversion was as efficient in upregulating 

downstream signalling of VDR activation as direct delivery of 1,25(OH)2D3. In line with 

the conversion rates, HCEC-12 cells showed the highest fold change increases in 

vitamin D3 genes followed by ODM-2 then ARPE-19. 

In this project, and due to the difficulties of obtaining and growing primary cells, 

well-established representative cell lines of ocular barrier epithelial cells were used. The 

use of cultured cells does not allow a full understanding of the mechanisms used by 

vitamin D3 in the eye tissue and does not give information on the interaction between 

different cell types in the context of local 1,25(OH)2D3 synthesis. However, these cell 

lines do provide a means of addressing biological pathways that would not be possible 

with primary cells. A second way to address this point is to use animal models. VDR KO 
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mice are available commercially and are used to understand the importance of vitamin 

D3 for different functions, but they have their own limitations.  

In humans, vitamin D3 is mainly synthesised in the skin through the conversion of 

7DHC by UVB exposure. Mice are nocturnal animals that live without sunlight exposure 

and their skin is covered with fur. To survive, mice need very small amounts of vitamin 

D3, which they may have evolved to obtain from diet (particularly chow diet in laboratory 

conditions) (Holick, 2008;McCann and Ames, 2008). As stated in Chapter 4, mouse 

CRAMP is not regulated by vitamin D3 (Dorschner et al., 2001). Homologues of hBDs 

have been identified in mouse models (mouse BD: mBD) and they contribute to 

protection and corneal barrier function in mice bacterial keratitis (corneal infection) 

caused by Pseudomonas aeruginosa (P. aeruginosa) in vivo and in vitro (Augustin et al., 

2011;Doss et al., 2010;Wu et al., 2009). It is still unclear if mBD production in mice is 

vitamin D3-dependent (Liu et al., 2009b). However, VDR KO mice develop many health 

and growth problems that mimic those in humans and are still used to understand 

human disease (Bouillon et al., 2008). 

VDR KO mice were smaller in size, developed alopecia, had wrinkled skin, and 

showed growth arrest when they were compared to wild type. As they grew older, they 

expressed lower levels of aging-related molecules including NF-B, FGF-23, insulin like 

growth factor-I (IGFI), IGFI-receptor (IGFIR), p53, and Klotho. These molecules are 

required for the immune system, tumour suppression, and determining life span. The 

decreased expression was only seen in old, but not young, mice suggesting the role of 

VDR absence in inducing premature aging (Keisala et al., 2009).  
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The relationship between vitamin D and aging is complex. FGF-23 is induced by 

25(OH)D3  but in turn inhibits renal phosphate reabsorption and 1,25(OH)2D3 synthesis, 

and induces CYP24A1 production. FGF-23 knock-out mice show a shortened lifespan, 

arteriosclerosis, and obstructive pulmonary disease. Therefore while FGF-23 production 

is almost entirely dependent on 25(OH)D3, it’s function as a longevity gene is based on 

control of 1,25(OH)2D3 (Haussler et al., 2010). VDR KO mice were found to develop 

hypocalcaemia, hyperparathyroidism, and reduced intestinal calcium absorption. 

Interestingly, VDR KO mice produced more serum 1,25(OH)2D3, expressed higher renal 

CYP27B1 mRNA, and showed reduced CYP24A1 mRNA expression compared to 

VDR+/- mice and Tg mice with VDR expression limited to the intestine. VDR KO mice 

showed skeletal abnormalities with shorter femurs and low bone mass density (Xue and 

Fleet, 2009). Although VDR KO mice have normal myelopoiesis, they develop several 

defects in the immune system including reduced T cell proliferation, reduced Th1 

cytokines, mature DC phenotype, and decreased T cell homing to inflammatory sites 

(Bouillon et al., 2008). To date, ocular disease in VDR KO mice has not been 

investigated. 

It is well established that although the eye has a unique structure and immune 

regulation, innate immune system in the eye plays an important function in immune 

surveillance and defence against ocular infections (Lambiase et al., 2011). We could 

show that TLR signalling is functional in ocular barrier epithelial cells, but there was no 

synergy between vitamin D3 and TLR activation to affect the proinflammatory cytokines 

IL-6 and IL-8. In respiratory epithelial cells, the synergy was between vitamin D3 and 
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TLR3, rather than TLR2, as in monocytes, to induce cathelicidin (Hansdottir et al., 2008). 

