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ABSTRACT 

This thesis is mainly concerned with the modeling of electric vehicle charging station 

and its dynamic interactions with distribution grid.  

The thesis starts with the literature review of the technical developments in wind 

generation and electric vehicle integration into power grids. Then the equivalent 

model of electric batteries is developed and implemented in MATLAB/Simulink. The 

model is used to evaluate the terminal voltage and power variation during the battery 

charging and discharging periods. The concept of electric vehicle fast charging station 

is summarized and its detailed simulation model is designed for the integration of the 

electric vehicle batteries with the distribution network. In addition, the modeling of a 

wind turbine with DFIG is presented. As a wind generator requires the fault 

ride-through ability, crowbar protection is considered in the simulation model.  

Based on the above, the interactions between electric vehicle charging stations and 

active distribution grid with wind turbines are investigated.  The focus is to examine 

the possibility of bi-direction power flow control capability of EV charging stations in 

providing the voltage support for distribution network operations to improve the 

fault-ride-through of adjacent wind turbines. Simulations are used to illustrate the 

feasibility as well as the effectiveness of the proposed control concept.  Potentially 

such voltage support from EV charging station can be developed as ancillary services 

in smart distribution grid operations. 
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Chapter 1 Introduction 

Abstract 

In this Chapter, the motivation for the research topics of this thesis on the dynamic 

impacts of electric vehicles on the distribution grid is presented at first. Then a 

literature review is carried out on research topics of electric vehicles and wind 

generation as well as their current developments. Finally the organization of this 

thesis is also outlined and the main contributions are described. 

 

1.1 Background 

The first industry revolution originated from the UK in the mid-19th century, as the 

steam-powered energy conversion technology replaced the conventional handcraft in 

the industrial production. Then, in the first decade of the 20th century, electrical 

power and electrical communication emerged along with the oil-powered internal 

combustion engine, giving rise to the second industrial revolution. Since late 20th 

century, the Internet technology and renewable energy marked the rise of the third 

industrial revolution. Distributed communication revolution converges with a new 

distributed energy via smart inter-connections. Three industrial revolutions push the 

social productivity to an unprecedented high level, but it also brings about many 

negative influences on the environments due to the lack of rational exploitation and 
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utilization of fossil fuels and unsustainable energy production and consumption [1].  

On the other hand, the limited mineable reserves of fossil fuels and their unbalanced 

distribution also led to three times of global energy crises during last century. In 

regarding the response to the crisis, the international community has reached an 

agreement that it is necessary to reform the existing mode of energy production and 

consumption, which relies on fossil fuels, to a sustainable mode with clean alternative 

energy sources and low carbon emissions [2]. On the energy supply side, various 

renewable generation sources are integrated into the power grid, such as solar energy, 

tidal energy, and especially wind energy, whose penetration steadily grows [3]; On 

the energy demand side, electric vehicles are becoming more and more popular due to 

their advantages such as low exhaust emissions and high energy efficiency. The 

marketplace of electric vehicles is emerging in both developed and developing 

countries in recent years [4].  

1.1.1 Electric Vehicle Popularization 

An electric vehicle is an automobile that is propelled by its electric motor, and 

equipped with a certain electric energy storage infrastructure onboard [5]. Electric 

vehicles have advantages in energy efficiency and exhaust emission compared with 

conventional internal combustion based automobiles [6]-[7]. 

In recent years, electric vehicles have been drawing great attentions from both the 

governments and the public in their development and popularization. For example, in 

the U.S., a series incentive policies have been launched by the government for both 



	
   11	
  

customers and manufactures, so that a mature domestic market can be formulated in 

around 2015~2017, with potential sales of 1 to 1.5 million plug-in hybrid electric 

vehicles [8]; As for China, the second largest vehicle market, the government also 

emphasizes its electric vehicle industry as one of the promising industry, it is 

committed to establish a public transportation system based on electric vehicles [9]; In 

late 2008, the European Commission launched the “European Green Cars” project 

while the European Investment Bank offered an initial budget of €5 billion. Figure 1-1 

is the forecast of electric vehicle market in 2020 [10].  

Figure 1-1 The Estimated Global Alternative-Energy Vehicle Map in 2020 

On the other hand, public infrastructures for large-scale charging should be 

established in order to offer rapid and convenient services for the consumers to 

support the popularization of electric vehicles. For example, the ChargePoint America 

project in the U.S. is aimed at building some 5,000 charging stations to provide 

charging services [11]; Moreover, the Multi-state Electric Vehicle Project is aimed at 
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building 15,000 charging points in 16 major cities and metropolitan areas in 6 states 

[12]. In China, according to the three-step development plan of the State-Grid 

Corporation, 75 charging stations and 6,209 charging poles had been built during 

2009-2010, then 4,000 charging stations are being built in the next 5 years and finally 

a complete interconnected charging network consisting of 10,000 charging stations 

will be established by 2020 [13]. European governments have also proposed a series 

of promotional plans for electric vehicles. For examples, the French government has 

planned to establish a national wide electric vehicle charging network containing over 

4 million charging points by 2020 [14]; in the UK, more than 25,000 charging points 

will be installed across London as well as other cities by 2015[15]. 

1.1.2 Wind Generation Development 

The popularization of electric vehicles will need to consider an optimization on the 

power demand side for environment protection and sustainability, while the power 

supply side is also undergoing a reform, which is represented by the rapid 

development of wind generation.  

Wind energy is considered to be clean, safe and sustainable, which now dominates the 

position in the new energy area. The origin of wind energy utilization can date back to 

the 19th century, when windmills were developed to extract the kinetic energy 

existing in wind flows as mechanical energy. Then the first wind generator was 

invented sooner and the first wind farm was built in Denmark in the late 19th century. 

During 1970s-1980s, in order to overcome the energy crisis, great attention was paid 
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on sustainable energy, during this period, the first 55 kW wind generator was 

developed, representing a breakthrough in modern wind power industry [16]. From 

then on, not only the capacity of a wind generator reaches kW and MW levels but also 

the requirements on reliability and efficiency of a wind generator become essential 

[17]. 

In recent years, worldwide installed wind power capacity reached 239 GW by the end 

of 2011, among which the five leading countries are China, USA, Germany, Spain 

and India, together representing a total share of 74% of the global wind capacity [18]. 

UK, as the windiest country in Europe, has been exploiting wind resources since the 

beginning of the 21th century as shown in [19]:  

 

Figure 1-2 UK installed Wind Power Capacity (in MW) 

The installed wind power capacity is expected to continue growing in the UK for the 
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foreseeable future, especially for offshore wind power, because UK has been 

estimated to have over a third of Europe’s total offshore wind energy resource. In fact, 

UK government plans 13GW of installed offshore wind power capacity by 2020, and 

had completed 3 rounds of project biddings for offshore wind farms since 1998. 

Currently, UK has 1.86GW of operational nameplate capacity, with a further 2.05GW 

under construction [19].  

Because of the inherent fluctuation and intermittence of wind energy, the large 

integration of wind power generation led to a large amount of negative effects on the 

power system in stability, reliability and power quality [20]. Due to these 

shortcomings, wind power generation is not as reliable or controllable as the 

conventional thermal power generation, so extra reserve capacity should be equipped 

with the wind power generators from the prospective of power system reliability. On 

the other hand, early wind generators draw reactive power during their operation, 

which mainly used for voltage regulation in modern wind power generator.  

