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Abstract

Fluid interactions are ubiquitous in the natural world; all organisms must find strategies to
generate, utilise or resist flow in order to be successful. A process fundamental to all life
on earth is reproduction, which in many cases entails the swimming of sperm cells. Cell
swimming arises from coupled interactions between physical and biological processes. We
will focus on the effects of changing fluid rheology onmicroscopic swimmers, with a particular
application to the study of internal mammalian fertilisation.

To reach the egg, mammalian sperm must navigate the convoluted geometry of the female
reproductive tract, actively bending their flagella in order to propel themselves through cer-
vical mucus: a suspension of polymer chains that twist, tangle and align with flow, giving it
complex properties. Whilst recent work has examined the effects of fluid viscoelasticity on
sperm-like swimmers, relatively less attention has been given to the shear-thinning property.
We develop a new finite element technique to simulate free swimmers with prescribed beat
kinematics in shear-thinning fluids with nonlinear governing equations. This technique is
then applied to three qualitatively different viscous swimmers in order to examine the differ-
ent phenomena that arise from swimmer interactions with of shear-thinning fluid.
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Chapter 1

Introduction

1.1 Flagellar and ciliary propulsion

Microscopic swimmers pervade the natural world, from bacteria and algae to the sperm cells of

vertebrates, and the study of their swimming is pertinent to numerous problems in medicine

and industry, for example in reproductive medicine and biofuel production. Microscale fluid

propulsion is usually achieved in nature through the beating of cilia and flagella: slender,

hair-like organelles that perform a range of functions from locomotion and food gathering to

behavioral responses (Dentler, 1987).

Cilia and flagella play a vital rôle in many stages of development (Fauci and Dillon, 2006).

In humans, flagella propel sperm cells during reproduction, allowing sperm and egg to meet.

Cilia then transfer the fertilised embryo from the ampulla to the uterus. In the early stages

of embryonic development, cilia are responsible for the production of a directional fluid flow

which breaks left-right symmetry in vertebrates (Nonaka et al., 1998), and mucociliary clear-

ance in the lung removes microorganisms and solid particles from the airway (Sleigh et al.,

1988).

Sperm swim by beating a single flagellum which pushes the cell body, and so are often re-

ferred to asmonoflagellate pushers. The flagellum coordinates the generation of active bending

moments along its length, producing a bending wave that propagates from neck to tip. This



pushes the cell through the fluid towards the egg.

For mammalian sperm, this fluid is mucus - a highly viscous polymer suspension with

complicated flow properties that affect swimming. To reach the egg, they must navigate the

convoluted geometry of the fallopian tubes (figure 1.1b). The flagellar waveform emerges from

the interaction between the active elastic flagellum, convoluted geometry and rheologically

complex fluid. This system is highly coupled; changing any aspect of the physics, such as the

fluid viscosity, can result in sharp nonlinear transitions of the waveform as shown in figure

1.1a. Thus, biologically realistic fluid mechanics modelling is vital to develop accurate models

of internal fertilisation.

In this thesis wewill develop computational techniques to simulate microscopic swimming

in rheologically complex fluids, allowing more accurate calculation of the energetics and force

generation in the flagellum during fertilisation. We will also discuss the physical mechanisms

underlying rheological interactions with viscous swimmers.

Birth rates in developed countries are falling, with around 1 in 6 couples being subfertile.

Sperm factors are present in around half of these cases (Human Fertilisation and Embryology

Authority, 2011), and better understanding of the mechanics of sperm swimmingmight inform

the development of novel diagnostic tools allowing clinical differentiation between ‘good’ and

‘bad’ cells. For instance, it might aid in the design of microfluidic sorting devices, which may

improve IVF by, for example, enabling cells frommenwith lowmotile sperm counts to bemore

highly concentrated (Denissenko et al., 2012). Detailed mechanical modelling is also vital for

understanding the energetic basis for motility (Ford, 2006), and the modulation of flagellar

beating by hormones and potential new drugs (Gaffney et al., 2011). As a potential application

of the work in this thesis, high-speed images of live cells from a particular patient might be

used to prescribe the flagellar waveform, and information about flagellar mechanics extracted.

However, before introducing the fluid mechanics modelling which will form the focus of

this work, we will first outline the complex internal structure of human sperm flagella. This
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viscosity = 0.001 Pa ⋅ s

viscosity = 1.5 Pa ⋅ s

viscosity = 4 Pa ⋅ s

(a) (b)

Figure 1.1: Environmental factors that affect cell motility. (a) Sea urchin sperm demonstrating
(top to bottom) planar beating in normal artificial sea water (ASW), helical beating in arti-
ficial in ASW with viscosity 1.5 Pa ⋅ s and planar, meandering beating in ASW of viscosity
4 Pa ⋅ s, showing the sensitivity of the emergent waveform to the surrounding fluid, adapted
with permission of the Journal of Experimental Biology from Woolley and Vernon (2001). (b)
A cross-section of human fallopian tubing, showing its convoluted geometry, taken by Ed
Uthman, MD and printed under a CC BY-SA 2.0 license.

structure enables active bending of the flagellum, which in turn gives rise to cell swimming.

We will then give a brief description of the composition of human cervical mucus.

1.1.1 Internal mechanics of flagellar propulsion

In eukaryotic cells, cilia and flagella induce active bending along their length (Machin, 1958).

This was hypothesised as early as 1835 by Sharpey, who argued that contractile material dis-

tributed throughout cilia was responsible for generating the observed beating. Later, Ballowitz

(1888) was able to observe that sperm flagella contain an internal structure of around 9 − 11

microtubules, continuous along the flagellum length (Gibbons, 1981). However it was not until

the advent of electron microscopy that the existence of this internal structure, the axoneme,

was confirmed (Manton and Clarke, 1952; Fawcett, 1954; Afzelius, 1959).

The axoneme is remarkably phylogenetically conserved (Fawcett, 1975). It is almost iden-
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tical, with rare exceptions (Phillips, 1970), in all species that possess it; from human lung cilia

and sperm to unicellular green algae and Protozoa such as Paramecium. The axoneme, shown

in figure 1.2, comprises 9 inextensible outer microtubule doublets, detailed in figure 1.3, and

passive linking elements which stiffen the assembly. In contrast to the contraction hypothesis

of Sharpey (1835), it is now thought that the combination of relative, localised microtubule

sliding, inextensibility and the restraining effects of linking structures, generates bending.

This is the ‘sliding filament theory’ proposed by Satir (1965). For human sperm, as with the

majority of motile cilia, a central pair of microtubules runs along the length of the axoneme.

This configuration is referred to as the “9 + 2” axoneme.

The relative sliding of microtubule doublets (figure 1.3) is driven by dynein arms which ex-

tend, bind and detach from the neighbouring doublet. The dynein arms are molecular motors,

converting chemical energy into mechanical movement through ATP-ase activity, though the

mechanisms controlling the coordinated activation of these dyneins are still unknown (Linde-

mann, 2009).

1.1.2 Ultrastructure of human sperm flagella

Human sperm have had to evolve to meet the challenges associated with internal fertilisation,

in particular the need to swim through cervical mucus which can be around 100 times more

viscous than water (Gaffney et al., 2011). In order to cope with these challenges, human sperm

have evolved a complicated ultrastructure surrounding the axoneme, as shown in figure 1.4.

An important difference between marine spermatozoa (figure 1.1a), which swim through sea

water, and human species are accessory passive stiffening elements. These take the form of 9

outer dense fibres attached to the doublet microtubules in the axoneme, and a fibrous sheath

comprised of two longitudinal columns in the same plane as the central pair. These passive

structures are not found in marine sperm whose locomotion, in contrast with human sperm,

14



Outer
dynein arm

Outer fibre
(doublet)

Membrane

Central
fibre

Radial link
head

Radial link

Central
sheath

Nexin
bridge

Inner
dynein arm

1

2

3

4

56

7

8

9 AB

Figure 1.2: A schematic cross-section of the “9 + 2” axoneme, redrawn from Fawcett (1975).
To provide passive stiffening of the structure and maintain its integrity (Nicastro et al., 2006),
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is severely inhibited by highly viscous fluids (Brokaw, 1966; Woolley and Vernon, 2001).

1.1.3 The composition of human cervical mucus

Human cervical mucus is a suspension of polymer chains, called mucins, entangled in a fibre

mesh (Lai et al., 2009). At the scale of the interfibre spacing, roughly 100 nm (Olmsted et al.,

2001), a particle diffusing in mucus would experience an environment similar to water. As

particles increase in size, the drag they experience increases as they are hindered by the fibre

mesh, which is apparent for particles of diameter 1 𝜇m or greater (Lai et al., 2009). For human

sperm, which are around 50 𝜇m in length, the entangled polymer chains present a signifi-

cant obstacle to progression. Cervical mucus and human sperm have had to coevolve so that

sperm can penetrate this fibre mesh, while foreign pathogens such as Treponema pallidum,

the spirochete bacterium that causes syphilis, cannot. The ultrastructure of human sperm al-

lows flagella waveforms that enable this. In women with bacterial vaginosis, cervical mucus

is thinned significantly, which is a possible cause for increased risk of HIV and Gonorrhoea

(Olmsted et al., 2003).

While some research that considers the reaction of individual mucin fibres to a free swim-

mer is beginning to be undertaken, we will take an approach where the heterogeneity of the

fibre mesh has been averaged into bulk rheological properties, motivated by the small scale of

mucus interfibre spacing relative to the length of sperm. The bulk properties that characterise

mucus are its viscosity, a measure of its resistance to flow, and elasticity, its readiness to re-

turn to an undeformed state following a deformation. As such, mucus is often referred to as a

‘viscoelastic’ fluid.

The effects of fluid elasticity on microscopic swimmers has received much recent study

(Lauga, 2007b; Fu et al., 2009; Teran et al., 2010; Pak and Lauga, 2011; Shen and Arratia, 2011;

Zhu et al., 2012). However, another property of mucus is shear-thinning (Lai et al., 2007),

arising from the tendency of the entangled polymers to be teased out and aligned with flow.
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Figure 1.4: The complex ultrastructure of human spermatozoa, redrawn from (Fawcett, 1975).
(a) The lengths of different regions of the cell, highlighting the connecting piece that joins the
flagellum to the head. It has been suggested that the connecting piece is responsible for bend
initiation and alternation (Vernon andWoolley, 2004) in the flagellum. For each portion of the
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Relatively less study (Balmforth et al., 2010; Shen et al., 2012) has been given to understanding

the the impact of shear dependent viscosity on microscopic swimming. It is on this property

of cervical mucus that we will focus. A discussion of the modelling of these fluids, and the

equations governing their dynamics, now follows.

1.2 The fluid mechanics of microscopic swimming

The motion of any continuous medium (Batchelor, 1967), fluid or solid, is governed by the

Cauchy equations

𝜌𝒟𝐮
𝒟𝑡

= ∇ ⋅ 𝝈 + 𝐅, (1.1a)

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 0, (1.1b)

where the material derivative is given by

𝒟𝐮
𝒟𝑡

= 𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ ∇)𝐮. (1.2)

Here, 𝐅 is the body force acting on the fluid, such as gravity, 𝜌 is the fluid density and 𝐮 is the

fluid velocity in a fixed frame of reference. The stress tensor 𝝈 incorporates the forces acting

over the surface of an arbitrary parcel of fluid, such as pressure and internal friction. Its form

is given by the constitutive equation of the type of fluid being modelled.

Equation (1.1a) represents conservation of momentum and arises as a result of applying

Newton’s Second Law to a small arbitrary parcel of fluid, while equation (1.1b) corresponds to

conservation of mass. Throughout this work we will consider only fluids for which the density

is constant throughout the problem domain, so that (1.1b) reduces to

∇ ⋅ 𝐮 = 0. (1.3)
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Figure 1.5: Characteristic Reynolds numbers for a variety biological systems, redrawn from
Hosoi and Lauga (2010). The image of human sperm is printed with permission of Dr David
Smith, the image of the Apollo butterfly was taken by Oskar Jäckel and is printed under a CC
BY-SA 3.0 license and the remaining images are public domain.

Upon consideration of the relative importance of terms in (1.1a), wemay non-dimensionalise

the momentum equation to give

Re ⋅ 𝒟𝐮
𝒟𝑡

= ∇ ⋅ 𝝈 + 𝐅, Re = 𝜌𝑈2𝐿2

𝜇𝑈𝐿
= inertial force

viscous force
, (1.4)

where 𝜇 is the fluid viscosity, 𝑈 is the typical velocity of the flow and 𝐿 is a typical length-scale,

given in our case by some intrinsic feature of the swimmer, such as the length of the flagellum.

The dimensionless Reynolds number, Re, is a measure of the relative importance of inertial

and viscous forces. The Reynolds numbers of a variety of swimmers and flyers are shown in

figure 1.5.

For the swimming problems that we will consider, typical length-scales 𝐿 are 𝒪(10−5 −

10−4) m and velocities 𝑈 are 𝒪(10−5 − 10−4) m ⋅ s−1. Fluid densities 𝜌 are 𝒪(103) kg ⋅ m−3

and fluid viscosity is 𝜇 is 𝒪(10−3) Pa ⋅ s or greater. Thus, the Reynolds number (1.4) is no

higher than Re = 10−2 ≪ 1 for these swimming problems. Thus, viscous forces dominate

inertia. Indeed, if a bacterium, moving at 30 𝜇m⋅s−1 through an idealised fluidwith no thermal

fluctuations, should stop beating its flagellum, it would theoretically stop within a distance of

around 0.1Å (Purcell, 1977), a tenth the diameter of a hydrogen atom.
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Since the swimmers we will consider are neutrally buoyant, the only body force acting on

the flow is gravity, which may be neglected at microscopic length-scales. Thus, an accurate

representation of the fluid flow is given by simplifying equations (1.1) via equations (1.3) and

(1.4) by setting Re = 0, to the inertialess Cauchy equations,

∇ ⋅ 𝝈 + 𝐅 = 0, ∇ ⋅ 𝐮 = 0. (1.5)

The precise form of 𝝈, the relationship between fluid stress and strain rate, depends on the

rheological properties of the fluid. For the fluids we will consider, 𝝈 is dependent upon the

fluid strain rate 𝜺(𝐮) = 1
2 (∇𝐮 + (∇𝐮)𭑇), the symmetric part of the velocity gradient tensor

∇𝐮. For the simple case of shear flow, shown in figure 1.6, the strain rate is given by

𝜺(𝐮) = 1
2

(∇𝐮 + (∇𝐮)𭑇) = 1
2

⎛⎜

⎝

0 ̇𝛾

̇𝛾 0
⎞⎟

⎠

. (1.6)

This motivates the definition of a scalar shear rate as the second invariant of the strain rate

tensor ̇𝛾 = (2𝜀𭑖𭑗(𝐮)𝜀𭑖𭑗(𝐮))1/2
. We will consider swimmers in fluids for which the viscosity

is dependent upon shear rate ̇𝛾, however we will first review salient aspects of the simpler

Newtonian theory, which is an appropriate model for water.

1.2.1 Swimming in Newtonian fluid: Stokes flow

For Newtonian fluids stress is proportional to strain rate, so that the fluid viscosity depends

only on temperature which is assumed to be constant throughout this study. In such cases,

𝝈 = −𝑝𝐈 + 2𝜇𝜺(𝐮), (1.7)
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Figure 1.6: A schematic of a homogeneous, unidirectional shear flow in a two dimensional
channel of height ℎ. The velocity field 𝐮 = (𝑈𝑦/ℎ, 0, 0) is generated by the upper boundary,
which moves with speed 𝑈. In this case, the shear rate ̇𝛾 is given by 𝜕𝐮1/𝜕𝑦 = 𝑈/ℎ.

for pressure 𝑝 and identity tensor 𝐈. The constant of proportionality between stress and strain

rate is the fluid dynamic viscosity, 𝜇. Substitution of the stress (1.7) into the inertialess Cauchy

equations (1.5) yields the Stokes flow equations.

𝜇∇2𝐮 − ∇𝑝 + 𝐅 = 0, ∇ ⋅ 𝐮 = 0. (1.8)

Note that the Stokes flow equations are linear, so that if (𝐮, 𝑝𭑢), (𝐯, 𝑝𭑣) are solutions, then

∇2(𝐮 + 𝐯) − ∇(𝑝𭑢 + 𝑝𭑣) = (∇2𝐮 − ∇𝑝𭑢) + (∇2𝐮 − ∇𝑝𭑣) = 0, (1.9a)

∇ ⋅ (𝐮 + 𝐯) = ∇ ⋅ 𝐮 + ∇ ⋅ 𝐯 = 0, (1.9b)

and thus (𝐮 + 𝐯, 𝑝𭑢 + 𝑝𭑣) is also a solution. This means that fluid flow governed by the

Stokes flow equations may be constructed by superposition, which underlies the majority of

techniques that have been developed to model viscous swimming in Newtonian fluids (section

1.3.1).

Since there is no time dependence in the Stokes flow equations (1.8), the flow field is de-

termined instantaneously by the boundary conditions. Thus, if the motion of the boundary

were to be reversed, or time played backwards, the Stokes flow equations would be satis-
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fied by the equal and opposite flow to the forwards-time solution. This reversibility places

severe restrictions on the possible motion that may give rise to propulsion in Stokes flow.

Any periodic motion must be irreversible in order to generate a net flow. Thus many familiar

swimming techniques, such as single-oar sculling and the clapping of a clam shell, that are

indistinguishable from their time reversals, generate no net displacement in Stokes flow. This

was demonstrated in Taylor’s film on low-Reynolds number flow (Taylor, 1967), where it was

also shown that a body driven by a rotating helical filament could swim in a viscous environ-

ment, and formalised by Purcell as the “ScallopTheorem” in his famous lecture (Purcell, 1977).

The theorem, proved formally by Ishimoto and Yamada (2011), states that a body in Stokes

flow cannot swim with a reciprocal stroke. A natural corollary is that an animal with a single

hinge, such as a scallop, cannot generate net displacement over the course of a beat in Stokes

flow, though this is possible in Newtonian flows of arbitrarily small Reynolds number (Lauga,

2007a). The Scallop theorem is also only valid for isolated swimmers in infinite domains of

Newtonian fluid, and violating any one of these conditions can lead to its breakdown (Lauga,

2011).

Purcell’s example of the simplest possible swimmer able to propel itself in Stokes flow is

known as the three-linked swimmer, shown in figure 1.7a. It comprises a central arm linked

at either end to two hinged swimming arms which move between the configurations 𝑆1 … 𝑆5.

The three-linked swimmer generates net displacement through hydrodynamic interactions be-

tween the swimming arms, though its average speed and direction depend on both the angular

amplitude of the swimming strokes and the relative length of the arms (Becker et al., 2003).

An arguably simpler viscous swimmer was proposed by Najafi and Golestanian (2004). It

comprises two outer spheres which move relative to a central sphere with a non-reciprocal

motion, as shown in figure 1.7b. The mechanism underlying the Najafi-Golestanian swimmer

is as follows: one of the outer spheres will move at any given time. By force balance, left-

ward relative motion of an outer sphere results in rightward motion of the remaining spheres
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through the fluid, and vice versa. The distance that the remaining spheres move in the fluid

depends on the drag of the remaining two spheres.

The beat is divided into two effective and two recovery strokes, where the swimmer travels

along and opposite the direction of net progress respectively. Relative leftward motion of an

outer sphere occurs while the other spheres are far apart; relative rightwardmotion of an outer

sphere occurs while the other spheres are close together. Hydrodynamic interaction results in

the drag of the other spheres being reduced when they are close together. Therefore the drag

of the remaining spheres is less during relative rightward motion of the active sphere, and so

the beat cycle is slightly more effective in moving the swimmer to the left than the right.

The fundamental singularity

Since the Stokes flow equations are linear, it is possible to superpose fundamental solutions

in order to generate more complex flows. Consider an infinite fluid obeying the Stokes flow

equations (1.8), driven by a concentrated force per unit volume 𝐅 = 𝐟𝛿(𝐱 − 𝐲) of magnitude

and direction 𝐟, where 𝛿 is the three dimensional Dirac delta distribution centered at 𝐲. The

velocity solution corresponding to this fundamental singularity is given by

𝑢𭑖(𝐱) = 1
8𝜋𝜇

(
𝛿𭑖𭑗

𝑟
+

𝑟𭑖𝑟𭑗

𝑟3 ) 𝑓𭑗(𝐲) =∶ 𝑆𭑖𭑗(𝐱, 𝐲)𝑓𭑗(𝐲), 𝑖, 𝑗 = 1, 2, 3, (1.10)

where 𝑟𭑖 = 𝑥𭑖 − 𝑦𭑖, 𝑟2 = 𝑟2
1 + 𝑟2

2 + 𝑟2
3 and 𝑆𭑖𭑗(𝐱, 𝐲) is known as the stokeslet.

The anisotropic term 𝑟𭑖𝑟𭑗/𝑟3 within the stokeslet has an important consequence for the

fluid mechanics of cilia and flagella. As shown in figure 1.8, the flow velocity at a distance 𝛼

from a singular force is twice as large at points in line with the force than at those perpen-

dicular to it. A slender cylinder, such as a cilium or flagellum, moving through a fluid may

be approximated by a line distribution of singular driving forces, as shown in figure 1.8. The

corresponding velocity field is then approximated by a sum of stokeslet solutions, so that the
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Figure 1.7: Two examples of simple viscous swimmers. (a) Purcell’s three-link swimmer, show-
ing the configuration 𝑆1 … 𝑆5 of its swimming arms relative to its body at 5 key points during
its periodic beat cycle and (b) a complete beat cycle of the Najafi-Golestanian swimmer show-
ing the position of the outer spheres relative to the central sphere, the direction in which they
move and the direction of swimming.
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𝐔
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Figure 1.8: The flow generated by a singular force, and a demonstration of the 2:1 drag
anisotropy that enables flagellar and ciliary propulsion, redrawn from Blake and Sleigh (1974).

drag on a slender body moving tangentially through the flow is approximately half that on an

equivalent body moving normally. This “two to one ratio”, first described in the resistive force

theory of Gray and Hancock (1955) is the basis for flagellar and ciliary propulsion.

Swimmers in Stokes flow move in such a way that no net forces (Taylor, 1951) or torques

(Chwang and Wu, 1971) act upon them. Thus, the far-field of the flow arising from a Stokes

swimmer is given by singularities of higher order than the stokeslet. By taking derivatives of

the stokeslet, it is possible to derive the flow fields arising from, for instance, point stresses

and point torques. These provide valuable insight into the far-field behaviour of the fluid

surrounding swimming cells, and into the hydrodynamic effects arising from the inclusion of

no-slip boundaries in the flow (Blake, 1971a; Vilfan and Jülicher, 2006). With each increase in

the order of singularity, the decay of the fluid velocity in the far-field is increased by 𝒪(1/𝑟), so

that stokeslets decay with 𝒪(1/𝑟), stokes dipoles decay with 𝒪(1/𝑟2) and stokes quadrupoles

with 𝒪(1/𝑟3).

Singularity models capture many of the essential features of cilia and flagella driven flows.

For small swimmers, such as sperm, bacteria and algae, gravitational sedimentation has a neg-

ligible effect upon the flow field, so that the zero total force condition gives stresslet behaviour

in the far-field (Drescher et al., 2011). Larger swimmers, such as Volvox Carteri colonies, are

subject to a significant gravitational force, resulting in a stokeslet far-field (Drescher et al.,

2010).
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Figure 1.9: An approximate singularity representation of the flow field surrounding a human
sperm, redrawn from Smith and Blake (Smith and Blake, 2009). The quadrupole representation
was suggested after calculation of the force distribution in the tail with slender body theory.

Closer to the cell the flow field is more complex. For biflagellate algae, the time averaged

flow field arising from two propulsive flagella and the cell body may be represented by three

stokeslets (Drescher et al., 2010). For sperm, simulation (Smith and Blake, 2009) predicts that

the surrounding flow may be approximated by a stokes quadrupole, arising from drag com-

ponents at the front and rear of the cell and a propulsive component in the middle, shown in

figure 1.9.

