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ABSTRACT 

Motivated by internal fluidisation due to a leaking pipe, this thesis aims to achieve a 

deeper understanding of the leakage-soil interaction by numerical simulations. The 

coupled DEM (Discrete Element Method) – LBM (Lattice Boltzmann Method) 

technique has been regarded as a promising tool to efficiently provide detailed 

description of fluid-particle systems, especially with intensive fluid-particle interactions. 

Therefore, FPS-BHAM, a 2D DEM-LBM computer code is developed for this thesis. In 

this code, DEM models the soil as an assembly of circular particles, and LBM is 

employed for fluid flow simulations. The Immersed Moving Boundary (IMB) scheme is 

adopted for the treatment of fluid-particle interaction.  

 

Numerical results are validated against existing experimental findings. Different 

regimes of bed behaviour are demonstrated under various flow rates. The onset of 

fluidisation is studied by analytically deriving for the flow equation and fluidising 

pressure, which are compared with numerical solutions. Moreover, deeper insights are 

made into the post-fluidisation phenomenon. The mechanism underlying a stable cavity 

is explored, and how a cavity evolves with different factors is also investigated through 

parametric studies.  

 

KEY WORDS: Discrete Element Method, Lattice Boltzmann Method, numerical 

simulation, pipe leakage, fluidisation, cavity 
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

Pipes buried underground are widely used to transport water and sewage waste for 

water distribution and drainage. However, underground pipes may suffer from leaks 

caused by a number of factors, such as corrosion, external loads, and internal pressure 

(Makar, 2000). In recent years, accidents triggered by pipe leakage have been reported 

all over the world. The accidents are usually found in the form of a sinkhole, in which 

ground surface collapses due to a leak from an underground pipe (see Figure 1.1). A 

major spill took place at the Kemira Kemi site in Helsingborg, and recognised as the 

biggest chemical accident in Swedish history, was mainly caused by a major leak from a 

nearby underground concrete cooling-water pipe (Sӧderlund et al, 2007). In such a case, 

the foundation of a big sulphuric acid tank was undermined by the leakage, generating a 

subsurface cavity with around 1000 m
3
 in size. This led to a sudden tank failure and a 

release of a large amount of sulphuric acid in a very short time.  

 

It is clear that such an underground cavity would act as a potential threat to surrounding 

infrastructures due to the lack of any early warning of the problem. Due to the fact that it 

is not possible to ‘see’ how they are behaving, it is necessary to understand the soil 

behaviour better when subjected to leakage from buried pipes. Previous laboratory 

studies (Royal et al., 2008; Rogers et al., 2008; Supraksorn, 2009; and Zoueshtiagh and 
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Merlen, 2007) have revealed different failure modes in the soil bed, which are dependent 

on the internal pipe fluid pressure and flow rate. In addition, a two-dimensional 

experimental work has also been conducted (Alsaydalani, 2010), whereby an internal 

fluidisation has been identified as the mechanism underlying the soil subject to a locally 

injected fluid. However, as only limited data could be acquired from the laboratory 

monitor system, a full knowledge of bed regimes, the flow field, and the post-fluidisation 

behaviour still requires further investigation.  

 

  

(a)                                    (b) 

Figure 1.1 Sinkholes formed due to a pipe leakage problem: (a) Sinkhole in downtown 

London, 31
st
 October, 2007 (Steindorff, 2008); (b) Sinkhole on the Ring Road at the 

University of Birmingham, 26
th

 September, 2011. 

 

Challenges are raised by a pipe leakage problem due to its complicated nature. It has been 

argued that fluid flow would be non-laminar at the vicinity of a leak (van Zyl and Clayton, 

2007). In Alsaydalani (2010), higher pressure gradients were found near the source of a 
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local leakage, indicating localisation behaviour in the flow field. In addition, once 

fluidisation occurs, a localised cavity forms near the leak area. Within the cavity, 

intensive fluid-soil interactions may be involved, where soil particles may leave the soil 

matrix and move with the leaking fluid. Due to the localised large displacements in the 

soil, continuum analytical methods would encounter difficulties. Besides, laboratory 

approaches are regarded as limited due to their lack of flexibility and difficulties of data 

acquisition especially under three-dimensional conditions. In an effort to overcome the 

above drawbacks, numerical simulations using an appropriate technique should be 

applied, so that such a complicated behaviour in the leakage-soil interaction can be 

efficiently simulated.   

 

1.2 Aim and Objectives of the Research 

This thesis is motivated by the problems stated in Section 1.1. Its primary aim is to 

provide deeper understanding of the leakage-soil interaction by numerical simulations 

using an appropriate technique. It consists of the following objectives: 

 to identify an appropriate numerical technique for efficiently simulating the 

complicated behaviour of the leakage-soil interaction, and to establish a 

computer code with the capability of performing the numerical simulations of a 

pipe leakage problem; 

 to achieve a more thorough understanding of the internal fluidisation induced by 
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a local leakage, including a full knowledge of the bed regimes, flow field, and 

post-fluidisation behaviour; and 

 to quantify the cavity evolution due to the local leakage, so as to provide more 

practical meanings from the numerical results. 

 

1.3 Thesis Layout 

This thesis is divided into eight chapters. Chapter 2 provides a literature review of 

previous work on leakage-soil interaction, and typical numerical techniques applied to 

geotechnical engineering. The coupled DEM-LBM technique is then identified as a 

promising tool for the simulation of the associated phenomena of internal fluidisation. 

Since no appropriate open source code was found, a computer program had to be 

developed initially and the relevant algorithms and implementations are presented in 

Chapter 3. In order to verify the newly-established code, a series of simple tests to 

examine different simulation functions were conducted and these are reported in 

Chapter 4. These include describing the particle-particle/particle-wall interactions, the 

fluid flows with various boundary conditions, as well as the fluid-solid two-phase 

interactions. In Chapter 5, the onset of fluidisation is investigated using the 

newly-established DEM-LBM code, and the numerical results are validated against 

existing experimental data and analytical derivations. The main findings on different 

bed regimes and fluidising mechanism are also demonstrated in Chapter 5. As numerical 
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simulations indicate the existence of a stable-cavity regime, Chapter 6 explores its 

underlying mechanism using the DEM-LBM code. This is then followed by parametric 

studies on the cavity evolution after fluidisation occurs, as presented in Chapter 7. By 

analysing the numerical results using a curve fitting technique, the cavity size is 

expressed as functions of time, controlled flow rate, controlled pressure in the pipe, and 

the ratio of inter-particle adhesion to average particle weight. Finally, in Chapter 8, the 

main conclusions are drawn from the research, and suggestions are given for potential 

future research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction  

In this chapter, the interaction between a leaking fluid and the surrounding soil is 

firstly reviewed in Section 2.2. As numerical simulations are performed in this thesis, 

Section 2.3 reviews the numerical modelling of geotechnical problems using DEM, 

which is a widely-used method for granular material simulations. With a focus on 

liquid-solid two-phase applications, Section 2.4 presents a review of DEM coupled with 

different fluid models. The coupled DEM-LBM technique is then regarded as a 

promising tool to fulfill the aim of this thesis, which is capable to describe the 

localisation phenomenon and bed behaviour in internal fluidisation. Therefore, a review 

of the DEM-LBM applications is then provided in Section 2.5. A summary of this 

chapter is finally given in Section 2.6. 

 

2.2 Review of Leakage-Soil Interaction 

2.2.1 General 

Failures of buried water pipes are mostly found in cast iron pipes (Rajani and 

McDonald, 1994; and Kunkel et al., 2008), and the causes of failure can be varied, 

including corrosion, fatigue due to cyclical operating water pressure, and the external 

loads due to heavy traffic and differential settlement, and seasonal changes in the soil 

(Makar, 2000; Clayton et al., 2010; Rajani and Kleiner, 2012; and Rajani et al., 2012). 
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However, among literatures, the studies on the leakage-soil interaction due to a buried 

leaking pipe are found to be limited. Attentions have been paid to the leakage-induced 

moisture changes in expansive soils which result in differential foundation movement 

(Wray et al., 2004; and Li, 2006). In these studies, numerical simulations based on the 

moisture diffusion equation were adopted. Nevertheless, it is regarded problematical 

surrounding the leaking area where soil structure may undergo large displacements and 

fracturing, and the continuum method is no longer applicable. In recent years, 

leakage-induced accidents for which surrounding soils are largely deformed by leaking 

fluid from a buried pipe have been reported all over the world (Sӧderlund et al., 2007; 

Steindorff, 2008; Lynch and Stimpson, 2011; and Elhoud, 2012). Although such cases 

have brought about safety and economic issues to the modern society, it is surprising 

that not many literatures addressing the leakage-soil interaction with the local large 

displacements have been published.  

 

A number of researchers carried out laboratory tests on fine-grained soils subject to 

leakage from a water pipe under different internal pressure values (Royal et al., 2008; 

Rogers et al., 2008; and Supraksorn, 2009). Three failure mechanisms in the soil were 

identified: (i) permeation of the leaking fluid into soil; (ii) cavity being created within the 

soil; and (iii) the soil being ruptured with the leaking fluid migrated up to the top surface. 

Due to the limitation of laboratory tools to detect within the samples, how these 

mechanisms were induced and how they acted remain unconfirmed. Similarly, an 
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experimental study on a granular bed, which is subject to a vertically injected fluid, led to 

an observation of three distinct bed regimes with respect to flow rate (Zoueshtiagh and 

Merlen, 2007): (i) a motionless bed; (ii) a local bump-shaped deformation at the bed 

surface; and (iii) a local fluidisation at the bed surface. However, such a 

three-dimensional study did not allow observations made inside the bed. Therefore, what 

happens within it still remains unclear.  

 

From further experimental findings, it has been recognised that a leakage from an 

underground pipe can result in the build-up of pore water pressure and hydraulic 

gradients within the soil bed (Al-Karni, 1995; and Al-Karni, 2000). This was also noticed 

by Alsaydalani (2010) and was argued to be a potential reason for the occurrence of an 

internal fluidisation. In Alsaydalani (2010), a two-dimensional experimental study was 

conducted with the aid of the Particle Image Velocimetery technique. The sample 

granular bed was deposited in a seepage tank made of Perspex sheets, and the behaviour 

under the bed surface could be monitored.  

 

From the results, Alsaydalani (2010) stated that the underlying mechanism is different 

from the classic backward erosion, or piping as is sometimes referred to. The backward 

erosion has been widely known in the field of civil engineering (Terzaghi, 1939; Fell et al., 

2001; and Richards and Reddy, 2007).  It is initiated at the exit point of seepage by 
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Darcy’s flow, removing soil particles from the matrix. It progresses backwards, leading to 

the formation of a pipe. However, it is argued by Alsaydalani (2010) that internal 

fluidisation occurs due to a locally injected fluid, the soil particles lose stability and move 

within a localised zone along a pre-existing opening. In internal fluidisation, the fluid 

regime is non-laminar especially at the vicinity of the leak. The phenomenon is 

characterised by an uplift mechanism of the above grains and formation of an internal 

fluidised zone at the injected area, thereby the term ‘internal fluidisation’ was given. At 

the onset of fluidisation, the upward drag force overcomes the weight of a wedge-shaped 

uplifting zone, which is extending from the leaking area towards bed surface. Meanwhile, 

within the internal fluidised zone in the form of a cavity, particles are mobilised and 

moving with fluid. Such a phenomenon can be comparable to fluidisation in a tapered 

fluidised bed used in the chemical engineering (see Figure 2.1), where the Ergun (1952)’s 

flow equation through a packed bed is proved to be valid (Shi et al., 1984; Peng and Fan, 

1997; and Gernon et al., 2008).   

 

In addition, the localisation phenomenon was identified in the fluid flow (Alsaydalani, 

2010), where pore pressure changes significantly near the source of flow but less so far 

from it. It was argued by Alsaydalani (2010) that the flows shall spread radially due to the 

local leakage. However, no direct supporting evidence was provided by his results.  
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Figure 2.1 A simple skech of a typical tapered fluidised bed used in the chemical 

engineering (Peng and Fan, 1997) 

 

Although Alsaydalani (2010) has achieved a successful investigation into the 

fundamentals underlying a granular bed subject to a local leakage under a 

two-dimensional condition, only limited information can be obtained from the 

experimental results. For example, the spatial distribution and time evolution of pore 

pressures has not been clearly revealed, though it may provide crucial information for a 

better understanding of the mechanism. Besides, a full knowledge of different bed 

regimes and post-fluidisation response, particularly how the cavity grows, still require 

more explorations.  
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However, laboratory tools lack of transparency and flexibility, and both the soil and flow 

information acquired is limited as well. Hence, a more promising tool is expected to 

easily provide an insight into samples, the monitoring of required data, and an extended 

application to repeatable samples under various conditions. For this reason, numerical 

simulations are conducted in this thesis. Since local large displacements may be involved 

in the leakage-soil interaction, numerical simulations using a continuum model based on 

the assumptions of a continuous, homogeneous, and isotropic material (Malvern, 1969) 

would encounter difficulties. Besides, a continuum model usually adopts a macroscopic 

constitutive relationship, which is applied to the particle assembly scale. This involves 

adopting many model parameters without clear physical meanings (Kishino, 1998), and 

considers implicitly the particle configuration in a granular material (Gong, 2008). 

Therefore, the Discrete Element Method (DEM) (Cundall and Strack, 1978), which 

performs analysis at the particle scale, is considered more suitable for simulating a 

granular soil in this thesis. Hence, a review of the DEM simulations in geotechnical 

application is presented in Section 2.3. 

 

2.2.2 A conceptual model of soil behaviour when subject to a leaking fluid 

When soil is subject to a leaking fluid, a number of actions are involved and their 

combined effect could be varying, demonstrating different soil behaviours. This 

sub-section presents a conceptual model of the soil behaviour from the point of view of 

the particle scale. 
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The movements of soil particles are controlled roughly by two groups of factors: 

activation and resistance. When soil is exposed to a leaking fluid, seepage force acts on 

the soil particles as a primary activation factor of particle movements. The seepage 

force is directly proportional to the hydraulic gradient under which a soil particle tends 

to move from an area with higher pressure towards that with lower pressure. On the 

other hand, however, the motion of a particle is resisted by a number of factors: particle 

weight, inter-particle friction, inter-particle cohesion, and self-healing potential. In 

general, a soil particle is not mobilised unless the seepage force is sufficiently high to 

overcome the particle self-weight, inter-particle friction and cohesion. Among those, 

inter-particle friction is mainly controlled by particle roughness and interlocking effect. 

Inter-particle cohesion is closely related to electrostatic force between particles, soil 

suction and dispersion. In the experimental work on clayey soils, Royal et al. (2008) 

found out that dispersive soils created larger cavities due to a leaking fluid than a 

non-dispersive soil did, although they had higher strength and particle quantities. This 

further suggests that inter-particle cohesion is one of the important factors affecting soil 

mobilisation.  

 

For a soil with a low self-healing potential, small particles are firstly mobilised due to 

low weight, and start to move through the connected pores formed by larger-sized 

particles (Shire and O’Sullivan, 2013). During such a process, more and more particles 
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are removed from the soil, thus the original soil skeleton suffers changes and become 

unstable. This is referred to ‘internal erosion’ or ‘suffusion’ (Fell et al., 2001; and Shire 

and O’Sullivan, 2013). With more and more particles being removed, the pore size is 

increasing, and so is the local permeability. The unstable soil skeleton is no longer able to 

sustain the increased seepage force (due to the increase in permeability), and therefore 

leads to soil failures. From literatures, such a phenomenon has been regarded as a primary 

cause of many dam and embankment damages (Foster et al., 2000; Fell et al., 2001; and 

Zhou et al., 2012).  

 

However, if the soil has a high self-healing potential, the mobilised small particles either 

block the pores, or cannot pass through the pores (Wan and Fell, 2008). Hence, they travel 

some distance and still remain in the soil, or stay at their original places. In such a case, 

soil is performing as integrity. When the upward seepage force applied to a bed of 

cohesionless material is equal to its bulk weight, ‘fluidisation’ was found to occur (Shi 

et al., 1984; Peng and Fan, 1997; and Alsaydalani, 2010). Figure 2.2 illustrates a 

conceptual model of particle movement and the resulting soil behaviours when subject 

to a leaking fluid. 

 

Since quite a number of factors mentioned above are involved in the leakage-soil 

interaction, it is considered difficult to study all these factors in a single project. Hence, 

as an early attempt to understand its underlying mechanism, simplifications are adopted 
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in the models used in this thesis that the sample soil is non-dispersive, with low 

interlocking effect and high self-healing potential. Soil cohesion is only considered in 

Chapter 7, and its effect is simply modelled through particle surface energy. All these 

simplifications would definitely generate discrepancy from the real, yet however, the 

understanding of leakage-soil interaction can still be broadened, and its behaviour 

microscopically investigated. As for those factors that this thesis does not consider, 

further researches are expected and more sample models shall be used.  

 

 

Figure 2.2 A conceptual model of particle movement and the resulting soil behaviours 

when subject to a leaking fluid 
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2.3 Review of DEM Simulations in Geotechnical Application  

2.3.1 DEM simulations 

DEM was initially proposed to deal with problems in rock mechanics (Cundall, 

1971; and Cundall, 1974), and it has been increasingly used in the geotechnical field 

during recent decade (see e.g. O’Sullivan, 2011). In DEM, material is viewed as an 

assembly of discrete particles. Among literatures, two different algorithms are generally 

employed: hard-sphere and soft-sphere approaches (Duran, 2000). The former one 

tracks the particle motions based on momentum-conserving binary collisions, in which 

the particle-particle interactions are assumed to be impulsive, and considered one by 

one according to certain orders (Campbell and Brennen, 1985; and Hoomans et al., 

1996). Although for a loose system, such models are regarded to be more efficient than 

the soft-sphere approach (Deen et al., 2007); its algorithm is not suitable for 

densely-packed systems, such as granular soils. This is because multiple collisions 

which occur at a same time cannot be easily taken into consideration. By contrast, in the 

soft-sphere approach, particle-particle interaction is viewed as a dynamic process, and a 

slight deformation in a particle is allowed during contacts. Contact forces are 

determined from particle deformation according to contact theories. And particle motion 

is computed by the Newton’s second law. With the aid of the soft-sphere DEM, 

complete particle information can be obtained with the consideration of multiple 

collisions. Hence, this approach is adopted for simulating the intensive particle-particle 
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interactions in this thesis. It shall be noted that the term ‘DEM’ appeared hereinafter is 

used to refer to the soft-sphere approach. Its detailed algorithm and implementations are 

presented in Section 3.2. 

 

From a large number of literatures on the DEM simulations, it is recognised that the 

soft-sphere DEM has been successfully applied to various geotechnical problems. 

Laboratory tests were reproduced using DEM to study the mechanical behaviour of 

cohesionless soils (Thornton, 2000; Zhang and Thornton, 2007; Gong, 2008 and Gong 

et al., 2012), or even fibre-reinforced sands (Maeda and Ibraim, 2008). Besides, 

attempts were made to capture the features of rock behaviour using DEM (Potynody 

and Cundall, 2004; and Huang and Detournay, 2008). In addition, behaviour of clayey 

soils was also studied using DEM with complex consideration of inter-particle forces 

(Anandarajah, 2000; Anandarajah, 2003; and Peron et al., 2009). Moreover, as for the 

special importance of pore pressure in a saturated soil, an explicit consideration of pore 

fluid should be needed, although without it, reasonable qualitative behaviour could be 

captured with the assumption of a constant volume (Ng and Dobry, 1994). It thereby 

generates an idea that DEM is coupled with fluid models, so that the drag force applied 

to the solid phase by pore fluid flows can be calculated simultaneously with fluid 

calculation cycle by cycle. With this idea, researchers have conducted simulations on 

various problems, including seepage through granular soils (El Shamy et al., 2002), 

undrained response (Bonilla, 2004; and Shafipour and Soroush, 2008), liquefaction 
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(Nakase et al., 1999; and Zeghal and El Shamy, 2008), and sand production (Preece et 

al., 1999; and O’Connor et al., 1997). For a more detailed review of the DEM 

simulations coupled with various fluid models, please refer to Section 2.4. 