With the popularization of electric vehicles in the transportation system, the electrical 

energy sector will encounter a dramatic change due to this important and expected 

issue. The impact of electric vehicles on power systems mainly occurs on the demand 

side [21]-[22]: The number of electric vehicles directly determines the degree of their 

impact on power grids. With the rapid growth of electric vehicles in recent years, their 

overall charging demand will become an important part of system loads. 

It has been discovered that a high penetration of electric vehicles will increase 
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electricity consumption during their charging periods, which could lead to 

considerable change in the power flows, grid losses, and voltage profile patterns of 

the power grid.  

It is also found that the amount of intermittent renewable energy resources that can be 

safely integrated into the power system may increase due to the proper utilization of 

distributed electric vehicle storage capacity [23]. When the primary renewable energy 

resources are available, electric vehicles can be charged to store energy and inject it 

into system later when necessary. In this way, the spillage of clean energy in the 

system could be avoided, so that the usage of the conventional fossil fuel units and 

expensive generating units could be decreased during peak hours [24]. This will also 

reduce pollutant emissions and generation costs. 

1.2 Literature Review 

The electric vehicle is generally made up of a drive train that at least contains an 

electrical motor, a battery storage system and/or a means of recharging the battery 

from an external source of electricity [23]. Its battery capacity usually ranges from 

several kWh or tens of kWh to power the vehicle in all electric drive mode for several 

tens of miles [24]. Moreover, an electric vehicle may have an internal combustion 

engine as well, in order to extend its drive range when it runs out of its battery [25]. 

Research on the impact of electric vehicle charging on the power grid dated back to 

the 1980s. It was discovered that the charging demand of electric vehicles tends to 
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coincide with the overall peak load [26]. Therefore, when the penetration of electric 

vehicles increases, it is necessary to manage their charging demand, in order to avoid 

significant increase of the overall peak load [27]-[28]. Later, the so-called smart 

charging was proposed, whose target is to optimize the charging process of electric 

vehicles [29]-[34]:  

A control strategy was proposed in [29] to minimize the energy consumption of 

electric vehicle charging in a residential use case. Another two strategies were 

presented in [30] to control the charging time and energy flows of an electric car, 

considering forecasted electricity price and system auxiliary service. In [30]-[31], the 

potential benefits of electric vehicles as some type of auxiliary service were discussed, 

and a conceptual framework for implementation was presented in [32]-[33]. 

However, though smart charging has demonstrated a good potential in the future 

smart grid, currently most consumers in reality still prefer to charge their electric 

vehicles as fast as possible. In this situation, smart charging control should not 

interfere with their daily drive profile [31]-[34]. On the other hand, the fast 

developing rapid charging techniques are [35] attracting more electric vehicle 

consumers. Moreover, the implementation and integration of smart charging in a 

system wide scale is still a long-time work in future. Therefore, currently it is still 

necessary to assess the impact of uncontrolled charging of electric vehicles on the 

power system.  

The impact of electric vehicle charging on the power grid can be evaluated by such as 



	
   17	
  

thermal loading, voltage regulation, phase unbalance, power losses, harmonic 

distortion, and etc. [36]. These are typical metrics for both systemic and component 

based analysis. Based on this, modeling of power grid components, electric vehicles, 

and their integration, which reflects the above key physical quantities, becomes 

important. When electric vehicles are charged, this means increased loading to the 

distribution grid; when electric vehicles are discharged, this means decreased loading 

to the system. This two operating scenarios of electric vehicles would have impacts 

not only on the distribution grid as a whole but also on the system components.  

Distribution system power loss was evaluated in [32], where load factor and variation 

based objective functions were formulated. It has been proved that minimizing the 

power losses is equivalent to maximizing the load factor while maximizing the load 

factor is further equivalent to minimizing load variation. 

An interesting aspect of electric vehicles is the possibility of integrating the vehicle to 

grid (V2G) concept into the utility grid. Basically V2G has three key elements: an 

interface to the distribution grid with energy flow; a control unit built for 

communication; smart metering used in vehicles [37].  

It has been found that the wind profile in New York matches electric vehicles 

charging characteristics quite well [38]. This conclusion is based on 2 assumptions: 

electric vehicles can be charged during the periods when power supply is mainly wind 

power, while the V2G technology is employed to store energy in these vehicles. 

When the power supply is not adequate, the V2G technology enables the electric 
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vehicles as distributed generators to stabilize the power grid with less costs and 

energy losses.  

This means that the V2G operation takes place at the moment of high demand while 

G2V operation happens at the times of low demand. In [39], grid power loss was 

reduced by minimizing the power transferred from the slack node to the outer-most 

node in the system during peak load periods. On the other hand, the energy storage 

from electric vehicles can be used to feed power back to grid via the node, where the 

electric vehicles are connected. In principle, due to the radial topology of distribution 

grids, the closer to the root node of the distribution grid, the smaller the impact of the 

electric vehicle will be on the distribution grid.   

1.3 Dissertation Outline  

The outline of the dissertation is as follows: 

 

Chapter 2: The equivalent model of electric batteries is developed, in order to evaluate 

the terminal voltage and power variation during the battery charging and discharging 

periods. 

The concept of electric vehicle fast charging station is summarized and its detailed 

simulation model is designed to connect the electric vehicle batteries with the 

distribution network. 

Chapter 3: A dynamic model of a wind turbine (WT) of the double fed induction 
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generator (DFIG) is formulated. Fault ride through ability is tested in this model. 

Chapter 4:The active distribution system is proposed. And the interaction between 

electric vehicle and distributed wind power generator is investigated in the 

distribution system when a fault applied in the active distribution system. 

Chapter 5: Conclusions are drawn. 

1.4 Contributions and objectives 

1.4.1 Contributions 

Detailed models for the conventional Lead-acid battery and lately popularized Li-ion 

battery used for an electric vehicle are proposed for power system transient analysis. 

A simulation model for the fast charging station is designed, and corresponding 

control strategy is developed. The system dynamic profile is presented when electric 

vehicles are integrated into the distribution system. 

A detailed model for DFIG (Double Fed Induction Generator) WT including fault ride 

through protection is presented. The fault test is also carried out based on this model. 

The interaction of wind power generation and electric vehicle charging/discharging is 

tested in a proposed active distribution network. The system dynamic characteristics 

are described when a fault is applied in the system. 

1.4.2 Objectives 

Work has been down to achieve the goals as following, 
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Building an appropriate model to reflect the electrical characteristics of distributed 

energy resources (EVs and wind generators) in simulation software.  

Investigating the dynamic impacts on power quality when integrating large scales EV 

charging stations into distribution networks.  

Investigating the reliability of active distribution network with distributed energy 

resources (DERs). 
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Chapter 2 Modeling of Electric Vehicle Batteries and Electric Vehicle 

Fast-Charging Stations in the Distribution Network 

Abstract: In this chapter, firstly the concept of fast charging is introduced, and then 

the simulation model of an electric vehicle fast-charging station is designed. Accurate 

models of typical electric vehicle onboard batteries are built for power system 

transient analysis. Case study is carried out at the end of this chapter with the 

integration of the charging station into the existing distribution system. 

2.1 Electric Vehicle Fast-Charging Station Design 

2.1.1 The Concept of Electric Vehicle Fast-Charging 

Fast-charging means that the battery consumes a higher voltage or higher current in 

order to get fully charged in a relatively short time (e.g., less than 60 minutes). The 

progress of fast-charging can be divided into three steps:   

Step 1:  This phase is called constant-current charging when the battery is charged at 

a constant current, until its terminal voltage approaches the gassing voltage 

[40];  

Step 2:  This phase is called constant-voltage charging, in this period, the battery is 

charged at a constant voltage, and this charging voltage is equivalent to the 

gassing voltage mentioned last paragraph. In the first charging period, when 
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the battery consuming high charging current, its terminal voltage and internal 

resistance keep increasing. After the first charging phase finishes, the battery 

voltage is maintained. However, due to the increasing internal resistance of 

the battery, the charging current is gradually decreased. 

