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Abstract 
 

The mammalian carotid body (CB) is the primary sensory organ that responds to a 

reduction in arterial O2 tension. Activation of the CB and stimulation of its chemoafferent 

fibres evokes a series of well characterised cardiovascular and respiratory reflexes that 

act to restore normal O2 levels throughout the organism. A role for an elevated CB 

chemoafferent outflow in the aetiology and progression of a number of cardiorespiratory 

disease states has been identified, emphasising the importance of understanding the 

signalling mechanisms required to activate the CB in hypoxia. In this thesis evidence is 

provided indicating that the CB response to hypoxia is a consequence of a reduction in 

mitochondrial energy metabolism and stimulation of the liver kinase B 1/AMP activated 

protein kinase signalling cascade. Questions also remain over the potential for other 

stimuli to acutely stimulate the CB. Observations described in this investigation suggest 

that the CB is not directly sensitive to glucose deprivation and that it preserves energy 

status in these conditions by metabolism of stored glycogen. Finally, chemoafferent 

outflow is, ultimately, dependent upon neurotransmission and small molecule 

neuromodulation. This thesis demonstrates a previously uncharacterised key functional 

role for adenosine derived from extracellular catabolism of ATP in mediating 

chemoafferent activity.  
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1. Introduction 

 

1.1 Summative overview 

	  
The type I cell in the adult mammalian carotid body (CB) is widely acknowledged to be 

the key peripheral, systemic chemoreceptor, stimulated by acute hypoxia. CB activation 

in hypoxia evokes a series of well characterised respiratory and cardiovascular reflex 

responses and promotes the corrective regulation of arterial O2 tension and cellular 

metabolism throughout the whole organism (1). It is becoming more apparent that 

chronic up-regulation of these reflex pathways, secondary to considerable modification 

in CB sensory activity, is associated with a number of important clinical conditions or 

diseases including sleep disordered breathing (SDB), chronic heart failure (CHF) and 

spontaneous/essential hypertension (2). The identification of selective pharmacological 

agents capable of reversing the increase in basal CB chemoafferent discharge 

frequency and CB hypersensitivity to hypoxia in these disease states may prove to be of 

significant clinical importance for improving patient prognoses.  

 

The development of clinical interventions has, however, been limited due to the fact that 

the fundamental mechanism underpinning CB activation by hypoxia remains elusive. 

The essential feature of the O2 sensor within the type I cell must be its ability to respond 

to variations in O2 tension well above those that impact on the metabolism of other cell 

types. Whilst a considerable number of hypotheses have been proposed to account for 

this specific behaviour, none are currently universally accepted. Of all the proposed O2 

sensors only the type I cell mitochondria appear to be particularly sensitive to O2 
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tensions within the physiological range at which the CB is stimulated (3, 4). Conclusive 

evidence demonstrating that impairment of mitochondrial function is causative of CB 

stimulation in hypoxia is yet to be reported. Initial experiments in this thesis therefore 

aimed to more clearly establish or reject a role for the mitochondria in CB O2 sensing 

and provide evidence supporting the hypothesis that impairment of mitochondrial 

function is a fundamental process in the CB hypoxia stimulus response coupling 

signalling cascade.  

 

It has been hypothesised that a hypoxia induced reduction in mitochondrial electron 

transport and ATP synthesis leads directly to an increase in the AMP:ATP ratio and 

activation of AMP activated protein kinase (AMPK); a protein regarded as a global 

sensor of cellular energy status (5, 6). Phosphorylation of AMPK by Liver kinase B 1 

(Lkb1) is necessary to achieve full activation of AMPK (7). Whilst it is clear that 

pharmacological activation of AMPK stimulates the CB (5), it is not clear whether 

activation of the Lkb1-AMPK signalling cascade is the key to activating the CB in 

hypoxia. Experiments utilising transgenic animals were designed to test this possibility 

and demonstrate an essential role for Lkb1 in the full expression of O2 sensitivity in the 

CB.  

 

In addition to hypoxia, it has been proposed that the CB responds to a number of other 

blood-borne stimuli including hypercapnia, acidosis and low glucose. The direct 

sensitivity of the CB to low glucose is still somewhat controversial and a number of clear 

discrepancies have been reported in the literature. The acute low glucose sensitivity of 

the intact in vitro CB was examined in this study. The results indicate that direct low 

glucose sensing by the CB is unlikely and responses to prolonged glucose deprivation 
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only occur secondary to the depletion in glycogen and a reduction in cellular energy 

status. The potential for artefact in various models of acute glucose sensing is 

considered along with an indirect sensory role for the CB in systemic glucose 

homeostasis.  

