
INTERACTIVE

FUNCTIONAL

PROGRAMMING

Roland Perera

A thesis submitted to University of Birmingham

for the degree of doctor of philosophy

School of Computer Science

Edgbaston

Birmingham

B15 2TT



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



Submitted 31 October, 2012

Examined 18 January, 2013

Corrected 24 April, 2013

Finalised 21 May, 2013



For Luca
(in case you ever wonder what I was doing)





Abstract

We outline a vision for a new kind of execution environment where applications can be debugged and re-

programmed while they are being used. The overall concept we call interactive programming. In contrast

to most other systems for live programming, interactive programming presents execution to the user as a

live, explorable document. In contrast to the edit-and-continue features found in many debuggers, and to

systems for patching software dynamically, we utilise a notion of retroactive update, where the computation

transitions to a new consistent state when the program changes, rather than a hybrid of old and new. What

changed in the execution is always explicit and visible to the user. Retroactive update relates our work to

incremental computation.

We develop some key components of interactive programming in the setting of a pure, call-by-value

functional language. We illustrate our ideas via a proof-of-concept implementation called LambdaCalc.

Several important components of the overall vision, including eXcient incremental update, scaling to realistic

programs, supporting eUectful programs, and dealing with non-termination, are left for future work. We

implemented a comprehensive visualisation subsystem in LambdaCalc itself, but further performance work

is required for this to be the basis of a working user interface.

Our speciVc achievements are as follows. First, we show how to reify the execution of a program into a live

document which can be interactively decomposed into both sequential steps and parallel slices. We give a

novel characterisation of forward and backward dynamic slicing and show that for a Vxed computation, the

two problems are described by a Galois connection. We extend the notion of slicing to reiVed computations,

and formalise what it is for a slice of a computation to “explain” some part of a value. We show how being

able to slice a computation interactively can help debugging.

Second, we introduce a novel execution indexing scheme which derives execution diUerences from pro-

gram diUerences. Our scheme supports the wholesale reorganisation of a computation via operations such

as moves and splices. The programmer is able to see the consequences of edits on the intensional structure of

the execution. Where possible, node identity is preserved, allowing an edit to be made whilst an execution

is being explored and the changes to be reWected in the user’s current view of the execution. This allows the

user to see the impact of code changes while debugging. We illustrate this using Vgures generated by our

implementation. Our self-hosted visualisation code is able to compute diUerences in visualisations, which

we use to visualise diUerences in computations.

We conclude with a discussion of some of the challenges facing the proposed paradigm: space require-

ments, visualising large computations and data structures, computational eUects, and integrating with envi-

ronments that lack support for retroactive update.
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1 Overview

To understand a program you must become both the machine and the program.

Alan Perlis, Epigrams on Programming [Per82]

Programming is an ongoing dialogue between programmer and programming environment. Development

activities, such as tweaking code, writing new test cases, stepping through a computation in a debugger,

and so on, are questions that we ask of our programming environment. The programming environment

answers by providing feedback or transitioning into a new state. The questions and answers are woven into

a complex web of interaction, as we switch between testing and understanding, changing and Vxing.

In this thesis, we propose a model of programming that supports these interwoven, interactive Q&A

sessions directly. The key idea is to treat the execution of a program as a persistent, explorable, spreadsheet-

like document. Because the user can interact with and modify a running program, our proposal is a form

of live programming (Related Work, §3.7). We call our approach interactive programming. Compared with

other approaches to live programming, the unique feature of interactive programming is that an edit results

in a delta to the program execution and its visualisation, allowing our working context to update into a new

consistent state, rather than forcing us to reconstruct it from scratch each time, or risk continuing in an

inconsistent state.

Interactive programming, as sketched here, is an ambitious goal. As we clarify in §1.2 below, our achieve-

ments in this thesis are modest compared to this ambitious vision. In §1.3 we list our speciVc achievements.

Supplementary material. The following additional material is available online:

http://dynamicaspects.org/papers/thesis/LambdaCalc.tar.gz Haskell source code, plus examples

https://vimeo.com/45867320 Slide presentation (part 1)

https://vimeo.com/43760460 Slide presentation (part 2)

1.1 Plan of thesis

The thesis is organised into seven chapters and two appendices.
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Chapter 1. Overview. We introduce the key idea of interactive programming, outline the plan of the thesis,

discuss the scope and limitations of the work, and then summarise our contributions, including the relation-

ship to previous publications of the author.

Chapter 2. Programming as Interaction. We outline our vision of interactive programming, which moti-

vates the technical development in the rest of thesis. Although our prototype LambdaCalc only implements

some components of the vision, we are able to use it to illustrate the central ideas. To set the scene, we de-

scribe programming is an ongoing Q&A session between programmer and programming environment. We

divide the questions into two kinds. “How” questions concern a single computation, in particular the rela-

tionship between program and output. Normally “how” questions are diXcult to answer because programs

are black boxes. In LambdaCalc such questions are enabled via two forms of interactive decomposition of a

running program: into sequential steps and into parallel slices.

“What if” questions concern the relationship between one computation and another. They subsume the

familiar notion of an edit, which we construe as a question of the form, “How would my program’s be-

haviour change if it were modiVed in the following way?” We allow “what if” questions to be asked while

the programmer is pursuing the answer to a “how” question. Using Vgures obtained from LambdaCalc, we

argue that the programmer should not have to restart a computation in order to understand it or change it

but should be able to move seamlessly between using, understanding and editing to suit the task at hand.

Chapter 3. Related Work. We relate our work to previous work on tracing, debuggers, program visu-

alisation, live programming, spreadsheets, functional reactive programming, provenance, program slicing,

incremental computation, execution indexing and end-user programming.

Chapter 4. Reifying Computation. We allow the user to look inside a computation. We enable this by

reifying execution: turning the process of execution into a description of the process. Our techniques are

standard here, but this is needed for what follows. We Vrst introduce the baseline language used for the

rest of the thesis, and then show how reiVed computations take the form of an “unrolling” of the program

that grows as the program runs. We call these reiVed computations traces. Traces are built by a tracing

interpreter that transcribes the big-step evaluation of a term into a data structure.

Chapter 5. Slicing Computation. We allow the user to query the relationship between parts of the output

and parts of the program, for given computation. In the literature this is called dynamic slicing. Slicing

queries can be asked in two directions, depending on whether they seek to relate partial programs to partial

outputs, or partial outputs to partial programs. We formalise the notion of a slice (preVx) of a program and

extend the notion of execution to program slices. This analysis gives rise to aGalois connection, implying that

for any slice of the output of the program, there is a least slice of the program able to compute it. DiUerential

program slices, diUerences between one slice of a program and another, enable more Vne-grained Q&A about

the relationship between input and output.

We then show how to eXciently calculate least program slices for a given output slice by running the
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program backwards for that portion of the output. The traces we built in Chapter 4 guide the backward ex-

ecution. The notions of slicing and diUerential slicing are extended to traces as well as programs, revealing

information that a program slice cannot. We give a trace-slicing algorithm and show that it calculates the

least trace slice that “explains”, in a technical sense, a given portion of the output.

Chapter 6. DiUerencing Computation. We allow the user to edit a program and observe the resulting

delta in its execution. This is possible via indexed traces where nodes are identiVed by injectively assigned

indices. Indexed traces are built by a deterministic indexing interpreter which derives an index for each node

in the computation from indices provided on the input program. We show how two indexed traces can be

subtracted to obtain a trace delta. Trace deltas are more general than the diUerential slices introduced in

Chapter 5, which can describe only increasing or decreasing changes. DiUerences between indexes traces

can describe complex reorganisations of a computation such as moves and splices.

Chapter 7. Conclusion. We assess the strengths and weaknesses of our work, and discuss future directions:

scaling to realistic programs, eXcient diUerential execution, distributed systems, computational eUects, and

demand-indexed computation. We also sketch a more realistic treatment of primitive operations.

Appendix A. Additional Proofs. We give longer proofs omitted from the main body of the thesis.

Appendix B. Delta Visualisation in LambdaCalc. By adding a reWection facility to LambdaCalc, we

were able to use diUerential execution to implement much of the GUI code which visualises the deltas that

diUerential execution itself produces. We use this as a case study to discuss the viability of interactive

programming as a form of incremental computation, with several examples from our code base.

1.2 Scope

To make our problem more tractable, we adopt several simplifying (and unrealistic) assumptions, which we

now set out. We also describe a signiVcant limitation of our implementation, and give a sense of how the

gap between our current implementation and the long-term vision might be narrowed. We say more about

this in Future Work, §7.2.

Linguistic simpliVcations. We restrict ourselves to a pure, call-by-value functional language with recursion

and data types. Despite this simpliVed setting, we are able to put our language to practical use, using it to

generate all the visualisations of executions that appear in the thesis. In Future Work, §7.2, we discuss more

realistic features, in particular concurrency, distribution, and side-eUects. We also ignore non-terminating

programs; our implementation hangs in the presence of divergence and our main theorems only consider

programs which terminate. Ideally the user would be able to interrupt a divergent or long-running compu-

tation, interact with it, and resume it. While this is a plausible extension of the ideas presented here, it is

beyond the scope of the thesis.
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Toy examples. To avoid having to address non-trivial visualisation and performance issues, we restrict our

examples to toy programs. These suXce to illustrate the philosophy of interactive programming in Chap-

ter 2, but fall well short of demonstrating that the approach can scale even to medium-sized programs. The

space overhead associated with treating computations as explorable data structures is one concern; thank-

fully existing work on functional debuggers has explored various techniques that could be applicable here.

We discuss these in Future Work, §7.2.1. The visualisation challenges for more realistic programs are another

concern; “zoomable” user interfaces and custom visualisations for particular data types may help here. We

discuss these in §7.2.1 too and also explain why it makes sense to build such visualisations in LambdaCalc

itself.

Implementation limitations. We validated several of our key ideas via a proof-of-concept implementation.

We call this system LambdaCalc, after the early spreadsheet systems VisiCalc and SuperCalc, since it has

much of the Wavour of a “spreadsheet for functional programming”. The visualisation subsystem of Lamb-

daCalc is mostly self-hosted. This allows us to visualise diUerences by diUerencing visualisations, something

explained in more detail in Appendix B. This was a powerful validation of our system’s ability to generate

useful execution deltas, but unfortunately our self-hosted visualisation layer is too slow to form the basis

of a point-and-click GUI, even for the toy programs considered here. (The irony of presenting “interactive

programming: the non-interactive version” has not escaped us.)

Instead, we provide a set of browsing and editing combinators which allow an interaction with a pro-

gram and its execution to be scripted in Haskell. A script can ask LambdaCalc to render the UI state as-

sociated with any conVguration in a window, or as a PDF or Postscript Vle. Having experimented with

a much faster implementation technique which still supports self-hosting, we believe that LambdaCalc’s

performance shortcomings are related to naïve implementation decisions, rather than inherent to our goals.

Nevertheless, a live demo is unfortunately beyond the scope of this thesis. In Future Work, §7.2.2, we discuss

eXciency issues that are related to our longer-term goals, in particular incremental update, which means

updating a computation in time proportional to the size of the execution delta.

1.3 Contributions

The speciVc contributions of the thesis are as follows. We summarise the relationship to previously published

work at the end of this section.

Technical. In Chapters 5 and 6, we make several technical contributions in the area of dynamic program

slicing (Related Work, §3.4) and execution indexing (Related Work, §3.12):

• Slicing problem deVnition. We give a novel characterisation of the problem of backward dynamic slic-

ing with respect to criteria on the output speciVed in terms of partial values. We show that extending

evaluation to partial programs (which characterises forward slicing) gives rise to a family of Galois

connections, thereby uniquely determining the backward-slicing problem.
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• Program slicing algorithm. We give an algorithm for eXciently computing backward dynamic slices of

programs by “unevaluating” a trace back into a program slice. Our algorithm improves on earlier work

on slicing for functional programs by computing slices which areminimal with respect to Vne-grained

criteria on the output.

• Trace slicing. We extend slices to traces (explanations), formalise the notion of a slice of a trace being

suXcient to explain the selected part of the output, and show that our algorithm computes the least

such slice for the selected output.

• Execution indexing scheme. We introduce a novel indexing scheme which deterministically assigns

indices to trace nodes based on indices provided on program nodes. Our scheme can be used to derive

execution diUerences that preserve program diUerences. In particular, our scheme supports wholesale

structural reorganisation of a computation.

Implementation. We implemented our system predominantly in Haskell but much of our visualisation

code in LambdaCalc itself. The key contribution here is a demonstration of the potential of interactive

programming as a form of diUerential computation:

• Visualising diUerences by diUerencing visualisations. Our self-hosted visualisation code demonstrates

the practical utility of our execution indexing scheme. We were able to visualise execution diUerences

by reWecting LambdaCalc traces back into LambdaCalc and then computing visualisation diUerences

by comparing the output of a visualisation function applied to diUerent input traces.

Conceptual. Many of the ideas that distinguish our view of programming from traditional batch-mode IDEs

and compilers have been explored in other settings dating back as far as the 1960s. The ideas and concepts

that appear to be unique to our work are:

• Change is always explicit. In our approach, change detection is automatic and pervasive. Just as there

is no hidden computation, there are no “hidden changes”. We argue that tracking structural deltas is

not just about making a programming medium responsive, but also about letting the user see what is

happening.

• Interweaving of computations and values. We introduce a UI design principle that allows the user

to move smoothly from an extensional view, where the computation maps a monolithic value to a

monolithic value, to increasingly intensional views which expose more of the value assembly and

disassembly.

Relationship to previously published work. The technical parts of Chapters 4 and 5 were presented at

ICFP 2012 [PACL12]; the majority of the work was mine. Some of my earlier work [Per04, Per08] informed

the discussion in Chapters 2 and 3. A workshop paper [Per10] presents a substantially less mature version

of the ideas in Chapter 6. The rest of the thesis was not published previously; in particular the other jointly-

authored work mentioned in Chapter 3 [AACP12] does not form part of this thesis.
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2 Programming as Interaction

At the beginning of Chapter 1 we described programming as an interactive dialogue between programmer

and tool. Here we divide the questions “asked” by the programmer into two main Wavours. How (or prove-

nance) questions, which we consider in Chapters 4 and 5, concern a particular program and what it computes.

These are the questions that commonly arise during debugging. How did this result get to be zero? Why

was that true rather than false? What if questions, on the other hand, which are the focus of Chapter 6,

concern variants of a program and how they relate to each other. “What if” questions are framed by making

changes to either code or data, and typically arise during coding, testing and bug-Vxing. What value would

the program produce for a diUerent input? What value would a diUerent program produce for the same

input? The emphasis of the ongoing dialogue often shifts between constructive, diagnostic and remedial.

This interactive construal of programming may have some intuitive appeal, but is poorly supported by

traditional programming environments. For example, we often want to see the impact of a Vx in the middle

of a complex debugging activity. In particular, we want to see the impact of the Vx on our current view of

the execution of the program. That carefully constructed view isolates a problem, and we want to know if

the Vx makes the problem go away. To use the terminology just introduced, we would like the answer to

the “what if” question to take the form of a change to the answer to the “how” question which forms our

current debugging context. But to ask a “what if” question usually jeopardises any active “how” question

in one of two ways. Either we must exit the program, apply the change, and restart, discarding the original

context entirely. Or, if our development environment supports some kind of edit-and-continue feature, we

can avoid restarting, but with only subsequent execution incorporating the Vx. This second scenario is more

convenient but now the integrity of our all-important debugging context is compromised.

The importance of the debugging context should be apparent if we consider that we rarely ask a single

provenance question in isolation. Instead, the system’s answer to our Vrst question is only a partial answer,

which invites another question, and so on. This is roughly what is going on when we step through a complex

execution in a debugger or obtain a very speciVc view in a tracing tool. The outcome of our interactive Q&A

session is a complex tree of provenance-related questions and answers that “explains” the result of interest.

Once we have obtained this intensional view of a computation tailored to a speciVc comprehension task,

what we are typically most interested in is what would happen to that chain of explanations if something

were diUerent. Would this function still behave correctly for the right reasons if I were to remove an element

from the list? Would this change to a base case of a recursive function Vx it in the way I expect? Our carefully

constructed view is not an ephemeral concern, but remains important for as long as we are interested not

only in what our program does, but in how it does it.

Interactive programming addresses this need by allowing the programmer to make changes to a program
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whilst in the middle of a complex debugging or comprehension activity and have the consequences of those

edits reWected immediately in the view of the execution, without having to lose more of their working context

than necessary. There is no separate debugging mode: the user programs in a debugger, or alternatively,

debugs from within an editor. But unlike edit-and-continue debuggers, the view of the computation is

updated, after each change, so that things are as though the program had been written diUerently in the Vrst

place. We build this approach on a foundation which treats execution as something concrete and persistent,

instead of hidden and ephemeral. Computations are “self-explaining”: not black-box processes that compute

values, but interactive, spreadsheet-like documents describing how values are computed.

In our long-term picture of interactive programming, “online debuggability” becomes an intrinsic feature

of the execution environments in which applications live, allowing usage to blend seamlessly into under-

standing or Vxing and then back to using. Although we are still some way from a practical realisation

of the approach, we have implemented several important components of the approach in a system called

LambdaCalc, a spreadsheet-like execution environment for functional programs. Unlike normal spread-

sheet languages, LambdaCalc supports familiar functional programming features like recursion, higher-order

functions and data types. Cells contain nested spreadsheets, so that all intermediate computations can be

explored. A LambdaCalc computation is “spreadsheets all the way down”. Jonathan Edwards explored a

similar nested-spreadsheet concept in the programming language Subtext [Edw05], but without considering

many of the features we present here. In its current form, LambdaCalc lacks an interactive UI, and can

only be controlled programmatically via an editing and browsing API. For the purposes of explaining the

overall vision of interactive programming, it is convenient to gloss this shortcoming for the remainder of this

chapter, and talk as though the UI were able to accept and respond to user input eXciently.

2.1 Self-explaining computation

To debug or understand a program, we often need to know how a certain part of the output was computed.

Yet by the time the need arises, the information in question has usually been discarded. Our only hope

is to reconstruct it, perhaps by manually instrumenting the code with print statements and restarting, re-

launching in a debugger, or running the program in “tracing” mode and browsing the resulting execution log

in an oYine tool.

This is unfortunate considering that what we want to access has just taken place in the interpreter. More-

over, in a modern distributed environment, it is not always feasible to rely on re-execution as a way of

recovering computational history. The sub-computation of interest may be external to our system, such as

a calculation associated with an online transaction. We may lack the authority or the means to instrument

it or to re-execute it in a debugger. If the computation was eUectful, is not clear that “re-running” it even

makes sense. For these scenarios, a more realistic goal is an execution environment which makes it possible

to discover what happened after the fact.

In this thesis, we propose a kind of runtime environment in which computational history is always avail-

able. We explore this paradigm, which we call interactive programming, for pure, sequential languages,

deferring distribution and eUectful computations to future work (§7.2.3 and §7.2.4). In our approach, a pro-
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gram run is not a black-box activity that yields a value, but rather an explorable document describing how a

value was calculated. The user is able to peek inside a computation, and understand the steps taken to obtain

a result, without having to restart the program in a separate debugger. We illustrate this by showing how a

user would run and interact with a program in an interactive UI based on our LambdaCalc prototype, with

Vgures obtained directly from our implementation.

fun foldr op z xs →

case xs of

Nil → z

Cons(x,xs') →

op x

foldr op

z

xs'

Figure 2.1 DeVnition of foldr

Figure 2.1 deVnes the familiar functional programming operation foldr which right-folds a binary op-

eration over a list. The thin borders make it easier to visually parse the expression into sub-expressions.

Figure 2.2 then shows an application of foldr to three arguments. The three arguments are the function

sumSquares, the seed value 0, and a list of three integers. When the user Vrst loads the program into Lamb-

daCalc, it executes and produces the visualisation shown in (a). The input expression has been visually

paired with its result in a spreadsheet-like cell with two components. The grey panel in the top right-hand

corner is a value pane, and displays the integer 416, which is the value of the computation in the white panel

that encloses it. The small rectangular tab on the left-hand side of the value pane tells the user that this

value is explained by the attached computation. The reader will notice that the bindings for the arguments

to foldr are also shown in grey, because they too are values. But these values have no rectangular tab

indicating an associated explanation: this is because they were not computed, but were instead provided as

they are.

Thus far, the interaction is like a graphical version of a read-eval-print loop (REPL), the interactive top-

level prompt found in most functional language implementations, where the user can type in expressions

and have them evaluated. But in LambdaCalc the user can do much more than just ask for an expression

to be evaluated. Note the ellipsis in the bottom left-hand corner of (a). This conveys to the user that the

explanation of how 416 was computed is incomplete, and that they can see more of that explanation by

clicking on the ellipsis. Doing so causes two things to happen, as shown in Figure 2.2(b). First, the ellipsis

has disappeared and been replaced by a small double-headed arrow ։, followed by a view of some more

of the steps taken by the interpreter to calculate the result. The arrow indicates that there was some control

Wow, in this case entering the body of the function foldr; to the right of the arrow we see the execution of

the body of foldr. The second thing is that the bindings of the arguments to the formal parameters of foldr

are made explicit via a visual convention reminiscent of call-by-keyword (named argument) syntax [FB09].

The Vrst argument has been preVxed by op:, indicating that the parameter op of foldr has been bound to

sumSquares. Bindings for the other two parameters z and xs are also indicated.

Technically, expanding the ellipsis reveals some steps of the operational semantics. The eUect is similar
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a.
foldr fun sumSquares x y →

+ * x

x

* y

y

0

Cons(4,Cons(2,Cons(2,Nil)))

…

416
b.

foldr op:fun sumSquares x y →

+ * x

x

* y

y

z:0

xs:Cons(4,Cons(2,Cons(2,Nil)))

↠ case xs of

Nil → �

Cons x:4

xs':Cons(2,Cons(2,Nil))

↠

�� x

foldr ��

�

xs'

…

20

…

416

c.
foldr op:fun sumSquares x y →

+ * x

x

* y

y

z:0

xs:Cons(4,Cons(2,Cons(2,Nil)))

↠ case xs of

Nil → z

Cons x:4

xs':Cons(2,Cons(2,Nil))

↠

op x

foldr op:op

z:z

xs:xs'

↠ case xs of

Nil → z

Cons x:2

xs':Cons(2,Nil)

↠

op x

foldr op

z

xs'

…

4

…

20

…

416
d.

foldr op:fun sumSquares x y →

+ * x

x

* y

y

z:0

xs:Cons(4,Cons(2,Cons(2,Nil)))

↠ case xs of

Nil → z

Cons x:4

xs':Cons(2,Cons(2,Nil))

↠

op x:x

y:foldr op:op

z:z

xs:xs'

↠ case xs of

Nil → z

Cons x:2

xs':Cons(2,Nil)

↠

op x

foldr op

z

xs'

…

4

…

20

↠ + * x

x

16

* y

y

400

416

Figure 2.2 Interactive drill-down into computation

to stepping into a function call in a debugger, but rather than having to restart in a diUerent “mode”, the

user instead inspects the computation directly from the editor, by simply unfolding the source code in situ.

Modulo a few minor syntactic extensions to aid comprehension, such as the argument-binding convention

just described, the “language of computation” is the language of programs. The programmer need only learn

one notation and can understand the execution of a program in terms that are already familiar.
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The Vrst thing we see inside the executed body of foldr is a case analysis of the list argument xs. The

pattern Cons(x,xs’) was matched, indicated by the bold highlighting of the constructor name and pattern

variables, and the fact that x and xs’ are bound to the components of xs, which is shown using the same

‘:’ notation used for function arguments.1 (Binding occurrences of variables are always in this format.)

Inside the Cons branch is an application of op to two arguments, namely x and a recursive call to foldr.

The recursive call appears as a nested cell, with its own value pane. The ellipsis underneath the recursive

call indicates that there is another executed function body here to explore, which is currently collapsed. The

body of the call to op is also collapsed.

A simple rule determines whether a sub-computation is visualised in its own cell, or rendered as part of the

parent cell. The rule is really just the visual analogue of the so-called “tail-call” compiler optimisation [Ste77].

When the parent computation returns the value computed by the child directly, the value pane of the child is

“reused” by the parent and the child cell coalesced into the parent. This happens with function applications

and let expressions, which return the result of evaluating the body, and also with case expressions, which

return the result of evaluating the selected branch. On the other hand, when the child computation yields a

value which is not just passed upward, its value pane cannot be reused by the parent computation, and the

child is then visualised in its own cell so that the intermediate result is still available for inspection. Thus

the (white-backgrounded) “computation” component of any cell can always be read as a linear chain of steps

that locally terminates in the result shown in the value pane.

The tail-call convention explains why the recursive call in Figure 2.2(b) appears as a nested call: the integer

20 returned by the recursive call is “intercepted” by the application of op, rather than just passed upward.

Visual conventions such as these, while an important part of any practical implementation, are not essential

to the idea of interactive programming. Later we will see other conventions, such as hiding the explanation

associated with a computed value completely, or hiding the dead branches of a conditional. One advantage

of working with reiVed computation is that decisions regarding presentation can be taken after the program

has run and applied to the computation afterwards, as discussed in Related Work, §3.6.

In Figure 2.2(c) the user continues to explore the behaviour of foldr by expanding the recursive invoca-

tion. A second recursive call is nested inside, producing the intermediate result 4 which is again passed to

op, resulting in 20. In (d) the user takes a diUerent path, choosing to expand the application of op instead,

and thereby browse into the body of sumSquares. Because the user chooses interactively whether to expand

a particular sub-computation into an intensional view, or to keep it collapsed and see only the computed re-

sult, the speciVc view of the execution they have at any point in time reWects the information they currently

need to understand it. These needs vary depending on what they are trying to do and how well they already

understand diUerent parts of the program. The partial views of the running program thereby obtained are

partial explanations of how some aspect of the program works. It is these potentially complex views which

comprise the user’s “comprehension context” and whose structure we are concerned with preserving, where

possible, as the program changes.

To summarise the story so far, a LambdaCalc execution is a structured document which the user is able

1 The attentive reader will notice that, unlike the 0 bound to z, the 4 bound to x has no border. The convention is that a primitive

value which is merely a sub-component of another value has no border. Here, 4 is part of the list bound to xs, whereas 0 is the

value of a computation. The particular details of the UI are not essential to our message, however.
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to explore interactively in order to understand. We treat execution not as a process that unfolds in time and

computes a value, but as a structure which unfolds in space and describes how a value can be computed.

We call this reiVcation: the explicit representation of something formerly implicit or tacit.2 The precise form

that the reiVcation takes is informed by the observation that big-step evaluation proceeds by a top-down

decomposition of the program. This allows us to treat execution as an “unrolling” or in situ inWation of

the program, with variables taking on actual values, sub-expressions being associated with the values they

compute, and nested structure arising from the execution of function bodies. Executed function bodies are

the only source of additional structure beyond what was present in the original program.

Sometimes computations take a very long time to produce a result, possibly forever. In a more realistic

implementation, a user would be able to interrupt a long-running computation and observe a partial trace

reifying the computation which has taken place so far. For the purposes of this thesis, we consider only

terminating computations which cannot be interrupted.

2.2 DiUerential execution

We often run the same program or program fragment with modiVed inputs, when testing, debugging, or sim-

ply exploring our intuitions about how a program works. In a traditional compiled or interpreted language

this involves running the program again from scratch with the new input. Equally, we often run a modiVed

program on the same input, when testing new code or trying to Vx a bug. So-called “live coding” or live

programming systems (Related Work, §3.7) allow code to be edited on the Wy while the program is running,

but the execution itself usually remains a black box, and the semantics of update are typically ill-deVned.

In LambdaCalc, when the user makes a change to the program their view of its execution is updated

automatically. The result is a new computation with some highlighting indicating the parts that changed.

The system uses a memoisation-like scheme to determine when a particular part of the new computation

notionally has the same “identity” as, although possibly distinct contents from, some part of the old compu-

tation. The diUerence between (syntactic) equality and “identity” in this sense is similar to the equal vs. eq

distinction in Lisp: “identity” corresponds to eq-style pointer equality.3 When a node of the computation

persists into the new state, the information about how the user was browsing it can also be preserved, even

though the contents of that node may have changed. This allows the user to see the impact of the change

expressed in terms of the aspect of the program they were viewing previously.

A simple edit is shown in Figure 2.3, which continues with the foldr example. In (a), the user moves the

edit focus to the Vrst element of the list argument and changes 4 to 6. Changed values are highlighted in

blue; this brings the user’s attention to the fact that the value of the overall computation has updated to 436,

but also that the intermediate value representing the square of x updated, to 36. This seems like a reasonable

outcome, so in (b), the user now changes the second element of the input list to see what happens in that

case. This time the square of y changes, but the user can see by the binding information indicated by y: that

y is actually computed by a recursive fold over the tail of the list. Changes to diUerent parts of the input

2 The Oxford English Dictionary deVnes reify to mean “to make (something abstract) more concrete or real; to regard or treat as if

having material existence” [OED09].
3 Philosophers often use the term “numerically identical” [Noo11], but in computing this would be easy to misinterpret.
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aUect diUerent parts of the explanation, revealing diUerent aspects of the execution’s structure. The user

is able to see at once how changes “slice” through the dependency structure of the computation, since it is

presented spatially, rather than temporally like in a stepping debugger. The delta remains visible until the

user requests otherwise, either explicitly, or implicitly by starting a new edit. In Figure 2.4, the user decides

in (a) to expand the nested call to sumSquares; the delta remains active, because this is only a change to the

visualisation, not to the state of the computation itself. Perhaps they want to conVrm that the change to the

second element is treated in the recursive call analogously to how the change to the Vrst element was treated

in the outermost call. And this is indeed what the nested delta conVrms via the blue highlighting of 9 in

Figure 2.4(a).

foldr op:fun sumSquares x y →

+ * x

x

* y

y

z:0

xs:Cons(6,Cons(2,Cons(2,Nil)))

↠ case xs of

Nil → z

Cons x:6

xs':Cons(2,Cons(2,Nil))

↠

op x:x

y:foldr op:op

z:z

xs:xs'

↠ case xs of

Nil → z

Cons x:2

xs':Cons(2,Nil)

↠

op x

foldr op

z

xs'

…

4

…

20

↠ + * x

x

36

* y

y

400

436 foldr op:fun sumSquares x y →

+ * x

x

* y

y

z:0

xs:Cons(6,Cons(3,Cons(2,Nil)))

↠ case xs of

Nil → z

Cons x:6

xs':Cons(3,Cons(2,Nil))

↠

op x:x

y:foldr op:op

z:z

xs:xs'

↠ case xs of

Nil → z

Cons x:3

xs':Cons(2,Nil)

↠

op x

foldr op

z

xs'

…

4

…

25

↠ + * x

x

36

* y

y

625

661

a. Change Vrst element b. Change second element

Figure 2.3 Simple structure-preserving edits

Interactions such as these are queries that the user formulates and obtains answers to by browsing, making

changes and observing the consequences. If the user does not like the answer to their question they can undo

to return to their previous state, or continue with further diagnostic or editing questions. This ability to frame

questions by editing data values or programs (“formulae”) is what makes LambdaCalc resemble a spreadsheet

for general-purpose functional programming. Following spreadsheet nomenclature, we call these queries

“what if” questions; semantically they have the form “what would happen to its execution if my program

were changed in the following way?” As with a spreadsheet, each such edit is like stepping sideways in time,
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into a “counterfactual” execution where it is “as though” the program had been written diUerently from the

outset. However unlike a normal spreadsheet, both edits and their consequences are always made visible via

explicit delta-highlighting, until the user accepts the changes and moves on. Inspired by Demaine et al.’s

retroactive data structures, which are persistent data structures that admit modiVcations to the historical

sequence of operations performed on them [DIL04], we refer to this ability to step sidewise into an alternate

execution as retroactive update. Retroactive update allows the “computational past” to be changed.

foldr op:fun sumSquares x y →

+ * x

x

* y

y

z:0

xs:Cons(6,Cons(3,Cons(2,Nil)))

↠ case xs of

Nil → z

Cons x:6

xs':Cons(3,Cons(2,Nil))

↠

op x:x

y:foldr op:op

z:z

xs:xs'

↠ case xs of

Nil → z

Cons x:3

xs':Cons(2,Nil)

↠

op x:x

y:foldr op

z

xs'

…

4

↠ + * x

x

!

* y

y

"�

��

↠ + * x

x

36

* y

y

���

661 foldr op:fun sumSquares x y →

/ + * x

x

* y

y

2

z:0

xs:Cons(6,Cons(3,Cons(2,Nil)))

↠ case xs of

Nil → z

Cons x:6

xs':Cons(3,Cons(2,Nil))

↠

op x:x

y:foldr op:op

z:z

xs:xs'

↠ case xs of

Nil → z

Cons x:3

xs':Cons(2,Nil)

↠

op x:x

y:foldr op

z

xs'

…

2

↠ / + * x

x

9

* y

y

4

13

2

6

↠ / + * x

x

36

* y

y

36

72

2

36

a. Expand nested op call b. Change sumSquares

Figure 2.4 Structural editing with delta-highlighting

As we have seen, a (terminating) LambdaCalc program executes by unfolding into a spatially extended

structure roughly corresponding to its big-step derivation tree. To understand retroactive update, we must

think of both the program and its reiVed execution not as trees, but as term graphs. A term graph is a way of

representing a pure tree-structured value as a labelled, directed acyclic graph (DAG), normally to permit the

sharing of common substructure. A useful intuition is to think of a node of a term graph as a location storing

a constructor c and a sequence of child pointers α1, . . . , αn. We refer to c(α1, . . . , αn) as the contents of

the location. Primitive values are treated as nullary constructors. Unravelling the graph discards the sharing
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information and recovers the original tree.

The signiVcance of the sharing of common substructure will become apparent in §2.3. Here what matters

is that we can also use term graphs to support retroactive update. If we allow the term-graph representation

of two programs to have nodes in common, we can identify parts of the two programs whenever they are

represented by the same node (or if you prefer, stored at the same location). It then becomes meaningful to

talk of the “same” program part existing in two programs with very diUerent shapes. To the programmer, the

program is mutable: they obtain an updated program by modifying an existing one. In particular they are

able to express structural reorganisations of the program that arise commonly during programming, such as

moves and splices, which are not so straightforward to capture as deltas of pure tree-structured syntax.

Retroactive update is then enabled by taking a similar term-graph approach to the representation of reiVed

computations. But whereas the user obtains a modiVed program directly, by editing an existing one, they

obtain a modiVed computation only indirectly, by executing a modiVed program. The new computation will

usually overlap with the previous computation at certain locations, allowing it to be expressed as a delta

to the previous one. In the LambdaCalc GUI, we present the updated computation graph in an unravelled,

tree-like view, and use colouring to highlight the (asymmetric) diUerence between the new computation

and the previous one. Green indicates that a node is new, i.e. did not exist in the previous computation.

Otherwise, the node existed in the previous computation, although possibly with diUerent contents, which

are then shown in blue.

An example of how a structural modiVcation of the program can translate into a structural modiVcation

of its execution is given in Figure 2.4(b). Here, the user has edited the deVnition of sumSquares so that it

calculates the average of two squares. The edit happened as follows. First, they turned the + into /, which

is now highlighted in blue. Second, they spliced in a new application of + (shown in green) around the

expressions * x x and * y y, leaving /missing a second argument. For the missing argument they supplied

the new value 2, which is also shown in green. The eUect of the program change on the computation to apply

a similar transformation to each application of sumSquares. The additional intermediate values produced

by the new + node are visible as new value panes shown in green, and the implied changes in the values

computed by the various calls to sumSquares and recursive calls to foldr are shown in blue. A more mature

GUI than the one we have implemented in LambdaCalc would smoothly animate the transition between (a)

and (b) to provide a more robust visual realisation of node identity.

Allowing a live computation to be re-programmed on the Wy poses non-trivial user-interface and usability

challenges. For example, the editing scenario just described involved an intermediate state in which the

operation / was missing one of its arguments. In such situations, there are choices to make about whether to

update the computation and how to handle the potentially ill-formed state. Our prototype implementation

only permits programmatic editing, so these concerns are mostly out of scope. For a real-world implementa-

tion, we envisage some kind of structure-aware editor [DGHL+80], cognisant of the document’s underlying

syntax. The editor would be responsible for error recovery, timing and frequency of updates, and the inter-

play between textual and structural editing. Although structure editors remain unpopular, a recent study of

Java programmers showed that, in practice, code changes rarely utilise the full Wexibility of free text editing

[KAM05]. That structural changes are the norm gives us some conVdence that structure-aware editors do
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indeed have a plausible role to play in making our approach practical.

The delta shown in Figure 2.4(b) will make more sense if we say something about how nodes in the

computation graph are built from nodes in the program graph. The key principle is that the evaluation

function, which builds the reiVed computation from the program, is homomorphicwith respect to the labelled

DAG structure. In other words, if two program nodes e1 and e2 are related in the program graph by an edge

labelled with n, indicating that e2 is the nth child of e1 in the program syntax, then in any context where e1

and e2 are evaluated to produce reiVed computation nodes T1 and T2, the nodes T1 and T2 will be related

by an edge labelled with n in the computation graph, so that T2 is the nth child of T1. If evaluation relates

program graphs and computation graphs in this way then structural reorganisations of the program will be

preserved into the structure of its execution. This enables the computation delta to reWect the edit that the

user made, at any rate in those parts of the new computation that reuse nodes from the old computation.

The homomorphism principle means that each distinct edit path between the same two programs results

in a distinct computation delta. Suppose for example the user had spliced in / around the existing +, rather

than changing + to / and then splicing in +. Then the corresponding nodes in the computation would be mod-

iVed in an analogous way, with a new application of / being spliced into every invocation of sumSquares.

This preservation of edits is precisely what we want, because then the computation delta is explained by, or

attributable to, the program delta, even though the Vnal program (and therefore by determinism the compu-

tation) is the same as with the Vrst edit. We discuss this important topic in more detail in §2.4, in relation to

Figure 2.9, where we consider an example based on map.

