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ABSTRACT

Scheduling has been used to describe a resources optimization problem since the early
1950’s and plays an important role in domains such as manufacturing, transportation,
distribution, construction, engineering, and management. A scheduling problem is defined
by determining a production environment, job characteristics, scheduling constraints and
an objective function which yields to different cases of the problem. As a result a variety
of complexity arises among scheduling problems ranging from polynomially solvable to
NP-hard problems.

In this thesis two scheduling problem formulations are studied. The scheduling prob-
lem in a single machine environment, with equal-length jobs and release dates, with the
objective function of minimizing total weighted tardiness (1|pj = p, rj|

∑
wjTj), whose

complexity was still unknown, is shown to be solvable to optimality in polynomial time.
The same is concluded for the related case with similar characteristics but minimiz-
ing weighted tardiness together with the maximum completion time, also known as the
makespan.

The second problem studied occurs in a single machine environment, with release dates
and interruption of the processing allowed, with the objective of minimizing weighted
completion time (1|rj, pmtn|

∑
wjCj). For this case three convex conic relaxations, based

on semidefinite and linear programming, to use in conjunction with a customised branch
and bound algorithm, are developed. The algorithm can be used to solve efficiently any
size of the problem provided the maximum number of jobs at any time is 7.
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6.21 Comparison between m and |Ŝ| and solving time with max ki = 5 . . . . . 135
6.22 Solving time with n = 10 and max ki = 6 using Algorithm 6.4.11 . . . . . . 138
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NOTATION AND TERMINOLOGY

Notation and terminology are introduced here as a reference only. Some of these will be
introduced later as definitions when they are needed.

Sets

A,B, etc Sets

R Real numbers

Rn Real n-dimensional vector space

Rn
+ Positive orthant of Rn

Rn×n Real n× n matrices

C Complex numbers

F Field or set of scalars (R or C)

Z Integer numbers

Z+ Positive integer numbers

Sn =
{

A | A ∈ Rn×n, A = AT
}
, symmetric matrices

Sn+ =
{

A | A ∈ Sn, xTAx > 0 for all x ∈ Rn
}
,

positive semidefinite matrices

Sn++ =
{

A | A ∈ Sn, xTAx > 0 for all x ∈ Rn
}
,

positive definite matrices

A Linear mapping: Rn → Sm

A∗ Adjoint of A: Linear mapping Sm → Rn

F Feasible set

Innequalities

> >Rn
+

> >Rn
+

� >Sm
+

� >Sm
++

x



NOTATION AND TERMINOLOGY

Vector notation

v = (v1, v2, . . . , vn) , vector with n entries

ei Zero vector with 1 in the ith entry

‖v‖ =
(
|v1|2 + . . .+ |vn|2

)1/2
, length of a vector v or Euclidean norm

‖ � ‖ Vector norm

〈v,w〉 = v1w1 + . . .+ vnwn, inner product of vectors v and w

Matrix notation

A,B, . . . Matrices

I Identity matrix

aij, (A)ij Elements of the matrix A

A−1 Inverse of the matrix A

AT Transpose of the matrix A

A∗ Conjugate transpose of the matrix A

Ak Any k × k principal submatrix of A

det(A) Determinant of the matrix A

rank(A) Rank of the matrix A

nullity(A) Nullity of the matrix A

tr(A) Trace of the matrix A

Ek(A) Sum of principal minors of the matrix A

λi Eigenvalues of a matrix for i = 1, . . . , n

ek(λ1, . . . , λn) Elementary symmetric polynomials in variables λi, for i = 1, . . . , n

ρ(A), ρA Spectral radius of A

e(A) Number of nonzero eigenvalues of the matrix A

diag (x1, . . . , xn) n× n matrix with entries x1, . . . , xn in the main diagonal

‖ � ‖‖ � ‖‖ � ‖ Matrix norm

svec(A) = (a11, . . . , ann) , matrix vectorisation operator

A � B A− B is positive semidefinite

A � B A− B is positive definite

Convex programming

K Proper cone: convex, pointed, closed, and with nonempty interior

K∗ Dual of a proper cone

L Lorentz cone

CP Primal convex programming problem

xi



NOTATION AND TERMINOLOGY

Production environments in scheduling

1 Single machine

Sm m machines in series

Pm m identical parallel machines

Qm m related (uniform) parallel machines

Rm m unrelated parallel machines

F Flow shop with m machines

J Job shop with m machines

O Open shop with m machines

Scheduling constraints

chain Chain-like precedence constraints

dj Due date

d̂j Deadline

intree Intree-like precedence constraints

nbr Number of jobs

outtree Outtree-like precedence constraints

pj = p Equal processing times

prec Precedence constraints

pmtn Preemption

rj Release dates

tree Tree-like precedence constraints

xii



NOTATION AND TERMINOLOGY

Objective functions in scheduling

Cmax Makespan∑
Cj Total completion time∑

wjCj Weighted completion time

Lmax Maximum lateness∑
wjLj Weighted lateness

Tmax Maximum tardiness∑
wjTj Weighted tardiness∑
wjT

2
j Minimum weighted squared tardiness

Emax Maximum earliness∑
wjEj Weighted earliness∑
Uj Unit penalty for tardy jobs∑

wjUj Weighted unit penalty for tardy jobs

xiii
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CHAPTER 1

INTRODUCTION

1.1 About the project

Convex conic relaxations of the scheduling problem refers to the relaxations given for

two selected scheduling problem formulations. The first is the scheduling problem in a

single machine environment, with equal-length jobs and release dates, with the objective

function of minimizing total weighted tardiness (i.e. 1|pj = p, rj|
∑
wjTj). A classification

for this problem is provided.

The second scheduling problem studied occurs in a single machine environment, with

release dates and interruption of the processing allowed, with the objective of minimizing

weighted completion time (1|rj, pmtn|
∑
wjCj). For this case three relaxations, based

on linear and semidefinite programming and an efficient customised branch and bound

approximation algorithm using these relaxations are developed.

2



INTRODUCTION
1.2. Methodology of the project

1.2 Methodology of the project

This document is divided in three parts. In Part I a general introduction is given. In

Chapter 2 scheduling is defined as part of the production planning hierarchy. The concept

scheduling as such is analysed in detail in Chapter 3, which also includes the characteristics

of a scheduling problem, namely production environments, job characteristics, scheduling

constraints and an objective function. Aspects about convex conic relaxations and the

scheduling problem are discussed in Chapter 4.

In Part II the selected problem formulations are addressed. In Chapter 5 the schedul-

ing problem 1|pj = p, rj|
∑
wjTj is studied. Two cases are considered: the general case

of the problem and the case of minimizing weighted tardiness together with the maxi-

mum completion time, also known as makespan. Initially, the problems are defined as

integer programs with binary variables, in
{

0, 1
}

, then by allowing the variables to be-

long to the interval
[
0, 1
]
, linear programming relaxations are derived. For both cases the

constraint matrix of the relaxations is shown to be totally unimodular and as such the op-

timal solutions are also in
{

0, 1
}

. Therefore, the linear programming relaxations for both

cases solve the original integer programs to optimality. Since efficient polynomial-time

algorithms for linear programming are known (see e.g. Wright (1997)), it is concluded

that the scheduling problem 1|pj = p, rj|
∑
wjTj and when minimizing makespan, can be

solved to optimality in polynomial time.

In Chapter 6 the scheduling problem 1|rj, pmtn|
∑
wjCj is studied. The problem is

formulated first as an integer program and then three relaxations, two linear programming

based and a semidefinite programming based, are developed. Using these relaxations

lower bounds for the optimal solution of the problem can be calculated. The obtained

bounds are used in conjunction with a customised branch and bound algorithm, which

by taking advantage of the properties of the problem, splits the problem into appropriate

3



INTRODUCTION
1.2. Methodology of the project

subproblems for which enumeration trees are created. Each enumeration tree analyses

only those nodes that are worth exploring. The algorithm provides solutions for this NP-

hard problem in an efficient time for any number of jobs provided the number of available

jobs at a particular time is at most 7. Chapter 7 summarises the main conclusions of the

project.

Part III comprises useful extra material included in the form of appendices. Appendix

A includes matrix analysis theory involving eigenvalues and eigenvectors and also the

characterisation of positive definite and semidefinite matrices. The Appendix B contains

the basics and main aspects of conic programming theory.

4



CHAPTER 2

PRODUCTION PLANNING

2.1 Complexity

Industries are generally comprised of complex subsystems such as production, marketing,

financial and others. They may also have several factories and depots and produce a wide

variety of products for which they require people, machines, accessories and raw materials.

Moreover, industries deal with decisions such as the construction of new plants, acquisition

of new equipment, introduction of new products, preparation and reparation of machines.

One way of dealing with the complexity that arises from such subsystems is to develop

production planning in a hierarchy. This reduces the global complexity of the problem,

decomposing it into different levels with similar characteristics.

An efficient hierarchy planning focuses on balancing three contradicting objectives

(Morton and Pentico (1993)): maximize throughput, which is the efficiency rate for a

system to achieve its goal; maximize customer satisfaction and minimize operative costs

and capital invested in the whole system.

To produce an appropriate solution with respect to these objectives, planning involves

three key aspects (Baker (1974)):

5



PRODUCTION PLANNING
2.2. Hierarchy planning

1. Selection of products.

2. Quantification of products.

3. Specification of the required resources to produce the selected products.

2.2 Hierarchy planning

Hierarchy planning takes the above mentioned factors into consideration. Having made

a decision in one level of the hierarchy, such a decision imposes physical restrictions for

the next level in the hierarchy. The different levels of the hierarchy planning, according

to Morton and Pentico (1993) are long-term planning, middle-term planning, short-term

planning, scheduling, and reactive scheduling. See Figure 2.1.

Long-
term

Middle-term
(1-2 years)

Short-term
(3-6 months)

Scheduling
(2 - 6 weeks)

Reactive
scheduling

Figure 2.1: Hierarchy planning
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PRODUCTION PLANNING
2.2. Hierarchy planning

Examples of long-term planning decisions are the design, building, layout, or expansion

of plants, and warehouses.

Middle-term planning includes the reconfiguration of resources on a time scale of 1

to 2 years, when comparing the capacity of the plant versus the predetermined demand.

The resources required in the next lower levels of planning are specified at this stage.

Among short-term planning decisions is the material requirements planning (MRP).

In the MRP the amount of raw material which will be used in the subsequent 3 to 6

months is decided. MRP receives, as an input, the levels of production established in

the middle-term planning and uses that information to estimate the resources that are

required to satisfy such requirements.

Once the planning in the long, middle and short term has been done, the problem of

scheduling can be solved. Scheduling is the production planning for the next 2 to 6 weeks.

MRP provides specific information about jobs, such as the number of jobs, arrival times

and due dates. A schedule is generated providing specific information about the activities

to be performed.

Reactive Scheduling deals with emergencies that occur in a stochastic way but that

require immediate attention, such as machine breakdowns and material failure.

7



CHAPTER 3

SCHEDULING PROBLEM

3.1 General remarks

3.1.1 The term scheduling

Scheduling takes place after the long, middle and short-term decisions in the hierarchy

planning have been made. It establishes the specific tasks to be performed in a period of

time from 2 to 6 weeks to reflect the decisions made in all the mentioned upper levels in

the hierarchy. It is essentially a decision making process to determine a production plan

considering the availability of resources and constraints. The latter may be physical con-

straints, like the number of machines for example; or constraints imposed by production

policies, like the decision to offer a product in two different colours.

According to Baker (1974) there are three prevalent goals in the scheduling problem:

the efficient utilisation of resources, prompt response to demand and conformity with

deadlines.

Therefore, solving a scheduling problem implies making a decision about three vari-

ables: assignment of orders, equipment and personnel; sequencing of activities and estab-

8



SCHEDULING PROBLEM
3.1. General remarks

lishment of the starting and completion dates of the operations.

Some scheduling problems are related with assignment only. In that case the complex-

ity is reduced and optimal solutions are easily found, using Smith’s rule (Smith (1956))

for example.

3.1.2 Basic definitions

In a production environment a given number of jobs need to be scheduled on a specified

number of machines.

Definition 3.1.1. (Jobs) Let n be the total number of activities, tasks, or products,

identified as jobs, which need to be schedule in a production environment. The jobs are

associated with a number j as the jth job for j = 1 . . . n.

Definition 3.1.2. (Machines) Let m be the number of machines that are available in

a scheduling environment. The machines are associated with a number i to identify the

ith machine for i = 1 . . .m.

The information known a priori constitutes an input for planning and generally consists

of the parameters defined in the following four definitions (Morton and Pentico (1993)).

Definition 3.1.3. (Processing time) The processing time, denoted by pij, is the time

required to process the job j on the machine i. If there is only one machine, or if the

job requires the same amount of processing on all the machines, then the subscript i is

omitted, i.e. pj.

9



SCHEDULING PROBLEM
3.1. General remarks

Definition 3.1.4. (Release date) The release date, denoted by rij, is the time at which

the job j is available to be processed in the machine i. If there is only one machine, or if

the job becomes available to all machines simultaneously then the subscript i is omitted,

i.e. rj.

Definition 3.1.5. (Due date) The due date, denoted by dj, is the time by which the job

j is expected to be completed.

Definition 3.1.6. (Weight) The weight, denoted by wj, represents the importance of the

job j. The weights are non-negative, i.e. wj > 0, and sometimes the sum of the weights

for all the jobs equals one, i.e.
n∑
j=1

wj = 1. (3.1)

Planning gives primary output measures, some of them are explained below (Morton

and Pentico (1993) and Leung (2004)).

Definition 3.1.7. (Completion time) The completion time, denoted by Cj, is the time

at which the job j is completed.

Definition 3.1.8. (Lateness) Lateness, denoted by Lj, is the amount of time that the

completion time of job j differs from the due date of the same job j,

Lj = Cj − dj. (3.2)
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Remark The value Lj can be positive or negative.

Definition 3.1.9. (Tardiness) Tardiness, denoted by Tj, corresponds to the positive

values of lateness. If the value of lateness for the job j is negative, then tardiness is

equal to zero,

Tj = max { 0 , +Lj } . (3.3)

Definition 3.1.10. (Earliness) Earliness, denoted by Ej, corresponds to the negative

values of lateness. If the value of lateness for the job j is positive, then earliness is equal

to zero,

Ej = max { 0 , −Lj } . (3.4)

Remark Let Lj, Tj, and Ej be the lateness, tardiness and earliness of the job j, for all

j = 1, . . . n, respectively. Then

Lj = Tj − Ej. (3.5)

Definition 3.1.11. (Unit penalty for late completion) The unit penalty, denoted by Uj,

is the penalty of job j for a completion that exceeds its due date. And so Uj = 1 if and

only if Cj > dj (i.e. Tj 6= 0) otherwise is equal to zero.
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3.2 Characteristics

In order to characterise scheduling problems, it is necessary to identify the production

environment, the scheduling constraints, and the objective function.

3.2.1 Production environment

The production environment establishes the relation, and therefore the complexity, be-

tween the stages of the process and the production requirements of each item. Production

environments differ in accordance with the unit of production (discrete or continue), prod-

ucts variety, volume, between others.

In order to analyse the behaviour of a production environment, it is important to

understand how its components work. For this reason extensive research has been done

around specific configurations of complex or real production environments. The impor-

tance of studying simple cases relies on identifying special characteristics to facilitate the

study of more complex models. The commonly studied theoretical environments are both

single machine and two machines. Real environments include flow shop, job shop and

open shop.

Single machine (1)

In the environment with a single machine, n jobs need to be processed on a single machine

configuration. Thus the order of the jobs needs to be specified. See Figure 3.1.

Series environment: n jobs - 2 machines in series

In this environment n jobs need to be processed by 2 machines sequentially. The notation

used to describe this environment is S2. In this case the order of the jobs in each of the

12
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3.2. Characteristics

M1

1

2

...

n

n jobs 1 machine

Figure 3.1: Single machine environment

machines will be given by the schedule. See Figure 3.2.

M1 M2

2 machines

1

2

...

n

n jobs

Figure 3.2: Two machines in series environment

Series environment: n jobs - m machines in series

In this configuration n jobs need to be processed on each of m machines in series, denoted

as Sm. As in the previous case at each machine the order of the jobs has to be determined.

See Figure 3.3.
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M1 M2
. . . Mm

m machines

1

2

...

n

n jobs

Figure 3.3: m machines in series environment

Parallel Machines: n jobs - m machines in parallel

In this environment n given jobs can be processed on any of the m available machines.

See Figure 3.4. There are some variations of this environment in accordance with the

relation of the machines. Namely Pm: m parallel identical machines, Qm: m related

parallel machines and Rm: m unrelated parallel machines.

Flow shop (F)

In a flow shop the production flow is linear. The jobs are processed following the same

sequence of activities and in the same machines. In more complex flow shops a machine

in the series can be replaced for a set of parallel machines. An example of flow shop is an

assembly line. See Figure 3.5.
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M1

M2

...

Mm

m machines

1

2

...

n

n jobs

Figure 3.4: m machines in parallel environment

M1
. . . Ml Mks

Mkr

Mkt

Mu
. . . Mm

m machines

1

2

...

n

n jobs

Figure 3.5: Flow shop environment
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Job shop (J)

In this environment each job has a specific flow of production. Examples of job shop are

fabrication tools shops, where each tool visits different machines according to the specific

requirements of the job. A hammer and a screwdriver would be elaborated by different

machines in the same shop, for instance.

Open shop (O)

In this environment, each job needs to visit every machine exactly once no matter the

order. An example of an open shop can be painting parts of a product using different

colours.

3.2.2 Scheduling constraints

Scheduling constraints are determined by the characteristics of the jobs and scheduling

relations.

Preemption vs Nonpreemption

When jobs that are being processed on a machine can be interrupted to finish their

processing later, then preemption is allowed.
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Definition 3.2.1. (Preemption) Preemption of the jobs j ∈ J , denoted by pmtn, indi-

cates that the processing time pj, for j = 1, . . . , n, can be split into pjr , for r = 1, . . . , s,

such that

pj =
s∑
r=1

pjr j = 1, . . . , n. (3.6)

Release dates

Recall Definition 3.1.4 of release dates given in page 10. When the values rj are given the

schedule should consider release dates as an additional constraint.

Precedence constraints

Certain jobs may require the completion of other jobs before starting their own processing.

Such relations are known as precedence constraints.

Definition 3.2.2. (Precedence constraints) The set of all precedence constraints for a

job j is represented by Pj, for j = 1, . . . , n. Then, the release date of the job j is affected

by the relation rj > Ci,∀i 6= j ∈ Pj.

Precedence relations, denoted as prec, are represented in a precedence graph, where

each node represents a job and each edge represent a relation between the jobs. When

the precedence graph is a tree, a more specific problem can be defined. Such tree could

be an intree in which the job with the no successors is called root. The jobs immediately

preceding the root are in a level below and so on. On the other hand in an outree the
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jobs with no successors are located in the first level. The next level is filled in with jobs

that have successors in the levels immediately above. Additionally when the precedence

graph is formed by nodes with disjoint paths then the precedence is called chain.

Number of jobs

When the maximum number of jobs allowed to be processed is restricted to a fixed quantity

the number of jobs becomes a scheduling constraint.

Definition 3.2.3. (Number of jobs) The number of jobs, denoted by nj, specifies the

maximum number of jobs that can be processed on a given environment.

Processing times

When all the jobs require exactly the same processing time then this characteristic estab-

lishes a scheduling constraint.

Definition 3.2.4. (Equal processing times) If given the jobs j the processing time is the

same for all j = 1, . . . , n, then this quantity is denoted then by p, thus pj = p.

Deadlines

When a deadline for a job cannot be negotiated, then such deadline can be added to the

schedule as a constraint.

18



SCHEDULING PROBLEM
3.2. Characteristics

Definition 3.2.5. (Deadlines) The deadline of the job j, denoted by d̂j, specifies the

latest day by which the job should be finished.

3.2.3 Objective function

The objective function represents the measure that will be used to evaluate the generated

scheduling. There are two types of criteria that can be considered, cost and performance.

The associated costs with a particular schedule include setup of machine costs, after

working hour’s costs, storage costs and costs for not having enough products to sell.

Once a schedule has been generated performance criteria can be derived. Some of these

performance criteria are explained below.

Completion time

The completion time indicates the maximum time at which the system changes from

busy to idle. If a system can be left free as soon as possible then it will become avail-

able to process new jobs. Therefore these measures are generally minimised. There are

several performance measures based on completion time. In this study makespan, total

completion time, and total weighted completion time are explained.

Definition 3.2.6. (Makespan) Makespan, denoted by Cmax, is the maximum completion

time among n jobs, i.e.

Cmax = max
16j6n

{Cj } . (3.7)
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Remark The completion time, Cj, is relative to the release date, if the latter exists.

Definition 3.2.7. (Total completion time) The total completion time is equal to the

sum of the completion times of the n jobs, i.e.
∑n

j=1Cj, where Cj is the completion time

of j, j = 1, . . . , n, in a particular schedule.

The time that a job spends in the system should be relative to the importance or

weight of each particular job. In this manner jobs with higher importance in criteria

would have a priority to be finished before those jobs with lower importance. Specially

considering criteria related with cost and customer service.

Definition 3.2.8. (Total weighted completion time) The total weighted completion time

is equal to the weighted sum of the completion time for n jobs, i.e.
∑n

j=1wjCj, where

Cj is the completion time of j and wj is the weight of the job j for j = 1, . . . , n.

Lateness

Lateness gives information about delayed jobs, and so if the schedule is optimal under

lateness generally produces efficient values in other objectives as well. Furthermore, the

utilisation of lateness facilitates the calculus of other performance measures like flowtime

for example.
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Definition 3.2.9. (Maximum lateness) The maximum lateness, denoted by Lmax, is the

maximum Lj for j = 1, . . . , n,

Lmax = max
16j6n

{Lj } . (3.8)

Definition 3.2.10. (Weighted lateness) The weighted lateness, denoted by Lwt, is the

weighted sum of the lateness, for j = 1, . . . , n,
∑n

j=1wjLj.

Tardiness

When a delay in finishing a job is acceptable, tardiness can be used as an objective

function.

Definition 3.2.11. (Maximum tardiness) The maximum tardiness, denoted by Tmax, is

the maximum Tj for j = 1, . . . , n,

Tmax = max
16j6n

{Tj }. (3.9)

Weighted tardiness is an appropriate alternative when a job is accepted by a customer

neither before nor after its due date.

Definition 3.2.12. (Weighted tardiness) The weighted tardiness is the weighted sum of

the tardiness for j = 1, . . . , n,
∑n

j=1wjTj.
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If both maximum tardiness and weighted tardiness are considered, then weighted

square tardiness can also be calculated.

Definition 3.2.13. (Minimum weighted squared tardiness) The minimum weighted

square tardiness is the lowest possible value for the weighted square tardiness for

j = 1, . . . , n, min16j6n {wjT 2
j }.

Earliness

Earliness has applications in management techniques, such as just-in-time, that tend to

control the costs for storing units that are finished before their due date.

Definition 3.2.14. (Maximum earliness) The maximum earliness, denoted by Emax, is

the maximum negative value of Lateness for j = 1, . . . , n,

Emax = max
16j6n

{Ej }. (3.10)

Definition 3.2.15. (Weighted earliness) The weighted earliness is the weighted sum of

Ej for j = 1, . . . , n,
∑n

j=1wjEj.

Tardy jobs

The unit penalty for tardy jobs and the weighted unit penalty for tardy jobs are used

when the customers cannot receive a job after its due date.
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Definition 3.2.16. (Unit penalty for tardy jobs) The total unit penalty for tardy jobs

is
∑n

j=1 Uj.

Definition 3.2.17. (Weighted unit penalty for tardy jobs) The weighted number of tardy

jobs, is the weighted sum of unit penalty for tardy jobs for j = 1, . . . , n,
∑n

j=1wjUj.

3.3 Definition of a scheduling problem

As explained before, a scheduling problem is defined determining the production envi-

ronment, job characteristics, scheduling constraints and an objective function. Using the

notation introduced by Graham et al. (1979) a scheduling problem is represented by

α | β | γ (3.11)

where α represents the production environment, β gives job characteristics and details of

scheduling constraints and γ is the objective function.
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CHAPTER 4

CONVEX PROGRAMMING IN

SCHEDULING

4.1 Complexity and scheduling problems

Scheduling problems are defined by a production environment, job characteristics and an

objective function. Therefore an specific problem is defined by a particular selection of

attributes in each of these aspects, which yields an unlimited number of problem types.

Such diversity is reflected in a range of problems with different levels of complexity.

There are polynomially solvable scheduling problems, for which a solution exists for

every instance of the problem. For example 1 | prec | fmax, where fmax ∈ {Cmax, Lmax},

which can be solved in O(n2) time (Lawler (1973)); the problem 1 | prec, pmtn, rj | fmax,

also solvable in O(n2) time (Baker et al. (1983)); the problem 1 | |
∑
wjCj, which can be

solved in O(n log n) (Smith (1956)) and the scheduling problem P | intree, pj = p |Lmax,

also in O(n log n) (Brucker et al. (1977)).
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There are pseudo-polynomially solvable scheduling problems, whose solvable time de-

pends on the numeric value of the data rather than the size of the problem itself. For

instance 1 | |
∑
wjUj, which can be solved using dynamic programming in O(n

∑
pj)

(Lawler and Moore (1969)) or in O(n
∑
wj) (Sahni (1976)) and the problem 1 | |

∑
Tj,

which is solvable in O(n4
∑
pj) (Lawler (1977)).

Weakly NP-hard scheduling problems include those for which algorithms are expo-

nential functions of the size of the problem. The problems 1 | |
∑
wjUj (Karp (1972)),

1 | |
∑
Tj (Du and Leung (1990)) and 1 | dj = d |

∑
wjTj (Jinjiang (1992)), are examples

of this group.

In the case of NP-hard problems in the strong sense, efficient polynomial time exact

algorithms are highly unlikely to exist. Examples of this type include the problem stud-

ied here, 1 | rj, pmtn |
∑
wjCj (Labetoulle et al. (1984)), also the problem 1 | |

∑
wjTj

(Lenstra et al. (1977)), the problem P2 | tree |Cmax (Du et al. (1991)) and P | prec, pj −

1 |Cmax (Ullman (1975)).

For NP-hard problems the use of approximation algorithms is common, since they

produce solutions that are guaranteed to be within a performance ratio α of the actual

optimum. Thus solutions obtained by approximation algorithms are known to be feasible,

perhaps non-optimal but they are still acceptable.

4.2 Approximation algorithms

4.2.1 Approximation algorithms for optimization problems

Convex optimization has played an important role in the development of approximation

algorithms. The widely studied convex linear programming relaxation has shown to be

an efficient tool for solving NP-hard problems and specifically scheduling problems (see
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e.g. Hall (1997) in which approximation algorithms for different scheduling problems are

summarised). There are also nonlinear cases that have made effective use of more general

conic programs, namely conic quadratic and semidefinite programming.

Semidefinite programming was successfully used by Lovász (1979) on the shannon

capacity of a graph and by Gröetschel et al. (1981) who proposed a polynomial-time algo-

rithm to find a maximum independent set in a perfect graph. Goemans and Williamson

(1995) showed the power of semidefinite programming relaxations for NP-hard problems

with their work on the maximum cut problem, MAXCUT. Other important results have

been obtained in graph colouring by Karger et al. (1994), in betweenness by Chor and

Sudan (1998) and in graph bisection by Ye (2001).

