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Abstract

In this thesis we develop a model of ultracold dipolar bosons in a highly anisotropic quasi-

one dimensional optical lattice. We will see that the model is identical to one describing quasi-

one-dimensional superconductivity in condensed matter systems giving rise to the possibility

of using this ultracold atoms system as an analogue simulator of interesting electronic systems.

In investigating the properties of this model we find a rich phase diagram containing

density wave, superfluid, and possibly supersolid phases, accessible by tuning the optical

lattice parameters and the alignment of the dipole moments.

An important property of this model turns out to be the existence of an enhanced sym-

metry at the self dual point where the density wave and superfluid orders are maximally

competing. At this point the Berezinskii-Kosterlitz-Thouless transition temperature of ei-

ther phase must necessarily vanish to zero due to the Hohenberg-Mermin-Wagner theorem.

Inspired by this model we go on to study a more general system in two dimensions with

O(M) × O(2) symmetry which has an enhanced symmetry point of O(M + 2) symmetry.

The BKT transition in the O(2) sector is mediated by vortex excitations, but these must

somehow disappear as the high symmetry point is approached. Using both a variational

argument adapting the standard BKT argument, and a more rigorous RG analysis we show

that the size of the vortex cores in such a system must diverge as 1/
√

∆, where ∆ measures

the distance from the high symmetry point, and further that the BKT transition temperature

must vanish as 1/ ln(1/∆).



Dedicated, much like myself, to Georgina.
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Chapter 1

Introduction and Motivation

1.1 Motivation

1.1.1 Background

Low dimensional models describe some of the most interesting strongly correlated systems

in nature. One dimensional systems confuse the role of interactions and particle statistics,

but present us with a myriad of techniques with which to construct exact solutions. Two

dimensions is the lower critical dimension for systems with continuous broken symmetries and

yet two dimensional systems possess a special kind of phase transition driven by topological

defects.

Of particular interest are the quasi-one dimensional systems which consist of a num-

ber of effectively one-dimensional systems that weakly couple to one another. The structural

anisotropy giving rise to the quasi-one dimensional nature of a condensed matter mate-

rial may be due to its underlying crystal structure, as is the case in tetrathiafulvalene-

tetracyanoquinodimethane (TTF-TCNQ)[5, 6], and in the telephone number compound

Sr14Cu24O41[7]. It may instead be an emergent phase of the bulk electronic system, as is seen

in the striped phase of the high Tc Cuprate compounds. Recent developments in optical lat-

tice experiments on ultracold gases have led to a number of suggestions for making artificial

quasi-one dimensional systems[8, 9, 10, 11, 12].

With so many different quasi-one dimensional condensed matter systems at hand, it

would take more than one review to go through them all. Let us then instead discuss only
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one motivational example, which is well studied and not a little controversial.

An interesting and topical example of a quasi-one dimensional system is the high Tc

cuprate compounds, the story of which begins in 1986 when Bednorz and Müller [13] took

some Lanthanum Cuprate and doped it with Barium – thereby discovering the first high tem-

perature superconductor. The parent compound La2CuO4 is antiferromagnetic and Mott-

insulating at low temperatures. The hole-doped compound La2−xBaxCuO4 loses antiferro-

magnetic order as the dopant concentration is increased and eventually becomes a supercon-

ductor which develops a remarkably high Tc (up to about 30K).

Figure 1.1: Cartoon phase diagram of the Lanthanum Cuprate with stripe order indicated at 1/8

doping.

In this and in similar compounds, embedded within the superconducting order around

1/8 doping and seemingly dragging down the transition temperature, there exists a stripe

order [14], in which domains of antiferromagnetism push the electron-holes into narrow charge

carrying channels. These materials are structurally quasi-two dimensional, but in the low

temperature stripe ordered phase an emergent quasi-one dimensional behaviour is established.
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Whether stripe ordering in high Tc superconductors is a coincidental and antipathetic

phase to the superconductivity or a crucial part or a crucial ancillary phase to the onset of

high Tc has been a matter of some debate[15, 16, 17, 18, 19, 20, 21].

In this thesis we will make absolutely no attempt to resolve this conflict.

We will focus our attention upon the striped system itself and the interesting physics

therein. In order to extricate ourselves from the messy condensed matter background of the

system in question, we propose a new experimental realization of the stripe model made up

of ultracold dipolar bosons in a fine-tuned optical lattice.

Ultracold atom experiments offer us a powerful new probe of strongly condensed matter

correlated systems[22]. The use of optical fields to construct custom trapping potentials offers

the experimentalist an unprecedented degree of control over the geometry and energetics of

an experimental system[23].

We will construct a cold atom system with the same underlying low energy effective

Hamiltonian as one would expect to see within a striped system. Experiments upon such

a setup should then be able to give us insights into the behaviour of the striped system.

Moreover, a key feature present in these systems, as we shall see later, is the competition

between density-wave and superfluid phase. Our proposed cold atom experiment will thus

turn out to be a system with which we could study phase competition with a wide range of

parameters and a great deal of control.

As a matter of semantics, from this point on we will often refer to all quasi-one dimensional

systems simply as striped systems, be they striped in the cuprate sense or structurally

anisotropic. This is more or less just because the term rolls off the tongue better and takes

less time to type (although by that logic perhaps Q1D might have been a better choice). This

naming convention is not intended as any sort of comment on the striped phase of cuprates.

Once we have developed our model we will notice that an important aspect is the com-

petition between superconducting and charge density wave orders in two dimensions and an
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enhanced symmetry when these orders are in maximal competition. This symmetry enhance-

ment raises an interesting topological question as we will see that it must somehow destroy

the natural topological excitations of the system – vortices. We will then be led to investigate

the fate of vortices and the special transition they mediate in this and more general systems

containing phase competition and symmetry enhancement.

1.1.2 The Stripe Order

Neutron scattering experiments on Cuprate compounds such as La2−x−yNdxSryCuO4[14] show

peaks consistent with the existence of striped domains of charge and spin which can be

thought of as effectively one-dimensional structures

Even in their normal state, the high temperature superconductors themselves are not

well described within the framework of Fermi liquid theory and so it has been suggested[24]

that a better starting point for theoretical investigation of such systems is to use as a basis

the quasi-one dimensional nature of the stripe ordered phase. This approach has the added

advantage that the one-dimensional electron gas is well understood, and it is known[25]

that superconducting long-ranged order can be induced by inter-stripe coupling increasing

the dimensionality of the system in what is referred to as dimensional crossover. The di-

mensional crossover from one- to two-dimensional charge transport in high Tc cuprates has

been observed as doping is increased past the 1/8 point[26] and the crossover from two- to

three-dimensional transport is seen upon exiting the superconducting state[27].

The picture coming from experimental data is that in the region of parameter space we

are interested in – the superconducting region – these systems behave like one dimensional

electron gases that are coupled into a two-dimensional array; the third dimension would

appear to be weakly involved if at all.

The natural strategy then is to treat each stripe as a 1D system and couple these stripes

together. The leading relevant inter-stripe couplings are via Josephson and charge-density
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wave interactions[28, 29, 30], and so the Hamiltonian proposed for dealing with such a system

takes the form H = Hintra +Hinter

Hintra =
∑
i

∫
dx

v

2

{
K(∂x θi)

2 +
1

K
(∂x φi)

2

}
(1.1a)

Hinter =
∑
<ij>

∫
dx
{
JSC cos[

√
2π(θi − θj)] + JCDW cos[

√
2π(φi − φj)]

}
(1.1b)

The precise meaning of these terms isn’t particularly important for now, but the reader might

recognize this Hamiltonian as representing an array of Luttinger liquids with interactions

which induce superconducting and charge-density wave order.

This Hamiltonian is generic to layered, quasi-one dimensional (striped) systems and would

equally well treat a structurally anisotropic material such as Sr14Cu24O41. It has been well

studied in connection with condensed matter systems through various approaches, but the

problem with comparing to experimental condensed matter systems will always be noise and

disorder, for his reason we wish to develop an ultracold atomic experiment described by this

Hamiltonian where these issues are under control.

Other materials which might be treated by a similar Hamiltonian include the ladder

compounds such as SrCu2O3 which are structurally anisotropic quasi-one dimensional ma-

terials which take their name from their ionic structure. An n-leg ladder consists of n ionic

chains running parallel to one another with inter-chain coupling of comparable strength to

intra-chain coupling. The name for these compounds comes from the 2-leg case, a schematic

of which resembles a ladder. These systems are reviewed in [31, 32].

An important feature of the Hamiltonian Eqn.[1.1], which was studied by Carr and

Tsvelik[29], is the competition between charge density wave and superfluid orders. This

competition will be a major theme in what follows.

In this thesis we will propose an ultracold atomic experiment for which the low energy

effective theory is described by this same Hamiltonian. This system can be thought of as an
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analogue quantum simulator of the striped condensed matter systems we have discussed, but

with a very high degree of control over the parameters.

1.1.3 Analogue Simulation with Cold Atoms

In his 1981 popular article “Simulating Physics with Computers”[33], Richard Feynman

pointed out that any (bosonic) quantum system ought to able to be simulated exactly by an-

other system in which every site has precisely two basis states, thus giving rise to the concept

of the quantum computer. Feynman’s proposal was for a universal quantum computer which

would be able to simulate any quantum system in analogy to a classical Turing machine.

A universal quantum computer is probably still many years away but recent developments

mean that we can now seriously start thinking about simulating specific quantum systems

with analogue quantum simulators.

The discoveries that have brought us to this point can be traced back to the creation in

1995 of the first Bose-Einstein condensates of alkali atoms [34, 35]. These early experiments

involved a combination of laser and evaporative cooling of heavy alkali atoms confined within

a magneto-optical trap.

Although the original work towards BEC formation in atomic gases was done for the sake

of studying the condensate itself, it was soon realized that by transferring the degenerate

gas from its magnetic trap into an optical lattice, one would have a system that could be

employed as an analogue quantum simulator of a condensed matter system[36].

Early forays into using optically confined Bose gases as analogue simulators were focussed

chiefly on simulating the behaviour of the Bose-Hubbard model[37, 22], which is defined by

the Hamiltonian

H =
∑
i

εini − J
∑
<ij>

b†ibj +
U

2

∑
i

ni(ni − 1), (1.2)
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where b†i is the bosonic creation operator on the ith site and ni = b†ibi is the number operator

for that site. The nearest-neighbour structure in the simulation is determined entirely by

the optical “crystal” set up by the experimentalist and the hopping and site energies, U and

ε, can be set by the depth of the optical potential. These experiments proved to be a great

success as in 2002 the predicted transition from superfluid to Mott insulator was observed

within an optical lattice experiment[38].

The great advantage that analogue simulation with ultracold atoms has over almost any

other experiment in condensed matter is the control the experimentalist has over the internal

parameters, from lattice spacing to interaction strength (which may be tuned via Feshbach

resonances), and the cleanness of the system. If anything optical lattice experiments are too

clean and experimentalists are forced to come up with ingenious ways to introduce disorder

into their experiments[39].

1.1.4 Systems with Competing Order

The physical feature of the striped materials and our ultracold atomic analogue which we will

be most interested in studying is the competition between two kinds of order – superfluidity

and density wave – and that fact that this is happening in two dimensions which will lead

to questions regarding the nature of the Berezinskii-Kosterlitz-Thouless transition in this

system.

This situation – two types of order competing in a two-dimensional system – is cer-

tainly not specific to the model in question, and in fact is common to a great number of

strongly correlated systems. Consider, for example, the quasi-two dimensional layered or-

ganic superconductors such as those based on bisethylenedithiotetrathiofulvalene; the phase

diagram of such materials with changing pressure displays a competition between antifer-

romagnetism and (unconventional) superconductivity[40, 41]. Similarly, the heavy fermion

compound CeIn3 can be tuned to be two-dimensional[42], and demonstrates a competition
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between superconductivity and antiferromagnetism[43].

Following the general ideas of Ginzburg-Landau theory, we would like to study such

systems with competing order by introducing an order parameter of the correct symmetry

group for each broken symmetry, and constructing a free energy functional or action in powers

of these order parameters. Formally we could treat the two order parameters as two sectors

of a single order parameter, as is common in SO(5) treatments of systems with interacting

antiferromagnetic and superconducting phases[44, 45]. In such a treatment there will exist

symmetry breaking terms which act to separate out the two sectors of the unified field.

One might now imagine a situation – which will turn out to be the case for our striped

model – in which there is a particular fine-tuned point in parameter space where the two

phases are in maximal competition such that the symmetry breaking terms vanish and we are

left with a single order parameter with a higher symmetry than the two constituent phases

combined.

This symmetry enhancement and the effect that the high symmetry point has on the rest

of the phase diagram is the feature of the stripe model which we will be most interested in

and the conclusions we draw will be applicable to other models with competing order. The

peculiarities of ordering in two dimensions viz the Hohenberg-Mermin-Wagner theorem and

the Berezinskii-Kosterlitz-Thouless transition will greatly inform our considerations of such

systems.

1.2 Thesis Overview

In the following two chapters we will introduce some of the basic concepts and methods we

will use in developing the stripe model. These two chapters don’t include anything new at

all, but they do offer us the opportunity to set out all of the mathematics and ideas that will

be referred back to. The reader who just wants to get to the meat of this thesis may want
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to skip these chapters.

In Bosonization and One Dimensional Systems we will develop the machinery of

bosonization, which is a scheme with which to deal with one-dimensional systems. After a

historical and a more schematic introduction to bosonization we will solve a simple example

system with the methods we have discussed. While on the subject of one-dimensional systems,

we will discuss the Sine-Gordon model and talk about how to treat this model through a

momentum-space renormalization group procedure.

In The BKT Transition and Two Dimensional Systems we discuss the Beresinskii-

Kosterlitz-Thouless transition. We will motivate this discussion first by considering the

Hohenberg-Mermin-Wagner theorem, and then by solving the 2D-XY model in its high and

low temperature limits. In discussing the BKT transition we will see the importance of

topological excitations – vortices – in the 2D-XY model, which will motivate us to study the

vortex plasma description of this model. We will treat the vortex plasma through a real-space

renormalization group procedure.

Having got some of the background concepts out of the way, we will be ready to move on

to the first section of original research in this thesis.

In The Stripe Model we will propose an experimental setup involving ultracold dipo-

lar bosons in an anistropic optical lattice that resembles a two-dimensional array of one-

dimensional stripes. We will use the methods we introduced in our discussion of one-

dimensional systems to bosonize each stripe and then discuss how the inter-stripe inter-

actions can be included to weakly couple the stripes. The model we develop will turn out

to be equivalent to the model already used to treat striped condensed matter systems, but

with a wide range of parameters to play with. We will then proceed to work out and solve

a mean-field treatment of this system when either density-wave or superfluid behaviour is

clearly dominant. When neither phase is dominant over the other, we will find that the

system can be treated by an effective non-linear sigma model with a quadratic symmetry
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breaking. A Ginzburg-Landau treatment of the zero temperature behaviour of this model

will suggest the existence of a regime where density wave and superfluid orders coexist. This

regime might be thought of as a supersolid and we will discuss what this means.

We then take a short break from the original content as we pause to discuss The O(N)

Nonlinear Sigma Model. We develop the renormalization group treatment of this model

in D and D + 1 dimensions with and without quadratic symmetry breaking.

Finally we will return to original content as we move on to discuss Depletion of Or-

der Due to Enhanced Symmetry. In this chapter we study the effect of symmetry

enhancement on a model with vortex mediated quasi-long ranged order through both a mod-

ified BKT argument, and by using the renormalization group flow of a nonlinear sigma model

with quadratically broken symmetry that we developed in the previous chapter.
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Chapter 2

Bosonization and One Dimensional Systems

2.1 Bosonization

2.1.1 Bosonization Overview

The physics of one dimensional systems is special for a number of reasons, the most important

being that indistinguishable particles on the line are enumerable, and that fermions in one

dimension have a Fermi surface consisting of only two points. These properties allow us to

perform a procedure known as bosonization in which the physics of a full, interacting system

is approximated by a non-interacting treatment of the sound waves in the system.

A brief history of the bosonization method is as follows. In 1950 Tomonaga[46] (inspired

by a previous comment by Bloch) realised that the low energy physics of a weakly interacting

Fermi gas could be approximated by the behaviour of the underlying bosonic sound wave

excitations. His construction relied upon noticing that one can construct an operator with

bosonic commutation relations out of pairs of fermionic operators and required linearising the

spectrum about the Fermi surface. Tomonaga’s work suffered from being rather complicated

and from not offering a full solution scheme.

Over a decade later, in 1963, a very similar model to that arrived at by Tomonaga

was considered by Luttinger[47]. This was essentially the same model but now included

antiparticles which made it solvable. Luttinger diagonalized the model and constructed the

exact solution. Two years later, in 1965, Mattis and Lieb demonstrated that Luttinger’s
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solution was actually flawed and presented the correct solution; nevertheless this model is

now referred to as the (Tomonaga-)Luttinger model. Calculation of expectation values in this

model was made simpler in 1974 when Luther and Peschel[48] and simultaneously Mattis[49]

demonstrated how to construct the original fermionic operators out of bosonic operators.

Arguably the birth of what would now be called bosonization comes from the 1981 work

of Haldane in which he brought together the previous work, filling in the gaps of various

proofs to show how the weakly interacting Fermi gas can be exactly solved by constructing a

bosonic representation when the spectrum is approximated as linear. In this paper Haldane

calculated the excitation spectrum and correlation functions. He also comments in this paper

that one ought to be able to construct a bosonic representation of a fermionic one dimensional

system even without a linear spectrum. The completion of this work came in the same year

when Haldane demonstrated that not only interacting fermions but also interacting bosons

in one dimension could be approximated by a non-interacting harmonic fluid. From this

harmonic fluid construction Haldane was able to calculate exact low energy properties of a

one dimensional system regardless of the underlying statistics. He called the universality

class of such one dimensional systems the Luttinger liquid.

In the following two sections we will derive the bosonized form of an interacting system

twice. Our first approach will be a pre-eighties style derivation for the weakly interacting

Fermi gas in which we linearise the spectrum around the Fermi surface. In analogy to the

Fermi gas, we call this approach the The Luttinger Gas; this method is physically illuminating

but does not extend well to bosonic systems. To get access to bosonic systems we follow

Haldane’s harmonic fluid construction to derive the properties of the The Luttinger Liquid.

Using the Luttinger liquid approach we will then go on to bosonize a simple model to get a

feeling for how the method works and where comparison to physical properties comes in.
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2.1.2 The Luttinger Gas

Linearising the spectrum of a weakly interacting Fermi gas around the Fermi momentum,

kF , we have a system with positive and negative linear dispersion εk = ±vF |k|. We could

equivalently think of this as a system consisting of left and right moving electrons with

dispersion εk = σvFk, where σ = +1 for right-movers and σ = −1 for left-movers.

Quite generally we have the Hamiltonian

H = vF
∑
σk

σkc†σkcσk +
1

2L

∑
σk

(
V1(k)ρσkρσ(−k) + V2(k)ρσkρ−σ(−k)

)
(2.1)

where c, c† are fermionic operators (
[
c, c†

]
+

= 1,
[
c(†), c(†)]

+
= 0)1, and ρ is the density

operator ρk =
∑

q c
†
q+kcq. The allowed momenta in a system of length L are k ∈ 2π

L
Z. We

find it convenient to flit between the momentum representation and a position representation

ψ(x) = L−1/2
∑
k

e
−ikx ck.

Now the important thing that Tomonaga noticed, and which was shown quite rigorously

by Haldane, is that the density operators are more-or-less bosonic operators. This is not

immediately clear, but look at the commutator

[
ρσk, ρσ′(−k′)

]
=
∑
qq′

[
c†σ(q+k)cσq, c

†
σ′q′cσ′(q′+k′)

]
=
∑
qq′

c†σ(q+k)

[
cσq, c

†
σ′q′cσ′(q′+k′)

]
+
−
[
c†σ(q+k), c

†
σ′q′cσ′(q′+k′)

]
+
cσq

= δσσ′δkk′
∑
q

(
c†σ(q+k)cσ(q+k) − c†σqcσq

)
.

This looks like we should be able to shift the sum and get zero, but that would entail taking

one divergent quantity away from another which is a bit dangerous2. To be properly normal

ordered we need to subtract out the averages
〈
c†σkcσk

〉
= Θ(kf −σk); doing so leaves us with

1We write the commutator and anti-commutator of two objects a and b as [a, b]± = ab ± ba and usually
simplify the notation for the commutator to [a, b]− ≡ [a, b].

2This anomaly is actually the mistake made by Luttinger that was corrected by Mattis and Lieb.
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[
ρσk, ρσ′(−k′)

]
= δσσ′δkk′

∑
q

(〈
c†σ(q+k)cσ(q+k)

〉
−
〈
c†σqcσq

〉)
= δσσ′δkk′

∑
k

(
Θ(kf − σ(k + q))−Θ(kf − σq)

)
= −σLk

2π
δσσ′δkk′ .

We can now easily construct bosonic operators via

a†k =
∑
σ

Θ(σk)

√
2π

|k|L
ρσk, (2.2)

where we notice that ρ†σk = ρσ(−k). This construction fails when k = 0, at which point we

have ρσ0 = Nσ. With this in mind, we see that the density operators may be represented as

ρσk = Nσδ0k +

√
|k|L
2π

(
Θ(σk)a†k + Θ(−σk)a−k

)
. (2.3)

This lets us represent the interaction part of the operator in terms of bosonic operators but

what should do with the kinetic part? This is where the linear spectrum comes in. We

calculate the commutator between the kinetic energy H0 = vf
∑
σk

σkc†σkcσk and the bosonic

annihilation operator a†k by considering the commutator of H0 and ρσk

[ρσk, H0] =
∑
qq′σ′

vfσ
′q′
[
c†σ(k+q)cσq, c

†
σ′q′cσ′q′

]
=
∑
qq′σ′

vFσ
′q′
(
c†σ(q+k)

[
cσq, c

†
σ′q′cσ′q′

]
+
−
[
c†σ(q+k), c

†
σ′q′cσ′q′

]
+
cσq

)
=
∑
qq′σ′

vFσ
′q′
(
c†σ(q+k)δσσ′δq,q′cσ′q′ − c

†
σ′q′δσσ′δq+k,q′cσq

)
= −vFσk

∑
q

c†σ(q+k)cσq = −vFσkρσk.

This gives us that

[
a†k, H0

]
= −vF |k|a†k (2.4)
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which in turn implies that

H0 = vF
∑
k

|k|a†kak. (2.5)

That the kinetic part of the Hamiltonian is quadratic in the bosonic representation is an

important and highly counter-intuitive statement. We will actually prove this more rigorously

in a moment, but let us pause to discuss the result further before we do so.

By linearising around the Fermi surface and representing the Hamiltonian in terms of a

bosonic combination of fermionic operators we see that the Hamiltonian can be approximated

(up to irrelevant constants) by the quadratic form

H =
1

2

∑
k

|k|
(
a†k a−k

)vF + V1(q)
2π

V2(q)
2π

V2(q)
2π

vF + V1(q)
2π


 ak

a†−k

 (2.6)

This Hamiltonian could now be diagonalized exactly using a Bogoliubov transformation if we

so desired but there is no real point as we will be solving a bosonized system in the following

section. What is important here is just that the Hamiltonian turns out to be quadratic.