Our working hypothesis is that directly observing the impact of edits on execution in this way can be

helpful even when the programmer already has good intuitions about how the program works. Those intu-

itions can be reaXrmed (or perhaps disconVrmed) interactively as they work, allowing them to proceed more

conVdently. When the programmer lacks such intuitions, directly observing the impact of changes has the

potential to be even more useful. Novice programmers, for example, can see directly what is going on and

can interactively explore the consequences of simple algorithmic changes. Indeed, given the likely eUort in-

volved in scaling our approach to real-world systems, a more realistic initial target might be a programming

environment for teaching and learning-by-exploration.

What is more, modern software engineering practices such as test-driven development [Bec02] and refac-

toring [Fow99] eschew building complex behaviours all at once. Instead complex behaviours are built by

modifying existing, simpler ones. In test-driven development, one introduces a new function by starting

with a simpler function of the right type and gradually editing it until it has the desired behaviour, as con-

Vrmed by a unit test. Some practitioners have argued for a bottom-up programming style where functions

are developed independently of their intended calling context [Gra94]. When the desired function has a

complex type, this permits starting with a function of a simpler type and gradually transforming not only its

behaviour but also its type through a series of edits. With refactoring, the idea is to preserve the extensional

behaviour but reorganise the code to make subsequent edits and maintenance easier. Implicit in all these

practices is a view of programming as the systematic application of code changes that transform intensional

structures, and sometimes extensional behaviours, in well-deVned ways. We argued explicitly for such a per-

spective ourselves in earlier work on “micro-refactoring” [Per04]. Interactive programming is a step towards
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supporting these incremental programming methodologies more directly.

The signiVcance of execution deltas to this view of programming is that they are more focused than entire

executions. The deltas isolate and reveal individual features of an algorithm, saving the programmer from

having to tease these separate strands apart mentally. Instead, they can formulate simple hypotheses, test

them interactively, and receive informative visual feedback. The interactions leading to Figure 2.4(a) for

example might have been an empirical exploration of the hypothesis that changing a numerical quantity in

the input list has no bearing on the structure of the fold, but only on the value it computes.

fun f x →

case == x

0

of

True → 1

False →

f - x

1

fun f x →

case == x

0

of

True → 1

False →

* x

f - x

1

f x:2

↠ case == x

0

False of

True → 1

False ↠

f x:- x

1

1

↠ case == x

0

False of

True → 1

False ↠

f x:- x

1

0

↠ case == x

0

True of

True ↠ 1

False →

f - x

1

1 f x:2

↠ case == x

0

False of

True → 1

False ↠

* x

f x:- x

1

1

↠ case == x

0

False of

True → 1

False ↠

* x

f x:- x

1

0

↠ case == x

0

True of

True ↠ 1

False →

* x

f - x

1

1

1

2

a. Recursively compute the constant 1 b. Post-compose f with (* x)

Figure 2.5 Creating the factorial function

Here is another example which shows how execution deltas complement our view of programming as

the transformation of intensional structure. Figure 2.5(a) shows a simple function which takes an integer

argument x, counts down from x to 0, and then just returns the constant 1. This is a plausible intermediate

deVnition en route to the deVnition of a more complex function such as factorial. Underneath we see its

fully-expanded execution when applied to 2. In (b), the user edits the deVnition of f to multiply by x the

value returned by the recursive call, so that the function now indeed computes the factorial of its argument.

The overall result of the computation is now 2 instead of 1 but more importantly the way the result is

computed has a quite diUerent structure and this is reWected visually to the user. Previously, f was tail-
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recursive; a 1 was computed and passed all the way to the top, as was visually apparent in (a) by the entire

computation having a single value pane. In (b), we see that very same 1 being “intercepted” part of the way

up and multiplied by the current value of x at the point, producing a “diUerent” value node (shown in green)

which happens to also have the value 1. This result is in turn intercepted at the enclosing recursive call and

again multiplied by the local value of x, producing the Vnal result 2. The visual tail-call “optimisation” that

we described in §2.1 above has been unapplied, and the change in the visualisation made explicit to the user

via delta highlighting. The result is a concrete presentation of how the edit they just made transformed the

intensional behaviour of the function.

f x:3

↠ case == x

0

False of

True → 1

False ↠

* x

f x:- x

1

2

↠ case == x

0

False of

True → 1

False ↠

* x

f x:- x

1

1

↠ case == x

0

False of

True → 1

False ↠

* x

f - x

1

0

…

1

1

2

6 f x:5

↠ case == x

0

False of

True → 1

False ↠

* x

f x:- x

1

4

↠ case == x

0

False of

True → 1

False ↠

* x

f x:- x

1

3

↠ case == x

0

False of

True → 1

False ↠

* x

f - x

1

2

…

2

6

24

120

a. Change argument to 3 b. Change argument to 5

Figure 2.6 Testing the factorial function

In Figure 2.6(a), the user goes on to test their new deVnition at other arguments. First they edit the

argument from the value 2 that it had in Figure 2.5(b) to 3. This causes the scrutinee in the Vnal conditional

test of the execution to change from True to False and therefore control to switch branches. This is indicated

by the ։ arrow following the pattern True becoming →, and the → arrow following the pattern False

becoming ։, both changes being highlighted in blue. This conVrms the user’s expectation that when the

argument is incremented the recursion will go one level deeper. Indeed, the recursive call in the False

branch, which was inactive in the previous state, is now live, as is its argument, which can be seen to

evaluate to 0. And there is a new executed function body (a green ellipsis), indicating that there is now

more structure to explore. The overall eUect of the edit has been to “relocate” the user’s view to a diUerent

execution of factorial, whilst preserving the fact that they are viewing the computation only to a certain

depth. Then in (b), the user increases the argument from 3 to 5. This time there are two new calls to f

compared to the previous state, because the argument grew by 2; however because the view is still restricted
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to the same depth, both the new calls are hidden away under the ellipsis. Nevertheless, the user can see that

the last four values of factorial which were calculated are now 2, 6, 24 and 120.

So again, the potential beneVt to the user in this case is that they can see – rather than merely imagine

– exactly how changing the value of an argument controls the depth of the recursion. Since f does more

work for larger arguments, incrementing the argument adds new computation at the end of the execution,

by deferring the termination of the recursion.

f x:1

↠ case == x

0

False of

True → 1

False ↠

* x

f x:- x

1

0

↠ case == x

0

True of

True ↠ 1

False →

* x

f - x

1

1

1 f x:3

↠ case == x

0

False of

True → 1

False ↠

* x

f x:- x

1

2

↠ case == x

0

False of

True → 1

False ↠

* x

f x:- x

1

1

↠ case == x

0

False of

True → 1

False ↠

* x

f - x

1

0

…

1

1

2

6

a. Change argument from 3 to 1 b. Undo

Figure 2.7 Using undo to obtain a deletion delta

Symmetrically, making the argument smaller would delete computation from the end, by making the

recursion terminate earlier. In Figure 2.7(a), the user has undone the edit of 3 into 5 and changed it to 1

instead. The computation has indeed become smaller. However, the deltas that we visualise in LambdaCalc

are asymmetric and cannot simultaneously show creation and deletion. This is so that the content of the

UI at a given state can be read as a bona Vde execution by simply disregarding the delta highlighting. The

deltas we have seen up till now, which are the result of edits, we call creation deltas. A creation delta shows

the present state relative to a prior one. A node unique to the present has therefore just been created; such

nodes, as we have seen, are shown in green. But if the edit also causes nodes to be deleted, they will not be

visible in the resulting delta since they are no longer part of the present state.

The user can however obtain a delta showing any deleted nodes by simply undoing the edit, as shown

in Figure 2.7(b). Now the UI shows what we call a deletion delta. A deletion delta shows the present state

relative to a hypothetical future state, in this case the state in which f was applied to 1, from which the user

just returned via undo. A node unique to the present is now one which is scheduled for deletion in that

future state; such nodes are shown in red. Here the user can see the part of the execution which will no
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longer take place. Deltas therefore come in two Wavours which diUer only in the colour they use to highlight

“fresh” nodes, i.e. nodes which occur in the present state but not in the state with which the present state is

being compared. Changed nodes appear in blue in both kinds of delta. Deletion deltas have a subjunctive

Wavour; whereas creation deltas compare things to how they were, deletion deltas compare things to how

they would be. The point is that there are no hidden changes: the user can always access the full content of

the symmetric delta by undoing and redoing the edit.

The idea of making execution live and tangible is similar to the philosophy of programming environments

like VisiProg [HW85] and Flogo II [Han03]. The key novelty that we introduced in this section is to extend

this idea with explicit execution deltas, which have two important beneVts. First, the user can directly ob-

serve the eUects of program edits on the behaviour of their program, as the transformation of intensional

structure. Second, their view of the computation can often be retained in the new state, preserving their

working context, and allowing editing and comprehension to be interwoven. We illustrated this interactive

approach to programming with some simple examples intended not only to convey the potential beneVts,

but also to bring home the absurdity of having to “play computer” in order to understand what is happening

inside a computer carrying out that very task. We neglected an important question, one which is unfortu-

nately mostly out of scope for this thesis, namely how to scale this approach eUectively to large programs.

We consider this topic in Future Work, §7.2.1.

2.3 Visualising structured values

In the previous section, the notion of term graph helped us make sense of the idea of the “same” sub-

computation or value existing in diUerent computations. To “change” a node is to retain it in the new state,

but label it with a diUerent constructor, or change the outgoing edges in which it participates. We now show

that reuse of nodes also arises naturally within a state if computations and values are represented as term

graphs.

Consider functional computations that operate on structured values such as lists and trees. These programs

take values apart, via pattern-matching and projection, and assemble new ones, via construction. When

these assembly and disassembly actions take place, the sub-graphs representing values are automatically

reused. For example when projecting a component out of a structured value, we return it “by reference”, and

similarly when we construct such a value, we include its components “by reference”. Sharing also takes place

when a computation simply returns a value constructed elsewhere: when evaluating a variable, we return

“by reference” the value to which it is bound, and for a conditional expression, we return “by reference” the

value computed by the selected branch. This kind of natural sharing is a consequence of dataWow, the paths

that values take through the computation.

Implementations of mature functional languages often use term graphs, because they tend to be based

on imperative languages with pointers in which graphs are easy to implement. The kind of reuse described

above is then the default behaviour, in that when mentioning a node, one must explicitly copy its sub-graph

to avoid sharing its representation. With lazy languages, sharing has an additional role to play in avoiding

the duplication of delayed computations [Wad71]. In these cases sharing is technically an optimisation
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because it is unobservable at the level of the computation – one cannot write a program whose abstract

behaviour diUers depending on whether or not values are shared.

In LambdaCalc, the situation is slightly diUerent, because the paths taken by values through the compu-

tation are made explicit to the user. (We will see this more comprehensively in §2.5 below.) These paths

are determined by the semantics of the language, and establish a relation of synonymy between values. This

synonymy in turn serves as the basis of a visualisation technique with a dual role: enabling more compact

views, and helping the user understand a computation by revealing how it decomposes and composes values.

This is not an “optimisation” particular to the implementation but rather an aspect of the semantics exposed

by the tool.

Let us consider an example. In Figure 2.8(a), the user initially sees the value Some("claire"). As before,

the rectangular tab to the left of the value pane indicates that the value has an explanation, but in this

example the explanation is completely hidden. (It would be more consistent to display a single ellipsis for

the empty partial explanation, but for compactness we omit it.) This illustrates a presentation option which

might for example be enabled by default in a distributed setting whenever a value is computed remotely.

Now suppose the user wants to understand the provenance of that value, for example why the string

"claire" appears here. They would start by revealing the partial explanation shown in (b). This partial

explanation indicates that the result was computed by applying a function called lookup to two arguments:

an integer 7, and a binary tree containing some data. Suppose that here the user knows that the nodes of the

tree store (k, s) pairs and are sorted by integer keys k, and that lookup returns either Some(s), where s is

the string associated with k in the tree, or None if k is not found. What the partial explanation tells them is

that the key 7 was found in the tree, but also that the value "claire" is not just equal to, but is identical to

(synonymous with) the occurrence of the same string in the input tree. This is indicated by the dotted line

pointing back from the output to the occurrence of that string in the input. Since this notion of synonymy

coincides with the sharing that arises naturally as a consequence of dataWow, we call these sharing links.

However, although these links do represent a kind of sharing, an implementation of our approach may

internally choose to store data quite diUerently from the arrangement implied by the sharing links. In a

distributed setup, values might be “shared” in this abstract sense but duplicated in the implementation;

and conversely, values might be “distinct” in this abstract sense but equal and therefore able to share a

representation. Such implementation choices are not part of the abstract operational model, and therefore

would be invisible to a user of the system. (It may occasionally be useful to see details of the underlying

language implementation too, but that is not our goal here; throughout this thesis we will only be concerned

with execution with respect to a reference semantics.)

The sharing links become more informative as the user exposes more of the computation. In (c), they

expand the ellipsis to reveal the body of lookup. We see that the tree passed to lookup is bound to the pa-

rameter t and then immediately pattern-matched as a Branch node. (For this example, we have suppressed

the presentation of dead branches.) Pattern-matching binds the variables t1, kv and t2 to the components

of t, establishing further sharing links. But note how the visualisation shows the components of t pointing

to the values of the three variables bound to them, rather than the other way around. The rule is that the

Vrst occurrence of a value in the visualisation, with respect to a postorder traversal of the view structure, is
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Some("claire")

(a) Explanation completely hidden

lookup 7

Branch Branch Empty

Pair(3,"simon")

Empty

Pair(4,"john")

Branch Branch Empty

Pair(6,"sarah")

Empty

Pair(7,"claire")

Empty

…

Some( )

lookup k:7

t:Branch

↠ case t of

Branch t1:Branch Empty

Pair(3,"simon")

Empty

kv:Pair(4,"john")

t2:Branch Branch Empty

Pair(6,"sarah")

Empty

Pair(7,"claire")

Empty

↠

case GT of

GT ↠

lookup k

t2

…

Some( )

(b) Partly expanded (c) Browsing into body of lookup

lookup k:7

t:Branch

↠ case t of

Branch t1:Branch Empty

Pair(3,"simon")

Empty

kv:Pair( ,"john")

t2:Branch Branch Empty

Pair(6,"sarah")

Empty

Pair(7,"claire")

Empty

↠

case compare k

fst kv 4

…

GT of

GT ↠

lookup k

t2

…

Some( ) lookup k:7

t:Branch

↠ case t of

Branch t1:Branch Empty

Pair(3,"simon")

Empty

kv:Pair(4,"john")

t2:Branch

↠

case �� of

GT ↠

lookup k:k

t:
�

↠ case t of

Branch t1:Branch Empty

Pair(�,"sarah")

Empty

kv:Pair(7, )

t2:Empty

↠

case EQ of

EQ ↠ Some snd kv "claire"

Some( )

(d) Partial explanation of GT (e) Browsing into recursive call

Figure 2.8 Exploring a computation to reveal value assembly and disassembly

the one that is actually rendered, with any other occurrences then being rendered as sharing links. This (ad-

mittedly simplistic) convention means that the user can observe sub-values propagate into the computation
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via pattern-matching and projection, and propagate out of the computation via construction.

Moreover, by controlling how much they see of the execution, the user can control how much decompo-

sition of the input tree they see. After the initial pattern-match for t, we see that some kind of comparison

was made, yielding the value GT (“greater than”), whose explanation is also hidden. On the basis of that

result, lookup was called recursively on the subtree bound to t2. In (d), the user reveals the explanation

behind GT: the key k being searched for was compared with the Vrst component of kv, the key-value pair

currently being considered. An additional sharing link indicates the consumption of the Vrst component of

kv by the projection fst kv. In (e), the user expands the recursive call, and sees something analogous to

what happened in (c): namely t being bound to a tree and then pattern-matched as a branch, causing more

binding, and as a consequence more sharing. The user has moved smoothly from an extensional view of the

computation where the function monolithically mapped input to output, to a more intensional view where

the input has been broken into sub-values distributed through the computation. It is quite visible now to the

user how lookup recursively consumes its tree argument.

To recap, the operational semantics of a functional language can be interpreted in a way that exposes the

Vne-grained paths that values take through the computation. This information can be exploited to make

visualisations both more compact and more informative. Indeed, to neglect this aspect of the computation,

as debuggers generally do, is to hide from the user an important aspect of what their program actually does,

namely assemble and disassemble values. In Chapter 5 we will show that, with a modest extension to the in-

terpreter, this Vne-grained structure is inherent in the semantics, not an internal detail of an implementation.

This may explain why it arises naturally in term-graph implementations, albeit as an optimisation.

BeneVts aside, the visualisation scheme shown here based on sharing links is rather naïve, and quickly de-

grades in usefulness in the presence of non-linear sharing and as the amount of computation being visualised

increases. A better approach, that would require additional implementation eUort, would be to visualise the

transitive reduction of the dataWow graph directly: in other words, the paths taken by values through the

computation, rather than the relation of synonymy which those paths entail. We would expect this to scale

better because the edges of this graph are more “local” than sharing links. It would also make more explicit

the connection to the slicing features we discuss in §2.5, which work by back-propagating demand along

exactly these edges. Unfortunately this is beyond the scope of the present work.

2.4 Editing structured values

As we have seen, value nodes are constructed exactly once and then reused as needed. The construction of a

structured value is not monolithic but distributed through the computation, with diUerent sub-computations

responsible for creating the various parts of the value. For example a Cons value will have been built by

a unique Cons computation, which deferred to sub-computations to calculate the head and tail and then

included those results by reference. The “local” information about the value – the Cons constructor itself and

the pointers to the head and tail components – needs to be stored somewhere. Any kind of non-deterministic

allocation would not sit well with our goal of reusing nodes across computations in a systematic way. But

since the information we wish to store is associated with a unique computation node, it can safely be stored
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at a value node injectively determined by the computation node.

This now invites the question of how we allocate nodes to computations themselves. This would be trivial

if there were no functions, since the computation graph would be isomorphic to the program graph. As it is,

a particular expression node of the source program can be evaluated multiple times within the same overall

computation. On the one hand, naïvely opting to use a “fresh” computation node for each such evaluation

would prevent any sharing of executed function bodies between diUerent computations, precluding com-

putation deltas of the form shown earlier in §2.2. On the other hand, using the same computation node to

represent each of these evaluations is no good because the expression may behave diUerently depending on

the value of the arguments supplied to containing functions.

This latter observation suggests a simple policy for allocating locations to computations. Since our lan-

guage is deterministic, Vxing the values of all arguments to containing functions suXces to Vx the behaviour

of an expression in any context that arises within a given top-level computation. Therefore, it suXces to have

the location where a computation is stored be injectively determined by the location of its source expression

plus the locations of the arguments to all containing functions. This is a “safe” policy because in a given

state (top-level computation), we can unravel any of these argument sub-graphs into a unique value, and so

there is no possibility of attempting to assign diUerently-behaving computations to the same location. Or

to put things contrapositively, if we were to evaluate that same expression in a context where one of the

argument values were diUerent, then it would also be the case that that argument were stored at a diUerent

location and therefore that we would be storing that particular computation at a diUerent location. On the

other hand, by keying on locations only, this scheme does allow the “same” computation to exist in diUerent

states with diUerent contents. And broadly speaking this is what we want: to be able to reuse nodes from

the previous computation, even when they take on diUerent contents.

The node assignment policy just described is not merely a matter of implementation detail, because its con-

sequences are quite apparent to the user. It can result in useful output deltas when we splice into or rearrange

the elements of structured values such as lists and trees. Moreover the associated computation delta can help

“explain” the output delta. Suppose the user evaluates the expression map incr Cons(2,Cons(4,Nil)),

where incr is deVned elsewhere and simply increments its argument. The expression evaluates to the list

Cons(3,Cons(5,Nil)). Now suppose the user inserts a new Cons node, also containing 4, at the second

position of the input list. As shown in Figure 2.9(a), this causes a new Cons node to appear in the output,

also at the second position, containing the value of incr 4, namely 5. This seems intuitive enough. But if

the user browses into the execution of map, as shown underneath in (b), they can also see how this output

delta came about. The Vrst thing to notice is that some child pointers become visible as sharing links (§2.3

above). Following our usual highlighting conventions, changed links are shown in blue, and “new” links –

links whose source nodes are new – appear in green. The two sharing links shown in blue indicate where

tail-pointers were modiVed to accommodate the insertions into the input and output.

Inside the outer execution of map, the argument list is pattern-matched as a Cons with head and tail

components bound to x and xs’ respectively. The tail component, which is bound to xs’, is the new input

node, and is subsequently passed to a recursive call to map, where it becomes the value of the xs argument.

The copy xs: of the formal parameter used to indicate this is highlighted in green. This is because the
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copy of a formal parameter used to indicate an argument binding is considered part of the execution of the

function body, despite syntactically appearing to be part of the application. So here, because the executed

body of the recursive call is new, the formal parameter xs: is also new. And in turn, the executed body is

new because it is running in the context of a new argument, namely the new Cons cell to which xs is bound.

On the other hand, the formal parameter f: is not highlighted. This is because this occurrence of f: can be

attributed to the execution of the body of the partial application map f, which has no visual presence beyond

providing this additional parameter. The body of this partial application is not new, because f is bound to

the same closure node that it was in the previous state.

Inside the Vrst recursive call, the situation is then reversed. The list argument, which now starts with the

new Cons node, is pattern-matched as another Cons with head and tail components again bound to x and

xs’. But this time xs’ is bound to an existing Cons node (shown in grey) from the previous state. When this

value is in turn passed as an argument to the second recursive call to map, the xs: binding this time has no

highlighting, indicating that the execution of map with that argument node existed in the previous state.

map incr

Cons(2,Cons(4,Cons(4,Nil)))

…

Cons(3,Cons(5,Cons(5,Nil))) map incr

Cons(2,Cons(4,Cons(4,Nil)))

…

Cons(3,Cons(5,Cons(5,Nil)))

(a) Insert at position 1 into input list (c) Insert at position 2 into input list

map f:incr

xs:Cons( , �

↠ case xs of

Cons(x:2,xs':Cons( , )) ↠

Cons f x

…

3

map f:f

xs:xs'

↠ case xs of

Cons(x:4,xs':Cons( , )) ↠

Cons f x

…

5

map f:f

xs:xs'

↠ case xs of

Cons(x:4,xs':Nil) ↠

Cons f x

…

5

map f

xs'

…

Nil

Cons( , )

Cons( , )

Cons( , ) map f:incr

xs:Cons( , )

↠ case xs of

Cons(x:2,xs':Cons( , )) ↠

Cons f x

…

3

map f:f

xs:xs'

↠ case xs of

Cons(x:4,xs':Cons( , )) ↠

Cons f x

…

5

map f:f

xs:xs'

↠ case xs of

Cons(x:4,xs':Nil) ↠

Cons f x

…

5

map f

xs'

…

Nil

Cons( , )

Cons( , )

Cons( , )

(b) Partly expand (a) (d) Partly expand (c)

Figure 2.9 Exploring diUerent insert positions for map

The user certainly need not understand all these subtleties of the delta at once. They need only note that

new “work” is spliced into the computation at the position of the new node in the input list. Moreover, they
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can see that the newly executed fragment of map code includes the construction of a Cons node, which is

therefore itself new; the new node ends up being spliced into the output list at the same position that the new

node appeared in the input. This splicing behaviour is made possible by the node allocation scheme, which

injectively assigns locations to computations (based on program and argument locations), and to values

(based on the locations of the computations which construct them). Thus the computation delta “explains”

the output delta.

This is in contrast with the factorial example earlier, where increasing the value of the argument always

caused new computation to appear at the end. The reason for this was that an atomic value such as a

primitive integer can only represent a quantity. A delta in such a value can therefore only carry information

about how its magnitude changed. With structured values there can be multiple edit paths between any two

such values. Suppose the user were to undo the edit in Figure 2.9(b) and instead insert the new Cons node at

the third position instead of the second, as shown in (c). Now the new output cell occurs at the third position

in the output list. And if the user again examines the execution, as shown beneath in (d), they can see that

the new computational work now appears at the end of the computation, rather than in the middle. Once

again, the computation delta “explains” the output delta.

So changes to structured values can result in more interesting deltas than changes to primitive values,

which can only express changes in magnitude. Here, the executions in (b) and (d) have the same unravelling:

if we discard sharing information, they represent exactly the same pure computation. The diUerence between

these two edits is therefore unobservable to the program itself. So why should the diUerence matter to the

programmer? Well, given two structured values there are inevitably multiple edit paths between them. The

particular edit path taken by the user is a “question” that asks how the computation would diUer if the

program were to diUer in some particular way. The answer is a delta representing the edit that must be

made to the computation in order to accommodate the user’s edit. The answer is therefore tailored to the

question. In this example it will soon become apparent to the user that wherever they insert the new node

into the input, the new node in the output will appear at the corresponding position. This is a reWection of

the parallel nature of map. It is clearly beyond the capability of our tool to reveal the parallel nature of map to

the user directly. But by permitting the user to ask arbitrary questions and, where feasible, obtain reasonable

answers, what our approach does support is inductive (in the philosophical sense) and abductive inference4 .

The user can formulate a general, or explanatory, hypothesis consistent with a particular behaviour they have

observed, and can then empirically test that hypothesis by making further observations. This route alone

cannot lead to deductive certainty, but it can be useful in two ways. First, a counterexample immediately

contradicts a false hypothesis. Second, results consistent with a hypothesis can increase conVdence and

deepen intuitions.

Suppose the user were now to change the deVnition of the incr function being mapped over the list,

as shown in Figure 2.10(a). They change it from a function which increments its argument into a predicate

which determines whether its argument is greater than 3, thus changing its type as well. The overall structure

of the computation is unaUected by this change. The changes all lie within the invocations of incr itself,

4 The term abduction was Vrst introduced by Charles Peirce, for whom to “abduce” Q from P was to “surmise from an observation of

P thatQmay be true because then P would be a matter of course” [Pei98]. According to Peirce, good abductive reasoning involves

not simply a determination thatQ is suXcient for P , but also thatQ is among the most economical explanations for P .
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fun incr x →

> x

3

map f:incr

xs:Cons( , )

↠ case xs of

Cons(x:2,xs':Cons( , )) ↠

Cons f x

…

False

map f:f

xs:xs'

↠ case xs of

Cons(x:4,xs':Cons( , )) ↠

Cons f x

…

True

map f:f

xs:xs'

↠ case xs of

Cons(x:4,xs':Nil) ↠

Cons f x

…

True

map f

xs'

…

Nil

Cons( , )

Cons( , )

Cons( , )

(a) RedeVne incr (b) Only elements of output change

Figure 2.10 Exploring other intuitions about map

which are currently hidden, and in the values they return, which are highlighted here in blue. There is a

general property at play here too: namely that map is parametric in the behaviour of the function being

mapped, at least if that function is deVned at every element of the input list. In other words the part of the

computation that relates to the execution of map itself is not sensitive to what the mapped function does.

As before, there are many (in this case, inVnitely many) similar questions which have answers which are

essentially a consequence of this fact, and the user is free to ask these as they see Vt.

Because node assignments are deterministic, we can think of the reuse behaviour shown in these examples

as a kind of memoisation operating at the level of locations, rather than at the level of values. The memo

keys are the locations where arguments are stored, rather than the arguments themselves, and the output

of a memo lookup is the location where the result is stored, rather than the result itself. Moreover every

expression is independently “memoised”, not just function bodies. And whereas memoisation is normally

considered an optimisation that applies within a computation, here it is observable as the reuse of locations

across computations. This is similar to the use of memoisation in self-adjusting computation (Related Work,

§3.10). The identities of computations and of values are interdependent: distinct expression-nodes or distinct

value-nodes for the arguments to containing functions give rise to distinct computation-nodes, and in turn

value-nodes constructed by distinct computation-nodes are distinct.

Because of this interdependence, certain kinds of algorithm exhibit instabilities with respect to certain

kinds of change. An instability is when an innocuous-seeming change in the program causes a large delta

in the execution, because the diUerential execution mechanism is unable to reuse nodes from the previous

computation. An example of this is when a new node is inserted into the input of a recursive function which

uses an accumulator. When the new input element is encountered, it causes a fresh execution of the function.
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let

split:fun split xs →

case xs of

Nil →

Pair Nil

Nil

Cons(x,xs') →

let

y:split xs'

Pair Cons x

fst y

snd y

split Cons(4,Cons(13,Cons(9,Cons(3,Cons(1,Nil)))))

…

Pair Cons( ,Cons( ,Cons( ,Cons( ,Cons( ,Nil)))))

Nil

(a) Incorrect version of split (computes id × const Nil)

let

split:fun split xs →

case xs of

Nil →

Pair Nil

Nil

Cons(x,xs') →

let

y:split xs'

Pair Cons x

snd y

fst y

split Cons(4,Cons(13,Cons(9,Cons(3,Cons(1,Nil)))))

…

Pair Cons( ,Cons( ,Cons( ,Nil)))

Cons( ,Cons( ,Nil))

(b) Fix preserves all node identities but “reorganises” the output

Figure 2.11 Fixing broken implementation of split

This new call in turn constructs an accumulator, which is then itself new, to pass to the next call. The same

thing happens again, and the result is a cascade of fresh node identities for all computations and values

constructed downstream of the point where the new node was encountered. Similar stability issues arise in

self-adjusting computation.

While this is a general issue with our approach, there are sometimes idiomatic solutions to stability prob-

lems which involve a small amount of redesign to data structures or algorithms. We discuss some of these

idioms in Appendix B. This places some burden on the user, but in our experience the eUort is not much

worse than organising programs to be tail-recursive. This is a common practice in the programming lan-

guage Scheme [KCR98], where it is used to ensure that recursive functions execute in constant space. In the

worst case, we are unable to provide useful delta information or to maintain the user’s view state across the

destabilising edits, forcing the user to fall back to a more traditional debugging/programming style.

In any event, in many cases our node assignment scheme produces informative and useful deltas. As a

Vnal example, which also illustrates a limitation of our current GUI, Figure 2.11 shows a Vx being applied
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to an incomplete implementation of split, a component of mergesort which partitions a list into a pair of

similarly-sized lists. A standard functional implementation of split uses a swap at each recursive call, in

order to cons elements alternately onto one and then the other of the two lists being constructed. In (a), the

programmer has almost completed the implementation, but is missing the swap step; the two lists returned

by their current code are the original input list, and the empty list. In (b), they implement the swap step by

replacing fst by snd and snd by fst. This edit is stable with respect to the identity of all computations and

value nodes. In fact, the only changes are of some of the pointers in the output: between the Cons cells and

their tails, and between the pair itself and its second component. The delta is therefore very informative:

it tells us precisely how individual Cons nodes are shuYed around in the output as a consequence of this

program change. Unfortunately these pointers have no visual presentation in the LambdaCalc GUI, and so

there is nothing to highlight in blue. Treating the border around each node as a visualisation of the pointer

to that node from its parent would address this. But even then, indicating merely that the pointers changed

does not do justice to the very precise information contained in the delta. To usefully present informative

deltas like this that consist mainly of moves, it would be important to animate these changes or in some

other way make the continuity of identity across the states explicit.

2.5 Interactive slicing

Interactive programming allows the black-box computation of a value to be interactively disassembled into

an explanation of how the value was computed. The decomposition we have considered so far is stepwise, or

sequential: we break a computation down into child computations that have to complete before the parent

computation can proceed. This sequential decomposition is nicely complemented by decomposition along

another axis, namely of a computation into parallel execution Wows. This kind of parallel decomposition is

usually called slicing because it cuts vertically through the sequential structure of the computation. Slicing

allows the user to interactively ask questions about how parts of the program relate to parts of the output.

Slicing naturally Vts into interactive programming because having the history of a computation available

makes slices easy to calculate. In this thesis we extend existing slicing techniques for functional languages

(Related Work, §3.4 below) with more Vne-grained questions and answers and allow not just programs but

also explanations to be sliced.

The user can ask a slicing question in one of two directions, forward and backward. These questions can

be Vne-grained, focusing on speciVc parts of the program or its output. A “forward slicing” question has the

form: which parts of the output is this part of the program needed for? A “backward slicing” question has

the form: which parts of the program are only needed for this part of the output? Forward and backward

slicing questions are “dual”. Forward questions are so-called because their answers depend on how lack of

availability of some part of the program propagates forward through the execution to the output. Backward

questions are so-called because their answers depend on how lack of demand on some part of the output

propagates backward through the execution to the program.

Figure 2.12 shows some interactions corresponding to forward questions. In each sub-Vgure, there are two

top-level views. On the left is a function called zipW (“zip with”) which generalises the usual zip operation
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on lists to take an additional binary combining function as its Vrst argument. On the right is an application

of zipW to three arguments: an anonymous binary function of type int → int → int × int, and two lists

of integers. The binary function simply returns the pair (x+ 1, y + 1) given arguments x and y. The value

pane in the top-right corner shows the output, which is a list of pairs of integers.

As is usual with zip-like functions, zipW discards the extra elements if one list is longer than the other.

This behaviour is implemented by the two case clauses that detect when either xs or ys is empty. The body

of each clause is a Nil; which of these two Nils is evaluated depends on which condition is detected Vrst. In

the process of understanding this code, the user might notice that although here the two input lists have the

same length, the end of xs will recognised before the end of ys, and that therefore the Vrst Nil will be the

only one that is evaluated. Moreover they would probably intuit that this Nil is “needed” in the sense that

it was used to construct the Nil at the end of the output list.

(a) fun zipW op xs ys →

case xs of

Nil → Nil

Cons(x,xs') →

case ys of

Nil → Nil

Cons(y,ys') →

Cons op x

y

zipW op

xs'

ys'

zipW fun _ x y →

Pair + x

1

+ y

1

Cons(10,Cons(12,Cons(13,Nil)))

Cons(3,Cons(4,Cons(8,Nil)))

…

Cons(Pair 11

4

,Cons(Pair 13

5

,Cons(Pair 14

9

,Nil)))

(b) fun zipW op xs ys →

case xs of

Nil → Nil

Cons(x,xs') →

case ys of

Nil → Nil

Cons(y,ys') →

Cons op x

y

zipW op

xs'

ys'

zipW fun _ x y →

Pair + x

1

+ y

1

Cons(10,Cons(12,Cons(13,Nil)))

Cons(3,Cons(4,Cons(8,Nil)))

…

Cons(Pair 11

4

,Cons(Pair 13

5

,Cons(Pair 14

9

,Nil)))

(c) fun zipW op xs ys →

case xs of

Nil → Nil

Cons(x,xs') →

case ys of

Nil → Nil

Cons(y,ys') →

Cons op x

y

zipW op

xs'

ys'

zipW fun _ x y →

Pair + x

1

+ y

1

Cons(10,Cons(12,Cons(13,Nil)))

Cons(3,Cons(4,Cons(8,Nil)))

…

Cons(Pair 11

4

,Cons(Pair 13

5

,Cons(Pair 14

9

,Nil)))

Figure 2.12 Forward-slicing to investigate contribution of parts of zipW to output
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In Figure 2.12(a), the user explores this intuition directly by simply selecting the Vrst of these Nil expres-

sions. Unlike an edit, which results in a creation delta where new nodes are shown in green, a selection is

interpreted as a hypothetical deletion, and so is shown as a deletion delta, where nodes scheduled for deletion

are highlighted in red. (See §2.2 above.) The selection indicates to the system that the user is interested in

what would happen if this Nil were suspended, or made to block, so that it were unable to produce a value.

The system responds by highlighting the Nil at the end of the output list in red. This tells the user that the

highlighted part of the output would as a consequence also block. To put it another way, the Nil highlighted

in the output depends, in this execution, on the Nil highlighted in the program. We call the partially high-

lighted output an output slice; the output slice is a response to the question that the user posed in the form

of a partially highlighted program, which we call a program slice. The notion of dependency at work here

can be understood by thinking of the interactive program as a parallel data-driven computation, in which all

nodes in the output are computed in parallel by the forward Wow of operators and operands, possibly with

some shared dependencies. In selecting an expression, the user is asking which output nodes depend in the

present execution on the availability of that expression.

In (b), they select the second Nil which is evaluated only when ys is empty. Nothing is highlighted

as a consequence in the output, meaning that suspending this expression would have no eUect at all on

the present execution. Given what they conVrmed in (a), this is unsurprising. But our claim is not that

these are diXcult algorithmic properties to understand. Rather, our point is that to leave it to the user to

simulate the execution of the program in their head in order to understand their program in this sort of way

is unreasonable – not only because it is unreliable and labour-intensive, but also because it Watly ignores

the fact that this calculation has already taken place in the interpreter. Discovering, or perhaps just double-

checking, how parts of the program contribute to the output should be trivial, because all the required work

has already been done.

In (c) they leave the second Nil selected (although it makes no diUerence whether they do so or not)

and then select another part of the deVnition of zipW: the application of the binary combining operation op.

Suspending this part of the program would have a more drastic eUect on the output, namely that all of the

output pairs would also block. The visualisation exposes parallel structure in the execution directly, meaning

that the user no longer has to infer it. Instead, they can now see that op x y is responsible for populating

the elements of the output list. Moreover, it is clear that the rest of the computation could proceed even

with that code suspended, and would compute the “skeleton” of the output list, leaving placeholders for the

three applications of op which would be Vlled when they became available. This is a more modular and

Vne-grained perspective on execution than aUorded by the usual view of a program as a monolithic block of

text producing monolithic output. The sequential decomposition we showed in earlier sections also breaks

down monolithic programs; here the decomposition is parallel, into slices.

The use of the subjunctive mood to explain the red highlighting of a deletion delta is intentional. Red

parts of the program are not actually suspended, as evidenced (precisely) by the fact that the red parts of

the output which depend on them are still being computed. Rather, and as we explained earlier in §2.2, red

highlighting should be read as a hypothetical deletion. With editing, the user formulates a “what if” question

by modifying the current state – turning the hypothetical state of aUairs under consideration into the actual
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state of aUairs. With slicing, the user formulates the question as a hypothetical action which may never be

actualised.

