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Abstract

The aim of this thesis is to provide a generic approach to the study of semi-linear parabolic

partial differential equations when the nonlinearity fails to be Lipschitz continuous, but

is in the class of Hölder continuous functions or the class of upper Lipschitz continuous

functions.

New results are obtained concerning the well-posedness (in the sense of Hadamard)

of the initial value problem, namely, uniqueness and conditional continuous dependence

results for upper Lipschitz continuous nonlinearities, and an existence result for Hölder

continuous nonlinearities. To obtain these results, two new maximum principles have

been obtained, for which examples have been provided to exhibit their applications and

limitations. Additionally, new derivative estimates of Schauder-type have been obtained.

Once the general theory has been established, specific problems are studied in detail.

These show how one can apply the general theory, as well as problem specific approaches,

to obtain well-posedness results.
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CHAPTER 1

INTRODUCTION

The study of solutions to systems of semi-linear parabolic partial differential equations

has attracted considerable attention over the last fifty years. In the case when the nonlin-

earity satisfies a local Lipschitz condition, the fundamental theory is well developed (see,

for example, the texts of Friedman [21], Fife [20], Rothe [64], Smoller [69], Samarvskii et

al [66], Volpert et al [71], Leach and Needham [36], and references therein). The situation

when the nonlinearity does not necessarily satisfy a local Lipschitz condition is less well

studied, but contributions have been made in the case of specific non-Lipschitz nonlineari-

ties which have aided in particular applications (see, for example, Aguirre [5]; Needham et

al [36], [53], [29], [33], [40], [41], [42], [43] and references therein), and for the correspond-

ing steady state elliptic problems (see, for example, Stackgold [70], Bandle et al [9], [10],

[11], [12], [13], Abdullaev [2], [3], [4], [1] and references therein). The aim of this thesis

is to exhibit general results concerning semi-linear parabolic parabolic partial differential

equations that do not necessarily satisfy a local Lipschitz condition. The approach is clas-

sical, in the sense that the results relate entirely to the well-posedness criteria for classical

solutions, in the sense of Hadamard [39], and the main results are principally established

within the framework of real analysis. The approach used to develop the existence theory

in this thesis has similarities with the method of successive approximations for systems

of first order ordniary differential equations, as detailed in [17] and [16]. Alternative ap-

proaches may be possible through the concepts of weak solutions and the framework of
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semigroup theory. These alternative approaches are amenable, and very effective, in the

case of Lipschitz continuous nonlinearities, as exemplified in the monographs by Henry

[26] and Pazy [61]. However, the extensions to non-Lipschitz nonlinearities have not been

developed and our approach provides an effective development of the classical theory for

Lipschitz continuous nonlinearities.

The theory developed in this thesis is applicable to models which arise naturally in

many areas of scientific interest. For example, physical, biophysical and environmental

modelling gives rise to semi-linear parabolic partial differential equations (often referred

to as reaction-diffusion equations) in such areas as population dynamics (see, for example,

Levin [37]), the spread of infectious disease (see, for example, Kermack and McKendrick

[30], [31] and [32]), smouldering combustion (see, for example, Aris [7] and [8]), isothermal

autocatalytic reaction dynamics (see, for example, Gray and Scott [23]), biochemical mor-

phogenesis (see, for example, Murray [51]) and diffusion in complex polymeric materials

(see, for example, Edwards [19]). For the purpose of this thesis, we give an introduction

based on modelling arising from a chemical kinetics context. Specifically this is moti-

vated by the study of the dynamics of several particular models of autocatalytic chemical

reactions under molecular diffusion. These studies can be found in Needham et al [5],

[33], [47], [46], [44], [22], [45], [56] and [53]. The aim of this thesis is to develop a generic

theory which both encompasses and considerably extends the more specific approaches

developed independently in [5], [33] and [53].

The mathematical model concerns the dynamics of an isothermal, autocatalytic chem-

ical reaction scheme with termination, taking place in an unstirred environment and un-

dergoing molecular diffusion. Formally the autocatalytic reaction model is represented by

two steps

AÐ→ B at rate k1a
qbp (autocatalysis)

B Ð→ C at rate k2b
r (decay)
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where p, q, r ∈ (0,∞) and k1, k2 ∈ (0,∞) represent the order of each reaction term and

the reaction rate constants respectively, whilst a and b represent the concentrations of the

reactant A and the autocatalyst B respectively. The chemical C is a stable product of the

reaction. At time t̄ = 0, the autocatalyst is introduced into an expanse of the reactant,

which is at uniform concentration a0 ≥ 0. This leads to the coupled reaction-diffusion

initial boundary value problem, namely,

∂a

∂t̄
=Da

∂2a

∂x̄2
− k1[aq]+[bp]+

∂b

∂t̄
=Db

∂2b

∂x̄2
+ k1[aq]+[bp]+ − k2[br]+

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

for −∞ < x̄ <∞, t̄ > 0, (1.1)

a(x̄,0) = a0, b(x̄,0) = b0u0(x̄) for −∞ < x̄ <∞, (1.2)

a(x̄, t̄) and b(x̄, t̄) are bounded as ∣x̄∣→∞ uniformly for 0 ≤ t̄ ≤ T and any T ≥ 0. (1.3)

Here u0 ∶ R → R is bounded and continuous, with bounded derivative and bounded

piecewise continuous second derivative, and,

sup
x̄∈R

u0(x̄) = 1, inf
x̄∈R

u0(x̄) = 0. (1.4)

The function u0 ∶ R → R represents the initial concentration distribution of the auto-

catalyst, with the constant b0 ≥ 0 measuring the maximum initial concentration of the

autocatalyst, whilst x̄ and t̄ represent the spatial distance and time. The positive con-

stants Da and Db represent the diffusion coefficients for species A and B respectively.

Here we define the function [ ]+ ∶ R2 → R for any a, q ∈ R to be

[ ]+(a, q) ≡ [aq]+ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

aq for a > 0,

0 for a ≤ 0.

When no autocatalysis occurs in (1.1)-(1.3), or equivalently, k1 = 0, then, equation
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(1.1) and condition (1.2), reduce to

a(x̄, t̄) = a0,
∂b

∂t̄
=Db

∂2b

∂x̄2
− k2[br]+ for −∞ < x̄ <∞, t̄ > 0. (1.5)

It is convenient to introduce the function u ∶ R × [0,∞) → R and dimensionless variables

x̃ and t̃, via

b(x̄, t̄) = b0u(x̃, t̃), t̃ =
⎛
⎝

k2

b
(1−r)
0

⎞
⎠
t̄, x̃ =

⎛
⎝

k2

Dbb
(1−r)
0

⎞
⎠

1/2

x̄. (1.6)

On substituting from (1.6) into (1.5), the system (1.1)-(1.3) becomes

∂u

∂t̃
= ∂

2u

∂x̃2
− [ur]+ for −∞ < x̃ <∞, t̃ > 0, (1.7)

u(x̃,0) = u0(x̃) for −∞ < x̃ <∞, (1.8)

u(x̃, t̃) is uniformly bounded as ∣x̃∣→∞ for each t ∈ [0, T ] and any T > 0. (1.9)

The study of the initial-boundary value problem given by (1.7)-(1.9) gives information

about the dynamics of the original chemical system in the absence of autocatalysis, which

directly motivates the theory of Chapters 6-8 and Chapter 9, Section 1. This particular

problem has been studied extensively when r ∈ [1,∞). However, the case r ∈ (0,1) has

received much less attention.

Returning to the full system (1.1)-(1.3), when the molecular sizes of A and B are

comparable, then we can make the simplification

Da =Db =D. (1.10)

We now introduce the functions α,β ∶ R × [0,∞)→ R and dimensionless variables

a(x̄, t̄) = a0α(x, t), b(x̄, t̄) = a0β(x, t), x̄ = ( D

ap+q−1
0 k1

)
1/2

x, t̄ = 1

ap+q−1
0 k1

t. (1.11)

On using (1.10) and (1.11), the initial-boundary value problem (1.1)-(1.3) becomes, in
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dimensionless form

∂α

∂t
= ∂

2α

∂x2
− [αq]+[βp]+

∂β

∂t
= ∂

2β

∂x2
+ [αq]+[βp]+ − k[βr]+

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

for −∞ < x <∞, t > 0, (1.12)

α(x,0) = 1, β(x,0) = β0u0(x) for −∞ < x <∞, (1.13)

α(x, t) and β(x, t) are bounded as ∣x∣→∞ uniformly for t ∈ [0, T ] and any T > 0.

(1.14)

Here we have introduced the dimensionless parameters β0 = b0
a0

and k = k2
k1
ar−p−q0 . Next, we

consider the situation in the absence of the termination step, corresponding to k = 0 in

(1.12). Additionally, when β0 is small, we can make the approximation

α(x, t) + β(x, t) = 1 for −∞ < x <∞, t ≥ 0. (1.15)

On substituting from (1.15) into the system (1.12)-(1.14), with k = 0, and setting v = β,

leads to the reduced scalar problem

∂v

∂t
= ∂

2v

∂x2
+ [(1 − v)q]+[vp]+ for −∞ < x <∞, t > 0, (1.16)

v(x,0) = v0u0(x) for −∞ < x <∞, (1.17)

v(x, t) is uniformly bounded as ∣x∣→∞ for t ∈ [0, T ] and any T > 0, (1.18)

where v0 = β0. The study of problem (1.16)-(1.18) gives information about the dynamics

of the original chemical system in the absence of termination and motivates the theory

of Chapter 6, Chapter 8 and Chapter 9, Section 3. Furthermore, when we replace the

(1 − v)q by 1, we obtain the problem which is an approximation to (1.16)-(1.18) when v0

is small, and this motivates the theory in Chapter 9, Section 2.

In this thesis, Chapters 2-5 contain essential introductory material, with new specific

extensions which are crucial to later chapters. Chapter 2 is a detailed problem statement
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concerning the class of problems which this thesis examines, as well as a means of intro-

ducing the notation and concepts used throughout. Results are also included to highlight

the relationship between certain aspects of interest. Chapter 3 contains maximum prin-

ciples and contains an extension to the classical parabolic maximum principle, as well as

some counterexamples to potentially more general results. Moreover, a result is included

to illustrate a violation of the strong maximum principle found in [63] and a suitable

amendment is included. Chapter 4 is a summary of well established results regarding the

theory for solving diffusion problems on R with bounded initial data. Estimates are also

provided which are used in the asymptotic results in Chapter 9, Section 2. Chapter 5

introduces the integral equations that arise in the study of reaction-diffusion problems in

later chapters, together with a class of new “Schauder” type derivative estimates.

Chapters 6-8 provide the general results of the thesis. Chapter 6 is largely a review

of the question of well-posedness for the reaction-diffusion problem where the reaction

function is Lipschitz continuous. Chapters 7 and 8 concern the reaction-diffusion problem

when the reaction function is upper Lipschitz continuous and Hölder continuous respec-

tively. In both of these chapters, conditional well-posedness results are established.

Chapter 9 is dedicated to the study of the three specific problems. The study of the

well-posdeness and qualitative behavior of solutions to these problems are dealt with in

part by the theory developed in Chapters 6-8. However the problems in Chapter 9 cannot

be fully dealt with by the general theory and problem specific results have also been

established.

Chapter 10 discusses possible extensions to the theory developed in the thesis and

poses open questions which have arisen through the studies in the thesis.

Throughout the thesis, previously established results which have been proved in the

context of the thesis by the author are marked with (†). When this has not been deemed

necessary, instruction or reference to a proof is supplied. All new results are marked with

(‡).
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CHAPTER 2

THE PROBLEM (B-R-D-C)

We begin by introducing the regions in which the forthcoming initial value problems will

be defined. Here T > 0, δ ∈ [0, T ) and X > 0 and the following sets are introduced:

DT = (−∞,∞) × (0, T ],

D̄T = (−∞,∞) × [0, T ],

∂D = (−∞,∞) × {0},

D̄δ
T = (−∞,∞) × [δ, T ],

Dδ,X
T = (−X,X) × (δ, T ],

D̄δ,X
T = [−X,X] × [δ, T ],

∂Dδ,X = [−X,X] × {δ}.

The content of the thesis concerns the study of classical solutions u ∶ D̄T → R to the

following semi-linear parabolic Cauchy problem;

ut = uxx + f(u) ∀(x, t) ∈DT , (2.1)
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u(x,0) = u0(x) ∀x ∈ R, (2.2)

u(x, t) is uniformly bounded as ∣x∣→∞ for t ∈ [0, T ]. (2.3)

Here, the initial data u0 ∶ R → R is contained in one of the following classes of functions.

Firstly, the set of functions u0 ∶ R→ R which are bounded, continuous, with bounded and

continuous derivative and bounded and piecewise continuous second derivative, which is

denoted as

BPC2(R).

Secondly and thirdly, the two subsets of BPC2(R), the first of which contains only non-

negative functions u0 ∈ BPC2(R), and the second, which contains only non-negative func-

tions u0 ∈ BPC2(R) but excludes the zero function, which are denoted, respectively, by

BPC2
+(R) and BPC2

+′(R).

The partial differential equation (PDE) (2.1) is generally referred to as a reaction-

diffusion equation, and the initial value problem given by (2.1)-(2.3) will be referred to

throughout the thesis as the bounded, reaction-diffusion Cauchy problem, abbreviated to

(B-R-D-C). Moreover, throughout the thesis, we adopt the following classical definition

of solution to (B-R-D-C):

Definition 2.1. A solution to (B-R-D-C) is a function u ∶ D̄T → R which is continuous and

bounded on D̄T and for which ut, ux and uxx exist and are continuous on DT . Moreover

u ∶ D̄T → R must satisfy each of (2.1)-(2.3). ⌟

The questions addressed in this thesis concern the global well-posedness of (B-R-D-C)

in the sense of Hadamard [39]. In particular, for a given f ∶ R→ R, we seek to establish,

(P1) (Existence) For each u0 ∈ A ⊂ BPC2(R), there exists a solution u ∶ D̄T → R to

(B-R-D-C) on D̄T for each T > 0,

(P2) (Uniqueness) Whenever u ∶ D̄T → R and v ∶ D̄T → R are solutions to (B-R-D-C) on
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D̄T for the same u0 ∈ A ⊂ BPC2(R), then u = v on D̄T for each T > 0,

(P3) (Continuous Dependence) Given that (P1) and (P2) are satisfied for (B-R-D-C),

then given any u′0 ∈ A ⊂ BPC2(R) and ε > 0, there exists a δ > 0 (which may depend

on u′0, T and ε) such that for all u0 ∈ A ⊂ BPC2(R), then,

sup
x∈R

∣u0(x) − u′0(x)∣ < δ Ô⇒ sup
(x,t)∈D̄T

∣u′(x, t) − u(x, t)∣ < ε

where u ∶ D̄T → R and u′ ∶ D̄T → R are the solutions to (B-R-D-C) corresponding

respectively to u0, u′0 ∈ A ⊂ BPC2(R). This must hold for each T > 0.

When the above three properties (P1)-(P3) are satisfied by (B-R-D-C), then (B-R-D-C) is

said to be globally well-posed on A. Moreover, when (P1)-(P3) are satisfied by (B-R-D-C)

and the constant δ in (P3) depends only on u′0 and ε (that is, being independent of T ),

then (B-R-D-C) is said to be uniformly globally well-posed on A. When one or more of

the properties (P1)-(P3) are not satisfied, then (B-R-D-C) is said to be ill-posed on A.

In addition to well-posedness, we shall address some fundamental qualitative features of

solutions to (B-R-D-C).

In conjunction with solutions, we introduce two concepts which will be used throughout

the thesis.

Definition 2.2. Let u, u ∶ D̄T → R be continuous on D̄T and such that ut, ux, uxx,

ut, ux, uxx exist and are continuous on DT . Suppose further that

N[u] ≡ ut − uxx − f(u) ≥ 0 on DT ,

N[u] ≡ ut − uxx − f(u) ≤ 0 on DT ,

u(x,0) ≤ u0(x) ≤ u(x,0) ∀ x ∈ R,

u and u are uniformly bounded as ∣x∣→∞ for t ∈ [0, T ].

Then on D̄T , u is called a regular sub-solution (R-S-B) and u is called a regular super-
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solution (R-S-P) to (B-R-D-C). ⌟

In addition, we require the concept of (B-R-D-C) being a priori bounded. This is

formalised in the following definition:

Definition 2.3. Suppose that, for (B-R-D-C), we can exhibit a constant lT > 0 for each

0 ≤ T ≤ T ∗ (and some T ∗ > 0) which depends only upon T and supx∈R ∣u0(x)∣, and which

is non-decreasing in 0 ≤ T ≤ T ∗. Suppose, furthermore, that if u ∶ D̄T → R is any solution

to (B-R-D-C) on D̄T , then it can be demonstrated that

sup
(x,t)∈D̄T

∣u(x, t)∣ ≤ lT ,

for each 0 ≤ T ≤ T ∗. We say that (B-R-D-C) is a priori bounded on D̄T for each 0 ≤ T ≤ T ∗,

with bound lT . ⌟

In (B-R-D-C), the function f ∶ R → R is referred to as the reaction function, and

throughout the thesis we will restrict attention to those reaction functions f from one or

more of the following classes of functions. The first class of functions is defined as,

Definition 2.4. A function f ∶ R→ R is said to be Lipschitz continuous if for any closed

bounded interval E ⊂ R there exists a constant kE > 0 such that for all x, y ∈ E,

∣f(x) − f(y)∣ ≤ kE ∣x − y∣.

The set of all functions f ∶ R→ R which satisfy this definition will be denoted by L. ⌟

For example, any differentiable function f ∶ R → R which has bounded derivative on

every closed bounded interval E ⊂ R is such that f ∈ L. It is also clear that every function

f ∈ L is continuous. This class of functions has been mentioned first, due to the classical

theory of bounded reaction-diffusion Cauchy problems being largely restricted to the case

of f ∈ L. The second class of functions which we introduce is parameterised by a real

number α ∈ (0,1] and is defined as,
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Definition 2.5. A function f ∶ R→ R is said to be Hölder continuous of degree α ∈ (0,1]

if for any closed bounded interval E ⊂ R there exists a constant kE > 0 such that for all

x, y ∈ E,

∣f(x) − f(y)∣ ≤ kE ∣x − y∣α.

The set of all functions f ∶ R → R which satisfy this definition will be denoted by Hα

(note that H1 = L). ⌟

Any differentiable function f ∶ R → R which has bounded derivative on every closed

bounded interval E ⊂ R is contained in Hα (for every α ∈ (0,1)) and every function in Hα

is continuous (for any α ∈ (0,1)). The third class of functions which will be considered in

the thesis is defined as,

Definition 2.6. A function f ∶ R → R is said to be upper Lipschitz continuous if f is

continuous, and for any closed bounded interval E ⊂ R, there exists a constant kE > 0

such that for all x, y ∈ E, with y ≥ x,

f(y) − f(x) ≤ kE(y − x).

The set of all functions f ∶ R→ R which satisfy this definition will be denoted by Lu. ⌟

Also, for any closed bounded interval E ⊂ R, any f ∈ Lu is bounded, and, in particular,

setting E = [a, b], we have

f(b) + kE(x − b) ≤ f(x) ≤ f(a) + kE(x − a); ∀x ∈ [a, b]. (2.4)

The following will be useful elementary properties associated with functions f ∈ Lu.

Proposition 2.7. When f ∶ R → R is a continuous and non-increasing function, then

f ∈ Lu. Moreover, on any closed bounded interval E ⊂ R, Definition 2.6 is satisfied by

f ∶ R→ R for any kE > 0.
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Proof. Let f ∶ R → R be a continuous and non-increasing function. Then on any closed

bounded interval E ⊂ R, for any x, y ∈ E such that y > x,

f(y) − f(x) ≤ 0 < kE(y − x), (2.5)

for any kE > 0. It follows via Definition 2.6 that f ∈ Lu, as required.

We also have,

Proposition 2.8. Let f ∈ Lu, then on every closed bounded interval E ⊂ R there exists a

constant kE > 0 such that for all x, y ∈ E with x ≠ y,

(f(y) − f(x))
(y − x) ≤ kE.

Proof. Let f ∈ Lu, then there exists a constant kE > 0 such that

(f(v) − f(u)) ≤ kE(v − u) (2.6)

for all u, v ∈ E with v > u. Now let x, y ∈ E with x ≠ y. There are two possibilities:

(i) y > x. It follows from (2.6) with v = y and u = x that

(f(y) − f(x))
(y − x) ≤ kE. (2.7)

(ii) y < x. It follows from (2.6) with v = x and u = y that

(f(x) − f(y))
(x − y) ≤ kE

which gives

(f(y) − f(x))
(y − x) ≤ kE. (2.8)
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Then it follows from (2.7) and (2.8) that

(f(y) − f(x))
(y − x) ≤ kE

for all x, y ∈ E with x ≠ y, as required.

We now consider elementary containment relations between the sets L, Hα and Lu.

We have

Proposition 2.9. The following containment relations hold, for any α ∈ (0,1):

(a) L ⊂Hα

(b) L ⊂ Lu

(c) Lu /⊆Hα

(d) Hα /⊆ Lu

Proof. For any fixed α ∈ (0,1), let f̂α ∶ R→ R be given by

f̂α(x) = [xα]+

and so we may write

f̂α(x) = α∫
x

0
g(s)ds ∀x ∈ R (2.9)

with,

g(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x(α−1) ;x > 0

0 ;x ≤ 0

and the improper integral is implied in (2.9). It follows from (2.9) that for any x, y ∈ R,

∣f̂α(y) − f̂α(x)∣ = α∫
max{x,y}

min{x,y}
g(s)ds ≤ α∫

∣y−x∣

0
s(α−1)ds = ∣y − x∣α.
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Thus f̂α ∈Hα. However, take y > 0, then

f̂α(y) − f̂α(0)
y

= y(α−1),

which is unbounded as y → 0+. Hence f̂α /∈ L and f̂α /∈ Lu via Proposition 2.8. We can

now establish (a)-(d).

(a) Let f ∈ L and E ⊂ R be a closed bounded interval E = [a, b]. Then, via Definition

2.4, for all x, y ∈ E,

∣f(y) − f(x)∣ ≤ kE ∣y − x∣ = kE ∣y − x∣(1−α)∣y − x∣α = kE(b − a)(1−α)∣y − x∣α.

Hence f ∈Hα. However, f̂α ∈Hα and f̂α /∈ L. Thus L ⊂Hα.

(b) Let f ∈ L and E ⊂ R be a closed bounded interval E = [a, b]. Then f is continuous

and for all x, y ∈ E with y > x,

f(y) − f(x) ≤ ∣f(y) − f(x)∣ ≤ kE ∣y − x∣ = kE(y − x)

and so f ∈ Lu. Now let H ∶ R→ R be such that H(x) = −f̂1/2(x) for all x ∈ R. Then H /∈ L

but H ∈ Lu, via Proposition 2.7, and so L ⊂ Lu.

(c) Let G ∶ R→ R be such that

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ;x ≤ 0

− ( −1
log (x))

1/2
; 0 < x < 1/2

− ( −1
log (1/2))

1/2
;x ≥ 1/2.

(2.10)

Then G /∈ Hα (for any fixed α ∈ (0,1)) but G ∈ Lu, via Proposition 2.7. To see this,

suppose that G ∈Hα for some α ∈ (0,1). Then there exists a constant k > 0 such that

∣G(x)∣ = ( −1

logx
)

1/2

≤ k∣x∣α ∀x ∈ (0,1/2] ,
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which gives

k∣x∣α(− logx)1/2 ≥ 1 ∀x ∈ (0,1/2] . (2.11)

However, the left hand side of (2.11) approaches zero as x→ 0+, and we obtain a contra-

diction. Hence G /∈Hα for any α ∈ (0,1). Thus Hα /⊂ Lu.

(d) We observe that f̂α ∈Hα but f̂α /∈ Lu and so Hα /⊆ Lu.

We also have the following inclusion,

Proposition 2.10. Hα1 ⊂Hα2 for all 0 < α2 < α1 < 1.

Proof. Let f ∈ Hα1 and E ⊂ R be a closed bounded interval E = [a, b]. Then for all

x, y ∈ E,

∣f(y) − f(x)∣ ≤ kE ∣y − x∣α1 = kE ∣y − x∣α2 ∣y − x∣(α1−α2) ≤ kE ∣b − a∣(α1−α2)∣y − x∣α2 , (2.12)

since α1 > α2. Thus it follows that f ∈ Hα2 . In addition, f̂α2 ∈ Hα2 but f̂α2 /∈ Hα1 . We

conclude that Hα1 ⊂Hα2 .

Finally, we define the following two additional classes of functions.

Definition 2.11. Let f ∶ R2 → R satisfy the following condition: For any pair of closed

bounded intervals U,A ⊂ R, there exist constants kU > 0 and kA > 0 such that for all

(u1, α1), (u2, α2) ∈ U ×A,

∣f(u1, α1) − f(u2, α2)∣ ≤ kU ∣u1 − u2∣ + kA∣α1 − α2∣.

The set of all functions f ∶ R2 → R which satisfy the preceding condition is denoted by

L′. ⌟

In fact, Definition 2.11 is equivalent to
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L′ = {f ∶ R2 → R ∶ f(u, ⋅), f(⋅, α) ∈ L uniformly on

compact intervals in u and α respectively.}

Definition 2.12. Let f ∶ R2 → R be continuous and satisfy the following conditions: For

any pair of closed bounded intervals U,A ⊂ R, then there exists constants kU > 0 and

kA > 0 such that

(a) for all u1, u2 ∈ U with u1 > u2, then

f(u1, α) − f(u2, α) ≤ kU(u1 − u2) ∀α ∈ A.

(b) for all α1, α2 ∈ A, then

∣f(u,α1) − f(u,α2)∣ ≤ kA∣α1 − α2∣ ∀u ∈ U.

The set of all functions f ∶ R2 → R which satisfy the preceding conditions is denoted by

L′u. ⌟

Definition 2.12 implies that f ∶ R2 → R is upper Lipschitz continuous in u ∈ U , uniformly

for α ∈ A, and Lipschitz continuous in α ∈ A uniformly for u ∈ U .
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CHAPTER 3

MAXIMUM PRINCIPLES

3.1 Classical Maximum Principles

The main content in this chapter consists of two extensions to the following classical

maximum principles (see, for example, [63] and [21]). These maximum principles extend

the classical result, which concerns compact spatial domains, to spatially non-compact

domains. The first extensions of this type were obtained by Krzyżański in [34] and

developed extensively in the following decades (see, [63] (p.193-194)). In this section

we review these classical maximum principles and highlight a specific difference in their

hypotheses with an example.

Theorem† 3.1 (Classical Weak Maximum Principle). Let u ∶ D̄0,X
T → R (for some X > 0)

be bounded, continuous and such that ut, ux and uxx all exist and are continuous on D0,X
T .

Suppose that

ut − a(x, t)ux − uxx − h(x, t)u ≤ 0 on D0,X
T , (3.1)

where h ∶ D̄0,X
T → R is bounded above and a ∶ D̄0,X

T → R has no regularity restrictions.

Then, u ≤ 0 on ([−X,X]× {0})∪ ({−X}× [0, T ])∪ ({X}× [0, T ]), implies u ≤ 0 on D̄0,X
T .

Proof. Since h is bounded above on D̄0,X
T there exists H > 0 such that

h(x, t) ≤H on D̄0,X
T . (3.2)
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Now let w ∶ D̄0,X
T → R be given by

w(x, t) = e−2Htu(x, t) on D̄0,X
T . (3.3)

Since u is bounded and continuous on D̄0,X
T and ut, ux and uxx all exist and are continuous

on D0,X
T , then w is bounded and continuous on D̄0,X

T and wt, wx and wxx all exist and are

continuous on D0,X
T . Via (3.1) we also have

wt − a(x, t)wx −wxx − (h(x, t) − 2H)w ≤ 0 on D0,X
T , (3.4)

w ≤ 0 on ({−X} × [0, T ]) ∪ ([−X,X] × {0}) ∪ ({X} × [0, T ]) . (3.5)

Suppose now that w /≤ 0 on D̄0,X
T . Then since w is continuous on D̄0,X

T , which is compact,

via (3.5) there exists (x∗, t∗) ∈D0,X
T such that

sup
(x,t)∈D̄0,X

T

w = w(x∗, t∗) =M > 0. (3.6)

Moreover, via (3.4), (3.2) and (3.6), we have

wt(x∗, t∗) − a(x∗, t∗)wx(x∗, t∗) −wxx(x∗, t∗) ≤ (h(x∗, t∗) − 2H)w(x∗, t∗) < 0. (3.7)

There are now two possibilities

(i) if t∗ /= T then wt(x∗, t∗) = wx(x∗, t∗) = 0 and wxx(x∗, t∗) ≤ 0. However, via (3.7), we

have wxx(x∗, t∗) > wt(x∗, t∗)−a(x∗, t∗)wx(x∗, t∗) = 0 and we arrive at a contradiction.

(ii) if t∗ = T then wx(x∗, t∗) = 0, wxx(x∗, t∗) ≤ 0 and wt(x∗, t∗) ≥ 0. However, via (3.7),

wt(x∗, t∗) < wxx(x∗, t∗) + a(x∗, t∗)wx(x∗, t∗) ≤ 0 and we arrive at a contradiction.

These two cases are the only possibilities and each leads to a contradiction. We conclude

that w ≤ 0 on D̄0,X
T . Therefore, via (3.3), u ≤ 0 on D̄0,X

T , as required.

A strong version of Theorem 3.1 originally obtained by Nirenberg [57] has been exhib-
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ited in [63] (p.163-172), namely,

Theorem 3.2 (Classical Strong Maximum Principle). Let u ∶ D̄0,X
T → R satisfy the reg-

ularity conditions of Theorem 3.1 whilst a ∶ D̄0,X
T → R and h ∶ D̄0,X

T → R are bounded.

Suppose that u ≤ 0 on ([−X,X] × {0}) ∪ ({−X} × [0, T ]) ∪ ({X} × [0, T ]), then,

(i) u < 0 on D0,X
T

or

(ii) u = 0 on [−X,X] × [0, t∗], where

t∗ = sup{t ∈ (0, T ] ∶ ∃x ∈ (−X,X) such that u(x, t) = 0}.

Proof. The proof is lengthy and technical and can be found in [63] (p.159-172).

Remark 3.3. In [63] Theorem 3.2 is stated with the additional condition that h is non-

positive, however this condition has been dropped as the approach used in (3.3) can

be applied to obtain a corresponding differential inequality (in this case for w) where

(h − 2H) ∶ R → R is non-positive. We also note that in the statement of the Strong

Maximum Principle in [63], h is not required to be bounded below (this is not the case in

[57]). This is an error, as the following counter example demonstrates. ⌟

Example‡ 3.4. Consider the function I ∶ [0, σ]→ R, with

σ = 2 + α
1 + α > 1, (3.8)

and α ∈ (0,1), given by

I(y) = ∫
y

1

1

s(1+α)/2(σ − s)1/2
ds ∀y ∈ (0, σ), (3.9)

with

I(0) = lim
y→0+

I(y) = I0 (< 0), I(σ) = lim
y→σ−

I(y) = Iσ (> 0). (3.10)
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It is readily established that I is continuous and bounded on [0, σ] and differentiable on

(0, σ) with derivative given by

I ′(y) = 1

y(1+α)/2(σ − y)1/2
∀y ∈ (0, σ). (3.11)

Moreover, (3.11) implies that I is strictly increasing for all y ∈ [0, σ] and hence

I ∶ [0, σ]→ [I0, Iσ] is a bijection. (3.12)

It follows from (3.11), (3.12) and the Inverse function Theorem [65] (p.221-222) that there

exists a function J ∶ [I0, Iσ]→ [0, σ] such that

J(I(y)) = y ∀y ∈ [0, σ], I(J(x)) = x ∀x ∈ [I0, Iσ], J(I0) = 0, J(Iσ) = σ. (3.13)

It follows from (3.13) that

J(I(1)) = J(0) = 1, J(I(0)) = J(I0) = 0, J(I(σ)) = J(Iσ) = σ. (3.14)

Moreover, J is continuous on [I0, Iσ] and differentiable on [I0, Iσ] with derivative given

by

J ′(x) = J(x)(1+α)/2(σ − J(x))1/2 ∀x ∈ [I0, Iσ]. (3.15)

It follows from (3.15) that

J ′(I0) = J ′(Iσ) = 0, J ′(x) > 0, ∀x ∈ (I0, Iσ). (3.16)

Therefore, via (3.15) and (3.12), J is increasing and J ′ is continuous for x ∈ [I0, Iσ]. Now

it follows from the chain rule that, J ′′ exists for x ∈ (I0, Iσ), and via (3.8), is given by

J ′′(x) = (1

2
)J ′(x) ((1 + α)J(x)(α−1)/2(σ − J(x))1/2 − J(x)(α+1)/2(σ − J(x))−1/2)
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= (2 + α)
2

Jα(x)(1 − J(x)) ∀x ∈ (I0, Iσ). (3.17)

Moreover, since J is continuous, it follows from (3.17) and (3.14) that

lim
x→I+0

J ′′(x) = 0, lim
x→I−σ

J ′′(x) = −1

2
σ(α+1). (3.18)

It follows from (3.14)-(3.18) that

J ∶ [I0, Iσ]→ R is twice continuously differentiable on [I0, Iσ], (3.19)

with

J ′′(I0) = 0, J ′′(Iσ) = −
1

2
σ(α+1), (3.20)

and so, via (3.17) and (3.20),

J ′′(x) = (2 + α)
2

Jα(x)(1 − J(x)) ∀x ∈ [I0, Iσ]. (3.21)

We now introduce the function J̃ ∶ R→ [0, σ], given as

J̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J(x + Iσ) ;x ∈ [I0 − Iσ,0]

J(Iσ − x) ;x ∈ [0, Iσ − I0]

0 ;x ∈ R / [I0 − Iσ, Iσ − I0].

(3.22)

Observe that via (3.22), (3.14) and (3.16),

J̃ is continuously differentiable on R. (3.23)

Moreover, since J̃ ∶ R → [0, σ] is an even function, it follows from (3.19), (3.20), (3.21)

and (3.22) that

J̃ is twice continuously differentiable on R (3.24)
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and

J̃ ′′(x) = (2 + α)
2

J̃α(x)(1 − J̃(x)) ∀x ∈ R. (3.25)

Now we introduce the function Ĵ ∶ R→ [0, σ] given by

Ĵ(x) = J̃ (( 2

2 + α)
1/2

x) ∀x ∈ R. (3.26)

It follows from (3.24) that Ĵ is twice continuously differentiable on R and via (3.25),

Ĵ ′′(x) = Ĵα(x)(1 − Ĵ(x)) ∀x ∈ R. (3.27)

Now observe, via (3.9), (3.10) and (3.26), that Ĵ ∶ R→ [0, σ] satisfies

Ĵ(x) > 0 ∀x ∈ (−X(α),X(α)) , Ĵ(x) = 0 ∀x ∈ R / (−X(α),X(α)) , (3.28)

where

X(α) = ((2 + α)
2

)
1/2

(Iσ − I0)

= ((2 + α)
2

)
1/2

∫
σ

0

1

s(1+α)/2(σ − s)1/2
ds

= ((2 + α)
2

)
1/2

( 1

σα/2
)∫

1

0

1

w(1+α)/2(1 −w)1/2
dw

= (2 + α)(1−α)/2(1 + α)α/2
21/2 ∫

1

0

1

w(1+α)/2(1 −w)1/2
dw. (3.29)

Next define u ∶ D̄0,2X(α)
1 → [−σ,0] such that

u(x, t) = −Ĵ(x) ∀(x, t) ∈ D̄0,2X(α)
1 , (3.30)

and so

u(x, t) ≤ 0 ∀(x, t) ∈ ([−2X(α),2X(α)] × {0}) ∪ ({−2X(α),2X(α)} × (0,1]). (3.31)
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Moreover, we observe, via (3.28), that

u(x, t) < 0 ∀(x, t) ∈ (−X(α),X(α)) × [0,1],

u(x, t) = 0 ∀(x, t) ∈ D̄0,2X(α)
1 / ((−X(α),X(α)) × [0,1]) . (3.32)

Also, via (3.27) and (3.30), ut, ux and uxx exist and are continuous on D
0,2X(α)
1 , and u

satisfies

ut − uxx − h(x, t)u = 0 on D
0,2X(α)
1 . (3.33)

Here h ∶ D̄0,2X(α)
1 → R is given by

h(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ĵ(x)α−1(Ĵ(x) − 1) ; (x, t) ∈ (−X(α),X(α)) × [0,1]

0 ; (x, t) ∈ D̄0,2X(α)
1 / ((−X(α),X(α)) × [0,1]) .

(3.34)

We now observe that since Ĵ(x) ∈ (0, σ] for all x ∈ (−X(α),X(α)), then it follows from

(3.34) that

h(x, t) ≤ σ − 1 ∀(x, t) ∈ D̄0,2X(α)
1 . (3.35)

However, h is not bounded below on D̄
0,2X(α)
1 . In addition,

t∗ = sup{t ∈ (0,1] ∶ ∃ x ∈ (−2X(α),2X(α)) such that u(x, t) = 0} = 1,

whilst

u(x, t) < 0 ∀(x, t) ∈ (−X(α),X(α)) × [0,1].

Thus u ∶ D̄0,2X(α)
1 → R satisfies all the conditions of the Strong Maximum Princi-

ple (Theorem 3.2) except that h is not bounded below on D̄
0,2X(α)
T . We have demon-

strated that u violates the conclusions of the Strong Maximum Principle (Theorem 3.2)

on D̄
0,2X(α)
T . We conclude that the Strong Maximum Principle does not hold, in general,

when h is not bounded below. ⌟
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3.2 Extended Maximum Principles

In this section we now introduce the two extensions to the classical maximum principles

(as given in Theorem 3.1 and Theorem 3.2). Extensions of this type are also contained in

chapter 2 of [21] and referenced in [63] (p.193-194). However, the specific restrictions on

these results are significantly different in what follows.

Theorem‡ 3.5 (Extended Maximum Principle 1). Let u ∶ D̄T → R be bounded, continuous

and such that ut, ux and uxx all exist and are continuous on DT and u(x, t) → l(≤ 0) as

∣x∣→∞ uniformly for t ∈ [0, T ]. Suppose that

ut − a(x, t)ux − uxx − h(x, t)u ≤ 0 on DT (3.36)

where h ∶ D̄T → R is bounded above and a ∶ D̄T → R has no regularity restrictions. Then

u ≤ 0 on ∂D implies u ≤ 0 on D̄T .

Proof. Since h is bounded above on D̄T there exists H > 0 such that

h(x, t) ≤H on D̄T . (3.37)

Now let w ∶ D̄T → R be given by

w(x, t) = e−2Htu(x, t) on D̄T . (3.38)

Note that since u is bounded and continuous on D̄T and ut, ux and uxx all exist and

are continuous on DT , then w is bounded and continuous on D̄T . Furthermore, via the

product rule, wt, wx and wxx all exist and are continuous on DT . Via (3.36) we also have

wt − a(x, t)wx −wxx − (h(x, t) − 2H)w ≤ 0 on DT , (3.39)

w ≤ 0 on ∂D, (3.40)
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and

w(x, t)→ le−2Ht(≤ 0) as ∣x∣→∞ uniformly for t ∈ [0, T ]. (3.41)

Suppose now that w /≤ 0 on D̄T . Then since w is bounded and continuous in D̄T there

exist, via (3.41) and (3.40), (x∗, t∗) ∈DT such that

sup
(x,t)∈D̄T

w(x, t) = w(x∗, t∗) =M > 0. (3.42)

Moreover, via (3.39), (3.37) and (3.42), we have

wt(x∗, t∗) − a(x∗, t∗)wx(x∗, t∗) −wxx(x∗, t∗) ≤ (h(x∗, t∗) − 2H)w(x∗, t∗) < 0. (3.43)

There are now two possibilities:

(i) if t∗ /= T then wt(x∗, t∗) = wx(x∗, t∗) = 0 and wxx(x∗, t∗) ≤ 0. However, via (3.43), we

have wxx(x∗, t∗) > wt(x∗, t∗)−a(x∗, t∗)wx(x∗, t∗) = 0 and we arrive at a contradiction.