Two dimensional flow and Stokes’ Paradox

The 𝒪(1/𝑟) decay of the stokeslet has important consequences for the solution of flow arising

from translating rigid bodies in unbounded fluid domains. Far from a body of typical length 𝐿,

translating with speed 𝑈, the perturbation to the stagnant flow is 𝒪(𝑈𝐿/𝑟), so that the body

generates infinite flux at infinity. This is because the inertial terms that have been discarded

from the Cauchy momentum equation (1.1a) are of a comparable magnitude to the viscous

terms when 𝑟 is 𝒪(𝜇/[𝜌𝑈]). However, solution of flow past rigid bodies in Stokes flow is still

26



possible, due to the error in the velocity solution approaching zero at infinity: neglecting the

inertial terms is not valid only for regions where the fluid is essentially unperturbed by the

translating body. Furthermore, for free swimmers zero net force acts on the fluid and the

far-field is dominated by the stresslet or higher-order singularities, which do not entail the

unphysical aberration of infinite flux.

For two dimensional flow, however, no solutions are possible for flow arising from translat-

ing rigid bodies in unbounded fluid domains. This is because the flow arising from a point force

in two dimensions diverges as log 𝑟 far from the force (Batchelor, 1967). However, this para-

dox is not present the case of force-free swimmers, or by the inclusion of boundaries. Stokes’

Paradox pertains to translating bodies in unbounded two dimensional flow, and is thus an im-

portant consideration when modelling swimmers under these conditions. However, human

sperm navigate the convoluted channels of the fallopian tubes (figure 1.1b), and so a more

faithful model of their swimming is given by finite domains. As a first step to modelling three

dimensional systems, it can be highly instructive to consider two dimensional flow models

of swimming. Thus, following the recent work of Teran et al. (2010) or Crowdy (2011), the

modelling that we will present in chapters 2 and 3 will be in finite, two dimensional domains.

A discussion of the particular rheological model we will employ now follows.

1.2.2 Swimming in non-Newtonian fluids: shear dependent viscosity

The Stokes flow equations provide important insights into the mechanisms underlying vis-

cous propulsion, for instance stroke irreversibility. However, many biological fluids are sus-

pensions of long polymer chains which will tend to align with flow and relax to a coiled state

when stretched out. These fluids have complex rheological properties, and the Stokes flow

equations do not give an accurate representation of the fluid dynamics. In such cases, fluid

rheology can have a significant impact upon a swimmer’s progression, which may have im-

portant consequences for the study of internal fertilisation.
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The need for detailed study of non-Newtonian swimming has long been recognised (Mills

and Katz, 1978; Katz et al., 1980). A property of polymer suspensions that has received much

recent study (Lauga, 2007b; Fu et al., 2009; Teran et al., 2010; Pak and Lauga, 2011; Zhu et al.,

2012) is fluid elasticity. Viscoelastic fluids retain an elastic memory of their recent flow history.

Swimmers in viscoelastic fluid can gain propulsive advantages by timing their stroke with the

fluid elastic recoil (Fu et al., 2009). However, it has also been shown that that the effect of

fluid viscoelasticity is dependent upon the method of swimming employed, helping flagellated

pushers yet hindering swimmers that generate propulsion by squirming (Lauga, 2007b; Teran

et al., 2010; Zhu et al., 2012).

Another property of polymer suspensions is a dependence of the apparent fluid viscosity

on shear rate ̇𝛾. This arises from the polymers’ tendency to be stretched and aligned by shear

flow. However, relatively less study (Balmforth et al., 2010; Shen et al., 2012) has been given

to understanding the been given to understanding the impact of shear dependent viscosity on

viscous swimming. Modelling viscous swimmers with prescribed swimming strokes in fluids

with shear dependent viscosity will form the focus of this thesis.

We will consider a class of fluids for which the effective fluid viscosity 𝜇eff is a function

of the shear rate ̇𝛾. These are known as generalised Newtonian fluids (Phan-Thien, 2002). The

dynamics of the flow are then governed by

∇ ⋅ (2𝜇eff( ̇𝛾)𝜺(𝐮)) − ∇𝑝 + 𝐅 = 0, ∇ ⋅ 𝐮 = 0. (1.11)

For shear thinning fluids, the effective viscosity 𝜇eff decreases as shear rate ̇𝛾 increases.

Shear-thinning rheology leads to regions of the flow domain where the fluid is highly

viscous and regions where the fluid is thinner. Swimmers in shear-thinning fluids generate a

surrounding envelope of thinned fluid which will have a non-trivial effect on the swimmer.
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The simplest constitutive law modelling shear dependent viscosity is the power law,

𝜇pow
eff ( ̇𝛾) = 𝜇0 ̇𝛾𭑛−1. (1.12)

For 𝑛 = 1, the power law reduces to Stokes flow, 𝑛 > 1 describes shear-thickening fluids,

an example being Oobleck, a paste of cornstarch and water, and 𝑛 < 1 gives shear-thinning

fluids (figure 1.10a). However, the power law is inaccurate at very high and very low shear

rates, predicting zero or infinite effective viscosities respectively.

An alternative model of polymer suspensions is given by the Carreau constitutive law

(Carreau, 1968)

𝜇car
eff ( ̇𝛾) = 𝜇∞ + (𝜇0 − 𝜇∞)(1 + (𝜆 ̇𝛾)2)(𭑛−1)/2, 0 < 𝑛 ≤ 1. (1.13)

The effective viscosity of a Carreau fluid decreases monotonically between the zero strain rate

viscosity, 𝜇0, and an infinite strain rate viscosity 𝜇∞, shown in figure 1.11. The characteristic

time scale on which an extended polymer chain relaxes to a coiled rest state is given by 𝜆.

Generalised Newtonian constitutive laws may also be used to model yield stress fluids,

which behave as solids until a critical threshold of stress 𝜏𭑦 = 𝜇eff ⋅ ̇𝛾 is exceeded, after which

they flow. This behaviour typically results in amixture of yielded and unyielded regionswithin

the flow. For example, if a Bingham fluid (Bird, 2002)

̇𝛾 = 0 if 𝜏 < 𝜏𭑦,

𝜇bin
eff ( ̇𝛾) = 𝜇0 +

𝜏𭑦

̇𝛾
if 𝜏 ≥ 𝜏𭑦,

(1.14)

flows down a circular pipe under the action of a constant pressure gradient, a solid plug of un-

yielded fluid is carried down the centre of the pipe. The plug is carried by the yielded region

between the plug and the pipe walls (Frigaard et al., 1994). This flow occurs, for example, when
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Figure 1.10: Stress - shear rate graphs of (a) power law fluids with 𝜇0 = 1 and differing values
of the exponent 𝑛 and (b) a Papanastasiou fluid with 𝜇𭑝 = 1 and 𝜏𭑦 = 2, gradually approaching
the Bingham law as the stress growth exponent 𝑚 increases.

toothpaste is squeezed from a tube, flowing out yet emerging as a solid. The Bingham consti-

tutive law is the simplest fluid that exhibits yield stress behaviour; once yielded, it behaves as

a Newtonian fluid.

However, for Bingham flow there is not a single stress-strain relation that is valid through-

out the whole domain; there is no information about the stress in the unyielded portion of the

fluid. This presents problems in the numerical solution of such flow. An alternative model was

proposed by Papanastasiou (1987),

𝜇pap
eff = 𝜇𭑝 + 𝜏𭑦 (1 − 𝑒−𭑚 ̇𭛾

̇𝛾
) . (1.15)

Note that as the stress growth exponent 𝑚 increases, the Papanastasiou law gives a better

approximation to a Bingham fluid as shown in figure 1.10b. In fact, experiments have shown

that in certain cases, for instance solvent-based paints (Ellwood et al., 1990), the Papanastasiou

model provides a better approximation of rheological data, though this is to be expected since

the Papanastasiou law has more free parameters.

Upon examining the Papanastasiou constitutive law (1.15), it becomes clear that it shares
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Figure 1.11: The effective viscosity of Carreau and Papanastasiou fluids as a function of shear
rate ̇𝛾 for 𝜇0 = 1, 𝜇∞ = 0.5, 𝑚 = 0.3, 𝜆 = 1 and 𝑛 = 0.5 showing their rheological similarity.

some similarities with the Carreau law (1.13). Firstly,

As ̇𝛾 → ∞, 𝜇pap
eff → 𝜇𭑝 + 𝜏𭑦 ⋅ 0 = 𝜇𭑝. (1.16)

Thus, like Carreau fluid, Papanastasiou fluids exhibit an infinite shear rate viscosity, so that

𝜇∞ ≡ 𝜇𭑝. Furthermore,

As ̇𝛾 → 0, 𝜇pap
eff → 𝜇∞ + 𝜏𭑦 (1 − (1 − 𝑚 ̇𝛾)

̇𝛾
) = 𝜇∞ + 𝜏𭑦 ⋅ 𝑚, (1.17)

and thus Papanastasiou fluids also have a zero shear rate viscosity, with 𝜇0 ≡ 𝜇∞ + 𝜏𭑦 ⋅ 𝑚.

Both models decrease monotonically between zero and infinite shear rates, so we may say that

these models are in a sense phenomenologically similar, as shown in figure 1.11. Thus, for the

swimming problems that we will model later, we will adopt the Carreau law, which is more

typically used to characterise mucus (Lai et al., 2009).

The most common tool for examining the rheology of cervical mucus is the cone and plate

rheometer (Lai et al., 2009). Mucus is held between a flat plate and a cone, and the plate

rotates. By controlling the applied shear stress or strain over a long time scale, the viscous
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properties of the fluid can be measured. By rotating the cone at different frequencies, the

elastic response of the fluid can be measured. The viscous response of human cervical mucus

was examined for human cervical mucus in Lai et al. (2007). Fitting data from Lai et al. (2007)

to the Carreau constitutive law with a least squares method, we found rheological parame-

ters in the region of 𝜇0 = 𝒪(103) Pa ⋅ s, 𝜇∞ = 𝒪(101) Pa ⋅ s, 𝜆 = 𝒪(100) s and 𝑛 ≈ 0.5.

However, for swimming problems that entail beating flagellar, it is arguably more appropriate

to extract rheological data with oscillatory rheometry, and as early as 1945 researchers have

observed that the elastic recoil time of mucus is “lightning fast” (Clift, 1945). This shows that

value of 𝜆 ≈ 1 s may not be accurate for the application of flagellated swimmers. A rigorous

framework for the simultaneous extraction of viscous and elastic properties, including shear-

thinning, under large amplitude oscillatory rheometry was developed by Ewoldt et al. (2008),

however this has yet to be applied to human cervical mucus. The parameter values used in

this study are 𝜇0/𝜇∞ = 𝒪(101), 𝜆 = 𝒪(10−1) and 𝑛 ≥ 0.3, which for 𝜇0/𝜇∞ and 𝜆 are an

order of magnitude lower than suggested by Lai et al. (2007) in order to achieve a convergent

numerical scheme. Since the methodology of Ewoldt et al. (2008) has yet to be applied to hu-

man cervical mucus, rather than focus on fluids with biologically realistic paramter values,

we will examine the physical effects that changing fluid rheology has upon swimmers with

prescribed kinematics.

For swimmers with prescribed strokes, a characteristic velocity is given by 𝑈 = 𝜔𝐿, where

𝜔 is the angular frequency of the swimmer’s stroke and𝐿 is a characteristic length, for instance

the length of a flagellum. Scaling the force by 𝐅 = 𝜇∞𝜔𝐿𝐅̂ and stress 𝝈 = 𝜇∞𝜔𝐿 ̂𝝈/𝐿 gives

a dimensionless form of equation (1.13),

∇̂ ⋅ [2 (1 + [ 𝜇0
𝜇∞

− 1] [1 + (𝜆𝜔 ̂̇𝛾)
2
]

(𭑛−1)/2

) ̂𝜺(𝐮̂)] − ∇̂𝑝̂ + 𝐅̂ = 0, (1.18a)

∇̂ ⋅ 𝐮̂ = 0. (1.18b)
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Thus, for swimmers exhibiting prescribed beat kinematics, trajectories are dependent only on

three dimensionless quantities: the viscosity ratio 𝜇0/𝜇∞, the power law index 𝑛 and the

Deborah number De = 𝜆𝜔. While the Deborah number is more commonly associated with

viscoelastic flows, its physical meaning as a ratio of elastic response time and characteris-

tic flow time is appropriate for Carreau flow. This non-dimensionalisation has reduced the

number of free parameters from 4 to 3.

The dependence of the trajectories of swimmers with prescribed kinematics upon these

three dimensionless parameters of Carreau flow is in contrast to Stokes flow, in which swim-

mers with a prescribed waveform exhibited no dependence on the viscosity. The absolute

values of the viscosity only become important when flagellar forces are prescribed within the

context of a fluid-structure interaction model, which we will not consider. Having discussed

the equations governing Newtonian and non-Newtonian fluid mechanics, we will now focus

on viscous swimming, and the computational techniques that have been employed in its study.

1.3 Studies of microscopic swimming

The active locomotion of cells and transport of fluids on microscopic scales has been a bench-

mark problem in applied mathematics for the past 60 years, since Taylor (1951) demonstrated

that a two dimensional sheet could swim in Stokes flow by propagating a travelling wave down

its length. The field had already been studied extensively by zoologists (Engelmann, 1868; Ver-

worn, 1891; Parker, 1905; Gray, 1928), however progress was accelerated greatly when experi-

mentalists and theoreticians began to collaborate. It was in this spirit of collaboration, fostered

by Taylor and Gray, that Hancock (1953) first developed slender body theory (SBT), a powerful

method based upon modelling slender swimmers by distributions of force singularities.
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1.3.1 Singularity-based approaches

The idea underlying singularity-based approaches is that free, immersed boundaries repre-

senting the swimmer may be approximated by a distribution of force that drives the fluid.

This is a common strand that runs through almost all of the computational approaches to vis-

cous swimming, including that which we will develop in chapter 2. Singularity approaches

were applied to viscous swimming in Hancock (1953), in which a headless flagellum moving

through Newtonian fluid was modelled by by placing a weighted distribution of stokeslets

𝑆𭑖𭑗 and source dipoles 𝐷𭑖𭑗 along its centreline. The surface of the flagellum is modelled as a

cylinder of radius 𝑎 extruded along the centreline.

For Stokes flow, there is no explicit time dependence. Thus, the velocity field is defined

instantaneously by the singularities and their positions along the flagellum centreline. This

may be extracted from experiment, or some prescribed function, such as a travelling bending

wave. Applying these Dirichlet velocity conditions on the flagellum surface yields constraints

on the weightings 𝑓𭑗(𝑠) and 𝑔𭑗(𝑠) (Hancock, 1953). The swimmer’s translational and angu-

lar velocities at each instant of the waveform, 𝐔, 𝛀 provide additional unknowns which are

closed by the conditions that zero net force (Taylor, 1951) or torque (Chwang and Wu, 1971)

act on the swimmer.

The fundamental mechanism by which flagellar deformations give rise to propulsion in

Stokes flow is derived from the algebraic approximation of SBT, first given by Gray and Han-

cock (1955) and shown schematically in figure 1.8. For a slender body, the drag coefficient

associated with normal motion is approximately twice that associated with tangential motion,

𝐶𭑡 = 2𝜋
ln 2𭜆

𭑎 − 1
2

, 𝐶𭑛
𝐶𭑡

≈ 2, (1.19)

where 𝜆 is the wavelength of the flagellar beat, and 𝑎 the cross-sectional radius of the flagel-

lum. This is known as the Resistive Force Theory (RFT). A propagating wave generates a net
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propulsive force that is balanced by the drag on the cell body as it swims, resulting in zero

net force and torque acting upon the swimmer. The value of these RFT coefficients was later

improved upon by Lighthill (1976)

𝐶𭑡 = 2𝜋
ln 2𭑞

𭑎
, 𝐶𭑛 = 4𝜋

ln 2𭑞
𭑎 + 1

2
, (1.20)

where 𝑞 = 0.09Λ, for Λ the wavelength measured along the centreline of the flagellum.

RFT can compare favourably with experimental data, (Dresdner and Katz, 1981; Friedrich

et al., 2010), and Johnson and Brokaw (1979) showed that for a headless flagellum far from

any surfaces, RFT provides a good estimate for the force distribution provided a problem-

dependent heuristic adjustment is made to the anisotropy ratio 𝐶𭑛/𝐶𭑡. However, because of

the dominance of viscous forces, Stokes flow is characterised by long-range hydrodynamic

reactions as embodied by the 𝒪(1/𝑟) decay of the stokeslet. RFT discounts these interactions

(Lighthill, 1975) and so is inaccurate when the swimmer has a large body (Johnson and Brokaw,

1979), is near a boundary, or when the flagellum exhibits high-amplitude, short-wavelength

beating resulting in flagellum self-interaction, as with human sperm swimming in highly vis-

cous media (Smith et al., 2009c). It is also particularly inaccurate at either end of the flagellum,

since the assumption that an element of the flagellum is ‘slender’ breaks down at the ends of

the filament.

SBT has been used extensively for microscopic swimming studies. Chwang andWu (1971)

used a cylindrical model of the flagellum and applied an additional drag force due to a trans-

lating sphere to model a bacterium swimming with a helical beat. They derived an optimal

value for the head size to tail length ratio and compared the relative efficiency of helical and

planar beating for simple beat patterns. In a later paper, Chwang and Wu (1975) derived the

flow solutions for a prolate ellipsoid translating and rotating through a fluid using a line dis-

tribution of stokeslets and dipoles, and Johnson (1980) created an improved SBT whereby the
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flagellumwas represented as a slender, prolate ellipsoid. Smith et al. (2007, 2009b) showed that

‘end errors’, the errors associated with the breakdown of the slenderness assumption at the

ends of the flagellum, extended a significant distance along the flagellum when it is modelled

as a curved cylinder, and instead used a ‘curved ellipsoidal’ representation based upon that of

Chwang and Wu (1975) and Johnson (1980) which greatly reduced these errors.

To allow for the inclusion of no-slip boundaries in the flow, the ‘method of images’ was

applied to Stokes flow singularities (Blake, 1971a; Liron and Mochon, 1976). It was shown

that for a given singularity in infinite flow, the effect of a no-slip boundary could be included

by placing appropriate singularities, the image system, the opposite side of the boundary.

Higdon (1979) developed a SBT that included an image system to model a spherical head,

thereby including both flagellum-flagellum and flagellum-body interactions. However, this

methodology was restricted to spherical cell morphology. Furthermore, whilst more accurate

than RFT, SBT is still inaccurate when the assumption of slenderness breaks down; for strong

interactions with a boundary or the cell body and high flagellar curvature (Gaffney et al., 2011).

A resolution was found in the boundary element method (BEM) of Youngren and Acrivos

(1975), which was first applied to flagellar dynamics in Phan-Thien et al. (1987) and bench-

marked against existing SBT results in Ramia et al. (1993). By considering surface distribu-

tions of singularities, BEM gives the fluid forces acting on a body with prescribed boundary

conditions in a Newtonian fluid, from which the flow field and swimming velocity of the body

may be calculated. Thus, BEM makes no assumption about the slenderness of a swimmer, and

so is perfect for modelling systems where this approximation may not be valid, as in the case

of primary cilia (Smith et al., 2012).

Smith et al. (2009b) used a hybrid BEM/SBT for the cell head/flagellum to allow flow cal-

culation of swimmers with biologically accurate cell morphologies. The scheme was used

to study the phenomenon of boundary accumulation for human sperm with realistic heads.

Boundary accumulation was first quantitatively measured by Rothschild (1963), who noted
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that in droplets of bull semen placed between two slides, sperm would accumulate near either

surface. Rothschild then went on to hypothesise that hydrodynamic interaction between the

sperm head and the wall resulted in an attractive force. Smith et al. (2009b) found critical

conditions on the beat wavelength under which the cells would either be attracted to or es-

cape from the boundary, which has potential important consequences in fertility treatments.

Furthermore, Smith et al. (2009b) found that a realistic head morphology, whilst having 2%

more resistance to forward motion than an equivalent spherical head, actually conferred a

propulsive advantage to the cell. This is because resistance to rolling was almost doubled,

and the decrease in cell yaw led to a 2.8% increase in progress. Gillies et al. (2009) employed

a model with an ellipsoidal head, and observed the same effect; elongation of the ellipsoidal

head increased drag, resulting in a reduction of yaw.

When fluid modelling is coupled with a structural model of the flagellum, head morphol-

ogy can have a dramatic impact upon the cell. Gadêlha et al. (2010) modelled human sperm

using a geometrically nonlinear fluid-structure interaction method described in section 1.3.2,

with head morphology incorporated through BEM and flagellum-fluid interaction incorpo-

rated through RFT. Gadêlha et al. (2010) showed that at high viscosity, changes in head mor-

phology affected the waveform through a buckling instability resulting in dramatic changes

to cell trajectory. Such studies show the importance of modelling a realistic cell morphology

when considering a given system.

With the advent of more powerful computers, SBT and BEM could be used to consider the

optimisation of a swimmer’s beat pattern or morphology. In Tam and Hosoi (2007), the stroke

pattern of Purcell’s three-linked swimmer, figure 1.7a, was optimised for both energy efficiency

and swimming speed. The swimmerwasmodelled as a jointed chain of three slender rods using

SBT, yielding an optimal stroke pattern that was more efficient than that found by previous

studies, such as that of Becker et al. (2003) which did not consider hydrodynamic interactions

between links. Shum et al. (2010) utilised BEM to model both swimmer body and a helical,
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bacterial flagellum. It was found that hydrodynamic interactions with the boundary could

trap the bacteria in circular swimming trajectories, previously observed for E. coli swimming

near a boundary by Lauga et al. (2006). The radius of the orbit was shown to be sensitive to

the morphology of the cell.

Since the flow solutions arising from singular forces, stresses and torques are not valid at

the location of the singularity, Cortez (2001) developed the method of regularised stokeslets,

which has been used in a number of recent studies (Cisneros et al., 2007; Gillies et al., 2009;

O’Malley and Bees, 2012). A regularised stokeslet gives the fluid flow arising from a concen-

trated ‘blob’ force 𝐅 = 𝑔𭜖(𝐱 − 𝐱𭑠)𝐟, where 𝑔𭜖 is a cut-off function giving the envelope of the

blob force in terms of the regularisation parameter 𝜖. This introduces an error of 𝒪(𝜖2) in the

calculated flow field, which is small provided 𝜖 is small, and allows the flow field to be calcu-

lated at exactly the location of the singularities. The image system for a particular choice of

𝑔𭜖 was given in (Ainley et al., 2008), allowing the inclusion of no-slip domain boundaries. A

version of the boundary element method using regularised stokeslets was used in Smith et al.

(2011) and Smith et al. (2012) to simulate symmetry breaking flow in the developing mouse

and zebrafish embryos respectively.

1.3.2 Filament mechanics

By utilising the RFT approximation of the effects of fluid drag on the flagellum, it is possi-

ble to derive a partial differential equation that governs the fluid structure interaction of one

dimensional filaments under certain conditions without explicit calculation of the fluid flow.

This modelling program was instigated by Machin (1958), who showed that experimentally

observed flagella waveforms of sperm must be generated actively along the length of the flag-

ellum, rather than arising from drag on a passive filament driven at the base. Hines and Blum

(1978, 1979) extended this framework, modelling the flagellum as a geometrically nonlinear

beam with an additional term to characterise the response to the shear forces that drive the
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𝜓𝑠

Figure 1.12: The shear angle 𝜓 as a function of arclength along the flagellum for a swimmer
resembling a human sperm.

axoneme. This was then further extended to model swimming filaments with cell bodies by

Camalet and Jülicher (2000). By considering the two dimensional schematic model of the ax-

oneme employed by Riedel-Kruse et al. (2007); Hilfinger et al. (2009), shown in figure 1.13, the

following equation for the shear angle may be derived (Camalet and Jülicher, 2000; Riedel-

Kruse et al., 2007)

𝐶𭑛
𝜕𝜓(𝑠, 𝑡)

𝜕𝑡
= −𝐸𝜕4𝜓(𝑠, 𝑡)

𝜕𝑠4 + 𝜏0
𝜕2𝜓(𝑠, 𝑡)

𝜕𝑠2 + 𝑎𝜕2𝑓(𝑠, 𝑡)
𝜕𝑠2 (1.21)

where 𝐶𭑛 is the normal drag coefficient from RFT, 𝐸 is the bending stiffness of the filament,

𝑎 is the filament radius and 𝑓 is the shear force. The dependent variable 𝜓(𝑠, 𝑡) is the filament

shear (tangent) angle, shown in figure 1.12. The constant 𝜏0 is the first term in an asymptotic

expansion of the filament tension, which is determined by the constraint that the filament is

inextensible (Camalet and Jülicher, 2000). If no external force is applied to the tail or the cell

is swimming freely, then 𝜏0 = 0.