Now in order to see how the fermionic operators we started with can be constructed out

of the bosonic operators we are working with, we consider the commutator

[
ρσk, ψ

†
σ′(x)

]
= L−1/2

∑
qq′

[
c†σ(q+k)cσq, c

†
σ′q′

]
e
iq′x = L−1/2

∑
qq′

c†σ(q+k)δσσ′δqq′e
iq′x

= δσσ′e
−ikx ψ†σ′(x)[

a†k, ψ
†
σ(x)

]
= Θ(σk)

√
2π

|k|L
e
−ikx ψ†σ(x) (2.7)

[
ak, ψ

†
σ(x)

]
= Θ(σk)

√
2π

|k|L
e
ikx ψ†σ(x) (2.8)

From Eqn.[2.7] we want to say ψ†σ(x) ∝ exp
[
−Θ(σk)(2π/kL)1/2

e
−ikx ak

]
and from Eqn.[2.8]

we want to say ψ†σ(x) ∝ exp
[
Θ(σk)(2π/kL)1/2

e
−ikx a†k

]
. With this in mind, we define a new
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field

φσ(x) = σ
πx

L
Nσ + i

∑
k 6=0

Θ(σk)

√
2π

|k|L
e
−ikx ak. (2.9)

Notice that the first term is just the k → 0 limit that we haven’t included in the sum, which

we leave outside the sum rather than leave the evaluation implicit. In terms of this we can

see that the fermionic operators must be expressible as

ψ†σ(x) = L−1/2
e
iφ†σ(x) Uσe

iφσ(x) (2.10)

where Uσ is some unitary operator. Given that we are linearising about the Fermi surface

we should have ψ†σ(x) ∼ e
iσkfx . We need to do something to ensure that ψ†σ(x) obeys Fermi

statistics. We can do this by setting

Uσ = e
iσkF x Fσ (2.11)

where Fσ is an anti-commuting operator which can be interpreted as increasing the number

of Fermions in the σ-branch by one, this operator is referred to in the literature as a Klein

factor[50].

This completes the Bose-Fermi mapping that comprises a traditional pre-Haldane picture

of bosonization. As was discussed in the introduction to this chapter, Haldane extended

these ideas in such a way that interacting bosonic systems can be treated within the same

bosonization framework as fermions, but the approach he took was very different to the

historical approach we have just taken.

2.1.3 The Luttinger Liquid

The direction taken by Haldane in extending the bosonization of the weakly interacting Fermi

gas, into what we called the Luttinger gas, to more general interacting systems, which we
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are calling the Luttinger liquid method, is based on the realization that indistinguishable

particles on the line can nevertheless be labelled according to their relative position from left

to right. We will see the this simple fact actually has some very significant consequences for

calculating the low energy behaviour of one-dimensional systems.

x1 x2 x3 x4 x5 x6~ ~ ~ ~ ~ ~
Figure 2.1: In 1D identical particles can be labelled, by taking their order from left to right. As this

requires no reference to the origin, this scheme preserves translational invariance.

Let’s say we have N identical particles on the line. Our labelling scheme – calling the

position of the lth particle along from the left xl – lets us write the density for this system as

ρ(x) =
N∑
l=1

δ(x− xl). (2.12)

We recall that the dimensionality of the system means that (at a fixed point in time) the

ordered set of coordinates {xl} unambiguously defines the positions of the particles in this

system. It is however more convenient to abandon this cumbersome set in favour of a single

function ` : R 7→ R which we allow to vary continuously subject to the following constraints

1. `(x) must be monotonic in x (with no loss in generality we can say monotonically

increasing).

2. `(xl) ≡ l.

Recalling the transformation rule for the Dirac Delta function,

δ(f(x)) =
∑

y|f(y)=0

1

|∂y f(y)|
δ(x− y),
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we realise that we can write the density of this system in terms of the labelling function `(x)

via

ρ(x) = ∂x `(x)
∑
l

δ(`(x)− l).

Now by employing one of the multitude representations of the delta function (in this case

we use the Poisson summation formula) this becomes

ρ(x) = ∂x `(x)
∑
m

e
2πim`(x) .

Now let’s imagine that these N particles live on a line of length L. If everything were

homogeneous then the density on the line would be ρ0 = N/L and so a sane and sensible

labelling function would be `0(x) = ρ0x. We are well advised to consider fluctuations around

this homogeneous limit so we express our labelling function as

`(x) = `0(x)− 1

π
ϕ(x).

The monotonicity of `(x) requires that the fluctuation amplitude, ϕ(x), should be thought

of as some low amplitude oscillatory function with period ∼ ρ0.

In terms of the fluctuation field, the density field is thus given by

ρ(x) = (ρ0 − ∂x ϕ(x))
∑
m

e
2im[πρ0x−ϕ(x)] . (2.13)

If one were to average this density over distances large compared to the inter-particle

separation (∼ 1/ρ0) the fluctuations in this exponent would act to cancel themselves out

leaving only the constant term in the exponential. Hence from far away we would expect to

see the smeared density

ρ̃(x) = ρ0 −
1

π
∂x ϕ(x). (2.14)

Up to this point we have made no reference to the statistics of the particles in question. An

astounding feature of one dimensional physics is that it actually makes very little difference!
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For the sake of definiteness we will continue down this line of thought assuming that the

particles we have are identical bosons; we will later come back and see what would have

happened if we were assuming the particles to be fermions.

Having written the density of the system in terms of an oscillatory fluctuation field, we

might desire to express the creation and annihilation operators in a similar manner. To this

end let us write the creation operator as

ψ†(x) =
√
ρ(x)e−iθ(x) . (2.15)

We now need to fix the commutator of θ and ϕ so that the bosonic commutation relation

[
ψ(x), ψ†(x′)

]
= δ(x− x′) (2.16)

is satisfied. Assuming (quite reasonably) that θ commutes with itself at all points we require

that [
ρ(x), e−iθ(x

′)
]

= δ(x− x′)e−iθ(x′) . (2.17)

Simply by inspection we find that this last commutation relationship is satisfied (for the

smeared density at least) if we put

[
1

π
∂x ϕ(x), θ(x′)

]
= −iδ(x− x′) or equivalently

[
ϕ(x),

1

π
∂x′ θ(x

′)

]
= iδ(x− x′).

(2.18)

This shows us that ϕ(x) possesses a canonically conjugate “momentum” field

Π(x) = (~/π)∂x θ(x). (2.19)

With this commutation relation in place, to the level of approximation of the smeared

density, we can write the creation operator as

ψ†(x) =

√
ρ0 −

1

π
∂x ϕ(x)e−iθ(x) . (2.20a)
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To improve upon this smeared creation operator (which, when considering global prop-

erties of the system, isn’t strictly necessary) we would have to include the higher harmonics

within the density. To do so requires us to take the square root of a delta function, the

problem with which is that the root of a delta function is not well defined. Recall that

the delta function is not truly a function but is a measure and that multiplication among

such, as opposed to convolution, is not a defined operation. Nevertheless, if we consider a

nascent representation of the delta function, such as the zero width limit of a Gaussian, we

can see that this will maintain its shape upon squaring so that we can loosely say that, up

to some limiting procedure specific constant, the square root of a delta function is another

delta function and hence

ψ†(x) ∝
√
ρ0 −

1

π
∂x ϕ(x)

∑
m even

e
i[πmρ0x−mϕ(x)]

e
−iθ(x) (2.20b)

=

√
ρ0 −

1

π
∂x ϕ(x)

(
1 + 2

∑
m

cos 2m [πρ0x− ϕ(x)]

)
e
−iθ(x) . (2.20c)

As promised, let us now consider how our considerations so far would differ were the

particles in question fermions, in which case the commutation relation Eqn.[2.16] would

become an anti -commutation

[
ψ(x), ψ†(x′)

]
+

= δ(x− x′). (2.21)

We can arrange this, without altering the commutator of ϕ and θ by taking two things

into account. Firstly we know the commutator of these fields is [ϕ(x), θ(x′)] = π
2
i sgn(x−x′)

and secondly e
i[πmρ0x−mϕ(x)] changes sign as it passes through each particle. Thus an anti-

commuting field can be constructed by inserting this phase into each term of the sum in

Eqn.[2.20b] with the effect that it picks up a minus sign under particle exchange due to the

sgn(x− x′) term. Hence the fermionic creation operator may be written as
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ψ†(x) ∝
√
ρ0 −

1

π
∂x ϕ(x)

∑
m odd

e
i[πmρ0x−mϕ(x)]

e
−iθ(x) (2.22a)

≈
√
ρ0 −

1

π
∂x ϕ(x) eiπρ0x−iϕ(x)

e
−iθ(x) . (2.22b)

2.1.4 Bosonizing a Simple Model

So how does this all help? We work with bosons (although the fermionic case is next to

identical) and consider the archetypal Hamiltonian for interacting particles on the line

H =
~2

2m

∫ L

0

dx ∂x ψ
†(x)∂x ψ(x) +

1

2

∫ L

0

dxdx′ V (x− x′)ρ(x)ρ(x′). (2.23)

We plug in the dual fields ϕ and θ, and linearise by dropping highly oscillatory terms, so

that up to a smeared level of approximation the fields are

ρ(x)

ψ†(x)

⇒

ρ0 − ∂x ϕ(x)

√
ρ0e

−iθ(x)

(2.24)

Upon dropping irrelevant constants, Eqn.[2.23] becomes

H =
~2ρ0

2m

∫ L

0

dx (∂x θ(x))2 +
1

2π2

∫ L

0

dxdx′ V (x− x′)∂x ϕ(x)∂x′ ϕ(x′). (2.25)

Assuming now that the interaction is sufficiently close ranged, we can introduce velocity

scales

vJ =
π~ρ0

m
(2.26a)

vN ∼
V (0)

π~
, (2.26b)

which represent the phase stiffness and density stiffness respectively, and the Hamiltonian
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takes the simple quadratic form

H =
~
2π

∫ L

0

dx vJ (∂x θ(x))2 + vN (∂x ϕ(x))2 . (2.27)

The identical form is given when we consider fermions instead. This Hamiltonian is

referred to as the (Tomonaga-)Luttinger liquid. We have seen that the effective low energy

(long wavelength) physics of a system comprising of either fermions or bosons with short

ranged interactions in one dimension can be reduced to a harmonic model of field variables

with canonical commutation relations i.e. a model with bosonic degrees of freedom.

The procedure we have just undergone is an interpretation of the construction given

by Haldane[51] and is now known as bosonization (although Haldane called it the harmonic

fluid description). Good reviews of the bosonization approach to one-dimensional systems are

given in [52] [53]. The bosonization procedure shows us that many models in one dimension

can be described within a single framework and hence these models belong to the same

universality class. This universality class, the so called Luttinger liquid class, blurs the

line between Bose-Einstein and Fermi-Dirac statistics, and hence suffers from its inability

to describe model-specific features. An alternative derivation totally within the functional

integral is possible[54].

The harmonic model we have derived is exactly soluble and we shall consider the solution

later on. There are, however, a few small details to the construction that we have brushed

under the carpet that we ought to look into now. There are, it turns out, topological consid-

erations that need to be taken into account.

We started out with particles roaming around on the real line, and then restricted this

down to the region [0, L]. Such a restriction is appropriate when considering, for example,

cold atoms in a (quasi-)one-dimensional optical trap, which is bound to have finite extent.

We may also want to explicitly consider what happens if particles are set in a ring formation

as is possible in optical lattice experiments. Let us then consider the same system but with
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periodic boundary conditions so that ψ†(x+L) = ψ†(x). Looking to Eqn.[2.20] and Eqn.[2.22]

we see that

ϕ(x+ L) = ϕ(x) + πN (2.28a)

θ(x+ L) = θ(x) + πJ, (2.28b)

where N is the number of particles and J is some integer; J can be seen to obey the following

selection rules depending upon the particle statistics:

Bosons: (−1)J = 1 (2.28c)

Fermions: (−1)J+N = 1. (2.28d)

Now to actually solve this harmonic model, as in many cases, the easiest approach is

within the functional integral. However this is not so informative, so we hang on to the non-

commuting operators and expand into Fourier space. To satisfy their correct commutation

relations, the dual fields are expanded as

ϕ(x) = ϕ0 + πx
N

L
+

(
vJ
vN

) 1
4
√

π

2L

∑
q

1
√
q

[
e
−iqx b(q) + e

iqx b†(−q)
]

(2.29a)

θ(x) = θ0 + πx
J

L
+

(
vN
vJ

) 1
4
√

π

2L

∑
q

sgn(q)
√
q

[
e
iqx b†(q) + e

−iqx b(−q)
]
, (2.29b)

where the field b†(q) creates a long wavelength density fluctuation with momentum q, and

the following commutators are set (unless otherwise stated, all other terms commute)

[
b(q), b†(q′)

]
= δq,q′ (2.29c)[

N, e−iθ0
]

= e
−iθ0 (2.29d)[

J, e−iϕ0
]

= e
−iϕ0 (2.29e)
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Given that a change in ϕ0 represents a global shift of the particles, we see that the mean

current operator is 1
π
∂x ϕ. Substituting the Fourier transformed fields into the Hamiltonian

Eqn.[2.27] we arrive at the following expression

H = ~vs
∑
q

|q|b†qbq +
π

2
~vs

(N −N0)2

KL
+
π

2
~vs

KJ2

L
, (2.30)

where N0 = ρ0L and we have introduced the constants

K =

√
vJ
vN

(2.31a)

vs =
√
vJvN (2.31b)

The form the Hamiltonian is now in gives us a clear physical picture of what the bosoniza-

tion procedure is doing: we have represented the low energy excitations of a one-dimensional

system as phonons with sound speed vs. This form also allows us to see a physical meaning

for the so called Luttinger parameter K, by looking at the adiabatic compressibility κ of the

fluid at zero temperature. For the Hamiltonian above we have

1

κ
= ρ2

0

(
∂µ

∂ρ

)
ρ=ρ0

= ρ0N

(
∂2E0(N)

∂N2

)
N=N0

= πρ2
0

~vs
K
, (2.32)

so the Luttinger parameter is proportional to the compressibility of the fluid of phonons.

2.2 Correlation Functions

Finally, in our considerations of bosonization and the Luttinger liquid, let us actually solve

for the correlation functions in this system.

In the immortal words of Victor Popov: “It turns out that we can associate with any

Bose system a functional integral over the space of complex functions” [55]. For further
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information on functional integrals in condensed matter field theory I would recommend the

larger of Popov’s books[56] or Altland and Simons’ textbook on the matter[57]; other good

sources are [53] and [58]. Assuming we are all happy with finding correlation functions within

the functional integral, let us plough on.

We have a partition function and action functional

Z =

∫
D[ϕ,Π]e−S[ϕ,π]/~ (2.33a)

S[ϕ,Π] =

∫ β~

0

dτ

∫ L

0

dx

{
πKvs

2~
Π(τ, x)2 +

~vs
2πK

(∂x ϕ(τ, x))2 − iΠ(τ, x)∂τ ϕ(τ, x)

}
. (2.33b)

If we just want correlation functions in the fluctuation field ϕ we can decouple the mo-

mentum using

Π(τ, x)⇒ Π(τ, x) + i
~

πKvs
∂τ ϕ(τ, x),

under which the action becomes

S =
~

2πK

∫ β~

0

dτ

∫ L

0

dx

{
1

vs
(∂τ ϕ(τ, x))2 + vs (∂x ϕ(τ, x))2

}
+
πKvs

2~

∫ β~

0

dτ

∫ L

0

dx Π(τ, x)2.

Now letting r = (r0, r1) = (vsτ, x), we get the correlation function

〈ϕ(r)ϕ(r′)〉 =

∫
D[ϕ]ϕ(r)ϕ(r′)e−

1
2πK

∫
d2r(∇rϕ(r))2∫

D[ϕ]e−
1

2πK

∫
d2r(∇rϕ(r))2

=
K

2
ln |r − r′| = K

4
ln

(
(x− x′)2 + v2

s(τ − τ ′ + ε)2

ε2

)
,

where the ultraviolet cut-off ε is introduced to force time ordering. Due to the symmetry

under the duality transformation S[ϕ, θ;K] = S[θ, ϕ; 1/K], we also see that 〈θ(r)θ(r′)〉 =

1
2K

ln |r − r′|. From this we see that the correlations in this system scale as

〈
ψ(r)ψ†(r′)

〉
= ρ0

〈
e
i[θ(r)−θ(r′)]

〉
= ρ0e

− 1
2〈[θ(r)−θ(r′)]2〉 ∼ ρ0|r − r′|

−1
2K .
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Hence we see that for free fermions K → 1 and for free bosons K → ∞. In the above we

have used the fact that for any action quadratic in φ,

〈cosφ〉 =
〈
e
iφ
〉

= e
− 1

2〈φ2〉 , (2.34)

to prove this we simply requires us to complete the square within the functional integral.

This equation crops up rather a lot in our future considerations.

For sake of completeness we ought to consider the skew correlations 〈ϕθ〉, to which end

it is easiest to move into momentum space. Our convention for the Fourier transform in d

spatial dimensions, which we shall adopt throughout, is

f(τ,x) =
∑

k∈( 2π
L )

d
Zd

∑
ω∈ π

β~2Z (bosons)

ω∈ π
β~ (2Z+1) (fermions)

e
ik·x

Ld
e
−iωτ

β~
f(ω,k) (2.35a)

L→∞−−−→
∫

d
dk

(2π)d

∑
ω

e
i(k·x−ωτ)

β~
f(ω,k), (2.35b)

the inverse of which is

f(ω,k) =

∫ L

0

dx

∫ β~

0

dτ e
−i(ωτ−k·x) f(τ,x). (2.35c)

If we let p = (p0, p1) = (v−1
s ω, k), then in momentum space the action Eqn.[2.33b] becomes

S =
~

Lβ~
∑
p

{
i
kω

π
θ(p)ϕ∗(p) +

vsK

2π
k2|θ(p)|2 +

v2

2πK
k2|ϕ(p)|2

}

=
~
2

1

Lβ~
∑
p

(
θ∗(p) ϕ∗(p)

)k

π

kvsK iω

iω kvs/K



θ(p)
ϕ(p)


=

~
2

1

Lβ~
∑
p,p′

(
θ∗(p) ϕ∗(p)

) δp,p′π

ω2 + vsk2

 vs/K −iω/k

−iω/k vsK



−1θ(p′)

ϕ(p′)

 .

So we have found a matrix Green’s function (the thing that is being inverted) in Fourier
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space which we simply need to convert to real space to find that

G(r) =

〈θ(r)θ(0)〉 〈θ(r)ϕ(0)〉

〈ϕ(r)θ(0)〉 〈ϕ(r)ϕ(0)〉

 =

 1
4K

ln
(
x2+v2

s(τ+ε)2

ε2

)
−i arg {vsτ + ε+ ix}

−i arg {vsτ + ε+ ix} K
4

ln
(
x2+v2

s(τ+ε)2

ε2

)
 .

(2.36)

Here we have completely solved the quadratic model in 1+1 dimensions. The structure of

this model was basically that of the archetypal gaussian model in euclidean d+ 1 dimensions

which underpins all of what will follow:

Z =

∫
D[φ]e−S[φ] S[φ] =

1

2g

∫ β~

0

dτ

∫
d
dx

{
1

v2
(∂τ φ)2 + (∇xφ)2

}
. (2.37a)

Before we proceed, now seems a good time to mention various limits that we will take in our

future dealings with models of this type.

At very low temperatures β~ � L/v, so in the thermodynamic limit (L → ∞) it is

prudent to draw the space and time degrees of freedom together as r = (vτ, x) and we see

that the model with d spatial dimensions and 1 temporal dimension is equivalent to a model

with d+ 1 spatial dimensions and no temporal dimensions,

S[φ] =
1

2g

∫
Rd+1

d
d+1r (∇rφ)2 . (2.37b)

On the other hand, at high temperatures β~ � L/v, we might expand the field as in

Fourier modes as φ(τ, x) = φ(x) + φ1(x) cos(τπ/β~) + . . . and then we may as well throw

away the time dependence as high order harmonics which will vanish in a stationary phase

approximation. In such a thermally static approximation the model becomes one with d

spatial dimensions and no temporal dimensions,

S[φ] =
β~
2g

∫
Rd
d
dr (∇rφ)2 . (2.37c)

In any case, the Green’s function for this unperturbed model is readily available. This

kind of system however forms a foundation for future, more complicated, scenarios.
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2.3 The Sine-Gordon Model

2.3.1 Sine-Gordon Overview

We will top off this discussion of one dimensional systems by considering a particularly

interesting 1D system, the sine-Gordon model. This system is something that will be of

special interest to us later, because not only will we see it appear explicitly when we develop

a mean field description of a striped system, but also because we will see that this model is

part of the same universality class as another system we will draw from, the XY model.

After a broad introduction to the sine-Gordon model we will embark upon an analysis

via a renormalization group treatment. This will afford us the opportunity to familiarize

ourselves with renormalization techniques which make up a large part of the later original

content of this thesis.

The sine-Gordon model (in two Euclidean dimensions) is described by the action

ZSG =

∫
D[φ]e−SSG[φ] SSG =

∫
d

2r

{
1

8πd
(∇rφ)2 + 2µ cosφ

}
. (2.38)

The name “sine-Gordon” is a poor pun on “Klein-Gordon”, to which this model is superfi-

cially similar. No really.

The sine-Gordon model crops up naturally in the context of bosonization when we try to

incorporate lattice effects. In particular, if there is a finite lattice spacing, a, momentum is

only conserved modulo 2π/a, and so the particles are allowed to loan and borrow momentum

from the lattice. Such a process is referred to as an umklapp (from the German umklappen

– to turn over) and corresponds physically to the scattering of a pair from one side of the

Fermi surface to the other. To see how this gives us an interaction of the sine-Gordon form

we look to Eqn.[2.13]. In the presence of a lattice and at full filling the term in the exponent

ρ0x is an integer and so e
2imπρox no longer oscillates quickly acting to smear out the density,
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but is just equal to 1. Then when looking at density-density interactions we need to include

terms coming from e
2imπϕ(x) , the lowest order of which gives us a term ρ2

0 cos[2ϕ(x)] which

gives us precisely the form of the SG model.

The sine-Gordon model also finds a home throughout physics; for example the classical

sine-Gordon equation in Minkowski d+ 11 dimensions

(
∇2
x −

1

v2
∂t

2

)
φ(x, t) = sinφ(x, t) (2.39)

may be used to describe the phase slip in a 2D Josephson tunnel juction[59] and also

appears as the continuum limit of the Frenkel-Kontorova model of propagation of crystal

dislocations[60].

In light cone coordinates, p = 1
2
(x+ vt), q = 1

2
(x− vt) the classical sine-Gordon equation

in 1 + 1 Minkowski dimensions adopts the form

∂p ∂q φ(p, q) = sinφ(p, q), (2.40)

for which form, Ablowitz et al [61] have formulated the inverse scattering problem and hence

solved the initial value problem. In particular the classical sine-Gordon equation in 1 + 1

dimensions admits soliton solutions such as

φu(x, t) = 4 arctan exp

{
x− ut√

1− (u/v)2

}
,

which are referred to as kinks.

As with many similar integrable systems, there exists a Backlund transformation between

solutions of the classical sine-Gordon equation. We notice that if φ is a solution of Eqn.[2.40],

then another solution ψ can be found due to the construction

1The d here is the actual dimension of space where as the d in the action Eqn.[2.38] is the scaling dimension
of the sine-Gordon model. Apologies for reusing a letter.
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∂p ψ = ∂p φ+ 2a sin

(
ψ + φ

2

)
∂q ψ = −∂q φ+

2

a
sin

(
ψ + φ

2

)

Coleman[62] has shown that the sine-Gordon model Eqn.[2.38] can be mapped directly

onto the massive Thirring model, which is exactly diagonalizable by Bethe ansatz [63].

By quantizing the kink solutions of the sine-Gordon model, Zamolodchikov[64] has calcu-

lated the exact S-matrix of the sine-Gordon model which is in agreement with that calculated

for the massive Thirring model by Korepin[65].

Lukyanov and Zamolodchikov [66] have found many exact expectation values of local

fields in the sine Gordon model which we will refer to later1.

For the time being, in order to get a feel for what is going on in the sine-Gordon model,

we will inspect this model from a renormalization group perspective.

2.3.2 Renormalization Group Analysis

The concept of renormalization group (for a review of which see [67]), which we will encounter

throughout this thesis, was developed in its modern form by Kenneth Wilson [68, 69], for

which he was awarded the 1982 Nobel prize.

The fundamental idea sitting beneath the renormalization group is startlingly simple.