(ii) if t∗ = T then wx(x∗, t∗) = 0, wxx(x∗, t∗) ≤ 0 and wt(x∗, t∗) ≥ 0. However, via (3.43),

wt(x∗, t∗) < wxx(x∗, t∗) + a(x∗, t∗)wx(x∗, t∗) ≤ 0 and we arrive at a contradiction.

These two cases are the only possibilities and each leads to a contradiction. We conclude

that w ≤ 0 on D̄T . Therefore via (3.38), u ≤ 0 on D̄T , as required.

Observe that the condition on u as ∣x∣ → ∞ in Theorem 3.5 reduces the proof of

Theorem 3.5, essentially to the proof of Theorem 3.1. We now have,

Theorem‡ 3.6 (Extended Maximum Principle 2). Let u ∶ D̄T → R be bounded, continuous

and such that ut, ux and uxx all exist and are continuous on DT . Suppose that

ut − uxx − a(x, t)ux − h(x, t)u ≤ 0 on DT (3.44)

where h ∶ D̄T → R is bounded above and a ∶ D̄T → R satisfies
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(i) For each X > 0 there exists a constant AX > 0 such that xa(x, t) ≤ AX for all

(x, t) ∈ [−X,X] × [0, T ].

(ii) There exist constants A∞ > 0 and X∞ > 0 such that ∣a(x, t)∣ ≤ A∞∣x∣ for all

(x, t) ∈ ((−∞,−X∞] ∪ [X∞,∞)) × [0, T ].

Then u ≤ 0 on ∂D implies u ≤ 0 on D̄T .

Proof. Let w ∶ D̄T → R be given by

w(x, t) = u(x, t)φ̂(x, t) on D̄T , (3.45)

where φ̂ ∶ D̄T → R is given by

φ̂(x, t) = 1

1 + x2
, (3.46)

for all (x, t) ∈ D̄T . We observe that w is bounded and continuous on D̄T , and moreover,

w(x, t)→ 0 as ∣x∣→∞, uniformly for t ∈ [0, T ]. (3.47)

We also observe that φ̂t, φ̂x and φ̂xx all exist and are continuous on DT and it follows

that wt, wx and wxx all exist and are continuous on DT . Since φ̂ > 0 on D̄T , (3.45) can

be re-written as

u(x, t) = w(x, t)φ(x, t) on D̄T , (3.48)

where φ(x, t) = 1 + x2 on D̄T . We now substitute from (3.48) into (3.44) to obtain the

inequality

wt −wxx − ã(x, t)wx − h̃(x, t)w ≤ 0 on DT , (3.49)

where ã, h̃ ∶ D̄T → R are given by

ã(x, t) = a(x, t) + 4x

1 + x2
,

h̃(x, t) = 2

1 + x2
+ 2xa(x, t)

1 + x2
+ h(x, t) (3.50)
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for all (x, t) ∈ D̄T . We now establish that h̃(x, t) is bounded above on D̄T . Via condition

(ii) we have

h̃(x, t) ≤ 2 + 2A∞ + h(x, t), (3.51)

for all (x, t) ∈ D̄T with ∣x∣ >X∞. In addition, via (i), (3.50) implies

h̃(x, t) ≤ 2 + 2AX∞ + h(x, t), (3.52)

for all (x, t) ∈ D̄T with ∣x∣ ≤X∞. Therefore, (3.51) and (3.52) establish that h̃ is bounded

above on D̄T . Furthermore, since u ≤ 0 on ∂D then w ≤ 0 on ∂D. Using this together

with (3.47), (3.49) and (3.50) it follows from Theorem 3.5 that w ≤ 0 on D̄T and hence,

via (3.48), that u ≤ 0 on D̄T , as required.

We now demonstrate that conditions (i) and (ii) in Theorem 3.6 are not merely tech-

nical restrictions, via the construction of two counterexamples.

Here, two functions are considered which satisfy an inequality of the type given in

(3.44) of Theorem 3.6 but with the restriction on a(x, t) removed. These demonstrate

that a version of Theorem 3.6 without restrictions on a(x, t) is not possible.

Example‡ 3.7. Let u ∶ D̄1 → R be defined as

u(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1 + 2
√

2
(1+t)1/2 e

−(
(x−ln(t))2

4(1+t) )
; (x, t) ∈D1

−1 ; (x, t) ∈ ∂D.
(3.53)

It is readily established that u is continuous on D̄1. Moreover, ut, ux and uxx all exist

and are continuous on D1, and are given by

ux(x, t) =
−
√

2(x − ln(t))
(1 + t)3/2

e
−(
(x−ln(t))2

4(1+t) )
, (3.54)

uxx(x, t) =
√

2

(1 + t)3/2
(−1 + (x − ln(t))2

2(1 + t) ) e−(
(x−ln(t))2

4(1+t) )
, (3.55)

ut(x, t) =
√

2

(1 + t)3/2
(−1 + (x − ln(t))

t
+ (x − ln(t))2

2(1 + t) ) e−(
(x−ln(t))2

4(1+t) )
(3.56)
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for all (x, t) ∈D1. Furthermore,

∣u(x, t)∣ ≤ 2
√

2 − 1 (3.57)

for all (x, t) ∈ D̄1 and so u is bounded on D̄1. Additionally,

sup
x∈R

u(x, t) = −1 + 2
√

2

(1 + t)1/2
for t ∈ (0,1], (3.58)

inf
x∈R

u(x, t) = −1 for t ∈ (0,1]. (3.59)

We observe that

sup
x∈R

u(x, t) ≥ 1 for all t ∈ (0,1], (3.60)

sup
x∈R

u(x,0) = −1. (3.61)

Moreover, via equations (3.54)-(3.56),

ut − uxx +
1

t
ux = 0 (3.62)

for all (x, t) ∈D1, and so (3.62) corresponds to the inequality (3.44) with

a(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1
t ; (x, t) ∈D1

0 ; (x, t) ∈ ∂D,
(3.63)

h(x, t) = 0 ∀(x, t) ∈ D̄1. (3.64)

Thus we have constructed a function u ∶ D̄1 → R, with a ∶ D̄1 → R and h ∶ D̄1 → R as given

in (3.63) and (3.64) respectively, so that all the conditions of Theorem 3.6 are satisfied

except (i) and (ii) on a, and for which Theorem 3.6 fails. ⌟

Remark 3.8. Observe, via (3.53), that in Example 3.7, u(x, t)→ −1 as ∣x∣→∞ for each
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fixed t ∈ [0,1]. However,

u(x, t) /→ −1 as ∣x∣→∞ uniformly for t ∈ [0,1].

This feature is related to the unboundedness of a(x, t) as t → 0+ in D̄1 and leads to the

resulting failure of Theorem 3.5 in the above example. ⌟

Example‡ 3.9. Let w ∶ D̄1 → R be defined as

w(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1 + 2e−(
1

γ∣x∣γ +1−t)
2

; (x, t) ∈ D̄1 / ({0} × [0,1])

−1 ;{0} × [0,1],
(3.65)

where γ > 0 is constant. Observe that w is continuous on D̄1 whilst wt and wx exist and

are continuous on D1, and are given by

wt(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4e−(
1

γ∣x∣γ +1−t)
2

( 1
γ∣x∣γ + 1 − t) ; (x, t) ∈D1/({0} × (0,1])

0 ; (x, t) ∈ {0} × (0,1],
(3.66)

wx(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4e−(
1

γ∣x∣γ +1−t)
2

( 1
γ∣x∣γ + 1 − t) ( 1

∣x∣γx) ; (x, t) ∈D1/({0} × (0,1])

0 ; (x, t) ∈ {0} × (0,1].
(3.67)

Moreover,

∣w(x, t)∣ ≤ 1 ∀(x, t) ∈ D̄1, (3.68)

and so w is bounded on D̄1. Also,

w(x, t)→ −1 + 2e−(1−t)
2

as ∣x∣→∞ uniformly for t ∈ [0,1], (3.69)

w(x,0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1 + 2e−(
1

γ∣x∣γ +1)
2

;x ∈ R/{0}

−1 ;x = 0.

(3.70)
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Now, via (3.66) and (3.67), we observe that

wt − ∣x∣γxwx = 0 on D1. (3.71)

Additionally, we observe that wxx exists and is continuous on D1 and is given by

wxx(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4e−(
1

γ∣x∣γ +1−t)
2

[2 ( 1
γ∣x∣γ + 1 − t)

2
( 1
∣x∣γ+1)

2

− ( 1
∣x∣γ+1)

2
− ( 1

γ∣x∣γ + 1 − t) ( (γ+1)
∣x∣γ+2 )] ; (x, t) ∈D1/ ({0} × (0,1])

0 ; (x, t) ∈ {0} × (0,1],

(3.72)

and it follows by inspection that wxx is bounded on D1. Now introduce u ∶ D̄1 → R given

as

u(x, t) = w(K1/2x, t) − t

2
∀(x, t) ∈ D̄1, (3.73)

where K > 0 is given by

K = (2 sup
(x,t)∈D1

{∣wxx(x, t)∣})
−1

. (3.74)

Observe that u is continuous on D̄1, whilst ut, ux and uxx exist and are continuous on

D1. Now, via (3.70) and (3.73),

u(x,0) = w(K1/2x,0) ≤ −1 + 2e−1 < 0 ∀x ∈ R. (3.75)

Similarly, via (3.69) and (3.73),

lim
∣x∣→∞

u(x,1) = lim
∣x∣→∞

w(K1/2x,1) − 1

2
= 1

2
. (3.76)

It follows from (3.76) that u is not non-positive for all (x, t) ∈ D̄1. In addition, via (3.68)

and (3.73), we have

∣u(x, t)∣ ≤ 3

2
∀(x, t) ∈ D̄1, (3.77)
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and so u is bounded on D̄1. Moreover, via (3.73) we have, for (x, t) ∈D1,

ut(x, t) − uxx(x, t) −Kγ/2∣x∣γxux(x, t) = (wt(X, t) − ∣X ∣γXwX(X, t)) − 1

2
−KwXX(X, t),

(3.78)

where X =K1/2x. It then follows from (3.71) and (3.74), that

ut − uxx −Kγ/2∣x∣γxux ≤ 0 on D1, (3.79)

which corresponds to the inequality (3.44) in Theorem 3.6 with

a(x, t) =Kγ/2∣x∣γx ∀(x, t) ∈ D̄1, (3.80)

h(x, t) = 0 ∀(x, t) ∈ D̄1. (3.81)

Thus, we have constructed a function u ∶ D̄1 → R with a ∶ D̄1 → R and h ∶ D̄1 → R as given

in (3.80) and (3.81) respectively, so that all the conditions of Theorem 3.6 are satisfied

except (ii) on a(x, t), and for which Theorem 3.6 fails. ⌟

Remark 3.10. Observe that in Example 3.9, it is the superlinear growth of a ∶ D̄1 → R as

∣x∣→∞, given by (3.80), that leads to the resulting failure of Theorem 3.6. It should also

be noted that Example 3.9 is an improvement on the example given in [28] (p.17). ⌟

To close this chapter, we also remark that the principal classical weak and strong

maximum principles for parabolic differential inequalities (corresponding to Theorem 3.1

and Theorem 3.2) are due to Picone [62] and Nirenberg [57] respectively. For related

works see [63].

The first extensions to the above classical maximum principles are due to Krzyżański

[34] and were extensively investigated (see, for example, [63] (p.193-194)). The approach

adopted here is similar to that of Krzyżański’s but differs due to his focus on functions

u ∶ D̄T → R that satisfy

∣u(x, t)∣ ≤ AeBx2 ∀(x, t) ∈ D̄T
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for some constants A,B > 0. The focus on bounded functions in this thesis, leads to differ-

ent conditions on the coefficients in the differential inequality. For additional discussion

regarding extensions to these results, see Chapter 10, Section 4 and [49].
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CHAPTER 4

DIFFUSION THEORY

In this chapter, we suppose that the molecular diffusion process of an inert chemical

species U , with concentration u, is taking place in a one-dimensional infinite domain

and the diffusion process has been initiated by the introduction of an initial distribution

of the concentration of the species U . In dimensionless variables, the evolution of the

concentration u over time t ∈ [0, T ] (for given T > 0) is determined by the solution of the

bounded Cauchy problem for the linear diffusion equation:

(i) ut = uxx ∀(x, t) ∈DT .

(ii) u(x,0) = u0(x) ∀x ∈ ∂D.

(iii) u(x, t) is uniformly bounded as ∣x∣→∞ for t ∈ [0, T ].

Here u0 ∶ R → R is the prescribed initial concentration distribution of u. Throughout

this chapter we consider the situation when u0 ∈ BPC2(R). We will refer to this Cauchy

problem throughout as (B-D-C). A solution to (B-D-C) follows Definition 2.1 with (B-D-

C) replacing (B-R-D-C).

The primary purpose of this chapter is to illustrate a classical well-posedness result for

(B-D-C). To this end, the following chapter is a review, in the context of the present body

of work, of the classical theory of the Cauchy problem for the linear diffusion equation

(see, for example, [21] and [55]). It should be noted that all results marked with † are

standard and can be found in some form in [21] and [55]. To begin we have,
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Theorem† 4.1 (Uniqueness). The problem (B-D-C) has at most one solution on D̄T for

any T > 0.

Proof. Let u1, u2 ∶ D̄T → R both be solutions to (B-D-C) with the same initial data

u0 ∈ BPC2(R). First define w ∶ D̄T → R by

w(x, t) = u1(x, t) − u2(x, t) ∀(x, t) ∈ D̄T . (4.1)

Since u1 and u2 are solutions to (B-D-C) on D̄T , then w is bounded and continuous on

D̄T whilst wt, wx and wxx all exist and are continuous on DT . Moreover,

wt −wxx = (u1t − u1xx) − (u2t − u2xx) = 0 ≤ 0 on DT (4.2)

and

w = 0 ≤ 0 on ∂D. (4.3)

It then follows immediately from Theorem 3.6 that

w = u1 − u2 ≤ 0 on D̄T (4.4)

and so

u1 ≤ u2 on D̄T . (4.5)

It follows via a symmetrical argument that

u2 ≤ u1 on D̄T (4.6)

and hence, via (4.6) and (4.5), we have

u1 = u2 on D̄T , (4.7)

as required.
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We next consider the function u ∶ D̄T → R given by

u(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

2
√
πt
∫

∞

−∞
u0(s)e−

(x−s)2
4t ds

u0(x)

; (x, t) ∈DT

; (x, t) ∈ ∂D.
(4.8)

It is readily established that u is well-defined on D̄T , and a simple substitution gives the

alternative representation

u(x, t) = 1√
π
∫

∞

−∞
u0(x + 2

√
tw)e−w2

dw ∀ (x, t) ∈ D̄T . (4.9)

The boundedness and regularity conditions on u0 ∶ R → R establish (via classical uni-

form convergence results; see for example [6]) through (4.9) that u is continuous on D̄T .

Moreover, through (4.8), it is further established that ut, ux and uxx all exist and are

continuous on DT (via integration by parts and classical uniform convergence results; see

for example [6]) and can be obtained via differentiation under the integral sign in (4.8),

so that, following integration by parts,

ux(x, t) =
1

2
√
πt
∫

∞

−∞
u′0(s)e−

(x−s)2
4t ds

= 1√
π
∫

∞

−∞
u′0(x + 2

√
tw)e−w2

dw ∀ (x, t) ∈DT , (4.10)

uxx(x, t) =
1

2
√
πt
∫

∞

−∞
u′′0(s)e−

(x−s)2
4t ds

= 1√
π
∫

∞

−∞
u′′0(x + 2

√
tw)e−w2

dw ∀ (x, t) ∈DT , (4.11)

ut(x, t) =
1

2
√
πt
∫

∞

−∞
u′′0(s)e−

(x−s)2
4t ds

= 1√
π
∫

∞

−∞
u′′0(x + 2

√
tw)e−w2

dw ∀ (x, t) ∈DT . (4.12)

We now have,

Theorem† 4.2 (Global Existence and Uniqueness). The problem (B-D-C) has exactly
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one solution on D̄T for any T > 0. The solution is given by u ∶ D̄T → R as defined in (4.8)

(and (4.9)).

Proof. Let u ∶ D̄T → R be as given in (4.8). It follows that u is continuous on D̄T and

that ut, ux and uxx all exist and are continuous on DT . Moreover, from (4.11) and (4.12)

it follows that

ut = uxx on DT . (4.13)

Also, via (4.8), we have

u(x,0) = u0(x) ∀x ∈ R. (4.14)

Since u0 ∶ R→ R is bounded, then there is a constant M > 0 such that

∣u0(x)∣ ≤M ∀x ∈ R. (4.15)

It then follows from (4.9) that

∣u(x, t)∣ ≤M ∀(x, t) ∈ D̄T . (4.16)

and hence, u(x, t) is uniformly bounded as ∣x∣→∞ for t ∈ [0, T ].

Thus u ∶ D̄T → R, as given in (4.8), provides a solution to (B-D-C) on D̄T for any

T > 0. That this is the only solution to (B-D-C) on D̄T follows via Theorem 4.1.

Remark 4.3. Since (B-D-C) has a (unique) solution on D̄T for any T > 0, then (B-D-C)

has a (unique) solution on D̄∞. We say that (B-D-C) has a (unique) global solution on

D̄∞. ⌟

Theorem† 4.4 (Continuous Dependence). Given ε > 0, there exists δ > 0 (depending only

upon ε) such that for all u10, u20 ∈ BPC 2(R) such that

sup
x∈R

∣u10(x) − u20(x)∣ < δ,

then the corresponding solutions u1, u2 ∶ D̄∞ → R of (B-D-C) with initial data u0 = u10
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and u0 = u20 respectively, satisfy

∣u1(x, t) − u2(x, t)∣ < ε ∀(x, t) ∈ D̄∞.

Proof. Let u1, u2 ∶ D̄∞ → R be the solutions to (B-D-C) as above, then via (4.9),

∣u1(x, t) − u2(x, t)∣ ≤
1√
π
∫

∞

−∞
∣u10(x + 2

√
tλ) − u20(x + 2

√
tλ)∣e−λ2dλ

≤ sup
x∈R

∣u10(x) − u20(x)∣ ∀(x, t) ∈ D̄∞. (4.17)

Upon setting δ = ε, (4.17) yields,

∣u1(x, t) − u2(x, t)∣ < ε ∀(x, t) ∈ D̄∞,

as required.

Remark 4.5. It is readily established from Theorem 4.4 that for every u0 ∈ BPC2(R),

the corresponding unique global solution u ∶ D̄∞ → R to (B-D-C) is Liapunov stable with

respect to perturbations in the initial data δu0 ∈ BPC2(R). ⌟

We can now state a classical result regarding (B-D-C),

Theorem† 4.6. The problem (B-D-C) is uniformly globally well-posed on BPC 2(R).

Proof. Observe that (P1) and (P2) are satisfied via Theorem 4.2. Similarly, (P3) is

satisfied via Theorem 4.4. Moreover, δ depends only upon ε in Theorem 4.4. The result

follows.

We next examine some fundamental qualitative properties of the solution to (B-D-C)

on D̄∞, which we will require in the later chapters of the thesis. We have,

Theorem† 4.7 (Bounds and Derivative Estimates). Let u ∶ D̄T → R be the unique solution

to (B-D-C) on D̄∞ and M0, M ′
0, M

′′
0 , m0, m′

0 and m′′
0 be constants such that

m0 ≤ u0(x) ≤M0, m
′
0 ≤ u′0(x) ≤M ′

0 and m
′′
0 ≤ u′′0(x) ≤M ′′

0 (4.18)
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for all x ∈ R. Then,

m0 ≤ u(x, t) ≤M0, m
′
0 ≤ ux(x, t) ≤M ′

0, m
′′
0 ≤ uxx(x, t) ≤M ′′

0 and m′′
0 ≤ ut(x, t) ≤M ′′

0

(4.19)

for all (x, t) ∈D∞.

Proof. Let u ∶ D̄∞ → R be the unique solution to (B-D-C). Then u is given by (4.8) and

(4.9) on D̄∞ whilst ut, ux and uxx are given by (4.10), (4.11) and (4.12) on D∞. The

inequalities on D∞ follow immediately.

We also note the following,

Remark 4.8. Let u ∶ D̄∞ → R be the unique solution to (B-D-C) on D̄∞. It is straight-

forward to establish from (4.9) that when

u0(x)→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

l+ as x→ +∞

l− as x→ −∞
(4.20)

with l+, l− ∈ R constants. Then,

u(x, t)→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

l+ as x→ +∞

l− as x→ −∞
(4.21)

uniformly for t ∈ [0, T ], for any T > 0. ⌟

We conclude this chapter with a result concerning an initial value problem for the

inhomogeneous version of (B-D-C). We refer to this problem as (I-B-D-C), which differs

from (B-D-C) only in that the diffusion equation in (i) is replaced by the inhomogeneous

diffusion equation

ut = uxx + F (x, t) ∀(x, t) ∈DT , (4.22)

where F ∶ D̄T → R is a bounded function which is continuous. We have the following

fundamental result concerning (I-B-D-C) which will be of importance in later chapters.

The proof is included for illustrative purposes, alternatively, see [58] (Section 6.4).
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Theorem† 4.9. Let u ∶ D̄T → R be a solution to (I-B-D-C). Then,

u(x, t) = 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ + 1√

π
∫

t

0
∫

∞

−∞
F (x + 2

√
t − τλ, τ)e−λ2dλdτ

for all (x, t) ∈ D̄T .

Proof. Let u ∶ D̄T → R be a solution to (I-B-D-C). Then,

u(x,0) = u0(x) = ( 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ

+ 1√
π
∫

t

0
∫

∞

−∞
F (x + 2

√
t − τλ, τ)e−λ2dλdτ)

t=0

∀x ∈ R. (4.23)

Thus the result holds for all (x, t) ∈ ∂D. Now fix (x, t) ∈ DT and introduce the function

G ∶ D̄T → R such that

G(s, τ ;x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2
√
π(t−τ)1/2 e

−
(x−s)2
4(t−τ) ; (s, τ) ∈ D̄T with τ < t

0 ; (s, τ) ∈ D̄T with τ ≥ t.
(4.24)

It follows from (4.24) that G is an infinitely continuously differentiable function of s and

τ for all (s, τ) ∈ D̄T /{(x, t)}, with

Gτ(s, τ ;x, t) +Gss(s, τ ;x, t) = 0 (4.25)

for all (s, τ) ∈ D̄T /{(x, t)}.

Now, since u ∶ D̄T → R is a solution to (I-B-D-C), upon replacing variables and

multiplying (4.22) by (4.24), we obtain, fixing 0 < δ < t,

uτ(s, τ)G(s, τ ;x, t) − uss(s, τ)G(s, τ ;x, t) = F (s, τ)G(s, τ ;x, t) (4.26)

for all (s, τ) ∈ D̄δ
T . Next define the regions Ωn ⊂ D̄δ

T , for n ∈ N and n > [ 1
t−δ

] + 1 (where [⋅]
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denotes the integer part), to be

Ωn = D̄δ
T / {(x − 1

n , x + 1
n) × (t − 1

n , T ]} . (4.27)

Upon integrating the left hand side of (4.26) over the region Ωn given by (4.27), we obtain

∫
Ωn

(uτ − uss)(s, τ)G(s, τ ;x, t)dsdτ =∫
T

δ
∫

x− 1
n

−∞
(uτ − uss)(s, τ)G(s, τ ;x, t)dsdτ

+ ∫
t− 1
n

δ
∫

x+ 1
n

x− 1
n

(uτ − uss)(s, τ)G(s, τ ;x, t)dsdτ

+ ∫
T

δ
∫

∞

x+ 1
n

(uτ − uss)(s, τ)G(s, τ ;x, t)dsdτ

=I1
n + I2

n + I3
n (4.28)

=∫
Ωn
F (s, τ)G(s, τ ;x, t)dsdτ. (4.29)

Since F (s, τ) is continuous and bounded for all (s, τ) ∈ D̄T , it follows from (4.24) and

standard uniform convergence results [6] that

lim
n→∞
∫

Ωn
F (s, τ)G(s, τ ;x, t)dsdτ = lim

n→∞

1

2
√
π
∫

t− 1
n

δ
∫

∞

−∞

F (s, τ)
(t − τ)1/2

e−
(x−s)2
4(t−τ) dsdτ. (4.30)

Now, following a change of variable we may write

1

2
√
π
∫

t− 1
n

δ
∫

∞

−∞

F (s, τ)
(t − τ)1/2

e−
(x−s)2
4(t−τ) dsdτ = 1√

π
∫

t− 1
n

δ
∫

∞

−∞
F (x + 2

√
t − τλ, τ)e−λ2dλdτ,

(4.31)

from which we have

lim
n→∞

( 1

2
√
π
∫

t− 1
n

δ
∫

∞

−∞

F (s, τ)
(t − τ)1/2

e−
(x−s)2
4(t−τ) dsdτ) = 1√

π
∫

t

δ
∫

∞

−∞
F (x + 2

√
t − τλ, τ)e−λ2dλdτ,

(4.32)

since F (s, τ) is continuous and bounded for all (s, τ) ∈ D̄T . Thus, from (4.28), (4.29),
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(4.30) and (4.32), we have

lim
n→∞

(I1
n + I2

n + I3
n) =

1√
π
∫

t

δ
∫

∞

−∞
F (x + 2

√
t − τλ, τ)e−λ2dλdτ. (4.33)

The improper integrals I1
n and I3

n are uniformly convergent for each n and hence, the order

of integration can be interchanged. Thus, it follows via integration by parts, that

In1 = (∫
x− 1

n

−∞
∫

T

δ
uτ(s, τ)G(s, τ ;x, t)dτds) − (∫

T

δ
∫

x− 1
n

−∞
uss(s, τ)G(s, τ ;x, t)dsdτ)

= (−∫
x− 1

n

−∞
u(s, δ)G(s, δ;x, t)ds − ∫

T

δ
∫

x− 1
n

−∞
u(s, τ)Gτ(s, τ ;x, t)dsdτ)

− (∫
T

δ
us (x −

1

n
, τ)G(x − 1

n
, τ ;x, t)dτ − ∫

T

δ
u(x − 1

n
, τ)Gs (x −

1

n
, τ ;x, t)dτ

+∫
T

δ
∫

x− 1
n

−∞
u(s, τ)Gss(s, τ ;x, t)dsdτ)

= −∫
x− 1

n

−∞
u(s, δ)G(s, δ;x, t)ds − ∫

T

δ
us (x −

1

n
, τ)G(x − 1

n
, τ ;x, t)dτ

+ ∫
T

δ
u(x − 1

n
, τ)Gs (x −

1

n
, τ ;x, t)dτ − ∫

T

δ
∫

x− 1
n

−∞
u(s, τ)(Gτ +Gss)(s, τ ;x, t)dsdτ

= −∫
x− 1

n

−∞
u(s, δ)G(s, δ;x, t)ds − ∫

T

δ
us (x −

1

n
, τ)G(x − 1

n
, τ ;x, t)dτ

+ ∫
T

δ
u(x − 1

n
, τ)Gs (x −

1

n
, τ ;x, t)dτ, (4.34)

on using (4.25). Similarly we obtain expressions for I2
n and I3

n, namely,

I2
n = ∫

x+ 1
n

x− 1
n

[u(s, t − 1

n
)G(s, t − 1

n
;x, t) − u(s, δ)G(s, δ;x, t)]ds

+ ∫
t− 1
n

δ
[us (x −

1

n
, τ)G(x − 1

n
, τ ;x, t) − us (x +

1

n
, τ)G(x + 1

n
, τ ;x, t)]dτ

+ ∫
t− 1
n

δ
[u(x + 1

n
, τ)Gs (x +

1

n
, τ ;x, t) − u(x − 1

n
, τ)Gs (x −

1

n
, τ ;x, t)]dτ, (4.35)

I3
n = −∫

∞

x+ 1
n

u(s, δ)G(s, δ;x, t)ds + ∫
T

δ
us (x +

1

n
, τ)G(x + 1

n
, τ ;x, t)dτ

− ∫
T

δ
u(x + 1

n
, τ)Gs (x +

1

n
, τ ;x, t)dτ. (4.36)
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It follows from (4.24), (4.34), (4.35) and (4.36) that

I1
n + I2

n + I3
n = −∫

∞

−∞
u(s, δ)G(s, δ;x, t)ds + ∫

x+ 1
n

x− 1
n

u(s, t − 1

n
)G(s, t − 1

n
;x, t)ds (4.37)

+ ∫
t

t− 1
n

[us (x +
1

n
, τ)G(x + 1

n
, τ ;x, t) − us (x −

1

n
, τ)G(x − 1

n
, τ ;x, t)]dτ

+ ∫
t

t− 1
n

[u(x − 1

n
, τ)Gs (x −

1

n
, τ ;x, t) − u(x + 1

n
, τ)Gs (x +

1

n
, τ ;x, t)]dτ

= −∫
∞

−∞
u(s, δ)G(s, δ;x, t)ds + J1

n + J2
n + J3

n, (4.38)

with J1
n, J2

n and J3
n being the last three terms on the right hand side of (4.37) respectively.

We now examine the limit of J in as n→∞. To begin, via (4.24) and (4.38),

∣J1
n∣ ≤ ∫

x+ 1
n

x− 1
n

∣u(s, t − 1

n
)∣G(s, t − 1

n
;x, t)ds

≤ sup
(x′,t′)∈D̄T

∣u(x′, t′)∣∫
x+ 1

n

x− 1
n

1

2
√
π(1/n)1/2

e−
(x−s)2
4(1/n) ds

≤ 1√
πn1/2

sup
(x′,t′)∈D̄T

∣u(x′, t′)∣,

and since u is bounded on D̄T , it follows that limn→∞ J1
n exists, and

J1
n → 0 as n→∞. (4.39)

Now, since us is continuous on DT , on any compact subset of DT , us is bounded. For

convenience, define ωn ⊂DT for n ∈ N (n > [ 1
t−δ

] + 1), to be

ωn = [x − 1
n , x + 1

n
] × [t − 1

n , t] . (4.40)

Hence, via (4.24), (4.38) and (4.40), we have

∣J2
n∣ ≤ ∫

t

t− 1
n

∣us (x +
1

n
, τ) − us (x −

1

n
, τ)∣G(x + 1

n
, τ ;x, t)dτ

≤ sup
(x′,t′)∈ωn

∣2us(x′, t′)∣∫
t

t− 1
n

1

2
√
π(t − τ)1/2

e−
1/n

4(t−τ)dτ
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≤ 1√
π

sup
(x′,t′)∈ωn

∣us(x′, t′)∣∫
t

t− 1
n

1

(t − τ)1/2
dτ

≤ 2√
πn

sup
(x′,t′)∈ωn

∣us(x′, t′)∣,

and it follows that, limn→∞ J2
n exists, and

J2
n → 0 as n→∞. (4.41)

Finally, we have

J3
n = ∫

t

t− 1
n

[u(x − 1

n
, τ)Gs (x −

1

n
, τ ;x, t) − u(x + 1

n
, τ)Gs (x +

1

n
, τ ;x, t)]dτ

= ∫
t

t− 1
n

[u(x − 1

n
, τ) + u(x + 1

n
, τ)] 1

4n
√
π(t − τ)3/2

e
−1

4n2(t−τ)dτ

≤ ∫
t

t− 1
n

2 sup
(x′,t′)∈ωn

(u(x′, t′)) 1

4n
√
π(t − τ)3/2

e
−1

4n2(t−τ)dτ

= 2√
π

sup
(x′,t′)∈ωn

(u(x′, t′))∫
∞

1

2n1/2
e−q

2

dq. (4.42)

Now, since u is continuous on D̄T , it follows that

2√
π

sup
(x′,t′)∈ωn

(u(x′, t′))∫
∞

1

2n1/2
e−q

2

dq → u(x, t) as n→∞. (4.43)

Similarly, we obtain

J3
n ≥

2√
π

inf
(x′,t′)∈ωn

(u(x′, t′))∫
∞

1

2n1/2
e−q

2

dq. (4.44)

Again, since u is continuous on D̄T , it follows that

2√
π

inf
(x′,t′)∈ωn

(u(x′, t′))∫
∞

1

2n1/2
e−q

2

dq → u(x, t) as n→∞. (4.45)

Now it follows from (4.42) and (4.44), with (4.43) and (4.45), that limn→∞ J3
n exists, and

J3
n → u(x, t) as n→∞. (4.46)
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We therefore have, from (4.39), (4.41) and (4.46), that

J1
n + J2

n + J3
n → u(x, t) as n→∞, (4.47)

and from (4.38), that

I1
n + I2

n + I3
n → u(x, t) − 1√

π
∫

∞

−∞
u(x + 2

√
t − δλ, δ)e−λ2dλ as n→∞. (4.48)

It now follows from (4.48), (4.33) and the uniqueness of limits of real sequences, that

u(x, t) = 1√
π
∫

∞

−∞
u(x + 2

√
t − δλ, δ)e−λ2dλ + 1√

π
∫

t

δ
∫

∞

−∞
F (x + 2

√
t − τλ, τ)e−λ2dλdτ

(4.49)

for any (x, t) ∈ DT and 0 < δ < t. Since F and u are continuous on D̄T , it follows from

(4.49), that

u(x, t) = lim
δ→0

( 1√
π
∫

∞

−∞
u(x + 2

√
t − δλ, δ)e−λ2dλ

+ 1√
π
∫

t

δ
∫

∞

−∞
F (x + 2

√
t − τλ, τ)e−λ2dλdτ)

= 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ + 1√

π
∫

t

0
∫

∞

−∞
F (x + 2

√
t − τλ, τ)e−λ2dλdτ (4.50)

for all (x, t) ∈DT . Finally, (4.50), together with (4.23) gives

u(x, t) = 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ + 1√

π
∫

t

0
∫

∞

−∞
F (x + 2

√
t − τλ, τ)e−λ2dλdτ

for all (x, t) ∈ D̄T , as required.
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CHAPTER 5

CONVOLUTION FUNCTIONS, FUNCTION
SPACES, INTEGRAL EQUATIONS AND

EQUIVALENCE LEMMAS

This chapter contains a result, which relates solutions of (B-R-D-C) with f ∈ Hα to

continuous, bounded solutions of an implicit integral equation. From this result, we

obtain derivative estimates of Schauder-type on solutions of (B-R-D-C) with f ∈ Hα. It

should be noted that results marked with † correspond to results in [21] (Chapter 1,

Sections 6 and 7) for which sketched proofs are given (unless otherwise stated).

5.1 Convolution Functions

Let F ∶ D̄T → R be continuous and bounded. Thus, there exists a constant MT > 0 such

that

∣F (x, t)∣ ≤MT ∀(x, t) ∈ D̄T . (5.1)

Define the convolution function φ ∶ D̄T → R as

φ(x, t) = 1√
π
∫

t

0
∫

∞

−∞
F (x + 2

√
t − τ w, τ)e−w2

dwdτ ∀(x, t) ∈ D̄T . (5.2)
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It is readily established that φ is well-defined on D̄T . Also

φ(x,0) = 0 ∀x ∈ R. (5.3)

In addition, φ ∶ D̄T → R is continuous and bounded with

∣φ(x, t)∣ ≤MTT ∀(x, t) ∈ D̄T . (5.4)

We next define, on D̄δ
T (0 < δ < T ), the sequence of functions φn ∶ D̄δ

T → R for n = Nδ,

Nδ + 1, ..., with Nδ = [δ−1] + 1, as

φn(x, t) =
1√
π
∫

t−1/n

0
∫

∞

−∞
F (x + 2

√
t − τ w, τ)e−w2

dwdτ ∀(x, t) ∈ D̄δ
T . (5.5)

The function φn (n = Nδ,Nδ + 1, ...) has the following properties:

(a) φn is continuous on D̄δ
T .

(b) φn is bounded on D̄δ
T , with ∣φn(x, t)∣ ≤MTT ∀(x, t) ∈ D̄δ

T .

(c) φn(x, t)→ φ(x, t) as n→∞ uniformly ∀(x, t) ∈ D̄δ
T .

We now observe that by a simple substitution (s = x + 2
√
t − τ w), we may write

φn(x, t) =
1

2
√
π
∫

t−1/n

0
∫

∞

−∞

F (s, τ)
(t − τ)1/2

e−
(s−x)2
4(t−τ) dsdτ ∀(x, t) ∈ D̄δ

T . (5.6)

It follows from (5.6), via standard results on uniform convergence of integrals [6] that

φnx, φnxx and φnt (5.7)

all exist and are continuous on D̄δ
T , with

φnx(x, t) =
1√
π
∫

t−1/n

0
∫

∞

−∞

F (x + 2
√
t − τ w, τ)

(t − τ)1/2
we−w

2

dwdτ ∀(x, t) ∈ D̄δ
T , (5.8)
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φnxx(x, t) =
1√
π
∫

t−1/n

0
∫

∞

−∞

F (x + 2
√
t − τ w, τ)

(t − τ) (w2 − 1/2)e−w2

dwdτ ∀(x, t) ∈ D̄δ
T , (5.9)

φnt(x, t) =
1√
π
∫

t−1/n

0
∫

∞

−∞

F (x + 2
√
t − τ w, τ)

(t − τ) (w2 − 1/2)e−w2

dwdτ

+ 1√
π
∫

∞

−∞
F (x + 2

√
1/n w, t − 1/n)e−w2

dw ∀(x, t) ∈ D̄δ
T . (5.10)

We observe from (5.8) that

∣φnx(x, t)∣ ≤
MT√
π
∫

t−1/n

0
∫

∞

−∞

1

(t − τ)1/2
∣w∣e−w2

dwdτ

= MT√
π

[−2(t − τ)1/2]t−1/n

0

= 2MT√
π

(t1/2 − (1/n)1/2)

≤ 2MT√
π

(T 1/2 + 1) ∀(x, t) ∈ D̄δ
T , (5.11)

and so φnx is bounded on D̄δ
T , uniformly in n. We now have:

Theorem† 5.1. φ ∶ D̄T → R is such that φx exists and is continuous and bounded on DT ,

with

∣φx(x, t)∣ ≤
2MT√
π

(T 1/2 + 1) ∀(x, t) ∈DT .

Proof. First we recall that φn and φnx are continuous and bounded on D̄δ
T and that φn → φ

as n→∞ uniformly on D̄δ
T . Now let n ≥m ≥ Nδ and (x, t) ∈ D̄δ

T , then

∣φnx(x, t) − φmx(x, t)∣ = ∣ 1√
π
∫

t−1/n

t−1/m
∫

∞

−∞

F (x + 2
√
t − τ w, τ)

(t − τ)1/2
we−w

2

dwdτ ∣

≤ MT√
π
∫

t−1/n

t−1/m
∫

∞

−∞

1

(t − τ)1/2
∣w∣e−w2

dwdτ

= 2MT√
π

(( 1

m
)

1/2

− ( 1

n
)

1/2

)

≤ 2MT√
π

(1/m + 1/n) ∀(x, t) ∈ D̄δ
T .