Step 3:  When the charging current decreases to a particular value (e.g., 0.015C [41]. 

C is the unit of charging rate, 1C means the battery require 1 hour to get fully 

charged), the charger will keep this current value until the battery is fully 

charged. 

2.1.2 Fast-Charging Station Design. 

According to the battery characteristics and the charging principles [42], an electric 

vehicle consuming high voltage and large DC current should meet the requirements of 

fast-charging. The charging circuit of a charging station usually consists of an AC-DC 

rectifier connecting the charging station with the distribution network, and a DC-DC 

converter connected in series with the AC-DC converter to obtain the rated DC 

voltage [43]. In this chapter, an IGBT-based AC/DC rectifier and a common DC/DC 

buck converter are adopted for certain reasons, which will be discussed later. The 

structure of the charging circuit is shown in Figure 2-1:  
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Figure 2-1 The Structure of the Charging Circuit 

The AC-DC converter is configured as a two-level, three-phase half-bridge containing 

6 pairs of IGBTs and diodes controlled by PWM firing signals. Its controller employs 

two PI regulators to control the output DC voltage while maintaining a unity input 

power factor for the AC power supply. The detailed control diagram is shown in 

Figure 2-2:  
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Figure 2-2 The Control Strategy for the AC-DC Rectifier 

As shown above, the AC-DC rectifier is modeled in the d-q reference frame. The 

measured three-phase voltages and currents are transformed into corresponding d-q 
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frame values. The voltage-oriented control (VOC) strategy is adopted, in which Vq 

equals to 0. The measured value of the DC voltage is compared with its reference 

value and then sent to a PI controller as Id, which is designed for the DC voltage 

control. On the other hand, the reference of Iq is 0 in order to maintain the unit power 

factor for input power. 

2.2 Modeling of Battery in Power Systems 

To estimate the accurate impact on power capacity and determine appropriate 

components to evaluate these impacts, the battery model is also important to the 

simulation of electric vehicles, which needs high-fidelity to achieve meaningful 

simulation results.  

2.2.1 Transient Model of Li-ion Battery 

The output voltage of the battery can be calculated from its open-circuit voltage, and 

the voltage drop resulting from its equivalent internal impedance. Accordingly, the 

battery output voltage can be expressed as  

)(TEZiVV eqbattocbat Δ+×−=                   (2-1) 

where the temperature T is assumed constant, ΔE(T ) , the temperature range is equals 

to zero, so it can be neglected. The open-circuit voltage of the battery strongly 

depends on battery SOC (State of Charge), which can be calculated as [44] 

32 321.01178.0

2156.0685.3)35exp(031.1)(

SOCSOC
SOCSOCsocVoc

×+×

−×++×−×−=

  
  (2-2) 

The battery SOC can be expressed as 
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∫−= dtCiSOCSOC usablebatinit )/(                  (2-3)
 

The equivalent internal impedance of the battery consists of a series resistor (Rseries, 

Rcycle) and two RC networks (RTransient_S, CTransient_S, RTransient_L and CTransient_L), as 

shown in Figure 2-3 as follows 

+

-V
o
c(
S
O
C
)

RSeries RTransient_S

CTransient_S CTransient_L

RTransient_L

 

Figure 2-3 The Equivalent Circuit of a Li-Ion Battery 

where RSeries is responsible for the instantaneous drop in the battery terminal voltage. 

Note that, Rcycle is used to explain the increase in the battery resistance with cycling, 

which is neglected in this model.  

The RC components are responsible for short and long time transients in the battery 

internal impedance. The values of RSeries, RTransient_S, CTransient_S, RTransient_L and 

CTransient_L can be calculated from the battery SOC as following, 

07446.0)37.24exp(1562.0)( +×−×= SOCSOCRseries        (2-4) 

04669.0)14.29exp(3208.0)(_ +×−×= SOCSOCR STransient      (2-5) 

6.703)51.13exp(9.752)(_ +×−×= SOCSOCC STransient       (2-6) 

04984.0)2.155exp(603.6)(_ +×−×= SOCSOCR LTransient      (2-7) 

The charging profiles of an electric vehicle is represented by the model and 
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parameters given in [44]-[46]. The equivalent circuit of its Li-ion battery cell is given 

in Figure 2-3. The nonlinear relationship between the open-circuit voltage Voc and the 

status of charging (SOC) is represented by a controllable voltage source. RSeries  

RTransient_S, CTansient_S, RTransient_L, and CTransient_L are all the functions of SOC, so that 

short and long time constants that describe the step response of the battery voltage can 

be taken into consideration [44]. 

In an electric vehicle, the required values of terminal voltage and power capacity for 

the power grid and the energy storage system are obtained by arranging multiple 

battery cells in series and parallel. The cells that are in series determine the terminal 

voltage of a battery stack, and the number of parallel cells decides the current carrying 

capability of a battery stack. The total capacity of a battery stack is given as 

t i s pC C n n= ⋅ ⋅                                    (2-8)   

where Ct is the total capacity of the battery stack (Ah); Ci is the capacity of a single 

cell (Ah); ns is the number of cells in series; and np is the number of cells in parallel. 

As given in [46], Ci is set to be 0.85Ah. The modeled Li-ion battery stack is scaled up 

to 5kWh, standing for the one in the Toyota Prius Hymotion PHEV [47]. Each cell is 

assumed to operate at 3.8V, so 53 cells in series and 29 cells in parallel constitute a 

capacity of around 5kWh [48]: 

0.85*53*29*3.5 5i s p tE C n n V kWh= ⋅ ⋅ ⋅ ≈ ≈      

where Vt is the nominal terminal voltage of each cell (with unit of voltage).  
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As for its implementation, the output signal of the battery stack is generated through a 

Simulink model. 

2.2.2 Case Studies  

In this section, it is assumed that there are ten electric vehicles being charged together 

in a charging station at the same time, so the total capacity of the charging station 

should be no less than the summation of their rated capacity. Meanwhile, in the 

realistic situation few consumers would charge an electric vehicle until the whole 

battery is totally exhausted. Thus, it is assumed that the initial SOC of the battery is 

20% of its rated capacity. In the simulation system shown in Figure 2-4, two charging 

stations (CS1 and CS2) are connected with 400V Buses B3 and B4, respectively. The 

simulation system is built and tested in Matlab/Simulink.  

External Power 
Grid

B1(11kV)

P+jQ

Battery

11/0.4 kV

CS1

11/0.4 kV

CB CB

CS2

Line

Battery

B2(11kV)

B3(0.4kV)

B4(0.4kV)

 

Figure 2-4 The System Layout 

Three cases are described as follows: 

Case 1: CS1 and CS2 were put into operation at 2.5s simultaneously. The voltage at 
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the DC-side of the AC-DC rectifier at CS1 is shown in Figure 2-5, where a distinctive 

voltage dip can be observed. Numerical value refers to the capacity of EV charging 

station and feeder capacity. 

 

Figure 2-5 The DC voltage on the AC-DC Rectifier of CS1 in Case 1 

Figure 2-6 and Figure 2-7 show the dynamic performance of the voltage and current 

at the coupled connection point (CCP) at CS1. It can be observed at 2.5s, an apparent 

dip occurred in the DC voltage but then it was stabilized quickly at about 430V.  