 

2.3.2 Development of DEM codes 

With the increasing applications of DEM, the development of DEM computer code 

has progressed in different directions. In the late 1970s, the original two-dimensional 

DEM computer program BALL was developed in order to study the constitutive 

relations for a granular media (Cundall, 1978; Cundall and Strack, 1978). The code was 

validated by comparing the numerical outcome with the experimental observations 

(Cundall and Strack, 1979a; and Cundall and Strack, 1979b). Later, BALL was extended 

to a three-dimensional program TRUBAL (Cundall and Strack, 1979c). In those early 

versions of BALL and TRUBAL, circular discs or spherical particles were used as 

discrete elements, and a linear spring-dashpot contact model was adopted. Afterwards, 

elliptical particles were incorporated into BALL, so that some effects of particle shape 

on the behaviour of granular materials was explored (Ting et al., 1995). The simulation 

results demonstrated that elliptical particles provide more realistic macroscopic 

behaviour compared to circular discs, in both quantitative and qualitative perspectives. 

Similar conclusions were also drawn by Rothenburg and Bathurst (1992). Thereafter, a 

variety of particle shapes have been adopted, including assemblies of ellipsoids (Lin and 
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Ng, 1997; and Ng, 2001), super-quadric elements (Preece et al., 1999; and Han et al., 

2007a), and clusters composed of simple-shaped particles (Jensen et al., 1999). 

Although it was pointed out the circular or spherical particles would underestimate the 

shear resistance of a granular material (Gong, 2008), in that particle interlock is hard to 

be considered, the implementation with irregular-shaped particles requires a lot more 

computational cost, in particular for contact detection. In this thesis, as fluidisation is 

the predominant phenomenon, the shear resistance contributed from particle interlock is 

identified to be less important. Therefore, only circular elements are adopted for the 

sake of simplicity for this first major attempt. 

 

During the recent decades, a number of nonlinear contact models have also been 

incorporated into TRUBAL. The Hertz normal contact theory was adopted along with a 

simplified tangential contact theory (Johnson, 1985; Mindlin, 1949; and Cundall, 1988), 

and along with a complete tangential contact theory (Mindlin and Deresiewcz, 1953; 

and Thornton and Randall, 1988). In addition, an auto-adhesive contact theory 

(Thornton, 1991; Thornton and Yin, 1991; and Thornton and Ning, 1998) based on a 

well-known JKR model (Johnson et al., 1971) has been applied (Yang, 2009). With the 

aid of this model, the inter-particle adhesion force is computed, which is of key 

importance in the case where inter-particle adhesion force is comparable to particle 

weight. For this reason, this auto-adhesive contact model is also adopted in this thesis, 

so as to simulate the mechanical behaviour of a cohesive soil as an early attempt. The 
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detailed computations in this contact model are presented in Section 3.2.2. Moreover, 

among literatures, contact models for describing the apparent cohesion of unsaturated 

soils have also been proposed. In these models, efforts have been made to represent 

cohesive force, which is mainly due to capillary tension (Jiang et al., 2004; Richefeu et 

al., 2006; and El Shamy and Grӧger, 2008). As in this thesis, only saturated soils are 

considered, no matric suction is accounted for in the numerical simulations and this 

should be considered in future work.  

 

2.4 Review of DEM Simulation Coupled with Fluid Models 

As mentioned in Section 2.3.1, DEM has been coupled with fluid models for the 

explicit consideration of pore fluid. Thereby the DEM program has been incorporated 

with various fluid methods. Among literatures, most early coupling programs were 

reported in which Darcy’s law was adopted for the fluid flow calculations (Hakuno and 

Tarumi, 1988; O’Connor et al., 1997; and Nakase et al., 1999). Later on, the DEM 

program was developed to include solutions to the Navier-Stokes equations (El Shamy 

et al., 2002; Kafui et al., 2002; and Suzuki et al., 2007). In the coupling programs 

mentioned above, the computational cell used for fluid calculation is usually larger than 

an individual particle, and the fluid information within each cell is adopted as a local 

averaged value. By contrast, small-sized fluid grids are adopted in the Lattice 

Boltzmann Method (LBM) (Chen and Doolen, 1998). It has been coupled with DEM in 
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order to achieve detailed description of fluid-particle interaction (Cook et al., 2004; 

Feng et al., 2007; and Mansouri et al., 2009). Besides, a mesh-free fluid method, the 

Smoothed Particle Hydrodynamics (SPH) (Gingold and Monaghan, 1977), was also 

coupled with DEM to facilitate simulations of fluid flow through granular media (Li et 

al., 2007). More detailed reviews of the coupling techniques employed by those 

programs are given in the following sub-sections, in an effort to identify an appropriate 

technique, by which the behaviour of large displacements in soil, the localisation 

phenomenon in flow, along with the interactions between particle and fluid phases can be 

described. 

 

2.4.1 DEM coupled with Darcy fluid flow (DFF) 

When DEM is coupled with a fluid model, drag force obtained from the fluid 

calculation is usually added to the total force acted on an individual particle, so that 

particle motion can be further determined. On the other hand, the effect of particle 

motion on the fluid flow is also taken into account in each calculation cycle. This can be 

accomplished by modifying permeability according to updated particle locations and/or 

adding a semi-empirical drag force term in the fluid equations, or alternatively, 

expressing the local flows with explicit consideration of the solid phase. From literature, 

several categories of fluid models have generally been identified, including the Darcy 

Fluid Flow (DFF) model; the Computational Fluid Dynamics (CFD) model; the model 
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by LBM; and the mesh-free model by SPH. Among the above categories, the DFF 

model is regarded the simplest one, and hence has been widely used from an early stage.  

 

A decade ago, Preece et al. (1999) and Jensen and Preece (2000) successfully employed 

a two-dimensional coupled DEM-DFF technique to simulate sand production 

phenomenon in oil wells. In their simulation, fluid flows were calculated from 

continuity equation along with Darcy’s law, of which the solutions were pressure 

functions: 
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Eqn.(2.1) is the notable two-dimensional Laplace equation and was solved by the finite 

element techniques. In Eqn.(2.1), p  is the pressure at each finite element node, and xk  

and yk  are the permeabilities along the x- and y- directions, respectively. Integration of 

fluid pressure on each particle was then carried out to calculate fluid-induced force. By 

summing up body force, contact force and the fluid-induced force, the resultant force 

exerted on a particle was obtained. Thereafter, the particle locations were updated 

through DEM calculations. According to the updated particle locations, a new 

permeability value was calculated from volume fraction and ready for solving Eqn.(2.1) 

at the next calculation cycle. Although this technique is easy to be implemented, the 

fluid flow is implicitly solved without considering the time-dependent pore volume 
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changes which also affect pore pressure evolution. 

 

In contrast, another coupled DEM-DFF technique has been developed to provide a 

time-dependent solution to fluid flows. Such a technique is mostly applied to granular 

media under undrained conditions. Pore pressure generation due to pore volume 

changes was firstly accounted for by Hakuno and Tarumi (1988) when they treated fluid 

as an elastic medium. And the dissipation of pore pressures was determined by Darcy’s 

law. It was also assumed that an instant equilibrium state was achieved within every 

calculation cycle. Although the similar idea was adopted in Bonilla (2004), the instant 

equilibrium assumption was abandoned, and the pore pressure evolution is viewed as a 

totally dynamic process, which gave more realistic solutions.  

 

Unlike the above works that pore pressures were considered at the pore scale (see 

Figure 2.3(a)), Nakase et al. (1999) adopted a simplified determination of pore pressures 

at the cell scale (see Figure 2.3(b)). This avoided tedious identification of individual 

pores within each calculation cycle. In their work, the fluid cell was chosen to be larger 

than the particle size. The pore pressure generation and dissipation were computed 

using the cell-averaged values, and a single fluid-induced force was determined by the 

pressure gradients and applied to all particles in a particular cell. Meguro and 

Ravichandran (2000) applied this technique to study the mechanism of liquefaction. 

Good qualitative results were obtained from the three-dimensional simulations. More 
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recently, the semi-empirical Ergun’s equation was employed for calculating the drag 

force (Shafipour and Soroush, 2008; and Zeghal and El Shamy, 2008), in order to 

investigate the undrained behaviour of granular media and the liquefaction of saturated 

soils.  

 

 

(a) at the pore scale (Hakuno and Tarumi, 1988) 

 

(b) at the cell scale (Nakase et al.,1999) 

Figure 2.3 Basic scales adopted for fluid calculations in DEM-DFF 

 

Although the Darcy fluid flow has relatively simple formation so that the computational 

cost can be kept low, it is not applicable to flows with high Reynolds number. Moreover, 
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it fails to give a good description of the physics where particles are dragged away or 

transported by fluid (Jensen and Preece, 2000), such as in a fluidisation phenomenon. 

 

2.4.2 DEM coupled with computational fluid dynamics (CFD) 

Compared to the DFF model, the Navier-Stokes equations provide a more 

generalised description of fluid flows, and the Computational Fluid Dynamics (CFD) is 

commonly understood as the art of solving the Navier-Stokes equations computationally. 

The idea of combining CFD with DEM was pioneered by Tsuji et al. (1993), when they 

performed two-dimensional numerical simulations of gas-fluidised beds. The fluid 

domain was divided into large-sized cells, and the standard Navier-Stokes equations 

were transferred to a cell-averaged form: 
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where p  and u  are the cell-averaged fluid pressure and velocity, respectively. f  is 

the fluid density, and   was the volume fraction calculated for each cell. sf  represents 

the effect of particle motion on fluid flow, which is related to particle relative velocities. 

Similar to the coupled DEM-DFF technique, in DEM-CFD, the DEM calculations 

updated particle motion and locations, allowing the volume fraction of each cell to be 

acquired. With the particle velocity and volume fraction obtained, the cell-averaged 

Navier-Stokes equations were solved, yielding pressure and velocity fields for the fluid 
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phase. Drag force was then calculated through semi-empirical relations, and added to 

the total force applied to individual particles for the next cycle of DEM calculation.  

 

Thereafter, the work by Tsuji et al. (1993) was extended to three dimensions, and a good 

agreement between numerical and experimental results was obtained (Kawaguchi et al., 

1998). From then on, the coupled DEM-CFD technique has been widely applied, for 

example, to seepage flows (El Shamy et al., 2002; and Suzuki et al., 2007) and fluidised 

beds (Xu and Yu, 1997; Kafui et al., 2002; Feng and Yu, 2006; and Zhao et al., 2008). A 

useful review was given by Zhu et al. (2007 and 2008). From literature, however, most 

fluidised beds modelled have been the uniform ones, where the fluid is injected 

uniformly at the bed base. It is recognised that it would not be straight forward to apply 

DEM-CFD to a locally injected fluid, such as a pipe leakage. This is mainly because the 

adopted coarse cells are difficult to define localised boundary settings, unless mesh 

refinement is involved at the boundaries. Furthermore, there has been an argument on 

the semi-empirical relations for calculating drag force, as the relations were developed 

from the drag force equation for an isolated particle without full consideration of the 

presence of surrounding particles (Zhu et al., 2007). In addition, for the cases where the 

fluid-particle interactions are intensive and crucial, DEM-CFD is intrinsically difficult 

to trace the fluid motion around each particle, thus provides an ambiguous description 

of fluid-particle interactions, unless very fine grids are used. 
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On the other hand, a fine-grid CFD, also known as the Direct Numerical Simulation 

(DNS), has been coupled with DEM for simulating small-scale fluid-particle systems 

(Hu, 1996; and Pan et al., 2002). However, the computational cost would be undesirably 

increased if a large-scale system needs to be modelled. Therefore, when dealing with the 

interaction between a local leakage and surrounding soils, an alternative numerical tool 

should be employed. 

 

2.4.3 DEM coupled with lattice Boltzmann method (LBM) 

The Lattice Boltzmann Method (LBM) originated from the late 1980s (McNamara 

and Zanetti, 1988). It has been regarded as an alternative to the conventional 

macroscopic fluid models (Brenner 2004), and used for a wide range of applications, 

including particulate suspensions (Ladd and Verberg, 2001), multiphase flows 

(Premnath et al., 2005), energy transport problems (Chen et al., 1995), and turbulent 

flows (Hou et al., 1996).  

 

Unlike DFF and CFD, LBM is based on microscopic kinetic models. It is derived from 

the Boltzmann equation, which is a relatively rigorous description of the transport 

phenomena. LBM is originated from the idea that the Boltzmann equation is discretised 

in space, time, and velocity field. Such an idea gave birth to a numerical algorithm 

known as the Lattice Gas Automata (LGA) (Hardy et al., 1976), which was the 
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precursor to LBM. After one decade, the macroscopic Navier-Stokes equation was 

successfully recovered from LGA with a symmetrical lattice (Frisch et al., 1986). 

Although this algorithm was promising, it may be subject to statistical noise, resulting 

from a set of Boolean variables used. To avoid the noisy nature, LBM replaced the 

particle occupation variables (Boolean variables) by density distribution functions 

(McNamara and Zanetti, 1988), which were real numbers between 0 and 1. Thereafter, 

simplification and enhancement have been made to LBM implementations (Higuera and 

Jiménez, 1989; and Higuera et al., 1989). Among those, the BGK model proposed by 

Qian (1990) and Chen et al. (1991) has been regarded very efficient and flexible (Chen 

and Doolen, 1998), due to a simple linear collision operator adopted. Therefore, this 

model has been widely employed in the LBM simulations since its origin, as recognised 

from literature.  

  

In LBM, the fluid domain is usually divided into a regular lattice. Fluid is considered as 

packets of micro-particles residing on the lattice nodes. Those fluid particles are 

assumed to move with prescribed discrete velocities in every calculation cycle, so that 

configuration of fluid particles varies cycle by cycle, leading to a changing flow field. 

Due to the microscopic nature of LBM theory, a localised flow field can be simulated 

with fine resolution. Moreover, as pointed out by Han et al. (2007b), LBM prevails over 

the conventional macroscopic fluid models, in that it avoids solving the Navier-Stokes 

equations but involves only simple local operations. This advantage leads to a higher 
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efficiency of LBM. For instance, when simulating a homogeneous and isotropic 

turbulence, it was noted that more than half of CPU time could be saved by LBM 

compared with CFD when a same grid size is adopted (Satofuka and Nishioka, 1999). 

Due to this advantage, a detailed description of fluid-particle interactions can be 

efficiently provided when LBM coupled with DEM, with large-sized solid particles 

merged into the fine lattice. Hence, it is recognised that the coupled DEM-LBM 

technique would be promising for this thesis, as the localisation phenomenon along with 

the intensive fluid-particle interactions can be simulated. A more detailed review of 

DEM-LBM applications is therefore presented in Section 2.5.  

 

2.4.4 DEM coupled with smoothed particle hydrodynamics (SPH)  

Among literatures, an alternative fluid model that has been coupled with DEM is 

the Smoothed Particle Hydrodynamics (SPH) model. SPH is one of the Mesh-free 

Particle Methods (Liu and Liu, 2003), in which the Eulerian grid is not adopted. SPH 

treats a fluid system as a finite set of particles, and each particle represents a parcel of 

fluid domain. Fluid information is carried by those fluid particles. The Navier-Stokes 

equations are rewritten by the SPH particle approximation (Bui et al., 2007), which is 

given through an interpolation function at a particular fluid particle. Due to its 

Lagrangian nature, SPH is regarded advantageous over the Eulerian models for 

identifying the fluid phase and to apply complicated geometries (Crespo, 2008). For this 
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reason, among literatures, SPH has been coupled with DEM as a favourable tool to 

simulate the solid-liquid mixtures, such as fluid flows through granular materials 

(Potapov et al., 2001; and Li et al., 2007).         

 

However, as stated in Crespo (2008), computations using SPH are typically slower 

compared with other grid-based models. In addition, Li (2012) has pointed out that the 

macroscopic viscosity is difficult to be applied in SPH due to the discrete description of 

fluid. Besides, the implementation of turbulence modelling in SPH is also complicated, 

although attempts have been made by Rogers and Dalrymple (2004). Therefore, 

compared with DEM-LBM, the coupled DEM-SPH technique is considered 

uneconomical for simulating the leakage-soil interaction.  

 

2.5 Review of DEM-LBM Simulations 

As stated in Section 2.4.3, it has been identified that the coupled DEM-LBM 

technique would be promising to efficiently describe the physical behaviour of a 

localised flow and intensive fluid-particle interactions. This technique was firstly 

proposed by Cook et al. (2000), when they conducted simulations on particle-laden 

fluids. Validations were carried out using only a few discs and n-sided polygons in 

sedimentation tests, and the correct phenomenological behaviour was obtained. Further, 

a quantitative comparison with the analytical solution was performed by simulating a 



30 

cylindrical Couette flow (Cook et al., 2004), which demonstrated the capability of this 

technique in accurately computing fluid flow and particle forcing.  

 

More recently, another group of researchers (Han et al., 2007b; and Feng et al., 2007) 

incorporated a simple Large Eddy Simulation (LES) model into DEM-LBM, in order to 

achieve turbulence modelling. A larger number of moving particles were used to 

simulate a two-dimensional transport problem. It was found that the coupled technique 

with LES turbulence model was robust up to a Reynolds number of around 56,000. 

Their work was then extended to three dimensions, and validations were conducted 

against experimental data for a vacuum dredging system (Feng et al., 2010). Good 

overall correspondence was identified from the results. Besides, Mansouri et al. (2009) 

applied DEM-LBM to a three-dimensional model of sand boiling, and the critical 

hydraulic gradient measured from numerical test was found to be close to that given by 

classical soil mechanics. Moreover, the coupled technique was further used to obtain 

permeability of a cemented granular material (Mansouri et al., 2010), again, the 

numerical results agreed well with the existing classical solutions.    

 

In the fluid-particle systems modelled by DEM-LBM, the interactions between the solid 

and fluid phases can be treated well with appropriate boundary conditions. From 

literature, a widely-used boundary condition in LBM is the bounce-back rule (Wolfram, 

1986), because it is easy to be implemented, especially for boundaries with arbitrary 
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shapes (Han et al., 2007b). However, the bounce-back rule is not suitable for moving 

boundaries (Noble et al., 1995), such as moving solid particles. In order to overcome 

such a drawback, Ladd (1994) suggested a modified version of the bounce-back rule, in 

which a term relevant to the velocity of solid particle was included. The fluid-induced 

force on the solid particle was calculated according to the collision rule. Nevertheless, 

undesirable oscillation was observed when the solid particle was moving with a 

relatively large velocity (Ladd and Verberg, 2001), and this was mainly attributed to the 

definition of boundary nodes which kept changing in an ‘on-off’ fashion (Han et al., 

2007b). In an effort to avoid the oscillation, researchers adopted an Immersed Moving 

Boundary (IMB) scheme for the inter-phase treatment (Noble and Torczynski, 1998). 

Through a local solid/fluid ratio, the standard lattice Boltzmann equation was modified, 

and a more precise lattice representation of solid particles was obtained (Feng et al., 

2007). Hence, it is possible to acquire a smooth solution to the local flow and 

fluid-induced force. Since in the leakage-soil interaction, soil particles could undergo 

quick movements with the leaking fluid, the IMB scheme is adopted in this thesis. The 

detailed implementation is presented in Section 3.4.1.  

 

2.6 Summary 

Although the leakage-induced accidents have been reported all over the world, 

where large deformation of surrounding soils are caused by leaking fluid from a buried 
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pipe, not many literatures have been published regarding its mechanism. Laboratory 

works have identified three failure modes in soils when subjected to a local leakage, 

which are dependent on pressure settings and flow rate. A two-dimensional 

experimental study has recognised that internal fluidisation is the underlying 

mechanism, which was characterised by pore pressure build-up, an uplift mechanism of 

the above grains, and an internal fluidised zone in the form of a cavity. In addition, the 

localisation nature in the flow was also found from the experimental results. However, 

due to lack of transparency and limited ability of data acquisition, numerical simulations 

are expected in order to achieve a deeper understanding of the problem, including the 

spatial distribution and time evolution of pore pressures, a full knowledge of different 

bed regimes, and the post-fluidisation response. 