It follows that {φnx} is uniformly convergent on D̄δ
T as n→∞, via the Cauchy condition

[65], and moreover via Theorem 7.17 in [65], that φx exists, is continuous and bounded
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on D̄δ
T , with

φnx → φx as n→∞ uniformly on D̄δ
T . (5.12)

Now, given any ε > 0, there exists r ≥ Nδ such that

∣φx(x, t) − φrx(x, t)∣ < ε ∀(x, t) ∈ D̄δ
T , (5.13)

via (5.12). Hence, using (5.11),

∣φx(x, t)∣ < ε +
2MT√
π

(T 1/2 + 1) ∀(x, t) ∈ D̄δ
T . (5.14)

However, (5.14) holds for any ε > 0, and so

∣φx(x, t)∣ ≤
2MT√
π

(T 1/2 + 1) ∀(x, t) ∈ D̄δ
T . (5.15)

Now all of the above holds for any fixed 0 < δ < T , and so it follows that φx exists, is

continuous and bounded on DT , with

∣φx(x, t)∣ ≤
2MT√
π

(T 1/2 + 1) ∀(x, t) ∈DT . (5.16)

The proof is complete.

We now restrict F ∶ D̄T → R to satisfy the additional condition:

(H) F ∶ D̄T → R is continuous, bounded and uniformly Hölder continuous of degree

0 < α ≤ 1 with respect to x ∈ R, uniformly for t ∈ [0, T ]. That is, there exists a

constant kT > 0 (independent of t ∈ [0, T ]) such that

∣F (y, t) − F (x, t)∣ ≤ kT ∣y − x∣α ∀(y, t), (x, t) ∈ D̄T . ⌟
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We now observe that, for (x, t) ∈ D̄δ
T ,

∣φnxx(x, t)∣ ≤ ∣ 1√
π
∫

t−1/n

0
∫

∞

−∞

F (x + 2
√
t − τ w, τ) − F (x, τ)
(t − τ) (w2 − 1/2)e−w2

dwdτ ∣

+ ∣ 1√
π
∫

t−1/n

0
∫

∞

−∞

F (x, τ)
(t − τ) (w2 − 1/2)e−w2

dwdτ ∣ (= 0)

≤ kT√
π
∫

t−1/n

0
∫

∞

−∞

2α

(t − τ)1−α/2
∣w∣α∣w2 − 1/2∣e−w2

dwdτ

= 2αkT√
π
Iα [−2

α
(t − τ)α/2]

t−1/n

0

= 2α+1kT
α
√
π
Iα (tα/2 − (1/n)α/2)

≤ 2α+1kT
α
√
π
Iα (1 + Tα/2) ∀(x, t) ∈ D̄δ

T , (5.17)

with

Iα = ∫
∞

−∞
∣w∣α∣w2 − 1/2∣e−w2

dw > 0. (5.18)

Similarly,

∣φnt(x, t)∣ ≤
2α+1kT
α
√
π
Iα (1 + Tα/2) +MT ∀(x, t) ∈ D̄δ

T . (5.19)

Thus, under condition (H), both φnt and φnxx are continuous and bounded (uniformly in

n) on D̄δ
T , for each n = Nδ, Nδ + 1, ... .

We next observe the following:

(I) With n ≥m ≥ Nδ and (x, t) ∈ D̄δ
T ,

∣∫
t−1/n

t−1/m
∫

∞

−∞

F (x + 2
√
t − τ w, τ)

(t − τ) (w2 − 1/2)e−w2

dwdτ ∣

≤ ∫
t−1/n

t−1/m
∫

∞

−∞

∣F (x + 2
√
t − τ w, τ) − F (x, τ)∣
(t − τ) ∣w2 − 1/2∣e−w2

dwdτ

+ ∣∫
t−1/n

t−1/m
∫

∞

−∞

F (x, τ)
(t − τ) (w2 − 1/2)e−w2

dwdτ ∣ (= 0)

≤ kT ∫
t−1/n

t−1/m
∫

∞

−∞

2α

(t − τ)1−α/2
∣w∣α∣w2 − 1/2∣e−w2

dwdτ

= kT2αIα [− 2

α
(t − τ)α/2]

t−1/n

t−1/m

= 2α+1kT Iα
α

((1/m)α/2 − (1/n)α/2) ∀(x, t) ∈ D̄δ
T . (5.20)
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(II) Let n ≥ Nδ. Given any ε > 0, there exists σ > 0 (depending upon ε, δ,X,T ) such that

for all (x0, t0), (x1, t1) ∈ D̄δ−1/Nδ,X
T with

∣(x1 − x0, t1 − t0)∣ < σ,

then

∣F (x1, t1) − F (x0, t0)∣ < ε/2,

since F is continuous and therefore uniformly continuous on D̄
δ−1/Nδ,X
T . Now let

(x, t) ∈ D̄δ,X
T , then

∣ 1√
π
∫

∞

−∞
F (x + 2

√
1/n w, t − 1/n)e−w2

dw − F (x, t)∣

≤ 1√
π
∫

∞

−∞
∣F (x + 2

√
1/n w, t − 1/n) − F (x, t − 1/n)∣e−w2

dw + ∣F (x, t − 1/n) − F (x, t)∣

≤ kT√
π
∫

∞

−∞

2α

nα/2
∣w∣αe−w2

dw + ∣F (x, t − 1/n) − F (x, t)∣

≤ 2αkTJα√
π

1

nα/2
+ ∣F (x, t − 1/n) − F (x, t)∣ (5.21)

where

Jα = ∫
∞

−∞
∣w∣αe−w2

dw > 0. (5.22)

Now since (x, t) ∈ D̄δ,X
T and n ≥ Nδ, then

(x, t − 1/n), (x, t) ∈ D̄δ−1/Nδ,X
T .

Take n > 1/σ + 1, and so

∣(x, t − 1/n) − (x, t)∣ < σ ∀(x, t) ∈ D̄δ,X
T ,

and so

∣F (x, t − 1/n) − F (x, t)∣ < ε/2 ∀(x, t) ∈ D̄δ,X
T . (5.23)
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Therefore, given any ε > 0, then for all

n > max

⎧⎪⎪⎨⎪⎪⎩
1/σ + 1,(2α+1kTJα√

πε
)

2/α

+ 1

⎫⎪⎪⎬⎪⎪⎭
,

we have

∣ 1√
π
∫

∞

−∞
F (x + 2

√
1/n w, t − 1/n)e−w2

dw − F (x, t)∣ < ε/2 + ε/2 = ε ∀(x, t) ∈ D̄δ,X
T .

Thus,

1√
π
∫

∞

−∞
F (x + 2

√
1/n w, t − 1/n)e−w2

dw → F (x, t)

as n→∞ uniformly on D̄δ,X
T (any δ,X > 0). (5.24)

We now have:

Theorem† 5.2. The function φ ∶ D̄T → R in (5.2) is such that φt and φxx exist, are

continuous and bounded on DT , with

∣φxx(x, t)∣ ≤
2α+1kT Iα
α
√
π

(1 + Tα/2), (5.25)

∣φt(x, t)∣ ≤
2α+1kT Iα
α
√
π

(1 + Tα/2) +MT . (5.26)

Moreover,

φt(x, t) = φxx(x, t) + F (x, t) ∀(x, t) ∈DT . (5.27)

Proof. First we recall that φn and φnx are continuous and bounded uniformly in n on D̄δ
T

and that φn → φ and φnx → φx as n →∞ uniformly on D̄δ
T . Moreover, φnxx is continuous

and bounded uniformly in n on D̄δ
T . Now let n ≥ m ≥ Nδ and (x, t) ∈ D̄δ

T , then it follows

from (5.20) that

∣φnxx(x, t) − φmxx(x, t)∣ ≤
2α+1kT Iα
α
√
π

((1/m)α/2 + (1/n)α/2) ∀(x, t) ∈ D̄δ
T .
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It follows that {φnxx} is uniformly convergent on D̄δ
T as n→∞, via the Cauchy condition

[65], and moreover, via Theorem 7.17 in [65], that φxx exists, is continuous and is bounded

on D̄δ
T , with

φnxx → φxx as n→∞ uniformly on D̄δ
T . (5.28)

It follows from (5.28) and (5.17) that

∣φxx(x, t)∣ ≤
2α+1kT Iα
α
√
π

(1 + Tα/2) ∀(x, t) ∈ D̄δ
T . (5.29)

Again recall that φn and φnt are continuous and bounded uniformly in n on D̄δ
T and

φn → φ as n →∞ uniformly on D̄δ
T . It now follows from (5.10) together with (I) and (II)

that {φnt} is uniformly convergent on D̄δ,X
T (any X > 0) as n→∞, and so, moreover, that

φt exists, and is continuous on D̄δ,X
T . Now, given any ε > 0 there exists r ≥ Nδ such that

∣φt(x, t) − φrt(x, t)∣ < ε ∀(x, t) ∈ D̄δ,X
T . (5.30)

Hence using (5.19),

∣φt(x, t)∣ < ε +
2α+1kT Iα
α
√
π

(1 + Tα/2) +MT ∀(x, t) ∈ D̄δ,X
T . (5.31)

However, (5.31) holds for any ε > 0, and so

∣φt(x, t)∣ ≤
2α+1kT Iα
α
√
π

(1 + Tα/2) +MT ∀(x, t) ∈ D̄δ,X
T . (5.32)

Now, all of the above holds for any X > 0. Thus, φt exists, is continuous and bounded on

D̄δ
T , with

∣φt(x, t)∣ ≤
2α+1kT Iα
α
√
π

(1 + Tα/2) +MT ∀(x, t) ∈ D̄δ
T . (5.33)

We next observe that since all of the above holds for all 0 < δ < T , then φt and φxx exist

and are continuous on DT whilst (5.29) and (5.33) establish that φt and φxx are bounded

on DT with both (5.29) and (5.33) continuing to hold on DT .
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Finally, to obtain (5.27), let (x, t) ∈ D̄δ,X
T , then it follows from (5.9), (5.10), (I) and

(II) that

(φnt(x, t) − φnxx(x, t))→ F (x, t) as n→∞ uniformly on D̄δ,X
T . (5.34)

Also from (5.25) and (5.26), we have

(φnt(x, t) − φnxx(x, t))→ φt(x, t) − φxx(x, t) as n→∞ uniformly on D̄δ,X
T . (5.35)

Uniqueness of limits, together with (5.34) and (5.35), then gives

φt(x, t) − φxx(x, t) = F (x, t) ∀(x, t) ∈ D̄δ,X
T . (5.36)

However, (5.36) holds for any X > 0 and 0 < δ < T and so continues to hold on DT . The

proof is complete.

5.2 Function Spaces

Associated with the (B-R-D-C), we introduce the sets of functions,

BT
A = {u ∶ D̄T → R ∶ u is continuous and bounded on D̄T} (5.37)

BB = {v ∶ R→ R ∶ v is continuous and bounded on R}. (5.38)

Remark 5.3.

(i) It follows immediately from (5.37) and (5.38) that when u(⋅, ⋅) ∈ BT
A then u(⋅, t) ∈ BB

for each t ∈ [0, T ].

(ii) Whenever u ∶ D̄T → R is a solution to (B-R-D-C), then u ∈ BT
A, via Definition 2.1.

(iii) Both BT
A and BB form linear spaces over R under the usual definitions of addition

and scalar multiplication of functions.
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(iv) The notation for BT
A and BB has been adopted from [55] for brevity. However, note

that these could be equivalently denoted as BT
A = CB(D̄T ) and BB = CB(R), where

for a set X, CB(X) ∶= C(X) ∩L∞(X). ⌟

We next introduce the norms defined on BT
A and BB, namely,

∣∣u∣∣A = sup
(x,t)∈D̄T

∣u(x, t)∣ ∀u ∈ BT
A, (5.39)

∣∣v∣∣B = sup
x∈R

∣v(x)∣ ∀v ∈ BB. (5.40)

We observe from (5.39) and (5.40) that whenever u ∈ BT
A, then

∣∣u(⋅, t)∣∣B ≤ ∣∣u∣∣A ∀t ∈ [0, T ]. (5.41)

Remark 5.4 (Completeness). Both BT
A and BB (with usual addition and scalar multi-

plication over R) are Banach Spaces (that is they are complete with respect to ∣∣ ⋅ ∣∣A and

∣∣ ⋅ ∣∣B respectively). ⌟

The following elementary lemma will be useful in later chapters.

Lemma† 5.5. Let u ∈ BT
A. Then H ∶ [0, T ]→ R+ ∪ {0}, defined by

H(t) = ∣∣u(⋅, t)∣∣B ∀t ∈ [0, T ],

is such that H ∈ L1([0, T ]).

Proof. First, observe that H ∶ [0, T ]→ R+ ∪ {0} is well-defined, via Remark 5.3 (i). Also,

H ∶ [0, T ]→ R+ ∪ {0} is bounded, with

0 ≤H(t) ≤ ∣∣u∣∣A, (5.42)
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via (5.41). Next introduce the sequence of functions {Hn ∶ [0, T ]→ R+∪{0}}n∈N such that

Hn(t) = sup
x∈[−n,n]

∣u(x, t)∣ ∀t ∈ [0, T ]. (5.43)

Since u ∈ BT
A, then it follows from (5.43) that Hn ∈ C([0, T ]) ⊂ L1([0, T ]), with

0 ≤Hn(t) ≤ ∣∣u∣∣A ∀t ∈ [0, T ]. (5.44)

In addition,

0 ≤H1(t) ≤H2(t) ≤ ... ≤Hn(t) ≤ ... ≤ ∣∣u∣∣A ∀t ∈ [0, T ]. (5.45)

Moreover, it follows from (5.45) that

Hn(t)→H(t) as n→∞ (5.46)

for each t ∈ [0, T ]. It is an immediate consequence of (5.44), (5.45), (5.46) and the

monotone convergence theorem ([73], Theorem 2, p96) that H ∈ L1([0, T ]).

Next, a standard generalisation of Gronwall’s inequality [24], which will be useful in

later chapters, can be established.

Proposition† 5.6 (Generalised Gronwall’s Inequality). Let φ ∶ [0, T ] → R be such that

φ ∈ L1([0, T ]) and φ(t) ≥ 0 for all t ∈ [0, T ]. Suppose that

φ(t) ≤ a + bt + k∫
t

0
φ(s)ds ∀t ∈ [0, T ]

with a ≥ 0, b ≥ 0, k > 0 constants. Then,

φ(t) ≤ (a + bt)ekt ∀t ∈ [0, T ].
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Proof. It follows from the first inequality above that

φ(t)e−kt + (−k)e−kt∫
t

0
φ(s)ds ≤ (a + bt)e−kt ∀t ∈ [0, T ]. (5.47)

Since φ ∈ L1([0, T ]), it then follows from [73] (Proposition 2, p103), that, after an inte-

gration, (5.47) becomes

e−kt∫
t

0
φ(s)ds ≤ ∫

t

0
(a + bs)e−ksds ≤ 1

k
(a + bt)(1 − e−kt) ∀t ∈ [0, T ],

from which we obtain

∫
t

0
φ(s)ds ≤ 1

k
(a + bt)(ekt − 1) ∀t ∈ [0, T ]. (5.48)

It then follows, via (5.48), that

φ(t) ≤ a + bt + k∫
t

0
φ(s)ds ≤ a + bt + (a + bt)(ekt − 1) = (a + bt)ekt ∀t ∈ [0, T ],

as required.

We now introduce the following functions v,w ∶ D̄T → R.

Definition 5.7. Let f ∶ R→ R be such that f ∈Hα for some α ∈ (0,1], u ∈ BT
A and û ∈ BB.

We introduce the following functions v,w ∶ D̄T → R, defined by,

v(x, t) = ∫
∞

λ=−∞
û(x + 2

√
t λ)e−λ2dλ ∀(x, t) ∈ D̄T , (5.49)

w(x, t) = ∫
t

τ=0
∫

∞

λ=−∞
f(u(x + 2

√
t − τ λ, τ))e−λ2dλdτ ∀(x, t) ∈ D̄T . ⌟ (5.50)

Lemma† 5.8. Let v,w ∶ D̄T → R be given as in (5.49) and (5.50). Then v and w are well

defined functions and v,w ∈ BT
A. Moreover,

(i) v(x,0) = √
πû(x) ∀x ∈ R.
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(ii) w(x,0) = 0 ∀x ∈ R.

Proof. (i) v ∶ D̄T → R

The improper integral on the right hand side of (5.49) exists for each (x, t) ∈ D̄T . Thus v

is well-defined on D̄T . Moreover,

∣v(x, t)∣ ≤ ∫
∞

−∞
∣û(x + 2

√
t λ)∣e−λ2dλ

≤
√
π ∣∣û∣∣B

and so v is bounded on D̄T . We next establish that v is continuous on D̄T . We define

G ∶ [−a, a] × [0, T ] × [Λ,Λ]→ R by

G(x, t, λ) = û(x + 2
√
t λ)e−λ2

for all (x, t, λ) ∈ [−a, a] × [0, T ] × [−Λ,Λ], for any fixed a,Λ > 0. G is continuous by

composition. Moreover the integral

∫
∞

−∞
G(x, t, λ)dλ

is uniformly convergent for all (x, t) ∈ [−a, a] × [0, T ]. Therefore v is continuous on

[−a, a] × [0, T ]. This holds for any a > 0, and so v is continuous on D̄T . Thus we have

shown that v ∈ BT
A, as required. In particular, via (5.49),

v(x,0) = ∫
∞

−∞
û(x)e−λ2dλ =

√
π û(x) ∀x ∈ R.

(ii) w ∶ D̄T → R

We first observe that, with f ∈Hα for some α ∈ (0,1], and with u ∈ BT
A, then

f(u) ∈ BT
A. (5.51)
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The double integral (5.50) is then convergent for each (x, t) ∈ D̄T , and so w ∶ D̄T → R is

well-defined. In particular

∣w(x, t)∣ ≤ ∫
t

0
∫

∞

−∞
∣f(u(x + 2

√
t − τ λ, τ))∣e−λ2dλdτ

≤ ∣∣f(u)∣∣A∫
t

0
∫

∞

−∞
e−λ

2

dλdτ

≤
√
π T ∣∣f(u)∣∣A

and so, w is bounded on D̄T . We next consider

h ∶ {(x, t, τ) ∈ R3 ∶ (x, t) ∈ [−a, a] × [0, T ], τ ∈ [0, t]}→ R,

for any a > 0, with

h(x, t, τ) = ∫
∞

−∞
f(u(x + 2

√
t − τ λ, τ))e−λ2dλ. (5.52)

Now, f(u(x + 2
√
t − τ λ, τ)) is continuous for all

(x, t, τ, λ) ∈ {(x, t, τ) ∈ R3 ∶ (x, t) ∈ [−a, a] × [0, T ], τ ∈ [0, t]} × [−Λ,Λ]

(for any Λ > 0), and the integral in (5.52) is uniformly convergent for all

(x, t, τ) ∈ {(x, t, τ) ∈ R3 ∶ (x, t) ∈ [−a, a] × [0, T ], τ ∈ [0, t]}.

Thus h(x, t, τ) is a continuous function on

{(x, t, τ) ∈ R3 ∶ (x, t) ∈ [−a, a] × [0, T ], τ ∈ [0, t]}.

Now observe

w(x, t) = ∫
t

0
h(x, t, τ)dτ (5.53)
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for all (x, t) ∈ D̄T . Since h(x, t, τ) is continuous for all

(x, t, τ) ∈ {(x, t, τ) ∈ R3 ∶ (x, t) ∈ [−a, a] × [0, T ], τ ∈ [0, t]},

then it follows that w(x, t) is continuous for all (x, t) ∈ [−a, a]×[0, T ]. Thus w is continuous

on D̄T and we conclude that w ∈ BT
A. Finally,

w(x,0) = ∫
0

0
h(x,0,0)dτ = 0 ∀x ∈ R.

The proof is complete.

With (x, t) ∈DT , the expression (5.49) for v may be re-written via simple substitution.

For (x, t) ∈DT , we make the substitution s = x + 2
√
tλ in (5.49), after which we obtain

v(x, t) = 1

2
√
t
∫

∞

−∞
û(s)e−

(x−s)2
4t ds ∀(x, t) ∈DT . (5.54)

We next introduce F ∶ D̄T → R such that

F (x, t) = f(u(x, t)) ∀(x, t) ∈ D̄T . (5.55)

Now, since f ∈Hα and u ∈ BT
A, then F is bounded and continuous on D̄T . It then follows

from Section 5.1, that we may write

w(x, t) = lim
n→∞
∫

t−1/n

τ=0
∫

∞

−∞

f(u(s, τ))
2
√
t − τ

e−
(x−s)2
4(t−τ) ds dτ ∀(x, t) ∈DT . (5.56)

We can now state:

Lemma† 5.9 (Regularity). The functions v,w ∈ BT
A are such that vt, vx, vxx and wx, all

exist and are continuous on DT . Moreover, the derivatives are given by

vx(x, t) =
1

t
1
2
∫

∞

−∞
û(x + 2

√
tw)we−w2

dw,
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vt(x, t) = vxx(x, t) =
1

t ∫
∞

−∞
û(x + 2

√
tw)(w2 − 1/2)e−w2

dw,

wx(x, t) = lim
n→∞
∫

t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τw, τ))

(t − τ) 1
2

we−w
2

dwdτ

for all (x, t) ∈ DT . Suppose also that ux exists and is bounded on DT , then wt and wxx

also exist and are continuous on DT , with

wxx(x, t) = lim
n→∞
∫

t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τw, τ))

(t − τ) (w2 − 1/2)e−w2

dwdτ,

wt(x, t) = lim
n→∞
∫

t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τw, τ))

(t − τ) (w2 − 1/2)e−w2

dwdτ

+
√
πf(u(x, t)) ∀(x, t) ∈DT . (5.57)

Proof. We first give a proof for v. We introduce the function φ ∶ [−a, a]×[t0, T ]×[−S,S]→

R, given by

φ(x, t, s) = û(s)
2
√
t
e−
(x−s)2

4t , (5.58)

for (x, t, s) ∈ [−a, a] × [t0, T ] × (−∞,∞) (for any a > 0 and 0 < t0 < T ). Then,

v(x, t) = ∫
∞

−∞
φ(x, t, s)ds

on [−a, a]× [t0, T ]. Now, an examination of (5.58) shows that φt, φx and φxx all exist and

are continuous on [−a, a] × [t0, T ] × (−∞,∞), whilst the improper integrals

∫
∞

−∞
φx(x, t, s)ds, ∫

∞

−∞
φt(x, t, s)ds, ∫

∞

−∞
φxx(x, t, s)ds

are uniformly convergent for all (x, t) ∈ [−a, a] × [t0, T ]. It follows that vt, vx and vxx all

exist and are continuous on [−a, a] × [t0, T ], for any a > 0 and 0 < t0 < T . Thus vt, vx and

vxx all exist and are continuous on DT . Moreover,

vx = ∫
∞

−∞
φx(x, t, s)ds, vt = ∫

∞

−∞
φt(x, t, s)ds, vxx = ∫

∞

−∞
φxx(x, t, s)ds. (5.59)
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The given derivatives are now obtained by replacing φt, φx and φxx in the above, followed

by the substitution s = x + 2
√
tw.

We now give a proof for w. First we recall that f ∈ Hα and u ∈ BT
A so that f(u) is

bounded and continuous on D̄T . It then follows, via Theorem 5.1, that wx exists and

is continuous on DT , and the derivative formula follows via (5.8). Next, when u ∈ BT
A

is such that ux exists and is bounded on DT , it follows with f ∈ Hα, that f(u) satisfies

condition (H) (in Section 5.1) on D̄T (via an application of the mean value theorem). It

then follows from Theorem 5.2 that wt and wxx exist and are continuous on DT . The

derivative formulae follow from (5.9), (5.10) and (5.24).

5.3 Equivalence Lemma and Integral Equation

We relate solutions of an associated integral equation to solutions of (B-R-D-C). We have,

Lemma† 5.10 (Hölder Equivalence). Let f ∈ Hα for some α ∈ (0,1] and u0 ∈ BPC 2(R).

Then, the following statements are equivalent:

(a) u ∈ BT
A and u ∶ D̄T → R satisfies the integral equation

u(x, t) = 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ + 1√

π
∫

t

0
∫

∞

−∞
f(u(x + 2

√
t − τλ, τ))e−λ2dλdτ

for all (x, t) ∈ D̄T .

(b) u ∶ D̄T → R is a solution to (B-R-D-C) on D̄T .

Proof. (a)⇒(b)

Suppose (a) holds for u ∶ D̄T → R with u ∈ BT
A (note that the right hand side of the integral

equation in (a) is well-defined as a function in BT
A for any u ∈ BT

A, via Lemma 5.8, since

u0 ∈ BB). In particular, via Lemma 5.8, we have

u(x,0) = u0(x) ∀ x ∈ R, (5.60)
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whilst

u(x, t) is uniformly bounded as ∣x∣→∞ for t ∈ [0, T ] (5.61)

as u ∈ BT
A. Now we have, via Lemma 5.9, (4.9), (4.10), Theorem 5.1 and (a) that ux exists

and is bounded on DT . It then follows, again via Lemma 5.9, that ut, ux and uxx all exist

and are continuous on DT . Finally using the derivative formula given in Lemma 5.9, a

direct substitution shows that

ut − uxx − f(u) = 0 on DT . (5.62)

Together, (5.60), (5.61) and (5.62) imply that u ∶ D̄T → R is a solution of (B-R-D-C)

on D̄T .

(b)⇒(a)

Let u ∶ D̄T → R be a solution of (B-R-D-C) on D̄T . Then f ○ u ∶ D̄T → R is bounded and

continuous. The result then follows immediately from Theorem 4.9.

Lemma† 5.11 (Integral Equation for f ∈ Lu). Let f ∈ Lu and u0 ∈ BPC 2(R), and let

u ∶ D̄T → R be a solution to (B-R-D-C) on D̄T . Then,

u(x, t) = 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ + 1√

π
∫

t

0
∫

∞

−∞
f(u(x + 2

√
t − τλ, τ))e−λ2dλdτ

for all (x, t) ∈ D̄T .

Proof. Let u ∶ D̄T → R be a solution of (B-R-D-C) on D̄T . Then, since f ∈ Lu, we conclude

that f ○u ∶ D̄T → R is bounded and continuous. The result then follows immediately from

Theorem 4.9.

5.4 Derivative Estimates

We now move on to establishing derivative bounds for solutions to (B-R-D-C) on D̄T . We

first need the following:
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Lemma‡ 5.12 (Derivative Estimate). Let f ∈ Hα for some α ∈ (0,1] and u ∶ D̄T → R be

a solution to (B-R-D-C) on D̄T . Then,

∣ux(x, t)∣ ≤
2MT√
π

(1 + T 1
2 ) +M ′

0 ∀(x, t) ∈DT ,

where M ′
0 > 0 is an upper bound for ∣u′0∣ ∶ R → R and MT > 0 is an upper bound for

∣f ○ u∣ ∶ D̄T → R.

Proof. Let u ∶ D̄T → R be a solution to (B-R-D-C) on D̄T . Then, via Lemma 5.10 and

Lemma 5.9, for any (x, t) ∈DT ,

ux(x, t) = ( 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ)

x

+ ( 1√
π
∫

t

0
∫

∞

−∞
f(u(x + 2

√
t − τλ, τ))e−λ2dλdτ)

x

= 1
√
πt

1
2
∫

∞

−∞
u0(x + 2

√
tλ)λe−λ2dλ

+ lim
n→∞

1√
π
∫

t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) 1
2

λe−λ
2

dλdτ

= 1√
π
∫

∞

−∞
u′0(x + 2

√
tλ)e−λ2dλ

+ lim
n→∞

1√
π
∫

t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) 1
2

λe−λ
2

dλdτ

following an integration by parts. It follows that, for any (x, t) ∈DT ,

∣ux(x, t)∣ ≤
1√
π
∫

∞

−∞
∣u′0(x + 2

√
tλ)∣e−λ2dλ

+ lim
n→∞

1√
π

∣∫
t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) 1
2

λe−λ
2

dλdτ ∣

≤M ′
0 + lim

n→∞

1√
π

∣∫
t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) 1
2

λe−λ
2

dλdτ ∣ . (5.63)

Now, for any (x, t) ∈DT and 0 < 1/n <min{1, t},

∣∫
t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) 1
2

λe−λ
2

dλdτ ∣
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≤ ∫
t−1/n

0
∫

∞

−∞

∣f(u(x + 2
√
t − τλ, τ))∣

(t − τ) 1
2

∣λ∣e−λ2dλdτ

≤MT (∫
t−1/n

0

1

(t − τ) 1
2

dτ)(∫
∞

−∞
∣λ∣e−λ2dλ)

= 2MT (t
1
2 − (1/n)

1
2 )

≤ 2MT (T
1
2 + 1). (5.64)

It follows from (5.63) and (5.64), that

∣ux(x, t)∣ ≤M ′
0 +

2MT√
π

(1 + T 1
2 ) ∀(x, t) ∈DT ,

as required.

Remark 5.13. Observe that the proof of Lemma 5.12 only requires that the solution

u ∶ D̄T → R satisfies an integral equation as in Lemma 5.10 or Lemma 5.11. Therefore

Lemma 5.12 can also be established for f ∈ Lu. However, since subsequent applications

of this derivative estimate only concern f ∈Hα, it is stated as above. ⌟

We next have,

Lemma‡ 5.14. Let f ∈ Hα for some α ∈ (0,1] and let u ∶ D̄T → R be a solution to

(B-R-D-C) on D̄T . Then f ○ u ∶ D̄T → R satisfies

∣f(u(y, t)) − f(u(x, t))∣ ≤ kT ∣y − x∣α ∀ (x, t), (y, t) ∈ D̄T

where

kT = kE (2MT√
π

(1 + T 1
2 ) +M ′

0)
α

and kE > 0 is a Hölder constant for f ∶ R → R on the closed bounded interval [−UT , UT ],

with UT > 0 being an upper bound for ∣u∣ ∶ D̄T → R.

Proof. Let (x, t), (y, t) ∈DT , then u(x, t), u(y, t) ∈ [−UT , UT ], and so, since f ∈Hα, then

∣f(u(y, t)) − f(u(x, t))∣ ≤ kE ∣u(y, t) − u(x, t)∣α (5.65)
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where kE > 0 is a Hölder constant for f ∶ R→ R on the closed bounded interval [−UT , UT ].

However it follows from the mean value theorem together with Lemma 5.12, that

∣u(y, t) − u(x, t)∣ ≤ (2MT√
π

(1 + T 1
2 ) +M ′

0) ∣y − x∣. (5.66)

Combining (5.65) and (5.66) we obtain

∣f(u(y, t)) − f(u(x, t))∣ ≤ kT ∣y − x∣α ∀ (x, t), (y, t) ∈DT , (5.67)

with

kT = kE (2MT√
π

(1 + T 1
2 ) +M ′

0)
α

.

Now, for fixed x, y ∈ R, the left-hand side of (5.67) is continuous for t ∈ [0, T ], whilst the

right-hand side of (5.67) is independent of t. It follows that the inequality (5.67) extends

from DT onto D̄T , and the proof is complete.

We are now in a position to state,

Lemma‡ 5.15 (Derivative Estimates). Let f ∈ Hα for some α ∈ (0,1] and u ∶ D̄T → R be

a solution to (B-R-D-C) on D̄T . Then,

∣uxx(x, t)∣ ≤
2α+1Iα
α
√
π
kT (1 + T

1
2
α) +M ′′

0 ∀(x, t) ∈DT ,

∣ut(x, t)∣ ≤
2α+1Iα
α
√
π
kT (1 + T

1
2
α) +M ′′

0 +MT ∀(x, t) ∈DT ,

where M ′′
0 > 0 is an upper bound for ∣u′′0 ∣ ∶ R→ R and

Iα = ∫
∞

−∞
∣λ∣α∣λ2 − 1/2∣e−λ2dλ (> 0).

Proof. Let u ∶ D̄T → R be a solution to (B-R-D-C) on D̄T . Then ux exists and is bounded

on DT , via Lemma 5.12. It then follows, via Lemma 5.9 and Lemma 5.10, for any
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(x, t) ∈DT ,

uxx(x, t) = ( 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ)

xx

+ ( 1√
π
∫

t

0
∫

∞

−∞
f(u(x + 2

√
t − τλ, τ))e−λ2dλdτ)

xx

= 1√
πt
∫

∞

−∞
u0(x + 2

√
tλ)(λ2 − 1/2)e−λ2dλ

+ lim
n→∞

1√
π
∫

t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) (λ2 − 1/2)e−λ2dλdτ

= 1√
π
∫

∞

−∞
u′′0(x + 2

√
tλ)e−λ2dλ

+ lim
n→∞

1√
π
∫

t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) (λ2 − 1/2)e−λ2dλdτ

following an integration by parts. Thus, for any (x, t) ∈DT ,

∣uxx(x, t)∣ ≤
1√
π
∫

∞

−∞
∣u′′0(x + 2

√
tλ)∣e−λ2dλ

+ lim
n→∞

1√
π

∣∫
t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) (λ2 − 1/2)e−λ2dλdτ ∣

≤M ′′
0 + lim

n→∞

1√
π

∣∫
t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) (λ2 − 1/2)e−λ2dλdτ ∣ (5.68)

Now, for any (x, t) ∈DT and 0 < 1/n <min{1, t},

1√
π

∣∫
t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) (λ2 − 1/2)e−λ2dλdτ ∣

≤ 1√
π

∣∫
t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ)) − f(u(x, τ))

(t − τ) (λ2 − 1/2)e−λ2dλdτ ∣

+ 1√
π

∣∫
t−1/n

0
∫

∞

−∞

f(u(x, τ))(λ2 − 1/2)
(t − τ) e−λ

2

dλdτ ∣ (5.69)

via the triangle inequality. However, the second term on the right-hand side of (5.69)

vanishes, and so

1√
π

∣∫
t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) (λ2 − 1/2)e−λ2dλdτ ∣
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≤ 1√
π

∣∫
t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ)) − f(u(x, τ))

(t − τ) (λ2 − 1/2)e−λ2dλdτ ∣

≤ 1√
π
∫

t−1/n

0
∫

∞

−∞

∣f(u(x + 2
√
t − τλ, τ)) − f(u(x, τ))∣

(t − τ) ∣λ2 − 1/2∣e−λ2dλdτ

≤ 2αkT√
π
∫

t−1/n

0
∫

∞

−∞

∣λ∣α∣λ2 − 1/2∣
(t − τ)1−α/2

e−λ
2

dλdτ (via Lemma 5.14) (5.70)

≤ 2αIαkT√
π
∫

t−1/n

0

1

(t − τ)1−α/2
dτ

≤ 2α+1IαkT
α
√
π

(tα/2 − 1/nα/2)

≤ 2α+1IαkT
α
√
π

(1 + Tα/2), (5.71)

where

Iα = ∫
∞

−∞
∣λ∣α∣λ2 − 1/2∣e−λ2dλ (> 0). (5.72)

It follows from (5.68) and (5.71) that

∣uxx(x, t)∣ ≤M ′′
0 +

2α+1IαkT
α
√
π

(1 + T α
2 ) ∀(x, t) ∈DT , (5.73)

as required. Now, since u ∶ D̄T → R is a solution to (B-R-D-C) on D̄T , then

ut(x, t) = uxx(x, t) + f(u(x, t)) ∀(x, t) ∈DT , (5.74)

via Definition 2.1. Thus, via the triangle inequality and (5.73),

∣ut(x, t)∣ ≤ ∣uxx(x, t)∣ + ∣f(u(x, t))∣

≤MT +M ′′
0 +

2α+1IαkT (1 + T
α
2 )

α
√
π

∀(x, t) ∈DT , (5.75)

as required.

An additional useful result is,

Corollary‡ 5.16. Let f ∈ Hα for some α ∈ (0,1] and u ∶ D̄T → R be a solution to

(B-R-D-C) on D̄T . Then u is uniformly continuous on D̄T .
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Proof. It follows from Lemma 5.12 and Lemma 5.15 together with the mean value theo-

rem, that

∣u(x2, t2) − u(x1, t1)∣ ≤M(∣x2 − x1∣ + ∣t2 − t1∣) ∀(x2, t2), (x1, t1) ∈DT ,

with M > 0 being the maximum of the derivative bounds for ux and ut on DT . Since u is

continuous on D̄T , it follows that

∣u(x2, t2) − u(x1, t1)∣ ≤M(∣x2 − x1∣ + ∣t2 − t1∣) ∀(x2, t2), (x1, t1) ∈ D̄T ,

and the result follows.

Remark 5.17. For fixed α ∈ (0,1] and T > 0, Lemma 5.12 and Lemma 5.15 establish

that for any solution u ∶ D̄T → R of (B-R-D-C) on D̄T , then ∣ut∣, ∣ux∣ and ∣uxx∣ are bounded

on DT , with bounds which only depend upon α, T , ∣∣u′0∣∣B, ∣∣u′′0 ∣∣B, ∣∣f ○ u∣∣A, ∣∣u∣∣A and a

Hölder constant for f on [−UT , UT ] with UT being an upper bound for ∣∣u∣∣A. Such results

are often referred to as Schauder Estimates for (B-R-D-C) (after J. Schauder [67], [68] of

whose results for elliptic problems were extended to parabolic problems by A. Friedman,

[21]). For additional information concerning the development of these type of results, see

[26] and [61]. ⌟
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CHAPTER 6

THE PROBLEM (B-R-D-C) WITH f ∈ L

This chapter contains the classical global well-posedness result for a priori bounded (B-

R-D-C) with f ∈ L and u0 ∈ BPC2(R). Uniqueness is established via an application of

a maximum principle, such as Theorem 3.6 and is used to prove a Local Existence and

Uniqueness result via an application of the Banach fixed point theorem. This result is

extended to a Global Existence and Uniqueness result for a priori bounded (B-R-D-C). A

continuous dependence result is obtained via an application of the generalised Gronwall’s

inequality (Proposition 5.6) to the integral equation in the Hölder Equivalence Lemma

5.10. These results are combined to obtain the global well-posedness result. It should be

noted that all results marked with † in this chapter are adapted from standard results in

[55]. To begin,

Theorem† 6.1 (Uniqueness). Let f ∈ L. Then (B-R-D-C) has at most one solution on

D̄T for any T > 0.

Proof. Let u(1) ∶ D̄T → R and u(2) ∶ D̄T → R both be solutions to (B-R-D-C) on D̄T . We

now define the function h ∶ D̄T → R by

h(x, t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(u(2)(x,t))−f(u(1)(x,t))
(u(2)(x,t)−u(1)(x,t)) ;u(2)(x, t) /= u(1)(x, t)

0 ;u(2)(x, t) = u(1)(x, t).
(6.1)

Since u(2) and u(1) are bounded on D̄T , it follows since f ∈ L, that h is bounded on D̄T .
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Next introduce w ∶ D̄T → R such that

w(x, t) = u(2)(x, t) − u(1)(x, t) ∀(x, t) ∈ D̄T . (6.2)

Thus w is bounded and continuous on D̄T , and such that wt, wx and wxx all exist and are

continuous on DT . Moreover,

wt −wxx − h(x, t)w = 0 on DT ,

w = 0 on ∂D. (6.3)

It follows from (6.3) and Theorem 3.6 that w ≤ 0 on D̄T , and so, u(1) ≥ u(2) on D̄T . By

considering w′ ∶ D̄T → R defined to be

w′(x, t) = u(1)(x, t) − u(2)(x, t) ∀(x, t) ∈ D̄T ,

by a symmetrical argument it is established that u(2) ≥ u(1), hence u(1) = u(2), as required.