4.2.2 Approximation algorithms in scheduling

Approximation algorithms using linear programming relaxations have been used for exam-

ple to schedule unrelated machines, with preemption allowed and subject to release dates

to minimize the total weighted completion, R | rj |
∑
wjCj independently by Skutella

(1998), and Sethuraman and Squillante (1999a,b).

The preemptive version of above scheduling problem, denoted as R | rj, pmtn |
∑
wjCj,

with a convex quadratic relaxation and a 3-approximation algorithm is given by Skutella

(1999). Skutella (2001) considers the nonpreemptive version of the latter R | rj |
∑
wjCj,

with a 2-approximation algorithm based on semidefinite programming. A 3/2-approximation

algorithm using a convex quadratic relaxation, for a similar problem in the absence of

release dates, R | |
∑
wjCj, is also given in Skutella (2001).

In Skutella (2001) the two machine case, R2 | |
∑
wjCj a semidefinite programming

relaxation is also studied with a 1.2752-approximation algorithm.
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PART II

SPECIFIC CASES
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CHAPTER 5

1 | pj = p, rj |
∑
wjTj

On a single machine n jobs need to be processed. The processing time pj of any given job

j is the same, i.e., pj = p for j = 1, . . . , n, with p > 0 and p ∈ Z+. Once the processing

of a job has started, it must be finished, that is preemption is not permitted. The jobs

are available from a given time rj > 0 with rj ∈ Z+ for j = 1, . . . , n. A weight wj > 0 for

all j = 1, . . . , n is given. The task is to find a schedule that minimizes the total weighted

tardiness of the jobs
∑
wjTj, with

Tj = max
{

0, Cj − dj
}
,

where Cj denotes the completion time of a job j, which is found with the schedule, and

dj > 0 is the due date with dj ∈ Z+ for j = 1, . . . , n. Using the notation introduced by

Graham et al. (1979), this problem may be written as 1|pj = p, rj|
∑
wjTj.

1

1Paper submitted to the Journal of Scheduling, currently under review.

28



1 | pj = p, rj |
∑

wjTj

5.1. Complexity of the problem

5.1 Complexity of the problem

Hitherto the complexity of this problem was unknown (Brucker and Knust (2006) and

van den Akker et al. (2010)). In van den Akker et al. (2010) the problem is formulated as

a time-indexed integer program. In addition, its linear programming relaxation is solved

using a branch-and-bound algorithm, for which a solution is integral or it can be converted

into one in polynomial time for some special cases of the problem, namely when

(i) all due dates, weights or release dates are equal, or

(ii) all due dates and release dates are equally ordered.

The solution of their linear programming relaxation is either integral or it can be adjusted

in polynomial time into an integral one.

5.2 Formulation of the problem

5.2.1 Integer program

The length of the schedule, m, is the total time required to process all the jobs with

m ∈ Z+ (since pj, rj ∈ Z+).

Preemption is not permitted, therefore in order to generate a schedule, it suffices to in-

dicate the times at which each and every job is due to start. Thus n start processing times

need to be determined. Since the problem occurs in a single machine environment, then

such start times are required to give enough time to process each job without overlapping.

Let S denote the set of times at which the machine can start processing any of the

jobs. In order to determine the set S note that for each job arriving a decision can be

made of whether to process such job immediately or after another job. If there are jobs

available at the time t, then t is a candidate for a start time and if such t is chosen as the
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start time for one of the jobs the machine would then be unavailable for p units of time.

Note that the set S contains only those times t that are worth exploring. These times are

either a release time or a multiple of p with integer coefficients between 1 and m. Thus

to determine S let Rl, l ∈ {0, . . . , p− 1}, be the set containing those possible times such

that the operation t mod p has a common value l, for 0 6 l 6 p − 1. The elements of

each Rl are found as follows

(i) For each rj, j = 1, . . . , n, calculate lj = rj mod p.

(ii) Find the correspondingRl such that lj = l and add the element rj toRl, j = 1, . . . , n.

(iii) For each j = 1, . . . , n and for each nonempty set Rk, k = 0, . . . p − 1, with k 6= lj,

determine the minimum t > rj such that t mod p = k, t 6∈ Rk, and add that element

t to Rk.

The set S can be constructed as

S = R0 ∪R1 ∪ . . . ∪Rp−1.

Example 5.2.1. In a single machine environment n = 2 jobs need to be processed. The

processing time is p = 3 units of time. Release date rj, due date dj and weight wj for

each job is given in the next table

Job
Data

rj dj wj

1 1 3 1

2 3 5 100

The sets Rl for Example 5.2.1 can be found as follows. Since l1 = 1 and l2 = 0, then
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initially R0 = {3} and R1 = {1}. For j = 1 the only nonempty Rl set with l 6= l1 = R1 is

R0 for which the minimum t > r1, t 6∈ R0 satisfying t mod 3 = 0 is 6. For j = 2 the only

nonempty Rl set with l 6= l2 = R0 is R1 and the minimum t 6∈ R1 satisfying t mod 3 = 1

is 4, then

R0 = {3, 6} ,

R1 = {1, 4} ,

R2 = ∅,

and so

S = {1, 3, 4, 6} .

The solution of example 5.2.1 is given in Section 5.5.

Variables: Let xij for j = 1, . . . , n, with i ∈ S, for i > rj (otherwise the job is not

available) be the binary variable indicating the start processing time for the jobs,

xij =

 1, if the processing of j starts at i;

0, otherwise.

Similarly, let yij, for j = 1, . . . , n, with i ∈ S for i > rj, be the binary variable

indicating when a job is being processed,

yij =

 1, if job j is being processed at i;

0, otherwise.
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Also, let x and y be the row vectors containing all the variables xij and yij respectively,

x =
(
xTS11, . . . , x

T
Sjj
, . . . , xTSnn

)
,

y =
(
yTS11, . . . , y

T
Sjj
, . . . , yTSnn

)
,

where

Sj = S ∩
{
i > rj

}
, j = 1, . . . , n.

Objective function: Recall the objective function

n∑
j=1

wjTj,

with

Tj = max
{

0, Cj − dj
}
,

where Cj denotes the completion time of a job j in a given schedule. Thus, jobs that have

yet to be processed after their due dates will increase the objective function.

For instance, for a job j at the time i = dj, a check to see if the job has been processed

and finished during the interval 1 6 i 6 dj has to be made. Observe that t = k− p is the

maximum possible start time t at which the job j could have been processed and finished

by the time k, for k = dj + 1, . . . ,m, after job j was released. Note that

1−
∑
i∈Sj

i6dj−p

xij,

is zero if the job has been processed and finished at the time dj + 1 (that is one of the

variables xij = 1 in the interval 1 6 i 6 dj with i ∈ Sj) and is equal to 1 otherwise. The
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objective function can then be written as

n∑
j=1

m∑
k=dj+1

wj
1−

∑
i∈Sj

i6k−p

xij


 .

Constraints: An interval of p consecutive units of time is referred here as a slot. There

is only one machine, then independently of which times t are in S the sum of those xtj

that are part of a slot should not exceed one. In this way, initially we could say that the

start time xtj can be selected only if none of the xij with t− p + 1 6 i < t is selected at

the same time, otherwise the one machine constraint would be violated.

Recall that variables xtj indicate only the start time of a job. However the machine

is busy for the whole time that is processing any of the jobs, which is not indicated by

variables xtj alone. Therefore variables yij are brought into consideration. In order to

satisfy the one machine constraint, xtj can only be one if and only if ytj is also equal to

one and, since preemption is not allowed, if a different job was being processed in the

machine before, in any of the times belonging to the previous slot. The latter means that

any of the yij with t − p + 1 6 i < t are equal to one. This condition holds unless the

schedule has just started, that is t = 1.

None of the xij with i ∈ [t− p+ 1, t) must be equal to one if xtj is equal to one. Thus

considering only those i and t that belong to the same Rl the assumption reads as xij can

only be selected if and only if xtj with t = i+ p is not selected. Thus

n∑
j=1

ytj −
n∑
j=1

yij −
n∑
j=1

xtj = −1, t = i+ p,

i, t ∈ Rl, l = 0, . . . , p− 1. (5.1)

If the processing of a job starts at xij then the variables yij are equal to one. Such a
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constraint is modelled as

n∑
j=1

xij −
n∑
j=1

yij 6 0, i ∈ S. (5.2)

In order to avoid choosing the same start time for more than one job, the constraints

n∑
j=1

xij 6 1, i ∈ S, (5.3)

and
n∑
j=1

yij 6 1, i ∈ S, (5.4)

must be added. Finally, the processing of all jobs is ensured with the constraint

∑
i∈Sj

xij = 1, j = 1, . . . , n. (5.5)

Note that constraint (5.4) follows from equations (5.2) and (5.5).

If x1j = 1 for example, then x1l = 0 for all l 6= j is ensured by constraint (5.3).

In constraint (5.2) one of the variables y1k can be one. We want exactly the same y1j

belonging to our job with x1j = 1.

Assume by contradiction that y1l = 1, with j 6= l for a different job to the one whose

processing started at the time 1, with x1j = 1. In that case constraint (5.2) is satisfied.

However in equation (5.1), for R1, a job that is being processed immediately after job j,

will generate the following values for such equation 1 − 0 − 1 6= −1. Thus (5.1) is not

satisfied which means that y1j = 1.

The restriction in constraint (5.1) is applied to the following job which is going to be

processed in the machine. For such new job to be processed any other job that has been

previously processed need to be completed before allowing a new job to be processed.
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This is enforced by constraint (5.1).

Note that when the schedule is starting is assumed that the machine is free before

the time 1 and so no other job has to be considered when deciding if job j starts at one,

x1j = 1.

Recall Example 5.2.1, where S = {1, 3, 4, 6}. The set of constraints is

y61 + y62 − y31 − y32 − x61 − x62 = −1,

y41 + y42 − y11 − x41 − x42 = −1

x31 + x32 6 y31 + y32,

x61 + x62 6 y61 + y62,

x11 6 y11,

x41 + x42 6 y41 + y42,

x31 + x32 6 1,

x61 + x62 6 1,

x11 6 1,

x41 + x42 6 1,

y31 + y32 6 1,

y61 + y62 6 1,

y11 6 1,

y41 + y42 6 1,

x11 + x31 + x41 + x61 = 1,

x32 + x42 + x62 = 1.
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Note that the number of constraints using the above definitions is

p−1∑
l=0

(
|Rl| − 1

)
+ 3|S|+ n,

where |Rl| and |S| are the number of elements of the sets Rl and S, respectively.

Remark The matrix of constraints is sparse.

The integer programming formulation for the problem is introduced next.

Problem 5.2.2. The formulation of the scheduling problem 1|pj = p, rj|
∑
wjTj as an

integer program (IP5.2.2) is given by

τ (IP5.2.2) = min
x,y

n∑
j=1

m∑
k=dj+1

wj
1−

∑
i∈Sj

i6k−p

xij




s.t.
n∑
j=1

ytj −
n∑
j=1

yij −
n∑
j=1

xtj = −1, t = i+ p,

i, t ∈ Rl, l = 0, . . . , p− 1,

n∑
j=1

xij −
n∑
j=1

yij 6 0, i ∈ S,

n∑
j=1

xij 6 1, i ∈ S,

n∑
j=1

yij 6 1, i ∈ S,

∑
i∈Sj

xij = 1, j = 1, . . . , n,

xij, yij ∈ {0, 1}, i ∈ Sj, j = 1, . . . , n.
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5.3 Relaxation of the problem

5.3.1 Linear programming relaxation

A relaxation of Problem 5.2.2 is given by replacing the non-convex constraints xij and

yij ∈ {0, 1} by the convex relaxations 0 6 xij 6 1 and 0 6 yij 6 1, respectively.

Problem 5.3.1. A relaxation for Problem 5.2.2, denoted LP5.3.1r, is

τ (LP5.3.1r) = min
x,y

n∑
j=1

m∑
k=dj+1

wj
1−

∑
i∈Sj

i6k−p

xij




s.t.
n∑
j=1

ytj −
n∑
j=1

yij −
n∑
j=1

xtj = −1, t = i+ p,

i, t ∈ Rl, l = 0, . . . , p− 1,

n∑
j=1

xij −
n∑
j=1

yij 6 0, i ∈ S,

n∑
j=1

xij 6 1, i ∈ S,

n∑
j=1

yij 6 1, i ∈ S,

∑
i∈Sj

xij = 1, j = 1, . . . , n,

0 6 xij 6 1, i ∈ Sj, j = 1, . . . , n,

0 6 yij 6 1, i ∈ Sj, j = 1, . . . , n.

In order to show that Problem 5.3.1 is in fact a relaxation let F (IP5.2.2) and F (LP5.3.1r)
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denote the feasible sets of Problems 5.2.2 and 5.3.1, respectively.

Lemma 5.3.2. Problem 5.3.1 is a relaxation of the scheduling problem 1 | pj =

p, rj |
∑
wjTj given in Problem 5.2.2, i.e.

(i) F (IP5.2.2) ⊆ F (LP5.3.1r).

(ii) τ (LP5.3.1r) 6 τ (IP5.2.2), for all xij and yij ∈ F (IP5.2.2).

Proof. (i) In Problem 5.2.2 variables xij and yij belong to {0, 1} and in Problem 5.3.1

the same values for those variables are considered and some more, 0 6 xij 6 1 and

0 6 yij 6 1. Thus, it holds that F (IP5.2.2) ⊆ F (LP5.3.1r).

(ii) The objective function of both problems is the same and since F (IP5.2.2) ⊆ F (LP5.3.1r)

then τ (LP5.3.1r) 6 τ (IP5.2.2) for all xij and yij ∈ F (IP5.2.2).

The following Theorem follows immediately.

Theorem 5.3.3. The optimal value of Problem 5.3.1 is a lower bound for the optimal

value in Problem 5.2.2.

Proof. See Lemma 5.3.2 part (ii).
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5.4 Quality of the relaxation

In the linear programming relaxation given above the binary variables in {0, 1} are

changed to belong to [0, 1]. If a binary solution to the relaxation (with the constraint

in [0, 1]) can be ensured, the solution is also optimal for the integer program. Let us see

why this is the case and when it can take place.

Consider the polyhedron

P = {x ∈ Rn |Ax > b,x > 0}, (5.6)

where b ∈ Rm is a vector and A ∈ Rm×n is a matrix of coefficients.

Let A = (B N), where B is comprised of the linearly independent columns of A and N

of the linearly dependent. A unique solution x̃ of Ax = b, found as

x̃ =

xB
xN

 =

B−1b

0

 ,

is a basic solution. If x̃ is also feasible (i.e., it satisfies all the conditions in (5.6)) it is

called a basic feasible solution. The set of basic feasible solutions coincide with the set of

vertices or extreme points of the polyhedron described by the feasible set of (5.6). The

polyhedron is called integral if all the vertices are in Zn (see Schrijver (1986) chapter 19).

An integral polyhedron satisfies certain conditions that can be determined by analysing

the properties of the matrix of coefficients. Here, the case when the matrix is totally

unimodular is considered.
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Definition 5.4.1. (Totally unimodular matrix) Let A be an m × n real matrix. Then

A is totally unimodular if every square submatrix of A has determinant equal to +1, −1

or 0.

Some important facts related to totally unimodular matrices are explained in the

following theorems.

Theorem 5.4.2. Let A be an m× n real matrix. Then A is totally unimodular if and

only if any of the following matrices are totally unimodular:

(i) AT ,

(ii) (A, I),

(iii) (A, ei), where ei denotes a column of the identity matrix.

Proof. (i) The matrices A and AT have the same determinant and similarly the deter-

minant of any square submatrix of A is the same as its corresponding transpose.

(ii) For a proof see Schrijver (1986) chapter 19.

(iii) The determinant of a submatrix of A formed by an intersection of the row or column

ei including the nonzero entry can be found by expansion of such row or column and

is equal to the determinant of such submatrix. If the vector ei is not intercepted

by the square submatrix then its determinant remains the same. If the submatrix

intercepts only the zero part of the row or column its determinant is equal to zero.
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Definition 5.4.3. (Eulerian matrix) Let A be an m × n real matrix with entries aij ∈

{0, 1,−1}. Then A is Eulerian if the sum of the elements per row and column is even.

Theorem 5.4.4. Let A = (aij) be an m × n matrix such that aij ∈ {0, 1,−1}, i =

1, . . . ,m, j = 1, . . . , n. A is totally unimodular if and only if for every Eulerian square

submatrix it holds that the sum of the elements is a multiple of 4.

Proof. Camion (1965).

Checking the determinant of a matrix can be difficult when the matrix is large. The

following Theorem provides sufficient conditions to verify that a matrix is totally unimod-

ular.
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Theorem 5.4.5. Let A = (aij) be an m× n matrix such that

(i) The entries aij ∈ {0, 1,−1}, for all i = 1, . . . ,m and j = 1, . . . , n.

(ii) In each column j there are at most two nonzero coefficients, i.e.,

m∑
i=1

|aij| 6 2, j = 1, . . . , n.

(iii) Let M represent the set of rows. Then M can be partitioned into two sets, say

M1 and M2, such that for each column j the following holds

∑
i∈M1

aij −
∑
i∈M2

aij = 0, j = 1, . . . , n.

Then A is totally unimodular.

Proof. Tamir (1976).

A totally unimodular matrix is a sufficient criterion for the set of constraints of a

linear program to have vertices in Zn as shown in Theorem 5.4.6.

Theorem 5.4.6. Let A be an m× n totally unimodular matrix and let b ∈ Zm. Then

P = {x ∈ Rn |Ax = b,x > 0},

is an integral polyhedron.
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Proof. Veinoot and Dantzig (1968).

The quality of the relaxation is now demonstrated.

Lemma 5.4.7. The constraint matrix of Problem 5.3.1 is totally unimodular.

Proof. Using slack variables u
(k)
i > 0, k = 1, 2, 3; i ∈ S and v

(l)
ij > 0, l = 1, 2; i ∈ Sj,

j = 1, . . . , n, the inequality constraints of Problem 5.3.1 can be written as equalities. The

feasible set is then equivalent to

n∑
j=1

ytj −
n∑
j=1

yij −
n∑
j=1

xtj = −1, t = i+ p,

i, t ∈ Rl, l = 0, . . . , p− 1,

n∑
j=1

xij −
n∑
j=1

yij + u
(1)
i = 0, i ∈ S,

n∑
j=1

xij + u
(2)
i = 1, i ∈ S,

n∑
j=1

yij + u
(3)
i = 1, i ∈ S,

∑
i∈Sj

xij = 1, j = 1, . . . , n,

xij + v
(1)
ij = 1, i ∈ Sj, j = 1, . . . , n,

yij + v
(2)
ij = 1, i ∈ Sj, j = 1, . . . , n,
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xij, yij > 0, i ∈ Sj, j = 1, . . . , n,

u
(k)
i > 0, k = 1, . . . , 3, i ∈ S,

v
(l)
ij > 0, l = 1, 2, i ∈ Sj, j = 1, . . . , n.

After deleting a row or a column from a matrix, the number of possible square subma-

trices of said matrix is different, but the characteristics of the remaining ones, including

the determinants, are not affected by this change. Therefore, without loss of generality

suppose that i ∈ S for i = 1, . . . ,m and suppose that Sj = S, j = 1, . . . , n. In such case

the constraint matrix of Problem 5.3.1 has the form



A B · · · A B 0 0 0 0 · · · 0

−I I · · · −I I I 0 0 0 · · · 0

0 I · · · 0 I 0 I 0 0 · · · 0

I 0 · · · I 0 0 0 I 0 · · · 0

0 C1 · · · 0 Cn 0 0 0 0 · · · 0

I 0 · · · 0 0 0 0 0 I · · · 0
. . . . . .

0 0 0 I 0 0 0 0 · · · I


(2n+4)|S|+n−p×(4n+3)|S|,

(5.7)

where

A =



A1 0

A1

. . .

0 A1


(|S|−p)× |S|,
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A1 =


−1 1 0

. . .

0 −1 1


(|Rl|−1)× |Rl|,

B =



B1 0

B1

. . .

0 B1


(|S|−p)× |S|,

B1 =



0 −1 0

−1

. . .

0 −1


(|Rl|−1)× |Rl|,

and Cj, j = 1, . . . , n, is the n× |S| zero matrix with all the elements in the ith row equal

to one.

Observe that the following holds for matrix AT
1 = (aij),

(i) The entries aij ∈ {0, 1,−1} for all i = 1, . . . , |Rl| and j = 1, . . . , |Rl| − 1.

(ii) In each column there are at most two nonzero coefficients, i.e.,

|Rl|∑
i=1

|aij| 6 2, j = 1, . . . , |Rl| − 1.

(iii) Let M1 = {1, 2, . . . , |Rl|} and M2 = {} then

∑
i∈M1

aij −
∑
i∈M2

aij = 0, j = 1, . . . , |Rl| − 1.

Thus by Theorem 5.4.5 the matrix AT
1 is totally unimodular, and so it is A1 by Theorem
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5.4.2 part (i). Note that the same properties mentioned above for AT
1 are true for the

matrix −AT and so −A is also totally unimodular. The matrix − (A B) is totally unimod-

ular by Theorem 5.4.2 part (iii). Thus, since − |A B| = (−1)n |A B| and the same applies

for any square submatrix, then the determinant of (A B) and of any square submatrix is

either 0, 1,−1.

Also, if M1 is the set containing all rows and M2 is an empty set, then the matrix

(−I I)T is totally unimodular by Theorem 5.4.5 and its transpose by Theorem 5.4.2 part

(i).

Consider the matrix
(

A B
−I I

)
. Observe that the only Eulerian matrices containing el-

ements from both (A B) and (−I I) (since it has been shown that they are both totally

unimodular individually) are any square zero matrices and those square matrices formed

using the following combinations with rows and columns of zeros

 1 −1

−1 1

 ,



1 −1 0

. . . . . .

1 −1

−1 1

. . . . . .

0 −1 1


.

(5.8)

All the remaining entries of the latter matrix are equal to zero. Since the sum of the

entries of all the matrices in (5.8) is a multiple of 4, then by Theorem 5.4.4
(

A B
−I I

)
is

totally unimodular.
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The matrix 

A B

−I I

0 I

I 0


, (5.9)

is totally unimodular by Theorem 5.4.2 part (iii). In the matrix



A B · · · A B

−I I · · · −I I

0 I · · · 0 I

I 0 · · · I 0


, (5.10)

the same columns appear more than once. Thus, when selecting a square submatrix, two

cases may occur. The square submatrix would either have identical columns, in which

case the determinant is zero, or the square submatrix match one of the submatrices in

(5.9) whose determinant is either 0, 1 or −1. Now extend this matrix to



A B · · · A B

−I I · · · −I I

0 I · · · 0 I

I 0 · · · I 0

0 C1 · · · 0 Cn


. (5.11)

It is possible to form the following Eulerian matrices from both (5.10) and (0 C1 . . . 0 Cn)

(again since otherwise they are totally unimodular individually): square zero matrices and

square matrices formed by using the following combinations with rows and columns of
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zeros  I · · · I

Ci · · · Ck

 , i, . . . , k ∈ {1, . . . , n}, (5.12a)

−I · · · −I

Ci · · · Ck

 , i, . . . , k ∈ {1, . . . , n}, (5.12b)



−I I −I I

I 0 · · · I 0

0 Ci · · · 0 Ck

0 0 0 0


, i, . . . , k ∈ {1, . . . , n}, (5.12c)


−1 0 −1

−1 1 0

0 1 1

 , (5.12d)



−1 0 −1 −1 0 −1

−1 1 0 · · · −1 1 0

0 1 1

. . .

0 1 1

0 · · · 0


, (5.12e)



−I −I

I · · · I

I · · · I

Ci Ck


, i, . . . , k ∈ {1, . . . , n}. (5.12f)

The number of unit entries in the matrices Cj, j = 1, . . . , n in (5.12a) and (5.12b) must

be the same even number, and there must be an even number of matrices Cj in either
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case. In the matrices (5.12c) and in (5.12e) the rows of zeros are used to complete the

square matrices, and the entries in each row must be selected so that their sum is an even

number. Furthermore there must be an even number of matrices Cj. The sum of the

entries in any matrix (5.12) is a multiple of 4, and by Theorem 5.4.4 the matrix in (5.11)

is totally unimodular.

The matrix 

A B · · · A B

−I I · · · −I I

0 I · · · 0 I

I 0 · · · I 0

0 C1 · · · 0 Cn

I 0 · · · 0 0

. . .

0 0 0 I



,

is totally unimodular by Theorem 5.4.2 part (iii). Similarly, using the latter argument,

it is concluded that the constraint matrix (5.7) of Problem 5.3.1 is totally unimodular by

Theorem 5.4.2 part (iii).

The characteristics of the constraint matrix of Problem 5.3.1 allow us to introduce the

desired result.

Theorem 5.4.8. The single machine scheduling problem 1|pj = p, rj|
∑
wjTj is solv-

able in polynomial time to optimality.
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Proof. By Theorem 5.3.3

τ (LP5.3.1r) 6 τ (IP5.2.2).

Using Lemma 5.4.7 the constraint matrix of Problem 5.3.1 is totally unimodular and since

b =



−1

...

−1

0

...

0

1

...

1


by Theorem 5.4.6 the feasible set of Problem 5.3.1 is integral. Provided that Problem

5.3.1 is feasible and bounded, τ (LP5.3.1r) has an integer optimal value, and

τ (LP5.3.1r) = τ (IP5.2.2).

Problem 5.3.1 is a linear program and as such there exist efficient algorithms (see e.g.

Wright (1997)), for solving all instances of the problem in polynomial time.
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Remark If only one Rl set is nonempty then the problem can be simplified. This

happens because the problem can be solved without using the variables yij which have

been created to avoid overlapping jobs when more than one Rl exists. In this case the

only constraints required are

n∑
j=1

xij 6 1, i ∈ S,

∑
i∈Sj

xij = 1, j = 1, . . . , n,

xij ∈ {0, 1}, i ∈ Sj, j = 1, . . . , n.

The formulation for this particular case and its relaxation are given next.

Problem 5.4.9. The formulation of the scheduling problem 1|pj = p, rj|
∑
wjTj when

there is only one set Rl which is nonempty, as an integer program (IP5.4.9) is

τ (IP5.4.9) = min
x

n∑
j=1

m∑
k=dj+1

wj
1−

∑
i∈S
i6k−p

xij




s.t.

n∑
j=1

xij − 1 6 0, i ∈ S,

∑
i∈S

xij − 1 = 0, j = 1, . . . , n,

xij ∈ {0, 1}, i ∈ Sj, j = 1, . . . , n.
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Problem 5.4.10. A linear programming relaxation, which is denoted by LP5.4.10r, for

Problem 5.4.9 is given by

τ (LP5.4.10r) = min
x

n∑
j=1

m∑
k=dj+1

wj
1−

∑
i∈S
i6k−p

xij




s.t.
n∑
j=1

xij − 1 6 0, i ∈ S,

∑
i∈S

xij − 1 = 0, j = 1, . . . , n,

0 6 xij 6 1, i ∈ Sj, j = 1, . . . , n.

In the latter case, showing that the constraint matrix is totally unimodular is straight-

forward as indicated in the following.

Lemma 5.4.11. The constraint matrix of Problem 5.4.10 is totally unimodular.

Proof. The inequality constraints of Problem 5.4.10 can be written as equalities by adding
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slack variables. The feasible set is then equivalent to

n∑
j=1

xij + ui = 1, i ∈ S,

∑
i∈S

xij = 1, j = 1, . . . , n,

xij + vij = 1, i ∈ Sj, j = 1, . . . , n,

xij > 0, i ∈ Sj, j = 1, . . . , n,

ui > 0, i ∈ S,

vij > 0, i ∈ Sj, j = 1, . . . , n.

where ui and vij are slack variables. Observe that if all jobs are release at the time i = 1,

the coefficient matrix of the feasible set would be equivalent to



e1 . . . en

A

0 . . . 0

I e2n+1 . . . en2+2n+1


, (5.13)

where ei denotes the zero vector with 1 in the ith component, I the identity matrix and

A =



1 0 1 0 1 0

. . . . . . . . .