The shear force 𝑓(𝑠, 𝑡) is generated within the axoneme, and so its form is dependent on

the mechanisms that regulate the attachment and detachment rates of the dynein molecular

motors that drive the relative sliding of microtubule doublets. However, the mechanism that

controls these rates is still unknown. Here we summarise three of the most popular competing

theories.

Brokaw (1971, 1972, 1984, 1994, 1999, 2002, 2009) developed a sliding filamentmodelwhereby

the local magnitude of the shear force generated by active sliding of the doublet microtubules
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Figure 1.13: View of the beat plane of a two dimensional model axoneme, redrawn fromRiedel-
Kruse et al. (2007), with sliding displacement Δ(𝑠), internal shear force density 𝑓(𝑠) due to
the active dyneins (blue), and the passive nexin links (red). There is some sliding allowed at
the basal body (grey), represented by springs and dashpots.

is regulated by the local curvature of the axoneme, so that in the simplest case

𝑓(𝑠, 𝑡) ∝ 𝜅(𝑠, 𝑡 − 𝜏) (1.22)

for 𝑓 the active shear force and 𝜏 some time delay. This generates a feedback loop in the

axoneme that is able to yield rhythmic travelling waves that propagate from base to tip. This

is known as the ‘Curvature Control’ hypothesis.

In contrast, Lindemann (1994a,b, 1996, 2002, 2004, 2009) proposed that the activity of the

dynein motors responds to changes in interdoublet spacing. If neighbouring doublets slide

relative to one another, the nexin links binding them must stretch. This generates a tensile

force in the doublets, which decreases the distance between doublets. It is the ‘Geometric

Clutch Hypothesis’ that the shorter the inter-doublet distance, the easier for the dynein arms

to bind to their neighbouring doublet. This increases the rate at which the dynein motors
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are ‘on’, creating a positive feedback. Motion is then slowed by the rigid elements within the

flagellum which oppose bending.

The ‘Sliding Velocity Control’ model of Camalet and Jülicher (2000) makes the hypothesis

that the dynein motors detach more rapidly as the load increases. This gives rise to a similar

positive feedback as occurs in the geometric clutch model, since increases in sliding velocity

result in a decrease in load (Riedel-Kruse et al., 2007). This leads to a decrease in the detachment

rate of the dynein motors, increasing the force that they generate. Again, motion is halted by

the inherent bending resistence of the flagellum ultrastructure. The force generated on one

side, the ‘+’ side, say, of our two dimensional idealised axoneme is given by

𝑓+(𝑠, 𝑡) = −𝜌(𝑠)𝑝+(𝑠, 𝑡)𝑓+ (1.23)

where 𝜌 is the dynein density along the filament, 𝑝+ is an attachment probability and 𝑓+ is the

force generated by a single dynein motor, assumed to depend linearly on the sliding velocity.

The framework developed by Camalet and Jülicher (2000) was used by Riedel-Kruse et al.

(2007) to compare these three control hypotheses. Flagellar beat patterns of bull sperm mov-

ing with a planar waveform or pinned to the coverslip were captured with high-speed video

microscopy, and the shear angle as a function of arclength automatically detected using an

image analysis algorithm. Then, solutions to equation (1.21) were calculated and fit to the ex-

perimental data with appropriate boundary conditions, and an appropriate forcing term for

each of the three models. It was found that the best agreement to the experimental data was

given by the sliding velocity control model, with allowance made for compliance in the base

of the axoneme to allow for some sliding in line with the observations of Vernon and Woolley

(2004).

So far, the above investigations have been derived from a model of the axoneme derived

from geometrically linear beam theory. However, as noted by Gadêlha et al. (2010), this is
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an inappropriate assumption where the observed flagellar curvature is high, as with human

sperm swimming in cervical mucus. By using the principle of virtual work (Fung and Tong,

2001) in the manner of Goldstein et al. (1998), Gadêlha et al. (2010) calculated a functional for

the internal energy of the flagellum in terms of energy associated with bending forces, elastic

stiffness and intrinsic resistance to extension and compression. Balancing these internal forces

with external viscous drag, modelled by RFT, Gadêlha et al. (2010) derived a geometrically

nonlinear equation for the flagellum centreline

Sp4𝐗𭑡 = −𝐗𭑠𭑠𭑠𭑠 − (𝛾 − 1)(𝐗𭑠 ⋅ 𝐗𭑠𭑠𭑠𭑠)𝐗𭑠 + (𝑇𝐗𭑠𭑠 + 𝛾𝑇𭑠𝐗𭑠) + (𝑓𭑠𝐧 + 𝛾𝑓𝐧𭑠), (1.24)

where 𝛾 = 𝐶𭑛/𝐶𭑡 the ratio of normal to tangential drag and 𝑇(𝑠, 𝑡) the tension in the fila-

ment given by the incompressibility constraint. Sp is a dimensionless parameter, the ‘sperm-

compliance number’ giving the relative importance of flagellum stiffness to viscous drag (Gold-

stein et al., 1998). Using a prescriptive model for the shear forcing of a propagating shear wave

of the form 𝑓(𝑠, 𝑡) = 𝐴 cos(𝑘𝑠 − 𝑡), rather than a local bend control hypothesis, Gadêlha et al.

(2010) proceeded to show that geometrical nonlinearity can give rise to a wide range of ob-

served phenomena.

In particular, a buckling instability not present in geometrically linear models was able

to break the symmetry of the waveform, leading to morphologically sensitive curved swim-

ming trajectories, and healthy, motile cells swimming in circles (figure 1.14). This buckling

instability also resulted in a waveform similar to that observed in sperm cell hyperactiva-

tion. It was previously hypothesised that hyperactivation, thought to be crucial to success-

ful fertilisation (Katz et al., 1989; Suarez and Ho, 2003), occurs due to either the presence of

boundaries or chemical signalling. Whilst the work of Gadêlha et al. (2010) does not preclude

these explanations, it is significant that, in contradistinction to linear beam theories, these

observed phenomena may arise purely from the interaction between the fluid and flagellum

42



Figure 1.14: A healthy, motile human sperm, swimming in circles through a solution ofmethyl-
cellulose with a viscosity comparable to the of human cervical mucus. Before the onset of the
buckling instability which led to this behaviour, the cell had migrated 2 cm, which is approxi-
mately 400 times its body length. Reprinted with permission from Gadêlha et al. (2010), figure
1(b).

in the higher-order geometrically nonlinear theory. Gadêlha et al. conclude that for many

parameter régimes, notably those appropriate for human sperm in the female reproductive

tract, the linear theory is insufficient, and that higher-order effects can have a dramatic effect

on cell migration. However, non-local fluid mechanics can also give rise to important effects,

such as cilia metachrony. A fluid-structure interaction approach that utilises non-local fluid

mechanics is the Immersed Boundary Method.

1.3.3 The Immersed Boundary Method

The Immersed Boundary Method (IBM) was first developed by Peskin (1972, 1977) to simulate

blood flow in the heart. A two dimensional elastic boundary representation of the muscular

heart wall, capturing realistic (albeit two dimensional) geometric details of the atrium, ventri-

cle and outflow chamber, was formulated. This boundary was ‘immersed’ in a fluid satisfying

the Navier-Stokes equations for Newtonian fluid with inertia, and the fully-coupled system
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Figure 1.15: Schematic of an immersed boundary with Lagrangian points marked overlaying
a Cartesian grid on which the fluid equations are to be solved. Redrawn from Mittal and
Iaccarino (2005)

solved.

The fundamental idea behind IBM as applied to viscous flows is as follows. Consider the

Stokes flow equations where the immersed boundary drives the flow via a localised forcing.

The fluid flow is solved on a regular Cartesian grid and the immersed boundary is represented

by a separate surface mesh that cuts through the regular fluid mesh, as shown in figure 1.15.

This differs from body conformingmethods, wherein the mesh fits around any flow bound-

aries, ‘conforming’ to the flow domain geometry. The location of the immersed boundary is

tracked in a Lagrangian fashion by a collection of massless particles 𝐗𭑘 (Mittal and Iaccarino,

2005) moving with the fluid velocity

𝜕𝐗𭑘
𝜕𝑡

= 𝐮(𝐗𭑘, 𝑡). (1.25)

The elastic stress in the immersed boundary is given by a constitutive equation, for example

Hooke’s law, which links these particles together. The localised forcing of particle 𝑚 is given
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by

𝐟𭑚(𝐱, 𝑡) = �
𭑘

𝐅𭑘(𝑡)𝛿(𝐱 − 𝐗𭑘). (1.26)

Since the position of the Lagrangian points will not in general coincide with the nodes of

the Cartesian grid, the force (1.26) must be distributed over the surrounding nodes. Errors

associated with this may then be mitigated by locally refining the mesh around the immersed

boundary.

The IBM was first applied to swimming problems by Fauci and Peskin (1988). The Navier-

Stokes equations, driven by a force-field given by the immersed sheet, were solved in two

dimensions on a periodic, regular, Cartesian grid using the finite difference scheme of Chorin

(1968). Fauci (1990) used the same methodology to examine the hydrodynamic interaction be-

tween swimming filaments, measuring the effects of phase-difference and proximity of neigh-

bouring filaments upon their swimming speed and energy dissipation. Fauci and McDonald

(1995) incorporated the effects of solid and elastic boundaries into this model, and showed that

neighbouring organisms tend to adjust their swimming speed in order to lock their beat-phases

together. Fauci (1996) extended this modelling to include multiple interacting swimmers and

a representation of biflagellate algal cells.

Dillon and Fauci (2000) worked within this framework to model ciliary beating, using a

two dimensional schematic representation of the internal structure of the axoneme whereby

active and passive structures such as nexin links, sliding microtubules and active dyneins were

represented by connected elastic sub-filaments. An asymmetric stroke activation where the

effective stroke was modelled with constant dynein activation, with dynein activation pro-

gressing down the cilium during the recovery stroke, gave a good qualitative representation

of the beat pattern of lung cilia. The methodology was reviewed in Fauci and Dillon (2006)

and used by Dillon et al. (2007) to examine mucociliary transport for a two dimensional ar-

ray of three sequential cilia situated beneath a mucus layer modelled by an elastic immersed

boundary. Following on from this, Yang et al. (2008) used the same IBM framework with a two
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dimensional idealised model of the axoneme to show that metachrony could arise in neigh-

bouring cilia purely from hydrodynamic coupling without the need for either elastic coupling

through the cell surface or any chemical signalling between cilia, as had also been investigated

using singularity methods and rod theory by Gueron et al. (1997).

One of the principal advantages of IBM for solving moving boundary problems is that the

background Cartesian mesh does not need to be adjusted between time steps, irrespective of

the position of the immersed boundary. In solving fluid mechanics for which the governing

equations have some time dependence, such as the Navier-Stokes equations which include in-

ertial effects, or viscoelastic fluids which include elastic memory effects, the solution from the

previous time step is required in the solution of the fluid equations. Thus, a fixed Cartesian

mesh does not suffer from the errors associated with the projection of the previous fluid solu-

tion onto a new mesh. However, our governing fluid equations contain no time dependence,

and so there is no need to project the fluid solution from previous time steps; the flow field is

determined instantaneously by the boundary conditions. We will thus, in contrast, use a body

fitted mesh for our numerical scheme.

A further advantage of IBM is that the method does not require the existence of a Green’s

function for the flow arising from a point force. This idea has been used for the methods we

will develop in chapter 2. Thus the equations that govern the mechanics of the flow need not

be linear. This allowed Teran et al. (2010) to model large amplitude flagellum fluid interaction

in a nonlinear Oldroyd-B fluid, which was an important step in understanding the effects that

biologically realistic fluidmechanics could exert on flagellated swimmers. A summary of other

non-Newtonian swimming modelling now follows.

1.3.4 Non-Newtonian micro-swimming studies

For the swimming of mammalian sperm, we have already observed that the Stokes flow equa-

tions do not give an accurate representation of the fluid environment, namely mucus. Indeed,
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it has been observed (Smith et al., 2009c) that the swimming speed of sperm in weakly vis-

coelastic fluid cannot be fully explained by Newtonian modelling. The problem of internal

fertilisation motivated Fulford et al. (1998) to develop a Resistive Force Theory for a linearly

viscoelastic fluid. This theory modified the force per unit length exerted by the fluid on the

flagellum to take account of fluid relaxation

𝜆 𝜕
𝜕𝑡

𝑓𭑡(𝑠, 𝑡) + 𝑓𭑡(𝑠, 𝑡) = 𝐶𭑡𝑢𭑡(𝑠, 𝑡), (1.27a)

𝜆 𝜕
𝜕𝑡

𝑓𭑛(𝑠, 𝑡) + 𝑓𭑛(𝑠, 𝑡) = 𝐶𭑛𝑢𭑛(𝑠, 𝑡). (1.27b)

The Newtonian RFT normal and tangential drag coefficients 𝐶𭑛 and 𝐶𭑡 are still present, but

the time derivative of the force also plays a rôle, as does the fluid elastic relaxation time 𝜆.

This methodology was used to show that, for small amplitude oscillations of a filament, the

rate of work by a swimmer decreases as the relaxation time increases. A similar approach

was applied in Lauga (2007b) and Fu et al. (2009), which found that the swimming speed of

filaments exhibiting small amplitude beating was decreased in nonlinearly viscoelastic fluid.

In Smith et al. (2009a), a SBT for a linearly viscoelastic Maxwell fluid was developed by util-

ising a viscoelastic version of the stokeslet to model mucociliary clearance in the lung. It was

found that cilia are highly sensitive to fluid rheology, particles being transferred significantly

less far than in Newtonian fluids for even short relaxation times. This may have implications

in the understanding of lung pathologies, such as cystic fibrosis.

The effects of fluid viscoelasticity upon a swimmer are sensitive to themethod of swimming

employed. Using small amplitude approximations, Zhu et al. (2012) showed that microscopic

swimmers that ‘squirm’ in order to progress, such as Opalina and Paramecium, are hindered

by fluid viscoelasticity, whereas as monoflagellate pushers may be aided by it (Teran et al.,

2010). Furthermore, it has recently been shown (Lauga, 2009) that Purcell’s Scallop Theorem

can break down in a viscoelastic fluid, net movement being made possible by forces resulting
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from ‘normal stress differences’; differences between the normal components of the fluid stress

tensor arising from its dependence on the fluid deformation history. These are the same forces

responsible for the famous ‘Rod Climbing effect’ (Oldroyd, 1958).

Teran et al. (2010) used the IBM to study of the effects of nonlinear Oldroyd-B viscoelas-

tic rheology on a sperm-like two dimensional sheet. They observed that, for small amplitude

oscillations, swimmingwas impeded by the fluid elasticity. However, for large amplitude oscil-

lations, they demonstrated that for fluid relaxation times comparable to the beating frequency

of the sheet propulsion was in fact enhanced. This might be thought of as a kind of viscoelastic

resonance, timing flagellar beating with the natural frequency of the fluid recoil led to propul-

sive gains. Tytell et al. (2010) used the IBM to couple an actuated elastic body with external

flow in a model of Lamprey swimming. It was found that identical muscle activation could

give rise to different beat kinematics depending upon the body stiffness, and furthermore that

well-timed muscle contractions, by affecting the passive stiffness of the body, could lead to

optimal swimming patterns. In the case of human sperm, such studies show the need for fi-

nite amplitude waveform calculations, together with a consideration of the differing elastic

properties of the flagellum due to the passive accessory structures such as the outer dense

fibres. However, a full three dimensional study without the approximation of asymptotics for

the slenderness of the swimmer or the amplitude of the waveform has yet to be performed

(Gaffney et al., 2011), and relatively less attention has been given to understanding the effects

of shear rate dependent viscosity. This thesis will examine some of these effects.

1.3.5 Overview of this thesis

In the next chapter we will develop a new technique, the method of femlets, for simulating cell

swimming in nonlinear fluids, focusing on its formulation for generalised Newtonian flow. The

technique draws inspiration from both the method of regularised stokeslets, by representing

the swimmer by a set of regularised forces, and the Immersed Boundary Method discussed
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above, by solving the fluid flow without using Green’s functions.

The method of femlets utilises a finite element projection of the governing flow equations,

enabling solution of nonlinear fluid equations on irregular domains with nonuniform meshes.

We discuss appropriate forms for the force regularisation and examine the errors associated

with representing a moving domain boundary by a set of immersed forces. We then examine

the accuracy of the time stepping procedure used to predict cell swimming trajectories.

In chapter 3, we use this method to examine the effects of shear-thinning rheology on three

model swimmers in two dimensional flow. These are swimmers comprising collinear spheres,

squirming models of ciliated swimmers and a model human sperm. We find that the effects of

shear-thinning are sensitive to the mode of swimming employed, and discuss the underlying

mechanisms by which they may aid or hinder cell progress.

49



Chapter 2

Developing the method of femlets to

model microscopic swimmers

2.1 Finite element method stokeslets: femlets

In order to solve microscopic swimming problems in fluids with shear dependent viscosity, we

will now develop the method of femlets. Drawing inspiration from the method of regularised

stokeslets (Cortez, 2001), the method of femlets represents the interaction of the swimmer

with the fluid through a set of concentrated ‘blob’ forces of unknown strength and direction.

While the method of regularised stokeslets reduces the problem to finding the coefficients in

a linear superposition of velocity solutions of known form, the method of femlets proceeds

by applying the finite element method to solve for the fluid velocity field and strength and

direction of the forces simultaneously. The use of the finite element method removes the need

for the governing equations to be linear, while the representation of the swimmer as a set of

forces provides a convenient framework for the future coupling of flagellar solid mechanics to

the non local flow calculation, as with IBM. However, unlike IBM, we use a body-fitted mesh,

enforcing the swimming velocity conditions at points exactly on the immersed surface and

allowing for irregular domains.

In the finite element method, the domain is partitioned into subdomains (elements) and



the solution to the desired differential equation is approximated by a linear combination of

low-degree polynomials 𝜙𭑖 over these elements, though higher-degree polynomials may also

be used to give a more accurate approximation of the underlying solution at the cost of in-

creasing the size of the linear system. The weak form of the differential equation is evaluated

by summing the contributions from each element, then the solution found by solving the re-

sultant linear system to give the coefficients of each basis polynomial in its expansion. This

process is known as the Rayleigh-Ritz-Galerkin process (Strang and Fix, 1988).

The finite element method was applied to fluid flow by Zienkiewicz and Cheung (1965),

and De Vries and Norrie (1971) later derived solutions for potential flow in complex multiply-

connected domains for Dirichlet, Neumann and mixed boundary conditions. This showed the

potential superiority of finite elements for fluid mechanics over then-prevalent finite differ-

encemethods owing to their ability to deal with complex geometries, non-uniformmeshes and

easy implementation of boundary conditions (Taylor and Hood, 1973). The full Navier-Stokes

equations were solved with the finite element method in Oden (1973), and its formulation in

terms of the ‘primitive’ velocity and pressure variables which will be used herein was estab-

lished in Taylor and Hood (1973); Fortin (1975); Fortin and Thomasset (1979). The Stokes flow

equations were first examined in Crouzeix and Raviart (1973), and Bercovier and Pironneau

(1979) began the rigorous theory of the study of errors for the mixed primitive variable formu-

lation of the Stokes flow equations, which will be used as a basis for our method of modelling

cell swimming.

In order to model swimmers with prescribed cell kinematics, it is desirable to describe the

swimmer’s deformation in the ‘body frame’ (Higdon, 1979) in which the swimmer’s body nei-

ther rotates nor translates. We prescribe a function for the swimmer’s configuration 𝜕𝐷swim

and velocity 𝐮𭑠 in the body frame, and transform these conditions into the ‘lab frame’, in

which the domain 𝐷 is stationary. We solve the fluid flow equations formulated in the lab

frame. The translational and rotational velocities that arise from the current configuration of
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𝐷
𝜕𝐷neu

𝜕𝐷dir

𝜕𝐷swim

𝑥

𝑦
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Figure 2.1: An example domain 𝐷 containing a model human sperm 𝜕𝐷swim, showing no-slip
channel walls 𝜕𝐷dir and open boundaries 𝜕𝐷neu. The relationship between the lab frame,
(𝑥, 𝑦) and the body frame, (𝑥′, 𝑦′) is also shown. Femlets will be distributed along the bound-
ary 𝜕𝐷swim.

the swimmer are then used to update its global position. The relationship between the body

frame and lab frame is shown for a human sperm in figure 2.1. The body frame velocity 𝐮𭑏,

given by the time derivative of the swimmer’s prescribed configuration, is related to the lab

velocity 𝐮 by

𝐮𭑏 = 𝐮 − 𝐔 − 𝛀 × (𝐱 − 𝐱0), (2.1)

where 𝐔, 𝛀 are the translational and angular velocities of the body frame, and 𝐱0 is the origin

of the body frame, chosen to be the point where the head and flagellum join.

The domain walls will in general have Dirichlet velocity conditions imposed upon them,

for example the no-slip condition 𝐮dir = 𝟎. We may also wish to consider channels of infinite

length, in which case it is usual to truncate the domain. These truncated boundaries 𝜕𝐷neu are

given the zero normal stress condition 𝝈 ⋅ 𝐧 = 𝟎. We will now derive the method of femlets

for swimmers in fluids with shear dependent viscosity. Henceforth, we will continue to use

dimensionless variables, but remove the hats for simplicity.

Let 𝐷 be a bounded domain in ℝ2. We partition the domain boundary 𝜕𝐷 = 𝜕𝐷dir∪𝜕𝐷neu

into those portions on which Dirichlet and Neumann type boundary conditions are applied

respectively. If we were to model the surface of the swimmer 𝜕𝐷swim as a moving domain

boundary, it would form a part of 𝜕𝐷dir. However, we will model the interaction of 𝜕𝐷swim
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with the fluid by an immersed body force distribution. Thus for our case 𝜕𝐷swim is not a

domain boundary, but rather a one dimensional manifold of points in 𝐷.

Let 𝐻1(𝐷) be the standard Sobolev space of weakly differentiable functions (Braess, 2007)

defined on 𝐷, and let

𝑉𭐸 = {𝐰 ∈ (𝐻1(𝐷))𭑑 ∶ 𝐰∣𭜕𭐷dir
= 𝐮dir} , (2.2a)

𝑉0 = {𝐰 ∈ (𝐻1(𝐷))𭑑 ∶ 𝐰∣𭜕𭐷dir
= 𝟎} , (2.2b)

where𝐮dir are the Dirichlet conditions imposed on 𝜕𝐷dir. Let also𝑄 be the subspace of𝐿2(𝐷),

the set of square integrable functions on 𝐷, with zero mean value on 𝐷. The spaces 𝑉𭐸, 𝑉0

are the solution and test function spaces for velocity, and the solution and test function space

for pressure is 𝑄. Multiplying equations (1.11) by arbitrary ‘test’ functions 𝐯 ∈ 𝑉0, 𝑞 ∈ 𝑄,

respectively, yields the following integral form of problem (1.11):

∫
𭐷

{∇ ⋅ [2𝜇eff( ̇𝛾)𝜺(𝐮)] − ∇𝑝 + 𝐅} ⋅ 𝐯 d𝐱 = 0, ∫
𭐷

𝑞∇ ⋅ 𝐮 d𝐱 = 0. (2.3)

Integration by parts yields an equivalent integral formulation with reduced differentiability

requirements for 𝐮 and 𝑝. This is known as the weak (or variational) formulation of the gen-

eralised Stokes flow problem (1.11) and reads:

Find (𝐮, 𝑝) ∈ 𝑉𭐸 × 𝑄 such that ∀(𝐯, 𝑞) ∈ 𝑉0 × 𝑄,

∫
𭐷

2𝜇eff( ̇𝛾)𝜺(𝐮) ∶ 𝜺(𝐯) d𝐱 − ∫
𭐷

𝑝∇ ⋅ 𝐯 d𝐱 + ∫
𭐷

𝐅 ⋅ 𝐯 d𝐱 = 0, (2.4a)

∫
𭐷

𝑞∇ ⋅ 𝐮 d𝐱 = 0, (2.4b)
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The weak form of the zero normal stress condition

∫
𭜕𭐷neu

𝐯 ⋅ 𝝈 ⋅ 𝐧 d𝐱 = 0, (2.5)

is applied on 𝜕𝐷neu. Existence and uniqueness for problem (2.4) was shown by Baranger and

Najib (1990) for both the power law and Carreau models.

