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Prologue 

This document contains two separate six-month research projects completed for the degree of 

MRes in Molecular and Cellular Biology. The first project was concerned with the 

development of targeted therapies for progressive, treatment-resistant forms of B-cell chronic 

lymphocytic leukaemia (B-CLL) that exhibit functional loss of the Ataxia-telangiectasia 

mutated (ATM) gene. B-CLL is currently incurable, and available palliative treatments are 

relatively toxic to patients, the majority of which fall within an aging demographic. ATM loss 

is linked to highly aggressive forms, and results in defective homologous recombination and 

therefore a diminished capacity for the efficient repair of DNA double-strand breaks. While 

this promotes genomic instability and ultimately cancer, it also leaves the cell vulnerable to 

the accumulation of catastrophic DNA damage levels if other routes of DNA repair are 

inhibited. The aim of the project was to therefore investigate the effectiveness of novel, less 

toxic therapeutic compounds that exploit this mechanism of synthetic lethality - specifically, 

poly (ADP-ribose) polymerase and histone deacetylase inhibitors.  

The second project report details an optimisation study contributing to the development of a 

histopathological tissue imaging method. The method utilises indirect immunofluorescence 

and confocal laser-scanning microscopy (CLSM) to enable the simultaneous visualisation of 

multiple biomarkers within tissue cryosections. The development of such a method is 

beneficial to histology and histopathology, as it provides a reliable method of multiple antigen 

visualisation, allowing for the analysis of spatial and temporal relationships between 

molecules, the cell types that express them and the tissue components comprised of such cells. 

Specifically, staining and imaging protocols were optimised for use on reactive lymph node 

cryosections, for the simultaneous visualisation of the B-lymphocyte surface markers CD19, 

κ- and λ- immunoglobulin light chain antigens. Older generation fluorophores were replaced 



 

 

with newer, more photostable and generally brighter Alexa fluorophores, increasing the 

viability and applicability of the method for both diagnostic and experimental histopathology. 

The main theme running across the two projects is that of research into haematological 

malignancies, particularly B-CLL. Whilst the first is directly involved in the development of 

targeted cancer therapy, the tissue imaging method optimised in the second can be further 

developed for spatial immunophenotyping of specific cancer biomarkers within diseased 

immunological tissues. This is of use to biomedical research for the development of targeted 

cancer therapies based on the specific molecular mechanisms of disease, as well as from a 

clinical perspective for establishing disease diagnoses and prognoses based on the molecular 

profile of individual leukaemias and lymphatic lymphomas. The conclusions drawn from both 

projects will hopefully contribute towards research into haematological malignancies and 

benefit cancer research as a whole. 
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Abstract 

Progressive B-Cell Chronic Lymphocytic Leukaemia (B-CLL) represents a clinical problem 

due to its aggressive disease course and poor survival rate. Many progressive B-CLL forms 

are characterised by a loss of the ataxia telangiectasia mutated (ATM) and/or TP53 tumour 

suppressor and DNA damage repair genes, the incidence of which is associated with 

resistance to therapies that rely on DNA-damage induced apoptosis. The loss of these genes, 

particularly ATM, results in defective homologous recombination (HR). Previous studies 

have found that Poly (ADP-ribose) polymerase inhibitors (PARPis) impose the requirement 

of HR and selectively sensitise ATM deficient cells to killing. This study assessed the 

potential of combining histone deacetylase inhibitors (HDACis) to synergise with PARP 

inhibitors and increase this selective killing effect. Conversely, CII and TP53 mutant MEC-1 

isogenic B-CLL cell lines that were treated with ATM shRNA did not exhibit significant 

sensitivity to PARP inhibition, nor show convincing evidence of selective PARPi/HDACi 

synergy. TP53 mutant cells showed no sensitivity to PARP inhibition regardless of ATM 

status. TP53 mutant cells exhibited increased proliferation at low HDACi doses, although 

lower doses of HDAC inhibitor was more cytotoxic to p53 mutant MEC-1 cells overall, and 

also to ATM wild type cells in both cell lines. However, complete ATM knockdown was not 

achieved in CII cells and HR was not found to be seriously compromised. Thus, further 

detailed studies and alternative assay methods are required before any conclusions can be 

drawn on the synergic potential of PARP and HDAC inhibitors in the treatment of HR-

deficient progressive B-CLL. 
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1.0 Introduction 

1.1 B-Cell Chronic Lymphocytic Leukaemia 

 B-Cell Chronic Lymphocytic Leukaemia (B-CLL) is the most common haematological 

malignancy in the Western world, with the majority of patients over 60 years of age and males 

outnumbering females 2:1 (Damle et al., 1999).  The pathology itself is caused by the 

relentless accumulation of redundant monoclonal B cells that morphologically resemble small 

mature lymphocytes (Hamblin et al., 1999). B-CLL tumour cells have characteristic 

immunophenotypes, typically being positive for CD5, CD19 and CD23 markers but negative 

for surface CD22 and FMC7 (Hamblin et al., 1999). B-CLL tumour cells express 10-fold 

lower amounts of surface Ig than mature B cells, the isotypes normally being IgM or a 

combination of IgM and IgD. Very reduced levels of IgM are also secreted, highlighting their 

functional redundancy (Friedman et al., 1992). B-CLL disease progression is the most 

heterogeneous of all leukaemias (Cramer and Hallek, 2011). B-CLL remains at present 

incurable, and current treatments induce transitory remission rather than achieve total 

eradication of the disease (Chiorazzi et al., 2005; Damle et al., 1999). Some disease forms are 

relatively stable and require little or no treatment, while others are highly aggressive and have 

a poor clinical outcome, known as progressive CLL (Austen et al., 2007; Weston et al., 2010).  

As a result of this clinical heterogeneity, there has been an emphasis on identifying unique 

characteristics that allow foresight of the clinical course of individual B-CLL patients. A 

“naive” tumour cell phenotype, characterised by unmutated IgVH genes, is a poor prognostic 

indicator (Damle et al., 1999; Hamblin et al., 1999), as is expression of the CD38 surface 

marker (Damle et al., 1999; Pittner et al., 2005). ZAP-70 is a tyrosine kinase that is 

exclusively expressed in T and natural killer (NK) cells, but aberrantly expressed by B cells in 
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some forms of B-CLL, greatly reducing life expectancy and clinical outcome (Hamblin et al., 

1999; Ure et al., 2009). Expression of the anti-apoptotic gene Mcl-1 may also indicate 

progressive B-CLL (Pepper et al., 2008). Cytogenetic abnormalities are also often present, 

and are also important indicators of severity. 11q and 17p deletions are indicators of very poor 

clinical prognosis and highly aggressive disease courses, as these are the sites of the DNA 

damage response and cell cycle regulator genes Ataxia telangiectasia mutated (ATM, fig. 1) 

and p53 respectively (Austen et al., 2005; Dohner et al., 1995; Stankovic et al., 2002b).  

1.2 ATM and p53 

Defective ATM expression results in progressive B-CLL because of the function and nature 

of the gene (fig. 1). ATM belongs to the phosphatidylinositol 3-kinase-related kinase (PIKK) 

superfamily, which also includes ataxia telangiectasia and RAD3-related (ATR), DNA-

dependent protein kinase catalytic subunit (DNA-PKcs) and mammalian target of rapomycin 

(mTOR) (Zhou et al., 2006). The gene is located on chromosome 11q23-24, and its numerous 

roles involve cell cycle regulation, control of telomere length and DNA processing, though its 

main function is that of a DNA damage sensor and DNA damage response (DDR) integrator, 

particularly concerning DNA double-strand breaks (DSBs). The protein product is 350kDa in 

size, and possesses a C-terminal PI3-kinase domain. ATM phosphorylates downstream 

proteins to relay DNA damage signals, and recruits DNA repair proteins to sites of DNA 

damage (Austen et al., 2005; Lavin and Khanna, 1999; Savitsky et al., 1995; Stankovic et al., 

2002a; Starczynski et al., 2003; Weston et al., 2010). Biallelic loss of the ATM gene is solely 

Figure 1 – Functional diagram of ATM, a 350kDa protein containing 3056 amino acids. Pictured are the five main 

functional domains and autophosphorylation sites. The HEAT repeats bind directly to the C terminal of NBS1, a member of 

the MRN DSB repair complex. The FAT domain interacts with the catalytic-site containing PI3K domain and stabilises the 

C-terminal region of the ATM protein, while the PRD and FATC domains regulate the kinase activity of the PI3K region. 
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responsible for the rare autosomal recessive inherited condition ataxia telangiectasia (A-T), 

the defining symptoms of which include an unsteady gait (ataxia) and visibly dilated blood 

vessels in the eye conjunctiva and facial region (telangiectases) (Savitsky et al., 1995; Taylor 

et al., 1975).  

In accordance with the role of ATM in mediating the DSB response, A-T sufferers exhibit an 

increased sensitivity to ionising radiation (IR) and predisposition to lymphoreticular 

malignancies (Taylor et al., 1975). ATM-deficient cells also exhibit inherent chromosomal 

instability and delayed p53 activation/cell cycle arrest in response to DNA damage (Savitsky 

et al., 1995). This therefore explains how sporadic ATM mutations/11q deletions may 

promote progressive B-CLL through unrepaired DNA and subsequent chromosomal 

instability (Stankovic et al., 2002b). ATM is involved with the same DNA damage response 

pathway as p53, though the roles are not completely congruent – ATM deficiency results in 

increased sensitivity to IR, whilst p53 loss confers radioresistance (Alvi et al., 2005; Savitsky 

et al., 1995; Stankovic et al., 2002b).  

1.3 Mechanisms of ATM loss 

As well as 11q deleted forms of ATM-null B-CLL, ATM is the single most frequently 

mutated gene in B-CLL (Stankovic et al., 2002b).  The reasons for why ATM dysfunction is 

such a common occurrence in progressive B-CLL are widely unknown.  ATM is 

downregulated during lymphocyte germinal development and V(D)J recombination, a period 

during which physiological DNA DSBs must occur (Starczynski et al., 2003), although ATM 

dysfunction is linked with, but not exclusive to, unmutated IgVH gene disease forms 

(Stankovic et al., 2002b). Also, unlike A-T which is caused by the inheritance of homozygous 

ATM defective alleles, it is not thought that an inherited dysfunctional ATM allele bestows a 

predisposition to B-CLL disease onset. It is, however, likely that sporadic loss-of-function 
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mutations will occur in the one remaining allele if B-CLL arises, and thus the possession of a 

defective ATM allele predisposes B-CLL patients to progressive forms of the disease 

(Skowronska et al., 2012). Whatever the genetic basis of ATM dysfunction, the clinical effect 

is certain - ATM mutations and/ or 11q deletions lead to rapid clonal expansion of ATM null 

tumour cells (Austen et al., 2007), thereby reducing progression-free survival rates as well as 

overall patient survival (Austen et al., 2007; Weston et al., 2010).  

1.4 Current treatments for ATM-deficient progressive B-CLL 

  Commonly used progressive B-CLL treatments involve combinations of DNA-damage 

inducing nucleoside analogues and alkylating agents, leading to the subsequent induction of 

apoptosis via p53/ATM pathways (Austen et al., 2005; Austen et al., 2007; Maddocks and 

Lin, 2009; Pettitt, 2003). However, ATM mutant or 11qdel B-CLL forms are deficient in 

these pathways and thus exhibit resistance to these approaches (Weston et al., 2010). Indeed, 

p53 mutant B-CLL tumours exhibit little or no apoptotic response in vitro, whilst ATM 

mutant tumours exhibit a markedly reduced response (Stankovic et al., 2002b; Stankovic et 

al., 2004). Recently, the addition of the CD20-targeting chimeric monoclonal antibody 

rituximab to fludarabine and cyclophosphamide front-line regimens paired with second line 

alemtuzumab and flavopiridol has had some clinical success (Weston et al., 2010). A positive 

response to the CDK inhibitor R-roscovitine (CYC202) has also been observed, which 

appeared to resensitise p53/ATM pathway-deficient B-CLL tumours to DNA-

damage/apoptosis inducing treatments (Alvi et al., 2005). However, these approaches still rely 

on traditional DNA damaging treatments and chemotherapeutics which broadly target rapidly 

dividing cells, resulting in clinical complications such as toxicity and immunosuppression 

(Weston et al., 2010). Thus, treatments are required that are not only more effective against 

ATM defective tumours, but also more specific to neoplastic cells and less toxic to patients, 

especially because most progressive B-CLL sufferers are above 60 and therefore less tolerant 
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of adverse side effects. Because of the function of the ATM gene, a promising novel approach 

in treating ATM-deficient B-CLL is to exploit the concept of synthetic lethality in DNA 

repair pathways. To understand why this may be the case, some common mechanisms of 

DNA repair are introduced. 

1.5 The DNA damage response, cancer and 

synthetic lethality as a novel therapeutic 

strategy 

The DNA damage response (DDR) is a complex 

cellular process. There are five main DNA 

damage response mechanisms known, which can 

be divided into single strand break (SSB) repair 

and double strand break (DSB) repair. DSBs are 

most serious and lead to genomic and 

chromosomal instability, and can lead to 

apoptosis if left unrepaired (Shaheen et al., 

2011). DSBs can be repaired via the more 

accurate homologous recombination (HR) 

mechanism, which utilises homologous 

chromatid sequences as templates to synthesise 

DNA across a DSB. HR occurs in the 

synthesis/gap 2/mitosis (S/G2/M) cell cycle 

stages. The other main DSB repair mechanism is 

Figure 2 - DSB repair mechanisms, HR, and NHEJ, 

and their two sub-pathways. Some molecular 

mediators of each process are also pictured (Shaheen 

et al., 2011). 
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non-homologous end joining (NHEJ), which involves the direct ligation of free ends of the 

DSB, and is much more prone to error (Shaheen et al., 2011). NHEJ occurs in the G0-G1 

phases of the cell cycle. Both of these methods have two sub-pathways (fig. 2).  

The DDR is a potentially targetable mechanism for novel cancer therapeutics. The term 

“synthetic lethality” is defined by two genes in a relationship whereby the dysfunction of one 

gene is not detrimental to cell survival, but the loss of both genes simultaneously results in 

cell death (Helleday et al., 2008; Shaheen et al., 2011). This concept is the basis that such 

novel therapeutics that target the DDR are based around. Cancer itself is a disease of aberrant 

DNA repair mechanisms, as unrepaired DNA leads to genomic instability and subsequent 

malignancies (Shaheen et al., 2011). However, cancer cells still require other DNA repair 

mechanisms to remain functional in order for them to survive. For this reason, cancer cells 

that are defective in particular DNA repair mechanisms may become dependent on other still-

functioning sub-pathways. By disrupting these remaining pathways via the inhibition of 

essential mediators, the cancer cell is unable to repair its genome and is destroyed through 

catastrophic accumulation of irreparable DNA damage (Audeh et al., 2010; Chiarugi, 2012; 

Shaheen et al., 2011; Weston et al., 2010; Yap et al., 2011). Other healthy cells without the 

DDR mutations would repair the damage and remain unaffected, and therefore this approach 

should be less toxic than standard DNA damage inducing agents (Weston et al., 2010). 

The heavy involvement of ATM in the DNA damage response means that cancers deficient in 

ATM are good targets for these synthetic lethal approaches. ATM is the principal integrator of 

the DDR for DSBs, and directly phosphorylates HR mediators such as BRCA, Nbs-1 and 

Rad51 upon detection of DNA damage (Cortez et al., 1999; Starczynski et al., 2003). ATM is 

also a mediator of NHEJ responses and has been shown to function alongside the NHEJ 

mediators Artemis and DNA-PKcs (fig. 2), although ATM is not a core component unlike in 



 

10 

 

HR (Riballo et al., 2004). Collectively, ATM-mutant B-CLL tumours may be vulnerable to 

therapies targeting redundant DNA repair pathways independent of ATM (Weston et al., 

2010). One such mediator of these sub-pathways are the poly (ADP-ribose) polymerases 

(PARPs). 

1.6 Synthetic lethality in practice: PARP inhibition 

 The PARP family consists of 18 enzymes. PARPs catalyse the poly(ADP-ribosyl)ation of 

proteins, a process whereby ADP-ribose polymers are formed from donor NAD+ molecules 

and attached to proteins via ester bonding with glutamic acids, aspartic acids or lysine 

residues (Woodhouse and Dianov, 2008). Poly(ADP – ribosyl)ation is a ubiquitous cellular 

process, and two members of the PARP family, PARP1 and PARP2, are known to play active 

roles in DNA repair. PARP1 shows significant overlap and is active in both DSB and SSB 

repair. For DSBs, PARP1 aids exposure 

of ssDNA by promoting DNA end 

resection via EXO1 and BLM, thus 

assisting HR (fig. 2). PARP1 also 

promotes the less accurate alternative 

NHEJ pathway (Wang et al., 2006) (fig. 

2). For SSB repair, PARP1 is a mediator 

of the base excision repair (BER) 

mechanism (Shaheen et al., 2011). 

These roles in the DDR therefore make 

PARP1 an attractive target for synthetic 

lethal cancer therapy approaches, as 

Figure 3 - Proposed mechanism of synthetic lethality when 

PARP1 is inhibited in an ATM deficient tumour undergoing 

deregulated replication. 
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they mediate DDR mechanisms that HR deficient cancers may rely on. 

PARP inhibitors (PARPis) have already proven to be an effective strategy in cancers such as 

BRCA-deficient breast and ovarian cancer and ATM deficient B-CLL (Audeh et al., 2010; 

Fong et al., 2010; Weston et al., 2010). BRCA1 and BRCA2 are major mediators of HR, and 

BRCA requires phosphorylation via ATM to function, hence in these cancers HR is 

compromised (Cortez et al., 1999). Thus, ATM and BRCA deficient cells are dependent on 

PARP1-mediated DNA DSB repair processes such as alternative NHEJ and single-strand 

annealing (SSA,  fig.2), and PARP1 inhibition also removes these options. BER is also 

compromised without PARP1 function, meaning that SSBs go unrepaired and are converted 

to DSBs during DNA replication. ATM deficient cells cannot repair these DSBs via HR, the 

result of which is the accumulation of DSBs and mitotic catastrophe (Weston et al., 2010) 

(fig. 3). Importantly, the highly proliferative nature of ATM deficient tumours contributes to 

the killing mechanism because the increased frequency of DNA replication leads to more and 

more unrepaired DSBs (Weston et al., 2010). 

From a clinical perspective, olaparib (AZD2281) is one of the most commonly used PARP 

inhibitors, and is credited with being fairly well tolerated and having high oral bioavailability 

(Audeh et al., 2010). Side effects are generally manageable and include fatigue, nausea and 

lymphocytopenia (Vasiliou et al., 2009). Olaparib can be used as a single agent or in 

conjunction with cytotoxic drugs, DNA damage inducers such as platinum-based compounds, 

or radiotherapy (Vasiliou et al., 2009). Initial clinical trials of olaparib on BRCA1 and 2 

compromised breast and ovarian cancers have yielded positive results (Audeh et al., 2010; 

Fong et al., 2010).  Previous in vitro studies have also highlighted the effectiveness of 

Olaparib in the specific killing of ATM-deficient B-CLL tumour cells (Weston et al., 2010). 

Olaparib is currently undergoing clinical trials in B-CLL for patients that are not responding 
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to conventional treatment. It is also undergoing clinical trials for the treatment of T-

prolymphocytic leukaemia (T-PLL) and mantle cell lymphoma (MCL), haematological 

malignancies in which ATM dysfunction is also common (Weston et al., 2010). ATM-

deficient B-CLL patients are currently participating in phase II trials with olaparib (Pratt, 

2011).  

1.7 PARPi resistance 

 Although PARPi therapy has been generally well received, there have recently been 

numerous reports of resistance to PARPis, posing a potential clinical problem to PARPi 

monotherapy. For example, in BRCA
-/-

 and p53
-/-

 mammary adenocarcinomas transplanted 

into mice, olaparib was initially shown to have potent anti-tumour effects, but resulted in 

eventual tumour growth relapse during treatment as well as after discontinuation (Rottenberg 

et al., 2008). Interestingly, a contributor to this resistance was found to be due to the PARPi-

induced upregulation of Abcb1a/b P-glycoprotein efflux pump genes, which remove 

xenobiotics from cells and are often a problem in chemotherapeutic resistance (Wurzer et al., 

2000). It has also been reported that  PARP1 itself may ribosylate and inhibit members of the 

ABC transporter family such as P-glycoprotein pumps, and thus the inhibition of PARP1 may 

actually contribute to the extrusion of the inhibitor compound (Dumitriu et al., 2004). In 

addition, there have been reports of HR mechanisms being restored in PARPi-treated BRCA1 

or -2 deficient cells, suggesting that the increased genomic instability stemming from 

inhibition of PARP1 could induce restorative mutations in BRCA genes (Edwards et al., 

2008).  These observations suggest that PARPi monotherapy may not be an effective long 

term strategy.  

These phenomena have not yet been observed in ATM-deficient B-CLL, however, and the 

induction of synthetic lethality via PARPi is still a promising option. The concept of using 
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PARPis as sensitising agents to radiotherapy and traditional DNA damage inducing 

chemotherapeutic methods, such as platinum salts, is a strategy that some groups have 

explored (Rottenberg et al., 2008). The toxicity of these compounds is still a problem, 

however, especially because the majority of progressive B-CLL sufferers are elderly. The 

optimum chemotherapeutic compounds to use in combination with PARPi are also yet to be 

resolved (Yap et al., 2011). One method of increasing the tumour-killing effectiveness of 

PARPis and possibly counteracting these observations of PARPi resistance could be to 

administer PARPis alongside other novel and less toxic DNA-damage response targeting 

compounds, to further increase the synthetic lethal effects of DDR inhibition on HR deficient 

tumours. One potential molecular target is the histone deacetylase (HDAC) family, which, 

amongst numerous other roles, are implicated heavily in the DDR. 

1.8 HDAC functions 

  HDACs are antagonistic to histone acetyltransferases (HATs), which transfer the acetyl 

group from acetyl CoA to lysine residues on proteins, forming ε-N-acetyl lysines (fig. 4). This 

process, termed acetylation, is essential for many cell processes. The most prominent of these 

processes is the regulation of chromatin dynamics. HATs acetylate conserved lysines on the 

N-terminal tails of histones H3 and H4, as well as H2A and H2B to a lesser extent (Federico 

and Bagella, 2011). This confers an open nucleosomal structure, termed euchromatin, which 

is more accessible to transcriptional machinery and thus more conducible to gene 

transcription. HDACs oppose this action, and deacetylate histones to revert chromatin back to 

a more condensed form, heterochromatin (fig. 4). Thus, HDACs are negative regulators of 

gene expression (Federico and Bagella, 2011).  