0 1 0 1 0 1

1 · · · 1 0

. . .

0 1 · · · 1


2n×n2.

(5.14)
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If a job has been released at a different time, then all the columns of A belonging to those

previous times i such that i < rj for j = 1, . . . , n, are not part of the matrix, and the

number columns of A is less than or equal to n2. Thus, no matter which columns of A do

not appear in the constraint matrix of Problem 5.4.10, the conditions of Theorem 5.4.5

with M1 = {1, 2, . . . , |S|} and M2 = {|S|+ 1, . . . , |S|+n} are satisfied and A, in equation

(5.14), is totally unimodular. By Theorem 5.4.2 part (ii) the matrix

A

I


is totally unimodular. Finally (5.13) is also totally unimodular by Theorem 5.4.2 part

(iii).

A similar problem as the one defined in Problem 5.4.10 coincide with the case of

minimizing makespan as well as weighted tardiness, which is addressed in the following

section.

5.5 Minimizing makespan and weighted tardiness

In the general case of minimizing total weighted tardiness the schedule is optimal but the

makespan is not necessary minimum as occurs in Example 5.2.1.

Two solutions schedules for Example 5.2.1 are given in Figure 5.1. The optimal solu-

tion (schedule (a)) has cost 5 but when minimizing makespan as well (schedule (b)) the

cost of the schedule is 100.

In the case of minimizing makespan together with total weighted tardiness, as soon as
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i

J2

J1

2 1(a)

(b) 1 2

0 1 2 3 4 5 6 7 8

i0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

i0 1 2 3 4 5 6 7 8

Job is available Job is late

Job is being processed

Figure 5.1: Schedules for Example 5.2.1 with values (a) 5 and (b) 100

a job is available the machine will start processing one of the available jobs at the time i,

and will stay unavailable during the interval [i, i + 1, . . . , i + p − 1]. Note that there are

two possible sub-cases

(a) If there are jobs available at all the times then the machine is never idle, as shown

in Figure 5.2a and m = np.

(b) If there are no jobs available when the machine has finished processing a job then

it stays idle in accordance with such availability, as indicated in Figure 5.2b.

The set S in this case contains those times among m fulfilling two conditions: job

availability and machine availability. Thus, without loss of generality let r̂1 6 r̂2 6 . . . 6

r̂n be the release dates in ascending order. Also, let

s1 = r̂1 (5.15)
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i

. . . . . . . . . . . .

p p p

Start time of a job The machine is busy

(a) Jobs are available when the machine is free

i

. . . . . . . . . . . .

p p

Start time of a job The machine is busy

(b) Jobs are not available at all times

Figure 5.2: Busy versus idle time of the machine according to availability of the jobs

and for l = 2, . . . , n

sl = max
{
sl−1 + p, r̂l

}
. (5.16)

Thus

m = sn + p− 1.

Then S is

S =
{
i = 1, . . . ,m | i = sl, l = 1, . . . , n

}
,

with sl as in (5.15) and (5.16).
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Variables: Let xij for j = 1, . . . , n, with i ∈ S, for i > rj (otherwise the job is not

available) be the binary variable indicating the start processing time for the jobs,

xij =

 1, if the processing of j starts at i;

0, otherwise.

Also, let x denote the row vector containing all the variables xij,

x =
(
xTS11, . . . , x

T
Sjj
, . . . , xTSnn

)T
,

where

Sj = S ∩
{
i > rj

}
, j = 1, . . . , n.

Objective function: The objective function

n∑
j=1

m∑
k=dj+1

wj
1−

∑
i∈Sj

i6k−p

xij


 ,

remains the same.

Constraints: Once the machine is processing a job it cannot handle another. That is,

once a time slot in S has been assigned for a job it cannot be associated with another for

the next p units of time. In this case, for a minimal m the constraint is

n∑
j=1

xij 6 1, i ∈ S.
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All jobs need to be processed, thus the constraint

∑
i∈S

xij = 1, j = 1, . . . , n,

is added.

The integer programming formulation is given by the following.

Problem 5.5.1. The formulation of the scheduling problem 1|pj = p, rj|
∑
wjTj when

the makespan is also minimum, as an integer program (IP5.5.1) is

τ (IP5.5.1) = min
x

n∑
j=1

m∑
k=dj+1

wj
1−

∑
i∈S
i6k−p

xij




s.t.
n∑
j=1

xij − 1 6 0, i ∈ S,

∑
i∈S

xij − 1 = 0, j = 1, . . . , n,

xij ∈ {0, 1}, i ∈ Sj, j = 1, . . . , n.

Note that the latter formulation coincide with the one given in Problem 5.4.9 whose

relaxations have been given in Problem 5.4.10. Similar results as those introduced for the

general case follow below.
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Lemma 5.5.2. Problem 5.4.10 is a relaxation for the scheduling problem 1|pj =

p, rj|Twt when the makespan is minimum, given in Problem 5.5.1, i.e.,

(i) F (IP5.5.1) ⊆ F (LP5.4.10r).

(ii) τ (LP5.4.10r) 6 τ (IP5.5.1), for all xij ∈ F (IP5.5.1).

Proof. This proof can be done using the same ideas as Lemma 5.3.2.

Theorem 5.5.3. The optimal value of Problem 5.4.10 is a lower bound for the optimal

value in Problem 5.5.1.

Proof. See Lemma 5.5.2 part (ii).

It was shown in Lemma 5.4.11 that the constraint matrix of Problem 5.4.10 is totally

unimodular, so the analysis is concluded with the introduction of the following.

Theorem 5.5.4. The single machine scheduling problem 1|pj = p, rj|
∑
wjTj when the

makespan is minimum is solvable in polynomial time to optimality.

Proof. Using Theorem 5.5.3

τ (LP5.4.10r) 6 τ (IP5.5.1).
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However by Theorem 5.4.6, with b =
(
1, · · · , 1

)T
, the set of basic feasible solutions of

τ (LP5.4.10r) is integral. Then provided that Problem 5.4.10 is feasible and bounded (a

solution exists) such solution has an integer optimal value. Thus

τ (LP5.4.10r) = τ (IP5.5.1).

In other words, the linear programming relaxation in Problem 5.4.10 solves the integer

program Problem 5.5.1 to optimality. Problem 5.4.10 can be solved in polynomial time

(see Wright (1997)) for all instances of the problem.

5.6 Numerical solution of the problem

An example of the formulation of the problem is included here.
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Example 5.6.1. In a single machine environment n = 5 jobs need to be processed. The

processing time is p = 3 units of time. Release date rj, due date dj and weight wj for

the jobs are given in the next table

Job
Data

rj dj wj

1 1 9 1

2 3 10 3

3 6 11 4

4 7 11 5

5 7 11 2

If the problem consist of minimizing makespan as well as tardiness (Problem 5.4.10)

the set S is

S =
{

1, 4, 7, 10, 13
}
,

and m = 15.
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The problem is

min
xij∈{0,1}

1
(
(1− x11 + x41) + 3(1− x11 + x41 + x71) + 3(1− x11 + x41 + x71 + x10 1)

)
+

3
(
3(1− x42 + x72) + 3(1− x42 + x72 + x10 2))

)
+

4
(
2(1− x73) + 3(1− x73 + x10 3)

)
+

5
(
2(1− x74) + 3(1− x74 + x10 4)

)
+

2
(
2(1− x75) + 3(1− x75 + x10 5)

)
s.t. x11 6 1,

x41 + x42 6 1,

x71 + x72 + x73x74 + x75 6 1,

x10 1 + x10 2 + x10 3x10 4 + x10 5 6 1,

x13 1 + x13 2 + x13 3x13 4 + x13 5 6 1,

x11 + x41 + x71 + x10 1 + x13 1 − 1 = 0,

x42 + x72 + x10 2 + x13 2 − 1 = 0,

x73 + x10 3 + x13 3 − 1 = 0,

x74 + x10 4 + x13 4 − 1 = 0,

x75 + x10 5 + x13 5 − 1 = 0,

0 6 xij 6 1, i ∈ S, j = 1, . . . , n.

(5.17)

In the case of minimizing total weighted tardiness only (Problem 5.3.1), the formula-

tion is similar to the one given in (5.17) but the sets Rl, l = 0, . . . , p− 1 are

R0 = {3, 6, 9, 12, 15, 18} ,

R1 = {1, 4, 7, 10, 13, 16, 19} ,

R2 = ∅,

and so

S =
{

1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19
}
.

Graphically the solution schedule is given in Figure 5.3.
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i

J5

J4

J3

J2

J1

M1 1 2 4 3 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Job is being processed

Job has been finished

Job is in the system

Due date for the job has passed

Figure 5.3: Solution schedule Example 5.6.1 with optimal value 18.

5.7 Conclusion

The single machine scheduling problem with equal processing times, release dates and the

objective of minimizing total weighted tardiness was studied. The problem is modelled

as an integer program and its linear programming relaxation was studied. The constraint

matrix was shown to be totally unimodular and as a result the linear programming relax-

ation has an integer optimal solution, thus solving the integer program to optimality in

polynomial time. The case when the schedule, under the same conditions as the general

case, has a minimum completion time (or makespan) was also studied. Following a similar
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methodology, the constraint matrix of the linear programming relaxation for this case was

shown to be also totally unimodular and thus is also solved to optimality in polynomial

time.
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CHAPTER 6

1 | rj, pmtn |
∑
wjCj

In this chapter a single machine environment with n jobs to be processed is studied. The

processing time pj > 0, pj ∈ Z+, required for each job j is given. Preemption is permitted,

which means that the processing of a job can be interrupted at any time. The release date

rj > 0, rj ∈ Z+, j = 1, . . . , n, is also given. The objective is to minimize the weighted

completion time defined as
n∑
j=1

wjCj,

where Cj denotes the completion time of j and is available from a particular schedule.

The weight wj > 0, j = 1, . . . , n, is known a priori. In Graham et al. (1979) notation this

problem is denoted as 1 | rj, pmtn |
∑
wjCj.

6.1 Complexity of the problem

Labetoulle et al. (1984) proved that the problem is NP-hard in the strong sense, which

means that it remains NP-hard even when all the numerical data is bounded by a poly-
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nomial function (Garey and Johnson (1978)). Sitters (2004) introduced a deterministic

algorithm with a performance ratio of 1.56 which means that an approximate solution

obtained with the algorithm will be less than 1.56 times the value of the optimal solution.

Schulz and Skutella (2002) improved the latter result using a randomized linear program-

ming based approximation algorithms with performance ratio of 4
3

(1.33) and O(n log n)

time. Afrati et al. (1999) provided a polynomial-time approximation algorithm for the

problem that finds a solution in O(2poly(1/ε)n+ n log n) time.

6.2 Formulation as an integer program

The problem is approached by dividing the interval of time that is considered in the

schedule into m time slots.

The parameter m is established considering the release time and the processing time

required for each job. Let r̂1 6 r̂2 6 . . . 6 r̂n be the release dates in ascending order

and let p̂1, p̂2, . . . , p̂n be the processing times corresponding to those release dates. In

addition, let s1 = r̂1 and for l = 2, . . . , n,

sl = max{sl−1 + p̂l−1, r̂l}.

Thus m = sn+ p̂n−1. Let S be the set of times at which there is at least one job available

to be processed. For each sl with l = 1, . . . , n, calculate

Rl = {sl, sl + 1, . . . , sl + p̂l − 1}

and

S = R1 ∪R2 ∪ . . . ∪Rn.
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Example 6.2.1. In a single machine environment n = 2 jobs need to be processed. The

release date rj, processing time pj and weight wj for each job are given in the next table.

Job
Data

pj rj wj

1 2 1 1

2 3 2 5

With the given data, s1 = r̂1 = 1 and s2 = max{s1 + p̂1, r̂2} = max{3, 2} = 3. The

parameter m = s2 + p̂2 − 1 = 5. Also, R1 = {s1, s1 + 1} and R2 = {s2, s2 + 1, s2 + 2}.

Thus S = {1, 2, 3, 4, 5}.

Variables

Let xj, j = 1, . . . , n, be the variable indicating the units of time that a job spends in the

system after it has been released. Also, let yij be the binary variable indicating whether

a job is being processed at a particular time,

yij =

 1, if the job j is processed at the time i ∈ S, i > rj;

0, otherwise.
(6.1)

The variable xj, j = 1, . . . , n, is an integer number, however for the existent relation

between variables xj and yij, which becomes clear in the next section, the constraint

specifying xj as an integer number is redundant and can be omitted.
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Objective function

The objective is to minimize the total completion time,

n∑
j=1

wjCj, (6.2)

where Cj denotes the completion time of job j in a given schedule. Since a release date

for each job is given then (6.2) becomes

n∑
j=1

wj(Cj − rj).

In other words, a unit of time that a job spends in the system will increase the value of

the objective function. Thus using the definition of xj given above the objective function

can be redefined as
n∑
j=1

wjxj.

Constraints

On a single machine at most one job can be processed at the time, and so

n∑
j=1

yij 6 1, i ∈ S.

The processing time for each job is pj, thus

∑
i∈Sj

yij = pj, j = 1, . . . , n,
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where

Sj = S ∩
{
i > rj

}
, j = 1, . . . , n.

A job is in the system once it arrives and until it has been completely processed, thus

yij 6
1

i− rj + 1
xj, i ∈ Sj, j = 1, . . . , n.

Letting bij = 1
i−rj+1

,

yij 6 bij xj, i ∈ Sj, j = 1, . . . , n.

Integer programming formulation

Using the definitions given above the problem is formulated as an integer program.

Problem 6.2.2. The formulation of the problem 1 | rj, pmtn |
∑
wjCj as an integer

program is given by

τ (IP) = min
xj , yij

n∑
j=1

wjxj (6.3a)

s.t.
n∑
j=1

yij 6 1, i ∈ S, (6.3b)

∑
i∈Sj

yij = pj, j = 1, . . . , n, (6.3c)

yij − bijxj 6 0, i ∈ Sj, j = 1, . . . , n, (6.3d)

y2
ij − yij = 0, i ∈ Sj, j = 1, . . . , n. (6.3e)
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6.3 Relaxation of the problem

6.3.1 Linear relaxation: By extension of the feasible set

Variables

Definition 6.3.1. Let x denote the row vector containing all the variables xj, x =

(x1, x2, . . . , xn)T .

Definition 6.3.2. Let y(j) =
(
yrjj, yrj+1 j, . . . , ymj

)
for j = 1, . . . , n with yij as defined

by (6.1).

Observe that the size of the vector y(j) is at most m− rj + 1, specifically is |Sj|, for all

j = 1, . . . , n. Let uj = |Sj|. The definition of the positive semidefinite matrices related to

the vector y(j) is required.

Definition 6.3.3. Let Y(j) = y(j)y
T
(j) be uj × uj matrices,

Y(j) =



y2
rjj

yrjjyrj+1 j . . . yrjjymj

yrj+1 jyrjj y2
rj+1 j . . . yrj+1 jymj

...
...

. . .
...

ymjyrjj ymjyrj+1 j . . . y2
mj


, j = 1, . . . , n. (6.4)
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Remark The equalities Y(j) = y(j)y
T
(j) are nonlinear.

In the following lemmas some properties of the matrices Y(j) are given.

Lemma 6.3.4. Let Y(j) as defined in 6.3.3. Then the following holds

(i) The rank(Y(j)) = 1, j = 1, . . . , n.

(ii) The nullity(Y(j)) = |Sj| − 1, j = 1, . . . , n.

Proof. From the definition of the matrix Y(j), it is possible to see that only one vector,

y(j) =
(
yrjj, yrj+1 j, . . . , ymj

)
, is required to generate the matrix and so rank(Y(j)) = 1.

With the well-known rank-nullity theorem1 and since Y(j) has |Sj| columns, the dimension

of the null space of Y(j) is

nullity(Y(j)) = |Sj| − rank(Y(j)), j = 1, . . . , n,

nullity(Y(j)) = |Sj| − 1, j = 1, . . . , n.

Lemma 6.3.5. Let Y(j) as defined in 6.3.3. Then tr(Y(j)) = yT(j)y(j) is the largest

eigenvalue of Y(j), j = 1, . . . , n, and all the other eigenvalues are equal to zero.

Proof. Let λ1, . . . , λs be the eigenvalues of Y(j). Without loss of generality denote the

largest eigenvalue as λ1. From Lemma 6.3.4 rank(Y(j)) = 1, j = 1, . . . , n. Then using the

1See Theorem A.2.3 in the Appendix A.
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fact that the number of nonzero eigenvalues with multiplicity, denoted as e(Y(j)), is less

than or equal to the rank of the matrix2,

e(Y(j)) 6 1, j = 1, . . . , n

which indicates that there is at most one nonzero eigenvalue with multiplicity. Now since3

s∑
i=1

λi = tr(Y(j)), j = 1, . . . , n

then λ1 = tr(Y(j)) = yT(j)y(j), j = 1, . . . , n, and all the other eigenvalues λi for i 6= 1 are

equal to zero.

Lemma 6.3.6. The eigenvalues of Y(j), j = 1, . . . , n, as defined in 6.3.3 are nonnega-

tive and so matrices Y(j) are positive semidefinite for all j = 1, . . . , n.

Proof. This proof is omitted.

Objective function

Using vector notation w = (w1, w2, . . . , wn)T and the objective function given in (6.3a) is

rewritten as
n∑
j=1

wjxj = wTx.

2See Lemma A.2.5 in the Appendix A.
3See Corollary A.1.9 in the Appendix A.
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Remark The objective function wTx is convex.

Constraints

Definition 6.3.7. Let Ŷ(j) be an |S| × |S| block diagonal matrix for j = 1, . . . , n, such

that the first block B corresponds to the (rj − 1) × (rj − 1) zero matrix and the second

block corresponds to the matrix Y(j),

Ŷ(j) =

B 0

0 Y(j)

 , j = 1, . . . , n. (6.5)

Note that B in Definition 6.3.7 can be a 0× 0 matrix. In that case Ŷ(j) = Y(j).

Lemma 6.3.8. Let Ŷ(j) as defined in 6.3.7. Then Ŷ(j) is positive semidefinite for all

j = 1, . . . , n.

Proof. A block diagonal matrix is positive semidefinite if and only if each diagonal block

is positive semidefinite.

Denote the |S| × |S| matrix A(i) = (aij), i ∈ S, as the matrix with the element aii

equal to 1 and all the other elements equal to zero. In the last notation the matrix A(1)
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is for instance

A(1) =



1 0 . . . 0

0 0
. . .

...

...
. . . . . . 0

0 . . . 0 0


.

Remark The matrix A(i) is positive semidefinite for all i ∈ S.

If y2
ij − yij = 0 (or yij ∈ {0, 1}), i ∈ Sj, j = 1, . . . , n, then constraints (6.3b) with

Definition 6.3.7 can be rewritten as

tr(A(i)Ŷ(1)) + tr(A(i)Ŷ(2)) + . . .+ tr(A(i)Ŷ(n)) 6 1, i ∈ S,

and equations (6.3c) are equivalently represented by

tr(Y(j)) = pj, j = 1, . . . , n.

Let b(j) = (bkj, . . . , blj), with k, l > rj and k, l ∈ S. Then constraints (6.3d) are equiva-

lently represented by

y(j) − xj b(j) 6 0, j = 1, . . . , n.

Notation (B)ij is used to refer to the i, jth element of the matrix B, thus constraints (6.3e)

are equivalent to

(Y(j))ii = yij, i ∈ Sj, j = 1, . . . , n.

Using all the substitutions shown above the following problem definition is introduced.
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Problem 6.3.9. The scheduling problem 1 | rj, pmtn |
∑
wjCj can be represented by

the optimisation problem

τ (IP−2) = min
xj ,Y(j),y(j)

wTx

s.t. tr(A(i)Ŷ(1)) + . . .+ tr(A(i)Ŷ(n)) 6 1, i ∈ S,

tr(Y(j)) = pj, j = 1, . . . , n,

y(j) − xj b(j) 6 0, j = 1, . . . , n,

(Y(j))ii − yij = 0, i ∈ Sj, j = 1, . . . , n,

Y(j) = y(j)y
T
(j), j = 1, . . . , n,

Ŷ(j) =

B 0

0 Y(j)

 , j = 1, . . . , n,

where A(i) ∈ S|S|+ for all i ∈ S.

Note that Problem 6.3.9 is not a integer program however the notation τ (IP−2) is used

for an equivalence given in Lemma 6.3.13. Also, the relaxation given in Problem 6.3.10

is denoted τ (LP−2) but is a semidefinite program.

By extending the feasible set of Problem 6.3.9 a semidefinite relaxation is provided.
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Problem 6.3.10. A relaxation for the scheduling problem 1 | rj, pmtn |
∑
wjCj stated

in Problem 6.3.9, by extension of the feasible set, is given by

τ (LPr−2) = min
xj ,Y(j),y(j)

wTx

s.t. tr(A(i)Ŷ(1)) + . . .+ tr(A(i)Ŷ(n)) 6 1, i ∈ S,

tr(Y(j)) = pj, j = 1, . . . , n,

y(j) − xj b(j) 6 0, j = 1, . . . , n,

(Y(j))ii − yij = 0, i ∈ Sj, j = 1, . . . , n, 1 yT(j)

y(j) Y(j)

 > 0, j = 1, . . . , n,

Ŷ(j) =

B 0

0 Y(j)

 , j = 1, . . . , n,

where A(i) ∈ S|S|+ for all i ∈ S.

In order to show that Problem 6.3.10 is in fact a relaxation of Problem 6.3.9 let F (IP−2)

and F (LPr−2) denote the feasible sets of Problem 6.3.9 and Problem 6.3.10, respectively.

Lemma 6.3.11. Problem 6.3.10 is a relaxation for the scheduling problem

1 | rj, pmtn |
∑
wjCj given in Problem 6.3.9, i.e.

(i) F (IP−2) ⊆ F (LPr−2).

(ii) τ (LPr−2) 6 τ (IP−2), for all xj, Y(j), y(j) ∈ F (IP−2).
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Proof. (i) The difference between the feasible sets of problems 6.3.9 and 6.3.10 relays

only in one type of constraints. In F (IP−2) feasible Y(j) matrices have the form

Y(j) = y(j)y
T
(j), j = 1, . . . , n, which is a non-convex constraint, and in F (LPr−2)

 1 yT(j)

y(j) Y(j)

 > 0, j = 1, . . . , n,

that is Y(j) > y(j)y
T
(j) for j = 1, . . . , n, which is a convex constraint. This means that

F (LPr−2) consider those feasible Y(j) matrices required in F (IP−2) and some others.

All the other constraints of both problems are exactly the same, thus F (IP−2) ⊆

F (LPr−2).

(ii) Note that

τ (LPr−2) = min
xj ,Y(j),y(j) ∈F(LPr−2)

wTx

6 min
xj ,Y(j),y(j) ∈F(IP−2)

wTx = τ (IP−2),

where the first equality follows by definition and the second from the fact that

F (IP−2) ⊆ F (LPr−2).

Thus τ (LPr−2) 6 τ (IP−2), for all xj, Y(j), y(j) ∈ F (IP−2) which completes the proof.

Remark Formulation given in Problem 6.3.10 is a convex quadratic relaxation.
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Remark The difference between Problem 6.3.9 and Problem 6.3.10 is the replacement

of the non-convex constraints and so the relaxation can be directly seen noting the

extension of the feasible set of Problem 6.3.10.

Relation between Problem 6.3.10 and Problem 6.2.2

Problem 6.3.10 is a semidefinite programming relaxation. However it can be seen that

such relaxation is equivalent to a linear programming relaxation of the integer formulation

given in Problem 6.3.12.

Problem 6.3.12. A relaxation for the scheduling problem 1 | rj, pmtn |
∑
wjCj stated

in Problem 6.2.2 is given by

τ (LPr) = min
xj , yij

n∑
j=1

wjxj

s.t.
n∑
j=1

yij 6 1, i ∈ S,

m∑
i∈Sj

yij = pj, j = 1, . . . , n,

yij − bijxj 6 0, i ∈ Sj, j = 1, . . . , n,

yij ∈ [0, 1], i ∈ Sj, j = 1, . . . , n.

In the following lemma the relation between Problems 6.3.12 and 6.3.10 is established.
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Lemma 6.3.13. The semidefinite programming relaxation in Problem 6.3.10 is equiv-

alent to the relaxation of constraint y2
ij − yij = 0 for yij ∈ [0, 1], i = 1, . . . ,m,

j = 1, . . . , n, in Problem 6.2.2.

Proof. In the integer programming formulation, Problem 6.2.2, variables yij satisfy the

constraint (6.3e), y2
ij−yij = 0, i ∈ Sj, j = 1, . . . , n, which is yij ∈ {0, 1}. In Problem 6.3.9

such constraints have been modeled as (Y(j))ii = yij and Y(j) = y(j)y
T
(j), for all i ∈ Sj,

j = 1, . . . , n. In the semidefinite programming relaxation in Problem 6.3.10 constraints

(6.3e) have been in turn replaced with

(Y(j))ii = yij, i ∈ Sj, j = 1, . . . , n, 1 yT(j)

y(j) Y(j)

 > 0, j = 1, . . . , n.

However  1 yT(j)

y(j) Y(j)

 > 0⇐⇒ Y(j) − y(j)y
T
(j) > 0

which is Y(j) > y(j)y
T
(j). Now

Y(j) > y(j)y
T
(j) ⇐⇒ yij > y2

ij

⇐⇒ y2
ij − yij 6 0

⇐⇒ yij ∈ [0, 1]

Hence the semidefinite programming relaxation in Problem 6.3.10 is equivalent to the

relaxed Problem 6.2.2 with yij ∈ [0, 1] instead of yij ∈ {0, 1}.
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6.3.2 Semidefinite relaxation: Using Shor’s technique

In this section a semidefinite programming relaxation using Shor’s relaxation technique

(Shor (1987)) is developed.

Variables

Let x be defined as in 6.3.1 and let Y(ij) be defined as follows.

Definition 6.3.14. Let Y(ij), i ∈ Sj, j = 1, . . . , n, be 2× 2 matrices defined by

Y(ij) =

 1 yij

yij y2
ij

 . (6.8)

Lemma 6.3.15. The matrices Y(ij) as defined in 6.3.14 are positive semidefinite for

all i ∈ Sj, j = 1, . . . , n.

Proof. Observe that

Y(ij) =

 1

yij


 1

yij


T

which means that only one vector, i.e. (1, yij)
T , is required to generate the matrix Y(ij).

Thus rank(Y(ij)) = 1, i ∈ Sj, j = 1, . . . , n. Using Lemma 6.3.5 it can be seen that tr(Y(ij))
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is the largest eigenvalue of Y(ij) and all the other eigenvalues are equal to zero. Since the

trace is a nonnegative number then Y(ij), i ∈ Sj, j = 1, . . . , n, is positive semidefinite for

any value yij.

Objective function

The objective function remains the same as in Section 6.3, i.e.

n∑
j=1

wjxj = wTx.

Constraints

Using Lemma B.4.134 and Definition 6.3.14 constraints (6.3b) can be rewritten as

n∑
j=1

tr


0 0

0 1

 ,Y(ij)

 6 1, i ∈ S.

In the same way, constraints (6.3c) are equivalent to

∑
i∈Sj

tr


0 1

2

1
2

0

 ,Y(ij)

 = pj, j = 1, . . . , n.