As the swimmer moves through the fluid, the moving boundary exerts a force distribu-

tion on the fluid that drives the flow. We incorporate this interaction through the unknown

body force 𝐅, which is governed by the motion of the swimmer. We approximate 𝐅 by a

finite number of smooth elongated immersed forces with unknown components (femlets)

𝐅 = ∑𭑁𭑓
𭑘=1 𝑔𭜖(𝐑𭑘[𝐱 − 𝐱𭑘])𝐟𭑘, for 𝑁𭑓 femlets with force vector 𝐟𭑘 located at 𝐱𭑘. The rota-

tion matrix 𝐑𭑘 is used to orientate the femlet, so that femlets may be defined in their local

frame (fig 2.2a). For simplicity, we define 𝐱loc
𭑘 = 𝐑𭑘[𝐱 − 𝐱𭑘]. The cut-off function 𝑔𭜖(𝐱loc

𭑘 ) is

a regularised Dirac 𝛿 distribution similar to that used in the method of regularised stokeslets

(Cortez, 2001). The choice of cut-off function will be discussed in greater detail in section 2.2.2,

an example being the elongated Gaussian

𝑔𭜖(𝐱loc
𭑘 ) = exp {− [(𝑥loc

𭑘 )2

2𝜎2
𭑥

+ (𝑦loc
𭑘 )2

2𝜎2
𭑦

]} , (2.6)

shown in figure 2.2a, where the small parameter 𝜖 has been absorbed into the standard devi-

ations 𝜎𭑥, 𝜎𭑦. The orientation of the frame (𝑥loc
𭑘 , 𝑦loc

𭑘 ) is chosen so that each femlet is aligned

with the local tangent and normal to the swimmer’s body, with 𝜎𭑥 ≥ 𝜎𭑦. The choice of 𝜎𭑥, 𝜎𭑦

is also discussed in section 2.2.2.

Associatedwith each femlet 𝑘 are 2 degrees of freedom, the lab frame force of each femlet in

the 𝑥 and 𝑦 directions (𝑓1𭑘, 𝑓2𭑘), resulting in 2𝑁𭑓 additional scalar variables. To calculate the

2𝑁𭑓 force unknowns, we enforce 2𝑁𭑓 constraints in the form of Dirichlet velocity conditions

𝐮𭑠. These are given by the swimmer’s velocity in the body frame and applied at the location
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𝑥loc
𭑘

𝑦loc
𭑘
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0
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𝑥

𝑦

(a) (b)

Figure 2.2: (a) The cut-off function 𝑔𭜖, given by equation (2.6) with 𝜎𭑥 = 0.0016 and 𝜎𭑦 =
0.008, for a single femlet centered on 𝐱𭑘 = (0.09, 1) and aligned at an angle of 𝜋/3 rad,
showing the local frame (𝑥loc

𭑘 , 𝑦loc
𭑘 ). (b) A plot showing the smooth force distribution envelope

generated by a sum of such 𝑔𭜖 when projected on a finite element mesh, for femlets at the
marked locations representing a flagellum.

of each femlet.

The swimmer translational and angular velocities𝐔, 𝛀 provide additional unknownswhich

are closed by the conditions that zero net force (Taylor, 1951) and torque (Chwang and Wu,

1971) act on the swimmer,

∫
𭐷

𭑁𭑓

�
𭑘=1

𝑔𭜖(𝐱loc
𭑘 )𝐟𭑘 d𝐱 = 0, ∫

𭐷
𝐱 ×

𭑁𭑓

�
𭑘=1

𝑔𭜖(𝐱loc
𭑘 )𝐟𭑘 d𝐱 = 0. (2.7)

The zero net force condition reduces simply to the condition that the sum of the femlet forces
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𝐟𭑘 is zero

∫
𭐷

𭑁𭑓

�
𭑘=1

𝑔𭜖(𝐱loc
𭑘 )𝐟𭑘 d𝐱 =0,

∴
𭑁𭑓

�
𭑘=1

𝐟𭑘 ∫
𭐷

𝑔𭜖(𝐱loc
𭑘 ) d𝐱 =0. (2.8)

Since all femlets are given the same non-negative cut-off function 𝑔𭜖, the value of the integral of

the cut-off functionmay be cancelled, otherwise a simple alteration to the numerical procedure

must be made that accounts for this.

We specify the velocity conditions at the femlet centroid, and also choose the cut-off func-

tion so that each femlet exerts no torque about its centroid,

∫
𭐷

𝐱loc
𭑘 × (𝑔𭜖(𝐱loc

𭑘 )𝐟𭑘) d𝐱 =0 ∀𝐟𭑘

∫
𭐷

𝐱loc
𭑘 𝑔𭜖(𝐱loc

𭑘 ) d𝐱 =0, (2.9)

where as before 𝐱loc
𭑘 = 𝐑𭑘[𝐱−𝐱𭑘]. Together with the relation 𝐱 = 𝐱−𝐱𭑘 +𝐱𭑘 = 𝐑−1

𭑘 [𝐱loc
𭑘 ]+

𝐱𭑘, this allows us to simplify the zero net torque condition to the condition that the sum of

the torques exerted by the femlet forces 𝐟𭑘 is zero

∫
𭐷

𝐱 ×
𭑁𭑓

�
𭑘=1

𝑔𭜖(𝐱loc
𭑘 )𝐟𭑘 d𝐱 =0,

∴ 𝐑−1 ∫
𭐷

𭑁𭑓

�
𭑘=1

𝐱loc
𭑘 × 𝑔𭜖(𝐱loc

𭑘 )𝐟𭑘 d𝐱
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+ ∫
𭐷

𭑁𭑓

�
𭑘=1

𝐱𭑘 × 𝑔𭜖(𝐱loc
𭑘 )𝐟𭑘 d𝐱 =0,

∴
𭑁𭑓

�
𭑘=1

𝐱𭑘 × 𝐟𭑘 ∫
𭐷

𝑔𭜖(𝐱loc
𭑘 ) d𝐱 =0. (2.10)
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Thus, the force and torque conditions on the swimmer may be written

𭑁𭑓

�
𭑘=1

𝐟𭑘 = 0,
𭑁𭑓

�
𭑘=1

𝐟𭑘 × 𝐱𭑘 = 0, (2.11)

respectively.

Under these conditions, problem (2.4) has the femlet approximation

Find (𝐮, 𝑝) ∈ 𝑉𭐸 × 𝑄 such that ∀(𝐯, 𝑞) ∈ 𝑉0 × 𝑄,

∫
𭐷

2𝜇eff( ̇𝛾)𝜺(𝐮) ∶ 𝜺(𝐯) d𝐱 − ∫
𭐷

𝑝∇ ⋅ 𝐯 d𝐱 + ∫
𭐷

[
𭑁𭑓

�
𭑘=1

𝑔𭜖(𝐱loc
𭑘 )𝐟𭑘] ⋅ 𝐯 d𝐱 = 0, (2.12a)

∫
𭐷

𝑞∇ ⋅ 𝐮 d𝐱 = 0, (2.12b)

subject to,

𝐮(𝐱𭑘, 𝑡) = 𝐮𭑠(𝐱𭑘, 𝑡) + 𝐔(𝑡) − 𝛀(𝑡) × (𝐱𭑘 − 𝐱0) (2.12c)
𭑁𭑓

�
𭑘=1

𝐟𭑘 = 0,
𭑁𭑓

�
𭑘=1

𝐟𭑘 × 𝐱𭑘 = 0, (2.12d)

Note that problem (2.12) is nonlinear, due to the dependence of 𝜇eff on ̇𝛾(𝐮). We solve this
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nonlinear system with the following Picard iteration: given an initial guess (𝐮0, 𝑝0),

For 𝑚 = 1, 2, … solve until convergence:

Find (𝐮𭑚, 𝑝𭑚) ∈ 𝑉𭐸 × 𝑄 such that ∀(𝐯, 𝑞) ∈ 𝑉0 × 𝑄,

∫
𭐷

2𝜇eff( ̇𝛾𭑚−1)𝜺(𝐮𭑚) ∶ 𝜺(𝐯) d𝐱 − ∫
𭐷

𝑝𭑚∇ ⋅ 𝐯 d𝐱 + ∫
𭐷

[
𭑁𭑓

�
𭑘=1

𝑔𭜖(𝐱loc
𭑘 )𝐟𭑚

𭑘 ] ⋅ 𝐯 d𝐱 = 0

(2.13a)

∫
𭐷

𝑞∇ ⋅ 𝐮𭑚 d𝐱 = 0, (2.13b)

subject to

𝐮(𝐱𭑘, 𝑡)𭑚 = 𝐮𭑠(𝐱𭑘, 𝑡) + 𝐔(𝑡)𭑚 − 𝛀(𝑡)𭑚 × (𝐱𭑘 − 𝐱0), (2.13c)
𭑁𭑓

�
𭑘=1

𝐟𭑚
𭑘 = 0,

𭑁𭑓

�
𭑘=1

𝐟𭑚
𭑘 × 𝐱𭑘 = 0, (2.13d)

End.

For each 𝑚, problem (2.13) is linear, since 𝜇eff( ̇𝛾𭑚−1) = 𝜇eff( ̇𝛾(𝐮𭑚−1)) is evaluated with the

known velocity from the previous iteration. This sequence of linear problemswas solved using

the following finite element method.

Since 𝐮dir = 𝟎, we henceforth write 𝑉𭐸 = 𝑉0 for ease of presentation. Let 𝐷ℎ denote a

partition of 𝐷 into simplices of diameter no greater than ℎ. Let 𝑉ℎ
0 , 𝑄ℎ be finite dimensional

subspaces of 𝑉0, 𝑄, respectively, with bases {𝝓𭑖}1≤𭑖≤𭑁 , {𝜓𭑗}1≤𭑗≤𭑀
of piecewise polynomial

functions defined on the partition 𝐷ℎ. We consider the following discrete weak formulation
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corresponding to formulation (2.12):

Find (𝐮ℎ, 𝑝ℎ) ∈ 𝑉ℎ
0 × 𝑄ℎ such that ∀(𝐯ℎ, 𝑞ℎ) ∈ 𝑉ℎ

0 × 𝑄ℎ,

∫
𭐷

2𝜇eff( ̇𝛾ℎ)𝜺(𝐮ℎ) ∶ 𝜺(𝐯ℎ) d𝐱 − ∫
𭐷

𝑝ℎ∇ ⋅ 𝐯ℎ d𝐱 + ∫
𭐷

[
𭑁𭑓

�
𭑘=1

𝑔𭜖(𝐱loc
𭑘 )𝐟𭑘] ⋅ 𝐯ℎ d𝐱 = 0, (2.14a)

∫
𭐷

𝑞ℎ∇ ⋅ 𝐮ℎ d𝐱 = 0, (2.14b)

subject to,

𝐮(𝐱𭑘, 𝑡)ℎ = 𝐮𭑠(𝐱𭑘, 𝑡)ℎ + 𝐔(𝑡) − 𝛀(𝑡) × (𝐱𭑘 − 𝐱0) (2.14c)
𭑁𭑓

�
𭑘=1

𝐟𭑘 = 0,
𭑁𭑓

�
𭑘=1

𝐟𭑘 × 𝐱𭑘 = 0. (2.14d)

Using the expansions,

𝐮ℎ(𝐱) =
𭑁

�
𭑖=1

𝑈𭑖𝝓𭑖(𝐱), 𝐩ℎ(𝐱) =
𭑀

�
𭑗=1

𝑃𭑗𝜓𭑗(𝐱), (2.15)

we obtain the discrete form of the Picard iteration (2.13),

⎛⎜⎜⎜⎜⎜⎜⎜

⎝

𝐴𭑚−1 𝐵𭑇 𝐶 0

𝐵 0 0 0

𝐷 0 0 𝑇1

0 0 𝑇2 0

⎞⎟⎟⎟⎟⎟⎟⎟

⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𭐌

⎛⎜⎜⎜⎜⎜⎜⎜

⎝

{𝐮𭑚}

{𝑝𭑚}

{𝐟𭑚
𭑘 }

{𝑈}

⎞⎟⎟⎟⎟⎟⎟⎟

⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𭐳

=

⎛⎜⎜⎜⎜⎜⎜⎜

⎝

{𝐮dir}

{0}

{𝐮swim}

{0}

⎞⎟⎟⎟⎟⎟⎟⎟

⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𭐫

, (2.16)

where

[𝐴𭑚−1]𭑖𭑗 = ∫
𭐷

2𝜇eff( ̇𝛾𭑚−1
ℎ )𝜺(𝝓𭑗) ∶ 𝜺(𝝓𭑖) d𝐱, [𝐵]𭑗𭑙 = ∫

𭐷
𝜓𭑗∇ ⋅ 𝝓𭑙 d𝐱. (2.17)

The 𝑁𭑓 columns of matrix 𝐶 are obtained by evaluating the cut-off function 𝑔𭜖 at each node

and premultipling by the mass matrix ∫
𭐷

𝝓𭑖𝝓𭑗 d𝐱. The matrix 𝐷 applies Dirichlet velocity
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conditions, given in the swimmer’s body frame on the right-hand side, at the position 𝐱𭑘 of

each femlet. Thematrix𝑇1 transforms these conditions into the lab frame, whilst𝑇2 applies the

constraints of zero net force and torque. The velocity derivatives required for the calculation

of ̇𝛾𭑚−1
ℎ are calculated in a weak sense by premultiplying the solution vector 𝐮𭑚−1

ℎ by the

matrix 𝐵.

The iteration continues until ||𝐌( ̇𝛾𭑚+1)𝐳𭑚+1 − 𝐫𭑚+1|| < 𝜖tol, a small tolerance here set

to 𝜖tol = 10−9. The matrix 𝐌, vector 𝐫 and solution vector 𝐳 of the nonlinear swimming

problem are as indicated by equation (2.16). The solution comprises the lab frame velocity of

the fluid 𝐮, the fluid pressure 𝑝, the force distribution along the swimmer 𝐟𭑘 and the swimming

translational 𝐔 and rotational 𝛀 velocities.

The Picard iterative procedure has been chosen since it has a large radius of convergence

and it is easy to implement (Mitsoulis, 2007). However, it only converges at a linear rate.

In contrast, the Newton-Raphson method has a smaller radius of convergence (Böhme and

Rubart, 1989), that but converges quadratically. Should numerical cost prohibit the use of

the Picard scheme, it is possible to use a hybrid technique whereby a good initial guess for a

Newton-Raphson scheme is provided by the Picard solver.

To provide an initial guess 𝐮0 for the Picard iteration, we first calculate the linear Stokes

solution under the same conditions, i.e. with the same boundary conditions and same zero

shear rate viscosity 𝜇0. For fluids with a high degree of nonlinearity, we apply a natural pa-

rameter continuation (Allgower and Georg, 1990) approach whereby a series of convergent

solutions is found for increasingly nonlinear fluids, each converged solution being used as an

initial guess for the Picard iteration for a fluid with incrementally more nonlinearity (Kara-

giannis et al., 2005; Böhme and Rubart, 1989; Mitsoulis, 2007). This approach is used in chapter

3 for simulating both collinear sphere and squirming swimmers.

For illustrative purposes, consider calculating a power law flow solution with exponent

𝑛 = 0.5 in domain 𝐷 with given boundary conditions. First, we calculate the flow arising
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from the Stokes constitutive law. This flow is then used as an initial guess for the Picard

iteration arising from a power law fluid of exponent 𝑛 = 0.9, say. This is in turn used as a

starting point for a calculation with 𝑛 = 0.8 and so on until the desired level of nonlinearity,

here 𝑛 = 0.5, is reached. Natural parameter continuation is a common means of ensuring the

convergence of the nonlinear solver (Zienkiewicz and Taylor, 1989) by providing at each step

an initial guess that is close to the true solution.

2.1.1 Further details of the numerical implementation

In order to discretise the spatial domain 𝐷, we generate a tessellation of 𝐷 with triangles that

conforms to the shape of the boundaries. This is referred to as an unstructured, or body-fitted,

mesh of 𝐷. The triangles form the elements, their vertices being referred to as nodes. The

coordinates of the nodes are stored in a 2 × 𝑁 matrix 𝑝, where 𝑁 is the number of nodes. The

connectivity of these nodes is stored in 𝑡, a 3 × 𝐸 matrix where 𝐸 is the number of elements.

Each column of 𝑡 represents a triangular element, the entries being the indices in 𝑝 of the

nodes belonging to that element, ordered in a local anticlockwise manner by row. Finally, the

domain boundaries are stored in a 2 × 𝑁𭑏 boundary connectivity matrix, for 𝑁𭑏 the number

of element edges along the domain boundary. Each column of the edge connectivity matrix

lists the nodes on a particular edge. These three matrices completely define the unstructured

mesh.

The mesh is generated with the Matlab® program DistMesh (Persson and Strang, 2004).

The domain is represented implicitly by a signed distance function 𝑑(𝑥, 𝑦), which is negative

inside the domain and zero on the “level set” of the boundary. Points on the internal manifold

representing the swimmer 𝜕𝐷swim, the location of the femlets, are fixed and will form nodes

of the triangular mesh. A random, uniform distribution of points within the domain bounding

box is generated, and points outside the domain for which 𝑑(𝑥, 𝑦) > 0 are discarded. This

set of points is triangulated with the Delaunay algorithm, and passed to an iterative mesh
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generation procedure.

The iterative mesh generation technique is analogous to solving for force equilibrium of a

truss. Nodes of the truss correspond to nodes of the mesh, with edges corresponding to bars.

The bars are modelled by linear springs, constrained at the boundaries, and force equilibrium

is used to move the nodes. A user defined size function allows control over the relative sizes

of elements in different regions of the domain, allowing for finer discretisation near the swim-

mer. This size function is used to scale the stiffness of the bars. The Delaunay triangulation

algorithm is then reused to determine the new edges of the mesh, and the procedure continues

until no node moves more than a desired tolerance, relative to the local mesh size. This itera-

tive procedure naturally lends itself to problems involving moving boundaries; by starting the

procedure with a mesh from the previous time-step with boundary nodes set at the current

time-step, the speed of mesh generation may be improved significantly.

The mesh is generated so that the elements have the Delaunay property (Delaunay, 1934),

that no node lies within the circumcircle of any of the elements, as shown in figure 2.3. De-

launay meshes maximise the minimum angle over all elements in the mesh (Ho-Le, 1988).

The gradient of the error associated with interpolating the solution with basis functions

depends linearly on the condition number of the elements (Ciarlet, 1978), that is, the con-

dition number of the affine map from the element to a reference triangle (equation (2.19b)).

Thus, avoiding slim elements produces a better approximation of the solution and so Delaunay

meshes are desirable. The condition number of a triangle approaches infinity as any one of

the internal angles approaches 𝜋, so maintaining mesh quality is very important.

Additionally, the error associated with interpolating the solution over any element is de-

pendent on the square of the circumradius of that element (Ciarlet, 1978), and also how much

the solution changes over that element. Thus, the accuracy of the finite element interpolated

solution may be improved with mesh refinement. This can either be done globally, by remesh-

ing the whole domain with a finer mesh, or locally. Local, or adaptive, mesh refinement is
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Figure 2.3: An example of a two node patch where the left-hand, non-Delaunay triangulation
has undergone an edge-flipping routine to create the right-hand Delaunay triangulation.

achieved by first selecting the elements to refine, then updating these elements as shown in

figure 2.4. Surrounding elements must also be updated in the manner indicated, to avoid hang-

ing nodes; nodes that are not vertices in the triangulation. Nodes in the interior of the domain

may then be shifted or edges flipped as shown in figure 2.3 in order to maintain the mesh

quality.

Global refinement leads to a considerable increase in the size of the linear system to be

solved. As such, local refinement is often preferable, since by focusing on regions where the

solution quality needs the most improvement, one can achieve equivalent accuracy at lower

computational cost. Local refinement is particularly appropriate when examining yield stress

fluids, due to the sharp interface between unyielded regions of flow and liquid regions, the

so-called ‘yield surface’. The positions of yield surfaces cannot be known a priori, and thus an

adaptive procedure whereby the solution is refined locally where the velocity gradient is large

is desirable.

We will approximate our velocity and pressure solutions as piecewise quadratic and piece-

wise linear polynomial functions over this triangulation. These are known as Taylor-Hood

𝑃2 − 𝑃1 triangular finite elements (Taylor and Hood, 1973). For a general triangle 𝐾 with

vertices (𝑥𭑗, 𝑦𭑗) where 𝑗 = 1, 2, 3, shown in figure 2.5, we associate linear shape functions
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Figure 2.4: Two methods of locally refining the mesh corresponding to selecting an edge (left)
and an element (right), where the new mesh edges arising from the refinement have been
shown in red. We employ element selection in our refinement algorithm.

𝑁𭑗(𝑥, 𝑦) with each of the vertices 𝑗 via the property

𝑁𭑗(𝑥𭑘, 𝑦𭑘) = 𝛿𭑗𭑘, for 𝑗, 𝑘 = 1, 2, 3, (2.18)

so that each shape function takes the value of 1 at its associated vertex and linearly decreases

to zero at the other two with the form 𝑁𭑗(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦, 𝑥, 𝑦 ∈ 𝐾. Applying condition

(2.18) gives values for 𝑎, 𝑏 and 𝑐. The basis functions 𝜙𭑗 are then formed by combining the

shape functions over patches, as shown in figure 2.6.

These basis functions are known as hat functions. Hat functions have compact support:

they are zero on most of the domain. Thus, in the piecewise polynomial approximation of our

solution, only the basis function at a particular node contributes to the solution at that point

giving a sparse linear system. We may also construct quadratic, or indeed higher-order, shape

functions by the same procedure.

Rather than calculate the shape functions for each element in the mesh, we use the affine

mapping

𝜉 = [(𝑦3 − 𝑦1)(𝑥 − 𝑥1) − (𝑥3 − 𝑥1)(𝑦 − 𝑦1)]/𝒥 (2.19a)

𝜂 = [(𝑦1 − 𝑦2)(𝑥 − 𝑥1) − (𝑥1 − 𝑥2)(𝑦 − 𝑦1)]/𝒥 (2.19b)
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Figure 2.5: A linear triangular element with anticlockwise local node numbering.
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Figure 2.6: A linear shape function (red) plotted over a single element (left) together with the
associated linear hat function (red) plotted over the patch of neighbouring elements (right).
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Figure 2.7: (a) A quadratic triangle, with anticlockwise node numbering. Note that since we
wish to model fluid pressure with linear elements and the velocity with quadratic elements,
the first three quadratic nodes coincide with the linear triangle. (b) The Canonical Triangle.



to map each element 𝐾 to the canonical triangle 𝐸 (Strang and Fix, 1988), shown in figure 2.7b.

Here, (𝑥, 𝑦) are the coordinates of triangle 𝐾 with vertices (𝑥𭑖, 𝑦𭑖), and 𝒥 is the Jacobian of

the inverse transformation. Over the canonical triangle, the piecewise linear shape functions

for the pressure approximation are given by

𝑁̂1
1(𝜉, 𝜂) = 1 − 𝜉 − 𝜂, (2.20a)

𝑁̂1
2(𝜉, 𝜂) = 𝜉, (2.20b)

𝑁̂1
3(𝜉, 𝜂) = 𝜂, (2.20c)

and the piecewise quadratic shape functions for the velocity approximation are given by

𝑁̂2
1(𝜉, 𝜂) = 2𝜉2 + 2𝜂2 − 3𝜉 − 3𝜂 + 4𝜉𝜂 + 1, (2.21a)

𝑁̂2
2(𝜉, 𝜂) = 2𝜉2 − 𝜉, (2.21b)

𝑁̂2
3(𝜉, 𝜂) = 2𝜂2 − 𝜂, (2.21c)

𝑁̂2
4(𝜉, 𝜂) = 4(1 − 𝜉 − 𝜂)𝜉, (2.21d)

𝑁̂2
5(𝜉, 𝜂) = 4𝜉𝜂, (2.21e)

𝑁̂2
6(𝜉, 𝜂) = 4(1 − 𝜉 − 𝜂)𝜂, (2.21f)

where the subscripts denote the node at which each polynomial takes a value of 1. These

functions are integrated with a 12−point two dimensional quadrature rule, the points and

weights of which are given in Strang and Fix (1988).