18 mammalian HDACs are known, which fall into 4 groups. Class I HDACs are all nuclear 

and ubiquitously expressed. Class II HDACs are thought to shuttle between the nucleus and 
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cytoplasm and are tissue specific. Class III HDACs include the NAD
+
-dependent sirtuin 

HDACs, while class IV contains only one HDAC, HDAC11 (Federico and Bagella, 2011). 

Some HDACs, such as the Class I HDACs HDAC 1 and HDAC2, have been found to be 

overexpressed in many cancers. Similarly, HDAC ablation often results in a loss of 

proliferation and/or apoptosis induction highlighting their tumorigenic properties (Jurkin et 

al., 2011). 

As HDACs are mainly negative gene regulators due to the effects on chromatin, HDAC 

inhibition results in widespread gene upregulation (fig. 4), which can have anti-cancer effects. 

Aberrantly silenced tumour suppressor genes may be upregulated, such as p21
WAF1

, p27
KIP

 

and p16
ink4a 

(Marks et al., 2000; Richon et al., 2000). HDAC inhibitors may also cause the 

upregulation of pro-apoptotic factors, such as Bim and TRAIL (Nebbioso et al., 2005; Tan et 

al., 2005) or result in repression of survival factors such as survivin (Chowdhury et al., 2011). 

However, acetylation is not only restricted to histones and chromatin dynamics. Thus, 

HDACs have a wide range of other targets, including oncogenic transcription factors and 

tumour suppressors that are involved with progression of certain cancers. Some examples 

include p53 (Gu and Roeder, 1997), E2F (Martinez-Balbas et al., 2000), c-Myc (Patel et al., 

2004) and NF-κB (Chen et al., 2001). It is therefore no surprise that HDAC activity is often 

altered in cancer. HDACs have also been directly linked with the function of oncogenic 

translocation products in lymphomas and leukaemias, such as PML-RARα in acute 

promyelocytic leukaemia (APL) (Matsushita et al., 2006).  
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Collectively, it is clear that HDACs are important in cancer progression for many reasons. 

However, the role of HDACs in the DDR is of particular interest to this study, because 

HDACs are therefore potential targets for synthetic lethal strategies in the treatment of B-CLL 

(Robert et al., 2011). 

1.9 HDACs in DNA repair 

 In the event of DNA damage, histones undergo many post-translational modifications 

(PTMs) that impact on the DNA repair process itself or the chromatin restoration step, 

acetylation being one of the most important forms (Corpet and Almouzni, 2009). Lysines 

H3K9 (Tjeertes et al., 2009) and H3K56 (Miller et al., 2010; Yuan et al., 2009) are 

deacetylated in the event of DNA damage, and result in genomic instability in yeast and 

mammals if not deacetylated by HDACs in the event of DNA DSBs (Yuan et al., 2009). The 

precise mechanisms by which the acetylation status of these histones affects DNA damage 

responses are largely unknown, but H3K56 is close to the DNA entry/exit point of the 

nucleosome core and this acetylation may affect nucleosomal stability (Groth et al., 2007). 

HDACs, chromatin dynamics and ATM have also been directly linked in the DDR. For 

Figure 4 - A basic representation of the effects of HDAC inhibition on chromatin dynamics and a summary of some 

resulting cellular responses. 
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example, the ATM-Chk2 pathway may be required for completion of DNA repair, H3K56 re-

acetylation and cell-cycle resumption after ultraviolet (UV)-induced DNA damage (Battu et 

al., 2011). UV damage usually results in SSBs repaired by nucleotide excision repair (NER), 

mediated by the ATR-Chk1 pathway, highlighting the high levels of crosstalk of DDR 

mediators (Battu et al., 2011). There is also evidence to suggest that in the event of HDAC 

inhibition, ATM can act as a transcription modulator and upregulate expression of anti-

apoptotic genes such as MCL-1 (Jang et al., 2010), thus HDACis may be more effective on 

ATM deficient tumours. 

HDACs are also involved in HR. The idea of HDAC involvement in HR is counterintuitive, 

because euchromatic DSBs are far more conducible to HR than heterochromatic DSBs 

(Chiolo et al., 2011). Thus, HDACs are more likely to play direct roles in HR rather than 

regulating chromatin dynamics. Indeed, this has been observed in yeast, whereby the 

recombination protein Sae2 is acetylated and degraded when HDACs are inhibited (Robert et 

al., 2011). HDAC1 and -2 are mediators of DSB repair, particularly acting on NHEJ effector 

proteins (Miller et al., 2010).  

HDACis have also been found to actively induce cell killing through autophagy, due to the 

induction of reactive oxygen species (ROS) and subsequent DNA damage (Fu et al., 2010; 

Robert et al., 2011). This tumour-suppressive action is independent of apoptosis, and has been 

shown to be effective in several resistant forms of cancer. This is therefore an attractive 

mechanism to explore in treatment-resistant B-CLL forms.  

Collectively, the roles of HDACs in the DDR are clearly very complex and convoluted. 

However, regardless of the underlying mechanism, it is clear that HDACs are important in the 

DNA damage response, and HDAC inhibitors are therefore a viable therapeutic strategy in the 

treatment of ATM-deficient B-CLL.  
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1.10 HDAC inhibitor classes 

 HDAC inhibitors can be divided into four distinct structural classes. These are the small 

molecular weight carboxylates; hydroxamic acids; benzamides and cyclic peptides. Some 

inhibitors target only specific HDACs or classes of HDACs, while others target a wider range, 

termed pan-HDAC inhibitors. All currently known HDAC inhibitors target the zinc molecule 

present within the active site of Class I, II and IV HDACs (Federico and Bagella, 2011). It has 

been observed that H3K9 and H3K56 remain broadly acetylated in the event of DNA damage 

when each of these classes are inhibited, whilst only mild acetylation remains with class III 

sirtuin HDACis (Tjeertes et al., 2009). This suggests that class III HDACs may not contribute 

as much as other classes to HDAC DNA damage responses. Conversely, another study 

reported that H3K56 acetylation increased when SIRT1, a class III HDAC, was inhibited, thus 

the mechanism remains unclear (Yuan et al., 2009). Many HDACis have been approved for 

clinical trials, and most have yielded positive results with relatively mild toxicity (Ellis and 

Pili, 2010; Federico and Bagella, 2011). There have been reports of HDACi related 

cardiotoxicity, but the most common effects include fatigue, transient thrombocytopenia and 

relatively mild gastrointestinal complications such as nausea, vomiting and diarrhoea 

(Federico and Bagella, 2011). Monotherapeutic approaches with HDACis have shown fair 

anti-tumour activity, but like PARP inhibitors, the true potential for HDACis probably lies in 

combination with other therapies (Ellis and Pili, 2010). 

1.11 Aims 

 Like PARP inhibition, the involvement of HDACs in the DNA damage response opens 

possibilities of using HDAC inhibitors as radiosensitisers or chemosensitisers (Camphausen 

and Tofilon, 2007; Miller et al., 2010; Robert et al., 2011). It has already been shown that 

PARP and HDAC inhibitors synergise to upregulate DNA damage-induced apoptosis in the 

HCT116 colon cancer cell line (Adimoolam et al., 2007).  However, in the absence of 
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ATM/p53 mediated apoptosis in DNA damage, PARP inhibitors induce cytotoxicity through 

unrepaired DNA damage, and it is highly possible that HDACis can increase this effect 

(Weston et al., 2010).  

As previously discussed, PARP1 and HDACs mediate various DDR responses, and there is 

much ambiguity and crosstalk between the individual DDR mechanisms and their 

corresponding molecular pathways. In the absence of ATM and thus efficient HR, ATM-null 

B-CLL tumours may place a higher dependency on PARP/HDACs for coordinating DNA 

repair responses. As also discussed, the novel therapeutic potential of PARP and HDAC 

inhibition alone in HR-compromised cancers has been extensively reported. As the DNA 

damage response is such a complex and convoluted network, using both PARP and HDAC 

inhibitors in combination may result in synergy and heighten the synthetic lethal effect on 

ATM-deficient B-CLL tumours, because further DDR mediators that HR deficient cells may 

fall back on are inhibited. The recently reported abilities of HDACis to induce DNA damage 

and autophagic tumour killing independent of apoptosis are also promising. Based on these 

speculations, it was therefore hypothesised that treatment with PARP inhibitors would render 

ATM-deficient B-CLL tumours preferentially sensitive to further treatment with HDAC 

inhibitors, producing a synergistic tumour-killing effect more potent than PARP inhibition or 

HDAC inhibition alone. Indeed, some evidence for this has already been observed, but not 

confirmed (Weston et al., 2010).  

The primary aim of this project was to further investigate the therapeutic potential for the use 

of HDAC inhibitors alongside PARP inhibitors in the treatment of ATM-deficient progressive 

B-CLL. A side aim was to also assess the effects of the drugs on p53 mutant cells of differing 

ATM status. The study objectives were to: 

  identify ATM mutants in a cohort of 28 B-CLL patients  
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  assess the tumour killing effectiveness of PARP and HDAC inhibitors in vitro 

 investigate the synergic potential of PARPi/HDACi combined therapy in ATM  

and/or p53 deficient B-CLL tumour cell killing and the mechanisms by which this 

synergy is driven. 
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2.0 Materials and Methods 

2.1 B-CLL patient tumour sample preparation 

 Human peripheral blood samples were obtained from B-CLL patients from Birmingham and 

Bournemouth hospitals. To extract tumour cells, the samples were made up to a volume of 30 

ml with RPMI 1640 cell culture media with glutamine (Invitrogen) and pipetted onto 20 ml 

lymphoprep (Axis-Shield) in falcon tubes. The samples were then centrifuged at 1,600 RPM 

for 30 minutes with deceleration brake disabled (Beckman Coulter Allegra X-12 Centrifuge). 

The B-CLL tumour cells were extracted and washed in RPMI 1640 media, and stored at -

160
o
C in 90% foetal calf serum (FCS, Sigma) with 10% dimethyl sulfoxide (DMSO, Sigma) 

at a density of 5x10
7
 cells/ml.   

2.2 Genomic DNA extraction 

 B-CLL tumour cell samples as prepared above were thawed at RT and washed in 20 ml 

RPMI 1640 media (Invitrogen) and washed twice in 20 ml dulbecco’s phosphate-buffered 

saline (DPBS). DNA was extracted to manufacturers protocol using a Flexigene DNA kit 250 

(QIAgen), resulting in genomic DNA samples resuspended in 200 μl FG3 Buffer (QIAgen).  

2.3 DNA purification 

 Sodium acetate (20 μl at 3 M) and 400 μl pure ethanol (PAA) was added to the DNA samples 

and the DNA left to precipitate for 1 hour at -80 
o
C. The solution was span at 13,000 RPM for 

30 minutes at 4 
o
C, the DNA pellet washed in 500 μl 70% ethanol and resuspended in FG3 

buffer (QIAgen). DNA concentration and purity was measured via spectrophotometry (Implen 

Nanophotometer) and diluted to final concentrations of 10 ng/μl in FG3 buffer (QIAgen).  
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2.4 LightScanner mutation analysis (Hi-Res Melting) 

Hi-Res melting, using 

LightScanner and Call-IT 

software (Idaho 

Technologies), is a novel 

high-throughput technique 

whereby many samples can be 

analysed for potential DNA 

sequence changes 

simultaneously. The process 

involves polymerase chain 

reaction (PCR) being 

simultaneously carried out on 

both forward and reverse 

strands of an exon of interest, 

in the presence of a 

fluorescent dye, LCgreen 

(Idaho Technologies), that intercalates between bases in double-helix DNA molecules. The 

dye is inactive when free, but fluoresces when intercalated with DNA in a closed double helix 

conformation, which occurs as a result of spontaneous annealing of forward and reverse 

strands. Fluorescence levels can be quantified to give a measure of PCR product amount. By 

incrementally increasing the temperature of the DNA molecule to the point at which double 

strand DNA (dsDNA) will dissociate into single strand DNA (ssDNA), also resulting in 

dissociation of the dye, a DNA melting curve profile can be obtained by comparing relative 

fluorescence levels against temperature. The simultaneous heating of exons of multiple 

Figure 5 – Hi-Res Melting analysis. A. Melting Curves of individual samples for 

ATM exon 10. B. Normalised fluorescence levels. C. Isolating potential sequence 

variants via level of deviance relative to the standard curve. Green curves 

represent potential sequence variants while red curves represent a potential group 

of similar sequence variants. 
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patients allows for the direct comparison of individual DNA melting profiles against each 

other and a known wild-type (WT) profile (fig. 5). Differential melting curve characteristics 

denotes a change in the kinetic properties of the DNA molecule and therefore potential mutant 

samples. Homoduplexes (dsDNA with matching maternal and paternal strands) have different 

melting profiles to heteroduplexes (mismatched strands indicating mutation), allowing 

detection of heterozygous mutations, such as single nucleotide polymorphisms (SNPs). 

Samples with highly variant curves were sequenced via the Sanger method to confirm the 

presence of any potential mutations, and the nature of the mutation.  

Individual DNA samples (2 μl at 10 ng/μl) were pipetted into individual wells of an opaque 

96 well plate (4titude Framestar 96), for a final amount of 20 ng DNA. To each well 

containing DNA, the following reagents were added: 

Reagent Volume 

HotShot Diamond PCR Mastermix (Clent 

Life Sciences) 

5 μl 

LCGreen gene scanning reagent (Idaho 

Technologies) 

1 μl 

Sterile distilled H2O 2.8 μl 

Forward Primer (Alta Bioscience) 0.1 μl 

Reverse Primer (Alta Bioscience) 0.1 μl 

 

HotShot diamond PCR Mastermix contains an optimum mixture of MgCl2, PCR reaction 

buffer, dNTPs and Taq polymerase for the PCR reaction. This was performed for each ATM 

exon, and the primers used were at a concentration of 250 ng/μl throughout the study. Mineral 

oil (10 μl, Sigma) was added to overlay the reaction and PCR was performed to the following 

parameters (G-Storm GS1 Thermal Cycler, table over page): 
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Step Temperature Time 

1. Initial Denaturation 95 
o
C 2 min 

2. Denaturation 94 
o
C 30 sec 

3. Annealing X 
o
C 30 sec 

4. Homo/Heteroduplex 

Formation 

94 
o
C 30 sec 

5. Final Hold 25 
o
C ∞ 

 

X denotes the annealing temperature that differed according to the optimum primer annealing 

temperatures (see table S1 for information). Steps 2-3 were repeated 45 times.  

2.5 Primer annealing temperature optimisation 

 DNA (2 μl at 10 ng/μl) was added to individual wells of a 96-well plate (VWR). The same 

volumes of reagents as above were added to the DNA, and PCR was carried out using the 

same above parameters excluding the annealing temperature; annealing temperature gradients 

of 53-61 
o
C and 60-68 

o
C were set up (G-Storm GS1 Thermal Cycler, TECNE TC-512), so 

that the annealing temperatures would incrementally increase lengthways across 96-well 

plates. By setting up multiple PCR reactions for each exon all along the temperature gradient, 

the optimum annealing temperature could be obtained by analysing the products from each 

different annealing temperature. The successes of the PCR reactions were measured by the 

presence of a melting curve using a LightScanner (Fig 6A). Gel electrophoresis was also 

performed to check for product (fig. 6B). PCR product (10 µl) with 3 µl loading buffer was 

ran on a 2% agarose gel with Tris/borate/EDTA (TBE) buffer. DNA was stained with SYBR 

safe (Invitrogen), which intercalates between DNA bases and is excited by UV light. DNA 

bands were visualised using a UV lightbox (Syngene G-box). The annealing temperature that 

produced the largest amount of DNA product whilst not producing any non-specific product 
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was deemed to be the optimum annealing temperature for each primer. However, certain 

primers proved difficult to optimise (fig. 6). For “unclean” PCR reactions that contained non-

specific product, higher annealing temperatures were attempted. For those that produced little 

or no product and/or amplified a particularly large exon fragment, a wider range of annealing 

temperatures was attempted, and the annealing time was increased from 30s to 1m 30s. The 

number of PCR cycles was also increased from 45 to 60 for such samples. 

 

 

 

Figure 6 – Example of the primer optimisation technique, depicting ATM exon 26. A. Melting curves revealing the level of 

PCR product present at particular annealing temperatures. Note that there are two individual melts per curve rather than one 

smooth melt, indicating the presence of undesired PCR product.  B. Agarose gel showing product levels/annealing temperature. 

Note that at these annealing temperatures the primers were producing two bands in each lane, confirming the presence of non-

specific product. Exon 26 therefore required further optimisation.  
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2.6 Sequencing Analysis 

 Exons of interest were amplified using the Sanger method. The method involves the 

sequencing PCR reaction being carried out in the presence of both regular deoxynucleotides 

(dNTPs) and fluorescently labelled dideoxynucleotides (ddNTPs). Chain elongation proceeds 

until a ddNTP is inserted by DNA polymerase rather than a regular dNTP, which halts 

elongation. By chance, this will eventually occur for every base in the exon, producing DNA 

fragments of varying length ending with a fluorescently labelled nucleotide. The DNA is 

therefore sequenced based on the ascending order of size of DNA fragments, identified by the 

migration lengths on a capillary tube matrix, and detecting via laser which fluorescent 

nucleotide is present on each DNA molecule variant. 

Individual DNA samples (2 μl at 10 ng/μl) were loaded onto 96-well plates. To each well 

containing DNA, the following reagents were added:  

Reagent Volume 

TrueStart Buffer 

(Fermentas) 

2.5 μl 

MgCl2  (Fermentas) 2 μl 

dNTPs (Invitrogen) 0.2 μl 

Sterile distilled H2O 17 μl 

TrueStart Taq polymerase 

(Fermentas) 

0.3 μl 

Forward Primer 0.5 μl 

Reverse Primer 0.5 μl 

 

PCR was then carried out to the following parameters (Applied Biosystems GeneAmp PCR 

System 9700, table over page): 
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Step Temperature Time 

1. Initial 

Denaturation 

95 
o
C 4 min 

2. Denaturation 95 
o
C 30 sec 

3. Annealing X 
o
C 30 sec 

4. Extension 72 
o
C 45 sec 

5. Final Extension 72 
o
C 7 min 

 

X denotes the annealing temperature that differed according to the optimum primer annealing 

temperatures. Steps 2-4 were repeated 37 times. To purify the amplified exon regions, 2 μl 

ExoSap (Affymetrix) was added to wells of a fresh 96-well plate, to which 2.5 μl PCR 

product was added. This was then heated to 37 
o
C for 15 minutes and 80 

o
C for a further 15 

minutes. The following reagents were added to the DNA/ExoSap product: 

BigDye buffer (Applied 

Biosystems) 

3.5 μl 

BigDye reagent (Applied 

Biosystems) 

1 μl 

Forward or reverse 

Primer 

0.3 μl 

Sterile distilled H2O 14.7 μl 

 

BigDye contains the optimum mixture of dNTPs, fluorescently labelled dideoxynucleotides 

and DNA polymerase for the reaction. PCR was then carried out to the following parameters 

(table over page): 
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Step Temperature Time 

1 96 
o
C 2 min 

2 96 
o
C 10 sec 

3 50 
o
C 5 sec 

4 60 
o
C 4 min 

 

Steps 2-4 were repeated 25 times. Pure ethanol (50 μl) with 4% sodium acetate was added to 

the PCR products and incubated at room temperature for 45 minutes. The plate was then span 

at 1500 g for 20 minutes and the supernatant removed. Ethanol (70%, 100 μl) was then added 

to the wells and the plate span at 1500 g for 12 minutes. The supernatant was removed and the 

DNA left to air dry at room temperature for 1 h. 10 μl HiDi Formamide (Applied Biosystems) 

was added to each well and the plate heated to 99
o
C for 5 minutes before rapid cooling on ice. 

The DNA/HiDi formamide solution was transferred to a 96-well sequencing plate (Applied 

Biosystems) and the DNA sequenced (Applied Biosystems/ Hitachi 3130XL 16 Capillary 

DNA Sequencer). Mutant exon sequences were identified by comparison with confirmed WT 

sequences obtained by the same method. For further confidence, such sequences were also 

compared for sequence similarity against the online human genomic database using the 

National Center for Biotechnology Information Basic Local Alignment Search Tool (NCBI 

BLAST, National Library of Medicine, USA). 

2.7 Cell culture and cytotoxicity assays 

 Human B-CLL CII and MEC-1 isogenic cell lines were previously stably transfected with 

ATM shRNA. Green fluorescent protein (GFP) shRNA was also stably transfected into both 

cell lines as a negative control (Table S3). Cells were maintained in RPMI 1640 media with 

added glutamine (Invitrogen), containing 10% foetal calf serum (PAA) and 0.5% Penstrep 

(Invitrogen). Triplicate assays were performed in 96-well tissue culture plates (Corning). 
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Cells were seeded at a density of 1x10
5
/200 µl. All drugs were resuspended in DMSO. 

Olaparib (AstraZeneca) was added to wells at concentrations of 1 μM, 3 μM and 10 μM along 

with untreated control wells. The cells were incubated at 37 
o
C and 5% CO2 for 48h before the 

addition of the following concentrations and types of HDACi to untreated cells and the 

varying concentrations of olaparib: 

Drug CII Mec-1 

Valproic Acid (VPA, Sigma) 1, 2.5, 5, 10 mM 1, 2, 3, 4 mM 

Vorinostat (suberoylanilide 

hydroxamic acid - SAHA, Sigma) 

1, 2.5, 5, 10 µM 1, 2.5, 3.5, 5 µM 

Belinostat (PXD-101, Sigma) 1, 2, 3, 4 µM 1, 2, 3, 4 µM 

 

 The cells were incubated for a further 120 hours. After incubation, the cells were equilibrated 

to room temperature for 30 minutes. Cell TiterGlo (Promega) was used to assay for viable 

cells, which gives a quantifiable luminescent signal based on the levels of ATP present. The 

amount of ATP linearly correlates closely with the amount of viable cells present. 50 μl Cell 

TiterGlo was added to the wells, which were placed on an orbital shaker at 100 RPM for 10 

min to induce cell lysis. The luminescence levels were analysed (Wallac Victor
2
 1420 

Multilabel Counter) and the surviving fractions quantified relative to the luminescence levels 

of the untreated controls.  