For the DC current, as the charging stations were put into operation, the CCP acquired 

a constant current, which means the fast-charging process started from then on. 
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Figure 2-6 The AC Voltage Profile (RMS value) at CS1 in Case 1 

 

Figure 2-7 The AC Current Profile at CS1 

Case 2: A permanent 3-phase short-circuit ground fault was applied at Bus B4 at 3.5s. 

The current at CS2 is shown in Figure 2-9 and the reverse current was shown in the 

Bus B4. The voltage at CS2 is shown in Figure 2-10.  
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Figure 2-8 The AC Voltage Profile at CS2 in Case 2 

When the fault was applied, the voltage measured from CS2 decreased to a relatively 

low value. During the fault, because the battery voltage was higher than the CCP 

voltage, the charging mode was transferred to the discharge mode. In this situation, 

the battery became a voltage source injecting power into the distribution network. 

 

Figure 2-9 The Current Profile at CS2 in Case 2 

 Case 3: A transient three-phase ground fault was applied at Bus B4 at 3.5s and the 

fault was cleared at 4.0s. The simulation results of the current and voltage at CS2 are 
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shown in Figure 2-10 and Figure 2-11 respectively. 

 

Figure 2-10 The Current Profile at CS2 in Case 3 

 

Figure 2-11 The AC Voltage Profile at CS2 in Case 3 

2.3 Summary 

In this chapter, an appropriate model of the electric vehicle fast charging station is 

designed for the analysis of power system transient stability. Based on the proposed 

battery model, the dynamic impacts of electric vehicle charging stations on the 

distribution network have been evaluated in different scenarios.  
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According to the simulation results, the electric vehicles have the ability to inject 

power to the utility grid when the grid fault applied, which may help to make the CCP 

voltage stable and hence improve power system stability.  
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Chapter 3 Modeling of Wind Power Generation with Fault 

Ride-through Ability in Electricity Distribution Networks 

Abstract: In this chapter, the modeling of a wind turbine with DFIG is reviewed first. 

Then an introduction to the fault ride-through ability of the wind generator is also 

made in this chapter. The simulation model of the DFIG with a wind turbine is built in 

Matlab/Simulink with the fault ride-through ability using the crowbar protection 

principle. Case study is used to verify that the crowbar fulfills its function to prevent 

excess rotor current through the rotor side converter. 

3.1 Introduction  

3.1.1 Review on Modelling of DFIG with Wind Turbine 

The Doubly Fed Induction Generator (DFIG) is widely used in wind power generation, 

in which the induction generator is assembled with a multi-phase wound rotor and a 

multi-phase slip ring. The rotor winding of the DFIG is connected to the grid via slip 

rings and a back-to-back voltage source converter (VSC). This converter is designed 

to control the rotor current and the grid current. With its rotor currents controlled by 

the converter, the active and reactive power output of such a generator can be adjusted 

by varying the rotating speed of its stator.  

The DFIG has several advantages over the conventional induction generator:  
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1. The DFIG has the ability to either draw or send reactive power from/to the 

grid. This brings a great benefit for power system stability by allowing the 

machine to support the grid operations during severe voltage disturbances (i.e. 

low voltage ride-through, LVRT).  

2. The control of the rotor voltages and currents will enable the induction 

machine to remain synchronized with the grid while the wind turbine speed 

varies. It has been recognized that the variable speed wind turbine is more 

efficient than a fixed speed wind turbine, especially when the wind speed is 

low.  

3. The cost of the power electronic converter is lower than other solutions for 

the variable speed wind turbine, because only part of the mechanical power 

(typically 25%-30%) is fed to the grid through the converter, while the rest is 

fed to the grid directly from the stator.  

A DFIG is typically given as a fifth-order dynamic model considering both the 

electromagnetic transients of the stator and the flux transients of the rotor [48] -[49]. 

By neglecting the stator electrical dynamics, such a fifth-order dynamic model of 

DFIG with a wind turbine can be reduced to a third-order one. If the rotor electrical 

dynamics are further neglected, a reduced first-order dynamic model can be obtained 

[50].  

The dynamic DFIG models of different orders have been compared in [51].The results 

have indicated that under the torque disturbance, the responses of the fifth-order 
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model and the third-order model are similar, while that of the first-order model is 

different.  

The validation of the dynamic models of the DFIG has been made in [52] [52]. The 

comparison has shown that the dynamics of the DFIG can be formulated properly by 

the fifth-order model. Therefore, such a detailed model has been well widely used in 

the dynamic simulation of the DFIG and its controllers’ design [53]. 

In principle, if the dynamics of the Wind Turbine (WT) with DFIG is concerned, then 

the detailed model is preferred, while the third-order model becomes more attractive 

in the classical electro-mechanical dynamic studies of large power systems [54]. 

Basically, the DFIG is driven by the drive train of the WT system. Such a driven train 

is generally composed of a turbine, a gearbox, shafts and some other mechanical 

components. We assume here that the gearbox and the high speed shaft are infinitely 

stiff, the drive train can be represented by a two-mass model, including the turbine 

and the generator [55]. In some cases, the drive train can be lumped together into an 

equivalent mass model [56]-[57]. 

For the large-scale wind farm, aggregated models for the wind farm have been 

proposed to reduce the simulation time. In [58], an equivalent one-machine model 

was developed to represent the wind farm. It can be used to represent the wind farm 

only when all the wind turbines are operated under the same or similar condition. 

Otherwise, the detailed multi-machine model should be employed due to the effects of 
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irregular wind distribution and geographical distribution of the wind turbines [59].  

3.1.2 Wind Generator Fault Ride-through Ability 

Wind turbines are required to have the ability to remain connected with the electric 

grid, when the grid voltage temporarily drops due to a certain fault or change in the 

grid. This is defined as the so-called low voltage ride through (LVRT) or fault ride 

through (FRT). The required LVRT behavior is defined in the grid code specified by 

electricity grid operators. For example, the grid code issued by UK National Grid 

Company requires that wind turbines should remain transiently stable and connected 

to the system without tripping any other generators. For any balanced or unbalanced 

voltage dip on the low voltage side, its voltage profile should be anywhere on or 

above the black line as shown in Figure 3-1 [60], where V/VN (%) is the ratio of the 

actual voltage on one or more phases to the nominal voltage on the low voltage side. 

For avoidance of doubt, the profile beyond 140ms in Figure 3-1 is the minimum 

recovery in voltage that will be accepted by the generator following the clearance of 

the fault at 140ms.  
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Figure 3-1 Fault Ride through Requirement in UK National Grid’s Grid Code 

3.2 Modelling Wind Turbine with DFIG 

3.2.1 Modelling of DFIG 

The stator voltage equations, rotor voltage equations and the flux linkage equations in 

d-q reference frame can be written as follows [61].  