In ocular barrier epithelial cells we observed that the highest cytokine production was in 

response to TLR3 and RIG-I/MDA5 activation. As mentioned above, IL-6 and IL-8 are 

induced through MyD88 signalling and activation of NF-B (Yang and Seki, 2012). When 

respiratory epithelial cells were infected with human respiratory syncytial virus (RSV) 

which interacts with TLR3 or RIG-I/MDA5 in vitro, exogenous 1,25(OH)2D3 inhibited NF-

B signalling and reduced IFN-β and interferon-γ-inducible protein 10 (IP-10, CXCL10), 

a chemokine produced in response to viral infections that attracts Th1 and NK cells. The 

inhibition of NF-B and the reduction in IFN-β did not allow viral replication to increase, 

which indicates that 1,25(OH)2D3 reduces inflammation but maintains an antiviral 

response.  

The induction of HDPs, which are important for innate immunity, by 1,25(OH)2D3 

or by local conversion may also contribute to viral infection resolution (Hansdottir et al., 

2010;Spurrell et al., 2005). When a human keratinocyte cell line was infected with 

varicella zoster virus (VZV) and exposed to exogenous LL-37 or hBD-2, viral load was 

reduced. Moreover, pretreatment of the virus with LL-37 or hBD-2 before infecting the 

cells resulted in further reduction in viral load. This shows that HDPs have a direct effect 

on the virus (Crack et al., 2012). VDR KO mice showed increased in vivo NF-B 

expression and NF-B translocation to the nucleus in colonic epithelial cells after 

infection with Salmonella typhimurium (S. typhimurium) (Wu et al., 2010).  

NF-B is a key molecule in eye infections induced by TLR signalling in bacterial 

and viral (Herpes simplex-1: HSV-1) keratitis, for the modulation of immune response 
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(Lan et al., 2012). The fact that local 1,25(OH)2D3 synthesis by ocular barrier cells did 

not affect IL-6 and IL-8 production in the current thesis after TLR stimulation may explain 

that the level of 1,25(OH)2D3 induced is inhibitory for inflammatory signals, but permits a 

certain degree of inflammation to resolve infection. 

Although not statistically significant, we can see that local synthesis of 

1,25(OH)2D3 induces the expression HDPs in all ocular barrier epithelial cells used in 

this study. The mRNA expression levels of HDPs were higher in HCEC-12 and ARPE-19 

cells than in ODM-2 cells. This may support their role in corneal endothelium and RPE 

as barriers at the front and back of the eye. Haynes et al. detected hBD-1 in human AqH 

and vitreous samples in small concentrations (<16 ng/ml) but could not detect hBD-2 

(Haynes et al., 2000).  

It has been observed in humans that hBDs and LL-37 are sensitive to salt 

concentrations that might render them ineffective in ocular fluids with a high salt content, 

such as tears. They can be present in small concentrations but synergistic with each 

other to overcome the effect of salt. This could be an advantage to the eye as high 

concentrations can be toxic to ocular cells (Huang et al., 2007;McDermott, 2009). The 

ability of endogenous 1,25(OH)2D3 to induce HDPs may be beneficial to the eye where 

there is microbial clearance without inducing local damage by inflammation, thereby 

maintaining visual clarity.  

As mentioned in Chapter 1, HDPs are not only antimicrobial but have 

immunomodulatory functions. For example, human PBMCs stimulated with IFN- and 

LPS in the presence of LL-37, produced lower levels of TNF-α and IL-12 proteins even 
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at low concentrations of LL-37 which could resemble physiological conditions. Similar 

results were seen with lipoteichoic acid (TLR2 ligand), but not with Pam3Csk4 (synthetic 

TLR2/1 ligand), as there was a reduction of IL-6 production after stimulation of an 

intracellular PRR NOD2 (nucleotide-binding oligomerisation domain-containing protein 

2) with its ligand muramyl dipeptide (MDP). LL-37 downregulated the expression of 

CD80, CD86, and MHC II on monocytes and DCs after treatment with IFN- and LPS 

and reduced the expression of TNF-α and IL-12 (Nijnik et al., 2009). A similar reduction 

of proinflammatory cytokine transcription and production was observed when mouse BM 

derived monocytes and DCs were treated with LPS in the presence of hBD-3. The 

inhibitory effects of hBD-3 were mediated through the inhibition of MyD88 and TRIFF 

signalling (Semple et al., 2011).  