2.8 Western Blotting 

 Both ATM and GFP knockdown (KD) CII and MEC-1 cells were lysed with 100 ml UTB 

buffer containing 9 M Urea, 150 mM β-mercaptoethanol and 50 mM Tris. A 6% 

polyacrylamide gel was prepared with the following reagents (table over page):  
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Reagent Volume 

Sterile distilled H2O 27.4 ml 

1M Tris/ 1M Bicine Buffer 4 ml 

30% Acrylamide (BioRad) 8 ml 

10% sodium dodecyl sulfate (SDS) 400 µl 

 Tetramethylethylenediamine 

 (TEMED, Sigma) 

80 µl 

10% Ammonium persulfate (APS) 200 µl 

 

Running buffer was composed of dH2O with 10% 1 M Tris/1 M Bicine Buffer and 0.1% 

SDS. 15 µl cell lysate was loaded with 5 µl loading buffer, composed of 30% glycerol, 10% 

SDS, 0.02% bromphenol blue and 2% 2-mercaptoethanol in dH2O. The gel was ran at 25 mA 

for 5 hours. The transfer buffer contained 5600 ml sterile distilled H2O, 1400 ml methanol 

(Sigma), 203 g Glycine (Sigma) and 40.6 g Tris (Sigma), and the gel was transferred onto 

nitrocellulose membrane at 200mA for 16 hours.  Proteins were visualised on the 

nitrocellulose membrane with ponceau stain, comprised of 1 l dH2O, 10 g Ponceau S and 30 g 

trichloroacetic acid. Membranes were washed in Tris-buffered saline - Tween (TBS-T) 3 

times for 5 minutes and blocked for 2 hours in 5% dried milk/TBS-T. Washes were repeated 

and the membranes probed for total ATM using monoclonal mouse antibody (Calbiochem, 

1:250) and total SMC-1 using polyclonal antibody (Bethyl, 1:5000), a downstream target of 

ATM, as a loading control. Primary antibodies were diluted in 5% bovine serum albumin 

(BSA) in TBS-T. Washes were repeated and the membranes incubated with secondary 

horseradish peroxidise (HRP)-conjugated antibody for 1 hour. Mouse α ATM (Dako) was 

diluted 1:1000 and rabbit α SMC-1 (Bethyl) at 1:3000 in 5% dried milk/TBS-T. ECR reagent 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
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was prepared immediately prior to use by mixing substrate (Millipore) and hydrogen peroxide 

(Dako) in a 1:1 ratio.  

2.9 Visualisation of Rad-51 intra-nuclear foci by immunofluorescence staining 

 CII cell lines with stable GFP and ATM knockdown were treated with 3 µM vorinostat and 

DMSO as a negative control, and were irradiated with 2 Gy of ionising radiation (IR). The 

cells were then placed into ice-cold extraction buffer for 5 minutes. The extraction buffer was 

comprised of: 

Reagent  Volume (250ml total in dH2O) 

10mM piperazine-N,N′-

bis(2-ethanesulfonic 

acid) (PIPES) 

0.81 g 

300mM sucrose 25.67 g 

20mM NaCl 1 ml of 5 M stock 

3mM MgCl2 6 ml of 500 mM stock 

0.5% Triton X-100 1.25 ml 

 

The cells were then fixed with 3.6% paraformaldehyde in PBS at timepoints of 0, 1, 8 and 24 

hours after radiation exposure for 10 minutes. The cells were washed in DPBS 3 times for 5 

minutes and blocked using 10% FCS in DPBS for 12 hours. Individual samples were stained 

with the following antibodies (Table over page): 
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1
o
 Antibody 2

o
 Antibody 

Mouse monoclonal α γH2AX (Millipore, 

1:1000) 

α Mouse Alexa 488 (Invitrogen, 1:400) 

Rabbit α Rad51 (Santa Cruz 

Biotechnology, 1:50) 

α Rabbit Alexa 488 (Invitrogen, 1:400) 

 

A488 was used for both samples because different cell samples were stained for RAD51 and 

γH2AX. Antibodies were diluted in 1% FCS in DPBS, and incubated for 1 hour at RT. 

Samples were stained in suspension with 1
o
 antibody, washed three times in DPBS for 5 

minutes then stained in suspension with 2
o
 antibody. 

2.10 Slide preparation, mounting and microscopy 

 Microscope slides were washed in 70% ethanol/1% HCl for 1 hour and washed 3 times for 

20 minutes in dH2O before being left to dry overnight at 37
o
C. 20 µl poly-L-Lysine (Sigma) 

was carefully spread onto each well and left to dry for 20 minutes at RT. Slides were washed 

with dH2O for 5 seconds and left to dry at 37 
o
C for 20 minutes. Cell suspension was added to 

wells of the slides and left to adhere for 45 minutes in dark conditions, then aspirated off and 

the slides left to dry for 10 minutes at RT in dark conditions. VECTAshield (20 µl) with 4',6-

diamidino-2-phenylindole (DAPI, Vector Laboratories) was added to the wells before a glass 

coverslip was placed over the slide and left to dry for 20 minutes in dark conditions. Rad51 

and γH2AX foci analysis was carried out using a Nikon Eclipse E600 Fluorescence 

Microscope and a 60x Plan Fluor objective.  Images were captured and rendered using 

Hamamatsu C4742-95 Digital Camera and Volocity 3D Image Analysis software. Images of 

RAD51 and γH2AX staining were exposed for 2.5 seconds.  



 

32 

 

2.11 Data Analysis 

 Student’s two-tailed T tests were carried out on the means of three triplicate assays for each 

cell line differing in HDAC inhibitor treatment and ATM status. The effects of both drugs 

alone were compared with both in combination. Each dose combination was also compared 

between WT GFP knockdown control cells and ATM knockdown cells.  Drug synergy was 

assessed by obtaining Combination Index (CI values) for each drug dose using CalcuSyn 

(Biosoft) software. Student’s 2-tailed T tests were also used to compare Rad51 positivity 

between untreated or 3 µM vorinostat treated cells as well as ATM knockdown and WT GFP 

knockdown control cells. 
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3.0 Results 

 

 

3.1 Detection of ATM null B-CLL tumours 

Initially, a cohort of 28 B-CLL patient tumours was first screened for potential ATM 

mutations using Hi-Res Melting. Initial PCR reactions were unsuccessful (fig. 7A), and to 

rectify this, the purity of the DNA samples was increased and the consistency of DNA sample 

concentration was confirmed at 10 ng/µl (see section 2.3). All PCR reagents were replaced 

Figure 7 – Initial Hi-Res Melting problems. A. Example of failed melting curves that were originally observed due 

to lack of product. B. A map of the 96-well plate showing relative fluorescence levels and therefore product levels. 

Blue/green = low fluorescence; yellow/red = high fluorescence. The example provided shows three exons with 

identical optimum annealing temperatures amplified on the same 96-well plate. Exon 10 was being amplified 

successfully, while exon 7 and 35 failed to produce any product. 
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excluding primers, but the same reaction volumes were maintained because these had been 

previously optimised and were known to be correct. This resulted in some improvement, but 

there was a consistent pattern of single exons producing product while others did not (fig. 7 

B). It was therefore suspected that either the primers were not functioning properly or that the 

optimum primer annealing temperatures were incorrect. Thus, a revised set of primers for all 

ATM exons was ordered and annealing temperature optimisation was carried out on primers 

with amended sequences (see section 2.5/table S1).  The optimum annealing temperatures for 

several new primers was established (table S1). 

However, some primers proved to be difficult to optimise in the time available. Hi-Res 

melting mutational analysis was therefore resumed using the new primers and the new 

optimum annealing temperatures that had been confirmed, but many of these PCR reactions 

were still consistently failing. It was decided that curve variants of the exons that had worked 

would be sequenced, with the intention of sequencing samples with variant curves to assess if 

any mutations were indeed present (fig. 8A). 
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Figure 8 – Hi-Res Melting results. A. Table illustrating exons successfully analysed using H-Res Melting. Green 

indicates a normal melting curve; red indicates a variant curve that was sequenced to check for mutation. B. Graph 

depicting changes in melting curves of exon 62, with the variant curves of PICCLE GB and PICCLE IM tumours 

indicated (green). C. The homozygous SNP detected in the DNA fragment amplified by exon 62 primers of PICCLE 

IM compared with the WT sequence of PICCLE GB.    
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3.2 ATM exon sequencing 

ATM exon samples that were flagged as potential mutants via Hi-Res melting were next 

sequenced (fig. 8 A, B). Surprisingly, only one sequence change was identified. A 

homozygous single nucleotide polymorphism (SNP) was identified in the PICCLE IM sample 

at c.8786+8A>C (Fig. 8 B, C), a non-coding intronic change. The change was located 8 

nucleotides downstream of exon 62, which potentially could have been influential on ATM 

function because exon 62 lies within the C-terminal section of ATM, which contains the PI3 

kinase domain along with its regulatory domains (fig.1). Mutations so close to exons often 

cause splicing problems. Interestingly, this particular SNP had been found to be relatively 

common in incidences of childhood T-lineage acute lymphoblastic leukaemia (T-ALL), and 

had been previously investigated by other groups (Gumy-Pause et al., 2006; Meier et al., 

2006). However, these papers reported that no ATM mRNA splicing defects could be 

confirmed using reverse transcriptase (RT) PCR or DNA sequencing. It was therefore 

concluded that this SNP did not have an effect on the function of ATM, and it was decided to 

stop searching for ATM mutant patients and establish whether PARP inhibitors could 

sensitise B-CLL tumour cell lines, CII and MEC-1, to HDAC inhibitors. 
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3.3 Cytotoxic effects of combined PARPi/HDACi treatment – validations and assay 

optimisation 

 

The effectiveness of ATM knockdowns in CII and MEC-1 cells were verified via western 

blot. No ATM band could be observed in MEC-1 cells treated with ATM shRNA indicating a 

highly efficient knockdown. Residual ATM protein expression was detected in ATM shRNA 

treated CII cells, however, although the band observed was markedly fainter than GFP 

shRNA treated WT control cells (fig. 9B).  

 PARP and HDAC inhibition on CII and MEC-1 isogenic B-CLL cell lines were next 

analysed (See table S2 for cell line details). Previously studied concentrations of 1, 3 and 

10µM were used because these values had previously produced an effect, but the doses of all 

three HDAC inhibitors had to be optimised on both CII and MEC-1 cells to obtain a viable 

Figure 9 – Dose response optimisations and knockdown validation western blot. A. Example of HDACi dose 

optimisation. The top graph indicates the first concentrations of belinostat that were used on WT CII cells, and the 

resulting response. At concentrations above 6 µM all cells were killed, and the doses were lowered to produce an 

appropriate response as seen in the lower graph.  This procedure was necessary for all HDAC inhibitors tested in both cell 

lines. B.  Western blot to validate loss of ATM protein in cells treated with ATM shRNA. SMC1, a downstream effector 

of ATM, was used as a loading control. 
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dose response curve (fig. 9A). This process involved obtaining a starting figure from previous 

studies that had used the compound in cytotoxicity assays and further optimising the dose for 

the B-CLL cell lines. It was also noted that the concentrations of olaparib used were not 

inducing high levels of cytotoxicity. However, the concentrations of olaparib were not altered 

for a number of reasons. Firstly, previous studies had confirmed that 10 µM olaparib was a 

high enough concentration to inhibit all PARP1 activity in similar assays with B-CLL cell 

lines (Weston et al., 2010). Secondly, concentrations of olaparib above 10 µM are likely to 

induce off-target effects on cells not related to the role of PARP1 in the DDR. Poly(ADP-

ribosyl)ation is a widespread cellular process, and high doses of PARP inhibitor are 

increasingly likely to disrupt this function to a point at which many other cellular processes 

other than the DDR are affected (Weston et al., 2010).  Finally, the aim of the study was to 

investigate synergy between PARPis and HDACis rather than the effects of olaparib alone, 

and olaparib having a low effect may have caused any HDACi synergism to be more 

apparent. 

3.4 Olaparib in combination with valproic acid 

The first HDAC inhibitor that was assessed was valproic acid (VPA), as it had previously 

been shown to synergise with olaparib (Weston et al., 2010). VPA is a small molecular weight 

carboxylate compound, and inhibits the catalytic activity of class I and II HDACs, although 

more specifically class I (Lagace and Nachtigal, 2004). VPA has undergone promising trials 

in cervical cancer patients as well as acute myeloid leukaemia (AML) and myelodysplastic 

syndrome (MDS) both as monotherapy and in combination with other chemotherapeutics 

(Federico and Bagella, 2011). 

Firstly, both ATM WT (GFP KD control) and ATM KD CII cells responded fairly similarly 

to olaparib and VPA alone. Both WT and ATM KD CII cells did not respond strongly to 
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olaparib treatment, and ATM deficient cells were not significantly more sensitive to olaparib 

(fig. 10A). At 10 µM, the surviving fraction of WT cells was 0.69, and 0.8 in ATM deficient 

cells. Both WT and ATM deficient cells responded to VPA alone, with a surviving fraction of 

0.16 and 0.19 respectively when 10 mM VPA was administered. Generally, higher doses of 

VPA resulted in lower surviving fractions, although, 2.5 mM VPA alone was observed to 

increase the proliferative capacity of ATM deficient cells.  Surprisingly, CII WT cells 

appeared more sensitive to the same doses of VPA than ATM deficient cells, and consistently 

showed a lower surviving fraction than ATM KD cells for the same corresponding dose of 

VPA (fig. 10A). This observation was statistically significant for 5 mM and 10 mM VPA in 

combination with any olaparib dose (P<0.05).  

The combination of olaparib with VPA had an additive cytotoxic effect on the surviving 

fractions as the dose of each drug was increased for both WT and ATM deficient cells. 

Generally, VPA combined with olaparib had a pronounced killing effect compared with 

olaparib alone in both WT and ATM deficient cells, a trend that was observed throughout the 

CII cell lines as olaparib had such a minimal effect. Interestingly in this case, compared to 

WT cells, ATM KD cells had more incidences whereby VPA in combination with olaparib 

had a significant killing effect compared with VPA alone – for example, all three doses of 

olaparib had a cumulative effect on the effectiveness of 5 mM VPA. However, lower doses 

did not produce such significant effects (fig. 10A). 

To quantify any potential drug synergy, the data was then analysed using CalcuSyn. In WT 

cells, 1 and 3 µM olaparib were synergistic with 1mM VPA, and all doses of olaparib were 

synergistic with 10 mM VPA (fig. 10B). A different picture for ATM deficient cells was 

observed; generally, lower doses of VPA were more synergistic with lower doses of olaparib 

while 10 mM VPA was mildly antagonistic (fig. 10B). This was interesting because ATM 
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deficient cells were synergising at lower doses where off-target effects were less likely to be 

occurring. However, there was little difference in surviving fraction between WT and ATM 

deficient cells in these lower doses, and the observed synergy may have been a result of the 

HDAC inhibitor alone not affecting ATM deficient cells as much as WT cells. Thus, WT cells 

were generally more sensitive to HDAC inhibitors overall and the differences in surviving 

fraction between the WT and ATM cells were not very great. It was therefore difficult to 

conclude that PARP and HDAC inhibitors synergised more in ATM knockdown cells. 

The p53-mutant MEC-1 cells reacted in surprising ways to the drugs. Firstly they were more 

sensitive to VPA in general and lower concentrations had to be used than with CII cells (fig. 

10A). In both ATM WT and ATM KD cells olaparib alone seemed to have an overall positive 

effect on cell proliferation. The same phenomenon was observed with 1 and 2 mM VPA, both 

alone and in combination with 1, 3 and 10 µM olaparib (fig. 10A). Higher concentrations of 

olaparib actually resulted in a higher proliferative effect in combination with 1, 2 and 3 mM 

VPA in ATM deficient cells, while the effect was especially pronounced in WT cells at 1 mM 

VPA. In WT cells, killing effects were observed with 3 and 4 mM VPA alone and in 

combination with olaparib, but no significant additive effect was observed with higher 

concentrations of olaparib. However, in ATM deficient cells, only 4 mM VPA resulted in any 

significant killing, and it was also observed that ATM deficient cells seemed to be more 

resistant to VPA than WT cells as seen in CIIs.  Due to these unexpected observations, and 

that the CalcuSyn program requires an olaparib dose response curve, synergism values for 

olaparib and VPA treatment in MEC-1 cells could not be obtained. 

From this evidence, it was difficult to conclude that ATM deficient cells were more sensitive 

to the combination of olaparib and VPA. The data for the p53 mutant MEC-1 cells was also 

inconclusive due to a lack of synergism data. However, it was clear that lower doses of 
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HDAC inhibitor had an increased proliferative effect on the MEC-1 cells, and that MEC-1 

cells were generally more sensitive to HDAC inhibitor meaning that lower doses had to be 

used. Also, it was clear that WT cells were more sensitive to HDAC inhibitors than ATM 

deficient cells independent of p53 status. To verify these observations, the combined 

effectiveness of olaparib with a different HDAC inhibitor, vorinostat, was assessed. 
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Figure 10 - The effects of olaparib and VPA on CII and MEC-1 isogenic B-CLL cell lines. A. Dose response analysis for 

olaparib + valproic acid treatment responses of ATM WT (GFP KD control) and ATM KD CII and MEC-1 Cell lines.† = 

olaparib/HDAC inhibitor dose statistically significant relative to untreated control (P < 0.05, †† = P < 0.01). + = 

combined olaparib and HDAC inhibitor dose statistically significant relative to olaparib dose alone (P < 0.05, ++ = P < 

0.01). × = combined olaparib and VPA dose statistically significant relative to VPA dose alone (P < 0.05, ×× = P < 0.01). 

n = 3, error bars represent standard error of the mean. B. Synergism ratings for each combined dose of olaparib + valproic 

acid in CII cell line. +++ = strongest synergy, ± = very minor synergy/antagonism, --- = strongest antagonism. 
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3.5 Olaparib in combination with vorinostat 

The small molecule pan-HDAC inhibitor vorinostat (Federico and Bagella, 2011) was next 

assessed for synergy with the PARPi olaparib in ATM deficient B-CLL tumour cell lines. 

Vorinostat was used because it has undergone phase II clinical trials and been approved for 

treatment of refractory cutaneous T-cell lymphoma (CTCL) in the US (Marks and Breslow, 

2007). 

 Again in CII cells, olaparib had a minimal and similar effect on both WT and ATM KD cell 

lines (fig. 11A). As expected, increasing doses of vorinostat resulted in decreasing surviving 

fractions in WT cells. However, once again ATM deficient cells were less affected by the 

same doses of HDAC inhibitor than WT cells – concentrations of 5 and 10 µM vorinostat at 

any combination produced significantly lower surviving fractions in WT cells (P<0.05). In 

ATM deficient cells, vorinostat alone actually had a greater cytotoxic effect at 1µM than at 

concentrations of 2.5 and 5 µM (fig. 11A). 10 µM vorinostat resulted in more substantial 

killing, reducing the surviving fraction to 0.5, but this was high compared to 0.14 as observed 

in WT cells treated with 10 µM vorinostat.  

The combination of olaparib with vorinostat produced some interesting trends. In both WT 

and ATM deficient cells, 1 µM and 3 µM olaparib did not produce a statistically significant 

effect on the efficacy of vorinostat at concentrations of 1 and 2.5 µM compared to vorinostat 

alone, while 5 µM vorinostat produced a statistically significant but overall minor effect with 

these olaparib doses in WT cells but not ATM deficient cells (fig. 11A). At 2.5 µM, the 

surviving fraction in WT cells was even higher in combination with 1 and 3 µM olaparib, and 

this was also observed in ATM deficient cells with 1 µM olaparib. 10 µM olaparib caused an 

obvious additive effect in both cells of differing ATM status. 
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The synergism data for CII cells suggested that WT cells were more synergistic at higher 

levels of vorinostat, although mild synergism was observed in 1 µM olaparib combined with 

1µM vorinostat (fig. 11B). This was also observed in ATM deficient cells, but 1 and 3 µM 

olaparib were also shown to be highly synergistic with 1 µM vorinostat, although strangely 

1µM was antagonistic. 2.5 µM vorinostat with 1 and 3 µM olaparib was seen to be 

antagonistic in ATM deficient cells, reflecting the observation that the surviving fraction of 

cells treated with 2.5 µM vorinostat increased when combined with 1 µM olaparib relative to 

vorinostat alone.  In general, both WT and ATM deficient cells showed olaparib/vorinostat 

synergy at many doses. Thus as with VPA, it was difficult to conclude that ATM deficient 

cells were more sensitive to combined treatment of olaparib and vorinostat, and it was even 

more evident in this case that WT cells were more sensitive to vorinostat than ATM deficient 

cells. 

Similarly to the previous experiments with VPA, the p53 mutant MEC-1 cells were more 

sensitive to vorinostat and reduced doses had to be used. Again, olaparib did not exhibit a 

killing effect on MEC-1 cells and actually resulted in higher proliferation with increasing 

olaparib doses in both WT and ATM deficient cells. Thus again, it was not possible to obtain 

synergy ratings for olaparib and vorinostat in MEC-1 cells. As observed with VPA, low levels 

of vorinostat (1 µM, and 2 µM to a lesser extent in ATM deficient cells) unexpectedly 

resulted in a substantial increase in proliferation regardless of ATM status. At concentrations 

above 1 µM, vorinostat induced very high levels of killing in ATM WT cells, while 

contrastingly in ATM deficient cells only 3.5 µM and 5 µM resulting in any significant 

cytotoxicity. Due to this aberrant and unexpected behaviour of the MEC-1 cells, it was not 

possible to optimise the correct HDAC dose to provide reliable dose responses in both cells of 

differing ATM status. 
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Similar cytotoxicity patterns across CII and MEC-1 cells were observed with vorinostat as 

were also observed with VPA. It was not possible to conclude that olaparib and vorinostat 

resulted in more synergy in CII ATM knockdown cells. Again, p53-mutant cells showed an 

increased proliferative effect at low doses of HDAC inhibitor, and also were more sensitive in 

general thus requiring a lower dose range. In both cell lines, WT cells were clearly more 

sensitive overall to HDAC inhibition. The next step was to assess the effects of olaparib and a 

third HDAC inhibitor, belinostat. 
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Figure 11 - The effects of olaparib and vorinostat on CII and MEC-1 isogenic B-CLL cell lines A. Dose response 

analysis for olaparib + vorinostat treatment responses of ATM WT (GFP KD control) and ATM KD CII and MEC-1 

Cell lines.† = olaparib/vorinostat inhibitor dose statistically significant relative to untreated control (P < 0.05, †† = P < 

0.01). + = combined olaparib + vorinostat inhibitor dose statistically significant relative to olaparib dose alone (P < 0.05, 

++ = P < 0.01). × = combined olaparib + vorinostat dose statistically significant relative to vorinostat dose alone (P < 

0.05, ×× = P < 0.01). n = 3, error bars represent standard error of the mean. B. Synergism ratings for each combined dose 

of olaparib + vorinostat in CII cell line. +++ = strongest synergy, ± = very minor synergy/antagonism, --- = strongest 

antagonism. 
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3.6 Olaparib combined with belinostat 

The final HDAC inhibitor that was analysed was belinostat, another small molecule pan-

HDAC inhibitor also primarily targeting class I and II HDACs (Federico and Bagella, 2011). 