The velocity solution is given by a piecewise quadratic function over the domain, output

at the 6 nodes of each quadratic element. Thus, to calculate the velocity at a general point

(𝑥0, 𝑦0) in 𝐷 not corresponding to a node it is necessary to project the velocity at that point

onto the finite element solution. To do this, we first calculate the element in which the point is

contained, then map the containing element to the canonical triangle 𝐸 using (2.19b), giving
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the coordinates (𝜉0, 𝜂0) of the point (𝑥0, 𝑦0) within 𝐸. The 𝑥-velocity, say, at (𝑥0, 𝑦0) is then

found by

𝑢1(𝑥0, 𝑦0) ={𝑢1}𭐾(1)𝑁2
1(𝜉0, 𝜂0) + {𝑢1}𭐾(2)𝑁2

2(𝜉0, 𝜂0) + {𝑢1}𭐾(3)𝑁2
3(𝜉0, 𝜂0)

+{𝑢1}𭐾(4)𝑁2
4(𝜉0, 𝜂0) + {𝑢1}𭐾(5)𝑁2

5(𝜉0, 𝜂0) + {𝑢1}𭐾(6)𝑁2
6(𝜉0, 𝜂0), (2.22)

where 𝐾(𝑖), 𝑖 = 1, 2, ..., 6 is the global index of the nodes of triangle 𝐾, which are ordered

locally by 𝑖. With this framework in place, we will now test the accuracy of the method of

femlets.

2.2 Testing the method of femlets

In this section, we will perform a number of tests to validate the method of femlets. We will

begin by comparing our generalised Stokes solver against analytic solutions for flow in a two

dimensional channel in the absence of femlets, and then compare the flow arising in a cavity

from a moving lid on which we apply Dirichlet boundary conditions, and a line distribution

of femlets. We will then discuss the choice of femlet cut-off function 𝑔𭜖 whilst examining how

the no-slip condition is conserved along a line distribution of femlets representing a beating

filament. Finally, we will discuss the accuracy of the time stepping procedure used to advance

the swimmer through the domain.

2.2.1 Validating the generalised Stokes flow solver: channel flow

We begin by modelling two dimensional flow driven down an infinite channel channel by a

pressure gradient, due to the existence of quantitatively different analytic solutions for New-

tonian, power law and Papanastasiou fluids. Unfortunately, no analytic solution exists for

Carreau fluid, though the rheological similarity of the Carreau and Papanastasiou constitutive

67



𝑦 = 1 𝑢 = 0 (No-Slip)

𝑦 = 0 𝜕𝑢
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= 𝐺

Pipe wall

Figure 2.8: The conditions under which analytic solutions of flow down an infinite channel
are derived.

laws suggests that numerically calculated profiles should be qualitatively similar.

Consider flow within the infinite no-slip walls 𝑦 = [−1, 1] driven by a constant pressure

gradient 𝐺 (figure 2.8). Since the channel is infinite in the 𝑥-direction, 𝐮 = (𝑢(𝑦), 0), so that

∇ ⋅ 𝐮 = 0 holds automatically. From the momentum equation,

∇ ⋅ 𝝈 =0 (2.23)

∴ ∇ ⋅ (−𝑝I + 𝝉) =0. (2.24)

The boundary conditions are symmetric about 𝑦 = 0, and hence we seek a symmetric form for

the solution. Furthermore, we must have 𝜕𝑢/𝜕𝑦 = 0 at 𝑦 = 0, since otherwise there would be

a cusp at the centre of the flow. Thus

𝐺𝑦 = 𝜏12 (2.25)

For Newtonian fluids, 𝜏12 = 𝜇0(d𝑢/d𝑦), so that

𝐺𝑦 =𝜇0
d𝑢
d𝑦

(2.26)

∴ 𝑢 = 𝐺
2𝜇0

(𝑦2 − 1). (2.27)
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For power law fluids, 𝜏12 = 𝜇0 (d𝑢/d𝑦)𭑛, so that,

𝐺𝑦 =𝜇0 (d𝑢
d𝑦

)
𭑛

(2.28)

∴ 𝑢 = ( 𝐺
𝜇0

)
1/𭑛 𝑛

𝑛 + 1
(𝑦1+1/𭑛 − 1). (2.29)

Finally, for Papanastasiou fluids, 𝜏12 = 𝜇∞d𝑢/d𝑦+𝜏𭑦 (1 − exp [−𝑚(d𝑢/d𝑦)]). Rewriting the

solution of You et al. (2008) in terms of the physical parameters 𝐺, 𝜇0, 𝜇∞ and 𝜏𭑦, and defining

𝜇rat = (𝜇0 − 𝜇∞)/𝜇∞, we obtain

𝑢 =
−𝜏2

𭑦

𝐺𝜇∞𝜇2
rat

[𝑊 (𝜇rat exp [𝜇rat (1 − 𝐺𝑦/𝜏𭑦)]) + 1
2

𝑊 (𝜇rat exp [𝜇rat (1 − 𝐺𝑦/𝜏𭑦)])2]

−
𝜏𭑦

𝜇0
𝑦 + 𝐺

2𝜇∞
𝑦2 + 𝐶, (2.30)

for 𝐶 the constant of integration,

𝐶 =
𝜏2

𭑦

𝐺𝜇∞𝜇2
rat

[𝑊 (𝜇rat exp [𝜇rat (1 − 𝐺/𝜏𭑦)]) + 1
2

𝑊 (𝜇rat exp [𝜇rat (1 − 𝐺/𝜏𭑦)])2]

+
𝜏𭑦

𝜇0
− 𝐺

2𝜇∞
, (2.31)

and 𝑊 the Lambert 𝑊 function (Corless et al., 1996), which satisfies the equation

𝑦 = 𝑊(𝑦)𝑒[𭑊(𭑦)], (2.32)

and hence is also known as the product logarithm.

These analytic solutions are valid for an idealised infinitely long channel. In practice, the

computational domain must be truncated. On the downstream open end we apply the zero

normal stress boundary condition (2.5), and we extract the finite element solution along the

slice 𝑥 = 0, midway along the channel. In this way, flow effects from the imposition of
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boundary conditions at either end are negligible, provided the channel is sufficiently long.

Numerical simulation of channel flow

Channel flow has no immersed forces driving it. As such, this initial testing is done without

femlets, in order to first verify the generalised Stokes flow solver against the above analytic

solutions, before later considering femlets. The fluid domain is the rectangle (−5, 5)×(−1, 1),

and the the boundary at 𝑥 = −5 is treated as a Dirichlet boundary with the equivalent analytic

solution prescribing the inflow velocity. The numerical velocity solution 𝑢num is calculated

along the line 𝑥 = 0, the relative error from the analytic solution 𝑢𭑎,

err = ||𝑢num − 𝑢𭑎||2
||𝑢𭑎||2

, (2.33)

in the 2−norm is calculated for a series of meshes with increasing degrees of freedom. The nu-

merical solution for the pressure is similarly calculated along the line segment𝑥 = (−1, 0), 𝑦 =

0 and the relative error from the constant pressure gradient solution calculated.

For Stokes flow, the underlying analytic solution is quadratic. Thus, no approximation is

made in modelling the solution space with piecewise quadratic basis functions and we expect

our 𝑃2 − 𝑃1 finite element solution to be exact irrespective of the degree of mesh refinement.

For all meshes of 840, 1268, 2270, 4540, 9342 and 16777 degrees of freedom, the relative error

err in the calculated solution is 𝒪(10−15), the working precision of Matlab®. The pressure

solution is similarly exact to within working precision.

For power law flow, the constitutive law breaks down as the shear rate approaches zero or

infinity (Elias et al., 2006). At zero shear rate, power law fluids have infinite viscosity, which is

unphysical. However, the underlying laminar solution for flow down a channel has zero shear

rate at the centre of the channel. The Picard solver will fail to converge in this case, since in

the small region around the centre of the channel the numerical scheme will not be able to
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Figure 2.9: (a) The numerical (red) and analytic (blue) solutions for shear thinning power law
flow down a pipe evaluated at 50 evenly spaced points for a mesh with 19702 degrees of free-
dom and (b) the relative error of the numerical solution. The power law index 𝑛 = 0.7.

capture this singularity.

Instead, the singularity is blurred over the mesh, and successive iterations will alternate

between overestimating the velocity of the fluid at the centre and then underestimating it.

However, the scheme converges to the analytical solution everywhere else in the flow for

values of the power law exponent𝑛 ≥ 0.5, and the scheme still produces a good approximation

to the analytic solution, shown in figure 2.9 if the Picard iteration is allowed to continue for

25 iterations, whereupon in all cases the error had already begun to oscillate around a value

∼ 10−2. Because of the issue with non-convergence at zero shear rate, and because biological

shear-thinning fluids are better described by the Carreau law, we will not consider power law

fluids further.

For Papanastasiou flow with 𝜇0 = 1, 𝜇∞ = 0.5 and 𝜏𭑦 = 2 giving 𝑚 = 1, the maxi-

mum relative errors in the flow and pressure numerical solutions as a function of the number

of degrees of freedom solved for are given in table 2.1, showing that our scheme converges

satisfactorily for the Papanastasiou constitutive law. The greatest error is incurred where the
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Papanastasiou fluid Carreau fluid

D.o.F. Err flow (⋅10−3) Err press (⋅10−4) Ref (ℎ) Diff (⋅10−3)

840 0.488 0.150 1 0.504
1268 0.240 0.239 2 0.262
2270 0.0886 0.0575 3 0.0934
4540 0.0321 0.00114 4 0.0331
9342 0.00919 0.00279 5 0.00967
16777 0.00397 0.000163

Table 2.1: The error in calculated flow and pressure solutions for Papanastasiou flow down
a channel as a function of the number of degrees of freedom solved for and the difference
between solutions of Carreau flow down a channel for successive refinements of the mesh,
where ℎ = 1 corresponds to the difference between the solution for 1268 D.o.F. and 840
D.o.F., ℎ = 2 the difference between 2270 D.o.F. and 1268 D.o.F. etc.

shear rate varies most quickly, suggesting that adaptive mesh refinement in these regions may

improve solution quality without too great an increase in numerical cost.

Whilst there is no available analytic solution against which to compare our numerical solu-

tion for Carreau flow in a channel, the rheological similarity between Carreau and Papanasta-

siou fluids suggests that since the scheme is convergent for Papanastasiou flow it will also con-

verge for Carreau flow for rheological parameters in a similar range. Furthermore, wemay test

convergence by evaluating the relative difference in the 2−norm between solutions for succes-

sive refinements of the mesh, shown in table 2.1 for the case where 𝜇0 = 1, 𝜇∞ = 0.5, 𝜆 = 1

and 𝑛 = 0.5. Having established the convergence of our generalised Newtonian flow solver

for rheological parameters within these values, we will now consider suitable choices of fem-

let cut-off function, and the convergence of femlet solutions to equivalent solutions driven by

Dirichlet boundaries.
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2.2.2 The choice of cut-off function

In the method of femlets, moving boundaries, such as immersed filaments, are represented

by distributions of regularised body forces driving the fluid. This raises the question of what

properties are desirable for a given cut-off function 𝑔𭜖(𝐱loc
𭑘 ) to produce a good representation

of the moving boundary. The force envelope representing the boundary is given by the super-

position of cut-off functions 𝐺 = ∑𭑁𭑓
𭑘=1 𝑔𭜖(𝐱loc

𭑘 ) and the effect of the boundary’s motion on

the fluid is captured by the a priori unknown femlet forces, or weights, 𝑓𭑘.

Good choices of cut-off function should therefore generate an approximately constant

force envelope along the line representing the boundary, which should only change by a small

amount if the spacing between femlets changes. We will refer to this as the resolution prop-

erty of femlets. Furthermore, given this smooth force envelope, the femlet weights should

allow good interpolation of the underlying Dirichlet velocity conditions on the boundary be-

ing modelled. Note that the numerical scheme ensures that, at the location of the femlets,

the Dirichlet velocity condition is imposed exactly. Thus, this property refers to points be-

tween the femlets on the underlying boundary being modelled. We will refer to this as the

interpolation property of femlets.

These properties are coupled: the resolution property, shown in figure 2.10, ensures that

the force driving the fluid changes smoothly between femlets, helping to preserve the Dirich-

let velocity conditions at all points on the moving boundary, rather than just at the centroid of

each femlet. The interpolation property gives information about the minimum number of fem-

lets required to effectively capture the Dirichlet velocity conditions on the moving boundary.

To illustrate these ideas, we first consider some one dimensional femlets, before proceeding to

analysis in two dimensions.

The most simple candidate for a choice of cut-off function, inspired by the finite element
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method, is the linear hat function, given in one dimension by

𝑔𭜖(𝐱loc
𭑘 ) =

⎧⎪
⎨⎪
⎩

1 − 𭑥loc
𭑘
𭜖 if 𝑥loc

𭑘 ≤ 𝜖,

0 otherwise.
(2.34)

If each femlet is spaced exactly 𝜖 apart, the superposition function 𝐺 is constant between all

femlets, decreasing linearly to zero at either end over a distance of 𝜖 (figure 2.10a). Hat func-

tions have compact support, and the 𝛿 interpolation property. This means that the calculated

weights for interpolating a given function are independent of the weights at other nodes, and

that the function will be interpolated piecewise linearly (figure 2.11a). However, it should be

noted that Hat functions do not respect all aspects of the resolution property, since a small

change in the position of a given femlet leads to 𝒪(1/𝜖) changes in the gradient of 𝐺 as shown

in figure 2.12a, and destroys the 𝛿 property for the adjacent femlets. Thus, when modelling

boundaries with hat femlets it is important to ensure that they are evenly spaced, although the

error in the flow solution will be less than that shown in figure 2.12a owing to the smoothing

effect of viscous dissipation.

For the two dimensional analogue of these hat functions, we define the ellipse

𝑅loc =
𝜎𭑥𝜎𭑦

√(𝜎𭑦 cos 𝜃loc)2 + (𝜎𭑥 sin 𝜃loc)2
, (2.35)

where as with the Gaussian femlets (2.6) the small parameter 𝜖 has been absorbed into the

semi-axes 𝜎𭑥, 𝜎𭑦. We then define the function

𝑔𭜖(𝐱loc
𭑘 ) =

⎧⎪
⎨⎪
⎩

1 − 𭑟loc

𭑅loc if 𝑟loc ≤ 𝑅loc,

0 otherwise,
(2.36)

that decreases linearly from 1 at the centre of the ellipse and 0 at its edge. For represent-

ing straight lines, a spacing of 𝜖𝜎𭑥 between femlets gives a representation with the desired
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properties. However, for representing curved boundaries, such as an immersed filament, the

resolution property will not be respected unless 𝜎𭑥 = 𝜎𭑦, which gives a piecewise linear rep-

resentation of the boundary with equal segment lengths. This requirement entails that a larger

number of femlets are required to model a given curved boundary, however hat functions are

a viable choice of cut-off function. Femlets with this choice of cut-off function will hereafter

be referred to as Hat femlets.

Another possible choice of cut-off function is the Gaussian (2.6), given in one dimension

by

𝑔𭜖(𝐱loc
𭑘 ) = exp [−(𝑥loc

𭑘 )2

2𝜖2 ] , (2.37)

which is often used as a regularisation of the Dirac 𝛿 function. Rayleigh’s criterion for resolv-

ing distinct Gaussian sources entails that these sourcesmust be further apart than
√

2𝜖 in order

to observe them. At this distance, the maximum of a Gaussian of height 1 will coincide with

its neighbours when they are at height 1/𝑒 (Cywiak et al., 2001). Thus, a spacing of Δ <
√

2𝜖

between gaussian femlets also gives an approximation to the square wave, which improves as

𝜖 → 0 (figure 2.10b). Note that while these functions are interpolating, they do not have the

𝛿 property in that the velocity at adjacent femlets will also contribute when calculating the

weighting required to respect the Dirichlet velocity conditions on the moving boundary.

Two advantages of Gaussian femlets over Hat femlets are that they have the resolution

property for all spacings <
√

2𝜖 and that small changes to these spacings only have a small

effect on 𝐺 and its gradient (figure 2.12a). Consequently, provided the radius of curvature

of a curved boundary, say an immersed filament, does not change too quickly, a set of two

dimensional elongated Gaussians given by equation (2.6) provides a good approximation of

the boundary. Additionally, Gaussian femlets may provide a smoother interpolation of the

underlying velocity field (figure 2.11b), though the absence of the 𝛿 property entails that they

are associated with greater ‘end errors’ in this interpolation, particularly if the underlying

velocity function is non-zero at the end of the boundary we wish to model (figure 2.12b). Thus,
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Figure 2.10: Approximations to the square wave on the interval [0, 0.5] formed by superposing
10 (red) 20 (green) and 40 (blue) hat functions (a) and Gaussians (b).

whilst Gaussian femlets will be preferred for modelling swimmers such as squirmers that have

a smooth velocity over a continuous surface such as a circle, Hat femlets may provide a better

model for beating filaments.

In order to capture the shape of the cut-off function in a finite element framework, we

refine the mesh locally around each femlet and project the cut-off function onto the finite

element space using 𝑃2 quadratic basis functions. It is important to be aware of the error

associated with this projection. Hat femlets are interpolated exactly by quadratic functions,

and so any error is associated with no coincidence of mesh nodes with the ellipse 𝑅. For

Gaussians, the gradient of the function varies most rapidly within one standard deviation,

and we find that specifying a maximum mesh size of 𝜎𭑦/2 within a radius of 𝜎𭑥 adequately

resolves the function. This is also adequate for Hat femlets.

Femlet solutions vs Dirichlet boundaries

Since the method of femlets represents the action of Dirichlet boundaries through a distribu-

tion of femlets, we must test whether this approximation is valid by comparing flow driven

by femlets and Dirichlet boundaries. Thus, we will now consider the flow in a cavity driven
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Figure 2.11: (a) Interpolation of the function 𝑦 = −𝑥(𝑥 − 0.5) on the interval [0, 1] by 40
Gaussian (blue, solid) and Hat (red, dashed) femlets and (b) the relative error associated with
these interpolationswithin the regionwhere Gaussian femlets have the interpolation property.
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Figure 2.12: (a) The interpolation of the function 𝑦 = −𝑥(𝑥 − 0.5) if a single femlet is shifted
by approximately 8% of the optimal spacing, showing sharp gradients in the interpolation by
Hat femlets (red) and little change in the interpolation by Gaussian femlets (blue). (b)The ‘end
errors’ associated with interpolating a function that is non-zero at the edge of the femlets,
showing errors for the Gaussian propagating further into the interpolation.



by a moving lid. The domain 𝐷 is the square (0, 1)2, and the no-slip condition is applied on

the three lower stationary walls. On the upper wall, we apply the Dirichlet velocity condition

𝐮 = (−𝑥(𝑥 − 1), 0). The resultant flow is shown for the case of Stokes fluid in figure 2.13a.

We will compare solutions of Stokes flow generated by both a Dirichlet boundary and a line

distribution of femlets modelling the upper wall. In the femlet case, a mirror domain is placed

above the driving wall, so that the fluid domain is the rectangle (0, 1) × (0, 2).

For 10, 15, 20, 30 and 40 femlets, the velocity of the flow along the line 𝑦 = 1, which rep-

resents the Dirichlet boundary, was sampled at 500 points. Crucially, this means the velocity

was sampled not only at the centroid of each femlet, but also at points between the femlets,

for which 𝜎𭑦 = 0.01 and 𝜎𭑥 is chosen so that for each density of femlets along the line, the

resolution property is preserved. Table 2.2a shows the relative error in the flow at these points

when compared to the equivalent Dirichlet conditions. The error is maximum near the corners

(0, 1) and (1, 1), since the femlets do not reach the very edges of the domain. The error shown

in table 2.2a is calculated in the interpolating region of the femlets, i.e. the region where the

sum of their cut-off functions is is constant, and so does not include these end errors. This is

because when modelling an immersed swimmer, there will be no boundary conditions that lie

outside the interpolating region of the femlets.

The error is roughly inversely proportional to the number of femlets used in the represen-

tation, so that the error is linearly dependent upon the spacing between femlets. Gaussian

femlets provide greater accuracy, however for 40 femlets per unit length, the relative error

in the boundary condition is 𝒪(10−4), and we conclude that that this provides a satisfactory

representation of the moving boundary for both types of femlet.

For 40 femlets, we then maintained 𝜎𭑥 as this is contingent on the femlet spacing Δ, whilst

incrementally reducing 𝜎𭑦 to give an increasingly sharp approximation of the Dirichlet bound-

ary. The flow velocity was sampled at 500 points along the line 𝑥 = 0.5, where its variance is

greatest. Table 2.2b shows the relative error in the femlet solution as 𝜎𭑦 is decreased, demon-
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strating linear convergence.

However, closer examination of the resultant flow near the femlet boundary 𝑦 = 1 shows

that the effect of 𝜎𭑦 regularisation is to push the boundary condition further out into the flow

(figure 2.13b). In the near-field of the femlets, yet outside the envelope of their forcing, we

may examine the 𝑦−values at which a given velocity occurs as a function of 𝜎𭑦. This gives

an effective radius 𝑟eff for the femlet. By shifting the femlet boundary up a distance 𝑟eff, the

near-field of the flow is much better matched to the Dirichlet case. The effective radii for hat

and Gaussian femlets are given by

𝑟ℎ
eff ≈

𝜎𭑦

3
, 𝑟𭑔

eff ≈
2
√

2 ln 2𝜎𭑦

3
, (2.38)

which in both cases is a third of the function’s Full Width at Half Maximum (FWHM), the

distance between the two extreme values at which the cut-off function is half maximum. This

effective radius is largely insensitive to rheology for the flow parameters that we will consider.

Figure 2.14a shows the value of the ratio 𝑟𭑔
eff/FWHM for Gaussian femlets with 𝜎𭑦 = 0.01 in

Carreau fluid as a function of the power law index 𝑛. Thus, the effective radius of the femlets

increases with fluid thinning, however the change is around 7%, which whenmodelling sperm

flagella equates to measuring the width of the flagellum to within around 70 nm. Therefore,

we can discount the dependence of 𝑟eff on fluid rheology.

Whilst this upwards shift better approximates the flow in the near-field, by conservation

of mass it must increase errors in the far-field: since more flow is being driven to the right, the

position and speed of the return flow will be altered. However, this effect is not present when

considering filaments in open channels, which will be modelled in the next section where

we represent slender filaments by femlets with an effective radius equal to the width of the

filament.
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Number of femlets
Error (⋅10−3)

Gaussian Hat

10 0.889 2.71
15 0.394 1.95
20 0.267 1.56
30 0.1645 1.16
40 0.121 0.931

(a)

𝜎𭑦
Error

Gaussian Hat

0.1 0.0608 0.0255
0.09 0.0547 0.0230
0.08 0.0487 0.0207
0.07 0.0426 0.0181
0.06 0.0366 0.0157
0.05 0.0307 0.0132

(b)

Table 2.2: (a) Errors in the no-slip condition on the upper wall of a regularised driven cavity
when that wall is modelled as a line distribution of varying numbers of Gaussian and Hat
femlets with 𝜎𭑦 = 0.01. (b) Errors along the line 𝑥 = 0.5 in the calculated flow in a regularised
driven cavity where the upper wall is modelled as a line distribution of 40 femlets of increasing
sharpness.
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Figure 2.13: (a) Stokes flow in a two dimensional enclosed cavity driven by a regularised mov-
ing lid. Arrow lengths and colour denote the fluid speed. (b) Plot showing the 𝑥−component
of the flow velocity on the slice 𝑥 = 0.5 near the moving lid, showing convergence onto the
Dirichlet solution (red) as 𝜎𭑦 is decreased from 𝜎𭑦 = 0.01 (green) to 𝜎𭑦 = 0.05 (blue) for
Gaussian femlets. Note that the effective radius of the femlets is given by an average in the
near-field of the distances at which the femlet velocity is equal to the Dirichlet. Shifting the
femlets upwards by the effective radius causes these lines to essentially overlap.
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Figure 2.14: (a) The effective radius of Hat femlets modelling a driven cavity as a function
of the power law index 𝑛 and (b) the speed of fluid driven by a beating filament as given by
equation (2.39)

The preservation of the no-slip condition on a beating filament

We will now examine the beating of a filament of unit length protruding from the lower wall

in a cavity with sides of length 5 with an open lid. The outer boundary is treated as a zero

normal stress boundary, whilst the other three walls are given the no-slip condition.