6.3 Association of VDR SNPs with IU 

In this thesis, we have shown an association between BsmI and IU in Caucasians 

but there was no difference between males and females in this association. Although in 

this project, ocular barrier epithelial cells, in particular the corneal endothelium and 

ciliary body, are able to efficiently synthesise local vitamin D3, the eye still gets diseases 

such as uveitis. In addition, with supplementation there was a reduction in retinal 

inflammation and accumulation of Aβ associated with aging, indicating that locally 

synthesised vitamin D3 does not prevent the effects of aging or is not produced in 

sufficient levels to prevent aging (Lee et al., 2012). Vitamin D3 played a protective 

immunomodulatory role in BD (Tian et al., 2012), but these results are only from in vitro 
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investigations; they do not accurately depict what happens inside the body in eye 

inflammation in relation to vitamin D3 levels or supplementation.  

Vitamin D3 metabolism is influenced by many genes including those in the 

metabolic pathways, DBP, and cubilin and megalin. A systematic review of the different 

SNPs in relation to the levels of 25(OH)D3 showed that the minor allele T of FokI was 

associated with higher concentrations of 25(OH)D3. Only one SNP in CYP27B1 and one 

in DBP were associated with 25(OH)D3 levels. Other SNPs in CYP24A1, CYP27A1, and 

CYP2R1 did not shown any association with 25(OH)D3 (McGrath et al., 2010).  

A genome wide study has shown a significant association between 25(OH)D3 and 

several genes involved in, or near genes involved in the vitamin D3 pathway. A positive 

association was found with a SNP in NADSYN1, a gene encoding nicotinamide adenine 

dinucleotide (NAD) synthetase was in high LD with one SNP in the skin precursor 

7DHC. Another association was found with a SNP in chromosome 10 near 

ACADSB (acyl-coenzyme A dehydrogenase), an enzyme involved in the synthesis of 

cholesterol and vitamin D3, in addition to a SNP in CYP2R1 (Ahn et al., 2010). Although 

one SNP in cubilin was more frequent among T1DB patients, it was not associated with 

circulating 25(OH)D3 or 1,25(OH)2D3 (Ramos-Lopez et al., 2010).  

A very recent study in European women investigating carotenoids in age-

related eye disease showed that two SNPs in DBP and four SNPs in CYP2R1 were 

associated with serum 25(OH)D3 levels in women taking supplementation of >400 

international units (IU)/day. There was an association only in the blood drawn in the 

summer but not in the winter (Engelman et al., 2013). 1,25(OH)2D3 interacts with so 
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many other genes which may have their own polymorphisms and the influence of these 

SNPs on vitamin D3 activity will have wide ranging implications well beyond the 

mechanism identified in the current study. These complex interactions will require future 

systems biology approaches to define outcome.  

Based on the availability of 25(OH)D3, ocular barrier epithelial cells can 

constitutively convert it into 1,25(OH)2D3. This may indicate an important role for 

1,25(OH)2D3 in maintaining homeostatic conditions in the eye. More than 120 gene 

polymorphisms have been detected in DBP. There are three major known alleles, 

named after their Gc-globulin (group-specific component or Gc) electrophoretic 

migration; Gc1f (fast), Gc1s (slow), and Gc2. Gc1 phenotype binds with higher affinity to 

vitamin D3 metabolites than Gc2. Gc1f is more frequent in black Africans and black 

Americans while Gc2 is markedly high in Caucasians (Gomme and Bertolini, 

2004;Speeckaert et al., 2006). Liu et al. detected low serum levels of 25(OH)D3 in 

African-Americans compared to Caucasians. When monocytes were activated with 

TLR2/1L in the presence of sera from African-Americans, cathelicidin mRNA expression 

was lower than in cells treated with sera from Caucasians (Liu et al., 2006).  