Belinostat has also been approved for and undergone clinical trials for the treatment of several 

haematological malignancies and solid tumours, showing good patient tolerance and 

promising anticancer activity (Federico and Bagella, 2011). 

 Both CII cell types responded to olaparib alone minimally across 1 and 3 µM, but a larger 

drop in surviving fraction was this time observed in WT cells from 3 to 10 µM, from 0.96 to 

0.88 in ATM deficient cells and 0.94 to 0.69 in the control cells (fig. 12A). It was again very 

difficult to optimise the dose of belinostat for CII cells, due to the large differences in dose 

response observed between cells of differing ATM status - again, the viability of WT cells 

was compromised more than ATM deficient cells. 3 and 4 µM belinostat resulted in 

significantly reduced surviving fractions in WT cells compared to ATM cells (P<0.05). 

Combining belinostat with olaparib did not result in any statistically significant changes 

relative to belinostat alone in WT cells, and more pronounced losses in surviving fraction 

with all doses of belinostat were observed with 10µM olaparib than the lower doses (fig.12A). 

In ATM deficient cells, lower doses of HDAC inhibitor did not produce dramatic additive 

effects with 1 and 3 µM olaparib, but higher doses of 3 and 4 µM belinostat had a more 

pronounced additive effect. With 10 µM olaparib, all concentrations of belinostat resulted in 

visibly reduced surviving fractions in comparison to belinostat alone, which was also seen in 

the WT cells. Again, the dose responses were similar in pattern across both cells of differing 

ATM status, with the exception that ATM KD cells were far more resistant to HDACi 

induced cytotoxicity. CalcuSyn was again used to analyse the data and establish any possible 

synergy that was occurring. 
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Synergism values indicated that in WT cells, 10 µM olaparib synergised with all doses of 

belinostat, and all doses of olaparib were synergistic with 4 µM belinostat (fig. 12B). 3 µM 

belinostat with 3 µM olaparib was also synergistic. In ATM deficient cells, 1, 2 and 3 µM 

belinostat was synergistic with 10 µM olaparib and 3 µM belinostat was synergistic with all 

olaparib doses. However, lower doses of olaparib combined with belinostat were highly 

antagonistic, reflected in the fact that 1 and 2 µM doses of belinostat actually increased the 

surviving fraction relative to the untreated control, or treated with 1 and 3 µM olaparib (fig. 

12B). This was encountered because the HDACi induced killing effects between WT and 

ATM deficient cells were so different, and it was very difficult to obtain viable dose 

responses with the same doses on cells of differing treatment. As with the other HDAC 

inhibitors, there was little evidence for increased synergy between olaparib and belinostat in 

ATM deficient cells. 

The p53-mutant MEC-1 cells responded to the drugs similarly to previous experiments, and 

thus it was very difficult to use the data to gain insight into drug synergy. Regardless of ATM 

status, olaparib once again had an overall positive effect across 10µM and it was again 

therefore not possible to calculate accurate synergism values due to the constraints of the 

CalcuSyn program (fig. 12A). Low doses of belinostat (1 µM) again resulted in increased 

proliferation in both cells, which was reduced with the addition of olaparib. WT cells were 

more susceptible to belinostat doses above 1µM than ATM deficient cells, in which additive 

killing could be observed as the doses of olaparib and belinostat increased, but the fact that 

the control cells were almost completely killed by doses higher than 1 µM meant that no 

sound conclusions could be drawn from the dose response data in MEC-1 cells.  
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Figure 12  - The effects of olaparib and belinostat on CII and MEC-1 isogenic B-CLL cell lines A. Dose response analysis 

for ATM WT (GFP KD control) and ATM knockdown CII and MEC-1 cells.† = olaparib/belinostat inhibitor dose 

statistically significant relative to untreated control (P < 0.05, †† = P < 0.01). + = combined olaparib + belinostat inhibitor 

dose statistically significant relative to olaparib dose alone (P < 0.05, ++ = P < 0.01). × = combined olaparib + belinostat 

dose statistically significant relative to vorinostat dose alone (P < 0.05, ×× = P < 0.01). n = 3, error bars represent standard 

error of the mean. B. Synergism ratings for each combined dose of olaparib + belinostat in CII cell line. +++ = strongest 

synergy, ± = very minor synergy/antagonism, --- = strongest antagonism. 
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3.7 Common observations 

 Several common themes were observed across all cytotoxicity experiments with different 

HDAC inhibitors. Firstly, the concentrations of olaparib used did not have a significant 

cytotoxic effect on ATM deficient cells as previously observed. Olaparib had a marginal 

effect at 10 µM in CII cells, while in p53 mutant MEC-1 cells an increased proliferative effect 

was often observed rather than any cytotoxic effects at all, an effect that prevailed regardless 

of ATM status. The concentrations of olaparib used were kept constant, however, for reasons 

previously detailed.   

It was also observed that HDACis had a more pronounced effect on WT cells than ATM 

deficient cells, with this effect having statistical significance at higher doses of HDAC 

inhibitor in CII cells. The same was observed in the p53 mutant MEC-1 cells although this 

was not statistically significant. MEC-1 cells also exhibited large increases in proliferation at 

very low doses of HDACi, but were significantly more sensitive to HDACis than CII cells 

overall - the surviving fraction rapidly dropped as the HDACi dose increased past the dose 

that induced proliferation. PARPis and HDACis were often shown to synergise in ATM 

deficient cells at various combinations of different concentrations of each drug. However, the 

same was often observed in WT cells, and coupled with the fact that WT cells were more 

sensitive to HDACis than ATM KD cells, it could not be comprehensively concluded that 

ATM defective B-CLL is selectively sensitised to HDACis by PARPis.  

3.8 Mechanisms behind observations 

To offer insight into the results observed in these experiments, the next step of the project was 

to establish if ATM dependent HR mechanisms were indeed compromised in cells treated 

with ATM shRNA. The effect of HDAC inhibition on these mechanisms was also analysed. 

To achieve this, both WT and ATM knockdown CII cells were exposed to ionising radiation 
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(IR) and immunostained for Rad51 foci formation. Rad51 is a DNA repair protein that is 

involved primarily with HR. In the event of DNA DSBs, Rad51 colocalises with and forms 

foci at the sites of the damage and modulates the recombinational repair of the breaks through 

homology sequence searching and strand invasion (Shaheen et al., 2011). Rad51 recruitment 

is dependent upon phosphorylation via the non-receptor tyrosine kinase c-abl in an ATM and 

DNA-PKcs dependent manner (Yuan et al., 2003). Thus, by quantifying the levels of Rad51-

positive cells of differing shRNA and HDACi treatment, the presence of active HR can be 

assayed for and some insight may be gained as to why the cells reacted to PARPi and HDACi 

so unexpectedly. If HR was still active in ATM deficient cells, they would not be vulnerable 

to PARP inhibition as observed in previous experiments (Weston et al., 2010)  because the 

unrepaired SSBs that turn to DSBs upon DNA replication would be repaired.   

For this experiment, CII cells were used. This was because they produced the most legitimate 

dose response curves. Also, it was decided that p53 WT cells would be used for simplicity, as 

due to time constraints it was unlikely that Rad51 foci induction in both cell lines could be 

analysed. 3 µM of the pan-HDAC inhibitor vorinostat was used to treat the cells because 

reliable dose responses were shown in CII cells treated with vorinostat, and 3 µM was deemed 

a high enough dose to have an effect whilst also keeping any off-target effects to a minimum. 
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3.9 The effects of ATM knockdown and HDAC inhibition on HR 

Firstly, as a positive control for cell labelling and the presence of DSBs, cells were stained for 

the DNA damage marker γH2AX. γH2AX is the phosphorylated form of histone H2AX, and 

is a rapidly induced biomarker of DNA DSBs. ATM is a principal mediator of γH2AX foci 

formation along with ATR and DNA-PKcs, but loss of ATM results in delayed resolution of 

γH2AX foci rather than a lack of γH2AX altogether (Wang et al., 2005). Immediately after 

irradiation very few γH2AX positive (5 or more foci) cells were observed, but at 1 hour post 

irradiation all samples, including ATM knockdown cells, showed 90-100% γH2AX positivity 

allowing for confidence that the staining protocol was effective and 2 Grays of IR was enough 

to reliably inflict DNA DSBs on the cells sampled (fig. 13A).  

After the staining control was confirmed, the levels of Rad51 positive cells were assessed for 

each sample to quantify the relative levels of HR DSB repair in GFP shRNA (ATM WT), 

ATM shRNA and/or HDACi treated cells. Cells were analysed at 0, 1, 8 and 24 hours post IR 

treatment. Cells were classed as Rad51 positive if the cell contained five or more intra-nuclear 

Rad51 positive foci (fig. 13B).  

Generally, Rad51 positive cells were shown to increase in proportion as the time after IR 

exposure lengthened (fig. 13C). For cells not treated with HDACi, the proportion of Rad51 

positive ATM KD cells was significantly lower across 1 h, 8 h, and 24 h timepoints than in 

WT untreated cells (fig. 13C). The most striking reductions were observed 1 hour after IR, 

where the proportion of Rad51 positive cells in ATM KD cells was only 9.4% compared to 

42.2% observed in WT cells. There was also a reduction at 8 hours post IR, from 50.7% in 

WT cells to 31.8% in ATM KD cells, while at 24 hours post irradiation 55% in WT cells were 

positive compared to 43.5% in ATM KD cells (fig. 13C). These data suggest that ATM 

knockdown results in diminished Rad51 foci formation, particularly at 1 hour after the 
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occurrence of DSBs.  There was still a relatively high proportion of Rad51 positive cells by 

24 hours, however, suggesting that HR was not fully compromised.  

Although 3 µM vorinostat appeared to result in marginally lower proportions of Rad51 

positive cells across all timepoints in ATM deficient cells, this observation was not 

statistically significant. In WT cells however, a significant reduction was observed in HDACi 

treated cells at 0 and 1 hour after irradiation. At 0 hours post IR 10.1% of untreated WT cells 

were Rad51 positive, while 3.41% were observed in WT cells treated with vorinostat, and at 

1h post IR the difference was 42.2% compared with 23.9%.  These data support the idea that 

HDACs have some involvement in HR, particularly in the early onset of Rad51 foci. Again, 

however, a significant proportion of cells were still Rad51 positive at later time points in all 

samples, regardless of shRNA or HDAC inhibitor treatment.  

In conclusion, the information obtained in these experiments indicates that HR was not fully 

compromised in cells treated with ATM shRNA, which agrees with the observation that 

residual ATM protein was detected in CII cells (fig. 9B). Significant reductions are observed 

only in early timepoints, and while an overall reduction in Rad51 positive cells was observed 

in ATM shRNA and/or vorinostat treated cells, the extent of reduction was not enough to 

indicate severely impaired HR mechanisms. These revelations also may explain why ATM 

knockdown cells were not increasingly sensitive to PARP and/or HDAC inhibition.  
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Figure 13 – The effects of ATM knockdown and HDAC inhibition on homologous recombination in CII cells. A. Example 

images of γH2AX staining for 0 and 1h post IR treatment. Strong γH2AX foci formation was observed at 1h post IR in 

samples indicating the presence of DSBs throughout cell sample populations. B. Example images of Rad51 negative (GFP 

KD + DMSO 0h post IR) and Rad51 positive (GFP KD + DMSO 8h post IR) cell nuclei. Note that RAD51 foci were 

morphologically smaller and fainter than γH2AX foci. C. Graph representing relative percentages of RAD51 positive cells 

across different IR timepoints in cell samples with varying ATM status and HDACi treatment. †= vorinostat treatment 

statistically significant compared to untreated cells of same timepoint (P=<0.01), ‡ = ATM deficient cells statistically 

significant relative to WT cells of same treatment and timepoint (P<0.01). Error bars represent the standard deviation of the 

mean. 
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4.0 Discussion 

4.1 Hi-Res Melting as a mutation detection strategy 

 The study employed a novel method for detecting DNA sequence alterations, called Hi-Res 

Melting (see section 2.4). The method was advantageous to this study because it allowed 

rapid, high-throughput analysis of patient samples. Considerably more patient samples could 

be assessed for mutations in the time available in comparison to if each sample had been 

sequenced via the Sanger method. However, one downside of the method is that it only infers 

the possible presence of DNA sequence changes. The confirmation of any mutations present, 

and access to information concerning the nature and characteristics of any sequence changes, 

still requires the “flagged” samples to then be sequenced using traditional methods. Another 

potential downside is that there is a very small yet ever-present possibility that certain mutant 

samples may be erroneously classified as WT – some mutations may not cause changes in the 

DNA melting profile that are clear enough for the sample to be flagged as a potential variant. 

The identification of these variants is also very subjective and depends on the individual 

analysing the melting curve data, another potential error source. To be completely confident 

that all mutants had been detected in a cohort, all samples would still have to be sequenced 

via traditional methods. However, Hi-Res Melting is a highly cost-effective and time saving 

method for occasions where this is not feasible, such as if a cohort contains a very large 

number of samples. 

In the context of this study, Hi-Res melting enabled the detection of the homozygous 

c.8786+8 A>C SNP in the PICCLE IM patient sample. Because this mutation was not 

reported to cause any splicing defects (Gumy-Pause et al., 2006; Meier et al., 2006),  it was 

unlikely to have been detected through western blot analysis of the ATM protein product, or 

analysis of ATM mRNA via reverse transcriptase PCR (RT-PCR). There were, however, 
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many false positives that appeared to have variant melting curves, but upon sequencing were 

revealed to be WT (fig. 8). This may have been caused by the presence of non-specific 

product generated by unclean PCR reactions, or due to the cohort being fairly small (28 

samples). Due to the method relying on comparisons between individual samples to detect 

and isolate variants, false positives are less likely the larger the sample size, because 

negligible differences in WT melting curves would be less prominent.  

Overall, Hi-Res Melting proved to be a useful tool in analysing ATM exon sequences quickly, 

but problems with PCR reaction optimisation were also encountered (see section 3.1). Due to 

time constraints, it was not possible to continue the optimisation process and complete the 

analysis of the cohort, and the overall aim of identifying any loss of function ATM mutants 

that could then be used in primary tumour cell cytotoxicity assays was not achieved. It was 

therefore decided that experiments to assess the synergic potential of PARPis and HDACis in 

ATM-deficient B-CLL would be carried out on isogenic B-CLL tumour cell lines treated with 

ATM shRNA to induce ATM knockdown, rather than ATM-null primary tumour samples. 

4.2 PARP inhibition did not have a significant cytotoxic effect on CII and MEC-1 cells 

regardless of ATM status 

 Firstly, no significant difference in sensitivity to the PARP inhibitor olaparib was observed in 

cells of differing ATM status. This was in contrast with previous studies, and it was expected 

that ATM deficient tumour cells would show an increased sensitivity to PARP inhibition 

(Weston et al., 2010). In the CII cell line, olaparib treatment in both WT and ATM cells rarely 

produced a statistically significant cytotoxic effect at any dose, although a general trend of 10 

µM olaparib having a slight killing effect was observed. However, at this high dose, off-target 

effects are not unlikely. 
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 A possible explanation for this perceived resistance to olaparib was that the ATM 

knockdown of CII cells was shown to be incomplete; residual levels of ATM protein were 

detected via western blot staining (fig. 9B). Rad51 foci analysis also suggested that HR was 

still active in ATM shRNA treated CII cells (fig. 13C), also providing a possible explanation. 

However, MEC-1 cells displayed highly efficient ATM knockdown, with no ATM protein 

band visible (fig. 9B), and MEC-1 cells responded to olaparib even more unexpectedly than 

CII cells. In MEC-1 cells, olaparib had no cytotoxic effect at any concentration tested, and 

even produced a marginally positive effect on cell proliferation at higher concentrations. The 

fact that MEC-1 cells were p53 mutant could counter-intuitively contribute to this - there has 

been evidence of PARP1 inhibition causing medullablastomas in p53 
-
/
-
 mice, implicating a 

tumour suppressive role for PARP1 in that particular cancer (Tong et al., 2003), thus it is not 

out of the question that this could happen in p53 mutant B-CLL. Indeed, disruption of DNA 

repair mechanisms leads to increased genomic instability, which is a leading cause of cancer 

in the first instance (Shaheen et al., 2011), and thus may lead to further oncogenic mutations 

and increased aggressiveness if  DNA damage levels are not sufficient to lead to mitotic 

catastrophe. However, this is highly unlikely and has not been reported in progressive B-CLL.  

If cell viability loss was indeed through the accumulation of unrepaired DNA damage,  p53 

loss would have been expected to increase the cytotoxic effect of olaparib rather than oppose 

it due to further loss of cell cycle arrest mediators, especially because ATM and p53 have 

convergent roles (Stankovic et al., 2002b). Thus, more studies are required to clarify the 

underlying mechanisms of this apparent resistance to olaparib in p53 mutant cells. 

4.3 ATM wild-type cells exhibited increased sensitivity to HDAC inhibitors 

 Both CII and MEC-1 cell lines were sensitive to the higher concentrations of HDAC 

inhibitors used. Unexpectedly however, in both cell lines, ATM wild type cells appeared to be 

more sensitive to HDACis than ATM knockdown cells. This effect was very unlikely to have 
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been caused by the GFP shRNA negative control, because preliminary dose response 

optimisation experiments in untreated CII and MEC-1 cells showed almost identical patterns. 

There is evidence to suggest that HDAC inhibition can lead to p53 mediated apoptosis 

through DNA damage caused by reactive oxygen species (ROS) (Petruccelli et al., 2011; 

Wang et al., 2012) or p53 hyperacetylation (Oh et al., 2012). Thus, the ATM/p53 pathway 

may be responsible for HDAC induced killing through apoptotic mechanisms, and HDACis 

may induce more cell killing in WT cells with intact ATM/p53 pathways through apoptosis 

than in ATM deficient cells though the proposed theory of unrepaired DNA damage 

accumulation or autophagy - hence why WT CII cells displayed more sensitivity to HDAC 

inhibitors than ATM knockdown cells. This cannot explain the same phenomenon in the p53-

mutant MEC-1 cells, however, which were also more sensitive overall to lower doses of 

HDACis to the point at which lower doses had to be used. Perhaps the loss of p53 function 

resulted in an even further loss of cell cycle regulation and DNA repair, thus more capacity to 

accumulate lethal levels of unrepaired DSBs. Since p53 and ATM have convergent roles 

(Stankovic et al., 2002b), this may also explain why MEC-1 ATM mutant cells were not 

preferentially sensitive to HDACis – the p53/ATM pathway was already impaired - although 

if this was the case, it would have been expected that MEC-1 cells would respond to olaparib 

treatment. 

In CII cells, as the concentration of HDACi increased, the surviving fraction fell as was 

expected – HDAC inhibitors have been shown to decrease proliferation, and induce apoptosis 

and/or differentiation, as well as mediate the DNA damage response. Contrastingly, MEC-1 

cells often showed dramatic increases in viable cell levels relative to the untreated controls, 

before sharply dropping off at marginally higher HDAC doses. This effect occurred regardless 

of ATM status, and was consistently observed throughout the experiments. The reasons as to 

why this occurred are unknown. One speculation might be that sublethal levels of HDAC 
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inhibitor promotes euchromatin which is conducible to gene transcription and more accessible 

to transcription factors (Federico and Bagella, 2011), therefore possibly leading to 

upregulation of oncogenic cell proliferation genes in MEC-1 cells. 

4.4 PARPi and HDACis did not selectively synergise in ATM knockdown CII cells 

Based on recent findings (Weston et al., 2010), It was hypothesised that the PARP inhibitor 

olaparib would induce sensitivity to HDAC inhibitors in ATM mutant cells, through the 

accumulation of unrepaired SSBs that are converted to DSBs upon DNA replication, resulting 

in cell death through the accumulation of critical levels of unrepaired DSBs. However, it was 

not conclusively observed that ATM deficient cells were selectively sensitive to PARP and 

HDAC inhibition. Although WT cells were more sensitive to HDACi, both WT and ATM 

knockdown CII cells exhibited some PARPi and HDACi synergy at certain doses. PARPi and 

HDACi have been shown to induce apoptosis through DNA damage, and synergise 

accordingly in colon cancer cell lines (Adimoolam et al., 2007). ATM deficient cells are 

likely to have defective apoptotic responses to DNA damage due to an impaired p53/ATM 

pathway, a key reason as to why ATM or p53 null B-CLL is resistant to common therapies 

(Stankovic et al., 2004; Weston et al., 2010). It is therefore possible that PARPi and HDACi 

were indeed causing unrepaired DNA damage in both cell lines, but WT cells were being lost 

through apoptosis while the ATM-deficient cells were lost through other mechanisms such as 

mitotic catastrophe or autophagy-induced cell death, but to a lesser extent. More detailed 

studies into the mechanisms by which cell viability was being lost are required to either 

confirm or reject this speculation. However, the continued presence of Rad51 positive cells, 

as revealed by immunofluorescence, suggested against HR being fully compromised and 

indicated that DSB repair was still occurring, as is next explained. 
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4.5 Homologous recombination was still active in ATM KD CII cells 

The addition of 3 µM vorinostat to WT cells lowered the amount of Rad51 positive cells 

across 24 hours, with a particularly prominent effect up to 1 hour after DSB occurrence. This 

is consistent with HDACs being required for HR (Robert et al., 2011). HDACs 9 and 10 are 

particularly important in HR (Kotian et al., 2011), which are targets of the pan-HDAC 

inhibitor vorinostat used in the experiment.  The effects of vorinostat on ATM WT cells was 

very similar to the characteristics of untreated ATM KD cells, but was even more prominent. 