(a) zipW fun _ x y →

Pair + x

1

+ y

1

Cons(10,Cons(12,Cons(13,Nil)))

Cons(3,Cons(4,Cons(8,Nil)))

…

Cons(Pair 11

4

,Cons(Pair 13

5

,Cons(Pair 14

9

,Nil)))

(b) zipW op:fun _ x y →

Pair + x

1

+ y

1

xs:Cons( � �

ys:Cons( � �

↠ case xs of

Cons�x:10�xs':Cons(12�Cons(����	
��� ↠

case ys of

Cons(y:��ys':Cons(4�Cons(8��	
��� ↠

Cons op x:x

y:y

↠ Pair + x

1

11

+ y

1

4

Pair

zipW op

���

ys'

…

Cons(Pair ��

�

�Cons(Pair 14

�

��	
��

Cons( � �

Figure 2.13 (a) Forward-slice functional argument to zipW; (b) expand into sliced partial explanation

So far we have considered forward slicing extensionally, looking at how it can relate program to output. It

is also possible to interweave slicing with sequential decomposition, unfolding the computation of an output

slice into a sliced explanation. In Figure 2.13 the user has changed focus and decided to investigate the

contribution of the combining function itself to the output of zipW. In (a) they select the Vrst sub-expression

x + 1 of the pair constructor inside the anonymous function. In response, the Vrst component of each output

pair is selected. This reveals that this part of the function is needed to compute those parts of the output,

but does not reveal how. In (b) they start to disassemble the computation into a partial explanation, which

reveals how the output slice was computed. They expand two function calls: Vrst the outermost call to zipW,

and then the invocation of its op argument nested within the zipW call.

This is enough to reveal that the output slice, which is a slice of a list of pairs, was constructed by consing

a slice of a pair onto a smaller list slice produced by a recursive call. The pair slice was itself constructed

by an application of op, inside whose execution the evaluation of x + 1 is highlighted, being a copy of the

corresponding (and similarly highlighted) part of the sliced function to which op is bound. The blue sharing

link pointing to the result 11 of this computation is so coloured because in the hypothetical future state with
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which the present state is being compared, the x + 1 computation does not exist and the child pointer is

null.

The zipW example will also help illustrate the diUerence between backward and forward slicing. With for-

ward slicing, the user hypothetically suspends some part of the program and sees which parts of the output

would block as a consequence. “Parallel, data-driven” is the computational intuition required to understand

the slicing behaviour. With backward slicing, the execution Wow is reversed: the user hypothetically relin-

quishes demand on some part of the output, and the system responds by showing which parts of the program

would no longer be needed. “Parallel, demand-driven” is the computational intuition required for backward

slicing. Whereas forward slicing questions take the form of “availability absences” propagating forward,

backward slicing questions take the form of “demand absences” propagating backwards.

(a) fun zipW op xs ys →

case xs of

Nil → Nil

Cons(x,xs') →

case ys of

Nil → Nil

Cons(y,ys') →

Cons op x

y

zipW op

xs'

ys'

zipW fun _ x y →

Pair + x

1

+ y

1

Cons(10,Cons(12,Cons(13,Nil)))

Cons(3,Cons(4,Cons(8,Nil)))

…

Cons(Pair 11

4

,Cons(Pair 13

5

,Cons(Pair 14

9

,Nil)))

(b) fun zipW op xs ys →

case xs of

Nil → Nil

Cons(x,xs') →

case ys of

Nil → Nil

Cons(y,ys') →

Cons op x

y

zipW op

xs'

ys'

zipW fun _ x y →

Pair + x

1

+ y

1

Cons(10,Cons(12,Cons(13,Nil)))

Cons(3,Cons(4,Cons(8,Nil)))

…

Cons(Pair 11

4

,Cons(Pair 13

5

,Cons(Pair 14

9

,Nil)))

(c) fun zipW op xs ys →

case xs of

Nil → Nil

Cons(x,xs') →

case ys of

Nil → Nil

Cons(y,ys') →

Cons op x

y

zipW op

xs'

ys'

zipW fun _ x y →

Pair + x

1

+ y

1

Cons(10,Cons(12,Cons(13,Nil)))

Cons(3,Cons(4,Cons(8,Nil)))

…

Cons(Pair 11

4

,Cons(Pair 13

5

,Cons(Pair 14

9

,Nil)))

Figure 2.14 Backward-slicing to investigate neededness of parts of zipW for parts of output
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A degenerate but important sub-case of backward slicing is to backward-slice with respect to the entire

output: to ask which parts of the program would not be needed supposing the entire output were needed. The

user asks such a question for the zipW example in Figure 2.14(a). Two Nils are highlighted as a consequence.

The Vrst is the Nil highlighted in the body of zipW which we already knew to be unneeded via the forward-

slicing question we asked in Figure 2.12(b). But we also see that the Nil that terminates the second input list

is also not needed. These two facts happen to be related: it is because we never reach the end of the second

list argument that we never exercise the case branch corresponding to ys being empty.

In (b), the user asks a more Vne-grained backward-slicing question by selecting the last two elements of

the output list, the values Pair(13,5) and Pair(14,9). This asks what would happen if these elements

of the list were not needed. The system responds by additionally highlighting the last two elements of the

two input lists. This seems obvious enough: it is only the construction of those particular output pairs

which consumes those particular input elements. What is slightly less obvious is that the op argument in the

recursive call to zipW would also not be needed. Once we are inside the recursive call, we make no more

uses of op. Thus slicing can reinforce or engender operational intuitions in the user before they even inspect

the execution.

A backward slice is initiated by selecting some part of the output, whereas a forward slice is initiated

by selecting some part of the program. This must be borne in mind when comparing Figures 2.14 and 2.13

since the direction of the “Wow” is not apparent from the Vgures themselves. Now suppose the user goes on

in Figure 2.14(c) to select the Vrst element Pair(11,4) of the output list as well. Then clearly none of the

input list elements would be needed. Moreover, the application op x y would not be needed either, since

we would never apply the operation. In fact we would not need the functional argument to zipW at all. If

the user were to experiment, they would soon discover that unlike availability absences, demand absences

combine in a discontinuous way: the eUect of combining them can be strictly greater than the combination

of their individual eUects.

2.6 Interweaving testing, diagnosis and bug-Vxing

lookup 7

Branch Branch Empty

Pair(3,"simon")

Empty

Pair(4,"john")

Branch Branch Empty

Pair(6,"sarah")

Empty

Pair(7,"claire")

Empty

…

Some( ) lookup 7

Branch ⊞

Pair(4,⊞)

Branch ⊞

Pair(7,"claire")

⊞

…

Some( )

(a) Consumption of input tree to locate 7 (b) Hide unused parts of input

Figure 2.15 Slicing input to lookup

Programming normally forces a “mode change” and a restart when switching between testing, diagnosis
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and bug-Vxing. The point of interactive programming is to allow execution to be retroactively explored and

updated so that these activities can be interwoven. Figure 2.15 returns to the lookup example we introduced

in §2.3. In (a), we see a run of lookup which Vnds the key 7. The user backward-slices with respect to the

entire output, so that the unused parts of the input tree are highlighted in red. What they see is consistent

with their understanding of binary search: for a successful lookup, only the path to the located node will be

consumed.

In (b), we introduce a LambdaCalc visualisation option which allows nodes which are unneeded in a

particular execution to be collapsed down to a ⊞. This can be performed automatically after every update,

or applied manually. Collapsed nodes can be re-expanded; the ⊞ symbol is intended to be suggestive of

this. Collapsing to a ⊞ is diUerent in intention from hiding the execution of a function with an ellipsis. An

ellipsis indicates that we are not interested in the “internals” of a function application, but only in the value it

computes. A computation collapsed to a ⊞ is disregarded entirely, result included. For diUerencing purposes,

collapsed nodes are treated as deleted. In Figure 2.15(b), collapsing the unused parts of the tree to ⊞ reduces

the amount of information that the user has to digest: it is more obvious now that only one string in the tree

is consumed, namely "claire", and that only two keys are consumed, namely 4 and 7.

In Figure 2.16 the user does some more testing and discovers a problem. In a real-world interactive

programming system, one would create collections of “exemplar” function applications explicitly tagged as

test cases or assertions. This would allow the user to “freeze” the extensional behaviour of functions at

particular arguments and to automatically be notiVed of any test failures whenever a code change caused

assertions to be violated. This is a signiVcant improvement over unit testing, as there is no need to write

separate test code. It is a relatively easy feature to layer on top of what we already provide, but we do not

consider it further here. Similar ideas are discussed by Edwards [Edw04]. Instead the user tests interactively,

obtaining Figure 2.16(a) from Figure 2.15(b) by editing the search key from 7 to 3. The “automatic” backward-

slicing setting mentioned above is enabled, so unused nodes are automatically collapsed after every update,

before the delta is calculated. The overall computation returns None, meaning 3 was not found. However,

suppose the user is certain that the data is in the tree and that the tree is sorted properly. What is more,

they can see that an Empty is being consumed in the new state, meaning that the search reached the end of

a terminal path in the tree. This Empty is shown in green because it was unneeded and therefore collapsed

in the previous state. For diUerencing purposes, collapsed is the same as absent. Now that it is needed it is

no longer collapsed and therefore appears new.

Unsure whether the problem is with the code or the input tree itself, the user decides to start debugging

the test case by expanding the ellipsis. This partially reveals a backward slice of the execution: they can see

the tree being taken apart, along the lines of what we showed earlier in §2.3, but here the unused parts of

the tree remain collapsed, providing a more focused view of what is happening. The t1:⊞ binding in the

pattern-match of t indicates that the Vrst subtree was discarded, and the fact the new Empty node is inside

the subtree bound to t2 tells them visually that the search proceeded into t2.

The greenness of the LT ։ branch indicates that the case expression took a diUerent branch this time

compared to when we looked up 7. Although this by no means pinpoints the problem it at least identiVes

some code that was run in the incorrect execution but not in the previous (correct) execution. The fact that
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lookup 3

Branch ⊞

Pair(4,⊞)

Branch ⊞

Pair(7,⊞)

�����

�

None

(a) Key 3 is not found

lookup k:3

t:Branch ⊞

↠ case t of

Branch t1:⊞

kv:Pair(4,⊞)

t2:Branch ⊞

Pair(7,⊞)

Empty

↠

case LT of

LT ↠

lookup k

t2

…

None

(b) Debug into test case

lookup k:3

t:Branch

↠ case t of

Branch t1:Branch Empty

Pair(3� simon")

Empty

kv:Pair(4,"john")

t2:Branch Branch Empty

Pair(6,"sarah")

Empty

Pair(7,"claire")

Empty

↠

case LT of

LT ↠

lookup k

t2

…

None

(c) Accept delta, then re-expand unused nodes

Figure 2.16 Finding and analysing bug in lookup

the branch appears green is a simple consequence of our decision to suppress dead conditional branches.

When a conditional Wow changes, the newly-live branch will appear out of nowhere (and thus seem “new”)

and the previously live branch will simply disappear. However the user would still be directed towards

this bit of code if we were visualising dead branches as well: the arrow glyphs ։ and → would change

and the recursive application of lookup would transition from dead to live. We saw an example of this in

Figure 2.6(a), with factorial.5

On the other hand, although the application lookup k t2 is green, the ellipsis underneath is not. This

means that lookup was applied to the subtree to which t2 is bound in the previous state, when we looked

up 7. This should ring alarm bells, but again is not in itself conclusive. So the user decides to inspect the

data more carefully. They can do so while retaining the particular view of the execution they currently have.

In Figure 2.16(c) they expand the collapsed ⊞ nodes. This has the eUect of dismissing the delta visible in (b)

and then showing the unused nodes again in red. The node being searched for can be seen within t1. The

recursive call in the LT branch now looks culpable, as it recurses into t2. The user then changes t2 into t1

to obtain Figure 2.17(a), which causes the overall result to switch from None to Some("simon"). The ellipsis

under the recursive call turns green, indicating that a new function body has been executed. This is because

5 A better design for compact visualisation of conditionals would be to retain dead branches in the execution trace, but only allow

the user to view one branch at a time. The live branch would be selected by default, but the user would be able to “Wip” through

all the branches (perhaps using the z-axis to animate). This would provide the desired compactness of presentation, but without

conditional-Wow changes causing nodes to appear and disappear.
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lookup k:3

t:Branch

⊞

↠ case t of

Branch t1:Branch ⊞

Pair(3,#simon")

⊞

kv:Pair(4,⊞)

t2:⊞

↠

case LT of

LT ↠

lookup k

t1

…

Some( ) lookup 3

Branch Branch ⊞

Pair(3$%simon")

⊞

Pair(4,⊞)

⊞

…

Some( )

(a) Change argument to recursive call (b) Collapse body of lookup

Figure 2.17 Fixing the error and returning to testing

lookup is now being called with an argument distinct from any argument with which it was called in the

previous state, corresponding to a new region of the tree being searched. Finally, the “demand proVle” of

the computation changes. First, t1 which was not needed at all before, is now partly needed: the path to

the node with key 3 is needed, to be precise. This preVx of the subtree is shown in green, because it was

collapsed in the previous state. Second, t2 is no longer needed and so is collapsed. (There is no highlighting

to indicate this because we are looking at a creation delta. If the user wanted to see this aspect of the change

in neededness, they could undo to the previous state, where t2 would then be highlighted in red.) Most

important, this update to the execution preserves how the user was viewing this part of the computation.

They are still debugging the program, and indeed are at the same “point” in the execution that they were

before, only now with a corrected version of the program. In (b) they have accepted the current delta, “put

away” the body of lookup, and returned to testing.

Admittedly, this is a very simple example and showed a bug that any experience programmer could have

Vxed without any kind of interactive debugging feature. Our goal here is not to convince the reader that

interactive programming is indispensible for simple problems like this. Instead we would like the reader to

consider the wider ramiVcations of being able to transition smoothly from testing to debugging to bug-Vxing

and back to testing, with no artiVcial “mode” changes and minimal loss of working context. We make our

point with small examples so that we can defer tackling some of the scalability issues discussed in Future

Work, §7.2.

2.7 Summary

Our belief is that programming is an inherently interactive activity that would beneVt from more explicit

support for interaction from a programming tool. We introduced the idea of a “how” question which is an

interactive exploration of the current execution to understand how it works. We also introduced the idea of
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“what if” question which we characterised as a question about a hypothetical state of aUairs – how would

the computation behave if things were diUerent? We showed that a natural way to ask such a question is

to make that state of aUairs come about and observe what happens. Very often the answer to a what-if or

a how-question is not the expected one, inviting further questions and the exploration of other possibilities.

So the process continues interactively.

A signiVcant shortcoming of traditional debuggers, editors and compilers is that they cannot address a

“what if” question in the middle of a complex provenance-related inquiry. Instead, debugging sessions are

restricted to exploring single executions. Posing a “what if” question means either resorting to an unsound

edit-and-continue feature, or restarting the debugging session and eUectively forgetting the carefully con-

structed chain of provenance questions. This is the key problem we set out to solve.

The conceptual model just presented, via our LambdaCalc prototype, reiVes computation into an inter-

active, spreadsheet-like document, in which the formulae are themselves nested spreadsheets, and in which

all changes are inherently explicit. To frame a provenance question is to browse into an execution and ex-

plore intermediate computations; to pose a “what if” question is to modify something and observe how the

structure changes. Like a spreadsheet, one navigates between nearby computations by editing. The unique

feature of our system is that the programmer can navigate whilst in a complex view state, allowing coding,

program comprehension, testing, bug diagnosis and bug-Vxing to be interleaved to suit the task at hand.

Some changes destabilise node identities to the extent that the best the user can obtain is essentially an

entirely new computation. In these scenarios, the user’s context cannot be preserved across computations,

and interactive programming degenerates into something closer to the usual programming experience where

task interleaving is not possible.
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3 Related Work

In this thesis we show how three concepts Vt together to form the basis of an interactive programming

system. The three concepts are: the reiVcation of computations into trace-like data structures (Chapter 4);

the slicing of these reiVed computations to expose the Vne-grained relationship between program and output

(Chapter 5); and diUerencing computations in order to make the consequences of program changes explicit

(Chapter 6). The reiVcation, slicing and diUerencing of executions arise in many previous areas of research,

albeit often in slightly altered forms. We expand brieWy on the three concepts before considering these

existing applications and techniques in detail.

Reifying computation means treating the runtime behaviour of a program as data, so that it can be subject

to further analysis. To reify is to transition from “use” to “mention”; here, it entails specifying a data type of

executions and giving a method for transcribing the temporal process of execution into the spatial structure

of the data type.1 In the literature, reiVed computations are often called traces, and the process of building

one is called tracing. Tracing is an established technique used widely in applications that require a “whole

execution” perspective on a computation. Options for building traces include instrumenting the interpreter,

and instrumenting the program (§3.1); applications of traces include algorithmic debugging (§3.2), dynamic

program visualisation (§3.6), debugging lazy functional programs (§3.3), provenance (§3.5), program slicing

(§3.4), self-adjusting computation (§3.10) and execution indexing (§3.12). In interactive programming, reiVed

computations play a central role: we expose them directly to the user for interactive inspection, and they

also enable the other features of our system, namely slicing and diUerencing of computations.

Slicing is a substantial research Veld in its own right. The goal is usually to decompose a program into

independently executable parts, for example for algorithmic debugging (§3.2), debugging lazy functional

programs (§3.3), or parallelisation. Trace-like structures, such as dynamic dependence graphs, are sometimes

used to calculate slices, although often these traces are not intended for human consumption. In LambdaCalc,

we use slicing to allow the user to decompose a computation interactively into execution Wows which can be

understood independently.

DiUerencing computations is the problem of describing how two executions diUer, which can be useful

for locating bugs and understanding the impact of changes. It presupposes that the computations exist in

a concrete, or reiVed, form; the diUerence or delta between two (reiVed) computations then takes the form

of an edit that transforms one computation into the other. Execution indexing (§3.12) explores diUerencing

techniques; applications of executing diUerencing are found in provenance (§3.5) and program slicing (§3.4).

The notion of computation delta is also important in incremental computation, in particular self-adjusting

1 ReiVcation is also an instance of the famous extra “level of indirection”, attributed to David Wheeler [Lam07], which can supposedly

solve any problem in computer science.
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computation (§3.10), because it plays a role in problem characterisation. Given two computations T1 and T2,

which reify the execution of programs e1 and e2, then incremental computation can be characterised as the

problem of deriving T2 from T1, given the diUerence between e1 and e2, in time asymptotically equal to the

size of the diUerence between T1 and T2. It is the opportunity of reusing parts of T1 that oUers the prospect

of building T2 asymptotically faster than simply executing e2 from scratch. The output of each incremental

update is a trace that serves as the input to the next update. In this thesis we consider techniques for

calculating computation deltas that reWect program edits made by the user, but we leave the issue of eXcient

incremental update for future work (§7.2.2).

3.1 Recording and replaying execution

Bernstein and Stark [BS95] suggest that a debugger should be seen as a general-purpose tool for observing the

behaviour of a program according to some well-deVned operational model. We take a similar view of traces:

they should record the behaviour of the program according to a speciVc operational model, which we call

the reference semantics. In particular, as we mention in §2.3, traces should not distinguish executions which

the reference semantics regards as equivalent. Thus low-level tracing techiques that expose implementation

details, such as those used some in time-travel virtual machines [Lew03, KDC05], are not relevant here.

The structure of traces depends on the chosen reference semantics, then, and can be considered inde-

pendently of methods for building them. For a big-step semantics, the traces can to a Vrst approximation

simply be the Vnite derivation trees for the evaluation judgement. In other words, interpreting the evaluation

judgement as a signature Σ, a suitable data type of traces is the initial Σ-algebra. A small-step (transition)

semantics does not immediately give rise to an inductive data type; a trace format widely used in this set-

ting has been the redex trail of Sparud and Runciman [SR97], later enhanced into the augmented redex trail

(ART) of Wallace et al. [WCBR01]. The formal correctness of redex trails with respect to the original tran-

sition semantics was neglected until Brassel’s work on redex trails for lazy logic languages [BHHV04] and

Chitil and Luo’s formalisation of ART traces [CL07].

The main diUerence between ART traces and the traces we deVne in Chapter 4 is that an ART records

a small-step term-rewriting derivation, rather than a big-step derivation. ARTs have generally been used

for lazy languages, where graph-rewriting approaches are common [Wad71], but the trace format itself is

Wexible enough to support other reduction strategies. The contraction of a redex is recorded by the addition

of a new node for the reduct, with an edge linking it to the redex, rather than contracting the redex in situ

as would normally happen in graph reduction. The fact that the ART is only ever added to is similar to how

our traces are an inWation or “unrolling” of the source program. Moreover Silva and Chitil use an ART for

a system which combines algorithmic debugging with Vne-grained program slicing [SC06]; we contrast this

with our slicing approach in §3.4 below.

Execution under a small-step semantics can also be recorded into a trace with a big-step shape; a well-

known example is the evaluation dependence tree (EDT) of Nilsson and Sparud [NS96], which we discuss

in more detail in §3.3 below. The authors informally compare an EDT to a big-step call-by-value derivation

where unneeded arguments remain unevaluated. As our system does, the EDT employs an environment-
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based semantics to record source names of variables.

Now we turn to methods for building traces. The general idea is to observe the execution in some way, and

then transcribe the observations into a trace. One approach is a source-to-source technique that transforms

the program to be traced into an instrumented, “self-tracing” version that builds the trace as it executes.

The trace describes the execution of the uninstrumented program. This approach has been used widely in

debuggers for both lazy languages [CRC+03, SN95, BJ97] and strict languages [TA95]. Since the tracing code

is part of the user program, there is no possibility of its inadvertently depending on implementation details

of the interpreter. Moreover the instrumented program can be executed on any interpreter for the language.

An alternative approach to tracing is to instrument the interpreter instead of the program. While evaluat-

ing the program, the instrumented interpreter builds a description of the evaluation that would have taken

place under the reference interpreter. Chitil [Chi01] and Brassel [ibid.] both use this technique to record

redex trails.

Kishon et al. [KHC91] describe a more abstract approach, which they present in a denotational setting.

Their technique can be used for applications other than tracing, and works for any language for which a

continuation semantics can be given. From the continuation semantics, they derive a monitoring semantics,

which is parameterised by a monitor state and a set of monitoring functions. The monitoring semantics

threads the monitoring state through the computation; the monitoring functions are used to transform the

monitoring state at each point where control is transferred to the continuation. Thus monitoring semantics

are a general, denotational approach to observing execution. The approach can be used to construct a

trace by using a “tracing monitor” whose job it is to record the observations. Kishon et al. also show how a

monitoring interpreter can be optimised into an instrumented interpreter by partially evaluating with respect

to a particular monitor, and into an instrumented program by partially evaluating with respect to a particular

program. Thus their approach is powerful enough to subsume both instrumentation approaches mentioned

above.

We do not need the generality of Kishon et al., and so the approach we take to tracing in this thesis is

to use an instrumented interpreter. The traces we build are, roughly speaking, derivation trees for a big-

step reference semantics (Chapter 4). Derivation trees “proper” carry environments, contexts, and other

meta-values as indices; we omit many of these details from our traces. We also do not formally establish

a correspondence between traces and big-step derivations. Instead, the correctness property that our traces

satisfy is that they contain enough information to be able to run the computation backwards, recovering

enough of the original program to compute the value whose computation was traced (§5.3.2). How this

relates to other notions of trace correctness is a topic for future study.

Given a trace, we often want to recover a “stepping” or “focused” view of the execution, allowing the

user to recover the individual steps recorded in the trace. We call this replaying. If the trace is a small-step

trace, such as an ART, then it is possible to replay small-step reduction steps directly from the trace, as for

example described by Chitil and Luo [CL07]. When the trace is a big-step derivation tree, there is no explicit

notion of evaluation “step” to recover. Da Silva shows how to derive a stepping transition system from a

big-step semantics [dS91]; this can be useful for showing how debuggers correspond to a big-step reference

semantics. For example da Silva goes on to prove the correctness of a stepping debugger by exhibiting a
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bisimulation between his derived transition system and the debugger.

A trace aUords a spatial, “all at once” view of a computation. Replaying it recovers the temporal, step-

ping view of the computation from which the trace was recorded. Indeed, record and replay relate these

two perspectives to each other: a trace can be “replayed” as a stream of observations of the computation;

and any Vnite preVx of such a stream can be “recorded” into a trace. Victor argues convincingly for the

importance of being able to switch freely between these perspectives [Vic11]. For systems that provide the

temporal, stepping view, basing that on trace replay means that execution can be explored after the program

has run and the focus moved freely backwards and forwards in time. On the other hand, traces can be

expensive to create and store; we consider eXcient ways of representing traces in Future Work, §7.2.1. It is

possible to provide a temporal, stepping view without an underlying trace, by simply allowing execution to

be suspended and resumed by the user. However it is not then possible to step backwards, because at each

transition information is lost about prior states. We discuss ways of presenting execution based on all of

these approaches in §3.6 below.

3.2 Algorithmic debugging

In LambdaCalc, the user can peek behind a value to obtain an explanation of how it was computed. Typi-

cally, that explanation will mention other values, which in turn have their own explanations. These nested

explanations can be hidden by default. Keeping the explanations of intermediate values hidden unless the

user explicitly requests to see them allows the user to backtrack eXciently through a large computation, only

inspecting the computational history of values which are of interest.

Figure 3.1 Evaluation tree for erroneous insertion sort

This mode of exploration is closely related to algorithmic debugging, a method for semi-automatic bug

localisation originally due to Shapiro [Sha83]. Algorithmic debugging assumes an oracle, perhaps the pro-

grammer or a database of expected test results. For any step in the computation, the oracle must be able to

say whether that step yielded the expected result. If the oracle can provide correct answers, then algorithmic

debugging will reliably locate the step in the computation where the bug Vrst manifested, and thus be able
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to the determine the faulty source expression.

Since Shapiro’s original formulation, algorithmic debugging has been extended in several directions, for

example by Nilsson and Fritzson to a lazy functional setting [NF92]. Cheda and Silva provide an up-to-date

overview of the state of the art [CS09]. We illustrate the idea with an example adapted from Fritzson [FAS94].

It shows an algorithmic debugging session which locates a bug in an implementation of insertion sort, with

the user playing the role of oracle. We omit the source code, as the example is easy enough to understand

from the evaluation tree shown in Figure 3.1. For the moment ignore the colour scheme. The dialogue in

Figure 3.2 shows the questions asked of the user by the automatic procedure, along with the user’s responses.

The algorithm starts at the root of the evaluation tree, at each node visited asking the user whether the

result at that node is correct (yes) or incorrect (no), and proceeding depth-Vrst into incorrect children. The

algorithm has located the bug when it reaches a node which is incorrect, but whose children are all correct.

(We avoid red and green to prevent confusion with the colour scheme introduced in Chapter 2.) Referring

back to the evaluation tree in Figure 3.1, where the meaning of the colours should now be apparent, it should

be intuitively clear that the number of questions that have to be answered is often logarithmic in the size of

the computation. Grey indicates nodes that are not visited at all.

sort [2, 1, 3] = [3, 1] ?

> no

sort [1, 3] = [3, 1] ?

> no

sort [3] = [3] ?

> yes

insert 1 [3] = [3, 1] ?

> no

insert 1 [] = [1] ?

> yes

An error has been located in the function ‘insert’.

Figure 3.2 Algorithmic debugging section for erroneous insertion sort

As suggested, there is a strong aXnity between the interactive nature of algorithmic debugging, and our

approach to execution browsing. To make the connection clearer, we consider a list of desiderata for UIs

for algorithmic debugging due to Westman and Fritzson [WF93]. They begin by identifying a number of

shortcomings of the kind of algorithmic debugging experience suggested by Figure 3.2. They note the lack

of easy navigability to the source code of the relevant functions, obscuring the relationship between the

questions and the original program. They also note that the execution context is absent, making it hard for

the programmer to understand why a particular question is being asked. Finally, they argue for Wexible

starting points for debugging sessions, in preference to always starting at the beginning of the execution,

plus the ability to skip trusted or irrelevant parts of the execution.

Westman and Fritzson then sketch an alternative design for an algorithmic debugger which addresses these

deVciencies. They forgo the purely textual Q&A session of Figure 3.2 in favour of an experience oriented
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around an interactive exploration of the evaluation tree itself. This locates each question at the step of the

computation to which it pertains, making the context immediately apparent. Combined with the ability to

easily access the source code for any node, as well as to expand and collapse nodes, their design overcomes

most of the problems identiVed with the original interface. Although restricted to the exploration of a single

execution, the system they describe is quite close to ours. We more tightly integrate source code with the

evaluation tree, in particular showing live variable bindings and thereby making the full execution context

apparent to the user. On the other hand LambdaCalc provides no debugging automation, and instead the

user would have to drive the process manually.

A Vnal feature Westman and Fritzson consider important for algorithmic debugging is the ability to save

a debugging context and resume it later, restoring the potentially complex view of the execution from the

prior session. Although we do not implement this feature yet, it is worth brieWy considering how it could

be added. In Chapter 2, we showed how LambdaCalc allows complex debugging views to persist across

certain kinds of edit, through the assignment of a unique identity to each node in the computation. Since

these identities are derived deterministically from the identity of nodes in the source program, to make a

computation persistent across user sessions we need only store the source code in a way that preserves the

identity of those nodes. Persistent views of executions are then readily implementable.

There is also a close connection between algorithmic debugging and slicing, since in general only part

of the computation contributes to a given erroneous result. This connection was Vrst studied by Pereira

in the context of Prolog [Per86], and then extended to functional languages. Chitil combined algorithmic

debugging with dynamic slicing [Chi05], but only allowed slicing with respect to the entire output, rather

than speciVc parts of the output. Silva and Chitil, using a more formal approach, developed a Vne-grained

slicing technique based on Augmented Redex Trails [SC06]; as with our approach, the user is able to slice

a sub-computation with respect to some part of the output which is deemed incorrect. We return to this in

§3.4 below.

3.3 Debugging lazy programs

Lazy (call-by-need) execution can be diXcult to follow because function arguments are not evaluated until

they are needed. Control Wow jumps around the program in deterministic, but potentially confusing ways.

Taking a slightly more abstract view of call-by-need evaluation can help. One approach is the evaluation

dependence tree (EDT) of Nilsson and Sparud [NS96]. The EDT represents the sharing that arises in call-by-

need, but omits details of when particular redexes are demanded. Instead, an argument that is eventually

needed is recorded in the EDT as evaluated at the point at which it is passed to the function, as in call-by-

value. Unneeded arguments remain unevaluated, preserving the termination behaviour of call-by-name.2

The advantage for debugging is that the EDT execution Wowmore closely mirrors the structure of the original

program.

An EDT thus resembles a call-by-value trace where some expressions are suspended. In fact an EDT is

very similar to the backward-sliced call-by-value computations introduced in Chapter 2 and discussed in

2 For this reason we avoid an earlier name for this, strictiVcation, introduced by Nilsson and Fritzson [NF94].
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detail in Chapter 5. The connection becomes apparent if we interpret a deleted node in a sliced computation

as indicating the location of a thunk that would never be forced in a lazy computation. Consider a lazy

computation which produces a non-empty list. The output will be of the form Cons(e1,e2) where e1 and e2

are thunks. We call a value of this shape, which has been evaluated only to the top-level constructor, a lazy

tuple.3 The lazy computation will have done only enough evaluation to compute the output to that depth. On

the other hand, a call-by-value evaluation of the same program will fully evaluate all expressions reached

during execution, producing an eager value such as Cons(3,Cons(4,Nil)). But if we were to relinquish

demand on the head and tail of the output list and then backward slice, we would obtain a call-by-value

computation from which the parts no longer needed have been deleted. The dynamic backward slice of the

computation thus seems to capture exactly what happened in the lazy evaluation. Moreover, the evaluation

of each argument expression, to the extent that it took place, is recorded in the trace as happening before the

evaluation of the function body, as in an EDT.

Biswas was the Vrst to make this connection between backward dynamic slicing and laziness. However,

his theorem only relates backward slices and lazy computations for programs whose output is a single nullary

constructor such as Nil [Bis97]. This restriction is a consequence of his approach to slicing, which is always

with respect to the entire output of the program. Lazy evaluation corresponds more generally to backward

slices where the demand on the output is speciVed by a lazy tuple. Our slices are more general still, in

allowing output demand to range all the way from no demand at all to fully strict output. This suggests an

interesting direction for future work: generalising lazy evaluation to compute with arbitrary output demand,

speciVed by an output slice, rather than with the Vxed demand implied by the requirement to compute a lazy

tuple. We discuss this in Future Work, §7.2.5.

3.4 Program slicing

A key feature of LambdaCalc is the ability to interactively explore the Vne-grained relationship between

input and output. This can be done in two directions: the user can highlight part of the program, and have

the part of the output that it contributes to automatically highlighted; or they can highlight part of the output,

and have those parts of the program that only contribute to that part of the output automatically highlighted.

Both of these exploratory capabilities are a form of dynamic slicing: the former is forward dynamic slicing

and the latter backward dynamic slicing. The term “slicing” is originally due to Weiser [Wei81].

The program slicing literature is large, covering both static and dynamic techniques with a wide variety of

properties. See Xu et al. [XQZ+05] for a comprehensive survey. Slicing techniques were initially developed

for imperative languages [Tip95, FT98]. Here we consider work on dynamic slicing for functional languages.

The work of Biswas [Bis97], Ochoa et al. [OSV08] and Silva and Chitil [SC06] is closest to ours. Biswas

computes slices of strict, higher-order programs, but only considers slicing with respect to the entire output.

Our slicing criteria are more Wexible, allowing speciVc portions of the output to be selected. Ochoa et al. also

allow more Wexible slicing criteria, but only for Vrst-order lazy logic programs.

3 Sometimes such values are said to be in weak head-normal form [Jon87], but we avoid that term as it sometimes has a more speciVc

technical meaning.
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Silva and Chitil’s work, which we also mentioned above in §3.2 in relation to algorithmic debugging, is

probably the most similar to ours. Their approach is based on the Augmented Redex Trail (ART), a trace

format described earlier in §3.1. They too permit parts of values and expressions to serve as slicing criteria,

but again in a lazy setting. Although our techniques appear to be the Vrst where Vne-grained output criteria

can be used in a strict, higher-order setting, this diUerence is arguably minor. More signiVcant is that Silva

and Chitil are only able to show that their slices are minimal with respect to a notion of weak inWuence, a

form of dynamic dependency between nodes in the ART. We give an order-theoretic account of dynamic

slicing which characterises the problem in terms of programs, allowing us to state purely extensionally what

it is for a dynamic slice to be minimal, independently of any notion of trace. In Silva and Chitil’s work, the

notion of minimality is tied to the ART.

While Silva and Chitil’s approach is based on the ART, Biswas and Ochoa et al. rely on labelling parts

of the program and propagating the labels through the execution to determine which parts of the program

contribute to the output. Although we use something similar for execution diUerencing in Chapter 6, our ap-

proach to slicing does not require label propagation. Our traces also reWect closely the syntax of expressions,

allowing us to “unevaluate” trace slices back to program slices, as described in §5.3.

In our earlier collaborative work on security and provenance mentioned in §3.5 below [AACP12], we

also investigated slicing techniques based on big-step traces. The “disclosure slicing” algorithm presented

there is similar to the trace slicing algorithm given here in §5.4; it ensures that a sliced trace retains enough

information to show how a particular output was produced. But in this thesis we move beyond the slicing

techniques described there, in also considering program slices, giving a novel abstract characterisation of the

problem of dynamic program slicing, and showing how to do Vne-grained forward and backward diUerential

slicing. We also presented these developments in subsequent work [PACL12].

3.5 Provenance

Provenance is a relatively recent Veld concerned with the auditing and analysis of the origins and compu-

tational history of data. It has applications in databases [BKT01, BCV08, GKT07, FGT08], security [CJPR08,

SCH08] and scientiVc workWow systems [BF05, SPG05, DF08]. ReiVed computations are already a gen-

eral form of provenance; for any value they provide a complete computational account of how it came to

be. However, existing provenance techniques have focused on more speciVc kinds of query, such as “what

particular tuples in the database contributed to this result?” – so-called “where”, “why” and “how” forms

of provenance. Answering such queries may require knowing certain things about the execution, but the

answer may not itself take the form of a computation.

Most provenance work has focused on languages of limited expressiveness, such as database query lan-

guages, rather than general-purpose languages, and has often lacked any formal semantic foundation. The

techniques either rely on some form of trace, or work by propagating annotations through the computation.

Some eUorts in a more formal direction include Hidders et al. [HKS+07], who model workWows using a core

database query language extended with non-deterministic, external function calls, and partially formalize a

semantics of runs which are used to label the operational derivation tree for the computation.
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Although the goals of provenance overlap broadly with ours – allowing users to understand where values

come from and perhaps how they were computed – speciVc forms of provenance are not particularly rele-

vant to our work. The signiVcance is more that the kind of execution environment that we propose allow

provenance queries to be answered ex post facto, i.e. after the computation has already taken place. (This is

sometimes called oYine analysis.) The problem of provenance is essentially one of dynamic program anal-

ysis, namely being able to obtain a suitable abstract view of an execution. If the history of a computation

is readily available, oYine provenance queries can be supported without having to anticipate their need, or

even the kind of queries that might be asked. In earlier collaborative work on security and provenance with

Acar, Ahmed and Cheney [AACP12], we showed how oYine analyses corresponding to many previously-

studied forms of provenance can be performed on traces and in particular on trace slices. This work does

not form part of this thesis, but is a useful demonstration of the utility of reiVed computation as ubiquitous

infrastructure. And reiVed computation can of course be useful for dynamic program analyses other than

provenance; for example Salkeld et al. use execution traces to carry out oYine analyses using aspect-oriented

techniques [SXC+11], which are normally only applicable at runtime.

3.6 Dynamic program visualisation & visual programming

In interactive programming the user is always located at a particular execution. In our implementation, we

present that execution to the user visually as a structure that they can explore. Textual or graphical pre-

sentation of a program’s execution, usually to aid comprehension, is called dynamic program visualisation.

Debuggers are an important special case of dynamic program visualisation in which the comprehension task

is to diagnose an anomalous behaviour. When the user can also change the program via the same system, it

is a form of visual programming. Since the latter can include the former, we consider both topics together;

at the end of the section we consider two visual programming systems where there is no visualisation of

execution, but only of the results of a computation. The “live update” aspect of visual programming we

discuss separately in §3.7 below. In this section we concentrate on visualisation.