We imagine that it is possible to declare for a given system a fundamental length scale a

separating high and low energy fluctuations; this could be an ultraviolet cutoff, as in the

example we will pursue, or the size of a block of spins, as in Kadanoff’s analysis of the Ising

model (of which a particularly fine explanation is given in [70]). Consider now a rescaling of

1Our choice of parametrisation for the sine-Gordon model corresponds directly to that of Lukyanov and
Zamolodchikov (this being why it is written as it is, for ease of comparison). Their parameter β corresponds
to our scaling dimension via d = 2β2.
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a, a → ã > a, it may so happen that the effective action at length scales > a is invariant

under such a transformation except for a redefinition of the system’s coupling parameters

{Ji} → {J̃i}; in which case we will call the system renormalizable. Then imagine repeating

the same rescaling procedure; every time we rescale we are left with the same model but with

different coupling constants, so we can come up with running coupling parameters {Ji(a)}

that flow with the fundamental scale a. The nature of this flow can tell us a great deal

about a model because it tells us how the system operates as we move toward macroscopic

length scales. Of particular interest are the fixed points at which the coupling constants

are unchanged by variations in a, because these divide the flow of couplings into regimes of

qualitatively different behaviour.

Without an example before us this description of the renormalization group (RG) ap-

proach is not so clear, so we will procede to work out the renormalization flow within the

Sine Gordon model.

Pressing on, our first goal in our quest to find the RG flow of the SG model is to find an

effective theory of the low energy excitations in terms of an ultraviolet momentum cutoff Λ.

Having then coarse-grained the system, we will inspect how the system responds to variation

of the UV scale.

With an intrinsic momentum cutoff, Λ, the Fourier expansion of the field φ in Eqn.[2.38]

adopts the form (from now on we won’t bother to put vectors in bold face unless there is a

risk of ambiguity)

φ(r) =

∫
0<|p|<Λ

d
2p

(2π)2e
ip·r φ(p). (2.41a)

In order to coarse grain this system we want to extract out a shell of high momentum

fast modes. To this end we shall define fast and slow modes with respect to a granularity

parameter λ,
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φλ(r) =

∫
0<|p|<Λ

λ

d
2p

(2π)2e
ip·r φ(p) (Slow) (2.41b)

φ+(r) =

∫
Λ
λ
<|p|<Λ

d
2p

(2π)2e
ip·r φ(p) (Fast) (2.41c)

We can think of the SG action as a perturbation atop the action of a free field:

SSG[φ] = S0[φ] + 2µ

∫
d

2r cosφ(r) S0[φ] =
1

2

∫
d

2r
1

4πd
(∇rφ(r))2 , (2.42)

Given that the fast field, φ+, and slow field, φλ, are automatically orthogonal to one another,

we can divide the partition function into an integral over the two sectors

Z =

∫
D[φλ]e

−Sλ0

∫
D[φ+]e−S

+
0 −2µ

∫
d2r cosφ(r) ,

where S+
0 and Sλ0 are the free action restricted to the fast and slow sectors respectively.

The coarse graining of the system is accomplished by integrating over the fast modes. To

this end we denote by Z+
0 and 〈. . .〉+0 the partition function and thermal average with respect

to the fast action S+
0 . We will also employ the fast propagator

G+
0 (r1 − r2) = 〈φ+(r1)φ+(r2)〉+0 =

∫
Λ
λ
<|p|<Λ

d
2p

(2π)2e
ip·(r1−r2) 4πd

p2
. (2.43)

Upon integrating out the fast field the partition functions becomes

ZSG = Z+
0

∫
D[φλ]e

−Sλ0
〈
e
−2µ

∫
d2r cos(φλ(r)+φ+(r))

〉+

0
.

Now treating µ as a small parameter, we may expand the exponential and then re-

exponentiate to find
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ZSG = Z+
0

∫
D[φλ]e

−Sλ0
〈

1− 2µ

∫
d

2r cos (φλ(r) + φ+(r))

+ 2µ2

∫
d

2r1d
2r2 cos(φλ(r1) + φ+(r1) cos(φλ(r2) + φ+(r2)

〉+

0
+O(µ3)

= Z+
0

∫
D[φλ] e

−Sλ0 e−2µ
∫
d2r〈cos(φλ(r)+φ+(r))〉+0

× e
−2µ2

∫
d2r1d2r2〈cos(φλ(r1)+φ+(r1))〉+0 〈cos(φλ(r2)+φ+(r2))〉+0

× e
−2µ2

∫
d2r1d2r2〈cos(φλ(r1)+φ+(r1)) cos(φλ(r2)+φ+(r2))〉+0 + O(µ3).

We can perform the relevant averages to find that

〈cos(φλ(r) + φ+(r))〉+0 = cosφλ e
− 1

2
G+

0 (0)

〈cos(φλ(r1) + φ+(r1)) cos(φλ(r2) + φ+(r2))〉+0

=
1

2
e
−G+

0 (0)
{
e
G+

0 (r1−r2) cos (φλ(r1)− φλ(r2)) + e
−G+

0 (r1−r2) cos (φλ(r1)− φλ(r2))
}
,

which shows us that the partition function can be rewritten as

ZSG = Z+
0

∫
D[φλ] exp

{
− Sλ0 − 2µe−

1
2
G+

0 (0)

∫
d

2r cosφλ(r)

+ µ2
e
−G+

0 (0)

∫
d

2r1d
2r2

(
e
G+

0 (r1−r2) − 1
)

cos (φλ(r1)− φλ(r2))

+ µ2
e
−G+

0 (0)

∫
d

2r1d
2r2

(
e
−G+

0 (r1−r2) − 1
)

cos (φλ(r1) + φλ(r2))
}

+ O(µ3).

Now, G+
0 (r) is built up of Fourier modes with momenta within a fine slither Λ/λ < |p| < Λ

and hence is dominated by the region |r| ∼ λ/Λ� 1. Notice that because G+
0 (r) is small for

|r| > 0, so is e
±G+

0 (r) − 1 ∼ ±G+
0 (r).

In our coarse graining of the partition function, it hence suffices to expand as a Taylor

series in r1 − r2. Setting
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u =
1

2
(r1 + r2) v = r1 − r2

r1 = u+
1

2
v r2 = u− 1

2
v,

the relevant expansions are

φλ(r1) + φλ(r2) ≈ 2φ(u)

φλ(r1)− φλ(r2) ≈ v.∇uφλ(u)

cos(φλ(r1)− φλ(r2)) ≈ 1− 1

2
v2|∇uφλ(u)|2.

Now to leading order the partition function has become

ZSG = Z+
0

∫
D[φλ] exp

{
− 1

2

∫
d

2r
1

4πd
(∇rφλ(r))

2 − 2µe−
1
2
G+

0 (0)

∫
d

2r cosφλ(r)

+ µ2
e
−G+

0 (0)

∫
d

2ud2v
(
e
G+

0 (v) − 1
)(

1− 1

2
v2|∇uφλ(u)|2

)
+ µ2

e
−G+

0 (0)

∫
d

2ud2v
(
e
−G+

0 (v) − 1
)

cos (2φλ(u))
}

+ O(µ3).

We can drop the constant term as this will just rescale the free energy density, which we

won’t be looking at. The cos 2φλ term represents a higher harmonic than anything else at

play here so we will neglect it. Then setting

A = e
−G+

0 (0)

∫
d

2v
(
e
G+

0 (v) − 1
)
v2,

Z takes the form

ZSG ≈ Z+
0

∫
D[φλ] exp

{
− 1

2

∫
d

2r

(
1

4πd
+ Aµ2

)
(∇rφλ(r))

2−2µe−
1
2
G+

0 (0)

∫
d

2r cosφλ(r)
}
.

This now looks more or less like what we started with, except that the field here is φλ
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rather than φ. We can get this in terms of φ by rescaling distances and momenta via r → λr,

p → 1
λ
p, which turns Eqn.[2.41b] into Eqn.[2.41a]. Now the effective partition function for

slow modes, as a function of the granularity, is given by

ZSG(λ) ≈
∫
D[φλ]e

− 1
2

∫
d2r

{
1

4πdλ
(∇rφ(r))2+2µλ cosφ(r)

}
, (2.44)

where the running coupling constants are defined by

µλ = λ2
e
− 1

2
G+

0 (0) µ (2.45a)

d−1
λ = d−1 + 4πµ2

e
−G+

0 (0)

∫
d

2v
(
e
G+

0 (v) − 1
)
v2 (2.45b)

Quite clearly this model is renormalizable – we have shown that the coarse grained action

Eqn.[2.44] does not alter its form under changes in the UV scale with running coupling

constants given by Eqn.[2.45]. Now we just need to work out how the running coupling

constants flow. To get a handle on this, we make the outer momentum shell as slender as

possible by putting Λ/λ = Λ − dΛ, i.e. λ = 1 + dΛ/Λ. This allows us to write the fast

propagator as

G+
0 (r1 − r2) =

∫
Λ−dΛ<|p|<Λ

d
2p

(2π)2e
ip·(r1−r2) 4πd

p2

=

∫
Λ−dΛ<|p|<Λ

d|p| d
π|p|

∫ 2π

0

dθei|p||r| cos θ

=

∫
Λ−dΛ<|p|<Λ

d|p| d
π|p|
× 2πJ0(|p||r|)

= 2d J0(Λ|r|)dΛ

Λ

where Jα(x) is the Bessel function of the first kind Jα(x) =
∑

m
(−1)m

m!
(x/2)2m+α

(m+α)!
, so that

J0(0) = 1.

The running coupling constants thus become
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µλ = µ+ (2− d)
dΛ

Λ
µ

d−1
λ = d−1 + 4πµ2

∫
d

2r 2dJ0 (Λ|r|)dΛ

Λ
= d−1 +Bdµ2dΛ

Λ5

where B is a dimensionless constant coming from the integral. Now by writing µλ = µ+ dµ

and d−1
λ = d−1 + dd−1, we have a set of differential equations describing the flow of the

running coupling constants

dµ

µ
= (2− d)

dΛ

Λ
(2.46a)

d(d−1)

(d−1)
= Bµ2dΛ

Λ5
. (2.46b)

The all important fixed points for this flow occur when the scaling dimension is exactly

two. Homing in on this region, the flow is approximately

1

2
(d− 2)d(d) =

(√
B
µ

Λ

)
d

(√
B
µ

Λ

)
⇒ (d− 2)2 = 4B

µ2

Λ2
+ ν.

We hence see that the flow is hyperbolic as illustrated in figure Fig.[2.2].

The implication of this flow is that there is a phase transition between strong and weak

coupling limits around the critical scaling dimension d = 2. Even in the limit µ → 0 this

transition persists and tells us that for d > 2 the effect of the cosine interaction is negligible

whereas for d < 2 it will always dominate.
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Figure 2.2: The RG flow of the Sine Gordon model: notice that even as µ→ 0 as transition is present

at the critical scaling dimension d = 2.
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2.3.3 Exact Properties

As for the correlation functions, notice that the scaling dimension is defined such that

〈cosφ(r1) cosφ(r2)〉0 ∼ |r − r
′|−2d;

this means that cosφ scales as (length)−d and hence µ scales as (length)d−2 and hence the

transition is at d = 2. This is why we call d the scaling dimension of the cosine perturbation.

The transition is also apparent when we look at the expectation values within the SG

model calculated by Lukyanov and Zamolodchikov; after a bit of algebra their expression can

be written

〈cosφ〉 =
Γ
(
1− 1

2−d

)
Γ
(

1
2−d

) Γ
(
−d

2

)
Γ
(
d
2

) Γ
(

1
2−d −

1
2

)
Γ
(

1
2
− 1

2−d

) [Γ
(
1− d

2

)
Γ
(
d
2

) πµ

] d
2−d

. (2.47)

In this form we can also see that something interesting ought to happen at the d = 1

point. That is actually the model you would arrive at upon bosonizing free fermions, so d = 1

represents an exactly solvable limit.

As we would expect from the renormalization group analysis, there is a divergence in the

correlation function as the critical scaling dimension d = 2 is approached.
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Chapter 3

The BKT Transition and Two Dimensional
Systems

3.1 Hohenberg-Mermin-Wagner Theorem

3.1.1 Spontaneous Symmetry Breaking and Goldstone Modes

Melvyn Bragg once said that “Spontaneous symmetry breaking” is one of the most beautiful

phrases in the English language. Putting aesthetics to one side, it is certainly one of the

most important concepts in modern physics. Very generally, a system is said to exhibit

spontaneous symmetry breaking if the underlying laws governing it are invariant under some

symmetry transformation, whereas the system itself is changed by that transformation. In

more physical language we would say that a spontaneously broken symmetry of a Hamiltonian

is such that the ground state of the Hamiltonian is not an eigenstate of the generator of the

symmetry.

As an everyday picture of spontaneous symmetry breaking, imagine you are at a posh

dinner party with a number of people at a circular table. Each place is set and between

each place is a wine glass. There is a perfect symmetry to the table with regards to the

glasses, and if you were to move any number of places clockwise or anticlockwise you would

see a glass in the same place. You dont know the convention for which glass is yours and it

appears that none of the other guests do1, so, trying not to make a faux pas, you all wait

1Bread on the left, drink on the right – b-d – a mnemonic for which is to place your hands palm on the
table.
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to see what someone else does before reaching for a glass – the symmetry remains unbroken.

Now your host arrives and proposes a toast, he lifts the glass to his right and you and all

of your compatriots follow suit. The symmetry of the table is now broken, moreover this

symmetry breaking has been spontaneous.

Figure 3.1: A cartoon example of spontaneous symmetry breaking: There is a left-right symmetry in

the positioning of the glasses until someone takes a drink at which point the symmetry is

spontaneously broken.

As a more physical and less glib example of spontaneous symmetry breaking consider an

ordinary iron bar magnet. Any schoolchild could tell you1 that in a ferromagnet all the spins

align along the same axis, but there couldn’t be anything in the physics that decides what

that axis is, else every bar magnet would have the same orientation and the universe would

be a rather different place. So if there is nothing inherent to the physics that decides what

axis the spins in a magnet should point along; they must all conspire to align in one direction

simultaneously – i.e. the symmetry is broken spontaneously.

To be more definite we construct an action describing classical magnetism using Ginzburg-

Landau theory. The action should depend only upon the local magnetization m = (mx,my,mz)

and its derivatives, so we want the functional form to be

S[m] =

∫
d
drL(m,∇m . . . ).

1A child of five would understand this. Send someone to fetch a child of five.
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The action should be translationally and rotationally invariant and in the absence of any

external field we ought to be able to rotate between the sectors of m, so the kind of terms

we should expect to see in the action are

S[m] =

∫
d
dr

{
t

2
|m|2 + u|m|4 + · · ·+ K

2
(∇m)2 + L(∇2m)2 + · · · − h ·m

}
,

where t, u,K, L . . . are phenomenological parameters, and h is an applied external field. For

our purposes we can say L = 0.

We can just take a saddle point approximation and minimize S over m. For K > 0 the

action is minimized by m(r) = mn where the constant m minimises t
2
m2 + um4 − |h|m and

n is a unit vector pointing in the direction of the external field h. In the case where |h| = 0

we have m =
√
−t/4u if t < 0 and m = 0 otherwise.

When |h| = 0 there is nothing in the model that determines the direction of n. The

magnitude of the magnetization is fixed by minimizing the action but the direction is fixed

by a classic example of spontaneous symmetry breaking.

There is a degenerate manifold of ground states corresponding to all the possible directions

for the magnetization to point along. This implies the existence of excitations made up of

gentle rotations through this manifold. Such excitations are called spin waves in this system

and Goldstone modes more generally. Goldstone modes are present in any system exhibiting a

continuous, spontaneously broken symmetry, and there will be one for each degree of freedom

in the ground state manifold. This result is referred to as Goldstone’s theorem.

Let us now construct the Goldstone modes themselves. As n is a unit vector we can

parametrize it as n = (π1, π2,
√

1− π2
1 + π2

2). These fields πi are the Goldstone modes.

Pulling out the constant minimum, S0, of the action, we can re-write in terms of these modes

alone as
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S − S0 =
Km2

2

∫
d
dr(∇n)2 ≈ Km2

2

∫
d
dr
{

(∇π1)2 + (∇π2)2 +O(π4)
}
.

With no loss in generality we can say that the spontaneous magnetization is in the (0, 0, 1)

direction, then we could treat the Goldstone modes as small perturbations and drop the

O(π4) terms.

Left now with a quadratic action we can easily calculate the first correction the the

magnetization M = 〈mz〉 = m−m 〈π2
1〉 −m 〈π2

2〉. We consider

〈
π2

1

〉
=

1

Km2

∫
d
dk

(2π)d
1

k2

Now for d ≤ 2 this integral is divergent. This is simply because the Goldstone modes are

massless.

We are led to conclude that the spontaneous magnetization itself is a fallacy, and that for

d ≤ 2 this long range order simply cannot develop. Intuitively we can see why this should

be the case as the massless Goldstone modes cost next to nothing and hence shake any order

apart.

This is an example of the Hohenberg-Mermin-Wagner theorem which states that there is

no possible long range order at finite temperatures in a system with continuous spontaneous

symmetry breaking in two or fewer dimensions.

Our informal discussion here was intended to put across the ideas of spontaneous symme-

try breaking and the Hohenberg-Mermin-Wagner theorem, but we have by no means proven

HMW theorem even for the model at hand. At best we have shown that perturbation theory

fails when we try to expand around an ordered state. For a formal proof of HMW it is

simplest to turn to the Bogoliubov inequality.
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3.1.2 The Bogoliubov Inequality

To prove the Hohenberg-Mermin-Wagner theorem in a rigorous manner, it is useful to con-

sider an inequality due to Bogoliubov. In this section we will state and prove the validity of

this inequality.

We consider the thermal expectation of some operator X in a system evolving according

to a Hamiltonian H,

〈X〉 =
tr
{
Xe

−βH }
tr {e−βH }

(3.1)

Bogoliubov’s inequality in a very general form states that for any non-zero operators A

and C on the same Hilbert space as the Hamiltonian H

1

2

〈[
A,A†

]
+

〉
≥ kBT

〈[
C†, A

]〉2〈
[[C,H] , C†]

〉 . (3.2)

To prove this inequality it is expedient to introduce the Bogoliubov inner product1

(A,B)BV =
∑

Em 6=En

〈n|A† |m〉 〈m|B |n〉Wm −Wn

En − Em
, (3.3)

where the sum is taken over eigenstates {|n〉 , En} of the Hamiltonian and the weight factors

W are given by

W =
e
−βE

tr{e−βH }
. (3.4)

To prove this inequality we first note that if Em < En then Wm > Wn, so that the ratio

of Wm −Wn and En − Em is always positive. We then manipulate as follows

1Is this really an inner product? Conjugate symmetry and linearity are clearly satisfied, but it is not a
priori obvious that (·, ·)BV is positive-definite. Actually this is positive definite because each term in the
summation for (A,A)BV is proportional to | 〈m|A |n〉 |2, each of these factors is greater than or equal to zero
and at least one of these must be non-zero.
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Wm −Wn

En − Em
=
Wm +Wn

En − Em
Wm −Wn

Wm +Wn

=
Wn +Wm

En − Em
e
−βEm − e

−βEn

e−βEm + e−βEn

=
Wn +Wm

En − Em
e
βEn−Em

2 − e
−βEn−Em

2

e
βEn−Em

2 + e
−βEn−Em

2

=
Wn +Wm

En − Em
tanh

(
β
En − Em

2

)
≤ β

2
(Wn +Wm),

in which we have used tanhx ≤ x for all x ≥ 0. From this inequality we see that

(A,A)BV ≤
β

2

∑
Em 6=En

〈n|A† |m〉 〈m|A |n〉 (Wm +Wn)

≤ β

2

∑
n

〈n|A†
∑
m

|m〉 〈m|AWn |n〉+
β

2

∑
m

〈m|A
∑
n

|n〉 〈n|AmWm |m〉

=
β

2

∑
n

〈n|A†A e
−βH

tr{e−βH }
|n〉+

β

2

∑
m

〈m|AA† e
−βH

tr{e−βH }
|m〉

=
β

2

tr
{
A†Ae−βH

}
tr {e−βH }

+
β

2

tr
{
AA†e−βH

}
tr {e−βH }

=
β

2

〈[
A,A†

]
+

〉

Applying the Schwartz inequality to the Bogoliubov inner product we then have

(A,A)(B,B) ≥ |(A,B)|2 ⇒ β

2

〈[
A,A†

]
+

〉
(B,B)BV ≥ |(A,B)BV|2 (3.5)

In particular, choosing B =
[
C†, H

]
we find that
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(B,B)BV =
∑

Em 6=En

〈n| [H,C] |m〉 〈m|
[
C†, H

]
|n〉Wn −Wm

Em − En

=
∑

Em 6=En

〈n| [H,C] |m〉 〈m| (En − Em)C† |n〉Wm −Wn

En − Em

=
∑
mn

〈n| [H,C] |m〉 〈m| e
−βH

tr{e−βH }
C† |n〉 −

∑
mn

〈n| [H,C] |m〉 〈m|C† e
−βH

tr{e−βH }
|n〉

=
tr
{

[H,C] e−βH C†
}

tr {e−βH }
−

tr
{

[H,C]C†e−βH
}

tr {e−βH }

=
〈[
C†, [H,C]

]〉
.

Similarly,

(A,B)BV =
〈[
C†, A†

]〉
.

Putting all of these into to Schwartz inequality we immediately arrive at

β

2

〈[
A,A†

]
+

〉 〈[
C†, [H,C]

]〉
≤ 〈[C,A]〉2

and so the Bogoliubov inequality is proven.

The Bogoliubov inequality places a strict upper bound on the thermal expectation value

of any observable. As such, to prove Hohenberg-Mermin-Wagner theorem it is sufficient to

simply demonstrate that this upper bound is zero for the order parameter at long distances.

3.1.3 An Example System: The XY Model

The Hohenberg-Mermin-Wagner is very general but the proof is rather difficult for the general

case. The Bogoliubov inequality helps us prove it for specific systems. The proof for a given

symmetry (XY/O(2), Heisenberg/O(3)) goes along similar lines so we will focus in this

section on a specific system. The case originally studied by Mermin and Wagner[71] was the
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Heisenberg model, but for the remainder of this chapter we will be looking into the XY model

so this will be the case we prove here. A proper introduction to the XY model is coming up

later, for the time being let us just consider the Hamiltonian

H = −
∑
ij

Jij cos(φi − φj)− h
∑
i

cosφi.

We need not be too restrictive about the nature of the exchange interaction, but we will

demand that it is of even parity and that it is sufficiently short ranged that Q =
∑

r |J(r)|r2

remains finite.

To exploit the Bogoliubov inequality, we want to pick operators A and C to put into the

Bogoliubov inequality Eqn.[3.2] such that the order parameter m = 〈
∑

i cosφi/N〉 comes in.

To get this term to come out we can set

A =
∑
i

e
−ikri sinφi C =

∑
i

e
−ikri ∂

∂φi

then we can calculate the appropriate commutators as follows

〈[
[C,H] , C†

]〉
=
∑
ij

e
ik(ri−rj)

〈
∂2H

∂φi∂φi

〉
=
∑
ij

2Jij(1− e
ik(ri−rj) ) 〈cos(φi − φj)〉+ h

∑
i

〈cosφi〉

= 2N
∑
rij

|J(rij)|(1− cos krij) 〈cos(φi − φj)〉+ hNm

≤ N

(
k2
∑
r

|J(r)|r2 + hm

)
= N(Qk2 + hm)

〈[C,A]〉 =
∑
i

〈cosφi〉 = Nm

〈[
A†, A

]
+

〉
=
∑
ij

2 〈sinφi sinφj〉 eik(ri−rj)
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Sticking these bits into the Bogoliubov inequality we see that

∑
ij

〈sinφi sinφj〉 eik(ri−rj) N(Qk2 + hm) ≥ kBTN
2m2,

rearranging and integrating over all momenta we arrive at

kBTm
2

Q

∫
d
dk

1

k2 + hm
Q

≤
∑
i

〈
sin2 φi

〉
N

≤ 1.

For dimension d < 3 this integral has an infrared divergence as h→ 0. The only way for

the inequality to hold then is if m → 0 (or T → 0 if we allow that limit). We thus see very

clearly that the system prohibits spontaneous magnetization at finite temperatures, which is

the essence of Hohenberg-Mermin-Wagner theorem.