 

Compared with the conventional continuum models, the Discrete Element Method (DEM) 

is more promising to analyse the behaviour of a granular material and to some extent, 

particles with cohesion, especially those involving local large displacements. With the aid 

of the soft-sphere DEM, complete information can be obtained for each particle with 

consideration of multiple collisions. From literature, it is recognised that the soft-sphere 

DEM has been successfully applied to various geotechnical applications, including 

reproducing laboratory tests, rock mechanics problems, and physical behaviour of clayey 

soils.  
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Since the origin of DEM, many different developments have been made on the DEM 

programs. Although irregular-shaped particles have been used to consider the interlock 

effects of granular soils, the implementation costs more compared with circular or 

spherical particles. In this thesis, as fluidisation acts as the predominant phenomenon, the 

shear resistance contributed from particle interlock is identified to be less important. 

Therefore, only circular particles are adopted for the sake of simplicity as a first major 

attempt. From literature, it can be seen that different contact models have also been 

employed in the development of DEM code. Among those, an auto-adhesive contact 

theory based on the JKR model is chosen as a promising candidate in this thesis, which 

can be adopted to compute the inter-particle adhesion force, as an early attempt to explore 

the mechanical effect of soil cohesion.  

 

In order to explicitly consider the pore fluid, DEM has been coupled with various fluid 

models. Among literatures, several categories of the fluid models can be identified: the 

Darcy Fluid Flow (DFF) model; the Computational Fluid Dynamics (CFD) model; the 

model by the Lattice Boltzmann Method (LBM); and the mesh-free model by the 

Smoothed Particle Hydrodynamics (SPH). When DEM coupled with DFF or CFD, the 

fluid domain is usually divided into coarse cells, of which the size is larger than an 

individual particle. The fluid equations (i.e. the Laplace equation or the Navier-Stokes 

equations) are computationally solved at the cell level, with the pore volume fraction and 

permeability updated from DEM solutions. The drag force exerted on an individual 
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particle is thereby calculated from semi-empirical relations. However, DEM-DFF is not 

suitable for the modelling of fluid flows with high Reynolds number. Moreover, due to 

the coarse grids adopted, it is intrinsically difficult for both DEM-DFF and DEM-CFD to 

trace the fluid motion around each particle, thus provides an unsatisfactory description of 

fluid-particle interactions.  

 

The coupled DEM-SPH has been applied to the solid-liquid mixtures, such as fluid flows 

through granular materials. Although SPH is regarded advantageous over most Eulerian 

models to identify the fluid phase and to apply complicated geometries, it is 

computationally more expensive than grid-based models. In addition, it is difficult to 

apply the macroscopic viscosity and turbulence implementations in SPH due to its 

discrete description of fluid. Therefore, DEM-SPH is considered not suitable for 

simulating the leakage-soil interaction, especially in the case that turbulence 

phenomenon is involved at the vicinity of the leak. 

 

From literature, DEM-LBM has been identified as an alternative technique for simulating 

fluid-particle systems. Unlike DFF, CFD and SPH, LBM is based on the microscopic 

kinetic models. With the same grid size being adopted, it has been recognised that LBM is 

of higher efficiency compared with the conventional CFD method. Furthermore, due to 

its microscopic nature, a detailed description of fluid-particle interactions can be 

efficiently obtained when coupled with DEM, with large-sized solid particles merged 
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into the fine lattice. The Immersed Moving Boundary (IMB) scheme was proposed for 

the inter-phase treatment in DEM-LBM. Modified by a local solid/fluid ratio, LBM is 

capable of providing a more precise lattice representation of solid particles. Researchers 

have demonstrated that the DEM-LBM results agree well with experimental data and 

analytical solutions qualitatively and quantitatively. Moreover, incorporated with the 

Large Eddy Simulation (LES), DEM-LBM is capable to achieve robust turbulence 

modelling. For the above reasons, it is recognised that the coupled DEM-LBM 

technique would be promising for this thesis, in which the localisation and turbulence 

phenomenon, along with the intensive fluid-particle interactions are expected to be 

simulated efficiently. 
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CHAPTER 3: THE COUPLED DEM-LBM TECHNIQUE        

3.1 Introduction 

 Although the coupled DEM-LBM technique is regarded promising, no open source 

code has been found so far. A two-dimensional DEM-LBM code, named FPS-BHAM, is 

therefore developed in order to carry out numerical simulations in this study. In 

FPS-BHAM, DEM considers the soil as an assembly of circular particles; and LBM is 

used for the modelling of fluid flow. The Immersed Moving Boundary (IMB) scheme, as 

stated in Section 2.4, is adopted to resolve the interactions between fluid and soil particles. 

The relevant computational algorithms and implementations in FPS-BHAM are outlined 

in Sections 3.2-3.4. In Section 3.5, the flow chart of complete calculation process is given 

to show how a DEM-LBM simulation runs for this thesis. Finally, a summary of the 

chapter is given in Section 3.6. 

 

3.2 Soft-Sphere DEM 

3.2.1 Computational algorithm 

 The soft-sphere DEM, which is adopted in this thesis, is a Lagrangian method which 

performs analysis at the particle level. Between any two particles in contact, a slight 

overlap is allowed. The contact is viewed as a dynamic process in which contact forces 

accumulate or dissipate over time. Contact forces can be subsequently obtained through 
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the deformation history at the contact. The motion of a single particle is governed by the 

Newton’s second law in the form of the following equations,                       

 
2

2 c b h

d
m

dt
  

x
F F F   (3.1) 

 
c h

d
I

dt
 

ω
T T  (3.2) 

where cF  denotes the total contact force, calculated by summing up all the contact forces 

applied to an individual particle. cT  is the torque generated by the contact force. bF  

represents the body force, namely, the submerged gravity in this thesis. hF  and hT  refer 

to the force and torque induced by fluid flows, respectively. Their values are obtained 

through the fluid-particle two-way coupling (see Section 3.4.1). Besides, m, 
2

2

d

dt

x
, I, and 

d

dt

ω
 represent mass, translational acceleration, moment of inertia, and angular 

acceleration of particle, respectively.  

 

In DEM, a time step has to be chosen sufficiently small so that the propagation of the 

disturbances cannot go further beyond the neighbouring particles, and therefore, the 

particle velocities and accelerations are assumed to be constant within a single time step 

(Cundall and Strack, 1978). Thus, with the accelerations computed from Eqns.(3.1) and 

(3.2) for each particle at each time step, particle velocities are integrated using a central 

difference scheme, and the locations are updated as below,    
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where x  and θ  represent components of location and angular rotation of a particle. 

F  and T  are the total force and torque applied to the particle. c  and 'c  are the 

global damping which are taken to be proportional to mass and inertia, respectively. 

DEMt  is the DEM time step, and its choice is explained in Section 3.4.2. The 

superscripts t  and DEMtt   represent the quantities at the current and previous time 

steps, respectively. 

 

The normal and tangential components of the total contact force cF
 
can be determined 

by, 

 δFFαFF 


t
tt

t
t
tn

tt
n

t
n kk DEMDEM ,  (3.5)

     
 

where α  and δ  are the relative normal and tangential displacement increments 

within a DEM calculation cycle. nk  and tk  are the normal and tangential contact 

stiffnesses, which are computed by algorithms based on contact theories (see Section 

3.2.2).  

 

3.2.2 Contact force calculations 

The contact force calculations from a well-established code TRUBAL, which is based 

on the contact theories stated in Thornton (1991), are directly transferred into FPS-BHAM 

for this thesis. This sub-section outlines the main calculation procedure in the code. For 
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the ease of explanation, some basic variables and their expressions are firstly defined in 

the following section. 

 

As for two circular particles A and B in contact, their radii are denoted as AR  and BR , 

masses as Am  and Bm , Young’s modulus as AE  and BE , shear modulus as AG  and 

BG , and Poisson’s ratios as A  and B . The effective contact radius *R  is obtained 

from, (see e.g. Yang, 2009) 

 
*

1 1 1

A BR R R
   (3.6) 

The effective mass m  is obtained from, 

 
1 1 1

A Bm m m
   (3.7) 

The effective contact Young’s modulus *E  is obtained from, 
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*
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The effective contact shear modulus G  is obtained from,  

 
2 21 A B

A BG G G

 


 
   (3.9) 

 

The relative approach between the two particles in contact (Figure 3.1) is expressed as  

 ( )A BR R D   α n  (3.10)  

 A BR R D     (3.11) 
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Figure 3.1 Two particles in contact 

 

where D  is the centre-to-centre distance and n  is the unit vector pointing from centre 

of A to centre of B. The relative normal and tangential displacement increments are 

obtained from, 

  B A

DEMt    v v n  (3.12) 

      B A A B

DEM A DEM B DEMt R t R t          δ v v n ω n ω n  (3.13) 

 

Hence, the tangential displacement is calculated by, 

 t t t  δ δ δ  (3.14) 

 

During each DEM time step, the tangential force and displacement are re-orientated due 

to the rotation of the contact plane. The variables are adjusted as below, 
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where Ω is the rotation of the contact plane given by, 
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If the resultant tangential force satisfies the sliding criterion, sliding is assumed to occur 

and the tangential force is reset to the limiting value 
nF   (   is the inter-particle 

friction coefficient).

 

 

The Hertz theory (see Johnson, 1985) is used to determine the normal contact stiffness, 

 12nk E a  (3.17) 

where 1a  is the radius of the contact area calculated as follow, 

   *

1 Ra   (3.18) 

 

The tangential contact stiffness is determined by Thornton and Randall (1988) based on 

the theory of Mindlin and Deresiewicz (1953). By adopting an incremental approach, tk  

can be calculated using the newly updated nF  and 1a . The expression for tk  is shown 

as follows (Thornton and Yin, 1991), 
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and the negative sign in Eqn.(3.19) is only taken during unloading. The forces *

tF  and 

**

tF  define the load reversal points and need to be continuously updated, 

    t t nF F F     (3.23) 

 t t nF F F     (3.24) 
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*8   

is satisfied.   

                                             

In order to account for inter-particle adhesion, the JKR model (Johnson et al., 1971) has 

been incorporated into the Hertz model to determine the normal contact stiffness 

(Thornton and Yin, 1991), 
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and F 
 
is regarded to be the effective normal force, 

 
22 4 4n c n c cF F F F F F      (3.28) 
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If the particles are leaving each other, the negative sign is taken in Eqn.(3.28). cF  is the 

so called ‘pull-off’ force indicating the maximum tensile force required to separate two 

adhesive particles in contact. It is given by, 

*0.3 RFc          (3.29) 

where   is the surface energy of each solid particle in contact. Accordingly, in order 

to examine the effect of particle surface energy on the bed response to the pipe leakage 

(see Section 7.4), values of   were selected according to the following relationship, 

mgKFc      (3.30) 

where K  indicates the ratio of inter-particle adhesion force to average particle weight. 

 

In the presence of tangential interactions, it is assumed that a peeling mechanism takes 

place initially when a tangential force is applied (Thornton, 1991). During this peeling 

process, the radius of the contact area reduces to 
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If the particles are leaving each other, the negative sign is taken in Eqn.(3.31). The 

corresponding tangential stiffness is given by 

 48tk G a  (3.32) 

 

The peeling process terminates if the tangential force reaches a critical value of 
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After the tangential force reaches to its critical value, sliding immediately happens if 

tcF  is greater than the sliding force slcF , 
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  2 ( 0.3 )slc n c n cF F F F F     (3.35) 

and the tangential force is then reset to slcF . Otherwise, it undergoes a smooth 

transition to sliding. During this transition process, the radius of the contact area is 

given by, 
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and the corresponding tangential stiffness is calculated by Eqns.(3.19)-(3.22) with nF  

replaced by cn FF 2 , and 1a  replaced by 5a .  

 

In order to account for the energy dissipation due to elastic wave propagation, dashpot 

forces are introduced and added to the resultant force on a particle. The normal and 

tangential components of the dashpot force are given by (see e.g. Yang, 2009), 

 2 /nd n DEMF m k t    (3.37) 

 2 /td t DEMF m k t    (3.38) 

where   is a contact damping factor. 
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3.3 LBM for Fluid Flow Modelling 

3.3.1 Implementations 

In LBM, the fluid domain is divided into a square lattice with unity spacing. Fluid is 

assumed as packets of micro-particles residing on each lattice node. The D2Q9 model 

(Feng et al., 2007) is adopted in this thesis, in which the velocity field is discretised into 

nine prescribed vectors (see Figure 3.2). In a unity time step, fluid particles are allowed 

either to remain at their current locations (which is referred to the zero velocity 0e ), or to 

travel to their adjacent nodes with velocities )8,...1( iie .  

 

 

Figure 3.2 Nine prescribed velocities in a D2Q9 model 

 

As demonstrated in Figure 3.2, the prescribed velocities in a D2Q9 model are defined as, 
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where C  refers to the lattice speed, which is defined as the ratio of the unity lattice 

spacing h  to LBM time step LBMt , 

 / LBMC h t    (3.40) 
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C  is also related to the fluid speed of sound sC  as below, 

 3 sC C  (3.41) 

 

Rather than describing a fluid flow by density, pressure, and flow rate, the primary 

variables in LBM are the density distribution functions 
if , along with the prescribed 

velocities ie . The governing equation for the notable lattice Boltzmann BGK model is 

given below, 
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where if  represents the probable quantity of micro-particles at a lattice node moving 

along the i
th

-direction with velocity ie  at a particular time.   is a dimensionless 

relaxation time, and eq

if  are a set of distribution functions at which the systems are 

defined as the equilibrium. The values of the equilibrium distribution functions are given 

by, 
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where f  is the fluid density, and u  is the flow velocity. 

 

Seen from Eqns.(3.42) and (3.43), a Eulerian flow field is defined by the configurations 

of micro-particles. Within each LBM time step, the configurations undergo two phases of 

computations. Firstly, the micro-particles encounter one another at node x , and change 

their original directions and velocities by collision. This process is referred to the 
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‘collision phase’. The right hand side of Eqn.(3.42) calculates the post-collision 

distribution. Thereafter, the updated distribution at node x  is transferred to the adjacent 

nodes along the i
th

-direction, so as to give an updated description of the flow field. This is 

denoted as the ‘streaming phase’. Such an implementation is repeated cycle by cycle in 

LBM, and the macroscopic fluid variables can also be solved through the following 

relationships, 
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where p  and   are the changes in pressure and density values, respectively.  

                                         

However, there has been a main difficulty in applying LBM to a fluid with low viscosity 

(Han et al., 2007b). This is resulted from the following equation, which needs to be 

satisfied in the LBM computations:  

 
1 1

( )
3 2

h C      (3.47) 

where   is the kinematic viscosity of fluid. For a fluid with low viscosity, such as water, 

the production of h  and )
2

1
(   is required to be small. A small value of h  may 

induce an unnecessarily large scale simulation, which adversely increases the 

computational cost. While making   be very close to 0.5 may result in numerical 
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instability. Therefore, it is essential to incorporate a turbulence model into LBM. 

 

Han et al. (2007b) applied the concept of Large Eddy Simulation (LES) to LBM in their 

DEM-LBM simulations. In the implementations, LES directly resolves the large eddies, 

and simulates the small ones using a sub-grid model. Through a filtered form of the LBM 

equation, solutions at the resolved scale are obtained, 
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where if  are filtered density distribution functions, which reflect the probable quantity 

of micro-particles at the resolved scale which are travelling along the i
th

-direction. eq

if  

are a set of filtered distribution functions at which the systems are defined to be at the 

equilibrium. The effect of the unresolved scale (i.e. the sub-grid scale) is principally 

responsible for energy dissipation through viscous forces. It is considered by a relaxation 

time t , which corresponds to the turbulence viscosity t  as  

LBM

t
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2

3
         (3.49) 

 

t  is then added to   which corresponds to the original fluid viscosity, so as to give a 

total relaxation time that takes both resolved and unresolved scales into account, 

 total t     (3.50) 

 

The standard Smagorinsky sub-grid model (1963) is included, and the turbulence 
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viscosity is computed as,  
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where cS  is the Smagorinsky constant. S  relates to the filtered strain rate tensor, and  

ijQ
~

 are the second-order moments of the non-equilibrium distribution functions. From 

Eqns.(3.49)-(3.51) and Eqn.(3.41), the total relaxation time is obtained as follow, 
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3.3.2 Boundary conditions 

This sub-section illustrates boundary conditions used in this thesis. An example of a 

left boundary node is used for the ease of illustration. As shown in Figure 3.3, the density 

distribution functions 64320 ,,,, fffff , and 7f  can be determined after the streaming 

phase, while ,, 51 ff  and 8f  remain unknown. Therefore, it is necessary to determine 

the values of ,, 51 ff  and 8f  so that the prescribed boundary conditions can be applied.  
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Figure 3.3 A typical lattice node on the left boundary 

 

For a stationary wall boundary, the widely-used bounce-back rule (as stated in Section 2.4) 

is adopted. It is assumed that there is no tangential velocity along the fluid-wall interface 

(i.e. no-slip boundary condition). The wall is located half spacing away from the 

boundary nodes (see Figure 3.4), and the micro-particles coming from the internal nodes 

are regarded to be bounced back along their original directions:  

 ( , ) ( , )i LBM if t t f t  x x  (3.53) 

where -i denotes the opposite direction of i. ( , )if tx  represents the post-collision 

distribution.  

 

 

 

 

 

Figure 3.4 Bounce-back rule  
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Hence, in a left boundary node as shown in Figure 3.3, there are 

 1 3, 5 7, 8 6f f f f f f    (3.54) 

 

For a pressure/density boundary condition, the pressure/density values have to be 

specified at all boundary nodes. Suppose the velocity along y-direction is zero in a 

pressure/density inlet problem, Eqns.(3.44) and (3.46) lead to the following relationships: 

 1 5 8 0 2 3 4 6 7( )bf f f f f f f f f          (3.55) 

 5 8 2 4 6 7f f f f f f       (3.56) 

where b  is the specified density at the boundary node. Nevertheless, in order to 

determine the three unknowns 1f , 5f , and 8f , one more equation is required to get a 

unique solution.  

 

A non-equilibrium bounce-back assumption, proposed by Zou and He (1997), is 

employed to close the above equation system. It is assumed that the non-equilibrium part 

of the density distribution is bounced back along the normal direction. In the case shown 

in Figure 3.3, there is 

 1 1 3 3

eq eqf f f f    (3.57) 

 

Hence, 

 1 3

2

3
b xf f u   (3.58) 
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From Eqns.(3.55) and (3.46), the velocity in the x-direction is obtained as follows, 

 0 2 4 3 6 72( )
1x

b

f f f f f f
u



    
   (3.59) 

 

Combined the above equation with Eqns.(3.55) and (3.56), 
1f , 5f , and 8f  

can be 

uniquely determined. 

 

As for a velocity inlet boundary condition, xu  is specified at the boundary node instead 

of b . The determination of 1f , 5f , and 8f  is similar to that of the pressure/density 

boundary condition. And the equation system is derived as follows, 
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 (3.60) 

 

3.4 Two-Way Coupling 

3.4.1 Interactions between fluid and solid particles 

In order to describe the interactions between fluid and solid particles in the context of 

LBM, it is necessary to have the solid particles firstly mapped onto the LBM Eulerian 

lattice. The lattice representation of a circular particle is illustrated in Figure 3.5. The 

nodes connected to each other across the particle boundary are denoted as boundary 
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nodes. The link connecting one boundary node interior to the particle and the other one 

exterior to the particle are denoted as a boundary link. Drawing across all the middle 

points of boundary links generates the particle surface on basis of the LBM lattice. It is 

clear that due to such a stepwise lattice representation, a smooth solution may be difficult 

to acquire unless a sufficiently fine lattice is adopted.  

 

   Boundary l ink

Boundary node Latt ice representat ion of

par t ic le  boundary  

Figure 3.5 Stepwise lattice representation of a circular solid particle 

 

In order to cope with the problem mentioned above, the Immersed Moving Boundary 

(IMB) scheme is employed. In IMB, a nodal cell (see Figure 3.6) is introduced for each 

lattice node, with its size identical to a lattice square. The node is located at the centre of 

the cell. The volume fraction of the nodal cell covered by a solid particle is represented by 

the local solid/fluid ratio  .  
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Figure 3.6 A nodal cell and the fractional area covered by a solid particle 

 

The standard LBM equation (see Eqn.(3.42)) is then modified by   as 
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(3.61) 

where s

i  represents the bounce-back of the non-equilibrium part of the distribution 

functions. bu  is the velocity of the particle at the nominal boundary point (see Figure 

3.6).  

 

If 0  , it can be identified that Eqn.(3.61) recovers the standard LBM equation (i.e. 