HDACs may be directly involved in HR (Robert et al., 2011) as previously discussed in 

section 1.9, explaining why HDAC inhibition resulted in a net reduction of Rad51-positive 

cells seen at early timepoints in WT cells. Vorinostat treated ATM deficient cells also showed 

a further loss of Rad51 positive cells across all timepoints relative to ATM deficient untreated 

cells. However, there was still a relatively high level of Rad51 positive cells even in ATM 

shRNA and HDACi treated samples, meaning that HR was impaired but still functional. This 

may explain why ATM deficient cells were less susceptible to HDAC inhibition – HR was 

still active and the cells were therefore not vulnerable to the inhibition of parallel DNA repair 

pathways. 

4.6 Experimental shortfalls 

 There were a number of shortcomings to the cytotoxicity experiments. The main limitation to 

the study was that B-CLL cell lines were used rather than primary B-CLL tumour samples, 

and that stable ATM knockdowns were used rather than ATM mutants. The unavailability of 

ATM mutant primary tumour samples was unfortunate, as they constitute the best models for 

B-CLL cytotoxicity experiments in vitro and have been used in preceding studies (Weston et 

al., 2010). The experimental approach may have been compromised for a number of reasons: 
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a). Cell lines are known to acclimatise to specific cell culture conditions over time and behave 

differently to primary cells, thus, cell lines are not always an authentic representation of how 

primary tumours would be affected by cytotoxic drugs. 

b). More specifically, the genes involved in the DDR are complex, involve much cross-talk 

and are often convergent and pleiotropic (Shaheen et al., 2011). Stably transfected ATM 

knockdown cells may have undergone the upregulation of redundant parallel pathways other 

than PARP and HDAC mediated mechanisms to compensate for the loss of ATM. The 

occurrence of this phenomenon becomes increasingly likely with time, as the cells undergo 

increasing rounds of replication and are passaged multiple times. This could have occurred in 

both CII and MEC-1 cells, explaining a lack of response to PARP and HDAC inhibition in 

ATM knockdown cells. 

c). In CII cells, the ATM knockdown was incomplete and the residual ATM protein still 

present may have been enough for ATM-mediated HR. Indeed, knockdowns are not always 

the best approach for studying gene loss – it is not possible to achieve total knockout of the 

gene, and ATM
-/-

 knockout cells may have been more suitable.  

If cell lines are to be used again, the knockdown must be efficient. Inducible ATM 

knockdown systems might also be a better approach, because this would allow the 

comparison of the presence and absence of ATM in the same cells, maintaining exactly the 

same culture conditions. It would also restrict the potential ability of the cells to adapt to the 

loss of ATM and restore HR mechanisms through other mediators. 

Another problem may lie with the fact that poly(ADP-ribosyl)ation and acetylation are such 

ubiquitous processes throughout cells (Smith and Workman, 2009).  Thus, off-target effects 

independent of the DDR could not be discounted. For PARP activity, this was addressed by 

using only up to 10 µM olaparib because concentrations higher than 10 µM are significantly 
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more likely to induce off-target effects (Weston et al., 2010). In this instance however, higher 

doses may have been suitable to use due to the lack of response to PARP inhibition, even if 

only to confirm that PARP inhibition could indeed cause a significant cytotoxic effect in the 

cell lines or not. As far as HDACis are concerned, around 85% of proteins are acetylated (Su 

et al., 2008), thus higher doses of HDAC inhibitor may have caused off-target effects that 

contributed to the cytotoxicity. From a clinical perspective, off-target effects are undesirable 

and lower drug tolerances. Detailed analysis of acetylome changes would be required to 

establish if off-target effects caused by HDAC inhibition were impacting on cell viability, as 

well as in vivo experiments to assess any potential side effects. 

The cell viability assay that was used was also limiting in that it lysed the cells and only 

quantified the levels of ATP present as a measure of viable cells - no detailed information 

could be obtained as to the mechanisms of cytotoxicity, such as any cell cycle blocks, through 

induction of apoptosis, senescence, mitotic catastrophe or autophagy-related cell death. Thus, 

more detailed studies are required to establish the molecular mechanisms responsible for the 

results that were obtained.  Additionally, the method of ATP quantification is not a 

completely faithful representation of viable cells, as cells will naturally vary in ATP levels, as 

well as between samples due to varying culture conditions. Additional cell viability 

quantification assays should therefore be carried out before any final conclusions are made, 

such as a manual cell counting method.  

The immunofluorescence experiments also had a number of shortfalls. Due to time 

constraints, it was only possible to assess Rad51 mediated HR in one cell type, and more 

repeats of the same experiment would have to be performed to increase the reliability of the 

data obtained. Due to the aberrant responses to the drugs seen in MEC-1 cells, CII cells were 

used, but as aforementioned the ATM knockdown was not complete which may have 
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impacted on the results. Had the time been available, HR in cells of differing treatment and 

ATM status would have been analysed in more detail, along with the impact of p53 loss on 

HR. Firstly, different variations of HDAC inhibitors and dose levels would have enabled a 

broader picture of the effects on HR. Assessing the effects of combined PARPis and HDACis 

on HR would also have provided useful information. It would have also been beneficial to 

visualise the effects of PARP inhibition on NHEJ mediators such as DNA-PKcs, which like 

Rad51 form foci at sites of DNA damage and thus their induction is quantifiable (Lou et al., 

2004).  Assessing the prevalence of Rad51/ γH2AX positive cells for longer times than 24 

hours after IR might also be a viable study, because ATM has been implicated in absolving 

foci and resuming the cell cycle after HR is complete (Battu et al., 2011). Thus, loss of ATM 

could result in cellular senescence if the foci persist. Detailed cell cycle analysis would also 

reveal any cell cycle blocks that might be induced by PARP/HDAC inhibition.  

4.7 Conclusions and future perspectives 

 The data observed in this study does not suggest that ATM deficient B-CLL cells are 

selectively sensitive to combined PARP and HDAC inhibition. Synergy was observed 

between PARP and HDAC inhibitors in B-CLL cell lines, although not significantly more so 

in ATM knockdown cells.  Future work must be undertaken in primary tumour cells of 

differing ATM status for the most reliable results in vitro.  Additionally, in vivo experiments 

are required to further validate the tumour killing effects of PARPi and HDACi combined 

therapies. 

The fact that WT cells were seen to be more susceptible to HDAC inhibitors than ATM 

knockdown cells is not necessarily a negative observation from a clinical point of view, as 

this may indicate that HDAC inhibitors are good potential candidates for treating progressive 

B-CLL forms that are ATM WT. HDACis are generally well tolerated (Federico and Bagella, 
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2011), as are PARPis (Audeh et al., 2010; Vasiliou et al., 2009), which is a highly desirable 

trait for cancer therapeutics, particularly those which are likely to be administered to people of 

vulnerable age groups as in B-CLL. However, the mechanisms of HDACi cytotoxicity in B-

CLL still need to be elucidated, and the observations may have been caused by off-target 

effects that may cause drug toxicity. Work must be done to establish effective dose tolerance 

levels, as well as the elimination of any potential off-target effects.  

The development of both specific and potent treatments for progressive forms of B-CLL 

remains important, both to increase overall survival rates and the quality of life of patients, 

and despite the difficulties encountered during the study, the use of PARP and HDAC 

inhibitors in treating ATM-deficient B-CLL still remains a promising option. To unlock the 

potential of these compounds, more detailed studies are required into the tumour-killing 

effectiveness, the specificity to tumour cells and the specific molecular mechanisms by which 

the killing is achieved. 
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Appendix 

 

 

Exon 

 

 

Original Primer Sequence 

(5' - 3') 

Original 

Optimum  

Tm (
o
C) 

 

New Sequence 

New 

Optimum 

Tm (
o
C) 

4F 

4R 

CACACCTCTTTCTCTCTATATATGC 

ATTTCAAGGAAAAATTGAATTTAAG 

61  

GGAAAAATTGAATTTAAGTAATTTACTAC 

 

5F 

5R 

TGATTAGTAACCCATTATTATTTC 

GGAAGCAAAGATAAATGTTAAGACTTACAC 

61  

AATAAAGACAGTAAAATAAATTTGAATAG 

 

6F 

6R 

ATTGGTCTTGTAGGAGTTAGGCCTTG 

AAAAACTCACGCGACAGTAATCTG 

65   

7F 

7R 

TAAATAGTTGCCATTCCAAGTGTC 

TGGTGAAGTTTCATTTCATGAGG 

65   

8F 

8R 

CCTTTTTCTGTATGGGATTATGGA 

TACTGAGTCTAAAACATGGTCTTGC 

62   

9F 

9R 

TTCTTTCAGCATACCACTTCATAAC 

TGAATGAAGAAGCAAATTCAAAACAG 

60   

10F 

10R 

TGGGAGCTAGCAGTGTAAACAGAG 

CAGGAAATTTCTAAATGTGACATGAC 

65   

11F 

11R 

GCTCAAAAAAAAAAAAAAGAAAAAAGTGG 

AAATGACTTAGTTCTGGTTGAGATG 

65   

12F 

12R 

TCCTTTTAGTTTGTTAATGTGATGG 

ACTATGAAAATGATCAGGGATATG 

61   

13F 

13R 

CCTCCAATAGCTTGCTTTTCAC 

AAACAGCAGCATGCTAATGAAC 

64 CGAGCTATTTTTTTAATCAAGAATCTTCC 

CAATCAGGCATAAAGACACAGATAAC 

 

14F 

14R 

GTATTCTTTACATGGCTTTTGGTC 

TACTACCCAGCTAAAATTATCATC 

62   

15F 

15R 

CATATAAGGCCAAAGCATTAGGT 

CCTATTTCTCCTTCCTAACAGT 

61   

16F 

16R 

GAATTTGTTCTTACAAAAGATAGAG 

GAATACATTTCATTCAAATTTATCCGA 

60   

17F 

17R 

GTATGTCCAAGATCAAAGTACACTG 

GGGTGACAGAGAAAGATCCTATC 

64 CTCTTGGTAGTACTCTGTCACTGGTATG 

GGATATTACCTTTATGTACCATTCAACT 

 

18F 

18R 

GTTTTTATTTCTTTGTTGCTTGGTTCT 

CAAAATATGATAGCAAAACAGGAAGC 

65 CTCTAAGAAAAGATGTGTTTTTGAAGCAG 

AGAGCTATATGTTGTGAGATGCATCC 

60 
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Exon 

 

 

Original Primer Sequence 

(5' - 3') 

Original 

Optimum  

Tm (
o
C) 

 

New Sequence 

New 

Optimum 

Tm (
o
C) 

19F 

19R 

CTCCCAAATTGCTGAGATTACAGATG 

ATGAGGCCTCTTATACTGCCAAATC 

65   

20F 

20R 

ATATATGGCTGTTGTGCCCTTCTC 

CATCAGATAAAATCCAAGAGCTTC 

60 ATTATTTCTTGACAACAGAATCTTGG 

AAATTTGCTCACAGCACGTTAAAAGTG 

62 

21F 

21R 

AAACCTGATTTTTTTCCCTCCTAC 

TTTATAAGCTTAACAGAACAGAACACATCAGT 

60   

22F 

22R 

AATAACTGATGTGTTCTGTTAAGC 

AAACTTGCATTCGTATCCACAGAT 

60  

GGAAGATCAGAAGAAATCACTGATG 

60 

23F 

23R 

GTAACTTATAATAACCTTTCAGTGAG 

ACTCATTAACAAACAAAGACTGCT 

60 AGCACAGAAAGACATATTGGAAG 

GTAACTTATAATAACCTTTCAGTGAG 

60 

24F 

24R 

CTATTTCATATTTAACCACAGTTC 

TATGTAAGACATTCTACTGCCATC 

60   

25F 

25R 

TTGTTTGTTTGTTTGCTTGCTTGTTT 

CATATGATAACAGCAAATACATGTTAC 

60 GTTCTGGAATATGCTTTGGAAG 

GTCCAATGTTCCCTTAATTAGC 

60 

26F 

26R 

GTCAAAAAATCTGGAGTTCAGTTG 

GGAAGCTTCTAATAAAATACTCATC 

65  

ATACTATTTCCAAAAGCCTGGTCAGTC 

 

27F 

27R 

GAATGTTGTTTCTAGGTCCTACTC 

GTGAGGGGACTTGCTAAGTATTG 

62   

28F 

28R 

CTTGGAAAAGTTATATATAACCTG 

AACTTAAAGGTTATATCTCATATC 

60   

29F 

29R 

TTTGAGCTGTCTTGACGTTCACAG 

TTGAAATAGACATTGAAGGTGTCAAC 

61   

30F 

30R 

TTTTCATTTTGGAAGTTCACTGGTC 

GGAATGTTCTATTATTAAACTCATC 

61   

31F 

31R 

GTGTATTTATTGTAGCCGAGTATC 

GGAAGAACAGGATAGAAAGACTGC 

65   

32F 

32R 

GACTTCTGAATGAATTTATTTCAGAG 

CACTCAAATCCTCTAACAATAC 

60  

AAAATCACCAATTATACCAAA 

 

33F 

33R 

TTACAGTAAGTTTTGTTGGCTTAC 

CAGATTTTTGAAAAGTACTACTATG 

61   

34F 

34R 

CCAATACGTGTTAAAAGCAAGTTAC 

AACAGGTAGAAATAGCCCATGTC 

60 GATTAGTAGTAATAGAGACATGAGTCAG 

CTGAACTAAATGATGAGAGTCTGAAC 

61 

35F 

35R 

AAACAAAAGTGTTGTCTTCATGCT 

TCCTATATGTGATCCGCAGTTGAC 

64 CTCTGTTGTCACATATTGCTAATCAC 

ACTACACACCTAGGCTACAAACCTG 

62 

36F 

36R 

GTTTTATGTATGATCTCTTACCTATG 

GAAGTATCATTCTCCATGAATGTC 

60   
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Exon 

 

 

Original Primer Sequence 

(5' - 3') 

Original 

Optimum  

Tm (
o
C) 

 

New Sequence 

New 

Optimum 

Tm (
o
C) 

37F 

37R 

CAGTGGAGGTTAACATTCATCAAG 

ACAGTCATGACCCACAGCAAACAG 

65   

38F 

38R 

AAGGTACAATGATTTCCACTTCTC 

CAGCACTCTTTAGATAAACAGGTC 

65   

39F 

39R 

AGCAGTATGTTGAGTTTATGGCAG 

GGATTCCATCTTAAATCCATCTTTC 

65   

40F 

40R 

CCTTATAGCATAGTGGGAGACAG 

CAAGTTACACTCTAGATCCTAAACG 

65   

41F 

41R 

TAAGCAGTCACTACCATTGTATTC 

TACCCTTATTGAGACAATGCCAAC 

65   

42F 

42R 

CAGGAGCTTCCAAATAGTATGTTC 

CACATGGCATCTGTACAGTGTCT 

65   

43+44F 

43+44R 

TAGAGTTGGGAGTTACATATTGGT 

GCACTACACTAGTGATGGCTTTAC 

63   

45F 

45R 

GGTTTCTGTTGATATCTTTGATTAC 

GAGAGGCAAAAAAAAAAAAATCAAGTC 

62   

46F 

46R 

GTCCTTTGGTGAAGCTATTTATAC 

CTCAAGTTTTCAGAAAAGAAGCCA 

65   

47F 

47R 

CCTCTTCTTTATTTTCAGAGTGTC 

GTCACTATTGGTAACAGAAAAGC 

61   

48F 

48R 

CATTTCTCTTGCTTACATGAACTC 

TAGAGATCTCTATCTCTTAATGAC 

62   

49F 

49R 

CATGGTAGTAGTATCAGTAGTAAAAG 

CAGTAAAACACTAATCCAGCCAAT 

62 GAGATGTCATGCAGACAGAGAGGTCC 

GAATCGACCACATGATGGACTGATAG 

 

50F 

50R 

AGTTGGGTACAGTCATGGTAATGC 

CTAAGTAACTATCTTAAGGGTTGCTC 

63   

51F 

51R 

GTGTATTACCTAATTTGAGTGATTC 

AAGACCAAGTCACTCTTTCTATGC 

63   

52F 

52R 

ATCATGTGTGATTTTGTAGTTCTG 

TTCAAGCACAGGGTAGAATATTGG 

65   

53F 

53R 

TTGTGCTAATAGAGGAGCACTGTC 

GTATTTCCATTTCTTAGAGGGAATG 

63   

54F 

54R 

TCTACCCACTGCAGTATCTAGAC 

CAGCCTTGAACCGATTTTAGATG 

65   

55F 

55R 

TGTTGGGTAGTTCCTTATGTAATG 

GGATTACGTTTGTGATTTTAAGCAG 

64 GAAAGGCACCTAAGTCATTGACGAG 

CTCTGTAATAAGTATGTATGCCAGAAG 
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Exon 

 

 

Original Primer Sequence 

(5' - 3') 

Original 

Optimum  

Tm (
o
C) 

 

New Sequence 

New 

Optimum 

Tm (
o
C) 

56F 

56R 

ACTATTCCTGCTTGACCTTCAATG 

GCCAATATTTAACCAATTTTGACC 

61 CTTTGACTCTGAGCTGCATAGT 

 

 

57F 

57R 

TAAGTGCAAATAGTGTATCTGACC 

CATCACTAAAACTCTAAGGGCTAAG 

65 GCCTAAAGTTGTAGTTCTTAACCAC 

GCATTTCTACTCTACAAATCTTCCTC 

 

58F 

58R 

TTGCTATTCTCAGATGACTCTGTG 

GCCTCCCAAAGCATTATGAATATG 

61   

59F 

59R 

CATCAAATGCTCTTTAATGGCCTT 

CTATAATATCTGACAGCTGTCAGCT 

63 GAGCTTTGTCTTCTATGGACAGAG 

CATTTCTTATCTGACAAGGGTTGAC 

 

60F 

60R 

CATCTTTATTGCCCCTATATCTGTC 

TGCCAAACAACAAAGTGCTCAATC 

62   

61F 

61R 

AAGAGATGGAATCAGTGATTTCAG 

AGGCAAACAACATTCCATGATGAC 

62   

62F 

62R 

TTAGCTGTCAAACCTCCTAACTTC 

TTGAGTAGCTGGGATTACAGGTG 

64   

63F 

63R 

AGATATGTTGACAACATGGTGTG 

GAGATACACAGTCTACCTGGTAAG 

65 GTCTAATGAAAGCCCACTCTGCCA 

TGTGTGAAAAGGCTAAGTGCACAA 

62 

64F 

64R 

GATACTGGTTCTACTGTTTCTAAG 

AAAGGTTTCAGTGAGGTGAACAG 

64   

65F 

65R 

GGTGAGCAGTATTTTAAGAAGGTC 

TCCCTACTTAAAGTATGTTGGCAG 

64   

 

 

 

 

 

 

 

 

Table S1 - All ATM primers used in the study, with re-optimised temperatures included. 
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Characteristic CII MEC-1 

Ig Production IgM, λ NT 

IGH genes IGHV1-69UM/IGHD3-

10/IGHJ6 

IGHV4-59M/IGHD2-21/IGHJ4 

IGK/IGL genes IGLV1-4 NT 

FISH data Trisomy/tetrasomy 12 + 

tetrasomy 11q/13q/17p 

NT 

CD38 (% pos. cells) 69 40 

CD38 (MFI fold-increase) 12.1 6.8 

ZAP70 (% pos. cells) 83 2 

ZAP70 (MFI fold-increase) 5, 8 1.1 

TCL1 (%pos cells/MFI) 74%/3.6 71%/4.8 

TCL1 (Western Blot/RT-PCR) + (+) 

TP53 Status Wild Type Mutant 

 

shRNA 

Target 

Sequence 

ATM-1 

(7218) 

 

5'-GATCCCCCTGGTTAGCAGAAACGTGCTTCAAGAGAGCACGTTTCTGCTAACCAGTTTTTA-3' 

          3'-GGGGACCAATCGTCTTTGCACGAAGTTCTCTCGTGCAAAGACGATTGGTCAAAAATTCGA-5' 

ATM-II 

(P480) 

 
5'-GATCCCCGATACCAGATCCTTGGAGATTCAAGAGATCTCCAAGGATCTGGTATCTTTTTA-3' 

          3'-GGGCTATGGTCTAGGAACCTCTAAGTTCTCTAGAGGTTCCTAGACCATAGAAAAATTCGA-5' 

 

GFP 

shRNA 

Control 

 

5'-GATCCCCCGTACGCGGAATACTTCGATTCAAGAGATCGAAGTATTCCGCGTACGTTTTTA-3' 

          3'-GGGGCATGCGCCTTATGAAGCTAAGTTCTCTAGCTTCATAAGGCGCATGCAAAAATCGA-5' 

 

University of Birmingham 

Table S2 - Characteristics of CII and MEC-1 isogenic B-CLL cell lines. NT = not tested. CD38 and ZAP70 % positive 

cells were calculated according to a 30% cut-off. Fold increase of MFI was calculated and considered positive at the 
following limits: >2.5 fold for ZAP70 and >3.5 fold for TCL1. 

 

Table S3 - shRNA oligonucleotides used for stable ATM and GFP negative control knockdowns. Two ATM shRNA 

oligonucleotides were transfected simultaneously to increase the efficiency of the knockdown. Note that the knockdown 

experiments were performed prior to this study and the sequences are included for completeness. 

 

 



 

76 

 

University of Birmingham 

School of Biosciences 

 

Optimisation of Multiple Marker Imaging of 

Immunological Tissue Using Confocal Laser Scanning 

Fluorescence Microscopy 

 

A research project report submitted by 

 

David Michael Cartwright 

 

as part of the requirement for the 

degree of MRes in Molecular and Cellular Biology 

This project was carried out at: Biosciences Building, University of Birmingham 

Under the supervision of: Dr. Joshua Z. Rappoport/Prof. Christopher M. Bunce                    

Date: 23
rd

 July 2012 



 

77 

 

Abstract 

The simultaneous imaging of multiple biomarkers within tissues is of high value to both 

experimental and diagnostic histopathology, because it allows for analysis of the spatial and 

temporal relationships of specific molecules, cell populations and tissue components.  