4See Appendix B.
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In the case of constraints (6.3d)

(
Y(ij)

)
12
− bij xj 6 0, i ∈ Sj, j = 1, . . . , n.

Finally constraint (6.3e) is

tr


 0 −1

2

−1
2

1

 ,Y(ij)

 = 0, i ∈ Sj, j = 1, . . . , n.

Problem 6.2.2 is then rewritten in Problem 6.3.16.

Problem 6.3.16. The scheduling problem 1 | rj, pmtn |
∑
wjCj can be formulated as

τ (SDP) = min
xj ,Y(ij), yij

wTx

s.t.
n∑
j=1

tr


0 0

0 1

 ,Y(ij)

 6 1, i ∈ S,

m∑
i∈Sj

tr


0 1

2

1
2

0

 ,Y(ij)

 = pj, j = 1, . . . , n,

(
Y(ij)

)
12
− bij xj 6 0, i ∈ Sj, j = 1, . . . , n,

tr


 0 −1

2

−1
2

1

 ,Y(ij)

 = 0, i ∈ Sj, j = 1, . . . , n,

Y(ij) =

 1 yij

yij y2
ij

 , i ∈ Sj, j = 1, . . . , n.
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A relaxation for Problem 6.3.16 is introduced next.

Problem 6.3.17. A relaxation for the scheduling problem 1 | rj, pmtn |
∑
wjCj stated

in Problem 6.3.16, using Shor’s relaxation technique, is given by

τ (SDPr) = min
xj ,Y(ij)

wTx

s.t.
n∑
j=1

tr


0 0

0 1

 ,Y(ij)

 6 1, i ∈ S,

m∑
i∈Sj

tr


0 1

2

1
2

0

 ,Y(ij)

 = pj, j = 1, . . . , n,

(
Y(ij)

)
12
− bij xj 6 0, i ∈ Sj, j = 1, . . . , n,

tr


 0 −1

2

−1
2

1

 ,Y(ij)

 = 0, i ∈ Sj, j = 1, . . . , n,

(
Y(ij)

)
11

= 1, i ∈ Sj, j = 1, . . . , n,

Y(ij) > 0, i ∈ Sj, j = 1, . . . , n.

Problem 6.3.17 is shown to be a relaxation of Problem 6.3.16 in Lemma 6.3.18. Let

F (SDP) and F (SDPr) denote the feasible set of Problem 6.3.9 and Problem 6.3.10, respec-

tively.
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Lemma 6.3.18. Problem 6.3.17 is a relaxation for the scheduling problem 1 | pj =

p, rj |Twt given in Problem 6.3.16, i.e.

(i) F (SDP) ⊆ F (SDPr).

(ii) τ (SDPr) 6 τ (SDP), for all xj, Y(ij) ∈ F (SDP).

Proof. (i) Observe that Problem 6.3.16 has a linear objective and linear equality con-

straints with the symmetric matrix Y(ij) as defined in 6.3.14. Matrices Y(ij) are

positive semidefinite as shown in Lemma 6.3.15 with (Y(ij))11 = 1. By restricting

the feasible set to those matrices the relaxation is defined and F (SDP) ⊆ F (SDPr).

(ii) In this case it holds by definition that

τ (SDPr) = min
xj ,Y(ij) ∈F(SDPr)

wTx

6 min
xj ,Y(ij) ∈F(SDP)

wTx = τ (SDP)

where the second inequality holds since F (SDP) ⊆ F (SDPr).

Thus τ (SDPr) 6 τ (SDP), for all xj, Y(ij) ∈ F (SDP).

In the following section the relaxations, the linear programming based (Problem

6.3.12), denoted as LPr, the second linear programming based using matrix variables

(Problem 6.3.10) denotes as LPr-2 and the semidefinite programming one (Problem

6.3.17), denoted as SDPr, developed for the scheduling problem 1 | rj, pmtn |
∑
wjCj are

tested. For this purpose a customised branch and bound algorithm has been developed.
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In the subsequent pages Problems 6.2.2, 6.3.9 and 6.3.16 are referred as primal problems

and Problems 6.3.12, 6.3.10 and 6.3.17 as its corresponding relaxations.

6.4 Branch and bound algorithm

By dividing the feasible set of the formulation given in the previous section for the schedul-

ing problem 1 | rj, pmtn |
∑
wjCj, a branch and bound algorithm is proposed. An enu-

meration tree is built by decomposing the feasible set into smaller sets. The enumeration

tree grows only in those specific parts that are worth exploring. This is decided by lower

and upper bounds that are found in the process.

Let τ (*) and F (*) denote the objective function and feasible set, respectively of the

primal problem. Also let τ (R) and F (R) refer to the objective function and feasible set,

respectively, of the corresponding relaxation for the above problem.

Definition 6.4.1. Let τ (*) and τ (*) be lower and upper bounds respectively of the optimal

value for the primal formulation of the scheduling problem 1 | rj, pmtn |
∑
wjCj,

τ (*) 6 τ (*) 6 τ (*).

The relation between upper and lower bounds for each subproblem against the global

problem is presented in the next Lemma.
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Lemma 6.4.2. Let τ (*) be the optimal value of Problem 6.3.9 (or Problem 6.3.16),

i.e.

τ (*) = min
xj ,Y(j)

{
wTx

∣∣∣xj, Y(j) ∈ F (*)
}
. (6.9)

Also, let

F (*) = F1 ∪ . . . ∪ FK , (6.10)

be a decomposition of the feasible set. Let τ (i) and τ (i) be lower and upper bounds,

respectively, of

τ (i) = min
xj ,Y(j)

{
wTx

∣∣∣xj, Y(j) ∈ Fi
}
,

for i = 1, . . . , k. Then

τ (*) := min
i
τ (i) 6 τ (*) 6 min

i
τ (i) := τ (*),

are upper and lower bounds of τ (*).

Proof. By contradiction assume that τ (i) < τ (*) for some i such that x̃j, Ỹ(j) ∈ Fi. From

equation (6.10) it holds that Fi ⊆ F (*). Thus the values of x̃j and Ỹ(j) ∈ F (*) are feasible

in (6.9) and so τ (*) = τ (i) which contradicts the initial assumption. The same analysis

can be done with the upper bounds.

Three aspects need to be clarified to put the branch and bound method into context.

(i) Building a enumeration tree for the feasible set.
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(ii) Calculating primal and dual bounds for each subproblem in the enumeration tree.

(iii) Tightening bounds and pruning branches.

6.4.1 Constructing a enumeration tree for the feasible set

Node selection

The enumeration tree is constructed by dividing the feasible set F (*) on a specific node into

subproblems, or child nodes, following a splitting rule. The selected node for branching

can be any of the open nodes. In this case the most promising node, the one with the

lowest lower bound is branched. The variables yij are defined as binary variables but the

variables xj need not to be forced to be integers because their values depend directly on

the choices for the variables yij. Therefore the splitting rule considers only those variables

yij that are not integers in a solution.

Branching strategy

In a traditional branch and bound algorithm a variable would be selected and two branches

created by fixing the variable to both values, 0 and 1, such that

F i+1
yij=0 = F i ∩ {yij | yij = 0} ,

and

F i+1
yij=1 = F i ∩ {yij | yij = 1} ,
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as in Figure 6.1. Observe that under this approach the enumeration tree has

ñ∑
k=0

2k (6.11)

nodes, where ñ is the number of variables, not the number of jobs.

F i
yij free

F i+1

yij = 0
F i+1

yij = 1

Figure 6.1: Standard branching rule for a traditional branch and bound algorithm

Now, recall that to allow only one job at the time in the machine, in the IP formulation

in Problem 6.2.2, the constraint

n∑
j=1

yij = 1, i ∈ S,

was added. Note that because of this constraint when one of the variables yij is equal to

one all the other variables yik, with k 6= j, are equal to zero for the same i. The latter

indicates that the variables yij constitute a special ordered set (Beale and Tomlin (1970)),

in this case, a multiple choice set, at which at most one variable for the same i can take

a nonzero value and all the others must be equal to zero.
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Considering the characteristics of variables yij as an ordered set, not two but several

branches, one per job available at the time, with yij = 1 would be created,

F i,kyik=1 = F i ∩ {yik | yik = 1, rk > i} .

To this point from each node there is one branch per job available and whose variable has

been made equal to one. However a further characteristic has been added into the branch-

ing strategy. Theorem 6.4.3 gives the additional rules to be considered when branching.

Theorem 6.4.3. Let j = 1, . . . , n be given jobs with processing times pj, release dates

rj and weights wj. Also, let S be a schedule for the given data. Then S is optimal for

1 | rj, pmtn |
∑
wjCj if and only if

(i) in S no job jk is interrupted at the time i, to process another job jl, unless jl is

arriving at the aforementioned time i, i.e. rl = i.

(ii) when the job jk is interrupted to process the job jl, the processing of jk will be

resumed immediately after jl has been finished. If more than one job has been

interrupted then a last-interrupted, first-resumed approach follows.

Proof. (i) By contradiction, assume that So is an optimal schedule for the given data,

such that the processing of the job jk in the machine has been interrupted at the

time i to process the job jl, and rl < i. Let t be the difference between rl and i,

that is, rl + t = i. See Figure 6.2a.

Without loss of generality, assume that no other job has arrived nor has been pro-

cessed in the considered interval mo. Recall the objective function,
∑
wjxj where

xj represents the units of time that a job spends in the system, thus the cost of So
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. . . k . . . k l . . . l k . . . k . . .

rl i
mo

(a) Schedule So

. . . l . . . l k . . . . . . k . . .

rl
mn

(b) Schedule Sn

Figure 6.2: Relation between preemption, release dates and optimality as established in The-
orem 6.4.3

for the jobs k and l in the interval mo is given by

wk(pk + pl) + wl(pl + t).

Now, generate a new schedule from So, say Sn, starting the processing of jl at the

time rl, see Figure 6.2b. Observe that the weighted processing time of Sn in the

interval mn is

wlpl + wk(pk + pl).

Thus, since wl > 0

wk(pk + pl) + wl(pl + t) > wlpl + wk(pk + pl)

wlpl + wlt > wlpl

So > Sn
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which contradicts the fact that So is an optimal schedule and the assertion that was

claimed follows.

(ii) From (i) the processing of a job in an optimal schedule is interrupted if and only

if another job has arrived, therefore in an optimal schedule unless another job is

arriving the processing of the interrupted job will be resumed.

In this way considering the structure of the problem and to avoid the inefficient process

of carrying out the traditional branching process, mentioned above, of selecting only one

variable at the time (Tomlin (1988)), a more suitable enumeration tree for the formulation

of the problem is required.

Using Theorem 6.4.3 and the characteristics of the ordered set of the variables, once

a new job arrives a new branch is created with the alternative of processing a different

job in the machine. This will affect the construction of the enumeration tree in the sense

that a branch will only occur in three cases, that are explained below.

The job is released at the time: When a job is arriving to the system, which is in-

dicated by the release date rj, it can be assigned to the machine to be processed

immediately.

The job was interrupted and should be resumed: Following the previous case, if

a job was interrupted in the machine to give priority to one arriving job then the

processing of the interrupted job will be resumed after the machine has finished

with the arriving job. This process can continue and a job can be interrupted by

more than one arriving job and in those cases the processing for each job is resumed

in a last-interrupted, first-resumed basis.
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The machine is free to process the job: When the machine has finished the process-

ing of a job then a branch is created for each of the available jobs.

Following this new branching strategy at each node there will be the same number of

branches as the number of jobs available at the time. The point at which the branch will

split again is found by calculating the minimum between the remaining processing time

and the release date among the jobs belonging to each branch, i.e.

l = min
{
p̂j, r̂k

∣∣ k ∈ t, k 6= j
}
, (6.12)

where r̂j, j = 1, . . . , n are the release dates in ascending order and p̂j, j = 1, . . . , n are

the remaining processing times corresponding to those release dates.

Relaxations revisited

The new branching strategy indicates that not all the variables yij in Problem 6.2.2 are

active in the solution of the problem. Thus the definition of Problem 6.2.2 can be modified

to reflect those changes. The first change consist in alter the set S so that it contains

only those times i at which a different job can be processed in the machine.

Let Ŝ be the set containing the times defined in (6.12). Note that the set Sj, was

defined as

Sj = S ∩
{
i > rj

}
, j = 1, . . . , n,

and therefore will be updated as

Ŝj = Ŝ ∩
{
i > rj

}
, j = 1, . . . , n,

to reflect the changes that have been made in the set S. Similarly, variables yij, that were
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defined for all i ∈ S are now defined only for those i > rj such that i ∈ Ŝ.

Constraints (6.3b) required a change as well. In the older definition variables yij were

defined for each member of the set S containing consecutive values of i. Now since some

of variables yij are not active if i ∈ Ŝ the remaining yij need to compensate for those

changes to give an appropriate solution to the problem. For example if i = 1, 3, i ∈ Ŝ

but i = 2, i 6∈ Ŝ, the variable y3j in the processing time constraint has to be multiplied

by two to indicate that such variable actually represents two slots of time. In such case if

y3j = 1 in a solution schedule, it will indicate that the job is being processed at the times

i = 2 and i = 3.

This can be accomplished by letting the set Ŝw contain the weights corresponding to

each slot i, which is calculated by adding one for each consecutive missing i in Ŝ. Note

that Ŝw depends on i.

Recall Example 6.2.1 where S = {1, 2, 3, 4, 5}. The updated set S becomes Ŝ =

{1, 2, 3, 5}. Since i = 1, 2, 3, are in S, then Ŝw(1) = Ŝw(2) = Ŝw(3) = 1. The time i = 4

is not in Ŝ and so Ŝw(4) = 0 and Ŝw(5) = 2. Thus Ŝw = {1, 1, 1, 0, 2}.

Equation (6.3d) remains exactly the same because bij correspond to each of the vari-

ables yij. In this case such constraints will only be created for each i ∈ Ŝ.

The integer programming formulation given in Problem 6.2.2 is modified to reflect all

these changes.
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Problem 6.4.4. The formulation of the problem 1 | rj, pmtn |
∑
wjCj as an integer

program is given by

τ (IP) = min
xj , yij

n∑
j=1

wjxj

s.t.
n∑
j=1

yij 6 1, i ∈ Ŝ,

m∑
i∈Ŝj

yij = pj, j = 1, . . . , n,

yij − bijxj 6 0, i ∈ Ŝj, j = 1, . . . , n,

y2
ij − yij = 0, i ∈ Ŝj, j = 1, . . . , n.

Similarly the changes using Theorem 6.4.3 can be adjusted in Problems 6.3.12, 6.3.10

and 6.3.17 as follows.

Problem 6.4.5. A relaxation for the scheduling problem 1 | rj, pmtn |
∑
wjCj stated

in Problem 6.4.4 is given by

τ (LPr) = min
xj , yij

n∑
j=1

wjxj

s.t.

n∑
j=1

yij 6 1, i ∈ Ŝ,

m∑
i∈Ŝj

yij = pj, j = 1, . . . , n,

yij − bijxj 6 0, i ∈ Ŝj, j = 1, . . . , n,

yij ∈ [0, 1], i ∈ Ŝj, j = 1, . . . , n.
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Problem 6.4.6. A relaxation for the scheduling problem 1 | rj, pmtn |
∑
wjCj stated

in Problem 6.3.9, by extension of the feasible set, is given by

τ (LPr−2) = min
xj ,Y(j),y(j)

wTx

s.t. tr(A(i)Ŷ(1)) + . . .+ tr(A(i)Ŷ(n)) 6 1, i ∈ Ŝ,

tr(Y(j)) = pj, j = 1, . . . , n,

y(j) − xj bj 6 0, j = 1, . . . , n,

(Y(j))ii − yij = 0, i ∈ Ŝj, j = 1, . . . , n, 1 yT(j)

y(j) Y(j)

 > 0, j = 1, . . . , n,

Ŷ(j) =

0 0

0 Y(j)

 , j = 1, . . . , n,

where A(i) ∈ Sm+ for all i = 1, . . . ,m.

Using similar technique to the one using in Lemma 6.3.11 it can be shown that Problem

6.4.6 is in fact a relaxation of Problem 6.3.9.
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Problem 6.4.7. A relaxation for the scheduling problem 1 | rj, pmtn |
∑
wjCj stated

in Problem 6.3.16, using Shor’s relaxation technique, is given by

τ (SDPr) = min
xj ,Y(ij)

wTx

s.t.
n∑
j=1

tr


0 0

0 1

 ,Y(ij)

 6 1, i ∈ Ŝ,

m∑
i∈Ŝj

tr


0 1

2

1
2

0

 ,Y(ij)

 = pj, j = 1, . . . , n,

(
Y(ij)

)
12
− bij xj 6 0, i ∈ Ŝj, j = 1, . . . , n,

tr


 0 −1

2

−1
2

1

 ,Y(ij)

 = 0, i ∈ Ŝj, j = 1, . . . , n,

(
Y(ij)

)
11

= 1, i ∈ Ŝj, j = 1, . . . , n,

Y(ij) > 0, i ∈ Ŝj, j = 1, . . . , n.

Problem 6.4.7 can be shown to be a relaxation of Problem 6.3.9 following a similar

approach to the one used in Lemma 6.3.18.

Enumeration tree

Another characteristic that has been taking into account in the construction of the branch

and bound algorithm is that if there is only one job available in the system then such job

is assigned to the machine. A new enumeration tree will start when there are more than

one job available. The enumeration tree is constructed following Algorithm 6.4.8.
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Algorithm 6.4.8. Branching for the scheduling problem 1 | rj, pmtn |
∑
wjCj.

Input: F i, yij , i ∈ Ŝ, j = 1, . . . , n.

Output: F l,j
ykj=1 = F i ∩

{
ykj = 1 | i 6 k 6 l, k ∈ Ŝ

}
, for all j = 1, . . . , n with rj > i.

1: (Determine the number of branches)
2: for j = 1, . . . , n do
3: if rj > i (job j is available) and

∑i−1
k=1 ykj < pj (job j is unfinished) then

4: t← j.
5: end if
6: end for
7: (Find the length of each branch)
8: for j ∈ t do
9: l = min

{
p̂j , r̂k

∣∣ k ∈ t, k 6= j
}

.
10: end for
11: (Create the branches)
12: for j ∈ t do
13: F l,j ← F l,j ∪

(
F i ∩ yvj = 1

)
, v 6 l.

14: end for

The number of nodes in the enumeration tree using Algorithm 6.4.8 depends on the

number of jobs and the release dates of those jobs. The maximum number of potential

nodes in the enumeration tree using the above algorithm is addressed.

Let ki denote the number of jobs available at the time i. Let hi be the binary variable

equal to one when a job has been release at the time i and there is more than one job

available, or when the machine is free to process another job,

hi =

 1, i = rj and ki > 1, j = 1, . . . , n, i ∈ S, or the machine is free;

0, otherwise.
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Lemma 6.4.9. Using Algorithm 6.4.8 and assuming that when there is only one job

available it will be assigned to the machine, the maximum number of nodes in the

enumeration tree for the branch and bound algorithm is bounded by

∑
i∈S

(
hik

ki−1
i + (1− hi)

)
. (6.15)

Proof. In a traditional branch and bound algorithm with binary variables at each level

of the enumeration tree a decision with two choices, to fix a selected variable to one or

to zero, is made. The process follows until no further variables, out of the ñ variables

remain. Thus
∑ñ

k=0 2k represents the total number of nodes.

Under the new approach, the number of jobs available at a particular time i will affect

the number of branches. At each level i the branching process will create ki branches.

The corresponding variable at each branch is fix to one. The process is repeated until

i = 1, . . . ,m. Without considering anything else the number of nodes would be
∑m

i=1 k
ki−1
i .

Now, by Theorem 6.4.3, not every i = 1, . . . ,m, is worth exploring but only those i’s

satisfying either one of the conditions,

(i) the machine has finished processing another job and is free at the time i to process

a new one.

(ii) i = rj for some j = 1, . . . , n, which are those times i at which a job has arrived and

there was more than one job available.

Variable hi ∈ {0, 1} was defined to identify those i satisfying either of the cases

mentioned above and the number of nodes can be counted at each level. Thus when

hi = 1 then at least one of the conditions is satisfied. The enumeration tree splits then
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into ki branches at any of the available nodes, ki,

hik
ki−1
i

If there is only one job available then the enumeration tree has only one node, 1−hi = 1,

which corresponds to the assignment of the only available job to the machine. Adding

the values given by the latter equation for i ∈ S equation (6.15) is obtained.

Using the data of Example 6.2.1 the number of nodes of the enumeration tree is

calculated.

The set Ŝ = {1, 2, 3, 5}. However since there was only one job available in the machine

at the time i = 1 then there are 2 enumeration trees. Therefore the set S is split into

two one for each of the enumeration trees. In the first one Ŝ = 1 and in the second one

Ŝ = {2, 3, 5}

For the first tree one job has been released at the time i = 1 and since there is only

one job available then such job will be assigned to be processed at the machine during

that time and h1 = 0. The number of nodes for the first tree is equal to one.

For the second tree, at i = 2, h2 = 1. Observe that in the node i = 2 there are only

two jobs then independently of the value of equation (6.15) the main node splits into two

branches each of them with one job and the corresponding yij = 1. Using equation

(6.15) at the time i = 2, since there was only one node in the previous step, k2 − 1 = 1,

and so when i = 3, (1)21 = 2, and so two extra nodes can be placed in the enumeration

tree by considering the processing times of both jobs. For the left branch of node 2, job

j = 1 has been processed is being processed in the machine and since for such job there is
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one unit of processing time remaining then in such case variable y21 = 1 and the branch

is completed by setting the only possible choice left, by assigning job j = 2 after the

processing of job j = 1 has been finished.

In the same way on the right branch of node 2, job j = 2 has been assigned to the

machine, with three units of processing time remaining the variables y22 = y32 = y42 = 1

are fixed. Once the processing of the job one has been done then job j = 1 is assigned to

the machine.

The number of nodes is 1 + 1 + 2 = 4 as shown in Figure 6.3.

1

1

2

y52 = 1

y42 = 1

y32 = 1

y21 = 1

3

y51 = 1

y42 = 1

y32 = 1

y22 = 1

Figure 6.3: Enumeration tree for Example 6.2.1 using Algorithm 6.4.8
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6.4.2 Calculating primal and dual bounds

Dual bounds

A dual bound for a minimization problem is any optimal solution obtained for a relaxation.

Using Lemma 6.3.11 (also Lemma 6.3.18)),

τ (R) 6 τ (*).

Thus the relaxations in Problems 6.4.5, 6.4.6 and 6.4.7 are used to determine dual bounds.

Primal bounds

A primal bound for a minimization problem is any feasible solution. If the solution to the

relaxation problems is binary, then it is used as an upper bound for the problem.

6.4.3 Tightening bounds and pruning branches

Pruning mechanisms

The major advantage of using a branch and bound algorithm is the ability to prune those

branches of the enumeration tree which are not worth exploring further. This decision is

made by considering the lower and upper bounds which have been obtained so far. The

pruning rules are explained below.

Pruning by bound: If the lower bound for a subproblem τ sk, is greater than the upper

bound of the global problem τ (*), τ sk > τ (*), then the branch s can be pruned.

Pruning by infeasibility: In the enumeration tree if the feasible set for one of the

branches turns to be an empty set, F i = ∅, then that means that there is no feasible

solution for that subproblem and in that case the corresponding branch can be pruned.
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Pruning by optimality: This can be done when τ sk 6 τ sk for some s, k. This branch

can be pruned because an optimal solution has been achieved and the certificate that

such solution is optimal is offered by the equality of the lower and the upper bound. In

this case the solution is kept among possible solutions for the global problem.

The formal Algorithm for pruning and branching follows next.

Algorithm 6.4.10. Pruning and branching in the enumeration tree for the scheduling

problem 1 | rj, pmtn |
∑
wjCj.

Input: L, τ (*), τ (*), τs
k, τs

k.
Output: L, τ (*), τ (*).

1: if τ (*) 6 τs
k then

2: L← L \ {k} (Prune by bound)
3: else if Fs

k = ∅ then
4: L← L \ {k} (Prune by infeasibility)
5: else if yij ∈ F (*) then
6: τ (*) ← τs

k

7: y∗ij ← yij

8: L← L \ {k} (Prune by optimality)
9: else

10: Algorithm 6.4.8 (Branching)
11: end if

6.4.4 Branch and bound algorithm

The complete branch and bound algorithm is formulated next.
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Algorithm 6.4.11. Branch and bound algorithm for the scheduling problem

1 | rj, pmtn |
∑
wjCj.

Input: n, pj , rj , wj .
Output: x∗j , y∗ij , τ (*).

1: τ (*) ←∞
2: Solve the relaxation problem
3: case τ
4: Binary solution: τ (∗) ← τ (Optimal solution)
5: end case
6: L := {1}.
7: Algorithm 6.4.8 (Branching)

8: while L 6= ∅ do
9: for k ∈ L do

10: Solve the relaxation problem (Dual bound)
11: case τ
12: A solution exists: τs

k ← τ
13: The problem is unbounded: τs

k ←∞.
14: Infeasible: Fs

k ← ∅.
15: Binary solution: τs

k ← τ (Primal bound)
16: end case
17: end for
18: Algorithm 6.4.10 (Pruning and branching)
19: end while

20: return x∗j , y∗ij , τ (*)

6.4.5 Example 1

Example 6.2.1 is solved next using Algorithm 6.4.11 and the formulations given in Prob-

lems 6.4.6 and 6.4.7.

Solution 1: Using Problem 6.4.6. Initially the algorithm splits the problem into two

subproblems. The first subproblem corresponds to i = 1 because there is only one job
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Table 6.1: Results for Example 6.2.1 using Problem 6.4.6

Node
Bounds

τ (*) Subproblem
Open

Iterations

τ (*) τ (*) Fi τyij
Outer Inner

1 1.0000 1.0000 1.0000 y11 = 1 1.0000 0
Elapsed time is 0.005284 seconds

1 ∞ − − − 12.7270 1 16 32

2 12.7270 − − y21 = 1 21.0000 2 14 43

3 12.7270 21.0000 −
y22 = 1

19.0000 1 14 23y32 = 1
y42 = 1

19.0000 19.0000 19.0000 − − 0 Optimal achieved
Elapsed time is 0.377875 seconds

available at that time. Thus job 1 is assigned to the machine, y∗11 = 1. The new value of

p̂1 is 1.

The second subproblem is then solved for the times i = 2, . . . , 5. The algorithm finds

a lower bound, 12.7270. Two branches are created, in the first one y21 is fix to one, which

leaves y22 equal to zero, with an objective value of 21.0000. In the second branch y22 and

y42 are fix to one, which in turn indicates that y32 is one and leaving y21, y31 and y41 equal

to zero with a value of 19.0000. In total the algorithm with relaxation of Problem 6.4.6

required 98 iterations, or nodes explored, and it takes 0.005284 + 0.377875 = 0.383159

seconds.

The results after running the algorithm for Example 6.2.1 using the relaxation Problem

6.4.7, including the data for solving each of the nodes, are shown Table 6.1.