Stator voltage equations: 

ds
ds s ds s qs

du R i
dt
ψ

ωψ= − +
                       (3-1)

 

qs
qs s qs s ds

d
u R i

dt
ψ

ωψ= + +
                       (3-2)

 

Rotor voltage equations: 

dr
dr r dr r s qr

du R i s
dt
ψ

ωψ= − +
                      (3-3)

 

qr
qr r qr r s dr

d
u R i s

dt
ψ

ωψ= − +
                      (3-4)
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Flux linkage equations: 

ds ss ds m drL i L iψ = +                            (3-5) 

qs ss qs m qrL i L iψ = +                            (3-6) 

dr rr dr m dsL i L iψ = +                            (3-7) 

qr rr qr m qsL i L iψ = +                            (3-8) 

The equivalent circuits for the DFIG with direct axis (d-axis) and quadrature axis 

(q-axis) are also described in Figure 3-2:  

+
+
+

+
+ +

- -- -
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(a) d-axis equivalent circuit 

+
+
+
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--

dsd
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qrd
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(b) q-axis equivalent circuit 

Figure 3-2 The Equivalent Circuits for the DFIG 

where,  

dsψ   direct (d) axis stator flux linkages; 
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qsψ   quadrature (q) axis stator flux linkages; 

drψ   direct (d) axis rotor flux linkage; 

qrψ  quadrature (q) axis rotor flux linkage; 

Lm mutual inductance; 

Lss  stator self-inductance, Lss=Ls+Lm; 

Lrr  rotor self-inductance,  

and Lrr=Lr+Lm; 

Rr   rotor resistance; 

sω   synchronous angular speed;  

sr  rotor slip;  

dsi  d axis stator currents; 

qsi  q axis stator currents; 

dsv   d axis stator terminal voltages;  

qsv   q axis stator terminal voltages; 

drv   d axis rotor voltages,  

qrv  q axis rotor voltages, 

If we define qr
rr

ms
d L

LE ψ
ω

−=ʹ′ , dr
rr

ms
q L

LE ψ
ω

=ʹ′ , ssss LX ω= , )(
2

rr

m
ssss L

LLX −=ʹ′ ω , 

and
r

rr

R
LT =ʹ′0 , then equations for the DFIG are given by:  

])([1

0
qsssdqr

rr

m
sqsr

d iXXE
T

u
L
LEs

dt
Ed

ʹ′−+ʹ′
ʹ′

−−ʹ′=
ʹ′

ωω
              (3-9) 
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dsssqdr

rr

m
sdsr

q iXXE
T

u
L
LEs

dt
Ed

ʹ′−−ʹ′
ʹ′

−+ʹ′−=
ʹ′

ωω
            (3-10) 

0 0

1 1[ ( )] (1 )s ds m
ds s s s ds r d dr q s qs

s s rr s

X di Lu R X X i s E u E X i
dt T L Tω ω ω

ʹ′
ʹ′ ʹ′ ʹ′ ʹ′= − + − − − − + +

ʹ′ ʹ′        

(3-11)
 

0 0

1 1[ ( )] (1 )qss m
qs s s s qs r q qr d s ds

s s rr s

diX Lu R X X i s E u E X i
dt T L Tω ω ω

ʹ′
ʹ′ ʹ′ ʹ′ ʹ′= − + − − − − − −

ʹ′ ʹ′       

(3-12)
 

where,  

dEʹ′   d axis voltages behind the transient reactance; 

qEʹ′   q axis voltages behind the transient reactance; 

sX   stator reactance; 

sX ʹ′   stator transient reactance; 

0T ʹ′   rotor circuit time constant. 

3.2.2 Modeling of Drive Train 

The drive train, usually represented by a two-mass model, is made up of a turbine, a 

gearbox, some shafts and other mechanical components. The rotor shaft is flexibly 

connected to the turbine shaft through the gearbox and coupling. The configuration of 

the drive train is shown in Figure 3-3:  
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Figure 3-3 Configuration of the Drive Train 

and the two-mass model is given by 

shm
t

t TT
dt
dH −=
ω2                                  (3-13) 

srtrt
tw s
dt
d

ωωωω
θ

)1( −−=−=                           (3-14) 

shem
r

sg TT
dt
dsH −−=ω2                              (3-15) 

gttw θθθ −=                                   (3-16) 

dt
dDKT tw

shtwshsh
θ

θ +=                              (3-17) 

where 

Ht  inertia constant of the turbine; 

Hg  inertia constant of the generator; 

tω   wind turbine angular speed; 

rω   generator rotor angular speed; 

sr  rotor slip srsrs ωωω /)( −= ; 

twθ   shaft twist angle; 

tθ    turbine rotor angle; 
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gθ    generator rotor angle; 

Ksh   shaft stiffness coefficient; 

Dsh   damping coefficient; 

Tsh   shaft torque; 

Tem  electromagnetic torque of DFIG; 

Tm   wind turbine mechanical torque; 

If neglecting the power loss in the stator, Tem is given by 

ssem PT ω/=                            (3-18) 

Tm is given by  

t

wpw
m

VCR
T

ω

ρπ 325.0
=                         (3-19) 

where  

ρ    air density; 

Rw   wind turbine blade radius; 

Vw    wind speed; 

Cf   blade design constant coefficient; 

β   blade pitch angle; 

λ    blade tip speed ratio, wt VR /ωλ = ; 

Cp   power coefficient, 

Ps stator active power. 
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3.2.3 Modeling of Back-to-Back Converters 

+
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+

-

vDC

+

-

iDCvr vg

ir ig

DC-Link 

Rotor-side 
Converter

Grid-side 
Converter

 

Figure 3-4 The Back-to-back Converter of DFIG 

As shown in Figure 3-4, the power balance equation can be expressed as follows, 

 DCgr PPP += .                             (3-20) 

qrqrdrdrr ivivP +=                          (3-21) 

qgqgdgdgg ivivP +=                          (3-22) 

dt
dvCvivP DC

DCDCDCDC −==                  (3-23) 

where,  

rP  active power at the AC terminal of the rotor side converter; 

DCP  instantaneous active power; 

dri  q axis rotor currents of the grid side converter; 

dgi  q axis currents of the grid side converter; 

dgv  q axis voltages of the grid side converter; 

vDC capacitor DC voltage;  

gP  active power at the AC terminal of the grid side converter;  

C capacitance of the capacitor; 

qri  q axis rotor currents of the grid side converter; 

qgi  q axis currents of the grid side converter; 
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iDC current of the capacitor; 

 

The power balance equation can be rewritten as 

)( qrqrdrdrqgqgdgdg
DC

DC iviviviv
dt
dvCv +−+=                 (3-24) 

 

3.2.4 Modelling of Converter Controller on Rotor Side 

The active power and reactive power of DFIG wind generator system is controlled 

using decoupled control strategies, as proposed in [62].  

On the grid side, the active and reactive power outputs are controlled by idg and iqg 

respectively, where idg and iqg can be obtained by aligning the d axis of the d-q 

reference frame. Thus, vqs is set to be 0, while vds equals to the magnitude of the 

terminal voltage.  

On the rotor side, the converter aims to control the active power output of the DFIG 

by tracking the wind turbine torque, and maintains the required terminal voltage. By 

aligning the d axis of the d-q reference with the stator voltage, the active power and 

terminal voltage are independently controlled by idr and iqr, respectively. The control 

diagram is shown in Figure 3-5:  
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Figure 3-5 Control Block Diagram of the Rotor Side Converter  

As shown in Figure. 3-5, this standard DFIG controller consists of two groups of 

PI-controllers. One group controls the active power by tracking the input wind power, 

while the other group controls the terminal voltage. 

Kp1 proportional gains of the power regulator 

Kp2 proportional gains of the rotor-side converter current regulator 

Kp3 proportional gains of the grid voltage regulator 

idr_ref current control references for d reference frame of the 

generator side converter 

vs_ref specified terminal voltage reference 

Ki1 integrating gains of the power regulator 

Ki2 integrating gains of the rotor-side converter current regulator 

Ki3 integrating gains of the grid voltage regulator 
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iqr_ref current control references for q reference frame of the 

generator side converter 

Pref is the control reference of the active power of DFIG and is given by 

3)(
tB

t
Bref PP
ω
ω

=
                                 (3-25)

 

where tBω is the base of the turbine rotating speed; PB is the maximum active power 

output at ωt =ωtB .  