The role of DBP in vitamin D function is another area of complexity. Murine 

studies have shown that DBP null-mice have very reduced levels of serum 1,25(OH)2D3 

(less than 1%), but calcium levels were completely normal. Kidney tissue expressed 

double the mRNA of CYP27B1 compared to wild-type mice, but CYP24A1 was reduced. 

Although 1,25(OH)2D3 was significantly reduced, tissue accumulation and activation of 

1,25(OH)2D3 was not affected by the loss of DBP in null-mice compared to wild type. 
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These results suggest that DBP is not essential for the delivery of 1,25(OH)2D3 to certain 

target cells and it can be replaced by low-affinity binding proteins such as albumin (Zella 

et al., 2008).  

When human monocytes were treated with exogenous 25(OH)D3 or 1,25(OH)2D3 

in the presence of serum from DBP-/- mice there was an increase in the expression of 

cathelicidin and CYP24A1. This expression was reduced with serum from DBP+/- mice. 

When 25(OH)D3 or 1,25(OH)2D3 were added in serum free medium in the presence of 

albumin, cathelicidin and CYP24A1 were efficiently induced. Under the same conditions, 

the addition of as low as 0.1 µM of exogenous DBP significantly reduced the expression 

of cathelicidin and CYP24A1. Although monocytes lacked the expression of megalin, 

they were able to internalise DBP, but to a low level compared to control cells 

expressing megalin and cubilin. This study has also shown that when monocytes were 

treated with 25(OH)D3 in the presence of 5% serum from donors with six combinations of 

DBP major alleles; Gc1F, Gc1S, and Gc2, cells were more sensitive to 25(OH)D3 and 

induced higher expression of cathelicidin and CYP24A1 when Gc1f was absent. As 

genetic variants of DBP determine how much of 25(OH)D3 or 1,25(OH)2D3 is available 

for cellular uptake, the authors suggest to determine DBP genotype for individuals in 

addition to circulating 25(OH)D3 measurement (Chun et al., 2010). 

Similar findings were reported by Jeffery et al. where the addition of DBP to DCs 

co-cultured with T cells, inhibited the uptake of 25(OH)D3 by DCs and suppressed the 

antiinflammatory effects seen previously on CD4+CD25- T cells. The inhibitory effects of 

DBP were more pronounced in 25(OH)D3 than 1,25(OH)2D3 (Jeffery et al., 2012). 
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 Unlike monocytes and DCs, human mammary epithelial cells express cubilin and 

megalin coreceptors. Human immortalised mammary epithelial (HME) cells were able to 

upregulate CYP24A1 in response to 25(OH)D3 or 1,25(OH)2D3 in the presence or 

absence of DBP. They were able to internalise DBP by endocytosis and the 

internalisation was inhibited with the use of a megalin inhibitor. The breast cancer 

epithelial MCF-7 cell line expresses megalin but lacks the expression of cubilin. Despite 

the presence of CYP27B1 in these cells, they failed to induce CYP24A1 in response to 

exogenous 25(OH)D3 or 1,25(OH)2D3 (Rowling et al., 2006).  

Another molecule at the cytoplasmic tail of megalin, the mitogen-responsive 

phosphoprotein disabled-2 (Dab2) is believed to be essential for the endocytosis of 

cubilin and megalin. It has been identified in human primary tubular epithelial cells 

(PTEC) and in the breast cancer epithelial T-47D cell line after it was induced to 

differentiate (Chlon et al., 2008;Gallagher et al., 2004). In this context, ocular barrier 

epithelial cells expressed cubilin mainly, as megalin was expressed but very poorly, 

indicating that they are capable of internalising DBP-bound 25(OH)D3 shown by their 

efficiency, at least in HCEC-12 and ODM-2, to uptake and metabolise 25(OH)D3. The 

contribution of cubilin and megalin in DBP-25(OH)D3 internalisation by ocular barrier 

epithelial cells is worthy of further investigation, taking into consideration the lack of 

evidence on the presence of DBP in AqH or eye tissue.  
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6.4 Vitamin D3 in context of inflammation  

Vitamin D3 synthesis is known to be a major advantage of exposure to sunlight 

but several studies have suggested a protective role of UV light independent of vitamin 

D3. Pretreatment of a murine model with UV rays (UVR) did not prevent the onset of 

experimental autoimmune encephalomyelitis (EAE) induced by subcutaneous injection 

with myelin oligodendrocyte glycoprotein (MOG) peptide 33-35 (MOG33-35). This 

pretreatment caused a slight increase in circulating serum 25(OH)D3. By comparison, 

when UVR treatment was continuous before and after immunisation with MOG, there 

was a significant suppression in EAE clinical score and disease severity. There was a 

significant increase in 25(OH)D3, but it was only transient and did not keep increasing 

with continuous UVR exposure. Treatment of the animals with increasing doses of 

25(OH)D3 up to levels causing hypercalcaemia, failed to suppress EAE which suggests 

a protective role of UVR independent of 25(OH)D3 (Becklund et al., 2010).  