Immunofluorescence (IF) is a highly applicable technique for sample multilabelling, but 

intrinsic pitfalls such as low fluorophore brightness and photostability, tissue 

autofluorescence and spectral bleedthrough can limit the viability of IF in a histopathological 

context. This study has optimised a multiple marker imaging method using indirect IF and 

confocal laser scanning microscopy (CLSM) to simultaneously image three separate B-

lymphocyte markers of CD19, κ- and λ- immunoglobulin light chain antigens alongside a 

nuclear counterstain in reactive lymph node cryosections. Building on preliminary 

experiments which used older generation fluorophores, a staining and imaging protocol 

utilising the more photostable Alexa fluorophores was optimised. Secondary antibody 

dilutions of Alexa 488, 568 and 647 which produced maximum signal and minimum 

nonspecific fluorophore binding were determined. In addition, microscope imaging settings 

were established that minimised tissue autofluorescence, spectral bleedthrough and an optimal 

signal/noise ratio. This imaging method could be applied in a clinical context for 

immunophenotyping and identifying B-lymphocyte populations with abnormally skewed κ/λ 

ratios within lymph nodes, an indicator of monoclonality and potential neoplasia. Future 

studies will continually develop this imaging method for different immunological antigens for 

potential use in diagnostic and prognostic histopathology of lymphomas and lymphatic 

leukaemias, and for research towards cancer therapies targeting the specific molecular 

mechanisms of tumourigenesis. 
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List of Abbreviations 

CLSM  Confocal laser-scanning microscopy 

DAPI            4',6-diamidino-2-phenylindole 

FFPE  Formalin-fixed paraffin embedded 

FITC  Fluorescein isothiocyanate 

IF  Immunofluorescence 

Ig  Immunoglobulin 

IHC  Immunohistochemistry 

PBS  Phosphate buffered saline 

PMT  Photomultiplier tube 

TRITC  Tetramethyl rhodamine iso-thiocyanate  
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1.0 Introduction 

1.1 The importance of monitoring specific markers in histology  

Histology is defined as the study of tissues, and is an essential tool in many areas of 

biomedical research and medicine. In medicine, histology is often used for the acquisition of 

diagnostic and prognostic information through the study of diseased tissues, a field defined as 

histopathology. Traditional histological methodology commonly involves light or electron 

microscopy in combination with biological staining methods to resolve morphological and 

cytological details (Mahon, 2011). However, as more progress is made on elucidating the 

molecular mechanisms of disease, it is often necessary to visualise and/or quantify the 

expression of specific proteins within tissues (Mahon, 2011). Using cancer as an example, 

patients diagnosed with the same form of cancer and the same histopathologically defined 

disease stage often have largely differing prognoses due to differing underlying molecular 

mechanisms of the disease. Some examples of surface markers implicated as indicators of 

poor disease prognosis include the presence of CD44 in colorectal cancer (Belov et al., 2011), 

CD38 and CD49d in chronic lymphocytic leukaemia (CLL) (Del Poeta et al., 2001) or HER2 

in breast cancer (Qui Wen-sheng et al., 2009). The treatment of certain molecularly defined 

cancer forms must often take alternative approaches, such as early surgery or more aggressive 

courses of chemotherapy and radiotherapy, to ensure the best possible chance of remission 

and patient survival (Li et al., 2010).  

As the understanding of the molecular mechanisms of cancer increases, the identification of 

such markers may also open up new more effective and less toxic personalised treatment 

options that specifically target the marker molecule itself, or downstream effectors of the 

signalling pathways it mediates (Sawyers, 2004). Thus, the monitoring of specific markers is 
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important for both biomedical research to develop such drugs, and from a clinical 

histopathology context to identify forms of disease eligible for such treatment. 

 The most common histological methods to identify specific molecules involve 

immunophenotyping via immunohistochemistry (IHC).  IHC is defined as the process of 

detecting antigens in tissues via the use of antibodies specific to the antigen of interest (Key, 

2009; Renshaw, 2005). The two most widely used IHC methods are enzyme-based IHC and 

immunofluorescence (IF) (Renshaw, 2005). 

1.2 Commonly used histological methods for 

analysing expression of specific markers  

 Enzyme/substrate based IHC is the most 

common method used in both research and 

diagnostic histopathology, the basis of which is 

to produce staining localised to areas of tissue 

expressing a specific antigen via the catalysis 

of a reaction involving a subsequently added 

colourless chromogenic substrate, which 

produces a dye compound (Key, 2009; 

Renshaw, 2005). As an example, avidin/biotin 

methods are the most common approaches (fig. 1) 

(Key, 2009). IHC stained tissue sections are analysed 

under a brightfield microscope, and the level and 

localisation of the chromogenic compound gives information as to the level of expression as 

well as the spatial localisation of the antigen of interest (Key, 2009; Robertson et al., 2008).  

Figure 1 - Diagrammatic representation of indirect 

avidin/biotin immunohistochemistry. Avidin has a 

high affinity for biotin, thus the avidin/enzyme 

complex binds to the secondary bitinylated 

antibody and catalyses the reaction of the substrate 

into a chromogenic compound. The image below 

depicts streptavidin/horseradish peroxidase IHC 

labelling against C4d antigen in renal peritubular 

capillaries (brown = positive) (Troxell et al., 2006). 
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Alternatively, IF is based on the physical phenomenon of fluorescence, whereby a given 

molecule may absorb a photon of a specific wavelength, causing an electron to jump to a 

discrete singlet higher energy state (Semwogerere and Weeks, 2005).  Provided no molecules 

around it can absorb the energy through collisions to return it to ground state, the excited 

molecule may spontaneously emit a photon of longer wavelength and thus lower energy than 

that of the exciting photon (Semwogerere and Weeks, 2005) (Fig. 2A,B). 

Immunofluorescence takes advantage of this phenomenon via the conjugation of fluorophores 

to antibodies (fig. 2A depicts the indirect immunofluorescence mechanism). Light of a 

specific wavelength is used to excite fluorophores that are conjugated to antibodies, and the 

emitted photons are collected and observed by eye through an eyepiece (if the emission 

wavelength is visible) or detected electronically and a digital image formed (Semwogerere 

and Weeks, 2005). The applications of fluorescence microscopy in molecular biology are 

widespread, but this study is primarily concerned with the applications of 

immunofluorescence in histology.  

Figure 2 - A. Diagrammatic representation of indirect immunofluorescence. Image below = renal peritubular 

capillaries stained against C4d antigen. Green = positive. (Troxell et al., 2006). B. Diagram illustrating physical 

mechanism of fluorescence. A high energy photon raises the fluorophore to an excited energy state. Some energy 

is lost to surrounding molecules before the rest of the energy is lost as an emitted lower energy photon, and the 

fluorophore returns to ground state (Semwogerere and Weeks, 2005). 
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1.3 Enzyme IHC vs. IF for multiple marker imaging 

Enzyme based IHC is the most popular method for visualising specific markers in histology 

because the protocol is simple to perform, and little specialised equipment is required (Arzt et 

al., 2009). However, image resolution is limited by the optical restrictions of light microscopy 

as well as the precipitation of the chromogenic substrate (Robertson et al., 2008). 

Chromogenic compounds are also prone to signal saturation, which prevents semi-

quantitative analysis of the level of expression of such markers (Robertson et al., 2008). Most 

importantly, imaging multiple markers on the same tissue section is difficult and impractical 

with enzyme IHC, because any detection systems must be highly sensitive and the 

chromogenic compounds used must contrast highly to accurately define individually stained 

areas (Robertson et al., 2008). Double and sometimes even triple antigen staining is still 

possible using highly contrasting chromogenic compounds, but the requirement of highly 

visually contrasting compounds often requires the use of a diffuse and less specific 

chromogen (Vanderloos, 2008). If instead similar colours are used, the analysis of such stains 

may require novel imaging techniques to separate two visual similar compounds, such as 

spectral unmixing (Vanderloos, 2008). Generally, the protocols become increasingly more 

specialised and difficult to perform as more antigens are probed (Krenacs et al., 1990; 

Robertson et al., 2008; Vanderloos et al., 1988; Vanderloos et al., 1989). 

Due to the availability of fluorophores with distinct spectral profiles, it is relatively simple to 

resolve more than two markers simultaneously using IF in better resolution. This is a highly 

beneficial and desirable trait for both biomedical research and diagnostic histopathology, as it 

allows for the visualisation of spatial and temporal relationships between antigens (Brelje et 

al., 2002; Demandolx and Davoust, 1997; Ma et al., 2007; Robertson et al., 2008).Therefore, 

for imaging multiple markers in high resolution simultaneously, IF is a more suitable option 
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than enzyme based IHC. However, although this is the case, IF also has its downsides and 

pitfalls that must be overcome. 

1.4 IF imaging pitfalls 

The concept of immunofluorescence staining against multiple markers for histological 

purposes has been around for a relatively long time (Coons et al., 1942; Ferri et al., 1997; 

Kupper and Storz, 1986; Robertson et al., 2008). However, although IF is precise and high 

resolution, there are several fundamental obstacles that can reduce the effectiveness of IF for 

use in research and diagnostic histopathology. 

 Firstly, constant exposure to excitation wavelengths causes fluorophores to permanently lose 

brightness, a process termed photobleaching. This is a problem for clinical histological 

applications, as tissue sections may often require imaging on multiple occasions. Secondly, 

long-term storage of IF stained material also results in fluorophore degradation (Eggeling et 

al., 1998), and feasibility of long-term storage is an important prerequisite for diagnostic 

pathology for documentation purposes and verification of diagnoses (Ermert et al., 2001). The 

quality of fluorophores widely available around the time of initial studies, such as fluorescein 

isothiocyanate (FITC), tetramethyl rhodamine iso-thiocyanate (TRITC) and cyanine based 

dyes such as Cy5, could not address these problems because they photobleach relatively 

quickly and do not store well (Berlier et al., 2003; Entwistle and Noble, 1992; Ferri et al., 

1997; Panchuk-Voloshina et al., 1999; Robertson et al., 2008). In comparison, IHC stained 

tissue sections can be viewed an almost unlimited amount of times without the chromogenic 

precipitate deteriorating, and can be stored for many years without requiring darkness or 

refrigeration (Key, 2009; Renshaw, 2005). 

Two other major issues with IF that can limit its viability and application are tissue 

autofluorescence and spectral bleedthrough. Some tissue types possess natural fluorophores 
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that fluoresce over a broad range of wavelengths and therefore disrupt the interpretation of IF 

stained tissues, as fluorophore staining may become confused with endogenous tissue 

autofluorescence (Robertson et al., 2008). For example, vascular and connective tissues 

strongly autofluoresce because elastin and collagen possesses natural fluorophores (Rigacci et 

al., 2000).  

Spectral bleedthrough is a large problem for multifluorescence imaging, which refers to 

incidences whereby the emission of one fluorophore is detected through a photomultiplier 

channel or filter set intended for a second fluorophore (Brown, 2007). This occurs because 

some fluorophores, FITC and TRITC for example, have broad emission and absorption 

spectra that largely overlap. Crosstalk between fluorophores can also be an issue if the two 

fluorophore-labelled biomarkers are in close molecular proximity, whereby the emission 

wavelength spectrum of one fluorophore overlaps with the excitation spectrum of a second, 

resulting in subsequent emission of the second fluorophore (Brown, 2007). These imaging 

artefacts can incorrectly alter the interpretation of images due to the presence of false positive 

features in certain detector channels (Brown, 2007). Using epifluorescence microscopy, these 

experimental pitfalls are relatively difficult to avoid unless fluorophores with highly distinct 

emission and absorption wavelength spectra are used, which limits the amount of markers that 

can simultaneously be imaged, further reducing the feasibility of IF labelling (Robertson et 

al., 2008). 

For these reasons, such studies have not been widely accepted by the scientific community 

(Ferri et al., 1997; Robertson et al., 2008). However, more recent studies have opted for new 

generation Alexa fluorophores, which generally have higher quantum yields (the ratio at 

which a photon is emitted for every photon absorbed) and/or extinction coefficients (the 

efficiency of the fluorophore at absorbing light of a given wavelength), and are therefore 
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brighter than older generation dyes (Panchuk-Voloshina et al., 1999, Table S1). In addition, 

Alexa dyes are more photostable compared to more photolabile older dyes of corresponding 

spectral profiles (Benchaib et al., 1996), meaning that low-abundance biological structures 

within tissues can be imaged with great sensitivity and selectivity, and tissue samples can be 

imaged and re-imaged for extended time periods (Panchuk-Voloshina et al., 1999; Robertson 

et al., 2008). Fluorescein and rhodamine based dyes, such as FITC and TRITC respectively, 

as well as sulfonated indocyanine dyes such as Cy5 also have a tendency to quench 

(reversibly lose fluorescence brightness) upon conjugation to other molecules such as 

proteins, due to dye molecule interactions, aggregation and formation of non-fluorescent 

derivatives (Berlier et al., 2003; Panchuk-Voloshina et al., 1999; Ravdin and Axelrod, 1977; 

Valdesaguilera and Neckers, 1989). This is a problem for indirect IF, as IF utilises 

fluorophore-conjugated immunoglobulin molecules.  Alexa dyes are also insensitive to pH 

between 4 and 10 compared to these older fluorophores (Panchuk-Voloshina et al., 1999). 

In addition to the use of modern dyes, confocal fluorescence laser scanning microscopy 

(CLSM) has been implicated as a better option to traditional epifluorescence approaches. 

Such improvements to IF methodology have increased the viability of IF in both experimental 

and diagnostic histopathology. The principles of CLSM are explained in the following 

section. 

1.5 Principles of CLSM  

CLSM differs to standard fluorescence microscopy in a number of ways. The most prominent 

difference is that a pinhole aperture is incorporated into the optical mechanism, which serves 

to eliminate photons emitted from fluorophores that do not originate from the focal plane 

(Paddock, 2000; Semwogerere and Weeks, 2005) (fig. 3).This allows for a visualisation 

method termed optical sectioning, where thin sections along the z axis of thick samples can be 
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imaged non-invasively and in high resolution by eliminating out of focus light (Finkpuches et 

al., 1995; Paddock, 2000; Semwogerere and Weeks, 2005). Widefield fluorescence 

microscopes generally visualise around 2-3 µm thick z sections, while confocal microscopes 

visualise around 0.5 µm sections, the width of which can be adjusted to suit the sample 

(Paddock, 2000; Semwogerere and Weeks, 2005). This feature means that is it also possible 

to resolve separate but stacked features within the z-plane, which otherwise would appear as 

one blurry entity in widefield imaging.  Additionally, due to high axial resolution (Sheppard, 

1989), sharp 3D images of samples can be produced by sequentially scanning different focal 

planes and subsequently stacking the images, a process termed z-stacking (Semwogerere and 

Weeks, 2005).  

Another major difference is the excitation light source. Rather than standard mercury or 

xenon arc lamps, CLSM illuminates samples using high-powered monochromatic lasers 

(Paddock, 2000; Semwogerere and Weeks, 2005). Intense, bundled laser light sources are 

preferentially used because pinhole apertures generate optical sections by blocking out 

defocused light emitted from fluorophores, and therefore cause a loss of signal strength 

reaching the detector (Semwogerere and Weeks, 2005). Thus, conventional lamps do not 

provide light of a high enough intensity for enough emitted photons to be collected for good 

quality imaging. CLSM systems acquire images through the sequential scanning of laser lines 

across a sample, and images are digitally rebuilt from recorded point intensities according to 

x-y coordinates (Semwogerere and Weeks, 2005). Although CLSM systems are usually more 

expensive and require additional training for proficient use, CLSM has many benefits over 

regular fluorescence microscopy which increase the applicability of a multilabelling IF 

method to histopathology. 
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Figure 3 - Schematic diagram of a confocal laser scanning fluorescence microscope. An inverted setup is depicted, similar to 

the primary instrument used for this study. Excitation wavelengths are reflected by the dichroic mirror through the objective 

lens and onto the sample, while returning emitted light wavelengths pass through it. The scanning unit sequentially alters the 

path of the excitation beam to scan across the x and y axis and build an image of the sample. The pinhole restricts light 

reaching the detector to only in-focus light, from which an image is digitally rebuilt. The wavelength values depicted are 

typical values used for imaging fluorescein isothiocyanate (FITC) or Alexa 488 fluorophores. 
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1.6 Advantages of CLSM in histology  

As well as the benefits of being able to obtain high-resolution images of thin optical sections, 

the features of CLSM can reduce some common imaging problems often encountered during 

regular fluorescence microscopy when used in a histological context.  

Many features of CLSM act to reduce autofluorescence and spectral bleedthrough, and thus 

CLSM constitutes a better option for imaging multiple markers via IF. Firstly, thin optical 

sections reduce the volume of tissue that can contribute to autofluorescence (Ma et al., 2006; 

Robertson et al., 2008). Secondly, the monochromatic excitation lasers are of much narrower 

wavelength (<5 nm) in comparison to standard fluorescence mercury vapour lamps (250-800 

nm) (Robertson et al., 2008). This has two benefits, in that much of the spectrum that can 

cause autofluorescence is removed, and also that spectral bleedthrough is less likely to occur 

due to the decreased potential of simultaneously exciting two separate fluorophores with one 

excitation line. More precise, numerically defined emission collection windows are also 

available on confocal systems, further reducing the potential for autofluorescence and spectral 

bleedthrough (Paddock, 2000; Robertson et al., 2008). In addition, CLSM systems have the 

added option of alternately scanning each laser line across the sample, so that only one 

fluorophore species at a time is excited but an image comprised of multiple fluorophores is 

obtained (Brown, 2007; Robertson et al., 2008). This further reduces the chance of spectral 

bleedthrough, because at any given time during collection only one laser line is active and 

only one emission collection window is open (Robertson et al., 2008). Some confocal systems 

can rapidly oscillate laser lines sequentially either electronically or through the use of 

acousto-optic tuneable filters (AOTF), and can therefore achieve this sequential excitation and 

emission collection with only millisecond delays between laser lines  (Brown, 2007). 
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These features, combined with the rejection of out of focus blur, also mean that more accurate 

quantitative comparison of multifluorescence signals is possible (Demandolx and Davoust, 

1997; Sandison and Webb, 1994), and CLSM is a highly viable approach for the spatial and 

temporal resolution of specific antigens in histopathology.  

However, the use of new generation fluorophores is of even greater importance than when 

using standard fluorescence microscopy. Increased fluorophore photostability is an essential 

attribute in CLSM for a number of reasons. Firstly, the high intensity laser light source means 

that photobleaching occurs faster (Paddock, 2000). Secondly, although the pinhole blocks 

emitted light originating from the focal plane, the surrounding areas of the tissue along the z-

axis are still exposed to excitation wavelengths and therefore will also photobleach (Brown, 

2007; Paddock, 2000). Thirdly, the production of 3D images of tissues requires repeated 

exposure of the same area to excitation wavelengths (Paddock, 2000; Semwogerere and 

Weeks, 2005). The higher quantum yield of the new fluorophores is also beneficial (Panchuk-

Voloshina et al., 1999), particularly because the pinhole blocks out much of the signal 

reaching the detector to generate optical sections (Semwogerere and Weeks, 2005). One 

further advantage of these next generation fluorophores, especially for clinical histopathology, 

is that they have been shown to store more effectively, and studies have found that tissues 

stained with Alexa secondaries can be stored at -20 
o
C for at least nine months without a 

detectable loss of staining quality (Robertson et al., 2008). 

1.7 Recent advances of imaging multiple markers using confocal microscopy in histology  

Multiple antigens have been successfully imaged via IF and confocal microscopy for a wide 

range of tissues and tissue processing methods. For example, cytokeratin 8/18, vimentin and 

oestrogen receptors have been simultaneously imaged in both malignant and normal breast 

tissue for a comparison of spatial expression and distribution of markers (Robertson et al., 
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2008). Similarly, the prognostic significance of caveolin 2 in breast cancer has been analysed 

via simultaneously imaging caveolin 1, caveolin 2 and p63 (Savage et al., 2008). An 

additional study investigated correlations between insulin-like growth factor I receptor and 

oestrogen receptor beta expression in colorectal cancer tumourigenesis (Papaxoinis et al., 

2007), highlighting the use of the method for monitoring multiple markers simultaneously. 

Also, such studies highlight the applicability of such a method for oncogenic biomedical 

research purposes.  

Other successful applications of multiple immunostaining and imaging via CLSM include 

imaging mesenchymal stromal cells (MSCs) in cryosections of colonic tissue via 

immunostaining of the MSC marker CD146 alongside other non-MSC markers such as von 

Willebrand factor (vWF) and actin (Signore et al., 2012). Markers such as E-cadherin, Ksp-

cadherin and collagen IV have been visualised in FFPE sections of kidney (Robertson et al., 

2008).  In addition, whole mounts of human and murine bone marrow have been imaged via 

IF and CLSM against markers such as CD3, CD45R and Ter119 in order to visualise 

haematopoiesis in three dimensions (Takaku et al., 2010). Another study optimised a multiple 

immunolabelling CLSM method to simultaneously visualise viral antigens and tissue antigens 

to identify the foot and mouth disease virus in a wide range of animal tissues (Arzt et al., 

2009).  

 The wide range of tissues and markers that have been successfully imaged highlights the 

wide applicability of the method as a histological and pathological research tool. However, 

relatively few studies have been undertaken using similar methods to image multiple markers 

within immunological tissues. This constitutes the primary aim of this study. 
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1.8 IF CLSM for imaging immunological tissues 

Based on these recent successes of multiple marker imaging via IF and CLSM in many tissue 

types, the ability to simultaneously visualise multiple biomarkers within secondary lymphoid 

tissues would be highly beneficial to immunological histology and histopathology. This is 

because the immunophenotypes of immunological cells are complex and often require the 

identification of more than one marker for accurate identification of specific cell types (Ma et 

al., 2006). In addition, cancers that manifest themselves within lymph nodes, such as 

lymphatic leukaemias and lymphomas, have complex immunophenotypes that can confer 

diagnostic and prognostic information of the disease (Hayden et al., 2012; Sathiya and 

Muthuchelian, 2009).  

From a methodological perspective, lymphoid tissues are ideal for the optimisation of an 

IF/CLSM tissue imaging method, because they possess histologically distinct areas that 

contain high densities of immunological cells which have well defined immunophenotypes, 

such as primary and secondary follicles that contain high levels of B-lymphocytes (Cesta, 

2006; Willard-Mack, 2006). Thus, many different antigens can be chosen from, many of 

which will provide robust staining of target cells. In addition, immunological markers such as 

CD3, CD4 and B220 have already been imaged via IF and CLSM on lymphoid tissues such as 

mouse spleen with robust results (Ma et al., 2006).  