Visual programming has its origins in early work in graphical user interfaces (GUIs), human-computer

interaction (HCI) and the development of the personal computer. Between the early 1960s and the late

1980s there were three particularly inWuential systems: Sutherland’s Sketchpad [Sut63], Borning’s ThingLab

[Bor79], and Smith’s Alternate Reality Kit [Smi87]. However these systems were based on constraint pro-

gramming, which does not concern us. Spreadsheet languages are another important example of visual

programming system which we treat separately (§3.8, below).

There are two main ways of visualising execution, corresponding to the two perspectives on a computation

discussed in §3.1 above. The Vrst is the animated, “stepping” approach familiar from integrated development

environments (IDEs), which locates the programmer at a point in time and allows them to step forwards

through the execution and possibly backwards. We call this the temporal approach as it represents compu-

tational history in time. Stepping backwards is only possible in the temporal approach if the visualisation

is based on an underlying trace. The other approach is to present computational history spatially, as a data

structure. With the Vrst approach, one challenge is to make apparent to the user the connection between
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the dynamic visualisation and the source program, which is usually presented separately (as a spatially ex-

tended structure, such as a text buUer). We shall see that when both code and execution are presented

spatially, there are opportunities for a more uniVed presentation. We consider text-centric systems to fall

within the domain of dynamic visualisation and visual programming whenever the text is used not just to

present a static program but also to visualise its execution.

The level of detail in dynamic program visualisation techniques varies from presenting every execution

detail to focusing only on certain features, such as system-level components, interactions, runtime data

structures, threads, or erroneous behaviours such as deadlocks. (For a recent survey, see Reiss [Rei07].)

Ignoring some aspects of the computation and focusing on others allows the visualisation to be tailored

to speciVc problems and can also make the techniques more applicable to large programs. Trace-based

approaches allow decisions about level of detail to be made after the program has run, without having to

re-run the program, since visualisations can be deVned as functions over the reiVed computation. This is

important for other forms of dynamic analysis than visualisation; for example provenance (§3.5, above).

Moreover as we argued in Chapter 2, ex post facto analysis may be the only option in a distributed setting

if the computation we want to debug or visualise is irrevocably in the “past”. In LambdaCalc, we take a

relatively naive approach to visualisation and simply allow the entire execution to be explored.

LambdaCalc’s approach to visualisation is spatial, but we will Vrst consider some systems based on the

temporal approach, including the stepping debuggers commonly found in IDEs, by way of comparison. With

these systems, a standard visualisation scheme involves maintaining separate views of the source code and

the execution context, and then highlighting the region of the source code corresponding to the current point

in the execution. The dynamic context is usually the call stack with active variable bindings. The user can

single-step the highlighted position in the source code with the option to “step over” or “step into” procedure

calls. These debugger implementations tend to be rather ad hoc, exposing compiler implementation details,

rather than being tied to a particular abstract machine. Moreover they are not usually based on replay of a

trace, and so going backwards is not usually supported.

Chitil’s Hat Explore stepping debugger for Haskell [Chi05] has a more explicit connection to an operational

semantics than typical IDE debuggers. It is also trace-based, taking a lazy computation represented as an

evaluation dependence tree (EDT), a trace format described in §3.3 above. Figure 3.3, adapted from Chitil,

shows Hat Explore in action, with a buggy Haskell version of insertion sort similar to the example used in

§3.2 above. (Recall that in Haskell, strings are lists of characters, and that the top-level program returns

a value in the IO monad.) On the left-hand side, the lower half of the frame contains the source code of

the program; the expression highlighted in blue corresponds to the current location in the EDT. The EDT

itself is not fully visualised; instead, as with most stepping debuggers, the user only sees the “call stack”,

plus the current location. This context appears in the upper half of the frame. The current location is also

highlighted in blue, to emphasise the connection to the highlighted source expression underneath. The call

stack is essentially the path to the root of the EDT. The right-hand side shows the state that results from

stepping over, rather than into, the call to insert highlighted on the left. This has the eUect of returning

from the enclosing call to sort and popping item 4 from the context.

Another temporal approach used in stepping debuggers is exempliVed by Chang et al.’s debugger for
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1. main = {IO}

2. sort "sort" = "os"

3. sort "ort" = "o"

4. insert ’o’ "r" = "o"

---- Insert.hs --------------------------

sort :: Ord a ⇒ [a] → [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a ⇒ a → [a] → [a]

insert x [] = [x]

insert x (y:ys) =

if x≤y then x:ys else y:(insert x ys)

1. main = {IO}

2. sort "sort" = "os"

3. sort "ort" = "o"

---- Insert.hs --------------------------

sort :: Ord a ⇒ [a] → [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a ⇒ a → [a] → [a]

insert x [] = [x]

insert x (y:ys) =

if x≤y then x:ys else y:(insert x ys)

Figure 3.3 Stepping through insertion sort in Hat Explore

Lazy Racket, a lazy Scheme-like language [CCBF11]. The idea is to animate the execution as a rewriting

of the program text, emulating the reduction semantics rather than a big-step semantics. Figure 3.4 shows

an example adapted from Clements et al. [CFF01]. On the left-hand side, at top of the window, we see the

Scheme source code for factorial. Underneath is what remains of a partly-executed call to fact 14, which

has now been reduced to (* 14 (fact 13)). The blue highlighting shows the current redex; the right-

hand side shows the state that results when the user performs the reduction step, replacing the redex by its

contractum, which is shown in purple. (In Clements et al.’s implementation, the user sees these two views

side-by-side.)

(define (fact x)

(if (= x 1) 1 (* x (fact (- 1 x)))))

(* 14 (fact 13))

(define (fact x)

(if (= x 1) 1 (* x (fact (- 1 x)))))

(* 14 (if (= 13 1)

13

(* 13 (fact (- 13 1)))))

Figure 3.4 Stepping through factorial in Lazy Racket

With a temporal approach, the programmer steps backwards and forwards in time in order to see the de-

tails of the execution. In the spatial approach, the user browses into a trace, or reiVed computation, to reveal

internal structure. This is approach taken in LambdaCalc, and also in George’s pegagogical system EROSI

[Geo00], Hancock’s pedagogical system Flogo II [Han03], and Edwards’ language Subtext [Edw05, Edw07].

A spatial view of computation lends itself more to direct manipulation, a term due to Shneiderman [Shn83].

In a direct manipulation interface, the GUI is “transparent” and merely reveals, and permits interaction with,

structure already present. When the trace is a big-step trace, one spatial approach is to present the execution
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as an unfolding of the program source.

Figure 3.5 shows the execution in Subtext of a function called Factorial applied to an argument 3. The

underlying language is a pure, untyped object calculus based on prototypes, rather than classes. The example

code is still incomplete: the programmer has not yet added the multiplication step required to implement

factorial. Here we only explain enough of the UI to give the reader an impression of the similarity to our

approach. The application Factorial 3 is represented as an object with a method called 1st, whose body is

the constant 3, representing the argument binding, and a method called =, whose body computes the result.

The methods of this object, and of the object representing the nested call Factorial 2, are shown vertically

aligned. The body of = returns the value of the = method of a local Choice object, with three methods if,

then and else, encoding a conditional. The methods of the Choice object, and of the remaining objects

in this example, are shown in an alternative layout style which aligns the methods horizontally within

parentheses, with the exception of the = method, which is shown to the right of the closing parenthesis. The

user can toggle between the horizontal and vertical layouts as required. The if method of the Choice in

turn returns the value of the = method of a primitive Equality object, and so on.

The recursive call is a copy of the containing Factorial object, as indicated by the compass at the top of

the object, pointing to the source of the copy. Here, the copy locally overrides the 1stmethod to bind it to the

value 2 computed by the Difference object local to the containing Factorial call. Copying is ubiquitous

in Subtext. For example, in the inner call to Factorial, the 1st argument has a compass indicating that

its value 2 is a copy of the 2 computed by the application of Difference in the enclosing application.

The key things to note are that recursion is unwound, like it is in a big-step derivation tree, and also that

execution structure is live and modiVable. If the user were to add the required invocation of Multiply into

the outer Factorial object, the inner copy would automatically inherit it and the computation would update

correctly. There are some diUerences between our approach and Subtext. Subtext makes dataWow explicit

via copy links; while dataWow explains the sharing of values that arises in LambdaCalc, the dataWow edges

themselves are not explicitly represented. On the other hand, interactive dynamic slicing allows the user to

indirectly observe the structure of the dataWow graph, and in particular its parallel structure, which is not

explicit in Subtext. Moreover, in LambdaCalc all changes are described by explicit deltas, allowing the user

to see the precise consequences of changes.

Hancock’s Flogo II also represents (sequential) execution as an unrolling of the original program [Han03].

A Flogo II program is a “machine made of text” (p. 73). There are other similarities to LambdaCalc and

Subtext: for example intermediate values are shown associated with the step in the computation which

produced them, and their display can be toggled on and oU. Unlike our system, Flogo II supports concurrent

processes as well as sequential execution. There is no provision for sharing, and the UI approach they use is

not suitable for structured values. Executions are directly editable; the edits are reWected back to the original

program and propagated to all other executions of the same function.

The earliest visual programming system to embrace this philosophy however was probably Weiser and

Henderson’s 1985 VisiProg concept [HW85], implemented for Basic and Pascal in a system called XED. In-

spired by VisiCalc, the Vrst spreadsheet system, VisiProg provided a live programming environment, immedi-

ately reWecting the user’s changes in the visualised computation. The z-axis was used to visualise dynamics:
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Figure 3.5 Recursive function call in Subtext, partly expanded

for example each iteration of a loop was displayed in its own window, using a slightly skewed overlapping.

The intention was to add other interactive programming features to VisiProg, in particular incremental up-

date (discussed further by Karinthi and Weiser [KW87]) and interactive dynamic slicing. However, it appears

that neither of these aspects of VisiProg went beyond the discussion stage, and the signiVcance of VisiProg

lies more in the vision than in the details that were actually worked out.

Finally, we consider two visual programming systems which are related to LambdaCalc, but which expose

only the extensional behaviour of computations to the user, keeping the internal structure hidden. Elliott’s

tangible functional programming is based on the notion of a “tangible value”, which is a composable, visual

presentation of a pure (and possibly higher-order) value [Ell07]. Elliott implemented his concept in a Haskell-

based system called Eros. In Eros, one composes values by composing their visualisations: for example, one

obtains the visualisation of a pair by pairing the visualisations of its components. The main novelty of

Elliott’s work is what he calls deep application, a set of combinators that allow functions to be transformed

to operate on parts of structured values and a method for translating mouse gestures into sequences of such

combinators. This is useful for gestural composition of tangible values. As mentioned above, functions are

treated purely extensionally; a visualisation of a function is an interactive view that allows the user to sample

the function dynamically, i.e. manipulate its input interactively and see the corresponding output change,

but not to “see inside” the execution of the function.

The other system is Hanna’s Vital, a live, visual extension of Haskell [Han02]. The user interface provides

a number of built-in spreadsheet-like interactive visualisations tailored to particular data types. These can

be combined to build new visualisations for other data types. For example, a triangular array with elements

of type Maybe Int might be rendered as rows of cells, with Nothing rendered as an empty cell, and Just n

rendered as a cell containing n. When the user types in a Haskell expression which creates or manipulates

a value of one of these data types, the value of that expression is automatically rendered using the relevant

visual presentation. Moreover, the user can edit the sub-values that appear in the visualisation and have

those changes reWected back to the Haskell expression. Vital extends Haskell, and so is based on Haskell’s

lazy evaluation strategy; by exploring more of the visual presentation, the user can force more evaluation of
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the data structure being visualised. But again, Vital only provides an extensional view of a computation.

3.7 Live programming & live coding

Live programming environments combine editing and execution.4 The programmer can change a running

program and immediately see the eUect on the execution. Visual programming languages (§3.6 above) are of-

ten live. Live programming has many applications: providing useful feedback to the user; upgrading running

systems; and creative activities that beneVt from interjecting the user’s activities into the ongoing compu-

tation. The term live is sometimes attributed to Tanimoto [Tan90], although examples of such systems date

from considerably earlier. Liveness is perhaps best thought of as a property of a programming environment

rather than of a language; many kinds of language (functional, imperative, logic) have been implemented

in a live style. Liveness is to be contrasted with functional reactive programming (FRP, §3.9 below) and

self-adjusting computation (SAC, §3.10 below) which assume a Vxed program syntax during execution.

What a “running program” means varies. At one extreme, the program is a closed expression and “run-

ning” in fact means Vnished running: the states of the live programming environment are idle, representing

the execution of that program to termination. When the user changes the program, the system transitions

into a new idle state representing the execution of a diUerent program. This form of live programming em-

bodies the retroactive update notion that we introduced in Chapter 2. Retroactive update has a subjunctive

Wavour: the environment allows the user to step sidewise in time, into an alternate execution where it is “as

though” the program had been written diUerently from the outset. Spreadsheets are the most familiar live

systems based on the retroactive paradigm. They are usually based on pure, Vrst-order functional languages

without recursion, although there are more general-purpose spreadsheet languages which bear a closer re-

lationship to our work (§3.8, below). Version 6 of the commercial product Mathematica implemented a

retroactive spreadsheet-like feature called “dynamic interactivity” [Wol91].

Retroactivity also arises in SAC (§3.10 below). Although SAC is technically not a form of live program-

ming, because it only permits changes to inputs, it explores an important aspect of live programming, namely

eXcient update, via an algorithm called change propagation. The retroactivity appears in the correctness of

change propagation, which is deVned as consistency with a “from scratch” run of the program with the

modiVed inputs. Finally, interactive programming, as proposed here, is a form of live programming with

retroactive update. We explored interactive programming for a Vrst-order functional language in earlier

work, restricting the edits to changes to the values of program constants [Per10]. In this thesis, we extend

this facility to arbitrary program edits and a higher-order language.

At the other end of the spectrum from retroactive update, we Vnd live programming systems where we can

“hot swap” new code into the running system and continue execution, with the new code only inWuencing

subsequent behaviour. For example, game developers often make changes to game code whilst in an active

game. It is usually impractical to then try to obtain an adjusted version of their present game state that

4 At the time of writing,Wikipedia prefers the term “interactive programming” for live programming, but to the best of our knowledge

this term is not widely used either in the programming commmunity, or in the research literature. To avoid confusion with our

notion of “interactive programming”, we stick with conventional usage.
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corresponds to a from-scratch run of the game under the new code. It might not even be possible if the

change in behaviour they introduced would cause a large deviation in game state. But even when feasible,

for rapid development and testing it is often more convenient to treat the part of the game being updated as

an open system and the “computational past” of the game as part of its environment that it cannot change.

In professional games development environments, this ability to “hot swap” is considered essential; we also

see it in many general-purpose runtime environments. The HotSpot Java Virtual Machine allows deVnitions

to be changed while execution is suspended at a breakpoint and then execution to be resumed under the new

deVnitions [Dmi01]; the concurrent functional language Erlang has “hot code swapping” [Nau10]; many web

development frameworks allow code to be modiVed and reloaded into the browser without the application

having to be restarted.

This kind of live programming is also popular for interactive audio synthesis, music performance, and in-

teractive graphics, using systems like Impromptu [SG10], based on Scheme, and the domain-speciVc audio/-

music language SuperCollider [McC02]. In such settings, especially when the emphasis is on performance,

the term live coding [CMRW03] or on-the-Wy programming [WC04] is often preferred. (Used like this, “live”

has the connotation of live performance, as well as the editing of a live program.) In live coding systems, a

number of processes run concurrently, implementing music synthesisers, controllers, or animated graphics.

The code for these processes is edited by the programmer, new deVnitions hot-swapped into the interpreter,

and the ongoing behaviour of the system modiVed on the Wy. The user’s interactions and the mutating

program together form a hybrid computation that interweaves changes to the program with execution of

the program in an informal and ad hoc way. This is Vne – desirable, even – for creative applications and

whenever the emphasis is on the process rather than the end product.

Moreover, in the presence of eUects, from-scratch retroactive update may be downright impossible. The

problem is when the running application we wish to update is a proper part of a larger computational

system. In order for it to be “as though” the previous computation never happened, any eUects emitted by

that application must be reversible. For example in SAC, retroactivity in the presence of mutable state is

supported by requiring that all mutating operations be revocable [ABLW+10]. But almost by deVnition,

the eUectful interactions of an open system with other agents are typically irreversible. Writing output

to a remote console, committing a Vnancial transaction, and emitting a sound through a speaker are all

examples of actions that cannot usually be revoked. One option is simply not to provide retroactivity, as

per live coding. The risk is of reaching states or error conditions which would be unreachable under any

from-scratch execution consistent with either version of the program.

On the other hand, many interactive applications can make use of something in between “whole program”

retroactive update, which is feasible only under a closed-world assumption, and continuous/immediate up-

date. They have a natural transactional unit of update, e.g. a user session, and can beneVt from retroactive

update at that granularity, before any eUects are committed to the wider world. We discuss this possibility

along with dynamic software updating (DSU, §3.11 below), where the goal is to perform a software upgrade

without having to stop servicing user requests.

Finally, there has been a recent surge of interest in live programming environments for popular languages

like Javascript, Clojure and Python, in response to an inWuential presentation by Bret Victor [Vic12a]. Al-
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though to date there have only been prototypical implementations of these systems, their intended use cases

relate them to the approach proposed in this thesis. In these systems, the traditional read-eval-print loop

(REPL), where the user repeatedly types expressions at a prompt and the REPL answers with their values,

is replaced by an interactive interface where the user edits an expression and sees its value update. As with

LambdaCalc, the program and its output behave like a reactive, spreadsheet-like document. In a follow-up

essay, Victor argues for the importance of being able to explore the internals of a computation, in addition

to observing the updated output [Vic12b]. And indeed an important goal of interactive programming is to

augment the conceptual model of live programming with explorable computations and explicit deltas.

A signiVcant problem that these proposed live programming systems face is that update is achieved by

re-execution. The problem is not performance, but again the interaction with eUects. If the user changes

their code so that an eUect no longer happens, there is no way to “revoke” the eUect that was emitted during

the previous update, since it has already been committed to the outside world. Equally, any eUects which

are carried forward unchanged into the new state are re-executed during the update, which unless the eUect

happens to be idempotent, will generally be incorrect. In LambdaCalc, we do not treat computational eUects,

but in Future Work, §7.2.4, we sketch how our model might be extended with reiVed eUects in order to avoid

these problems.

3.8 Spreadsheet languages

Spreadsheets were early examples of live, visual programming environments. When a cell’s formula is mod-

iVed by the user, the spreadsheet engine automatically updates the value of that cell and any dependent

cells; a runtime error occurs if there are cycles in the dependency graph. Typical spreadsheet systems are

not fully-Wedged programming languages, lacking basic features like procedural abstraction and recursion.

On the other hand, spreadsheets provide interactivity features that normal programming language imple-

mentations do not, such as liveness and easier access to intermediate values. In this thesis we argue that a

spreadsheet-like model is a compelling implementation paradigm for pure functional languages, and show

how to derive a spreadsheet-like programming system for a simple functional language, ignoring the ques-

tion of eXcient implementation. Here we review work that studies the opposite problem, namely adding

functional programming capabilities to a spreadsheet system.

Burnett et al.’s Forms/3 spreadsheet language supports recursion, abstract data types and procedural ab-

straction [BAD+01]. In addition to these programming language features, Forms/3 also departs from the

usual grid-like arrangement of cells found in spreadsheets and instead allows the user to arrange cells in

a Wexible visual conVguration called a form. Because it also provides various built-in graphical data types

such as geometric shapes and layout components, the user can visually arrange their code so that it also

serves as a simple GUI for the user. Spreadsheets have always blurred the distinction between “program-

ming” environment and “end-user” environment, but with this feature Forms/3 takes things a step further.

(We discuss the potential of the spreadsheet paradigm for so-called end-user programming in §3.13 below.)

Spreadsheet-based interactive graphics were also explored in Wilde and Lewis’s NoPumpG II and its prede-

cessor NoPumpG [WL90].
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De Hoon et al.’s FunSheet system retains the grid-like layout of traditional spreadsheets, but adds lazy,

higher-order functions to the formula language [dHRvE95]. However, user-deVned functions remain exter-

nal to the spreadsheet and are treated as black boxes. Columns in the spreadsheet however are modelled as

Vrst-class functions which map indices to values; for example the formula foldr (+) 0 (map D [5..7]),

where D names a column, computes the sum of cells D5 to D7. Clack and Braine also study the addition

of lazy, higher-order functions to spreadsheets, among other features [CB97]. In their system, functions are

parameterised spreadsheets, which improves on FunSheet in reusing the syntax of formulae and cells for def-

initions, and in providing easier access to intermediate values. Peyton Jones et al. add user-deVned functions

to Microsoft Excel, which also take the form of parameterised spreadsheets [Jon03].

One important diUerence between interactive programming and these spreadsheet systems is the level

of transparency provided. In a spreadsheet, an intermediate value is visible only if the user has explicitly

chosen to visualise it by associating a cell with that value. Otherwise, the user must manually extract the

relevant sub-formula into a new cell and then mention the new cell in the formula of the original cell. In

FunSheet, still more eUort is involved because of the distinction between spreadsheet code and external

functions. Either way, the user must refactor to debug, not dissimilar to having to add print statements to

observe intermediate results in a language with imperative I/O.

In interactive programming, every intermediate value of the computation lives in its own “cell”, and cells

and formulae are interwoven “all the way down”. Each invocation of a function instantiates its own live

copy of the function body. The program can be debugged simply by revealing hidden structure, avoiding

the need for intrusive refactoring. Moreover, the contents of a cell can include the contents of another

cell by reference, an important step towards supporting structured data types, which are not considered by

any spreadsheet systems we are aware of, except for Vital [Han02], a spreadsheet-like extension to Haskell

discussed in §3.6 above. On the other hand, one feature of the spreadsheet paradigm not supported by our

approach is the ability to use any cell as an input to another part of the computation, as long as no cycles are

thereby introduced. This is possible in a spreadsheet because every cell has a unique name. In LambdaCalc,

the normal naming and scoping rules of the reference language determine what can be mentioned in a given

context.

We are not aware of any work which considers execution diUerencing in spreadsheets; eXcient update

has of course been studied, but is not relevant to our work. A method for debugging and slicing spreadsheets

is presented informally by Reichwein et al. [RRB99], but not in a setting where cells can contain structured

values.

3.9 Functional reactive programming

Functional reactive programming (FRP) is a dataWow programming model that uses the building blocks of

functional programming. FRP grew out of Elliott and Hudak’s animation language Fran [EH97], and is suited

to interactive applications involving time-indexed computation such as animation and robotics. There are

now many variants of FRP, but most include notions of (continuous-time) signals, also called behaviours,

which are values varying over continuous time, and event signals, values varying over discrete time. One
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advantage of treating time continuously is temporal resolution-independence, allowing animations to be

smoothly stretched or compressed. The inclusion of event signals allows FRP to model hybrid systems:

systems that can both “Wow” (exhibit continuity) and “jump” (exhibit discontinuity).

An FRP program is divided into two levels: a “functional” level consisting of pure functions, and a “re-

active” level consisting of signal functions, which may be causal or pure. Signal functions map signals to

signals; a signal function is causal if its output signal at time t may depend on the value of its input signal

at times up to and including t. A signal function is pure if its output signal at t only depends on the value

of its input signal at t. At the top level, an FRP program is reactive, consisting of signal functions written

explicitly at the reactive level, composed with others obtained by lifting functions from the functional layer

into pure signal functions.

There is some sort of connection between FRP and interactive programming. If we ignore the explicit

delta information, then an interactive programming system can be thought of an FRP system where there is a

single signal function, namely the interpreter itself, whose input and output signals carry values representing

programs and their reiVed executions. Explicit notions of delta have not to our knowledge been considered

formally in the context of FRP. Cooper and Krishnamurthi describe a change propagation algorithm for

Scheme-based FRP [CK06], but do not show that their algorithm is correct or state what it would be for their

algorithm to be correct. Sculthorpe and Nilsson also brieWy mention change propagation in FRP, but do not

provide any algorithms [SN10]. The notion of delta matters if one wants to represent the kind of structured

changes required for interactive programming using FRP signals. A signal carrying a structured data type

such as an abstract syntax tree (AST) does not describe how the AST is changing but only supplies the values

it takes on at diUerent times. We discuss incrementalising interactive programming in Future Work, §7.2.2.

3.10 Self-adjusting computation

The ability to make changes to a program and observe the resulting delta in its execution conceptually ties

interactive programming to incremental computation. To be clear about what we mean by “incremental

computation”, it is helpful to distinguish two related problems, given two executions T1 and T2. The Vrst

problem is how to obtain a “useful” delta between T1 and T2. Without further qualiVcation, this problem

is rather open-ended, and it is usually made more tractable by making additional assumptions which help

constrain the notion of delta. Execution indexing (§3.12) investigates a number of these. Interactive pro-

gramming also falls into this camp; in our case, the additional information we exploit is the program delta

provided to the system by the user. How we utilise the program delta to obtain an execution delta is the

topic of Chapter 6.

The second problem is the one we mentioned at the beginning of the chapter, and usually presupposes

some kind of answer to the Vrst question, namely some method for comparing T1 and T2. It is the problem

of obtaining T2 from T1 in time asymptotically equal to the size of the diUerence between T2 and T1. We call

this the problem of incremental computation. The challenge is to exploit the information in T1 to eXciently

calculate T2. This is a tough problem, and solving it has usually involved compromising on generality.

Solving it in the general setting of interactive programming is non-trivial and we defer this entirely to future
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work (§7.2.2).

Self-adjusting computation [Aca05, ABD07] is the most mature approach to incremental computation to

date. The Vrst time a SAC program is executed, the runtime records a trace identifying how parts of the

computation depend on other parts. Subsequently, an input can be modiVed, and the output updated by a

change propagation algorithm, which exploits the information in the trace to perform the update eXciently.

Early formulations of SAC required the programmer to deal explicitly with much of the technical machinery

involved in making a computation self-adjusting. Although the resulting programs were much easier to

write than hand-coded dynamic algorithms, the approach was still diXcult and error-prone. Later versions

such as ∆ML [LWFA08] also require the programmer to encode the dependency structure of the program,

but provide a type system which ensures that the programmer uses the encoding method correctly.

Both SAC and our system reify a computation into a data structure capturing the dependencies between

parts of the computation. The main diUerences are in the extent and nature of the reiVcation. In SAC,

the programmer must explicitly identify the “changeable” aspects of the computation. The type constructor

mod distinguishes changeable data, which may change after the initial evaluation, from stable data, which

cannot. The special function type→C is the type of functions which produce and consume changeable data.

SAC traces do not record the entire computation, but only the dependencies between “changeable” parts

of the computation, and the code fragments associated with them. These code fragments are re-executed

to synchronise the state of changeable computations when the modiVables they read have changed. For

example, the following, taken from [CDHA11], shows a changeable function which computes x2 + y:

squareplus: int * int mod →C int

squareplus (x, y) =

let x2 = x * x in

read y as y’ in

let r = x2 + y’ in

write(r)

This program is self-adjusting with respect to changes in y but not x, reWected by the fact that y has type

int mod, but x just has type int. The read operation contains the code which depends on y. If we change

the value of y, change propagation will re-execute the body of the read, but reuse the computation of x2. On

the other hand, the following program is self-adjusting with respect to changes in x but not y:

squareplus: int mod * int →C int

squareplus (x, y) =

let x2 = mod (read x as x’ in write(x’ * x’)) in

read x2 as x2’ in

let r = x2’ + y in

write(r)

We will not explain the details of the second example, other than to note that it is possible to avoid making

x2 into a mod only by further restructuring. As these examples show, incrementalising even a trivial program
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can involve signiVcant eUort and much rewriting if the programmer changes their mind about the parts that

are to be considerable changeable.

An important recent development, implicit SAC, eliminates the need for explicit dependency encoding

entirely [CDHA11]. Instead, the programmer writes general-purpose ML-like code, providing annotations

on the main function specifying which inputs to the program are to be considered modiVable. The compiler

then infers a self-adjusting version. In this form SAC is closest in concept to the work presented in this thesis,

because the programmer writes what is essentially a normal functional program.

Nevertheless, there remain several important diUerences between our work and SAC in any of its forms.

Most obvious is that we do not oUer any form of eXcient update, which is the primary concern of SAC.

Another key diUerence is that partial reiVcation ties self-adjusting computation to a hybrid execution model

which interweaves change propagation with re-execution. The re-execution aspect interacts poorly with

eUects such as I/O and memory allocation, since eUects may be re-executed during change propagation.

Without some care, eUects may be duplicated, and non-deterministic eUects such as memory allocation may

vary. Memoising allocators can be used to determinise allocation across re-executions, and revocable eUects

used to avoid duplication and to permit transitions to executions in which an eUect no longer takes place

[ABLW+10]. (The interplay between eUects and update based on re-execution is also discussed in the context

of live programming in §3.7 above.)

By contrast, in interactive programming, computations are fully reiVed into a persistent [DSST86] data

structure. ReiVed computations are data structures “all the way down”, recording individual steps of the

big-step semantics. The normal notion of execution has been replaced by descriptions of executions. In a

language with eUects, this would also be true of the eUects: the computation would include descriptions of

eUects, but no actual eUects will have taken place. This avoids any problems associated with re-execution of

eUects, but also invites the question of how our approach can accommodate “actual” I/O, such as controlling

actuators or writing data to a Vle. We discuss this in Future Work, §7.2.4.

As well as being only “partial” in this sense, SAC traces are usually the result of executing a program that

has been subjected to one or more intermediate translation phases, for example into continuation-passing

style. Thus SAC traces are not particularly useful for human consumption, as they do not correspond directly

to the evaluation of the source program. This is not a problem for SAC, where the goal is only eXcient update.

Until recently SAC only supported “monotonic” trace reuse, which is when change propagation is only

able to re-use chunks of trace if they occur in the new computation in the same order in which they occurred

in the original computation. With monotonic change propagation, if nodes in the computation move around

arbitrarily as a result of an update, reuse opportunities may be missed. In the worst case, no reuse at all may

be possible and the update may take as long as a from-scratch run. Recent formal work on non-monotonic

SAC [LWAB12] has lifted this restriction, although the approach has not yet been implemented. As dis-

cussed in §3.12 below, in our work, we calculate execution deltas that handle moves and other restructurings

correctly, but we leave the development of eXcient change propagation algorithms for Future Work, §7.2.2.

A Vnal but crucial diUerence is that SAC only supports modiVcation of data. Although this includes

higher-order values, in other words functions, functional values are opaque, rather than represented as

changeable data structures. With interactive programming, any part of the program can be modiVed and an
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execution delta calculated corresponding to that modiVcation. This makes our approach a suitable basis for

an interactive programming environment, in which the user can make a new program by editing an existing

running one, but also means that existing change propagation algorithms cannot be directly transferred to

our setting.

3.11 Dynamic software updating

As we saw in §3.7 above, retroactive update relies on a closed-world assumption: that every past interaction

falls within the scope of the update. When this assumption cannot be justiVed, we must pursue update

solutions which are not so committed to reinventing the entire past. Dynamic software updating (DSU) seeks

a compromise between the unrestricted chaos of live coding, and the impractical rigidity of global retroactive

update. The goal is to balance Wexibility – permitting as broad a class of updates as possible – with safety,

which in early DSU work simply meant that subsequent execution would not fail with a runtime type error

as a consequence of the update. We refer the reader to Hicks and Nettles for a survey of techniques [HN05].

Here we describe the Proteus system of Stoyle et al. [SHB+07] and its successor Proteus-tx by Neamtiu et al.

[NHFP08], which we take to be roughly representative of the state of the art. One challenge facing DSU is

that, while consistency with a from-scratch run is evidently too strong a property, merely guaranteeing that

an update will not introduce a type error is too weak.

First, we review the version of DSU which only guarantees type safety. Then we discuss its shortcomings,

with an example, and consider an improved approach and its connection to retroactive update. In the Proteus

approach to DSU, the user Vrst speciVes a collection of modiVcations called an update which they intend to

apply to a running system. An update is a set of new bindings for selected global symbols, with no Vne-

grained information about how they changed. (This is in contrast with interactive programming, where

changes are syntactic deltas.) DSU also permits data type deVnitions to change, which we do not support.

The update must then include a “migration” function which will be used, when the update is applied, to

transform values created under the old data type deVnition to the new one.

An update point is a static program location speciVed by the user. At runtime, if an update is pending

and an update point is reached for which the update is deemed type-safe, the update is performed and then

execution resumed. Otherwise execution continues as normal. One thing which distinguishes DSU from

retroactive update is that invocations of functions which are active when the update is applied will Vnish

executing with the old version of the code, and only subsequent invocations will use the new code; and of

course none of the eUects of prior invocations will be retroactively amended to reWect the changes. For this

mixture of old and new behaviour to be type-safe, DSU relies on a property called “con-freeness”. Intuitively,

the idea behind con-freeness (for an update to a data type deVnition, for example) is that old code that will

resume after the update will not concretely manipulate values of that type. Accessing a Veld or pattern-

matching are examples of concrete usage; simply mentioning a value of that type, without relying on its

representation, does not compromise con-freeness. Notions of con-freeness are also deVned for function and

variable update, and then the authors give an algorithm which statically approximates con-freeness for a

given update site.
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This form of DSU ensures that updating is sound from a typing point of view. However it does not rule out

other runtime errors which would not arise under LambdaCalc-style retroactive update, but only under a

hybrid execution of old and new code. Figure 3.6 shows an example from Neamtiu et al. [NHFP08]. Suppose

the program on the left is edited into the program on the right by moving the call of g in h into the body of f.

For the sake of simplicity also suppose that this is the only call of f in the program. Now, if we dynamically

update the program during an invocation of h, just before h makes the call to f (at the point indicated in the

Vgure), then that call to f will invoke the new version of f, which will call g. Then, the old deVnition of h

will Vnish executing, resulting in g being called twice, even though this is not possible under either version

of the program alone. If g has side-eUects, this could be catastrophic, and moreover such hybrid executions

are very hard to reason about. DSU in this form is nothing more than a type-safe version of live coding.

proc f () = proc f () =

... ...

g();

proc h () = proc h () =

... ...

// update point // update point

f(); f();

g();

Figure 3.6 Type-safe but potentially incorrect update via DSU

This observation prompted Neamtiu et al. to develop the transactional version consistency approach to

DSU [ibid.]. The idea of transactional version consistency is to allow the user to designate blocks of code

as transactions whose execution will always be attributable to a single version of the program. They use a

contextual eUect system which, for any expression, statically computes approximations of the eUect of the

computation that has already taken place (the prior eUect), and of the eUect that has yet to take place (the

future eUect). An update is permitted during the execution of a transaction if it will be “as though” that

transaction had run under the new code from the outset, or under the old code from the outset, but not

under a hybrid of the two, using the prior and future eUects of the update point to decide this conservatively.

If neither situation obtains, then either the update or the transaction must be rejected.

This transactional approach is quite eUective for so-called “long-running” applications, such as online

retail websites, which commit many transactions to a database. In practice, these systems are actually

structured around relatively short-lived, concurrently executing user sessions. The long-living parts of the

application are the external eUects of code – changes to data, and so on. Each session either aborts or executes

to completion, committing changes to a shared persistent store. For these systems, an update semantically

equivalent to re-running all past transactions with the new code against an empty database might not be

feasible to execute for performance reasons or more likely because the business model does not permit

“changing the past”. For such applications, transactional version consistency is at least the basis of a more
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structured approach to DSU, although the possibility remains of things going wrong for business logic that

extends over multiple transactions.

Stoyle et al. attribute the diXculties with DSU which transactional version consistency addresses to the

Wexibility of being able to change the program in the future [SHB+07]. But from the vantage point of a

system like LambdaCalc, they can equally be attributed to the inWexibility of being unable to change the

program in the past. Indeed, it seems that transactional version consistency is a tacit acknowledgment of

the need, even in long-running systems, for some of the semantic consistency of retroactive update. In

Future Work, §7.2.2, we discuss an approach to DSU based on transaction-level retroactive update, rather

than transactional version consistency. The idea is to use a more “local” version of retroactive update, for

which the semantic correctness criterion is consistency with a from-scratch run of an individual transaction

or session, not of an all-encompassing closed program.

3.12 Execution indexing

There are many reasons for wanting to compare executions. Typical applications include regression testing,

debugging, and program comprehension. For example, Zeller’s iterative method for computing so-called

cause transitions involves comparing two executions, a failing one and a successful one that closely resembles

it [Zel02]. To compare executions, we are normally faced with a crude mixture of mental simulation, print

statements, unit tests, and single-step or breakpoint debugging to identify the points at which the executions

diverge. With interactive programming, the consequences of changes on the execution are always explicitly

visible. Our emphasis is not on dynamic analyses or procedures for bug diagnosis, but on making the

mechanism underlying a computation more immediate and tangible, in part through explicit deltas.

As mentioned in §3.10 above, for comparing executions to be a tractable problem, we require an indexing

scheme which identiVes, or “aligns”, steps in the executions being compared. When two steps align, they

are considered, for diUerencing purposes, to be each other’s counterpart in their respective executions. An

indexing scheme indicates that two steps from diUerent computations align by assigning them the same

index. A indexing scheme must be injective within a single execution, as noted by Xin et al.: distinct sub-

traces of that execution must be assigned distinct indices [XSZ08]. The structural indexing approach Xin et

al. propose assigns indices by building a trace of the execution and then, for every point in the execution,

setting its index to be the path of that point in the trace. Sumner and Zhang [SZ10] extend Xin et al.’s scheme

with an indexing scheme for heap-allocated memory locations, allowing pointer-based data structures to be

compared in the presence of aliasing. Both papers take an approach to tracing which is a somewhat ad hoc,

rather than semantics-directed, but a more serious problem is that steps can only be aligned if their ancestors

in the trace are also aligned. This rules out deltas that splice new structure around existing sub-computations,

including many of the examples we considered in Chapter 2.

The execution indexing scheme that we present in Chapter 6 is simple but to the best of our knowledge

novel. We start by assuming that an indexing scheme has already been provided for the input program.