We can now state the first existence and uniqueness result as follows,

Theorem† 6.2 (Local Existence and Uniqueness). Let f ∈ L. Then (B-R-D-C) has a

unique solution on D̄δ, where

δ = 1

2k0 + ∣f(0)∣

and k0 > 0 is a Lipschitz constant for f ∶ R→ R on the interval [−σ,σ]. Here σ = 2∣∣u0∣∣B+1.

Moreover ∣∣u∣∣A ≤ 2∣∣u0∣∣B + 1 on D̄δ.

Proof. We consider the closed, bounded subset B̂δ
A of the Banach space Bδ

A, equipped

with ∣∣ ⋅ ∣∣A, where

B̂δ
A = {v ∶ D̄δ → R ∶ v ∈ Bδ

A and ∣∣v∣∣A ≤ 2∣∣u0∣∣B + 1}. (6.4)
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We note that B̂δ
A is complete as it is a closed, bounded subset of Bδ

A. Here

δ = 1

2k0 + ∣f(0)∣ ≤
1

2k0

,

with k0 being a Lipschitz constant for f ∶ R → R on the interval [−σ,σ], where

σ = 2∣∣u0∣∣B + 1. That is

∣f(X) − f(Y )∣ ≤ k0∣X − Y ∣ ∀X,Y ∈ [−σ,σ]. (6.5)

We now define the following mapping G ∶ B̂δ
A → Bδ

A such that

G(v) = 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ

+ 1√
π
∫

t

0
∫

∞

−∞
f(v(x + 2

√
t − τλ, τ))e−λ2dλdτ (6.6)

for any v ∈ B̂δ
A. Via Lemma 5.8 G is well-defined as a mapping from B̂δ

A into Bδ
A. We

must now show that Im(G) ⊆ B̂δ
A. Let v ∈ B̂δ

A, then

∣∣G(v)∣∣A ≤ 1√
π

∣∣∫
∞

−∞
u0(x + 2

√
tλ)e−λ2dλ∣∣

A

+ 1√
π

∣∣∫
t

0
∫

∞

−∞
f(v(x + 2

√
t − τλ, τ))e−λ2dλdτ ∣∣

A

≤ 1√
π

sup
(x,t)∈D̄δ

{∫
∞

−∞

∣u0(x + 2
√
tλ)∣ e−λ2dλ}

+ 1√
π

sup
(x,t)∈D̄δ

{∫
t

0
∫

∞

−∞

∣f(v(x + 2
√
t − τλ, τ))∣ e−λ2dλdτ}

≤ ∣∣u0∣∣B + δ∣∣f(v)∣∣A. (6.7)

However, v ∈ B̂δ
A so that v(x, t) ∈ [−σ,σ] for all (x, t) ∈ D̄δ. Hence,

∣f(v(x, t))∣ ≤ ∣f(v(x, t)) − f(0)∣ + ∣f(0)∣ ≤ k0∣v(x, t)∣ + ∣f(0)∣ ∀(x, t) ∈ D̄δ
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via (6.5). Hence (recalling f(v) ∈ Bδ
A)

∣∣f(v)∣∣A ≤ k0∣∣v∣∣A + ∣f(0)∣.

Thus (6.7) leads to

∣∣G(v)∣∣A ≤ ∣∣u0∣∣B + δ(k0∣∣v∣∣A + ∣f(0)∣)

≤ ∣∣u0∣∣B + δ(k0(2∣∣u0∣∣B + 1) + ∣f(0)∣) as v ∈ B̂δ
A

= ∣∣u0∣∣B +
k0(2∣∣u0∣∣B + 1) + ∣f(0)∣

2k0 + ∣f(0)∣

= ∣∣u0∣∣B +
2k0∣∣u0∣∣B

2k0 + ∣f(0)∣ +
k0 + ∣f(0)∣
2k0 + ∣f(0)∣

≤ ∣∣u0∣∣B + ∣∣u0∣∣B + 1

= 2∣∣u0∣∣B + 1.

Therefore, by definition

G(v) ∈ B̂δ
A ∀v ∈ B̂δ

A,

and so Im(G) ⊆ B̂δ
A, as required. Next we show that G ∶ B̂δ

A → B̂δ
A is a Contraction

Mapping. For any v, w ∈ B̂δ
A, we have

∣∣G(v) −G(w)∣∣A

= 1√
π

∣∣∫
t

0
∫

∞

−∞

[f(v(x + 2
√
t − τ λ, τ)) − f(w(x + 2

√
t − τ λ, τ))] e−λ2dλdτ ∣∣

A

≤ 1√
π

sup
(x,t)∈D̄δ

{∫
t

0
∫

∞

−∞

∣f(v(x + 2
√
t − τ λ, τ)) − f(w(x + 2

√
t − τ λ, τ))∣ e−λ2dλdτ} .

Now, as v,w ∈ B̂δ
A, then v(x, t), w(x, t) ∈ [−σ, σ] ∀ (x, t) ∈ D̄δ . Thus,

∣f(v(x, t)) − f(w(x, t))∣ ≤ k0 ∣v(x, t) −w(x, t)∣
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for all (x, t) ∈ D̄δ, via (6.5). Then,

∣∣G(v) −G(w)∣∣A

≤ k0√
π

sup
(x,t)∈D̄δ

{∫
t

0
∫

∞

−∞

∣v(x + 2
√
t − τ λ, τ) −w(x + 2

√
t − τ λ, τ)∣ e−λ2dλdτ}

≤ k0√
π
∣∣v −w∣∣A∫

δ

0
∫

∞

−∞
e−λ

2

dλdτ

≤ k0δ∣∣v −w∣∣A

≤ 1

2
∣∣v −w∣∣A,

since δ ≤ 1
2k0

. Therefore,

∣∣G(v) −G(w)∣∣A ≤ 1

2
∣∣v −w∣∣A

for all v,w ∈ B̂δ
A. We conclude that G ∶ B̂δ

A → B̂δ
A is a contraction mapping, and so the

Banach Fixed Point Theorem establishes that G has a unique fixed point in B̂δ
A. That is,

there exists a unique u∗ ∈ B̂δ
A such that u∗ = G(u∗), and so

u∗(x, t) = G(u∗(x, t))

= 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ

+ 1√
π
∫

t

0
∫

∞

−∞
f(u∗(x + 2

√
t − τ λ, τ))e−λ2dλdτ ∀(x, t) ∈ D̄δ.

We conclude that the integral equation (a) in Lemma 5.10 has a solution in B̂δ
A, namely,

u∗ ∈ B̂δ
A. Hence via Lemma 5.10, u∗ is a solution of (B-R-D-C) in B̂δ

A. Thus we have

exhibited that (B-R-D-C) has a solution, u∗, on D̄δ. Uniqueness follows directly from

Theorem 6.1.

Example† 6.3. Consider (B-R-D-C) with f ∶ R→ R defined by

f(u) = u2(1 − u3) ∀u ∈ R. (6.8)

We observe immediately that f ∈ L. We may conclude from Theorem 6.2 that (B-R-D-C)
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has a unique solution on D̄δ, where δ = 1
2k0

since f(0) = 0, and k0 is a Lipschitz constant

for f on [−σ,σ] with σ = 2∣∣u0∣∣B + 1. We now calculate a suitable k0. Observe that f has

a bounded derivative on [−σ,σ] for any σ > 0:

f ′(u) = 2u − 5u4 ∀u ∈ [−σ,σ]

so that

∣f ′(u)∣ ≤ 2σ + 5σ4 ∀u ∈ [−σ,σ].

Thus,

k0 = 2σ + 5σ4 = 2(2∣∣u0∣∣B + 1) + 5(2∣∣u0∣∣B + 1)4

provides a suitable Lipschitz constant. We conclude that (B-R-D-C) has a unique solution

at least up to t = δ; that is, on D̄δ where

δ = 1

2(2∣∣u0∣∣B + 1)(2 + 5(2∣∣u0∣∣B + 1)3) . ⌟

We next consider how and when a local solution to (B-R-D-C) on D̄δ may be extended

to a global solution on D̄T for given T > 0. We have the following theorem:

Theorem† 6.4 (Global Existence). Let f ∈ L. Suppose that (B-R-D-C) is a priori bounded

on D̄T for any 0 ≤ T ≤ T ∗ (with bound lT ). Then (B-R-D-C) has a unique solution on

D̄T ∗.

Proof. Let k∗ be a Lipschitz constant for f on [−2lT ∗ − 1,2lT ∗ + 1]. Now put

δ = 1

2k∗ + ∣f(0)∣ .

Then, via Theorem 6.2, (B-R-D-C) has a solution u on D̄δ, since ∣∣u0∣∣B ≤ l0 ≤ lT ∗ (via

the a priori bound) and so [−2∣∣u0∣∣B − 1, 2∣∣u0∣∣B + 1] ⊆ [−2lT ∗ − 1, 2lT ∗ + 1] and hence k∗

provides a Lipschitz constant for f on [−2∣∣u0∣∣B − 1, 2∣∣u0∣∣B + 1]. Since (B-R-D-C) is a
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priori bounded on D̄T for each 0 ≤ T ≤ T ∗, then

∣∣u∣∣A ≤ lδ on D̄δ,

and so

∣∣u(⋅, δ)∣∣B ≤ lδ ≤ lT ∗ .

We can therefore extend u again by applying Theorem 6.2 with k = k∗. Thus u is extended

onto D̄2δ. By construction, u ∶ D̄2δ → R solves (B-R-D-C), provided we can establish that

ut, ux, uxx exist and are continuous across t = δ, for all −∞ < x < ∞. To this end we

observe, via the a priori bound, that

∣∣u(⋅, δ/2)∣∣B ≤ lδ/2 ≤ lT ∗

and we may construct a function φ ∶ (−∞,∞) × [ δ
2 ,

3δ
2
] → R, which solves (B-R-D-C)

on (−∞,∞) × [ δ
2 ,

3δ
2
] with φ(x, δ2) = u(x, δ2) ∀ x ∈ (−∞,∞). This follows again from

Theorem 6.2. Now φt, φx and φxx exist and are continuous in (−∞,∞)×( δ2 , 3δ
2 ]. Moreover,

uniqueness in Theorem 6.1 requires that, φ = u on (−∞,∞)×[ δ
2 ,

3δ
2
]. It follows that ut, ux

and uxx exist and are continuous across t = δ.

Thus we have extended the solution to (B-R-D-C), from D̄δ onto D̄2δ. Repeated

application of this procedure enables us to extend the solution of (B-R-D-C) onto D̄Nδ

with N ∈ N such that, (N − 1)δ < T ∗ ≤ Nδ. Uniqueness follows from Theorem 6.1, and

the proof is complete.

Remark 6.5. Let f ∈ L. When (B-R-D-C) is a priori bounded on D̄T with 0 ≤ T ≤ T ∗, for

every T ∗ > 0, then (B-R-D-C) has a unique solution on D̄∞ (with D̄∞ = (−∞,∞)×[0,∞)).

It should be noted that it is often the case when considering initial value problems to refer

to global solutions as those which exist on D̄∞. However, here the convention is inherited

from [55]. ⌟

It remains in this section to provide a continuous dependence result for (B-R-D-C)
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with f ∈ L. Before this, we introduce the following comparison theorem:

Theorem† 6.6 (Lipschitz Comparison). Let f ∈ L. Furthermore let u and u be a regular

super-solution and a regular sub-solution respectively to (B-R-D-C) on D̄T . Then,

u(x, t) ≤ u(x, t) ∀ (x, t) ∈ D̄T .

Proof. Define w ∶ D̄T → R, by

w(x, t) = u(x, t) − u(x, t) ∀(x, t) ∈ D̄T . (6.9)

Then, on DT , we have via Definition 2.2,

wt −wxx − h(x, t)w ≡ N[u] −N[u] ≤ 0, (6.10)

where

h(x, t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 ; when u = u on D̄T

(f(u)−f(u))
(u−u) ; when u ≠ u on D̄T .

Now as u, u ∶ D̄T → R are continuous and uniformly bounded as ∣x∣ → ∞ for t ∈ [0, T ],

then both u and u are bounded on D̄T , say ∣u∣, ∣u∣ ≤M on D̄T for some constant M ≥ 0.

It then follows via Definition 2.4 that there exists a constant kM > 0 such that

∣f(X) − f(Y )∣
∣X − Y ∣ ≤ kM

for all X,Y ∈ [−M,M] with X /= Y . Thus h(x, t) is bounded above by kM on D̄T .

Furthermore via Definition 2.2,

w(x,0) ≤ 0 ∀x ∈ R. (6.11)
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A direct application of Theorem 3.6 with (6.10) and (6.11) establishes that

w(x, t) ≤ 0 ∀(x, t) ∈ D̄T ,

and via (6.9) we have

u(x, t) ≤ u(x, t) ∀(x, t) ∈ D̄T ,

as required.

We now have the following continuous dependence theorem.

Theorem† 6.7 (Lipschitz Continuous Dependence). Let f ∈ L′. Suppose that

u1, u2 ∶ D̄T → R are solutions to (B-R-D-C) with initial data u10, u20 ∈ BPC 2(R) and re-

action function f ∶ R2 → R with parameters α1 and α2 respectively, with

∣∣u1∣∣A, ∣∣u2∣∣A ≤M, ∣α1∣, ∣α2∣ ≤ a.

Then,

∣∣u1(⋅, t) − u2(⋅, t)∣∣B ≤ (∣∣u10 − u20∣∣B + kA∣α1 − α2∣t) ekU t ∀t ∈ [0, T ],

where kU and kA are the positive constants arising for f ∈ L′ when U = [−M,M] and

A = [−a, a] in Definition 2.11.

Proof. Since (ui(x, t), αi) ∈ U × A for all (x, t) ∈ D̄T and f ∈ L′, there exist constants

kU , kA > 0 such that

∣f(u1(x, t), α1)−f(u2(x, t), α2)∣ ≤ kU ∣u1(x, t)−u2(x, t)∣+kA∣α1−α2∣ ∀(x, t) ∈ D̄T . (6.12)

Now, since u1 and u2 are solutions to (B-R-D-C), then, via Lemma 5.10 and (6.12),

∣u1(x, t) − u2(x, t)∣

≤ 1√
π
∫

∞

−∞

∣u10(x + 2
√
tλ) − u20(x + 2

√
tλ))∣ e−λ2dλ
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+ 1√
π
∫

t

0
∫

∞

−∞

∣f(u1(x + 2
√
t − τλ, τ), α1) − f(u2(x + 2

√
t − τλ, τ), α2)∣ e−λ

2

dλdτ

≤ 1√
π
∫

∞

−∞
∣∣u10 − u20∣∣Be−λ

2

dλ

+ 1√
π
∫

t

0
∫

∞

−∞

(kU ∣u1(x + 2
√
t − τλ, τ) − u2(x + 2

√
t − τλ, τ)∣ + kA∣α1 − α2∣) e−λ

2

dλdτ

≤ ∣∣u10 − u20∣∣B +
1√
π
∫

t

0
∫

∞

−∞
kU ∣∣u1(⋅, τ) − u2(⋅, τ)∣∣Be−λ

2

dλdτ + kA∣α1 − α2∣t

≤ ∣∣u10 − u20∣∣B + kA∣α1 − α2∣t + ∫
t

0
kU ∣∣u1(⋅, τ) − u2(⋅, τ)∣∣Bdτ ∀(x, t) ∈ D̄T . (6.13)

Now, since the right hand side of (6.13) is independent of x, upon taking the supremum

over all x ∈ R on the left hand side, we obtain

∣∣u1(⋅, t)−u2(⋅, t)∣∣B ≤ ∣∣u10 −u20∣∣B +kA∣α1 −α2∣t+∫
t

0
kU ∣∣u1(⋅, τ)−u2(⋅, τ)∣∣Bdτ ∀t ∈ [0, T ].

Now since kA > 0 and ∣∣u10−u20∣∣B+kA∣α1−α2∣t is non-decreasing in t and ∣∣u1(⋅, t)−u2(⋅, t)∣∣B

is continuous for all t ∈ [0, T ] (via Corollary 5.16), via Proposition 5.6, we have

∣∣u1(⋅, t) − u2(⋅, t)∣∣B ≤ (∣∣u10 − u20∣∣B + kA∣α1 − α2∣t)ekU t ∀t ∈ [0, T ].

This completes the proof.

Next, we have:

Theorem† 6.8. Let f ∈ L. Suppose that (B-R-D-C) has a solution u∗ ∶ D̄T → R when

u0 = u∗0 ∈ BPC 2(R) (which is unique). Let M = ∣∣u∗∣∣A ≥ 0. Then there exists δ > 0

(depending on f , M and T ) such that (B-R-D-C) has a solution u ∶ D̄T → R (which is

unique) for every u0 ∈ BPC 2(R) with

∣∣u0 − u∗0 ∣∣B < δ and ∣∣u∣∣A ≤ 3

2
M.
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Proof. To begin, we introduce the function f̄ ∈ L such that

f̄(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(−(2M + 1)) ;−∞ < u ≤ −(2M + 1)

f(u) ;−(2M + 1) ≤ u ≤ (2M + 1)

f((2M + 1)) ; (2M + 1) ≤ u <∞

and consider (B-R-D-C) with reaction function f̄ ∈ L, which we denote as (B-R-D-C).

Observe that u∗ ∶ D̄T → R is the unique solution of (B-R-D-C) with u0 = u∗0 ∈ BPC2(R).

Now take 0 < δ < 1, and u0 ∈ BPC2(R) such that

∣∣u0 − u∗0 ∣∣B ≤ δ. (6.14)

Let u ∶ D̄T → R be any corresponding solution to (B-R-D-C). It follows from the Lipschitz

Comparison Theorem 6.6 that

−(∣∣u0∣∣B +M ′t) ≤ u(x, t) ≤ (∣∣u0∣∣B +M ′t) ∀(x, t) ∈ D̄T , (6.15)

where, M ′ is given by

M ′ = sup
u∈R

∣f(u)∣ = sup
∣u∣≤2M+1

∣f(u)∣.

Thus, via (6.14) and (6.15),

∣∣u∣∣A ≤ (M + 1) +M ′T, (6.16)

and so (B-R-D-C) is a priori bounded on D̄T and it follows from the Global Existence

Theorem 6.4, that (B-R-D-C) with u0 ∈ BPC2(R) satisfying (6.14) has a unique global

solution on D̄T , say u ∶ D̄T → R, and this solution satisfies (6.16), which is independent

of δ. It also follows, via (6.16) and (6.14), and the Lipschitz Continuous Dependence

Theorem 6.7, that

∣∣u(⋅, t) − u∗(⋅, t)∣∣B ≤ δekU t ∀t ∈ [0, T ], (6.17)

with kU > 0 being a Lipschitz constant for f̄ ∈ L on [−((M +1)+M ′T ), ((M +1)+M ′T )].
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Note that for any closed bounded interval E ⊂ R, the Lipschitz constant for f on E will

also be a Lipschitz constant for f on E. Now, choose

δ = 1

2
Me−kUT , (6.18)

after which we obtain from (6.17),

∣∣u(⋅, t)∣∣B ≤ ∣∣u∗(⋅, t)∣∣B +
1

2
MekU (t−T ) ≤M + 1

2
M = 3M/2 ∀t ∈ [0, T ],

from which we have

∣∣u∣∣A ≤ 3M/2. (6.19)

An immediate consequence of (6.19) is that u ∶ D̄T → R is a solution to (B-R-D-C) on

D̄T , and is unique (via Uniqueness Theorem 6.1). Thus we have established that for each

u0 ∈ BPC2(R) which satisfies (6.14), with δ given by (6.18), then (B-R-D-C) has a unique

solution on D̄T , and this solution satisfies (6.19), as required.

We are now in a position to state the main result of this section which encapsulates

the preceding results, namely:

Theorem† 6.9. Let f ∈ L. Suppose (B-R-D-C) is a priori bounded on D̄T for all T ≥ 0

and for all u0 ∈ BPC 2(R). Then (B-R-D-C) is globally well-posed on BPC 2(R).

Proof. Since (B-R-D-C) is a priori bounded on D̄T for each T > 0 and for each u0 ∈

BPC2(R), it follows from the Global Existence Theorem 6.4, that (B-R-D-C) has a unique

solution u ∶ D̄T → R for each T > 0 and for each u0 ∈ BPC2(R). Hence (P1) is satisfied.

This solution is unique, via the Uniqueness Theorem 6.1 (since f ∈ L), and so (P2) is

satisfied. Now let u∗0 ∈ BPC2(R) with corresponding solution u∗ ∶ D̄T → R. It follows from

Theorem 6.8 that there exists △ > 0 such that for all u0 ∈ BPC2(R) with ∣∣u0 − u∗0 ∣∣B < △,

then, ∣∣u∣∣A ≤ 3M/2, with M = ∣∣u∗∣∣A, and so ∣∣u∣∣A, ∣∣u∗∣∣A ≤ 3M/2. An application of the
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Lipschitz Continuous Dependence Theorem 6.7 then gives

∣∣u(⋅, t) − u∗(⋅, t)∣∣B ≤ ∣∣u0 − u∗0 ∣∣BekU t <△ekUT ∀t ∈ [0, T ], (6.20)

with kU being an Lipschitz constant for f ∈ L on [−3M/2,3M/2]. Thus, given any ε > 0,

take

△ = εe−kUT , (6.21)

after which, for each u0 ∈ BPC2(R) satisfying

∣∣u0 − u∗0 ∣∣B <△,

we have via (6.21) and (6.20),

∣∣u(⋅, t) − u∗(⋅, t)∣∣B < ε ∀t ∈ [0, T ],

and so

∣∣u − u∗∣∣A < ε,

and (P3) is satisfied. The proof is complete.

As a final note, we give a condition on solutions of (B-R-D-C) which cannot be con-

tinued beyond a finite time,

Theorem† 6.10 (Blow-up). Let f ∈ L and u0 ∈ BPC 2(R). Let u ∶ D̄T ∗/(R×{T ∗})→ R be a

solution to (B-R-D-C) which cannot be continued onto D̄T ∗. Then ∣∣u(⋅, t)∣∣B is unbounded

as t→ T ∗−.

Proof. Suppose that ∣∣u(⋅, t)∣∣B is bounded as t → T ∗−. Then ∣∣u(⋅, t)∣∣B is bounded for

t ∈ [0, T ∗). Hence there exists M > 0 such that

∣∣u(⋅, t)∣∣B ≤M ∀t ∈ [0, T ∗).
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Since f ∈ L, there exists a Lipschitz constant kM > 0 for f on [−σ,σ] where σ = 2M + 1.

Now consider (B-R-D-C) with initial data u∗0 ∶ R→ R where

u∗0(x) = u (x,T ∗ − δ/2) ∀x ∈ R,

δ = 1

2kM + ∣f(0)∣ .

It follows from Lemma 5.12 and Lemma 5.15 that u∗0 ∈ BPC2(R) and so, via Theorem

6.2, that there exists a function u∗ ∶ D̄δ → R that uniquely solves (B-R-D-C) with initial

data u∗0 ∶ R→ R. It follows that

u∗(x, t) = u (x,T ∗ − δ/2 + t) ∀(x, t) ∈ R × [0, δ/2) .

Therefore (as in the proof of Theorem 6.4) the function uc ∶ D̄T ∗+δ/2 → R, given by

uc(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u(x, t) ; (x, t) ∈ D̄T ∗/(R × {T ∗})

u∗(x, t) ; (x, t) ∈ R × [T ∗, T ∗ + δ/2]

solves (B-R-D-C) on D̄T ∗+δ/2, and is a continuation of u onto D̄T ∗+δ/2, and we arrive at a

contradiction. We conclude that ∣∣u(⋅, t)∣∣B must be unbounded as t→ T ∗−.

Remark 6.11. The theory developed within this chapter is an adaptation, for a more gen-

eral class of solutions and reaction functions, of the theory contained in [55]. Specifically,

in [55], a solution u ∶ D̄T → R to (B-R-D-C) satisfies Definition 2.1 with the additional

condition

u(x, t)→ 0 as ∣x∣→∞ uniformly for t ∈ [0, T ]

whilst the reaction function f ∈ L satisfies the corresponding condition f(0) = 0. These

restrictions have been removed in this thesis. ⌟
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CHAPTER 7

THE PROBLEM (B-R-D-C) WITH f ∈ Lu

This chapter follows a similar format to the previous chapter, but the extent of results is

not as broad as in Chapter 6. This is principally due to the lack of a generic existence

result for (B-R-D-C) with f ∈ Lu. However, a number of significant results relating to the

well-posedness of (B-R-D-C) have been obtained. We begin with a comparison theorem.

Theorem‡ 7.1 (Comparison). Let f ∈ Lu. Furthermore let u and u be a regular super-

solution and a regular sub-solution respectively to (B-R-D-C) on D̄T . Then,

u(x, t) ≤ u(x, t) ∀(x, t) ∈ D̄T .

Proof. Define w ∶ D̄T → R, by

w(x, t) = u(x, t) − u(x, t) ∀(x, t) ∈ D̄T . (7.1)

Then, on DT , we have via Definition 2.2,

wt −wxx − h(x, t)w ≡ N[u] −N[u] ≤ 0, (7.2)

where

h(x, t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 ; when u = u on D̄T

(f(u)−f(u))
(u−u) ; when u ≠ u on D̄T .

(7.3)
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Now as u, u ∶ D̄T → R are continuous and uniformly bounded as ∣x∣ → ∞ for t ∈ [0, T ],

then both u and u are bounded on D̄T , say ∣u∣, ∣u∣ ≤M on D̄T for some constant M ≥ 0.

It then follows via Proposition 2.8 that there exists a constant kM > 0 such that

f(X) − f(Y )
X − Y ≤ kM

for all X,Y ∈ [−M,M] with X ≠ Y . Thus h(x, t) is bounded above by kM on D̄T .

Furthermore, via Definition 2.2,

w(x,0) ≤ 0 ∀x ∈ R. (7.4)

A direct application of Theorem 3.6 with (7.2) and (7.4) establishes that

w(x, t) ≤ 0 ∀(x, t) ∈ D̄T ,

and via (7.1) we have

u(x, t) ≤ u(x, t) ∀(x, t) ∈ D̄T ,

as required.

It should be observed that a strong version of Theorem 7.1 is unobtainable as Example

3.4 illustrates. Moreover, observe that the proof of Theorem 7.1 differs from that of

Theorem 6.6 only in that an upper-Lipschitz constant is sufficient to show that h given

by (7.3) is bounded above. We are now able to establish uniqueness for (B-R-D-C) when

f ∈ Lu.

Theorem‡ 7.2 (Uniqueness for f ∈ Lu). Let f ∈ Lu, then the problem (B-R-D-C) has at

most one solution on D̄T for any T > 0.

Proof. Let u(1) ∶ D̄T → R and u(2) ∶ D̄T → R both be solutions to the (B-R-D-C) on D̄T .

It is trivial to show that if u is a solution to (B-R-D-C) on D̄T then, via Definition 2.2, u

is both a (R-S-P) and a (R-S-B) to (B-R-D-C) on D̄T . On taking u(1) and u(2) to be a
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(R-S-B) and (R-S-P) respectively, then via Theorem 7.1 we have

u(1) ≤ u(2) on D̄T .

By a symmetrical argument, we have

u(2) ≤ u(1) on D̄T .

Therefore,

u(1) = u(2) on D̄T ,

as required.

Remark 7.3. Although we have established that (B-R-D-C) has at most one solution on

D̄T when f ∈ Lu, it is yet to be established whether such a solution exists. This question

remains open at present. ⌟

We next establish a conditional continuous dependence result. We have,

Theorem‡ 7.4. Let f ∈ L′
u, and let u1, u2 ∶ D̄T → R be (unique) solutions to (B-R-D-C)

corresponding to u0 = u1
0 ∶ R → R and u0 = u2

0 ∶ R → R, where u1
0, u

2
0 ∈ BPC 2(R), and

α = α1 and α = α2, respectively. Let MU and MA be positive constants such that

max{∣∣u1∣∣A, ∣∣u2∣∣A} ≤MU , max{∣α1∣, ∣α2∣} ≤MA.

Suppose further that f = f(u,α) is non-decreasing with respect to α ∈ [−MA,MA] for each

u ∈ [−MU ,MU], and

α2 ≥ α1,

u2
0(x) − u1

0(x) ≥ 0 ∀x ∈ R, (7.5)

then

∣∣u2(⋅, t) − u1(⋅, t)∣∣B ≤ (∣∣u2
0 − u1

0∣∣B + kA(α2 − α1)t) ekU t ∀t ∈ [0, T ],
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where kA > 0 is a Lipschitz constant for f(u,α) with respect to α ∈ [−MA,MA] uniformly

for u ∈ [−MU ,MU], and, kU is an upper Lipschitz constant for f(u,α) with respect to

u ∈ [−MU ,MU] uniformly for α ∈ [−MA,MA].

Proof. Under the above conditions on f(u,α) for (u,α) ∈ [−MU ,MU] × [−MA,MA], it is

straightforward to verify that u1 ∶ D̄T → R is a regular sub-solution and u2 ∶ D̄T → R is a

regular super-solution to that (B-R-D-C) with α = α1 and u0 = u1
0. It then follows from

Comparison Theorem 7.1 (since f(⋅, αi) ∈ Lu for i = 1,2) that

u1(x, t) ≤ u2(x, t) ∀(x, t) ∈ D̄T .

Now, via the conditions on f(u,α) and Lemma 5.11 we have

0 ≤ (u2 − u1)(x, t)

≤ ∣∣u2
0 − u1

0∣∣B +
1√
π
∫

t

0
∫

∞

−∞
(f(u2, α2) − f(u1, α1))(x + 2

√
t − τλ, τ)e−λ2dλdτ

= ∣∣u2
0 − u1

0∣∣B +
1√
π
∫

t

0
∫

∞

−∞
(f(u2, α2) − f(u1, α2))(x + 2

√
t − τλ, τ)e−λ2dλdτ (7.6)

+ 1√
π
∫

t

0
∫

∞

−∞
(f(u1, α2) − f(u1, α1))(x + 2

√
t − τλ, τ)e−λ2dλdτ

≤ ∣∣u2
0 − u1

0∣∣B +
1√
π
∫

t

0
∫

∞

−∞
kU(u2 − u1)(x + 2

√
t − τλ, τ)e−λ2dλdτ + kA(α2 − α1)t

≤ ∣∣u2
0 − u1

0∣∣B + kA(α2 − α1)t + kU ∫
t

0
∣∣(u2 − u1)(⋅, τ)∣∣Bdτ ∀(x, t) ∈ D̄T . (7.7)

Since the right hand side of (7.7) is independent of x, then we have

∣∣(u2−u1)(⋅, t)∣∣B ≤ ∣∣u2
0−u1

0∣∣B+kA(α2−α1)t+kU ∫
t

0
∣∣(u2−u1)(⋅, τ)∣∣Bdτ ∀t ∈ [0, T ]. (7.8)

As ∣∣(u2 − u1)(⋅, t)∣∣B ∈ L1([0, T ]) (via Lemma 5.5), an application of Proposition 5.6 to

(7.8), gives

∣∣(u2 − u1)(⋅, t)∣∣B ≤ (∣∣u2
0 − u1

0∣∣B + kA(α2 − α1)t) ekU t ∀t ∈ [0, T ], (7.9)

86



as required.

A corollary to this result, which removes the ordering on the initial data, is,

Corollary‡ 7.5. Let f ∈ L′
u and satisfy all of the conditions given in Theorem 7.4. Let

u1 ∶ D̄T → R and u2 ∶ D̄T → R be as described in Theorem 7.4 with the exception of condi-

tion (7.5). In addition, let u3 ∶ D̄T → R be a (unique) solution to (B-R-D-C) corresponding

to u0 = u3
0 ∶ R→ R and α = α2. Let MA and MU be positive constants such that

max{∣∣u1∣∣A, ∣∣u2∣∣A, ∣∣u3∣∣A} ≤MU , max{∣α1∣, ∣α2∣} ≤MA.

Suppose that α2 ≥ α1 and for i = 1,2,

∣∣u3
0 − ui0∣∣B ≤ δ and u3

0(x) ≥ ui0(x) ∀x ∈ R

with δ ≥ 0. Then,

max
i,j=1,2,3

∣∣ui(⋅, t) − uj(⋅, t)∣∣B ≤ (2δ + tkA(α2 − α1)) ekU t ∀t ∈ [0, T ],

where kA > 0 and kU > 0 are as defined in Theorem 7.4.

Proof. We may apply Theorem 7.4 to obtain

∣∣u3(⋅, t) − u1(⋅, t)∣∣B ≤ (∣∣u3
0 − u1

0∣∣B + tkA(α2 − α1)) ekU t ∀t ∈ [0, T ], (7.10)

∣∣u3(⋅, t) − u2(⋅, t)∣∣B ≤ (∣∣u3
0 − u2

0∣∣B) ekU t ∀t ∈ [0, T ]. (7.11)

Now,

∣∣u2(⋅, t) − u1(⋅, t)∣∣B ≤ ∣∣u3(⋅, t) − u1(⋅, t)∣∣B + ∣∣u3(⋅, t) − u2(⋅, t)∣∣B

≤ (∣∣u3
0 − u1

0∣∣B + ∣∣u3
0 − u2

0∣∣B) ekU t + tkA(α2 − α1)ekU t (7.12)

87



for all t ∈ [0, T ], via (7.10), (7.11) and the triangle inequality. However,

max{∣∣u3
0 − u1

0∣∣B, ∣∣u3
0 − u1

0∣∣B} ≤ δ

and so, it follows from (7.12) that

∣∣u2(⋅, t) − u1(⋅, t)∣∣B ≤ (2δ + tkA(α2 − α1)) ekU t ∀t ∈ [0, T ]. (7.13)

The result follows from (7.10), (7.11) and (7.13).

We now have,

Theorem‡ 7.6. Let f ∈ Lu and suppose that (B-R-D-C) has a (unique) solution

u ∶ D̄T → R for every u0 ∈ BPC 2(R). Let u∗0 ∈ BPC 2(R) have the corresponding (unique)

solution u∗ ∶ D̄T → R. Then given any ε > 0, and any u0 ∈ BPC 2(R) such that

∣∣u0 − u∗0 ∣∣B < min{1

2
,
1

3
εe−kUT} ,

it follows that

∣∣u − u∗∣∣A < ε.

Here kU > 0 is an upper Lipschitz constant for f ∈ Lu on the interval [−MU ,MU], with

MU > 0 depending upon u∗0 and T .

Proof. Let u∗ ∶ D̄T → R be the (unique) solution to (B-R-D-C) with u0 = u∗0 ∈ BPC2(R),

and u∗δ ∶ D̄T → R be the (unique) solution to (B-R-D-C) with u0 = u∗0 + δ ∈ BPC2(R),

with 0 < δ ≤ 1/2. In addition, let u± ∶ D̄T → R be the unique solutions to (B-R-D-C) with

u0 = infx∈R u∗0(x) − 1 ∈ BPC2(R) and u0 = supx∈R u
∗
0(x) + 1 ∈ BPC2(R), respectively. It

follows from Theorem 7.2 and the translation invariance of the reaction-diffusion equa-

tion in (B-R-D-C), that there exist U+, U− ∈ C1([0, T ]) such that u+(x, t) = U+(t) and
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u−(x, t) = U−(t) for all (x, t) ∈ D̄T . Now let u0 ∈ BPC2(R) such that

∣∣u0 − u∗0 ∣∣B < δ, (7.14)

with corresponding solution u ∶ D̄T → R. It then follows from Comparison Theorem 7.1

with (7.14), that

U−(t) ≤ u∗(x, t) ≤ U+(t),

U−(t) ≤ u∗δ(x, t) ≤ U+(t), (7.15)

U−(t) ≤ u(x, t) ≤ U+(t),

for all (x, t) ∈ D̄T . Thus,

∣∣u∗∣∣A, ∣∣u∗δ ∣∣A, ∣∣u∣∣A ≤MU , (7.16)

where MU > 0 is given by

MU = max{ sup
t∈[0,T ]

∣U−(t)∣, sup
t∈[0,T ]

∣U+(t)∣} .

An application of Theorem 7.4 now gives

∣∣u∗δ(⋅, t) − u∗(⋅, t)∣∣B ≤ δekU t,

∣∣u(⋅, t) − u∗δ(⋅, t)∣∣B ≤ 2δekU t, (7.17)

for all t ∈ [0, T ] with kU > 0 being an upper Lipschitz constant for f ∈ Lu on [−MU ,MU].

It follows from (7.17) and the triangle inequality that

∣∣u(⋅, t) − u∗(⋅, t)∣∣B ≤ ∣∣u(⋅, t) − u∗δ(⋅, t)∣∣B + ∣∣u∗δ(⋅, t) − u∗(⋅, t)∣∣B ≤ 3δekU t ∀t ∈ [0, T ]. (7.18)

Now set δ = min{1
2 ,

1
3εe

−kUT} and the result follows from (7.14) and (7.18).

Corollary‡ 7.7. Under the conditions of Theorem 7.6, with BPC 2(R) replaced by
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BPC 2
+(R) throughout, then the same conclusion holds. Similarly, for any closed interval

I ⊂ R, BPC 2(R) may be replaced by either of

AI(R) = {u0 ∈ BPC 2(R) ∶ u0(x) ∈ I ∀x ∈ R} ,

AI+(R) = {u0 ∈ BPC 2
+(R) ∶ u0(x) ∈ I ∀x ∈ R} ,

with the same conclusion holding in Theorem 7.6.

Proof. For BPC2
+(R), the proof follows the same steps as the proof of Theorem 7.6 upon

replacing the initial data for u− ∶ D̄T → R from u0 = infx∈R{u∗0(x)} − 1 to u0 = 0 for all

x ∈ R, since the former is not guaranteed to be in the set BPC2
+(R). The proof is similar

for AI(R) and AI+(R).

We now have the following conditional global well-posedness result.

Corollary‡ 7.8. Let f ∈ Lu and suppose that (B-R-D-C) has a solution u ∶ D̄T → R for

every u0 ∈ BPC 2(R) and any T > 0. Then (B-R-D-C) is globally well-posed on BPC 2(R).

An equivalent statement holds with BPC 2(R) replaced by BPC 2
+(R), AI(R) or AI+(R).

Proof. For any of the initial data sets concerned, (P1) is satisfied according to the con-

ditions of the corollary and (P2) follows from Theorem 7.2. For BPC2(R), (P3) follows

from Theorem 7.6 and for BPC2
+(R), AI(R) and AI+(R), (P3) follows from Corollary 7.7.

The proof is complete.

With an additional technical condition on solutions of (B-R-D-C) with f ∈ Lu, we

can improve Corollary 7.8 to obtain a conditional uniform global well-posedness result,

namely,

Theorem‡ 7.9. Let f ∈ Lu and suppose that (B-R-D-C) has a (unique) solution

u ∶ D̄∞ → R for every u0 ∈ BPC 2(R). Let u∗0 ∈ BPC 2(R) have the corresponding (unique)

solution u∗ ∶ D̄∞ → R. Moreover, suppose that there exists T ′ ≥ 0, such that for any
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u0 ∈ BPC 2(R), the corresponding solution u ∶ D̄∞ → R satisfies

u(x, t) ∈ E ⊂ R ∀(x, t) ∈ D̄T ′
∞ ,

with E being a closed bounded interval and where f ∈ Lu is non-increasing on E. Then

given any ε > 0, there exists δ > 0, depending only upon T ′, u∗0, f and ε, such that for any

u0 ∈ BPC 2(R) that satisfies

∣∣u0 − u∗0 ∣∣B < δ,

it follows that for any T > 0,

∣∣(u − u∗)(⋅, t)∣∣B < ε ∀t ∈ [0, T ].