Enumeration tree The tree using the branch and bound algorithm is graphically

shown in Figure 6.4.
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1 1.0000

1 12.7270

2 21.0000

y52 = 1

y42 = 1

y32 = 1

y21 = 1

3 19.0000

y51 = 1

y42 = 1

y32 = 1

y22 = 1

Figure 6.4: Branch and bound algorithm for Example 6.2.1 using either relaxation in Problem
6.4.6 or 6.4.7

Optimal solution The optimal solution is 1 + 19 = 20 and is obtained with

y∗11 = y∗51 = 1,

y∗22 = y∗32 = y∗42 = 1.

and for the remaining variables y∗ij = 0. Graphically the solution schedule looks like

Figure 6.5.
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i

J2

J1

M1 1 2 2 2 1

0 1 2 3 4 5

i0 1 2 3 4 5

Job is being processed Job is unfinished

Job has been finished

Figure 6.5: Solution schedule for Example 6.2.1 with optimal value 20
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Table 6.2: Results for Example 6.2.1 using Problem 6.4.7

Node
Bounds

τ (*) Subproblem
Open

Iterations

τ (*) τ (*) Fi τyij
Outer Inner

1 1.0000 1.0000 1.0000 y21 = 1 1.0000 0
Elapsed time is 0.005351 seconds

1 ∞ − − − 12.7270 1 15 31

2 12.7270 − − y21 = 1 21.0000 2 14 42

3 12.7270 21.0000 −
y22 = 1

19.0000 1 14 23y32 = 1
y42 = 1

19.0000 19.0000 19.0000 − − 0 Optimal achieved
Elapsed time is 0.442445 seconds

Solution 2: Using Problem 6.4.7. As in the previous case, the algorithm splits the

problem into two subproblems. The approach for solving the problem is fairly similar

to the one shown using Problem 6.4.6. The difference however relays on the solving

time used by the algorithm when working with this relaxation. In total the algorithm

with relaxation of Problem 6.4.7 required 96 iterations, or nodes explored, and it takes

0.005351 + 0.442445 = 0.447796 seconds.

The results after running the algorithm for Example 6.2.1 using the relaxation Problem

6.4.7 are shown Table 6.2. Observe that the difference between the results in Table 6.1

and 6.2 is in the time required for the algorithm to solve the problem and the number of

iterations.
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Enumeration tree The tree using the branch and bound for this case is the same as

shown in Figure 6.4.

Optimal solution The optimal solution is 1 + 19 = 20 and is obtained with

y∗11 = y∗51 = 1,

y∗22 = y∗32 = y∗42 = 1.

and for the remaining variables y∗ij = 0. The solution schedule was shown in Figure 6.5.

6.4.6 Example 2

Another example using Algorithm 6.4.11 with n = 5 jobs follows.

Example 6.4.12. In a single machine environment n = 5 jobs need to be processed.

The release date rj, processing time pj and weight wj for each job are given in the next

table.

Job
Data

pj rj wj

1 2 1 1

2 3 2 3

3 4 6 4

4 4 6 5

5 3 7 2
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Solution 1: Using Problem 6.4.6. Initially the algorithm splits the problem into 3

subproblems according to the number of jobs available. There is only one job available

at i = 1. Thus it assigns job 1 to the machine at the that time, i.e. y∗11 = 1.

After that it runs the algorithm two more times for the remaining problems. For the

first problem if finds two optimal solutions with either y∗21 = y∗32 = y∗42 = y∗52 = 1 or

y∗22 = y∗32 = y∗42 = y∗51 = 1 both with a value of 13. In the second problem the algorithms

finds the optimal solution with y∗64 = y∗74 = y∗84 = y∗94 = 1, y∗10 3 = y∗11 3 = y∗12 3 = y∗13 3 = 1

and y∗14 5 = y∗15 5 = y∗16 5 = 1. This solution has a value of 72.

In total the algorithm with relaxation of Problem 6.4.6 required 668 iterations and it

takes 0.006479 + 0.352276 + 2.074337 = 2.426613 seconds.

The results using Algorithm 6.4.11 with Problem 6.4.6 are shown in Table 6.3.
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Table 6.3: Results for Example 6.2.1 using Problem 6.4.6

Node
Bounds

τ (*) Subproblem
Open

Iterations

τ (*) τ (*) Fi τyij
Outer Inner

1 1.0000 1.0000 1.0000 y11 = 1 1.0000 0
Elapsed time is 0.006479 seconds

1 ∞ − − − 8.3640 1 16 36

2 8.3640 − − y21 = 1 13.0000 1 15 42

3 8.3640 13.0000 −
y22 = 1

13.0000 1 15 26y32 = 1
y42 = 1

13.0000 13.0000 13.0000 − − 0 Optimal achieved
Elapsed time is 0.352276 seconds

1 ∞ − − − 32.4650 1 15 48

2 32.4650 − − y63 = 1 33.0990 1 14 35

3 32.4650 − − y64 = 1 32.4650 2 14 35

4 32.4650 − −

y64 = 1

50.5620 2 14 43
y74 = 1
y84 = 1
y94 = 1

5 32.4650 − −

y64 = 1

53.6310 3 14 55
y75 = 1
y85 = 1
y95 = 1

6 33.0990 − −

y63 = 1

51.4030 3 14 40
y73 = 1
y83 = 1
y93 = 1

7 33.0990 − −

y63 = 1

54.8410 4 14 54
y75 = 1
y85 = 1
y95 = 1

8 50.5620 − −

y64 = 1

72.0000 4 14 39

y74 = 1
y84 = 1
y94 = 1
y10 3 = 1
y11 3 = 1
y12 3 = 1
y13 3 = 1

9 50.5620 72.0000 −

y64 = 1

76.0000 4 14 35

y74 = 1
y84 = 1
y94 = 1
y10 5 = 1
y11 5 = 1
y12 5 = 1

10 51.4030 72.0000 −

y63 = 1

76.0000 3 14 56

y73 = 1
y83 = 1
y93 = 1
y10 4 = 1

Continued on next page
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Table 6.3: (Continued)

Node
Bounds

τ (*) Subproblem
Open

Iterations

τ (*) τ (*) Fi τyij
Outer Inner

y11 4 = 1
y12 4 = 1
y13 4 = 1

11 51.4030 72.0000 −

y63 = 1

83.0000 3 13 36

y73 = 1
y83 = 1
y93 = 1
y10 5 = 1
y11 5 = 1
y12 5 = 1

12 53.6310 72.0000 −

y64 = 1

85.0000 2 13 45

y75 = 1
y85 = 1
y95 = 1
y10 4 = 1
y11 4 = 1
y12 4 = 1

13 54.8410 72.0000 −

y63 = 1

89.0000 1 13 43

y75 = 1
y85 = 1
y95 = 1
y10 3 = 1
y11 3 = 1
y12 3 = 1

72.0000 72.0000 72.0000 − − 0 Optimal achieved
Elapsed time is 2.074337 seconds

Enumeration tree The tree using the branch and bound algorithm is graphically

shown in Figures 6.6.
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1 1.0000y11 = 1

1 7.6923

2 13.0000

y52 = 1

y42 = 1

y32 = 1

y21 = 1

3 13.0000

y51 = 1

y42 = 1

y32 = 1

y22 = 1

1 32.4651

2 33.0995

6 51.4028

10 76

y16 5 = 1

y15 5 = 1

y14 5 = 1

y13 4 = 1

y12 4 = 1

y11 4 = 1

y10 4 = 1

11 83

y16 4 = 1

y15 4 = 1

y14 4 = 1

y13 4 = 1

y12 5 = 1

y11 5 = 1

y10 5 = 1

y93 = 1

y83 = 1

y73 = 1

7 54.8409

13 89

y16 4 = 1

y15 4 = 1

y14 4 = 1

y13 4 = 1

y12 3 = 1

y11 3 = 1

y10 3 = 1

y95 = 1

y85 = 1

y75 = 1

y63 = 1

3 32.4651

4 50.5619

8 72

y16 5 = 1

y15 5 = 1

y14 5 = 1

y13 3 = 1

y12 3 = 1

y11 3 = 1

y10 3 = 1

9 76

y16 3 = 1

y15 3 = 1

y14 3 = 1

y13 3 = 1

y12 5 = 1

y11 5 = 1

y10 5 = 1

y94 = 1

y84 = 1

y74 = 1

5 53.6306

12 85

y16 3 = 1

y15 3 = 1

y14 3 = 1

y13 3 = 1

y12 4 = 1

y11 4 = 1

y10 4 = 1

y95 = 1

y85 = 1

y75 = 1

y64 = 1

Figure 6.6: Complete tree for the branch and bound algorithm for Example 6.4.12 using either
relaxation in Problem 6.4.6 or 6.4.7
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Optimal solution The optimal solution is 1 + 13 + 72 = 86 and is obtained with

y∗11 = y∗21 = 1,

y∗22 = y∗32 = y∗42 = 1,

y∗10 3 = y∗11 3 = y∗12 3 = y∗13 3 = 1,

y∗64 = y∗74 = y∗84 = y∗94 = 1,

y∗14 5 = y∗15 5 = y∗16 5 = 1.

and for the remaining variables y∗ij = 0.

Graphically the solution schedule looks like Figure 6.7.
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i

J5

J4

J3

J2

J1

M1 1 2 2 2 1 4 4 4 4 3 3 3 3 5 5 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Job is being processed

Job has been finished

Job is in the system

Figure 6.7: Solution schedule for Example 6.2.1 with optimal value 86
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Solution 2: Using Problem 6.4.7. The results after running the algorithm for Ex-

ample 6.4.12 using the relaxation Problem 6.4.7 are shown in Table 6.4. The tree using

this algorithm is explored in a similar way as in the previous case. In total the algorithm

with relaxation of Problem 6.4.7 required 648 iterations and it takes 0.005450+0.432528+

2.553199 = 2.991177 seconds.

Table 6.4: Results for Example 6.2.1 using Problem 6.4.7

Node
Bounds

τ (*) Subproblem
Open

Iterations

τ (*) τ (*) Fi τyij
Outer Inner

1 1.0000 1.0000 1.0000 y11 = 1 1.0000 0
Elapsed time is 0.005450 seconds

1 ∞ − − − 8.3640 1 15 29

2 8.3640 − − y21 = 1 13.0000 1 15 45

3 8.3640 13.0000 −
y22 = 1

13.0000 1 15 24y32 = 1
y42 = 1

13.0000 13.0000 13.0000 − − 0 Optimal achieved
Elapsed time is 0.432528 seconds

1 ∞ − − − 32.4650 1 15 38

2 32.4650 − − y63 = 1 33.0990 1 14 37

3 32.4650 − − y64 = 1 32.4650 2 14 37

4 32.4650 − −

y64 = 1

50.5620 2 14 48
y74 = 1
y84 = 1
y94 = 1

5 32.4650 − −

y64 = 1

53.6310 3 14 52
y75 = 1
y85 = 1
y95 = 1

6 33.0990 − −

y63 = 1

51.4030 3 14 45
y73 = 1
y83 = 1
y93 = 1

7 33.0990 − −

y63 = 1

54.8410 4 14 55
y75 = 1
y85 = 1
y95 = 1

8 50.5620 − −

y64 = 1

72.0000 4 14 41

y74 = 1
y84 = 1
y94 = 1
y10 3 = 1
y11 3 = 1

Continued on next page
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Table 6.4: (Continued)

Node
Bounds

τ (*) Subproblem
Open

Iterations

τ (*) τ (*) Fi τyij
Outer Inner

y12 3 = 1
y13 3 = 1

9 50.5620 72.0000 −

y64 = 1

76.0000 4 14 34

y74 = 1
y84 = 1
y94 = 1
y10 5 = 1
y11 5 = 1
y12 5 = 1

10 51.4030 72.0000 −

y63 = 1

76.0000 3 14 43

y73 = 1
y83 = 1
y93 = 1
y10 4 = 1
y11 4 = 1
y12 4 = 1
y13 4 = 1

11 51.4030 72.0000 −

y63 = 1

83.0000 3 13 31

y73 = 1
y83 = 1
y93 = 1
y10 5 = 1
y11 5 = 1
y12 5 = 1

12 53.6310 72.0000 −

y64 = 1

85.0000 2 13 44

y75 = 1
y85 = 1
y95 = 1
y10 4 = 1
y11 4 = 1
y12 4 = 1

13 54.8410 72.0000 −

y63 = 1

89.0000 1 13 45

y75 = 1
y85 = 1
y95 = 1
y10 3 = 1
y11 3 = 1
y12 3 = 1

72.0000 72.0000 72.0000 − − 0 Optimal achieved
Elapsed time is 2.553199 seconds

Enumeration tree The tree using the branch and bound algorithm is the same graph-

ically shown in Figure 6.6.
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Optimal solution The optimal solution is 1 + 13 + 72 = 86 and is obtained with

y∗11 = y∗21 = 1,

y∗22 = y∗32 = y∗42 = 1,

y∗10 3 = y∗11 3 = y∗12 3 = y∗13 3 = 1,

y∗64 = y∗74 = y∗84 = y∗94 = 1,

y∗14 5 = y∗15 5 = y∗16 5 = 1.

and for the remaining variables y∗ij = 0.

Graphically the solution schedule is exactly the same as the one in Figure 6.7.

6.5 Quality of the relaxations and the branch and

bound algorithm

6.5.1 Generation of test problems

In order to test the problem formulations and due to the lack of standard benchmark

problems, a similar technique to randomly generate instances of the problems used by

van den Akker et al. (2010) with an adaptation for this particular scheduling problem

will be used.5 In this case each problem generated have a number of jobs n from the

5In their approach they generate instances for the scheduling problem 1 | rj , pj = p |
∑
wjTj . The

number of jobs is selected from the set {70, 80, 90, 100} and pj from {5, 10, 15, 20, 25, 30}. Then for each
combination of the parameters they create 50 instances

• rj is randomly selected from the interval [0, (n− 6)p).

• wj is randomly selected from the interval [0, 120).
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Table 6.5: Sets for the randomly generated data for pj, rj and wj

Group n max ki
data Number of

pj rj wj problems

1

10

2

{5,10,15} [0,(n-3)20) [0,60)

40
2 3 40
3 4 40
4 5 40
5 6 40
6 7 40
7 8 32
8 9-10 10

9 70 2-7 {5,10,15} [0,(n-6)27) [0,60) 40

set J = {10, 70}. The randomised problems are classified into groups according to the

maximum number of jobs at the time per problem, denoted with max ki, ranging from 2

to 10 jobs at the time, as shown in Table 6.5. The values of pj, rj and wj for each case

are randomly generated in accordance with the sets given in the same table.

Thus following this generation model a total of 322 problems were developed using

MATLAB. The results obtained after solving the problems are explained in the next

section.

6.5.2 Numerical experiments

All the experiments were run in an AMD Athlon(tm) 64 processor, 3500+, 2.21 GHz and

1.00 GB of RAM. The solution for Problem 6.4.5 (LPr) is obtained with SeDuMi (Sturm

(1999)). Problems 6.4.6 (LPr-2) and 6.4.7 (SDPr-2) are solved using PENBMI (Kočvara

and Stingl (2003)). In all cases YALMIP (Löfberg (2004)) for MATLAB is also used.

• dj is randomly selected from the interval [rj + p, (n− 5)p).

.
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After solving each instance created, the information that was gathered is explained

here. Observe that for each particular group of problems different parameters are calcu-

lated from the ones given below.

Largest subproblem: It is the subproblem after the partition with the maximum num-

ber of jobs at any time.

(No) Indicates the problem run.

(max ki) Indicates the maximum number of jobs that are available in the system

at any time.

(m) Length of the schedule for the largest subproblem.

(|Ŝ|) Size of the set Ŝ for the largest subproblem.

(Time (s)) Time in seconds spent solving the largest subproblem.

(LPr) Time using the linear programming relaxation given in Problem 6.4.5.

(LPr-2) Time using the linear programming relaxation given in Problem 6.4.6.

(SDPr) Time using the semidefinite programming relaxation given in Prob-

lem 6.4.7.

Main problem Includes the complete information for all the subproblems.

(ET) Recall that a new enumeration tree is created after those times at which the

machine can finished all the available jobs in the system. Thus, ET gives the

total number of enumeration trees or subproblems actually solved.

(Nodes or N) It is calculated by adding the nodes for each tree when solving the

problem.

(LPr) Information for the main problem using the linear programming relaxation

given in Problem 6.4.5.
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(s) Solving time in seconds for the whole problem.

(LPr-2) Information for the main problem using the linear programming relaxation

given in Problem 6.4.6.

(var) Total number of variables.

(cons) Total number of constraints.

(iter) Total number of iterations required to solve all the nodes.

(s) Solving time in seconds for the whole problem.

(SDPr) Information for the main problem using the semidefinite programming

relaxation given in Problem 6.4.7.

(var) Total number of variables.

(cons) Total number of constraints.

(iter) Total number of iterations required to solve all the nodes.

(s) Solving time in seconds for the whole problem.

(Gap) Gap between the solution and the actual optimal solution. In fact all the

problem were solved to optimality. This information is included only to em-

phasise this aspect.
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Group 1: n = 10, max ki = 2

For the case when n = 10 and the maximum number of available jobs at any time, for the

length of the schedule, is equal to 2, relaxations LPr-2 and SDPr are used only. For both

cases the number of variables, constraints and iterations for the algorithm are calculated.

The results for this case are presented in Table 6.6. The solving time is graphically

compared in Figure 6.8. The number of variables for both cases is compared in Figure

6.9. The number of constraints is illustrated in Figure 6.10 and the number iterations in

Figure 6.11. From the results the following is concluded.

(i) When the maximum number of jobs available at any time is 2, LPr-2 performs

better than SDPr in 87.5% (35 out of 40) of the cases.

(ii) The number of variables is slightly bigger for SDPr than for LPr-2 and increases

with the problem size. The difference between both relaxations varies from 2 to 14

variables bigger for SDPr.

(iii) The number of constraints is bigger when using SDPr. However the maximum

size of the matrix constraints for SDPr is 2 × 2. The maximum size of the matrix

constraints for LPr-2 is 4× 4. Additionally, the number of constraints increases, in

both cases, with the problem size.

(iv) The number of iterations is almost identical for both relaxations and increases with

the problem size.

(v) The length of the schedule m is not directly related with the solving time. For

example problem 13 with m = 20 was solved faster than problem 35 with m = 7.
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Table 6.6: Solving time comparison for 40 problems with n = 10 and max ki = 2 jobs at the
time using Relaxation 6.4.6 (LPr-2) and Relaxation 6.4.7 (SDPr)

Largest subproblem Main problem

No
m |Ŝ| Time (s)

ET Nodes
LPr-2 SDPr

LPr-2 SDPr var cons iter (s) var cons iter (s)

1 8 3 0.40 0.45 10 12 49 78 48 0.43 51 117 48 0.48
2 7 3 0.38 0.46 10 12 49 78 53 0.41 51 117 53 0.48
3 12 3 0.49 0.53 10 12 49 78 47 0.52 51 117 47 0.56
4 15 3 0.46 0.52 10 12 49 78 52 0.48 51 117 53 0.56
5 13 3 0.42 0.56 10 12 49 78 50 0.48 51 117 50 0.60
6 15 3 0.41 0.43 9 13 98 156 112 0.85 101 234 111 0.87
7 19 3 0.42 0.45 10 14 98 156 88 0.84 102 234 83 0.88
8 13 3 0.40 0.44 10 14 98 156 116 0.82 102 234 115 0.90
9 8 3 0.39 0.44 10 14 98 156 97 0.83 102 234 96 0.90
10 15 3 0.48 0.44 9 13 98 156 121 0.92 102 234 128 0.90
11 14 3 0.46 0.46 10 14 98 155 113 0.86 102 234 119 0.94
12 13 3 0.40 0.48 10 14 98 156 95 0.80 102 234 94 0.95
13 20 3 0.41 0.49 9 13 98 156 120 1.11 102 234 120 0.95
14 20 3 0.39 0.50 10 14 98 156 107 0.80 102 234 112 0.95
15 12 3 0.47 0.52 10 14 98 156 95 0.89 102 234 81 0.99
16 7 3 0.45 0.58 10 14 98 156 108 0.86 102 234 110 1.08
17 17 3 0.39 0.41 9 15 109 194 135 1.10 123 285 132 1.13
18 12 3 0.40 0.42 10 16 128 213 150 1.15 138 318 150 1.19
19 20 2 0.39 0.34 8 14 128 214 173 1.25 138 318 170 1.21
20 20 3 0.38 0.42 9 15 128 214 125 1.14 138 318 122 1.21
21 20 3 0.41 0.44 9 15 128 214 125 1.22 138 318 122 1.24
22 9 3 0.39 0.43 10 16 147 234 163 1.20 153 351 165 1.28
23 11 3 0.39 0.43 10 16 147 234 140 1.25 153 351 137 1.28
24 6 3 0.38 0.43 10 16 147 234 141 1.15 153 351 132 1.29
25 16 3 0.40 0.42 10 16 147 234 163 1.24 153 351 168 1.31
26 11 3 0.42 0.42 10 16 147 234 186 1.23 153 351 185 1.31
27 13 3 0.42 0.44 10 16 147 234 160 1.19 153 351 160 1.32
28 25 3 0.41 0.45 9 15 147 234 142 1.23 153 351 142 1.34
29 12 3 0.40 0.48 9 15 128 214 155 1.24 138 318 156 1.34
30 24 3 0.60 0.52 10 16 147 234 169 1.47 153 351 174 1.39
31 13 3 0.40 0.52 10 16 147 234 138 1.20 153 351 127 1.40
32 28 3 0.50 0.49 10 16 147 234 175 1.54 153 351 176 1.40
33 20 3 0.41 0.48 10 15 147 234 159 1.18 153 351 158 1.42
34 23 3 0.41 0.49 10 16 147 234 174 1.21 153 351 172 1.45
35 7 3 0.49 0.57 10 16 147 234 176 1.34 153 351 176 1.52
36 6 3 0.37 0.58 9 16 146 234 170 1.18 153 351 170 1.64
37 16 3 0.39 0.78 9 15 147 234 182 1.19 153 351 187 1.82
38 25 3 0.49 0.64 9 17 196 312 217 1.74 204 468 220 2.04
39 15 3 0.49 0.65 8 16 196 311 213 1.68 204 468 211 2.06
40 22 3 0.54 0.59 9 19 226 370 283 2.32 240 552 284 2.31

Av 15 3 0.43 0.49 10 15 122 197 136 1.09 129 296 136 1.20
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LPr-2 SDPr

T ime (s) max ki = 2
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1.0

2.0

Figure 6.8: Solving time comparison for 40 problems with n = 10 and max ki = 2 jobs at the
time using Relaxation 6.4.6 (LPr-2) and Relaxation 6.4.7 (SDPr)
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Number of variables max ki = 2 Time (s)
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Figure 6.9: Comparison of the number of variables between Relaxation 6.4.6 (LPr-2) and
Relaxation 6.4.7 (SDPr) with max ki = 2. Note that the scale of solving time is different
from the one indicating the number of variables
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LPr-2 SDPr

Number of constraints max ki = 2 Time (s)
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Figure 6.10: Comparison of the number of constraints between Relaxation 6.4.6 (LPr-2) and
Relaxation 6.4.7 (SDPr) with max ki = 2. Note that the scale of solving time is different
from the one indicating the number of constraints
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Figure 6.11: Comparison of the number of iterations between Relaxation 6.4.6 (LPr-2) and
Relaxation 6.4.7 (SDPr) with max ki = 2. Note that the scale of solving time is different
from the one indicating the number of iterations
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Group 2: n = 10, max ki = 3

The problems in this group were solved using LPr-2 and SDPr only. The results for

n = 10 when the maximum number of available jobs is 3 are presented in Table 6.7.

The solving time is graphically compared in Figure 6.12. The number of variables is

illustrated in Figure 6.13. The number of constraints is included in Figure 6.14 and the

number iterations in Figure 6.15. From the results when the maximum number of jobs at

the time is equal to 3, the following is concluded.

(i) LPr-2 performs better than SDPr in 90% (36 out of 40) of the problems.

(ii) The number of variables is higher when using LPr-2 and increases for both cases

with the problem size. The difference varies between 20 (problem 3) to 458 (problem

40).

(iii) The number of constraints is higher in SDPr. However the maximum size of the

matrix constraints for SDPr is 2× 2. The maximum size of the matrix constraints

for LPr-2 is 9× 9. The number of constraints increases with the problem size.

(iv) The number of iterations is relatively the same independently of the relaxation

used, although slightly bigger for SDPr. The number of iterations increases with

the problem size.

(v) The length of the schedule m is not directly related with the solving time. For

example problem 2 with m = 28 was solved faster than problem 28 with m = 17.

(vi) The size of the set Ŝ seems to be smaller for problems with less solving time although

for this group of problems this characteristic is not conclusive.
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Table 6.7: Results using Algorithm 6.4.10 for 40 problems with n = 10 and max ki = 3 jobs
at the time using Relaxation 6.4.6 (LPr-2) and Relaxation 6.4.7 (SDPr)

Largest subproblem Main problem

No
m |Ŝ| Time (s)

ET Nodes
LPr-2 SDPr

LPr-2 SDPr var cons iter (s) var cons iter (s)

1 21 4 1.00 1.12 8 19 256 389 272 1.95 264 577 267 2.34
2 28 6 1.32 1.68 9 16 308 359 233 1.89 258 547 246 2.49
3 11 5 1.27 1.53 9 18 284 373 211 1.87 264 561 218 2.35
4 20 6 1.51 1.79 9 19 373 444 247 2.49 321 672 265 2.60
5 18 7 2.06 2.62 9 18 530 514 204 2.36 390 790 206 2.76
6 19 7 2.36 2.84 9 19 562 545 242 2.50 414 837 252 2.87
7 34 6 1.38 1.87 8 17 357 437 272 2.57 309 664 283 3.06
8 23 5 1.17 1.57 9 19 354 456 254 2.16 324 688 262 3.13
9 24 6 1.62 2.06 9 21 422 522 311 2.60 372 790 323 3.19
10 25 6 1.12 1.48 9 17 357 437 272 2.11 309 664 278 3.15
11 16 7 2.28 2.69 9 20 579 592 345 2.90 441 907 346 3.24
12 12 6 1.65 2.24 9 21 422 522 324 2.69 372 789 328 3.32
13 23 7 2.04 2.48 9 20 583 612 274 2.50 450 938 276 3.61
14 18 7 2.00 2.66 9 20 594 618 284 2.96 456 947 298 3.65
15 18 7 2.77 3.18 9 23 729 728 302 3.17 546 1117 314 3.66
16 29 7 2.70 2.71 8 21 628 670 345 3.49 492 1024 356 3.69
17 25 5 2.30 2.80 9 25 506 646 406 3.15 468 967 411 3.69
18 20 6 2.45 2.83 9 24 607 709 387 3.47 516 1074 391 3.77
19 22 7 2.45 2.93 9 23 750 762 300 3.22 567 1169 306 3.89
20 18 7 2.53 2.95 9 23 647 694 364 3.29 510 1059 373 3.90
21 27 6 2.25 2.62 9 21 422 522 350 3.04 372 789 363 4.08
22 28 5 1.69 1.97 8 24 612 737 437 4.33 534 1115 447 4.18
23 27 8 4.21 3.79 9 23 959 843 371 4.65 645 1302 382 4.29
24 34 7 2.81 3.00 8 23 882 874 343 4.12 660 1342 351 4.35
25 25 7 2.96 2.93 9 26 797 856 426 4.27 627 1309 422 4.45
26 16 6 1.70 2.00 7 25 697 810 450 3.59 591 1227 467 4.57
27 22 8 3.24 3.44 9 27 1004 967 463 4.38 720 1485 475 4.75
28 17 6 2.17 2.50 8 26 769 893 497 4.08 648 1357 514 5.06
29 24 7 2.27 2.42 8 27 903 958 509 4.27 711 1462 522 5.34
30 24 8 3.42 3.97 9 27 1023 987 480 4.61 735 1518 493 5.46
31 24 8 3.49 3.65 7 26 1184 1112 497 5.04 840 1714 517 5.48
32 22 7 2.51 2.78 8 29 1128 1130 666 6.23 849 1732 677 5.81
33 28 8 2.96 3.17 8 28 1242 1154 525 5.18 876 1774 539 5.88
34 21 7 2.64 2.80 8 31 1088 1145 624 5.19 855 1747 626 6.00
35 23 8 3.27 3.62 8 29 1410 1287 562 5.48 981 1988 580 6.18
36 20 6 2.23 2.85 7 33 1169 1254 667 5.47 930 1911 667 6.51
37 25 7 3.11 2.71 7 33 1295 1343 643 7.35 1008 2053 659 6.51
38 29 8 3.40 3.60 8 31 1510 1386 593 5.94 1001 2140 607 6.82
39 30 8 2.91 3.39 8 29 1631 1409 571 6.42 1083 2184 598 7.20
40 25 7 2.67 2.88 6 37 1751 1702 799 7.51 1293 2614 821 8.04

Av 23 7 2.35 2.65 8 24 783 810 408 3.86 600 1239 418 4.38
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LPr-2 SDPr
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Figure 6.12: Solving time comparison for 40 problems with n = 10 and max ki = 3 jobs at
the time using Relaxation 6.4.6 (LPr-2) and Relaxation 6.4.7 (SDPr)
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Figure 6.13: Comparison of the number of variables between Relaxation 6.4.6 (LPr-2) and
Relaxation 6.4.7 (SDPr) with max ki = 3. Note that the scale of solving time is different
from the one indicating the number of variables
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LPr-2 SDPr

Number of constraints max ki = 3 Time (s)
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Figure 6.14: Comparison of the number of constraints between Relaxation 6.4.6 (LPr-2) and
Relaxation 6.4.7 (SDPr) with max ki = 3. Note that the scale of solving time is different
from the one indicating the number of constraints
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Figure 6.15: Comparison of the number of iterations between Relaxation 6.4.6 (LPr-2) and
Relaxation 6.4.7 (SDPr) with max ki = 3. Note that the scale of solving time is different
from the one indicating the number of iterations
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Group 3: n = 10, max ki = 4

The results for n = 10 when the maximum number of available jobs at any time is equal

to 4 are presented in Table 6.8. This group was solved using relaxations LPr-2 and SDPr.