Eqn.(3.42)). This indicates a nodal cell fully filled with fluid. While if 1  , the second 

term on the right hand side of Eqn.(3.61) vanishes, and the post-collision distribution is 

calculated as if the cell is purely covered by solid. In general,   varies between 0 and 1, 

and the influence of the moving solid particle on the local fluid flows are taken into 

account.  

 

On the other hand, the fluid-induced force and torque acted on the solid particle are also 
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obtained through the summations as follow, 

 ( )s

h m i i

m i

C h B   F e  (3.62) 

 ( ) ( )s

h m s m i i

m i

C h B     T x x e  (3.63) 

where the summations are performed over all the boundary nodes. mx  is the location of 

lattice node m . sx  denotes the location of the nominal boundary point. After hF  and 

hT  are computed, they are used to update the total particle force and torque in Eqns.(3.1) 

and (3.2) for DEM calculation. In such a way, the description of interactions between 

fluid and solid phases is numerically accomplished.  

 

3.4.2 Sub-cycling 

Normally, the time step used in LBM is stated to be larger than that in DEM (Feng et 

al., 2007). DEMt  shall be taken as a fraction less than a critical time step so as to achieve 

numerical stability (Cundall and Strack, 1978). As for the contact model used in this 

thesis, the critical time step is given according to the Rayleigh wave speed of force 

transmission (see e.g. Yang, 2009), 

 
(0.8766 0.1631 )

pave
c

R
t

G




 


     (3.64) 

where aveR  is the averaged particle radius, and p  is the particle density. G  and   

are shear modulus and Poisson’s ratio of the particle, respectively. 

 

While in LBM, the lattice speed C  is determined firstly. In an effort to guarantee a good 



56 

approximation of an incompressible fluid, the following relationship is required to be 

satisfied, as recommended by Han et al (2007b):  

 max 1
u

Ma
C

         (3.65) 

 

Afterwards, the lattice spacing and time step are chosen using Eqns.(3.40) and (3.47).  

 

Due to the inconsistency between DEMt  and LBMt , Feng et al. (2007) proposed a 

sub-cycling scheme to ensure an overall stable solution for the coupling technique. In this 

scheme, DEMt  is replaced by a slightly smaller value *

DEMt ,  
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

       (3.66) 

 

Eqn.(3.66) results in a sub-cycling time integration for DEM: within one LBM cycle, N  

sub-cycles of DEM calculations are conducted, with the fluid-induced force and torque 

kept constant.  

 

3.4.3 Unit systems 

Unlike the DEM calculations in which physical units can be directly applied, the 

LBM computations adopt the lattice unit (l.u.) system. Hence, conversions between 

physical units and lattice units are necessary for all relevant variables. Similar to the base 
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units (such as metre for length, kilogram for mass, and second for time) in physical unit 

system, there are three base units (ll.u. for length, ρl.u. for density, and tl.u. for time) 

defined in the lattice unit system as well: 

            Length unit:    hull ..1  

            Density unit:   31 . . 1000 /wl u kg m    

            Time unit:    1 . .tl u t   

 

According to the above base units, all relevant variables in physical units can be 

conversed to those in lattice units. A complete list regarding the conversions can be 

found in Feng et al. (2007). 

 

3.4.4 Hydraulic radius 

In the fluid-particle two-way coupling, a hydraulic radius hR , rather than the actual 

radius of a particle R , is adopted for a cylinder to give an equivalent drag force to a 

sphere: 
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Hence, 
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where DF  denotes the drag force applied to a particle. rv  is the speed of particle 

relative to fluid. A  is the reference area. dC  is the drag coefficient only related to 

particle Reynolds number, and is taken as 0.44 according to Zhu et al. (2007).  

 

Therefore, 

          8.0
R

Rh                (3.69)

            

It can be seen that the hydraulic radius is smaller than the actual radius of a particle. In a 

two-dimensional simulation, no fluid paths exist through the particle assembly, which is 

regarded unrealistic. However, such situation can be addressed by adopting the 

hydraulic radius, as also reported in Boutt et al. (2007).  

 

3.5 Flow Chart of Complete DEM-LBM Calculations in FPS-BHAM 

The complete DEM-LBM calculation process in FPS-BHAM is demonstrated 

through the flow chart shown in Figure 3.7. 

 

 

 

 

 



59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Flow chart of the coupled DEM-LBM computation in FPS-BHAM 

Calculating DEM critical time step and sub-cycling number N  

DEM-LBM Calculation Cycle: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  LBM Calculation 

Applying boundary conditions; 

Calculating density   and flow rate u  at each lattice node; 

Calculating equilibrium density distribution 
eq

if ;  

Calculating post-collision distribution with IMB applied;  

Calculating hydrodynamic force hF  and torque hT  exerted on particles; 

Streaming 

DEM Calculation  

 

 

 

 

Contact detection (Searching all contacts) 

Contact force calculation; 

Updating total force F  and torque T ; 

Updating coordinates x  and rotations θ  of all particles 

 

Computation Begins 

Computation Ends 

Inputting basic parameters and initial conditions 

N sub-cycles 

Mapping particles onto the LBM mesh; 

Calculating local solid/fluid ratio λ at each nodal cell 

DEM calculation ends 

DEM-LBM calculation ends 
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In the beginning of computations, basic parameters of solid particle and fluid properties 

are input and initial boundary conditions are set up. The time steps in DEM and LBM 

calculations are then determined, giving the sub-cycling number N  (see Eqn.(3.66)). The 

DEM-LBM computations start from mapping particles onto the LBM Eulerian lattice. The local 

solid/fluid ratio is calculated at each nodal cell. Afterwards, LBM begins to compute. In each 

LBM calculation cycle, the lattice Boltzmann equation is solved with LES and IMB 

incorporated (see Eqns.(3.48) and (3.61)). The fluid-induced force and torque acted on 

each solid particle are also obtained from Eqns.(3.62) and (3.63), and regarded constant 

when applied to the N  sub-cycles of DEM calculation. Once DEM begins to run, 

contact detection is firstly conducted to search for all particle/particle and particle/wall 

contacts. The contact force is then calculated once a contact is identified. Afterwards, 

total force and torque applied to each particle can be determined, and the particle 

location and rotation are updated by Eqns. (3.3) and (3.4). They are then used for 

contact detection in the following DEM sub-cycle, or for particle mapping in the 

following DEM-LBM cycle. The same computations as stated above are repeated cycle 

by cycle till the end of computation.        
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3.6 Summary 

A DEM-LBM computer program FPS-BHAM is developed in order to capture the 

behaviour of a fluid-particle system in a scenario of a pipe leakage problem. This chapter 

outlines the main computational elements involved in the implementations. FPS-BHAM 

uses DEM to describe the solid phase by tracing particle motions, and employs LBM to 

simulate fluid flows. The contact force calculation from a well-established code TRUBAL 

is directly transferred into FPS-BHAM. Besides, with the aid of the IMB scheme, not only 

the influence of a moving particle on local fluid flows can be described, but the 

fluid-induced force and torque applied to the solid particle can be determined.  

 

In FPS-BHAM, calculations are performed cycle by cycle. Within every calculation cycle, 

particles are firstly mapped onto the LBM lattice. The lattice Boltzmann equation is 

solved with IMB scheme being employed. Afterwards, a number of DEM sub-cycles are 

conducted, with the fluid-induced force and torque being kept constant in a single 

DEM-LBM cycle. The force and torque are then added to the DEM formulas to update 

particle location and rotation, and prepare for computation in the next calculation cycle. 

All variables used in the DEM-LBM implementations are conversed into lattice units. 

Moreover, a hydraulic radius that is smaller than the actual particle radius is adopted 

when solving the fluid-particle interactions. This is intended to build up fluid paths 

through the particle assembly in a two-dimensional simulation. 
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CHAPTER 4: CODE VERIFICATION  

4.1 Introduction 

In order to check if all the algorithms in FPS-BHAM have been correctly 

implemented, code verification is necessary before performing numerical studies of the 

pipe leakage problem. As stated in Chapter 3, the development of FPS-BHAM consists of 

the following main elements: 

(i) establishing the DEM calculation process, including the incorporation of the 

contact force calculation subroutines from TRUBAL; 

(ii) implementing the LBM computation with different boundary conditions; and 

(iii) applying the IMB scheme to the LBM computation.  

 

In this chapter, verification through a series of simple tests is conducted in order to 

examine the DEM calculations, the LBM implementations, and the incorporation of IMB. 

The results are demonstrated in Sections 4.2-4.4, respectively. A brief summary is finally 

given in Section 4.5. 

 

4.2 Particle Collision Using DEM 

As the contact force calculation subroutines in FPS-BHAM are directly transferred 

from the well-established TRUBAL, it is reasonable to compare the DEM results from 
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FPS-BHAM and from TRUBAL. In this section, tests on particle-wall and particle-particle 

collisions are carried out, with both non-adhesive and adhesive particles being used. 

 

4.2.1 Particle-wall collision 

As shown in Figure 4.1, a non-adhesive particle drops from a height of 5m with zero 

initial velocity and collides with a horizontal wall located at the ground. The particle is 

placed in a force field of 1.0N along x-axis and -9.81N along y-axis. The particle has a 

radius of 1.0m and density of 2700kg/m
3
. Other DEM parameters used in the test is listed 

in Table 4.1. 

 

 

Figure 4.1 Test setup of a particle-wall collision 

 

Table 4.2 records the particle location at 1.0s (10,000 DEM time steps), which is a short 

time after colliding with the wall. The results are compared with those from TRUBAL in 

Table 4.2 as well. 
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Table 4.1 DEM parameters used in particle-wall collision test 

Particle Young’s modulus 689.5 MPa 

Particle Poisson’s ratio 0.3 

Particle surface energy 0.0 J/m
2
 

Particle friction coefficient 0.3 

Global damping factor 0.01 

Particle-wall contact damping factor 0.032 

DEM time step 1×10
-4

 s 

 

Table 4.2 Computational results: location of a non-adhesive particle at 1.0s (10,000 DEM 

time steps) 

 FPS-BHAM TRUBAL Relative Difference 

x-coordinate 3.47868799681111 3.478647 1.2×10
-5

 

y-coordinate 1.50291630562420 1.503515 4.0×10
-4

 

Rotation -4.924805065012636E-002 -4.9541231E-02 4.7×10
-5

 

 

The difference in the computational outcome is thought to be resulted from two main 

reasons. Firstly, the round-off error exists as the double-precision data type is adopted in 

FPS-BHAM, while only the single-precision type is adopted in TRUBAL. Moreover, in 

FPS-BHAM, the particle location is updated at the end of each DEM cycle following the 

total force calculation. However, in TRUBAL, the particle location is updated in the 
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beginning of each cycle, using the total force obtained from the previous cycle. Therefore, 

there exists one-cycle difference in the total force, and hence results in subtle error in the 

particle location after a number of cycles. 

 

In the second test, an adhesive particle is adopted to collide with the wall. The same set of 

DEM parameters is used except the particle surface energy value given as 5.0J/m
2
. Table 

4.3 shows the comparison between the results from different codes. 

 

Table 4.3 Computational results: location of an adhesive particle at 1.0s (10,000 DEM 

time steps) 

 FPS-BHAM TRUBAL Relative Difference 

x-coordinate 3.47872202336254 3.478651 2.0×10
-5

 

y-coordinate 1.49850369704832 1.499619 7.4×10
-4

 

Rotation -4.916298427281438E-002 -4.9533658E-02 5.9×10
-5

 

 

Compared Table 4.3 with Table 4.2, it is seen that the relative difference is larger with the 

presence of particle adhesion. This is probably because more computations are involved 

in the auto-adhesive elastic contact model (see Section 3.2.2), and thereby increase the 

round-off error during computations. In spite of this, it can be seen that effectively the 

same DEM results are still obtained from FPS-BHAM.  
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4.2.2 Particle-particle collision 

In order to examine the accuracy of DEM calculation on a particle-particle collision, an 

example of two particles is adopted in this sub-section. As shown in Figure 4.2, Particle A 

drops from a height of 5m with zero initial velocity and collides with Particle B which is 

resting on the horizontal wall. Both particles have non-zero surface energy values and 

placed in a force field of -9.81N along y-axis. Particle A has a radius of 1.0m and density 

of 2700kg/m
3
, and Particle B has a radius of 1.5m and density of 5000kg/m

3
. Other DEM 

parameters used in the test is listed in Table 4.4. Locations of both particles at 1.0s 

(10,000 time steps) are listed and compared in Table 4.5.  

 

 

Figure 4.2 Test setup of a particle-particle collision 

 

 

 

 

 

 



67 

Table 4.4 DEM parameters used in particle-particle collision test 

 Particle A Particle B Wall 

Young’s modules 689.5 MPa 889.5 MPa 1089.5 MPa 

Poisson’s ratio 0.3 0.31 0.32 

Surface energy 5.0 J/m
2
 5.0 J/m

2
 5.0 J/m

2
 

Friction coefficient 0.3 0.4 0.5 

Global damping factor 0.01 0.01 0.01 

Particle-particle contact 

damping factor 

 

0.016 

 

0.016 

 

0.016 

Particle-wall contact 

damping factor 

 

0.032 

 

0.032 

 

0.032 

Time step 1×10
-4

 s 

 

Again, the relative difference shown in Table 4.5 is attributed to the round-off error and 

the one-cycle difference in the DEM computation procedure. After all, FPS-BHAM 

provides valid DEM results for particle-wall and particle-particle collisions with both 

non-adhesive and adhesive particles, as indicated by all the tests reported in this whole 

section. 
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Table 4.5 Computational results: particle locations at 1.0s (10,000 DEM time steps) 

 FPS-BHAM TRUBAL Relative Difference 

Particle A: 

x-coordinate 

2.37865248309718 2.377825 3.5 ×10
-4

 

Particle A: 

y-coordinate 

3.69968790405553 3.707772 2.2 ×10
-3

 

Particle A: 

Rotation 

0.532251228249104 0.5343704 3.4×10
-4

 

Particle B: 

x-coordinate 

3.56397902181272 3.560187 1.1×10
-3

 

Particle B: 

y-coordinate 

1.47691041564697 1.476991 5.5×10
-5

 

Particle B: 

Rotation 

-3.489849718559125E-002 -3.6935519E-02 3.2×10
-4

 

 

4.3 Fluid Flow Using LBM 

In this section, numerical tests are carried out using FPS-BHAM on a Poiseuille flow 

with velocity and pressure boundaries. The results are compared with the analytical 

solutions. The aim of this is mainly to verify whether the LBM computations are correctly 

implemented with different boundary conditions.  
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4.3.1 Poiseuille flow with a velocity boundary 

A flow channel is set up using FPS-BHAM with a length of 200ll.u. (for details of the 

lattice unit system, please refer to Section 3.4.3). Two parallel walls are fixed at the top 

and bottom boundaries with a separation of 100ll.u.. A velocity inlet is given at the left 

boundary, and its profile fits the analytical expression as, 

])
2/

2/
(1[ 2

max
Y

Yy
uux


        (4.1) 

where Y  is the width of channel, and maxu  is the maximum fluid velocity at boundary. 

In this test, ..01.0max ulu  , giving the Mach number of 0.01. According to Han et al. 

(2007b), this would guarantee a sufficiently accurate result for an incompressible fluid. 

The bounce-back rule is applied to the top and bottom boundaries so as to achieve the 

no-slip condition for stationary walls. The velocity boundary based on the scheme 

proposed by Zou and He (1997) (see Section 3.3.2) is applied to the left boundary, and the 

zero excess pressure boundary is applied to the right one. 

 

After the test begins, the fluid flow in the channel is developing until a steady state is 

reached. The numerical results at the steady state are compared with the analytical 

solution in Eqn.(4.1). During each LBM cycle, the global velocity error is calculated over 

all the lattice nodes in the computational domain by (Cook et al., 2004), 
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where the subscripts LBM and analytical indicate values given by LBM and the analytical 

expression, respectively. After a sufficient period (around 43,000 LBM calculation 

cycles), the difference in the global error between two successive time steps converges to 

2×10
-5

, indicating that steady state is reached (see Figure 4.3). The final global error is 

found to be 0.48%. 

 

 

Figure 4.3 LBM results with a velocity boundary: velocity profile in Poiseuille flow 

 

4.3.2 Poiseuille flow with pressure boundaries 

In order to examine the capability of FPS-BHAM in simulating fluid flows with 

pressure boundary condition, in the test reported here, the pressure boundary scheme 

proposed by Zou and He (1997) (see Section 3.3.2) is adopted. A fluid channel has a 

length of 100ll.u. and a width of 25ll.u.. The bounce-back rule is applied to the paralleled 

top and bottom boundaries so as to achieve the no-slip condition for the stationary walls. 
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The fluid has an initial density of ul.0.1   and zero velocity over the domain, except that 

two different density values are specified at the left and right boundaries: 

 ..9995.0.;.0005.1 ulul outin        (4.3) 

which corresponds to pressure values according to Eqn.(3.44): 

..
3

9995.0
.;.

3

0005.1
ulpulp outin        (4.4) 

 

Therefore, a flow between the two walls is driven under the constant pressure drop along 

the channel. 

 

In the test, the LBM dimensionless relaxation time 8.0 . From Eqn.(3.46), the 

kinematic viscosity of the fluid is obtained: 

..1.0)
2

1
(

3

1
ulCh          (4.5) 

 

Hence, the dynamic viscosity is calculated as, 

..1.00.11.00 ulf         (4.6) 

 

The exact solution to the pressure-driven flow at the steady state is shown as, 
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where L  and H  are the length and width of the domain, respectively. By substituting 

Eqns.(4.4) and (4.6) into Eqn.(4.7), the general expression of the analytical solution is 

obtained as 
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which indicates that velocity is zero at the walls and reaches the maximum in the middle.  

The Mach number is calculated as 0.0026, which is much smaller than 1.0 so that the 

incompressibility requirement is fulfilled (Han et al., 2007b). 

 

Figure 4.4 shows the velocity profile at the steady state. The global velocity error is 

2.34%, which is computed over all the lattice nodes in the computational domain.  

 

 

Figure 4.4 LBM results with pressure boundaries: velocity profile in Poiseuille flow 

 

From the results presented in this section, it can be seen that a correct implementation of 

LBM is accomplished with both velocity and pressure boundaries. However, the demand 

of simulating the pipe leakage problem would need to be met when a large amount of 

solid particles act as moving boundaries. Therefore, an examination of FPS-BHAM on its 

capability of modelling fluid flows with moving solid boundaries is necessary and 

demonstrated in the following section. 
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4.4 Fluid Flow with Moving Solid Boundaries 

Two tests on the Couette flows are carried out using IMB in this section. A horizontal 

Couette flow adopts the value of 0.5 for the solid/fluid ratio   at all the wall boundary 

nodes. While a cylindrical Couette flow suffers various solid/fluid ratios at the boundary 

nodes, and hence the sophisticated calculation for the solid/fluid ratio in FPS-BHAM can 

be verified as well. 

 

4.4.1 Plane Couette flow 

Firstly, a plane Couette flow between two parallel walls is modelled. The bottom wall 

is fixed, while the top wall is translating horizontally with a constant velocity ..1.00 ulu  . 

Fluid domain is divided into a 300×50 lattice grid. IMB is applied to both the top and 

bottom walls. The fluid has an initial zero velocity over the whole domain. A flow is 

driven by the top wall through viscous force. The analytical solution to the plane Couette 

flow at the steady state is shown as, 

],0[,0 Hy
H

y
uu         (4.9) 

where H  is the width of the domain. 

 

After the test begins, fluid velocities are gradually developed until the steady state is 

reached after a sufficiently long time (around 20,000 LBM time steps), when the global 

velocity error convergences to 1.6%. The velocity profile at the steady state is shown in 
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Figure 4.5. 