3.2 The 2D XY Model

3.2.1 XY Model Overview

Let us picture a two dimensional square lattice of classical 2D spins of unit magnitude,

spaced an equal distance a apart from one-another. We suppose that these spins interact via

a constant nearest neighbour interaction such that a pair gives an energy contribution of −J

when they are parallel and +J when they anti-parallel, with a continuum of adjoining values

in between these limits. The action we construct, which is the simplest possible action for a

phase like variable e
iθ in 2D, must then be

SXY[θ] = −βJ
∑
<ij>

si · sj = −βJ
∑
<ij>

cos (θi − θj) , (3.6)

where the summation is taken over nearest neighbouring sites and in which we have parametrized

our unit spins by s = (cos θ, sin θ).
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Figure 3.2: Set-up of the 2D XY Model

The first thing we should do with this model, as with any model, is to investigate its

extremal limits, so let us look into the high and low temperature regimes in some detail.

3.2.2 2D XY Model at High Temperatures

At high temperatures, βJ � 1, it seems eminently sensible to attempt to expand the partition

function for the 2D XY model as a power series in βJ . So doing, to lowest order we find

ZXY =

∫
D[θ]e−SXY[θ] =

∫ 2π

0

(∏
k

dθk
2π

)
e
βJ
∑
<ij> cos(θi−θj)

≈
∫ 2π

0

(∏
k

dθk
2π

) ∏
<ij>

(1 + βJ cos(θi − θj))

=

∫ 2π

0

(∏
k

dθk
2π

)[
1 + βJ

∑
<ij>

cos(θi − θj) + (βJ)2
∑

<ij>,<kl>

cos(θi − θj) cos(θk − θl) + . . .

]
.

To approach this sum we just need the following integrals:

∫ 2π

0

dθ

2π
(βJ) cos(α− θ)(βJ) cos(θ − γ) =

βJ

2
(βJ) cos(α− γ)∫ 2π

0

dθ

2π
(βJ) cos(α− θ) = βJδαθ.

We can now set up a kind of proto-diagrammatic expansion; denoting βJ cos(θi − θj) by

an edge linking the sites i and j, these integrals tell us that linking the edge from i to j to the

48



edge from j to k gives βJ
2

times an edge from i to k, and that edges that link onto themselves

give a contribution to the sum of βJ whilst edges with a free tail give a contribution of

zero. These diagrammatic rules are illustrated in Fig.[3.2.2]. The net result is that the only

diagrams contributing to the partition function are those that are topologically circular.

We now have that the partition function for the 2D XY model at high temperatures can

be thought of as the sum over all loops on the lattice, with each loop contributing 2
(
βJ
2

)`
to

the partition function, where ` is the length of the loop. The first such contribution is shown

in Fig.[3.2.2].

w

w

w

w

w

w

w

w

�
�
�
�
�
�
��

= βJ
2

w = 0

w&%
'$

= βJ

Figure 3.3: Diagrammatic rules for the 2D XY model at high temperatures
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Figure 3.4: The first non-zero diagram for the 2D XY model at high temperatures

The very same argument can be applied to the site-to-site correlation function

〈sm · sn〉 =

∫
D[θ] cos(θm − θn)e−SXY[θ]

≈
∫ 2π

0

(∏
k

dθk
2π

)
cos(θm − θn)

∏
<ij>

(1 + βJ cos(θi − θj)) .

The diagrammatic rules are unchanged, the only difference being that we start out with an

edge from site m to site n at the outset. Immediately we see that the only contributions to

the correlation function come from links that complete a circuit between m and n and the

lowest order contribution will come from the shortest route on the lattice from n to m, as

illustrated in Fig.[3.2.2].

As such, to leading order the correlation function is simply given by

〈sm · sn〉 ∼
(
βJ

2

)‖rm−rn‖#
= e

− 1
ξ
‖rm−rn‖# ,

where ‖·‖# is the norm (i.e. the distance) on the lattice (which becomes the Euclidean norm

in the limit where the lattice vanishes) and, ξ, is the correlation length
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Figure 3.5: Diagrammatic evaluation of the correlation function for the 2D XY model at high
temperatures

ξ =
a

ln 2− ln βJ
.

We can now say that in the high temperature phase correlations vanish exponentially

with correlation length ξ and hence this represents a disordered phase.

3.2.3 2D XY Model at High Temperatures (again)

One might worry a little about the very first step we made in which we approximated

e
βJ cos(θi−θj) by 1 + βJ cos(θi − θj), and then proceeded to consider higher orders in βJ .

There is clearly some concern regarding consistency.

Actually there is no need to worry because we can avoid this approximation entirely.

Consider the expansion of the exponential in terms of the modified Bessel function of the

first kind

e
βJ cos(θi−θj) = I0(βJ) + 2

∞∑
k=1

Ik(βJ) cos k(θi − θj)

The relevant integral we require now is
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∫ 2π

0

dθ

2π
Ik(βJ) cos k(α− θ)Il(βJ) cos l(θ − γ) =

Ik(βJ)

2
Il(βJ) cos l(α− γ)δkl

The Kronecker delta in this integral tells us that the various Fourier modes completely

decouple from one another. We could set up a diagrammatic procedure for this problem akin

to the prior approximation with different diagrams for each harmonic, but the point is that

different harmonics don’t join up to one another. For the correlation function we actually

want to calculate only the first harmonics that give any contribution, and we still need to

count loops so one can see straight off that the lowest order contribution will be

〈sm · sn〉 ∼ I0(βJ/2)R
2−‖rm−rn‖#I1(βJ/2)‖rm−rn‖# , (3.7)

where R is the system size. We haven’t yet taken a limit, but it is now perfectly safe to do

so. Working with small βJ we can just Taylor expand these Bessel functions to find

〈sm · sn〉 ∼
(

1 +
(βJ)2

16

)R2−‖rm−rn‖# (βJ
4

+
(βJ)3

128

)‖rm−rn‖#
, (3.8)

So we see that our initial estimate wasn’t half bad at all.

3.2.4 2D XY Model at Low Temperatures

We should now be confident in saying that at high temperatures the 2D XY model is dis-

ordered with exponential decay in correlation functions. Now as for the behaviour in low

temperatures, where the correlation length becomes much larger than the lattice spacing and

our loop expansion breaks down, we might treat the lattice spacing a as a small parameter

and attempt to replace the action with that of a continuum model.
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SXY = −βJ
∑
<ij>

s(ri) · s(rj)

= −βJ
∑
i

{s(ri) · s(ri + aex) + s(ri) · s(ri + aey)}

= −βJ
∑
x

∑
y

s(x, y) · [s(x+ a, y) + s(x, y + a)]

≈ −βJ
∑
x

a
∑
y

a

[
2

a2
s(r) · s(r) +

1

2a
(∂x + ∂y )s(r) · s(r) +

1

2
s(r) · (∂x 2 + ∂y

2)s(r)

]
−−→
a→0

2βJL2 +
βJ

2

∫
d

2r (∇s)2 .

Remembering that each s should have unit magnitude, we realize that, up to irrelevant

constants, the continuum limit of the 2D XY model is the 2D O(2) nonlinear sigma model

(we will discuss the nonlinear sigma model in detail later on)

ZXY −−→
a→0

ZO(2) =

∫
D[s ∈ R2]δ(s2 − 1)e−S[s] S[s] =

βJ

2

∫
d

2r (∇s)2 . (3.9)

Among all the nonlinear sigma models the O(2) case is particularly interesting because

it admits a trivial parametrization,

s =

cosφ

sinφ

 =⇒ Z =

∫
D[φ]e−

βJ
2

∫
d2r(∇φ)2

.

A naive calculation of the correlation functions then proceeds as follows
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〈s(r) · s(0)〉 = 〈cos(φ(r)− φ(0))〉 = e
− 1

2〈[φ(r)−φ(0)]2〉 ∼ e
〈φ(r)φ(0)〉

〈φ(r)φ(0)〉 =

∫ 1/a
d

2p

(2π)2

e
ip·r

βJp2
=

1

2πβJ

∫ |r|/a
dx

x

∫ 2π

0

dθ

2π
e
ix cos θ

∼ − 1

2πβJ
ln(|r|/a)

∴ 〈s(r) · s(0)〉 ∼
(
a

|r|

) 1
2πβJ

We then see that, as opposed to the high temperature case where there was exponential

decay in correlation functions and hence no long ranged order, at sufficiently low temperatures

(this phrase “sufficiently low” being the focus of the rest of this chapter) the correlations will

decay algebraically and so the system has developed a quasi-long-ranged-order (QLRO).

This point is crucial – Hohenberg-Mermin-Wagner theorem tells us that the system can-

not order in two dimensions at finite temperature, but there is wiggle room; so long as

correlations do decay in the far field HMW is satisfied. A system with algebraic decay still

has correlations going to zero at infinity, but the correlation length (in the sense you would

apply to exponential decaying correlations) has become infinite.

3.3 The Beresinskii-Kosterlitz-Thouless Transition

3.3.1 Vortices

Having now deduced that the 2D XY model possesses a disordered regime at high temper-

atures and a QLRO regime at lower temperatures, we are led to ask ourselves by precisely

what mechanism the QLRO system acquires disorder, and furthermore at what tempera-

ture this transition takes place. The transition at play will turn out to be an example of
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the Berezinskii-Kosterlitz-Thouless1 transition, in which disordering is brought about by the

accumulation of topological defects.

The reason that topological considerations must be taken into account can be traced

back to the fact that the field φ with which we parametrize the spin orientation is defined

only up to an integer multiple of 2π. This allows us to consider configurations of spins such

that the traversal of a closed path will increase φ by 2πn. This integer n defines a kind of

topological charge enclosed by the path. A simple example of such a topologically non-trivial

configuration could be given by φ(r, θ) = θ, as illustrated in Fig.[3.3.1].

A topological defect such as this is referred to in this context as a vortex.

We will consider other configurations of this type, with azimuthal symmetry radiating

out of the vortex core. The magnitude of the topological distortion can be obtained by

integrating around a closed path that circles the core; in the above example we have

∮
d` · ∇φ =

∮
(erdr + eθdθ) ·

(
er∂r + eθ

1

r
∂θ

)
θ =

∮
dθ = 2π.

1As a side note; the BKT transition is named for Vadim Berezinskii, John Kosterlitz and David Thouless
– these having posited its existence separately and in different contexts, Berezinskii in 1971[72] [73] and
Kosterlitz and Thouless in 1973[74] [75]. Now to give Berezinskii his due, his work does predate that of
Kosterlitz and Thouless by two years, but as a proud alumnus of the School of Mathematics at the University
of Birmingham – from which Kosterlitz and Thouless were operating at the time of their discovery – I feel
that I ought to side with my kinsmen and hence would refer to call the ‘BKT’ transition simply the ‘KT’
transition, I include the ‘B’ only so as to avoid offending possible Russian readers. However I digress.

55



Figure 3.6: The simplest topologically non-trivial configuration in the 2D XY model – a vortex (left) or

an anti-vortex (right).

We need to take care that the path does not pass through the core so we have to distinguish

between the core region, |r − rcore| < a, and the rest of the plane.

Considering a general vortex, with topological charge n, we have

∮
d` · ∇φ = 2πn,

which would imply that

∇φ =
n

|r − rcore|
e(r−rcore) × ez.

This allows us to consider the contribution to the action from a single vortex of charge n. If

we call the system size R (which we may later take off to infinity), taking care to avoid the

core region, we find that

S[φ] = Score +
βJ

2

∫
|r−rcore|>a

d
2r

n2

|r − rcore|2
= Score + πβJn2 ln(R/a).
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So the contribution to the action has a core part and term which scales logarithmically

with system size. The core part may be neglected so long as a UV cut-off is in place, effectively

this corresponds to placing to core off the lattice.

Let’s imagine now that a single vortex was the only game in town. There would be (R/a)2

places you could put the core so the partition function would be

Z =

(
R

a

)2

e
−Score−πβJ ln(R/a) = e

−Score

(
R

a

)2− πJ
kBT

.

In the thermodynamic limit (R → ∞) this diverges for kBT > π
2
J and vanishes for

kBT < π
2
J . Hence we expect a transition. This is the basic idea of the BKT transition – a

fight between the configurational entropy 2 ln(R/a) and the energy πJ ln(R/a). Now we just

need to fill in the details.

When we only allow for single vortices, we see a low temperature regime where the poten-

tial energy dominates the free energy and vortices are disallowed, whereas at high temper-

atures the configurational entropy swamps the potential energy and spontaneous formation

of vortices becomes favourable.

It is this spontaneous vortex formation that marks the transition from quasi-long-ranged

correlations to disorder in the 2D XY model. This is the Berezinskii-Kosterlitz-Thouless

transition.

To get a better handle on the transition temperature, we ought to allow for two or more

vortices. As an example we consider a vortex-anti-vortex pair, i.e.

φ(r) = φ	(r + s/2)− φ	(r − s/2)

φ	(r, θ) = θ ⇒ ∇φ	 =
1

|r|
eθ =

1

|r|
er × ez.

When |r| � |s| this configuration is approximately
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φ(r) ≈
(
φ	(r) +

1

2
s · ∇φ	(r) +

1

4
(s · ∇)2φ	(r)

)
−
(
φ	(r)− 1

2
s · ∇φ	(r) +

1

4
(s · ∇)2φ	(r)

)
= s · ∇φ	(r)

⇒ ∇φ(r) = s.∇ 1

|r|
eθ = − 1

|r|2
(sθer + sreθ)

⇒ (∇φ)2 =
|s|2

|r|4
,

and so the integral in the action vanishes as 1
r3 so that the action is finite. Indeed the

remainder of the action is approximately that of two single vortices screened by an infrared

cutoff ∼ |s|, so we have an action for the vortex-anti-vortex pair that is finite.

Such vortex dipoles give a finite contribution to the partition function and, as such, are

available at any temperature. We may hence think of the BKT transition as being due to a

kind of gas of tightly bound vortex-anti-vortex pairs present in the system which may unbind

to form a plasma of solitary vortices at sufficiently high temperatures.

Figure 3.7: A vortex-anti-vortex pair. Left: a close up view showing the form of the distortion, Right: a

far-field view showing that a dipolar pair of vortices has zero energy at infinity.

58



3.3.2 Topological Terms in the Action

Now in order to investigate the competition between the vortices and the non-topological

spin-wave behaviour we would expect from finite fluctuations, we need to pull the vortices

out of the action.

In terms of the distortion field, u = ∇φ, the action is

S =
βJ

2

∫
d

2r u2.

The curl of the distortion field is zero (obviously) everywhere except for some isolated

points at which are sited the vortices. With Stoke’s theorem to hand we can write the

topological charge enclosed by some path as

∮
d` · u =

∫
d

2r ez · (∇× u),

if we then have a collection of vortices situated at {ri} and with topological charge {ni}, in

order for the above to hold we must set

∇× u =
∑
i

2πniδ(r − ri)ez.

This expression allows us to break the field into a regular part ϕ and a topologically

singular part ψ via

u = ∇ϕ−∇× (ezψ).

We can then solve to find an explicit form of the singular part via

∇× u = ez∇2ψ =
∑
i

2πniδ(r − ri)ez

⇒ ψ =
∑
i

ni ln

∣∣∣∣r − ria

∣∣∣∣ .
This in hand, and employing that the the divergence of a curl is simply zero, we may

59



express the action as

S =
βJ

2

∫
d

2r (∇ϕ+∇× (ezψ))2

=
βJ

2

∫
d

2r(∇ϕ)2 +
βJ

2

∫
d

2r (∇× (ezψ))2

= Ssw[ϕ] +
βJ

2

∫
d

2r(∇ψ)2

= Ssw[ϕ] +
βJ

2

∫
Γ

d
2rψ(−∇2)ψ +

βJ

2

∮
∂ Γ

d` · (ψ∇ψ),

where the final integral is over contours encircling each vortex as illustrated in Fig.[3.3.2], by

excluding each core region in this manner we remove non-physical singularities but we must

now remember to add the core contributions back in by hand.
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Figure 3.8: The integral contour avoiding each vortex core

The action has broken into two decoupled contributions; a spin wave channel Ssw account-
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ing for harmonic fluctuations and a topological excitation channel

Stop =
∑
i

Score(ni) +
βJ

2

∫
Γ

d
2r

(∑
i

ni ln

∣∣∣∣r − ria

∣∣∣∣
)(
−2π

∑
j

njδ(r − rj)

)

=
∑
i

Score(ni)− 2πβJ
∑
i<j

ninj ln

∣∣∣∣ri − rja

∣∣∣∣ .
The separation of the action into two distinct channels allows us to factorize the partition

function. Supposing the vortices are only allowed a charge of ±1, for neutrality we need the

same number of vortices and anti-vortices. We need to sum over every possible number of

vortices and account for double counting by dividing each term by the (N !)2 ways of labelling

N vortices and N anti-vortices, this gets us

Z =

∫
D[ϕ]e−Ssw[ϕ]︸ ︷︷ ︸

Zsw

∞∑
N=0

e
−2NScore

1

(N !)2

∫ ( 2N∏
k=1

d
2rk
a2

)
e

4π2βJ
∑
i<j σiσjC

(
ri−rj
a

)
︸ ︷︷ ︸

Ztop

(3.10)

in which C(r) = 1
2π

ln |r|, σi = ±1 and the appearance of a 1/a2 term is an unavoidable

artefact of replacing the sum over all possible placements of vortices with an integral.

From this we can see that the thermodynamics of the vortices in the 2D XY model in

this limit is equivalent to that of a Coulomb plasma in the grand canonical ensemble with

−2Score taking on the role of the chemical potential.

3.3.3 BKT in Summary

A lot has just happened here so some recapitulation is in order. So far, in order to explain

the transition from exponential decay in correlations at high temperatures to algebraic decay

at low temperatures in the 2D XY model, we have invoked the BKT transition in which the

transition is mediated by unbinding of vortex-anti-vortex pairs.

61



We have seen that a single vortex contributes as energy ∼ πJ ln(R/a) and an entropy

∼ 2 ln(R/a) so that the free energy, F = E − TS = (πJ − 2kBT ) ln(R/a), changes sign at

kBT = π
2
J . This gives upper estimate for the transition temperature TBKT.

We have drawn an analogy between the low temperature phase and a gas of bound

“dipoles” made of a vortex and an anti-vortex, which transits to a plasma at higher tem-

peratures. The analogy with a plasma carries through to the mathematics where we can see

that the vortices act like a gas interacting through a 2D Coulomb potential.

3.4 The Vortex Plasma

3.4.1 Renormalization Group Analysis

To top off our discussion of the 2D XY model and the BKT transition, we will follow Kosterlitz

[75] in a renormalization study of the critical properties of the vortex plasma.

We have an effective Hamiltonian

H
(N)
vortex = −

2N∑
i<j

4π2JσiσjC

(
ri − rj
a

)
with σi = ±1 and assuming charge neutrality so that

∑
i σi = 0.

We also have an effective fugacity density, z, or equivalently an effective chemical potential,

µ, defined by

z =
1

a2
e
−Score = e

βµ .

In these terms, the partition function of the vortex plasma in the grand canonical ensemble

is

Zvortex =
∑
N

1

(N !)2

∫
d

2r1 . . .d
2r2N e

−β
(
H

(N)
vortex+2µ

)
.

In the following it will prove convenient to symmetrize the sum and to hide the energy scale

in the charge, so letting pi =
√
πJσi we get
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Zvortex =
∑
N

z2N

(N !)2

∫
d

2r1 . . .d
2r2N e

β
∑2N
i 6=j pipj ln

∣∣∣ ri−rja

∣∣∣
.

As it stands, the integration is taken over R2×2N excluding the vortex-core balls |ri− rj| < a.

In order to renormalize this system, we deform the fundamental length scale of the system,

the vortex core radius, by a → a + da. This amounts to extracting from the region of

integration the infinitesimal annuli a < |ri − rj| < a+ da.

a a+da��
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Figure 3.9: Rescaling of the vortex core radius.

Each annulus carries an infinitesimal weight da so we need to keep only terms containing

up to a single correction. Thus the original integral might be expressed as the rescaled

integral plus a sum over all distinct pairs (i, j) of an integral where rk 6=i,j are integrated over

their rescaled region, with rj integrated over the original unscaled region and ri integrated

over the annulus a < |ri − rj| < a+da.

The partition function prefers to bind vortex pairs of opposite charge so we can set

pi = −pj, then pulling out all terms in the Hamiltonian containing an ri or an rj we get the

annular integral in ri as

∫
a<|ri−rj |<a+da

d
2ri e

β
(

2
∑
k pipk ln| ri−rka |+2

∑
k pkpj ln

∣∣∣ rk−rja

∣∣∣)
=

∫
a<|ri−rj |<a+da

d
2ri

∏
k

(
|ri − rk|
|rj − rk|

)2βpipk

The radial integral, being infinitesimal, is rather trivial. Employing a place-holding vector

α of length a, this integral is simply

∫ 2π

0

dθ
∏
k

(
1 +

2α · (rj − rk)
|rj − rk|2

+
a2

|rj − rk|2

)βpipk
ada,

with θ being the angle α makes to the axis.
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We can safely assume that three vortices will not come close together, given that two of

them will always have equal charge, and so we can expand this integral in a/|rj − rk|.

Expanding to second order, we first take note that any terms linear in α will self-cancel

under integration around a circle, and all other terms will just pick up a 2π. This in mind

the integral must be

2πada

[
1 + β2p4

∑
k

a2

|rj − rk|2
+ β2p2

∑
k 6=l

pkpl
a2(rj − rk) · (rj − rl)
|rj − rk|2|rj − rl|2

]
.

In the remaining integral over rj, remember this is taken over the original unscaled region,

we get

2πada

[
A− 2πa2β2p2

∑
k 6=l

pkpl ln

∣∣∣∣rk − rla

∣∣∣∣
]
,

in which A is the area of the plane (which, rather disturbingly, becomes unbounded in the

thermodynamic limit but fortunately is multiplied by an infinitesimal) and p2 = πJ .

Now rearranging the sum in the partition function so that the (N + 1)th correction sits

with the N th term (so that the number of integrals aligns), the partition function is now

Z =
∑
N

z2N

(N !)2

∫
d

4Nr

[
1 +

z2

(N + 1)2

N+1∑
i,j=1

2πada

(
A− 2πa2β2p2

∑
k 6=l

pkpl ln

∣∣∣∣rk − rla

∣∣∣∣
)]

× exp

(
β
∑
m6=n

pmpn ln

∣∣∣∣rm − rna

∣∣∣∣
)
.

Re-exponentiating the infinitesimal terms, we have

Z =
∑
N

z2N

(N !)2

∫
d

4Nr exp

{
z22πada

(
A− 2πa2β2p2

∑
k 6=l

pkpl ln

∣∣∣∣rk − rla

∣∣∣∣
)

+ β
∑
i 6=j

pipj ln

∣∣∣∣ri − rja

∣∣∣∣
}

= e
2πz2Aada

∑
N

z2N

(N !)2

∫
d

2r1 . . .d
2r2N e

β(1−(2π)2βp2(za2)2 da
a )

∑
i 6=j pipj ln

∣∣∣ ri−rja

∣∣∣
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This is now very nearly in the same form as the original partition function except that

the integral is now over a rescaled domain.

We can now unravel that rescaling with a change of variables r → r(1 + da
a

), taking into

account this rescaling, the partition function returns to its original form, up to low order

corrections, but with new coupling constants

za = z

(
1 + 2

da

a
− βp2da

a

)
βa = β

(
1− (2π)2βp2(za2)2da

a

)
.

The free energy per unit area F , which normalizes the partition function, has also renor-

malized

Fa = 2πz2ada+ F.

3.4.2 Flow of the Coupling Constants

In the spirit of the renormalization group we have shown that under variation of the funda-

mental length scale – the vortex core radius – the partition function of the vortex plasma

description of the BKT transition in the 2D XY model retains its form excepting that that

fugacity, inverse temperature, and free energy per unit area flow according to the recursion

relations

(a2za) = (a2z)

[
1 + (2− πβJ)

da

a

]
(3.11a)

(πβaJ) = (πβJ)

[
1− (2π)2πβJ(a2z)2da

a

]
(3.11b)

Fa = 2π(a2z)2da

a3
+ F, (3.11c)

where we have rearranged terms purely for convenience.

To extract the RG flow of these coupling constants we need to cast the recursion relations
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in differential form. Let us set

a2z = u a2za = u+ du

πβJ = v πβaJ = v + dv

Fa = F + dF.