Proof. Without loss of generality let T ′ ≥ 1. Let u∗ ∶ D̄∞ → R be the unique solution to

(B-R-D-C) with u0 = u∗0 ∈ BPC2(R). In addition let u∗± ∶ D̄T ′ → R be the unique solutions

to (B-R-D-C) with u0 = infx∈R u∗0(x) − 1 ∈ BPC2(R) and u0 = supx∈R u
∗
0(x) + 1 ∈ BPC2(R),

respectively. It follows from Theorem 7.2 and the translational invariance of the reaction-

diffusion equation in (B-R-D-C), that there exist U+, U− ∈ C1([0, T ′]) such that u∗+(x, t) =

U+(t) and u∗−(x, t) = U−(t) for all (x, t) ∈ D̄T ′ . Now let

MU = sup
t∈[0,T ′]

{max{∣U−(t)∣, ∣U+(t)∣}}

and set kU > 0 to be an upper Lipschitz constant for f ∈ Lu on [−MU ,MU]. Then, given

ε > 0, via Theorem 7.6, there exists δ′ > 0, depending on T ′, u∗0, f and ε, such that, for all

u0 ∈ BPC2(R), with corresponding solution u ∶ D̄∞ → R, which satisfy ∣∣u0 − u∗0 ∣∣B ≤ δ′, we

have

∣∣(u − u∗)(⋅, t)∣∣B < ε

4(1 + 2T ′kU)
∀t ∈ [0, T ′]. (7.19)

Now, set

δ = min{δ′, 1

8
ε,1} (7.20)
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and henceforth consider u0 ∈ BPC2(R) such that ∣∣u0 − u∗0 ∣∣B < δ. Next, let u∗δ ∶ D̄∞ → R

be the unique solution to (B-R-D-C) with initial data u0 = u∗0 + δ ∈ BPC2(R). Then, via

Theorem 7.1,

max{u∗(x, t), u(x, t)} ≤ u∗δ(x, t) ∀(x, t) ∈ D̄∞. (7.21)

Thus, it follows from (7.21) and Lemma 5.11 that

0 ≤ u∗δ(x, t) − u(x, t)

= 1√
π
∫

∞

−∞

(u∗0(x + 2
√
tλ) + δ − u0(x + 2

√
tλ)) e−λ2dλ

+ 1√
π
∫

t

0
∫

∞

−∞

(f(u∗δ(x + 2
√
t − τλ, τ)) − f(u(x + 2

√
t − τλ, τ))) e−λ2dλdτ

≤ 2δ + 1√
π
∫

T ′

0
∫

∞

−∞

(f(u∗δ(x + 2
√
t − τλ, τ)) − f(u(x + 2

√
t − τλ, τ))) e−λ2dλdτ

+ 1√
π
∫

t

T ′
∫

∞

−∞

(f(u∗δ(x + 2
√
t − τλ, τ)) − f(u(x + 2

√
t − τλ, τ))) e−λ2dλdτ (7.22)

for all (x, t) ∈ D̄T ′
T and any T > T ′. In addition, it follows from (7.20) and Theorem 7.1

that

U−(t) ≤ u∗(x, t) ≤ U+(t),

U−(t) ≤ u∗δ(x, t) ≤ U+(t),

U−(t) ≤ u(x, t) ≤ U+(t)

for all (x, t) ∈ D̄T ′ . Thus, for BT ′
A , we conclude that

max{∣∣u∗∣∣A, ∣∣u∗δ ∣∣A, ∣∣u∣∣A} ≤MU . (7.23)

Therefore, it follows from (7.21), (7.19) and Lemma 5.5 that

1√
π
∫

T ′

0
∫

∞

−∞

(f(u∗δ(x + 2
√
t − τλ, τ)) − f(u(x + 2

√
t − τλ, τ))) e−λ2dλdτ

≤ 1√
π
∫

T ′

0
∫

∞

−∞
kU (u∗δ(x + 2

√
t − τλ, τ) − u(x + 2

√
t − τλ, τ)) e−λ2dλdτ
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≤ ∫
T ′

0
kU ∣∣(u∗δ − u)(⋅, τ)∣∣Bdτ

< ∫
T ′

0

2kUε

4(1 + 2T ′kU)
dτ

≤ 1

4
ε (7.24)

for all (x, t) ∈ D̄T ′
T . Additionally, since u∗δ(x, t), u(x, t) ∈ E for all (x, t) ∈ D̄T ′

T , then it

follows that

1√
π
∫

t

T ′
∫

∞

−∞

(f(u∗δ(x + 2
√
t − τλ, τ)) − f(u(x + 2

√
t − τλ, τ))) e−λ2dλdτ ≤ 0 (7.25)

for all (x, t) ∈ D̄T ′
T , via (7.21) and observing that f ∈ Lu is non-increasing on E. Thus, it

follows from (7.22), (7.24), (7.25) and (7.20) that

0 ≤ u∗δ(x, t) − u(x, t) < 2δ + 1

4
ε ≤ 1

4
ε + 1

4
ε = 1

2
ε (7.26)

for all (x, t) ∈ D̄T ′
T . Since the right hand side of (7.26) is independent of x, then we have

∣∣(u∗δ − u)(⋅, t)∣∣B < 1

2
ε (7.27)

for all t ∈ [T ′, T ]. Moreover, since (7.27) holds for any T ≥ T ′, it follows that (7.27) holds

for t ∈ [T ′,∞). Thus, we conclude from (7.20), (7.19) and (7.27) that

∣∣(u∗δ − u)(⋅, t)∣∣B < ε
2

(7.28)

for all t ∈ [0,∞). Thus, it follows from (7.28) that

∣∣(u∗ − u)(⋅, t)∣∣B ≤ ∣∣(u∗ − u∗δ)(⋅, t)∣∣B + ∣∣(u∗δ − u)(⋅, t)∣∣B < ε
2
+ ε

2
= ε

for all t ∈ [0,∞). The result then follows for δ given by (7.20), as required.

Corollary‡ 7.10. In Theorem 7.9, the initial data set BPC 2(R) can be replaced by either
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BPC 2
+(R), AI(R) or AI+(R) with the same conclusion holding.

Proof. For BPC2
+(R), the result follows on replacing BPC2(R) by BPC2

+(R) in the proof

of Theorem 7.9. The proof is similar for AI(R) and AI+(R).

Corollary‡ 7.11. Let f ∈ Lu and suppose that (B-R-D-C) has a solution u ∶ D̄∞ → R for

every u0 ∈ BPC 2(R). Moreover, suppose that there exists a time T ′ ≥ 0, such that for any

u0 ∈ BPC 2(R), the corresponding solution u ∶ D̄∞ → R satisfies

u(x, t) ∈ E ⊂ R ∀(x, t) ∈ D̄T ′
∞ ,

with E being a closed bounded interval and where f ∈ Lu is non-increasing on E. Then,

(B-R-D-C) is uniformly globally well-posed on BPC 2(R). An equivalent statement holds

with BPC 2(R) replaced by BPC 2
+(R), AI(R) or AI+(R).

Proof. For any u0 ∈ BPC2(R), BPC2
+(R), AI(R) or AI+(R), (P1) is satisfied according

to the conditions of the corollary and (P2) follows from Theorem 7.2. For BPC2(R),

(P3) follows from Theorem 7.9 and for BPC2
+(R), AI(R) and AI+(R), (P3) follows from

Corollary 7.10. The proof is complete.

Example 7.12. Consider the (B-R-D-C) with reaction function f ∈ Lu, given by

f(u) = [up]+ (u − 1/2) [(1 − u)q]+ ∀u ∈ R,

with p, q ∈ (0,1). We can immediately state,

(i) Suppose (B-R-D-C) has a solution u ∶ D̄∞ → R for all u0 ∈ BPC2(R). Then (B-R-D-

C) is globally well-posed on BPC2(R) via Corollary 7.8.

(ii) Suppose (B-R-D-C) has a solution u ∶ D̄∞ → R for all u0 ∈ AI(R) with I being a

closed bounded interval such that I ⊂ (−∞,1/2) or I ⊂ (1/2,∞). Then (B-R-D-C) is

uniformly globally well-posed on AI(R) via Corollary 7.11 upon taking E = [a, umin],

where a = min{0,min I} and umin ∈ (0,1/2) with f(umin) = infu∈R f(u), and E =
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[umax, b], where umax ∈ (1/2,1) with f(umax) = supu∈R f(u) and b = max{1,max I},

respectively. ⌟

Remark 7.13. The development of the theory in this chapter was motivated by the

observation in [36] that a related problem to (B-R-D-C) has uniqueness for f ∈ Lu together

with an associated comparison theorem, which suggests that development of the theory

when f ∈ Lu would be fruitful. It should be noted that non-increasing functions f ∈ Lu

have been considered in related problems (see Theorem 5, [21] (p.201)). For additional

development of the theory in this chapter see [50]. ⌟
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CHAPTER 8

THE PROBLEM (B-R-D-C) WITH f ∈Hα

In this chapter, we develop an approach to establishing a local existence result for f ∈Hα

with global existence obtained under the condition of a priori bounds. This approach

is a significant generalisation of that considered in [5] and [53] for specific cases of non-

Lipschitz continuous nonlinearities. However, unlike the corresponding result for f ∈ L

(Theorem 6.2), uniqueness is not obtained for f ∈Hα. Additionally, from the construction

of the local existence result for f ∈Hα, a conditional comparison theorem is obtained for

f ∈Hα. It should be noted that theory similar to what follows has been developed in [60]

and [14] using an alternative approach, relating principally to the Dirichlet problem on

compact spatial domains.

Definition 8.1. Let f ∈Hα for some α ∈ (0,1) and u0 ∈ BPC2(R). Let

S = {u ∶ D̄T → R ∶ u is a solution to the given (B-R-D-C) on D̄T} .

Then u ∶ D̄T → R is said to be a maximal solution to the given (B-R-D-C) when u ∈ S

and for all u ∈ S,

u(x, t) ≥ u(x, t) ∀(x, t) ∈ D̄T .

Correspondingly, u ∶ D̄T → R is said to be a minimal solution to the given (B-R-D-C)
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when u ∈ S and for all u ∈ S,

u(x, t) ≤ u(x, t) ∀(x, t) ∈ D̄T . ⌟

Remark 8.2. For a given (B-R-D-C), when u = u on D̄T , then (B-R-D-C) has a unique

solution on D̄T . ⌟

We now state one of the main results of this chapter.

Theorem‡ 8.3 (Local Hölder Existence). Consider (B-R-D-C) with f ∈ Hα for some

α ∈ (0,1), and u0 ∈ BPC 2(R). Then there exist a minimal and a maximal solution to

(B-R-D-C) on D̄δ, with

δ = min{(m0 + a′)
c′

,
(m0 − b′)

c′
} ≥ 1

c′
,

where m0 = ∣∣u0∣∣B + 1, a′ = infx∈R u0(x), b′ = supx∈R u0(x) and

c′ = max{∣ inf
y∈[−m0,m0]

{f(y)} − 1∣ , ∣ sup
y∈[−m0,m0]

{f(y)} + 1∣} .

In addition, with u ∶ D̄δ → R and u ∶ D̄δ → R being the minimal and maximum solutions

respectively, then

max{∣∣u∣∣A, ∣∣u∣∣A} ≤m0. ⌟

In what follows we develop a constructional proof of Theorem 8.3, and, in doing so,

we establish Proposition 8.17. As a consequence of this we have the following concerning

Theorem 8.3:

Remark 8.4. Let u,u ∶ D̄δ → R be the maximal and minimal solutions to (B-R-D-C) as

given in Theorem 8.3. Then u and u are, respectively, maximal and minimal solutions

to (B-R-D-C) on D̄δ′ , for any 0 < δ′ ≤ δ, and on D̄δ1
δ2

, for any 0 ≤ δ1 < δ2 ≤ δ. Now, let

uc ∶ D̄T → R be a function obtained by repeated application of Theorem 8.3 and glueing

together the associated maximal solution and its domain at each stage. Then uc ∶ D̄T → R
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is a solution to (B-R-D-C), and is a maximal solution to (B-R-D-C) on D̄T . Similarly let

uc ∶ D̄T → R be a function obtained by repeated application of Theorem 8.3 and glueing

together the associated minimal solution and its domain at each stage. Then uc ∶ D̄T → R

is a solution to (B-R-D-C), and is a minimal solution to (B-R-D-C) on D̄T . In what

follows, we will refer to uc ∶ D̄T → R (when it exists on D̄T ) as a constructed maximal

solution to (B-R-D-C) on D̄T . Similarly, we will refer to uc ∶ D̄T → R (when it exists on

D̄T ) as a constructed minimal solution to (B-R-D-C) on D̄T .

Note that a constructed maximal (minimal) solution to (B-R-D-C) on D̄T is a maximal

(minimal) solution to (B-R-D-C) on D̄T . However, the converse does not necessarily

follow; a maximal (minimal) solution to (B-R-D-C) on D̄T need not be a constructed

maximal (minimal) solution to (B-R-D-C) on D̄T . ⌟

Immediate consequences of the above are,

Corollary‡ 8.5. Let f ∈ Hα for some α ∈ (0,1) and u0 ∈ BPC 2(R). Then there exists

a global constructed maximal (minimal) solution to (B-R-D-C) on D̄∞ or there exists

Tu (Tl) > 0 such that (B-R-D-C) has a constructed maximal (minimal) solution on

D̄Tu/(R × {Tu}) (D̄Tl/(R × {Tl})) which cannot be continued onto D̄Tu(D̄Tl).

Proof. This follows directly from repeated application of Theorem 8.3 to (B-R-D-C) and

Remark 8.4.

Corollary‡ 8.6. Let f ∈Hα for some α ∈ (0,1) and u0 ∈ BPC 2(R). Let uc(uc) ∶ D̄T ∗/(R×

{T ∗}) → R be a constructed maximal (minimal) solution to (B-R-D-C) which cannot be

continued onto D̄T ∗. Then ∣∣uc(⋅, t)∣∣B (∣∣uc(⋅, t)∣∣B) is unbounded as t→ T ∗−.

Proof. This follows similar steps to the proof of Theorem 6.10, via Theorem 8.3 and

Remark 8.4.

To begin to establish Theorem 8.3, we must first prove a denseness result, which is

based on results found in [18], namely,
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Proposition‡ 8.7 (Lipschitz Density). Consider f ∈ Hα with α ∈ (0,1). Let kH > 0 be

the Hölder constant for f on the closed bounded interval E ⊂ R. Then, on E, given any

ε > 0, there exists a Lipschitz continuous function g ∶ E → R such that

∣f(x) − g(x)∣ < ε ∀x ∈ E,

where g is also a Hölder continuous function of degree α on E with Hölder constant 3kH .

Proof. Let E ⊂ R be a closed bounded interval, and kH > 0 be a Hölder constant for f on

E. Now, given any ε > 0, set δ as follows,

δ = ( ε

2kH
)

1/α

. (8.1)

Then, for all x, y ∈ E, with ∣x − y∣ < δ, we have

∣f(y) − f(x)∣ < ε
2
. (8.2)

We may write E = [a, b] ⊂ R. Now take N ∈ N with N > (b−a)
δ and divide the interval E

into uniform sub-intervals Xn (n = 1, ...,N), defined by

Xn = [xn−1, xn], where x0 = a, xN = b, xn = xn−1 +
(b − a)
N

(8.3)

for each 1 ≤ n ≤ N . Next define ln ∶Xn → R, for 1 ≤ n ≤ N , as

ln(x) = (f(xn)(x − xn−1) + f(xn−1)(xn − x)
xn − xn−1

) ∀x ∈Xn (8.4)

and define g ∶ E → R such that on each interval Xn ⊂ E,

g(x) = ln(x) ∀x ∈Xn.

Note that g defined by (8.3) and (8.4) is Lipschitz continuous on E with Lipschitz constant
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given by

klE = max
1≤n≤N

∣f(xn) − f(xn−1)
(xn − xn−1)

∣ .

Let x ∈ E, then there exists n such that x ∈Xn for some n = 1,2, ...N and so

∣f(x) − g(x)∣ ≤ ∣f(x) − f(xn)∣ + ∣f(xn) − g(x)∣

= ∣f(x) − f(xn)∣ + ∣g(xn) − g(x)∣ <
ε

2
+ ε

2
= ε,

via (8.1), (8.2), (8.3) and (8.4). It remains to shown that g is also Hölder continuous of

degree 0 < α < 1 on E with Hölder constant 3kH . Observe that since g(xn) = f(xn) for

each n = 0,1,2, ..,N , then on each each interval Xn, we have

∣dg
dx

∣ = ∣f(xn) − f(xn−1)
xn − xn−1

∣ ≤ ∣(xn − xn−1)αkH
xn − xn−1

∣ = ∣xn − xn−1∣α−1kH ∀x ∈Xn. (8.5)

It follows from the mean value theorem with (8.5), that for any x, y ∈Xn,

∣g(x) − g(y)∣ ≤ ∣xn − xn−1∣α−1kH ∣x − y∣ = kH ∣ x − y
xn − xn−1

∣
1−α

∣x − y∣α ≤ kH ∣x − y∣α. (8.6)

Now for x ∈ Xn and y ∈ Xm where, without loss of generality, m > n, then via (8.6) and

(8.4),

∣g(x) − g(y)∣ ≤ ∣g(x) − g(xn)∣ + ∣f(xn) − f(xm−1)∣ + ∣g(xm−1) − g(y)∣

≤ kH ∣x − xn∣α + kH ∣xn − xm−1∣α + kH ∣xm−1 − y∣α ≤ 3kH ∣x − y∣α, (8.7)

since x ≤ xn ≤ xm−1 ≤ y. Inequalities (8.6) and (8.7) establish that g is Hölder continuous

of degree α on E with Hölder constant 3kH , as required.

Remark 8.8. Let f ∈ Hα for some α ∈ (0,1) and E = [a, b] for b > a. If g ∶ E → R is

constructed as in Proposition 8.7, then f(a) = g(a) and f(b) = g(b). ⌟

Next we proceed to construct two sequences of functions which will later be shown to
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converge to the minimum and maximum solutions to (B-R-D-C).

Proposition‡ 8.9. Let f ∈ Hα for some α ∈ (0,1), and E = [a, b] be a closed bounded

interval. Let kH > 0 be a Hölder constant for f on [a, b]. Then there exist sequences

{fn}n∈N and {f
n
}n∈N, such that for each n ∈ N the functions fn, fn ∶ R→ R satisfy,

(a) fn and f
n

are Lipschitz continuous on every closed bounded interval E
′ ⊂ R.

(b) fn and f
n

are Hölder continuous of degree α on every closed bounded interval E
′ ⊂ R,

with Hölder constant independent of n ∈ N.

(c) fn(u)→ f(u) and f
n
(u)→ f(u) as n→∞ uniformly for all u ∈ E.

(d) f
n
(u) ≤ f(u) ≤ fn(u) for all u ∈ E and for each n ∈ N.

(e) fn+1(u) ≤ fn(u) and f
n+1

(u) ≥ f
n
(u) for all u ∈ R and for each n ∈ N.

Proof. The Lipschitz Denseness result in Proposition 8.7 guarantees that there exists a

sequence of Lipschitz continuous functions gn ∶ [a, b] → R (each of which is also Hölder

continuous on [a, b] of degree 0 < α < 1, with Hölder constant 3kH on [a, b]) such that

gn(a) = f(a), gn(b) = f(b) and which satisfy

sup
u∈E

{∣f − gn∣(u)} ≤ 1/2n, (8.8)

for each n ∈ N. Now define fn, fn ∶ R→ R, for each n ∈ N, to be

fn(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gn+2(u) + 1
2n ;u ∈ [a, b]

gn+2(a) + 1
2n ;u ∈ (−∞, a)

gn+2(b) + 1
2n ;u ∈ (b,∞),

f
n
(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gn+2(u) − 1
2n ;u ∈ [a, b]

gn+2(a) − 1
2n ;u ∈ (−∞, a)

gn+2(b) − 1
2n ;u ∈ (b,∞).

(8.9)

We now give the proof for {f
n
}, with the proof for {fn} following similarly. Statements

(a) and (b) follow immediately from (8.9). Next we observe that

∣f
n
− f ∣(u) ≤ ∣gn+2 − f ∣(u) + 1/2n ≤ 5/2n+2, (8.10)
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for all u ∈ [a, b] and n ∈ N, and so f
n
(u) → f(u) as n →∞ uniformly for u ∈ [a, b], which

establishes statement (c). Also observe that for any u ∈ [a, b] and n ∈ N, we have

f
n
(u) = gn+2(u) − 1/2n ≤ (f(u) + 1/2n+2) − 1/2n ≤ f(u) − 3/2n+2 ≤ f(u), (8.11)

from which statement (d) follows. It remains to establish that the sequence {f
n
}n∈N is

non-decreasing on R. Observe via (8.8) and (8.9), that for any n ∈ N,

f
n+1

(u) ≥ (f(u) − 1

2n+3
) − 1

2n+1
= f(u) − 5

2n+3
, (8.12)

f
n
(u) ≤ (f(u) + 1

2n+2
) − 1

2n
= f(u) − 6

2n+3
, (8.13)

for all u ∈ [a, b]. Combining (8.12) and (8.13) gives

f
n+1

(u) − f
n
(u) ≥ 1

2n+3
> 0 (8.14)

for all u ∈ [a, b]. In addition it follows from (8.9) that

f
n+1

(u) − f
n
(u) = 1

2n+1
> 0, (8.15)

for all u ∈ (−∞, a)∪ (b,∞). Statement (e) follows from (8.14) and (8.15). This completes

the proof for {f
n
}.

Remark 8.10. In developing the proof of Theorem 8.3, for the given f ∈ Hα and u0 ∈

BPC2(R) associated with (B-R-D-C), we will use the corresponding sequences {f
n
}n∈N

and {fn}n∈N as constructed in Proposition 8.9, with the interval [a, b] = [−m0,m0] where

m0 = ∣∣u0∣∣B + 1. ⌟

We now consider the sequences of (B-R-D-C) problems with reaction functions f = fn
and f = f

n
as in (8.9), and initial data u0 ∈ BPC2(R). Henceforth, these sequences of

problems will be referred to as (B-R-D-C)un and (B-R-D-C)ln respectively, for each n ∈ N

(here superscripts u and l indicate upper and lower respectively). We now investigate the
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problems (B-R-D-C)un and (B-R-D-C)ln.

Proposition‡ 8.11. For each n ∈ N, any solution un, un ∶ D̄T → R to the problems (B-R-

D-C)un and (B-R-D-C)ln respectively, satisfy the inequalities

−c′t + a′ ≤ un(x, t) ≤ un(x, t) ≤ c′t + b′,

for all (x, t) ∈ D̄T , and any T > 0, where

c′ = max{∣ inf
y∈[−m0,m0]

{f(y)} − 1∣ , ∣ sup
y∈[−m0,m0]

{f(y)} + 1∣} ,

a′ = inf
x∈R

u0(x), b′ = sup
x∈R

u0(x).

Proof. For convenience, we define v, v ∶ D̄T → R to be

v(x, t) = a′ − c′t,

v(x, t) = b′ + c′t,

for all (x, t) ∈ D̄T . We now make a straightforward application of Theorem 7.1, in which we

take v and un, un and un, and un and v as regular subsolutions and regular supersolutions

to (B-R-D-C)ln, (B-R-D-C)ln and (B-R-D-C)un respectively, which follows on observing

vt − vxx + c′ ≤ 0, unt − unxx + c′ = fn(un) + c
′ ≥ 0, (8.16)

unt − unxx − fn(un) = fn(un) − fn(un) ≤ 0, unt − unxx − f(un) = 0 ≤ 0, (8.17)

unt − unxx − c′ = fn(un) − c′ ≤ 0, vt − vxx − c′ ≥ 0, (8.18)

on DT , whilst

v(x,0) ≤ un(x,0) ≤ un(x,0) ≤ v(x,0), (8.19)

for all x ∈ R. Now applying Theorem 7.1 to each previously stated pair of regular subso-
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lutions and regular supersolutions gives

a′ − c′t ≤ un(x, t) ≤ un(x, t) ≤ b′ + c′t,

for all (x, t) ∈ D̄T , as required.

Remark 8.12. Proposition 8.11 ensures that, with δ > 0 as given in Theorem 8.3,

−m0 ≤ a′ − c′t ≤ un(x, t) ≤ un(x, t) ≤ b′ + c′t ≤m0

for all (x, t) ∈ D̄δ. Hence (B-R-D-C)un and (B-R-D-C)ln are a priori bounded on D̄δ, for

each n ∈ N, with a priori bounds independent of n ∈ N. ⌟

Proposition‡ 8.13. The problems (B-R-D-C)un and (B-R-D-C)ln (n ∈ N) have unique so-

lutions un ∶ D̄δ → R and un ∶ D̄δ → R respectively. Moreover the inequalities in Proposition

8.11 and Remark 8.12 hold on D̄δ.

Proof. It follows from Remark 8.12 that each of (B-R-D-C)ln and (B-R-D-C)un is a priori

bounded on D̄δ for each n ∈ N. Furthermore, Proposition 8.9 ensures fn, fn ∈ L for each

n ∈ N. It then follows from Theorem 6.4 that (B-R-D-C)un and (B-R-D-C)ln have unique

solutions on D̄δ for each n ∈ N. These solutions must satisfy the inequalities in Proposition

8.11 and Remark 8.12 on D̄δ.

Now that both of the sequences of functions {un}n∈N and {un}n∈N have been con-

structed, it remains to show that they converge to the respective minimal and maximal

solutions of the original (B-R-D-C). The remainder of the theory will be presented only

for the minimal solution with the theory for the maximal solution following exactly the

same steps. We next establish derivative estimates on un ∶ D̄δ → R. In particular:

Proposition‡ 8.14. Let un ∶ D̄δ → R be the (unique) solution to (B-R-D-C)ln (n ∈ N).

Then, on Dδ, we have

∣unx(x, t)∣ ≤
2c′√
π
(1 + δ1/2) +M ′

0
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∣unt(x, t)∣ ≤
2(α+1)Iα
α
√
π

kδ(1 + δα/2) + c′ +M ′′
0

for all (x, t) ∈Dδ. Here, kH > 0 is a Hölder constant for f ∈Hα on [−m0,m0], and

M ′
0 = sup

x∈R
∣u′0(x)∣

M ′′
0 = sup

x∈R
∣u′′0(x)∣

kδ = 3kH ( 2c′√
π
(1 + δ1/2) +M ′

0)
α

Iα = ∫
∞

−∞
∣λ∣α ∣λ2 − 1/2∣ e−λ2dλ.

Proof. This follows directly from Lemma 5.12 and Lemma 5.15, on recalling that

f
n
∶ R → R is Hölder continuous of degree α on [−m0,m0] ⊂ R, with Hölder constant

3kH .

Remark 8.15. We observe that all bounds in Proposition 8.14 are independent of

n ∈ N. ⌟

Before examining the limit of the sequence {un}n∈N, two further results are required.

The first is used to show that the sequence {un}n∈N is non-decreasing. The second is used

to exhibit part of a comparison theorem. This can be achieved similarly for the sequence

{u}n∈N.

Proposition‡ 8.16. Let un, un+1 ∶ D̄δ → R be the unique solutions to (B-R-D-C)ln and

(B-R-D-C)ln+1 respectively. Then for each n ∈ N,

un+1(x, t) ≥ un(x, t) ∀ (x, t) ∈ D̄δ.

Proof. Recall from Proposition 8.9 that f
n
∶ R→ R is such that f ∈ L for any n ∈ N, and

f
n+1

(u) ≥ f
n
(u)
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for all u ∈ R. The result then follows via a simple application of Theorem 7.1.

Proposition‡ 8.17. Let un ∶ D̄δ → R be the unique solution to (B-R-D-C)ln on D̄δ and

v ∶ D̄δ → R be continuous, bounded and have continuous derivatives vt, vx and vxx on Dδ,

and such that

vt − vxx − f(v) ≥ 0

for all (x, t) ∈Dδ. Suppose in addition, that

v(x,0) ≥ u0(x)

for all x ∈ R. Then for all (x, t) ∈ D̄δ,

un(x, t) ≤ v(x, t).

Proof. To begin fix n ∈ N. Since v is bounded on D̄δ, there exists M > 0 such that

∣v(x, t)∣ ≤M ∀(x, t) ∈ D̄δ.

When M ≤m0, then

vt − vxx − fn(v) ≥ f(v) − fn(v) ≥ 0,

unt − unxx − fn(un) = 0 ≤ 0,

for all (x, t) ∈Dδ, via Proposition 8.9, whilst

v(x,0) ≥ u0(x) = un(x,0) ∀x ∈ R. (8.20)

Upon taking v and un as a regular supersolution and regular subsolution respectively, an

application of Theorem 7.1 gives

un(x, t) ≤ v(x, t) ∀(x, t) ∈ D̄δ. (8.21)
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When M >m0 define f ′
n
∶ R→ R by

f ′
n
(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
n
(u) ;u ∈ [−m0,m0]

g−n+2(u) − 1/2n ;u ∈ [−M,−m0]

g+n+2(u) − 1/2n ;u ∈ [m0,M]

g−n+2(−M) − 1/2n ;u ∈ (−∞,−M)

g+n+2(M) − 1/2n ;u ∈ (M,∞)

where g−n ∶ [−M,−m0] → R and g+n ∶ [m0,M] → R are constructed as in Proposition 8.7,

and hence are Lipschitz continuous on [−M,−m0] and [m0,M] respectively, and

max{ sup
u∈[−M,−m0]

∣g−n(u) − f(u)∣, sup
u∈[m0,M]

∣g+n(u) − f(u)∣} < 1/2n.

Moreover, via Remark 8.8 and arguments contained in the proof of Proposition 8.9, f ′
n
∈ L

and f ′
n
(u) ≤ f(u) for all u ∈ [−M,M]. Now, taking v and un to be a regular supersolution

and regular subsolution respectively, which follows from (8.20) and the inequalities

vt − vxx − f ′n(v) ≥ f(v) − f
′

n
(v) ≥ 0,

unt − unxx − f ′n(u) = fn(un) − f
′

n
(un) = 0 ≤ 0,

for all (x, t) ∈Dδ, we apply Theorem 7.1 to v and un which gives

un(x, t) ≤ v(x, t) ∀(x, t) ∈ D̄δ. (8.22)

The result follows from (8.21) and (8.22), as required.

Remark 8.18. Note that in Proposition 8.17, any solution u ∶ D̄δ → R to (B-R-D-C) on
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D̄δ satisfies the conditions on v. Therefore, for all n ∈ N,

un(x, t) ≤ u(x, t),

for all (x, t) ∈ D̄δ. ⌟

Proposition 8.17 and Remark 8.18 guarantee that any limit function of {un}n∈N is less

than or equal to any solution of (B-R-D-C) on D̄δ. Therefore, if a limit function of {un}n∈N

is itself a solution to (B-R-D-C), then it must be a minimal solution. We now proceed to

establish that the sequence {un}n∈N does indeed have a limit in ∣∣ ⋅ ∣∣A, and that the limit

function provides a solution to (B-R-D-C) on D̄δ.

For each (x, t) ∈ D̄δ, we consider the real sequence

{un(x, t)}n∈N . (8.23)

It follows from Proposition 8.16 and Remark 8.12, that this real sequence is non-decreasing

and bounded above, and hence is convergent to, say, ul(x, t), so that

un(x, t)→ ul(x, t) as n→∞ for each (x, t) ∈ D̄δ. (8.24)

It follows, moreover, from Remark 8.12 that

−m0 ≤ ul(x, t) ≤m0 for each (x, t) ∈ D̄δ. (8.25)

Thus we may introduce the function u∗ ∶ D̄δ → R given by

u∗(x, t) = ul(x, t) ∀ (x, t) ∈ D̄δ, (8.26)

and we have from (8.24) that

un → u∗ as n→∞ pointwise on D̄δ. (8.27)
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We also have from (8.25), that

−m0 ≤ u∗(x, t) ≤m0 ∀ (x, t) ∈ D̄δ. (8.28)

Next we have,

Lemma‡ 8.19. The sequence of functions {un}n∈N has a subsequence {unj}j∈N (with 1 ≤

n1 < n2 < n3 < ... and nj →∞ as j →∞) such that

unj → u∗ as j →∞ uniformly on D̄0,X
δ ,

for every X > 0. Moreover u∗ ∶ D̄δ → R is continuous on D̄δ.

Proof. Consider the sequence of functions {un}n∈N in D̄δ. Then each function un, n ∈ N,

is continuous on D̄δ as it is a solution to (B-R-D-C)ln on D̄δ. Also, we have, for each n ∈ N,

∣un(x, t)∣ ≤m0 ∀(x, t) ∈ D̄δ, (8.29)

via Remark 8.12. Now unt and unx exist and are continuous on Dδ and so it follows from

the mean value theorem that for any (x0, t0), (x1, t1) ∈Dδ, then

∣un(x1, t1) − un(x0, t0)∣ = ∣unt(ξ, η)(t1 − t0) + unx(ξ, η)(x1 − x0)∣ (8.30)

with (ξ, η) ∈Dδ lying on the straight line joining (x0, t0) to (x1, t1). It follows from (8.30)

and Proposition 8.14, that

∣un(x1, t1)− un(x0, t0)∣

≤ ∣unt(ξ, η)∣∣t1 − t0∣ + ∣unx(ξ, η)∣∣x1 − x0∣

≤ max{ 2c′√
π
(1 + δ1/2) +M ′

0,
2α+1Iα
α
√
π
kδ(1 + δα/2) + c′ +M ′′

0 }

× (∣t1 − t0∣ + ∣x1 − x0∣)
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≤ max{ 2c′√
π
(1 + δ1/2) +M ′

0,
2α+1Iα
α
√
π
kδ(1 + δα/2) + c′ +M ′′

0 }

×
√

2 (∣(x1, t1) − (x0, t0)∣) . (8.31)

Since (8.31) holds for all (x1, t1), (x0, t0) ∈Dδ, and un is continuous on D̄δ, then it follows

that (8.31) holds for all (x1, t1), (x0, t0) on D̄δ. It is then an immediate consequence

of (8.31) that the sequence of functions {un}n∈N are uniformly equicontinuous on D̄δ.

Moreover, it follows from (8.29) that {un}n∈N are uniformly bounded (by m0) on D̄δ. It

then follows immediately from the Ascoli-Arzéla compactness criterion (see, for example,

[65])[p 154-158] that there exists a subsequence {unj}j∈N (1 ≤ n1 < n2 < n3 < ... and nj →∞

as j →∞) and a continuous function uc ∶ D̄δ → R such that

unj → uc as j →∞ uniformly on D̄0,X
δ , (8.32)

for any X > 0. From (8.32), we have that for each (x, t) ∈ D̄δ, the real sequence

{unj(x, t)}nj∈N, is such that

unj(x, t)→ uc(x, t) as j →∞. (8.33)

It also follows from (8.27) (convergence of subsequences of convergent real sequences) that

unj(x, t)→ u∗(x, t) as j →∞. (8.34)

It follows from (8.33) and (8.34) (uniqueness of limits of convergent real sequences) that

u∗(x, t) = uc(x, t) ∀ (x, t) ∈ D̄δ

and so u∗ ∶ D̄δ → R is continuous and via (8.32),

unj → u∗ as j →∞ uniformly on D̄0,X
δ ,
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for any X > 0, as required.

As a consequence we have:

Corollary‡ 8.20. For any X > 0,

un → u∗ as n→∞ uniformly on D̄0,X
δ .

Proof. From Lemma 8.19, we have

unj → u∗ as j →∞ uniformly on D̄0,X
δ , (8.35)

for any X > 0. Thus, given any ε > 0, there exists Jε ∈ N (independent of (x, t) ∈ D̄0,X
δ )

such that for all j ≥ Jε,

∣unj(x, t) − u
∗(x, t)∣ < ε ∀ (x, t) ∈ D̄0,X

δ . (8.36)

It now follows from Proposition 8.16 and (8.27) that for any n ≥ n(Jε+1),

0 ≤ u∗(x, t) − un(x, t) ≤ u∗(x, t) − unJε(x, t) ∀ (x, t) ∈ D̄0,X
δ . (8.37)

Thus, via (8.36) and (8.37), we have that for all n ≥ n(Jε+1), then

∣un(x, t) − u∗(x, t)∣ ≤ ∣unJε(x, t) − u
∗(x, t)∣ < ε ∀ (x, t) ∈ D̄0,X

δ .

Thus, it follows that

un → u∗ as n→∞ uniformly on D̄0,X
δ ,

as required.

Proposition‡ 8.21. Let u ∶ D̄δ → R be any solution to (B-R-D-C). Then,

u∗(x, t) ≤ u(x, t) ∀(x, t) ∈ D̄δ.
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Proof. It follows from Proposition 8.17 that for each n ∈ N,

un(x, t) ≤ u(x, t) ∀(x, t) ∈ D̄δ.

It then follows from (8.27) that

u∗(x, t) ≤ u(x, t) ∀(x, t) ∈ D̄δ,

as required.

Remark 8.22. u∗ ∶ D̄δ → R is continuous and from (8.28),

∣u∗(x, t)∣ ≤m0,

for all (x, t) ∈ D̄δ, so u∗ is bounded on D̄δ. It follows that

u∗ ∈ Bδ
A (8.38)

and

∣∣u∗∣∣A ≤m0. ⌟

With Remark 8.22 it remains to establish that u∗ ∶ D̄δ → R satisfies the appropriate

integral equation in the Hölder Equivalence Lemma 5.10. To begin, we introduce the

function v ∶ D̄δ → R, as follows,

v(x, t) = 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ (8.39)

for all (x, t) ∈ D̄δ. We note that v is well-defined and v ∈ Bδ
A (Lemma 5.8). Moreover,

since the initial data u0 ∈ BPC2(R) to each problem (B-R-D-C)ln is the same for each

n ∈ N, it remains only to consider the functions wn ∶ D̄δ → R (n ∈ N) and w ∶ D̄δ → R
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defined as follows,

wn(x, t) =
1√
π
∫

t

0
∫

∞

−∞
f
n
(un(x + 2

√
t − τλ, τ)) e−λ2dλdτ,

w(x, t) = 1√
π
∫

t

0
∫

∞

−∞
f (u∗(x + 2

√
t − τλ, τ)) e−λ2dλdτ (8.40)

for all (x, t) ∈ D̄δ. We note that these functions are well-defined, via Lemma 5.8, since

un ∈ Bδ
A (n ∈ N) (as it is a solution to (B-R-D-C)ln) and u∗ ∈ Bδ

A (via Remark 8.22).

Moreover w,wn ∈ Bδ
A (n ∈ N), via Lemma 5.8. We also observe that, f

n
(un), f(u∗) ∈ Bδ

A,

and

∣∣f
n
(un)∣∣A ≤ c′, ∣∣f(u∗)∣∣A ≤ c′ (8.41)

for all n ∈ N, via Remark 8.22. We now have,

Lemma‡ 8.23. For each (x, t) ∈ D̄δ, the real sequence {wn(x, t)}n∈N is convergent, and

lim
n→∞

wn(x, t) = w(x, t).