We parameterise the flagellum in terms of its shear (tangent) angle 𝜓(𝑠, 𝑡), given in the

body frame. By integrating along the tangent vector of the filament, its centreline may be

calculated in the body frame

𝝃(𝑠, 𝑡) = 𝝃0 + ∫
𭑠

0
[cos(𝜓(𝑠′, 𝑡)), sin(𝜓(𝑠′, 𝑡))]𭑇 d𝑠′, (2.39)

where 𝑠, 𝑡 are the length along the filament and time respectively. The centreline velocity of
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the filament in the body frame is then

̇𝝃(𝑠, 𝑡) = ∫
𭑠

0
[− sin(𝜓), cos(𝜓)]𭑇 ̇𝜓 d𝑠′. (2.40)

Points on the surface 𝝃(𝑠, 𝑡) of a finite width two dimensional filament and the corresponding

velocity are then given by

𝚵(𝑠, 𝑡) = 𝝃(𝑠, 𝑡)±𝑎𝐧, 𝚵̇(𝑠, 𝑡) = ̇𝝃(𝑠, 𝑡)±𝑎𝐧 𝐧 = [− sin(𝜓(𝑠′, 𝑡)), cos(𝜓(𝑠′, 𝑡))] , (2.41)

for 𝑎 the filament radius. We prescribe a shear angle of the form

𝜓(𝑠, 𝑡) = 𝐶𝑠 cos(𝑘𝑠 − 𝜔𝑡), (2.42)

which represents a bend propagating down the filament, steepening towards the less stiff distal

end with a linear envelope. Note that since this filament is pinned, the body frame and lab

frame are coincident in this case. This parameterisation will be used in section 3.4 to model

human sperm flagella.

The slenderness ratio of human sperm flagellum is approximately 1:50, that is, its length is

≈ 50 𝜇m and its diameter is ≈ 1 𝜇m. Thus, when modelling a sperm flagellum with femlets,

we match the effective radius of the femlets to this slenderness ratio. For Hat femlets, this

implies
𝜎ℎ

𭑦

3
≈ 1

100
, ∴ 𝜎ℎ

𭑦 ≈ 0.03. (2.43)

As we have already seen, Hat femlets only make a good choice provided the femlet spacing is

exactly correct. Thus, we will model the filament as a set of piecewise linear sections of length

0.03, using 33 radially symmetric Hat femlets. For Gaussian femlets, we have

2
√

2 ln 2𝜎ℎ
𭑦

3
≈ 1

100
, ∴ 𝜎ℎ

𭑦 ≈ 1
80

. (2.44)
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Thus, the filament may also be modelled with 40 Gaussian femlets with 𝜎𭑥/𝜎𭑦 = 2, corre-

sponding to the sperm modelling presented in Montenegro-Johnson et al. (2013, 2012). We

will also model the filament with 80 Gaussian femlets, to examine the effect that elongation

has on the forces calculated and the end errors incurred. Note that since Gaussian femlets

do not require exact positioning to produce good interpolations, we may place them at equal

points along the arclength of the filament, rather than given equal Cartesian spacing. This

saves the need to numerically invert equation (2.39).

Figure 2.14b shows the speed of the fluid surrounding the filament at time 𝑡 = 0 for max-

imum shear angle 𝐴 = 0.45𝜋 and wavenumber 𝑘 = 2.5 × 2𝜋. Upon examining the no-slip

condition on the filament’s centreline, the 𝑣-component error of which is shown in figure

2.15a, we see that both Gaussian and Hat femlets give a good representation of the analytic

value of the no-slip condition, the differences being very small. Furthermore, upon examining

the projected velocity solution at points on the bottom edge of the equivalent finite width fila-

ment 2.15b, we see good qualitative agreement between the femlet solution and the equivalent

Dirichlet surface velocity. In both cases, the velocity is better represented by Gaussian femlets,

and as such we will use these exclusively henceforth.

2.2.3 Accuracy of the time stepping procedure

To predict the path of the swimmer as it moves through the fluid, we require an explicit time

stepping procedure, for which we choose the Adams-Bashforth multistep method (Bashforth

and Adams, 1883; Iserles, 2009). For the third order schemewe employ, the swimmer’s position

is calculated by extrapolating a cubic through the current and previous 2 values of translational

and angular velocity. Themethod incurs nomore numerical cost than a forwards Euler scheme,

yet the error in the solution of the 𝑛−step method decays as 𝒪(Δ𝑡𭑛) (Iserles, 2009) for time

step Δ𝑡.

At each step, the coordinates of the swimmer in the body frame are rotated by an angle
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Figure 2.15: (a) The relative error in the 𝑦-component of the fluid velocity along the centreline
of the flagellum as a function of arclength, 𝑠, for Gaussian (red) and Hat (blue) femlets. (b) The
error in the 𝑦-component of the velocity on the lower ‘surface’ of the filament, taken at the
femlets effective radius, for Gaussian (red) and Hat (blue) femlets, showing good qualitative
representation of a finite width filament by femlets, with Gaussian femlets providing greater
accuracy.

𝜃 given by solving ̇𝜃 = Ω(𝑡) with the third order Adams-Bashforth scheme then translated

by solving 𝐱̇ = 𝐔(𝑡) in the same manner. For a two dimensional sperm in a channel filled

with Newtonian fluid, we found only a 0.0431% change in the position of the swimmer after a

single beat cycle between 40 and 80 steps per beat. Since this is of the same order as the error

associated with the imposition of the no-slip condition by the femlets, we use the third order

scheme with 40 steps per beat.
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Chapter 3

Does shear dependent viscosity aid

microscopic swimming?

3.1 Introduction

We will now use the method of femlets to examine the effects of shear dependent viscosity on

swimmers with prescribed beat kinematics. Results will be obtained for swimmers in Carreau

fluids, and the effects of varying the viscosity ratio 𝜇0/𝜇∞, the power law index 𝑛 and the

Deborah number De = 𝜆𝜔 will be examined. These parameters will be varied smoothly from

the Newtonian case, to which the Carreau viscosity law reduces if 𝜇0/𝜇∞ = 1, 𝑛 = 1 or

De = 0.

Swimmers will exhibit prescribed beat kinematics, so that their configuration in the body

frame is given by a prescribed function of time. The body frame velocity, applied at the location

of each femlet, will then be given by the time derivative of this function. In order to understand

the effects of shear-thinning, we will examine the velocity, progress and trajectories of three

qualitatively different classes of model swimmer as 𝜇0/𝜇∞, 𝑛 and De are varied. The first class

of swimmers comprise sliding, collinear spheres which swim through utilising the reduction

in drag experience by these spheres as they move into one another’s slip stream. The second

class of swimmers, the squirmers, is inspired by ciliated swimmers. The squirmers we will



consider are rigid bodies where the effects of coordinated ciliary action have been incorporated

through a surface slip velocity. Finally, we will examine monoflagellate pushers exhibiting

waveforms similar to those of human sperm in cervical mucus, which swim through utilising

the drag anisotropy ratio of slender bodies. The effects of changing cell morphology and beat

kinematics will be considered for different values of 𝜇0/𝜇∞, 𝑛 and De.

3.2 Najafi-Golestanian swimmers

Wewill begin by considering the effects of shear-thinning on the Najafi-Golestanian swimmer

(Najafi and Golestanian, 2004), discussed in section 1.2.1. The Najafi-Golestanian swimmer

comprises two outer spheres which move relative to a central sphere with a non-reciprocal

motion, as shown in figure 1.7b. We model this swimmer by three collinear symmetric Gaus-

sian femlets. In our first variant of this swimmer, the sphere motion has been made smooth in

time, which was an extension suggested in the original paper.

The outer spheres move as harmonic oscillators relative to the central sphere, and sym-

metry is broken by enforcing a phase difference, 𝜒, between them. The body frame positions

𝑥𭑖, 𝑖 = 1, 2, 3 of the sphere centroids are then given by

𝑥1(𝑡) = −𝑑 + 𝑎 sin(2𝜋𝑡), 𝑥2(𝑡) = 0, 𝑥3(𝑡) = 𝑑 + 𝑎 sin(2𝜋𝑡 − 𝜒), (3.1)

with the body frame velocity of each sphere given by (𝑢𭑏)𭑖 = ̇𝑥𭑖. A characteristic length

scale for the swimmer 𝐿 is given by 𝐿 = 2𝑑, where 𝑑 is a constant displacement, and 𝑎 is the

amplitude of the swimming sphere motion.

Due to the symmetry of the problem domain and beat pattern in the line 𝑦 = 0, the swim-

mer will move solely in the 𝑥-direction. Thus, rather than moving the swimmer through the

domain with an explicit time stepping procedure, we will calculate its instantaneous velocity

𝐯 = (𝑣, 0, 0) at different points over the beat cycle and use numerical integration to evaluate
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the distance it travels over a single beat. This is referred to as the swimmer’s progress.

We calculate the velocity at 25 points over the beat cycle 𝑡 = [0, 1) at the node locations for

one dimensional Gaussian quadrature, and then integrate the velocity using Gaussian quadra-

ture to obtain a value for the progress. The position of the central sphere in Stokes flow over a

single beat cycle for 𝑑 = 0.5, 𝑎 = 0.25 and 𝜒 = 𝜋/2 is shown in figure 3.1a. The fluid domain

𝐷 is a channel of height 5𝐿 and length 10𝐿, where 𝐿 is a characteristic length of the swimmer,

with no-slip walls at 𝑦 = ±5𝐿/2 and open boundaries at 𝑥 = ±5𝐿. The radius of the spheres

is 0.02𝐿.

If the viscosity ratio, 𝜇0/𝜇∞, is less than 1, then the effective viscosity (1.13) of a Carreau

fluid increases with shear rate. For such a model, the relaxation time 𝜆 no longer has a phys-

ical interpretation in terms of polymer physics, but it may still be used as a regularised law

to examine the effects of shear-thickening on microscopic swimmers (Montenegro-Johnson

et al., 2012) Examples of shear-thickening fluids are custard and a mixture of cornstarch with

water known colloquially as Oobleck. Thus, when considering the effects of changing the vis-

cosity ratio on a given swimmer, we may consider a range of values of 𝜇0/𝜇∞ covering both

shear-thinning and thickening fluids.

3.2.1 Results, further analysis and discussion

The progress of the swimmer with kinematics prescribed by equation (3.1) over a single beat

cycle in Carreau fluid is calculated as a function of three dimensionless quantities, the power

law index 𝑛, the viscosity ratio 𝜇0/𝜇∞ and the Deborah number De (figure 3.1b,c,d, respec-

tively). These results show that shear-thinning aids the progression of the Najafi-Golestanian

swimmer, with figure 3.1c demonstrating that thickening hinders progress. When plotted on

a semi-logarithmic axis (figure 3.2), a nearly perfect linear relationship is evident between

progress and the logarithm of 𝜇0/𝜇∞ for shear-thinning fluids, and the logarithm of 𝜇∞/𝜇0

for shear-thinning fluids, respectively.
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Figure 3.1d shows that for this model swimmer, optimum progress is achieved for De ≈

0.5, so that the angular frequency of the swimmer is approximately 1/2 the characteristic

relaxation time of the fluid. This is important since De is a function of the swimmer’s beat

frequency, which for an artificial swimmer, say, may be controlled and therefore optimised,

whereas the power law index and viscosity ratio are fixed parameters for a given fluid. These

results also draw an interesting parallel with the analysis of Teran et al. (2010) who used

the immersed boundary method to show that the progression of a waving filament may be

enhanced in a viscoelastic Oldroyd-B fluid at Deborah numbers close to 1.

To analyse the mechanism underlying this rheologically enhanced progression, we will

begin by considering an even more simple model comprising two moving spheres modelled

by collinear Gaussian femlets,

𝑥1(𝑡) = −𝑑 + 𝑎 sin(2𝜋[𝑡 − 1/4]), 𝑥2(𝑡) = 0. (3.2)

Since there is no mechanism to break time symmetry, this model is incapable of generating a

net displacement in Newtonian viscous fluid. The centroid of the swimmer remains stationary,

wit the two arms exhibiting symmetric beat kinematics about the centroid in the lab frame.

Since there is no apparent anisotropy in shear-thinning fluid to break this symmetry, this

swimmer should exhibit identical lab frame kinematics for shear-thinning fluid.

For varying 𝑛 = [0.5, 0.6, … , 1], De = [0, 0.1, … , 1] and 𝜇0/𝜇∞ = 1/20,0.1,…,2, this swim-

mer exhibits zero net progress over its beat cycle, and thus shear-thinning has no impact.

However, the average viscosity of fluid surrounding each sphere, taken over points at each

femlet’s effective radius, does decrease with shear-thinning, though for any fixed set of rheo-

logical parameters it is equal for each sphere. This suggests that shear-thinning acts on swim-

mers with prescribed kinematics through differences in the viscosity of fluid surrounding parts

of the swimmer responsible for propulsion and parts responsible for drag. This is consistent
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Figure 3.1: Simulation results for the smooth time Najafi-Golestanian swimmer given by equa-
tion (3.1) (a) The global position of the central sphere moving through Newtonian fluid over
the course of a single beat cycle, showing the progress as the distance between the two dashed
lines. The swimmer’s progress over a single beat cycle as a function of (b) the power law in-
dex 𝑛 with 𝜇0/𝜇∞ = 2 and De = 1, (c) the viscosity ratio 𝜇0/𝜇∞ with 𝑛 = 0.5 and De = 1
and (c) the Deborah number De with 𝑛 = 0.5 and 𝜇0/𝜇∞ = 2. In panels (b,c,d), the case
corresponding to Stokes flow has been marked in orange
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Figure 3.2: The shear-thinning results of figure 3.1c plotted on a logarithmic scale, showing a
near perfect linear relationship.

with the approximate linear dependence of progress upon the logarithm of the viscosity ra-

tio log(𝜇0/𝜇∞) = log(𝜇0) − log(𝜇∞), a difference between the zero and infinite shear log

viscosities.

To examine this hypothesis, we add another stationary sphere to the the swimmer (3.2),

giving

𝑥1(𝑡) = −𝑑 + 𝑎 sin(2𝜋[𝑡 − 1/4]), 𝑥2(𝑡) = 0, 𝑥3(𝑡) = 𝑑. (3.3)

In the interval 𝑡 = [0, 0.5], the swimming arm moves in from 𝑥1(0) = −0.75 to 𝑥1(0.5) =

−0.25, so that by force balance the swimmer will move to the left, having negative velocity at

all times.

At each instant, we first calculate the average fluid viscosity around each sphere as eval-

uated at the femlet’s effective radius. We then calculate the difference between the viscosity

surrounding the moving sphere, responsible for propulsion, and the average of the viscosity

surrounding the two stationary spheres. This viscosity differential has been plotted against

the total progress of the swimmer relative to Stokes flow for varying 𝑛, 𝜇0/𝜇∞ and De in
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figure 3.3a. This shows that the range of behaviours shown in figure 3.1 all collapse onto

a single straight line, showing apparent proportionality between progress and this viscosity

difference. This draws an interesting parallel with the drag force acting on a translating sphere

in Newtonian fluid, which is proportional to the fluid viscosity.

For this portion of the beat cycle, leftward progress is in fact inhibited by shear-thinning.

Progress is hindered because the fluid is relatively thicker around the spheres that are station-

ary, which are responsible for drag. This increases the drag on the swimmer. Additionally, the

sphere responsible for propulsion has thinned fluid surrounding it, and therefore exerts less

force on the fluid, decreasing propulsion.

This argument is consistent with the observation of an optimal Deborah number for the

Najafi-Golestanian swimmer, since increasing De from 0 will initially increase the differential

viscosity to an optimum, after which fluid will be thinned relatively more by the stationary

spheres, thereby decreasing the difference, as shown in figure 3.4.

One could argue that the decreased swimming velocity over this portion of the beat cycle

is responsible for the increase in the difference in the viscosity between the stationary spheres

and the moving sphere, rather than the other way around. It is true that, for a given set of

rheological parameters, decreasing the swimming velocity will decrease the velocity of the

stationary spheres and increase the velocity of the moving sphere relative to the fluid, thereby

increasing the viscosity difference. However, this effect is small compared to the effect of

changing rheological parameters on the viscosity. Put another way, decreasing the swimming

velocity leads to a change in shear rate of the fluid surrounding the spheres, leading to a change

in viscosity, but this is small compared to the change in viscosity arising from changing the

fluid rheological properties. Thus the change in viscosity affects the forces that the fluid exerts

on the spheres, changing the swimming velocity rather than vice-versa.

Returning to the Najafi-Golestanian swimmer (3.1), we can now qualitatively understand

the effects of shear-thinning at all moments in its beat cycle. This is summarised for the swim-
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mer of the original paper (Najafi and Golestanian, 2004), for ease of exposition, in figure 3.5.

Since at all moments in the beat cycle the fluid is thicker around the drag-inducing stationary

spheres than the propulsive moving sphere, we expect swimming over each portion of the

beat cycle to be inhibited by shear-thinning rheology. However, the results for the smooth

time swimmer (3.1) show that total progress is in fact increased over the whole beat cycle.

This seems inconsistent with the result that progress over a full beat-cycle is enhanced by

shear-thinning rheology, but since progress over the recovery portion of the stroke will be

inhibited more by shear thinning than progress over the effective portion of the stroke, it is

not. Thus, while at all moments the swimmer is inhibited by thinning, the net result is a gain

in leftward progress.

We can test this qualitative prediction by considering the progress of this swimmer over

each portion of its beat cycle. For simplicity, we will assume that the swimming spheres move

at a constant speed. The positions of the three spheres 𝑖 = 1, 2, 3 are given as a function of

time 𝑡 in table 3.1. Since we have shown that, at least for this swimmer, varying 𝑛, 𝜇0/𝜇∞

and De are all equivalent in terms of the underlying effect upon the swimmer, we consider

only the swimmer’s progress over each portion of the beat-cycle as a function of varying

𝑛. Figure 3.3 shows that swimming is indeed hindered over all portions of the beat cycle.

However, as predicted, swimming is more greatly hindered during the recovery strokes, where

the swimmer is moving in the opposite direction to that intended. Thus, the overall progress

of the swimmer, shown in figure 3.3d is increased by shear-thinning, as in the smooth time

version (3.1) we first considered.

3.2.2 Generalisation to 𝑁 spheres

Since we wish to consider sperm-like swimmers, which swim by propagating a bending wave

from the base to the tip of their flagellum, it is instructive to consider a generalised form of
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Figure 3.3: (a)The progress of the three-sphere swimmer defined by equation (3.3) as a function
of the gradient along the swimmer in the direction of travel, obtained by varying the power law
index (red), the viscosity ratio (green) and the Deborah number (blue) independently between
the extremal values 𝑛 = [0.5, 1], 𝜇0/𝜇∞ = [1, 2] and De = [0, 1]. (b) The decrease in leftward
progress during the effective strokes 1 (solid) and 2 (dashed) of the swimmer described in
table 3.1 as a function of increasing power law index 𝑛 and (c) the greater absolute decrease
in rightward progress during the recovery strokes 3 (solid) and 4 (dashed). This leads to an
overall increase in leftward progress with shear thinning rheology (d).
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Figure 3.4: The viscosity field of fluid surrounding the three-sphere swimmer defined by equa-
tion (3.3), with 𝑛 = 0.5, 𝜇0/𝜇∞ = 2 and De = (a) 0.4, (b) 0.8, and (c) 1.6, showing that
although the minimum viscosity decreases with De, the viscosity difference across the swim-
mer is non-monotonic.



𝑥1 𝑥2 𝑥3 time 𝑡

−(𝑑 + 𝑎) + 8𝑎𝑡 0 𝑑 − 𝑎 [0, 1/4)
−(𝑑 − 𝑎) 0 𝑑 − 𝑎 + 8𝑎(𝑡 − 1/4) [1/4, 1/2)
−(𝑑 − 𝑎) − 8𝑎(𝑡 − 1/2) 0 𝑑 + 𝑎 [1/2, 3/4)
−(𝑑 + 𝑎) 0 𝑑 + 𝑎 − 8𝑎(𝑡 − 3/4) [3/4, 1)

Table 3.1: The positions of the three spheres of the original Najafi-Golestanian swimmers over
each portion of its beat cycle.

Effective 1
Thin Thick

𝑈 < 𝑈stokes

Effective 2
Thick Thin

𝑈 < 𝑈stokes

Recovery 1
Thin Thick

𝑈 < 𝑈stokes

Recovery 2
Thick Thin

𝑈 < 𝑈stokes

Figure 3.5: A schematic demonstration of the effects of shear-thinning rheology on the original
Najafi-Golestanian swimmer over the effective and recovery parts of its stroke, showing the
location of thick and thin fluid around it, and the direction of travel.

the Najafi-Golestanian swimmer with 𝑁 spheres. A general swimmer in Stokes flow where

each sphere underwent unspecified time-periodicmotionwas analysed recently by Vladimirov

(2012). It was found that in the limit where spacing between spheres was large compared with

their radius, the swimming velocity is found by a linear combination of velocities of all possible

triplets of spheres. We will consider a particular form of 𝑁-sphere swimmer that propagates

a compression wave from left to right

𝑥𭑖(𝑡) = 𝑖 − 1
𝑁 − 1

+ 1
2(𝑁 − 1)

sin [2𝜋 (𝑡 − 𝑖 − 1
2(𝑁 − 1)

)] , 𝑖 = 1, 2, … , 𝑁, (3.4)
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Figure 3.6: (a)The locus of the swimming spheres for the generalised Najafi-Golestanian swim-
mer with 𝑁 = 5 over the course of a beat cycle. The streaks show the distance and direction,
in the body frame, of sphere travel over one tenth of a beat. (b) For 𝑁 = 5, the global po-
sition of the 𝑁-sphere swimmer as it moves through Stokes flow over the course of a single
beat cycle, showing the progress as the distance between the two dashed lines. (c) The five-
sphere swimmer’s progress over a single beat cycle as a function of the power law index 𝑛
with 𝜇0/𝜇∞ = 2 and De = 1, with the case corresponding to Stokes flow marked in orange.



For 𝑁 = 3, this reduces to the smooth time Najafi-Golestanian (3.1) with 𝑑 = 1/2, 𝑎 =
√

2/4 and 𝜒 = −𝜋/2. The shift by 𝜋 of the phase difference 𝜒 entails that this swimmer will

travel in the opposite direction (right) to the swimmers considered previously. The locus of

the swimming spheres over a single beat is shown for the case 𝑁 = 5 in figure 3.6a.

This swimmer will travel in the same direction as the compressional wave that it propa-

gates. This is in contradistinction to sperm-like swimmers, which swim in the opposite direc-

tion to thewaves that travel along their flagella. This is because the underlying fluidmechanics

that they exploit to generate net displacement is different: sperm utilise the two-to-one drag

anisotropy ratio in order to swim (Gray and Hancock, 1955), whereas the class of generalised

Najafi-Golestanian swimmers utilise the fact that the drag on spheres moving along the same

line is lower if the spheres are in one another’s slip stream than if they are far apart.

The position of the swimmer (3.4) is shown as a function of time for 𝑁 = 5 in Stokes

flow in figure 3.6b. Figure 3.6c shows that this swimmer is affected by shear-thinning in a

similar manner to the three-sphere swimmer. There is a difference, however, in the amount

by which progress is increased. For the five-sphere swimmer, the increase in progress arising

from shear-thinning, relative to the Stokes case, is approximately twice that occurring for the

three-sphere swimmer.