 

 

Figure 4.5 LBM results with IMB: velocity profile in plane Couette flow 

 

4.4.2 Cylindrical Couette flow 

In the second test, a cylindrical Couette flow between two concentric circular walls is 

modelled. The outer wall has a radius of ..60 ull  and the inner one of ..40 ull . Both walls 

are rotating yet with different angular speeds of 0.0001rad/s and 0.0002rad/s, 

respectively. The fluid domain is divided into a 160×160 lattice grid, and IMB is applied 

to the two rotating walls. A flow is thereby driven through viscous force. The analytical 

solution to the fluid velocity between the two walls at the steady state is expressed as, 

 
r

B
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in which 1 , 1r , 2 , and 2r  are the angular velocities and radii of the inner and outer 

walls, respectively.  
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Besides, at the steady state, the torque applied by the flow to a unit length of the inner wall 

is given analytically by 

2
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2

2

2

2
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rr

rr
T







      (4.12) 

 

The numerical test starts with zero fluid velocity. The steady state is reached after around 

5,000 LBM time steps, when the global velocity error and the torque relative error 

converge to 1.1% and 1.5%, respectively. The velocity profile at the steady state is shown 

in Figure 4.6. 

 

 

Figure 4.6 LBM results with IMB: velocity profile in cylindrical Couette flow 

  

Results demonstrated in this section suggest that with IMB employed, FPS-BHAM is 

capable of providing valid solutions to fluid flow with moving solid boundaries. Besides, 

the torque generated on the moving boundary by fluid flow can also be effectively 

obtained. 
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4.5 Summary 

Through simple tests on particle-wall and particle-particle collisions, the capability 

of FPS-BHAM in DEM calculations is examined by comparing the computational results 

with those from the well-established TRUBAL code. A subtle difference is observed and 

is attributed to round-off error and different DEM calculation procedures. In spite of the 

difference, FPS-BHAM provides valid results for tracing particle locations after contacts. 

Moreover, in order to verify whether the LBM computations are correctly implemented in 

FPS-BHAM, the Poiseuille flows with velocity and pressure boundaries, as well as the 

Couette flows with moving solid boundaries are tested, respectively. The results are 

validated against analytical solutions. It is found out that FPS-BHAM not only achieves 

valid solutions, but also effectively obtains the fluid-induced torque acted on the moving 

boundary. Code verification presented in this chapter indicates the potential capability of 

FPS-BHAM in simulating a fluid-particle system. Further validations are provided 

against experimental findings in Chapter 5, which helps to understand whether the 

numerical model is sufficient for the need of this research, i.e. to describe the localisation 

phenomenon, the intensive fluid-particle interactions, and the bed behaviour. 
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CHAPTER 5: ONSET OF FLUIDISATION 

5.1 Introduction 

Verified by simple tests in Chapter 4, FPS-BHAM can be regarded effective to 

provide description of particle and fluid behaviour with interactions between them. As the 

aim of this research is to achieve a deeper insight into the internal fluidisation induced by 

a leaking pipe, a granular bed subject to a locally injected fluid is tested in this chapter 

using FPS-BHAM. By comparing with experimental findings, the capability of 

FPS-BHAM in simulating localisation phenomenon and bed behaviour due to a local 

leakage is validated. Besides, with the aid of numerical simulation, a complete account 

for the regimes of bed behaviour under various flow rates can be obtained. Better 

knowledge and understanding of the onset of fluidisation as well as the cavity evolution 

can also be acquired. Using FPS-BHAM, this chapter provides an overview of different 

bed regimes with various flow rate, and reports on the numerical studies concerning the 

onset of fluidisation so that fluidising mechanism is explored. As for the understanding of 

the cavity evolution, analyses using the numerical data from parametric studies are 

performed and demonstrated in Chapter 7.  

 

As stated in Section 2.2, an investigation into the fundamentals underlying a granular bed 

subject to a locally injected fluid has been successfully performed using physical 

experiments by Alsaydalani (2010). Therefore, it would be worth considering a similar 
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sample model using FPS-BHAM and carrying out numerical simulations for a 

comparable study. For this reason, in Section 5.2, the setup of the experimental model by 

Alsaydalani (2010) is briefly introduced before illustrating the numerical model. 

Observations of bed behaviour and monitoring of excess pressures are demonstrated in 

Section 5.3, which indicates different bed regimes under various controlled flow rates. 

Comparable studies with findings from previous research are conducted in Section 5.4, 

implying the numerical model can adequately describe the localisation phenomenon and 

the onset of fluidisation. Thereafter, theoretical analysis on the fluidising mechanism is 

carried out in Section 5.5, and the measured results from numerical tests are validated 

against the predicted ones from the analytical solution. Finally, the main findings in this 

chapter is summarised in Section 5.6. 

 

5.2 Model Setup 

5.2.1 Experimental model 

A two-dimensional experimental study (Alsaydalani, 2010) was conducted on a sand 

bed contained in a tank. It was connected to an inlet water pipe through a slot-shaped 

orifice. During the test process, the sand bed was fully submerged under water. A 

schematic diagram of the experimental setup is reproduced in Figure 5.1. The bed had 

dimensions of 600mm in length and 300mm in height. With progressively increased flow 

rate, internal fluidisation was identified. Observations in the soil bed were made with the 
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aid of Particle Image Velocimetery (PIV) which was a widely-used image analysis 

technique. Pore pressures were also monitored using standpipes attached to the centre line 

of the tank.  

 

Overflow tube

Test sand bed

Orifice

Inlet fluid flow  

Figure 5.1 Schematic diagram of the experimental setup 

 

In order to conduct a comparable study with the experimental findings, a similar 

numerical model is built up in this chapter. An illustration of this model is given in the 

following sub-section. 

 

5.2.2 Numerical model 

A two-dimensional numerical model is constructed using FPS-BHAM to re-establish a 

granular bed submerged under water (see Figure 5.2). The bed consists of 9,997 circular 

particles with a uniform size distribution. Their diameters are 3.0mm, 4.0mm, 5.0mm and 

6.0mm, respectively. It shall be noted the particles are much larger than real soil particles, 
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and the reason for adopting them is to dramatically reduce the computational cost. 

Non-adhesive particles are adopted in all tests presented in this chapter as sand was used 

in the experiment. The bed is packed by dropping particles freely and settling them down 

for a sufficient period. The resulting dimensions are of 600mm in length and 290mm on 

average in height. As shown in Figure 5.2, the particles are coloured in layers so that the 

deformation in the bed due to the injected fluid can be clearly identified. The whole 

computational domain is divided into a 600×400 lattice grid, and hence the bed is fully 

submerged. An orifice with a width of 3mm is located in the middle of the base, 

connected with an inlet pipe which spans half length of the bed, so as to obtain a locally 

injected fluid. During each test, a constant flow rate is applied as a controlled condition, 

which ranges from 0.25 l/s to 6.0 l/s among tests. Other parameters used in this chapter 

are listed in Table 5.1. 

 

Although the particle size, the orifice width, and the flow rate are not directly comparable 

to the experimental model used by Alsaydalani (2010), it is recognised that a consistent 

mechanism underlying the onset of fluidisation is still achievable. In an effort to 

demonstrate the validity of the numerical model, the computational output is compared 

with experimental findings in Sections 5.3-5.4, and with the analytical solution in Section 

5.5.  
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Figure 5.2 Sketch of the numerical setup 

 

Table 5.1 Parameters used in the numerical tests 

    Parameters                                        Values 

            particle density (kg/m
3
)                                  2700 

    friction coefficient in the DEM calculation                        0.3 

          particle Young’s modulus (MPa)                             69 

            particle Poisson’s ratio                                    0.3 

  DEM time step (s)                                      2.5×10
-5 

            fluid density (kg/m
3
)                                     1000

 

      kinematic viscosity of the fluid (m
2
/s)                         1.0×10

-6 

             lattice spacing (m)                                     1.0×10
-3

 

             LBM time step (s)                                     1.0×10
-4

 

        particle surface energy (N/m)                                  0.0 
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5.3 Observations from Numerical Results 

5.3.1 Different regimes of bed behaviour 

With the controlled flow rate varied from 0.25 l/s to 6.0 l/s, numerical results 

demonstrate different bed behaviours within an identical time period. Figure 5.3 is a 

diagrammatic representation showing the full transition of bed behaviour with the current 

model parameters. With a flow rate lower than 0.8 l/s, the particles in bed remain 

unmoved during the whole test period, making the bed appear as a fixed one. Hence, it is 

denoted as the ‘fixed-bed regime’. If the applied flow rate is within the range of 0.8 l/s to 

1.05 l/s, it is found a small cavity is generated and develops to a stable size. This is 

referred to ‘stable-cavity regime’. However, if a higher flow rate beyond this range is 

applied, not only a cavity is generated, but a continuous growth in its size is also observed. 

Therefore, it is named ‘growing-cavity regime’. If a flow rate higher than 2.0 l/s is applied, 

the blow-out failure occurs within the test period, where a flow channel is open up to the 

bed surface, and is termed as ‘blow-out regime’. 

  

It is worth noting the bed behaviours obtained from numerical results are comparable to 

those from previous experimental studies. The fixed-bed regime is characterised as a 

motionless bed which was also observed by Zoueshtiagh and Merlen (2007). Besides, a 

steady seepage flow is achieved in this regime (see Section 5.3.2), which agrees with the 

statement that leaking fluid is permeating through soil (Royal et al., 2008). In addition, a 
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cavity generation was found by Royal et al. (2008) with a higher pressure, and identified 

as a local bump-shaped deformation at bed surface by Zoueshtiagh and Merlen (2007) 

with a higher flow rate. Such a vertical deformation is also seen from numerical output at 

the growing-cavity regime (see Figure 5.3). Furthermore, the blow-out regime was 

identified by the above experimental studies, for which Zoueshtiagh and Merlen (2007) 

found to be a local fluidisation at the bed surface, and Royal et al. (2008) claimed to be a 

ruptured bed with leaking fluid migrated up to the top surface. 

 

Moreover, as transparency was provided by Perspex sheet in the experiments by 

Alsaydalani (2010), a locally fluidised zone with a stabilised size was also observed from 

his results. However, there was no further investigation into such a phenomenon; 

although this may be more dangerous to the infrastructures as it is difficult to identify 

from the surface above. Therefore, in Chapter 6, attempts will be made to understand and 

explore its underlying mechanism using numerical analysis. 

 

In the following sub-sections, observations to the bed regimes are sequentially made. 

Each regime is characterised by the corresponding time evolutions of the excess pore 

pressures (presented as ‘p-t curves’ hereinafter) and cavity size (presented as ‘V-t curves’ 

hereinafter).  
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Figure 5.3 Diagrammatic representation showing the full transition of bed behaviour due 

to a locally injected fluid at different flow rates for the current model parameters (the 

snapshots are taken at t = 20s) 

 

5.3.2 Fixed-bed regime 

From the computational outcome using the current set of model parameters, when 

subjected to a flow rate below 0.8 l/s, no obvious changes in the particle configuration can 
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be observed during the whole test. The leaking fluid permeates freely through soil 

skeleton from the source of flow.  

 

Figure 5.4 shows the time evolution of excess pore pressures at different heights directly 

above the orifice, i.e. the p-t curves. These heights are chosen to be explored as they are 

identical to those studied in the experimental work by Alsaydalani (2010). The excess 

pore pressure within the particle assembly is computed from the LBM density 

distribution functions at a corresponding fluid node using Eqns.(3.44) and (3.45). From 

Figure 5.4, it can be seen that all the pressures undergo an initial rise before they level off. 

A greater excess pressure is generated at a deeper location, where it is closer to the source 

of flow. The pressure at the orifice increases most rapidly and attains the highest value 

throughout the whole test. The p-t curves eventually level off, suggesting a steady 

seepage is achieved with no fluidisation initiated due to sufficiently small orifice 

pressure. 

 

It is interesting to note that such an evolution pattern is comparable to that of a 

one-dimensional upward seepage through a single column of spheres (see Figure 5.5). 

However, a major difference exists in the vertical distribution of excess pore pressures 

(see Figure 5.6). In the one-dimensional upward seepage flow, the excess pore pressure is 

linearly distributed with height. While in the case of a locally injected fluid, the excess 

pore pressures change significantly close to the source of flow, but less so far from it. This 
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indicates the localisation nature of the locally injected fluid, which was also noted by 

Alsaydalani (2010) in his experimental results.  

 

 

(a) Flow rate = 0.5 l/s 

 

(b) Flow rate = 0.75 l/s 

Figure 5.4 p-t curves at different heights directly above the orifice (fixed-bed regime) 
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Figure 5.5 p-t curves for a one-dimensional upward seepage flow through a single 

column of spheres (Suzuki et al., 2007) 

 

 

(a) One-dimensional upward seepage flow through a single column of spheres (data from 

Suzuki et al., 2007) 
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(b) A granular bed subject to a locally injected fluid with seepage mechanism, 

flow rate = 0.5 l/s 

Figure 5.6 Vertical distribution of excess pore pressure in seepage flows 

 

5.3.3 Stable-cavity regime 

If greater flow rates are applied, the granular bed responds in a different way. At the 

beginning of the test, the particles remain immobile. However, as time evolves, soil above 

the orifice is suddenly lifted up by the incoming fluid, indicating the onset of fluidisation. 

This also induces a cavity formation at the vicinity of the orifice, and the bed humps in the 

middle (see Figure 5.3). It is noted that this has also been reported by Alsaydalani (2010) 

by measuring the vertical increments of the surface profile. Besides, Figures 5.7 and 5.10 

demonstrate the corresponding p-t curves using the numerical results. Before fluidisation 

occurs, the pressures near the source of flow increase more rapidly than those further 
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away. After peak values are achieved, the pressures near the source of flow undergo a 

sharp reduction. This is mainly due to the sudden ‘unblocking’ of surrounding soil 

particles at the onset of fluidisation.  

 

 

(a) Flow rate = 0.85 l/s 

 

(b) Flow rate = 0.9 l/s 
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(c) Flow rate = 0.95 l/s 

 

(d) Flow rate = 1.0 l/s 

 

(e) Flow rate = 1.05 l/s 

Figure 5.7 p-t curves at different heights directly above the orifice (stable-cavity regime) 
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Figures 5.8 and 5.9 show the time evolution of cavity size (i.e. V-t curves) with different 

flow rates applied. It is noted that the cavity reaches a larger size in response to a greater 

flow rate. Special attention is paid to a narrow range of flow rate between 0.85 l/s and 

1.05 l/s where the cavity stops growing in a short period after its formation (see Figure 

5.8). It is also worth noting that the V-t curve is closely related to the p-t curve at the 

orifice. For instance, in the case at a flow rate = 1.0 l/s, a cavity forms at around 4s after 

the test begins. It then grows gradually for another one second until a sudden increase in 

its size. Recognised from the corresponding p-t curves (see Figure 5.7(d)), the sudden 

increase starts at the point when the orifice pressure gets to its peak value. Thereafter, the 

cavity size is rapidly increased to approximately 440 mm
2
 and then remains constant till 

the end of test. At the same time, the p-t curve for the orifice pressure levels off. From the 

observations on the particle configuration of the bed, a steady state is identified shortly 

after the cavity forms. Therefore, the soil bed is regarded to experience the ‘stable-cavity 

regime’. The mechanism associated with this regime is further explored using numerical 

analysis, which is performed in Chapter 6. 
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Figure 5.8 V-t curves with different flow rates applied (stable-cavity regime) 

 

5.3.4 Growing-cavity regime 

If the applied flow rate is greater than 1.05 l/s, a group of V-t curves indicating a 

continuously developing cavity are obtained from the numerical results, as shown in 

Figure 5.9. It is recognised that a greater flow rate leads to an earlier fluidisation and a 

quicker cavity development. Figure 5.10 also suggests a greater flow rate leads to a higher 

peak pressure value at the orifice. From Figures 5.9 and 5.10, it is again recognised that 

the V-t curve is closely related to the p-t curve at the orifice. Once a cavity forms, the p-t 

curve at the orifice initially undergoes a rapid but significant drop, which is associated 

with a sharp increase in the cavity size, as identified from the V-t curve. Thereafter, the 

orifice pressure declines smoothly. The smooth decline corresponds to a continuous 

cavity development, but at a lower rate (sees Figure 5.9). It is also noticeable that this rate 

of cavity growth is constant for each case within the test duration. Using the numerical 
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results obtained, a further analysis for quantifying this continuous cavity development is 

performed in Chapter 7. 

 

 

Figure 5.9 V-t curves with different flow rates applied (growing-cavity regime) 

 

 

(a) Flow rate = 1.2 l/s 
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(b) Flow rate = 1.5 l/s 

 

(c) Flow rate = 1.75 l/s 

 

(d) Flow rate = 2.0 l/s 

Figure 5.10 p-t curves at different heights directly above the orifice (stable-cavity 

regime) 
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5.3.5 Blow-out regime 

If the applied flow rate is very high (i.e. exceeding 2.0 l/s with the current model 

parameters), the cavity keeps growing up to the bed surface so as to open up a fluid 

channel as a ‘chimney flow’ (see Figure 5.11). Such a case is referred to as a ‘blow-out’ 

failure. From Figure 5.11, it is noted that the cavity develops with an unsymmetrical 

pattern about the central axis of the bed. This can be attributed to the non-zero horizontal 

momentum of the fluid as it is injected with a horizontal velocity from right to left in the 

pipe. This can also be due to the fact that the bed is not really symmetric and the system is 

unstable, hence any small difference will be amplified. 

 

 

Figure 5.11 An example of blow-out failure, flow rate = 4.0 l/s, and t = 19s 

 

In the corresponding p-t curves (see Figure 5.12), the excess pressures at deeper locations 

may become equal to the pressures near the bed surface (see Figures 5.12(a)-(c)). 
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Alternatively, the orifice pressure may even increase after the cavity forms (see Figure 

5.12(d)). This is attributed to an extremely rapid energy input by a very high flow rate. 

The fluctuation in pressures is also noticed in the p-t curves, indicating unsteady flow 

behaviour. In addition, excess pressures at shallower locations are occasionally greater 

than those at deeper ones, suggesting backward flows and local vortices. 

 

 

(a) Flow rate = 2.25 l/s 

 

(b) Flow rate = 3.0 l/s 
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(c) Flow rate = 4.0 l/s 

 

(d) Flow rate = 6.0 l/s 

Figure 5.12 p-t curves at different heights directly above the orifice (blow-out regime) 

 

As suggested by the p-t curves presented in this section, pore pressures within the soil 

near the leaking area may undergo a significant increase before fluidisation occurs. This 

implies a local loss of bearing capacity since the effective stress suffers a considerable 

reduction. It is regarded even more dangerous that such a significant problem takes place 

where it is not easily observed from above the ground.  
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5.4 Onset of Fluidisation 

As stated in Section 2.2, Alsaydalani (2010) obtained some valuable findings on the 

onset of fluidisation. Therefore, in this section, a comparison between the numerical 

results and the experimental findings is conducted. 

 

5.4.1 Excess pore pressure vs. flow rate 

Figure 5.13 demonstrates how the excess pore pressures at different heights change 

with flow rate. It is found out that the numerical solutions agree well with the 

experimental results qualitatively. Both findings illustrate that, at the vicinity of the 

orifice, the excess pore pressure grows up to a peak point with the increase in the flow rate. 

Beyond this point, the pore pressure undergoes a sharp reduction as flow rate further 

increases. This sharp reduction indicates that fluidisation occurs so that pore pressure 

near the source of flow dissipates due to the ‘unlocking’ of particles. For instance, in the 

experimental work by Alsaydalani (2010), fluidisation was initialised when the flow rate 

was increased beyond the value of 1042 l/h (i.e. 0.289 l/s) which led to a peak value in the 

pore pressure at height of 10mm (see Figure 5.13(a)). Similarly, the onset of fluidisation 

is firstly observed in the numerical test when flow rate exceeds 0.8 l/s at which the orifice 

pressure reaches its maximum (see Figure 5.13(b)).  
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(a) Experimental results (Alsaydalani, 2010) 

 

(b) Numerical results 

Figure 5.13 Excess pore pressures at different heights as a function of flow rate  

 

However, in the areas far from the orifice, the excess pore pressures accumulate much 
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slower with the increase in flow rate. Beyond the flow rate at which the pressure near the 

orifice reaches its peak point, pressures far from the source of flow may only have a slight 

drop, as shown in the numerical solutions (see Figure 5.13(b)), while remain at an 

approximately steady value as indicated by the experimental results (see Figure 5.13(a)). 

The difference is considered as a result of different frequency of data acquisition. In spite 

of such a difference, both numerical and experimental data suggest that a more obvious 

change in excess pore pressures takes place at an area closer to the source of flow. This is 

regarded as the localisation nature due to the locally injected fluid. 