Proof. Given any ε > 0, take

λε = max{8c′(1 + δ)√
πε

, 1} . (8.42)

Now fix (x, t) ∈ D̄δ, then

∣wn(x, t) − w(x, t)∣ ≤ 1√
π
∫

t

0
∫

∞

−∞
∣f
n
(un(x + 2

√
t − τλ, τ))

− f (u∗(x + 2
√
t − τλ, τ)) ∣e−λ2dλdτ

≤ 1√
π
∫

t

0
∫

λε

−λε
∣f
n
(un(x + 2

√
t − τλ, τ))

− f (u∗(x + 2
√
t − τλ, τ)) ∣e−λ2dλdτ

+ 1√
π
∫

t

0
∫

∞

λε
∣f
n
(un(x + 2

√
t − τλ, τ)) ∣e−λ2dλdτ

+ 1√
π
∫

t

0
∫

∞

λε
∣f (u∗(x + 2

√
t − τλ, τ)) ∣e−λ2dλdτ
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+ 1√
π
∫

t

0
∫

−λε

−∞
∣f
n
(un(x + 2

√
t − τλ, τ)) ∣e−λ2dλdτ

+ 1√
π
∫

t

0
∫

−λε

−∞
∣f (u∗(x + 2

√
t − τλ, τ)) ∣e−λ2dλdτ

and so

∣wn(x, t) − w(x, t)∣ < 1√
π
∫

t

0
∫

λε

−λε
∣f
n
(un(x + 2

√
t − τλ, τ))

− f (u∗(x + 2
√
t − τλ, τ)) ∣e−λ2dλdτ + ε

2
, (8.43)

on using (8.41) and (8.42). Now, via Corollary 8.20, Proposition 8.9 and Proposition 8.11,

it follows that there exists Nε ∈ N, independent of (λ, τ) ∈ [−λε, λε] × [0, t] such that for

all n ≥ Nε, then

∣f
n
(u∗(x + 2

√
t − τλ, τ)) − f (u∗(x + 2

√
t − τλ, τ)) ∣ < ε

4δ
,

∣un ((x + 2
√
t − τλ, τ)) − u∗ ((x + 2

√
t − τλ, τ)) ∣ ≤ ( ε

12kHδ
)

1/α

for all (λ, τ) ∈ [−λε, λε]×[0, t] with kH > 0 being a Hölder constant for f ∈Hα on [−m0,m0].

It then follows from (8.43) that, for all n ≥ Nε (which may depend on (x, t) ∈ D̄δ), then

via Proposition 8.9,

∣wn(x, t) −w(x, t)∣ < 1√
π
∫

δ

0
∫

λε

−λε
(∣f

n
(un(x + 2

√
t − τλ, τ)) − f

n
(u∗(x + 2

√
t − τλ, τ)) ∣ +

∣f
n
(u∗(x + 2

√
t − τλ, τ)) − f (u∗(x + 2

√
t − τλ, τ)) ∣) e−λ2dλdτ + ε

2

≤ 1√
π
∫

δ

0
∫

λε

−λε
(3kH ∣un − u∗∣α(x + 2

√
t − τλ, τ) + ε

4δ
) e−λ2dλdτ + ε

2

≤ 1√
π
∫

δ

0
∫

λε

−λε
( ε

4δ
+ ε

4δ
) e−λ2dλdτ + ε

2

≤ ε

2δ
√
π
∫

δ

0
∫

∞

−∞
e−λ

2

dλdτ + ε
2

≤ ε
2
+ ε

2

≤ ε.
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Therefore for each (x, t) ∈ D̄δ, the real sequence {wn(x, t)}n∈N is convergent and

lim
n→∞

wn(x, t) = w(x, t),

as required.

We now have,

Lemma‡ 8.24. The function u∗ ∶ D̄δ → R is such that, u∗ ∈ Bδ
A, and

u∗(x, t) = 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ + 1√

π
∫

t

0
∫

∞

−∞
f(u∗(x + 2

√
t − τλ, τ))e−λ2dλdτ

for all (x, t) ∈ D̄δ.

Proof. For each n ∈ N, then by construction un ∶ D̄δ → R is a solution to (B-R-D-C)ln on

D̄δ. Since, for each n ∈ N, (B-R-D-C)ln has f
n
∈Hα, it follows from the Hölder Equivalence

Lemma 5.10 that un ∈ Bδ
A and

un(x, t) = 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ + 1√

π
∫

t

0
∫

∞

−∞
f
n
(un(x + 2

√
t − τλ, τ)) e−λ2dλdτ

= v(x, t) +wn(x, t) (8.44)

for all (x, t) ∈ D̄δ. Now fix (x, t) ∈ D̄δ. It then follows from (8.44), (8.27) and Lemma

8.23, that

u∗(x, t) = v(x, t) +w(x, t) ∀(x, t) ∈ D̄δ,

which, via (8.39) and (8.40) becomes

u∗(x, t) = 1√
π
∫

∞

−∞
u0(x + 2

√
tλ)e−λ2dλ + 1√

π
∫

t

0
∫

∞

−∞
f (u∗(x + 2

√
t − τλ, τ)) e−λ2dλdτ

for all (x, t) ∈ D̄δ. In addition, via Remark 8.22, u∗ ∈ Bδ
A. The proof is complete.

It now follows immediately from Lemma 8.24 and the Hölder Equivalence Lemma 5.10

that u∗ ∶ D̄δ → R provides a solution to (B-R-D-C) on D̄δ. That u∗ ∶ D̄δ → R is a minimal
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solution to (B-R-D-C) on D̄δ follows from Proposition 8.21 and the bound follows from

Remark 8.22. The proof of Theorem 8.3 is complete.

A global existence theorem can now be established.

Theorem‡ 8.25. Consider (B-R-D-C) with f ∈Hα for some α ∈ (0,1). When (B-R-D-C)

is a priori bounded on D̄T for any 0 ≤ T ≤ T ′, then (B-R-D-C) has a constructed minimal

and a constructed maximal solution on D̄T ′.

Proof. The proof is a direct application of Theorem 8.3, with the a priori bounds allowing

[0, T ′] to be covered in a finite number of steps. The details are as in the proof of Theorem

6.4, using Remark 8.4.

Following Proposition 8.17 we also have the following comparison-type result.

Proposition‡ 8.26. Let f ∈ Hα for some α ∈ (0,1), and let w,w ∶ D̄T → R be a regular

subsolution and a regular supersolution to (B-R-D-C), respectively. Let uc, uc ∶ D̄T → R be

constructed minimal and maximal solutions to (B-R-D-C), then

uc(x, t) ≤ w(x, t) and uc(x, t) ≥ w(x, t)

for all (x, t) ∈ D̄T .

Proof. We give a proof for the first inequality. The second inequality follows the same

argument, with obvious modifications. Now, uc ∶ D̄T → R is a constructed minimal solution

to (B-R-D-C). It follows, via Remark 8.4, and the construction of uc, that Proposition

8.17 holds on each constructional subdomain of D̄T in turn. The result then follows.

Remark 8.27. We observe that when uniqueness holds for (B-R-D-C) on D̄T , then uc = uc

on D̄T and Proposition 8.26 becomes a full Comparison Theorem for (B-R-D-C). ⌟

The issue we have not addressed this far is uniqueness, and we may anticipate that

general uniqueness, where f ∈Hα, for α ∈ (0,1), is false, via the following example.
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Example 8.28. Consider the (B-R-D-C) problem where f ∶ R→ R is such that f = [up]+

for some p ∈ (0,1) and u0 ∶ R→ R is such that u0(x) = 0 for all x ∈ R. Simple calculations

show that f ∈Hp/L and u0 ∈ BPC2(R). Now define u1, u2 ∶ D̄T → R for any T > 0 to be

u1(x, t) = 0 ∀(x, t) ∈ D̄T ,

u2(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ; (x, t) ∈ R × [0, ts]

((1 − p)(t − ts))1/(1−p) ;R × (ts, T ]

for any 0 ≤ ts < T . It is readily verified that u1 and u2 are distinct solutions to (B-R-D-C).⌟

We next consider a further pathological example to illustrate the breadth of Theorem

8.3, where the reaction function is non-Lipschitz on every closed bounded interval.

Example‡ 8.29. Consider (B-R-D-C) with reaction function fα,b ∶ R→ R given by

fα,b(u) =
∞

∑
n=0

b−nα cos(bnu) (8.45)

for all u ∈ R, where b > 1 and α ∈ (0,1). This function was used by Weierstrass [72],

to exhibit the existence of a real valued function which is everywhere continuous, but

non-differentiable almost everywhere. As a consequence of Rademacher’s Theorem [38]

(p.100), this function is not Lipschitz continuous on any closed bounded interval. However,

for any α′ ∈ (0, α),

∣fα,b(u) − fα,b(v)∣ ≤
∞

∑
n=0

b−nα ∣cos(bnu) − cos(bnv)∣

≤ 2
∞

∑
n=0

b−nα ∣bnu − bnv∣α
′

= 2
∞

∑
n=0

bn(α
′−α) ∣u − v∣α

′

= 2

(1 − b(α′−α)) ∣u − v∣α
′

for any u, v ∈ R. Hence fα,b ∈ Hα′ with Hölder constant 2
(1−b(α′−α)) on any closed bounded
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interval. Moreover, f is bounded on R with

∣fα,b(u)∣ ≤
1

(1 − b−α) ∀u ∈ R. (8.46)

Now let u ∶ D̄T → R be any solution to (B-R-D-C), and let w+ ∶ D̄T → R and w− ∶ D̄T →

R be such that

w+(x, t) =
t

(1 − b−α) + sup
λ∈R

u0(λ)

w−(x, t) =
−t

(1 − b−α) + inf
λ∈R

u0(λ)

for all (x, t) ∈ D̄T . Then,

ut − uxx −
1

(1 − b−α) = fα,b(u) −
1

(1 − b−α) ≤ 0

w+t −w+xx −
1

(1 − b−α) = 0 ≥ 0

for all (x, t) ∈DT . It follows via Comparison Theorem 7.1, that

u(x, t) ≤ w+(x, t) ∀(x, t) ∈ D̄T .

Similarly, we establish that

u(x, t) ≥ w−(x, t) ∀(x, t) ∈ D̄T .

Thus,

−T
(1 − b−α) − ∣∣u0∣∣B ≤ u(x, t) ≤ T

(1 − b−α) + ∣∣u0∣∣B ∀(x, t) ∈ D̄T ,

and so

∣∣u∣∣A ≤ T

(1 − b−α) + ∣∣u0∣∣B.

We conclude that (B-R-D-C) is a priori bounded on D̄T for any T > 0. Thus (B-R-D-C)

has a global constructed minimal solution uc ∶ D̄∞ → R and a global constructed maximal
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solution uc ∶ D̄∞ → R, via Theorem 8.25, and

−t
(1 − b−α) + inf

λ∈R
u0(λ) ≤ uc(x, t) ≤ uc(x, t) ≤

t

(1 − b−α) + sup
λ∈R

u0(λ). ⌟

Additionally, we have,

Example 8.30. Consider the (B-R-D-C) with reaction function f ∈Hmin{p,q} ∩Lu, given

by

f(u) = [up]+ (u − 1/2) [(1 − u)q]+ ∀u ∈ R,

with p, q ∈ (0,1). We can now elaborate on the conclusions made in Example 7.12,

(i) (B-R-D-C) is a priori bounded on D̄T for any T ≥ 0, via a simple application of

Theorem 7.1.

(ii) There exists a unique global solution for all u0 ∈ BPC2(R) via (i) and Theorem 8.25,

and Theorem 7.2.

(iii) (B-R-D-C) is globally well-posed on BPC2(R) via (ii) and Corollary 7.8.

(iv) Let I be a closed bounded interval such that I ⊂ (−∞,1/2) or I ⊂ (1/2,∞). Then (B-

R-D-C) is uniformly globally well-posed on AI(R) via (ii) and Corollary 7.11. ⌟

In conclusion we remark that the approach adopted here in the proof of Theorem

8.3 was primarily motivated by the specific problem in [53] and Chapter 9 of this thesis.

However, the methodology is remarkably similar to that developed in the context of

ordinary differential equations in Carathéodory [16]. Carathéodory’s approach has been

used in [17] (p.45) to establish an analogous result to Theorem 8.3 for the ordinary

differential equation problem

ut = f(u, t), u(0) = u0

on t ∈ [0, T ] with f a continuous function in both variables. The methodology is similar

in the sense that successive approximations are made and the Ascoli-Arzela compactness
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theorem is used to establish the existence of a limit. In addition, global existence results

for second order parabolic partial differential equations (similar to Theorem 8.25), under

various hypotheses, are available in [60] and [14]. The results in [14] are obtained by

examining the limit of a sequence of Dirichlet problems with expanding domains together

with the theory developed in [68] and [52] to guarantee existence and regularity of solutions

to the approximating Dirichlet problems (under the assumption of the existence of global

supersolutions and subsolutions).
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CHAPTER 9

APPLICATION TO SPECIFIC PROBLEMS

In this chapter we apply results contained in Chapter 7 and Chapter 8 to the (B-R-D-

C) problem given by (1.7)-(1.9), the problem studied in [5] and [48], and the problem

given by (1.16)-(1.18). Specifically, for the first problem, we establish uniform global

well-posedness on BPC2
+(R). For the second problem, we establish global well-posedness

on BPC2
+′(R), and under additional technical conditions obtain a uniform global well-

posedness result on a strict subset of BPC2
+′(R). For the third problem, we establish a

uniform global well-posedness result on BPC2
+′(R). We also exhibit several distinctive

qualitative properties of solutions to these problems.

9.1 f(u) = −[up]+

We consider first the (B-R-D-C) problem with reaction function f ∶ R→ R given by

f(u) = −[up]+ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−up ;u ≥ 0

0 ;u < 0,

(9.1)

where p ∈ (0,1). We restrict attention to initial data which is non-negative, that is

u0 ∈ BPC2
+(R), which is the situation of interest in modelling problems arising from

chemical kinetics, biology and combustion. Throughout the section this (B-R-D-C) will

be referred to as (S-R-D-C-1). It should be mentioned that the problem (S-R-D-C-1) has
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been considered in [27] and [25]. The following section is included as an illustration of

how the problem specific results obtained in these papers follow directly as an application

of the generic theory developed in Chapter 7 and Chapter 8. To begin, we require,

Proposition 9.1. The reaction function f ∶ R → R given by (9.1) satisfies f ∈ Hp ∩ Lu,

with Hölder constant kH = 1 and upper Lipschitz constant which can be taken as any

positive real number, on any closed bounded interval E ⊂ R.

Proof. First, we establish f ∈Hp. Let x, y ∈ R. When 0 ≤ x ≤ y then

∣f(y) − f(x)∣ = ∣ − yp + xp∣ = yp − xp ≤ (y − x)p = ∣y − x∣p. (9.2)

Next, when x ≤ y ≤ 0, then

∣f(y) − f(x)∣ = 0 ≤ ∣y − x∣p. (9.3)

Finally, with x < 0 < y, then

∣f(y) − f(x)∣ = yp < (y − x)p = ∣y − x∣p. (9.4)

It follows from (9.2), (9.3) and (9.4) that f ∈Hp and kH = 1 is a Hölder constant for f on

any closed bounded interval E ⊂ R. Finally we observe from (9.1) that f is non-increasing

on R. It follows from Proposition 2.7 that f ∈ Lu, and that, on any closed bounded

interval E ⊂ R, any ku > 0 serves as an upper Lipschitz constant for f .

We next establish that (S-R-D-C-1) is a priori bounded on D̄T for any T > 0.

Proposition 9.2. Let u ∶ D̄T → R be any solution to (S-R-D-C-1) with initial data

u0 ∈ BPC 2
+(R), then

0 ≤ u(x, t) ≤M0 ∀(x, t) ∈ D̄T ,

with M0 = supλ∈R{u0(λ)} ≥ 0.
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Proof. We begin by defining the functions u,u ∶ D̄T → R to be

u(x, t) =M0, (9.5)

u(x, t) = 0 (9.6)

for all (x, t) ∈ D̄T . Observe, via (9.5) and (9.6), that the following inequalities hold,

namely,

ut − uxx − f(u) ≥ 0 on DT , (9.7)

ut − uxx − f(u) ≤ 0 on DT , (9.8)

u(x,0) ≤ u(x,0) ≤ u(x,0) ∀x ∈ R (9.9)

for f ∶ R → R given by (9.1). It follows that u is a regular subsolution and u is a regular

supersolution to (S-R-D-C-1). Thus, via Comparison Theorem 7.1 we have

0 ≤ u(x, t) ≤M0 (9.10)

for all (x, t) ∈ D̄T , as required.

Now, we have the first main result of this section, namely,

Theorem† 9.3. The problem (S-R-D-C-1) has a unique global solution on D̄∞.

Proof. Proposition 9.1 establishes that f ∈ Hp ∩ Lu, whilst Proposition 9.2 establishes

that (S-R-D-C-1) is a priori bounded on D̄T for any T > 0. Now, uniqueness follows from

Theorem 7.2 and global existence follows from Theorem 8.25.

Moreover, we have,

Theorem† 9.4. The problem (S-R-D-C-1) is globally well-posed on BPC 2
+(R).

Proof. Follows from Theorem 9.3, Proposition 9.1 and Corollary 7.8.

We now establish qualitative properties of the solutions to (S-R-D-C-1).
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Proposition† 9.5. Let u ∶ D̄∞ → R be the unique solution to (S-R-D-C-1) with

u0 ∈ BPC 2
+(R). Then, for given 0 < p < 1, there exists 0 ≤ tc ≤ M

(1−p)
0

(1−p) depending only upon

M0 = supλ∈R{u0(λ)} such that

u(x, t) = 0 ∀(x, t) ∈ D̄tc
∞.

Proof. Let u ∶ D̄∞ → R be the unique solution of (S-R-D-C-1). Now consider the function

z ∶ D̄∞ → R defined to be

z(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(M (1−p)
0 − (1 − p)t)

1
(1−p)

; (x, t) ∈ D̄t0c

0 ; (x, t) ∈ D̄t0c
∞,

(9.11)

where t0c = (1− p)−1M
(1−p)
0 . It is readily verified that z is continuous on D̄∞, z is bounded

as ∣x∣ → ∞ uniformly for all t ∈ (0,∞), and that zt and zxx exist and are continuous on

D∞. Moreover, it is readily verified that z is a regular supersolution to (S-R-D-C-1) on

D̄∞. Similary, it is readily verified that the zero function on D̄∞ is a regular subsolution

to (S-R-D-C-1) on D̄∞. An application of Comparison Theorem 7.1 gives

0 ≤ u(x, t) ≤ z(x, t) ∀(x, t) ∈ D̄∞,

and the result follows.

We are now in a position to state a uniform global continuous dependence result for

(S-R-D-C-1),

Theorem† 9.6. Let u∗ ∶ D̄∞ → R be the unique solution to (S-R-D-C-1) corresponding to

u∗0 ∈ BPC 2
+(R). Let u ∶ D̄∞ → R be the unique solution to (S-R-D-C-1) corresponding to

u0 ∈ BPC 2
+(R). Then, given any ε > 0, there exists δ > 0, depending only upon ∣∣u∗0 ∣∣B and

ε, such that for all u0 ∈ BPC 2
+ (R) with

∣∣(u0 − u∗0)∣∣B < δ,
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then

∣∣(u − u∗)(⋅, t)∣∣B < ε

for all t ∈ [0,∞), and so (S-R-D-C-1) is uniformly globally well-posed on BPC 2
+(R).

Proof. Let M∗ = ∣∣u∗0 ∣∣B+1 and T ∗ = (1−p)−1M∗(1−p). Now, given ε > 0, it follows from The-

orem 9.4, that there exists δ′ > 0 such that, for all u0 ∈ BPC2
+(R) with ∣∣(u0 − u∗0)∣∣B < δ′,

then ∣∣(u − u∗)∣∣A < ε on D̄T ∗ , and δ′ depending only upon ε and ∣∣u∗0 ∣∣B. Now set

δ = min(1, δ′), so that, for any u0 ∈ BPC2
+(R) with ∣∣(u0 − u∗0)∣∣B < δ, then

∣∣u0∣∣B < ∣∣u∗0 ∣∣B + δ ≤ ∣∣u∗0 ∣∣B + 1. (9.12)

It then follows from Proposition 9.5 and (9.12), that

u∗0(x, t) = u(x, t) = 0 ∀(x, t) ∈ D̄T ∗
∞ .

Therefore, we have that for all u0 ∈ BPC2
+(R) with ∣∣(u0−u∗0)∣∣B < δ, then ∣∣(u−u∗)(⋅, t)∣∣B < ε

for all t ∈ [0, T ] and any T > 0, with δ > 0 depending only upon ε and ∣∣u∗0 ∣∣B. It follows

that (S-R-D-C-1) is uniformly globally well-posed on BPC2
+(R), via Theorem 9.3.

Remark 9.7. In fact, Theorem 9.6 establishes that for every u∗0 ∈ BPC2
+(R), the corre-

sponding unique global solution u∗ ∶ D̄∞ → R is Liapunov stable with respect to pertur-

bations in initial data δu0 ∈ BPC2
+(R). Moreover, it then follows from Proposition 9.5,

that for every u∗0 ∈ BPC2
+(R) the corresponding unique global solution u∗ ∶ D̄∞ → R is

asymptotically stable with respect to perturbations in initial data δu0 ∈ BPC2
+(R). ⌟

We next consider further the qualitative properties of the solution to (S-R-D-C-1). To

this end we observe that the non-negative functions uL ∶ R→ R and uR ∶ R→ R, given by

uL(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( (1−p)
2

√
2

(1+p))
2/(1−p)

(x0 + x)2/(1−p) ;x ≥ −x0

0 ;x < −x0
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uR(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( (1−p)
2

√
2

(1+p))
2/(1−p)

(x0 − x)2/(1−p) ;x ≤ x0

0 ;x > x0

for any fixed x0 ≥ 0, are both solutions of the ordinary differential equation

uxx − [up]+ = 0; −∞ < x <∞.

Now consider (S-R-D-C-1) when suppx∈Ru0(x) is bounded. We can then choose x0 suffi-

ciently large (depending upon suppx∈Ru0(x) and ∣∣u0∣∣B) so that

0 ≤ u0(x) ≤ min{uL(x), uR(x)} ∀x ∈ R. (9.13)

Now introduce wL,wR ∶ D̄T → R as

wL(x, t) = u(x, t) − uL(x), wR(x, t) = u(x, t) − uR(x)

for all (x, t) ∈ D̄T , with u ∶ D̄∞ → R being the solution to (S-R-D-C-1) and x0 chosen to

satisfy (9.13). It then follows from Theorem 3′ in [49] that

wL(x, t) ≤ 0, wR(x, t) ≤ 0

for all (x, t) ∈ D̄T . Therefore, it follows from Proposition 9.2 and the above, that

0 ≤ u(x, t) ≤ min{uL(x), uR(x)} ∀(x, t) ∈ D̄∞. (9.14)

We therefore have,

Theorem† 9.8. Let u ∶ D̄∞ → R be the unique solution to (S-R-D-C-1) when suppx∈Ru0(x)

is bounded. Then, there exists x0 ≥ 0 (depending upon suppx∈Ru0(x) and ∣∣u0∣∣B) such that

supp(x,t)∈D̄∞u(x, t) ⊆ [−x0, x0] × [0, (1 − p)−1∣∣u0∣∣(1−p)B ].

126



Proof. Follows from (9.13) and (9.14) together with Proposition 9.5.

To conclude this section we remark that global well-posedness results can be developed,

in general, when f ∈Hα ∩Lu and f is non-increasing, with details given in [50].

9.2 f(u) = [up]+

In this section we consider the (B-R-D-C) problem when the reaction function f ∶ R→ R

is given by

f(u) = [up]+ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

up ;u ≥ 0

0 ;u < 0,

(9.15)

where p ∈ (0,1). In particular, we restrict attention to initial data u0 ∈ BPC2
+′(R), with

sup
x∈R

{u0(x)} =M0 > 0, inf
x∈R

{u0(x)} =m0 ≥ 0. (9.16)

The aim of this section is to provide a global well-posedness result for this specific (B-

R-D-C). Bearing this in mind, the technical condition (9.16) is shown to be necessary by

Example 8.28. Throughout the section, this (B-R-D-C) will be referred to as (S-R-D-C-2).

It should be mentioned that the problem (S-R-D-C-2) was studied in [5], [48] and [53].

A more generic approach is adopted here, utilizing the general results of Chapter 6 and

Chapter 8.

Proposition 9.9. The reaction function f ∶ R → R given by (9.15) is such that f ∈ Hp,

with Hölder constant kH = 1 on any closed bounded interval E ⊂ R.

Proof. Follows from Proposition 9.1.

Remark 9.10. The reaction function f ∶ R→ R given by (9.15) is such that f /∈ Lu. This

follows since for u > 0, then

(f(u) − f(0))
(u − 0) = up−1,

which is unbounded as u→ 0+. ⌟
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We now establish a priori bounds for (S-R-D-C-2). We begin with,

Proposition 9.11. Let u ∶ D̄T → R be any solution to (S-R-D-C-2). Then,

m0 ≤ u(x, t) ≤ ((1 − p)t +M (1−p)
0 )

1/(1−p)
∀(x, t) ∈ D̄T .

Proof. We begin with the right hand inequality. First we introduce f ∶ R→ R such that

f(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

up ;u ≥M0

Mp
0 ;u <M0

and we observe that

wt −wxx − f(w) = 0 on DT , (9.17)

where w ∶ D̄T → R is such that

w(x, t) = ((1 − p)t +M (1−p)
0 )

1/(1−p)
∀(x, t) ∈ D̄T .

Moreover,

ut − uxx − f(u) = f(u) − f(u) ≤ 0 on DT . (9.18)

Since f ∈ Lu, it follows from Comparison Theorem 7.1, via (9.17) and (9.18), that

u(x, t) ≤ ((1 − p)t +M (1−p)
0 )

1/(1−p)
∀(x, t) ∈ D̄T .

Next we observe that (u −m0) satisfies

(u −m0)t − (u −m0)xx ≥ 0 on DT .

It then follows from the Maximum Principle given by Theorem 3.6 that

u(x, t) ≥m0 ∀(x, t) ∈ D̄T .
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This completes the proof.

Thus we have established, via Proposition 9.11, that (S-R-D-C-2) is a priori bounded

on D̄T for any T > 0. We therefore have,

Theorem‡ 9.12. (S-R-D-C-2) has a global constructed maximal solution uc ∶ D̄∞ → R

and a global constructed minimal solution uc ∶ D̄∞ → R. Moreover,

m0 ≤ uc(x, t) ≤ uc(x, t) ≤ ((1 − p)t +M (1−p)
0 )

1/(1−p)
∀(x, t) ∈ D̄∞.

Proof. This follows from Proposition 9.9 and Proposition 9.11 together with Theorem

8.25.

In fact, we have,

Corollary‡ 9.13. Let uc ∶ D̄∞ → R be the global constructed maximal solution to (S-R-D-

C-2). Then,

((1 − p)t +m(1−p)
0 )

1/(1−p)
≤ uc(x, t) ≤ ((1 − p)t +M (1−p)

0 )
1/(1−p)

∀(x, t) ∈ D̄∞.

Proof. This follows from Theorem 9.12 and Theorem 8.26.

We now refer to a result given in Aguirre and Escobedo [5], which will be used to

obtain the following uniqueness result for (S-R-D-C-2). The proof has been omitted due

to the uniqueness result in the following section being obtained by a similar approach.

Theorem 9.14 (Aguirre and Escobedo). Let w ∶ D̄T → R and w ∶ D̄T → R be a non-

negative regular subsolution and a non-negative regular supersolution to (S-R-D-C-2),

respectively, with w(⋅,0) ∈ BPC 2
+′(R). Then,

w(x, t) ≤ w(x, t) ∀(x, t) ∈ D̄T .
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Remark 9.15. Observe that the condition w(⋅,0) ∈ BPC2
+′(R) in Theorem 9.14 is crucial,

otherwise Theorem 9.14 and Proposition 9.11 would establish uniqueness for (S-R-D-C-2)

when u0(x) = 0 for all x ∈ R, which is false (see Example 8.28). ⌟

However, we now have,

Theorem† 9.16. (S-R-D-C-2) has a unique global solution u ∶ D̄∞ → R. Moreover,

((1 − p)t +m(1−p)
0 )

1/(1−p)
≤ u(x, t) ≤ ((1 − p)t +M (1−p)

0 )
1/(1−p)

∀(x, t) ∈ D̄∞.

Proof. Let u1 ∶ D̄∞ → R and u2 ∶ D̄∞ → R be global solutions to (S-R-D-C-2). Since

u0 ∈ BPC 2
+′(R) satisfies (9.16), then Proposition 9.11 and Comparison Theorem 9.14 give

u1(x, t) ≤ u2(x, t) ≤ u1(x, t) ∀(x, t) ∈ D̄∞

and so u1 = u2 on D̄∞, and uniqueness is established. Existence and the inequalities follow

via Theorem 9.12 and Corollary 9.13.

We next consider continuous dependence for (S-R-D-C-2). This result has been ob-

tained via an alternative approach in [5].

Theorem† 9.17. Let u∗ ∶ D̄∞ → R and u ∶ D̄∞ → R be the unique global solutions to

(S-R-D-C-2) with initial data u∗0 ∈ BPC 2
+′(R) and u0 ∈ BPC 2

+′(R) respectively. Then,

given any T > 0 and any ε > 0, there exists a constant δ > 0 (depending only upon ε, u∗0,

T and p) such that whenever

∣∣u0 − u∗0 ∣∣B < δ,

then

∣∣(u − u∗)(⋅, t)∣∣B < ε ∀t ∈ [0, T ].

Proof. Let δ > 0 and consider ∣∣u0 − u∗0 ∣∣B < δ. It follows from the Lemma 5.10 and
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Proposition 9.9 that

∣(u∗ − u)(x, t)∣ ≤ 1√
π
∫

∞

−∞

∣(u∗0 − u0)(x + 2
√
tλ)∣ e−λ2dλ +

+ 1√
π
∫

t

0
∫

∞

−∞

∣(f(u∗) − f(u))(x + 2
√
t − τλ, τ)∣ e−λ2dλdτ (9.19)

≤ 1√
π
∫

∞

−∞
δe−λ

2

dλ + 1√
π
∫

t

0
∫

∞

−∞

∣(u∗ − u)(x + 2
√
t − τλ, τ)∣p e−λ2dλdτ

≤ δ + 1√
π
∫

t

0
∫

∞

−∞
∣∣(u∗ − u)(⋅, τ)∣∣pB e−λ

2

dλdτ

= δ + ∫
t

0
∣∣(u∗ − u)(⋅, τ)∣∣pB dτ (9.20)

for all (x, t) ∈ D̄T , from which it follows that

∣∣(u∗ − u)(⋅, t)∣∣B ≤ δ + ∫
t

0
∣∣(u∗ − u)(⋅, τ)∣∣pB dτ (9.21)

for all t ∈ [0, T ]. Now, define F ∶ [0, T ]→ R to be

F (t) = δ + ∫
t

0
∣∣(u∗ − u)(⋅, τ)∣∣pB dτ ∀t ∈ [0, T ]. (9.22)

It follows from (9.22), Corollary 5.16 and the fundamental theorem of calculus, that F is

differentiable on [0, T ] and it follows from (9.21) that F satisfies the following differential

inequality

1

(F (τ))p
dF (τ)
dτ

≤ 1 ∀τ ∈ [0, T ]. (9.23)

Upon integrating both sides of (9.23), it follows that

F (t)(1−p) ≤ F (0)(1−p) + t(1 − p) = δ(1−p) + t(1 − p) ∀t ∈ [0, T ]. (9.24)

It now follows from (9.24), that

F (t) ≤ (δ(1−p) + (1 − p)t)1/(1−p) ∀t ∈ [0, T ] (9.25)
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and so, from (9.25) and (9.21), we have

∣∣(u∗ − u)(⋅, t)∣∣B ≤ (δ1−p + (1 − p)t)1/(1−p) ∀t ∈ [0, T ]. (9.26)

Now choose δ sufficiently small so that T1 = (1 − p)−1δ(1−p) < T . Then, via (9.26),

∣∣(u∗ − u)(⋅, t)∣∣B ≤ (δ1−p + (1 − p)T1)
1/(1−p) = 21/(1−p)δ ∀t ∈ [0, T1]. (9.27)

Now, u ∶ D̄T → R and u∗ ∶ D̄T → R both satisfy the lower bound in Theorem 9.16, with

m0 = 0. It then follows (since f given by (9.15) is differentiable on (0,∞)) via the mean

value theorem, that for all (s, τ) ∈DT there exists θ ≥ ((1 − p)τ)1/(1−p) such that

∣(f(u∗) − f(u))(s, τ)∣ ≤ ∣f ′(θ)∣ ∣(u∗ − u)(s, τ)∣

≤ pθ(p−1) ∣(u∗ − u)(s, τ)∣

≤ p((1 − p)τ)(p−1)/(1−p) ∣(u∗ − u)(s, τ)∣

≤ p

(1 − p)τ ∣∣(u
∗ − u)(⋅, τ)∣∣B. (9.28)

Via Proposition 9.9, f ∈ Hp with Hölder constant kH = 1 on any closed bounded interval

and so, upon substituting (9.27) and (9.28) into (9.19), we obtain

∣(u∗ − u)(x, t)∣ ≤ δ + 1√
π
∫

T1

0
∫

∞

−∞

∣(f(u∗) − f(u))(x + 2
√
t − τλ, τ)∣ e−λ2dλdτ

+ 1√
π
∫

t

T1
∫

∞

−∞

∣(f(u∗) − f(u))(x + 2
√
t − τλ, τ)∣ e−λ2dλdτ

≤ δ + 1√
π
∫

T1

0
∫

∞

−∞
∣∣(u∗ − u)(⋅, τ)∣∣pB e−λ

2

dλdτ

+ 1√
π
∫

t

T1
∫

∞

−∞

p

(1 − p)τ ∣∣(u
∗ − u)(⋅, τ)∣∣Be−λ

2

dλdτ

≤ δ + ∫
T1

0
2p/(1−p)δpdτ + ∫

t

T1

p

(1 − p)τ ∣∣(u
∗ − u)(⋅, τ)∣∣Bdτ

= (1 + 2p/(1−p)

(1 − p) ) δ + ∫
t

T1

p

(1 − p)τ ∣∣(u
∗ − u)(⋅, τ)∣∣Bdτ (9.29)
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for all (x, t) ∈ D̄T1
T , from which it follows,

∣∣(u∗ − u)(⋅, t)∣∣B ≤ (1 + 2p/(1−p)

(1 − p) ) δ + ∫
t

T1

p

(1 − p)τ ∣∣(u
∗ − u)(⋅, τ)∣∣Bdτ ∀t ∈ [T1, T ]. (9.30)

Now define G ∶ [T1, T ]→ R+ to be

G(t) = (1 + 2p/(1−p)

(1 − p) ) δ + ∫
t

T1

p

(1 − p)τ ∣∣(u
∗ − u)(⋅, τ)∣∣Bdτ ∀t ∈ [T1, T ]. (9.31)

It follows from (9.30), (9.31), Corollary 5.16 and the fundamental theorem of calculus,

that G is differentiable on [T1, T ] and satisfies

( 1

G(τ))
dG(τ)
dτ

≤ p

(1 − p)τ ∀τ ∈ [T1, T ]. (9.32)

Upon integrating both sides of (9.32) with respect to τ from T1 to t ∈ [T1, T ], we obtain

ln
⎛
⎜
⎝

G(t)
(1 + 2p/(1−p)

(1−p) ) δ

⎞
⎟
⎠
≤ p

(1 − p) ln(t(1 − p)
δ(1−p)

) ≤ ln((T (1 − p))p/(1−p)
δp

) (9.33)

for all t ∈ [T1, T ]. Taking exponentials of both sides of (9.33) and re-arranging gives

G(t) ≤ (T (1 − p))p/(1−p) (1 + 2p/(1−p)

(1 − p) ) δ
(1−p) ∀t ∈ [T1, T ]. (9.34)

Combining (9.27) and (9.34) gives the following bound,

∣∣(u∗ − u)(⋅, t)∣∣B ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

21/(1−p)δ ; t ∈ [0, T1]

(T (1 − p))p/(1−p) (1 + 2p/(1−p)
(1−p) ) δ(1−p) ; t ∈ [T1, T ].

(9.35)

Therefore, given any ε > 0, take

δ = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε

21+1/(1−p)
,
⎛
⎜
⎝

ε

2(T (1 − p))p/(1−p) (1 + 2p/(1−p)
(1−p) )

⎞
⎟
⎠

1/(1−p)⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.
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Then, via (9.35),

∣∣(u∗ − u)(⋅, t)∣∣B ≤ ε/2 < ε

for all t ∈ [0, T ], as required.

Corollary† 9.18. (S-R-D-C-2) is globally well-posed on BPC 2
+′(R).

Proof. Follows directly from Theorem 9.16 and Theorem 9.17.

Remark 9.19. Although (S-R-D-C-2) is globally well-posed on BPC2
+′(R), it is not uni-

formly globally well-posed on BPC2
+′(R). To illustrate this consider u1, u2 ∶ D̄∞ → R

defined to be

u1(x, t) = (M (1−p) + (1 − p)t)1/(1−p)
and u2(x, t) = ((M + δ)(1−p) + (1 − p)t)1/(1−p)

for all (x, t) ∈ D̄∞, where M,δ > 0. It is readily verified that u1 and u2 are solutions to

(S-R-D-C-2) with initial data u1
0, u

2
0 ∈ BPC2

+′(R) given by

u1
0(x) =M and u2

0(x) =M + δ

for all x ∈ R. However, for any δ > 0,

∣∣(u2 − u1)(⋅, t)∣∣B →∞ as t→∞. ⌟

Although a uniform global well-posedness result does not hold for (S-R-D-C-2) on

BPC2
+′(R), if an additional condition is imposed on the initial data, uniform global well-

posedness can be established. This follows from qualitative properties of solutions to

(S-R-D-C-2) which we now consider.

First, following Chapter 4, let v ∶ D̄∞ → R be the unique global solution to (B-D-C)

with u0 ∶ R → R taken as the initial data for (S-R-D-C-2). It follows from Theorem 4.2
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and Remark 4.3 that

v(x, t) = 1√
π
∫

∞

−∞
u0(x + 2

√
t λ)e−λ2dλ ∀(x, t) ∈ D̄∞ (9.36)

and, moreover, that

(i) 0 ≤ v(x, t) ≤M0 ∀(x, t) ∈ D̄∞ (via Theorem 4.7).

(ii) 0 < v(x, t) ≤M0 ∀(x, t) ∈D∞ (via (9.36) above).

(iii) When

u0(x)→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

l+ as x→ +∞

l− as x→ −∞,

with l+, l− ≥ 0, then

v(x, t)→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

l+ as x→ +∞

l− as x→ −∞

uniformly for t ∈ [0, T ], any T > 0 (via Remark 4.8).

We can now state;

Proposition‡ 9.20. Let ū ∶ D̄∞ → R be given by

ū(x, t) = (v(x, t)(1−p) + (1 − p)t)
1

(1−p) ∀ (x, t) ∈ D̄∞,

where v ∶ D̄∞ → R is as defined in (9.36). Then ū is a regular supersolution to (S-R-D-C-2)

on D̄T for any T > 0.

Proof. Since v ∶ D̄∞ → R is non-negative and the solution to (B-D-C), it follows that

ū ∶ D̄∞ → R is continuous and such that ūt, ūx and ūxx exist and are continuous on D∞.