Through which we find a set of differential equations governing the flow

du

u
= (2− v)

da

a
(3.12a)

dv

v
= −(2π)2vu2da

a
(3.12b)

dF = 2πu2da

a3
. (3.12c)

First of all we notice a fixed point in the fugacity at v = 2, kBT = π
2
J . This was our

original hypothesized transition temperature and we can now interpret it in terms of the sign

of the chemical potential of the vortices, where the fixed point corresponds to the tipping

point between vortices costing energy and paying energy.

To look at the flow around this fixed point we must expand around v = 2. In the near

vicinity of the fixed point we have

d(u2) = 2(u2)(2− v)d(ln a)

d(2− v) = (4π)2(u2)d(ln a).

The solution of these equations gives

(4πu)2 − (2− v)2 = const.

⇒ (4πa2z)2 −
(

2− πJ

kBT

)2

= const.

Then simply by looking at the direction of the flow we can see that a first correction to
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the BKT transition temperature is given by

kBTBKT =
πJ

2 + 4πa2z
(3.13)

3.4.3 The 2D XY Universality Class

The marked similarity between the RG flow form of the Coulomb plasma underlying the

vortex unbinding transition in the 2D XY model and that of the Sine Gordon model leads us

to raise suspicious eyebrows as to the connections between these seemingly disparate systems.

We will in fact show that there is a direct mapping between the Coulomb gas and the

Sine-Gordon model and hence gain some insight into the underlying universality class.

Sine-Gordon

��
2D XY // Coulomb Gas

To establish the connection between these systems we consider the partition function of a

typical 2D Sine-Gordon system

ZSG =

∫
D[φ]e−SSG[φ] SSG =

∫
d

2r

{
1

8πd
(∇rφ)2 + 2η cosφ

}
.

where we have changed notation from Eqn.[2.38] simply to avoid confusing the parameter µ

in that form with the chemical potential.

With respect to the average over the free system (η = 0), we could write

ZSG =
〈
e
−2η

∫
d2r cosφ

〉
0
,

where 〈φ(r)φ(r′)〉0 = 2d ln | r−r′
a
| = 4πdC( r−r

′

a
).

Expanding the exponential we have
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ZSG =
∞∑
n=0

(−2η)n

n!

∫
d

2r1 . . .d
2rn 〈cosφ(r1) . . . cosφ(rn)〉0 .

We can group together the cosines using

cosφ1 cosφ2 =
1

2
[cos(φ1 − φ2) + cos(φ1 + φ2)]

cosφ1 cosφ2 cosφ3 =
1

4
[cos(φ1 − φ2 − φ3) + cos(φ1 − φ2 + φ3) + cos(φ1 + φ2 − φ3)

+ cos(φ1 + φ2 + φ3)]

and so on by induction.

We have frequently – if not explicitly – employed the fact that for a Gaussian model

〈cos(a1φ(r1) + a2φ(r2) + . . . )〉 = e
− 1

2〈(a1φ(r1)+a2φ(r2)+... )2〉 , (3.14)

the proof of which comes quite simply from completing the square within the functional

integral.

We must however note that in the absence of some fancy regularization, 〈φ(r1)φ(r2)〉 has

a positive divergence at r1 = r2 and so 〈cos(a1φ(r1) + a2φ(r2) + . . . )〉 = 0 unless
∑

i ai = 0,

in which case the divergences will cancel out and we’ll see a finite contribution.

Looking at the term 〈± cos(φ(r1)± φ(r2)± · · · ± φ(rn))〉, we see that the average is only

non-zero when n = 2N and even then we require there to be the same number of + and −

terms, for which there are
(

2N
N

)
possible combinations.

An exact representation of the Sine-Gordon model is hence

ZSG =
∞∑
N=0

(−2η)2N

(2N)!

∫
d

2r1 . . .d
2r2N

(
2N

N

)
1

22N−1

〈
cos

(
2N∑
k=1

(−1)kφ(rk)

)〉
0

.

Tidying this up a little we have
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ZSG =
∞∑
N=0

η2N

(N !)2

∫
d

2r1 . . .d
2r2N

〈
e
i
∑2N
k=1(−1)kφ(rk)

〉
0
.

Computing the averages and extracting self interaction terms gives us then

ZSG =
∞∑
N=0

η2N

(N !)2

∫
d

2r1 . . .d
2r2Ne

∑
i6=j(±)4πdC

(
ri−rj
a

)
.

We now see clearly by comparison with Eqn.[3.10] that the Sine-Gordon model is perfectly

equivalent to a vortex plasma with fugacity z = η and inverse temperature πβJ = d.
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Chapter 4

The Stripe Model

4.1 Experimental Setup

Now with some mathematics behind us, we are ready for our first encounter with the main

protagonist of this thesis, a toy model consisting of dipolar bosons trapped in a weakly

coupled planar array of one-dimensional stripes, or in short the Stripe Model. We have

already discussed during the introduction our motivation for considering this system. Let us

now see how it may be constructed.

We imagine a system in which a gas of dipolar bosons is arranged in a two-dimensional

array of one-dimensional homogeneous cigar-clouds as illustrated in Fig.[4.2]. Such a con-

figuration might be achieved by applying a strong two dimensional optical lattice such that

the confinement in the z-direction completely suppresses motion in that direction, whilst

that in the y−direction may allow some weak hopping between stripes. In principal, and if

experimentally expedient, a weak lattice could also be present along the x−direction without

affecting our future considerations, just as long as the lattice is incommensurate with the

density of bosons.
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Figure 4.1: Cartoon of dipoles on a line: Notice that the gas is fully polarised by the applied field so
that the dipole moment of every atom points in the same direction.
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Figure 4.2: Proposed experimental set up: An optical lattice in the y-direction separates the trapped
dipolar bosons into weakly coupled stripes. The dipole moments of the bosons are
polarized by an external field, B, which may be rotated in three dimensions to change the
effective interactions.

We allow for interactions between the stripes through a dipole-dipole interaction which

would be tunable via the direction of the dipole moment. A similar experimental setup, but

with the possible hopping between stripes neglected, was considered by Kollath, Meyer and

Giamarchi[76]. They considered the phase diagram in terms of the dipole orientation with

respect to the plane and found that, in addition to the high temperature “sliding Luttinger

liquid” phase, in which typical one-dimensional effects such as algebraic decay in correlation

functions survive into the quasi-two-dimensional system (the sliding Luttinger liquid phase

has not yet, to the best of my knowledge, been experimentally observed), their system allows

a phase with superfluid correlations and two distinct density wave orders – one checkerboard

and one striped, as illustrated in Fig.[4.3].

Conversely; Ho, Cazalilla and Giamarchi have considered a similar setup where inter-
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stripe hopping is allowed, but in the absence of a dipole-dipole interaction coupling neigh-

bouring tubes [77]. Ho et al consider the effect of hopping versus an applied axial periodic

potential and find a transition from superfluid to Mott insulator.

We allow both forms of inter-stripe coupling to be present and we will pay particular

attention to their competition. Due to the anisotropy of the lattice and the freedom of the

dipole moment to point anywhere in 3D space, we have a good deal of control over the

relative dipole-dipole interaction strength in the longitudinal and transverse directions. As

opposed to Kollath et al, who considered their phase diagram in terms of the angle made

by the dipole moment to the plane, we will fix the angle, β, made to the plane in such a

way that the interactions are always repulsive and tune the angle, α, between the horizontal

projection and the dipole moment (see Fig.[4.2]).

The dipole-dipole interaction, be it magnetic, electric or whatever, between particle at

x1 and x2 separated by r = x2 − x1 with respective (unit) dipole moments m1 and m2 (see

Fig.[4.4]) is given by

Vdd =
Cdd

4π

(e1 · e2) r2 − 3 (e1 · r) (r · e2)

r5
, (4.1)

where Cdd is the strength of the dipole-dipole interaction.

If the dipole cloud is polarized by an external field so that the all the dipole moments point

in the same direction, we call the angle they make to the horizontal α and the angle made to

the plane β, then the moment can be parameterized m = cosα cos βex+sinα cos βey+sin βez.

We also parametrize the displacement vector r = r cos θex+r sin θey so that the dipole-dipole

y y y y yy y y y yy y y y yy y y y y

y y y y yy y y y yy y y y yy y y y y

i i i i ii i i i ii i i i ii i i i i

i i i i ii i i i ii i i i ii i i i i

Figure 4.3: Schematic distinction between “checkerboard” (left) and “striped” (right) density wave
orders.
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Figure 4.4: Cartoon of dipoles on a line with r = |x1 − x2|.

interaction takes the form

Vdd =
Cdd

4π

1− 3 cos2 β cos2(α− θ)
r3

.

In order to guarantee that all interactions are repulsive but still allow the maximum possible

anisotropy between inter- and intra-chain interactions, we fix the angle β made to the plane

so that cos β = 1/
√

3, this choice of angle is referred to in the literature as the magic angle

[10]. This angle locked in, the interaction becomes

Vdd =
Cdd

8π

1− cos 2(α− θ)
r3

.

In order to account for the dimensional anisotropy we wish to study, we need to break

this interaction into a longitudinal part covering intra-stripe interactions, and a transverse

part for the inter-stripe interactions, Vdd = V intra
dd +V inter

dd . For the inter-stripe interactions we

will keep only nearest-stripe interactions (noting that including next-nearest and higher terms

won’t push us out of the universality class we will eventually find ourselves in) and also take a

smearing limit1 so that a particle only notices its direct counterparts in neighbouring stripes.

1Cards on the table here: this smearing approximation in which we lump all the interactions of (x, nλ)
with (x+δ, (n±1)λ) where δ ∈ (−λ, λ) into the interaction with (x, (n±1)λ) is throwing away a lot of detail,
but first of all we need to do this in order to arrive at a model we have any hope of attacking and secondly
we are soon going to be bosonizing the stripes, at which point we will be smearing over the inter-particle
distance so as long as the spacing between the tubes is of the same order as the spacing between the particles
we aren’t really changing anything. This said, Quintanilla et al [10] have studied a very similar setup using
fermions instead of bosons and by calculating the interaction in reciprocal space have argued that the nearest
neighbour approximation isn’t actually that bad at low densities.
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With this approximation in place, the interaction experienced by particles at (x, y) = (x, nλ)

and (x′, n′λ), where λ is the inter-stripe separation, becomes

V intra
dd =

Cdd

4π

sin2 α

|x− x′|3
δnn′ (4.2a)

V inter
dd =

Cdd

4π

cos2 α

λ3
δ(x− x′)δnn′ (4.2b)

We are now in a position to be able to write the Hamiltonian for this system. Each stripe

will have its own contribution H
(n)
stripe which contains the kinetic energy of its constituent

particles and an intra-stripe interaction term, and a contribution due to its coupling with

its neighbours H
(n)
couple. The latter will contain a hopping term, to which we assign an energy

cost J⊥, and an inter-stripe interaction term that will be proportional to V inter
dd (although

not necessarily equal because we ought to integrate over the Wannier functions in adjacent

chains). The complete Hamiltonian is thus H =
∑

nH
(n)
stripe +H

(n)
couple, where

H
(n)
stripe =

∫
dx ψ†n(x)

(
− ~

2m
∂x

2

)
ψn(x) +

∫
dxdx′ ρn(x)V intra

dd (x− x′)ρn(x′) (4.3a)

H
(n)
couple = −

∫
dx J⊥

(
ψ†n(x)ψn+1(x) + ψ†n+1(x)ψn(x)

)
+

∫
dxdx′ ρn(x)wV inter

dd (x− x′)ρn+1(x′),

(4.3b)

in which ρn(x) is the density in the nth stripe, ψ†n(x) is the creation operator for the nth

stripe, and w is some dimensionless constant.

This system is clearly, even after the approximations we have made, a bit cumbersome

and complicated, but let’s imagine that the coupling term H
(n)
couple is so weak that we can

neglect it; we can then see what it happens when we bring it in perturbatively.
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4.2 Bosonizing a Single Stripe

On its own, each stripe is a one-dimensional system with short(ish) ranged interactions, so

we would like to try and bosonize the system. We ought to talk about whether we can

actually consider the dipole-dipole interaction to be short ranged – in three dimensions this

most certainly isn’t the case. Dipole interactions in 3D are a textbook example of long

ranged interactions, and are long enough ranged to couple neighbouring stripes. Formally a

force is defined to be short ranged if it decreases with distance faster than r−d where d is

the dimensionality of the system; this is so that the integral of the interaction up to a shell

of radius a will decay algebraically in a. This means that the dipole-dipole interaction is

short-ranged in one and two dimensions, so we can attempt to bosonize each stripe.

The contribution to the Hamiltonian from each stripe will take a bosonized form

H
(n)
stripe =

~vs
2π

∫
dx K (∂x θ)

2 +
1

K
(∂x ϕ)2 =

~vs
2π

∫
dx K

π2

~2
Π(x)2 +

1

K
(∂x ϕ)2 , (4.4)

where the sound speed, vs, and Luttinger parameter, K, now have to encode the physics

of the dipole-dipole interaction. We have already seen in Eqn.[2.32] that K and vs can be

related to the compressibility, and hence the ground state energy, of the system via

~
vs
K

= ~vN =
1

πρ2
0

1

κ
=
L

π

∂2E0(N0)

∂N2
0

=
ρ2

0

π

∂2

∂ρ2
0

(
E0

L

)
.

In the above we have related the density stiffness, vN , of the bosonized Hamiltonian to

physical parameters of the system, particularly the energy per unit length in the ground

state: e(ρ0) = E0/L. Now using the phase stiffness Eqn.[2.26a] we can solve to find that

vs =

√
1

mρ0

1

κ
=

√
ρ3

0

m
e′′(ρ0) (4.5a)

K =

√
~2π2ρ3

0

m
κ =

√
π2~2ρ0

m

1

e′′(ρ0)
(4.5b)
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Invoking the principals of universality with respect to one dimensional systems, we can

always write down an effective Luttinger liquid theory (approximately and subject to there

being sufficiently short ranged interactions and translational invariance) with phenomenolog-

ical parameters K and vs. These parameters can now be estimated if only we can find the

ground state energy per unit length of the system for any density.

To apply these concepts to bosonizing a single stripe we have to understand the ground

state properties of our one dimensional Bose gas of dipoles. From a first quantized standpoint

the Hamiltonian in question is

H =
∑
n

− ~2

2m
∂xn

2 +
∑
m<n

Cdd

4π
sin2 α

1

|xm − xn|3
. (4.6)

If we remove the dimensions from the system using z = ρ0x and introduce an effective Bohr

Radius

r0 =
mCdd sin2 α

2π~2
, (4.7)

the Hamiltonian takes the simple form

H =
~2

2mr2
0

(ρ0r0)2

(∑
n

−∂zn2 + (r0ρ0)
∑
m<n

1

|zm − zn|3

)
. (4.8)

This is not (yet, and likely never will be) an exactly soluble model, but it has some limits

we can understand. As r0ρ0 → 0 the particles never notice each other until they are right

on top of one another and can feel their singularities; hence in this limit the gas behaves like

a contact interacting gas with infinite repulsion. This is the Tonks gas (or, depending on

your outlook, a free Fermi gas), so in this limit K → 1. In the other limit as r0ρ0 → ∞,

the kinetic part of the Hamiltonian is totally swamped by the interaction part and we are

pushed into a classical crystalline state
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H =
~2

2mr2
0

(ρ0r0)3
∑
m<n

1

|zm − zn|3
.

Since z ∝ 1/ρ0, the energy can be approximated by

E =
~2

2mr2
0

(ρ0r0)3N
∑
n

1

n3
=

~2

2m
r0ρ

4
0ζ(3)L,

where ζ(s) is the Riemann Zeta function ζ(s) =
∑

n n
−s. This gives us e′′(ρ0) = 3Cdd

π
sin2 α ζ(3)ρ2

0,

so thatK ∼ ρ
−1/2
0 . In particular, as the density increases, the Luttinger parameter approaches

zero.

This is a little surprising because we have bosons here, so if the interactions were contact

(delta functions for example), we would see the Luttinger parameter start out as infinity,

so that 〈θ(r)θ(0)〉 is constant and the system is perfectly phase-correlated, and diminish

down to unity (algebraic correlations) as the interaction strength is ramped up. In this case

the interaction itself is driving the correlation, but it is a density correlation not a phase

correlation so 〈ϕ(r)ϕ(0)〉 becomes constant in the limit, and thus K → 0.

This is a crucial point which is worth repeating: bosons with a dipole-dipole interaction

– even in this heuristic approach which we will shortly improve upon – have a Luttinger

parameter that looks like that of a Fermi system. For this reason dipolar bosons supply us

with a bosonic system, which as we discuss in the introduction is highly controllable, that

simulates the low energy physics of fermions.

We can reasonably expect the Luttinger parameter for a single stripe of dipoles to

smoothly interpolate between unity at small ρ0r0 to ∼ ρ
−1/2
0 as ρ0r0 → ∞, as illustrated

in Fig.[4.5].

Given that the system does possess an analytic solution, in order to see how it interpolates

between these limits we would have, as Anderson put it, “resort to the indignity of numerical

simulations”. Fortunately Citro et al [78] have performed Reptation Quantum Monte Carlo
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Figure 4.5: Solvable limits of the Luttinger parameter for Bosons with dipole-dipole interactions: at
low densities we can expect the system to behave like a Tonks gas and as the interaction
strength is ramped up a crystalline order emerges.

simulations on this system in order to find the Luttinger parameter and we can appropriate

their results.

As expected, their numerically obtained Luttinger parameter smoothly interpolates our ex-

pected limits as ρ0r0 is increased. Their RQMC calculations give them a ground state energy

density that is well fitted by the functional form

e =
~2

2mr2
0

{
ρ0r0

ρ0r0 + 1

(
ζ(3)(ρ0r0)4 + c1(ρ0r0)p1 + c2(ρ0r0)p2 + c3(ρ0)2+p2

)
+
π2

3

(ρ0r0)2

1 + c4(ρ0r0)p3

}
(4.9)

which is constructed so as to smoothly interpolate between the known limits. The fitting

parameters found by Citro et alare tabulated in Tab.[4.1].

c1 c2 c3 c4 p1 p2 p3

3.1 3.2 4.3 1.7 3.503 3.05 0.34

Table 4.1: Fitting constants for the Luttinger parameter in a gas of dipoles for functional form
calculated by Citro et al [78].

Employing Citro et al ’s numerically obtained Luttinger parameter, we can see how the

system moves from algebraic decay in correlations to a perfectly correlated crystal as the

interaction strength is increased. We have seen that the effective Bohr radius of the dipoles

looks like sin2 α, where α is the angle made by the dipole moments to the stripe, so we can
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calculate K in terms of α. To illustrate the variation in K we plot it versus ρ0r0(α) and also

show a contour plot of K versus ρ0r0(π/2) and α (Fig.[4.6] and Fig.[4.7] respectively).

0.01 0.1 1 10 100
r0 Ρ0

1

10

K

Figure 4.6: Numerical evaluation of the Luttinger parameter for Bosons with dipole-dipole interactions:
as anticipated, the numerical results of Citro et al smoothly interpolate between the two
known limits.
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Figure 4.7: Plots of constant Luttinger parameter in the density-angle plane: the most important

contour for our future considerations will be the K = 1/2 contour.
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4.3 Weakly Coupling the Stripes

The previous results tell us how to set up the bosonized Hamiltonian for our model if the

stripes are totally decoupled from one another. We are now going to weakly couple in the

other stripes. Technically speaking we are breaking the rules set down when we first set out

the procedure behind bosonization as the system is no longer one-dimensional. However,

so long as the coupling is truly weak we can treat the effect of neighbouring stripes as a

perturbation upon the, now solved, decoupled stripe system. Later on we will look at the

system more appropriately as a two dimensional model.

For now, the contribution to the Hamiltonian due to a single stripe H
(n)
stripe will take the

form Eqn.[4.4], as discussed, but we need to look at the bosonized form of the coupling part

of the Hamiltonian H
(n)
couple.

First consider the hopping term,

−
∫
dx J⊥

(
ψ†n(x)ψn+1(x) + ψ†n+1(x)ψn(x)

)
;

writing ψ†n(x) =
√
ρ0e

−iθn(x) , this term becomes recognisable as a Josephson coupling

−
∫
dx J⊥2ρ0 cos (θn(x)− θn+1(x)) .

Next consider the interaction term,

∫
dxdx′ ρn(x)wV inter

dd (x− x′)ρn+1(x′);

if we were to use ρn(x) = ρ0− ∂x ϕn(x)/π, then the non-constant contribution to the Hamil-

tonian would be

∫
dxdx′ ∂x ϕn(x)wV inter

dd (x− x′)∂x′ ϕn+1(x′).

At first glance this forward scattering term ought to be neglected because the shift in n along
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with the derivative in x makes this term at a higher harmonic that anything else present in

the Hamiltonian so far. However, if we extend the density approximation to include one more

harmonic, ρn(x) = ρ0− ∂x ϕn(x)/π+ 2ρ0 cos[2πρ0x− 2ϕn(x)], then no more terms appear in

our considerations thus far but we do obtain the new non-negligible term,

∫
dxdx′ wV inter

dd (x− x′)2ρ2
0 cos (2ϕn(x)− 2ϕn+1(x′)) .

If a denotes some appropriate ultraviolet cutoff length scale, then we can introduce dimen-

sionless coupling parameters representing the strength of the interaction and hopping per-

turbations, gint and ghop, via

~vs
2π

gint

a2
= ρ2

0w
Cdd

2π

cos2 α

λ3
(4.10a)

~vs
2π

ghop

a2
= 2J⊥ρ0. (4.10b)

Remember that the stripes are being coupled perturbatively weakly so gint, ghop � 1.

With these definitions in place we now have a neat form for the coupling part of the

Hamiltonian

H
(n)
couple =

~vs
2π

∫
dx

a2
{gint cos 2(ϕn − ϕn+1)− ghop cos(θn − θn+1)} . (4.11)

These terms plus the contribution from single stripes Eqn.[4.4] define the model that we

will be working with to explore the physics of this system.

4.4 Equivalence to the Original Stripe System

We have now derived that the appropriate Hamiltonian with which to treat our system is

H = Hintra +Hinter
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Hintra =
∑
i

∫
dx

~vs
2π

{
K(∂x θi)

2 +
1

K
(∂x ϕi)

2

}
(4.12a)

Hinter =
∑
<ij>

∫
dx

~vs
2π

{gint

a2
cos[2(ϕi − ϕj)]−

ghop

a2
cos[(θi − θj)]

}
. (4.12b)

Comparing what we have here back to the expressions in Eqn.[1.1] we see that this bosonic

cold atom system reproduces the behaviour of a fermionic condensed matter striped system.

It is important to restate here how well controlled the parameters here are, much more

so than one could ever hope for from a solid state system.

The Luttinger parameter K can be tuned by turning the dipole moment of the trapped

atoms. Independently of this, and of one another, the interaction parameters gint and ghop

can be tuned by varying the depth and spacing of the optical lattice.

This freedom then may allow access to regions of parameter space which would be inac-

cessible to condensed matter realizations of this model, giving the experimentalist the ability

to focus on the regions where the most interesting physics is to be found.

As it will turn out, the most interesting physics, and hence the parameter set we would

want to tune to, is where K = 1/2 and gint ≈ ghop

4.5 Mean Field Model

4.5.1 Mean Field Structure

There are two obvious limiting situations that need investigation, where one of gint and ghop

dominates over the other. These interaction and hopping dominated limits are correspond

to the Hamiltonians
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Hint =
~vs
2π

∑
n

∫
dx

{
K(∂x θn)2 +

1

K
(∂x ϕn)2 +

gint

a2
cos 2(ϕn − ϕn+1)

}
(4.13a)

Hhop =
~vs
2π

∑
n

∫
dx

{
K(∂x θn)2 +

1

K
(∂x ϕn)2 +

ghop

a2
cos(θn − θn+1)

}
(4.13b)

These limits look very similar, even more so if we make the (commutator preserving)

transformation θn → K−1/2θn, ϕn → K1/2ϕn. Then setting dint = K and dhop = 1/(4K), the

two Hamiltonians become

Hint =
~vs
2π

∑
n

∫
dx
{

(∂x θn)2 + (∂x ϕn)2 +
gint

a2
cos 2d

1/2
int (ϕn − ϕn+1)

}
(4.14a)

Hhop =
~vs
2π

∑
n

∫
dx
{

(∂x θn)2 + (∂x ϕn)2 +
ghop

a2
cos 2d

1/2
hop(θn − θn+1)

}
(4.14b)

We should notice here the duality transformation between ϕ and θ takes us between the

interaction and hopping dominated limits.