Before examining more biologically realistic models of viscous swimmers, we can gain an

additional insight from the 𝑁-sphere model. To examine the effect of shear-thinning rheology

on the three-sphere model, we considered the difference in viscosity surrounding the propul-

sive and drag inducing spheres respectively. As 𝑁 increases towards a continuous swimmer,

more akin to a flagellum, this discrete difference approaches a gradient. As such, for sperm

flagella and other continuous swimmers, it may be that the effects of shear-thinning are best

understood by considering gradients of the effective viscosity between propulsive and drag

inducing portions of the swimmer.
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3.3 Two dimensional squirmers

Before examining the propulsion of sperm-like swimmers, we will consider the effects of

shear-thinning rheology on another conceptual model of a viscous swimmer inspired by cili-

ates. Cilia utilised for locomotion typically beat with an asymmetric waveform, known as the

effective-recovery stroke pattern (Blake and Sleigh, 1974). A ciliated swimmer will in general

express a large number of cilia which beat with a phase difference between neighbours in a

coordinated manner (Childress, 1981). Examples are the protozoa Opalina and Paramecium

(Brennen and Winet, 1977) and the alga Volvox Carteri. This type of swimming motivates

‘envelope’ modelling approaches (Lighthill, 1952; Blake, 1971b) whereby the array of cilia are

incorporated through either a slip velocity condition on the cell surface, or by small ‘squirm-

ing’ deformations of the cell body (Ishikawa et al., 2006; Lin et al., 2011).

We first analyse a model swimmer with a time independent stroke, where the effects of co-

ordinated ciliary beating have been time averaged over a beat as a constant slip velocity. For a

spherical squirmer swimming with a tangential slip velocity 𝑢𭜃 given in polar coordinates, the

slip velocity is typically decomposed into ‘swimming modes’ of spherical harmonics (Michelin

and Lauga, 2011)

𝑢𭜃(cos 𝜃) =
∞

�
𭑛=1

𝛼𭑛𝐾𭑛(cos 𝜃), (3.5)

for

𝐾𭑛(cos 𝜃) = (2𝑛 + 1) sin 𝜃
𝑛(𝑛 + 1)

𝐿′
𭑛(cos 𝜃), (3.6)

with 𝐿𭑛(cos 𝜃) the 𝑛-th Legendre polynomial. Thus, slip velocity squirmers are characterised

by the coefficients 𝛼𭑛 of the modes of their swimming.

We will begin by considering the simplest two dimensional squirmer (Crowdy, 2011; Davis

andCrowdy, 2012)with purely the firstmode, i.e. 𝛼𭑛 = 0 ∀ 𝑛 ≥ 2. This ‘treadmilling’ squirmer

has a radius 𝑟 = 𝐿/2 and generates a time independent tangential slip velocity in the body
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𝜃

(a) (b)

Figure 3.7: (a) A schematic of the two dimensional treadmilling squirmer, along with (b) a
micrograph of a Volvox Carteri colony, showing surface cilia that beat in a coordinated fashion
to propel the colony forwards. This cell also shows a number of characteristic ‘daughter’
colonies within it. Image taken by Prof. Ray Goldstein and reprinted with his permission.

frame of

𝑢𭜃 = (1/2) sin 𝜃. (3.7)

This swimmer is shown, along with an image of Volvox Carteri, in figure 3.7. By symmetry,

the squirmer swims purely in the positive 𝑥 direction.

3.3.1 Results and discussion

Shear-thinning decreases the velocity of this squirmer (figure 3.8). Figure 3.8c shows a striking

apparently linear dependence of the swimming velocity upon the power-law index 𝑛. The

decrease in velocity is small; for 𝜇0/𝜇∞ = 2, 𝑛 = 0.5 and Sh = 1, the velocity is reduced by

a little over 3%.

The effective viscosity field of the flow has a simple form; even relatively near to the swim-

mer, contours of equi-viscosity are approximately circular, centered on the swimmer (figure

3.9). However, very near to the surface, the fluid surrounding the propulsive elements of the

treadmilling squirmer is relatively thicker than that surrounding the drag-inducing portions.
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Figure 3.8: The velocity of the treadmilling squirmer with slip velocity given by equation (3.7)
as a function of (a) the viscosity ratio 𝜇0/𝜇∞ with 𝑛 = 0.5 and Sh = 1, (b) the shear index Sh
with 𝑛 = 0.5 and 𝜇0/𝜇∞ = 2 and (c) the power-law index 𝑛 with 𝜇0/𝜇∞ = 2 and Sh = 1. In
each panel, the case corresponding to Newtonian fluid is marked in orange.
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Figure 3.9: The effective viscosity of Carreau fluid, normalised to 𝜇0 = 1, surrounding the
treadmilling squirmer for 𝜇0/𝜇∞ = 2, 𝑛 = 0.5 and Sh = 0.5. These parameter values are the
extremal values used for the data in figures 3.10 and 3.11. Away from the swimmer surface,
contours of equi-viscosity are approximately circular. On the surface, fluid is relatively thicker
surrounding the propulsive portions of the swimmer.

Thus, the viscosity differential for this squirmer is positive, yet its velocity is decreased by

shear-thinning, demonstrating that slip velocity models differ from no-slip multiple sphere

swimmers in this respect. The reduction in velocity arises from the envelope of thinned fluid

surrounding the squirmer.

Figure 3.10 shows the radial variation in the effective viscosity of the fluid surrounding the

squirmer. As 𝑛 decreases, the viscosity immediately surrounding the swimmer decreases, but

the rate at which the viscosity approaches the zero-shear value increases. As a result of this

increase, the size of the envelope of thinned fluid surrounding the swimmer varies little with

changes in rheological parameters (figure 3.10a). For any fixed value of the radial coordinate

𝑟, with 𝑟 = 0.5 being the squirmer’s surface, the effective viscosity at that point decreases

approximately linearly with 𝑛.

Since the decrease in swimming velocity also exhibits a linear dependence upon the power-

law index 𝑛, we examine the dependence of swimming velocity on the effective viscosity of

the fluid surrounding the squirmer. Figure 3.11a shows the decrease in swimming velocity

relative to the Newtonian case as a function of the effective viscosity of the fluid envelope
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Figure 3.10: The effective viscosity of the fluid envelope surrounding the treadmilling squirmer.
(a) Changes in the viscosity field as a function of the radial coordinate 𝑟 for different values
of the power-law index 𝑛. The swimmer surface is given by 𝑟 = 0.5. (b) For fixed values of 𝑟,
the effective viscosity exhibits a near linear dependence upon the power-law index 𝑛.

at 𝑟 = 0.52, a small distance from the squirmer’s surface, for varying viscosity ratio, shear

index and power-law index. This figure demonstrates a strong linear correlation between the

effective viscosity of the fluid a small distance from the swimmer’s surface and the swimmer’s

velocity.

However, whilst the absolute values of viscosity do not affect swimmers with prescribed

kinematics, the envelope of thinned fluid shields the far field flow from the flow generated by

the squirmer. As fluid becomes relatively thinner around the squirmer, the decay rate of the

near-field flow increases. This draws an interesting parallel with the work of Zhu et al. (2012),

who found a similar effect for viscoelastic (Giesekus) fluids. In the near-field, along the line

𝜃 = 0, the velocity of the flow is approximately

𝑢 ≈ 𝐴
𝑟𭛼 , ∴ log 𝑢 ≈ log 𝐴 − 𝛼 log 𝑟. (3.8)
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Thus, the flow decay rate is given by

𝛼 = −Δ log 𝑢
Δ log 𝑟

. (3.9)

Close to the squirmer’s surface, the Newtonian flow decay rate 𝛼newt = 1.95.

Figure 3.11b shows the swimming velocity of the squirmer as a function of this decay rate

at 𝑟 = 0.52, 𝜃 = 0, a small distance from the squirmer’s surface, relative to the Newtonian case

for varying rheological parameters 𝜇0/𝜇∞, 𝑛 and Sh. The decrease in velocity and increase in

flow decay exhibit a linear relationship, and are the same magnitude; the slope of the curve is

close to −1. This observation motivates the following argument: The squirmer generates an

envelope of thinned fluid around itself when swimming through Carreau fluid. This envelope

increases the decay rate of flow away from the squirmer’s surface. Thus, prescribed motion

on the surface moves relatively less fluid, which decreases the swimming velocity.

Although the potential number of slip velocity swimmingmodes to consider is infinite, this

reasoning suggests that all time averaged slip velocity squirmers will be inhibited by shear-

thinning rheology. This is certainly the case for swimmers with second mode behaviour in-

corporated, which are affected by shear dependent rheology in much the same manner.

Thus, if we seek a squirmer that may effectively exploit shear-thinning rheology, we need

to examine a broader range of squirming models. We may wish to consider the impact of

radial velocity modes (Ishikawa et al., 2006), however the above reasoning suggests that these

swimmers would also be hindered by shear-thinning. Since a ubiquitous feature of viscous

propulsion is the propagation of travelling waves, and motivated by the fact that the Najafi-

Golestanian swimmer is only aided by shear-thinning because of effective-recovery stroke

asymmetry, wewill now examine time dependent slip velocitieswhich incorporate the effective-

recovery stroke of the ciliated surface and the propagating metachronal wave.

The effect of cilium beating is again incorporated through a purely tangential surface slip
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Figure 3.11: The velocity relative to the Newtonian case of the treadmilling squirmer as a
function of (a) the effective viscosity on the contour 𝑟 = 0.52 and (b) the rate of decay 𝛼
of the velocity from the surface of the squirmer relative to the Newtonian case 𝛼newt. The
velocity has been calculated while varying the three rheological parameters of Carreau flow
for 𝑛 = 0.5, 𝜇0/𝜇∞ ∈ [1, 2], Sh = 0.5 (red), 𝑛 = 0.5, 𝜇0/𝜇∞ = 2, Sh ∈ [0, 0.5] (green) and
𝑛 ∈ [0.5, 1], 𝜇0/𝜇∞ = 2, Sh = 0.5 (blue). This figure demonstrates a striking proportionality
between the velocity and the decay rate of the fluid.



velocity 𝑢𭜃, which is now a function of time. The metachronal wave is modelled as a travelling

wave of cilium activity moving from 𝜃 = 0 to 𝜃 = ±𝜋, so that 𝑢𭜃 = 𝐴(𝜃) sin(𝑘𝜃 − 2𝜋𝑡).

To incorporate the effective-recovery stroke asymmetry, we will decrease the slip velocity of

recovering cilia. This is achieved by taking the wave function sin(𝑘𝜃 − 2𝜋𝑡) and decreasing

the magnitude of the negative portions of the function relative to the positive, i.e. by adding

𝐵(𝜃) = 𝐵̂ sin2(𝑘𝜃 − 2𝜋𝑡), 0 ≤ 𝐵̂ < 1. Finally, to avoid velocity discontinuities at 𝜃 = 0, 𝜋,

the envelope function 𝐴(𝜃) is given the property 𝐴(0) = 𝐴(𝜋) = 0. After the treadmilling

squirmer, we choose 𝐴(𝜃) = ̂𝐴 sin(𝜃). This gives a swimmer with tangential velocity

𝑢𭜃(𝑡) = ̂𝐴 sin 𝜃 {sin(2𝜋[𝑘𝜃 − 𝑡]) + 𝐵̂ sin2(2𝜋[𝑘𝜃 − 𝑡])} . (3.10)

Whilst this approach may seem ad-hoc, the resultant form of the tangential velocity cap-

tures the travelling wave of cilium activation and recovery, an essential feature of ciliated

swimmers. Furthermore, upon taking the time average over a single beat of the slip velocity

(3.10) we recover

⟨𝑢𭜃(𝑡)⟩ = ∫
1

0
𝑢𭜃(𝑡) d𝑡 = ̂𝐴 sin 𝜃 ∫

1

0
[sin(𝑘𝜃 − 2𝜋𝑡) + 𝐵̂ sin2(𝑘𝜃 − 2𝜋𝑡])] d𝑡

=
̂𝐴𝐵̂

2
sin 𝜃, (3.11)

the tangential velocity of the treadmilling squirmer.

Figure 3.12a shows the position of this swimmer for ̂𝐴 = 1, 𝐵̂ = 1/2 and 𝑘 = 1/2 over

a single beat cycle. The swimmer’s progress over a single beat cycle is given as a function

of the power law index 𝑛 in figure 3.12b, showing that this swimmer, too, is hindered by

shear-thinning rheology. This is because shear rates are higher at the portions of the swim-

mer’s surface responsible for rightward propulsion, the portions modelling the cilia effective

strokes, than at the recovery sections, making a differential of thick to thin fluid on the drag
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Figure 3.12: (a) The global position of the squirmer with slip velocity (3.10) over the course of
a single beat with ̂𝐴 = 1 and 𝐵̂ = 0.5, and (b) the swimmer’s progress over a single beat cycle
as a function of the power law index 𝑛 with 𝜇0/𝜇∞ = 2 and De = 1. In panel (b), the case
corresponding to Stokes flow has been marked in orange.

to propulsive portions of the swimmer, hindering progress.

While this does not preclude the possibility of finding a model squirmer that is aided by

shear-thinning, it seems unlikely that this squirmer will be modelled by a rigid bodywith some

prescribed surface velocity. In fact, the above reasoning would suggest that for any isolated

rigid body 𝐺 with a surface velocity distribution 𝐮𭑠, shear-thinning will hinder swimming

in whatever direction 𝐺 should move. This draws an interesting parallel with the work of

Zhu et al. (2012), who found that spherical squirmers were also hindered by a different non-

Newtonian fluid property, viscoelasticity.

However, modelling squirmers with a surface velocity distributionmay neglect effects aris-

ing from interactions below the scale of this averaging. We have not considered squirmers

where the surface is perturbed following the metachronal wave, which for the majority of

ciliated swimmers is a more accurate model. Furthermore, we still have yet to consider the

effects of non-Newtonian on a beating filament whichmay, in the case of viscoelasticity (Teran

et al., 2010) improve propulsion. A study of the effects of shear thinning rheology on beating
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filaments exhibiting prescribed kinematics forms the final part of this chapter.

3.4 A two dimensional sperm-like swimmer

Wewill conclude this study by examining the effects of shear-thinning rheology on the swim-

ming of a two dimensional model sperm with prescribed waveform. Swimming trajectories

will be analysed using variables from Computer Aided Semen Analysis (CASA), see for ex-

ample Mortimer (1997). However, while CASA variables are statistical averages over many

beat-cycles determined from video microscopy of living cells sampled at 60 Hz, we will gen-

erate a smooth, time periodic waveform and thus our parameters will be measured over a

single beat. The variables we will consider are demonstrated for an example trajectory over

one beat-cycle in figure 3.13. Recall that the cell ‘progress’ is the distance between its start

and end points, its straight line velocity VSL is then given by progress/𝑇. Its curvilinear, or

instantaneous, velocity VCL is the velocity of the centroid of the cell head at any given point

in time, and ALH is the amplitude of the cell’s lateral head displacement, which we define as

the difference between the maximum and minimum 𝑦 values on the trajectory. We may also

wish to consider the path length PL of the trajectory, that is the total distance travelled, as

well as the path straightness STR = progress/PL.

It has been shown (Katz et al., 1978; Smith et al., 2009c) that the flagellar waveform of

human sperm is modulated by the viscosity of the medium in which it swims. Low viscosity

swimming is characterised by long wavelength, low amplitude beating. The head exhibits a

high degree of pitch and yaw, thrashing and often rolling through the fluid. High viscosity

swimming is typified by planar beating that grows in peak curvature and shear angle towards

the distal portion of the tail. The yaw amplitude is greatly reduced, and the cell may either

remain entirely in the plane or roll much more slowly than in the case of low viscosity beating.

In the following modelling, we will prescribe a function for the flagellar configuration which
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progress

VSL = progress/𝑇 ALHVCL = 𝛿𝑎/𝛿𝑡

Figure 3.13: A schematic demonstrating how our swimming parameters are calculated for the
trajectory (blue) of a swimmer moving from right to left over one beat-cycle of period 𝑇. The
progress is the distance between start and end points, 𝑉𝑆𝐿 is progress divided by the beat
period 𝑇, 𝐴𝐿𝐻 is the total side-to-side motion and the instantaneous velocity 𝑉𝐶𝐿 is the
derivative of the arclength along the trajectory 𝑠 with respect to time.

captures the features of this high viscosity waveform.

The ultrastructure of mammalian spermatozoa, the passive stiffening structures surround-

ing the axoneme such as the outer dense fibres in human sperm, are hypothesised (Lindemann,

1996) to have evolved in order to generate waveforms of this kind that are able to propel the

cell through high viscosity fluid at the roughly the same speed as the swim through water.

This is evidenced by the fact that sea urchin sperm, which do not have these passive stiffening

elements, are unable to produce this high viscosity waveform (Brokaw, 1966;Woolley and Ver-

non, 2001), as shown at the beginning of this thesis in figure 1.1, and exhibit greatly reduced

motility.

We will now examine the swimming of a two dimensional monoflagellate pusher through

Carreau fluid as an analogue of human sperm exhibiting planar beating in mucus. The swim-

mer is propelled by a single flagellum that propagates a bending wave along its length, gen-

erating the forces required to move the cell forward. As in section 1.3.2, we parameterise the

flagellum in terms of its shear angle 𝜓(𝑠, 𝑡), the angle of the tangent of the flagellum given in
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the body frame. A shear angle of the form

𝜓(𝑠, 𝑡) = 𝐶𝑠 cos[2𝜋(𝑘𝑠 − 𝜔𝑡], (3.12)

represents a bending wave propagating down the flagellum, steepening towards the less stiff

distal end with a linear envelope. This produces a waveform representative of sperm swim-

ming in high viscosity fluids (Smith et al., 2009c), shown in figure 3.14. The lab frame position

of the flagellum is then given by rotating the centreline (2.39) by the swimmer’s orientation,

and translating by the current head position. The head is modelled by an ellipse, with semi-

axes 𝑎𭑥 = 0.05𝐿 and 𝑎𭑦 = 0.04𝐿 where 𝐿 is the length of the flagellum. This is maintained

at a constant angle to the neck of the flagellum, as shown in figure 3.14a. Note that since this

model is two dimensional, the flagellum is in fact equivalent to a waving sheet, and thus fluid

is unable to pass over it as it would in three dimensions. As such, the pressure at the end of the

flagellum will be relatively higher, and so too the force at the distal portion of the flagellum.

However it is still instructive to examine models in two dimensions to gain understanding of

physical effects that may be present in three dimensions, and furthermore the velocities we

will calculate equate to approximately 1 body length per second, which is comparable to that

observed experimentally for sperm in viscous media (Smith et al., 2009c).

Length scales are normalised to the flagellum length, so that one length unit corresponds to

55 𝜇m, and one time unit corresponds to a single beat of the flagellum. Thus, for a tail beating

at 10 Hz one time unit corresponds to 0.1 s. We will begin by modelling a sperm obeying

equation (3.12) for maximum shear angle 𝐴 = 0.45𝜋 and wavenumber 𝑘 = 2.5.

3.4.1 Results and discussion

Figure 3.16a shows trajectories of the swimmer over a single beat-cycle for different values

of 𝜇0/𝜇∞. As 𝜇0/𝜇∞ increases, the trajectories become flatter and the cell travels a greater
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(a)

(b)

Figure 3.14: (a) The flagellar waveform generated by shear angle (3.12) and (b) a micrograph of
a human sperm in methylcellulose, a fluid with comparable viscosity to that of cervical mucus.

distance, as shown in figure 3.17a. For a viscosity ratio of 𝜇0/𝜇∞ = 4, the cell progresses 38%

further in a single beat than it would in Newtonian fluid.

This increase in cell progress can be attributed to two factors. Firstly, the decrease in ALH

entails an increase in forward relative to side-to-sidemotion, quantified in figure 3.17b, thereby

increasing the cell progress. This effect arises because the cell thins the fluid substantially less

around its head than its flagellum, as shown in figure 3.15. This leads to a relative increase in

the drag on the head relative to the rest of the cell, which has the effect of reducing side-to-

side motion. For Najafi-Golestanian type swimmers, thicker fluid around the drag inducing

portions of the swimmer led to decreases in cell speed, but here this is more than balanced out

by decreases in ALH. This is consistent with the findings of Smith et al. (2009b), who used

the Boundary element method in three dimensions for Newtonian fluid to show that models

of human sperm cells with biologically realistic head morphology exhibit less yaw than those

with spherical head, due to increased drag.

However, figure 3.17c shows that the increase in cell progress is not wholly accounted for

by the reduction in ALH, since the average curvilinear velocity VCL of the cell over a beat also

increases with 𝜇0/𝜇∞. For 𝜇0/𝜇∞ = 4, the increase in VCL accounts for approximately 38%
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of the total increase in the cell’s progress. This is despite the relatively thicker fluid around

the drag inducing head which, as we have already seen, would tend to decrease VCL.

There are a number of possible explanations for this. Firstly, we might expect that shear-

thinning rheology could enhance the drag anisotropy ratio for slender bodies. Since this

is the fundamental mechanism by which monoflagellate pushers swim, an increase in drag

anisotropy would lead to an increase in propulsion. However, numerical investigation of a

slender rod in an enclosed cavity revealed that the drag anisotropy ratio for slender bodies

in shear-thinning fluid decreased very slightly as a function of 𝜇0/𝜇∞. Since monoflagellate

pushers exploit drag anisotropy to generate propulsion, we would expect that this would in

fact decrease VCL slightly. Thus we may exclude rheologically enhanced drag anisotropy as

a possible cause for the observed increase and there must be an increase in the propulsion

produced by the flagellum. From our understanding of the effects of shear-thinning on Najafi-

Golestanian swimmers and squirmers, we hypothesise that the increase in propulsion arises

from complex interactions between the propulsive and drag inducing portions of the flagellum

with the gradient of thick to thin fluid along that the waveform induces.

As with the Najafi-Golestanian swimmer, such a mechanism is consistent with the exis-

tence of an optimal Deborah number for VCL shown in figure 3.17e, since the gradient of

fluid viscosity along the flagellum depends non-monotonically on De. For low De, the fluid

is only thinned a small amount at the very distal region of the flagellum. As De increases

to its optimal value, less shear is required to thin the surrounding fluid, thus increasing the

differential viscosity between the proximal and distal regions to a maximum. For values of

De greater than the optimum, even a small amount of shear thins the fluid, so that the fluid

surrounding the proximal portion of the flagellum is thinned substantially, thereby decreasing

the differential viscosity, as shown in figure 3.15.

The force that the flagellum exerts upon Newtonian (blue) and shear-thinning (orange)

fluid is shown in figure 3.16b. This shows that there is no appreciable change in the direc-
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tion of the force profile along the flagellum for shear-thinning rheology, which is consistent

with the observation that rheological changes in drag anisotropy are not responsible for in-

creased propulsion. However, figure 3.16d shows that the relative strength of the force that

the proximal relative to the distal portion of the flagellum exerts on the fluid is increased with

shear-thinning rheology. This is because the fluid is thinner around the proximal portion of

the flagellum. A time series of the magnitude of the flagellar force profile is shown in figure

3.16d, which shows peaks in the magnitude propagating from proximal to distal ends of the

flagellum through time. Upon examining figure 3.16c, it is clear that these peaks correspond

to propulsive portions of the flagellum, whereas the troughs correspond to drag inducing por-

tions.

With this in mind, re-examination of figure 3.16d shows that the drag in the proximal

portion of the flagellum is not increased appreciably in Carreau fluid relative to the Stokes

case, whereas drag in the distal end is decreased significantly. Thus, the relative increase in

propulsion in the distal relative to the proximal portion of the flagellum and the decrease in

drag in the distal portion are responsible for the observed increase in VCL.