 

5.4.2 Vertical distribution of excess pore pressure 

The same set of data is plotted to show the vertical distribution of the excess pore 

pressure directly above the orifice with different flow rates (see Figure 5.14(b)). Again, it 

agrees well with the experimental results qualitatively (Figure 5.14(a)). It is recognised 

the excess pore pressure is not linearly distributed in the vertical direction, as mentioned 

in Section 5.3.2. This is attributed to the concentration of pore pressure at the source of 

flow. The peak point in Figure 5.13 can also be identified from the most significant 

pressure gradient at the vicinity of the orifice shown in Figure 5.14.   

 

With the flow rate increases, the build-up of pressure gradient is initially seen from the 

results until it reaches to its maximum. Thereafter, excess pressures near the source of 
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flow drop significantly as the flow rate is further increased. This indicates that internal 

fluidisation occurs. Alsaydalani (2010) pointed out that the critical hydraulic gradient in 

the internal fluidisation was greater than that of a normal seepage failure which is about 

one according to Terzaghi’s hydraulic failure theory. This finding is also demonstrated 

from the numerical results by drawing a line indicating the unity hydraulic gradient (see 

Figure 5.14 (b)).  
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(a) Experimental results (Alsaydalani, 2010) 
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(b) Numerical results 

Figure 5.14 Vertical distribution of excess pore pressure directly above the orifice with 

different flow rates 

 

5.4.3 Fluidised zone and uplifting zone 

As stated in Section 5.3.3, a sudden cavity formation indicates the onset of fluidisation. 

By observing the particle configuration from the numerical results, the cavity is viewed as 

a fluidised zone where particles are mobilised and moving freely with the injecting fluid 

(see Figure 5.15). This was also recognised by Alsaydalani (2010) as an ‘internally 

fluidised zone’. Moreover, in agreement with his experimental findings, an uplifting zone 

with an inverted tapered shape is observed from the numerical results, as shown in Figure 

5.16. It can be interpreted that, at the onset of fluidisation, the particles within the 

uplifting zone are being raised while those outside the zone remain steady. The wedge 
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angle measured from the experiments was in the order of 63.9
○
, of which the influencing 

factors could not be easily identified. While the numerical simulations show a common 

angle of 62
○
, which is slightly smaller than that given by experiments. This difference 

may be attributed to two main reasons. The first one is denoted as the error in image 

analysis, as the angle would slightly change by rotating the line enveloping the uplifting 

zone. In the particle displacement plots, however, defining the line could be dependent on 

personal skill of colour discrimination. Besides, the circular-shaped particles adopted in 

the numerical tests tend to demonstrate a smaller friction angle in the soil. In spite of such 

a small difference, the wedge angle obtained by numerical simulations is reasonably 

similar with that measured from the experiments.  

 

 

Figure 5.15 A snapshot of particle configuration of the bed: particles are mobilised and 

moving freely within the fluidised zone, flow rate = 1.2 l/s and t = 18.0 s 
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(a) Experimental results, flow rate = 1177 l/h (Alsaydalani, 2010) 

 

(b) Numerical results, flow rate = 0.9 l/s and t = 7.7 s 

Figure 5.16 Particle displacement plot: uplifting zone and wedge angle 

 

From the comparisons carried out in this section, it is seen that the current numerical 
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model using FPS-BHAM is capable of simulating the fundamental phenomena associated 

with the onset of fluidisation. The computational outcome agrees well with the 

experimental findings qualitatively. Furthermore, for a quantitative analysis with the 

numerical results, the following section provides a more in-depth investigation into the 

fluidising mechanism.  

 

5.5 Fluidising Mechanism 

5.5.1 Different fluid flow distributions 

In Alsaydalani (2010), it was revealed and evidenced that, at the onset of fluidisation, 

a force balance is achieved between the upward drag force applied to the uplifting wedge 

and its bulk weight. The underlying mechanism is recognised to be consistent with that of 

the partial fluidisation in a tapered fluidised bed (Shi et al., 1984; and Peng and Fan, 

1997). And the detailed theoretical derivation has been presented in Alsaydalani (2010). 

 

In all the above models used for studying the mechanism, an assumption was made that 

the fluid flows are uniformly distributed in the horizontal direction at the onset of 

fluidisation, with only vertical velocities exist (see Figure 5.17). However, this is not 

exactly true in a real soil subject to a local leakage. As argued by Alsaydalani (2010), the 

leaking fluid shall be spreading radially although no further evidence was provided by his 

results.  
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Figure 5.17 Sketch of vertical flow distribution within the wedge 

 

With the aid of numerical simulation using FPS-BHAM, it is easy to identify a radial flow 

distribution from the pressure contour plot (see Figure 5.18). The concentric half-circles 

indicate a radial flow field before fluidisation occurs. This would lead to a different 

analytical expression of the flow equation, and hence the upward drag force calculations. 

Therefore, in Section 5.5.2, a modified flow equation is deduced, which results in a 

different analytical solution to fluidising pressure. Moreover, the predicted fluidising 

pressures are then compared with the measured ones in Section 5.5.3 so that a further 

validation of the numerical model can be accomplished. 
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Figure 5.18 Pressure contour before fluidisation (scaled down to make the maximum 

represented as 10) 

 

5.5.2 Fluidising pressure for a radial flow distribution 

Figure 5.19 shows a simple sketch of the radial flow distribution in the uplifting 

wedge. The superficial velocity is assumed uniformly distributed along the 

circumferential direction. As the flow rate is constant at each half-circular shaped 

cross-sectional area, the superficial velocity at a distance of r  from the middle of the 

orifice can be calculated as 

r

C

r

ru
ru r 00)(         (5.1) 

in which 0u  is the superficial velocity at the orifice, and rC  is linearly related to flow 
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rate and is a constant along the radial direction. The orifice size is equal to 02r .   

 

 

Figure 5.19 Sketch of radial flow distribution within the wedge 

 

As stated in Section 2.2, the Ergun’s flow equation through a packed bed has been proved 

valid before fluidisation occurs. In the case with a radial flow distribution, the Ergun’s 

equation is written as 

drBuAudP )()( 2        (5.2) 

where )( dP stands for the pressure drop across a differential radial dr . A  and B  can 

be calculated by 
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75.1


                                (5.4) 

where 0 , f , f , s , and pd  are the initial porosity of the bed, the fluid viscosity 

and density, the particle sphericity and diameter, respectively. 
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 By substituting Eqn.(5.1) into Eqn.(5.2) and integrating Eqn.(5.2) along the radial 

direction, the flow equation in the wedge can be deduced, 

.
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when ,Hr   0)(  P . Hence,  

H
BCHACconst rr

1
ln.

2
 , 

where H  is the wedge height. And the flow equation before fluidisation occurs is 

expressed as 
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Therefore, the pressure drop through the bed is calculated as 
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in which the minus sign on the left is taken off so that an upward pressure drop is denoted 

positive in the following calculations. 

 

The upward drag force F  applied to the wedge can be approximately calculated as 
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where 0  is the thickness of the wedge. w  is the complement of the measured wedge 
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angle. 

 

On the other hand, the submerged weight of the wedge W  is 

THHLgHHLW wfpw 00000 )tan()1()()tan(     (5.8) 

in which 0L  is the orifice size, and hence 00 2rL  . p  is the particle density, and g  

is the gravitational acceleration. T  denotes the volumetric submerged weight of the 

wedge.  

 

According to Alsaydalani (2010), internal fluidisation due to a locally injected fluid is 

activated when a force balance between the upward drag force and the wedge weight is 

achieved: 

WF                                       (5.9) 

 

Substituting Eqns.(5.7) and (5.8) into Eqn.(5.9), one can obtain 
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Combined Eqn.(5.10) with Eqn.(5.6), the pressure drop through the wedge required to 

initialise fluidisation, i.e. the fluidising pressure fp , can be predicted as 
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5.5.3 Measured vs. predicted fluidising pressure 

In an effort to compare the measured fluidising pressures with the predicted ones, 

numerical tests are conducted on a series of bed samples with different heights. In this 

sub-section, the numerical model is further calibrated by adopting the cumulative beta 

distribution of particle size, as it provides double-curved shape which is usually identified 

for the particle size distribution in real soil (Voivret et al., 2007; and Mansouri et al., 

2009). In all tests, the particle size ranges from 3 mm to 6 mm. Table 5.2 lists the particle 

number of each size adopted in different bed samples. The numerical tests are conducted 

under the controlled pressure in the pipe so as to easily capture the exact value of 

fluidising pressure.  

 

For the initial 40,000 DEM-LBM calculation cycles (i.e., 4s), the particles are artificially 

kept from moving. This aims to achieve a well-developed flow in bed. The particles are 

then allowed to move after 4s. Different behaviours are obtained from the numerical 

results with various controlled pressures applied, and this is further illustrated and 

discussed in Section 7.3. It is recognised that, although fluidisation can be activated, a 

steady state is approximately achieved in excess pore pressures during the initial 40,000 

cycles. And such a distribution shall satisfy the Ergun’s flow equation derived as 

Eqn.(5.5). If taken the upward pressure drop as positive, Eqn.(5.5) is rewritten as 
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(5.12) 
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Table 5.2 Particle number of each size for different bed samples 

Particle 

size (mm) 

mmH 340  mmH 380  mmH 420  mmH 470  mmH 500  

3.00 0 0 0 0 0 

3.25 330 363 401 448 496 

3.50 914 1003 1107 1240 1373 

3.75 1380 1516 1673 1873 2073 

4.00 1730 1900 2097 2348 2599 

4.25 1963 2156 2380 2664 2950 

4.50 2080 2285 2521 2822 3125 

4.75 2080 2285 2521 2822 3125 

5.00 1963 2156 2380 2664 2950 

5.25 1730 1900 2097 2348 2599 

5.50 1380 1516 1673 1873 2073 

5.75 914 1003 1107 1240 1373 

6.00 330 363 401 448 496 

Total No. 16794 18447 20356 22791 25232 

 

Figure 5.20 shows the excess pressure directly above the orifice against ln(1/r) at the 

steady state.  
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(a) bed height = 340mm, controlled pressure = 14kPa 

 

(b) bed height = 380mm, controlled pressure = 15kPa 

 

(c) bed height = 420mm, controlled pressure = 17kPa  
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(d) bed height = 470mm, controlled pressure = 20kPa  

 

(e) bed height = 500mm, controlled pressure = 22kPa  

Figure 5.20 Excess pore pressure directly above the orifice vs. ln(1/r) at the steady state  

 

Figure 5.20 indicates a linear relationship between the steady pressure and ln(1/r). From 

Eqn.(5.12), it can be further recognised that the superficial velocity is so small that the 

impact of its second order on seepage can be neglected, hence the flow is primarily 

dominated by the first order of the superficial velocity. Therefore, with the current model 

parameters, Eqn.(5.11) can be simplified by neglecting its first term, 
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For all the tested bed samples, a comparison between the numerically measured fluidising 

pressures and the predicted ones by Eqn.(5.13) is shown in Figure 5.21. It is found out 

that a good agreement is achieved between them. 

 

 

Figure 5.21 Numerically measured fluidising pressure vs. predicted fluidising pressure 

 

Besides, as Hr 0  and 00 2rL  , Eqn.(5.13) can be further simplified as 

w
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And since HL 0 , it can approximately be obtained that, for a given bed material, 
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where 'H  can be viewed as an equivalent height deduced for a granular bed subject to a 

locally injected fluid, which is analytically proportional to the fluidising pressure for a 

given bed material.  

 

Figure 5.22 indicates the agreement on Eqn.(5.15) by the numerical results. 

 

 

Figure 5.22 Fluidising pressure vs. 'H  

 

5.6 Summary 

In this chapter, the capability of a numerical model using FPS-BHAM in simulating 

internal fluidisation due to a local leakage is validated. With the aid of numerical 

simulation, different regimes of bed behaviour under various flow rates are obtained. 
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With the controlled flow rate progressively increased among tests, the bed sequentially 

undergoes the following behaviours: (i) the fixed-bed regime; (ii) the stable-cavity 

regime; (iii) the growing-cavity regime; and (iv) the blow-out regime. The findings on the 

bed behaviours are evidenced by previous experimental studies (Zoueshtiagh and Merlen, 

2007; Royal et al., 2008; and Alsaydalani, 2010).  

 

Observed from the numerical results, the main findings on each bed regime are firstly 

demonstrated in this chapter, including: 

 Excess pressures directly above the orifice initially accumulate before they level 

off. This indicates that the steady seepage prevails with no fluidisation being 

initiated. A greater excess pressure is generated at a deeper location, where it is 

closer to the source of flow. The pressure at the orifice increases most rapidly and 

attains the highest value during the whole test. Unlike the linear vertical 

distribution of pressure in one-dimensional upward seepage, the excess pressure 

in the case of a local leakage shows significant concentrations close to the source 

of flow. This is interpreted as a localisation nature. From analytical derivation and 

numerical validation as presented in Section 5.5, it is found out that the excess 

pressure is proportional to ln(1/r). 

 If a higher flow rate is applied, fluidisation is observed at the vicinity of the orifice, 

which is characterised by a sudden cavity formation and a sharp pressure drop at 

the orifice. It is observed that the bed humps in the middle due to the cavity 
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formation, which agrees with the experimental findings by Alsaydalani (2010). 

Besides, the sharp pressure drop is attributed to the sudden ‘unblocking’ of the 

surrounding soil particles. 

 Special attention is paid to a narrow range of flow rate where the cavity stops 

growing in a short period after its formation. Both the V-t curves and p-t curves 

eventually level off, indicating a steady state is reached. Although such a regime 

may be more dangerous to infrastructures as it is difficult to identify from the 

surface above, no further investigations have been provided among literatures. 

Therefore, Chapter 6 attempts to explore its underlying mechanism using 

numerical results. 

 With the model parameters presented in Section 5.2, the cavity is continuously 

developing when the applied flow rate is higher than 1.05 l/s. The orifice pressure 

smoothly declines after its sharp drop when fluidisation occurs. The rate of cavity 

development is found to be constant for each case. It is also found out that a 

greater flow rate leads to an earlier fluidisation and a quicker cavity development. 

For quantifying the cavity evolution, Chapter 7 presents a further analysis using 

the numerical results. 

 

Numerical simulation also demonstrates a blow-out failure with an even higher controlled 

flow rate. Within the test period, the cavity grows up to the bed surface so as to open up a 

fluid channel. Fluctuations are observed in the p-t curves, indicating unsteady flow 
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behaviour. In addition, excess pressures at shallower locations are occasionally greater 

than those at deeper locations, suggesting backward flows and local vortices. With an 

extremely high flow rate, the excess pressures near the orifice may even increase during 

the cavity development due to such a rapid energy input. An unsymmetrical pattern of the 

channel shape is also noticed, which is attributed to the non-zero horizontal momentum of 

the injected fluid. This is also due to the fact that the bed is not really symmetric and the 

system is unstable, hence any small difference will be amplified. 

 

In addition, a comparable study is carried out in order to validate the numerical results 

against the experimental data by Alsaydalani (2010). Since the particle size, the orifice 

width, and the flow rate are not directly comparable to the experimental model, a 

quantitative comparison is not straightforward. In spite of this, good qualitative 

agreement on the main findings for the onset of fluidisation is still obtained. These 

include: 

 The excess pressure near the orifice grows up to a peak point with the increase in 

the flow rate. The onset of fluidisation can be identified from this peak point. 

Beyond the point, the pressure undergoes a sharp reduction as flow rate further 

increases. However, at the area further from the orifice, both numerical and 

experimental data suggest a less obvious change in excess pore pressures. This is 

regarded as a major effect of localisation nature. 

 With the increase in flow rate, the onset of fluidisation can also be identified from 
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the most significant pressure gradient near the orifice. In agreement with 

experimental results, the critical hydraulic gradient is found to be greater than that 

of a normal seepage failure according to Terzaghi’s failure theory. 

 The cavity is viewed as a fluidised zone in the numerical results, where particles 

are mobilised and moving freely with the injecting fluid. This was also recognised 

by Alsaydalani (2010) as an ‘internally fluidised zone’. 

 At the onset of fluidisation, the particles within an uplifting zone are being raised 

while those outside the zone remain steady. Both experimental and numerical 

results show that the uplifting zone is of an inverted-tapered shape. And the 

numerical results show a reasonably similar wedge angle with that measured from 

the experiments.  

 

As shown by experimental data (Alsaydalani, 2010), the fluidising mechanism in a 

locally injected fluid is a force balance between the upward drag force applied to the 

uplifting wedge and its bulk weight. However, the previous prediction of fluidising 

pressure was based on an assumption of a vertical flow distribution. This is not exactly 

true in a real soil subject to a local leakage. Although Alsaydalani (2010) argued that the 

leaking fluid should be spreading radially, there is no further evidence provided by his 

results. With the aid of numerical simulation, a radial flow distribution is obtained, as 

presented in this chapter. Therefore, the flow equation and the expression of fluidising 

pressure are modified according to the radial distribution. The numerically measured 
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fluidising pressures are found to match well with the predicted ones using the modified 

equation. Furthermore, from the analytical derivation, it is recognised that the fluidising 

pressure is approximately proportional to an equivalent height H   which is defined by 

Eqn.(5.15), provided that the seepage flow is primarily dominated by the first order of 

superficial velocity. This can also be seen from the numerical solutions. 
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CHAPTER 6: A STABLE CAVITY 

6.1 Introduction 

Due to the special importance in safety issues raised by the stable-cavity regime, as 

stated in Section 5.3.1, this chapter is intended to achieve deeper understanding of such a 

phenomenon so that the underlying mechanism is explored. The changes in the flow field 

due to the formation of a stable cavity are firstly studied in Section 6.2. And the 

underlying mechanism is explored in Section 6.3. The main findings in this chapter are 

summarised in Section 6.4.  

 

6.2 Changes in the Flow Field 

6.2.1 Velocity distribution 

Figure 6.1 shows a typical cavity evolution of the stable-cavity regime. The onset of 

fluidisation is found to occur at 4.3s in the test. The cavity grows for a short period and 

then remains at a steady size. The interstitial velocities directly above the orifice at 4s and 

10s are respectively plotted against 1/h in Figure 6.2. At 4s, the soil bed remains 

motionless with only seepage flow prevails. Due to the radial flow distribution as 

demonstrated in Chapter 5, the flow rate is constant at each half-circular shaped 

cross-sectional area. Therefore, it is obtained 

.0 consturQ in           (6.1) 
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where Q  is the flow rate. inu  and   are the interstitial velocity and bed porosity, 

respectively. Their product indicates the superficial velocity. Eqn.(6.1) can then be 

simplified as 
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        (6.2) 

where  
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Q
C          (6.3) 

 

If taken the interstitial velocity directly above the orifice, Eqn.(6.2) can be rewritten as 
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        (6.4) 

 

Eqn.(6.4) explains why an approximately linear relationship is found between the 

interstitial velocity and 1/h at 4s, as shown in Figure 6.2.  However, at 10s when the 

cavity remains at a stable size, it is found the linear relationship is valid for most areas 

except those are near the orifice. The inflection point is found when mh 016.0 , as seen 

in the red scattered markers in Figure 6.2. It is thereafter identified as the exact height of 

the stable cavity, which can be measured from the particle configuration plot (see Figure 

6.3). Hence, it indicates that the radial seepage flow still prevails above the cavity, while 

this is not the case in the cavity. Moreover, the slope in the linear relationship is found to 

decrease due to the cavity formation, as seen in Figure 6.2. This is likely to be the result of 

increased porosity above the cavity, according to Eqn.(6.4). On the other hand, the flow in 

the cavity possesses much higher velocity, and the radial distribution is not sustained any 
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longer. Actually, the velocity distribution is difficult to be described. With the velocity 

vectors being plotted, it is seen that local vortices exist within the cavity (see Figure 6.4). 

 

 

Figure 6.1 Cavity evolves to a stable size 

 

 

Figure 6.2 Interstitial velocity directly above the orifice vs. 1/h 
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Figure 6.3 Particle configuration zoomed into the cavity area (each coloured single layer 

represents 0.02m in height) 

 

 

Figure 6.4 Velocity vector plot: vortices exist within the cavity 

 

6.2.2 Pressure distribution 

Figure 6.5 demonstrates how the excess pressure directly above the orifice distributes 

vertically, and how the distribution changes with time. It can be seen that the pressure at 
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any height is initially accumulating, until it reaches the maximum which triggers 

fluidisation at 4.3s. Within a short period afterwards, the excess pressure undergoes a 

significant drop near the orifice, but a remarkable increase at shallower locations. This is 

mainly resulted from the cavity formation. As time goes by, pressures at deeper locations 

are decreasing while at shallower ones increasing. This is because pressures are 

propagating from bottom to top. Till around 7s, the pressure distribution starts to stabilise, 

indicating a steady state is achieved.  