The solving time is graphically compared in Figure 6.16. The number of variables is

represented in Figure 6.17. The number of constraints is compared in Figure 6.18 and

the number iterations in Figure 6.19.

From the results when the maximum number of jobs at the time is equal to 4 the

following is concluded.

(i) For this group of problems SDPr performs better than LPr-2 in 95% (38 out of 40)

of the cases. This result may obey to the sizes of the matrix variables for LPr-2.

(ii) The difference in the number of variables between both relaxations increases dra-

matically from the previous case. It changes between 246 (problem 2) to 3682

(problem 38).

(iii) The number of constraints is higher for SDPr. The worst difference is up to 2413

constraints more for SDPr (problem 40). However the size of matrix constraints for

SDPr is 2× 2 whereas for LPr-2 is in the worst case 15× 15.

(iv) The number iterations is bigger for SDPr than for LPr-2, but relatively the same.

(v) The length of the schedule m is not directly related with solving time. In problem

39, for example, with m = 34 the solving time with both relaxations was higher

than problem 1 with m = 48.

(vi) The solving time increases with the value of |Ŝ|. It changes between 9 for problems

with shorter solving times and 14 for those with larger solving time.
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Table 6.8: Solving time comparison for 40 problems with n = 10 and a max ki = 4 jobs at
the time using Relaxation 6.4.6 (LPr-2) and Relaxation 6.4.7 (SDPr)

Largest subproblem Main problem

No
m |Ŝ| Time (s)

ET N
LPr-2 SDPr

LPr-2 SDPr var cons iter (s) var cons iter (s)

1 48 9 6.40 5.09 8 27 1173 1082 571 7.04 834 1648 598 5.79
2 46 8 8.59 5.47 8 28 1088 1107 613 9.37 842 1687 616 6.48
3 47 10 18.25 6.51 8 27 1595 1281 538 18.28 1013 1969 573 6.54
4 34 10 8.93 7.68 8 28 2051 1565 526 8.95 1263 2417 552 7.71
5 35 9 12.53 6.93 7 33 1747 1563 778 13.32 1220 2389 803 7.90
6 42 10 7.58 6.03 7 31 1962 1644 617 9.17 1275 2529 646 8.10
7 33 10 8.76 7.34 8 32 2087 1698 693 9.57 1344 2612 716 8.29
8 37 9 10.18 7.89 8 37 1934 1732 733 10.97 1352 2650 765 8.88
9 32 10 5.94 6.08 6 36 2235 1923 776 8.39 1496 2954 807 9.22
10 34 10 25.05 8.78 8 32 2334 1834 659 25.47 1475 2764 690 9.28
11 25 9 7.38 8.47 7 43 2094 1971 853 8.31 1530 2997 869 9.51
12 43 12 15.76 9.51 8 37 3170 2234 711 16.19 1795 3460 760 10.01
13 33 11 11.38 9.73 8 36 2720 2037 756 11.81 1635 3149 782 10.21
14 32 11 24.29 8.00 7 41 2920 2324 950 26.87 1850 3584 997 10.80
15 25 8 7.48 6.58 4 52 2591 2501 1161 12.19 1974 3890 1203 11.20
16 32 11 12.22 8.20 7 41 3419 2568 844 15.14 2048 3980 880 11.53
17 34 12 23.95 10.07 7 37 3229 2291 804 25.42 1831 3549 838 11.80
18 29 11 19.76 11.06 8 36 3641 2481 786 20.71 2014 3862 811 12.00
19 31 11 15.18 7.54 6 40 3358 2562 1051 21.92 2049 3951 1109 12.07
20 39 12 18.19 11.23 8 40 3260 2346 897 19.00 1874 3628 943 12.35
21 31 11 12.93 10.06 7 49 3436 2714 1177 15.90 2151 4186 1224 13.04
22 32 13 25.59 12.22 8 39 4242 2716 860 26.39 2203 4231 909 13.18
23 31 13 20.52 13.32 8 42 5217 3259 718 20.91 2676 5096 743 13.81
24 45 11 22.24 13.75 7 55 4425 3343 1280 23.03 2691 5158 1324 14.70
25 29 13 28.86 14.36 8 45 5308 3274 903 29.26 2661 5118 934 14.85
26 45 10 11.57 8.53 6 54 3780 3150 1274 18.71 2504 4843 1322 14.98
27 39 13 19.68 12.14 7 46 5130 3348 942 22.16 2725 5243 990 15.08
28 32 12 24.97 14.91 8 56 4820 3354 1160 25.42 2702 5194 1209 15.39
29 36 12 39.44 12.59 7 41 3563 2555 1105 42.03 2032 3967 1147 15.42
30 51 13 22.39 12.92 7 46 5432 3471 911 24.57 2816 5432 944 15.48
31 37 13 34.07 13.30 7 47 4698 3128 1139 36.08 2508 4860 1198 16.03
32 43 11 38.81 8.42 6 51 4675 3492 1252 49.79 2816 5409 1314 16.58
33 35 12 27.12 15.99 8 57 5232 3631 1257 27.85 2933 5626 1314 16.89
34 31 14 54.70 14.88 6 42 5753 3429 1052 57.15 2800 5367 1094 17.89
35 29 14 34.86 17.41 8 48 6766 3924 1021 35.25 3240 6143 1070 17.91
36 38 12 27.82 14.81 7 54 5381 3763 1354 31.28 3047 5850 1427 18.23
37 43 14 108.83 15.74 7 48 6506 3882 1154 111.52 3181 6081 1222 18.64
38 49 14 44.45 18.85 8 46 6950 3945 998 44.87 3268 6199 1041 19.41
39 34 13 41.22 16.09 6 60 6187 4141 1433 44.03 3336 6430 1506 20.00
40 39 12 22.06 12.42 6 62 6067 4373 1532 37.51 3538 6786 1584 20.85

Av 37 11 23.25 10.77 7 43 3804 2691 946 25.54 2164 4172 987 12.95
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LPr-2 SDPr
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Figure 6.16: Solving time comparison for 40 problems with n = 10 and max ki = 4 jobs at
the time using Relaxation 6.4.6 (LPr-2) and Relaxation 6.4.7 (SDPr)
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Figure 6.17: Comparison of the number of variables between Relaxation 6.4.6 (LPr-2) and
Relaxation 6.4.7 (SDPr) with max ki = 4. Note that the scale of solving time is different
from the one indicating the number of variables
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LPr-2 SDPr
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Figure 6.18: Comparison of the number of constraints between Relaxation 6.4.6 (LPr-2) and
Relaxation 6.4.7 (SDPr) with max ki = 4. Note that the scale of solving time is different
from the one indicating the number of constraints
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Figure 6.19: Comparison of the number of iterations between Relaxation 6.4.6 (LPr-2) and
Relaxation 6.4.7 (SDPr) with max ki = 4. Note that the scale of solving time is different
from the one indicating the number of iterations
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Group 4: n = 10, max ki = 5

In order to solve the problems when the maximum number of available jobs at any time

is 5 and n = 10 the three relaxations, namely LPr, LPr-2 and SDPr are used. The

results are shown in Table 6.9. The solving time is graphically compared in Figure 6.20.

In Figure 6.21 another comparison different from the ones introduced before has been

made. The size of the set Ŝ and the length of the schedule m have been represented there

graphically.

From the results, with a maximum of 5 jobs at any time, the following is concluded.

(i) SDPr and LPr have consistently outperformed LPr-2 in 100% (40 out of 40) of the

problems. Despite of the fact that LPr performs better than SDPr in 90% (36 out

of 40) of the cases, the results obtained with both relaxations are similar.

(ii) The length of the schedule m is not directly related with solving time. As an example

for this group consider problem 2 where m = 59 which is solved faster than problem

36 where m = 34.

(iii) The solving time increases as the value of |Ŝ| increases. The value for |Ŝ| varies

from 12 to 20 for this particular set of problems.
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Table 6.9: Solving time comparison for 40 problems with n = 10 and max ki = 5 jobs at the
time using Relaxations 6.4.5(LPr), 6.4.6 (LPr-2) and 6.4.7 (SDPr)

Largest subproblem Main problem

No max ki m |Ŝ| Time (s)
ET Nodes

Time (s)
Gap

LPr LPr-2 SDPr LPr LPr-2 SDPr

1 5 48 12 13.12 35.32 12.69 7 33 13.13 35.35 12.71 -
2 5 59 13 10.52 27.01 13.82 7 32 11.00 27.36 14.22 -
3 5 49 13 8.51 47.61 11.75 7 41 12.38 51.11 15.98 -
4 5 57 12 20.19 35.86 16.66 7 63 20.70 36.25 17.16 -
5 5 40 12 22.07 31.49 20.71 7 62 22.10 31.53 20.75 -
6 5 54 13 18.85 89.91 22.20 7 53 19.48 90.47 22.70 -
7 5 49 14 22.14 71.17 24.14 7 61 22.73 71.64 24.74 -
8 5 39 14 21.23 36.72 23.54 6 76 24.33 38.88 26.27 -
9 5 47 13 18.08 68.94 18.26 5 71 27.37 104.82 29.66 -
10 5 46 14 26.45 57.86 29.28 7 80 27.05 58.33 29.82 -
11 5 28 15 19.83 67.93 25.40 4 80 24.88 74.23 30.64 -
12 5 39 15 18.59 60.64 23.76 4 66 25.33 71.15 31.22 -
13 5 53 16 24.49 105.17 32.33 7 60 24.52 105.28 32.38 -
14 5 43 16 28.65 126.11 33.91 7 90 29.27 126.86 34.40 -
15 5 48 15 25.96 184.08 35.31 7 73 26.52 184.49 35.84 -
16 5 43 15 23.94 386.79 30.18 5 89 32.23 392.55 36.76 -
17 5 42 14 25.38 205.43 34.94 6 74 27.45 206.90 36.80 -
18 5 33 17 22.53 91.32 33.61 6 76 26.46 94.41 37.32 -
19 5 30 12 37.90 59.23 37.64 7 143 38.47 59.81 38.12 -
20 5 40 15 31.04 419.09 38.32 5 97 33.90 421.26 40.88 -
21 5 43 18 31.90 432.12 39.68 5 96 36.19 435.85 43.81 -
22 5 45 16 39.19 115.30 46.83 6 110 39.89 115.99 47.64 -
23 5 43 17 34.62 568.19 47.28 7 82 35.27 568.61 47.84 -
24 5 45 15 35.99 318.09 42.40 4 118 40.92 324.86 48.20 -
25 5 49 18 33.12 319.59 48.12 7 85 33.80 320.03 48.63 -
26 5 62 18 31.85 359.25 49.24 6 84 34.43 361.00 51.27 -
27 5 74 14 45.61 391.89 53.32 7 138 46.23 392.30 53.83 -
28 5 50 16 43.12 257.30 54.81 5 125 47.30 260.72 58.46 -
29 5 31 17 37.02 301.44 55.89 5 125 40.29 304.31 58.86 -
30 5 48 20 31.57 469.75 58.08 6 77 33.72 471.09 59.69 -
31 5 49 16 49.61 442.80 60.87 7 142 49.65 442.85 60.92 -
32 5 47 19 31.95 1120.46 54.21 5 93 38.94 1129.32 60.96 -
33 5 41 19 41.45 1145.71 67.01 6 96 42.72 1146.59 67.95 -
34 5 57 19 42.68 903.67 74.37 7 102 43.29 904.11 74.90 -
35 5 58 19 35.15 498.08 65.15 5 109 44.07 540.47 76.17 -
36 5 34 18 48.41 463.07 74.99 6 146 51.19 465.55 78.05 -
37 5 44 18 54.71 711.89 75.61 6 155 57.70 714.38 78.58 -
38 5 50 15 49.97 710.95 54.79 3 181 72.91 967.50 87.46 -
39 5 46 19 40.77 1528.39 90.83 7 85 41.39 1528.78 91.33 -
40 5 42 18 43.99 486.25 64.44 4 151 68.06 666.01 98.41 -

Av 5 46 16 31.05 343.80 42.41 6 93 34.68 358.58 46.53 -
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Figure 6.20: Solving time comparison for 40 problems with n = 10 and max ki = 5 jobs at
the time using Relaxations 6.4.5 (LPr), 6.4.6 (LPr-2) and 6.4.7 (SDPr)
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Figure 6.21: Comparison between m, |Ŝ| and solving time using Relaxations 6.4.5 (LPr), 6.4.6
(LPr-2) and 6.4.7 (SDPr) with max ki = 5. Note that the scale used for m, |Ŝ| and solving
time are all different
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Group 5: n = 10, max ki = 6

As in the previous case this group of problems is solved with the three relaxations gen-

erated. The results for n = 10 when the maximum number of available jobs is equal to

6 are presented in Table 6.10. The solving time is graphically compared in Figure 6.22.

The length of the schedule m and the size of the set Ŝ are graphically shown in Figure

6.23.

The following follows from the results.

(i) LPr outperforms in time LPr-2 and SDPr in 100% (40 out of 40) of the problems.

Therefore it is not practical to use LPr-2 any further. LPr and SDPr have, however,

comparable alike results.

(ii) The length of the schedule m is not directly related with solving time. See for

example problem 39 with m = 48 and problem 5 with m = 69. The former is solved

faster with any of the relaxations than the latter.

(iii) The solving time increases as the value of |Ŝ| increases. This tendency can be

observed in Figure 6.23. The values for |Ŝ| are between 15 and 28.
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Table 6.10: Solving time comparison for 40 problems with n = 10 and max ki = 6 jobs at the
time using Relaxations 6.4.5(LPr), 6.4.6 (LPr-2) and 6.4.7 (SDPr)

Largest subproblem Main problem

No max ki m |Ŝ| Time (s)
ET Nodes

Time (s)
Gap

LPr LPr-2 SDPr LPr LPr-2 SDPr

1 6 48 16 17.94 194.98 21.86 6 43 18.44 195.46 22.31 -
2 6 35 15 26.09 97.93 35.51 5 67 26.12 97.96 35.54 -
3 6 52 17 34.91 867.90 38.53 6 87 35.63 868.36 39.01 -
4 6 51 18 29.55 1032.03 42.60 6 68 29.58 1032.19 42.63 -
5 6 69 17 28.36 410.44 42.24 6 62 28.98 410.97 42.74 -
6 6 65 16 27.08 388.40 40.89 5 72 30.57 392.76 44.29 -
7 6 48 16 36.49 825.80 46.02 6 94 37.10 826.72 46.56 -
8 6 57 19 39.08 143.48 49.73 6 104 39.77 143.88 50.25 -
9 6 64 17 42.93 301.06 52.97 6 113 43.50 301.45 53.44 -
10 6 55 16 51.61 182.60 54.73 6 138 52.21 182.98 55.23 -
11 6 67 17 44.88 261.78 57.67 6 106 45.53 262.26 58.17 -
12 6 59 20 42.67 811.00 70.53 6 98 43.23 811.45 71.10 -
13 6 55 15 63.63 212.11 78.85 5 187 65.43 213.31 80.38 -
14 6 47 18 65.11 519.60 78.08 5 180 68.45 522.42 81.36 -
15 6 68 19 36.74 622.32 74.17 4 110 49.23 641.23 86.06 -
16 6 71 18 60.09 619.22 89.69 6 122 60.11 619.25 89.71 -
17 6 61 19 70.07 1965.99 104.87 6 164 70.64 1966.39 105.37 -
18 6 64 20 88.07 633.50 120.73 6 204 88.54 633.89 121.06 -
19 6 64 22 68.32 2598.33 124.34 5 150 71.00 2600.29 126.73 -
20 6 57 22 71.70 1703.67 129.42 6 145 71.72 1703.75 129.44 -
21 6 58 22 81.13 2568.66 136.97 6 185 81.71 2569.03 137.55 -
22 6 47 22 87.64 1718.65 148.05 5 229 90.50 1720.70 150.69 -
23 6 42 22 91.35 1243.35 141.62 4 237 102.55 1260.24 151.61 -
24 6 55 19 111.24 1435.67 156.72 4 270 113.65 1439.30 158.53 -
25 6 62 20 105.43 1634.71 164.95 6 233 105.97 1635.13 165.46 -
26 6 56 26 56.86 4900.30 166.61 5 104 57.66 4900.64 167.02 -
27 6 58 22 103.62 2649.65 179.46 6 241 104.26 2650.09 180.05 -
28 6 73 24 86.06 5974.88 180.03 6 164 86.69 5975.40 180.58 -
29 6 60 21 119.41 2988.16 182.73 6 280 119.43 2988.18 182.75 -
30 6 64 24 75.62 7443.68 202.97 6 141 75.68 7443.82 203.05 -
31 6 71 24 92.50 3041.39 198.43 4 182 97.58 3048.70 204.41 -
32 6 68 24 110.59 4525.69 215.22 6 224 111.24 4526.18 215.90 -
33 6 49 21 167.10 2794.23 216.03 6 413 167.79 2797.82 216.64 -
34 6 58 25 135.38 4757.38 255.38 5 302 138.08 4759.11 257.87 -
35 6 60 22 184.47 5339.82 294.67 6 441 185.44 5340.44 295.35 -
36 6 56 27 121.00 6198.33 304.39 4 257 133.99 6242.45 322.70 -
37 6 70 23 191.23 3800.04 335.41 6 443 191.37 3800.25 335.67 -
38 6 56 25 197.94 9786.92 323.73 6 453 197.98 9786.93 323.88 -
39 6 48 23 187.97 18783.18 353.02 6 417 190.31 18784.15 355.23 -
40 6 62 28 207.07 30660.67 553.27 5 383 214.59 30670.31 555.60 -

Av 6 58 21 86.47 3415.94 151.65 5 198 88.56 3419.15 153.62 -

137



1 | rj , pmtn |
∑

wjCj

6.5. Quality of the relaxations and the branch and bound algorithm

LPr LPr-2 SDPr

Time (000s) max ki = 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

4

8

12

16

20

24

28

32

Figure 6.22: Solving time comparison for 40 problems with n = 10 and max ki = 6 jobs at
the time using Relaxations 6.4.5 (LPr), 6.4.6 (LPr-2) and 6.4.7 (SDPr)
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Figure 6.23: Comparison between m, |Ŝ| and solving time using Relaxations 6.4.5 (LPr), 6.4.6
(LPr-2) and 6.4.7 (SDPr) with max ki = 6. Note that the scale used for m, |Ŝ| and solving
time are all different
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Group 6: n = 10, max ki = 7

This group of problems with n = 10 when the maximum number of available jobs is equal

to 7 is solved using relaxations LPr and SDPr only. The results are presented in Table

6.11. The solving time is graphically represented in Figure 6.24. The values of m and |Ŝ|

are shown in Figure 6.25.

From the results the following is highlighted.

(i) Using relaxation LPr the problems with max ki = 7 are solved in average under 300

seconds. On the other hand using SDPr the average is under 700 seconds.

(ii) If |Ŝ| 6 20 a solution is obtained under 110 seconds using LPr and under 141 seconds

using SDPr. When |Ŝ| 6 30 the problems are solved in under 400 seconds using

LPr. Whereas using SDPr the same type of problems are solved under 1300 seconds.

When |Ŝ| > 30 then the solving time can vary depending on the characteristics of

the problem. Observe for example that problems 34 and 39 have both the same

|Ŝ| but their solving time is almost more than double using LPr and less than that

amount using SDPr.

(iii) Similarly to previous cases, the length of the schedule m is not directly related with

the solving time reported by the algorithm.
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Table 6.11: Solving time for 40 problems with n = 10 and max ki = 7 jobs at the time using
Relaxation 6.4.5 (LPr) and 6.4.7 (SDPr)

Largest subproblem Main problem

No max ki m |Ŝ| Time (s)
ET Nodes

Time(s)
Gap

LPr SDPr LPr SDPr

1 7 61 18 43.29 53.47 3 109 46.14 55.57 -
2 7 92 19 70.03 94.94 5 137 70.62 95.46 -
3 7 45 20 54.02 95.60 4 307 54.03 95.62 -
4 7 52 20 115.33 137.11 5 281 116.70 137.61 -
5 7 69 20 111.79 140.64 5 253 111.88 140.74 -
6 7 76 22 62.69 158.30 5 119 63.37 158.81 -
7 7 74 24 76.77 163.65 4 134 80.08 166.56 -
8 7 61 21 181.76 192.72 4 431 185.99 196.29 -
9 7 84 22 148.58 202.71 4 295 152.69 205.83 -
10 7 79 23 57.30 207.53 4 87 59.01 208.78 -
11 7 83 23 128.90 217.39 5 234 129.49 217.88 -
12 7 71 21 135.84 231.05 5 262 135.87 231.07 -
13 7 72 27 85.96 239.17 5 142 86.74 239.71 -
14 7 64 24 127.97 241.33 5 252 128.06 241.40 -
15 7 45 21 178.30 300.07 5 436 179.14 300.75 -
16 7 84 27 134.00 301.80 5 249 134.75 302.45 -
17 7 73 24 169.27 302.70 5 341 169.92 303.22 -
18 7 84 25 113.89 322.55 5 209 113.92 322.67 -
19 7 69 25 157.72 338.25 5 308 157.81 338.34 -
20 7 46 26 153.07 343.86 5 289 153.16 343.92 -
21 7 65 23 232.06 346.54 5 460 232.83 347.36 -
22 7 65 26 168.85 371.32 4 300 169.01 371.47 -
23 7 85 22 158.19 372.70 4 245 158.21 372.72 -
24 7 77 26 151.18 380.39 5 272 151.92 381.14 -
25 7 88 26 178.45 385.40 4 307 179.07 386.10 -
26 7 64 24 271.20 505.49 5 550 271.63 505.86 -
27 7 86 28 237.23 569.47 4 416 240.08 570.84 -
28 7 71 35 146.25 631.92 5 201 146.96 632.56 -
29 7 98 25 309.39 730.80 5 536 309.97 731.40 -
30 7 65 20 550.96 737.73 5 1309 551.01 737.83 -
31 7 61 29 390.91 852.59 5 699 390.94 852.62 -
32 7 66 31 333.05 1175.10 5 593 334.35 1176.46 -
33 7 70 30 400.85 1259.24 4 721 402.38 1260.56 -
34 7 74 34 376.93 1500.25 5 556 376.96 1500.27 -
35 7 61 32 801.40 1613.76 5 1567 805.52 1617.58 -
36 7 79 33 477.79 1643.96 5 718 477.81 1643.99 -
37 7 62 31 689.04 1978.49 5 1123 692.48 1982.07 -
38 7 63 37 760.19 2392.31 5 1324 760.21 2392.42 -
39 7 89 34 771.57 2840.75 5 1179 772.19 2841.35 -
40 7 69 35 1114.99 3305.57 5 2025 1115.01 3305.60 -

Av 7 71 26 270.67 696.97 5 499 271.70 697.82 -
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Figure 6.24: Solving time comparison for 40 problems with n = 10 and max ki = 7 jobs at
the time using Relaxation 6.4.5 (LPr) and Relaxation 6.4.7 (SDPr)
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Figure 6.25: Comparison between m, |Ŝ| and solving time using Relaxation 6.4.5 (LPr) and
Relaxation 6.4.7 (SDPr) with max ki = 7. Note that the scale used for m, |Ŝ| and solving
time are all different
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Group 7: n = 10, max ki = 8

The results for n = 10 when the maximum number of available jobs is equal to 8 are

presented in Table 6.12. For this case relaxation SDPr was used. After solving the

problems with max ki = 8 the following is concluded.

(i) When max ki = 8 and Ŝ 6 30 a solution for the problem is likely to be found under

1000 seconds using SDPr and this may be improved if LPr is used instead.

(ii) There is no guarantee of always finding a solution in an efficient time if max ki = 8.

(iii) The solving time increases with the size of the set Ŝ. Also, it may be dramatically

affected when |Ŝ| > 30. See for example problem 18 with |Ŝ| = 31 which is solved

in 1147 seconds and in contrast problem 30 with |Ŝ| = 33 takes 5024 seconds.

(iv) The average time for solving problems with n = 10 and max ki = 8 is 1776 seconds.

(v) Numerical experiments can be carried out to determine solving times using LPr.
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Table 6.12: Solving time comparison for 40 problems with n = 10 and max ki = 8 jobs at the
time using Relaxation 6.4.7 (SDPr)

Largest subproblem Main problem

No max ki m |Ŝ| SDPr
ET Nodes

SDPr
Gap

(s) (s)

1 8 84 21 204.00 4 279 204.13 -
2 8 85 24 286.87 4 285 287.08 -
3 8 69 22 364.55 6 689 372.23 -
4 8 74 23 389.90 4 531 390.64 -
5 8 55 22 401.94 3 432 402.19 -
6 8 72 27 454.79 3 333 454.81 -
7 8 54 25 487.04 4 910 487.67 -
8 8 89 27 606.65 3 714 607.44 -
9 8 73 30 627.25 4 323 627.52 -
10 8 95 26 633.25 3 376 633.46 -
11 8 67 27 670.18 4 664 671.12 -
12 8 72 26 718.04 3 426 718.84 -
13 8 99 31 733.86 4 214 734.01 -
14 8 61 26 956.01 3 604 956.03 -
15 8 81 30 1001.32 4 660 1001.34 -
16 8 80 29 1028.77 3 669 1028.80 -
17 8 102 29 1061.39 3 639 1061.42 -
18 8 98 33 1146.83 3 544 1151.64 -
19 8 71 28 1264.43 4 3965 1264.53 -
20 8 68 31 1333.14 3 897 1333.62 -
21 8 60 29 1571.15 4 1001 1573.61 -
22 8 62 35 1666.87 4 696 1668.69 -
23 8 79 31 1905.96 4 2053 1914.38 -
24 8 74 28 1733.01 4 1722 1733.04 -
25 8 89 33 2246.92 4 893 2246.94 -
26 8 95 39 2675.16 4 793 2675.19 -
27 8 79 37 2781.97 4 825 2785.53 -
28 8 76 37 4221.98 3 939 4225.34 -
29 8 66 35 4817.17 4 2413 4851.10 -
30 8 89 33 5023.78 4 2522 5024.25 -
31 8 87 43 6724.72 4 1666 6755.86 -
32 8 79 38 7099.21 3 3186 7099.24 -

Av 8 78 30 1776.19 4 1027 1779.43 -
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Group 8: n = 10, max ki = 9, 10

The results for n = 10 when the maximum number of available jobs is 9 are presented in

Table 6.13 and when the maximum number is 10 are in Table 6.14. This cases were both

solved using relaxation SDPr only.