1.9 Aims and objectives 

Preliminary experiments performed on lymph node cryosections had yielded promising 

results in markers such as the CD4 and CD8 T cell subset markers, the B cell markers CD19 

and CD20 and κ and λ immunoglobulin light chain antigens (data not published). These 

studies were, however, performed using the older generation fluorophores FITC, TRITC and 

Cy5. Therefore, based on these preliminary studies and the literature discussed, the aims of 
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this study were to further refine and modernise the multiple immunostaining protocol on 

immunological tissues, and optimise the microscope imaging settings to obtain the best 

images possible. In doing this, the study will develop this method as a research tool as well as 

increase its potential for routine use in clinical histopathology. The specific study objectives 

were to: 

 Establish an effective immunological tissue type upon which to optimise secondary 

antibody dilutions. 

 Optimise the immunostaining protocol for use with new generation Alexa fluorophores. 

 Optimise the secondary antibody dilutions and confocal laser-scanning microscope 

settings to produce images with the best possible resolution and signal/noise ratio. 

1.10 Experimental procedure 

For the purposes of this optimisation study, it was decided that staining against B-lymphocyte 

surface markers within fixed tissue samples would be a suitable approach, because B cells are 

abundant within secondary lymphoid organs and tissues such as the spleen and lymph nodes 

(Cesta, 2006; Willard-Mack, 2006). Specifically, the B-lymphocyte antigens that were 

selected were the B-cell surface marker CD19, and kappa (κ) and lambda (λ) immunoglobulin 

light chains. These three antigens were chosen for a number of reasons as follows: 

 CD19 is expressed by all recognisable B-lineage cells independent of developmental stage 

and maturity, with the exception of fully differentiated plasma cells (Del Nagro et al., 

2005). B-lymphocytes also express surface immunoglobulin, which is expressed by all B 

lineage cells except for those at very early stages of development, or terminally 

differentiated plasma cells (Thiel, 1985). In secondary lymphoid organs, affinity 

maturation of B lymphocytes in response to foreign antigen takes place within secondary 

follicles (Cesta, 2006; Vandervalk and Meijer, 1987; Willard-Mack, 2006), and therefore 
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dense regions of CD19, and surface immunoglobulin expressing cells should be present, 

providing excellent regions to image for optimisation purposes.  

 All B cells produce antibodies with κ or λ immunoglobulin light chain forms, which are 

also expressed on the cell surface within IgM and IgD isotypes. Individual B cells 

exclusively express either κ or λ immunoglobulin light chain forms (Takeda et al., 1993). 

Therefore, any given CD19 positive cell should also be positive for either κ or λ antigen. 

This expectation aids the optimisation process in that a general idea of the resulting 

staining pattern is known, and it is therefore easier to discern genuine antigen staining 

from imaging artefacts.  

 Previous preliminary experiments performed on other confocal microscopy systems and 

with original fluorophores had reported that the available anti-CD19, κ and λ antibodies 

were effective. The staining was relatively bright and abundant in relation to other 

markers imaged, and therefore ideal for optimisation experiments. 
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2.0 Materials and Methods 

2.1 Acquisition and fixation of tissue samples 

All tissue samples used in the study were obtained from the Human Biomaterials Resource 

Centre at the University of Birmingham, observing all ethical guidelines. Human spleen and 

reactive lymph node tissue sections of 5 µm thickness were independently pre-prepared via 

cryosectioning and affixed to glass slides. Mounted tissue sections were fixed in acetone for 

10 minutes at 4
 o
C and stored at -20 

o
C in the presence of silica gel to prevent condensation 

and ice crystal formation within the tissue samples. 

2.2 Jenner/Giemsa staining and imaging 

Jenner/Giemsa phosphate buffer was diluted 1:25 in distilled water. Jenner stain (Raymond A. 

Lamb Ltd) was diluted 1:3 in the diluted buffer, and Giemsa stain (VWR) was diluted 1:20 in 

the diluted buffer. 50 µl diluted Jenner stain was pipetted onto the tissue sections and 

incubated for 5 minutes at room temperature (RT). The tissue was carefully washed with 

distilled water, and 50 µl diluted Giemsa stain was pipetted onto the tissue section and 

incubated for 10 minutes at RT. The dH2O wash was repeated and the tissue section left to dry 

thoroughly before mounting with DePeX mounting medium (VWR) and a 1.5 mm thick glass 

coverslip.  The stained sections were imaged at 10x magnification using an Olympus BX-40 

light microscope, an Olympus 10x Plan objective with a numerical aperture of 0.25 and an 

Olympus C-5050 Zoom Digital Camera. 

2.3 Indirect immunofluorescence staining protocol 

Glass slides with tissue sections were removed from -20 
o
C storage and left to equilibrate to 

room temperature (RT) for 10 minutes. Tissue sections were outlined using a slide marker pen 

(Dako) to keep tissue sections covered with antibody solution. To block endogenous Fc 

receptors and prevent non-specific antibody binding to immune cells, 50 µl FcR Blocker 
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(Innovex Biosciences) was pipetted onto the tissue sections and incubated for 30 minutes at 

RT within a light excluding moist chamber. Excess fluid was removed from the tissue 

sections and 50 µl primary antibody diluted in FcR Blocker was added to the tissue sections 

and incubated for 60 minutes at RT in a moist chamber. Excess solution was removed and the 

slides washed in a phosphate-buffered saline (PBS) bath for 20 minutes at RT in the dark and 

on a magnetic stirrer at low speed. Secondary antibody dilutions were prepared as stated for 

primary antibodies, but the solution was also microfuged for 2 minutes at 14,000 RPM. 

Excess PBS was removed and 50 µl secondary antibody diluted in FcR blocker was pipetted 

carefully from the top of the solution and onto the tissue sections, and incubated in the same 

manner as the primary antibody. A PBS wash was repeated as before, and excess PBS 

removed. To avoid problems with pipetting error and avoid pipetting centrifuged secondary 

antibody aggregates at the base of the eppendorf tubes, all antibody solutions were made up to 

volumes of at least 50 µl excess. Stains against multiple antigens were performed by diluting 

all primary antibodies of individual IgG subclass within one mixture, followed by the same 

process with secondary antibodies. To control for non-specific binding of fluorophore-

conjugated secondary antibodies, the staining procedure was carried out twice for each 

variation of staining, but for the second stain the primary antibody was omitted. 

2.4 Nuclear counterstaining and slide mounting 

Two mounting and counterstaining methods were used within the study. For slides mounted 

with VECTAShield with 4',6-diamidino-2-phenylindole (DAPI, Vector Laboratories),  slides 

were mounted and counterstained by pipetting 10 µl VECTAShield with DAPI onto the tissue 

section and placing a glass coverslip onto the section. The slides were then inverted on tissue 

paper to remove excess mountant. Coverslips were sealed around the edges with clear nail 

varnish. Alternatively, tissue sections were counterstained by incubation in a PBS solution 

with Hoechst bis-benzimide dye 33258 at 20 µg/ml for 1 minute at RT, followed by a 1 
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minute PBS wash. Slides were then mounted by pipetting 10 µl glycerol-based antifade 

mounting medium (INOVA Diagnostics), and inverted on tissue paper to remove excess 

mountant and sealed with clear nail varnish. Prior to imaging, the slides were then stored at -

20 
o
C in the dark. 

2.5 Primary and secondary antibody tables 

 Due to issues of cross-reactivity, it can be potentially difficult to image multiple markers 

simultaneously using multiple primary antibodies raised in the same animal. One solution is 

to use monoclonal primary antibodies of differing antibody subclass, and corresponding 

monoclonal secondary antibodies highly specific to these subclasses (Buchwalow et al., 2005; 

Ma et al., 2006), which was used for this study.  

The following antibodies were used throughout the study. All primary and original secondary 

antibodies were supplied by Santa Cruz Biotechnology, and all Alexa secondary antibodies 

were supplied by Invitrogen: 

Primary Antibodies 

Isotype 

Subclass 

Affinity Stock 

Concentration 

Dilution Used 

IgGγ1  mouse anti-human κ 

Immunoglobulin light chain 

100 µg/ml 1:100 (1 µg/ml) 

IgGγ2a mouse anti-human λ 

Immunoglobulin light chain 

100 µg/ml 1:50 (2 µg/ml) 

IgGγ2b  mouse anti-human CD19 100 µg/ml 1:100 (1 µg/ml) 
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The primary and first generation secondary antibodies were used at fixed dilutions determined 

as optimum concentrations by preliminary experiments. However, Alexa secondary antibodies 

were used at different dilutions depending on the experiment, as detailed in the results section. 

Alexa fluorophore - conjugated secondary antibodies 

Subclass 

Affinity 

Fluorophore, affinity and isotype Stock 

Concentration 

Dilution Used 

γ1 Alexa488 conjugated goat anti-

mouse IgG γ1 

2 mg/ml See results 

γ2a Alexa568 conjugated goat anti-

mouse IgG γ2a 

2 mg/ml See results 

γ2b  Alexa647 conjugated goat anti-

mouse IgG γ2b 

2 mg/ml See results 

 

For the dilutions stated in the following results sections, the corresponding final 

concentrations for the Alexa secondaries were as follows (table over page): 

Original fluorophore - conjugated secondary antibodies 

Subclass 

Affinity 

Fluorophore, affinity and isotype Stock 

Concentration 

Dilution Used 

γ1 FITC conjugated goat anti-mouse 

IgG γ1 

1 mg/ml 1:100 (10 µg/ml) 

γ2a TRITC conjugated goat anti-mouse 

IgGγ2a 

1 mg/ml 1:50 (20 µg/ml) 

γ2b  Cy5 conjugated goat-anti mouse  

IgG γ2b 

1 mg/ml 1:100 (10 µg/ml) 
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Dilution Concentration 

1:50 40 µg/ml 

1:100 20 µg/ml 

1:200 10 µg/ml 

1:400 5 µg/ml 

 

For additional information regarding the molecular and spectral properties of each 

fluorophore used within this study, see table S1. 

2.6 Confocal laser scanning fluorescence microscopy imaging 

For all experiments, a Nikon A1R
+
 Eclipse Ti Inverted Microscope System (Nikon 

Instruments) was used, and images were digitally acquired through photomultiplier tubes via 

Galvanometric one-way laser scanning at a speed of 1 frame per second and a resolution of 

512x512 pixels. Images were acquired at 40x magnification, for which an oil immersion 40x 

Plan Fluor differential interference contrast (DIC) H N2 objective with a numerical aperture 

of 1.3 was used (Nikon). Fluorescence images for up to 4 colours were simultaneously 

captured, with electronic sequential laser scanning enabled to aid elimination of spectral 

bleedthrough. Confocal Pinhole diameter was preset to 1 Airy Unit. Laser excitation and 

emission filter settings are detailed in the following table: 

Photomultiplier Channel Laser Excitation Wavelength 

(nm) 

Emission Collection Window 

(nm) 

DAPI/Hoechst 33258 402.1 425-475 

FITC/Alexa 488 488 500-550 

TRITC/Alexa 568 561.1 570-620 

Cy5/ Alexa 647 637 662-737 
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Areas of high B lymphocyte levels with strong CD19 positivity were preferentially imaged, 

and for each individual tissue section the corresponding region or a highly similar region was 

imaged and analysed for continuity. 

2.7 Image analysis 

Images were analysed using NIS-Elements v3.2 (Nikon). The linear contrast was adjusted on 

the final images to emphasise stained areas and remove background noise. This value differed 

per image and tissue section, but corresponding secondary only controls were always 

examined under the same look-up table (LUT) settings to confirm that no background or 

autofluorescence was emphasised, or indeed at all present. 

2.8 Quantification of CD19 and κ/λ positive cells 

Three images of suspected B-lymphocyte rich regions were taken at 40x magnification from 

lymph node cryosections stained with differing secondary antibody panels. For consistency, 

areas that were imaged contained CD19 positive cells throughout the entire image field. All 

cells that were CD19 and κ-antigen positive were counted, as were CD19 and λ-positive cells. 

The numbers were averaged for each differing antibody panel, and the standard deviation and 

standard error of the values were obtained using Microsoft Excel 2007.  

2.9 Statistical analysis 

Two-tailed T tests were performed between each variation of secondary antibody staining 

panel using Microsoft Excel 2007. 
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3.0 Results 

3.1 Selection of suitable tissue and mounting method 

 

 

 

 

 

 

 

 

 

 

Firstly, the primary tissue samples for which to perform the optimisation experiments on had 

to be determined. To establish this, tissues were simultaneously stained with pre-determined 

concentrations of previously used original secondary fluorophore conjugates, because they 

were known to be effective (See section 2.5).  Initially, the experiments were performed on 

spleen biopsy samples from healthy subjects. However, the first spleen sample analysed did 

not produce good quality staining, and it was difficult to positively identify stained cells (fig.4 

Figure 4 – Example images of staining quality across immunological tissue samples. A. Healthy spleen cryosection. B. 

Healthy spleen cryosection from a different individual. C. Reactive Lymph node cryosection. Images were obtained at 

40x magnification and scale bars represent 50 µm. Pseudocolours – Blue = Nuclear counterstain, Green = κ/FITC, orange 

= λ /TRITC, red = CD19/Cy5. 

A

C

B
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Figure 5 - Jenner/Giemsa stains of healthy spleen (A) and reactive lymph node (B) cryosections at 10x magnification. 

Nuclei stain blue, while eosinophils stain in varying shades of pink. The densely packed darker regions visible on the 

reactive lymph node stained strongly for CD19 and κ/λ antigen, suggesting that they were B-lymphocyte rich regions, 
while it was difficult to identify B-lymphocyte rich regions in the spleen samples.  

A). In addition, the sample contained relatively few B-lymphocyte rich follicular regions or 

germinal centres. The staining protocol was therefore repeated with cryosections from a new 

spleen sample, which also showed poor staining quality (fig. 4B), and it was therefore decided 

to test the protocol on cryosections derived from hyperplasic reactive lymph nodes.  Reactive 

lymph nodes are enlarged and generally richer in B-lymphocytes as they are actively 

responding to antigen stimulation (Bain and Bain, 1985). The quality of staining was 

observed to be superior to either spleen sample tested, and positively stained cells were far 

easier to identify and more abundant (fig. 4 C). Jenner-Giemsa stains were also performed on 

the tissues to examine the histological differences between the lymph node cryosections and 

reactive lymph node cryosections (fig. 5). Within the reactive lymph node cryosections, it 

proved difficult to identify any well defined histological features that are known to contain a 

high proportion of CD19 positive B-lymphocytes such as germinal centres. However, darkly 

stained regions as seen in fig. 5B corresponded with CD19 positive areas when imaged with 

the confocal microscope suggesting that these regions were rich in B lymphocytes. These 

areas were abundant throughout the tissue, and it was therefore decided that all subsequent 

experiments were to be carried out on reactive lymph node cryosections. 
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 Another potential issue was the quality of the nuclear counterstain. It was observed that the 

relative brightness of the Hoechst nuclear counterstain was faint, meaning that the laser power 

and PMT gain of the Hoechst channel had to be set high to obtain quality images. A different 

counterstaining and mounting method was therefore tested. VECTAShield with DAPI is 

another glycerol based mountant that remains fluid after mounting, but unlike the previously 

used mountant it also contains the counterstain dye (DAPI), removing the requirement for the 

Hoechst staining step. However, there was little difference in counterstaining brightness 

between both methods (fig. 6). Furthermore, the brightness of Cy5 staining was markedly 

diminished when the slides were mounted with VECTAShield. The original Hoechst 

counterstaining method was therefore used for all subsequent experiments rather than 

VECTAShield with DAPI.   

 

 

Figure 6 – Comparison of Cy5 signal strength between tissue sections mounted with INOVA antifade mounting 

medium and counterstained with Hoechst 33258 (A) and VECTAShield with DAPI (B). Cy5 signal strength was much 

stronger in the first instance, which was therefore used for all subsequent experiments. Images were obtained at 40x 
magnification and scale bars represent 50 µm. Pseudocolours - Blue = nuclear counterstain, red = CD19/Cy5. 
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3.2 Acquisition of microscope settings and single colour controls 

The next stage of the study was to identify the optimal laser power and photomultiplier tube 

(PMT) gain settings for maximum signal strength, and to determine that no spectral 

bleedthrough was occurring between the lasers lines used to visualise each different 

fluorophore. As previously discussed, this can potentially manifest as a problem where 

multiple fluorophores are used simultaneously, thus it was essential to confirm that this was 

not occurring. 

When acquiring the images, it was also important to avoid fluorophore and detector 

saturation. Fluorophore saturation can occur if the laser power is set too high, causing all 

fluorophores to excite throughout the z-plane, resulting in unnecessary photobleaching and 

poorer z-axis resolution (Brown, 2007) . Alternatively, detector saturation can occur if the 

PMT gain is set too high, leading to a loss of features within the sample and false 

interpretation of images (Brown, 2007). To avoid either of these scenarios, a saturation 

detector feature was enabled during these experiments, which highlights fully saturated pixels 

within the image, thereby allowing for the adjustment of microscope settings accordingly. 

To establish these settings, and if spectral bleedthrough was present, individual lymph node 

cryosections were stained with one primary and a fluorophore-conjugated secondary antibody 

of corresponding isotype subclass specificity, and imaged in turn. The following laser power 

and PMT gain settings at which the images were collected were chosen on the basis of giving 

the strongest signal on positively labelled samples without saturation, whilst having no 

observable signal present in the corresponding channel for the control tissue sections stained 

with secondary antibody only (table over page): 

 

 



 

104 

 

Spectral Channel Laser Power PMT Gain 

Hoechst/DAPI 50% 110 

FITC/A488 30% 70 

TRITC/A568 30% 70 

Cy5/A647 50% 95 

 

 Images were obtained for all four collection windows, and if no spectral bleedthrough was 

occurring, all channels were expected to be free of signal except for the intended channel of 

the fluorophore the sample was stained with. Some residual signal was occasionally present in 

the Hoechst channel (fig. 7), but this was due to the fact that the Hoechst counterstain was 

relatively faint and it was therefore necessary to set PMT gain and laser power relatively high. 

This was therefore most likely to be tissue autofluorescence as the signal covered all tissue 

present in the image and did not resemble staining observed in any other channel. Because 

this tissue autofluorescence was present in the Hoechst channel, this did not pose a problem 

for the analysis of the fluorophore-conjugated secondary antibodies and was therefore not an 

overbearing concern.  

Aside from the Hoechst imaging channel, all secondaries produced signal in the correct 

imaging channel, and no signal was observed across multiple channels (fig. 7). The PMT gain 

and laser power settings at which these images were obtained could therefore be used for all 

other experiments with the assurance that spectral bleedthrough was not disrupting the 

interpretation of the images. To be confident of this throughout future experiments, these 

settings were treated as maximum and not exceeded. 
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Figure 7 –  Single colour controls for all fluorophores used in the study performed on reactive 

lymph node cryosections. Aside from tissue autofluorescence detected in the Hoechst channel, no 

detectable signal was observed in channels other than those for which the corresponding primary 

antibody was added. Images were obtained at 40x magnification and scale bars represent 50 µm. 

Pseudocolours -  Blue = nuclear counterstain, Green = κ /FITC or A488, orange = λ /TRITC or 
A568, red = CD19/Cy5 or A647. 
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3.3 Titration of Alexa-conjugated secondary antibodies 

It was established that no spectral bleedthrough was occurring across laser lines for any 

fluorophore type used in this study when used at the highest concentrations, and  imaged with 

the highest laser power and PMT gain settings possible without saturation.  The next phase of 

the study was to identify the optimum dilutions at which to use the Alexa secondaries along 

with the full cohort of primary antibodies. This was achieved via titration of the secondary 

antibodies through 1:2 serial dilutions, ranging from overall dilutions of 1:50 to 1:400, and 

qualitatively assessing the brightness and signal/noise ratio in relation to the original 

secondaries. In addition, negative controls treated with secondary antibody only were 

performed for each dilution to assess the levels of nonspecific flourophore binding to the 

tissue and adjust the microscope settings accordingly.  

Alexa488 was most effective at a dilution of 1:200, because at 1:50 and 1:100, a large amount 

of non-specific signal was present within the secondary only control. The laser power and 

gain levels were therefore reduced so that this signal was no longer visible, but this had the 

effect of reducing the overall brightness of the staining to unacceptable levels (fig. 8). At 

1:400, the staining appeared fainter than that of 1:200 using the settings described in section 

3.2 for visualising A488, and these settings were not exceeded because: 

 a) tissue autofluorescence was visible at laser power and PMT gain settings that were slightly 

higher than optimum levels.  

b) the single colour controls had indicated an absence of spectral bleedthrough at these 

settings, and this was no longer a reliable observation should the laser power or PMT gain be 

increased. 

Alexa568 produced high quality staining at dilutions of 1:50, 1:100 and 1:200, while the 

signal was slightly fainter at 1:400 (fig. 8). Although 1:100 and 1:200 were effective, 1:50 
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was deemed to be the optimum concentration due to very little nonspecific signal detected in 

the secondary only control and slightly superior signal strength. 

Alexa647 was deemed to be most effective at 1:400 because at levels of 1:50, 1:100 and 1:200 

there were high levels of background noise in the secondary only controls, suggesting a high 

level of nonspecific fluorophore binding. However, at 1:400, A647 was faint compared with 

Cy5 at 1:100 and the linear contrast had to be enhanced more to reveal the staining (fig. 8). As 

the contrast was enhanced, the same alterations were performed on the secondary only 

controls to ensure that no tissue autofluorescence or nonspecific fluorophore binding was 

enhanced. 

Overall, it was qualitatively determined that A488 at 1:200 and A568 at 1:50 provided 

brighter staining than FITC at 1:100 and TRITC at 1:50. However, due to high levels of 

nonspecific noise at higher concentrations, the optimum dilution of A647 was 1:400 at which 

the signal levels were relatively low, and the most effective far-red emitting fluorophore was 

therefore less apparent. Thus, the next stage of the study was to perform triplet stains of 

CD19, κ and λ antigens, using the Alexa secondaries at the optimally defined dilutions and 

directly comparing the staining quality to the optimal original secondary antibody panel.  
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Figure 8 – Reactive lymph node cryosections stained with the full cohort of primary antibodies 

and subsequent serial titrations of Alexa fluorophore conjugated secondary antibodies performed 

to obtain optimum dilutions. Images were obtained at 40x magnification and scale bars represent 

50 µm. Pseudocolours – Blue = nuclear counterstain, Green = κ /A488, orange = λ / A568, red = 

CD19/ A647. 
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3.4 Identification of optimum secondary antibody concentrations 

Due to a shortage of tissue sections, the following experiments were carried out on reactive 

lymph node sections sourced from a different patient. However, highly similar staining 

characteristics were observed, and thus the information obtained from the previous 

optimisation experiments could be confidently applied to these subsequent experiments 

performed on reactive lymph node tissue obtained from another individual. This 

reproducibility of staining quality between individuals was also in itself an important 

observation as this is an essential quality should the method be routinely used in 

histopathology. 