UVR exposure correlated inversely with risk of developing MS in a Swedish study 

population and positively with serum 25(OH)D3 levels. About 47% of the cases were 

included in the study within 2 years, and 64% within 4 years of MS onset. Taking the 

HLA-DRB1*15 genotype into account, there was no association between UVR exposure 

and HLA-DRB1*15 nor between HLA-DRB1*15 and 25(OH)D3 deficiency with risk of 

developing MS at study inclusion (Baarnhielm et al., 2012).  

Murine studies have shown that in addition to interacting with 7DHC in the skin, 

exposure to UVR interacts with other molecules in the skin such as DNA, lipids and 

resident APCs to induce immunosuppression. DCs with damaged DNA can migrate to 



                            Chapter  6    General discussion                                                       173 

 

draining lymph nodes and induce CD4+CD25+Foxp3+ Tregs (Hart et al., 2011). In a 

murine study, male mice from vitamin D3 deficient mothers kept on a vitamin D3 deficient 

diet had significantly lower serum 25(OH)D3 than their female littermates. Vitamin D3 

deficient male mice have low levels of the vitamin D3 precursor 7DHC in their skin, and 

their kidneys expressed higher levels of CYP27B1 and CYP24A1 mRNA than females.  

To study the effect of vitamin D3 induced by UVR on serum 25(OH)D3 and 

immune response, these mice were exposed to different doses of UVR. Of the vitamin 

D3 deficient group, female mice showed an increase in serum 25(OH)D3 compared to 

males, although the levels remained <25 nmol/L. Dietary supplementation of vitamin D3 

increased serum 25(OH)D3 in both male and female mice, but male mice still showed 

levels lower than females, similar to levels in vitamin D3 sufficient male mice. UVR only 

increased skin production of 1,25(OH)2D3 in female, but not male mice in the vitamin D3 

deplete group. There was no difference between males and females in UVR’s local and 

systemic immunosuppressive effects upon sensitisation with 2,4-dinitrofluorobenzene 

(DNFB) in the ear lobes. DCs from UVR irradiated vitamin D3 deficient male and female 

mice were isolated and expanded in vitro. When injected subcutaneously with DNFB in 

the ears of naïve mice, they failed to induce a Th1/17 inflammatory response. 

Furthermore, UVR irradiation suppressed allergic reactions in both male and female 

vitamin D3 deficient mice shown by reduced eosinophil numbers and IL-15 in their 

bronchoalveolar lavage after inhaling ovalbumin (OVA) for three days. If vitamin D3 

protects from autoimmune diseases, the previous study does not explain why females 
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have more tendencies to autoimmune diseases although they make higher serum 

25(OH)D3 in response to UVR (Gorman et al., 2012).  

In sunny countries, such as Saudi Arabia, one would expect women with scarves 

and veils to be more vitamin D3 deficient than men who do not need to cover. One study 

in the east of Saudi showed a high prevalence of vitamin D3 deficiency in Saudi 

participants, however there was no difference between men and women although 

according to the questionnaire >65% and >90% had adequate sunlight exposure and 

dietary intake respectively (Elsammak et al., 2011). Another study from Jeddah on the 

west coast of Saudi reported 87.8% deficiency in Saudi men, in particular among obese 

and older participants with no education (Ardawi et al., 2012). Education can help 

increase their awareness of the importance of sunlight exposure and vitamin D3 dietary 

intake.  