It will turn out that dint and dhop represent the scaling dimension of the interaction and

hopping perturbations respectively, which we will discuss shortly.

As a first attempt at studying the physics at play in this system, we now make a mean

field approximation. Taking the hopping dominated limit as an example, the nature of our

mean field approximation is to pretend that rather than each stripe interacting with its

neighbours, it interacts with two thermally averaged copies of itself. The interaction can

thus be simplified as follows
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cos 2d
1/2
hop(θn − θn+1) = cos(2d

1/2
hopθn) cos(2d

1/2
hopθn+1) + sin(2d

1/2
hopθn) sin(2d

1/2
hopθn+1)

→ cos(2d
1/2
hopθ)

〈
cos(2d

1/2
hopθ)

〉
+ sin(2d

1/2
hopθ)

〈
sin(2d

1/2
hopθ)

〉
=
〈

cos(2d
1/2
hopθ)

〉
cos(2d

1/2
hopθ).

An analogous approximation may be applied to the interaction dominated limit and the

mean field Hamiltonians we acquire are

Hmf
int =

~vs
2π

∫
dx
{

(∂x θ)
2 + (∂x ϕ)2 + 2

gint

a2

〈
cos(2d

1/2
int ϕ)

〉
cos(2d

1/2
int ϕ)

}
(4.15a)

Hmf
hop =

~vs
2π

∫
dx
{

(∂x θ)
2 + (∂x ϕ)2 + 2

ghop

a2

〈
cos(2d

1/2
hopθ)

〉
cos(2d

1/2
hopθ)

}
(4.15b)

In either case, we have the same form of action functional in the mean field, and a self

consistency equation

Smf =
~vs
2π

∫
dτdx

{
1

v2
s

(∂τ φ)2 + (∂x φ)2 +
gmf

a2
cos 2d1/2φ

}
(4.16a)

gmf = 2g
〈
cos 2d1/2φ

〉
, (4.16b)

with φ being θ in the hopping dominated limit and ϕ in the interaction dominated limit.

These two equations must be solved self consistently.

The action Eqn.[4.16a] is that of a Sine-Gordon model in 1+1 ∼ 2 Euclidean dimensions.

4.5.2 Mean Field Solution

Comparing Eqn.[4.16] to the exact form of the correlation function Eqn.[2.47], we see that

we have a scaling relation 〈
cos 2d1/2φ

〉
∼ (gmf)

d
2−d . (4.17)
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Now we can solve the self consistency condition to work out how the mean field coupling

scales with the bare coupling. We discover that

gmf ∼ 2g
1
2(1+ 1

1−d)
〈
cos 2d1/2φ

〉
∼ g

1
2

d
1−d (4.18)

The hopping dominated regime is characterized by a non-zero expectation value of cos θ

and similarly the interaction dominated regime is characterized by non-zero expectation value

of cos 2ϕ. As a physical picture, we can see that, as one might have guessed, the interaction

dominated regime possesses a density wave order reminiscent of the dipole crystal we saw in

the decoupled stripes. This agrees with the analysis of Kollath, Meyer and Giamarchi[76] into

the system of dipole-dipole interacting stripes in the absence of hopping. More surprisingly

perhaps, the hopping dominated regime possess phase correlation, a feature not present

at all in the decoupled stripes, meaning that in this limit the system takes on superfluid

characteristics.

In either case we are interested chiefly in the situation where d < 1. We ought to recall

that dint = K and dhop = 1/(4K). This suggests to us that the self-dual point K = 1/2 might

be interesting because here the density wave and superfluid phases (for non-zero gint, ghop)

are maximally competing. This is a point we must return to later.

The analysis so far has been at zero temperature, now we would like to estimate the

transition temperature of these phases. This in turn will let us decide which phase is dominant

when both couplings are non-zero.

Carr and Tsvelik [29] have estimated the transition temperature for this kind of model

by looking susceptibility of the relevant phase.

The susceptibility χ = −∂h 2F |h=0 ∼ G(k) will be divergent at a second order phase

transition by definition. To find divergences in the susceptibility of either phase Carr and

Tsvelik treated neighbouring stripes as a perturbation upon a single stripe.

To the level of the random phase approximation they found that the susceptibilities took
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the form

χ =
χ0

1− gvs
a2 χ0

.

The single stripe susceptibility is calculated, for example, in the appendix of Giamarchi’s

book[53] and has the form

χ0 ∼
1

2

a2

vs

(
πa

β~vs

)2d−2

,

so that the critical temperature is estimated as

kBTc ∼
~vs
πa

(g
2

) 1
2−2d

.

Combining this with the definition of K(ρ0r0), dint, dhop and gint and recalling that all

of these are functions of the angle α of the dipole moments, we find an angular dependence

(in the mean field approximation) for the critical temperatures for the density wave and

superfluid phases

kBT
DW
c (α) ∼ ~vs

πa

(
1

2
gint[0] cos2 α

) 1
2−2K(ρ0r0[π2 ] sin2 α)

(4.19a)

kBT
SF
c (α) ∼ ~vs

πa

(
1

2
ghop

) 2K(ρ0r0[π2 ] sin2 α)

4K(ρ0r0[π2 ] sin2 α)−1

. (4.19b)

These mean field critical temperatures allow us to put forward tentative phase diagrams

for when one coupling channel dominates. These are shown in Fig.[4.8] and Fig.[4.9].
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Figure 4.8: Mean field phase diagram of the interaction dominated regime: The blue region contains

the density wave phase, the white region is the disordered phase. This plot is generated

with gint = 0.1 and ρ0r0[π2 ] = 25, although the shape is fairly universal for small gint.

Based on realistic experimental parameters for the dipole moment taken from [79] and a

lattice spacing ∼ 500nm, we may estimate the maximum critical temperature of the

density wave phase to be of order TDW
c ∼ 50nK
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Figure 4.9: Mean field phase diagram of the hopping dominated regime: The pink region contains the

superfluid phase, the white region is the disordered phase. This plot is generated with

ghop = 0.2 and ρ0r0[π2 ] = 25, although the shape is fairly universal for small ghop. For the

sake of comparison, the scale here is the same as that used for the interaction dominated

regime. The maximum critical temperature for the superfluid phase is seen to be roughly

twice that of the density wave phase, i.e. at its maximum TDW
c ∼ 100nK

These phase diagrams are constructed using the parameters gint = 0.1, ghop = 0.2 and

ρ0r0[π
2
] = 25, which where chosen to make the relevant features most obvious. Experimenting

with the code used to generate these figures shows that these basic shapes hold for pretty

much any choice of parameters as long at the couplings are sufficiently small (which is a good

thing because we are treating them as a perturbation!).

As a first stab at treating both couplings simultaneously we might try just superimposing

the phase diagrams over one another. This is fair enough when one of g
1

2−2K

int or g
2K

4K−1

hop is

significantly greater than the other, that is to say in the regions α ∼ 0 and α > π/4, but it

would imply that there might exist a critical angle at which there is a phase transition from

superfluid to density wave, as illustrated in Fig.[4.10].
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Figure 4.10: Mean field phase diagram including both channels of coupling.

The apparent first order transition between the two BKT orders that we see in this

phase diagram is actually forbidden due to the Hohenberg-Mermin-Wagner theorem. This is

because at the self dual point there is a symmetry between the two O(2) orders that enhances

the total symmetry of the system to O(4), we’ll discuss this in detail a little later. Near to

the critical point where the two phase transitions meet, the transverse correlation length gets

very large and it is no longer appropriate to treat inter-chain coupling. Thus to cope with

this critical region we need to treat the system in its full two dimensions.

4.6 Effective Theory at Close Coupling

4.6.1 Coupling the Fields into a Single SU(2) Field

To fix our mean field approach to the stripe model we rewrite the Hamiltonian for this model

in a more amenable form. We start from the full Hamiltonian
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H =
~vs
2π

∑
n

∫
dx
{
K(∂x θn)2 + (1/K)(∂x ϕn)2 +

gint

a2
cos 2(ϕn − ϕn+1) +

ghop

a2
cos(θn − θn+1)

}
.

(4.20)

We can simplify this expression by introducing the matrix operator

ψn(x) =
1√
2

e
−2iϕn(x) −eiθn(x)

e
−iθn(x)

e
2iϕn(x)

 . (4.21)

We will employ a unitary rescaling of the Pauli matrices (which is equivalent to the

quaternionic basis set) as a basis for our 2× 2 matrices

u0 =

1 0

0 1

 u1 =

0 i

i 0

 u2 =

0 −1

1 0

 u3 =

i 0

0 −i

 (4.22)

It is a simple matter to establish that:

tr
{

(∂x ψ
†
n)(∂x ψn)

}
= (∂x θn)2 + 4(∂x ϕn)2,

tr
{

(∂x ψ
†
n)u3(∂x ψn)u3

}
= (∂x θn)2 − 4(∂x ϕn)2,

tr
{
ψ†n+1ψn

}
= cos(θn − θn+1) + cos 2(ϕn − ϕn+1),

tr
{
ψ†n+1u3ψnu3

}
= cos(θn − θn+1)− cos 2(ϕn − ϕn+1).

Using these results, we see that our Hamiltonian can be rewritten in the form

H =
~vs
4π

∑
n

∫
dx tr

{4K2 + 1

4K

(
∂x ψ

†
n

)
(∂x ψn) +

4K2 − 1

4K

(
∂x ψ

†
n

)
u3 (∂x ψn)u3

+
ghop + gint

a2
ψ†n+1ψn +

ghop − gint

a2
ψ†n+1u3ψnu3

}
.
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In its original form the Hamiltonian had an antiferromagnetic signature in the sense that

the positive sign of the cosine terms gave both the fields a tendency to anti-align with their

counterparts in neighbouring stripes so as to compensate the effective repulsion. We will find

it more convenient to map this system onto one with a ferromagnetic signature – i.e. one

with negative sign on the cosine terms – which we achieve by shifting every other instance

of either field along by π. This does not alter the measure in the partition function, the only

effect is to add a minus sign to both ghop and gint. How this makes the system easier to deal

with will become clear shortly.

Let us now suppose that the inter-stripe spacing λ is small and hence expand the Hamil-

tonian as a Taylor series. We then have, up to second order in λ,

H =
~vs
4π

∑
n

∫
dx tr

{4K2 + 1

4K

(
∂x ψ

†(x, nλ)
)

(∂x ψ(x, nλ)) +
4K2 − 1

4K

(
∂x ψ

†(x, nλ)
)
u3 (∂x ψ(x, nλ))u3

−
ghop + gint

a2

(
ψ†(x, nλ)ψ(x, nλ) + ψ†(x, nλ)λ∂(nλ) ψ(x, nλ) + ψ†(x, nλ)

λ2

2
∂(nλ)

2ψ(x, nλ)

)
−
ghop − gint

a2

(
ψ†(x, nλ)u3ψ(x, nλ)u3 + ψ†(x, nλ)u3λ∂(nλ) ψ(x, nλ)u3 + ψ†(x, nλ)u3

λ2

2
∂(nλ)

2ψ(x, nλ)u3

)}
.

Now treating λ as infinitesimal and discarding irrelevant constants, the Hamiltonian can be

expressed as

H =
~vs
4π

∫
dxdy tr

{4K2 + 1

4λK

(
∂x ψ

†(x, y)
)

(∂x ψ(x, y)) +
λ

2

ghop + gint

a2

(
∂y ψ

†(x, y)
)

(∂y ψ(x, y))

+
4K2 − 1

4λK

(
∂x ψ

†(x, y)
)
u3 (∂x ψ(x, y))u3 +

λ

2

ghop − gint

a2

(
∂y ψ

†(x, y)
)
u3 (∂y ψ(x, y))u3

+
λ

2

gint − ghop

a2
ψ†(x, y)u3ψ(x, y)u3

}
.

If we de-dimensionalize distances according to

x = ar1

√
4K2 + 1

4K

y = λr2

√
ghop + gint

2
,
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then the Hamiltonian is

H =
~vs
4πa

√(
4K2 + 1

4K

)(
ghop + gint

2

)∫
d

2r tr
{
|∇ψ(r)|2 +

gint − ghop

ghop + gint

ψ†(r)u3ψ(r)u3

+
4K2 − 1

4K2 + 1
∂1 ψ

†(r)u3∂1 ψ(r)u3 +
ghop − gint

ghop + gint

∂2 ψ
†(r)u3∂2 ψ(r)u3

}
.

The region of parameter space which is of particularly interesting to us is where the

superfluid and density wave orders are in maximal competition. We have already seen that

in the mean field approximation the critical temperature for the two competing phases look

like TDW ∝ (gint/2)
1

2−2K and T SF ∝ (ghop/2)
2K

4K−1 . To this end we focus our attention on the

region in parameter space in which gint ≈ ghop and K ≈ 1/2. The Hamiltonian now looks

like

H =
~vs
√
g

4πa

∫
d

2r tr
{
|∇ψ(r)|2 +

gint − ghop

gint + ghop

ψ†(r)u3ψ(r)u3 +
4K2 − 1

2
∂1 ψ

†(r)u3∂1 ψ(r)u3

+
gint − ghop

gint + ghop

∂2 ψ
†(r)u3∂2 ψ(r)u3

}
≈

~vs
√
g

4πa

∫
d

2r tr
{
|∇ψ(r)|2 + hψ†(r)u3ψ(r)u3 + h̃∇ψ†(r)u3∇ψ(r)u3

}
,

with h = (gint − ghop)/(gint + ghop) and h̃ = max{h, (4K2 − 1)/(4K2 + 1)}.

We define J = (~vs
√
g)/(2πa) and hence arrive at an effective Hamiltonian description

of the region of maximal competition

H =
J

2

∫
d

2r tr
{
|∇ψ(r)|2 + hψ†(r)u3ψ(r)u3 + h̃∇ψ†(r)u3∇ψ(r)u3

}
(4.23)

Looking back to the definition of the matrix field ψ, we notice that ψ†ψ = 1 and that

ψ has unit determinant so clearly ψ(r) ∈ SU(2). In the absence of the coupling terms the

Hamiltonian is invariant under left and right multiplication by a constant SU(2) field. This

means there is an SU(2)×SU(2) symmetry to the system. With the anisotropies in place, the
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symmetry is reduced as the full Hamiltonian is invariant under pre- and post-multiplication

by matrices that are linear combinations of u0 and u3, hence the reduced symmetry group is

U(1)× U(1).

We will find it most convenient to deal with this system in terms of the coefficients in

the expansion ψ(x) = Ψ0(x)u0 + Ψ1(x)u1 + Ψ2(x)u2 + Ψ3(x)u3 with Ψi ∈ R. In terms of the

vector of expansion coefficients Ψ = (Ψ0,Ψ1,Ψ2,Ψ3) ∈ R4 the Hamiltonian takes the form

H =
J

2

∫
d

2r∇Ψ(r) · ∇Ψ(r) + hΨ(r) ·MΨ(r) + h̃∇Ψ(r) ·M∇Ψ(r), (4.24a)

where the matrix M has the form

M =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


(4.24b)

We notice that in the absence of anisotropy terms the Hamiltonian is invariant under

multiplication of Ψ by O(4) matrices and that the anisotropies reduce the symmetry to

multiplication by block O(2) × O(2) matrices. We further notice that, in order for ψ to be

in SU(2) requires that Ψ2
0 + Ψ2

1 + Ψ2
2 + Ψ2

3 = 1. As such Ψ takes its values from the surface

of the three-sphere S3.

We can now see, as per our prior discussions, that the relevant model with which to study

the system in the region of maximal competition is an O(4) nonlinear sigma model with

anisotropy terms that break the symmetry down to O(2)×O(2).

As always we would prefer to work in the action formalism and so we consider the partition

function
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Z =

∫
D[Ψ ∈ R4]δ(Ψ2 − 1)e−S[Ψ] (4.25)

S[Ψ] =
J

2

∫ β

0

dτ

∫
d

2r

{
1

v2
[∂τ Ψ]2 + [∇Ψ]2 + hΨMΨ + h̃∇ΨM∇Ψ

}
.

In converting into the action formalism it is possible that we would generate an additional

topological term to the action

Stop[Ψ] =
iq

12π

∫
d

2+1r εµνλεαβγδΨα∂µ Ψβ∂ν Ψγ∂λ Ψδ (4.26)

Jaefari et al [30] have argued that this kind of term is irrelevant in the region we are consid-

ering, so we will happily neglect its existence.

In the above we have seen that the effective theory of the region of maximal competition

can be described in terms of an O(4) order parameter. We have seen that the model in this

domain can be described by an nonlinear sigma model on O(4) with anisotropy terms which

break the symmetry down to O(2) × O(2). Now let us explore some of the consequences of

this realization as regards our proposed phase diagram.

4.6.2 A Ginzburg-Landau Treatment of the High Symmetry Point

At the high symmetry point, vortices are no longer topologically protected and so the only

only way that the system could order – through a BKT transition – is not viable. Clearly

then the system may not have (even quasi-) long-ranged order at this point. However far

from this point the model quite clearly decouples into two disjoint O(2) sectors, each of which

is allowed to order through a BKT transition, giving credence to our mean field results. In

advance of any calculation we can safely say that the (BKT) critical temperature of either

phase must somehow drop to zero at high symmetry and hence we can make a schematic

adaptation to the phase diagram as illustrated in Fig.[4.11]
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Figure 4.11: Correction to the mean field phase diagram due to the enhanced symmetry at the critical
angle. The symmetry enhancement forces both BKT critical temperatures down to zero.

To probe further into this region we attempt an analysis via the renormalization group.

Just by counting powers we can see straight off that the term proportional to h̃ will be

irrelevant under renormalization as compared to the term proportional to h and so we will

drop it.

We also take into account that, because Ψ ·Ψ = 1, we can add as much of Ψ ·Ψ as we like

to the Lagrangian so as to simplify proceedings. Doing this we may redefine the anisotropy

matrix as

M =



0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


, (4.27)
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and be left with the partition function

Z =

∫
D[Ψ ∈ R4]δ(Ψ2 − 1)e−S[Ψ] (4.28)

S[Ψ] =
J

2

∫ β

0

dτ

∫
d

2r

{
1

v2
[∂τ Ψ(τ, r)]2 + [∇Ψ(τ, r)]2 + hΨ(τ, r)MΨ(τ, r)

}
.

where M now gives an effective mass to the Ψ1 and Ψ2 sectors.

Near to zero temperature, we have a three dimensional nonlinear sigma model with

anisotropy which could be treated within a 4 − ε expansion. Near to 4D, the nonlinear

constraint can be approximated by a quartic interaction. Hence let us consider the La-

grangian

L[Ψ] =
J

2
(∂µ Ψϕ)2 +

J

2
(∂µ Ψθ)

2 +
Jh

2
Ψ2
θ + v

(
Ψ2
ϕ + Ψ2

θ

)2
.

Where we have defined Ψϕ = (Ψ0,Ψ3) and Ψθ = (Ψ1,Ψ2).

This Lagrangian must renormalize to something of the form

L[Ψ] =
Jϕ
2

(∂µ Ψϕ)2 +
Jθ
2

(∂µ Ψθ)
2 +mθΨ

2
θ +mϕΨ2

ϕ + vϕΨ4
ϕ + vθΨ

4
θ + 2wΨ2

θΨ
2
ϕ,

which we now investigate to get a feel for the critical properties.

Evidently if w renormalizes toward zero the two sectors completely decouple and can be

treated separately. We will investigate slowly varying solutions so that we can ignore the

gradient terms. We now may as well rescale Ψθ and Ψϕ with respect to vθ and vϕ respectively,

as we have the freedom to do so and it simplifies the proceeding, and then we may minimize

the renormalized Lagrangian with respect to Ψθ and Ψϕ. First we note that

δL[Ψ]

δΨθ

= 2Ψθ

(
mθ + 2Ψ2

θ + 2wΨ2
ϕ

)
δL[Ψ]

δΨϕ

= 2Ψϕ

(
mϕ + 2Ψ2

ϕ + 2wΨ2
θ

)
,
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hence we may tabulate the extrema

Ψ2
θ Ψ2

ϕ L[Ψ]

0 0 0

−mθ/2 0 −m2
θ/4

0 −mϕ/2 −m2
ϕ/4

(wmϕ −mθ)/2(1− w2) (wmθ −mϕ)/2(1− w2) −(mϕ −mθ)
2/4(1− w2)−mϕmθ/2(1 + w)

The second and third minima indicate phase transitions in the θ and ϕ sectors respectively.

Following the standard Ginzburg-Landau theory we say mθ/ϕ ∼ (T − T cθ/ϕ)/T cθ/ϕ and hence

see that these cases constitute phase transitions in a single sector with the other locked into

disorder.

The final minimum is strongly dependent upon the renormalized anisotropy parameter w.

When w > 1 the two phases cannot simultaneously order as Ψ2
θ and Ψ2

ϕ will of opposite sign

to one another unless mϕ = mθ, and even then this does not constitute a global minimum

of the Lagrangian at overly high temperatures. As such, for w > 1 there is a (first order)

flop line separating the two ordered phases at low temperature which bifurcates forming a

bicritical point. On the other hand if w < 1, Ψθ and Ψϕ can share the same sign for a window

of width ∼ (1/w − 1) around the line mθ = mϕ, within which the two phases may coexist.

The scenario for w < 1 is that at low temperatures the two singularly ordered regimes are

separated by a domain of dual order, the transition lines for which converge to a point and

come out again as the transition lines from the singularly ordered phases into the disordered

state. The critical point is this scenario is tetracritical. When w is exactly one the critical

point only exists at zero temperature.

This very basic Ginzburg-Landau analysis serves to tell us what we should be looking for.

If w renormalizes upwards we expect to see a first order phase transition between the two
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Figure 4.12: Bicritical (left) and tetracitical (right) points.

kinds of order whereas if it renormalizes downward we should expect a region of coexistence of

the ordered phases. Although the Ginzburg-Landau treatment distinguishes between possible

scenarios we need to do the renormalization separately to see what scenario is actually taken.

Unfortunately w does not renormalize in either direction within one loop, however Cal-

abrese et al [80] have performed the renormalization up to five loops (by numerical methods)

and find that the correct multicritical behaviour is the tetracritical scenario. Taking Cal-

abrese et al ’s results into account for our model, we realize that at low temperatures in the

vicinity of the high symmetry point there will be a coexistence of the superfluid and density

wave phases.

Given that this analysis says the ground state has double order in the vicinity of the self-

dual point we expect there to be a finite BKT transition temperature for both sectors above

this region, hence a double quasi-long ranged order. This region containing both superfluid

and crystalline order could be called a supersolid. We will discuss the background of this

proposed phase in the next section. Then having seen schematically how the phase diagram

should look in the region of maximally competing orders we will go on to study how the

enhanced symmetry effects the BKT transition temperatures in much more detail.
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4.6.3 The supersolid state

0 Π

4
Π

2

Α

Tc

Critical angle

Density wave

Superfluid

SF

DW

ΑC

TDW

TSF

Figure 4.13: Adaptation to the mean field phase diagram due to the enhanced symmetry at the

critical angle. The yellow region contains what could be described as a supersolid as we

will discuss in this section.

Given that the phase in which both O(2) sectors are supported possesses both crystalline

and superfluid properties, we are tempted to refer to this state as a supersolid. This term is

however rather loaded because the possibility of a supersolid state of matter has quite a long

and spotted history.

We will refer to the coexistence phase as a supersolid – if only for the want of a better

term – but we should pause now to look into some of the history of supersolidity and how

the coexistence of phase coherence and density wave ordering ties into this.

The earliest reference to what would now be generally referred to as supersolidity comes
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in the seminal 1956 work of Penrose and Onsager [81]. This paper introduces the Penrose-

Onsager criterion, which shows that Bose-Einstein condensation is dependent on off-diagonal

long-ranged order in the reduced density matrix. It is also shown in this paper that Bose-

Einstein condensation is forbidden in a solid. This should be the end of the discussion then.