Figures 3.17d and 3.17f show the ratio of the magnitude of force generated in the proxi-

mal and distal portions of the flagellum as a function of viscosity ratio and Deborah number

respectively, for the flagellum at time 𝑡 = 0. The force ratio is estimated in these results as

the average of peaks 2 and 3 in the force magnitude, shown in figure 3.16d, divided by the

average of peaks 4 and 5. The functional similarity between the force ratio and the average

curvilinear velocity, shown in figure 3.17, gives support to the hypothesis that redistribution

of propulsive and drag forces along the flagellum induced by the observed gradient of thick to

thin fluid are responsible for increases in instantaneous velocity.
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(a) (b)

(c) (d)

Figure 3.15: The impact of varying De = 𝜆𝜔 on the effective viscosity 𝜇eff of Carreau fluid
surrounding a two dimensional sperm-like swimmer at (a) De = 0.2, (b) De = 0.8, (c) De =
1.5 and (d) De = 3 with 𝜇0/𝜇∞ = 2 and 𝑛 = 0.5. Here, 𝑘 = 2.5 and 𝐴 = 0.45𝜋.
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Figure 3.16: (a) Trajectories of a two dimensional sperm-like swimmer in Carreau flow for
different values of the viscosity ratio 𝜇0/𝜇∞, showing an increase in progress and a decrease
in ALH as 𝜇0/𝜇∞ increases. (b) The force generated by the flagellum on Newtonian fluid at
time 𝑡 = 0 (above) and Carreau fluid with 𝜇0/𝜇∞ = 2, 𝑛 = 0.5 and De = 0.8, corresponding
to figure 3.15b (below). Arrow lengths are normalised to the largest force at the distal end
of the flagellum. (c) A time series of the magnitude of the force profile along the flagellum
for Stokes flow, showing the progression of the of the travelling bending wave from proximal
to distal end and (d) the magnitude of the force profile of the flagella shown in (b), colours
matching, showing a redistribution of force to the distal portion of the flagellum in the case
of shear-thinning flow. Force is greatest at the tip of the flagellum.
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Figure 3.17: Simulation results for the two dimensional sperm like swimmer in Carreau fluid
with shear angle prescribed by equation (3.12) for 𝑘 = 2.5 and 𝐴 = 0.45𝜋.(a) The progress
and (b) the ALH of a two dimensional sperm-like swimmer as a function of the viscosity ratio
𝜇0/𝜇∞, for 𝑛 = 0.5 and De = 1, (c) VCL and (d) the ratio of the forces in the proximal and
distal portions of the tail at the instant 𝑡 = 0 as a function of 𝜇0/𝜇∞ and (e) VCL and (f)
the ratio of the forces in the proximal and distal portions of the tail at the instant 𝑡 = 0 as a
function of the Deborah number, De with 𝜇0/𝜇∞ = 2 and 𝑛 = 0.5. Stokes flow corresponds
to the cases 𝜇0/𝜇∞ = 1 and De = 1.



𝑎𭑥 𝑎𭑦 Eccentricity Circumference

0.06 0.0 ̇3 0.832 0.299
0.05 0.04 0.6 0.284
0.0447 0.0447 0 0.281
0.04 0.05 0.6 0.284
0.0 ̇3 0.06 0.832 0.299

Table 3.2: Elliptical head morphologies of constant area but different eccentricity, correspond-
ing to the data in figure 3.18. The case corresponding to the sperm-like swimmer we first
considered is second from the top. These morphologies from top to bottom correspond with
dark to light plots.

3.4.2 Effects of changing morphology and kinematics

Wewill now examine how robust these effects are to changes in cell morphology and kinemat-

ics. For all the swimmers we will consider, the case corresponding to the swimmer analysed

above will be marked with a dashed line. We will begin by varying the eccentricity of the

elliptical head, whilst maintaining its area. We will then consider heads with fixed eccentric-

ity and different area, before varying the wavenumber of the flagellar bending wave. We will

consider the trajectories of these swimmers as functions of changing viscosity ratio.

The head shapes we will first consider are given, from elongated in the direction of the

flagellum to ‘hammerhead’, in table 3.2. These morphologies are shown, from dark to light,

in figure 3.18a. The data presented in the other panels of figure 3.18 are colour matched with

the morphology to which they belong. For this set of data, the wavenumber of the flagellar

waveform 𝑘 = 2.5, and the area of the head is 0.002𝜋.

The trajectories that these swimmers follow in Stokes flow are shown in figure 3.18b. These

show that the principal effect of head elongation is a flattening of the trajectory, which is quan-

tified as a decrease in ALH in figure 3.18d. This leads to a small increase in progress, shown

in figure 3.18c. However, it also leads to a decrease in the path length PL of the trajectory, as

shown in figure 3.18e. Thus, hammerhead cells swim a greater distance, but for less overall
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progress. This is quantified in figure 3.18f, which shows the path straightness STR of the

different morphologies. It is interesting to note that, though the morphology of mammalian

sperm varies widely across species, hammerhead sperm do not tend to appear in nature; the

reduction in STR that this morphology entails may be a reason for this.

Figures 3.18c,d,e,f are plotted as a function of the viscosity ratio𝜇0/𝜇∞. This shows that the

effect of shear-thinning on these cells is robust to this particular morphological change, within

the range of parameters we have considered. The exception is the path length PL, shown in

figure 3.18e. For any given morphology, shear-thinning leads to monotonic increases in PL.

However, for the most eccentric hammerhead cell (𝑎𭑥 = 0.0 ̇3, 𝑎𭑦 = 0.06), these increases

are substantially less than occur for the other cells. This is reflected in figure 3.18e, which

shows that the path length of this cell’s trajectory is exceeded by the less eccentric head with

𝑎𭑥 = 0.04, 𝑎𭑦 = 0.05 for 𝜇0/𝜇∞ > 2 and by the circular head for 𝜇0/𝜇∞ > 3.5. This may

be due to the increased drag from the larger cell circumference being further enhanced by

shear-thinning for hammerhead cells. If this were the case, one might expect that firstly, the

cell with (𝑎𭑥 = 0.04, 𝑎𭑦 = 0.05) would exhibit the same effect and secondly, the elongated

cells would exhibit the opposite behaviour. Whilst no further intersections occur in figure

3.18e, it is certainly true that the range of values of the path lengths is smaller for 𝜇0/𝜇∞ = 4

than for Stokes flow, which lends support to this theory.

We will now consider the effects of varying head size for fixed eccentricity. The head

morphologies we will examine are given in table 3.3. The data presented in figure 3.19 are

colour matched from dark to light with the smallest to largest head respectively. For this set

of data, the wavenumber of the flagellar waveform is 𝑘 = 2.5.

The trajectories that these swimmers follow in Stokes flow are shown in figure 3.19a. This

shows that the effects of increasing the area of the head are a decrease in cell progress (figure

3.19b), and a decrease in ALH (figure 3.19c). Thus, the ratio of the cell’s forward to side-to-side

motion STR is increased (figure 3.19e). This is because the drag on a translating body in two
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Figure 3.18: (a) The head morphologies listed in table 3.2. Throughout this figure, data are
colour matched to correspond with these morphologies, with the case corresponding to the
sperm-like swimmer we first considered given by the dashed line. (b) Trajectories of cells with
varying head eccentricity through Stokes flow, plottedwith equal axis scaling. For 𝑛 = 0.5 and
De = 1, the effect of varying the viscosity ratio 𝜇0/𝜇∞ on (c) the swimmers’ progress, (d) the
amplitude of the swimmers’ lateral head displacement, (e) the path length of the swimmers’
trajectories and (f) the swimmers’ path straightness.



𝑎𭑥 𝑎𭑦 Area Circumference

0.045 0.036 0.0016𝜋 0.255
0.05 0.04 0.002𝜋 0.284
0.055 0.044 0.0024𝜋 0.312

Table 3.3: Elliptical headmorphologies of constant eccentricity, but different area, correspond-
ing to the data in figure 3.19. The case corresponding to the sperm-like swimmer we first con-
sidered is given by the middle entry. These morphologies, from top to bottom correspond with
dark to light plots.

dimensional viscous flow is an increasing function of its circumference. Thus, the larger the

head, the more drag on the cell and the more resistance to motion. The decrease in ALH is

not sufficient to fully counter the additional resistance to forward motion, and the net result

is a decrease in progress as well as path length (figure 3.19d), though this may not be true for

morphologies with greater head eccentricity.

For the morphologies considered, these effects are approximately proportional to the cir-

cumference of the cell head for all values of the viscosity ratio. As we observed for varying

head eccentricity, shear-thinning improves the swimmer’s progress (figure 3.19b) by reduc-

ing ALH (figure 3.19c) and increasing VCL, as reflected by increased path length PL (figure

3.19d). This increases the swimmer’s path straightness, shown in figure 3.19e.

We will conclude by examining the robustness of the effects of shear-thinning rheology

with respect to changes in the wavenumber of the flagellar waveform. The wavenumbers that

we will consider are listed, along with an image of the corresponding swimmer, in table 3.4.

The data presented in figure 3.20 are colour matched with the swimmer to which they belong.

For this set of data, the semi-axes of the cell head are given by 𝑎𭑥 = 0.05 and 𝑎𭑦 = 0.04.

The trajectories that these swimmers follow is shown for the case of Carreau flow with

𝑛 = 0.5, 𝜇0/𝜇∞ = 4 and De = 1 in figure 3.20a. The shapes of the trajectories for 𝑘 = 2

(black) and 𝑘 = 3 (orange) are remarkably similar, though the progress of the swimmer
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Figure 3.19: (a) Trajectories of the cells with head morphologies given in table 3.3, swimming
in Stokes flow with 𝑛 = 0.5, 𝜇0/𝜇∞ = 4 and De = 1. For 𝑛 = 0.5 and De = 1, the effect
of varying the viscosity ratio 𝜇0/𝜇∞ on (b) the swimmers’ progress, (c) the amplitude of the
swimmers’ lateral head displacement, (d) the path length of the swimmers’ trajectories and (e)
the swimmers’ path straightness. The case corresponding to the sperm-like swimmer we first
considered is given by the dashed line.



Wavenumber Beat pattern

𝑘 = 2

𝑘 = 2.25

𝑘 = 2.5

𝑘 = 2.75

𝑘 = 3

Table 3.4: The wavenumbers and their corresponding beat patterns used to examine the ro-
bustness of the effects of shear-thinning to cell kinematics. Data in figure 3.20 are colour
matched to their corresponding waveform, with the sperm-like swimmer we first considered,
𝑘 = 2.5, here marked in red, given by the dashed lines. The waveforms are shown in a time-
lapse fashion over the same period.



decreases substantially as a function of 𝑘 as shown in figure 3.20b. Upon examining fur-

ther wavenumbers, the shape of the trajectory is dependent upon the fractional part of the

wavenumber 𝑘. The similarity of the trajectories for 𝑘 = 2, 3 is made apparent in figure 3.20e,

which shows that the path straightness STR of these waveforms is approximately equal for

all values of the viscosity ratio 𝜇0/𝜇∞ considered. The variation in these trajectories demon-

strates the profound effect that apparently small changes in cell kinematics can have upon

its ability to swim. Although cell progress seems to decrease monotonically as a function of

wavenumber, this is not true of ALH, PL or STR.

However, the effect of shear-thinning on these trajectories remains consistent. For all

waveforms, shear-thinning once more improves progress (figure 3.20b) by reducing side-to-

side motion (figure 3.20c) and increasing instantaneous speed VCL, as reflected by increased

path length PL (figure 3.20d). This has the effect of increasing the swimmer’s path straight-

ness, as quantified in figure 3.20e. However, the extent to which this occurs is a function of

the complex interactions between flagellum and fluid, and the gradients of thick to thin fluid

that are generated.

In summary, we have shown that for a model of human sperm swimming, the flagellar

waveform induces a gradient of thick to thin fluid along the flagellum. This aids progress by

flattening the cell’s trajectory due to a relative increase in resistance to side-to-side motion

of the cell, and by increasing the net propulsive force generated by the flagellum. Thicker

fluid in the proximal portion of the flagellum increases the propulsion it generates without

appreciably increasing drag, whilst the drag in the distal portion of the tail is reduced by the

thinner fluid surrounding it. These effects are robust to reasonable changes in cell morphology

and kinematics, though certain morphologies are better able to exploit them.

Having examined the effects of shear-thinning rheology on a number of model swimmers,

we will now conclude the thesis with a summary of this work and an outline of possible future

directions.

122



−0.04 −0.03 −0.02 −0.01 0
0

−0.015

−0.01

−0.005

0

𝑥

𝑦
𝑘 = 2
𝑘 = 2.25
𝑘 = 2.5
𝑘 = 2.75
𝑘 = 3

(a)

1 2 3 4

2

3

4 ⋅10−2

𝜇0/𝜇∞

pr
og

re
ss

(b)

1 2 3 4

0.5

1

1.5

⋅10−2

𝜇0/𝜇∞

A
LH

(c)

1 2 3 4
2

3

4

5 ⋅10−2

𝜇0/𝜇∞

PL

(d)

1 2 3 4

0.6

0.8

1

𝜇0/𝜇∞

ST
R

(e)

Figure 3.20: (a) Colour matched trajectories of the cells with waveforms shown in table 3.4,
swimming in Carreau flow with 𝑛 = 0.5, 𝜇0/𝜇∞ = 4 and De = 1. For 𝑛 = 0.5 and De = 1,
the effect of varying the viscosity ratio𝜇0/𝜇∞ on (b) the swimmers’ progress, (c) the amplitude
of the swimmers’ lateral head displacement, (d) the path length of the swimmers’ trajectories
and (e) the swimmers’ path straightness. The case corresponding to the sperm-like swimmer
we first considered is given by the dashed line.



Chapter 4

Conclusions and Future Work

4.1 Summary of methodology

Microscopic swimming has been rich problem in applied mathematics for the last 60 years,

leading to the development of numerous techniques formodellingNewtonian and non-Newtonian

flows alike. Of recent interest are swimming problems in non-Newtonian fluids, motivated by

the complex rheological properties of many biological fluids, such asmucus. These are particu-

larly important in the field of medicine, for instance in fertility research, mucociliary clearance

and examining barrier properties of mucus against invasive bacteria. However, nonlineari-

ties in the equations governing non-Newtonian viscous flow make their solution problematic,

often requiring linearisation of the equations or the assumption that flagellar beating is small

amplitude. While the latter has provided a great number of insights, swimmers exhibiting

large amplitude flagellar beating can experience additional effects which change the impact

of fluid rheology upon them (Teran et al., 2010). While much recent study has been given to

understanding swimmers in viscoelastic fluids, relatively less study has been given to under-

standing swimmers in shear-thinning fluids, which is a property of human cervical mucus.

Thus, we developed a method for simulating microscopic swimming in nonlinear fluids

with shear dependent viscosity for large amplitude swimmer kinematics. Inspired by the

method of regularised stokeslets and IBM, the method of femlets utilises a description of the



swimmer as a set of immersed, regularised forces that drive the fluid flow. The finite element

projection of the governing fluid equations and the femlet representation of the swimmer is

taken, and the flow, the forces that the swimmer exert on the fluid, and the swimming ve-

locities are solved simultaneously. A prescribed function of the swimmer’s configuration as

a function of time has been used, giving the body frame velocity of the swimmer at the loca-

tions of the femlets which are used as constraints for the unknown forces. These conditions

are transformed into the lab frame using the a priori unknown swimming translational and

angular velocities, which are constrained by the conditions that zero net force and torque act

upon the swimmer. The method is now being used in a collaboration with Profs. Kees Weijer

and Timothy Newmann at the University of Dundee to examine the force distribution in the

developing chick embryo during gastrulation.

A number of extensions to this method that are yet to be completed are possible. Firstly, the

method is generalisable to three dimensions by considering a representation of the swimmer

by three dimensional immersed forces. This would present a number of technical difficulties.

Firstly, a three dimensional description of the geometry and the configuration of the swimmer

would be required in order to mesh the domain with DistMesh. Generating this mesh would

entail greater numerical cost than the two dimensional case. Additionally, it would be desir-

able to model flagellated swimmers with two types of femlet; a discretisation of the cell body

with regularised disc and of the flagellum with regularised rod cut-off functions, though this

would only require an adjustment to the imposition of the zero net force and torque condi-

tions. Finally, there is the numerical cost entailed with solving a larger matrix system, which

would necessitate an iterative, perhaps parallelised, solver, such as GMRES. However, these

difficulties are all resolvable, and a three dimensional version of the code is currently in de-

velopment.

A simple extension to the work would be to prescribe beat kinematics with waveforms

that have been extracted from high-speed imaging of live cells. Together with rheological
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parameters extracted from the medium in which the cell is observed, the method could be

used in conjunction with a structural model of the flagellum with external drag prescribed by

the femlet forces, to provide data on force generation and efficiency of the flagellum. It would

also be desirable to extend the method to allow a description of the swimmer kinematics in

terms of prescribed forces, rather than a prescribed configuration. Since the method of femlets

simultaneously calculates the fluid force on the swimmer at the location of the femlets along

with non-local flow, a discretisation of the solid domain along with boundary conditions is

already supplied. Inspired by IBM, a coupled model of the Najafi-Golestanian swimmer where

the spheres are linked by Hookean springs and driven by a prescribed oscillatory force is also

being developed. This framework could then be extended to incorporate beam mechanics

models of the flagellum similar to those summarised in section 1.3.2. Finally, the method may

be formulated for viscoelastic fluids, though this has yet to be attempted.

4.2 Summary of findings

The method of femlets was used to analyse the effects of shear-thinning rheology on three

qualitatively different swimmers in Carreau fluids. For each swimmer, the impact on swim-

ming speed and trajectory of varying three dimensionless rheological parameters, the viscosity

ratio, the power law index, and the Deborah number was examined. It was found that for all

swimmers, the effects of shear-thinning rheologymay be understood by splitting the swimmer

at any time into propulsive and drag-inducing elements, and examining the difference in fluid

viscosity surrounding these elements. At any instant, propulsive elements are those which

generate a force on the fluid opposite to the direction of instantaneous travel, whereas drag-

inducing elements are those which generate force in the direction of instantaneous travel. In

general, fluid surrounding propulsive elements is thinner than that surrounding drag-inducing

elements, which decreases the magnitude of the propulsive force relative to the drag force,
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slowing the swimmer. However, different swimmers through their beat kinematics were able

to utilise this phenomenon in order to increase their progress over a full stroke.

The first such swimmers we examined were the class of Najafi-Golestanian swimmers.

For the discrete time version of the swimmer, the kinematics was divided into two effective

strokes, where the swimmer was travelling in the direction of overall progress, and two recov-

ery strokes, where the swimmer was travelling in the opposite direction in order to readjust

its configuration to begin an effective stroke. Over each portion of the stroke, the instanta-

neous velocity of the swimmer was reduced. However, the velocity was reduced by a greater

amount during the recovery strokes, leading to an overall gain in progress. The swimmer

operates under the principle that the drag of two spheres in each others’ slip stream is less

than that of two moving far apart, and shear-thinning enhances this effect. An approximately

linear relationship between cell progress and the difference in the average velocity on the

surface of the propulsive and drag inducing spheres was found. The apparent linear relation-

ship between the progress of the smooth time version and the logarithm of the viscosity ratio

suggests that, for a sphere translating in Carreau fluid, the effective viscosity on the sphere

surface might be logarithmically dependent on the viscosity ratio. A generalisation of the

Najafi-Golestanian swimmer to 𝑁 spheres propagating a compressional wave was proposed

that utilised the same underlying fluid mechanical phenomena in order to swim. Such swim-

mers were shown to swim in the direction of the wave they propagate, in contradistinction to

monoflagellate pushers. For 𝑁 = 5, this swimmer better exploited shear thinning rheology

than for 𝑁 = 3.

For slip-velocity squirmers, both time averaged and travelling wave models were consid-

ered. The envelope of thinned fluid surrounding the squirmer was shown to reduce the swim-

mer’s instantaneous velocity. This may be true for any free rigid body exhibiting a slip velocity

in shear-thinning fluid. This reduction was associated with enhanced flow decay within the

thinned envelope. However, the envelope approach of time-averaging the coordinated action
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of many cilia into a surface slip velocity might neglect rheological interactions that occur on

the scale of each cilium, and thus it may be desirable in the future to consider squirmingmodels

exhibiting small surface deformations, or models incorporating discrete cilia.

Finally, we examined a two dimensional model of human sperm as an archetypal monoflag-

ellate pusher. We found that when exhibiting a beat pattern typical of swimming observed

in high viscosity fluids akin to mucus, the flagellar waveform induced a gradient of thick to

thin fluid along the flagellum. This aided the cell’s progress in two distinct ways. Firstly, the

enhanced drag on the cell head reduced the lateral head displacement, flattening the cell’s

trajectory. Secondly, the thicker fluid in the proximal portion of the flagellum increased the

propulsion it generated, without appreciably increasing drag, whilst the drag in the distal por-

tion of the tail was reduced by a similar amount to the propulsion it generated. This led to an

overall increase in the propulsion generated by the flagellum, increasing the cell’s instanta-

neous velocity and thereby its total progress. These two effects combined to increase the cells

progress, which could be very pronounced for the range of rheological parameters considered,

and was found to be robust to reasonable changes in cell morphology and kinematics.

It is important to note that whilst shear-thinning is a property of cervical mucus, it also ex-

hibits elastic properties. Thus, extending the method to incorporate a wider range of rheolog-

ical behaviours is desirable before extrapolating these conclusions to a physiological setting,

for which a full rheological characterisation of human cervical mucus would also be required.

An ultimate goal of the research is to couple themethodwith a one dimensional beammechan-

ics model of the flagellum. Waveforms extracted from high-speed images of live cells would

prescribe the deformation of the swimmer in this model, and calculation of the biologically

realistic fluid flow would give the external forces on the cell which, when inputted into an

accurate mechanical model of the flagellum, would yield information about force generation,

energy transport and power efficiency within the flagellum itself. With better information

about the mechanics underlying flagellar motility, treatments such as IVF may one day be
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further improved. by providing better sperm selection criteria and insight into normal physi-

ology.
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Appendix A

Summary of published and submitted

work

A.1 Published work

Montenegro-Johnson, T.D., Smith, A.A., Smith, D.J., Loghin, D. and Blake, J.R (2012).

Modelling the Fluid Mechanics of Cilia and Flagella in Reproduction and Develop-

ment. Eur. Phys. J. E, 35(10):111

This paper begins with a review on the mechanics of microscopic flow, including sev-

eral well-established phenomena such as time-reversal symmetry, drag anisotropy of slender

bodies, and wall effects, covering some common material with sections 1.1 and 1.2. It then

examines two specific problems, symmetry breaking in the mouse embryo and swimming in

shear-thinning fluids, in more detail. My contribution entailed writing sections 1,2,4 and 5,

and the research comprising section 4.

This section introduced the method of femlets, and used them to examine the effects of

shear-thinning rheology on the smooth time Najafi-Golestanian swimmer with which we be-

gan section 3.2, and the sperm model for a single set of morphological parameters and a single

wavenumber.



Smith, A.A., Montenegro-Johnson, T.D., Smith, D.J., Loghin, D. and Blake, J.R (2012).

Symmetry breaking cilia-driven flow in the zebrafish embryo. J. Fluid Mech., 705:26–45.

This paper modelled symmetry breaking flow that arises in a structure known as Kupffer’s

vesicle on the developing zebrafish embryo. My contribution to the work was to create a

meshing program capable of capturing the complex geometry of Kupffer’s vesicle into a format

that could be read by our group’s boundary element code. This involved overcoming several

interesting geometrical and topological challenges.

Kupffer’s vesicle may be approximated by a scalene ellipsoid, filled with fluid, into which

cilia protrude, driving the flow. I created a program that could distribute cells across the sur-

face at random positions, but with specified cell density which was important to test existing

experimental hypotheses. These cells formed a quadratic approximation of the ellipsoid, tes-

sellating it completely. Cilia protruded smoothly from each cell, tilted locally along lines of

latitude. These cilia performed a whirling beat, which drove the fluid flow.

We found that a possible mechanism capable of producing the flow field with qualitative

and quantitative features closest to those observed experimentally is a combination of posteri-

orly tilted roof and floor cilia, and dorsally tilted equatorial cilia. This work has subsequently

sparked an international collaboration between our group, Dr Susana Lopes and Dr Julyan

Cartwright in Lisbon and Granada respectively, resulting in a paper that is to be submitted

shortly.

A.2 Unpublished work

Montenegro-Johnson, T.D., Smith, D.J. and Loghin, D. (accepted to Physics of Flu-

ids). Physics of Rheologically-Enhanced Propulsion: Different strokes in General-
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ized Stokes.

In this paper, we present the findings of chapter 3 of this thesis, summarising the observed

effects of shear-thinning fluid on the prescribed kinematics model swimmers herein consid-

ered. The mechanisms underlying these effects that have been proposed in this thesis are also

summarised.

Rua, R.R., Guerrero, A., Sampaio, P., Pintado, P., Smith, A.A., Montenegro-Johnson,

T.D., Smith, D.J. and Lopes, S.S. (In preparation).

In this paper, we report the existence of two distinct populations of cilium kinematics

in Kupffer’s vesicle. Apart from cilia beating at a single frequency, a new type of wobbling

kinematics was observed. These different cilium populations are incorporated into our existing

computational model of Kupffer’s Vesicle and simulations show agreement with flow fields

extracted from live imaging.
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