From the results it is easy to see the following.

(i) When max ki = 9 and Ŝ 6 35 the problems are likely to be solved in under an

hour. However this is not guaranteed since a slight change in the size of the set Ŝ

may increase the solving time drastically. The latter can be seen in the results of

problem 7 in Table 6.13 which with |Ŝ| = 37 was solved in 13967 seconds which is

almost 4 times bigger than the one reported for problem 6 with Ŝ = 36 and 3683

seconds.

(ii) When max ki = 10 if the conditions of the problem are favourable, i.e |Ŝ| 6 32 one

could expect to solve the problem under one hour. In general problems with 10

available jobs at any time for the length of the schedule cannot be solved using the

algorithm in an efficient time.
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Table 6.13: Solving time comparison for 40 problems with n = 10 and max ki = 9 jobs at the
time using Relaxation 6.4.7 (SDPr)

Largest subproblem Main problem

No max ki m |Ŝ| SDPr
ET Nodes

SDPr
Gap

(s) (s)

1 9 89 29 1226.67 2 1155 1226.68 -
2 9 92 34 1795.03 2 1284 1795.06 -
3 9 80 29 2301.61 2 1640 2301.62 -
4 9 84 34 3425.16 2 2072 3425.18 -
5 9 95 35 3440.17 2 1722 3440.19 -
6 9 102 36 3682.91 2 1424 3682.93 -
7 9 107 37 13966.94 2 3850 13966.96 -

Av 9 93 33 4262.64 2 1878 4262.66 -

Table 6.14: Solving time comparison for 40 problems with n = 10 and max ki = 10 jobs at
the time using Relaxation 6.4.7 (SDPr)

Largest subproblem Main problem

No max ki m |Ŝ| SDPr
ET Nodes

SDPr
Gap

(s) (s)

1 10 99 32 2763.28 1 1838 2763.28 -
2 10 124 39 7208.63 2 2678 7208.67 -
3 10 124 51 59473.31 2 5411 59473.36 -

Av 10 116 41 23148.41 2 3309 23148.44 -
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Group 9: n = 70, max ki ∈ {2, 3, 4, 5, 6, 7}

This group was created in order to determine the effectiveness of the algorithm in problems

with any number of jobs n. Using the relaxations that have shown better performance in

the numerical experiments with n = 10, namely LPr and SDPr, the algorithm was used

to solve 40 instances, randomly generated, with n = 70 and up to 8 jobs at the time. The

results are shown in Table 6.15.

From the results the following information is gathered.

(i) In average the problems with pj ∈ {5, 10, 15} rj ∈ [0, (n−6)27) and wj ∈ [0, 60) can

be solved in 170 seconds using LPr and 298 using SDPr.

(ii) The branch and bound algorithm presented here can solve efficiently instances of

the scheduling problem 1 | rj, pmtn |
∑
wjCj when a maximum of 7 jobs is available

at a particular time and |Ŝ| is less than or equal to 35.

(iii) Numerical experiments suggest that if the conditions for the problem are favourable

instances of this scheduling problem are solvable in and efficient time.
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Table 6.15: Solving time comparison for 40 problems with n = 70 using Algorithm 6.4.11 and
Relaxations 6.4.5 (LPr) and 6.4.7 (SDPr)

Largest subproblem Main problem

No max ki m |Ŝ| Time (s)
ET Nodes

Time(s)
Gap

LPr SDPr LPr SDPr

1 4 33 10 6.75 7.52 67 116 14.76 14.29 -
2 3 21 7 2.78 2.99 63 133 21.25 20.67 -
3 4 50 10 7.17 6.98 62 149 26.14 22.78 -
4 4 28 10 9.95 10.19 61 158 30.55 25.78 -
5 4 25 9 9.96 8.94 56 212 47.05 39.02 -
6 5 41 16 15.34 22.54 62 169 38.39 42.57 -
7 5 57 15 28.74 30.72 56 258 71.46 75.27 -
8 6 66 19 40.10 61.23 62 207 58.30 78.16 -
9 5 50 12 24.20 32.06 58 253 64.93 78.72 -
10 4 43 13 13.86 14.65 49 302 83.44 81.63 -
11 5 40 14 34.22 35.85 56 299 82.35 89.40 -
12 5 49 20 43.01 71.41 62 230 63.43 90.33 -
13 6 55 15 25.00 35.44 56 287 77.44 93.60 -
14 6 60 15 55.35 72.68 59 306 88.11 104.15 -
15 5 48 20 44.00 70.77 60 261 76.12 105.48 -
16 5 38 16 31.18 40.07 54 316 107.81 124.30 -
17 6 71 22 52.70 112.43 59 237 79.67 137.48 -
18 6 64 17 60.17 61.64 54 388 131.41 144.73 -
19 6 54 22 37.07 75.67 55 287 98.39 153.14 -
20 5 41 18 56.72 79.89 55 388 130.88 168.62 -
21 5 61 18 58.31 90.83 54 433 137.62 175.93 -
22 6 55 20 115.15 195.14 56 458 150.96 230.11 -
23 6 63 19 67.06 99.02 49 488 174.13 238.93 -
24 6 47 21 78.17 172.77 56 347 135.27 240.58 -
25 7 54 19 125.34 168.04 52 485 181.58 242.08 -
26 7 70 22 114.86 206.95 53 424 161.33 252.17 -
27 6 48 28 74.72 218.40 56 327 118.23 265.77 -
28 6 62 23 90.87 160.87 55 464 173.81 269.44 -
29 7 78 24 97.27 224.92 59 334 149.82 295.23 -
30 6 81 24 180.68 288.69 58 545 220.96 329.77 -
31 6 60 22 178.21 344.80 60 491 198.03 364.10 -
32 7 89 24 150.46 216.96 50 464 328.35 419.39 -
33 7 64 20 223.70 317.62 58 739 293.48 437.87 -
34 7 71 25 116.01 346.79 52 491 210.65 473.50 -
35 6 63 26 167.75 481.85 56 481 204.33 532.07 -
36 6 61 30 149.13 461.07 51 530 252.42 588.89 -
37 7 69 28 104.43 289.33 51 796 361.81 694.48 -
38 8 76 32 424.37 914.49 56 935 485.36 989.73 -
39 7 65 27 649.61 1035.40 49 1796 824.81 1410.20 -
40 7 60 32 556.04 1668.97 55 1429 647.77 1803.16 -

Av 6 56 20 108.01 218.91 56 435 170.07 298.45 -
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Table 6.16: Average results for 282 instances of the scheduling problem with n = 10, pj ∈
{5, 10, 15}, rj ∈ [0, (n − 6)20), wj ∈ [0, 60) using Algorithm 6.4.8 and Relaxations 6.4.5
(LPr), 6.4.6 (LPr-2) and 6.4.7 (SDPr)

Largest subproblem Main problem

T maxki m |Ŝ| Time (s)
ET Nodes

Time (s)
Gap

LPr LPr-2 SDPr LPr LPr SDPr

40 2 15 3 - 0.43 0.49 10 15 - 1.09 1.20 -
40 3 23 7 - 2.35 2.65 8 24 - 3.86 4.38 -
40 4 37 11 - 23.25 10.77 7 43 - 25.54 12.95 -
40 5 46 16 31.05 343.80 42.41 6 93 34.68 358.58 46.53 -
40 6 58 21 86.47 3415.94 151.65 5 198 88.56 3419.15 153.62 -
40 7 52 26 270.67 - 696.97 5 499 271.70 - 697.82 -
32 8 78 30 - - 1776.19 4 1027 - - 1779.43 -
7 9 93 33 - - 4262.64 2 1878 - - 4262.66 -
3 10 116 41 - - 23148.41 2 3309 - - 23148.44 -

Summary of results

In Table 6.16 the average results when using the branch and bound algorithm presented

in 6.4.8 with relaxations 6.4.5 (LPr), 6.4.6 (LPr-2) and 6.4.7 (SDPr), and the different

groups of problems solved when n = 10, are summarised.

The relation between the maximum number of available jobs at any time, max ki,

the size of the set Ŝ and the solving time using Algorithm 6.4.8 is categorised in Table

6.17. The results presented in the latter table consider the ones reported for the largest

subproblem for each of the cases and no the total for the main problem. As determined

by the numerical experiments these results may be improved using different relaxations

and appropriate solvers for the type of relaxation.
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Table 6.17: Relation between max ki, |Ŝ| and solving time using Algorithm 6.4.8

max ki |Ŝ| Solving time
(seconds)

2 up to 3∗ less than 1

3 up to 8∗ less than 2

4
up to 10 less than 10
up to 14 less than 20

5
up to 13 less than 20
up to 15 less than 50
up to 20 less than 100

6
up to 15 less than 80
up to 20 less than 165
up to 28 less than 555

7
up to 19 less than 100
up to 30 less than 1259
up to 35 less than 3600

8
up to 25 less than 500
up to 30 less than 1100
up to 38 less than 7100

9,10
up to 30 less than 3600

more than 30 depends on the problem

∗Maximum possible size

In summary, the main characteristics of the branch and bound algorithm presented in

6.4.8 for the scheduling problem 1 | rj, pmtn |
∑
wjCj are:

(i) Overall performance: The algorithm solves efficiently problems with any number

of jobs n provided the maximum number of available jobs at any time is 7 and

|Ŝ| 6 30.

(ii) Customisation: The branch and bound algorithm provided here analyses the main

characteristics of the problem and splits the problem into appropriate subproblems.

For each subproblem a new enumeration tree is developed and the algorithm iden-

tifies those nodes and branches that are worth exploring. This is determined by
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selecting those times in the considered interval at which a new job has been release

into the system or when the machine is free to process another job.

(iii) Calculating lower bounds: The main advantage of the branch and bound algorithm

is its customised designed. Therefore different relaxations can be used to calculate

the lower bounds. In this study three relaxations where provided. Relaxation 6.4.5

(LPr) using SeDuMi (Sturm (1999)) works better than Relaxation 6.4.7 (SDPr)

using PENBMI (Kočvara and Stingl (2003)), however both solve any instance of

the problem in an efficient time with a maximum of 7 jobs at any time and the size

of the set Ŝ is less than or equal to 30. Relaxation 6.4.6 (LPr-2) with PENBMI

(Kočvara and Stingl (2003)) shows good performance with a maximum of 3 jobs at

any time, but for any instance with max ki > 3 other relaxations should be used.

(iv) Number of nodes: The maximum number of explored nodes per tree is given by (see

Lemma 6.4.9) ∑
i∈|Ŝ|

(
hik

ki−1
i + (1− hi)

)
and it is independent of the relaxation to calculate the lower bounds used.

(v) Number of variables: Depending on the relaxation used the number of variables

may be increased or decreased. These fluctuations are in turn reflected in overall

performance.

(vi) Number of constraints: The number of constraints differs in accordance with the

relaxation used. Depending on the sizes of the matrix constraints the performance

can be severely affected.

(vii) Number of iterations: The number of iterations is determined by the algorithm and

it is independent of the relaxation used.
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(viii) Length of the schedule: There is no correlation between the length of the schedule

m and the solving time.

(ix) |Ŝ| and solving time: There is a correlation between the size of Ŝ and the solving

time. Such correlation is given in Table 6.17.

(x) Time-indexed variables: The variables for the problem are time-indexed but with an

important characteristic. Instead of being defined for every consecutive time i they

are defined only for those times that are worth exploring (see Theorem 6.4.3). This

characteristic makes it faster when compared with any other algorithm indexing the

variables to all the consecutive values in a time interval.

6.6 Conclusion and future work

Hitherto the best approximation algorithms developed for the scheduling problem rep-

resented as 1 | rj, pmtn |
∑
wjCj have been provided by Schulz and Skutella (2002) and

Afrati et al. (1999). In the former case a solution obtained with their approximation algo-

rithm is guaranteed to be less than 4
3

(1.33) times the optimal solution. Afrati et al. (1999)

provided another approximation algorithm that finds a solution in O(2poly(1/ε)n+n log n)

time.

The main contribution of this Chapter is the development of a customised branch and

bound algorithm. Using a linear programming and a semidefinite programming based

approach, three relaxations to calculate the lower bounds of the algorithm are developed.

The first relaxation consist in a traditional linear programming relaxation presented in

Problem 6.4.5 (LPr). A second relaxation which was shown to be equivalent to a linear

programming relaxation was given in Problem 6.4.6 (LPr-2). A third relaxation, based

on semidefinite programming presented in Problem 6.4.7 (SDPr) was also provided.
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Relaxation LPr and SDPr outperform the other LPr-2 when used to calculate the

lower bounds for the branch and bound algorithm. LPr-2 contains matrix variables Y(j)

which are significantly bigger when compared with variables Y(ij) in SDPr which are only

2× 2 matrices. Due to this characteristic the results reported with LPr-2 are worse than

the other two. LPr-2 works well with up to 3 maximum number of available jobs at any

time. This result may be improved if a specialised solver for linear programming, IBM

ILOG CPLEX (2009) for instance, is used. However it is important to notice that the

number of variables using this relaxations grows with an increase in the maximum number

of available jobs at any time.

Another aspect of the customised branch and bound algorithm presented here, is that

it partitions the problem appropriately and it creates new enumeration trees only when

required. Additionally, each enumeration tree grows only in those branches that are worth

exploring. This characteristic allows the algorithm to obtain solutions in an efficient time

for problems with any number of jobs provided the maximum number at any time is 7.

The maximum number of nodes explored per enumeration tree using the algorithm is

(recall Lemma 6.4.9) ∑
i∈|Ŝ|

(
hik

ki−1
i + (1− hi)

)
, (6.16)

where ki denotes the number of available jobs at the time i and hi indicates when a job

has been release at the time i, when the machine is free to process another job or when

there is more than one job available. Observe that equation (6.16) is independent of the

the total number of jobs n. Thus, the complexity depends on the partitions made for the

whole problem.

Numerical experiments indicated that the branch and bound customised algorithm

finds a solution in an efficient time suggesting it could be for those instances polynomial

for any size of the problem provided that the maximum number of jobs at a particular
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time, ki, is less than or equal to 7 and also |Ŝ| 6 30.

Previous results have provided solutions whose complexity increases directly with the

size n of the problem. The results presented here improve those previously reported in

the literature in that the complexity is independent of n.

Further experiments can be carried out using LPr for cases with max ki > 8. We

have shown the advantages of using customised branch and bound algorithms with so-

phisticated relaxations. Similar relaxations can be developed to formulate and explore

the solutions of other scheduling problems.
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CHAPTER 7

CONCLUSIONS

In this project two scheduling problems have been addressed. Using convex conic relax-

ations important results for both cases were obtained.

7.1 1 | pj = p, rj |
∑
wjTj

The complexity of this problem was still unknown. At first we modelled the problem

as an integer program and we study its linear program relaxation. We showed that the

constraint matrix is totally unimodular and as a result the linear program relaxation have

an integer optimal solution thus solving the integer program to optimality. We conclude

that the problem can be solved to optimality in polynomial time. We also studied the case

when the schedule has a minimum completion time, or makespan. Following a similar

methodology of the above we showed that the constraint matrix of the linear program

relaxation for this case is also totally unimodular and as such it can also be solved to

optimality in polynomial time.
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7.2 1 | rj, pmtn |
∑
wjCj

For this NP-hard problem an efficient customised branch and bound algorithm is pro-

posed. We developed three relaxations based on linear and semidefinite programming.

Since we are using an enumerative algorithm the solution is guarantee to be optimal.

We have proven the advantage of using the proposed customised branch algorithm

which by taking advantage of the characteristics of this scheduling problem partitions the

problem creating enumeration trees only when required and also identifies those branches

and nodes of each tree that are worth exploring. The latter is decided by determining

those times at which a job arrives or when the machine is free to process another job.

Numerical experiments have shown that the branch and bound algorithm presented here

can be used to solve efficiently instances of any size of the problem provided that two

conditions are satisfied, no more than 7 jobs are available at a particular time and the set

for the time-indexed variables is less than 30.
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APPENDIX A

MATRIX ANALYSIS

A.1 Eigenvalues and eigenvectors

An eigenvector of a n× n matrix A is a nonzero vector x which satisfies

Ax = λx, x 6= 0 (A.1)

where λ is a scalar and an eigenvalue of A. The relation

(λI− A)x = 0, x 6= 0

may be used to find the values of λ and x, where I denotes the identity matrix. Since

x 6= 0 then in order to satisfy (A.1) the matrix (λI− A) has to be singular, i.e.

det (λI− A) = 0. (A.2)
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The solution of (A.2) gives a polynomial in λ which is known as the characteristic poly-

nomial. Consequently, the roots of the polynomial (A.2) are the eigenvalues of A, denoted

as λ1, . . . , λn.

Definition A.1.1. (Elementary symmetric polynomials) Given λ1, . . . , λn, the elemen-

tary symmetric polynomials are defined as

ek(λ1, . . . , λn) =
∑

16i1<...<ik6n

∏
λij , k = 0, 1, . . . , n (A.3)

or

e0(λ1, . . . , λn) = 1

e1(λ1, . . . , λn) = λ1 + . . .+ λn

e2(λ1, . . . , λn) = λ1λ2 + λ1λ3 + . . .+ λn−2λn + λn−1λn

e3(λ1, . . . , λn) = λ1λ2λ3 + λ1λ2λ4 + . . .+ λn−3λn−1λn + λn−2λn−1λn

...
...

...

en(λ1, . . . , λn) = λ1 . . . λn.

Definition A.1.2. (Principal submatrix) Let A = (aij) be an n × n matrix. Then a

principal submatrix of A is any k×k matrix, 1 6 k 6 n, obtained by removing n−k rows

and columns of A, such that if the ith row is removed then the ith column is removed

too.
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Definition A.1.3. (Principal minor) A principal minor is the determinant of a given

principal submatrix.

Definition A.1.4. (Sum of principal minors) Let Ek(A) denote the sum of the k × k

principal minors of A, i.e.

Ek(A) =
∑

i1<...<ik

∆(i1, . . . , ik) k = 1, . . . , n (A.4)

where ∆(i1, . . . , ik) is the determinant of the matrix composed by the intersection of rows

i1, . . . , ik and columns i1, . . . , ik.

Observe that in (A.4) if k = 1 then we have n, 1×1 principal submatrices corresponding

to each element in the diagonal of A, whose determinant is the element itself, and thus

E1(A) =
∑n

i=1 aii.

Definition A.1.5. (Trace of a matrix) The trace of a matrix A, denoted by tr(A), is

given by

tr(A) = a11 + a22 + . . .+ ann. (A.5)

Remark E1(A) = tr(A).

In the same way, if k = n then we have 1, n× n matrix which is A and thus En(A) =

det(A).
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Lemma A.1.6. Let A = (aij) be an n×n matrix. Let the entries aij be either constant

or linear in λ. Then, for all m 6 n, if the matrix has m entries with nonzero λ

coefficients and no two of these entries lie in the same row or same column. Then the

characteristic polynomial det(λI− A) has degree m, i.e.

det(λI− A) = λm + c1λ
m−1 + c2λ

m−2 + . . .+ cn. (A.6)

Proof. We will show this by induction on m. As an induction hypothesis suppose we have

a n×n matrix in which exactly m entries have nonzero λ coefficients and no two of these

entries lie in the same row or same column. We say that such entries are independent.

Then we claim that the determinant of such matrix is a polynomial in λ of degree m. If

m = 0 then the result is trivial. Let us assume that the hypothesis holds for some k = m−1

and so we need to check that it works for k = m. Assuming that 1 6 m 6 n − 1 and

using Laplace expansion1 with a row i containing a λ then every submatrix resulting by

deleting the row i and a column j of the original matrix has at most l 6 m − 1 entries

with λ coefficients. Thus the determinant of every resulting submatrix in the expansion

of row i is a polynomial of degree less than or equal to m − 1. However if we consider

an entry with a λ, since such entries are independent, the submatrix has l = m − 1, λ

entries, and so the determinant of such submatrix is a polynomial of degree m − 1. In

this case when multiplied by the entry in the ith row that includes a λ the polynomial

will have a degree equal to m, i.e. Using Laplace expansion by the ith row containing one

1Given an n × n matrix A, the determinant can be calculated expanding by cofactors on row i or
column j, i.e.

det A = ai1 · Bi1 + ai2 · Bi2 + · · ·+ ain · Bin

= a1j · B1j + a2j · B2j + · · ·+ anj · Bnj .

With Bij = (−1)i+j |Mij | and Mij is the matrix obtained by deleting the ith row and jth column of A.
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independent λ we get

det(λI− A) = p
(m)
1 (λ) + p

(l2)
2 (λ) + . . .+ p(ln)

n (λ)

= p(m)(λ)

where l 6 m − 1 and p(s)(λ) indicates a polynomial in λ of degree s. Therefore given a

matrix with m independent λ coefficients then the determinant of such matrix is polyno-

mial in λ of degree m.

Lemma A.1.7. Let A be an n×n matrix. Then the characteristic polynomial det(λI−

A) has degree n, i.e.

det(λI− A) = λn + c1λ
n−1 + c2λ

n−2 + . . .+ cn. (A.7)

Proof. The det(λI− A) has the form



−a11 + λ −a12 . . . −a1n

−a21 −a22 + λ . . . −a2n

...
...

. . .
...

−an1 −an2 . . . −ann + λ


.

Observe that the matrix has n independent λ entries. By Lemma A.1.6 with m = n the

characteristic polynomial in λ has degree n as claimed.
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Now we are able to introduce a relation between the elementary symmetric polynomials

ek(λ1, . . . , λn) and the sum of principal minors Ek(A).

Theorem A.1.8. Let λ1, . . . , λn be the eigenvalues of an n × n matrix A with multi-

plicity. Then

ek(λ1, . . . , λn) = Ek(A), k = 1, . . . , n. (A.8)

Proof. Considering the roots of the polynomial in (A.7) we have the expression

(λ− λ1)(λ− λ2) . . . (λ− λn). (A.9)

Specifically, expanding (A.9) we get

(λ− λ1)(λ− λ2) . . . (λ− λn) = λn

− (λ1 + . . .+ λn)λn−1

+ (λ1λ2 + λ1λ3 + . . .+ λn−2λn + λn−1λn)λn−2

− . . .

+ (−1)n(λ1 . . . λn).

(A.10)

Observe that in (A.10) every coefficient of λn−k corresponds to ek(λ1, . . . , λn) for k =
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1, . . . , n defined in (A.3). Therefore (A.10) can be written as

(λ− λ1)(λ− λ2) . . . (λ− λn) = λn

− e1(λ1, . . . , λn)λn−1

+ e2(λ1, . . . , λn)λn−2

− · · ·

+ (−1)nen(λ1, . . . , λn).

(A.11)

On the other hand, by Lemma A.1.7

det(λI− A) = λn + c1λ
n−1 + c2λ

n−2 + . . .+ cn.

We have seen that

det(λI− A) =



−a11 + λ −a12 . . . −a1n

−a21 −a22 + λ . . . −a2n

...
...

. . .
...

−an1 −an2 . . . −ann + λ


.

Without loss of generality let us identify the λ in the ith row with λi, for i = 1, . . . , n,

such that



−a11 + λ1 −a12 . . . −a1n

−a21 −a22 + λ2 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . −ann + λn


.
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We claim that the term in λi1 . . . λik with k 6 n is equal to

det{. . . {{{−A}i1}i2} . . .}ik (A.12)

where {B}l indicates the resultant matrix after deleting the row l and the column l

from B. Let (A.12) be our induction hypothesis on k. For k = 0 the hypothesis holds.

Assume that the hypothesis is true for k−1 then we need to show that it also holds for k.

Expanding around row ik the term in λi1 . . . λik in λI−A is equal to the term in λi1 . . . λik−1

in {λI − A}ik . By the induction hypothesis this is equal to det{. . . {{{−A}ik}i1} . . .}ik−1

which is det{. . . {{{−A}i1}i2} . . .}ik . Then (A.12) holds. Let d(i1, . . . , ik) be the term

with λi1 . . . λik . Now to know the coefficient of a term with λk we need to sum up all the

terms λi1 . . . λik . Thus, using (A.12) we have

∑
i1<...<ik

d(i1, . . . , ik) =
∑
i1,...,ik

det{. . . {{{−A}i1}i2} . . .}ik .

Let d(i1 < . . . < ik) = d(S) where S = {i1, . . . , ik}, and similarly let ∆(i1, . . . , ik) = ∆(S)

Then d(S) = ∆ ([n]\S). Let us define dk as the term of λk given by

dk =
∑

i1<...<ik

d(i1, . . . , ik)

then

dk =
∑

j1<...<jn−k

∆(j1, . . . , jn−k). (A.13)

Thus since the term in λk is given by equation (A.13) therefore the term in λn−k is given

by ∑
i1<...<ik

∆(i1, . . . , ik),
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and so

det(λI− A) = λn

−

(
n∑
j=1

∆(ij)

)
λn−1

+

(
n∑

ij<ik
j,k=1

∆(ij, ik)

)
λn−2

−

(
n∑

ij<ik<il
j,k,l=1

∆(ij, ik, il)

)
λn−3

+ · · ·

+ (−1)n det(A).

(A.14)

Which is equivalent to

det(λI− A) = λn

− E1(A)λn−1

+ E2(A)λn−2

− · · ·

+ (−1)nEn(A).

(A.15)

Consequently from (A.11) and (A.15) it follows that

ek(λ1, . . . , λn) = Ek(A), k = 1, . . . , n.

In particular the next two corollaries follow from Theorem A.1.8.
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Corollary A.1.9. Let λ1, . . . , λn be the eigenvalues of an n× n matrix A with multi-

plicity. Then

tr(A) =
n∑
i=1

λi. (A.16)

Proof. Using Theorem A.1.8 we know that ek(λ1, . . . , λn) = Ek(A) for k = 1, . . . , n. This

corollary corresponds to the particular case when k = 1.

Corollary A.1.10. Let λ1, . . . , λn be the eigenvalues of an n× n matrix A with mul-

tiplicity. Then

det(A) =
n∏
i=1

λi. (A.17)

Proof. From Theorem A.1.8 ek(λ1, . . . , λn) = Ek(A) for k = 1, . . . , n. This corollary

corresponds to the case when k = n.

A.2 Rank-nullity theorem

Definition A.2.1. (Basis) Let {v1, . . . ,vn} be n linearly independent vectors. Then a

basis will be formed by those n vectors if by taking linear combinations of them it is

possible to get every vector in the given vector space.
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Definition A.2.2. (Range and null space of vector spaces) Let A be an m × n matrix

representing a linear transformation from Fn to Fm. Then

(i) The range of A is
{
y ∈ Fm | Ax = y, for some x ∈ Fn

}
. The range is a subspace of

Fm (for a proof see Andrilli and Hecker (2003) page 259). The dimension (number

of linearly independent vectors needed to generate the subspace) of the range is

known as the rank of the matrix.