The problem with their proof of this statement, as pointed out by Chester nearly fifteen

years later in 1970[82], is that when Penrose and Onsager proved that Bose-Einstein con-

densation cannot occur in a system with crystalline order they assumed that a crystal must

have every site occupied. If we relax that restriction and allow vacancies into the crystal

then condensation becomes a real possibility.

Chester proposed then that the solid phase of 4He could indeed become a supersolid – as

in a solid with Bose-condensed excitations – so long as the zero temperature phase of 4He

has sufficient disorder.

This possibility was also recognised by Andreev and Lifschitz in 1971[83] in their quan-

tum theory of defects in crystals. Andreev and Lifschitz noted that at low temperatures a

localised defect can move freely through a crystal giving rise to a fluid of defects. As bosonic

excitations, these fluids could give rise to a superfluid.

Over the years there have been numerous experimental reports of evidence of supersolidity

in 4He[84] but a more promising route to the supersolid phase came with the advent of optical

lattice experiments[85] as there have been proposals to use such systems to simulate the

extended Bose-Hubbard model, in which supersolidity is expected to occur[86].

In the model we propose, the state we would like to call a supersolid is not a bose

condensed fluid of defects as discussed above, but rather a direct coexistence of quasi-long

ranged superfluid and crystalline orders. Whether supersolid is the correct term to use is

possibly debatable but as no better term springs to mind, this is what we will go with.
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Chapter 5

The O(N) Nonlinear Sigma Model

5.1 Background

Consider a very general action of the form

S[φ] =

∫
d
dr
{
|∇φ|2 + V (φ)

}
(5.1)

where φ is an N -component field which could be real or complex. Let’s now imagine that

V (φ) is invariant under some continuous (unitary or orthogonal) transformation Σ. Then

we should look at what happens when we set φ → Σφ. If we make this transformation the

action becomes

S =

∫
d
dr
(
|∇φ|2 + |φ|2 tr{∇Σ† · ∇Σ}+ tr{j · A}+ V (φ)

)
(5.2)

where j = i(φ∗[∇φ]− [∇φ∗]φ) and A = Σ†∇Σ. Now we imagine a situation, like we saw when

we first introduced spontaneous symmetry breaking, where a saddle point approximation

determines a constant minimum for V (φ) when |φ| = ϕ. Then the low energy theory only

cares about the symmetry factor Σ.

S = S0 + ϕ2

∫
d
dr tr

{
∇Σ† · ∇Σ

}
(5.3)

This action is called the nonlinear sigma model. It may not seem to be so nonlinear, it

looks just like a noninteracting quadratic action. The nonlinearity comes from the fact that

Σ takes its values from some compact group G.
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The nonlinear sigma model appears all over condensed matter and particle physics because

it is the low energy effective theory for many symmetric models. For example, when studying

the electroweak force, a particle physicicst might be interested in a nonlinear sigma model

where G = SU(2)× U(1).

The specific nonlinear sigma model we will specialize to is called the O(N) nonlinear

sigma model. This is a silly name as we are actually going to consider a nonlinear sigma

model on the group O(N)/O(N − 1) but the name is traditional so we will stick with it and

put up with the confusion.

The model is specified by the action

S[n] =

∫
d
dr(∇n)2 n ∈ RN n2 = 1 (5.4)

this looks alot like a free action for an N component field, the nonlinearity comes in through a

unit length constraint on n. We have of course seen this kind of action before when discussing

the XY-model for which N = 2.

In the following we will fill in the appropriate physical scales for this model and go

through the momentum-shell renormalization calculation to see how the system flows. We

will then include quadratic symmetry breaking terms and repeat the renormalization group

calculation.
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5.2 The Classical O(N) Nonlinear Sigma Model

We will start our considerations of the O(N) non-linear sigma model in d dimensions by

considering the simplest classical case given by the (dimensionless) action functional

S[n] =
βJa2−d

2

∫
a

d
dx (∇n)2 (5.5)

where β = (kBT )−1 is the inverse temperature, J is an appropriate energy scale (typically

the stiffness) and a is the UV (lattice) length scale.

The nonlinearity comes in through a length constraint on n ∈ RN that enters the partition

function as

Z =

∫
D[n ∈ RN ]δ(n2 − 1)e−S[n] . (5.6)

If we write n = (π, σ) where π ∈ RN−1 then we can integrate over the field σ to get

Z =

∫
D[π ∈ RN−1]D[σ]δ(π2 + σ2 − 1)e−S[(π,σ)]

=

∫
D[π ∈ RN−1]D[σ]

[∏
x

δ(σ −
√

1− π2)√
1− π2

]
e
−S[(π,σ)]

=

∫
D[π ∈ RN−1]

[∏
x

1√
1− π2

]
e
−S[(π,

√
1−π2)] . (5.7)

The residual of the delta function can be cast in the same form of the action first by writing

∏
x

1√
1− π2

= e
− 1

2

∑
x ln(1−π2) , (5.8)

then by converting the sum into an integral by inserting a UV density ρ

∑
x

ln(1− π2) =

∫
a

d
dx ρ ln(1− π2). (5.9)

The UV density is given by the volume of reciprocal space

ρ =

∫ Λ
d
dk

(2π)d
(5.10)
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where Λ = 1/a. Clearly ρ is a large – in fact divergent as a → 0 – quantity but this serves

the purpose of forcing the partition function toward π2 < 1 and so we must be forgiving.

Our model has become

Z =

∫
D[π ∈ RN−1]e−Seff[π] (5.11a)

Seff[π] =
1

2

∫
a

d
dx

{
βJa2−d

[
(∇π)2 +

(π · ∇π)2

1− π2

]
+ ρ ln(1− π2)

}
. (5.11b)

The partition function is now in a form we know how to handle, but the action has become

rather tricky. We can break this action into free and coupling parts Seff[π] = S0[π] + S1[π],

where

S0[π] =
1

2

∫
a

d
dx βJa2−d(∇π)2 (5.12a)

S1[π] =
1

2

∫
a

d
dx

{
βJa2−d (π · ∇π)2

1− π2
+ ρ ln(1− π2)

}
. (5.12b)

The free propagator associated with S0[π] is

G0(x1 − x2) = 〈π(x1)π(x2)〉0

=

∫ Λ
d
dk

(2π)d
e
i(x1−x2)k a

d−2

βJ

1

k2
. (5.13)

To make the coupling action less daunting we expand in powers of π, so that to fourth order

S1[π] =
1

2

∫
a

d
dx

{
βJa2−d(π · ∇π)2

(
1 + π2 + . . .

)
− ρ

(
π2 +

1

2
π4 + . . .

)}
. (5.14)

We can write the field in terms of its Fourier components

π(x) =

∫ Λ
d
dk

(2π)d
e
ikx π(k), (5.15a)

which allows us to define fast and slow modes
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πλ(x) =

∫ Λ/λ
d
dk

(2π)d
e
ikx π(k) (5.15b)

π+(x) =

∫ Λ

Λ/λ

d
dk

(2π)d
e
ikx π(k). (5.15c)

Following our now familiar Wilson momentum shell RG procedure, we want to integrate

out the fast modes perturbatively leaving behind the slow modes. We then rescale the slow

modes until we return to the original form of the model, but with a new set of coupling

constants, the form of which tell us how the system flows.

We face a problem due to the sheer number of terms we need to keep track of. As such

some diagrammatics are in order.

We define a vertex set:

ρ ⇒

βJa2−d ⇒

. . . and an edge set:

∇π+
i ⇒

i

π+
i ⇒

i

∇πλi ⇒
i

πλi ⇒
i

Now we integrate out fast modes (join up dotted lines) and see what diagrams are gener-

ated. We will work to one loop only.

The kinetic energy term in S0 gives us the diagram
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the low order terms in S1 give us diagrams

The renormalization of the kinetic energy term to one loop comes from the diagrammatic

equation

=⇒ +

This translates into mathematics as the recursion equation

(βJa2−d)λ = (βJa2−d) [1 +G+(0)] ζ2λd−2 (5.16a)

where G+(0) is the free propagator of the fast modes. ζ is a dimensionless quantity brought

in to enforce the unit normalization of n, so we get one factor per slow leg. The appearance

of λ here comes from the rescaling of distances to recover the domain of the original model.

We get d factors from the integral in the action and then 1 per every derivative (dashed leg).

The term Hartree term G+(0) crops up again so we will give it its own symbol η.

The renormalization of the four legged term comes in from the diagrams

=⇒ + +

which gives us the recursion equation
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(βJa2−d)λ = (βJa2−d) [1 + η + (N − 1)η] ζ4λd−2 (5.16b)

In order for Eqn.[5.16a] and Eqn.[5.16b] to be consistent with one another requires that

ζ2 =
1 + η

1 +Nη
(5.17)

leaving us with

(βJ)λ = (βJ)

[
1 +

(1 + η)2

1 +Nη

]
λd−2. (5.18)

Let us now take the limit λ→ 1 + dΛ/Λ, then we can calculate η as

η =

∫ Λ

Λ−dΛ

d
dk

(2π)d
ad−2

βJ

1

k2
=

∫ Λ

Λ−dΛ

dk

(2π)d
· 2πd/2

Γ(d/2)
kd−1 · a

d−2

βJ

1

k2

=
21−dπ−d/2

Γ(d/2)

ad−2

βJ
Λd−3

dΛ =
21−dπ−d/2

Γ(d/2)

1

βJ

dΛ

Λ
.

We then define

Kd =
21−dπ−d/2

Γ(d/2)
(5.19)

and see that the recursion equation Eqn.[5.18] becomes

(βJ)λ = (βJ)

[
1 +

(1 + Kd
βJ

dΛ
Λ

)2

1 +N Kd
βJ

dΛ
Λ

](
1 +

dΛ

Λ

)d−2

= (βJ)

(
1 + (2−N)

Kd

βJ

dΛ

Λ
+ (d− 2)

dΛ

Λ

)
(5.20)

Now writing (βJ)λ − (βJ) = d(βJ) we arrive at the flow equation

d ln(βJ) =

[
(d− 2) +

Kd

βJ
(2−N)

]
d ln Λ (5.21)

where the dimension dependent coefficients Kd are tabulated as in Tab.[5.2]
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d 1 2 3 4

Kd 1/π 1/(2π) 1/(2π2) 1/(8π2)

Table 5.1: Dimension dependent coefficients for the RG flow for the O(N) nonlinear sigma model

The flow form in Eqn.[5.21] gives a beautiful illustration of the Hohenberg-Mermin-

Wagner theorem as the trajectories in dimension two or lower flow the system straight toward

the high temperature disordered regime whereas in three or higher dimensions we observe a

fixed point at

kBT =
d− 2

Kd(N − 2)
J (5.22)

which separates high and low temperature phases.

The very special case d = 2, N = 2 is fixed so that no renormalization appears to occur,

but we understand that this is the XY model and that vortices, rather than spin waves,

control the renormalization.

5.3 The Easy Plane O(N) Nonlinear Sigma Model

We now want to construct a model which again operates with a dimensionless classical field

n(x) ∈ RN which satisfies the non-linear constraint n2 = 1, but we now want to discourage

n from employing M of its N sectors. (For our model we have N = 4 and M = 2.)

To this end we will write n = (π, σ) = (πS, πH , σ) with σ ∈ R, π ∈ RN−1, πH ∈ RM and

πS ∈ RN−M−1, where πS and σ are ‘soft modes’ and πH are ‘hard modes’ which we gap to

discourage occupation.

The (dimensionless) action functional we employ is now

S[n] =
βJa2−d

2

∫
a

d
dx

{
(∇n)2 +

∆

a2
π2
H

}
(5.23)
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where ∆ is a dimensionless anisotropy parameter. We refer to the model as the easy-plane

(classical) nonlinear sigma model.

The nonlinear constraint is enforced within the partition function Eqn.[5.6].

For the most part the renormalization calculation proceeds in the same vein as in the

case we considered before with ∆ = 0. The only real source of complications is that we now

have two kinds of propagators, one for hard and one for soft modes.

The hard and soft propagators are given by

GH
0 (x1 − x2) =

∫ Λ
d
dk

(2π)d
e
i(x1−x2)k a

d−2

βJ

1

k2 + ∆
a2

(5.24a)

GS
0 (x1 − x2) =

∫ Λ
d
dk

(2π)d
e
i(x1−x2)k a

d−2

βJ

1

k2
. (5.24b)

The diagrams that gave rise to the renormalization of kinetic energy Eqn.[5.16a] do not

couple hard and soft modes so we can immediately infer

(βJa2−d)λ = (βJa2−d) [1 + ηH ] ζ2
Hλ

d−2 (5.25a)

(βJa2−d)λ = (βJa2−d) [1 + ηS] ζ2
Sλ

d−2 (5.25b)

where ηH = GH
0 (0), ηS = GS

0 (0) and ζH , ζS enforce the normalization of n for the hard and

soft sectors.

The renormalization of four legged terms in Eqn.[5.16b] contains one diagram which

couples hard and soft modes, namely

because the closed loop is tracing over all N−1 sectors of π. The resulting recursion equation
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can be applied to either hard or soft modes and will give the same result, this statement is

a corollary of the fact that we need only consider the renormalization of βJ , π and ∆ in

order to get a consistent theory, a result proven by Amit et al [87] when considering models

of this form. The arguments they use are much more complex than anything we will attempt,

suffice it to say that a very careful reading of their work will produce the flow equations we

are about to present.

The easy plane analogue of Eqn.[5.16b], which we decide to use to renormalize soft modes,

is then seen to be

(βJa2−d)λ = (βJa2−d) [1 + ηS + (N −M − 1)ηS +MηH ] ζ4
Sλ

d−2 (5.25c)

We still need to account for the presence in the action of the mass term ∆
a2π

2
H . To this

end we introduce a new member to our vertex set

βJ∆a−d⇒

The contribution to the action is from the diagram

As this diagram is topologically equivalent to that produced by the UV density term they

must necessarily be renormalized in tandem, the relevant diagrammatic equation is thus

− ⇒ − + b

We need to remember that the triangular vertex is only present when we are renormalizing

hard modes. The recursion we arrive at is
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(βJ∆a−d)λ − ρ(H)
λ =

[
(βJ∆a−d)− ρ+ (βJa2−d)∇2GH

+ (x)|x→0

]
ζ2
Hλ

d,

the superscript on the renormalized UV density is to remind us that this equation renormal-

izes hard legs only.

The renormalization of the ρ(H) term is trivial:

ρ
(H)
λ =

[
ρ−

∫ Λ

Λ/λ

d
dk

(2π)d
· 1
]
ζ2
Hλ

d,

and we can calculate the derivatives of the hard-fast propagator

∇2GH
+ (x)|x→0 =

∫ Λ

Λ/λ

d
dk

(2π)d
ad−2

βJ

k2

k2 + ∆
a2

=
1

βJa2−d

∫ Λ

Λ/λ

d
dk

(2π)d
· 1− ∆

a2
ηH

so things cancel out nicely, and what remains is the recursion equation

(βJ∆a−d)λ = (βJ∆a−d) [1− ηH ] ζ2
Hλ

d (5.25d)

The recursion equations we have found in Eqn.[5.25] can then be tidied up a little and

brought into the form

(βJ)λ = (βJ) [1 + ηH ] ζ2
Hλ

d−2 (5.26a)

(βJ)λ = (βJ) [1 + ηS] ζ2
Sλ

d−2 (5.26b)

(βJ)λ = (βJ) [1 + (N −M)ηS +MηH ] ζ4
Sλ

d−2 (5.26c)

(βJ∆)λ = (βJ∆) [1− ηH ] ζ2
Hλ

d (5.26d)

We can eliminate the field rescaling parameters ζH , ζS by demanding that the first three

of these recursion equations are consistent. Some algebra then tells us that
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ζ2
S =

(1 + ηS)

(1 + (N −M)ηS +MηH)
(5.27a)

ζ2
H =

(1 + ηS)2

(1 + ηH)(1 + (N −M)ηS +MηH)
, (5.27b)

so that the system Eqn.[5.26a] reduces to

(βJ)λ = (βJ)λd−2 (1 + ηS)2

(1 + (N −M)ηS +MηH)
(5.28a)

(βJ∆)λ = (βJ∆)λd
(1− ηH)(1 + ηS)2

(1 + ηH)(1 + (N −M)ηS +MηH)
. (5.28b)

A priori, due to the discussion in the last section, we know that in the limit λ→ 1 + dΛ/Λ

the Hartree terms will be infinitesimals η ∼ dΛ/Λ so writing (βJ)λ = (βJ) + d(βJ) and

(βJ∆)λ = (βJ∆) + d(βJ) we see that in this limit Eqn.[5.28] becomes

d(βJ) + (βJ) = (βJ)

(
1 + (d− 2)

dΛ

Λ

)
(1− (N −M − 2)ηS −MηH) (5.29a)

d(βJ∆) + (βJ∆) = (βJ∆)

(
1 + d

dΛ

Λ

)
(1− (N −M − 2)ηS − (M + 2)ηH) (5.29b)

which we can simplify even further to

d ln(βJ) = (d− 2)d ln Λ− (N −M − 2)ηS −MηH (5.30a)

d ln ∆ = 2d ln Λ− 2ηH . (5.30b)

Finally we get around to evaluating the ηH and ηS:

ηH =
Kd

βJ

1

1 + ∆

dΛ

Λ
(5.31a)

ηS =
Kd

βJ

dΛ

Λ
, (5.31b)
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and arrive at the flow equations

d ln(βJ) =

[
(d− 2)−

(
(N −M − 2) +

M

1 + ∆

)
Kd

βJ

]
d ln Λ (5.32a)

d ln ∆ = 2

[
1− 1

1 + ∆

Kd

βJ

]
d ln Λ (5.32b)

The N = 3, M = 1 version of this flow form was derived by Nelson and Pelcovitz[88].

I am reliably informed that the general case can be found in Amit et al [87], although their

style is very different to what is presented here.

We will look into the behaviour of this RG flow in the next chapter.

5.4 The Quantum Easy Plane Nonlinear Sigma Model

Just for the sake of completeness we will know consider what happens if we were to include

quantum fluctuations within the easy plane nonlinear sigma model.

The appropriate action would then be

S[n] =
Ja2−d

2~

∫ β~
dτ

∫
a

d
dr

{
1

c2
(∂τ n)2 + (∇n)2 +

∆

a2
π2
H

}
, (5.33)

where c is an appropriate velocity scale (something like the sound speed of phonons).

To simplify notation we will write

1

c2
(∂τ n)2 + (∇n)2 = ∂µ n · ∂ µn (5.34)

with Euclidean signature and Einstein summation convention implied over Greek letters.

The RG flow equations can be derived in exactly the same manner as in the classical case

with a few substitutions. First of all we need to adapt our edge and vertex sets slightly to

account for the new notation,
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∂µ π
+
i ⇒

i

π+
i ⇒

i

∂µ π
λ
i ⇒

i

πλi ⇒
i

J∆a−d/~ ⇒

ρ ⇒

Ja2−d/~ ⇒

In terms of Fourier components, the field π and its fast and slow components, π+ and πλ,

are now given by

π(τ, r) =

∫ Λ
d
dk

(2π)d

∑
ω

e
i(k·r+ωτ)

β~
π(ω, k) (5.35a)

πλ(τ, r) =

∫ Λ/λ
d
dk

(2π)d

∑
ω

e
i(k·r+ωτ)

β~
π(ω, k) (5.35b)

π+(τ, r) =

∫ Λ

Λ/λ

d
dk

(2π)d

∑
ω

e
i(k·r+ωτ)

β~
π(ω, k) (5.35c)

where ω are the bosonic Matsubara frequencies, ω ∈ 2π
β~Z.

The hard and soft propagators are now
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GH
0 (τ, r) =

∫ Λ
d
dk

(2π)d

∑
ω

e
i(k·r+ωτ)

β~
~

Ja2−d
1

k2 + ω2/c2 + ∆/a2
(5.36a)

GS
0 (τ, r) =

∫ Λ
d
dk

(2π)d

∑
ω

e
i(k·r+ωτ)

β~
~

Ja2−d
1

k2 + ω2/c2
(5.36b)

Other than these redefinitions, the diagrammatic expressions above remain valid so we

can just translate the recursion equations given in Eqn.[5.28], so we have

Jλ = Jλd−2 (1 + ηS)2

(1 + (N −M)ηS +MηH)
(5.37a)

(J∆)λ = (J∆)λd
(1− ηH)(1 + ηS)2

(1 + ηH)(1 + (N −M)ηS +MηH)
, (5.37b)

but now the Hartree terms have different meanings.

We’ll calculate the hard η and infer the soft version from that. By definition, in the limit

λ→ 1− d ln Λ, we have

ηH =

∫ Λ

Λ−dΛ

d
dk

(2π)d

∑
ω

1

β~
~

Ja2−d
1

k2 + ω2/c2 + ∆/a2

=

∫ Λ

Λ−dΛ

d
dk

(2π)d

∞∑
n=−∞

ad−2

k2 + ∆/a2 +
(

2π
β~c

)2

n2

.

We make use of the identity

∞∑
n=−∞

1

a+ bn2

π√
ab

coth

(
π

√
a

b

)
,

and the fact that the surface area of a (d− 1)-dimensional ball of radius k is

2
πd/2

Γ(d/2)
kd−1 = (2π)dkd−1Kd, (5.38)

so that we can write
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ηH =
1

βJ

∫ Λ

Λ/λ

dk

(2π)d
2πd/2kd−1

Γ(d/2)

ad−2π√(
2π
β~c

)2 (
k2 + ∆

a2

) coth

π
√√√√√
(
k2 + ∆

a2

)(
2π
β~c

)2


=

~c
J

2−dπ−d/2

Γ(d/2)

ad−2Λd−1√
Λ2 + ∆

a2

coth

(
1

2
β~c
√

Λ2 +
∆

a2

)
dΛ

Since a = 1/Λ, if we define the dimensionless quantity

u =
1

2
β~

c

a
, (5.39)

this becomes

ηH =
Kd

βJ

u√
1 + ∆

coth
(
u
√

1 + ∆
)
dΛ

Λ
(5.40a)

ηS =
Kd

βJ
u coth (u)

dΛ

Λ
(5.40b)

Finally we have the flow equations

d ln J =

[
(d− 2)− (N −M − 2)

Kd

βJ
u coth (u)−MKd

βJ

u√
1 + ∆

coth
(
u
√

1 + ∆
)]

d ln Λ

(5.41a)

d ln ∆ =

[
2− 2

Kd

βJ

u√
1 + ∆

coth
(
u
√

1 + ∆
)]

d ln Λ (5.41b)

None of β, ~ or c have an explicit renormalization to one loop so we can see that u renormalizes

trivially

d lnu = d ln Λ. (5.42)
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Following tradition let us now call d ln Λ = d`. Now we can write

d ln J =

[
(d− 2)− Kdu

βJ

(
(N −M − 2) cothu+M

coth
(
u
√

1 + ∆
)

√
1 + ∆

)]
d` (5.43a)

d ln ∆ = 2

[
1− Kdu

βJ

coth
(
u
√

1 + ∆
)

√
1 + ∆

]
d` (5.43b)

d lnu = d` (5.43c)

The dimensionless quantities which jump out at us are

t =
1

βJ
(5.44a)

q =
u

βJ
=

~c/a
2J

. (5.44b)

t plays the role of the temperature or, equivalently, the inverse stiffness in the high temper-

ature classical limit. q plays a similar role in the low temperature quantum limit.