Furthermore, it follows from (i) above that ū is bounded on D̄T for any T > 0. Also,

ū(x,0) = u0(x) ∀x ∈ R. (9.37)
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Now, for all (x, t) ∈D∞, we have

ūt(x, t) = φ
p

1−p (x, t) + φ
p

(1−p) (x, t)vt(x, t)
vp(x, t) ,

ūx(x, t) =
φ

p
(1−p) (x, t)vx(x, t)

vp(x, t) ,

ūxx(x, t) =
φ

p
(1−p) (x, t)vxx(x, t)

vp(x, t) − pφ
p

(1−p) (x, t)v2
x(x, t)

v(1+p)(x, t) + pφ
(2p−1)
(1−p) (x, t)v2

x(x, t)
v2p(x, t) (9.38)

with

φ(x, t) = v(x, t)(1−p) + (1 − p)t ∀(x, t) ∈D∞. (9.39)

Therefore,

N[ū] ≡ ūt − ūxx − [ūp]+

= φ
p

(1−p) (x, t) + φ
p

(1−p) (x, t)
vp(x, t) (vt(x, t) − vxx(x, t))

+ pv
2
x(x, t)

v2p(x, t)φ(x, t)
(2p−1)
(1−p) (v(p−1)(x, t)φ(x, t) − 1)

− φ
p

(1−p) (x, t)

= p(1 − p)tv
2
x(x, t)φ

(2p−1)
(1−p) (x, t)

v(1+p)(x, t)

≥ 0 (9.40)

for all (x, t) ∈ D∞. It then follows from (9.37) and (9.40) that ū ∶ D̄∞ → R is a regular

supersolution to (S-R-D-C-2) on D̄T for any T > 0, as required.

We next have,

Corollary‡ 9.21. Let u ∶ D̄∞ → R be the unique global solution to (S-R-D-C-2). Then,

u(x, t) ≤ (v(1−p)(x, t) + (1 − p)t)
1

(1−p) ∀(x, t) ∈ D̄∞.
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Proof. The functions ū,u ∶ D̄∞ → R given by

ū(x, t) = (v(1−p)(x, t) + (1 − p)t)
1

(1−p) ,

u(x, t) = u(x, t)

for all (x, t) ∈ D̄∞, provide a non-negative regular supersolution and a non-negative regular

subsolution respectively to (S-R-D-C-2) on D̄T for any T > 0 (via Proposition 9.20). Also,

since u(⋅,0) = u0 ∈ BPC2
+′(R), it then follows from Theorem 9.14 that u ≤ ū on D̄T for any

T > 0, and so u ≤ ū on D̄∞, as required.

We can now establish the following property,

Corollary‡ 9.22. Let u ∶ D̄∞ → R be the unique global solution to (S-R-D-C-2). When

u0 ∈ BPC 2
+′(R) is such that

u0(x)→ 0 as ∣x∣→∞,

then

u(x, t)→ ((1 − p)t)
1

(1−p) as ∣x∣→∞

uniformly for t ∈ [0, T ] and any T > 0.

Proof. This follows directly from Proposition 9.16, Corollary 9.21 and (iii).

Finally we observe from (9.36), that when u0 ∈ BPC2
+′(R) has compact support, then

v(x, t) = O(t−1/2) as t→∞ (9.41)

uniformly for all x ∈ R. We then have,

Corollary‡ 9.23. Let u ∶ D̄∞ → R be the unique global solution to (S-R-D-C-2). When

u0 ∈ BPC 2
+′(R) has compact support, then

u(x, t) = ((1 − p)t)
1

(1−p) +O(tγ(p)) as t→∞,
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uniformly for x ∈ R, where

γ(p) = −(p2 − 4p + 1)
2(1 − p) (< 1

(1 − p)) .

Proof. It follows from Corollary 9.21 and Proposition 9.16 that

((1 − p)t)
1

(1−p) ≤ u(x, t) ≤ (v(1−p)(x, t) + (1 − p)t)
1

(1−p) ∀(x, t) ∈ D̄∞. (9.42)

With

R(x, t) = u(x, t) − ((1 − p)t)
1

(1−p) ,

we then have

0 ≤ R(x, t) ≤ (v(1−p)(x, t) + (1 − p)t)
1

(1−p) − ((1 − p)t)
1

(1−p) ∀(x, t) ∈ D̄∞. (9.43)

Now, from (i) and (9.41), there exists a constant M > 0 such that

0 < v(x, t) < M

t1/2
∀(x, t) ∈D∞, (9.44)

and so

0 ≤ R(x, t) ≤ (M
(1−p)

t
(1−p)

2

+ (1 − p)t)
1

(1−p)
− ((1 − p)t)

1
(1−p) ∀(x, t) ∈D∞. (9.45)

Also, for t > 0,

(M
(1−p)

t
(1−p)

2

+ (1 − p)t)
1

(1−p)
= ((1 − p)t)

1
(1−p)

⎛
⎝

1 + M (1−p)

(1 − p)t (1−p)2
+1

⎞
⎠

1
(1−p)

= ((1 − p)t)
1

(1−p) +Ψ(t) (9.46)
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with, via the binomial theorem,

Ψ(t) = O(tγ(p)) as t→∞. (9.47)

Thus,

0 ≤ R(x, t) ≤ Ψ(t) ∀(x, t) ∈D∞,

via (9.45) and (9.46), and so

0 ≤ R(x, t)
tγ(p)

≤ Ψ(t)
tγ(p)

∀(x, t) ∈D∞. (9.48)

Now, Ψ(t)/tγ(p) is bounded as t→∞, via (9.47), and so R(x, t)/tγ(p) is bounded as t→∞,

uniformly for x ∈ R. It follows that

R(x, t) = O(tγ(p)) as t→∞

uniformly for x ∈ R. Therefore,

u(x, t) = ((1 − p)t)
1

(1−p) +O(tγ(p)) as t→∞

uniformly for x ∈ R, as required.

A concluding statement can now be made concerning uniform global well-posedness

and stability of a restricted version of (S-R-D-C-2), namely,

Remark 9.24. Define A = {u0 ∈ BPC 2
+′(R) ∶ u0 has compact support}. Then (S-R-D-C-

2) is uniformly globally well-posed on A when 0 < p < 2−
√

3, which follows from Corollary

9.18 and Corollary 9.23, noting that γ(p) < 0 when 0 < p < 2−
√

3. Moreover, under these

conditions the global solution is asymptotically stable with respect to perturbations in

the initial data δu0 ∈ A. Note that 0 < p < 2−
√

3 is a sufficient condition for the above to

hold. ⌟
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9.3 f(u) = [up]+[(1 − u)q]+

In this section we consider the (B-R-D-C) problem when the reaction function f ∶ R→ R

is given by

f(u) = [up]+[(1 − u)q]+ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

up(1 − u)q ;u ∈ [0,1]

0 ;u /∈ [0,1],
(9.49)

where p, q ∈ (0,1). In particular, we restrict attention to initial data u0 ∈ BPC2
+′(R), with

sup
x∈R

{u0(x)} =M0 > 0, inf
x∈R

{u0(x)} =m0 ≥ 0. (9.50)

The aim of this section is to provide a uniform global well-posedness result for this specific

(B-R-D-C). This problem is similar to (S-R-D-C-2) in that the technical condition (9.50)

is necessary. Throughout the section, this (B-R-D-C) will be referred to as (S-R-D-C-3).

It should be noted that the problem (S-R-D-C-3) has been studied in [36], and briefly

reviewed in [74], in the Lipschitz case when p, q ≥ 1 and in [33] when 0 < p < 1 and q = 1.

For convenience, we define γ = p
p+q and observe that

sup
u∈R

f(u) = f(γ) = (γ)p (1 − γ)q , (9.51)

and that f ∶ (−∞, γ]→ R is non-decreasing and f ∶ [γ,∞)→ R is non-increasing.

Before we proceed with the uniform global well-posedness result for (S-R-D-C-3), we

highlight several important features of the reaction function (9.49).

Proposition 9.25. The function f ∶ R → R given by (9.49) satisfies f ∈ Hα where

α = min{p, q}. Moreover, on any closed bounded interval E ⊂ R, the Hölder constant

satsfies kH = 1.

Proof. First consider the closed bounded interval [0, γ]. Observe that f ∶ R → R is

differentiable on (0, γ), with derivative which satisfies

df(u)
du

= pup−1(1 − u)q − qup(1 − u)q−1 ≤ pup−1 = du
p

du
, (9.52)
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for all u ∈ (0, γ). Therefore, for all x, y ∈ [0, γ] such that x ≤ y, an integration of (9.52)

from x to y yields

∣f(y) − f(x)∣ = f(y) − f(x) = ∫
y

x

df(u)
du

du ≤ ∫
y

x

dup

du
du

= yp − xp ≤ (y − x)p ≤ (y − x)α = ∣y − x∣α. (9.53)

Next consider the interval [γ,1]. Observe that f ∶ R → R is differentiable on (γ,1), with

derivative that satisfies

df(u)
du

= pup−1(1 − u)q − qup(1 − u)q−1 ≥ −q(1 − u)q−1 = d(1 − u)
q

du
(9.54)

for all u ∈ (γ,1). Again, for all x, y ∈ [γ,1] such that x ≤ y, an integration of (9.54) from

x to y yields

∣f(y) − f(x)∣ = f(x) − f(y) = −∫
y

x

df(u)
du

du ≤ −∫
y

x

d(1 − u)q
du

du

= (1 − x)q − (1 − y)q

≤ (y − x)q = ∣y − x∣q ≤ ∣y − x∣α. (9.55)

Now, for every u ∈ (0, γ) there exists ũ ∈ (γ,1) such that f(u) = f(ũ). Therefore, for all

x, y ∈ [0,1] such that 0 ≤ x ≤ γ ≤ y ≤ 1 with 0 ≤ ỹ ≤ γ ≤ x̃ ≤ 1, then (9.55) and (9.53) imply

∣f(y) − f(x)∣ = ∣f(ỹ) − f(x)∣ = ∣f(y) − f(x̃)∣ ≤ min{∣y − x̃∣α, ∣ỹ − x∣α} ≤ ∣y − x∣α. (9.56)

Finally, since f(u) = 0 for all u /∈ (0,1), inequalities (9.53), (9.55) and (9.56) ensure that

∣f(y) − f(x)∣ ≤ ∣y − x∣α

for any x, y ∈ R, as required.
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Proposition 9.26. For any x, y ∈ R, such that x ≤ y, f ∶ R→ R given by (9.49) satisfies

f(y) − f(x) ≤ (y − x)p.

Proof. First, observe that f ∶ R→ R is differentiable on (0,1) and

df(s)
ds

= psp−1(1 − s)q − qsp(1 − s)q−1 ≤ psp−1 ≤ d(s
p)

ds
∀s ∈ (0,1). (9.57)

An integration of (9.57) with respect to s from x to y, where 0 ≤ x ≤ y ≤ 1, yields

f(y) − f(x) ≤ yp − xp ≤ (y − x)p. (9.58)

Furthermore, for any x, y /∈ (0,1), we have

f(y) − f(x) = 0 ≤ (y − x)p. (9.59)

The result follows from (9.58) and (9.59).

Proposition 9.27. For any x, y ∈ [0,∞), with y > x, then f ∶ R → R given by (9.49)

satisfies

f(y) − f(x) ≤ pθp−1(y − x)

for some θ ∈ (x, y).

Proof. Observe that f ∶ R→ R given by (9.49) is differentiable in (0,1), and, via (9.57),

f ′(s) ≤ psp−1 ∀s ∈ (0,1). (9.60)

Now, for x, y ∈ [0,1] with x < y, the mean value theorem and (9.60) establish that there

exists θ ∈ (x, y) such that

f(y) − f(x) = f ′(θ)(y − x) ≤ pθp−1(y − x). (9.61)
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The result follows on noting that f(s) = 0 for all s ∈ [1,∞).

We now proceed to existence and uniqueness results for (S-R-D-C-3). We first define

the function fη ∶ R→ R, for any η ∈ (0, γ] such that

fη(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(η) ;u < η

f(u) ;u ≥ η,
(9.62)

where f ∶ R→ R is given by (9.49). We have the following:

Proposition 9.28. Let f ∶ R → R and fη ∶ R → R be given by (9.49) and (9.62) respec-

tively. Then fη ∈ Lu and

fη(u) ≥ f(u) ∀u ∈ R. (9.63)

Proof. Observe that for x, y ∈ R, with η ≤ x ≤ y ≤ 1, via (9.62) and the mean value

theorem, there exists θ ∈ [x, y], such that

fη(y) − fη(x) = f ′(θ)(y − x) ≤ f ′(η)(y − x). (9.64)

Since fη(s) = 0 for all s ∈ [1,∞) and fη(s) = f(η) for all s ∈ (−∞, η], then (9.64) holds for

any x, y ∈ R with x ≤ y. Thus fη ∈ Lu. Moreover, via (9.49), f ∶ R → R is non-decreasing

on (−∞, η], and (9.63) follows.

We now establish a priori bounds for (S-R-D-C-3).

Proposition 9.29. Let u ∶ D̄T → R be any solution to (S-R-D-C-3). Then,

m0 ≤ u(x, t) ≤ max{M0,1} ∀(x, t) ∈ D̄T .

Proof. Since f ∶ R→ R given by (9.49) is non-negative, then the left inequality is obtained

via Theorem 3.6. Now define u,u ∶ D̄T → R to be

u(x, t) = max{M0,1}, u(x, t) = u(x, t) ∀(x, t) ∈ D̄T . (9.65)
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It follows from Proposition 9.28 that

ut − uxx − fη(u) ≥ 0

ut − uxx − fη(u) = f(u) − fη(u) ≤ 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∀(x, t) ∈DT (9.66)

u(x,0) ≤ u(x,0) ∀x ∈ R. (9.67)

Therefore u and u can be taken as a regular supersolution and a regular subsolution

respectively for (B-R-D-C) with reaction function fη ∶ R → R and it then follows from

Theorem 7.1 and (9.65) that

u(x, t) ≤ max{M0,1} ∀(x, t) ∈ D̄T ,

as required.

Remark 9.30. It follows from Proposition 9.29 that (S-R-D-C-3) is uniformly a priori

bounded on D̄T for any T > 0 and hence is a priori bounded on D̄∞.

We can now state,

Theorem‡ 9.31. (S-R-D-C-3) has a global constructed maximal solution uc ∶ D̄∞ → R

and a global constructed minimal solution uc ∶ D̄∞ → R for any u0 ∈ BPC 2
+′(R). Moreover,

m0 ≤ uc(x, t) ≤ uc(x, t) ≤ max{M0,1} ∀(x, t) ∈ D̄∞.

Proof. Existence follows from Remark 9.30, Proposition 9.25 and Theorem 8.25. The

bounds follow from Proposition 9.29.

Before we can establish a uniqueness argument, we require an improved lower bound

for (S-R-D-C-3), similar to Corollary 9.13 for (S-R-D-C-2).

Theorem‡ 9.32. The constructed minimal solution uc ∶ D̄∞ → R to (S-R-D-C-3) satisfies

uc(x, t) ≥ ((1 − p)ct)1/(1−p) ∀(x, t) ∈ D̄Tc ,
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where Tc = (1−(1/2)(1−p))(1−c1/q)(1−p)
(1−p) for any c ∈ (0,1).

Proof. To begin, fix c ∈ (0,1) and let uc, uc ∶ D̄∞ → R be the constructed maximal and con-

structed minimal solution respectively to (S-R-D-C-3) with initial data u0 ∈ BPC2
+′(R), as

in Theorem 9.31. Now consider the (B-R-D-C) problem with reaction function f̂ ∶ R→ R

given by

f̂(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cup ;u ∈ [0, uc]

f(u) ;u /∈ [0, uc]
≤ f(u) ∀u ∈ R, (9.68)

with f ∶ R → R given by (9.49), uc = (1 − c1/q) ∈ (0,1), and initial data û0 ∈ BPC2
+′(R)

given by

û0(x) =
ucu0(x)

2 max{1,M0}
≤ min{1

2uc, u0(x)} ∀x ∈ R. (9.69)

It follows from Proposition 9.25 and (9.68) that f̂ ∈ Hα, where α = min{p, q}. Now

let u ∶ D̄T → R be any solution to (B-R-D-C) with f̂ and û0, then since f̂ ∶ R → R is

non-negative, via Theorem 3.6, we have

u(x, t) ≥ 0 ∀(x, t) ∈ D̄T . (9.70)

Moreover, since u ∶ D̄T → R is a solution to (B-R-D-C) with f̂ and û0, via (9.68), it follows

that

ut − uxx − f(u) = f̂(u) − f(u) ≤ 0 ∀(x, t) ∈DT . (9.71)

It follows from (9.69) and (9.71) that u ∶ D̄T → R is a R-S-B to (S-R-D-C-3) with initial

data u0 ∈ BPC2
+′(R). Therefore, via Proposition 8.26,

u(x, t) ≤ uc(x, t) ∀(x, t) ∈ D̄T . (9.72)

Therefore, via (9.72) and Theorem 9.31, we have

u(x, t) ≤ max{1,M0} ∀(x, t) ∈ D̄T , (9.73)
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and so, from (9.70) and (9.73), we conclude that (B-R-D-C) is a priori bounded on D̄T

uniformly in T > 0. Thus it follows from Theorem 8.25 that there exists a constructed

minimal solution û ∶ D̄∞ → R to (B-R-D-C). Now, since f̂ ∈ Hα, whilst û ∶ D̄∞ → R is the

constructed minimal solution to (B-R-D-C) and uc ∶ D̄∞ → R is a R-S-P to (B-R-D-C)

with initial data û0 ∈ BPC2
+′(R), then, via Proposition 8.26, we have

û(x, t) ≤ uc(x, t) ∀(x, t) ∈ D̄∞. (9.74)

Next, since û ∶ D̄T → R is a solution to (B-R-D-C) on D̄T , then via (9.68), we have

ût − ûxx − ûp = f̂(û) − ûp ≤ 0 ∀(x, t) ∈DT . (9.75)

It follows from (9.75) and (9.69) that û is a R-S-B to (S-R-D-C-2) with initial data

û0 ∈ BPC2
+′(R). Thus, via Theorem 9.14, we have

0 ≤ û(x, t) ≤ u2(x, t) ∀(x, t) ∈ D̄T ,

where u2 ∶ D̄T → R is the unique solution to (S-R-D-C-2) with initial data û0 ∈ BPC2
+′(R).

It then follows from (9.69) and Theorem 9.16 that

0 ≤ û(x, t) ≤ ((1 − p)t + (uc
2
)
(1−p)

)
1/(1−p)

∀(x, t) ∈ D̄T , (9.76)

and so

0 ≤ û(x, t) ≤ uc ∀(x, t) ∈ D̄Tc , (9.77)

where Tc = (1−(1/2)(1−p))(1−c1/q)(1−p)
(1−p) . It now follows from (9.68), (9.69) and (9.77) that

û ∶ D̄Tc → R is a solution to the (B-R-D-C) problem with reaction function f̆ ∶ R → R

given by

f̆(u) = c[up]+ ∀u ∈ R, (9.78)
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with initial data û0 ∈ BPC2
+′(R). Next, define the function z ∶ D̄cTc → R to be

z(x̃, t̃) = û(x, t) ∀(x̃, t̃) ∈ D̄cTc , (9.79)

where x̃ = c1/2x and t̃ = ct. We observe from (9.78) and (9.79) that

zt̃ − zx̃x̃ − zp = 0 ∀(x̃, t̃) ∈DcTc , (9.80)

with initial data z(⋅,0) ∈ BPC2
+′(R). It follows from (9.80) that z ∶ D̄cTc → R is the

unique solution to (S-R-D-C-2) on D̄cTc with initial data z(⋅,0) ∈ BPC2
+′(R). Therefore,

via Theorem 9.16, we have

z(x̃, t̃) ≥ ((1 − p)t̃)1/(1−p) ∀(x̃, t̃) ∈ D̄cTc ,

and hence, via (9.79), it follows that

û(x, t) ≥ ((1 − p)ct)1/(1−p) ∀(x, t) ∈ D̄Tc . (9.81)

The result follows from (9.81) and (9.74).

We can now establish a uniqueness result for (S-R-D-C-3). The proof follows a similar

approach to that of Aguirre and Escobedo in [5].

Theorem‡ 9.33 (Uniqueness). The constructed minimal solution uc ∶ D̄∞ → R to (S-R-

D-C-3), is the unique solution to (S-R-D-C-3).

Proof. For u0 ∈ BPC2
+′(R) with m0 > 0 in (9.50), via Theorem 9.31, any corresponding

solution u ∶ D̄T → R to (S-R-D-C-3) is a solution to (B-R-D-C) with reaction function

fη ∶ R → R with η = min{m0, γ}. It follows from Proposition 9.28 and Theorem 7.2 that

u = uc on D̄T . Thus uc ∶ D̄∞ → R is the unique solution to (S-R-D-C-3) in this case.

Now, consider u0 ∈ BPC2
+′(R) with m0 = 0 in (9.50). Suppose that uc ∶ D̄∞ → R and

uc ∶ D̄∞ → R in Theorem 9.31 are distinct. Then, via Proposition 9.26 and the Hölder
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Equivalence Lemma 5.10, we have

(uc − uc)(x, t) = 1√
π
∫

t

0
∫

∞

−∞
(f(uc) − f(uc))(x + 2

√
t − τλ, τ)e−λ2dλdτ (9.82)

≤ 1√
π
∫

t

0
∫

∞

−∞
(uc − uc)p(x + 2

√
t − τλ, τ)e−λ2dλdτ

≤ 1√
π
∫

t

0
∫

∞

−∞
∣∣(uc − uc)(⋅, τ)∣∣pBe−λ

2

dλdτ

≤ ∫
t

0
∣∣(uc − uc)(⋅, τ)∣∣pBdτ (9.83)

for all (x, t) ∈ D̄T and any T > 0, on noting, via Corollary 5.16, that uc, uc ∶ D̄∞ → R are

uniformly continuous on D̄T , and so ∣∣(uc−uc)(⋅, t)∣∣B is continuous for t ∈ [0, T ]. Moreover,

the right hand side of (9.83) is independent of x, from which we obtain

∣∣(uc − uc)(⋅, t)∣∣B ≤ ∫
t

0
∣∣(uc − uc)(⋅, τ)∣∣pBdτ ∀t ∈ [0, T ],

which gives, after an integration,

∣∣(uc − uc)(⋅, t)∣∣B ≤ ((1 − p)t)1/(1−p) ∀t ∈ [0, T ]. (9.84)

Now, via Proposition 9.27, Theorem 9.32 and the mean value theorem, for any

(s, τ) ∈ D̄T ∗ there exists θ ∈ [uc(s, τ), uc(s, τ)] such that

f(uc(s, τ)) − f(uc(s, τ)) = f ′(θ)(uc(s, τ) − uc(s, τ)) (9.85)

≤ pθp−1(uc(s, τ) − uc(s, τ))

≤ p((1 − p)cτ)−1(uc(s, τ) − uc(s, τ))

≤ p

(1 − p)cτ ∣∣(u
c − uc)(⋅, τ)∣∣B, (9.86)

where T ∗ is defined by Theorem 9.32 for c ∈ (0,1), with c chosen so that

0 < p < c < 1. (9.87)
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On substituting (9.86) into (9.82), we have, for (x, t) ∈DT ∗ ,

(uc − uc)(x, t) ≤ 1√
π
∫

t

0
∫

∞

−∞

p

(1 − p)cτ ∣∣(u
c − uc)(⋅, τ)∣∣Be−λ

2

dλdτ ∀(x, t) ∈DT ∗

and so

∣∣(uc − uc)(⋅, t)∣∣B ≤ p

(1 − p)c ∫
t

0
τ−1∣∣(uc − uc)(⋅, τ)∣∣Bdτ ∀t ∈ [0, T ∗], (9.88)

on noting that the right hand side of (9.88) is integrable via (9.84) and Lemma 5.5, and the

limit of the right hand side implied at t = 0. Next we define the function w ∶ [0, T ∗] → R

to be

w(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
t

0
τ−1∣∣(uc − uc)(⋅, τ)∣∣Bdτ ; t ∈ (0, T ∗]

0 ; t = 0.

(9.89)

We note that w is non-negative, continuous and differentiable (via Corollary 5.16). The

inequality (9.88) can be re-written as

w′(s) − p

c(1 − p)sw(s) ≤ 0 ∀s ∈ (0, T ∗]. (9.90)

This may be re-written as

(w(s)s−
p

c(1−p))
′

≤ 0 ∀s ∈ (0, T ∗]. (9.91)

We now integrate (9.91) from s = ε to s = t (with 0 < ε < t ≤ T ∗) to obtain

w(t) ≤ w(ε) ( t
ε
)

p
c(1−p)

∀ 0 < ε < t ≤ T ∗. (9.92)

Next we substitute the bound in (9.84) into (9.89), which gives

w(ε) = ∫
ε

0
τ−1∣∣(uc − uc)(⋅, τ)∣∣Bdτ

≤ ∫
ε

0
(1 − p)1/(1−p)τ 1/(1−p)−1dτ
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= (1 − p)(2−p)/(1−p)ε1/(1−p) (9.93)

for 0 < ε < t ≤ T ∗. Finally, upon substituting (9.93) into (9.92), we obtain

w(t) ≤ (1 − p)(2−p)/(1−p)T ∗p/c(1−p)ε
1

(1−p) (1− p
c
) ∀ 0 < ε < t ≤ T ∗. (9.94)

Now, via (9.87), upon letting ε→ 0 in (9.94), we obtain

w(t) = 0 ∀t ∈ [0, T ∗]. (9.95)

Therefore, via (9.95), (9.89) and (9.88), we have

∣∣(uc − uc)(⋅, t)∣∣B = 0 ∀t ∈ [0, T ∗],

and hence

uc(x, t) = uc(x, t) ∀(x, t) ∈ D̄T ∗ . (9.96)

When T ≤ T ∗, the proof is complete, so now let T > T ∗. All that remains is to establish

the uniqueness of uc on D̄T ∗
T . To this end, consider the functions ucT ∗ , u

c
T ∗ ∶ D̄T−T ∗ → R

defined to be

ucT ∗(x, t) = uc(x, t + T ∗)

ucT ∗(x, t) = uc(x, t + T ∗)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∀(x, t) ∈ D̄T−T ∗ . (9.97)

Following from the definition of ucT ∗ and ucT ∗ , Theorem 9.32 and (9.95), we have, for

c ∈ (0,1) as in (9.87),

0 < ((1 − p)cT ∗)1/(1−p) ≤ ucT ∗(x,0) = ucT ∗(x,0) ∀x ∈ R, (9.98)

where ucT ∗(⋅,0), ucT ∗(⋅,0) ∈ BPC2
+′(R), via Proposition 9.25, Theorem 9.31, Lemma 5.12

150



and Lemma 5.15. Moreover, from Theorem 9.31 and (9.97), it follows that

ucT ∗(x, t) ≤ ucT ∗(x, t) ∀(x, t) ∈ D̄T−T ∗ . (9.99)

Additionally, both ucT ∗ and ucT ∗ are bounded, twice continuously differentiable with respect

to x and once with respect to t on D̄T−T ∗ . Now, since ucT ∗ satisfies

ucT ∗ t − ucT ∗xx ≥ f(ucT ∗) ≥ 0 ∀(x, t) ∈DT−T ∗ ,

Theorem 3.6, in conjunction with (9.98) and (9.99) establishes that

0 < ((1 − p)cT ∗)1/(1−p) ≤ ucT ∗(x, t) ≤ ucT ∗(x, t) ∀(x, t) ∈ D̄T−T ∗ . (9.100)

Observe that since ucT ∗ and ucT ∗ solve (S-R-D-C-3), then via (9.100) and Proposition 9.28,

ucT ∗ t − ucT ∗xx − fη(ucT ∗) ≥ 0

ucT ∗ t − ucT ∗xx − fη(ucT ∗) ≤ 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∀(x, t) ∈DT−T ∗ , (9.101)

where fη ∶ R→ R is defined as in Proposition 9.28, with η chosen as

η = min{((1 − p)cT ∗)1/(1−p), γ}.

Finally, via Proposition 9.28, fη ∈ Lu, and also, via (9.101) and (9.98), ucT ∗ ∶ D̄T−T ∗ → R

and ucT ∗ ∶ D̄T−T ∗ → R are a R-S-P and a R-S-B to (B-R-D-C) with reaction function fη

and u0 = uc(⋅, T ∗) = uc(⋅, T ∗) ∈ BPC2
+′(R). It follows from Theorem 7.1 that

ucT ∗(x, t) ≥ ucT ∗(x, t) ∀(x, t) ∈ D̄T−T ∗ . (9.102)

It then follows from (9.99) and (9.102) that

ucT ∗(x, t) = ucT ∗(x, t) ∀(x, t) ∈ D̄T−T ∗ . (9.103)
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Finally, equations (9.103), (9.97) and (9.96) give

uc(x, t) = uc(x, t) ∀(x, t) ∈ D̄T .

This holds for any T > 0, and so

uc(x, t) = uc(x, t) ∀(x, t) ∈ D̄∞,

as required.

We now have the following useful comparison theorem for (S-R-D-C-3).

Corollary‡ 9.34. Let u,u ∶ D̄T → R be a R-S-P and a R-S-B to (S-R-D-C-3). Then

u(x, t) ≤ u(x, t) for all (x, t) ∈ D̄T .

Proof. Follows from Proposition 9.25, Theorem 8.26 and Theorem 9.33.

At this stage we can now consider continuous dependence for (S-R-D-C-3).

Theorem‡ 9.35 (Global Continuous Dependence). Given ε > 0, T ∈ (0,∞) and

u10 ∈ BPC 2
+′(R), there exists δ > 0, such that for any u20 ∈ BPC 2

+′(R) which satisfies

∣∣u20 − u10∣∣B < δ,

the corresponding unique solutions u1, u2 ∶ D̄T → R to (S-R-D-C-3) are such that

∣∣u2 − u1∣∣A < ε.

Proof. Consider u30 ∈ BPC2
+′(R), given by

u30(x) = u10(x) +
1

2
δ ∀x ∈ R, (9.104)

with δ > 0. It follows from Theorem 9.31 and Theorem 9.33 that there exists u3 ∶ D̄T → R

that uniquely solves (S-R-D-C-3) with initial data u30 ∈ BPC2
+′(R). Now, for any
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u20 ∈ BPC2
+′(R) such that ∣∣u20 − u10∣∣B < δ

2 , then

0 < u30(x) − ui0(x) < δ ∀x ∈ R, (9.105)

with i = 1,2. It then follows from taking u3 ∶ D̄T → R as a R-S-P and ui ∶ D̄T → R (i = 1,2)

as a R-S-B in Corollary 9.34, that

max{u1(x, t), u2(x, t)} ≤ u3(x, t) ∀(x, t) ∈ D̄T . (9.106)

Now, via the Hölder Equivalence Lemma 5.10, (9.105), (9.106) and Proposition 9.26 for

i = 1,2,

0 ≤ (u3 − ui)(x, t) ≤ δ + 1√
π
∫

t

0
∫

∞

−∞
(f(u3) − f(ui))(x + 2

√
t − τλ, τ)e−λ2dλdτ

≤ δ + 1√
π
∫

t

0
∫

∞

−∞
(u3 − ui)p(x + 2

√
t − τλ, τ)e−λ2dλdτ

≤ δ + 1√
π
∫

t

0
∫

∞

−∞
∣∣(u3 − ui)(⋅, τ)∣∣pBe−λ

2

dλdτ

≤ δ + ∫
t

0
∣∣(u3 − ui)(⋅, τ)∣∣pBdτ (9.107)

for all (x, t) ∈ D̄T . Therefore, since the right hand side of (9.107) is independent of x, we

have

∣∣(u3 − ui)(⋅, t)∣∣B ≤ δ + ∫
t

0
∣∣(u3 − ui)(⋅, τ)∣∣pBdτ ∀t ∈ [0, T ], (9.108)

from which we obtain (noting that ∣∣(u3−ui)(⋅, t)∣∣B is continuous for t ∈ [0, T ] via Corollary

5.16),

∣∣(u3 − ui)(⋅, t)∣∣B ≤ (δ(1−p) + (1 − p)t)1/(1−p), (i = 1,2) ∀t ∈ [0, T ]. (9.109)

Now take δ sufficiently small so that Tδ = δ(1−p)
(1−p) < T and it follows from (9.109) that

∣∣(u3 − ui)(⋅, t)∣∣B ≤ (δ(1−p) + δ(1−p))1/(1−p) ≤ 21/(1−p)δ, (i = 1,2) ∀t ∈ [0, Tδ]. (9.110)
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Next, fix c ∈ (0,1) such that p < c < 1, and it follows, via Theorem 9.32, that there exists

Tc > 0 which is independent of δ, such that

ui(x, t) ≥ ((1 − p)ct)1/(1−p), (i = 1,2,3) ∀(x, t) ∈ D̄Tc . (9.111)

Now take δ sufficiently small so that Tδ < Tc, and set T > Tc. Proposition 9.27, (9.111)

and (9.106) establish that for i = 1,2,

(f(u3) − f(ui))(s, τ) ≤ pθp−1
i (u3 − ui)(s, τ) (9.112)

for all (s, τ) ∈DTc , where θi(s, τ) ∈ [ui(s, τ), u3(s, τ)]. Combining (9.112) with (9.111) we

have, for i = 1,2,

(f(u3) − f(ui))(s, τ) ≤ p((1 − p)cτ)(p−1)/(1−p)(u3 − ui)(s, τ)

= p

c(1 − p)τ (u3 − ui)(s, τ) (9.113)

for all (s, τ) ∈DTc . The Hölder Equivalence Lemma 5.10 gives (for i = 1,2)

0 ≤ (u3 − ui)(x, t) ≤ δ + 1√
π
∫

Tδ

0
∫

∞

−∞
(f(u3) − f(ui))(x + 2

√
t − τλ, τ)e−λ2dλdτ

+ 1√
π
∫

t

Tδ
∫

∞

−∞
(f(u3) − f(ui))(x + 2

√
t − τλ, τ)e−λ2dλdτ

≤ δ + 1√
π
∫

Tδ

0
∫

∞

−∞
(u3 − ui)p(x + 2

√
t − τλ, τ)e−λ2dλdτ

+ 1√
π
∫

t

Tδ
∫

∞

−∞

p

c(1 − p)τ (u3 − ui)(x + 2
√
t − τλ, τ)e−λ2dλdτ

≤ δ + 1√
π
∫

Tδ

0
∫

∞

−∞
2p/(1−p)δpe−λ

2

dλdτ

+ 1√
π
∫

t

Tδ
∫

∞

−∞

p

c(1 − p)τ ∣∣(u3 − ui)(⋅, τ)∣∣Be−λ
2

dλdτ

≤ δ (1 + 2p/(1−p)

(1 − p) ) + ∫
t

Tδ

p

c(1 − p)τ ∣∣(u3 − ui)(⋅, τ)∣∣Bdτ (9.114)

for all (x, t) ∈ D̄Tδ
Tc

, via (9.49), Proposition 9.26, (9.113) and (9.110) respectively. It follows
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from (9.114) that

∣∣(u3 − ui)(⋅, t)∣∣B ≤ δ (1 + 2p/(1−p)

(1 − p) ) + ∫
t

Tδ

p

c(1 − p)τ ∣∣(u3 − ui)(⋅, τ)∣∣Bdτ (9.115)

for all t ∈ [Tδ, Tc]. Now define G ∶ [Tδ, Tc]→ R+ to be

G(t) = δ (1 + 2p/(1−p)

(1 − p) ) + ∫
t

Tδ

p

c(1 − p)τ ∣∣(u3 − ui)(⋅, τ)∣∣Bdτ (9.116)

for all t ∈ [Tδ, Tc]. It follows from (9.115), (9.116), Corollary 5.16 and the fundamental

theorem of calculus, that G is differentiable on [Tδ, Tc] and satisfies

1

G(τ)
dG(τ)
dτ

≤ p

c(1 − p)τ ∀τ ∈ [Tδ, Tc]. (9.117)

Upon integrating both sides of (9.117) with respect to τ from Tδ to t ∈ [Tδ, Tc], we obtain

ln
⎛
⎜
⎝

G(t)
δ (1 + 2p/(1−p)

(1−p) )

⎞
⎟
⎠
≤ p

c(1 − p) ln(t(1 − p)
δ(1−p)

) ≤ ln((Tc(1 − p))p/c(1−p)
δp/c

) (9.118)

for all t ∈ [Tδ, Tc]. Taking exponentials of both sides of (9.118) and re-arranging gives

G(t) ≤ δ(1−p/c) (1 + 2p/(1−p)

(1 − p) ) ((1 − p)Tc)p/c(1−p) = k(p, c)δ(1−p/c) (9.119)

for all t ∈ [Tδ, Tc], with k(p, c) = (1 + 2p/(1−p)
(1−p) ) ((1 − p)Tc)p/c(1−p) which is independent of δ.

It follows from (9.119), (9.116) and (9.115) that

∣∣(u3 − ui)(⋅, t)∣∣B ≤ k(p, c)δ(1−p/c) ∀t ∈ [Tδ, Tc]. (9.120)

It remains to consider t ∈ [Tc, T ]. Now, inequality (9.120) gives

∣∣(u3 − ui)(⋅, Tc)∣∣B ≤ k(p, c)δ(1−p/c) (i = 1,2). (9.121)
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Also, via (9.111), we have

ui(x,Tc) ≥ ((1 − p)cTc)1/(1−p) ∀x ∈ R, (i = 1,2,3). (9.122)

Since ui ∶ D̄T → R are solutions to (S-R-D-C-3), then (9.122) and Theorem 3.6 establish

that

ui(x, t) ≥ ((1 − p)cTc)1/(1−p) = k′(p, c) ∀(x, t) ∈ D̄Tc
T (i = 1,2,3), (9.123)

with k′(p, c) being independent of δ. Now consider ũi ∶ D̄T−Tc → R (i = 1,2,3) given by

ũi(x, t) = ui(x, t + Tc) ∀(x, t) ∈ D̄T−Tc . (9.124)

Then, via (9.121),

∣∣(ũ3 − ũi)(⋅,0)∣∣B ≤ k(p, c)δ(1−p/c) (i = 1,2). (9.125)

It now follows from the Hölder Equivalence Lemma 5.10, (9.125), (9.123), (9.106) and use

of the mean value theorem (for f on [0,1] and (1,∞)), with η = min{k′(p, c), 1
2γ}, which

is independent of δ, that

0 ≤ (ũ3 − ũi)(x, t) ≤ k(p, c)δ(1−p/c) +
1√
π
∫

t

0
∫

∞

−∞
(f(ũ3) − f(ũi))(x + 2

√
t − τλ, τ)e−λ2dλdτ

≤ k(p, c)δ(1−p/c) + 1√
π
∫

t

0
∫

∞

−∞
f ′(η)(ũ3 − ũi)(x + 2

√
t − τλ, τ)e−λ2dλdτ

≤ k(p, c)δ(1−p/c) + ∫
t

0
f ′(η)∣∣(ũ3 − ũi)(⋅, τ)∣∣Bdτ (9.126)

for all (x, t) ∈ D̄T−Tc . Hence, via (9.126) and Proposition 5.6, we have (i = 1,2)

∣∣(ũ3 − ũi)(⋅, t)∣∣B ≤ k(p, c)δ(1−p/c) + ∫
t

0
f ′(η)∣∣(ũ3 − ũi)(⋅, τ)∣∣Bdτ

≤ k(p, c)δ(1−p/c)ef ′(η)(T−Tc), (9.127)
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for all t ∈ [0, T −Tc]. Therefore, via (9.110), (9.120), (9.124) and (9.127), we have (i = 1,2)

∣∣(u3 − ui)(⋅, t)∣∣B ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

21/(1−p)δ ; t ∈ [0, Tδ]

k(p, c)δ(1−p/c) ; t ∈ [Tδ, Tc]

k(p, c)δ(1−p/c)ef ′(η)(T−Tc) ; t ∈ [Tc, T ],

(9.128)

where k(p, c) > 0, Tc > 0 and η > 0 are all independent of δ. Now, given ε > 0 we may choose

δ sufficiently small in (9.128) to guarantee that ∣∣(u3−ui)(⋅, t)∣∣B < 1
2ε for all t ∈ [0, T ], and

hence that ∣∣u3 − ui∣∣A < 1
2ε for i = 1,2. Thus ∣∣u2 − u1∣∣A < ε, as required.