The next stage of the study was to obtain images of lymph node cryosections stained against 

CD19, κ-antigen and λ-antigen using previously determined optimum dilutions of Alexa 

conjugated secondary antibodies (fig. 9C). Additionally, staining was performed using 1:100 

Cy5 rather than 1:400 A647 for a direct comparison between the two fluorophores when used 

alongside the optimal dilutions of the other Alexa fluorophores (fig. 9B). A stain was also 

performed using the original secondary antibody panel for direct comparison (fig. 9A). 

As expected, when both optimum concentrations of antibody sets were directly compared, 

A488 and A568 were brighter than FITC and TRITC respectively (fig. 9). 1:100 Cy5 was 

brighter than A647 overall, and the contrast had to be adjusted for A647 to be observable. To 

evaluate the effectiveness of the staining, the levels of CD19 and κ-positive cells were 

compared against CD19 and λ-positive cells. The values obtained were generally consistent 

across all three staining methods, and two-tailed T tests performed between each secondary 

antibody set indicated no statistically significant differences (A vs. B P = 0.69, A vs. C P = 

0.97, B vs. C P= 0.54, fig. 9 D/E). The average κ/λ ratio across all stains was 1.65 (SEM = 
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±0.81, range = 1.3-1.98, fig.9 E) suggesting that all of the secondaries used were accurately 

representing the B cell κ/λ ratio present in the sample.  

The evidence that these concentrations of A488 and A568 were more effective than the 

optimal concentrations of the corresponding original fluorophores was fairly conclusive, but 

Cy5 was observed to be brighter than A647 at their corresponding optimal dilutions. 

However, upon adjustment of linear contrast, the signal strength of A647 could be made more 

pronounced, and making the same adjustments to images of secondary only controls made 

sure that no autofluorescence or background staining was also being emphasised. When this 

was performed, similar staining patterns were observed using each fluorophore (Fig 9 D, E), 

implying that A647 still produced adequate staining brightness for the resolution of CD19 

positive cells, albeit not as bright as Cy5. Thus, the optimum secondaries were determined as 

follows:  

Corresponding primary 

antibody antigen specificity 

Optimum original 

secondary conjugate 

Optimum Alexa secondary 

conjugate 

κ 1:100 FITC 1:200 A488 

λ 1:50 TRITC 1:50 A568 

CD19 1:100 Cy5 1:400 A647 
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Figure 9 – Optimised staining panels. A. 1:100 FITC, 1:50 TRITC, 1:100 Cy5. B. 1:200 A488, 1:50 A568, 1:100 Cy5. 

C. 1:200 A488, 1:50 A568, 1:400 A647. Images were obtained at 40x magnification and scale bars represent 50 µm. 

D. Relative levels of CD19 and κ-light chain positive cells vs. CD19 and λ-light chain positive cells across the three 

differing secondary antibody panels. E. Relative κ/λ Ratios of CD19 positive cells across the three differing secondary 

antibody panels. For both graphs, three images were analysed per antibody panel for a total of nine images for the total 

average, and error bars represent the standard error of the mean. Pseudocolours – Blue = nuclear counterstain, Green = 
κ /FITC or A488, orange = λ /TRITC or A568, red = CD19/Cy5 or A647. 
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4.0 Discussion 

This study has developed and optimised a method for the simultaneous visualisation of CD19, 

κ and λ immunoglobulin light chain antigens in reactive lymph node cryosections using a 

combination of immunofluorescence and confocal laser scanning microscopy. The images 

obtainable with this method are of high quality and resolution, and allow for the visualisation 

of three specific biomarkers alongside a nuclear counterstain. The study developed on 

preliminary experiments that used older generation fluorophores and optimised the method for 

use with new generation Alexa fluorophores. The increase in photostability, and in the case of 

A488 and A568 signal brightness, gained from using these fluorophores increases the 

viability of the staining method to imaging via CLSM (Berlier et al., 2003; Panchuk-

Voloshina et al., 1999; Robertson et al., 2008), as well as increases the clinical applicability of 

the method due to greater re-imaging and long-term storage capabilities (Robertson et al., 

2008). The method also provides superior multiple marker imaging capability in comparison 

to widely used enzyme-based immunohistochemical methods (Robertson et al., 2008).   

4.1 The establishment of effective tissues and mounting methods 

This study originally intended to carry out the optimisation experiments on healthy splenic 

tissue rather than reactive lymph node. However, staining was of poor quality and sparse. This 

could have been due to antigen epitope deterioration, but cryosectioning and acetone fixation 

generally preserves antigens to a high standard (Hofman, 2009; Ripper et al., 2008), and 

reactive lymph nodes were processed in the same manner. Alternatively, the tissue sections 

may simply have been low in B-lymphocyte rich regions.  Regardless of the cause, this 

setback further highlighted the importance of good quality tissue sections for imaging. 

In addition, locating these apparently sparse regions of tissue that should be rich in B 

lymphocytes, such as primary and secondary follicles (Cesta, 2006), was difficult due to some 
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technical aspects of the microscope used for the study. The microscope was equipped with a 

10x air immersion objective, unlike the 40x objective which was oil immersion, causing a 

number of problems.  Firstly, the light collection capability of this objective was sub-standard 

in comparison with the oil immersion objective, causing difficulty in resolving any 

fluorescent signal at 10x magnification. Secondly, as the 10x objective was air immersion and 

the 40x objective was oil immersion, the differing refractive indices of the two mediums 

meant that it would have been difficult to optimise multiple microscope settings and antibody 

dilutions that would produce high quality images for each objective type.  All in all, the 

splenic tissue was not conducible to experiments where high levels of staining were required 

to evaluate the effectiveness of secondary antibody dilutions and microscope settings. The 

reactive lymph node samples produced high quality staining of CD19, κ and/or λ light chain 

antigen positive cell regions which were abundant throughout the tissue, allowing for 

relatively simple location at 40x magnification. A higher number of images per tissue section 

could also be obtained. Future experiments could involve both 10x and 40x oil immersion 

objectives, avoiding these problems, as 10x images are also highly useful for obtaining a more 

general overview of the distribution of biomarkers within the tissue. 

The Hoechst nuclear counterstaining dye was relatively faint, but mounting slides using 

VECTAShield with DAPI resulted in Cy5 signal amelioration. VECTAShield was initially an 

attractive option because it was more time effective - the inclusion of DAPI within the 

mounting medium removed the necessity for a counterstaining step. The loss of Cy5 signal 

was unexpected, but may have been caused by the fact that VECTAShield contains the 

antifade compound p-phenylenediamine (PPD). As stated by the VECTAShield data sheet, 

PPD cleaves the cyanine molecules in Cy2 fluorophores and thus ameliorates the fluorescent 

signal, which may also have occurred with the Cy5 fluorophores used in this study. Any 

future studies featuring cyanine dyes should therefore avoid mounting mediums that contain 
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PPD. Overall, the low signal strength of the Hoechst counterstain was a minor inconvenience 

rather than a major problem because the laser power and PMT gain could be increased in 

compensation. This did result in some tissue autofluorescence in the Hoechst/DAPI channel, 

but not sufficiently to hinder the interpretation of the images. 

4.2 The value of experimental controls 

The single colour control experiments were essential to assume that any signal observed in a 

given emission collection channel was not caused by spectral bleedthrough across channels. 

In addition, performing secondary only stains alongside all experiments allowed for the 

determination of the concentration at which non-specific fluorophore binding was minimal 

while true staining was strong. Together, these controls greatly increased the viability of the 

images and allowed for the determination of optimum antibody dilutions and microscope 

settings. 

Although the controls employed in this study were deemed adequate, an antibody isotype 

subclass control may also have granted even further confidence in the images obtained. 

Antibody isotype subclass controls confirm that the secondary antibodies are exclusively 

recognising the primary antibody isotype subclass intended. This is achieved by sequentially 

replacing primary antibodies with the same concentration of a nonspecific isotype control 

antibody of the same species and isotype subclass (Robertson et al., 2008). However, this was 

deemed as unnecessary for this study, mainly because each individual fluorescent secondary 

used produced staining patterns against their corresponding anti- CD19, κ or λ primary 

antibodies as would be expected for these antigens. 

4.3 Optimum antibody dilutions 

Based on signal/noise observations, it was eventually established that the optimum dilutions 

of Alexa conjugated secondary antibodies were 1:200 for A488, 1:50 for A568 and 1:400 for 
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A647. However, 1:100 Cy5 was qualitatively observed to produce better signal than 1:400 

A647, the highest concentration determined to be viable due to high background signal. 

Nevertheless, it was decided that A647 was a superior choice to Cy5 for a number of reasons:  

a) A647 signal strength could be amplified by adjusting the linear contrast within ranges that 

did not exaggerate background staining levels, producing statistically indifferent CD19 

staining patterns to Cy5.  

b) Cy5 was shown to destabilise when mounted with VECTAShield, meaning that it is less 

adaptable to methodological variations. 

c) Like Alexa488 compared with FITC and Alexa568 compared with TRITC, Alexa647 has 

been shown to be more photostable in comparison to Cy5, and is therefore more conducive to 

the high intensity laser excitation methods of CLSM and sample storage and reimaging 

capability (Berlier et al., 2003; Panchuk-Voloshina et al., 1999; Robertson et al., 2008).  

However, while Alexa fluorophores are reportedly more photostable, it may be beneficial for 

future experiments to quantify the photostability of the dyes when used in this histological 

context for staining immunological tissues. For example, Alexa-stained tissues could be 

exposed to set laser intensities for set time periods, and the change in signal intensity 

quantified and compared with those of the original dye-conjugated secondaries exposed to the 

same conditions. Fluorophore stability during storage of immunological tissue cryosections 

could also be assessed by imaging immediately after staining and mounting and comparing 

fluorescence signal strength after storage for set time periods, as this is likely to differ 

between tissue processing methods and tissue types. 

Overall, images obtained from these optimum dilutions of Alexa conjugated secondaries were 

qualitatively determined as sharp and showing a good signal/noise ratio for each fluorophore. 
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Cells that were CD19 positive were also either κ or λ-light chain positive, and there was very 

little colocalisation of κ-antigen and λ-antigen signal, as would be expected (Takeda et al., 

1993). The use of Alexa fluorophores is also beneficial from an economic perspective - while 

Alexa conjugated secondary antibodies can be slightly more expensive than older generation 

fluorophore conjugates, this study demonstrates that higher dilutions of Alexa secondaries can 

be used in comparison with the original secondaries. In the case of A488 and A568, a better 

signal/noise ratio was observed, and although the final working dilution of A568 was 1:50, 

only a very slight drop in staining quality was observed in dilutions up to 1:200 suggesting 

that A568 could be reliably used at these lower dilutions. Had there been no time constraints, 

certain parameters of the staining protocol could also have been adjusted to obtain the best 

possible signal/noise ratios, such as the incubation times of the primary and secondary 

antibodies, or adding gentle movement/vibration to the incubation steps, which has been 

shown to improve signal/noise ratio in other IF applications (Jacobsen and Staines, 2004). It 

was however relatively simple to distinguish and remove background noise from true 

staining, and the incubation methods used were therefore adequate for the purposes of this 

study.    

Quantitative analysis revealed that the ratio of CD19/κ-positive cells against CD19/λ-positive 

cells was highly similar for all secondary antibodies assessed. This was an important 

observation, as firstly it indicated that the staining patterns observed were likely to represent 

the true B-lymphocyte κ/λ light chain ratios of the tissue. Secondly, the fact that all 

combinations of fluorophores generated the same pattern of staining was further evidence that 

all secondaries were binding to the correct primary antibody isotype subclasses. In addition, 

the observed average κ/λ ratio of 1.65 was fairly normal for a non-diseased reactive lymph 

node - one study into the κ/λ ratio of B-lymphocytes within reactive lymph nodes recorded an 

average κ/λ ratio of 1.78 in germinal centre cells and 1.56 in mantle cells (Reichard et al., 
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2003). Although the markers imaged in this study could not distinguish germinal centre cells 

from mantle cells, both values are similar, further implying that the staining was correct. If 

more time had been available, flow cytometric analysis could have been performed on the 

tissue samples used to further support these observations. Additionally, although the standard 

error values were relatively small and staining characteristics were reproducible throughout 

the study, the quantification experiments could have been repeated for increased confidence in 

the results obtained. 

4.4 Potential future applications of IF multilabelling and CLSM imaging for 

immunological tissues 

This study has optimised a relatively simple method of simultaneous spatial resolution of 

multiple antigens within lymphatic tissue. Not only is this tool valuable for research into the 

molecular mechanisms of normal immunological processes as well as disease, but it could 

potentially be applied in a clinical setting to diagnose and establish prognoses and suitable 

treatment courses of cancers based on their individual molecular profiles determined through 

immunophenotyping. In comparison to flow cytometry, CLSM immunophenotyping is lower 

throughput, but information concerning the spatial distribution of multiple markers within the 

tissue is obtainable within two or three dimensions, which is not possible with flow cytometry 

(Demandolx and Davoust, 1997; Robertson et al., 2008; Takaku et al., 2010).  

The main reason for using primary antibodies specific to CD19, κ and λ antigens was that 

such staining should follow an expected pattern and the primary antibodies were known to be 

effective. However, the simultaneous imaging of these markers in a lymph node cryosection 

may still assist in the diagnosis of many B cell neoplasms. An abnormal κ/λ light chain ratio 

that is heavily skewed towards one subtype is often indicative of mature B-cell neoplasms, 

because this indicates the presence of a monoclonal population of cells (Reichard et al., 2003; 
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Stahlberg et al., 2003). However, aside from these direct benefits, the true potential of the 

method will be realised as it is optimised for visualising more antigens within both healthy 

and diseased tissues. 

4.5 The potential of CLSM imaging in diagnostic and prognostic immunohistopathology 

Potential applications of the method include clinical immunophenotyping of lymphomas and 

lymphatic leukaemias for diagnostic and prognostic reasons, as well as for personalised 

treatment options. For example, B-cell chronic lymphocytic leukaemia (B-CLL) tumour cells 

resemble small, mature, monoclonal B-lymphocytes. Distinct tumour biomarkers include a 

high expression of CD5 and CD23, and forms that express CD38 and/or CD49d correlate with 

an aggressive disease course and a poor prognosis (Del Poeta et al., 2001; Hamblin et al., 

1999; Hayden et al., 2012; Pittner et al., 2005). Thus, using this IF imaging method against 

these antigens, diagnostic and prognostic markers could theoretically be identified 

simultaneously, and treatment courses could be planned based on the outcome of such 

analysis. Non-Hodgkin lymphomas are also excellent disease candidates that may benefit 

from this method. Many different forms of lymphoma exist, all of which have different 

disease courses, prognoses and treatment regimens. The histological features of lymphomas 

are well defined, but many different forms are histomorphologically similar, as well as 

appearing similar to reactive rather than diseased lymph node tissue. Thus, other such markers 

that may be beneficial to image include CD20, as 95% of malignant lymphomas as well as B-

CLL express CD20 (Sathiya and Muthuchelian, 2009). Another example includes CD134, a 

marker that can differentiate similar T-cell lymphoma types, as tumours consisting of 

activated CD41 T cells express this marker while other forms such as small T cell lymphomas 

do not, aiding in the subclassification of peripheral T-cell lymphomas (Jones et al., 1999). 
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The markers discussed in this section are but a few examples, and theoretically any 

combination of cell surface markers can be imaged simultaneously to diagnose specific 

variants of many immunological disorders. Furthermore, as well as the identification of such 

markers, the method itself could also be very important in the study of the molecular 

mechanisms that constitute the underlying cause of such markers featuring in disease. 

4.6 The potential of CLSM imaging in cancer research 

The method could also greatly benefit biomedical research into lymphomas and lymphatic 

leukaemias, through investigating the molecular mechanisms of cancers and thereby 

developing novel, personalised and targeted therapies. Such therapies target the specific 

molecular processes that cause oncogenicity, and are therefore highly effective at tumour 

killing whilst less toxic to non-neoplastic cells in comparison to methods such as traditional 

radiotherapy and chemotherapy. Cancer cells survive and proliferate due to specific mutations 

to oncogenes and/or tumour suppressor genes, which result in disrupted regulatory networks, 

aberrant responses to stress signals, and signals from the microenvironment. Resulting effects 

may include deregulated cell cycle progression and hence increased proliferation, a lack of 

response to DNA damage signals and further accumulation of mutations, and defective 

apoptotic responses and thus increased tumour survival (Sawyers, 2004). 

For several lymphatic leukaemias and lymphomas, the focus in developing such therapies has 

recently been on targeting the tumour microenvironment, or niche. B-CLL, for example, has 

no outright cure, and current therapies induce transitory remission by periodically reducing 

the load of peripherally circulating quiescent tumour cells (Chiorazzi et al., 2005; Damle et 

al., 1999). B-CLL cells that are present in tumour microenvironments within bone marrow 

and lymph node pseudofollicles are thought to be major causes of relapse due to their 

resistance to treatments and subsequent ability to restore tumour load levels, and therefore 
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specific therapies are required for targeting these cells within the tumour microenvironment 

(Hayden et al., 2012).  

As is true for normal B-cell development, CD4
+
 T helper cell interaction is thought to be 

heavily involved in B-CLL, for providing protection against apoptotic signals and promoting 

cell survival through molecular processes such as CD40-CD40 ligand interactions (Ghia et al., 

2002; Hayden et al., 2012). Stromal cell interaction could also be important, preventing 

apoptosis through modulation of the PI3K/PTEN signalling cascade (Shehata et al., 2010) and 

molecules such as VCAM-1, the cell adhesion molecule, and VLA-4 are thought to play large 

roles in the trafficking of B-CLL tumour cells to these microenvironments (Hartmann et al., 

2009). The CD38 molecule is also thought to be an important mediator of such processes, 

which correlates with the fact that it is a negative prognostic indicator for B-CLL (Deaglio et 

al., 2006). These examples are but a few of the many cell types and molecules thought to 

contribute to this highly complex niche system, and similar mechanisms of niche involvement 

are thought to be highly important in many other lymphatic diseases, such as follicular 

lymphoma  (Pangault et al., 2010). These examples therefore underlines the value of an 

imaging method that can simultaneously visualise multiple markers and provide information 

on the complex network of interactions of such cells and molecules, with the eventual goal of 

producing specific therapies that may target such molecular processes. 

To analyse these inferred specific molecular interactions in more detail, the imaging method 

could also be further developed for novel experimental applications such as Fӧrster 

Resonance Energy Transfer (FRET). This requires the use of two fluorophores with 

overlapping emission and excitation spectra, so a photon emitted from an excited donor 

fluorophore can subsequently excite an acceptor fluorophore to emit a photon (Jiang et al., 

2008; Li et al., 2000). Fluorophore crosstalk is usually undesired for multiple marker imaging, 
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but in the case of FRET it can signify molecular interactions. The sample is illuminated with 

the excitation wavelength of the donor fluorophore only, and if photons emitted from the 

acceptor fluorophore are detected, FRET has occurred. The detection of this quantum physical 

phenomenon can indicate molecular interactions because the energy transfer can only occur 

within close molecular proximity (<100 Å) (Li et al, 2000).  

4.7 Conclusions and future perspectives 

The examples of potential applications of this multiple marker imaging method via IF and 

CLSM presented in this section are but a small fraction of the overall potential of this method 

in biology and medicine. Future experiments should broaden the range of markers that can be 

imaged by optimising staining protocols for many biomarkers that have significant roles in 

immunology and immunopathology. Further continuations of this study could also involve 

optimisation for many different tissues, immunological or otherwise, as this method offers 

much for many histological applications other than immunology and immunopathology. 

Furthermore, future studies could also look to broaden the number of markers that can be 

simultaneously imaged, as has been previously accomplished by novel immunolabelling 

methods, although this can be limited by the availability of spectrally distinct fluorophores 

(Ma et al., 2006). Novel image analysis methods have been employed in an attempt to work 

around this, however such as colour addition (Ma et al., 2006; Ma et al., 2007). It may also be 

beneficial to future optimisation studies to devise quantification methods for signal/noise ratio 

rather than qualitative visual analysis as performed in this study, such as calculating the 

signal/noise ratio by comparing average gray levels of stained areas against background areas, 

or direct comparisons of pixel intensity values (Jacobsen and Staines, 2004). 

By optimising staining and imaging methods for the visualisation of CD19, κ and λ antigen in 

reactive lymph node tissue, this study has provided a basis upon which to further develop and 



 

122 

 

refine IF imaging via CLSM in immunological tissues as well as others, so that it may be 

applied to many diseases in both clinical histopathology and biomedical research. 
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Appendix 

Fluorophore Molecular 

Weight 

Absorption/Emission 

Maxima (nm) 

Extinction 

Coefficient 

 (L mol
-1

 cm
-1

) 

Quantum 

Yield 

FITC 389 494/518 78,000 ~0.9* 

TRITC 479 541/572 100,000 ~0.35* 

Cy5 792 650/670 250,000
†
 0.27

†
 

Alexa488 643 495/519 71,000 0.92 

Alexa568 792 578/603 91,300 0.69 

Alexa647 ~1300 650/665 237,000 0.33 

 

 

 

 

 

 

 

Table S1 - Relevant spectral information of all fluorophores used in the study.  Alexa fluorophore information was 

obtained from Invitrogen product data sheets, and other information was obtained from Thermo Scientific product data 

sheets unless otherwise stated. These values are provided for guidance only. It is important to note that the quantum 

yield of fluorophores can be reduced upon conjugation to other molecules due to fluorophore quenching or pH 

conditions, although Alexa fluorophores are less susceptible to this compared with original fluorophores as explained 
in the text.  

These measurements were obtained from dye molecules in aqueous solutions (PBS). Alexa measurements were 
obtained on free succinimidyl ester derivatives in PBS.   

* = values obtained from Chin et al., 2012. 

† 
=

 
values obtained from Mujumdar et al., 1993. 

 

 