In terms of these new quantities we have the flow equations

dln t

d`
= (2− d) +Kdq

[
(N −M − 2) coth(q/t) +M

coth
(
q/t
√

1 + ∆
)

√
1 + ∆

]
(5.45a)

dln q

d`
= (1− d) +Kdq

[
(N −M − 2) coth(q/t) +M

coth
(
q/t
√

1 + ∆
)

√
1 + ∆

]
(5.45b)

dln ∆

d`
= 2− 2Kdq

coth
(
q/t
√

1 + ∆
)

√
1 + ∆

(5.45c)

Using our knowledge that for small x

cothx =
1

x
+
x

3
− x3

45
+ . . . (5.46)

we can see that in the limit q/t = u→ 0, which we call the classical limit, we find

117



dln t

d`
= (2− d) +Kdt

[
N −M − 2 +

M

1 + ∆

]
(5.47a)

dln ∆

d`
= 2− 2Kdt

1 + ∆
(5.47b)

The renormalization of the quantum stiffness parameter q is interesting, since from

dln q

d`
= (1− d) +Kdt

[
N −M − 2 +

M

1 + ∆

]
(5.47c)

we see that for d = 1 the flow of q is always toward infinity. This is an aside however, the

point is that we have regained the flow equations for the classical easy plane nonlinear sigma

model Eqn.[5.32] with t taking the place of 1/(βJ)

If we remove the anisotropy in Eqn.[5.45] we get to the the RG flow of the quantum

nonlinear sigma model with no anisotropies as calculated by Chakravarty, Halperin and

Nelson [89].

118



Chapter 6

Depletion of Order Due to Enhanced
Symmetry

6.1 Motivation

The key feature of our stripe model was the existence of a high symmetry point at which

quasi-long-ranged order ceases to be possible.

The mathematical origin of this effect is very clear: The Berezinskii-Kosterlitz-Thouless

transition relies upon the propogation of topological excitations in an O(2) symmetric field.

In the limit where the the two O(2) symmetric fields become a single O(4) symmetric field

such topological excitations cease to be possible. Therefore at this point spin wave physics

reasserts itself and the phase transition is no longer possible, and as such the transition

temperature must be driven to zero.

The mathematical truth of this is beyond doubt, however questions still remain as to

what is physically going on here.

1. It would be nice to know the mechanism by which spin wave physics takes over from

vortex physics. Presumably the vortices themselves get turned into spin wave excita-

tions.

2. If the vortices are becoming like spin waves, is this something that could be probed

experimentally?
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3. What measurable effect is happening to the vortices and impact has this upon the

Berezinskii-Kosterlitz-Thouless temperature?

The action we are faced with for the model at hand is an easy plane nonlinear sigma

model in 2 + 1 dimensions with symmetry breaking O(4) → O(2) × O(2) but we could just

as easily consider the more general symmetry breaking O(M + 2) → O(M) × O(2). This

extension is not only interesting from a purely mathematical point of view. For M = 1 this

is the continuum limit of the easy-plane Heisenberg spin system

H = −J
∑
<ij>

sisj + J
∆

2

∑
i

(Szi )2 (6.1)

and could also been seen in SO(5) theories. In all cases there is an important topological

aspect that we shall now attempt to address.

6.2 Modified Berezinskii-Kosterlitz-Thouless Analysis

6.2.1 A Variational Ansatz

To answer the question of how vortices can become spin waves, we consider a single vortex

configuration within the action

S[n] =
βJ

2

∫
a

d
dr

(∇n)2 +
∆

a2
n ·


0 0 0

0 1M×M 0

0 0 0

n

 . (6.2)

For large ∆ the system would clearly prefer to avoid the hard modes and so XY-type physics

ought to be dominant.

A vortex with unit topological charge in this system would look like
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n = (cos θ, 0M , sin θ). (6.3)

The contribution to the action of such a vortex would be

S	 = πβJ ln(R/a) + Score. (6.4)

Let us now consider a new configuration, which I attempt to illustrate in Fig.[6.2.1], which

looks like a normal vortex at length scales greater than some core radius ξ0 but below this

radius points into the hard plane. One would expect such a configuration to have a smaller

contribution to the action because it can avoid producing a singularity at the centre of the

vortex core.

Figure 6.1: Softened vortex near a high symmetry point

The contribution to the action due to such a softened vortex is easily seen to be approx-

imately

S̃	 = πβJ ln(R/ξ0) + βJ
∆

2a2
πξ2

0 . (6.5)

Of course this is a slight oversimplification because we are neglecting edge effects; the

field won’t just switch from in plane to out-of-plane but should do so gradually. However the
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contribution of these edge effects would be negligible so we’ll pretend they aren’t happening.

Minimizing the action contribution we find the optimal core size gives

πβJ

(
− 1

ξ0

+
∆

a2
ξ0

)
= 0 ⇒ ξ0 =

a√
∆

(6.6)

We therefore predict that the core size diverges as 1/
√

∆ as the high symmetry point is

approached.

In order to see how the BKT temperature is affected we need to adapt the standard

treatment to allow for core sizes that are not simply the lattice scale. Before doing this let

us take another look at the BKT argument.

6.2.2 Another Look at the BKT Argument

We wish to adapt our vortex argument from our discussion of The Vortex Plasma to account

for larger vortex cores. Although it would not be too hard to go back and adapt our previous

arguments1 we will take the opportunity to get a fresh perspective on the vortex unbinding

transition and remind ourselves of what is going on.

Once again, our system us described by a Hamiltonian

H =
J

2

∫
d

2x [∇n(x)]2 (6.7a)

=
J

2

∫
d

2x [∇φ(x)]2 (6.7b)

and again a generic vortex configuration is one in which

φ(r, θ) = φ(r, 0) + kθ

so that the winding number k is such that φ(r, 2π)− φ(r, 0) = 2πk.

1You can try this if you like, it is fairly easy once you know the answer, the way we about to see is just
neater.
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Earlier we were loosely following the arguments given by Kosterlitz and Thouless, we now

follow instead the argument given in the excellent book of Chaikin and Lubensky[90].

We are interested in stationary configurations (∇2φ = 0) with winding number k (
∮
dφ =

2πk). If we introduce the velocity field of the vortex uv we see that

uv =
k

r
eθ. (6.8)

The energy due to a single vortex comes in two flavours, a contibution from the core of

the vortex Ecore which can be estimated as some condensation energy density multiplied by

the area of the vortex core, Ecore = fcondπa
2, where a is the vortex radius, and an elastic

contribution Eel which we can calculate directly

Eel =
J

2

∫
d

2x

[
k

r
eθ

]2

= πk2 ln(R/a) (6.9)

Similarly, the elastic energy of a system containing two vortices separated by a distance r is

found to be

E
(2)
el2 = πJ(k1 + k2)2 ln(R/a) + 2πJk1k2 ln(a/r) (6.10)

The important point here is that terms which would be divergent in the thermodynamic limit

cancel if the vortices have opposite topological charge.

Perhaps unsurprisingly, calculations regarding vortices become simpler if instead of talking

about velocity fields we consider vorticity fields. Thinking back to elementary fluid mechanics,

we define the vorticity

ω = ∇× uv = 2πez
∑
i

kiδ(x− xi) = 2πezρv (6.11)

where ρv is the density of the vortices which are situated at xi.

Taking the curl of the vorticity gives ∇×ω = −∇2uv, so if the Green’s function of a two

dimensional Laplacian is called G(x) we have
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uv(x) = ∇x ×
∫
d

2y G(x− y)ω(y). (6.12)

Moving now into momentum space, we have

uv(p) =
1

p2
ip× ω(p) (6.13)

We can, quite generally, split the overall velocity field, u = ∇φ, into an incompressible

part uv (∇·uv = 0), due to vortices and an irrotational part usw (∇×usw = 0) coming from

spin waves.

The Hamiltonian, remembering to add in core contributions by hand, can then be written

H =
J

2

∫
d

2x u2(x) =
J

2

∫
d

2x u2
sw(x) +

J

2

∫
d

2p

(2π)2
uv(p) · uv(−p) + Ecore

∑
i

k2
i (6.14a)

=
J

2

∫
d

2x u2
sw(x)− J

2

∫
d

2p

(2π)2

1

p2
ω(p) · ω(−p) + Ecore

∑
i

k2
i (6.14b)

Assuming that the field vanishes at infinity, the average velocity must be zero. Now if we

perform a global velocity boost u→ u + v, the average velocity should be v.

We can define a macroscopic stiffness J̄ by performing a Galilean boost upon the free

energy,

F (v) = F (0) +
J̄

2
R2v2 (6.15)

Actually calculating the free energy we have

F (z) = − 1

β
ln tr e−βH(v) = − 1

β
ln tr e−β{H(0)+ J̄

2
R2v2+J

2

∫
d2x u·v} , (6.16)

which we can write as
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F (z) = F (0) +
J

2
R2v2 − 1

β
ln
〈
e
−βJ

2

∫
d2x u·v

〉
≈ F (0) +

J

2
R2v2 − βJ2

2

∫
d

2xd2y vivj 〈ui(x)uj(y)〉

≈ F (0) +
1

2
R2v2

(
J − βJ2

∫
d

2x 〈uv(x) · uv(0)〉
)

Hence to leading order the macroscopic stiffness is given by

J̄ = J − βJ2

∫
d

2x 〈uv(x) · uv(0)〉 = J − βJ2 lim
p→0

1

R2
〈uv(p) · uv(−p)〉

= J − βJ2 lim
p→0

1

p2

1

R2
〈ω(p) · ω(−p)〉 .

Let us call the coefficient of βJ2 in the macroscopic stiffness, U . Expanding the Taylor

series and taking p→ 0 limit gives us

U = − lim
p→0

1

p2

1

R2
〈ω(p) · ω(−p)〉 =

1

4R2

∫
d

2xd2y 〈ω(x) · ω(y)〉 (x− y)2

=
π2

R2

∑
i,j

(xi − xj) 〈kikj〉 .

The average here only contains winding numbers so as far as the macroscopic stiffness is

concerned we only need to average with respect to the (quadratic) Hamiltonian of topological

charges

H(k) = Ecore

∑
i

k2
i −

J

2
(2π)2

∑
ij

kikj
1

2π
ln(|xi − xi|/a) (6.17)

If we restrict our attention to neutral configurations of unit topological charge, the average

becomes trivial and we have simply
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〈kikj〉 =
−2e2Ecore−2πJ ln(|xi−xi|/a)

1 + 2e2Ecore+2πJ ln(|xi−xi|/a)

≈ −2e−2βEcore

(
|xi − xj|

a

)−2πβJ

which determines the constant U to be

U = −2π2 z
2

R2

∑
i,j

|xi − xj|2
(
|xi − xj|

a

)−2πβJ

where z = e
−βEcore is the fugacity.

We introduce the microscopic lattice constant a0 that determines statistically distinct

vortices, noting that ∑
i

a2
0 = R2 (6.18)

The key point is that we aren’t assuming that the lattice constant is equal to the vortex core

size, and this will allow us to consider vortices with a larger core size.

We replace sums with integrals via

∑
i

→
∫

d
2x

a2
0

, (6.19)

so that U becomes

U = −2π2z2 1

a4
0

∫ ∞
a

d
2x x2

(x
a

)−2πβJ

= −4π3z2

(
a

a0

)4 ∫ ∞
a

dr

a

(r
a

)3−2πβJ

Now we can write the macroscopic value of the stiffness as

J̄ = J − βJ24π3

(
z
a2

a2
0

)2 ∫ ∞
a

dr

a

(r
a

)3−2πβJ

.

To perform the renormalization step, we write
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(βJ̄) = (βJ)− (βJ)24π3

(
z
a2

a2
0

)2
{∫ ae`

a

dr

a

(r
a

)3−2πβJ

−
∫ ∞
ae`

dr

a

(r
a

)3−2πβJ
}

= (βJ)` − (βJ)24π3

(
z
a2

a2
0

)2 ∫ ∞
ae`

dr

a

(r
a

)3−2πβJ

= (βJ)` − (βJ)24π3

(
z
a2

a2
0

)2

e
(4−2πβJ)`

∫ ∞
a

dr

a

(r
a

)3−2πβJ

,

so we immediately get the recursion equations

z` = ze(2−πβJ)` (6.20a)

(βJ)` = (βJ)− (βJ)24π3

(
z
a2

a2
0

)2 ∫ e`

1

dr r3−2πβJ , (6.20b)

which in the limit of infinitesimal ` become

dz = (2− πβJ)d` (6.21a)

d(βJ) = −(βJ)24π3

(
z
a2

a2
0

)2

d`. (6.21b)

We have therefore re-derived the RG flow equations for the vortex plasma to account for a

separation of length scales.

From our previous discussion (or just by solving the RG equations again) we can see that

the BKT transition temperature is given by

1

βBKTJ
=

π

2 + 4π a
2

a2
0
e−πβBKTJ

. (6.22)

Inserting the optimal core size from Eqn.[6.6] and writing x = πβBKTJ we have

4π

∆
= (x− 2)ex (6.23)
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In the limit ∆ → 0, to leading order we thus have x ∼ ln(1/∆), this gives the small ∆

behaviour of the transition temperature to be

kBTBKT ∼
J

ln(1/∆)
(6.24)

The argument we present here is very simplistic but makes two clear predictions for the

behaviour of the system close to the high symmetry point

1. The vortex core size diverges as 1/
√

∆

2. The BKT transition temperature vanishes as 1/ ln(1/∆)

The analysis we have seen here has been based entirely on the behaviour of the vortices

in the system, based on the ansatz of a softening vortex core.

To supplement this analysis in the next section we will inspect the renormalization group

flow equations for this system which come from spin wave considerations and will see (perhaps

surprisingly) a good agreement.

6.3 Spin Wave Renormalization Analysis

To complement our previous analysis based on interrogating vortices in the high anisotropy

regime with an interrogation of the spin wave in the low anisotropy regime.

From our discussion of The Easy Plane O(N) Nonlinear Sigma Model we know the RG

flow equations for the temperature and the anisotropy. We now need to analyse this flow.

The flow equations for an easy plane nonlinear sigma model with 2 soft modes and M

hard modes in two dimensions are

d ln(βJ) =
−1

2πβJ

M

1 + ∆
d` (6.25a)

d ln ∆ = 2

[
1− 1

2πβJ

1

1 + ∆

]
d` (6.25b)
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Taking 2/M of Eqn.[6.25a] away from Eqn.[6.25b] we find a conserved quantity

d ln
[
∆(βJ)−2/M

]
= 2d` ⇒ d

[
∆(βJ)−2/M

e
−2`
]

= 0. (6.26)

To find a second conserved quantity it is most convenient to make a change of variables

x = πβJ ⇒ d lnx = d ln(βJ)

y = ∆(1 + ∆) ⇒ d ln y = (1− y)d ln ∆,

then the flow equations become

d lnx = −M
2

1− y
x

d`

d ln y =

(
2− 1− y

x

)
(1− y)d`.

Dividing the second equation by the first equation we find that

d ln y =
2

M

(
1− y
x
− 2

)
dx

d(1/y) =

(
4

M
− 2

M

1

x

)
(1/y)dx+

2

M

dx

x

d

(
x2/M

e
− 4x
M

y

)
=

2

M
x

2
M
−1
e
− 4x
M dx.

This expression can be pulled into a single differential by making use of the incomplete

gamma function

Γ(s, x) =

∫ ∞
x

ts−1
e
−t
dt (6.27a)

dΓ(s, x)

dx
= −xs−1

e
−x , (6.27b)

or more concisely by using the exponential integral function
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Es(x) =

∫ ∞
1

tse−xt dt (6.28a)

Es(x) = xs−1Γ(1− s, x) (6.28b)

Es(x→ 0) ∼ Γ(1− s)xs−1 +
1

s− 1
− x

s− 2
+

x2

2(s− 3)
− x3

6(s− 4)
+ . . . (6.28c)

Es(x→∞) ∼ e
−x
(

1

x
− s

x2
+
s(s+ 1)

x3
+ . . .

)
. (6.28d)

Then we see that

d

(
x

2
M e
− 4x
M

y

)
= −1

2

(
4

M

)1− 2
M dΓ( 2

M
, 4x
M

)

d
(

4x
M

) d

(
4x

M

)
,

which we write as

d

[
x

2
M

(
e
− 4x
M

y
+

2

M
E1−2/M(4x/M)

)]
= 0,

leaving us with a new conserved quantity

d

[
e

2
M

(ln(2πβJ)−2πβJ)

(
1

∆
+ 1 +

2

M
e

4πβJ/M E1−2/M(4πβJ/M)

)]
= 0 (6.29)

Now it is important to remember that the RG flow equations are only valid when ∆� 1.

When ∆ ∼ 1 XY physics takes over and we cannot avoid talking about vortices. It thus

makes sense to define a scale `∗ where ∆(`∗) = 1 at which we need to stop the RG and try

something else.

Now if we start with bare coupling constants ∆ and T and these renormalize at `∗ to 1

and T (`∗), then if kBT (`∗) < π
2
J the system should be BKT ordered and if kBT (`∗) > π

2
J

then the system still resides in the easy plane but is disordered.

The conserved quantity
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XM(βJ,∆) = e
2
M

(ln(2πβJ)−2πβJ)

(
1

∆
+ 1 +

2

M
e

4πβJ/M E1−2/M(4πβJ/M)

)
(6.30)

obviously does not renormalize so the curve

XM(βJ,∆) = XM(2/π, 1) = XBKT
M (6.31)

defines an effective BKT transition temperature as a function of ∆.

XBKT
M is just a number, which for M = 2 is is about 0.0000876464 but its value is not

particularly important to us. What we want to know is how βJ behaves along the BKT

curve when ∆ is very small. For small ∆, βJ needs to be very big to keep XM finite. In the

limit we can drop any subdominant terms (constants and powers) and just look at

XM(βJ →∞,∆→ 0) ∼ e
− 4πβJ

M

∆
. (6.32)

Along the BKT curve we then have

ln

(
1

∆

)
∼ 4πβJ

M
+ lnXBKT

M

so that

kBTBKT ∼
J

ln(1/∆)
. (6.33)

This confirms the prediction of our variational argument Eqn.[6.24].

It should come as a bit of a shock that the RG flow equations – which are after all

blind to topological excitations – give the same prediction as an analysis of the topological

excitations themselves. To understand this better we need only look at the scale at which

we stop the RG: ξ∗ = ae`
∗

. If we call the temperature at `∗ T ∗ then due to the conservation
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law Eqn.[6.26], we find that

ξ∗ =
a√
∆

(
T ∗

T

)1/M

(6.34)

this gives a correction to our variational treatment of the optimal core size Eqn.[6.6]. For

small T the renormalization is very slow so we regain our initial estimate for the increase in

the core size near to the high symmetry point. The size of the vortex cores, relative to the

lattice scale, is illustrated in Fig.[6.3].
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Figure 6.2: Increase in the vortex core size as the high symmetry point is approached. The lines get

higher as the anisotropy is decreased. The red line meets the curves at the value of TBKT

where ∆ = 1 hence giving the size of the vortex cores at BKT vortex unbinding transition.

We are now able to sketch a schematic phase diagram for this kind of system. To do so

we simply colour the RG flow according to whether the anisotropy flows to zero or infinity
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and if ∆ → ∞ whether the temperature flows to above or below the bare BKT transition

temperature. The result is shown in Fig.[6.3].

OH2L Disordered

BKT Ordered
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HRenormalized classicalL
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D�H1+DL

T�J

Figure 6.3: Schematic phase diagram in the vicinity of the enhanced symmetry point: The thick blue

line indicates the BKT transition temperature varying with the anisotropy. The BKT

transition separates the quasi-long range ordered state (blue) from the O(2) disordered

state. The red line indicates the crossover temperature between a disordered O(2) state

(yellow) which is vortex dominated from a disordered O(N) state (red) which is spin wave

dominated.

6.4 Conclusions

In this chapter we have asked what happens to the vortices mediating a BKT transition

when the symmetry is enhanced beyond O(2). We have used both spin wave renormalization
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group and modified BKT arguments in order to attack both the weak and strong symmetry

breaking limits. Somewhat surprisingly, the two approaches have conspired to give the same

picture.

At the outset we posed the questions

Q1 By what mechanism does spin wave physics take over from vortex physics?

Q2 Is this something that could be probed experimentally?

Q3 What happens to the BKT transition temperature?

From the analysis we have presented we are now ready to answer these questions.

A1 At the very core of the vortex it is energetically preferable to avoid a divergent cost by

exploiting the anisotropy-suppressed sectors, regardless of how great the anisotropy is.

For lower symmetry breaking the core-cost versus anisotropy-cost balance encourages

the field to exploit the suppressed sector for a wide radius about the core. As the

anisotropy vanishes, the core radius diverges as 1/
√

∆ and the spin-wave character of

the full-symmetry field within the core takes over the whole system.

A2 Our physical picture is of enlarged vortex cores supporting an island of suppressed

phase. This is actually pre-empted by experimental data on Lanthanum Cuprate – a

system with competing antiferromagnetism and superconductivity – which is consistent

with finite-size vortices with large spin density wave susceptibilities[91].

A3 The BKT transition temperature vanishes as the anisotropy is decreased. Near to zero

anisotropy the BKT transition temperature looks like TBKT ∼ J/ ln(1/∆).
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Chapter 7

Conclusions

In this thesis we have proposed a setup for an ultracold atom experiment in which dipolar

bosons are confined in a highly anisotropic quasi-one dimensional lattice. We have shown

that the effective low energy Hamiltonian, which is constructed by bosonizing and weakly

coupling a two dimensional array of Luttinger liquids, is identical to that which is used to

describe many striped condensed matter systems, including the striped phase of the cuprates

and structurally anisotropic materials such as the telephone number compound Sr14Cu24O41.

A key feature of our proposed experimental realization of this system is the great degree

of control over the parameters of the model. These, we have seen, can be independently

tuned by varying the spacing and depth of the confining optical lattice potential and the

angle made by the dipoles to the axis of the stripes. By tuning the model parameters to

the self dual point where the Luttinger parameter K = 1/2 and to where the strength of

inter-stripe hopping and interactions are maximally competing, we have seen that we can

access a special region of phase space where a superfluid and a longitudinal crystallization

phase come into direct competition.

We have then studied the effects of the phase competition upon the phase diagram in

the region of the enhanced symmetry point of maximal competition. This is made all the

more interesting by the fact that it happens in two dimensions. Where the strengths of the

superfluid and crystalline perturbations are equal, the symmetry of the system is enhanced

from O(2)×O(2) to O(4). We have seen that this symmetry enhancement must destroy the

Berezinskii-Kosterlitz-Thouless transitions that allow either phase to quasi-long-range order,

and reassert the dominance of the Hohenberg-Mermin-Wagner theorem, which forbids long
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ranged order in low dimensions. In simple terms this means that at this special point the

BKT critical temperature of either phase must vanish to zero.

A simple Ginzburg-Landau treatment of the region around this special high symmetry

point suggests the existence of a tetracritical point in the phase diagram such that on either

side of the point where both the density wave and superfluid transition temperatures go to

zero there are lobes containing both phases. We dub the phase with quasi-long range ordering

of both density wave and superfluid order a supersolid phase for this system.

A more in depth analysis of this system through a nonlinear sigma model with quadratic

symmetry breaking gives no indication either way as to the presence of our proposed super-

solid phase. This is an avenue for possible future work.

Inspired by this system, we have considered a more general problem of a model in two

dimensions with O(M) × O(2) symmetry that possesses a special point in parameter space

where the symmetry is enhanced to O(M +2). Again the transition temperature of the BKT

ordered phase in the O(2) sector must vanish at the high symmetry point.

Given that we understand the BKT transition through the unbinding of vortex dipoles, we

have tried to understand what happens to the vortices in the O(2) sector of the O(2)×O(M)

model as we approach the enhanced O(M + 2) symmetry point.

By modifying the standard Berezinskii-Kosterlitz-Thouless argument we have been able to

predict that the size of the vortex cores is divergent as the high symmetry point is approached,

with the core size diverging as 1/
√

∆, where ∆ measures the degree of anisotropy. By the

same approach we have been able to predict that the BKT transition temperature vanishes

as the high symmetry point is approached like 1/ ln(1/∆).

It is worth pointing out that the although the ground state for ∆ > 0 is ordered and the

ordering temperature is vanishing as ∆ → 0, ∆ = 0 is not a quantum critical point. The

vanishing of the BKT transition temperature comes about solely due to the sensitivity of the

spin wave sector to the high symmetry point through the formation of Goldstone modes.
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Further to considering the vortices, we have performed the same calculations but looking

at the spin wave sector of the model rather than at the vortices. Surprisingly, we have

found perfect agreement in the two methods. This works because both approaches invoke

the existence of a length scale separating the physics of the full symmetry of the model from

that of the BKT sector.

This patching together of the perturbative spin wave sector and the non-perturbative

vortex aspects of the model shows promise as a method for studying other two dimensional

models possessing a BKT transition.
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