 

The sensory activity of the CB may be modified by a number of intracellular and 

extracellular mediators. A comprehensive understanding of the physiological role of 

these factors and characterisation of the downstream signalling pathways may allow for 

development of additional therapeutic agents to adjust CB excitability in certain 

pathologies. A number of endogenous gasotransmitters have been implicated in 

mediating CB sensitivity to hypoxia including hydrogen sulphide (H2S), carbon monoxide 

(CO) and nitric oxide (NO) (8). Using the novel mitochondrial NO donor, nitrite (NO2
-), 

the direct impact of NO on modifying mitochondrial activity and CB hypoxic sensitivity 

was directly investigated in this study. The findings presented suggest that exogenous 

NO2
- impairs type I cell mitochondrial electron transport and enhances the CB sensitivity 

to hypoxia.  

 

The interaction between a host of different neurotransmitters and neuromodulators may 

also contribute in establishing the overall sensitivity of the CB to physiological or 

pathological stimuli. Of these, endogenously produced adenosine has often been 

regarded as an overlooked signalling molecule in the CB (9). Significant quantities of 

adenosine may be generated in the CB as a consequence of intracellular or extracellular 

catabolism of ATP (10, 11). Experiments described in this thesis identify an important 

and novel functional role for extracellular derived adenosine in modulating the CB 

chemoafferent response to a number of different stimuli.  
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1.2 Mechanisms of acute oxygen sensing in the mammalian carotid 

body 

 

1.2.1 Basic anatomy and histology of the carotid body 

In mammals the CB is located just above the carotid bifurcation and is closely 

associated with a number of surrounding structures including the internal carotid artery 

(ICA), the external carotid artery (ECA), the occipital artery (OA) and the superior 

cervical ganglion (SCG). Measurements in adult rats have shown that the CB has an 

oval shape with an average length of approximately 600 µm and a diameter of 

approximately 200-300 µm (12).  

 

Within a superficial connective tissue capsule that surrounds the CB, there are many 

small clusters of between 2-12 type I cells, which are associated with a smaller number 

of glial-like type II cells amidst a dense arrangement of nerve bundles and blood vessels 

(13). Type I cells are thought to be the specific secretory cells of the CB containing 

many dense core vesicles, Golgi apparatus and mitochondria (14). The expression of 

the gap junction subunit connexin 43 in type I cells has been detected (15), supporting 

the proposal that clusters of type I cells are electrically coupled to function as discrete 

secretory units.  

 

The CB receives afferent innervation from the carotid sinus nerve (CSN), a branch of the 

glossopharyngeal nerve. The cell bodies of the sensory chemoafferent fibres are located 

in the petrosal ganglion and the axonal terminals form synapses with neurones in the 

nucleus tractus solitarius (NTS) in the medulla oblongata. Electron micrographs of CB 

slices have demonstrated that the type I cells and the afferent fibres form specific 
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synaptic connections, consistent with the notion that type I cells have an important role 

in transmitting sensory information through the CSN into the central nervous system 

(16).  

 

For its size, the CB has an extremely high blood flow, with a proposed estimate being 

approximately 2 L.100 g-1 tissue.min-1 (17). Innervation of the dense vasculature is 

provided by sympathetic noradrenergic fibres that originate in the superior cervical 

ganglion (16). Therefore, it appears that there exists a specific mechanism for the acute 

control of the local CB blood flow and O2 delivery.  

 

1.2.2 Established hypoxic chemotransduction processes in the mammalian 

carotid body 

A number of specific processes involved in CB hypoxia stimulus response coupling have 

been characterised to date. These include the attenuation of outward K+ channel 

current, type I cell depolarisation, influx of Ca2+ through L-type Ca2+ channels, type I cell 

neurosecretion and an increase in the discharge frequency of chemoafferent neurones 

in the CSN (18).  

 

Type I cell depolarisation 

The resting membrane potential (Em) of the CB type I cell is thought to be approximately  

-40 mV in the rabbit (19) and between -55 and -70 mV in the rat (20). Reports have 

demonstrated that exposure of rabbit type I cells to hypoxia evoked a cellular 

depolarisation that was sustained throughout the length of stimulus duration (19). The 

magnitude of the depolarisation was approximately +30 mV, thereby raising the type I 

cell membrane potential to approximately -10 mV. A comparable degree of 
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depolarisation has also been detected in rat type I cells during hypoxia (21) or anoxia 

(20, 22).  

 

Inhibition of outward K+ current 

The depolarisation of type I cells in response to hypoxic stimulation is thought to be 

primarily a consequence of the attenuation of the outward K+ channel current. A number 

of studies utilising whole cell voltage clamp techniques have shown that hypoxia 

significantly depressed the outward K+ current over a voltage range of -10 to +70 mV 

(19, 23, 24). Recordings of single K+ channel activity have revealed a marked reduction 

in open probability upon exposure to hypoxia, in both cell attached (19) and excised 

inside out (23) patch clamp configurations.  