 

With the aid of curve fitting, as shown in Figure 6.6, it is identified that the logarithmic 

flow equation derived as Eqn.(5.12) is satisfied at the onset of fluidisation. Moreover, 

after the steady state is achieved, the pressure distribution above the cavity still exhibits 

the logarithmic nature. This further implies that the seepage flow prevails above the 

cavity. However, within the cavity, the pressure distribution cannot be easily described. 

 

 

Figure 6.5 Vertical distribution of the excess pressure directly above the orifice 
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Figure 6.6 Logarithmic nature of the pressure distribution 

 

6.3 Mechanism Underlying a Stable Cavity 

In this section, the mechanism underlying the formation of a stable cavity is explored 

using the numerical outcome.  

 

By drawing a wedge with the inclination angle of   in the sample bed (see Figure 6.7), 

the fluid-induced forces calculated by IMB (see Eqn.(3.62)) are summed up over all the 

particles within the wedge, giving the total upward drag force denoted as F . Besides, the 

wedge weight W  is also calculated by summing up the weight of each particle within the 

wedge.  
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(a) Before fluidisation occurs 

 

(b) After the cavity stabilises 

Figure 6.7 A wedge drawn for force calculations 

 

Figure 6.8 presents the evolution of F  and W  with different values of  .  
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(a) 80  

 

(b) 70  
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(c) 62  

 

(d) 60  
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(e) 50  

Figure 6.8 Evolutions of the upward drag force and wedge weight 

 

From Figure 6.8, it can be seen that W  undergoes a slight increase between 4s and 5s. 

By counting the number of particles, it is found out there are more particles in the wedge 

at 5s compared with 4s. This is mainly due to the cavity formation, where stresses on both 

sides are suddenly released during the uplifting mechanism, allowing particles beside the 

wedge to move into it. On the other hand, F  initially goes up to the peak and then 

decreases till a steady level. It is believed that the decrease is induced by the pressure drop 

at the vicinity of the orifice during cavity evolution. 

 

As presented in Section 5.4.3, the actual uplifting zone has an inclination angle of 62
ᵒ
. 

From Figure 6.8(c), it is recognised that F  and W  are becoming equal to each other 
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during 4s and 5s when fluidisation is initialised. This is identified as the force balance at 

the onset of fluidisation. However, as F  then undergoes a decrease, it becomes less than 

W . It is therefore argued that a new mechanism is involved in the force balance in order 

to prevent the cavity from collapse under the excess weight. The argument is evidenced 

by plotting the force chains using DEM (see Figure 6.9). The thickest force chain 

represents the maximum contact force at a given time. From Figure 6.9, it can be 

identified that the initial force transmission is primarily along the vertical direction (see 

Figure 6.9(a)), but becoming inclined in the middle as the seepage flow permeates 

radially from the orifice (see Figure 6.9(b)). After the cavity forms (see Figures 6.9(c) and 

(d)), sparser vertical chains but denser horizontal ones are identified above the cavity. 

This indicates the fact that the soil on the side tries to slide down under gravity, but it is 

prevented by the fluid pressure in the cavity, so that the horizontal supports are formed on 

each side. It is believed that such supports generate upward friction and plays an 

important role in bearing the excess weight.  
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(a) t = 1s 

 

(b) t = 4s 
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(c) t = 5s 

 

(d) t = 10s 

Figure 6.9 Evolution of force chains during the formation of a stable cavity 
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Seen from Figure 6.8, for a wedge with   greater than 62
ᵒ
, the excess weight after cavity 

formation is less than that in the case of 62 . Therefore, it is recognised that a new 

force balance can be more easily achieved by the upward friction. However, for a wedge 

with   less than 62
ᵒ
, F  is smaller than W  during the whole test period, hence 

fluidisation cannot be activated. This further explains why a wedge angle of 62
ᵒ
 is 

obtained as a critical one for the sample model used in the numerical test. 

 

6.4 Summary 

This chapter studies on the stable-cavity regime, in which the cavity reaches to a 

steady size shortly after its formation. Numerical results suggest that the radial seepage 

flow prevails above the cavity, while this is not the case in the cavity. It also indicates that 

the porosity above the cavity is increased, and hence the slope in the linear relationship 

between interstitial velocity and 1/h is found to be lower than that before fluidisation 

occurs. On the other hand, the flow in the cavity possesses much higher velocity, and its 

distribution is difficult to be described. With the velocity vectors being plotted, it is seen 

that local vortices exist within the cavity.  

 

Before fluidisation occurs, the excess pressure directly above the orifice at any height is 

accumulating, until it reaches to the maximum which activates fluidisation. The 

logarithmic flow equation derived as Eqn.(5.12) is found to be satisfied at the onset of 
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fluidisation. Within a short period afterwards, the excess pressure undergoes a significant 

drop near the orifice, but a remarkable increase at shallower locations. This is due to the 

cavity formation. As time goes by, pressures at deeper locations are decreasing while at 

shallower ones increasing. This is because pressures are propagating from bottom to top. 

From around 7s, the pressure distribution starts to stabilise, indicating a steady state is 

achieved. The pressure distribution above the cavity is found to exhibit the logarithmic 

nature, which again implies the seepage flow prevails. However, within the cavity, the 

pressure distribution cannot be easily described. 

 

From the numerical outcome, it can be seen that the wedge weight W  undergoes a slight 

increase. This is mainly due to the cavity formation, where stresses on both sides are 

suddenly released during the uplifting mechanism, allowing particles beside the wedge to 

move into it. On the other hand, F  is initially goes up to the peak and then decreases till 

a steady level. It is believed that the decrease is induced by the pressure drop at the 

vicinity of the orifice during cavity evolution. 

 

For a wedge with the inclination angle 62  in the numerical test, F  and W  are 

becoming equal to each other at the onset of fluidisation, indicating a force balance. 

Thereafter, F  becomes less than W  due to its decrease and a slight increase in W . By 

observing the force chain plot, it is then argued that horizontal supports are provided by 

fluid pressure in the cavity so as to generate upward friction on the side. This upward 
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friction is involved in a new force balance, and the cavity is prevented from collapse 

under the excess weight.  

 

In addition, for a wedge with   greater than 62
ᵒ
, the excess weight after cavity 

formation is less than that in the case of 62 . Therefore, it is recognised that a new 

force balance can be more easily achieved by the arching effect. However, for a wedge 

with   less than 62
ᵒ
, F  is smaller than W  during the whole test period, hence 

fluidisation cannot be activated. This further explains why a wedge angle of 62
ᵒ
 is 

obtained as a critical one for the sample model used in the numerical test. 

 

Furthermore, it is argued that, for a sufficiently high flow rate, it would be no chance to 

form a stable cavity if F  sustains at a higher level than W  after the cavity formation. In 

such a case, the cavity tends to enlarge over time. As for how the cavity evolves with time, 

Chapter 7 presents an analysis using numerical data from parametric studies. 

 

 

 

 

 

 



138 

CHAPTER 7: CAVITY EVOLUTION 

7.1 Introduction 

In this chapter, analyses are carried out in order to study the cavity evolution. With 

the results from parametric studies, general expressions of the cavity evolution under 

controlled flow rate and controlled pressure in the pipe are deduced in Sections 7.2 and 

7.3, respectively. In addition, as cohesive soils are also common in the geotechnical 

engineering field, it would be worth considering the mechanical effect of cohesion in the 

pipe leakage problem. As stated in Section 2.3.2, the auto-adhesive contact model 

(Thornton, 1991; Thornton and Yin, 1991; and Thornton and Ning, 1998) is adopted for 

this reason, and how the inter-particle adhesion influences the cavity evolution is 

explored in Section 7.4. However, difficulties are encountered in determination of soil 

cohesion from the DEM parameter at the particulate scale. In an effort to build up the link 

between the cohesion effect and the inter-particle adhesion, in Section 7.5, numerical 

tests are carried out on a slope stability problem. Finally, a summary of the main findings 

in this chapter is given in Section 7.6. 

 

7.2 Cavity Evolution under Controlled Flow Rate 

In this section, cavity evolution is explored using the numerical results presented in 

Section 5.3. The flow rate in each test is held constant during the test period. If a blow-out 

failure occurs, fluidisation can be identified from above the bed surface, for which 
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studying the cavity evolution is of little importance any more. Hence, the blow-out 

regime is not considered in this section, and the flow rate varies from 0.25 l/s to 2.0 l/s 

among tests.  

 

7.2.1 Cavity size vs. flow rate (V-Q curves) 

From the numerical results, the cavity size is plotted against the controlled flow rate 

in Figure 7.1, which is denoted as the V-Q curves hereinafter. The bed regimes can be 

classified using these curves. It can be seen that in the fixed-bed regime, the V-Q curve 

remains at zero level because fluidisation is not initiated with a sufficiently low flow rate, 

i.e. 0.25 l/s to 0.8 l/s. While for a flow rate in the range from 0.85 l/s to 1.05 l/s, the cavity 

size evolves to a steady value shortly after fluidisation (i.e., the stable-cavity regime). For 

instance, with a flow rate of 0.9 l/s, no cavity has been identified during the initial seven 

seconds. Afterwards, a cavity forms and its size jumps to approximately 400 mm
2
 within 

the next one second, before it stops growing and maintains at the same size. In addition, it 

can be recognised that a higher flow rate leads to an earlier cavity formation.  

 

If the flow rate exceeds 1.05 l/s, it can be easily identified from the V-Q curves a 

continuous growth in the cavity size, indicating the growing-cavity regime. Again, it is 

found out that a higher flow rate induces a larger cavity at a given time. It is also worth 

noting that, if the flow rate is above 1.2 l/s in the current numerical model, the cavity size 
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is almost linear to the constant flow rate at any given time. Its size as a function of flow 

rate and time is then quantified by analysing the numerical data, which is presented in the 

following sub-section.  

 

 

Figure 7.1 V-Q curves
 

 

7.2.2 Cavity size as a function of flow rate and time 

For a constant flow rate at which a continuously growing cavity is induced, the cavity 

evolution is found to be linearly related to flow rate at a given time, as mentioned in 

Section 7.2.1. It is therefore worth studying for a general expression of cavity size as a 

function of flow rate and time. In Figure 7.2, the linear V-Q curves are firstly plotted and 

fitted by equations. It is then recognised that all the fitted curves tend to intercept at a 

single point, i.e. (1.0 l/s, 0). Hence, it can be written that, 
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)/0.1())(( 2 slQkmmQV        (7.1) 

where k  is independent of flow rate. By the curve fitting as shown in Figure 7.2, the 

value of k  at each given time can be obtained. Its value is then plotted against time, as 

shown in Figure 7.3. It is interesting to note that k  is linear to time. By the curve fitting 

in Figure 7.3, it is given that, 

21 CtCk          (7.2) 

where 1C  and 2C  are independent of either time or the controlled flow rate.  

 

Substituting Eqn.(7.2) into Eqn.(7.1), one can obtain 

)/0.1)(())(,( 21

2 slQCtCmmtQV       (7.3) 

 

For a more general expression, Eqn.(7.3) can be rewritten as 

))((),( 021 QQCtCtQV        (7.4) 

where 0Q  is interpreted as the theoretical critical controlled flow rate, beyond which a 

continuously growing cavity is thought to be generated. In the current numerical tests, 

0Q = 1.0 l/s. It may be noted that it is a bit different from 1.05 l/s which is identified from 

the numerical results (see Figure 7.1). Such a difference is mainly attributed to the 

following reason. Since 0Q  is derived by extrapolation of the V-Q curves, its value 

reflects the resistance to the continuous uplifting of the wedge, such as kinetic friction. 

However, a bit higher flow rate shall be required in order to overcome the initial 

resistance, including static friction. Therefore, 0Q  is regarded as a theoretical critical 
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value which is a bit smaller than the actual one required for the growing-cavity regime.  

 

 

Figure 7.2 Linear V-Q curves with curve fitting 

 

 

Figure 7.3 k  vs. time 
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7.3 Cavity Evolution under Controlled Pressure in the Pipe 

7.3.1 Numerical tests under controlled pressure in the pipe 

In this section, a parametric study is carried out with pressure in the pipe being 

maintained constant during each test. In order to maintain a constant pressure in the pipe, 

a slight modification is made to the model illustrated in Section 5.2.2. In the modified 

model, the pipe spans the whole length of the soil bed, i.e. 600mm (see Figure 7.4). The 

orifice opening is located at the top surface of the pipe, representing a leak. An identical 

pressure is applied at both the pipe inlet (on the left) and outlet (on the right) during each 

test. Table 7.1 shows the test arrangement in this section. As stated in Section 5.5.3, the 

particles are artificially kept from moving during the initial four seconds in order to 

obtain a well-developed fluid flow in bed. The p-t curve at the orifice is presented in 

Figure 7.5. The initial oscillations are mainly due to wave propagation in the LBM 

computations (Li, 2012). It is also found out that an almost steady level is achieved at the 

end of 4s, indicating a steady state is approximately obtained. 

 

 

Figure 7.4 Setup of the modified numerical model (insert: details around the orifice) 
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Table 7.1 Test arrangement with controlled pressure in the pipe 

Test No. 

Controlled pressure in the 

pipe (kPa) 

P1 4.67 

P2 4.83 

P3 4.90 

P4 5.83 

P5 6.67 

P6 8.33 

P7 10.00 

 

 

Figure 7.5 p-t curves at the orifice with different controlled pressures in the pipe 
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Once the particle movements are allowed at 4s, different soil behaviours are identified 

from Figure 7.5. With a controlled pressure no more than 4.9 kPa, the orifice pressure 

sustains at the original level. While with a higher controlled pressure, it starts to decrease. 

This indicates that fluidisation is activated by a sufficiently high pressure and a cavity 

starts to grow with time.  

 

With a controlled pressure no lower than 6.67 kPa, blow-out failure is identified from the 

results. The cavity evolution (the V-t curve) before the blow-out failure is shown in 

Figure 7.6, in which the starting time is taken as the time when fluidisation occurs. A 

general expression of the cavity size as a function of controlled pressure and time is 

thereby deduced using the numerical results, as presented in the following sub-section. 

 

 

Figure 7.6 V-t curves with different controlled pressures in the pipe 
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7.3.2 Cavity size as a function of pressure in the pipe and time 

Using the numerical data shown in Figure 7.6, the cavity size is plotted against the 

controlled pressure in the pipe in Figure 7.7, denoted as the V-p curves. By the curve 

fitting and extrapolation, it is recognised that the cavity size approximately increases 

linearly with pressure in the pipe at a given time. All the fitted straight lines in Figure 7.7 

tend to intercept at a single point, i.e. (4.7 kPa, 0). Hence, it can be written that, 

)7.4())(( 2 kPapkmmpV         (7.5) 

where k   is independent of the controlled pressure in the pipe. The value of k   is then 

plotted against time in Figure 7.8. By the curve fitting, it can be seen that k   is a 

quadratic function of time. Therefore, it is given that, 

tktkk 2

2

1            (7.6) 

where 1k  and 2k  are independent of either time or the controlled pressure in the pipe.  

 

 

Figure 7.7 V-p curves 
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Figure 7.8 k   vs. time 

 

Substituting Eqn.(7.6) into Eqn.(7.5), one can obtain 

)7.4)(())(,( 2

2

1

2 kPaptktkmmtpV       (7.7) 

 

For a more general expression, Eqn.(7.7) can be rewritten as 

))((),( 02

2

1 pptktktpV         (7.8) 

where 0p  is interpreted as the theoretical controlled pressure to stimulate a growing 

cavity, which is 4.7 kPa in the current numerical tests. It is noted that this theoretical value 

is a bit lower than the actual fluidising pressure which is higher than 4.9 kPa identified 

from the numerical results. Similar to the reason explained in Section 7.2.2, such a 

difference is mainly attributed to the linear backward extrapolation scheme. In spite of the 

difference, 0p  is still taken as the theoretical fluidising pressure for further analysis 
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followed.  

 

7.4 Cavity Evolution with Adhesive Particles 

7.4.1 Numerical tests with inter-particle adhesion 

As Stated in Section 7.1, since cohesive soils are commonly encountered in the 

geotechnical engineering field, it is worth studying the mechanical effect of soil cohesion 

in the cavity evolution. Hence, in this section, the adhesive particles are adopted. A 

parametric study is carried out with various inter-particle adhesion forces. Table 7.2 lists 

the controlled parameters used in this group of simulation, where K  and   are defined 

in Eqns.(3.29) and (3.30). A constant pressure of 5.83 kPa is applied to both the pipe inlet 

and outlet in all tests. All other model parameters and the test procedure are the same as 

the previous ones in Section 7.3.   

 

Figure 7.9 demonstrates the p-t curves at the orifice with different K  values. It indicates 

that during the initial 4s when the sample bed is kept fixed artificially, the variations in 

orifice pressure show an identical pattern for all cases as the particle behaviour is not 

involved in calculations. Once the particle movements are permitted, the orifice pressure 

starts to decrease. However, a higher inter-particle adhesion force leads to a slower 

decrease. This can be attributed to a reduced cavity growth, which is further discussed in 

Section 7.4.2.  
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Table 7.2 The controlled parameters used to study the effect of inter-particle adhesion 

Test No. 

Ratio of inter-particle 

adhesion force to average 

particle weight, K  

Particle surface 

energy, (J/m
2
) 

A1/P4 0 0 

A2 1 0.082 

A3 3 0.246 

A4 5 0.411 

A5 7 0.575 

 

 

 

Figure 7.9 p-t curves at the orifice with different K  values, and inlet/outlet pressure = 

5.83 kPa 
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From the snapshots of particle configuration taken at the end of tests (see Figure 7.10), it 

can be identified that the cavity shape is also influenced by the presence of inter-particle 

adhesion. Unlike a more smooth and rounded cavity in the case with non-adhesive 

particles (i.e. 0K ), the cavity tends to have a branch-like or needle-like shape with 

inter-particle adhesion force due to hydraulic fracturing. It is interesting to note that 

similar shapes of cavity are also obtained by Royal et al. (2008) when they conducted 

laboratory tests on clayey soils. In their tests, epoxy was used to form a cast of the created 

cavity, and the typical cavity shapes obtained from their work are shown in Figure 7.11. It 

can be recognised that the use of adhesive particles is a promising approach to represent 

the mechanical effect of cohesive soils, in which the inter-particle bond cannot be 

neglected compared to particle weight. 

 

   

(a) 0K                         (b) 1K  
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(c) 3K                         (d) 5K  

 

(e) 7K  

Figure 7.10 Snapshots of particle configuration with different K  values, t = 10s 

   

Scale 1:0.65      Scale 1:1.85 

 

Scale 1:0.66 

Figure 7.11 Typical branch-like and needle-like cavity shapes obtained from laboratory 

work by Royal et al. (2008) 
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Figure 7.12 V-t curves with different K  values, and inlet/outlet pressure = 5.83 kPa 

 

Figure 7.12 illustrates the cavity evolution (i.e. V-t curves) with different K  values. It is 

clear that a stronger inter-particle adhesion leads to a slower cavity development. And the 

following sub-section performs analysis in order to quantify such an effect of K . 

 

7.4.2 Effect of adhesion force on cavity evolution 

It is argued that the presence of inter-particle adhesion would increase the shear 

strength of a soil sample (see Section 7.5). Hence it leads to a higher fluidising pressure, 

and Eqn.(7.8) is required to be modified. In this sub-section, the general expression of 

cavity evolution with adhesive particles is analytically deduced as follows. 
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As demonstrated in Section 5.5.4, with the current model parameters, the superficial 

velocity is sufficiently small so that the seepage flow is primarily dominated by the first 

order of the superficial velocity. Therefore, by neglecting the second order term, it can be 

obtained from Eqn.(5.7) that, 

)(2 00 rHACF rw          (7.9) 

 

Besides, according to Eqn.(5.12), the fluidising pressure can be simplified as 

0

ln
r

H
ACp rf          (7.10) 

 

Combining Eqns.(7.9) and (7.10), the fluidising pressure is presented as a function of the 

upward drag force: 

0

00

0

)(2

)/ln(
F

rH

rH
p

w

f





       (7.11) 

where 0F   is the upward drag force applied to the wedge at the onset of fluidisation.  