This is easily justiVed by thinking of the program as represented in a store assigning a unique address to

every sub-expression, and then using the addresses as the indices. We then use these program indices to

61



compute indices for each step in the execution of that program. We ensure that the graph structure implied

by the indexing is preserved into the execution: so that, for example, splicing code into a function body at a

certain point in the expression will cause the execution of that code to be spliced into all executions of that

function body at the corresponding point in the trace. This means that arbitrary moves and other structural

re-arrangements are translated homomorphically into rearrangements of the trace. The upshot for the user

is that trace deltas are easily attributed to program deltas. (The same is not true of the values associated with

each step of the computation; these are not homomorphically related to the program.)

Johnson et al. combine execution indexing and execution diUerencing with slicing, to reduce the size of

the deltas [JCC+11]. They call their approach diUerential slicing; this is diUerent from the technique that

we call “diUerential slicing” in Chapter 5, in that their diUerential slices compare distinct executions. Our

technique only compares two slices of the same execution.

3.13 End-user programming

We usually think of programming as an inherently complex activity entrusted to the care of skilled engineers.

A goal of programming language research is to Vnd ways to tame this complexity and make programming

easier. The Veld of end-user programming comes at things from the other direction, aiming to bring to end-

users and non-experts some of the power of programmers. Interactive programming puts “programming”

and “using” on a continuum: programming is the manipulation of a running application in order to change

its behaviour, and every user, in principle at least, has access to this capability. In practice, not every end-user

will have the inclination, or authority perhaps, to make fundamental changes to the logic of an application,

but no part of the application is fundamentally hidden or immutable. (We discuss the importance of access

control in Future Work, §7.2.3.)

End-user programming is a broad and heterogeneous topic which we will only brieWy summarise, because

the connection to interactive programming is mostly conceptual. The Vrst end-user programming systems

were spreadsheets (§3.8, above), which brought some of the power of programming to business users with

accounting rather than programming expertise. Spreadsheets and other oXce applications oUer further end-

user customisation and automation via macros which the user creates by “recording” an interaction they

have with the GUI into a scripting language like Microsoft’s Visual Basic for Applications [Sep00].

More generally, if the system supports programming by example, the topic of Halbert’s PhD thesis [Hal84],

then it may be able to extract a simple program from an exemplar performance of a task provided by the

user. The inWuential 1984 Tinker system of Lieberman and Hewitt [LH80] had an interesting interactive

approach to programming by example. The user built new procedures by working out individual steps of

the procedure in concrete situations. Tinker displayed the value computed by an individual step as it was

performed; when this value was then used in a subsequent step, the code associated with the computation of

that value would automatically be incorporated into the new step. Edwards’ example-centric programming is

a more recent incarnation of the idea [Edw04]. Our approach to interactive programming may suit this style

of programming by example, because of the way we attribute the parts of a computed value to individual

steps of the computation and always situate the user at a concrete execution of a function, rather than at a
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static function deVnition.

Truchard and Kodosky’s 1987 LabVIEW system brought the convenience of spreadsheets to scientists and

engineers [WT96]. Their system allowed a user with domain expertise, but not necessarily programming

expertise, to build conVgurations of “virtual instruments”, using a graphical dataWow language extended

with a looping construct. Both spreadsheets and LabVIEW are examples of the importance of domain-speciVc

languages to end-user programming. Visual programming languages (§3.6, above) also commonly feature in

end-user programming solutions because they can easily be customised into domain-speciVc programming

interfaces. Repenning’s AgentSheets is a spreadsheet-like visual programming system which allows non-

expert users to build interactive, web-based simulations [Rep93].

The most well-known form of web-based end-user programming is the mashup. A mashup is a web

application, consisting mostly of plumbing, built out of existing web services, web forms and online data

sources. Mashups can do things like retrieving data from various sources, processing it, and publishing

the result as a feed; or adding and removing various widgets from a website to change its appearance and

then performing some data entry on one of its forms. Some recent mashup development environments are

surveyed by Grammel and Storey [GS10]. One problem they identify is that mashup tools often lack support

for basic programming activities like testing and debugging.

Shortcomings like these are, we believe, an inevitable consequence of treating end-user programming

as a second-class activity distinct from “real programming”. By contrast, interactive programming puts

“programming” and “using” on a continuum. This has the potential to transform how we approach end-user

programming. One half of the story is that programmers themselves would often welcome being able to

move seamlessly between the roles of programmer and end-user. A programmer unfamiliar with a language

or application domain should be able to learn about it by playing with an existing application, interactively

disassembling it to understand how it works, eventually changing it and adding new features. Programming

often starts as using. Equally, testing is a form of using. When something goes wrong, the programmer

should be able to diagnose and Vx the problem “in situ”, without having to restart the test case in a debugger.

The other half of the story is that an end-user unfamiliar with programming should be able to progressively

discover details about the inner workings of an application. As they gain conVdence, they can experient

with simple customisations, and eventually move into task automation and full-blown development. A user

should be able to grow into a programmer.
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4 Reifying Computation

In interactive programming, computations are “self-explaining”, meaning they can be opened up and inter-

actively explored. Execution is reiVed: the activity of execution has been transformed into a description of

that activity. This process of taking a dynamic process and transcribing its behaviour into a static record is

conventionally called tracing.

The term “tracing” does not convey quite the end-user intuition we have in mind. “Tracing” over-

emphasises the dynamic process – a trace must be a trace of something. We would prefer the user to

think of the spatially extended structure as the execution. But for the sake of clarity, we adopt the termi-

nology of traces in this thesis, although we also sometimes treat “computation” and “reiVed computation” as

synonymous.

As discussed in Related Work (§3.1 above), tracing is widely used for debugging and other oYine dynamic

analyses. There are several forms a trace might take depending on the semantics of the language in question.

A trace can be built by instrumenting the program to be traced or by instrumenting the interpreter in which

it runs. Once obtained, an execution trace can be explored as a static structure or replayed to recover the

original dynamic behaviour. For LambdaCalc, we use a big-step reference semantics (§4.1); traces take the

approximate form of big-step derivation trees (§4.2); and we build them using a tracing interpreter (§4.3).

Our approach to tracing is not particularly novel but is the foundation for Chapters 5 and 6.

Types τ ::= 1 | b | τ1 + τ2 | τ1 × τ2 | τ1 → τ2 | µα.τ | α

Variable contexts Γ ::= • | Γ, x : τ

Expressions e ::= x | () | c | e1 ⊕ e2 | fun f(x).e | e1 e2

| (e1, e2) | fst e | snd e | inl e | inr e

| case e of {inl(x1).e1; inr(x2).e2} |

| roll e | unroll e

Values v ::= c | (v1, v2) | inl v | inr v | roll v

| 〈ρ, fun f(x).e〉

Environments ρ ::= • | ρ[x 7→ v]

Figure 4.1 Reference language: abstract syntax
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4.1 Reference language

First we introduce a typed, call-by-value language with familiar functional programming constructs such

as recursive types and higher-order functions. We refer to this as the reference language, since it forms

the setting for the rest of the thesis. The reference language is idealised compared to the concrete language

with data types implemented in LambdaCalc, but the latter easily desugars into it. We defer as future work

extending our approach to other language features, e.g. state (§7.2.4) and concurrency (§7.2.3).

The syntax of the reference language is given in Figure 4.1. Types include the usual unit, sum, product and

function types, plus iso-recursive types µα.τ , type variables α, and primitive types b. Variable contexts are

deVned inductively as either the empty context • or the extension Γ, x : τ of a context Γwith a binding from

x to τ , hiding any existing bindings for x in Γ. Expressions include the unit value (), standard introduction

and elimination forms for projection products, sums and recursive functions, roll and unroll forms for

recursive types, primitive constants c, and applications e1 ⊕ e2 of primitive operations. The typing judge-

ments Γ ⊢ e : τ for expressions and Γ ⊢ ρ for environments are given in Figure 4.2; the latter means that ρ

is a well-formed environment for Γ. The signature Σ assigns to every primitive constant c the primitive type

c : b ∈ Σ, and to every primitive operation ⊕ the argument types and return type ⊕ : b1 × b2 → b ∈ Σ.

Evaluation for the reference language is given by a conventional call-by-value big-step semantics, shown

in Figure 4.3. The judgement ρ, e ⇓ref v states that expression e in closing environment ρ evaluates to

value v. Values include the usual forms, plus closures 〈ρ, fun f(x).e〉. The choice of an environment-

based semantics is deliberate: environments will be helpful later when we want to record an execution as

an unrolling of the program syntax, by allowing us to retain variable names in traces. As usual ⊕̂ means ⊕

suitably interpreted in the meta-language.

Evaluation is deterministic and type-preserving. We omit the proofs, which are straightforward induc-

tions.

Lemma 1 (Type preservation for ⇓ref ). If Γ ⊢ e : τ and Γ ⊢ ρ and ρ, e ⇓ref v then ⊢ v : τ .

Lemma 2 (Determinism of ⇓ref ). If ρ, e ⇓ref v and ρ, e ⇓ref v
′ then v = v′.

As mentioned, the language used for our examples in Chapter 2 can be easily desugared into the reference

language. Named data types desugar into anonymous recursive sums-of-products, and case expressions and

constructor calls desugar into nested elimination and introduction forms for the corresponding desugared

types. Although the desugaring is straightforward, an implementation which relied on it would produce

traces in the reference language, which would then have to be “resugared” for presentation to the user. In the

setting of the diUerential evaluation introduced in Chapter 2, §2.2 and described in more detail in Chapter 6,

the desugaring and resugaring would also have to operate diUerentially. This is beyond the scope of the

present work, and so for LambdaCalc we implement the sugared language directly.

4.2 Syntax all the way down

One of the key beneVts of interactive programming is that the programmer can move smoothly from an

extensional view of a computation, as a program paired with a value, to progressively more intensional
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Γ ⊢ e : τ

Γ ⊢ () : 1 Γ ⊢ x : τ
x : τ ∈ Γ

Γ ⊢ c : b
c : b ∈ Σ

Γ ⊢ e1 : b1 Γ ⊢ e2 : b2

Γ ⊢ e1 ⊕ e2 : b
⊕ : b1 × b2 → b ∈ Σ

Γ, f : τ1 → τ2, x : τ1 ⊢ e : τ2

Γ ⊢ fun f(x).e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst e : τ1

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd e : τ1

Γ ⊢ e : τ1

Γ ⊢ inl e : τ1 + τ2

Γ ⊢ e : τ2

Γ ⊢ inr e : τ1 + τ2

Γ ⊢ e : τ1 + τ2 Γ, x1 : τ1 ⊢ e1 : τ Γ, x2 : τ2 ⊢ e2 : τ

Γ ⊢ case e of {inl(x1).e1; inr(x2).e2} : τ

Γ ⊢ e : µα.τ

Γ ⊢ unroll e : τ [µα.τ/α]

Γ ⊢ e : τ [µα.τ/α]

Γ ⊢ roll e : µα.τ

Γ ⊢ ρ

• ⊢ •

Γ ⊢ ρ ⊢ v : τ

Γ, x : τ ⊢ ρ[x 7→ v]

⊢ v : τ

⊢ () : 1 ⊢ c : b
c : b ∈ Σ

Γ ⊢ ρ Γ, f : τ1 → τ2, x : τ1 ⊢ e : τ2

⊢ 〈ρ, fun f(x).e〉 : τ1 → τ2

⊢ v1 : τ1 ⊢ v2 : τ2

⊢ (v1, v2) : τ1 × τ2

⊢ v : τ1

⊢ inl v : τ1 + τ2

⊢ v : τ2

⊢ inr v : τ1 + τ2

Γ ⊢ v : τ [µα.τ/α]

Γ ⊢ roll v : µα.τ

Figure 4.2 Reference language: typing judgements
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ρ, e ⇓ref v

ρ, x ⇓ref ρ(x) ρ, c ⇓ref c

ρ, e1 ⇓ref c1 ρ, e2 ⇓ref c2

ρ, e1 ⊕ e2 ⇓ref c1 ⊕̂ c2 ρ,fun f(x).e ⇓ref 〈ρ, fun f(x).e〉

ρ, e1 ⇓ref v1 ρ, e2 ⇓ref v2 ρ′[f 7→ v1][x 7→ v2], e ⇓ref v

ρ, e1 e2 ⇓ref v
v1 = 〈ρ′, fun f(x).e〉

ρ, e1 ⇓ref v1 ρ, e2 ⇓ref v2

ρ, (e1, e2) ⇓ref (v1, v2)

ρ, e ⇓ref (v1, v2)

ρ,fst e ⇓ref v1

ρ, e ⇓ref (v1, v2)

ρ, snd e ⇓ref v2

ρ, e ⇓ref v

ρ, inl e ⇓ref inl v

ρ, e ⇓ref v

ρ, inr e ⇓ref inr v

ρ, e ⇓ref inl v1 ρ[x1 7→ v1], e1 ⇓ref v

ρ, case e of {inl(x1).e1; inr(x2).e2} ⇓ref v

ρ, e ⇓ref inr v2 ρ[x2 7→ v2], e2 ⇓ref v

ρ,case e of {inl(x1).e1; inr(x2).e2} ⇓ref v

ρ, e ⇓ref v

ρ,roll e ⇓ref roll v

ρ, e ⇓ref roll v

ρ,unroll e ⇓ref v

Figure 4.3 Reference language: call-by-value evaluation

Closure variables γ ::= • | γ, x

Traces T ::= x | c | T1 ⊕c1,c2 T2 | (T1, T2)

| fst T | snd T | inl T | inr T

| case T of {inl(x1).T1; inr(x2).e2}

| case T of {inl(x1).e1; inr(x2).T2}

| fun f(x).e | T1 T2 ⊲ 〈γ,fun f(x).T 〉

| roll T | unroll T

Figure 4.4 Syntax of traces
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views which expose the innards of the computation. The user manipulates the view to suit a particular

comprehension task. The computation is presented to the user as an unrolled expression: execution is “syntax

all the way down”. The user can therefore understand an execution by relying mainly on the concepts they

already use to think about programs.

Figure 4.4 gives the abstract syntax of traces; the typing rules are given in Figure 4.5. The judgement

Γ ⊢ T : τ states that T can be assigned type τ in Γ. Traces closely mirror expressions, which allows us to

represent traces as unrolled expressions. A reasonable intuition is that the trace recording the execution of

an expression is that same expression, but with the traces of any function calls inlined recursively into their

call sites. Although well-typedness alone is insuXcient to ensure this, if Γ ⊢ T : τ then T describes the

computation of a value of type τ .

The typing rules are mostly self-explanatory, but the primitive operation trace T1 ⊕c1,c2 T2 and the

application trace T1 T2⊲〈γ, fun f(x).T 〉, where γ is a list of identiVers, probably look somewhat mysterious.

The trace of a primitive operation T1 ⊕c1,c2 T2 records not only the evaluation of the operands, but also

their values c1 and c2; these will be required later for slicing. To type such a trace, we type T1 and T2 as

normal, and then require that the type of each value matches the type of the corresponding trace.

The trace of a function application T1 T2 ⊲ 〈γ, fun f(x).T 〉 records not only the evaluation of the closure

and argument T1 and T2, but also the evaluation T of the closure body. To type such a trace in Γ, we type

T1 and T2 in Γ, but type T in Γ′ extended with bindings for f and x. The role of the Γ′ is to enumerate

the variables which may be used by the closure body from the lexical context in which it was deVned. The

reason that Γ′ is unrelated to Γ is that the closure is computed dynamically. So that the overall application

trace is closed by Γ, we use an auxiliary function vars(−) to strip the type information from Γ′, leaving just

its variables γ, which we bundle with T into a closure-like trace form 〈γ, fun f(x).T 〉. Storing vars(Γ′)

rather than Γ′ avoids carrying type information in the trace and, in the tracing evaluation rules, having to

derive typing contexts at run-time.

A minor detail is that our LambdaCalc implementation associates traces with the values they compute,

so that they can be displayed to the user. It is safe to omit these value annotations from the formalism. In

particular, they are required neither for slicing (Chapter 5) nor for diUerencing (Chapter 6).

4.3 Tracing semantics

We now deVne a tracing semantics for the reference language just presented. The rules, given in Figure 4.6,

are identical to those for ⇓ref , except that they construct a trace as well as a value. A terminating tracing

evaluation for an expression Γ ⊢ e : τ in environment ρ for Γ, written ρ, e ⇓ v, T , yields both a value v : τ

and a trace Γ ⊢ T : τ describing how v was computed. Before explaining the tracing semantics, we dispense

with a few preliminary properties. Where the proofs are straightforward inductions or closely analogous to

those for the reference language they are omitted. First, tracing evaluation is deterministic.

Lemma 3 (Determinism of ⇓). If ρ, e ⇓ v, T and ρ, e ⇓ v′, T ′ then v = v′ and T = T ′.

The tracing semantics and the reference semantics agree on values.
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Γ ⊢ T : τ

Γ ⊢ () : 1 Γ ⊢ x : τ
x : τ ∈ Γ

Γ ⊢ c : b
c : b ∈ Σ

Γ ⊢ T1 : b1 ⊢ c1 : b1 Γ ⊢ T2 : b2 ⊢ c2 : b2

Γ ⊢ T1 ⊕c1,c2 T2 : b
⊕ : b1 × b2 → b ∈ Σ

Γ, f : τ1 → τ2, x : τ1 ⊢ e : τ2

Γ ⊢ fun f(x).e : τ1 → τ2

Γ ⊢ T1 : τ1 → τ2 Γ ⊢ T2 : τ1 Γ′, f : τ1 → τ2, x : τ1 ⊢ T : τ2

Γ ⊢ T1 T2 ⊲ 〈vars(Γ
′), fun f(x).T 〉 : τ2

Γ ⊢ T1 : τ1 Γ ⊢ T2 : τ2

Γ ⊢ (T1, T2) : τ1 × τ2

Γ ⊢ T : τ1 × τ2

Γ ⊢ fst T : τ1

Γ ⊢ T : τ1 × τ2

Γ ⊢ snd T : τ2

Γ ⊢ T : τ1

Γ ⊢ inl T : τ1 + τ2

Γ ⊢ T : τ2

Γ ⊢ inr T : τ1 + τ2

Γ ⊢ T : τ1 + τ2 Γ, x1 : τ1 ⊢ T1 : τ Γ, x2 : τ2 ⊢ e2 : τ

Γ ⊢ case T of {inl(x1).T1; inr(x2).e2} : τ

Γ ⊢ T : τ1 + τ2 Γ, x1 : τ1 ⊢ e1 : τ Γ, x2 : τ2 ⊢ T2 : τ

Γ ⊢ case T of {inl(x1).e1; inr(x2).T2} : τ

Γ ⊢ T : µα.τ

Γ ⊢ unroll T : τ [µα.τ/α]

Γ ⊢ T : τ [µα.τ/α]

Γ ⊢ roll T : µα.τ

Figure 4.5 Typing rules for traces

Theorem 1. ρ, e ⇓ref v ⇐⇒ ∃T.ρ, e ⇓ v, T

Tracing evaluation is type-preserving.

Lemma 4 (Type preservation for ⇓). If Γ ⊢ e : τ and Γ ⊢ ρ with ρ, e ⇓ v, T , then ⊢ v : τ and Γ ⊢ T : τ .

We can now explain the tracing evaluation judgement. The idea is that tracing evaluation equips every

value with a trace which “explains” it. The trace of a variable x is just the corresponding trace form x; as

stated in Lemma 4, the trace of Γ ⊢ e : τ is not closed but is instead also typed in Γ. The traces of other

nullary expressions are just the corresponding nullary trace form. For non-nullary forms, such as projections,

pairs, and case expressions, the general pattern is to produce a trace which looks like the original expression

except that any executed sub-expressions have been inWated into their traces. For example a trace of the

form case T of {inl(x1).T1; inr(x2).e2} records the scrutinee and the taken branch unrolled into their

respective executions T and T1. The non-taken branch e2 is kept in the trace to be consistent with our notion

of a trace as an unrolled expression.

Tracing a primitive operation e1 ⊕ e2 records not only the traces T1 and T2 of the operands, but also their

values c1 and c2. As mentioned earlier, this anticipates the backward-slicing technique presented in the next

chapter (§5.3), which relies on being able to back-propagate neededness information through each step in the
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ρ, e ⇓ v, T

ρ, x ⇓ ρ(x), x ρ, c ⇓ c, c

ρ, e1 ⇓ c1, T1 ρ, e2 ⇓ c2, T2

ρ, e1 ⊕ e2 ⇓ c1 ⊕̂ c2, T1 ⊕c1,c2 T2

ρ, fun f(x).e ⇓ 〈ρ,fun f(x).e〉, fun f(x).e

ρ, e1 ⇓ v1, T1 ρ, e2 ⇓ v2, T2 ρ′[f 7→ v1][x 7→ v2], e ⇓ v, T

ρ, e1 e2 ⇓ v, T1 T2 ⊲ 〈vars(ρ
′), fun f(x).T 〉

v1 = 〈ρ′, fun f(x).e〉

ρ, e1 ⇓ v1, T1 ρ, e2 ⇓ v2, T2

ρ, (e1, e2) ⇓ (v1, v2), (T1, T2)

ρ, e ⇓ (v1, v2), T

ρ,fst e ⇓ v1, fst T

ρ, e ⇓ (v1, v2), T

ρ, snd e ⇓ v2, snd T

ρ, e ⇓ v, T

ρ, inl e ⇓ inl v, inl T

ρ, e ⇓ v, T

ρ,inr e ⇓ inr v, inr T

ρ, e ⇓ inl v1, T ρ[x1 7→ v1], e1 ⇓ v, T1

ρ, case e of {inl(x1).e1; inr(x2).e2} ⇓ v, case T of {inl(x1).T1; inr(x2).e2}

ρ, e ⇓ inr v2, T ρ[x2 7→ v2], e2 ⇓ v, T2

ρ, case e of {inl(x1).e1; inr(x2).e2} ⇓ v, case T of {inl(x1).e1; inr(x2).T2}

ρ, e ⇓ v, T

ρ,roll e ⇓ roll v, roll T

ρ, e ⇓ roll v, T

ρ, unroll e ⇓ v, unroll T

Figure 4.6 Tracing semantics: call-by-value evaluation
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computation. The value annotations are used in the slicing of primitive operations, which are not amenable

to this propagation technique.

Aside from the values of primitive operands, a trace has more content than its original expression only

where functions are called. Tracing an application e1 e2 yields the application trace T1 T2 ⊲ 〈vars(ρ′),

fun f(x).T 〉, where T1 and T2 record the evaluation of e1 and e2, and T records the evaluation of the body

of the closure v1 = 〈ρ′, fun f(x).e〉. Here, vars(−) is overloaded to mean the function which discards

the value bindings from ρ′, leaving only its variables. This ensures that the overall application trace is well-

typed. A practical implementation might retain the values for visualisation purposes; at present LambdaCalc

does not visualise closure environments.

In Related Work (§3.1), we proposed that traces should record the behaviour of a program according to a

speciVc operational model. This suggests that a correctness criterion for our tracing semantics would relate

traces to derivation trees in the reference semantics. However, we take a diUerent approach which involves

formalising our notion of a trace explaining a value. Our tracing semantics is correct in that it yields values

equipped with traces which do indeed explain them in this technical sense (Theorem 4, §5.3.2). The formal

notion of “explanation” is fundamentally tied to slicing, and so we defer the statement and proof of this

theorem to the next chapter.
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5 Slicing Computation

Computations can usually be broken down into parallel execution Wows that are at least somewhat inde-

pendent, regardless of whether implementations actually take advantage of this. These parallel strands of

execution are called “slices” because they cut vertically through the dependency structure of the computa-

tion. Being able to view slices interactively allows a programmer to explore the relationship between parts

of the output and parts of the program, as we saw in Chapter 2, §§2.5 and 2.6. In this thesis we consider only

dynamic slicing, i.e. queries of this nature which pertain to a speciVc execution.

Dynamic slicing questions can be asked in two directions. Forward slicing questions concern the parts of

the output which must be deleted as consequence of deleting some part of the program. Backward slicing

questions concern the parts of the program which may be deleted as a consequence of deleting some part of

the output. In this chapter we show how such questions can be supported in a way that both complements

and utilises the reiVed computations introduced in the previous chapter.

In §5.1 we make precise the notion of a “part” of a program or value. We start by extending the syntax

with holes, written �, in the style of Biswas [Bis97]. A hole is a no-op expression, inhabiting every type,

which evaluates to itself. Expressions and values generalise to partial expressions and partial values which

may contain holes, and which are partially ordered. The order has e ⊑ e′ whenever we can obtain e from e′

by replacing some sub-expressions by holes; we say that e is a preVx of e′.

In §5.2 we model forward dynamic slicing, for a Vxed program, as the execution of some preVx of the

program to obtain a preVx of its output, where holes represent lack of availability. Our key contribution

here is to show that this formulation of forward slicing uniquely determines the backward dynamic slicing

problem for the same computation. What we show is that backward slicing, where holes represent lack

of demand, is the problem of calculating the lower adjoint of the function which computes forward slices.

To account for our construal of slicing questions as changes in availability (forward slicing) or demand

(backward slicing), we introduce the idea of a diUerential program slice, the pair of a partial program and

a smaller one. DiUerential slices enable more Vne-grained Q&A about the relationship between input and

output.

In §5.3 we give an algorithm called unevaluation which eXciently calculates backward slices, making use

of the computational history recorded in a trace. Whereas evaluation unrolls a program, unevaluation rolls

it back up again, recovering enough of the original program to be able to compute the required preVx of its

output. Unevaluation only computes program slices; in §5.4, we give an additional algorithm which slices a

trace into a partial trace retaining just enough information to “explain” the partial output.
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5.1 Partial programs and partial values

With a statement-based language, a slice can be represented simply as a program from which some state-

ments have been deleted. This approach is unsuitable for expression-based languages with Vxed-arity con-

structors, as noted by Biswas [Bis97]. Following Biswas, we therefore introduce a new expression form �,

called hole, which inhabits every type, and use holes to represent deleted sub-terms of an expression or value.

For example we can “slice” the expression inl (3⊕ 4) by replacing its left sub-expression by �, obtaining

inl (�⊕ 4). The additional syntax rules are given at the top of Figure 5.1. From now on, talk of expressions

and values should be understood more precisely to mean partial expressions and partial values, which may

contain holes. We also take the terms “expression slice” and “value slice” to be synonymous with partial

expression and partial value.

Let us recall the standard initial-algebra construction of expressions as sets. (What we say here applies

equally to values.) An expression is a set of odd-length paths, satisfying two properties characteristic of

“tree-hood”, preVx-closure, and deterministic extension, plus well-foundedness. A path is an alternating

sequence 〈k0, n0, . . . , ki−1, ni−1, ki〉 of constructors k and child indices n. PreVx-closure means that if a

path is in the set, then each of its preVxes is in the set; deterministic extension means that all paths agree

about the value of ki for a given position in the tree. Writing the child indices in bold to distinguish them

from constructors, the following set of such paths comprises the partial expression inl (3⊕�):

︷ ︸︸ ︷

〈inl〉,

〈inl, 0,⊕〉,

〈inl, 0,⊕, 0, 3〉
︸ ︷︷ ︸

inl (3⊕�)

The � form then has a natural interpretation as the empty set. To see why introducing � into the syntax

gives rise to a partial order ⊑ on expressions and values, we need only interpret the relation ⊑ as the

inclusion order ⊆ on these sets. For example, the fact that inl (3⊕�) and inl (3⊕ 4) are related by ⊑ is

because the sets of paths that comprise the two expressions are related by ⊆:

︷ ︸︸ ︷

〈inl〉,

〈inl, 0,⊕〉,

〈inl, 0,⊕, 0, 3〉
︸ ︷︷ ︸

inl (3⊕�)

⊆

︷ ︸︸ ︷

〈inl〉,

〈inl, 0,⊕〉,

〈inl, 0,⊕, 0, 3〉,

〈inl, 0,⊕, 1, 4〉
︸ ︷︷ ︸

inl (3⊕4)

An expression smaller than a given expression e is thus a variant of e where some paths have been truncated

in a way which preserves preVx-closure; it is e with some sub-expressions “deleted”. The absence of those

sub-expressions is indicated in the conventional syntax by the presence of a �. We call such a truncated

version of e a preVx of e, or a slice of e, and denote the set of such expressions by Prefix(e).

DeVnition 1 (PreVxes of e). Prefix(e) = {e′ | e′ ⊑ e}
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Expressions e ::= . . . | �

Values v ::= . . . | �

Γ ⊢ e : τ

. . . Γ ⊢ � : τ

⊢ v : τ

. . . ⊢ � : τ

ρ, e ⇓ref v

. . . ρ,� ⇓ref �

ρ, e1 ⇓ref �

ρ, e1 ⊕ e2 ⇓ref �

ρ, e1 ⇓ref c1 ρ, e2 ⇓ref �

ρ, e1 ⊕ e2 ⇓ref �

ρ, e1 ⇓ref �

ρ, e1 e2 ⇓ref �

ρ, e ⇓ref �

ρ, fst e ⇓ref �

ρ, e ⇓ref �

ρ, snd e ⇓ref �

ρ, e ⇓ref �

ρ,case e of {inl(x1).e1; inr(x2).e2} ⇓ref �

ρ, e ⇓ref �

ρ, unroll e ⇓ref �

Figure 5.1 Additional rules for partial expressions

What is more, the set Prefix(e) forms a Vnite, distributive, bounded lattice with greatest element e, least

element �, and meet ⊓ and join ⊔ corresponding to intersection and union on the underlying sets of paths.1

In fact we can take the intersection of any two expressions e1 and e2 even when they are not preVxes of a

common expression, because intersection preserves preVx-closure and deterministic extension. Thus e1 ⊓ e2

is always deVned and yields the greatest lower bound of e1 and e2.

However, taking the union of e1 and e2 only yields a well-formed expression when e1 and e2 have

compatible structure. This is because set union does not in general preserve deterministic extension: consider

taking the union of inl 3⊕ 4 and inl 3⊕ 5, for example. But if e1 and e2 are upper-bounded, that is to say

if there is an e such that e1 ⊑ e and e2 ⊑ e, then they do indeed have compatible structure. Here we can

see that inl (3⊕�) ⊔ inl (�⊕ 4) is deVned:

︷ ︸︸ ︷

〈inl〉,

〈inl, 0,⊕〉,

〈inl, 0,⊕, 0, 3〉

︸ ︷︷ ︸

inl (3⊕�)

∪

︷ ︸︸ ︷

〈inl〉,

〈inl, 0,⊕〉,

〈inl, 0,⊕, 1, 4〉
︸ ︷︷ ︸

inl (�⊕4)

=

︷ ︸︸ ︷

〈inl〉,

〈inl, 0,⊕〉,

〈inl, 0,⊕, 0, 3〉,

〈inl, 0,⊕, 1, 4〉
︸ ︷︷ ︸

inl (3⊕4)

Thus when e1 and e2 are both elements of Prefix(e), the join e1 ⊔ e2 is deVned and yields the least upper

bound of e1 and e2.

1From now on, by the unqualiVed term “lattice” we will mean a Vnite, distributive, bounded lattice.
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5.2 Characterising dynamic slicing

So we have a way of representing programs or values with missing parts: we simply replace the parts we

want to delete with appropriately typed holes. To provide the raw components of the diUerential slices just

described, what we now need is a way of determining how much of the output we can compute given only

some preVx of the program (forward slicing), and how little of the program is needed if we need only some

preVx of the output (backward slicing). It turns out that these problems are so closely related that in fact

each determines the other.

5.2.1 Forward dynamic slicing

The intuition we proposed for forward slicing in Chapter 2 was that if a step in the computation consumes

some program part which is unavailable, the output of that step must also be unavailable. In other words,

unavailability propagates forward through the computation. This is straightforward to capture by extending

the reference semantics ⇓ref with the additional rules for propagating holes given in Figure 5.1. Hole itself

evaluates to �, and moreover for every type constructor, there are variants of the elimination rule which

produce a hole whenever the sub-computation in the elimination position produces a hole. The new rules

do not aUect type preservation (Lemma 1) or determinism (Lemma 2), and so from now on by ⇓ref we shall

mean the extended version of the rules, with these lemmas taken to apply to the new deVnition.

There are two things to note about the hole-propagation rules. First, no special treatment is required

when the argument to a function evaluates to a hole; the behaviour we want in this case is precisely that the

unavailability of the argument should only matter if that argument is actually consumed by the execution of

the function. Second, the rules for primitive operations take them to be strict in both operands. Even when

this is true of an actual implementation, it may not accurately reWect the dependency of the operation on

its arguments: for example × need not consult the second argument if the Vrst argument is 0. We discuss a

more realistic treatment of primitives in Future Work, §7.2.6.

First we note that, since evaluation with hole-propagation can produce partial values, environments must

also be partial, in other words map variables to partial values. This gives rise to a partial order on envi-

ronments; speciVcally, we overload ⊑ to mean the relation that has ρ ⊑ ρ′ iU dom(ρ) = dom(ρ′) and

∀x ∈ dom(ρ).ρ(x) ⊑ ρ′(x). For any Γ, we will write �Γ for the smallest partial environment for Γ,

namely the ρ such that ρ(x) = � for every x ∈ dom(Γ). Again, the set Prefix(ρ) forms a lattice where

the join ρ′ ⊔ ρ′′ is the partial environment {x 7→ ρ′(x) ⊔ ρ′′(x) | x ∈ dom(ρ)}, and similarly for meet.

Since environments are deVned inductively, environment extension with respect to a variable x is a lattice

isomorphism in the following sense. Suppose Γ ⊢ ρ and ⊢ v : τ . Then for any x, the bijection −[x 7→ −]

from Prefix(ρ)× Prefix(v) to Prefix(ρ[x 7→ v]) satisVes:

(ρ′ ⊔ ρ′′)[x 7→ u ⊔ u′] = ρ′[x 7→ u′] ⊔ ρ′′[x 7→ u′′] (5.1)

(ρ′ ⊓ ρ′′)[x 7→ u ⊓ u′] = ρ′[x 7→ u′] ⊓ ρ′′[x 7→ u′′] (5.2)

Extending evaluation with hole-propagation rules has some important consequences which are sum-

marised in Theorem 2 below. First we deVne the following family of partial functions indexed by terminating
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programs.

DeVnition 2 (evalρ,e). Suppose ρ, e ⇓ref v. DeVne evalρ,e to be ⇓ref domain-restricted to Prefix(ρ, e).

For readability, we will drop the ρ, e subscript from evalρ,e whenever it is applied to a preVx of (ρ, e) and

the (ρ, e) is clear from the context. Now we make three observations. Collectively, they assert that evalρ,e

is meet-semilattice homomorphism from Prefix(ρ, e) to Prefix(v). First, evalρ,e is a total function. Because

unavailability propagates, introducing a hole into a terminating program cannot yield a non-terminating

program but only one which produces less output. Second, least and greatest elements are preserved, which

is just immediate from the deVnitions. Finally, evalρ,e preserves meets, or intersection of slices. This third

property implies the monotonicity already alluded to.

Theorem 2 (evalρ,e is a meet-semilattice homomorphism). Suppose ρ, e ⇓ref v. Then:

1. If (ρ′, e′) ⊑ (ρ, e) then eval(ρ′, e′) is deVned: there exists u such that ρ′, e′ ⇓ref u.

2. eval(�) = � and eval(ρ, e) = v.

3. If (ρ′, e′) ⊑ (ρ, e) and (ρ′′, e′′) ⊑ (ρ, e) then eval(ρ′ ⊓ ρ′′, e′ ⊓ e′′) = eval(ρ′, e′) ⊓ eval(ρ′′, e′′).

Proof. Part (2) is immediate from the deVnition of ⇓ref and evalρ,e. For parts (1) and (3), we proceed by

induction on the derivation of ρ, e ⇓ref v, using the hole propagation rules from Figure 5.1 whenever the

evaluation would otherwise get stuck, and Equation 5.2 for the binder cases.
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(a) Without Vrst input (b) Without second input (c) With both inputs

Figure 5.2 evalρ,e does not preserve joins

Although evalρ,e preserves meets, it does not preserve joins, i.e. union of slices, as illustrated in Figure 5.2.

The program normalises two integers 6 and 12 by computing the proportion that each is of their sum and

returning the result as a pair of percentages. In (a), we “damage” the program by (hypothetically) deleting

the Vrst input 6. If the sum of the two numbers cannot be calculated, neither can either of the outputs.

The situation is reversed in (b), where we hypothetically delete the second input 12. If we combine the two

program slices – by taking their join, in (c) – we repair the ability of the program to compute the sum. But

in so doing we also repair the ability of the program to calculate both components of the output. In general,
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because removing part of a program can dramatically impair its ability to function, combining program parts

can dramatically restore that capability.

If evalρ,e is to provide canonical answers to forward-slicing questions then it must compute as much

output as possible for the preVx of (ρ, e) it is given. This is indeed the case, but it will be easier to make

sense of this once we have introduced backward slicing.

5.2.2 Backward dynamic slicing

We will now see how forward slicing as just construed uniquely deVnes the problem of dynamic backward

slicing informally sketched in Chapter 2. Our intuition there was that backward slicing tells us how much

of the program is still needed if we only need some preVx of the output. To state this formally, we need to

make precise the notion of there being “enough” program to compute that part of the output; we can do so

by appealing to our monotonic forward-slicing function evalρ,e. Suppose ρ, e ⇓ref v and some partial output

u ⊑ v specifying how much of the output is needed. If (ρ′, e′) is capable of computing at least u, we say

that (ρ′, e′) is a slice of (ρ, e) for u.

DeVnition 3 (Slice of (ρ, e) for u). Suppose ρ, e ⇓ref v and u ⊑ v. Then any (ρ′, e′) ⊑ (ρ, e) is a slice of

(ρ, e) for u if eval(ρ′, e′) ⊒ u.

Operationally, the intuition is that it is Vne to consume a hole during evaluation as long as we are computing

a part of the output that is not needed.