3.2.5 Modelling of Grid Side Converter Controller  

As shown in Figure 3-6, the grid side converter controller is responsible for 

maintaining the DC link voltage, and controlling the terminal reactive power.  

 

Figure 3-6 Control Block Diagram of Grid Side Converter of DFIG 

It consists of two groups of PI controllers as well. One group is for maintaining the 

DC-Link voltage through idg, while the other group is for controlling the reactive 
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power through iqg,  

Kp4 proportional gains of the DC bus voltage regulator 

Kp5 proportional gains of the grid-side converter current 

regulator 

uDC_ref voltage control reference of the DC Link 

XTg the reactance of the fed back transformer 

Ki4 integrating gains of the DC bus voltage regulator 

Ki5 integrating gains of the grid-side converter current 

regulator 

iqg_ref control reference for the q axis component of the grid 

side converter current 

3.2.6 Pitch Controller 

The control block diagram of the pitch control is illustrated in Figure 3-7:  

- -

 

Figure 3-7 Blade Pitch Control for WT with DFIG 

In the controller, refω  is the angular speed of the turbine corresponding to the rated 

output active power. K6 is the pitch angle gain; Pitch_max is the maximum value of 

the pitch angle, and is set to °45 ; the maximum rate of change of the pitch angle is set 
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to 2 deg/s.  

It can be seen in Figure 3-7 that when the rotating speed of the turbine is lower than 

the rated rotating speed, the pitch angle of the blade is kept at 0 deg. Only when the 

rotating speed of the turbine is larger than the rated rotating speed, the pitch angle 

controller is activated to increase the pitch angle. With the increased pitch angle, the 

power extracted from the wind is decreased, and the rotating speed of the turbine can 

be maintained at the rated rotating speed.  

3.2.7 Integration with Power Grid 

The network voltage equation and the wind turbine model are presented in x-y and d-q 

reference frames, respectively. Figure 3-8 illustrates the relationship between these 

two reference frames, where ϕ  is the angle difference between the reference bus 

voltage of the power grid and the terminal voltage of the WT, while the corresponding 

transformation is given by (3-26). By using this relationship, the DFIG model can be 

interfaced with the power grid equations. 

q
y

d

x
ϕ

 

Figure 3-8 The Relationship between d-q and x-y Frame of Reference 
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where df  and qf  are the d and q reference frame, respectively; xf  and yf  are 

the x and y reference frame, respectively. 

3.3 Wind Turbine Simulations in MATLAB/SIMULINK 

Basically a wind turbine with the DFIG contains a wound rotor induction generator 

and an AC/DC/AC IGBT-based PWM converter. The stator winding is connected 

directly to the grid while the rotor is fed at a variable frequency through the back to 

back AC/DC/AC converter. The DFIG is allowed to extract the maximum energy 

from the wind at low wind speeds by optimizing the turbine speed, while minimizing 

mechanical stresses on the turbine in gusts of wind. 

3.3.1Wind Turbine Model 

The wind turbine is pitch controlled, and the control signal for its pitch angle β is 

provide by the DFIG control block. β  is adjusted to prevent the generator from 

over-speed operation. The wind speed is considered to be constant in the simulation 

model. 

 

3.3.2 Induction Machine Model 

The developed induction generator model is a full order model with the derivation of 

the stator fluxes, which can be used in the accurate transient simulation of power 

systems. It should be mentioned that saturation is not considered in the model because 

this only leads to small negligible error. This is due to the fact that the saturate 

inductance is small enough so that the leakage flux goes through the air [63].  
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3.3.3 Grid Side Converter 

The grid side converter (GSC) is modeled as a universal bridge, in which IGBTs are 

connected to the IG (Induction Generator) terminals through RL filter. The GSC is 

controlled to maintain the voltage of the DC-link capacitor constant. In this simulation, 

the GSC model is designed as unidirectional, so power could only transfer from the 

IG to the power grid. In this situation, GSC does not contribute to voltage regulation 

or reactive power injection.  

 

3.3.4 Rotor Side Converter 

The rotor side converter (RSC) is modeled as a universal bridge, in which IGBTs are 

connected to the IG rotor windings. The RSC can control the active power output of 

the DFIG through the torque reference. This torque reference along with an estimated 

flux determines the rotor current reference. The RSC model is designed to support the 

grid voltage by injecting the reactive power into the power grid. A PI controller 

determines the reference value of the reactive power by comparing the measured the 

grid voltage and the constant voltage reference. 

 

3.3.5 Crowbar Protection System 

The crowbar protection system is considered in the simulation model in order to 

protect the wind turbine against over-current when a fault is applied in the system. 

The crowbar is made up of a symmetric three phase Wye-connected resistor 
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connected to the rotor through a circuit breaker. The breaker is normally opened, 

unless there is any short-circuit current flows from the crowbar resistance into the 

rotor, or either the rotor current or the DC-link capacitor voltage becomes abnormal. 

The value of the crowbar resistance is very important since it determines the reactive 

power drawn by the DFIG while the crowbar is inserted. Generally, the crowbar 

resistance is selected as 20 times as large as the rotor resistance [64]. 

3.4 Numerical Examples 

3.4.1 Test System Description 

The test system used for the case study is shown in Figure 3-9. The wind farm is 

connected to a 25kV electricity network through a 25kV/0.575kV transformer. The 

rated capacity of the transformer is 12MVA and the ratio of its rated impedance is 5%. 

Load is connected at the outlet position of the wind farm. A high-pass capacitor filter 

is at the wind farm to absorb current harmonics generated by the converters. The wind 

farm is connected to the 120kV network through a 30km, 25kV transmission line 

through a 120kV/25kV transformer.  

In this case study, the wind farm aggregates 6 units of 1.5 MW DFIG wind turbines, 

as shown in Figure 3-9. A system ground fault was applied at Bus 25, i.e. the 

connection point where the wind turbines were connected with the grid via the 

transmission line. Three phase ground fault was triggered at t = 500ms and cleared at t 

= 650ms. 
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Figure 3-9 Electricity Network Diagram 

3.4.2 Simulation Results 

The simulation of the wind farm has been done using the described crowbar 

protection.  

Before the fault occurred, the wind farm in steady state feeding 50% of its rated 

power and drawing no reactive power from the gird. As shown in Figure 3-10, once 

the fault occurred, the connection point voltage value is below the critical value 

(generally 0.2pu), crowbar protection of the wind turbines was triggered while RSC 

stopped switching. Therefore, the rotor current in the crowbar and the rotor windings 

decayed.  
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Figure 3-10 Voltage Profile at Bus 575 

The DC-link capacitor voltage (shown in Figure 3-11) didn’t distinctly increase after 

the fault happened. But the DC-link voltage increased slightly while the crowbar was 

connected. It increased dramatically when the fault cleared at t = 650ms. This is 

because the DFIG absorbed reactive power from the grid after the fault was cleared.  

 

Figure 3-11 Voltage Profile of the DC-link 

The RSC started switching again after the fault was cleared, so that the DFIG fed 

reactive power into the electricity network. The rotor current in the DFIG windings 
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decreased. The RSC current was equal to 0 when the crowbar triggered. The RSC 

voltage was higher than the crowbar voltage.  

When the fault was cleared, due to the crowbar was still connected due to the high 

DC-link voltage. The DFIG absorb reactive power, which increased the voltage in the 

electricity network. The DFIG drew a large amount of reactive power back to the grid, 

shown in Figure 3-12. 