(ii) The null space of A is
{
x ∈ Fn | Ax = 0

}
. The null space is a subspace of Fn (for

a proof see Andrilli and Hecker (2003) page 259). The dimension of the null space

is known as nullity of the matrix.

Theorem A.2.3. (Rank-nullity) Let A be an m × n matrix. Then the rank and the

nullity of the matrix add up to the number of columns of the matrix, i.e.

rank(A) + nullity(A) = n.

Proof. Let v1,v2, . . . ,vn be the column vectors of the matrix A. Such columns vectors

may form a basis for the range if they are linearly independent, which may or may be

not the case. Let k 6 n be the maximum number of linearly independent columns of

A. We claim that those k vectors, without loss of generality denoted by {v1,v2, . . . ,vk},

form a basis for the range of A and rank(A) = k. To show that {v1,v2, . . . ,vk} is a basis

for the range we need to proof that every element in the range may be represented as a

linear combination of those k linearly independent vectors, i.e. those k vectors span the

range. The vector space Rn is equipped with the standard basis {e1, e2, . . . , en}, in which,
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for each i = 1, . . . , n, ei is a vector with 1 in the ith component and zeros in all the other

entries, then span{e1, e2, . . . , en} = Rn and

Aei = vi i = 1, . . . , n

and since matrix multiplications preserve linear combinations then

range(A) = span{Ae1,Ae2, . . . ,Aen} (A.18)

= span{v1,v2, . . . ,vn}.

Therefore the range of A is the set of linear combinations of the columns in A, Ob-

serve that v1,v2, . . . ,vk forms a maximal set of linearly independent vectors of A then

{vk+1,vk+2, . . . ,vn} depend on {v1,v2, . . . ,vk} and so for any column vector k < j 6 n

there exist coefficients αji such that

vj =
k∑
i=1

αjivi k < j 6 n.

Then vj ∈ span{v1,v2, . . . ,vk} for all j > k, and so

span{v1,v2, . . . ,vn} = span{v1,v2, . . . ,vk}. (A.19)

Therefore from equations (A.18) and (A.19)

range(A) = span{v1,v2, . . . ,vk}.

Thus {v1,v2, . . . ,vk} forms a basis for the range and so rank(A) = k. Now we need to

show that there exists a set {wk+1,wk+2, . . . ,wn} that forms a basis for the null space.
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Let

wj = ej −
k∑
i=1

αjiei k < j 6 n.

Observe that defined in this way each wj contains one ej and no other el for j, l > k.

Consequently the set of column vectors {wk+1,wk+2, . . . ,wn} is linearly independent and

indeed {e1, e2, . . . , ek,wk+1,wk+2, . . . ,wn}. is linearly independent and so forms a basis

for Rn. Now we have

A(wj) = Aej −
k∑
i=1

αjiAei, k < j 6 n,

= vj −
k∑
i=1

αjivi, k < j 6 n,

= vj − vj, k < j 6 n,

= 0,

and so Awj = 0 for j = k + 1, . . . , n. Thus

nullity(A) > n− k. (A.20)

Now we need to show that {wk+1,wk+2, . . . ,wn} spans the null space of A. We know

that {e1, e2, . . . , ek,wk+1,wk+2, . . . ,wn} is a basis for Fn. Suppose x is in the null space

of A and suppose

x =
k∑
i=1

βiei +
n∑

j=k+1

βjwj.

Observe that since
∑n

j=k+1 βjwj is in the null space, also
∑k

i=1 βiei is in the null space,
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i.e.

Ax = A

( k∑
i=1

βiei +
n∑

j=k+1

βjwj

)
= 0

A

( k∑
i=1

βiei

)
= 0− A

( n∑
j=k+1

βjwj

)
k∑
i=1

βivi = 0− 0

= 0.

But {v1,v2, . . . ,vk} is linearly independent, so βi = 0 for i = 1, . . . , k and

x =
n∑

j=k+1

βjwj.

Then {wk+1,wk+2, . . . ,wn} is a basis for the null space of A therefore

nullity(A) 6 n− k. (A.21)

Equations (A.20) and (A.21) indicate that null(A) = n − rank(A) which completes the

proof.

Now we will see that the rank of A is at least the number of nonzero eigenvalues of A

as explained in Lemma A.2.5.

Definition A.2.4. (Number of nonzero eigenvalues) Let e(A) be the number of nonzero

eigenvalues of A with multiplicity.
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Lemma A.2.5. Let A be an n × n matrix. Then it holds that the number of nonzero

eigenvalues, with multiplicity, is less than or equal to the rank of the matrix, i.e.

e(A) 6 rank(A). (A.22)

Proof. Let nullity(A) = k. Then there exist k vectors in the basis for the null space of A,

and so there exist k zero eigenvalues. Also there are at most n eigenvalues in total, and

so

e(A) 6 n− k.

However by Theorem A.2.3 (rank-nullity) we know that

rank(A) = n− k

thus

e(A) 6 rank(A).
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A.3 Positive definite and semidefinite matrices

A.3.1 Symmetric matrices

Definition A.3.1. (Symmetric matrix) Let A ∈ Rn. Then A is symmetric if A = AT .

Definition A.3.2. (Unitary matrix) Let U ∈ Rn. Then U is unitary if UTU = I, where

I is the n× n identity matrix.

Theorem A.3.3. (Schur factorisation) Let A be a n × n symmetric matrix with real

entries and let λi for i = 1, . . . , n be the eigenvalues of A in any order. Then

A = UΛUT (A.23)

where U is an n× n unitary matrix and Λ = diag(λ1, . . . , λn).

Proof. For a proof see Horn and Johnson (1999) page 79.
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A.3.2 Characterization of positive definite and semidefinite ma-

trices

Definition A.3.4. (Positive definite and semidefinite matrix) Let A be an n × n real

symmetric matrix. Then A is positive definite, denoted by A � 0, if for all x ∈ Rn

xTAx > 0, x 6= 0. (A.24)

A is positive semidefinite, denoted by A � 0, if for all x ∈ Rn

xTAx > 0, x 6= 0. (A.25)

Definition A.3.5. (Quadratic form) Let f : Rn → R. Then f is a quadratic form if

can be expressed as

f(x) = xTAx =
n∑

i,j=1

aijxixj. (A.26)

Theorem A.3.6. (Cholesky factorisation) Let A be a n × n positive definite matrix.

Then there exist a nonsingular lower triangular matrix L ∈ Rn×n with positive diagonal

entries, such that

A = LLT . (A.27)

is a unique cholesky factorisation of A.

Proof. For a proof see Horn and Johnson (1999) page 407.
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Lemma A.3.7. Let A be a positive definite (respectively semidefinite) matrix. Then

all principal submatrices of A are positive definite (respectively semidefinte) matrices.

Proof. Let Ak be any k × k principal submatrix of A. Since Ak is obtained by deleting

n − k rows and columns of A such that if the ith row is removed then the ith column is

removed too, it follows that Ak is symmetric. Let x ∈ Rk such that x 6= 0. Now extend

the vector by including zeros in all the n−k entries to create a vector with n-entries, then

xTk Akxk = xTAx > 0, (A.28)

where the second inequality in (A.28) follows by the assumption that A � 0. The same

arguments can be used to prove the Lemma when A is positive semidefinite.

Corollary A.3.8. The principal minors of a positive definite (respectively semidefi-

nite) matrix are positive (respectively nonnegative).

Proof. Using Lemma A.1.8 we know that all principal submatrices of a positive definite

matrix are also positive definite, and so by Lemma A.3.11 it follows that the principal

minors are positive. The same analysis works for positive semidefinite matrices.
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Theorem A.3.9. Let A be an n× n real symmetric matrix. Then A � 0

⇐⇒ xTAx > 0 for all x ∈ Rn (A.29a)

⇐⇒ λi > 0, for i = 1, . . . , n, where λi are the eigenvalues of A (A.29b)

⇐⇒ All principal minors of A are positive (A.29c)

⇐⇒ A = LLT for a nonsingular lower triangular matrix L ∈ Rn×n,

with lii > 0. (A.29d)

Proof. If A � 0 then (A.29a) follows by definition A.3.4. To prove (A.29b) we know that

an eigenvalue and an eigenvector are a scalar λ and a vector x satisfying

Ax = λx, x 6= 0,

thus

xTAx = xTλx

xTAx = λxTx

and so

λ =
xTAx

xTx
. (A.30)

Observe that in (A.30) since x 6= 0 the denominator is always a positive quantity. If A � 0

then the numerator in (A.30) is positive and so λ (i.e. the eigenvalue) is also positive. On

the other hand assume that λi > 0 for i = 1, . . . , n. By the Theorem A.3.3 A = UΛUT ,
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where U is unitary and Λ = diag (λ1, λ2, . . . , λn), thus

xTAx = xTUΛUTx

= (UTx)TΛ(UTx)

=
n∑
i=1

λi
(
UTx

)2
i

=
n∑
i=1

λi
∣∣UTx

∣∣2
i
> 0,

which indicates that xTAx > 0 (i.e. A � 0). Equation (A.29c) follows from Lemma A.3.8

and equation (A.29d) is just the cholesky factorization of A defined in Theorem A.3.6.

Similar results hold in the case of positive semidefinite matrices as explained in The-

orem A.3.10.

Theorem A.3.10. Let A be an n× n real symmetric matrix. Then A � 0

⇐⇒ xTAx > 0 for all x ∈ Rn (A.31a)

⇐⇒ λi > 0, for i = 1, . . . , n, where λi are the eigenvalues of A (A.31b)

⇐⇒ All principal minors of A are nonnegative (A.31c)

⇐⇒ A = LLT for some lower triangular matrix L ∈ Rn×n,

with lii > 0. (A.31d)

Proof. The same analysis used in the proof of Theorem A.3.9 can be used to prove this

theorem.
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Remark To test if a matrix is positive definite or semidefinite either the eigenvalues or

the principal minors can be checked.

Lemma A.3.11. Let A be an n×n positive definite (respectively semidefinite) matrix.

Then the trace and the determinant of A are positive (respectively nonnegative).

Proof. From Corollary A.1.9

tr(A) =
n∑
i=1

λi

and from Corollary A.1.10

det(A) =
n∏
i=1

λi.

Since from Theorem A.3.9 we know that λi > 0, for i = 1, . . . , n, then both tr(A) and

det(A) are positive numbers. In the same way when dealing with positive semidefinite

matrices we have λi > 0, for i = 1, . . . , n, and so in that case both quantities are nonneg-

ative numbers.

Definition A.3.12. (Diagonal matrix ) Let A = (aij) be an m× n matrix. Then A is a

diagonal matrix if the entries aij = 0, for all i 6= j.
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Lemma A.3.13. Let A be an n × n diagonal matrix. Then A is positive definite

(respectively semidefinite) if and only if the diagonal entries are positive (respectively

nonnegative).

Proof. Recall that the eigenvalues of a matrix are found by solving

det(λI− A)

In the case of the diagonal matrix A



−a11 + λ 0 . . . 0

0 −a22 + λ . . .
...

...
...

. . .
...

0 . . . 0 −ann + λ


.

The determinant of the last matrix by expansion of the row with the nonzero element

each time

det(A) = (−a11 + λ) . . . (−ann + λ)

which indicates that the eigenvalues are equal to the elements in the main diagonal. Using

Theorem A.3.9 A is positive definite if and only if the entries in the main diagonal (i.e.

the eigenvalues) are positive. The same holds for the case when A is positive semidefinite

using Theorem A.3.10. .
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A.3.3 The frobenius norm

Definition A.3.14. (Frobenius norm)

‖‖‖A‖‖‖2 = 〈A,A〉 = tr(AAT ) =
n∑

i,j=1

a2
ij (A.32)

179



APPENDIX B

CONIC PROGRAMMING

B.1 Convex optimization

An optimization problem is defined as

min
x∈Rn

f0(x)

s. t. fi(x) 6 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

(B.1)

where x = (x1, . . . , xn) is the optimization variable, f0(x) is the objective function with

f0 : Rn → R, fi(x) 6 0 are the inequality constraints with fi : Rn → R for i = 1, . . . ,m

and hi(x) = 0 are the equality constraints with hi : Rn → R for i = 1, . . . , p.
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Definition B.1.1. (Affine function) Let f : Rn → Rm. Then f is affine if there exists

an n×m matrix A and a vector b in Rm such that

f(x) = Ax+ b, (B.2)

for all x ∈ Rn.

When the functions f0, . . . , fm are convex and also the equality constraints hi(x) are

affine, i.e. hi(x) = aTi x − bi, for i = 1, . . . , p, then the optimization problem is convex

and is given by

min
x∈Rn

f0(x)

s. t. fi(x) 6 0, i = 1, . . . ,m,

aTi x = bi, i = 1, . . . , p.

(B.3)

In the convex optimization problem defined in (B.3) the functions f : Rn → R for i =

0, . . . ,m. Now given a subset of Rn, i.e. K ⊂ Rn, with certain characteristics, the

associated problem with f : K → R is a conic program. The mentioned K is a cone and

its characteristics are analysed next.

181



CONIC PROGRAMMING
B.2. Ordering in Rm and cones

B.2 Ordering in Rm and cones

Definition B.2.1. (Partial ordering) A partial ordering in Rm, denoted by > for all v,

w ∈ Rm, satisfies

(i) Translation invariant, i.e. if v > w then v + u > w + u, for all u ∈ Rm.

(ii) Scale invariant, i.e. if v > w and λ > 0 then λv > λw, for all λ ∈ R+.

Orderings have several properties.

Definition B.2.2. (Properties of partial ordering) Let > be the partial ordering defined

in B.2.1. Then for all vectors a, b, c,d ∈ Rm the following holds

(i) The order is reflexive, i.e. a > a.

(ii) The order is antisymmetric, i.e. if a > b and b > a then a = b.

(iii) The order is transitive, i.e. if a > b and b > c then a > c.

(iv) The order is compatible with linear operators, that is

(a) Homogeneity: if a > b and λ > 0 then λa > λb.

(b) Additivity: if a > b and c > d then a+ c > b+ d.

The definition of a pointed convex cone is introduced next.
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Definition B.2.3. (Pointed convex cone) Let K ∈ Rm be a set. Then K is a pointed

convex cone if it satisfies the following

(i) K has nonempty interior and is closed under addition, i.e.

a, b ∈ K =⇒ a+ b ∈ K. (B.4)

(ii) K is a conic set, i.e.

a ∈ K,λ > 0 =⇒ λa ∈ K. (B.5)

(iii) K is pointed, i.e.

a ∈ K,−a ∈ K =⇒ a = 0. (B.6)

Using both, the definition of partial ordering and the definition of a pointed convex

cone the following definition is of particular interest.

Definition B.2.4. (Partial ordering induced by K) Let K be a pointed convex cone.

Then a partial ordering induced by K ∈ Rm is defined as

a >K b ⇐⇒ a− b >K 0 ⇐⇒ a− b ∈ K. (B.7)

Lemma B.2.5. Let >K be the partial ordering induced by K. Then >K satisfies the

properties in B.2.2.

Proof. Let x,y, z and w ∈ K.
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(i) Reflexivity. Let x >K x. Then

x >K x

x− x ∈ K

0 ∈ K.

Observe that if in equation (B.5) λ is chosen to be zero then for any a we have that

0 ∈ K.

(ii) Antisymmetry. Let x >K y and y >K x. Thus

x >K y, y >K x

x− y ∈ K, y − x ∈ K

−x+ y ∈ K.

Since x− y ∈ K and also −x+ y ∈ K by (B.6) y − x = 0 and so y = x.

(iii) Transitivity. Let x >K y and y >K z, thus

x >K y, y >K z

x− y ∈ K, y − z ∈ K.

Using (B.4)

x− y + y − z ∈ K

x− z ∈ K

x >K z.
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(iv) Compatibility with linear operators.

(a) Homogeneity. Let x >K y and λ > 0. Thus x − y ∈ K and so using (B.5)

λx− λy ∈ K and finally λx >K λy.

(b) Additivity. Let x >K y and z >K w, then

x >K y, z >K w

x− y ∈ K, z −w ∈ K.

Using (B.4) we get

x− y + z −w ∈ K

x+ z >K y +w.

Definition B.2.6. (Proper cone) Let K be a pointed convex cone. Then K is a proper

cone if it is closed and has nonempty interior.
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B.3 Definition of conic programming

B.3.1 Primal

Definition B.3.1. (Conic program) Let K be a proper cone. Then a conic program is

the optimization problem

min
x∈Rn

cTx

s.t. Ax >K b,

(B.8)

where x ∈ Rn is the optimization vector, c ∈ Rn is the coefficients vector of the objective

function, A ∈ Rm×n is the constraint matrix, and b ∈ Rm is the right hand side for the

constraints.

Examples of conic optimization are linear, conic quadratic and semidefinite program-

ming.

B.3.2 Dual

Definition B.3.2. (Dual cone) Let K ∈ Rm be a nonempty set. Then the dual cone of

K, denoted by K∗, is given by

K∗ =
{
λ ∈ Rm | λTa > 0, ∀a ∈ K

}
. (B.9)
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Let x be feasible and λ ∈ K∗ for (B.8) then

λT (Ax− b) > 0.

Thus given a λ ∈ K∗ satisfying ATλ = c it holds that

cTx = (ATλ)Tx = λTAx > λTb = bTλ.

Definition B.3.3. (Dual of a conic program) The dual of a conic program is given by

max
λ∈Rm

bTλ

s.t. ATλ = c,

λ >K∗ 0,

(B.10)

where λ ∈ Rm is the optimization vector, b ∈ Rm is the coefficients vector of the objective

function, AT ∈ Rn×m is the constraint matrix, and c ∈ Rn is the right hand side for the

constraints.
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B.3.3 Conic duality theorem

Theorem B.3.4. (Conic duality theorem) Let a conic program and its dual be given

by

c∗ = min
x∈Rn

{
cTx | Ax >K b

}
, (P)

b∗ = max
λ∈Rm

{〈b,λ〉 | A∗y = c,λ >K∗ 0} . (D)

Then the following holds

(1) The duality is symmetric, i.e. the dual of the dual is the primal.

(2) The duality gap cTx− 〈b,λ〉 is nonnegative for every feasible pair (x,λ).

(3a) If (P) is bounded below and strictly feasible then (P) is solvable and c∗ = b∗.

(3b) If (D) is bounded above and strictly feasible then (P) is solvable and c∗ = b∗.

(4) Assume that at least one of the problems (P) or (D) is bounded and strictly

feasible. Then a primal-dual feasible pair (x,λ) is a pair of optimal solutions to

the respective problems.

(4a) if and only if there is a zero duality gap, i.e. 〈b,λ〉 = cTx.

(4b) if and only if the complementary slackness is equal to zero, 〈λ,Ax− b〉 = 0.

Proof. For a proof see Nemirovski (2005) page 33.
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B.4 Examples of conic programs

B.4.1 Linear program

Definition B.4.1. (Linear program) Let K = Rn
+. Then the resultant optimization

problem in Definition B.3.1 is a linear program.

Lemma B.4.2. Let K = Rm
+ . Then K∗ = Rm

+ , i.e. Rm
+ is self dual.

Proof. Proving that Rm
+ is self dual is equivalent to showing that given x ∈ Rn, x > 0 if

and only if 〈x,y〉 > 0 for all y > 0. If x > 0 and y > 0 then 〈x,y〉 > 0. On the other

hand if 〈x,y〉 > 0 for all y > 0 then x > 0 which completes the proof.

Thus similarly for the dual the following holds.

Definition B.4.3. (Dual of a linear program) Let K∗ = Rm
+ . Then the problem in

Definition B.3.3 is the dual of the linear program given in Definition B.4.1.

The Duality Theorem B.3.4 has stronger conditions for linear programming.
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Theorem B.4.4. (Duality theorem for linear programming) Let a primal linear pro-

gram and its dual be given by Definition B.4.1 and Definition B.4.3 respectively. Then

(1) The duality is symmetric, i.e. the dual of the dual is the primal.

(2) The duality gap cTx− 〈b,λ〉 is nonnegative for every feasible pair (x,λ).

(3) The following are equivalent

(3a) Primal is feasible and bounded below

(3b) Dual is feasible and bounded above

(3c) Primal is solvable

(3d) Dual is solvable

(3e) Both primal and dual are feasible.

If one of the conditions in (3) holds then the optimal values of the primal and the

dual are equal to each other.

Proof. For a proof see Nemirovski (2005) page 21.
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B.4.2 Quadratic program

Definition B.4.5. (Lorentz Cone) The Lorentz cone, also known as n-dimensional ice

cream is defined by

Ln =
{
x = (x1, . . . , xn) ∈ Rn |

(
x2

1 + . . .+ x2
n−1

)
6 x2

n

}
, n > 2.

Definition B.4.6. (Quadratic program) Let K be a proper cone given by

K = Ln1 × Ln2 × . . .× Lnk =

y =


y[1]

...

y[k]

 | y[i] ∈ Lni , i = 1, . . . , k

 .

Then the optimization problem in (B.8) is a quadratic program.

Using

(A ; b ) =


[ A1 ; b1 ]

...

[ Ak ; bk ]

 ,

such quadratic program is equivalent to

min
x∈Rn

cTx

s.t. Aix >Lni bi, i = 1, . . . , k.
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Also, defining

(Ai ; bi ) =

Di di

pTi qi

 ,

the quadratic program is now

min
x∈Rn

cTx

s.t. ‖Dix− di‖2 6 pTi x− qi, i = 1, . . . , k.

(B.11)

To define the dual of a quadratic program the dual of a Lorentz cone is determined

first.

Lemma B.4.7. Let K = Ln. Then K∗ = Ln, i.e. Ln is self dual.

Proof. Proving that Ln is self dual is equivalent to showing that given

Ln = {(x, t) | ‖x‖2 6 t} ,

Ln∗ = {(z, τ) | 〈x, z〉+ tτ > 0} , for all (x, t) ∈ Ln, (B.12)

it holds that (z, τ) ∈ Ln and (z, τ) ∈ Ln∗ . By contradiction assume (z, τ) 6∈ Ln. By (B.12)

for all (x, τ) it holds that ‖x‖2 6 τ . Let x = − τ
‖z‖z, thus

〈x̂, x̂〉 = − τ 2

‖z‖2
〈z, z〉,

and ‖x̂‖ = τ , which is (x̂, τ) ∈ Ln. Using the definition of a dual cone

0 6 〈x̂, z〉+ τ 2 = − τ

‖z‖
〈z, z〉+ τ 2 = −τ‖z‖+ τ 2 < 0
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where the second inequality follows from the fact that ‖z‖ > τ leading to a contradiction.

The dual of a conic program has the form

max
λ∈Rm

bTλ

s.t. ATλ = c,

λ >K∗ 0,

where λ = (λ1, . . . , λ
T
k ). Letting λi =

µi
νi

 with νi ∈ R the dual of a quadratic program

is obtained.

Definition B.4.8. (Dual of a quadratic program) The dual of the quadratic program

(B.11) is

max
µiνi ∈Ln

k∑
i=1

(
µTi di + νiqi

)
s.t.

k∑
i=1

(
DT
i µi + νipi

)
= c,

‖µi‖2 6 νi, i = 1, . . . , k.

(B.13)

Quadratic programs appear sometimes in the form of convex quadratic forms.
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Lemma B.4.9. A convex quadratic form xTQx+qTx+r where Q is an n×n symmetric

matrix, is conic quadratic representable, i.e.

{
(x, t) | xTQx+ qTx+ r 6 t

}
={

(x, t)

wwwww Dx
(t−qTx−r−1)

2

wwwww
2

6
(t− qTx− r + 1)

2

}
.

(B.14)

Proof. The matrix Q ∈ Sn and therefore by Theorem A.3.3 can be factorise as Q = DTD.

Observe that wwwww Dx
(t−qTx−r−1)

2

wwwww
2

6
(t− qTx− r + 1)

2

⇐⇒ ‖Dx ‖22 +
(t− qTx− r − 1)2

4
6

(t− qTx− r + 1)2

4

⇐⇒ ‖Dx ‖22 6 t− qTx− r

where ‖Dx ‖22 = xTDTDx.

B.4.3 Semidefinite program

Denote the linear mapping A : Rn → Sm with

Ax =
n∑
i=1

xiAi,

where x = (x1, . . . , xn) ∈ Rn and A1, . . . ,An are matrices from Sm.
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Also denote the linear mapping A∗ : Sm → Rn which corresponds to the conjugate

transpose of A and is given by

〈A∗(X),y〉 = 〈A(y),X〉, for all y ∈ Rn.

Definition B.4.10. (Semidefinite program) Let K = Sm be a proper cone. Then the

optimization problem in (B.8) is a semidefinite program, i.e.

min
x∈Rn

cTx

s.t. Ax− B � 0,

(B.15)

where � stands for >Sm
+

.

In explicit form a semidefinite program is

min
x∈Rn

cTx

s.t. x1A1 + . . . ,+xnAn − B � 0.

Similarly the dual of a semidefinite program can be defined, noting first that the cone

of semidefinite matrices is self dual.

Lemma B.4.11. Let K = Sm+ . Then K∗ = Sm+ , i.e. Sm+ is self dual.

Proof. Proving that Sm+ is self dual is equivalent to showing that X ∈ Sn+ is positive
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semidefinite if and only if 〈X,Y〉 > 0 for all Y ∈ Sm+ . If X > 0 and Y > 0 then

〈X,Y〉 = tr(XY) = tr(X
1
2 X

1
2 Y

1
2 Y

1
2 ) = tr(X

1
2 Y

1
2 Y

1
2 X

1
2 ) = ‖X

1
2 Y

1
2‖ > 0.

On the other hand 〈X,Y〉 > 0 for all X > 0. Let X = xxT � 0 with x ∈ Rn and

0 6 〈X,Y〉 = tr(YxxT ) =
n∑

i,j=1

Yijxixj = xTYx,

which indicates that Y � 0 which completes the proof.

Definition B.4.12. (Dual of a semidefinite program) The dual of the semidefinite pro-

gram (B.15) is

max
Λ∈ Sm

〈B,Λ〉

s.t. A∗Λ = c,

Λ � 0.

(B.16)

Observe that 〈A∗,Λ〉Sm = 〈A∗(Λ),x〉Rn , for all Λ, which is

tr
(
(Ax)Λ

)
= tr

((
n∑
i=1

xiAi

)
Λ

)

=
n∑
i=1

xi tr(AiΛ)

=
(
tr (A1Λ) , . . . , ( AnΛ)

)

x1

...

xn

 .

(B.17)
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Using (B.17) the dual of a semidefinite program can also be given in explicit form

max
Λ∈ Sm

〈B,Λ〉

s.t. 〈Aj,Λ〉 = cj, j = 1, . . . , n,

Λ � 0.

Next the simple lemma that specifies when a quadratic function is a nonnegative

polynomial is introduced.

Lemma B.4.13. (Simple Lemma) Let A ∈ Sn, b ∈ Rn and c ∈ R. Then

xTAx+ 2bTx+ c > 0 (B.18)

if and only if c bT

b A

 � 0 (B.19)

Proof. Let

 t

x

 be a vector with t ∈ R, t 6= 0 and x ∈ Rn. Assume that the matrix

(B.19) is positive semidefinite. Then

(
t x

)c bT

b A


 t

x

 > 0

which is

xTAx+ 2bTx+ c > 0
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for all x ∈ Rn and t ∈ R and in particular if t = 1.
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