Now, a canonical answer to a backward-slicing question is the smallest program slice for the preVx of v

in question. At it happens, the fact that evalρ,e preserves meets guarantees the existence of such a slice. This

stems from a basic property of meet-semilattice homomorphisms. If A and B are lattices, then every meet-

preserving function f∗ : A → B is the upper adjoint of a unique Galois connection. The lower adjoint of

f∗, written f∗ : B → A, which preserves joins, inverts f∗ in the following minimising way: for any output

b of f∗, the lower adjoint yields the smallest input a such that f∗(a) ⊒ b. In fact each adjoint determines

the other:

f∗(a) ⊒ b ⇐⇒ a ⊒ f∗(b)

This is easier to understand if we plug in evalρ,e and its lower adjoint, which we shall call unevalρ,e

because it maps values to programs. Analogously with evalρ,e we drop the ρ, e subscript from unevalρ,e

when the argument is a preVx of v and the (ρ, e) is clear from the context.

Corollary 1 (Existence of least program slices). Suppose ρ, e ⇓ref v. Then there exists a unique function

unevalρ,e from Prefix(v) to Prefix(ρ, e) such that for any (ρ′, e′) ⊑ (ρ, e) and any u ⊑ v we have:

eval(ρ′, e′) ⊒ u ⇐⇒ (ρ′, e′) ⊒ uneval(u)

Proof. Immediate from Theorem 2.

For every preVx of the program there is a largest output slice which consumes at most that much of the

program; and for every preVx of the output there is a smallest program slice which produces at least that

much output.
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Figure 5.3 Closure under meet of slices of (ρ, e) for u

It is instructive to consider why the meet-preservation of evalρ,e ensures that unevalρ,e exists. Let S be

the set of all slices of (ρ, e) for some Vxed u and let (ρ′, e′) be their meet. Because evaluation preserves

meets, (ρ′, e′) evaluates to the meet u′ of the values that the elements of S evaluate to. But all these values

are larger than u, and therefore so is u′. Thus (ρ′, e′) is itself an element of S, namely the smallest one, so

we can set this to be the value of uneval(u). This is depicted informally in Figure 5.3. The larger diamond on

the left is the lattice Prefix(ρ, e); the smaller diamond on the right is the lattice Prefix(v). For this particular

u, there are exactly three elements of S, indicated by the three points in the left-hand lattice.

Thus unevalρ,e satisVes the following:

unevalρ,e(u) =
l

{(ρ′, e′) ∈ Prefix(ρ, e) | evalρ,e(ρ
′, e′) ⊒ u} (5.3)

and principle uneval(u) could be calculated by enumerating all the program slices for u and taking their

meet. In the next section we will see a better approach.

Before we move on we contrast the behaviour of backward slicing with forward slicing. Whereas evalρ,e

preserves meets and not joins, unevalρ,e preserves joins and not meets. Figure 5.4 revisits the normalisation

example from Figure 5.2 to give an example of how meets are not preserved. Since we are backward-slicing,

we manipulate the demand on the output of the computation. In (a), we relinquish demand on the Vrst

output 33. Although we then do not need the entire (fst p) * 6 / sum calculation associated with it, we

still need to calculate the sum because we need it for the second output, and this in turn means we still need

both inputs. The situation in reversed in (b), where we relinquish demand on the second output 66. But

when we combine these demand absences – by taking the meet of the output slices, as in (c) – we no longer

need the sum, nor indeed either input. Thus backward slicing exhibits a kind of conservativity: part of the

program can be relinquished only if it is not needed anywhere.
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(a) Without Vrst output (b) Without second output (c) With neither output

Figure 5.4 unevalρ,e does not preserve meets

5.2.3 DiUerential slices

In Chapter 2, §§2.5 and 2.6, we showed several examples where the user selected some part of the program or

output in order to initiate a forward or backward dynamic slice. The red highlighting on the selected node

was explained as a deletion delta: a comparison between the present state, and a hypothetical future state in

which that node was deleted. The red parts pick out the complement of a preVx of the expression, a kind of

negated slice capturing the diUerence between two expressions related by ⊑. The complement of a partial

expression is not itself a partial expression, since the underlying set of paths is not preVx-closed.

In our implementation, these deltas that arise during slicing are just a special case of the more general

form of delta illustrated in §2.2, which can describe complex structural reorganisations. We will be looking

at these in detail in Chapter 6. But it is possible to explain diUerential slices without recourse to the more

involved techniques presented there.

A deletion delta can be expressed in the formalism presented so far as a pair of partial expressions (e, e′)

where e ⊑ e′. We call such a pair a diUerential slice. More precisely, for an expression e, we deVne Diff(e)

to be the following sub-lattice of Prefix(e)× Prefix(e):

DeVnition 4 (DiUerential slice). DeVne Diff(e) to be the lattice with carrier set {(e′, e′′) | e′ ⊑ e′′ ⊑ e}

and meet and join deVned component-wise.

Moreover, the Galois connection for slices of a terminating computation lifts to diUerential slices in the

natural way, yielding diUerential slices that are minimal because their components are, and because pairing

preserves ⊓ and ⊔.

DeVnition 5 (DiUerential slicing). Suppose ρ, e ⇓ref v. Then deVne the Galois connection 〈eval, uneval〉Diff(ρ,e)

from Diff(ρ, e) to Diff(v), where

eval
def
= evalρ,e × evalρ,e domain-restricted to Diff(ρ, e)

uneval
def
= unevalρ,e × unevalρ,e domain-restricted to Diff(v)

The larger component e′ of a diUerential slice (e, e′) is the present state; the smaller component e is the future

state relative to which e′ is being compared. Because e and e′ are related by ⊑, calculating the diUerence
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between them is easy. We simply traverse e and e′ simultaneously, identifying sub-expressions present in e′

but absent in e. Nodes unique to the present are scheduled for deletion in the future and highlighted in red

in the user interface.

5.3 Program slicing as backwards execution

In the previous section, we showed that, for any ρ, e ⇓ref v, the forward-slicing function evalρ,e has a unique

backward-slicing adjoint unevalρ,e which yields the smallest program slice for any partial output u ⊑ v. We

also saw that to calculate unevalρ,e(v), we could in principle consider every preVx of the program, and take

the meet of those large enough to compute v. Such an approach would not lead to a practical algorithm.

Instead what we would like to do is somehow infer backwards from the unneeded parts of the output to the

unneeded parts of the input.

The computational history stored in the form of the traces introduced in Chapter 4 allows us to do precisely

that. Having the history available means the computation can be be “rewound” and a partial program

reconstructed suXcient to compute that portion of the output. We call this procedure unevaluation, since it

is a form of backwards execution. In this section, we give a deVnition of unevaluation, and show that for

any evalρ,e, the unevaluation algorithm, supplied with a suitable trace, implements unevalρ,e.

Traces T ::= . . . | �

Γ ⊢ T : τ

. . . Γ ⊢ � : τ

ρ, e ⇓ v, T

ρ,� ⇓ �,�

ρ, e1 ⇓ �, T1

ρ, e1 ⊕ e2 ⇓ �,�

ρ, e1 ⇓ c1, T1 ρ, e2 ⇓ �, T2

ρ, e1 ⊕ e2 ⇓ �,�

ρ, e1 ⇓ �, T1

ρ, e1 e2 ⇓ �,�

ρ, e ⇓ �, T

ρ, fst e ⇓ �,�

ρ, e ⇓ �, T

ρ, snd e ⇓ �,�

ρ, e ⇓ �, T

ρ, case e of {inl(x1).e1; inr(x2).e2} ⇓ �,�

ρ, e ⇓ �, T

ρ, unroll e ⇓ �,�

Figure 5.5 Additional rules for partial traces

First we need to extend the syntax and semantics of traces to accommodate � as given in Figure 5.5. As

with expressions, � induces a partial order on traces, which we again denote by ⊑, and for any trace T

there is a lattice Prefix(T ) of preVxes of T . Note that if Γ ⊢ T : τ and S ⊑ T , then Γ ⊢ S : τ . The

hole propagation rules for the tracing semantics are the same as for the reference semantics except that they

supply a hole trace alongside a hole value. These additional rules do not aUect determinism (Lemma 3),

type preservation (Lemma 4), or agreement with the reference semantics on values (Theorem 1). So from
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now on, by ⇓ we shall mean the tracing semantics extended with these additional rules, with these lemmas

again taken to apply to the new deVnition. Moreover, if we domain-restrict ⇓ to the preVxes of a terminating

program ρ, e ⇓ v, T then we obtain a meet-semilattice homomorphism from Prefix(ρ, e) to Prefix(v, T ).

However we do not state this formally but instead use the meet-preservation of the reference semantics

where necessary.

LambdaCalc actually implements diUerent tracing rules for the hole-propagation cases from those given

in Figure 5.5. In each case, rather than just returning a hole trace alongside the hole value, instead it returns a

trace which explains how the hole was computed. New trace forms are required to record these explanations,

since they contain expressions which did not unroll into their executions because an earlier sub-computation

attempted to consume a hole. For example, the implemented hole-propagation rule for functions and sums

look like this:

ρ, e1 ⇓ �, T1

ρ, e1 e2 ⇓ �, T1 e2

ρ, e ⇓ �, T

ρ,case e of {inl(x1).e1; inr(x2).e2} ⇓ �, case T of {inl(x1).e1; inr(x2).e2}

A trace T1 e2 records an application where the computation of the function produced a hole and so ex-

ecution did not proceed into e2. A trace case T of {inl(x1).e1; inr(x2).e2} records a case expres-

sion where the scrutinee evaluated to a hole and so execution did not proceed into a branch. The “data-

driven” intuition we used to explain forward slicing in Chapter 2 is useful for understanding these trace

forms: one can think of T1 e2 as an application that is blocking pending the availability of a function, and

case T of {inl(x1).e1; inr(x2).e2} as a conditional that is blocking pending a value for the scrutinee.

We do not model this behaviour in the formalism for purely technical reasons. For properties like mono-

tonicity to make sense with such trace forms, we need to formally embrace our informal notion of traces as

unrolled expressions. In particular we need expressions to be part of the same partial order as traces, with

expressions as just the “least unrolled” trace forms. Suppose we have a program that evaluates to T1 T2 ⊲ 〈γ,

fun f(x).T 〉. If we make the program smaller in some way so that it can only evaluate as far as S1 e2,

then monotonicity requires that S1 e2 ⊑ T1 T2 ⊲ 〈γ, fun f(x).T 〉. But this only makes sense if we can

treat an application as “smaller than” its unrolling into an application trace and more generally an expres-

sion as smaller than any of its unrolled trace forms. Moreover, for simplicity, we would like to retain the

interpretation of the ⊑ order on traces as the inclusion order on the underlying sets of paths. A simple way

to satisfy both requirements is to treat an application e1 e2 as “shorthand” for a trace of the form e1 e2 ⊲ �;

indeed this is precisely what our implementation does. However, we leave modelling this aspect of the

implementation to future work.

5.3.1 Unevaluation

We now deVne our program slicing algorithm, unevaluation, in Figure 5.6. For a value ⊢ v : τ and trace

Γ ⊢ T : τ , the judgement v, T ⇓−1 ρ, e states that T can be used to unevaluate v to partial environment

Γ ⊢ ρ and partial expression Γ ⊢ e : τ . A key part of the deVnition which for convenience is omitted from

Figure 5.6 is the following. Every time a rule takes the join of two values or environments, there an implicit

side-condition stating that the joins exist. For example, the application rule has an implicit side-condition
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v, T ⇓−1 ρ, e where Γ ⊢ T : τ

�, T ⇓−1
�Γ,� v, x ⇓−1

�Γ.x 7→v, x
v 6= �

c, c ⇓−1
�Γ, c

c2, T2 ⇓−1 ρ2, e2 c1, T1 ⇓−1 ρ1, e1

v, T1 ⊕c1,c2 T2 ⇓−1 ρ1 ⊔ ρ2, e1 ⊕ e2
v 6= �

〈ρ,fun f(x).e〉, fun f(x).e′ ⇓−1 ρ, fun f(x).e
e ⊑ e′

v, T ⇓−1 ρ[f 7→ v1][x 7→ v2], e v2, T2 ⇓−1 ρ2, e2 v1 ⊔ 〈ρ, fun f(x).e〉, T1 ⇓−1 ρ1, e1

v, T1 T2 ⊲ 〈γ, fun f(x).T 〉 ⇓−1 ρ1 ⊔ ρ2, e1 e2
v 6= �

v2, T2 ⇓−1 ρ2, e2 v1, T1 ⇓−1 ρ1, e1

(v1, v2), (T1, T2) ⇓
−1 ρ1 ⊔ ρ2, (e1, e2)

(v1,�), T ⇓−1 ρ, e

v1, fst T ⇓−1 ρ, fst e
v1 6= �

(�, v2), T ⇓−1 ρ, e

v2, snd T ⇓−1 ρ,snd e
v2 6= �

v, T ⇓−1 ρ, e

inl v, inl T ⇓−1 ρ, inl e

v, T ⇓−1 ρ, e

inr v, inr T ⇓−1 ρ, inr e

v, T1 ⇓−1 ρ1[x1 7→ v1], e1 inl v1, T ⇓−1 ρ, e

v, case T of {inl(x1).T1; inr(x2).e2} ⇓−1 ρ1 ⊔ ρ, case e of {inl(x1).e1; inr(x2).�}
v 6= �

v, T2 ⇓−1 ρ2[x2 7→ v2], e2 inr v2, T ⇓−1 ρ, e

v, case T of {inl(x1).e1; inr(x2).T2} ⇓−1 ρ2 ⊔ ρ, case e of {inl(x1).�; inr(x2).e2}
v 6= �

v, T ⇓−1 ρ, e

roll v, roll T ⇓−1 ρ, roll e

roll v, T ⇓−1 ρ, e

v, unroll T ⇓−1 ρ,unroll e
v 6= �

Figure 5.6 Slicing rules: unevaluation
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stating that v1 and 〈ρ, fun f(x).e〉 have an upper bound and also that ρ1 and ρ2 have an upper bound.

Later we will show that these implicit side-conditions are satisVed whenever T is produced by a tracing

evaluation which yields v (Theorem 4 below). Unevaluation is deterministic, which is a straightforward

induction, relying on the v 6= � side-conditions in Figure 5.6.

Lemma 5 (Determinism of unevaluation). If v, T ⇓−1 ρ, e and v, T ⇓−1 ρ′, e′ then (ρ, e) = (ρ′, e′).

Unevaluation traverses the trace and folds it back into an expression from which the unneeded bits have

been discarded. As with evaluation, least elements are preserved, which simply means that holes map

to holes: unevaluating the value � produces the expression � and �Γ, the smallest environment for Γ.

Unevaluating the trace of a variable x with v yields x as an expression and the smallest environment for

Γ mapping x to v, which we write as �Γ.x 7→v . The general pattern for non-nullary trace constructors is

that the traces of the sub-computations are unevaluated and the resulting partial environments joined. For

example we unevaluate a pair trace with a pair (v1, v2) by unevaluating the two sub-traces with v1 and

v2 respectively and joining the partial environments thereby obtained. When binders are involved, well-

typedness allows us to safely extract partial values for the bound variable by pattern-matching the relevant

partial environment. For example with a case trace for inl, the selected branch is unevaluated, producing

a partial environment of the form ρ1[x 7→ v1], where v1 is a partial value which is then injected into the

sum type and used to slice the scrutinee.

Unevaluating the application of a primitive operation retrieves the values c1 and c2 previously cached in

the trace and uses these to unevaluate the arguments. Without the cached values it would not be clear how

to proceed, because the demand placed on the operands of a primitive operation is internal to that operation.

As mentioned earlier, the present approach treats all primitive operations as strict in both operands, although

we revisit this in Future Work, §7.2.6.

The application rule is the most interesting. For a trace T1 T2 ⊲ 〈γ, fun f(x).T 〉, we unevaluate T to

obtain a slice e of the original function body, plus an environment ρ[f 7→ v1][x 7→ v2] where ρ is a slice of

the environment in which the closure was captured, and v1 and v2 are slices describing the usage of f and

x respectively inside T . The closure variables γ, which are equal to vars(ρ), have no role to play; recall that

they serve only to make the trace well-typed. Since T contains all recursive uses of the function, v1 (which

is a slice of a closure) captures how much of f was used below this step of the computation. We then join v1

with 〈ρ, fun f(x).e〉 to merge in information about the usage of the function at the present step, and use it

to unevaluate T1.

5.3.2 Correctness of tracing evaluation

We can now return to the correctness property for tracing evaluation mentioned at the end of Chapter 4.

It hinges on making precise the notion of a trace explaining a value. We start with the observation that

not every well-typed trace T can be used to unevaluate a value v of the same type. On the one hand, T

might have some strange (but well-typed) structure that could never be produced by evaluation, so that the

required joins do not exist. On the other hand, T might have the right structure, but be too small, in the sense

of containing insuXcient information to unevaluate v. So a key property of T with respect to v is whether it
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is able to guide the unevaluation of v. When T has this property, we say that it explains v. Clearly there is

no unique explanation of a given v.

DeVnition 6 (T explains v). For any value v and any trace T , we say that T explains v iU there exist ρ, e

such that v, T ⇓−1 ρ, e.

The key correctness property of tracing evaluation is that it produce traces that explain the value com-

puted. Before showing that this is indeed the case, we Vrst show that for any trace T which explains v, where

v, T ⇓−1 ρ, e, there is a monotonic function tr-unevalv,T from Prefix(v) to Prefix(ρ, e). In fact tr-unevalv,T

also preserves joins, but monotonicity is suXcient for our purposes. First we deVne tr-unevalv,T .

DeVnition 7 (tr-unevalv,T ). Suppose T explains v. Then deVne tr-unevalv,T to be the partial function

{u 7→ (ρ, e) | u ⊑ v and u, T ⇓−1 ρ, e}.

Now we show that tr-unevalv,T is in fact total and monotonic. We omit the v subscript from tr-unevalv,T

when it is applied to a preVx of v and v is clear from the context.

Theorem 3 (Monotonic unevaluation function).

Suppose T explains v. Then:

1. For any u ⊑ v, tr-unevalT (u) is deVned.

2. If u ⊑ u′ ⊑ v then tr-unevalT (u) ⊑ tr-unevalT (u
′).

Proof. See Appendix, §A.1.

Monotonicity means that the less output we demand, the less program we consume. Now we can show

that tracing evaluation to v does indeed produce a trace able to explain v. For the sake of the proof, we show

simultaneously that unevaluation after evaluation is deWationary: that the unevaluation of a value is smaller

than the program which computed it.

Theorem 4 (Tracing evaluation produces explanations).

Suppose ρ, e ⇓ v, T . Then T explains v. Moreover, for any (ρ′, e′) ⊑ (ρ, e):

tr-unevalT (eval(ρ
′, e′)) ⊑ (ρ′, e′)

Proof. See Appendix, §A.2.

5.3.3 Unevaluation computes least program slices

Finally we are in a position to show that, for any evalρ,e, our unevaluation algorithm computes unevalρ,e.

First we make the following observation. If we are able to unevaluate v with T , in other words if T explains

v, then for any sub-trace U of T which was used to unevaluate an intermediate value u 6= �, we must also

have had U 6= �, since otherwise unevaluation would have got stuck. (Non-empty values need non-empty

traces to guide their unevaluation.) But conversely, we can also observe that if U was used to unevaluate an

intermediate value u = �, then U was discarded in its entirety. (Empty values don’t need traces at all.) In

fact whenever T suXces to unevaluate v, any larger trace is equally good.
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Lemma 6. Suppose S explains v. Then any T ⊒ S explains v. Moreover, for any u ⊑ v, we have

tr-unevalS(u) = tr-unevalT (u).

Proof. See Appendix, §A.3.

It is also useful to have a lemma which composes some of our previous observations.

Lemma 7. Suppose ρ, e ⇓ v, T and (u, S) ⊑ (v, T ). If S explains u then tr-unevalS(u) ⊑ (ρ, e).

Proof. Suppose ρ, e ⇓ v, T and (u, S) ⊑ (v, T ) where S explains u. Then:

tr-unevalS(u)

= tr-unevalT (u) (T ⊒ S and Lemma 6)

⊑ tr-unevalT (v) (Theorem 3)

⊑ (ρ, e) (Theorem 4)

Next, we show that unevaluating u produces a program slice for u.

Theorem 5 (Correctness of unevaluation). Suppose ρ, e ⇓ v, T . If (u, S) ⊑ (v, T ) and S explains u, then

eval(tr-unevalS(u)) ⊒ u.

Proof. See Appendix, §A.4.

It is now easy to see that evalρ,e and tr-unevalv,T form a Galois connection for any ρ, e ⇓ref v, T . And

since each adjoint component of a Galois connection determines the other, it follows that tr-unevalT =

unevalρ,e via Corollary 1.

Theorem 6 (Computation of least program slices). Suppose ρ, e ⇓ v, T . For any u ⊑ v and any (ρ′, e′) ⊑

(ρ, e) we have:

eval(ρ′, e′) ⊒ u ⇐⇒ (ρ′, e′) ⊒ tr-unevalT (u)

Proof. For the =⇒ direction, suppose ρ′, e′ ⇓ u′, S with u′ ⊒ u. Note that S ⊑ T and u′ ⊑ v by

monotonicity.

(ρ′, e′) ⊒ tr-unevalS(u
′) (Theorem 4)

⊒ tr-unevalS(u) (Theorem 3)

= tr-unevalT (u) (S ⊑ T , Lemma 6)

For the⇐= direction, suppose (ρ′, e′) ⊒ tr-unevalv,T (u). Then:

eval(ρ′, e′) ⊒ eval(tr-unevalT (u)) (Theorem 2)

⊒ u (Theorem 5)
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5.4 Trace slicing

Even at the level of programs, forward and backward slicing can reveal something of how a program works

internally, by showing how diUerent parts of the program are consumed by diUerent parts of the output,

and diUerent parts of the output produced by diUerent parts of the program. Computation slices, or trace

slices, give a fuller picture, explaining in detail how these dependencies come about. A forward trace slice

can be obtained simply by evaluating a program slice, using the tracing semantics; the resulting trace slice

is a forward explanation, accounting for how that preVx of the program produces the preVx of the output

that it does. Figure 2.13(b) in Chapter 2 gave an example of a forward trace-slice that the user obtained by

forward-slicing an application of zipW and then evaluating it.

In this section we show how to calculate backward trace-slices, or backward explanations. A backward

explanation accounts for how a preVx of the output consumes the preVx of the program that it does. A

backward explanation is typically not the trace of any forward evaluation; in fact in Future Work, §7.2.5,

we propose that these backward explanations be understood as traces of lazy computations. A backward

trace-slice can be more informative than a plain program slice, because a given part of the program can be

relinquished only when it is not used anywhere. (See the discussion at the end of §5.2.2 above.) A backward

trace-slice records the individual uses of a given program part and thus can track how it is consumed dif-

ferently at diUerent points in the execution. In order to preserve the ability of the program to compute the

required preVx of the output, the usage ultimately recorded in the program slice must be at least the join of

these individual uses.

We illustrate backward trace-slices with the zipW example too. We ask the reader to consult Figure 2.14

from Chapter 2, which showed an application of zipW to a function and two lists; recall also the graphical

notation for sharing we introduced in §2.3. In Figure 2.14(b), the programmer had selected the last two

elements of the output list. We learned something from the resulting program slice, namely that the argument

op in the recursive call to zipW was no longer needed. Figure 5.7 shows an exploration of the (backward)

execution for that example. We can see op used in the outer call of zipW to construct the Vrst element of the

output, but also that inside the recursive call, where it is mentioned twice, it is no longer used, and therefore

need not be passed as an argument. This now invites the question of why op was not passed to the second

recursive call, and might lead the user to further exploration.

The other salient detail in the backward trace-slice is that the expression op x y which computed the

value Pair(13,5) need not be executed. But this is not enough to relinquish op x y from the program

slice, because it is still needed in the outermost zipW call. The general pattern is that program resources are

consumed non-linearly (“forked”) during execution, and during backwards execution these various uses are

“joined” via the join operation ⊔. A function can be used diUerently each time it is called, but there is only

one representation of the function in the program slice, and so the program slice can at best only contain the

least upper bound of the individual uses. By contrast the trace slice shows each individual use.

The deVnition of backward trace-slicing is given in Figure 5.8. The judgement v, T ց ρ, S states that

backward-slicing the trace Γ ⊢ T : τ with respect to a partial value ⊢ v : τ yields partial environment

Γ ⊢ ρ and partial trace S. As with unevaluation, there are side-conditions, which we omit from the Vgure

for convenience, on the rules which take joins, asserting that the joins exist. Trace slicing is deterministic;
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fun zipW op xs ys →

case xs of

Nil → Nil

Cons(x,xs') →

case ys of

Nil → Nil

Cons(y,ys') →

Cons op x

y

zipW op

xs'

ys'

zipW op:fun _ x y →

Pair + x

1

+ y

1

xs:Cons( , )

ys:Cons( , )

↠ case xs of

Cons&x:10,xs':Cons( , )) ↠

case ys of

Cons(y:',ys':Cons( , )) ↠

Cons op x

y

…

Pair 11

(

zipW op:op

xs:)*+

ys:,*+

↠ case )* of

Cons&x:-./xs':Cons(13,01233 ↠

case ys of

Cons(y:(,ys':Cons(4,01233 ↠

Cons op x

y

…

Pair 13

5

zipW op

)*+

,*+

6

Cons(Pair -(

7

/0123

Cons( , )

Cons( , )

Figure 5.7 Backward trace-slice of zipW showing information that cannot be stored in the program slice

the proof is a straightforward induction, relying on the v 6= � side-conditions in Figure 5.8.

Lemma 8 (Determinism of trace slicing). Suppose v, T ց ρ, S and v, T ց ρ′, S′. Then ρ = ρ′ and S = S′.

One way to understand the algorithm is as a component of the unevaluation algorithm we gave in Figure 5.6,

which can be factored into two phases. The Vrst phase backward-slices the trace, discarding unneeded parts;

the second phase then collapses the sliced trace into a program slice by discarding executed function bodies.

The trace-slicing algorithm given in Figure 5.8 corresponds to the Vrst phase.

Given a trace T which explains v, the algorithm calculates the smallest preVx S of T which preserves the

“explanatory power” of the trace with respect to v, in that S retains suXcient information to unevaluate v.

The trace-slicing rules are similar in Wavour to those for unevaluation, but sub-computations are sliced rather

than unevaluated back to expressions. The signiVcant diUerence is the application case, where we both slice

and unevaluate the executed function body T : we slice to obtain a trace slice S, and we unevaluate to obtain

an expression slice e. The former is incorporated into the sliced application trace; the latter is merged into v1

and used to slice T1. Unevaluation of the function body also yields an environment slice, but we disregard

it; in Theorem 7 below we show that it is identical to the one obtained by slicing the function body.

We can slice T with v whenever T explains v. Moreover the partial environment we obtain is the one we

would obtain via unevaluation. In the next section we will see that something like the converse is also true.

Theorem 7. v, T ⇓−1 ρ, e =⇒ ∃S.v, T ց ρ, S.
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v, T ց ρ, S where Γ ⊢ T : τ

�, T ց �Γ,� v, x ց �Γ.x 7→v, x
v 6= �

c, c ց �Γ, c

c2, T2 ց ρ2, S2 c1, T1 ց ρ1, S1

v, T1 ⊕c1,c2 T2 ց ρ1 ⊔ ρ2, S1 ⊕c1,c2 S2

v 6= �
〈ρ,fun f(x).e〉, fun f(x).e′ ց �Γ, fun f(x).e

e ⊑ e′

v, T ց ρ[f 7→ v1][x 7→ v2], S

v, T ⇓−1 _, e v2, T2 ց ρ2, S2 v1 ⊔ 〈ρ, fun f(x).e〉, T1 ց ρ1, S1

v, T1 T2 ⊲ 〈γ, fun f(x).T 〉 ց ρ1 ⊔ ρ2, S1 S2 ⊲ 〈γ, fun f(x).S〉
v 6= �

v2, T2 ց ρ2, S2 v1, T1 ց ρ1, S1

(v1, v2), (T1, T2) ց ρ1 ⊔ ρ2, (S1, S2)

(v1,�), T ց ρ, S

v1, fst T ց ρ, fst S
v1 6= �

(�, v2), T ց ρ, S

v2, snd T ց ρ,snd S
v2 6= �

v, T ց ρ, S

inl v, inl T ց ρ, inl S

v, T ց ρ, S

inr v, inr T ց ρ, inr e

v, T1 ց ρ1[x1 7→ v1], S1 inl v1, T ց ρ, S

v, case T of {inl(x1).T1; inr(x2).e2} ց ρ1 ⊔ ρ, case S of {inl(x1).S1; inr(x2).�}
v 6= �

v, T2 ց ρ2[x2 7→ v2], S2 inr v2, T ց ρ, S

v, case T of {inl(x1).e1; inr(x2).T2} ց ρ2 ⊔ ρ, case S of {inl(x1).�; inr(x2).S2}
v 6= �

v, T ց ρ, S

roll v, roll T ց ρ,roll S

roll v, T ց ρ, S

v, unroll T ց ρ, unroll S
v 6= �

Figure 5.8 Trace slicing
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Proof. Straightforward induction on the derivation of v, T ⇓−1 ρ, e. The only non-trivial case is the ap-

plication rule, because we invoke the ⇓−1 judgement from the ց judgement. Then we use that ⇓−1 is

deterministic (Lemma 5).

5.4.1 Computation of least explanations

The key correctness property of trace slicing with v is that it preserves the ability of the trace to explain v.

But it also produces an explanation consistent with the original explanation, in the sense of being smaller

than it.

Theorem 8 (Correctness of trace slicing). If v, T ց ρ, S then S explains v and S ⊑ T .

Proof. See Appendix, §A.5.

Now we can make an observation about the application rule for ց where we both slice the function body

T to obtain S and unevaluate T to obtain e, where v is the partial output used for both. By Theorem 8,

we know that S explains v and moreover by Lemma 6 that unevaluation with S is the same unevaluation

with T . Therefore, we could equally have used S instead of T to obtain e. Then the eUect of unevaluation

would be just to discard function bodies, because the trace guiding the unevaluation would have already

been sliced.

By Lemma 6 we can also see that because slicing a trace with v always yields a smaller trace that explains

v, the larger trace must also explain v. By determinism the judgements agree on environments.

Corollary 2. v, T ց ρ, S =⇒ ∃e.v, T ⇓−1 ρ, e.

Proof. Suppose v, T ց ρ, S. Then S explains v and S ⊑ T by Theorem 8. But if S ⊑ T , then T also

explains v by Lemma 6, and so there exist ρ′ and e such that v, T ⇓−1 ρ′, e. Then ρ = ρ′ by Theorem 7 and

the determinism ofց (Lemma 8).

When we slice T with v we obtain the canonical explanation of v compatible with T , in that it is the

smallest preVx of T which still explains v:

Theorem 9 (Trace slicing yields the smallest compatible explanation). Suppose v, T ′ ց ρ, S, and any

T ⊑ T ′ that explains v. Then S ⊑ T .

Proof. See Appendix, §A.6.

These “least explanations” are the slices the user sees in LambdaCalc when they backward-slice a computa-

tion, although they are typically presented in a diUerential form which highlights the diUerence between the

present explanation, and a hypothetical future one in which less of the output is needed. In the next chapter,

we consider a more general form of diUerential computation, where the changes are not merely increasing

or decreasing but involve structural rearrangements of the computation.
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6 DiUerencing Computation

One man’s constant is another man’s variable.

Alan Perlis, Epigrams on Programming [Per82]

In Chapter 2 we explained a “what if” question as an interactive query concerning the relationship be-

tween two computations. When we edit a program we usually have a “what if” of some sort in mind, perhaps

only tacitly. Sometimes we lack a clear idea what will happen, so we make the change and see what happens.

Other times, we have an idea of what should happen, so we make the change in order to check what hap-

pens. Test-driven development [Bec02] codiVes the latter style of question into a programming methodology.

Normally all we get to see is some new output, with no indication of what parts of the output are diUerent,

or what happened diUerently during the execution to account for the output diUerence. Moreover, if the

question comes to mind in the middle of debugging or testing, then to ask the question we usually have to

discard the very context that prompted it in the Vrst place: we have to stop the program, apply the change,

and restart. Live programming environments improve on this aspect of the problem (Related Work, §3.7),

but provide no visibility on what changed or why.

We propose explicit change as a pervasive feature of an execution environment. The idea is that every

change in a computed value should be accounted for by some explicit change in the execution. This is a

diUerential notion of the kind of computational transparency that we have already advocated: no changes

go unrecorded or unexplained. In this chapter, we deVne a key component of such a system, a notion of

diUerential evaluation which derives execution diUerences from program diUerences. DiUerential evaluation

implements the retroactive update scheme introduced in Chapter 2. It can be used to apply a change to a

program whilst debugging or testing, without having to throw away the all-important context that prompted

the change. To be practical, diUerential evaluation requires an eXcient incremental implementation; we defer

this to future work (§7.2.2). But in Appendix B we show that it is possible to put diUerential execution to use

without an incremental implementation.

Before we explain our solution, let us brieWy consider the problem of comparing executions. DiUerencing

generally has two phases: an alignment phase which decides how parts of the two structures correspond to

each other, and then a phase which constructs a delta transforming one structure into the other, assuming

the alignments derived in the Vrst phase. The computationally hard part of the problem is usually align-

ment. For tree-structured data, like computations, there is usually no unique optimal way, in the sense of
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minimising the resulting delta, to align the two computations. And even when there is, it will generally be

very hard to compute: even sequence-diUerencing is NP-complete if move operations are permitted [SS02],

and tree diUerencing can clearly encode sequence diUerencing if the deltas allow siblings to be reordered. So

for execution diUerencing to be tractable, we must forgo optimal alignment and instead pursue approaches

which are simpler but either somewhat ad hoc or able to utilise additional information to guide the align-

ment. This general approach is sometimes called execution indexing (Related Work, §3.12), because the idea

is to construct an assignment of indices to nodes with the intention of aligning nodes across computations

when they have the same index. Prior work in execution indexing explores several such schemes, including

counting the invocations of a particular statement, and matching the execution context against a context-free

grammar.

The key novelty of our approach to this problem is that we derive our execution deltas from program

deltas. The program deltas are created automatically as the programmer edits the program. Program deltas

simplify the problem by providing additional information for our indexing scheme to exploit. Our indexing

scheme is deterministic, connecting execution nodes back to the program nodes they come from, allowing

us to derive computation deltas that reWects the deltas the user applies to the program. For example, our

approach can interpret certain program changes as structural reorganisations of the execution, such as the

splicing in of new operations or the re-ordering of computations, which no diUerencing algorithm for pure

tree-structured values would be likely to infer.

The following example shows that, without this extra information, it is often unclear how to align nodes,

even with trivial programs and executions which seem obviously related. Then we will see how taking

the program delta into account simpliVes the problem. The reader will recall the factorial example from

Chapter 2. In Figure 2.5(a), we showed a precursor of factorial which implemented the constant function 1

by counting down from its argument x to 0 and then just returning 1. In Figure 6.1, we show the application

of this function to 0 and to 1 side-by-side.

f x:1

↠ case == 8

0

False of

T9ue → 1

False ↠

f x:: 8

1

0

↠ case == 8

0

T9ue of

True ↠ 1

False →

f : 8

1

1

f x:0

↠ case == 8

0

T9ue of

True ↠ 1

False →

f : 8

1

1

Figure 6.1 A plausible alignment of a pair of executions

Now consider how we might align nodes in these two very simple computations, for comparison pur-

poses. We might note that, modulo one small diUerence, the entire left-hand side, from the execution of f

0 downwards, is a suXx (highlighted with the blue bar) of the right-hand side. The single diUerence is that
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on the left x is bound to the constant 0, whereas on the right it is bound to the expression x - 1, which also

happens to have the value 0. So purely syntactically, one plausible alignment would entail f 0 on the left

becoming f (x - 1) on the right.

In Figure 6.2(a) we see a diUerent alignment decision. Modulo a few diUerences, the entire left-hand side

also appears as a preVx (again highlighted with a blue bar) of the right-hand side. Under this alignment,

the f 0 on the left-hand side becomes f 1 on the right. Additionally, the expression x == 0 which has the

value True on the left has the value False on the right; and the recursive call on the left is dead, whereas

the its counterpart on the right is live with an executed function body underneath. This alignment implies

a bit more “work” to get from the left-hand side to the right-hand side than did the alignment in Figure 6.1.

Nevertheless the choice here is quite plausible.

(a)
f x:1

↠ case == ;

0

False of

T<ue → 1

False ↠

f x:= ;

1

0

↠ case == ;

0

T<ue of

True ↠ 1

False →

f = ;

1

1f x:0

↠ case == ;

0

T<ue of

True ↠ 1

False →

f = ;

1

1
(b)

f x:1

↠ case == >

0

False of

T?ue → 1

False ↠

f x:@ >

1

0

↠ case == >

0

T?ue of

True ↠ 1

False →

f @ >

1

1

Figure 6.2 (a) Another plausible alignment of the executions from Figure 6.1; (b) execution delta derived in LambdaCalc

But now suppose we also know how the user edited the underlying program: they edited f 0 into f 1

by changing the 0 into a 1. This is consistent with the second alignment but not with the Vrst, where the

execution of f 0 became the execution of f (x - 1) rather than the execution of f 1. So in fact although the

Vrst alignment leads to a smaller delta, the resulting delta is not faithful to the edit made by the programmer.

Figure 6.2(b) shows the Vnal delta we compute in LambdaCalc based on this program edit.

In summary, utilising the program delta when deriving a computation delta not only simpliVes the align-

ment or execution indexing problem, but also permits computation deltas to reWect the edits made by the

programmer. We now describe how this works in more detail. §6.1 extends the syntax of the reference

language and the syntax of traces from Chapter 4 with indices which serve to identify nodes. §6.2 extends

our previous tracing semantics into an indexing tracing semantics which evaluates an indexed program to

an indexed value and an indexed trace. Then in §6.3 we show how to compare two indexed expressions,

value or traces to obtain a delta expression, value or trace.