 

Figure 3-12 Reactive Power Profile of the Wind Farm 

3.4 Summary 

In this chapter, the modeling of a wind turbine with DFIG has been presented. As a 

wind generator requires the fault ride-through ability, crowbar protection was 

considered in the simulation model. As the simulation results have shown that the 

crowbar protection makes the DFIG wind turbine ride through faults, if the DC-link 

capacitor voltage is within an acceptable range. The crowbar dissipates the excessive 

active power and prevents the DC-link capacitor voltage from unnecessary increase, 
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which may lead to a higher rotor current through the RSC.  
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Chapter 4 The Interaction between Fast-Charging Stations and 

Wind Turbines in Distribution Networks 

4.1 Introduction 

The vehicle-to-grid (V2G) concept means that the electric vehicles can act as both 

distributed energy storage units and voltage source in power system with a high 

penetration [65]. The V2G system has the ability to transfer energy between their 

onboard batteries and the power grid when electric vehicles are plugged into charging 

poles. The reliability of the power system with renewable energy can be enhanced by 

V2G if enough electric vehicles are connected with the grid, because electric vehicles 

can be considered as extra energy reserve storage [66].  

In the transmission systems, wind generators are required to have the ability of low 

voltage ride-through, which makes it remain connected with the grid even when the 

grid voltage is temporarily dropped due to some faults. In the UK, the grid code 

issued by the UK National Grid Company [69] is shown in Figure 3-1. 

However, when the wind generator has to operate in some extreme conditions, e.g. the 

grid is experiencing some extreme fault, the voltage at the connection point of the 

wind generator might fall below the critical value. Under the circumstances, the wind 

generator will be disconnected from the grid. If a large number of wind generators are 
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disconnected from the grid, it will cause a severe disturbance in the grid, i.e. sudden 

loss of wind turbines, which will further cause the fluctuation of voltage and 

frequency, and threaten the stability of the power system.  

In this chapter, the research aims at verifying that the electric vehicles have the 

potential ability to improve wind generator operational reliability by transferring 

energy between electric vehicle battery pack and the utility grid. Case study will be 

carried out by monitoring the system voltage when a fault happens in distribution 

networks. According to the concept of V2G, electric vehicles are considered as 

distributed energy resources and charging stations are designed to have the ability of 

bi-directional power transfer.  

4.2 Bidirectional Power Transfer between Electric Vehicle and 

Distribution Grid 

In chapter 2, the electric vehicle battery has been verified with the ability to inject 

power to the grid when necessary. In this case, the electric vehicle is working in 

discharging mode.  

4.2.1 Interaction between Distribution Grid and Charging Station 

The structure of the proposed electric vehicle charging station is made up of a 

full-bridge inverter/rectifier and a DC-DC converter shown in Figure 4-1. The 

positive current direction is assumed to be from the grid to the inverter as shown in 

Figure 4-2.So is the positive power flow direction.  
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Figure 4-1 Charging Station Structure 
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Figure 4-2 The Interaction between the Grid and the Inverter 

The system parameters are given as follows: 

( )cv t  Instantaneous charging station voltage [V]; 

( )sv t  Instantaneous grid voltage [V]; 

( )ci t  Instantaneous charging station current [A]; 

δ  Phase difference between ( )cv t  and ( )sv t ; 

θ  Phase difference between ( )ci t  and ( )sv t .  

 

Assuming that the grid voltage is purely sinusoidal, high frequency components are 

neglected. ( )cv t  is the inverter output voltage given by the following equations: 
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( ) 2 sin( )s sv t V tω=                        (4-1) 

( ) 2 sin( )cv t tω δ= −                       (4-2) 

A coupling inductor is used and the two voltage sources are decoupled to ensure 

power transfer from the charging station to the grid. The instantaneous line current of 

the charging station can be expressed as: 

( ) 2 sin( )c ci t I tω θ= −                     (4-3) 

Since the default direction for active and reactive power transfer is from the grid to 

the charging station, ( )cv t  lags behind ( )sv t  when the charging station operates in 

charging mode; while ( )sv t  lags behind ( )cv t  when the charging station operates in 

discharging mode. The positive direction of active power flow is also defined as from 

the grid to the charging station. The positive direction of reactive power flow is 

determined by the phase angle θ. If θ is positive, reactive power is sent to the grid, 

while if θ is negative, reactive power is drawn from the grid and flows to the charging 

station. The relationship between these variables is derived as follows 

Control variable P Q 

)(tvc  and δ  
)sin(δ

c

cs

X

VV ×  )]cos(1[

2

δ
s

c

c

s

V

V

X

V
−  

)(tic  and θ  )cos(θ×× cs IV  )sin(θ×× cs IV  

4.2.2 Control Strategy of Electric Vehicle Charging Station 

A. Control of Bidirectional AC-DC inverter 
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As shown in Figure 4-3, the AC-DC inverter has been modeled in d-q reference frame. 

The three phase voltages and currents in abc frame of reference can be transformed 

into those in d-q frame of reference. The voltage-oriented control (VOC) strategy [67] 

based on dual PI closed-loop has been adopted. The outer loop controller is designed 

to stabilize DC-link voltage, output current i*
gd on d-axis, while the inner loop 

controller is for DC side current control, by tracking i*
gd.  

X P I X P I
i*gd+

-­‐
+ v’gd

X
-­‐
△vgd	
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gdu

1
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Figure 4-3 Control System Diagram. 

It can be found that the cross coupling voltage gqgg iLω and gdgiLω− are considered in the 

d and q axis voltage Vgd and Vgq, respectively. d-axis current is responsible for the 

DC-link voltage control, of which the reference i*
gd comes from the DC-link voltage 

control loop; and q-axis current is responsible for the control of reactive power Q*
g. 

 

B. Control of Bidirectional Buck–Boost DC-DC Converter 

By changing the duty cycle of the DC-DC converter, both the charging current and 

charging voltage can be controlled accordingly. The duty cycle reference d* can be 
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obtained by designing the closed-loop control strategies as follows.  

For charging control, the duty cycle reference d* can be given by: 

dtiikiikuud ip ∫ −+−+= )()(/ 2
*
22

*
212

*
                    (4-4) 

For discharging control, the duty cycle reference d* can be given by: 

dtiikiikuuud ip ∫ −+−+−= )()(/)( 2
*
22

*
2121

*
              (4-5) 

In (4-4) and (4-5), i2
* is the reference charging/or discharging current.  

4.3 Introduction of Active Distribution Network 

The conventional distribution network is a passive network with unidirectional power 

flow. With the development of distribution energy resources (DERs) such as wind, 

solar and biomass energy, more and more distributed generation (DG) systems such 

as wind power generators and PV panels are integrated into the distribution network. 

With the increasing integration of DG, the infrastructure of the distribution network 

have been changed from passive to active with the power injection of DERs so the 

power flow also have been changed from unidirectional to bi-directional in the 

distribution network. Such a change has brought challenges to the planning, operation, 

control and protection of the active distribution network involving islanding of DGs, 

dynamic impacts and so on [64]. 
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Figure 4-4 A Comparison of Passive and Active Distribution Networks 

4.4 Simulation Results 

In order to estimate the interaction between the distributed wind energy generator 

with electric charging station in the proposed active distribution network. Case study 

is carried out in the chosen regional distribution network as shown in Fig. 4-5. 

Assuming this is a residential district with wind generators. Charging stations are 

installed for those electric vehicles based on owner’s fast-charging requirements. 