However, a study in Jordan has found low circulating 25(OH)D3 levels among 

women covering all the body only showing the face and hands (54.8% in summer and 

77.6% in winter) and in those that cover all the body including the face and hands 

(83.3% in summer and 81.8% in winter) compared to ladies with a western dress style 

(30.8% in summer and 75% in winter). The differences between the three groups in 

25(OH)D3 were not statistically significant, but the two groups of covered women were 

significantly lower than men as low vitamin D3 is found in 18% and 45.5.% of Jordanian 

men in summer and winter respectively (Mishal, 2001). The tendency of people to spend 

most of their time indoors to avoid the heat, and to watch TV and play video games in 
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addition to air pollution caused by industry are all factors that contribute to widespread 

vitamin D3 insufficiency and deficiency (Mead, 2008).  

Based on the results and data presented in this thesis there is a clear case for 

vitamin D3 supplementation. Vitamin D3 is cheap, easily available, and is safe to use, 

except at very high levels, but there is big debate on how much is enough for an 

individual and whether it would really help. Vitamin D3 is also made in the skin and this 

complicates the decision on the doses of supplementation. The new report from the 

Institute of Medicine (IOM) recommends 600 IU/day for ages less than 70 years and 800 

IU/day for ages older than 70 (Ross et al., 2011). Osteoporosis Canada has also 

published new guidelines that recommend 400-1000 IU/day for adults below the age of 

50 and 800-2000 IU/day for those above 50 years old (Hanley et al., 2010). In a 

systematic review published recently that included papers through the period from 1973 

to 2011, in pathophysiological studies, it was found that vitamin D3 deficiency in 

genetically susceptible people can cause the loss of regulatory functions of DCs over 

Th1 responses.  

Cross-sectional studies have shown that serum 25(OH)D3 levels <30 ng/ml were 

found in both patients with autoimmune disease as well as healthy patients. Meta-

analysis of case-control studies revealed that vitamin D3 supplementation caused a 

significant reduction in the risk of developing T1DM. Interestingly, supplementation 

between the ages of 7-12 months reduced the chances of developing T1DM more than 

that between 0-6 months. This was explained by the fact that the adaptive immune 

system develops during that period of 7-12 months (Antico et al., 2012).  
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Month of birth has been linked to the risk of developing immune mediated 

diseases such MS, T1DM, Crohn’s disease, ulcerative colitis, and SLE where people 

born in the spring between April and October had more risk which correlated inversely 

with serum 25(OH)D3 during the second trimester of pregnancy (Disanto et al., 

2012;Kahn et al., 2009;Saastamoinen et al., 2012). In line with these data, we observed 

in patients with idiopathic IU, the highest incidence was among those born in the spring 

(Thomas et al. manuscript submitted).  

Mice born to mothers kept vitamin D3 deficient before and during pregnancy had 

less severe EAE after immunisation with MOG compared to control group. This was 

accompanied by an upregulation of VDR and heat shock proteins (involved in VDR 

mediated action in EAE) in the spinal cord up to day 30 after immunisation. Moreover, 

offspring fed postnatally on a vitamin D3 rich diet had a delayed and less severe EAE. 

This supports the concept that the in utero vitamin D3 environment has conditioned the 

foetus to be more sensitive to vitamin D3 ex utero. Surprisingly, the second generation of 

these mice had more severe symptoms and the symptoms were similar whether the 

mother or the father was vitamin D3 deficient. The study concluded that the mother 

imprints the foetus, and vitamin D3 status during pregnancy determines the child’s risk 

for developing an autoimmune disease (Fernandes de Abreu et al., 2010). However, De 

Luca and Plum have shown, using a different murine strain, that EAE was delayed and 

less severe in two generations of mice exposed to prolonged vitamin D3 deficiency 

(Deluca and Plum, 2011). 
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 It was observed that if people migrate before the age of 15 from an area with a 

high risk to an area with a low risk of MS, they acquire low susceptibility to MS but if they 

migrate from a low risk area to a high risk area, they maintain the low risk of their origin 

(O'Gorman et al., 2012). In contrast, a study on immigrants from the UK and Ireland to 

Australia showed no effect of age on the prevalence of MS suggesting other 

environmental factors that play a role before and after the age of 15 (Hammond et al., 

2000).  

Another study has shown that when people from the French West Indies (known 

as low MS prevalence) migrated to France and returned to the West Indies, there was a 

high prevalence among those who migrated to France before the age of 15. 