6.1 Indexed syntax

We start by requiring that a program be annotated with indices identifying its individual parts. As noted in

Related Work, §3.12, this assumption is easily justiVed by thinking of the program as represented in a store
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Index α ::= i | α1 : α2

Indexed expression e ::= rα

Raw expression r ::= x | () | c | e1 ⊕ e2 | fun f(x).e | e1 e2

| (e1, e2) | fst e | snd e | inl e | inr e

| case e of {inl(x1).e1; inr(x2).e2}

| let x = e1 in e2 | roll e | unroll e

Indexed trace T ::= Rα

Raw trace R ::= x | c | T1 ⊕ T2 | (T1, T2)

| fst T | snd T | inl T | inr T

| case T of {inl(x1).T1; inr(x2).e2}

| case T of {inl(x1).e1; inr(x2).T2}

| fun f(x).e | T1 T2 ⊲ 〈γ, fun f(x).T 〉

| let x = T1 in T2 | roll T | unroll T

Indexed value v ::= uα

Raw value u ::= c | (v1, v2) | inl v | inr v | roll v

| 〈ρ, fun f(x).e〉

Raw environment ρ ::= • | ρ[x 7→ v]

Figure 6.3 Indexed expressions, traces, values and environments

assigning a unique address to every sub-expression, as might be the case with a structure-aware editor. We

can simply use the addresses as the indices.

Figure 6.3 gives the syntax of indices α, plus the syntax of indexed expressions, values, traces and envi-

ronments. The indices on the source program are of the form i , where i is drawn from a countably inVnite

set of source indices. The index assignments that arise during execution, as we are going to see, also include

indices of the form α1 : α2 where α1 and α2 are indices; that is to say binary trees with sources indices at the

leaves. Our intention is that two traces only be assigned the same index within a single closed computation

if they represent sub-computations that behave identically.

The syntax of indexed expressions follows the reference language extended with traces as deVned in

Chapter 4. Indexed expressions, which carry indices, are deVned mutually inductively with raw expressions,

which do not. We use a similar pattern for indexed values and indexed traces. Environments only come in

a “raw” form, mapping identiVers to indexed values; there are no indexed environments. Apart from the

indices themselves, the indexed syntax diUers from the reference language only in introducing an explicit

let form. Under the indexing semantics, let does not so easily desugar into a local function application.

It is sometimes convenient to write the function fun f(x).e as funf,x(e), the application e1 e2 as

app(e1, e2), the variable x as varx, and so on, in order to make the syntactic constructor explicit. The

general form is c(e1, . . . , en), where c is a constructor and e1, . . . , en are the immediate sub-expressions.

The notation is useful for deVning operations like diUerencing that treat programs and their executions as

94



data. Here, we can use it to deVne the erasure of an indexed expression e, which recovers a normal expression

from e by erasing indices.

DeVnition 8 (Erasure of an indexed expression).

|c(e1, . . . , en)
α
|

def
= c(|e1|, . . . , |en|)

Indexed expressions are typed using a judgement Γ ⊢◦ e : τ which is deVned inductively. There are

similar ⊢◦ judgements for values, traces and environments. We omit the deVnitions, since they are almost

identical to the ⊢ typing judgements for the reference language given in Figure 4.1. The reference typing and

indexed typing judgements agree if we ignore indices.

Lemma 9 (Agreement with referencing typing).

1. If Γ ⊢◦ e : τ then Γ ⊢ |e| : τ .

2. If Γ ⊢ e : τ and |e′| = e then Γ ⊢◦ e′ : τ .

and similarly for indexed values, traces and environments.

We now introduce some operations which more explicitly treat the indices as locations. For an indexed

expression, value or trace to be suitable for diUerencing, it must satisfy the following injective indexing

property: any two sub-expressions, sub-values or sub-traces which have the same index must be syntactically

equal. The importance of this requirement for execution diUerencing is also noted by Xin et al. [XSZ08].

When diUerencing two computations, we need to be able to say how a node diUers from its counterpart with

the same index in the other computation. This only makes sense if the index identiVes a unique (although

possibly shared) structure in each computation.

To specify injective indexing more precisely, we deVne the symbol & (“index of”) to denote the function

which takes any indexed expression eα to α. Similar overloaded deVnitions hold for indexed values and

indexed traces, and for the deVnitions which follow. We write e1 4 e2 to mean that e1 is a sub-term of e2.

DeVnition 9 (Indexing of e). The indexing &|e of an expression e is & domain-restricted to the indexed

sub-expressions of e:

&|e
def
= {rα 7→ α | rα 4 e}

Then the requirement that e have an injective indexing can be stated as the requirement that&|e be injective.

If e has an injective indexing, then it can also be represented in a less redundant way: as a storemapping each

index in e to the “local” information associated with that index, namely a constructor and some child indices

which are also in e. We shall see later that treating indexed expressions as stores is useful for diUerencing.

DeVnition 10 (Store for an indexed expression). Suppose e is an indexed expression with&|e injective. Then

deVne:

e
def
= {α 7→ c(α1, . . . , αn) | c(r1

α1 , . . . , rn
αn)α 4 e}

Figure 6.4 gives an example of these stores. In the upper half of the Vgure are two expressions e1 and

e2, each injectively indexed. (In fact each satisVes a stronger property, namely that each index only occurs
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once.) The small red boxes give the indices assigned to each node. (For the rest of this chapter, we will

adopt this graphical notation for expressions, in preference to LambdaCalc visualisations. It is less compact,

but more explicit about child pointers, which suits the topic of the chapter.) In the lower half of the Vgure

are the corresponding stores e1 and e2. The reader may have noticed that e2 and e1 have some indices in

common. This happens when the programmer creates a new expression by editing an existing one. Here,

the programmer obtained e2 from e1 by a series of refactorings: Vrst they inlined the variables x and y,

obtaining the expression f (5, 6), an intermediate state which is not shown; then they extracted the pair

(5, 6) as the value of a new local variable z. We will use this scenario as a running example.

We give one last deVnition before we present indexed evaluation. We deVne a function on indexed expres-

sions called instantiation with α; instantiating an indexed expression e with an index α “oUsets” the index

of each sub-expression of e by α.

DeVnition 11 (Instantiating an expression by an index).

[c(e1, . . . , en)
α′

]α
def
= c([e1]α, . . . , [en]α)

α′:α

The role of instantiation will become clear in the next section. For now we just note that instantiation only

transforms indices and so preserves erasure. Instantiation also preserves injectivity of indexing.

6.2 Indexing evaluation

To calculate an execution delta, we need two indexed traces. An indexed trace is built from an indexed

program by indexing evaluation, which is deVned in Figure 6.5. The judgement ρ, e ⇓◦ v, T states that

indexed expression Γ ⊢◦ e : τ evaluates in environment Γ ⊢◦ ρ to indexed value ⊢◦ v : τ and indexed

trace Γ ⊢◦ T : τ . Indexing evaluation uses the indices on the source program to deterministically assign

indices to every trace and every computed value. As mentioned above, the indices on traces and values can

be thought of as locations which allow both the sharing of equally-valued things within a computation, and

the comparison of diUerently-valued things across diUerent computations.

We now state two basic properties of indexing evaluation. First, indexing evaluation is deterministic,

which is a straightforward induction given that [−]α is a function.

Lemma 10 (Determinism). Suppose ρ, e ⇓◦ v, T and ρ, e ⇓◦ v′, T ′. Then (v, T ) = (v′, T ′).

Second, indexing evaluation agrees with tracing evaluation extended with let, if we ignore the indices.

Lemma 11 (Agreement with tracing evaluation).

1. If ρ, e ⇓◦ v, T then |ρ|, |e| ⇓ |v|, |T |.

2. If ρ, e ⇓ v, T and |ρ′| = ρ and |e′| = e then ρ′, e′ ⇓◦ v′, T ′ with |v′| = v and |T ′| = T .

Proof. Straightforward induction in each direction, using the equalities |ρ|(x) = |ρ(x)| for the variable case,

|ρ|[x 7→ |v|] = |ρ[x 7→ v]| for the binder cases, and |[e]α| = |e| for the application case.
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letx

5 lety

6 app

varf pair

varx vary

3

1 4

2

7

5

6

8 9

|e1|
def
= let x = 5 in let y = 6 in f (x, y)

letz

pair

5 6 app

varf varz

10

1 2

7

5

6 11

|e2|
def
= let z = (5, 6) in f z

1 7→ 5

2 7→ 6

3 7→ letx(1, 4)

4 7→ lety(2, 5)

5 7→ app(6, 7)

6 7→ varf

7 7→ pair(8, 9)

8 7→ varx

9 7→ vary

e1

1 7→ 5

2 7→ 6

5 7→ app(6, 11)

6 7→ varf

7 7→ pair(1, 2)

10 7→ letz(7, 5)

11 7→ varz

e2

Figure 6.4 Injectively indexed expressions e1 and e2 as stores e1 and e2
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ρ, e ⇓◦ v, T

ρ, xα ⇓◦ ρ(x), xα ρ, cα ⇓◦ cα, cα

ρ, e1 ⇓◦ c1
α1 , T1 ρ, e2 ⇓◦ c2

α2 , T2

ρ, (e1 ⊕ e2)
α ⇓◦ (c1 ⊕̂ c2)

α
, (T1 ⊕ T2)

α

ρ, e1 ⇓◦ v1, T1 ρ[x 7→ v1], e2 ⇓◦ v, T2

ρ, (let x = e1 in e2)
α ⇓◦ v, (let x = T1 in T2)

α ρ, (fun f(x).e)α ⇓◦ 〈ρ, fun f(x).e〉α, (fun f(x).e)α

ρ, e1 ⇓◦ v1, T1 ρ, e2 ⇓◦ v2, T2 ρ′[f 7→ v1][x 7→ v2], [e]α2
⇓◦ v, T

ρ, (e1 e2)
α ⇓◦ v, (T1 T2 ⊲ 〈vars(ρ

′), fun f(x).T 〉)
α

v1 = 〈ρ′, fun f(x).e〉
α1 , v2 = u2

α2

ρ, e1 ⇓◦ v1, T1 ρ, e2 ⇓◦ v2, T2

ρ, (e1, e2)
α ⇓◦ (v1, v2)

α, (T1, T2)
α

ρ, e ⇓◦ (v1, v2)
α′

, T

ρ, (fst e)α ⇓◦ v1, (fst T )α

ρ, e ⇓◦ (v1, v2)
α′

, T

ρ, (snd e)α ⇓◦ v2, (snd T )α

ρ, e ⇓◦ v, T

ρ, (inl e)α ⇓◦ (inl v)α, (inl T )α

ρ, e ⇓◦ v, T

ρ, (inr e)α ⇓◦ (inr v)α, (inr T )α

ρ, e ⇓◦ (inl v1)
α′

, T ρ[x1 7→ v1], e1 ⇓◦ v, T1

ρ, (case e of {inl(x1).e1; inr(x2).e2})
α ⇓◦ v, (case T of {inl(x1).T1; inr(x2).e2})

α

ρ, e ⇓◦ (inr v2)
α′

, T ρ[x2 7→ v2], e2 ⇓◦ v, T2

ρ, (case e of {inl(x1).e1; inr(x2).e2})
α ⇓◦ v, (case T of {inl(x1).e1; inr(x2).T2})

α

ρ, e ⇓◦ v, T

ρ, (roll e)α ⇓◦ (roll v)α, (roll T )α

ρ, e ⇓◦ (roll v)α
′

, T

ρ, (unroll e)α ⇓◦ v, (unroll T )α

Figure 6.5 Tracing evaluation with indexing
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Type preservation is then immediate from Lemmas 11 and 9. Given Lemma 11, the tracing aspect of the

judgement is covered by §4.3, so here we need only explain how indices are assigned.

Our goal will be for there to be only one way to evaluate a given indexed expression within a closed

computation. More precisely, if ρ, e ⇓◦ v, T and ρ′, e ⇓◦ v′, T ′ both occur in the evaluation of a closed

computation, then ρ = ρ′. Then we can adopt the following simple policy for assigning indices to traces and

values. The index of a trace is always the index of the expression of which it is the unrolling; and the index

of a value is always the index of the expression which constructed it. The injectivity of indexing should then

follow from determinism, although we leave this as a conjecture (Conjecture 1 below).

Not every indexing evaluation rule speciVes the index on the value it returns. If the rule returns a value

computed elsewhere, then that value already has an index and we simply return that indexed value un-

changed. This increases the likelihood of reuse of indices both within and across computations.

There are two things we need to do to meet our requirement there be only “one way” to execute a given

indexed expression within a single computation. First there must be no sharing in any expression that we

evaluate. Consider the indexed program (let x = 8 in (f2 x3)
1
, let x = 9 in (f2 x3)

1
). We have

shown indices, as superscripts, only on the nodes which occur more than once. Here the indexed application

(f2 x3)
1
is included twice, once in a context where x is bound to 8, and once in a context where x is bound

to 9. When this code is run, each occurrence of the application will be inWated into an application trace

containing an executed function body. But the two executed bodies will generally diUer, breaking injectivity

of trace indexing.

DeVnition 12 (Sharing-free). An indexed expression e is sharing-free if each index in e occurs only once.

If e is sharing-free, then clearly &|e is injective. Moreover instantiation preserves sharing-freeness.

The other opportunity for an indexed expression e to run in diUerent environments within the same

computation is when e is in the body of a closure f , because then f can be invoked with diUerent arguments.

To eliminate this possibility, in the application rule, before running the body e′ of f , we instantiate e′ with

the index of v to obtain [e′]&v , which is a copy of e′ unique to v. If we can assume that any argument

passed to f with the same location as v will be equal to v, then instantiation, along with the sharing-

freeness of e′ (which is preserved by instantiation), is suXcient to ensure that any e 4 [e′]&v will run in a

unique environment. By the time we are running the body of any closure, the original expression has been

instantiated with the indices of the arguments to all containing functions.

To illustrate indexing for values and closure bodies, we revisit the example indexed program e1 from the

top-left of Figure 6.4. In Figure 6.6(a) and (b), we run e1 in both the tracing semantics and the indexing

semantics, in an environment ρ binding f to the closure 〈•, fun f(w).(fst w14)
13
〉
12

returning the Vrst

component of its argument. The white nodes are traces; the grey node are values. In (a), we evaluate |e|

in |ρ|; in (b) we evaluate e in ρ. In (b), when a trace returns a value computed elsewhere in the part of

the computation we can see, it is shown with a dotted border and no contents, rather than as a sharing

link. For example, both lets, the app, and the executed function body all return the indexed value 51.

This is consistent with the reference semantics, if we erase the indices. Similarly, the variables x and y

evaluate to 51 and 62 and these are then mentioned directly by the pair. The variable f also returns a value

constructed elsewhere, the closure with index 12, but we do not use a dotted border for the closure because
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letx

5 lety

6 appf,w

varf pair

varx vary

fst

varw

5

5

6

5

5

funf,w
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varw
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pair 5

pair

5 6 (a)

letx

5 lety

6 appf,w

varf pair

varx vary

fst

varw

5

6

funf,w

fst

varw

pair

3 1

1 1 4 1

2 2 5 1

6 12

13

14

7 7

8 1 9 2

13:7 1

14:7 7

(b)

Figure 6.6 Traces resulting from evaluation in (a) tracing semantics and (b) indexing semantics

it was constructed by a part of the computation we cannot see. The remaining trace nodes build values,

rather than reusing them, and assign them the index of the expression, which is the same as that of the trace.

Instantiation occurs in (b) when we apply the closure f to the pair argument with index 7. We instantiate

the body of f with the argument index before evaluating it, so that (fst w14)
13

becomes (fst w14:7)
13:7

.

We now state our conjecture. We would like that, given a sharing-free closed program to start with,

indexing evaluation always yields an output with an injective indexing.

Conjecture 1. Suppose •, e ⇓◦ v, T with e sharing-free. Then &|(v,T ) is injective.

To summarise the intuition for the conjecture, there is a unique environment in which a given indexed

expression within a closed computation is evaluated, for the following reasons. Within the execution of a

closure body with a particular argument, an indexed expression cannot occur twice, because the original

program was sharing-free and instantiation preserves sharing-freeness. The same expression cannot be

executed in diUerent environments as a result of applying the same closure to diUerent arguments, because

the body of the closure is always instantiated with the argument index before being evaluated. If every

indexed expression runs in a unique environment, then by determinism its trace is unique and the value it

constructs, if any, is unique.

What has proved tricky about the conjecture and likely to require further work to establish is how to

generalise the statement to open programs, so that it can serve as a suitable induction hypothesis. Naïvely for

example one might think that it would be suXcient for &|(ρ,e) to be injective, and for e and any expressions

contained within ρ to be sharing-free. However this is not the case. The following program shows what

goes wrong without further constraints on the environment. Suppose we have the following closure and

environment:

v1 = 〈•, fun f(x).(inl x4)
1
〉
3

ρ
def
= {y 7→ 41:2, f 7→ v1}

Suppose we then use ρ to evaluate the indexed expression (y5, (f6 32)
7
)
8
. The result will be a pair con-

taining the value 41:2 from the environment, but also a diUerent value with the same index. This violates

injectivity on the output, not because any part of the input violates injectivity, or because there is any sharing

within expressions, but because the execution is inconsistent with the information implied by the structure

of the indices already in ρ. The derivation is shown below; we omit the trace component for clarity, since
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the problem is apparent just with values:

ρ, y5 ⇓◦ 41:2

ρ, f6 ⇓◦ v1 ρ, 32 ⇓◦ 32

•[f 7→ v1][x 7→ 32], x4:2 ⇓◦ 32

•[f 7→ v1][x 7→ 32], [(inl x4)
1
]2 ⇓◦ (inl 32)

1:2

ρ, (f6 32)
7
⇓◦ (inl 32)

1:2

ρ, (y5, (f6 32)
7
)
8
⇓◦ (41:2, (inl 32)

1:2
)
8

The problem here is that the environment ρ already contains the indexed value 41:2. However, the inl

expression which forms the closure body has index 1, and the argument passed to the closure has index 2.

When we instantiate the closure body with the argument index before evaluating it, we append 2 to the

index of every expression in the body, obtaining the expression (inl x4:2)
1:2

. When this is then evaluated,

it produces a inl value whose index is 1 : 2. This is Vnally plugged into a pair, along with the value 41:2

from the environment which already has that index. Since the two components of the pair have the same

index but diUerent raw contents, injectivity is violated.

The subtlety is that the indices in an environment say something about the computation which has already

taken place. In this case, the indexed value 41:2 is really claiming to have been built by evaluating 41 within

the body of a function applied to an argument with index 2. This is inconsistent with the fact that the

expression we then evaluated in the context of ρ involved evaluating a diUerent constructor with the same

index. Thus, if we are to prove the conjecture by induction on the ⇓◦ derivation, there is work to do to better

understand the invariants on open programs.

6.3 Delta computations

Given two indexed expressions, traces or values, we can diUerence them to obtain a delta expression, delta

trace or a delta value. As usual, we deVne things for indexed expressions and assume that the deVnitions

extend to traces and values.

A indexed delta-expression is an indexed expression with some additional colour indicating how it diUers

from another indexed expression. It has the same syntax as an indexed expression, except that every con-

structor and every index α has been coloured green to mean “new”, blue to mean “changed”, or has been left

black to mean “unchanged”, following the colour scheme introduced in Chapter 2. If a constructor is marked

as new, then the expression itself is new, and all the child indices of that delta expression are also new. This

is because the indices on the children of a node represent pointers to those children, with the pointers being

part of the parent; thus if the parent is new, its child pointers are necessarily new. The root index is always

left black, because there is no parent that it is part of. Figure 6.7 deVnes the (asymmetric) diUerencing op-

eration. For expressions e and e′ with injective indexing, e ⊖ e′ is the indexed delta-expression e′′ which

colours e to show what is new or changed relative to e′. Note that dom(e⊖ e′) = dom(e), because the delta

is asymmetric.

The upper half of Figure 6.8 shows the two programs from Figure 6.4 being compared, with e1⊖ e2 on the

left and e2 ⊖ e1 on the right. The refactoring that we described earlier is more explicit now: looking at the

right-hand delta, for example, we can see that the let binding for z, and the use of z, are both new, but that
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e⊖ e′

e⊖ e′
def
= e′′

where e′′ =







α 7→







e(α)⊖ e′(α) if α ∈ dom(e′)

c(α1, . . . , αn) if α /∈ dom(e′) and e(α) = c(α1, . . . , αn)

∣

∣

∣

∣

∣

∣

α ∈ dom(e)







c(α1, . . . , αn)⊖ c′(α′
1, . . . , α

′
m)

c(α1, . . . , αn)⊖ c(α′
1, . . . , α

′
n)

def
= c(α1 ⊖ α′

1, . . . , αn ⊖ α′
n)

c(α1, . . . , αn)⊖ c′(α′
1, . . . , α

′
m)

where c 6= c′
def
=







c(α1 ⊖ α′
1, . . . , αn ⊖ α′

n) if n ≥ m

c(α1 ⊖ α′
1, . . . , αn ⊖ α′

n, αn+1, . . . , αm) otherwise

α⊖ α′

α⊖ α
def
= α

α⊖ α′

where α 6= α′

def
= α

Figure 6.7 Asymmetric diUerence of indexed expressions
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varf pair

varx vary
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letz

pair

5 6 app

varf varz

10

1 2

7

5

6 11

1 7→ 5

2 7→ 6

3 7→ letx(1, 4)

4 7→ lety(2, 5)

5 7→ app(6, 7)

6 7→ varf

7 7→ pair(8, 9)

8 7→ varx

9 7→ vary

1 7→ 5

2 7→ 6

5 7→ app(6, 11)

6 7→ varf

7 7→ pair(1, 2)

10 7→ letz(7, 5)

11 7→ varz

Figure 6.8 Delta terms via delta stores
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the remaining nodes were re-used from the previous expression. The edges connecting the pair node to its

children are blue because the pair has children with diUerent indices in the other state.

In the lower half of Figure 6.8, we can see how the diUerence between two indexed expressions e1 and

e2 is the indexed expression whose store is the diUerence between e1 and e2. An index in the domain of

e1 which is not in the domain of e2 identiVes a node which is new in e1. Both the constructor and each

of the child indices are marked as new. An index in the domain of both stores indicates a node which may

have changed. In the LambdaCalc UI, child indices are often not visualised, and so this aspect of the deltas

is sometimes not visible. (The split example in Figure 2.11 is one such case in point.) The constructor

associated with an index can also change, although this is not illustrated in this example. Moreover, if the

arity of the constructor is strictly greater in e1 than in e2, the child indices which are e1 but not in e2 will

be marked as new in e1, indicating that the slot or Veld containing the child index did not exist in e2. There

are more sophisticated approaches to dealing with diUerences in arity when a constructor changes, but we

do not consider them here.

letx
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6 appf,w

varf pair

varx vary

fst

varw

5

6

funf,w

fst

varw

pair

3 1

1 1 4 1

2 2 5 1

6 12
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7 7

8 1 9 2
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5
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6 12

13
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11 7 13:7 1

14:7 7

T2 ⊖ T1

Figure 6.9 Before and after delta-traces associated with a particular refactoring

Finally, Figure 6.9 shows the delta traces that result from comparing the executions T1 and T2 of the

program before and after the refactoring. We can see immediately that, because of sharing, the identity

of the value computed by the program is invariant under this particular transformation. If this value were

passed as an argument to a function, the identity of the function body would also be preserved into the new

execution. It is “stability” properties like these that allow the consequences of certain changes to be localised

and informative. Here, the consequences on the execution of inlining x and y and extracting the resulting

pair to another local variable z are entirely local.
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7 Conclusion

We conclude by considering some of the strong points and weak points of our research (§7.1). We also

identify some directions for future work (§7.2). For future work we focus mainly on addressing shortcomings

of our current proposal and challenges for a practical implementation, but also consider some opportunities.

7.1 Appraisal

The shortcomings and contributions of the thesis are already summarised in §§1.2 and 1.3. Our core proposal

is a new way of thinking about execution in programming languages. We are not committed to particular

language features; some version of interactive programming could probably be made to work with features

and language paradigms other than the ones considered here. Although many of our concepts overlap with

existing work, interactive programming remains a relatively unexplored direction in programming language

research. It is also one of increasing practical signiVcance thanks to growing interest in live programming

environments for widely-used languages like JavaScript and Clojure. We hope to have convinced the reader

that the many challenges that lie ahead for this paradigm are worth tackling.

There are several omissions and shortcomings of our proposal. Perhaps the biggest concern is scalability;

all our examples were conspicuously simple. Although we intentionally deferred scalability issues to future

work, dealing only with small examples admittedly weakens our case. We address several scalability con-

cerns in §7.2.1 below. An eXcient incremental implementation of diUerential execution (§7.2.2 below) will

also be necessary if our idea is to be applicable to everyday programming, and so is another critical aspect

of our vision which remains unproven. However, in this case, the substantial successes of self-adjusting

computation (Related Work, §3.10) on similar problems are a reason to be optimistic. In terms of the formal

treatment of diUerential execution, the contributions of Chapter 6 are diminished by having the key property

stated only as a conjecture.

Finally, the decision to use LambdaCalc to partly implement its own GUI and forgo an implementation

with reasonable performance was a risky strategy. Although this makes our proof-of-concept less convincing,

we chose to take the opportunity to use our approach to solve a non-trivial programming problem. We refer

the reader to Appendix B for more details.
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7.2 Future work

7.2.1 Scaling to realistic programs

Equipping every value with a full account of how it was computed has the potential to incur substantial space

overhead. Thankfully, this issue has already received some attention in the area of trace-based debuggers.

One straightforward idea is to partition the operational semantics into deterministic and non-deterministic

components. Only the non-deterministic choices need to be recorded; the deterministic parts of the trace

can be discarded and recovered as needed by a re-execution which is “determinised” using the previously

recorded choices. Implementations can use this technique to trade space for time. One example is the check-

pointing technique used in time-travel debuggers for systems-level programming [Lew03, KDC05]; regular

snapshots are taken of the heap, from which any intermediate state can then be recovered by determinised

re-execution. Another example is described by Pothier and Tanter; their system retains summary infor-

mation about bounded-size regions of the trace called execution blocks, which can then be discarded and

recovered when needed, again by determinised re-execution [PT11].

Nilsson also explored trading space for time in his “piecemeal” tracing system for the lazy language Freja

[Nil99]. His implementation is based on the evaluation dependence tree (EDT) trace format described in

Related Work, §3.3, and materialises parts of the EDT on an as-needed basis. His system allows tracing to

be started at particular functions of interest, akin to setting a breakpoint in a traditional debugger. Unlike

the checkpointing systems mentioned above, however, Nilsson’s implementation re-executes from scratch

each time a new part of the trace is required, so that the speciVc demand associated with that part of the

computation can be correctly determined. In §7.2.5 below we discuss a generalisation of lazy computation

we call demand-indexed computation which might support a more eXcient implementation of piecemeal

tracing. Claessen et al.’s work on Hat, based on redex trails, also explores eXcient trace storage for large,

multi-module programs [CRC+03]. Moreover, both systems support the declaration of “trusted” components

for which no internal trace is recorded. A challenge for a system with untraced components however is how

to support precise backward-slicing; one possibility is to require untraced components to export a slicing

operation. This is similar to how we would like to treat primitive operations in the future (§7.2.6 below).

Large traces also present a signiVcant visualisation challenge. In Chapter 2 we showed some simple

techniques for taming the complexity of traces, including the ability to slice away unneeded parts of compu-

tations, and also to hide away their internals. Beyond these, there are many dynamic program visualisation

methods applicable to large computations. Related Work, §3.6, contains some pointers into the literature.

Here we discuss three important challenges. The Vrst concerns extending the reference language with a

store and store operations (§7.2.4 below). The resulting traces would be threaded with store states, with

signiVcant redundancy, in that store states would often diUer in only small ways. The challenge would be to

design a visualisation paradigm that exploited this redundancy for compactness, similar to how we currently

exploit the redundancy in values. Recall from §2.3 that when sharing occurs within a computation, we use

a rather simplistic approach based on sharing links to obtain more compact views. The trick of eliminating

visual redundancy by showing how values are included into other values is really another kind of diUerenc-

ing, only occurring within a computation rather than between computations. Whereas cross-computation
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deltas are shown using red and green colouring, within-computation deltas are shown using sharing links,

indicating how values at one point in the computation are derived from values computed earlier.

An eXcient visualisation scheme for stores would probably have to be based on similar principles, rep-

resenting stores diUerentially. Each store state would be visualised as a modiVcation of an earlier one,

although not necessarily the immediately prior one, depending on how much of the computation the user

had expanded. Something more sophisticated than mere sharing links would be needed, since stores deltas

would involve overriding as well as addition and deletion. The visualisation challenges here may therefore

be related to the representational challenges that arise for persistent data structures, which must retain prior

versions in an eXcient way [DSST86]. Functional techniques for persistent data structures, such as Okasaki’s

purely functional data structures [Oka99], may suggest designs.

A diUerent challenge is presented by medium-sized structured values, such a small database tables or

lists with thousands of elements. (We consider large data structures, such as those that arise in scientiVc

computing or large-scale cloud computing, to be out of scope for the foreseeable future.) Medium-sized

data structures however could feasibly be handled in a system like LambdaCalc, using custom visualisa-

tions that provide summary information or other approximations of the information in the data structure,

combined with a facility that allows the user to interactively drill-down to obtain greater detail as necessary.

Zoomable user interfaces [PF93] would be one plausible approach that might Vt well with our order-theoretic

approach to slicing. So that these visualisations can themselves take advantage of the within-computation

and cross-computation sharing which are integral to our approach, these visualisations would need to be

coded in LambdaCalc itself. Then the interactive programming implementation would provide support for

establishing the node identities required to represent values as term graphs with sharing, allowing the au-

thor of the custom visualisation to concentrate on visualisation logic, which would be expressed as a pure

function. Indeed this is precisely the approach we took to visualising executions themselves, as described in

Appendix B.

The Vnal topic to discuss here is visualising code written in a higher-order or point-free style, such as a

parser written using a combinator library. We should point out Vrst that the environment captured as part

of a closure is currently not visualised; this is of course important generally, but becomes especially so in

the presence of code that makes extensive use of higher-order functions. This is relatively easy to Vx by

introducing some concrete syntax for the captured bindings, reusing the x: notation employed in Chapter 2.

These would then be shown, in addition to the argument bindings, on entry to the closure body. The broader

question of how to visualise programs written in a heavily point-free style is a tricky one, and remains a

subject for future study. We have yet to experiment with code structured around continuation-passing style

or monads, for example. The “pointful” visualisation technique of LambdaCalc will probably still be useful,

but it may need to be complemented with other techniques more aligned with treating programs as dataWow

networks, where composition rather than application is the primary building block.

7.2.2 EXcient incremental update

For our approach to be viable for real-world programming, an incremental implementation of diUerential ex-

ecution (retroactive update) is essential. In Related Work, §3.10, we deVned this as the problem of obtaining
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a new computation from an existing one in time asymptotically equal to the size of the trace delta. The basic

idea is to exploit the fact that the trace represents precisely the dependencies between sub-computations.

One can propagate changes bottom-up through the trace, terminating the propagation when the change has

no more consequences. A bottom-up update algorithm of this kind is usually called change propagation. The

algorithm must avoid so-called “glitches”, observable behaviours which would not be possible in any consis-

tent computation. Glitches can occur when a node is updated before all of its dependent computations have

Vnished updating. A standard technique is to use a priority queue to ensure that updates are correctly or-

dered. One challenge is eXciently supporting move operations that restructure parts of the trace; techniques

from non-monotonic self-adjusting computation may apply [LWAB12].

Given an eXcient implementation, it may be possible to apply a retroactive update at a Vner grain than an

entire closed computation, for example at the level of a transaction. This may provide a way to avoid some

of the shortcomings of the transactional version consistency approach to dynamic software updating. We

refer the reader to Related Work, §3.11, for the background. Suppose we want to push a change to pricing,

purchasing terms or other business logic while a transaction is active. With dynamic software updating, even

with transactional version consistency, there are several potentially undesirable outcomes. The transaction

may not see the update, because it was applied too late in its execution. This means it will complete under

the old code, which is consistent, but may not be what we wanted. Under some circumstances, it may not

be possible to apply the update at all, because no consistent update point was available. With retroactive

update, it would be possible to reWect changes to the transaction at any point during its execution, but with

the semantics being equivalent to having applied the changes at the beginning of the transaction.

Retroactive update presents challenges of its own, in particular eXcient implementation as already dis-

cussed, but also the opportunity to do more reliable online update of deployed applications. We also con-

sidered the applicability of retroactive update to transactional concurrency in earlier work [Per08]. Finally,

we should note that applying retroactive update at a Vner grain than an entire closed computation will not

just be useful, but essential, if we wish to combine interactive programming with eUects, in environments in

which eUects are not revocable. We discuss this in §7.2.4 below.

7.2.3 Distributed systems

Every program is a part of some other program and rarely Vts.

Alan Perlis, Epigrams on Programming [Per82]

Throughout most of this thesis, we assumed that the programmer was the author as well as end-user of the

program being inspected. But an equally important possibility is that the computation of interest is a remote

application, perhaps a live data feed provided by another website or a Vnancial transaction executed against

our bank account. Our locally running program is merely a client of that other system. Relative to our

vantage point inside the larger computation, these external parts of the computation have already happened.

We do not have control over the larger computation and cannot ask it to “restart”. We cannot therefore
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expect to re-run any part of it in a debugger. This is a very compelling motivation for “self-explaining”

computation, i.e. runtime environments that provide online debuggability as a service.

To support distributed applications, we are extending our slicing technique to concurrent processes, in

joint work with Deepak Garg. In the approach we are exploring, we use a process calculus to model the

concurrent communication aspects of the computation and a functional language to model local computation

at the processes. The local computations are reiVed into expression traces like the ones deVned in Chapter 4;

the evolution of the process conVguration is recorded into a process trace which takes the form of a directed

acyclic graph recording the non-deterministic allocation of channels and the forking and joining of processes.

The resulting distributed process traces, where each agent is responsible for reifying its own part of the

computation, have applications ranging from distributed debugging and provenance tracking to security. We

are also working to extend the order-theoretic characterisation of dynamic slicing that we gave in Chapter 5

to the non-deterministic setting. The idea is to isolate individual transitions of the non-deterministic process

semantics, and then show that a Galois connection captures the input-output dependencies for that transition.

We hope to use composition of Galois connections to extend this analysis to any Vnite sequence of transitions.

ReiVed distributed computations also introduce challenges of their own. In particular, exposing the in-

nards of a computation with multiple participants has privacy, data abstraction and intellectual property

ramiVcations, and may also expose new security vulnerabilities. Cheney discusses these some of issues in

relation to provenance, and introduces a formal model for provenance security, based on disclosure and ob-

fuscation [Che11]. Disclosure and obfuscation are related to forward and backward slicing; disclosure states

that some property is always revealed by a trace, whereas obfuscation states that some property is never

revealed.

Finally, a critical question is how to integrate a system based on retroactive update, such as LambdaCalc

or for that matter a self-adjusting program (Related Work, §3.10), into a larger system which may be in-

compatible with retroactive update. The question is most pertinent when the boundary between the system

and its environment is eUectful, meaning that the system with retroactive update can commit eUects to the

external system. If the external system lacks the capability to revoke eUects, or the user lacks the authority

to, then committed computations must become read-only. We discuss this in §7.2.4 below.

7.2.4 State and I/O

Interactive programming can be extended with eUects by extending reiVed computations with reiVed eUects.

ReiVed eUects are persistent descriptions of eUects, rather than actual eUects modifying the external world.

A reiVed eUectful computation has a natural subjunctive interpretation: it describe eUects that it would

emit to the world if it were “committed”. As mentioned above, to eXciently reify computations threaded

with mutable data structures like stores, purely functional persistence techniques such as those described by

Okasaki [Oka99] would be appropriate.

A subjunctive treatment of eUects has two important advantages. First, there is no such thing as “dupli-

cating” a reiVed eUect – a reiVed eUect, as a mere description of an eUect, is a pure value. A reiVed eUectful

computation can therefore be repeatedly updated in an interactive programming environment without invit-

ing the problems associated with both live programming (Related Work, §3.7) and self-adjusting computation
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(§3.10) in the presence of eUectful code. Equally, an eUect can be revoked by simply unsplicing it from the

reiVed computation.

Second, reiVcation provides the isolation properties usually associated with transactions [HR83]: the pro-

grammer can experiment with the eUect on the world they want before they commit to it. This is useful

for many kinds of interaction – collaborative document editing or programming, Vnancial transactions like

online purchasing, and patching of online systems with bug-Vxes (see the discussion on dynamic software

updating in §7.2.2 above). When the transaction is Vnally committed, the hypothetical eUects become actual

eUects applied to the outside world.

This is all very well, but when an actual eUect is committed to the outside world, our ability to perform

retroactive update with respect to that eUect goes away – unless the computational environment into which

we are plugged permits the revocation of that eUect. If the outside world is the real world, and the eUect was

to emit a sound or control an actuator, this is unlikely to be the case. Moreover the user may lack the au-

thority to revoke the eUect, say if it were an online purchase. (Cancelling an order is not the same as making

it so that the order never happened.) The upshot of this is that programming systems that combine retroac-

tive update with external eUects must be prepared to do so with smaller computational units than entire

closed programs, such as transactions. Once an eUect has been committed, the transaction or computation

associated with it may become read-only. It will still be possible to browse the execution to understand the

provenance of the eUect, but the eUect itself, and the account of how it came to be, will have become Vxed.

7.2.5 Demand-indexed computation

In Related Work, §3.3, we discussed a connection between backward dynamic slicing and lazy evaluation.

This connection was Vrst proposed by Biswas [Bis97] but only formally explored for slices calculated with

respect to outputs consisting of a single nullary constructor such as Nil. This was due to a limitation of

Biswas’ slicing approach. In our more general slicing setting, it appears that this connection extends not

only to partial outputs of the form Cons(�,�), or lazy tuples, but more generally to arbitrary partial values,

suggesting a generalisation of lazy evaluation. The idea is to treat an output slice as a demand pattern

which determines how much computation to do. For “self-explaining” computation, this is a considerable

advantage over building a full call-by-value trace and then discarding the parts no longer needed. To make

this work, holes need to be treated as suspended computations.