An immediate consequence of this result is,

Corollary‡ 9.36. The problem (S-R-D-C-3) is globally well-posed on BPC 2
+′(R).

Proof. (P1), (P2) and (P3) follow from Theorem 9.31, Theorem 9.33 and Theorem 9.35

respectively.

To establish a uniform global well-posedness result, some additional qualitative infor-

mation is required.

Proposition‡ 9.37. For any u0 ∈ BPC 2
+′(R), the corresponding unique solution

u ∶ D̄∞ → R to (S-R-D-C-3) satisfies

u(x, t) ≥ 1 ∀(x, t) ∈ D̄I1
∞,

where I1 = ∫
1

0
1

rp(1−r)q dr.

Proof. Consider the function I ∶ [0,1]→ R given by

I(s) = ∫
s

0

1

rp(1 − r)q dr ∀s ∈ [0,1], (9.129)

where the improper integral is implied. It is readily established that I is continuous and
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bounded on [0,1] and differentiable on (0,1), with derivative given by

I ′(s) = 1

sp(1 − s)q ∀s ∈ (0,1). (9.130)

It follows from (9.130) that I is strictly increasing for all s ∈ [0,1], and hence

I ∶ [0,1]→ [0, I1] is a bijection. (9.131)

We conclude from (9.130), (9.131) and the inverse function theorem [65] (p.221-222) that

there exists a function J ∶ [0, I1]→ [0,1] such that

J(I(s)) = s ∀s ∈ [0,1], I(J(t)) = t ∀t ∈ [0, I1], J(0) = 0, J(I1) = 1. (9.132)

Moreover, J is continuous and increasing on [0, I1] and differentiable on [0, I1] with

derivative given by

J ′(t) = (J(t))p(1 − J(t))q ∀t ∈ [0, I1]. (9.133)

It follows from (9.133) that J ′ is continuous and therefore bounded on [0, I1] with

J ′(0) = J ′(I1) = 0. (9.134)

Now consider u ∶ D̄∞ → R given by

u(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J(t) ; (x, t) ∈ D̄I1

1 ; (x, t) ∈DI1
∞.

(9.135)

It follows from (9.132), (9.133), (9.134) and (9.135) that u is continuous and bounded on

D̄∞, whilst ut, ux and uxx exist and are continuous on D∞. Additionally, for f ∶ R → R

given by (9.49), u satisfies

ut − uxx − f(u) = 0 ≤ 0 ∀(x, t) ∈D∞, (9.136)
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u(x,0) = 0 ∀x ∈ R, (9.137)

via (9.133) and (9.132). It follows from (9.135), (9.136) and (9.137) that u is a R-S-B to

(S-R-D-C-3) on D̄T (any T > 0) for any initial data u0 ∈ BPC2
+′(R). Also with u ∶ D̄∞ → R

being the unique solution to (S-R-D-C-3) with corresponding initial data u0 ∈ BPC2
+′(R),

we may take u as a R-S-P to (S-R-D-C-3). An application of Corollary 9.34 gives

u(x, t) ≤ u(x, t) ∀(x, t) ∈ D̄∞. (9.138)

The result follows from (9.129), (9.135) and (9.138).

We can now establish uniform global well-posedness for (S-R-D-C-3). Namely,

Corollary‡ 9.38. The problem (S-R-D-C-3) is uniformly globally well-posed on

BPC 2
+′(R).

Proof. (P1) and (P2) follow from Theorem 9.31 and Theorem 9.33 respectively. Also,

via Theorem 9.35, for any u10 ∈ BPC2
+′(R) and any ε > 0, there exists δ > 0 such that,

for all u20 ∈ BPC2
+′(R) that satisfy ∣∣(u10 − u20)∣∣B < δ, then the corresponding solutions

u1, u2 ∶ D̄∞ → R to (S-R-D-C-3) satisfy

∣∣(u1 − u2)(⋅, t)∣∣B < ε ∀t ∈ [0, I1], (9.139)

with I1 as in Proposition 9.37. Now consider the functions ũ1, ũ2 ∶ D̄∞ → R given by

ũi(x, t) = ui(x, t + I1) (i = 1,2) ∀(x, t) ∈ D̄∞. (9.140)

It follows from (9.139), (9.140), Proposition 9.37 and (9.49) that

ũit − ũixx = 0 (i = 1,2) ∀(x, t) ∈D∞, (9.141)

∣∣(ũ1 − ũ2)(⋅,0)∣∣B < ε, (9.142)
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where (ũ1− ũ2)(⋅,0) ∈ BPC2
+′(R) via Proposition 9.37, Proposition 9.25 and Theorem 9.31

with Lemma 5.12 and Lemma 5.15. Therefore, via Theorem 4.2, (9.141) and (9.142), we

have

∣∣(ũ1 − ũ2)(⋅, t)∣∣B < 1√
π
∫

∞

−∞
∣∣(ũ1 − ũ2)(⋅,0)∣∣Be−λ

2

dλ = ε ∀t ∈ [0,∞). (9.143)

It follows from (9.139), (9.140) and (9.143) that for any u0 ∈ BPC2
+′(R), there exists a

constant δ > 0, such that for all u′0 ∈ BPC2
+′(R) that satisfy ∣∣(u0 − u′0)∣∣B < δ, then the

corresponding solutions u,u′ ∶ D̄T → R to (S-R-D-C-3) satisfy ∣∣(u − u′)(⋅, t)∣∣B < ε for all

t ∈ [0,∞), and hence (P3) is satisfied, as required.

We conclude by developing some qualitative properties of solutions to (S-R-D-C-3).

Firstly, we introduce the functions w+,w− ∶ [0,∞)→ R such that, with M0 ≤ 1,

w−(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ−(t) ; 0 ≤ t ≤ t−

1 ; t > t−,

w+(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ+(t) ; 0 ≤ t ≤ t+

1 ; t > t+,

where t+ and t− are given by

t− = ∫
1

m0

1

sp(1 − s)q ds, t+ = ∫
1

M0

1

sp(1 − s)q ds, (9.144)

and φ+(t), φ−(t) are defined implicitly by

∫
φ−(t)

m0

1

sp(1 − s)q ds = t ∀t ∈ [0, t−],

∫
φ+(t)

M0

1

sp(1 − s)q ds = t ∀t ∈ [0, t+]. (9.145)

It follows from (9.144) and (9.145) that w+,w− ∈ C1([0,∞)), w+(t) and w−(t) are non-
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decreasing with t ∈ [0,∞), w+(0) = M0 and w−(0) = m0 with w+(t) ≥ w−(t) for all

t ∈ [0,∞). We now have,

Theorem‡ 9.39. Let u ∶ D̄∞ → R be the unique solution to (S-R-D-C-3) with

u0 ∈ BPC 2
+′(R) such that M0 ≤ 1, then

w−(t) ≤ u(x, t) ≤ w+(t) ∀(x, t) ∈ D̄∞.

Proof. This follows immediately from Corollary 9.34, upon taking u,u ∶ D̄∞ → R such

that u(x, t) = w−(t) with u(x, t) = u(x, t) and u(x, t) = u(x, t) with u(x, t) = w+(t) for all

(x, t) ∈ D̄∞.

Corollary‡ 9.40. Let u ∶ D̄∞ → R be the unique solution to (S-R-D-C-3) with

u0 ∈ BPC 2
+′(R) when M0 ≤ 1, then u(x, t) = 1 for all (x, t) ∈ D̄t−

∞.

Proof. Follows from Theorem 9.39.

We next consider (S-R-D-C-3) when u0 ∈ BPC2
+′(R) is such that M0 > 1 and m0 < 1,

with S+ = {x ∈ R ∶ u0(x) ≥ 1} being bounded. We introduce U+ ∶ D̄∞ → R, such that

U+(x, t) = 1√
π
∫

∞

−∞
u+0(x + 2

√
tλ)e−λ2dλ ∀(x, t) ∈ D̄∞, (9.146)

with u+0 ∶ R→ R given by

u+0(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u0(x) ;x ∈ S+

1 ;x ∈ R/S+.
(9.147)

It follows from (9.146) and (9.147) that,

• U+ is continuous on D̄∞, and U+
t , U+

x and U+
xx exist and are continuous on D∞.

• U+
t = U+

xx on D∞.

• U+(x, t)→ 1 as ∣x∣→∞ uniformly for t ∈ [0,∞).

• 1 < U+(x, t) < 1 + L(M0−1)
√
πt

for all (x, t) ∈D∞ where L = supλ∈S+ ∣λ∣.
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We now have,

Theorem‡ 9.41. Let u ∶ D̄∞ → R be the unique solution to (S-R-D-C-3) with

u0 ∈ BPC 2
+′(R) when M0 > 1, m0 < 1 and S+ is bounded. Then,

w−(t) ≤ u(x, t) ≤ U+(x, t) ∀(x, t) ∈ D̄∞,

and

1 ≤ u(x, t) < 1 + L(M0−1)
√
πt

∀(x, t) ∈ D̄t−
∞.

Proof. Follows from Corollary 9.34 and the properties of U+ established above.

162



CHAPTER 10

CONCLUDING REMARKS

The remarks which conclude this thesis are split into four sections. In the first section we

comment on the problem (B-R-D-C) when allowing for more general classes of initial data

and illustrate the associated modifications required for the theory to be developed in the

same way as in the preceding chapters. The second section covers conjectures and ideas

which are extensions of the work contained within the thesis and which appear obtainable,

via methods within the thesis. Details are not given as most of these extensions are works

in progress. In the third section, two ideas are introduced, for which a method of proof is

most likely not contained in this thesis. Nonetheless, these ideas have arisen as a result

of this thesis and any development in this area would be of significant interest. In the

fourth section we comment on possible extensions to the maximum principles developed

in Chapter 3.

10.1 Initial Data

To begin this section we consider two extended initial data sets for which we anticipate

that the majority of the theory contained in this thesis is directly applicable. Consider

u0 ∈ BB and define BB+ to be

BB+ = {u ∈ BB ∶ u(x) ≥ 0 ∀x ∈ R},
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with BB and BB+ now playing an analogous role to BPC2(R) and BPC2
+(R), respectively,

in what follows. We now illustrate the required modifications so that the theory developed

in Chapters 2-8 will apply to the problem (B-R-D-C) with initial data u0 ∈ BB. Now,

replacing BPC2(R) with BB in Chapter 2 and Chapter 3 requires no modification at

all. However, in Chapter 4, since u0 is now not necessarily differentiable, specific results

must be modified; namely, equations (4.10), (4.11) and (4.12). This arises due to an

inability to integrate by parts (since u0 is not necessarily differentiable), and hence, upon

differentiating (4.8), and making an appropriate substitution, the derivatives of (4.8) are

now given by the following expressions,

ux(x, t) =
1

2
√
πt
∫

∞

−∞
u0(s) (−

(x − s)
2t

) e−
(x−s)2

4t ds

= 1√
πt
∫

∞

−∞
u0(x + 2

√
tw)we−w2

dw (10.1)

uxx(x, t) =
−1

4
√
πt3/2

∫
∞

−∞
u0(s)e−

(x−s)2
4t ds + 1

2
√
πt3/2

∫
∞

−∞
u0(s) (

(x − s)2

4t
) e−

(x−s)2
4t ds

= 1√
πt
∫

∞

−∞
u0(x + 2

√
tw)(w2 − 1/2)e−w2

dw (10.2)

ut(x, t) =
−1

4
√
πt3/2

∫
∞

−∞
u0(s)e−

(x−s)2
4t ds + 1

2
√
πt3/2

∫
∞

−∞
u0(s) (

(x − s)2

4t
) e−

(x−s)2
4t ds

= 1√
πt
∫

∞

−∞
u0(x + 2

√
tw)(w2 − 1/2)e−w2

dw (10.3)

for all (x, t) ∈DT . It thus follows from (10.1), (10.2) and (10.3) that u ∶ D̄T → R given by

(4.8) satisfies

∣ux(x, t)∣ ≤
∣∣u0∣∣B√
πt

, ∣uxx(x, t)∣ ≤
∣∣u0∣∣B
t

, ∣ut(x, t)∣ ≤
∣∣u0∣∣B
t

, (10.4)

for all (x, t) ∈DT . This leads to an alternative version of Theorem 4.7, namely,

Theorem 10.1 (Bounds and Derivative Estimates). Let u ∶ D̄∞ → R be the unique

solution to (B-D-C) on D̄∞ given by (4.8) for u0 ∈ BB. Then,

∣u(x, t)∣ ≤ ∣∣u0∣∣B, ∣ux(x, t)∣ ≤
∣∣u0∣∣B√
πt

, ∣uxx(x, t)∣ ≤
∣∣u0∣∣B
t

, ∣ut(x, t)∣ ≤
∣∣u0∣∣B
t

, (10.5)
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for all (x, t) ∈D∞.

Now, in Chapter 5, to obtain Lemma 5.10, we must re-work Section 5.1 and Section

5.2 with the modified condition (H ′) instead of (H) on F ∶ D̄T → R, namely,

(H’) F ∶ D̄T → R is continuous, bounded and uniformly Hölder continuous of degree

0 < α ≤ 1 with respect to x ∈ R for t ∈ (0, T ]. Moreover, there exist positive

constants k1
T and k2

T , and β ∈ (0,1) (independent of t ∈ (0, T ]) such that

∣F (y, t) − F (x, t)∣ ≤ (k
1
T

tβ
+ k2

T) ∣y − x∣α ∀(y, t), (x, t) ∈DT .

Then Theorem 5.1 remains unaltered, whilst Theorem 5.2 acquires derivative bounds,

which can now (depending on β) blow up as t → 0+. The results in Section 5.2 follow

without modification. The proofs of these modified results largely follow the same steps as

the originals; however, there is an additional step which is required, which is illustrated

in the forthcoming proof of the modified derivative estimate lemma of Section 5.4. In

Chapter 5, Section 3, it follows, with the above modifications, that both Lemma 5.10 and

Lemma 5.11 continue to hold for u0 ∈ BB replacing u0 ∈ BPC2(R). Now, since Chapter 5,

Section 4 is comprised of derivative estimates (which imply bounds on the derivatives of

solutions to (B-R-D-C) on D̄T ), changes are required. Given below are statements of the

modified versions of Lemma 5.12, Lemma 5.14 and Lemma 5.15 respectively. The proofs

of these modified results follow the same steps as in the corresponding proofs in Chapter

5, except that of Lemma 5.15 which requires an additional calculation.

Lemma 10.2 (Derivative Estimate). Let f ∈Hα for some α ∈ (0,1] and u ∶ D̄T → R be a

solution to (B-R-D-C) with u0 ∈ BB, on D̄T . Then,

∣ux(x, t)∣ ≤
2MT√
π

(1 + T 1
2 ) + ∣∣u0∣∣B√

πt
∀(x, t) ∈DT ,

where MT > 0 is an upper bound for ∣f ○ u∣ ∶ D̄T → R.
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Lemma 10.3. Let f ∈ Hα for some α ∈ (0,1] and let u ∶ D̄T → R be a solution to

(B-R-D-C) with u0 ∈ BB, on D̄T . Then f ○ u ∶ D̄T → R satisfies

∣f(u(y, t)) − f(u(x, t))∣ ≤ kT (t)∣y − x∣α ∀(x, t), (y, t) ∈DT ,

where kT ∶ (0, T ]→ R is given by

kT (t) = kE (2MT√
π

(1 + T 1
2 ) + ∣∣u0∣∣B√

πt
)
α

∀t ∈ (0, T ]

and kE > 0 is a Hölder constant for f ∶ R → R on the closed bounded interval [−UT , UT ],

with UT > 0 being an upper bound for ∣u∣ ∶ D̄T → R.

Lemma 10.4 (Derivative Estimates). Let f ∈ Hα for some α ∈ (0,1] and u ∶ D̄T → R be

a solution to (B-R-D-C) with u0 ∈ BB, on D̄T . Then,

∣uxx(x, t)∣ ≤K(α,T, u0,MT , kE) +
∣∣u0∣∣B
t

∀(x, t) ∈DT ,

∣ut(x, t)∣ ≤K(α,T, u0,MT , kE) +
∣∣u0∣∣B
t

+MT ∀(x, t) ∈DT ,

where

K(α,T, u0,MT , kE) =
2α+1IαkE
α
√
π

(2MT√
π

(1 + T 1
2 ))

α

(1 + T )α/2 + 2α+2IαkE ∣∣u0∣∣αB
π(α+1)/2α(2 − α) ,

and

Iα = ∫
∞

−∞
∣λ∣α∣λ2 − 1/2∣e−λ2dλ (> 0).

The beginning of the proof of Lemma 10.4 follows the same steps as that of Lemma

5.15 until line (5.70), which now becomes, for n ∈ N such that 1/n < δ/2 ≤ t/2 (for all

t ∈ [δ, T ]), we have

1√
π

∣∫
t−1/n

0
∫

∞

−∞

f(u(x + 2
√
t − τλ, τ))

(t − τ) (λ2 − 1/2)e−λ2dλdτ ∣
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≤ 2α√
π
∫

t−1/n

1/n
∫

∞

−∞

∣λ∣α∣λ2 − 1/2∣kT (τ)
(t − τ)1−α/2

e−λ
2

dλdτ (via Lemma 10.3)

+ 1√
π
∫

1/n

0
∫

∞

−∞

MT

(t − 1/n) ∣λ
2 − 1/2∣e−λ2dλdτ

≤ 2αIαkE√
π
∫

t−1/n

1/n
((2MT√

π
(1 + T 1

2 ))
α

1

(t − τ)1−α/2
+ (∣∣u0∣∣B√

πτ
)
α

1

(t − τ)1−α/2
)dτ

+ MT Î

n
√
π(t − 1/n)

≤ 2α+1IαkE
α
√
π

(2MT√
π

(1 + T 1
2 ))

α

(1 + T )α/2 + 2αIαkE ∣∣u0∣∣αB
π(α+1)/2

(2

t
)

1−α/2

∫
t/2

1/n

1

τα/2
dτ

+ 2αIαkE ∣∣u0∣∣αB
π(α+1)/2

(2

t
)
α/2

∫
t−1/n

t/2

1

(t − τ)1−α/2
dτ + MT Î

n
√
π(t − 1/n)

≤ 2α+1IαkE
α
√
π

(2MT√
π

(1 + T 1
2 ))

α

(1 + T )α/2 + 2α+1IαkE ∣∣u0∣∣αB
π(α+1)/2(2 − α) +

2α+1IαkE ∣∣u0∣∣αB
π(α+1)/2α

+ MT Î

n
√
π(t − 1/n)

=K(α,T, u0,MT , kE) +
MT Î

n
√
π(t − 1/n) , (10.6)

where

Î = ∫
∞

−∞
∣λ2 − 1/2∣e−λ2dλ.

It thus follows from the corresponding line to (5.68) with (10.6) that

∣uxx(x, t)∣ ≤
∣∣u0∣∣B
t

+K(α,T, u0,MT , kE) ∀(x, t) ∈DT ,

as required. The result for ut follows similarly.

We conclude from the above discussion that when u0 ∈ BB, then a weaker version of

Corollary 5.16 is available, namely,

Corollary 10.5. Let f ∈Hα for some α ∈ (0,1] and u ∶ D̄T → R be a solution to (B-R-D-

C) with u0 ∈ BB, on D̄T . Then u is uniformly continuous on D̄δ
T for any δ ∈ (0, T ).

Next, we consider modifications of the results in Chapters 6-8. To begin, we observe

that now there is no guarantee of uniform continuity of solutions to (B-R-D-C) on DT
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when u0 ∈ BB. Thus the step in the proof of Theorem 6.7 which guarantees that

∣∣u1(⋅, t) − u2(⋅, t)∣∣B

is continuous no longer follows. However, we can apply Lemma 5.5 to establish that

∣∣u1(⋅, t) − u2(⋅, t)∣∣B ∈ L1([0, T ]),

which is all that is required to then apply Proposition 5.6. The rest of Chapter 6 needs

no additional modifications, whilst Chapter 7 needs no modification at all. However, in

Chapter 8, the following modifications must be made to accommodate initial data u0 ∈ BB.

The first of these changes stems from Lemma 10.2, Lemma 10.3 and Lemma 10.4, and

replaces Proposition 8.14, namely,

Proposition 10.6. Let un ∶ D̄δ → R be the (unique) solution to (B-R-D-C)ln (n ∈ N).

Then, on Dδ, we have

∣unx(x, t)∣ ≤
2c′√
π
(1 + δ1/2) + ∣∣u0∣∣B√

πt
,

∣unxx(x, t)∣ ≤
∣∣u0∣∣B
t

+K(α, δ, u0, c
′,3kH),

∣unt(x, t)∣ ≤
∣∣u0∣∣B
t

+K(α, δ, u0, c
′,3kH) + c′

for all (x, t) ∈Dδ, where kH > 0 is a Hölder constant for f ∈Hα on

[−(∣∣u0∣∣B + 1), (∣∣u0∣∣B + 1)].

The proof of the result follows directly from Lemma 10.2, Lemma 10.3 and Lemma

10.4. Next, the proof of Lemma 8.19, when u0 ∈ BB, is slightly more complicated. To

prove the result when u0 ∈ BB, we first replace D̄0,X
δ with D̄Y,X

δ for any X > 0 and δ > Y > 0.

We now follow the steps of the proof and using the Proposition 10.6 we conclude that u∗

is continuous on Dδ and is bounded on D̄δ. However, to establish that u∗ is continuous
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on D̄δ, we require u∗ to be continuous when (x, t) ∈ ∂D. To this end, we first observe that

since un(x,0) = u0(x) for all x ∈ R and n ∈ N, then

u∗(x,0) = u0(x) ∀x ∈ R.

Next take ε > 0. Now, for any h1 ∈ R and h2 ∈ (0, δ], we have

∣u∗(x,0) − u∗(x + h1, h2)∣ = ∣u0(x) − lim
j→∞

unj(x + h1, h2)∣, (10.7)

for some sequence {unj(x + h1, h2)}nj∈N given in the construction. Now take

h2 < min{ ε

4c′
, δ}

and it follows from Lemma 5.10, (10.7) and the definition of c′ > 0, that

∣u∗(x,0) − u∗(x + h1, h2)∣ ≤ ∣u0(x) −
1√
π
∫

∞

−∞
u0(x + h1 + 2

√
h2λ)e−λ

2

dλ∣

+ lim
j→∞

∣ 1√
π
∫

h2

0
∫

∞

−∞
f
nj
(unj(x + h1 + 2

√
h2 − τλ, τ))e−λ

2

dλdτ ∣

≤ 1√
π
∫

∞

−∞
∣u0(x) − u0(x + h1 + 2

√
h2λ)∣e−λ

2

dλ + ε
4

(10.8)

for any h1 ∈ R and h2 < min{ ε
4c′ , δ}. Next, set

λε = max{1,
8∣∣u0∣∣B
ε

} .

It then follows from (10.8) that

∣u∗(x,0) − u∗(x + h1, h2)∣ ≤ ∫
−λε

−∞

2∣∣u0∣∣B
λ2

dλ + ∫
∞

λε

2∣∣u0∣∣B
λ2

dλ

+ ∫
λε

−λε
∣u0(x) − u0(x + h1 + 2

√
h2λ)∣e−λ

2

dλ + ε
4

≤ 3ε

4
+ ∫

λε

−λε
∣u0(x) − u0(x + h1 + 2

√
h2λ)∣e−λ

2

dλ (10.9)
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for any h1 ∈ R and h2 < min{ ε
4c′ , δ}. Now, since u0 ∈ BB, then there exists δ1 > 0 (which

may depend on x) such that

∣u0(x) − u0(y)∣ <
ε

8λε
(10.10)

for all y ∈ R such that ∣x − y∣ < δ1. Thus, for

0 < ∣h1∣ <
δ1

2
, 0 < h2 < min{( δ1

4λε
)

2

,
ε

4c′
, δ} ,

it follows from (10.9) and (10.10) that

∫
λε

−λε
∣u0(x) − u0(x + h1 + 2

√
h2λ)∣e−λ

2

dλ ≤ ∫
λε

−λε

ε

8λε
dλ = ε

4
. (10.11)

It therefore follows from (10.11) and (10.9) that for h1, h2 ∈ R that satisfy

0 < ∣h1∣ <
δ1

2
, 0 < h2 < min{( δ1

4λε
)

2

,
ε

4c′
, δ} ,

then

∣u∗(x,0) − u∗(x + h1, h2)∣ < ε.

It thus follows that u∗ is continuous on D̄δ, which completes the proof of the result

corresponding to Lemma 8.19. The remaining result which requires attention is Lemma

8.23. The proof follows in a similar fashion, except an additional truncation must be

made in the integral in (8.43); specifically

1√
π
∫

t

0
∫

λε

−λε
∣f
n
(un(x + 2

√
t − τλ, τ)) − f (u∗(x + 2

√
t − τλ, τ)) ∣e−λ2dλdτ

= 1√
π
∫

t′

0
∫

λε

−λε
∣f
n
(un(x + 2

√
t − τλ, τ)) − f (u∗(x + 2

√
t − τλ, τ)) ∣e−λ2dλdτ

+ 1√
π
∫

t

t′
∫

λε

−λε
∣f
n
(un(x + 2

√
t − τλ, τ)) − f (u∗(x + 2

√
t − τλ, τ)) ∣e−λ2dλdτ

≤ ε
4
+ 1√

π
∫

t

t′
∫

λε

−λε
∣f
n
(un(x + 2

√
t − τλ, τ)) − f (u∗(x + 2

√
t − τλ, τ)) ∣e−λ2dλdτ

for sufficiently small t′ > 0. Now, upon using the corresponding version of Lemma 8.19
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with u0 ∈ BB, as in the original proof, we can force the remaining term to be less than

ε/4 (instead of ε/2) to complete the proof of the corresponding version of Lemma 8.23.

Nothing else in Chapter 8 requires any additional comment.

The only modifications required in Chapter 9 concern the use of Corollary 5.16. These

are either dealt with as in Theorem 6.7, or, in certain cases, the sets concerned need to

be modified.

10.2 Possible Extensions

In this section, we consider extensions for which the methodology developed in this thesis

may be of use, but will require additional theory from other sources. To begin, consider

the problem (B-R-D-C) as stated in Chapter 2, but with the domain DT = R × (0, T ]

replaced by DT = Rn × (0, T ] where we now write x = (x1, x2, ..., xn) and equations (2.1)

and (2.2) are replaced by

ut −∆u = f(u) ∀(x, t) ∈DT , (10.12)

u(x,0) = u0(x) ∀x ∈ Rn. (10.13)

It is expected that much of the theory contained in this thesis is applicable to this more

general problem. In particular, the maximum principles in Chapter 3 extend, without any

additional technicalities, when we replace the differential inequalities (3.36) and (3.44)

with a differential inequality of the form

ut −∆u − h(x, t)u ≤ 0 ∀(x, t) ∈DT .

The results in Chapter 4 are readily extended upon considering the unique solution to

the diffusion equation on Rn with “smooth enough” initial data u0 ∶ Rn → R (following
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Section 10.1, at least continuous and bounded initial data), given by

u(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

(4πt)n/2 ∫Rn u0(s)e−
∣x−s∣2

4t ds ;(x, t) ∈ Rn × (0, T ]

u0(x) ;(x, t) ∈ Rn × {0},

where ∫Rn = ∫
∞

s1=−∞
... ∫

∞

sn=−∞
and ds = dsn...ds1. Chapter 5 can be developed in a similar

way upon considering

φ(x, t) = 1

πn/2 ∫
t

0
∫
Rn
F (x + 2

√
t − τ s, τ)e−s2dsdτ ∀(x, t) ∈ Rn × [0, T ],

as a replacement for (5.2) with F ∶ Rn × [0, T ] → R. Along with having to consider

derivatives uxi and uxixj for i, j = 1..n, we expect that this chapter can be developed in

the same manner for the problem above. Since Chapters 6-8 are primarily concerned with

the nonlinear terms, the methodology behind the results should not require any significant

additional modifications to be applied to the problem above.

Secondly, consider the problem of finding a classical solution to the initial value prob-

lem on R × [0, T ] for some T > 0, with continuous and bounded initial data u0 ∈ R and

satisfying the partial differential equation

ut − a(x, t)uxx − b(x, t)ux = f(x, t, u),

on R × (0, T ], where a, b ∶ R × (0, T ] → R are bounded, continuous and locally Hölder

continuous in x, uniformly with respect to t ∈ (0, T ], and f ∶ R×(0, T ]×R→ R is bounded,

continuous and locally Hölder continuous in x uniformly, with respect to t ∈ (0, T ], and

locally Hölder continuous in u uniformly with respect to (x, t) ∈ DT . Now, via methods

contained in [21], we expect that we can obtain a local existence result for this problem,

which requires all of the above conditions and the additional condition, specifically, that

f is locally Lipschitz continuous in u uniformly with respect to (x, t) ∈DT . We anticipate

that by combining the methods developed in this thesis with the methods contained in
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[21], a local existence result can be obtained with simply a Hölder condition on all the

functions a, b and f . The concept of maximal and minimal solutions is expected to be

relevant to this problem, provided the appropriate comparison theorems can be obtained.

The third extension is closely related to this thesis and a specific case is given by

(1.1)-(1.3). Specifically, consider the initial value problem with initial data u0 ∶ R → Rm,

for m ∈ N, which satisfies the system of reaction-diffusion equations

∂ui
∂t

−Di
∂2ui
∂x2

= fi(u)

on R × (0, T ] where Di > 0 for each i = 1..m, where each fi ∶ Rm → R satisfies a local

Hölder condition corresponding to that in Definition 2.5 for f ∶ R → R. A solution to

this problem is defined as in Definition 2.1. The principle difference between this problem

and (B-R-D-C) is that comparison theorems are not as easy to obtain. Only for specific

types of problems, where the nonlinear term satisfies specific structures, amounting to

significantly more than being locally Lipschitz continuous, can comparison results be

obtained. A specific example where it is possible to establish a comparison theorem

relating to the problem above is when f is non-decreasing in each variable and locally

Lipschitz continuous. A significant result, for which a proof is near completion, is the

following,

Conjecture 10.7. Consider the initial value problem with continuous and bounded initial

data u0 ∶ R→ Rm and which satisfies

∂ui
∂t

−Di
∂2ui
∂x2

= fi(u)

on R × (0, T ] for each i = 1..m, where each fi ∶ Rm → R satisfies a local Hölder condition.

Then, there exists δ > 0 dependent on f and u0 such that there exists a bounded classical

solution to the initial value problem on R × [0, δ].

To coincide with this conjecture, a broadening of the concept of maximal and minimal
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solutions has been necessary. Since we are yet to encounter anything in the literature

regarding this subject (it would not be a surprise to discover that there is an analogous

concept of such solutions within the framework of dynamical systems), we have introduced

the terminology “extremal” or “bounding” solutions. In the case where m = 1, these are

precisely the maximal and minimal solutions constructed in this thesis. However, when

m > 1, there are additional types of “extremal” or “bounding” solutions. For example,

let m = 2. Suppose that u ∶ R × [0, T ] → R2 is a solution to the initial value problem.

Moreover, suppose that û ∶ R × [0, T ]→ R2 is any other solution to the same initial value

problem. Then if

u1(x, t) ≥ û1(x, t), u2(x, t) ≤ û2(x, t) ∀(x, t) ∈ R × [0, T ],

the first and second components of u satisfy a similar condition to that of a maximal

solution and a minimal solution for (B-R-D-C) respectively. This motivates a question

related to the above conjecture, namely, when can we guarantee that there exists an

“extremal” or “bounding” solution to the initial value problem above, and moreover, of

which type? The use of these solutions is made evident by Theorem 9.33, when considering

uniqueness arguments.

10.3 Additional Questions

In this section, several outstanding questions, which have arisen as a result of the study

in this thesis, are stated. These questions are related to the thesis, but it appears that an

approach to answering them will most likely require additional ideas not contained within

this thesis.

In Chapter 8, we obtained a local existence result, namely Theorem 8.3, for the problem

(B-R-D-C). However, for continuous f ∶ R → R such that f /∈ Hα for any α ∈ (0,1], it is

not clear whether there exists a local classical solution to (B-R-D-C), or not. Thus, it
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makes sense to ask the following question,

Question 10.8. Consider (B-R-D-C) with reaction function f ∶ R → R which satis-

fies f(u) = G(u) for all u ∈ R, where G ∶ R → R is given by (2.10) and initial data

u0 ∈ BPC 2(R) such that

inf
x∈R

{u0(x)} = 0, sup
x∈R

{u0(x)} = 1.

Does this (B-R-D-C) have a classical solution on D̄T for some T > 0?

It follows that since f ∈ Lu, the theory developed in Chapter 7 can be applied to this

problem, albeit only when solutions have been found. Unfortunately, little more can be

said about this problem currently.

Regarding uniqueness, the following observation has been made. For (B-R-D-C) with

f ∈Hα and u0 ∈ BPC2(R) for which u0(x) = 0 for all x ∈ R, then there are f ∈Hα for which

there exist distinct solutions to (B-R-D-C) (see Example 8.28). However, whether or not

there exist examples of (B-R-D-C) problems for which non-unique solutions u1 ∶ D̄T → R

and u2 ∶ D̄T → R exist, where at no time t ∈ [0, T ] is either solution a constant function,

is not clear. To this end, we have the following question,

Question 10.9. Does there exist a (B-R-D-C) problem with f ∈ Hα for some α ∈ (0,1),

and initial data u0 ∈ BPC 2(R) such that

inf
x∈R

{u0(x)} /= sup
x∈R

{u0(x)},

for which there exist distinct classical solutions u1 ∶ D̄T → R and u2 ∶ D̄T → R for some

T > 0, which satisfy

inf
x∈R

{ui(x, t)} /= sup
x∈R

{ui(x, t)} ∀t ∈ [0, T ], i = 1,2 ?

Following up on the observation above, when (B-R-D-C) problems with distinct solutions

have been identified, they share a particular quality. Namely, that if f ∈Hα is not Lipschitz
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continuous in some closed neighborhood of a point where f(u) = 0, then this can give rise

to distinct solutions (see Example 8.28 and consider the point u = 0). Regarding this

point, the following question is significant,

Question 10.10. Consider (B-R-D-C) with f ∈Hα, which satisfies

f(u) ≥mf > 0 ∀u ∈ R

for some constant mf > 0, with initial data u0 ∈ BPC 2(R). Via Corollary 8.5, there exists

T > 0 such that there exists a maximal solution u1 ∶ D̄T → R and a minimal solution

u2 ∶ D̄T → R to this (B-R-D-C). Are these solutions equal, or equivalently, do u1 and u2

satisfy

u1(x, t) = u2(x, t) ∀(x, t) ∈ D̄T ?

10.4 Maximum Principles

Previous studies into maximum principles on unbounded domains have been made through-

out the last seventy years, notably in [35], [28] and [15]. These works are primarily

concerned with functions which are not necessarily bounded but belong to the following

sets.

Definition 10.11. For α > 0, Fα denotes the set of continuous functions u ∶ D̄T → R for

which ut, ux and uxx exist and are continuous on DT , and there is some constant ku > 0

for which

∣u(x, t)∣ ≤ eku(1+x2)α ∀(x, t) ∈ D̄T .

In addition F0 denotes the set of continuous functions u ∶ D̄T → R for which ut, ux and

uxx exist and are continuous on DT , and there is some constant ku > 0 for which

∣u(x, t)∣ ≤ ku(1 + x2) ∀(x, t) ∈ D̄T . ⌟
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The following maximum principle (proved in higher spatial dimensions) is due to

Bodanko [15] and is related to Theorem 3.6 in this thesis.

Theorem 10.12 (Bodanko). Let u ∶ D̄T → R be in Fα for some α ≥ 0. Suppose that

ut − b(x, t)uxx − a(x, t)ux − h(x, t)u ≤ 0 on DT (10.14)

where the functions b, a, h ∶DT → R satisfy

(i) There exist constants B,B′ > 0 such that 0 < B′ ≤ b(x, t) ≤ B(1 + x2)(1−α) for all

(x, t) ∈DT .

(ii) There exists a constant A > 0 such that ∣a(x, t)∣ ≤ A(1 + x2)1/2 for all (x, t) ∈DT .

(iii) There exists a constant C > 0 such that c(x, t) ≤ (1 + x2)α for all (x, t) ∈DT .

Then u ≤ 0 on ∂D implies u ≤ 0 on D̄T .

It should be noted that Theorem 10.12 is a direct extension of maximum principles

found in [35] (for α = 1) and [28] (for α = 0). Theorem 3.6 is similar to Theorem 10.12

for the fixed value α = 0 but differs with regard to the conditions on the function a in

(ii). The principal cause for the variation of results in all of the mentioned works is not

due to the method of proof which is remarkably similar in all, but due to the choice of

weight function (corresponding to φ̂ in (3.46) in the proof of Theorem 3.6). A particular

limitation for the availability of weight functions in the set of functions in Definition

10.11 manifests itself in conditions (i) and (iii) in Theorem 10.12. This in turn affects the

hypotheses one can make on the coefficients a, b and h in Theorem 10.12. An extension

related to this observation would be to develop a systematic procedure which would allow

the choice of a set of functions (such as in Definition 10.11) with a weight function and

would then systematically generate conditions on b, a and h for a maximum principle

similar to Theorem 10.12 to be obtained.

Relating to Definition 10.11, it is straightforward to extend the definition of Fα to

include α < 0, and extend the definition of F0 to a set F β
0 defined as follows,
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Definition 10.13. For α < 0, Fα denotes the set of continuous functions u ∶ D̄T → R

for which ut, ux and uxx exist and are continuous on DT , and there are some constants

ku, lu > 0 for which

∣u(x, t)∣ ≤ lue−ku(1+x
2)α ∀(x, t) ∈ D̄T .

In addition, for −∞ < β < ∞, F β
0 denotes the set of continuous functions u ∶ D̄T → R for

which ut, ux and uxx exist and are continuous on DT , and there is some constant ku > 0

for which

∣u(x, t)∣ ≤ ku(1 + x2)β ∀(x, t) ∈ D̄T . ⌟

Definition 10.13 is a natural extension to Definition 10.11, since, for α > β > 0, we have

the inclusions

F−α ⊂ F−β ⊂ F −α
0 ⊂ F −β

0 ⊂ F 0
0 ⊂ F β

0 ⊂ Fα
0 ⊂ Fβ ⊂ Fα.

It then follows that as each set of functions is successively restricted, the available choice

of weight functions increases and it may be expected that the conditions on the coefficients

b, a and h will relax.

A further topic of investigation regarding this type of maximum principle is the explicit

determination of functions, such as in Example 3.9 or [28] (p.17), which almost conform

to the conditions of a particular maximum principle, but violate the conclusions. From

Theorem 10.12, the following question is of interest:

Question 10.14. For α, γ > 0, do there exist functions u, b, h ∶ D̄T → R such that u ∈ Fα

and satisfies

ut − b(x, t)uxx − h(x, t)u ≤ 0 on DT ,

with

0 < B′ ≤ b(x, t) ≤ B(1 + x2)(1−α) ∀(x, t) ∈DT

h(x, t) ≤H(1 + x2)(α+γ) ∀(x, t) ∈DT ,

where B′,B,H > 0, u is non-positive on ∂D and u is positive at some point in DT?
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