Unexpectedly, there was an increase in the prevalence of MS among non-immigrants in 

the West Indies and the authors suggest that immigrants may have acquired some 

environmental factors that act before the age of 15 and determine the susceptibility to 

MS (Cabre et al., 2005). Both studies suggest the involvement of genetic and 

environmental factors in determining the risk for developing MS. Taken together, we can 

see there is no clear evidence between vitamin D3 sufficiency/deficiency or location and 

autoimmune diseases. The genetic makeup, vitamin D3 status of the mother during 

pregnancy, environmental factors, and timing of immune system programming appear to 

all be involved in how individuals respond to vitamin D3 and how it can affect them. 

6.5 Summary and future studies 

In summary, results in this thesis have provided evidence for a complete and 

functional exra-renal vitamin D3 system in human ocular barrier epithelial cells capable 
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of locally converting vitamin D3 from its inactive to active form. We have also shown that 

local vitamin D3 production by these cells can induce the expression of mRNA for the 

HDPs cathelicidin and hBD1-4. Furthermore, we found an association between the VDR 

SNP BsmI and IU in Caucasians, which supports an immunomodulatory role of vitamin 

D3 in autoimmune disease in the human eye. Overall, our results suggest the potential of 

vitamin D3 to contribute to immune regulation in the eye during homeostatic as well as 

inflammatory conditions. Vitamin D3 might serve as a safe and cheap therapeutic agent 

to treat or even protect against the onset of an immune mediated inflammatory eye 

disease.  

Based on my results we can suggest that future studies should: 

1. Investigate vitamin D3 metabolism in corneal endothelial cells (primary and cell 

line) as they express a different staining pattern of CYP27B1 and they seem to be 

the most efficient in local conversion. 

2. Study the effect of vitamin D3 supplementation on HDP production in ocular fluids 

and their functional activities.  

3. Identify conditions for protein production of HDPs by ocular barrier epithelial cells 

to see if it matches mRNA expression 

4. To test other genetic variants in VDR and related genes to provide an insight of 

the functional relevance of these variants to vitamin D3 metabolism and 

association with eye diseases, such as uveitis, and disease outcome. Taking into 

consideration gender differences, these studies can be used to understand 
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differences between males and females in vitamin D3 metabolism and the 

modulation of immune response. 

5. To explore using animal models, how vitamin D3 can affect EAU both in males 

and females and how to correlate that to human uveitis. 
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8 APPENDIX  

Chapter 4 

Figure 4.8 

Real-time PCR raw data: relative CAMP mRNA expression 
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Time 
(h) 

25D 1,25D 

1 2.14 0.03 0.004 1.49 0.03 0.06 

4 0.76 6.71 0.16 2.21 16.78 0.17 

8 2.05 25.667 1.340 1.784 29.90 1.02 

16 0.45 8.582 5.683 0.919 13.228 4.24 

24 0.19 0.71 1.93 0.334 1.17 3.23 

Time 
(h) 

25D 1,25D 

1 0.41 0.46 1.40 1.01 0.59 0.99 

4 0.60 0.31 2.07 0.85 1.33 0.22 

8 0.96 0.86 1.09 0.89 0.58 1.64 

16 1.79 0.37 0.90 0.63 0.41 0.39 

24 0.16 0.81 2.83 1.41 0.77 2.36 

Time (h) 25D 1,25D 

1 2.24 0.42 0.28 5.19 3.29 0.27 0.26 0.24 

4 1.45 1.64   0.53 2.73   

8 2.15 1.17 2.07 13.53 1.89 0.47 1.13 0.65 

16 0.75 0.73 0.36 0.28  2.69 0.16 0.00 

24 0.86 0.22 0.68 0.001 1.003 0.36 1.46 0.98 
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Figure 4.9 

Real-time PCR raw data: relative hBD-1 mRNA expression 
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Time (h) 25D 1,25D 