 

Simulations were carried out on the distribution grid with a wind turbine and a 

charging station in Figure 4-5 where the wind generator is connected with B1. Using 

the test system, three cases were carried out as follows: 

 

Case 1:  A three phase ground fault is applied at B2 and cleared 1s later. In this case, 

no charging station is installed;  

Case 2:  A three phase ground fault is applied at B2 and cleared 1s later. In this case, 
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a charging station is installed at B5;  

Case 3: Similar to Case 2 except that the charging station is installed at B6; 

0.33+j0.68

B1

WT

B2 B3 B4
0.22+j0.04 0.22+j0.05

B5 B6

33/11kV

0.33+j0.68 0.22+j0.04  

Figure 4-5 Test Electricity Distribution Grid (load in MW) 

 

Figure 4-6 shows the voltage profile measured at B1 in Case 1. At time 0.5s, 

three-phase ground fault was applied at B2, and fault was cleared 0.1s later, a 

distinctive voltage dip can be observed from Figure 4-6, where the fault is extremely 

severe such that the voltage falls below 0.15 p.u., which is below the limit specified in 

the grid code issued by the UK National Grid Company [64]. The voltage limit 

specified by the Grid Code is shown with dotted line in Figure 4-6. In this situation, 

the wind generator was tripped and disconnected from the distribution grid due to the 

large voltage dip. 

 

Figure 4-6 Voltage Profile at B2 with no Charging Station Installed 
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In Case 2, the charging station is installed at B5 in the local residential district. When 

the fault is applied at B2, because of the charging station has the ability to transfer 

power from the electric vehicle battery to the grid, when the battery voltage is above 

the voltage of the connection point. The voltage at B1 can be maintained above its 

limit, as shown in Figure 4-7. Under the circumstances, the electric vehicle battery is 

operating as a distributed energy source that injects power to the grid. 

 

Figure 4-7 Voltage Profile at Bus 2 with Charging Station Installed at Bus 5 

 

A further case study carried out by installing the charging station at a different 

location within the test distribution system. In Case 3, the charging station is installed 

at B6. Voltage profile measured at B1 is shown in Figure 4-8. When the fault 

occurred at B2 at 0.5s, the voltage fell to 0.2 p.u, which is still above the bus voltage 

limit given by the Grid Code, and then the fault was cleared at time 0.6s and after this, 

the voltage was recovered.  
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Figure 4-8 Voltage Profile at Bus 2 with Charging Station Installed at B6. 

4.5 Summary 

This Chapter has examined that EV charging stations with bi-direction power flow 

control capability can provide the voltage support for distribution network operations 

to improve the fault-ride-through of adjacent wind turbines. Simulations have 

illustrated the feasibility as well as the effectiveness of the proposed control concept.  

Hence such voltage support from EV charging station has the great potential to be 

developed as ancillary services in smart distribution grid operations.  
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Chapter 5 Conclusions and Future Work 

5.1 General Conclusions 

This thesis consists of two parts; the first part is on the modeling of electric vehicle 

charging station. And the second part of this thesis was investigating the bi-directional 

power transfer between electric vehicle and grid. Detailed conclusions are 

demonstrated below: 

1. The equivalent model of electric batteries has been developed and implemented in 

MATLAB. The model has been used to evaluate the terminal voltage and power 

variation during the battery charging and discharging periods. The concept of electric 

vehicle fast charging station has been summarized and its detailed simulation model 

has been designed to integrate the electric vehicle batteries with the distribution 

network. 

2. The modeling of a wind turbine with DFIG has been presented. As a wind 

generator requires the fault ride-through ability, crowbar protection was considered in 

the simulation model. As the simulation results have shown that the crowbar 

protection allows fault ride-through for the DFIG wind turbine, if the DC-link 

capacitor voltage is contained within an acceptable limit. The function of the crowbar 

is to dissipate the excess active power and prevent the DC-link capacitor voltage from 

unnecessary increase, which may lead to a higher rotor current through the RSC.  

3. The interactions between electric vehicle charging stations and active distribution 
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grid have been investigated, which is considered to be the major contribution of this 

thesis.  This Chapter has examined that EV charging stations with bi-direction power 

flow control capability can provide the voltage support for distribution network 

operations to improve the fault-ride-through of adjacent wind turbines. Simulations 

have illustrated the feasibility as well as the effectiveness of the proposed control 

concept.  Hence such voltage support from EV charging station has the great 

potential to be developed as ancillary services in smart distribution grid operations. 

 

5.2 Future Work 

In regarding the topics in this research, it is necessary to do further study on the 

following aspects:  

• The simulation model for the electric vehicle battery and charging station is 

mainly developed for power grid transient analysis. Further models will be 

needed for long term simulations where the charging cycle and some other 

battery parameters should be considerate in the model. 

 

• The analysis of the interaction between electric vehicles and distribution grid 

should be enhanced to include other types of distributed generators (DGs) 

including CHPs, PVs, and energy storage devices, etc.  

• The simulation work was developed in Matlab/Simulink, future simulation 

work will need to migrate to some other advanced power system simulation 
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software packages, with more rich DG simulation models and for large scale 

power grid simulations. 

• Researches on commercial frameworks for ancillary services from EVs can be 

developed, future researches will need to investigate the demonstration 

projects of EV commercial developing worldwide, building commercial 

frameworks for ancillary services based on local situation.
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Appendix Simulation System Configuration and Parameters 

A.1 Simulation Configuration for Chapter 2 

A.1.1  System Simulation Configuration 

 

A.1.2  Charging Station Simulation Configuration. 

 

A.1.3  System Parameters 

 

External grid Base voltage 33kV 



	
   79	
  

Maximum voltage 1.03 pu 

Minimum voltage 0.97 pu 

Load Reactive power 0.0749 MVAr 

Active power 0.392 MW 

 

A.2 Simulation Configuration for Chapter 3 

A.2.1 System Simulation Configuration 

 

 

A.2.2 System Parameters 

System base voltage 25kV 

Transformer 25/0.575kV, 

Rated capacity 12MVA 

Wind farm capacity 6*1.5 MW 

 

A.3 Simulation Configuration for Chapter 4 

A.3.1 System Simulation Configuration 
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A.3.2 Charging Station Configuration 

 

A.3.2.1 AC-DC Rectifier Diagram 
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A.3.2.2 Grid Side PI Controller 

 

A.3.2.3 Bi-directional DC-DC Converter and its Control Diagram 
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A.3.3 System Parameters 

 

A.3.3.1 External Grid and Transformer Data 

 

External Grid Base voltage 33kV 

Transformer Positive and negative sequence 

resistance 

0.047 pu 

Positive and negative sequence 

reactance 

0.654 pu 

Zero sequence resistance 0.555 pu 

Zero sequence reactance 0 

Winding connection YD11 

Load (in 

MW/MVA) 

Load 1 0.33+j0.68 

Load 2 0.22+j0.04 

Load 3 0.22+j0.05 

Load 4 0.33+j0.68 

Load 5 0.22+j0.04 

 

 

A.3.3.2 Distribution Grid Data (in Per Unit)  

From 

Bus 

To 

Bus 

Positive and 

negative 

Positive and 

negative 

Zero 

sequence 

Zero 

sequence 

Length 

(km) 
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sequence 

resistance 

sequence 

reactance 

resistance reactance 

Bus 1 Bus 2 0.2038 0.1056 0.6028 0.1014 1.504 

Bus 2 Bus 3 0.2038 0.1056 0.6028 0.1014 0.500 

Bus 3 Bus 4 0.0624 0.0170 0.1665 0.0170 0.236 

Bus 1 Bus 5 0.2038 0.1056 0.6028 0.1014 1.504 

Bus 5 Bus 6 0.2038 0.1056 0.6028 0.1014 0.511 
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