 

For the wedge consisting of adhesive particles, fluidisation can only be activated if the 

upward drag force is overcoming both the weight as well as the vertical component of the 

shear resistance. Therefore, the force balance at the onset of fluidisation is approximately 

written as below, 

wsAWF  cos0         (7.12) 

where   is the shear stress applied to the wedge, and sA  is the total area of the shear 
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planes. Since the effective stress is considered to be totally lost once fluidisation occurs, 

the shear stress can be considered to be composed of the undrained shear strength only, 

which is primarily contributed from soil cohesion. Hence, Eqn.(7.12) is rewritten as 

wsu AcWF cos0         (7.13) 

where uc  is the undrained shear strength of the soil sample.  

 

From the results presented in Section 7.5, the relationship between uc  and K  is 

expressed as 

KdCc ppKu          (7.14) 

in which KC  is as defined in Section 7.5.  

 

Substituting Eqn.(7.14) into Eqn.(7.13), it is obtained that 

KAdCWF wsppK   cos0       (7.15) 

 

Therefore, from Eqn.(7.11), the fluidising pressure for a wedge consisting of adhesive 

particles is presented as 

)cos(
)(2

)/ln(

00

0 KAdCW
rH

rH
p wsppK

w

f 


 


      (7.16) 

 

Besides, as fpp 0  in spite of the small difference explained in Section 7.3.2, the 

cavity evolution with adhesive particles is approximately expressed as 
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
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  (7.17) 

 

Eqn.(7.17) indicates that due to the presence of adhesive particles, the cavity size is 

roughly decreased linearly with K  increases for a given soil sample at a particular time. 

Figure 7.13 plots the cavity size against K  using the numerical results presented in 

Figure 7.12. It can be seen that the above finding agrees well with the numerical results. 

 

 

Figure 7.13 Cavity size vs. K  

 

7.5 Relationship between Inter-particle Adhesion and Undrained Shear Strength 

As previously mentioned, the adhesive particles are adopted with non-zero surface 

energy   to simulate the mechanical effect of soil cohesion. However, how this 

parameter on the particulate level relates to cohesion on the soil assembly level has not 
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been quite clearly defined so far, and very limited work has been found in literature 

regarding this issue. Therefore, this section aims to explore if any general correlations 

exist between the particle surface energy value and the undrained shear strength uc . 

 

A slope stability problem is considered in this section. DEM simulations are carried out 

on an upright slope formed by adhesive particles. These particles firstly dropped into a 

rectangular container under gravitational force. After the particles have fully settled (see 

Figure 7.14), the confining wall on the left is removed, allowing the left end of the soil 

moving freely under the effect of gravity. In the simulations, around 16,000 circular 

particles are adopted. During the tests, the DEM friction coefficient is set to zero so that 

the restraints of sliding between particles are only provided through inter-particle 

adhesion. Table 7.3 shows the simulation parameters used in the tests. 

 

 

Figure 7.14 An upright slope is fully settled under gravitational force using DEM 
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Table 7.3 Parameters used in the slope stability tests 

Parameters                                          Values 

         particle density (kg/m
3
)                                    2700

 

     inter-particle friction coefficient                                0.0 

    Young’s modulus of particle (MPa)                              69 

       Poisson’s ratio of particle                                     0.3 

          DEM time step (s)                                       1.0×10
-5

 

 

Numerical tests are conducted using different particle weights and sizes. By varying the 

input particle surface energy value, the left end of the soil may either collapse (see Figure 

7.15), or remain globally stable (see Figure 7.16) after the removal of the confining wall. 

The minimum value of the input surface energy to maintain the global stability for each 

test is then determined for a given particle weight and size. 

 

 

Figure 7.15 The slope loses its global stability after the removal of the confining wall 
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Figure 7.16 The slope remains stable after the removal of the confining wall 

 

On the other hand, in order to maintain the condition of limit equilibrium of a particular 

homogeneous slope of height H , the minimum shear strength is calculated as shown in 

Eqn.(7.18) (Craig, 2004): 

                                HFNc s a tsu                                (7.18) 

where sN  is the Taylor’s stability coefficient (Taylor, 1937; see Figure 7.17) which 

depends on the slope angle and the depth factor. For the tests reported in this section, the 

slope angle is 90
○
 and the depth factor is 1.0, and hence 26.0sN . F  is the factor of 

safety with respect to shear strength, which is unity in this study as the soil is at limiting 

equilibrium. sat  is the saturated unit weight of the soil, and is calculated from the 

porosity and particle density. 
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Figure 7.17 Taylor’s stability coefficients for φu = 0 (Boston Society of Civil Engineers 

as found in Craig, 2004) 

 

The test results are presented in Table 7.4. By varying the particle weight, the numerical 

results indicate that the calculated shear strength is proportional to the surface energy 

value for a given particle size. This is shown in Figure 7.18 where uc  is plotted against 

 . 
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Table 7.4(1) Test results for the slope stability problem (to be continued) 

Particle 

diameter 

pd  (mm) 

Weight of a 

single 

particle (N) 

sat
 

(kN/m
3
) 

H  

(m) 

uc
 

(kPa) 

  

(J/m
2
) 

0.5 

4.37×10
-6 

40.17 0.035 0.36 0.23 

2.91×10
-6

 26.79 0.035 0.24 0.16 

1.46×10
-6

 13.39 0.035 0.12 0.08 

1.09×10
-6

 10.05 0.035 0.09 0.07 

5.46×10
-7

 5.02 0.035 0.05 0.04 

1.0 

1.75×10
-5

 20.11 0.069 0.36 0.5 

8.74×10
-6

 10.08 0.069 0.18 0.27 

6.99×10
-6

 8.03 0.069 0.14 0.23 

5.24×10
-6

 6.02 0.069 0.11 0.17 

3.49×10
-6

 4.02 0.069 0.07 0.11 

1.75×10
-6

 2.01 0.069 0.04 0.06 
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Table 7.4(2) Test results for the slope stability problem (cont.) 

Particle 

diameter 

pd  (mm) 

Weight of a 

single 

particle (N) 

sat
 

(kN/m
3
) 

H  

(m) 

uc
 

(kPa) 

  

(J/m
2
) 

2.0 

6.99×10
-5

 10.06 0.139 0.36 0.91 

3.49×10
-5

 5.02 0.139 0.18 0.57 

2.33×10
-5

 3.35 0.139 0.12 0.36 

1.40×10
-5

 2.01 0.139 0.07 0.25 

6.99×10
-6

 1.00 0.139 0.04 0.15 

4.0 

2.79×10
-4

 5.03 0.277 0.36 1.79 

2.23×10
-4

 4.02 0.277 0.29 1.40 

1.68×10
-4

 3.01 0.277 0.22 1.00 

1.12×10
-4

 2.01 0.277 0.14 0.91 

5.59×10
-5

 1.01 0.277 0.07 0.51 

 

 

Figure 7.18 Relationship between uc  and   for different particle diameters  
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Figure 7.19 Relationship between pu dc   and   

 

By plotting all the data points using a pu dc   versus   graph (see Figure 7.19), the 

approximate relationship can be obtained with good correlation as, 

 
)(

)/(78.0
)(

2

mmd

mJ
kPac

p

u


                             (7.19) 

 

From Eqns.(3.29) and (3.30), it can be obtained that 

Kgd pp 
2

9

2
                                (7.20) 

 

Substituting Eqn.(7.20) into Eqn.(7.19), the relationship between uc  and K  can be 

deduced as 

KgmmdkPac ppu  )(
9

56.1
)(                         (7.21) 
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Therefore, a general expression is given as 

KdCc ppKu                                 (7.22) 

where KC  is a constant for a given soil sample.  

 

Eqn.(7.22) reveals that, by adopting the particle surface energy in DEM, the shear 

strength contributed from cohesion in a given soil can be described as a linear function of 

K , which is the ratio of inter-particle adhesion force to average particle weight. Such a 

relationship is employed to explore how cohesion influences the fluidising pressure and 

cavity evolution, as demonstrated in Section 7.4. 

 

7.6 Summary 

In this chapter, parametric studies are carried out to investigate the cavity evolution. 

The cavity size is given as functions of time, controlled flow rate, controlled pressure in 

the pipe, and the ratio of inter-particle adhesion force to average particle weight. With the 

flow rate being controlled constant during the test, the cavity size is found to be linearly 

developing with time; while with the pressure in the pipe being controlled constant, it 

becomes a quadratic function of time. Moreover, Eqns.(7.4) and (7.8) also indicate that, at 

a particular time, the cavity grows to a size which is either proportional to the flow rate 

excess the critical one (i.e. 0QQ  ), or to the pressure in the pipe excess the theoretical 

fluidising pressure (i.e. 0pp  ).  
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With the presence of adhesive particles, the mechanical effect of soil cohesion is explored. 

By studying a slope stability problem in Section 7.5, the linear contribution of the 

inter-particle adhesion force to the undrained shear strength of the soil is identified. Such 

a correlation is adopted in the pipe leakage problem, and it is deduced that the cavity size 

is roughly reduced linearly with the increase in adhesion force at a particular time for a 

given soil sample. This finding is further evidenced by numerical results from a 

parametric study adopting various inter-particle adhesion forces. 
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions of this Thesis 

Motivated by the internal fluidisation phenomenon due to a pipe leakage, which has 

been recognised as a potential threat to infrastructures, this thesis aims to achieve a deeper 

understanding of the leakage-soil interaction. The problem is regarded complicated in 

nature, where fluid flows are localised and non-laminar at the vicinity of the leak, and 

involving intensive fluid-particle interactions after fluidisation occurs. Moreover, due to 

the localised large displacements in soil, continuum analytical methods would encounter 

difficulties. Besides, laboratory tools are regarded limited in flexibility and data 

acquisition especially under three-dimensional conditions. For the above reasons, 

numerical simulations are adopted in order to efficiently fulfill the aim of this thesis.  

 

From literature, the coupled DEM-LBM technique is identified as an appropriate 

numerical tool to simulate the complicated behaviour of the problem. This is mainly due 

to the discrete nature of DEM as well as the microscopic nature of LBM. With the aid of 

the soft-sphere DEM model, complete information of each particle in an assembly can 

be obtained. When coupled with LBM, solid particles are merged into a fine Eulerian 

lattice. Incorporated with the Immersed Moving Boundary (IMB) scheme, DEM-LBM 

is capable of providing a smooth solution to the fluid-particle interactions with local 

descriptions.  
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A two-dimensional DEM-LBM computer program FPS-BHAM is therefore developed 

for this thesis. It consists of the following main elements: 

(i) to establish the DEM calculation process, including transferring the contact 

force calculations from a well-established DEM code, TRUBAL ; 

(ii) to implement the LBM computation with different boundary conditions; and 

(iii) to incorporate the IMB scheme to LBM.  

 

In order to identify failures and to correctly implement all the algorithms in the 

newly-established FPS-BHAM, a series of simple tests are carried out in Chapter 4. 

Through simulating the particle-wall and particle-particle collisions, the DEM 

calculations in FPS-BHAM are examined by comparing the computational results with 

those from TRUBAL. A slight difference is observed and can be attributed to round-off 

error and different DEM calculation procedures. In spite of the difference, FPS-BHAM 

provides valid results for tracing particle locations after contacts. On the other hand, in 

order to verify whether the LBM computations are correctly implemented, the Poiseuille 

flows with velocity and pressure boundaries, as well as the Couette flows with moving 

solid boundaries are simulated, respectively. The results are validated against analytical 

solutions. It is found FPS-BHAM not only achieves valid solutions, but also effectively 

obtains the fluid-induced torque acted on the moving boundary.  
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Code verifications in Chapter 4 imply the potential capability of FPS-BHAM in 

simulating a fluid-particle system. Hence, a granular bed subject to a locally injected fluid 

is tested using FPS-BHAM in Chapter 5. From the numerical results, different regimes of 

bed behaviour are obtained under various flow rates. With the controlled flow rate 

increased among tests, the bed sequentially undergoes the following behaviours: (i) the 

fixed-bed regime; (ii) the stable-cavity regime; (iii) the growing-cavity regime; and (iv) 

the blow-out regime. This is also evidenced by previous experimental studies 

(Zoueshtiagh and Merlen, 2007; Royal et al., 2008; and Alsaydalani, 2010).  

 

It is recognised that seepage flows prevail in the fixed-bed regime, where a greater excess 

pressure is generated at a deeper location, which is closer to the source of flow. Although 

the pressures are initially accumulating with time, they finally reach a steady state with no 

fluidisation being initiated. Unlike the linear pressure distribution in a one-dimensional 

upward seepage, the excess pressure in a local leakage problem shows significant 

concentrations close to the source of flow. This is interpreted as a localisation nature.  

 

If a higher flow rate is applied, fluidisation is observed at the source of flow, characterised 

by a sudden cavity formation and a sharp drop in the orifice pressure. The bed humps in 

the middle due to cavity formation, and the sharp pressure drop is attributed to the sudden 

‘unblocking’ of surrounding particles. Both the experimental (Alsaydalani, 2010) and 

numerical results identify the onset of fluidisation from the most significant pressure 
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gradient near the orifice. And the critical hydraulic gradient is found to be greater than 

that of a normal seepage failure. The cavity being generated is recognised as the 

‘internally fluidised zone’. In this zone, particles are moving freely with the leaking fluid. 

An uplifting zone is also identified above the cavity, and particles in this zone are being 

raised at the onset of fluidisation, while those outside it remain steady. Both experimental 

and numerical results show that the uplifting zone is of an inverted-tapered shape. And 

the numerical tests demonstrate a reasonably similar wedge angle with that measured 

from the experiments.  

 

The previous prediction of fluidising pressure in literatures was based on the assumption 

of a vertical flow distribution. However, this is not exactly true in a real soil subject to a 

local leakage. Although Alsaydalani (2010) argued that the leaking fluid should be 

spreading radially, there was no further evidence provided by his results. With the aid of 

numerical simulation, a radial flow distribution is obtained before fluidisation occurs. 

Hence, the flow equation is modified in this thesis according to the radial distribution. An 

approximate logarithmic nature is found out in the modified flow equation, which is also 

supported by simulation results.  

 

As proofed by Alsaydalani (2010), at the onset of fluidisation, a force balance on the 

uplifting wedge is achieved between its bulk weight and the upward drag force. Based on 

this mechanism, the fluidising pressure is therefore derived for the radial flow distribution 
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in this thesis. The numerically measured fluidising pressures are found to match well with 

the predicted ones using the derived expression. Furthermore, from the analytical 

derivation, it is recognised that the fluidising pressure is approximately in direct 

proportion to an equivalent height 'H  (as defined by Eqn.(5.15)), provided that the 

seepage flow is primarily dominated by the first order of superficial velocity. This is also 

evidenced by the numerical solutions. 

 

In addition, the post-fluidisation behaviour is explored in this thesis. A special attention is 

firstly paid to the ‘stable-cavity’ regime, where cavity stops growing in a short period 

after its formation. Chapter 6 studies on such a regime and the results suggest that a radial 

seepage flow still prevails above the cavity. Compared to the case before fluidisation, it is 

found out that the porosity above the cavity is increased while the fluid flow possesses 

higher velocity in the cavity. With the velocity vectors being plotted, local vortices are 

identified within the cavity. Moreover, p-t curves indicate that a steady state is achieved in 

soil after the cavity stops growing, and the pressure distribution above the cavity still 

exhibits the logarithmic nature. Furthermore, from the numerical outcome at the steady 

state, it is argued that a new force balance is achieved by the combined actions of the drag 

force, the wedge weight, and the upward friction generated due to horizontal supports 

provided by fluid pressure in the cavity.  

 

With a higher flow rate being applied, the cavity is continuously growing. Its evolution is 
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investigated in Chapter 7. Analysing the numerical results from parametric studies, the 

cavity size is expressed as functions of time, controlled flow rate, controlled pressure in 

the pipe, and the ratio of inter-particle adhesion force to average particle weight. With a 

constant flow rate, the cavity size is found to be linearly increasing with time; while with 

a constant pressure in the pipe, it becomes a quadratic function of time. Moreover, at a 

particular time, the cavity grows to a size which is either proportional to the flow rate 

excess the critical one (i.e. 0QQ  ), or to the pressure in the pipe excess the theoretical 

fluidising pressure (i.e. 0pp  ).  

 

With the presence of adhesive particles, the mechanical effect of soil cohesion is explored. 

Unlike a more smooth and rounded cavity in the case with non-adhesive particles, the 

cavity tends to have a branch-like or needle-like shape with inter-particle adhesion force. 

Similar cavity shapes were also obtained by Royal et al. (2008) when they conducted 

laboratory tests on clayey soils. By studying a slope stability problem, it is identified a 

linear contribution of the inter-particle adhesion force to the undrained shear strength of 

the soil. Adopting such a correlation in the pipe leakage problem, it is then deduced that 

for a given soil sample, the cavity size is approximately linearly reduced by the increase 

in the inter-particle adhesion force. This finding is further evidenced by numerical results 

from a parametric study. 
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Furthermore, numerical simulations also demonstrate a blow-out failure when the cavity 

grows up to the bed surface so as to open up a fluid channel. Fluctuations are observed in 

the p-t curves, indicating unsteady flow behaviour. In addition, excess pressures at 

shallower locations are occasionally greater than those at deeper ones, suggesting 

backward flows and local vortices. With an extremely high flow rate, the excess pressure 

near the orifice may even increase during the cavity development due to such a rapid 

energy input. An unsymmetrical pattern of the channel shape is also noticed, which is 

attributed to the non-zero horizontal momentum of the injected fluid, as well as the 

unsymmetrical soil skeleton and the amplified difference in the unstable system. 

 

8.2 Future Work 

As the numerical investigations presented in this thesis are still at an early stage, 

some recommendations for the future work are given as follows: 

 In the current two-dimensional simulations, fluid paths through the particle 

assembly are considered by artificially adopting the hydraulic radius. This 

makes the determination of permeability ambiguous, although it is sometimes 

necessary to obtain the flow field in soil. Moreover, the current model is difficult 

to give an explicit description of turbulent flow which involved at the vicinity of 

the orifice, as it is actually a three-dimensional phenomenon. Therefore, it is 

expected to extend the simulations by FPS-BHAM to three-dimensional ones, by 
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which the physical behaviour can be captured more accurately. 

 With the current sample bed, the superficial velocity is sufficiently low, so that 

the flow equation before fluidisation occurs (see Eqn.(5.12) is simplified by 

neglecting the second-order term of superficial velocity. However, if a different 

soil sample is used, particularly a soil with higher permeability, the superficial 

velocity may be higher and its second term may be of importance in the flow 

equation. Besides, for a soil lack of medium grain sizes, piping (i.e. internal 

erosion) may take place where fine grains are washed away before the overall soil 

skeleton being largely deformed. For the above reasons, particle size and its 

distribution shall be varied in future studies, so as to explore on the effect of 

different permeability and potential of piping phenomenon. 

 Moreover, in the current numerical model, only liquid-solid two phases are 

simulated and the soil is considered fully submerged under water. In the future, 

it would be worth extending the simulations to partially saturated soils by 

incorporating multi-phase fluid models, so that both the pore water and pore air 

can be simulated along with the solid phase. 

 Furthermore, the wedge angle of the uplifting zone has not been fully 

investigated. It is believed that this angle may be dependent on the soil friction, 

which is further related to inter-particle friction and particle interlocks. Hence, 

different DEM particle friction coefficients and particle shapes are expected to 

be adopted in future studies. In addition, the relationship of the macroscopic soil 
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friction and the inter-particle friction is also required to be explored, in an effort 

to quantify the effect of soil friction on the wedge angle. 

 More samples would be tested in the future so that the effects of bed geometry 

and orifice size and shape can be explored. 

 Besides, in the research presented in this thesis, the leaking pipe is simply 

viewed as a fluid channel which provides a source of flow. However, in a real 

pipe leakage problem, the pipe itself may suffer from external loads due to the 

stress changes in soil which may lead to further breaks or leaks. Therefore, in the 

further, the interaction between the soil and pipe shall also be considered along 

with the leakage-soil interaction. 
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