1 0.30 1.22 0.48 0.48 0.25 0.55 

4 1.06 0.63 1.44 1.18 1.54 4.96 

8 0.76 1.81 0.42 0.49 0.63 0.63 

16 0.67 0.30 1.91 1.52 0.57 1.33 

24 0.88 4.09 3.48 2.07 1.56 4.46 

Time (h) 25D 1,25D 

1 1.81 0.87 1.29 3.74 0.60 1.51 

4 2.22 0.79 0.94 0.91 0.48 0.70 

8 1.57 0.59 0.69 1.28 0.77 0.95 

16 2.23 0.78 0.59 2.24 0.88 0.69 

24 0.65 0.17 2.52 1.02 0.09 3.31 

Time (h) 25D 1,25D 

1 1.17 1.16 1.76 1.08 0.17 0.59 

4 0.96 4.92  1.28 6.07  

8 2.07 0.32 2.01 0.74 0.19 4.73 

16 0.55 2.08 2.72 0.65  2.29 

24 0.05 0.49 3.92 0.18 1.46  
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Figure 4.10 

Real-time PCR raw data: relative hBD-2 mRNA expression 
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Time (h) 25D 1,25D 

1 1.94 0.41 4.27 0.56 0.84 1.94 

4 0.54 2.47 0.53 0.42 5.13 2.04 

8 1.53 1.51 16.20 0.93 0.78 30.25 

16 1.17 9.76 2.36 0.94 0.97 4.57 

24 3.88 2.70 0.01 1.62 0.98 0.04 

Time (h) 25D 1,25D 

1 0.58 0.72 0.62 0.79 0.74 1.01 

4 1.61 2.31 0.94 1.52 3.67 0.84 

8 1.19 1.38 0.81 0.87 1.72 0.77 

16 1.76 1.04 6.39 0.79 1.10 2.90 

24 1.76 0.85 2.62 1.56 0.72 7.76 

Time (h) 25D 1,25D 

1 0.41 0.61 1.66 0.34 0.46 0.86 

4 0.99  2.17 0.26  2.85 

8 1.01 1.49 2.23 0.50 0.82 0.23 

16 2.55 2.85 22.40 8.27 0.27  

24 0.99 1.17 1.14 1.76 0.44 1.25 
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Figure 4.11 

Real-time PCR raw data: relative hBD-3 mRNA expression 
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Time (h) 25D 1,25D 

1 0.23 0.77 2.22 0.88 0.67 1.93 

4 3.40 0.62 0.35 1.74 0.96 0.37 

8 0.24 1.27 2.97 0.45 8.66 1.82 

16 1.12 0.87 1.25 1.59 2.04 0.56 

24 0.85 1.03 0.89 8.19 0.97 3.40 

Time (h) 25D 1,25D 

1 0.23 0.77 2.22 0.88 0.67 1.93 

4 3.40 0.62 0.35 1.74 0.96 0.37 

8 0.24 1.27 2.97 0.45 8.66 1.82 

16 1.12 0.87 1.25 1.59 2.04 0.56 

24 0.85 1.03 0.89 8.19 0.97 3.40 

Time (h) 25D 1,25D 

1 0.57 0.54 0.85 2.00 0.46 0.68 

4 7.32 2.80 
 

3.82 1.71 
 8 1.78 1.29 6.39 0.65 0.87 2.60 

16 0.59 1.53 0.50 
 

2.82 0.54 

24 2.58 0.54 1.49 1.54 0.66 1.66 
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Figure 4.12 

Real-time PCR raw data: relative hBD-4 mRNA expression 
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Time (h) 25D 1,25D 

1 0.56 0.26 0.32 4.42 1.59 0.63 

4 1.53 0.92 1.79 3.70 0.57 2.19 

8 0.27 0.191 0.76 0.20 1.17 0.43 

16 2.13 0.510 0.88 5.67 0.06 2.98 

24 0.981 3.404 3.42 0.27 10.43 0.33 

Time (h) 25D 1,25D 

1 2.79 0.38 1.43 7.96 0.55 1.53 

4 1.19 2.27 0.43 4.03 3.72 0.65 

8 2.31 1.63 1.38 0.47 0.19 1.85 

16 9.43 0.03 8.18 0.40 0.01 2.84 

24 0.24 0.51 4.26 0.41 0.51 5.88 

Time (h) 25D 1,25D 

1 1.06 0.19 0.50 1.22 0.18 0.01 

4 1.85  0.01 1.01  0.59 

8 0.38 2.74 13.81 0.01 9.69 0.44 

16 7.72 0.55 1.09 10.08 0.17  

24 0.66 1.65 1.38 0.06 0.09 0.19 
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