The demand pattern cannot in general be known up front but must be speciVed interactively, at least

initially. The computation is Vrst evaluated with a generic demand which we write as � meaning “evaluate

to lazy tuple”. One might also think of � at the list type as being shorthand for a “disjunctive” pattern

Nil|Cons(�,�). (A disjunctive pattern is a partial expression which does not necessarily satisfy determin-

istic extension.) Say this evaluation resulted in a partial value Cons(�,�) where the holes should be taken

to represent thunks. Then the user could replace a hole by � so that the partial output is now Cons(�,�),

which would force enough extra computation to, say, compute Cons(�,Nil). The demand pattern � was a

“question”; in this case Nil was the answer. This is not so diUerent from simply running a lazy computation

to obtain a value with embedded thunks, and then forcing those thunks afterwards by running them indi-

vidually as top-level lazy computations. But what we can do in addition is re-run that program lazily from
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scratch using Cons(�,Nil) as a demand pattern, since we now know it is capable of computing at least that

much output. For example, one could save the state of a GUI when an application was shut down. The saved

state could then be used as a demand pattern to force the computation to the state it was in when it was shut

down, allowing the interaction between the user and the application to be resumed where it left oU.

A particularly useful application would be for a provenance or debugging system based on traces where

traces are discarded when not being used and re-computed when needed, as per Nilsson’s piecemeal tracing,

discussed in §7.2.1 above. Rather than re-running the entire program just to re-compute some small part of

the trace, it can be re-computed using the demand pattern that was active when it was discarded. A third

application would be for lazy pattern-matching: a disjunctive pattern such as Nil|Cons(�,Nil|Cons(�,�))

represents a partioning of the list data type corresponding to three exhaustive and non-overlapping construc-

tor patterns in a case expression. This demand pattern expresses precisely the extent to which the scrutinee

must be evaluated in order to select the appropriate branch.

7.2.6 Primitive operations

In Chapter 5, §5.2.1, we noted that our treatment of primitive operations is rather unrealistic, because we

require the interpretation ⊕̂ of every operation to be strict. To permit primitives with more Vne-grained

input-output dependencies, we can weaken the requirement to insist only that ⊕̂ preserve meets, like evalu-

ation under the hole-propagation semantics. In other words the operation must satisfy

(c1 ⊕̂ c2) ⊓ (c1
′ ⊕̂ c2

′) = (c1 ⊓ c1
′) ⊕̂ (c2 ⊓ c2

′)

where c is either a primitive constant or �. This permits primitives like × to be non-strict, so that for

example 0×� = 0. But a binary primitive must be strict in at least one of its arguments. If 0×� = 0 and

� × 0 = 0 but � × � = �, then × will not preserve meets. In particular, this rules out Plotkin’s parallel

or operator [Plo77]. Berry’s notion of stable function [Ber79] is related, although we did not explore this

connection in the thesis.

For slicing, every primitive operation must, for any pair of inputs c1 and c2, provide a function ⊕̂
−1
c1,c2

which is the lower adjoint of ⊕̂when restricted to preVxes of c1 and c2. Such adjoints exist because of the re-

quirement that each ⊕̂ be meet-preserving. In practice a deVnition must be provided by the implementation;

it must be monotonic, and related to ⊕̂ in the following way. Suppose ⊕̂
−1
c1,c2

(c) = (c1
′, c2

′). Then

1. c1′ ⊕̂ c2
′ ⊒ c

2. if c1′′ ⊕̂ c2
′′ ⊒ c, then (c1

′, c2
′) ⊑ (c1

′′, c2
′′).

Then the hole-propagation rules for primitive operations need to be replaced by a single rule which delegates

to ⊕̂
−1
c1,c2

, using the values cached on the primitive operation trace as the values of c1 and c2.

What the speciVcation above does is specify abstractly the properties an operation must satisfy in order

for it to be plugged into our system without compromising the minimality or correctness of slicing for com-

putations it participates in. Therefore, generalised to arbitrary values rather than just primitive constants,

this approach can also model external operations or components for which traces are not available; see §7.2.1

above.
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Appendices





A Additional Proofs

We write IH for “induction hypothesis”.

A.1 Proof of Theorem 3

Proof. Suppose v, T ⇓−1 ρ, e. We only show part (1); part (2) follows from part (1) by determinism

(Lemma 5). So suppose u ⊑ v. We proceed by induction on the derivation. In each case, if u = � the

conclusion is immediate. We present only the variable and application cases. The others are similar, but

simpler.

Case

v, x ⇓−1
�Γ.x 7→v, x

v 6= �

We can immediately derive

u, x ⇓−1
�Γ.x 7→u, x

u 6= �

noting that �Γ.x 7→u ⊑ �Γ.x 7→v.

Case

v, T ⇓−1 ρ′[f 7→ v1][x 7→ v2], e
′ v2, T2 ⇓−1 ρ2

′, e2
′ v1 ⊔ 〈ρ′, fun f(x).e′〉, T1 ⇓−1 ρ1

′, e1
′

v, T1 T2 ⊲ 〈γ, fun f(x).T 〉 ⇓−1 ρ1
′ ⊔ ρ2

′, e1
′ e2

′
v 6= �

We want to derive

u, T ⇓−1 ρ[f 7→ u1][x 7→ u2], e u2, T2 ⇓−1 ρ2, e2 u1 ⊔ 〈ρ,fun f(x).e〉, T1 ⇓−1 ρ1, e1

u, T1 T2 ⊲ 〈γ, fun f(x).T 〉 ⇓−1 ρ1 ⊔ ρ2, e1 e2
u 6= �

with (ρ1 ⊔ ρ2, e1 e2) ⊑ (ρ1
′ ⊔ ρ2

′, e1
′ e2

′).

First premise. Since u ⊑ v, we have (ρ[f 7→ u1][x 7→ u2], e) ⊑ (ρ′[f 7→ v1][x 7→ v2], e
′) by the IH. Then

ρ ⊑ ρ′ and u1 ⊑ v1 and u2 ⊑ v2 by Equation 5.1, with e ⊑ e′.

Second premise. Since then u2 ⊑ v2, we have (ρ2, e2) ⊑ (ρ2
′, e2

′) again by the IH.

Third premise. Since u1 ⊑ v1 and ρ ⊑ ρ′ and e ⊑ e′, and the join v1 ⊔ 〈ρ′, fun f(x).e′〉 exists, the join

u1 ⊔ 〈ρ, fun f(x).e〉 also exists and is smaller. We then have (ρ1, e1) ⊑ (ρ1
′, e1

′) by the IH.

123



RHS of conclusion. Since ρ1 ⊑ ρ1
′ and ρ2 ⊑ ρ2

′ and the join ρ1
′ ⊔ ρ2

′ exists, the join ρ1 ⊔ ρ2 exists and is

smaller than ρ1
′ ⊔ ρ2

′.

A.2 Proof of Theorem 4

Proof. Suppose ρ, e ⇓ v, T . If v = �, then the conclusion is immediate. Otherwise we proceed by induction

on the derivation, considering only the variable and application cases. The other cases are similar, but

simpler.

Case

ρ, x ⇓ ρ(x), x

We can immediately derive

ρ(x), x ⇓−1
�Γ.x 7→ρ(x), x

ρ(x) 6= �

noting that �Γ.x 7→ρ(x) ⊑ ρ.

Case

ρ, e1 ⇓ v1, T1 ρ, e2 ⇓ v2, T2 ρ′[f 7→ v1][x 7→ v2], e ⇓ v, T

ρ, e1 e2 ⇓ v, T1 T2 ⊲ 〈γ, fun f(x).T 〉
v1 = 〈ρ′, fun f(x).e〉

We want to derive

v, T ⇓−1 ρ′′[f 7→ u1][x 7→ u2], e
′ u2, T2 ⇓−1 ρ2, e2

′ u1 ⊔ 〈ρ′′, fun f(x).e′〉, T1 ⇓−1 ρ1, e1
′

v, T1 T2 ⊲ 〈γ, fun f(x).T 〉 ⇓−1 ρ1 ⊔ ρ2, e1
′ e2

′
v 6= �

with (ρ1 ⊔ ρ2, e1
′ e2

′) ⊑ (ρ, e1 e2).

First premise. By the IH, T explains v and (ρ′′[f 7→ u1][x 7→ u2], e
′) ⊑ (ρ′[f 7→ v1][x 7→ v2], e). Note

that then ρ′′ ⊑ ρ′ and u1 ⊑ v1 and u2 ⊑ v2 by Equation 5.1, and also e′ ⊑ e.

Second premise. By the IH, T2 explains v2, and then:

(ρ2, e2
′)

def
= tr-unevalT2

(u2)

⊑ tr-unevalT2
(v2) (u2 ⊑ v2)

⊑ (ρ, e2) (IH)

Third premise. By the IH, T1 explains v1. Because u1 ⊑ v1 and 〈ρ′′, fun f(x).e′〉 ⊑ v1, the join u1
′ def
=

u1 ⊔ 〈ρ′′, fun f(x).e′〉 exists and is smaller than v1. Then:

(ρ1, e1
′)

def
= tr-unevalT1

(u1
′)

⊑ tr-unevalT1
(v1) (u1

′ ⊑ v1)

⊑ (ρ, e1) (IH)

RHS of conclusion. Since ρ1, ρ2 ⊑ ρ the join ρ1 ⊔ ρ2 exists.

124



A.3 Proof of Lemma 6

Proof. Suppose S explains v, and u ⊑ v and T ⊒ S. Note that if Γ ⊢ S then Γ ⊢ T . By Theorem 3, S

explains u. We proceed by induction on the derivation of u, S ⇓−1 ρ, e. The proof is straightforward and

similar to a proof of determinacy, and so we present only the hole, variable, function and application cases.

Case

�, S ⇓−1
�Γ,�

Since Γ ⊢ T we can immediately derive

�, T ⇓−1
�Γ,�

Case

u, x ⇓−1
�Γ.x 7→u, x

u 6= �

Since S = x = T , the conclusion is immediate.

Case

〈ρ,fun f(x).e〉, fun f(x).e′ ⇓−1 ρ, fun f(x).e
e ⊑ e′

Since T is then of the form fun f(x).e′′ with e′ ⊑ e′′, we can immediately derive

〈ρ, fun f(x).e〉, fun f(x).e′′ ⇓−1 ρ, fun f(x).e
e ⊑ e′′

Case

u, S ⇓−1 ρ[f 7→ u1][x 7→ u2], e u2, S2 ⇓−1 ρ2, e2 u1 ⊔ 〈ρ, fun f(x).e〉, S1 ⇓−1 ρ1, e1

u, S1 S2 ⊲ 〈γ, fun f(x).S〉 ⇓−1 ρ1 ⊔ ρ2, e1 e2
u 6= �

We want to derive

u, T ⇓−1 ρ′[f 7→ u1
′][x 7→ u2

′], e′ u2
′, T2 ⇓−1 ρ2

′, e2
′ u1

′ ⊔ 〈ρ′, fun f(x).e′〉, T1 ⇓−1 ρ1
′, e1

′

u, T1 T2 ⊲ 〈γ, fun f(x).T 〉 ⇓−1 ρ1
′ ⊔ ρ2

′, e1
′ e2

′
u 6= �

with (ρ1 ⊔ ρ2, e1 e2) = (ρ1
′ ⊔ ρ2

′, e1
′ e2

′). Since S explains u and T ⊒ S, we have (ρ′[f 7→ u1
′][x 7→

u2
′], e′) = (ρ[f 7→ u1][x 7→ u2], e) by the IH. Note that ρ′ = ρ and u1

′ = u1 and u2
′ = u2 by Equation 5.1,

and also e′ = e. Then since S2 explains u2 = u2
′ and T2 ⊑ S2, we have (ρ2′, e2′) = (ρ2, e2) by the IH.

Similarly, since S1 explains u1⊔〈ρ, fun f(x).e〉 = u1
′⊔〈ρ′, fun f(x).e′〉, we also have (ρ1′, e1′) = (ρ1, e1)

by the IH.

A.4 Proof of Theorem 5

Proof. Suppose ρ, e ⇓ v, T where Γ ⊢ T , and (u, S) ⊑ (v, T ) with u, S ⇓−1 ρ′, e′. We want that ρ′, e′ ⇓ref

u′ with u′ ⊒ u. We proceed by induction on the derivation of u, S ⇓−1 ρ′, e′ and inversion on the derivation

of ρ, e ⇓ v, T , presenting only the hole, variable, function and application cases. Recall Equation 5.1.
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Case

�, S ⇓−1
�Γ,�

We can immediately derive �Γ,� ⇓ref �.

Case

u, x ⇓−1
�Γ.x 7→u, x

u 6= �

We can immediately derive

�Γ.x 7→u, x ⇓ref (�Γ.x 7→u)(x)

noting that (�Γ.x 7→u)(x) = u.

Case

〈ρ,fun f(x).e〉, fun f(x).e′ ⇓−1 ρ, fun f(x).e
e ⊑ e′

We can immediately derive

ρ, fun f(x).e ⇓ref 〈ρ, fun f(x).e〉

Case

u, S ⇓−1 ρ′′[f 7→ u1][x 7→ u2], e
′ u2, S2 ⇓−1 ρ2, e2

′ u1 ⊔ 〈ρ′′, fun f(x).e′〉, S1 ⇓−1 ρ1, e1
′

u, S1 S2 ⊲ 〈γ, fun f(x).S〉 ⇓−1 ρ1 ⊔ ρ2, e1
′ e2

′
u 6= �

By inversion we have

ρ, e1 ⇓ v1, T1 ρ, e2 ⇓ v2, T2 ρ′[f 7→ v1][x 7→ v2], e ⇓ v, T

ρ, e1 e2 ⇓ v, T1 T2 ⊲ 〈γ, fun f(x).T 〉
v1 = 〈ρ′, fun f(x).e〉

First we show that each premise of the unevaluation derivation yields a preVx of the evaluand of the corre-

sponding premise of the evaluation derivation. Since (u, S) ⊑ (v, T ), we have (ρ′′[f 7→ u1][x 7→ u2], e
′) ⊑

(ρ′[f 7→ v1][x 7→ v2], e) by Lemma 7. Then since (u2, S2) ⊑ (v2, T2), we have (ρ2, e2
′) ⊑ (ρ, e2) by

Lemma 7. And then since (u1⊔〈ρ′′, fun f(x).e′〉, S1) ⊑ (v1, T1), we have (ρ1, e1′) ⊑ (ρ, e1) by Lemma 7.

We now want to derive

ρ1 ⊔ ρ2, e1
′ ⇓ref u1

′ ρ1 ⊔ ρ2, e2
′ ⇓ref u2

′ ρ′′′[f 7→ u1
′][x 7→ u2

′], e′′ ⇓ref u
′

ρ1 ⊔ ρ2, e1
′ e2

′ ⇓ref u
′

u1
′ = 〈ρ′′′, fun f(x).e′′〉

with u′ ⊒ u.
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First premise. Noting that ρ1 ⊑ ρ and ρ2 ⊑ ρ and e1
′ ⊑ e1, we have

u1 ⊔ 〈ρ′′, fun f(x).e′〉

⊑ eval(ρ1, e1
′) (IH)

⊑ eval(ρ1 ⊔ ρ2, e1
′)

def
= u1

′ (Theorem 2)
def
= 〈ρ′′′, fun f(x).e′′〉

⊑ eval(ρ, e1)
def
= v1 (Theorem 2)

def
= 〈ρ′, fun f(x).e〉

Note that u1 ⊑ u1
′ ⊑ v1 and ρ′′ ⊑ ρ′′′ ⊑ ρ′ and e′ ⊑ e′′ ⊑ e.

Second premise. Similarly, noting that e2′ ⊑ e2 we have

u2

⊑ eval(ρ2, e2
′) (IH)

⊑ eval(ρ1 ⊔ ρ2, e2
′)

def
= u2

′ (Theorem 2)

⊑ eval(ρ, e2)
def
= v2 (Theorem 2)

Third premise. Using the inequalities established for the Vrst and second premises, we note that ρ′′[f 7→ u1][x 7→

u2] ⊑ ρ′′′[f 7→ u1
′][x 7→ u2

′] ⊑ ρ′[f 7→ v1][x 7→ v2]. Then we have:

u

⊑ eval(ρ′′[f 7→ u1][x 7→ u2], e
′) (IH)

⊑ eval(ρ′′′[f 7→ u1
′][x 7→ u2

′], e′′) (Theorem 2)
def
= u′

A.5 Proof of Theorem 8

Proof. Suppose v, T ց ρ, S. We want that there exist ρ′, e such that v, S ⇓−1 ρ′, e, and also that S ⊑ T .

We proceed by induction on the derivation.

Case

�, T ց �Γ,�

We can immediately derive

�,� ⇓−1
�Γ,�

Case

v, x ց �Γ.x 7→v, x
v 6= �

Since S = x = T we can immediately derive

v, x ⇓−1
�Γ.x 7→v, x

v 6= �

The case for a primitive constant c is similar to the variable case.
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Case

c2, T2 ց ρ2, S2 c1, T1 ց ρ1, S1

v, T1 ⊕c1,c2 T2 ց ρ1 ⊔ ρ2, S1 ⊕c1,c2 S2

v 6= �

We want to derive:

c2, S2 ⇓−1 ρ2
′, e2 c1, S1 ⇓−1 ρ1

′, e1

v, S1 ⊕c1,c2 S2 ⇓−1 ρ1
′ ⊔ ρ2

′, e1 ⊕ e2
v 6= �

Both premises are immediate from the IH, with S1 ⊑ T1 and S2 ⊑ T2. The cases for pairs (T1, T2),

projections fst and snd, injections inl and inr, and roll and unroll are similar.

Case

〈ρ,fun f(x).e〉, fun f(x).e′ ց �Γ, fun f(x).e
e ⊑ e′

We can immediately derive

〈ρ, fun f(x).e〉,fun f(x).e ⇓−1 ρ, fun f(x).e
e ⊑ e

Case

v, T ց ρ[f 7→ v1][x 7→ v2], S

v, T ⇓−1 _, e v2, T2 ց ρ2, S2 v1 ⊔ 〈ρ, fun f(x).e〉, T1 ց ρ1, S1

v, T1 T2 ⊲ 〈γ, fun f(x).T 〉 ց ρ1 ⊔ ρ2, S1 S2 ⊲ 〈γ, fun f(x).S〉
v 6= �

We want that S1 S2 ⊲ 〈γ, fun f(x).S〉 ⊑ T1 T2 ⊲ 〈γ, fun f(x).T 〉, and also that we can derive:

v, S ⇓−1 ρ′[f 7→ v1
′][x 7→ v2

′], e′ v2
′, S2 ⇓−1 ρ2

′, e2 v1
′ ⊔ 〈ρ′, fun f(x).e′〉, S1 ⇓−1 ρ1

′, e1

v, S1 S2 ⊲ 〈γ, fun f(x).S〉 ⇓−1 ρ1
′ ⊔ ρ2

′, e1 e2
v 6= �

First premise. By the IH, S explains v and S ⊑ T . By Lemma 6, T also explains v, with tr-unevalT (v) =

tr-unevalS(v). Note that then e = e′. Moreover, ρ′[f 7→ v1
′][x 7→ v2

′] = ρ[f 7→ v1][x 7→ v2] by Theorem 7

and the determinism ofց. Then ρ′ = ρ and v1
′ = v1 and v2

′ = v2 by Equation 5.1.

Second premise. S2 explains v2 = v2
′ with S2 ⊑ T2 immediately by the IH.

Third premise. S1 explains v1 ⊔ 〈ρ, fun f(x).e〉 = v1
′ ⊔ 〈ρ′, fun f(x).e′〉 immediately by the IH.

Case

v, T1 ց ρ1[x1 7→ v1], S1 inl v1, T ց ρ, S

v, case T of {inl(x1).T1; inr(x2).e2} ց ρ1 ⊔ ρ, case S of {inl(x1).S1; inr(x2).�}
v 6= �

We want to show that case S of {inl(x1).T1; inr(x2).�} ⊑ case T of {inl(x1).T1; inr(x2).e2}, and

also that we can derive

v, S1 ⇓−1 ρ1
′[x1 7→ v1

′], e1 inl v1
′, S ⇓−1 ρ′, e

v, case S of {inl(x1).S1; inr(x2).�} ⇓−1 ρ1
′ ⊔ ρ′, case e of {inl(x1).e1; inr(x2).�}

v 6= �

The case for the case form that takes the inr branch is similar.
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First premise. By the IH, S1 explains v and S1 ⊑ T1. By Lemma 6, T1 also explains v, with tr-unevalT1
(v) =

tr-unevalS1
(v). Then ρ1[x1 7→ v1] = ρ1

′[x1 7→ v1
′] by Theorem 7 and the determinism ofց, with ρ1 = ρ1

′

and v1 = v1
′ by Equation 5.1.

Second premise. S explains v1 = v1
′ with S ⊑ T immediately by the IH.

A.6 Proof of Theorem 9

Proof. Suppose v, T ′ ց ρ′, S, and any T ⊑ T ′ such that v, T ⇓−1 ρ, e. We proceed by induction on the

derivation of v, T ⇓−1 ρ, e and inversion on the derivation of v, T ′ ց ρ′, S, using a stronger inductive

hypothesis, namely that (ρ′, S) ⊑ (ρ, T ). Note that if Γ ⊢ T ′ then Γ ⊢ T .

Case

�, T ⇓−1
�Γ,� �, T ′ ց �Γ,�

The conclusion is immediate.

Case

v, x ⇓−1
�Γ.x 7→v, x

v 6= �
v, x ց �Γ.x 7→v, x

v 6= �

Again the conclusion is immediate.

Case

c, c ⇓−1
�Γ, c c, c ց �Γ, c

Again the conclusion is immediate.

Case

c2, T2 ⇓−1 ρ2, e2 c1, T1 ⇓−1 ρ1, e1

v, T1 ⊕c1,c2 T2 ⇓−1 ρ1 ⊔ ρ2, e1 ⊕ e2
v 6= �

c2, T2
′ ց ρ2

′, S2 c1, T1
′ ց ρ1

′, S1

v, T1
′ ⊕c1,c2 T2

′ ց ρ1
′ ⊔ ρ2

′, S1 ⊕c1,c2 S2

v 6= �

Since T1 ⊑ T1
′, we have (ρ1′, S1) ⊑ (ρ1, T1) by the IH. Similarly, T2 ⊑ T2

′ and so (ρ2, S2) ⊑ (ρ2, T2) by

the IH. Then (ρ1
′ ⊔ ρ2

′, S1 ⊕c1,c2 S2) ⊑ (ρ1 ⊔ ρ2, T1 ⊕c1,c2 T2). The cases for pairs (T1, T2), projections

fst and snd, injections inl and inr, and roll and unroll are similar.

Case

〈ρ,fun f(x).e〉, fun f(x).e′ ⇓−1 ρ, fun f(x).e
e ⊑ e′

〈ρ, fun f(x).e〉, fun f(x).e′′ ց �Γ, fun f(x).�
e ⊑ e′′

Then fun f(x).e′ ⊑ fun f(x).e′ immediate.
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Case

v, T ⇓−1 ρ[f 7→ v1][x 7→ v2], e v2, T2 ⇓−1 ρ2, e2 v1 ⊔ 〈ρ, fun f(x).e〉, T1 ⇓−1 ρ1, e1

v, T1 T2 ⊲ 〈γ, fun f(x).T 〉 ⇓−1 ρ1 ⊔ ρ2, e1 e2
v 6= �

v, T ′ ց ρ′[f 7→ u1][x 7→ u2], S

v, T ′ ⇓−1 _, e′ u2, T2
′ ց ρ2

′, S2 u1 ⊔ 〈ρ′, fun f(x).e′〉, T1
′ ց ρ1

′, S1

v, T1
′ T2

′ ⊲ 〈γ, fun f(x).T ′〉 ց ρ1
′ ⊔ ρ2

′, S1 S2 ⊲ 〈γ, fun f(x).S〉

Since T ⊑ T ′, we have (ρ′[f 7→ u1][x 7→ u2], S) ⊑ (ρ[f 7→ v1][x 7→ v2], T ) by the IH. Note that ρ′ ⊑ ρ

and u1 ⊑ v1 and u2 ⊑ v2 by Equation 5.1, and also S ⊑ T . Since u2 ⊑ v2, we have u2, T2 ⇓−1 ρ2
′′, e2

′

with ρ2
′′ ⊑ ρ2 by Theorem 3. But since T2 ⊑ T2

′, we have (ρ2′, S2) ⊑ (ρ2
′′, T2) ⊑ (ρ2, T2) by the IH.

Now note that since T ⊑ T ′, we have e′ = e by Lemma 6, and so u1
′ def
= u1 ⊔ 〈ρ′, fun f(x).e′〉 ⊑ v1 ⊔ 〈ρ,

fun f(x).e〉. Then u1
′, T1 ⇓−1 ρ1

′′, e1
′ with ρ1

′′ ⊑ ρ1 by Theorem 3. And then since T1 ⊑ T1
′, we have

(ρ1
′, S1) ⊑ (ρ1

′′, T1) ⊑ (ρ1, T ) by the IH. Then (ρ1′⊔ρ2′, S1 S2⊲〈γ, fun f(x).S〉) ⊑ (ρ1⊔ρ2, T1 T2⊲〈γ,

fun f(x).T 〉).

Case

v, T1 ⇓−1 ρ1[x1 7→ v1], e1 inl v1, T ⇓−1 ρ, e

v, case T of {inl(x1).T1; inr(x2).e2} ⇓−1 ρ1 ⊔ ρ, case e of {inl(x1).e1; inr(x2).�}
v 6= �

v, T1
′ ց ρ1

′[x1 7→ u1], S1 inl u1, T
′ ց ρ′, S

v, case T ′
of {inl(x1).T1

′; inr(x2).e2
′} ց ρ1

′ ⊔ ρ′, case S of {inl(x1).S1; inr(x2).�}
v 6= �

Since T1 ⊑ T1
′, we have (ρ1′[x1 7→ u1], S1) ⊑ (ρ1[x1 7→ v1], T1) by the IH. Then ρ1′ ⊑ ρ1 and u1 ⊑ v1 by

Equation 5.1. Since u1 ⊑ v1, we have inl u1, T ⇓−1 ρ′′, e′ with ρ′′ ⊑ ρ by Theorem 3. But since T ⊑ T ′,

we also have (ρ′, S) ⊑ (ρ′′, T ) ⊑ (ρ, T ) by the IH. Then (ρ1′⊔ρ′, case S of {inl(x1).S1; inr(x2).�}) ⊑

(ρ1 ⊔ ρ, case T of {inl(x1).T1; inr(x2).e2}). The case for the case form that takes the inr branch is

similar.
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B Delta Visualisation in LambdaCalc

LambdaCalc is able to calculate the changes to a computation implied by a program edit. This closely

relates our method to techniques for incremental computation such as self-adjusting computation (Related

Work, §3.10). Both approaches support diUerential execution: execution that maps input changes to output

changes. Combined with an eXcient update algorithm, diUerential execution can be used to implement

interactive programs that respond automatically to input changes, eliminating the imperative event-handling

code normally used to implement this sort of reactive behaviour.

In this appendix, we explore diUerential execution in LambdaCalc, without considering eXcient update.

We report on our use of LambdaCalc to build part of LambdaCalc’s own UI. Using reWection, we used diUer-

ential execution to implement a key part of the UI code which visualises the deltas that diUerential execution

itself produces. We visualise the delta between two computations by treating the views themselves as Lamb-

daCalc values that can be diUerentially computed. We show some examples of visualisation functions, and

discuss some of the issues that arise when writing LambdaCalc code with diUerential execution in mind.

B.1 Visualising diUerences by diUerencing visualisations

LambdaCalc not only calculates deltas, but visualises them, inviting the question of how these deltas should

be visualised. Our idea is to treat the visualisation of an interactive program as another interactive program:

a meta-program which takes the state of an interactive program as input and produces a visualisation of

that state as output. The visualisation program responds to changes in the computation being visualised

– and potentially to changes in its own code – by producing changes to the visualisation. We reduce the

problem of visualising diUerences to the problem of diUerencing visualisations. This simpliVes the problem

of visualising diUerences, but also allows us to explore LambdaCalc’s potential for diUerential computation.

A key component of this self-hosting approach is reWection, the ability to convert values back and forth

between the meta-language, which in our current implementation is Haskell, and the object language, Lamb-

daCalc. Terminology in the reWection literature varies, but one convention has that reWection coerces from

object language to meta-language and reiVcation coerces in the other direction. This should not be confused

with the notion of reiVcation used elsewhere in this thesis.

Figure B.1 illustrates our UI architecture schematically. We start with a pair of LambdaCalc programs,

represented as Haskell values, whose execution delta we wish to visualise. We evaluate the two programs

into their respective traces (1). The traces are then reiVed into a pair of LambdaCalc values (2). At the Lamb-

daCalc level, the traces are visualised, producing a pair of views (3); these views are values of a data type

representing text strings (which somewhat inaccurately we call “glyphs”), shaded backgrounds, borders and
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other primitive graphical components, plus constructors for various kinds of visual composition. The views

are then reWected back into Haskell (4). Finally, they are passed to a delta-rendering function for visualisation

(5). Rather than producing a pair of renderings, the delta-rendering code produces a rendering of one of the

views (the current view), augmented with information about how it diUers from the other view. We render

changes with the simple highlighting scheme introduced in Chapter 2, but a fancier implementation would

report changes continuously using animation.

Figure B.1 ReWection-based UI architecture

By the delta-rendering stage the problem of visualising changes has been signiVcantly simpliVed. There

are no choices left to make about how to map trace changes to view changes, but only about how to present

view changes. And all such changes are created equal: whether they arise as a consequence of changes to the

thing being viewed, or as a result of changes to the visualisation code itself, changes to the view are rendered

uniformly. The view becomes a medium that automatically advertises how its state is changing. This delta-

rendering aspect of the UI cannot be implemented in LambdaCalc since it requires treating the views as

term graphs rather than pure tree-structured values, whereas LambdaCalc values are pure. Currently we

implement this as a layer of imperative Haskell that outputs to a GTK+ canvas.

The meaning of view changes is sometimes subtle and depends not only on what is being visualised but

on speciVc details of how it was processed by the visualisation code. A novice programmer, or even an

experienced programmer new to our system, would be unlikely to make immediate sense of every aspect of

the UI’s behaviour. But a hand-crafted change-visualisation scheme would likely suUer from these problems

too, and be signiVcantly more complex to boot. In the following section, we show some examples of visuali-

sation functions and how the particular structure of the code can inWuence the diUerential behaviour of the

UI. Coding decisions alter the circumstances under which view nodes are considered identical or distinct.

This highlights a potential subtlety with diUerential computation in general, namely that one must often care

about how code is written, rather than just how it behaves extensionally.

B.2 Coding for stability

Our visualisation code represents a diUerent use case for interactive programming from those we have con-

sidered so far. Until now we have focused on allowing the programmer to see the impact of code changes

on the intensional structure of a computation. For application development, we are more concerned with
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extensional behaviour, i.e. how an interactive program maps input changes to output changes. The behaviour

we see is a consequence both of the strategy we use for assigning indices to values described in Chapter 6

and of how we write the actual program. Studying this behaviour may help us design better diUerential

execution schemes, or even diUerent kinds of language better suited to diUerential execution. In this section

we describe an idiom that has turned out to be essential for controlling the diUerential behaviour of the

visualisation code, and illustrate with some examples from the code. The examples will also give the reader

a feel for the complexity of the codebase, which is about 500 lines of LambdaCalc. Naturally, the Vgures are

generated using the visualisation code itself.

For two LambdaCalc values to have the same identity in two diUerent computations it is necessary, al-

though not suXcient, that they be constructed by the same expression. Now suppose in our code we have a

value which we want to construct with a particular constructor c, but for which where there are some con-

ditional choices to be made to determine the arguments to be passed to c. Normally it would be common to

duplicate the constructor code into each branch of the conditional logic. But the problem with this is that in

diUerent executions, diUerent branches of the conditional may be taken and diUerent expressions evaluated.

So if we want it to be possible for this value to have the same identity in diUerent executions, we have to

swap things around so that there is a single constructor containing multiple copies of the conditional code.

fun executedBody showTrace tr3 →

let

bodyIntro:Glyph case browsingState tr3 of

Expanded → fwBold

otherwise → fwNorm

textCol

case browsingState tr3 of

Expanded → liveArrow

otherwise → ellipsis

borderlessCell traceBackCol

Horiz bodyIntro

case browsingState tr3 of

Expanded →

Horiz Space

onBackground traceBackCol

showTrace tr3

otherwise → EmptyView

Figure B.2 Visualising executed function bodies

We see this pattern in the function executedBody shown in Figure B.2, which visualises the execution of

a function body. We create a glyph, which we call bodyIntro, which will be in one of two states depending

on whether the function body tr3 is expanded. If the body is expanded, we want a control-Wow arrow ։

with bold font-weight; otherwise we want an ellipsis with normal font-weight. In both cases, we also want

to pass textCol as the second component. We think of the three Velds of the glyph as constituting its state

because we would like the ellipsis to be able to mutate into the arrow, and vice-versa, without the identity of

the glyph changing. That can only be achieved if there is a centralised point of construction for the glyph.

But that means duplicating the conditional code that switches on the browsing state of tr3.

We see something similar in the showValue function in Figure B.3, which creates the view of a value v
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which will appear in a value pane. Once again we centralise construction of a glyph, which we call glyph,

so that in diUerent executions it has the potential to be assigned the same identity. Here, this necessitates

duplicating the case analysis of v. The idiom here is a little more problematic: we do not actually need the

glyph in every branch of the conditional which follows the construction of glyph, but by centralising its

construction, we end up having to construct it even for cases of v where we do not need it. This explains the

otherwise clause that returns the dummy value "Unused".

When the conditional logic is too complicated to duplicate, an alternative is to construct an interim tuple in

each branch of the conditional, holding the arguments for c. The tuple can be unpacked after the conditional

and its components used to construct c. We see this in the visualise function given in Figure B.4, the

top-level function responsible for visualising a computation in a cell. The goal here is to centralise the

construction of a RoundedCell so that it will be uniquely associated with the computation tr, the argument

to visualise. The cell has two components: a trace view wt’ and an optional view pane wv_opt arranged in

an “overlay”, a kind of compact horizonal composition. To centralise the construction of the cell, we build an

interim triple of the form Pair(Pair(−,−),−) containing the raw materials, store it in the variable args_,

and then unpack the components of args_ at the bottom of the function when we are ready to build the cell.

Unfortunately there is no generalisation of this centralised construction idiom that permits the constructor

itself to be conditionally selected. This is because a given constructor expression must always mention a

speciVc constructor. It is not therefore possible to write a LambdaCalc program where, for example, a value

which was Nil in one execution becomes Cons in the next execution as the result of a diUerent branch being

taken. This feels like a limitation: the user can freely edit a Nil into a Cons, so it should equally be possible

to “compute” such a change.

We end by saying something about accumulators, which can be problematic. Changing the identity of an

argument to a function changes the identity of any values constructed in the body of the function. If one

of these values is an accumulator, these changes of identity will cascade to all recursive invocations. How-

ever, this problem might not be as serious as it seems. Perhaps for historical reasons, functional programs

tends to favour the use of lists when often more balanced data types would be more appropriate. Lists as

normally deVned have “right-bias”: a right-fold of a binary operation over lists can be expressed directly

as a list catamorphism, but a left-fold cannot, requiring an accumulator. In practice, we have found that

we can commonly avoid accumulators by switching to a data type which is more redundant but also more

symmetric. For example, vertical and horizontal view composition are monoids, for which the bracketing

structure is irrelevant. For list-like structures, we can use a data type RList of reversible lists that combines

both Cons cells and Snoc cells:

data RList a = Nil | Cons a (RList a) | Snoc (RList a) a

with similar properties.

In conclusion, with some care LambdaCalc can be used quite eUectively for diUerential execution. The

evidence is the delta visualisations we have been able to produce for this thesis. If programs are to exhibit

useful diUerential behaviour, the programmer must adopt some idioms for constructing values, be conscious

of the identity of values passed as argument to functions, and sometimes rethink the data types their func-

tions operate on. Beyond these considerations, the programmer can for the most part write standard, purely
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functional code. We could have made these general points more clearly, perhaps, with simpler examples that

did not involve the meta-circular use of LambdaCalc to implement some of its own behaviour. On the other

hand, this route has allowed us to demonstrate some of the potential for using interactive programming

techniques to build non-trivial applications.
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fun showValue showTrace v →

case v of

NullValue → NullView

otherwise →

let

showValue':showValue showTrace

RoundedCell case v of

Constr(_,_) → Some borderCol

otherwise → None

Background valueBackCol

let

glyph:Glyph fwNorm

textCol

case v of

ConstInt(n) → intToString n

Constr(c,vs) → string c

Op(op_) → string op_

otherwise → "Unused."

case v of

ConstString(str) → showString str

ConstInt(n) → glyph

Constr(c,vs) →

case isViewCtr c of

True →

Horiz Separator borderCol

reflectWidth

Horiz Background reflectBackCol

reflect v

Separator borderCol

reflectWidth

False →

Horiz glyph

case layoutVert c of

False →

argList showValue'

vs

True →

Horiz Space

constrArgs showValue'

vs

Op(op_) → glyph

Closure(f,x,e,rho) →

showTrace TraceResult Unknown

rho

FunT f

x

e

None

otherwise →

error v

"[showValue] Impossible."

Figure B.3 Visualising values
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fun visualise tr →

case trace tr of

NullTrace → NullView

otherwise →

let

wt_opt:case collapsed tr of

True → EmptyView

otherwise →

showTrace visualise

tr

let

traceOnly:Pair Pair None

wt_opt

EmptyView

let

args_:case trace tr of

OpT(_) → traceOnly

VarT(_) → traceOnly

otherwise →

case valueOpt tr of

None →

case trace tr of

ConstIntT(_) → traceOnly

ConstStringT(_) → traceOnly

otherwise →

Pair Pair Some borderCol

wt_opt

EmptyView

Some(v) →

let

const:isConstant tr

Pair Pair Some borderCol

case const of

True → EmptyView

False → wt_opt

Horiz case const of

True → EmptyView

otherwise →

LeftConnector borderCol

valueBackCol

RoundedCell Some borderCol

onBackground valueBackCol

showValue showTrace visualise

v

let

border:fst fst args_

let

wt':onBackground traceBackCol

snd fst args_

let

wv_opt:snd args_

RoundedCell border

Overlay wt'

wv_opt

Figure B.4 Visualising a computation in a cell
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