 

Full characterisation of the type and contribution of the individual K+ channels involved in 

CB O2 sensing is still to be determined. In rat type I cells it has been demonstrated that 

measurable whole cell outward K+ currents were observed at voltages positive to  

-30 mV (25). This outward K+ current exhibited Ca2+ sensitive and Ca2+ insensitive 

components. Since the K+ current was significantly attenuated in the presence of 

charybdotoxin (ChTX), it was proposed that this Ca2+ dependent K+ current was carried 

specifically through the large conductance Ca2+ activated K+ channel (BKCa).  

 

In a later study, it was observed that ChTX depolarised the type I cell in a manner that 

mimicked the effect of hypoxia (22). It was shown that a reduction in outward K+ current 

induced by ChTX was not further suppressed by hypoxia and this led authors to 

conclude that inhibition of the BKCa channel was necessary for evoking type I cell 

depolarisation during hypoxia (21).  
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The role of the BKCa channel in mediating the initial hypoxia induced cellular 

depolarisation has subsequently been questioned since it shows little activity at 

potentials less than -30 mV (the rat type I cell Em is approximately -70 to -55 mV) and is 

therefore unlikely to contribute to the Em. It has also been reported that a number of 

different inhibitors of Kv and BKCa channels (tetraethylammonium; TEA, 4-aminopyridine; 

4-AP and ChTX) all failed to directly stimulate the type I cell (20). In addition, direct 

addition of ChTX to the intact in vitro CB does not seem capable of directly enhancing 

chemoafferent activity (26). For these reasons, a functional role for the BKCa channel in 

physiological O2 sensing in the CB remains debatable.  

 

Emerging evidence supports the proposal that modified activity of specific members of 

the two-pore-domain K+ channel sub-family regulates type I cell depolarisation in 

hypoxia. A background K+ current in the type I cell was first identified by Buckler in 1997 

(20). This current was measurable over a voltage range of -90 to -30 mV and was 

impaired by anoxia. Recordings of single channel activity made over a voltage range of -

70 to -60 mV detected single K+ channel activity in normoxia that was significantly 

diminished by hypoxia (27). A number of further observations suggested that this 

background O2 sensitive current was carried through a TASK-like (TWIK-related acid 

sensitive K+) channel. Firstly, the current was attenuated by known inhibitors of TASK 

channels; Ba2+, Zn2+ and quinidine. Secondly, the current was sensitive to acid. Thirdly, 

the single channel conductance was consistent with values reported for TASK-1. And 

finally, in situ hybridisation positively identified TASK-1 mRNA in dissociated type I cells. 

More recently, another member of the two-pore-domain K+ channel sub-family, TREK-1 

(TWIK related K+ channel 1) has been identified in type I cells (28) and it has been 



 

	   8	  

shown that the TREK-1 conductance was almost completely abolished by hypoxia (29). 

These data suggest that deactivation of the TASK-like and TREK-1 channels may both 

be significant in eliciting type I cell depolarisation in hypoxia.  

 

Ca2+ influx 

It is now recognised that hypoxia induced type I cell depolarisation leads to a rapid rise 

in [Ca2+]i and this in turn stimulates the release of stored excitatory and inhibitory 

neurotransmitters (30-33). Measurements of type I cell Ca2+ fluorescence indicate that 

the degree of [Ca2+]i elevation is highly dependent on the level of hypoxic stimulus 

intensity (30). The increase in [Ca2+]i is completely abolished in Ca2+ free media (31). 

Furthermore, the anoxia induced augmentation of type I cell [Ca2+]i coincides with 

cellular depolarisation and is almost completely ablated by Ni2+ (a non-specific Ca2+ 

channel antagonist) and by nicardipine (a specific L-type Ca2+ channel blocker) (31). 

Collectively these data indicate that the vast majority of the elevation in [Ca2+]i in hypoxia 

is dependent on Ca2+ influx through voltage sensitive L-type Ca2+ channels.  

 

Neurosecretion 

It is well documented that hypoxia stimulates the release of a number of different stored 

neurotransmitters from the type I cells. The two best characterised excitatory 

neurotransmitters are ATP (34) and ACh (35, 36). The release of ATP in hypoxia 

appears to be critically dependent on the preservation of L-type Ca2+ channel activity, 

indicative of the ATP secretion being secondary to the initial rise in [Ca2+]i (34). 

Emerging evidence also supports the idea that synaptic adenosine concentrations 

increase in hypoxia and have an important excitatory neuromodulatory role in regulating 

the chemoafferent response to hypoxia (10, 11). Whether or not the elevation in 
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adenosine concentration is a consequence of type I cell adenosine release or occurs 

secondary to extracellular ATP catabolism is unresolved. A number of studies have also 

detected a rise in CB dopamine (DA) secretion in response to hypoxic stimulation (33, 

37). As with ATP, the release of DA is known to be dependent on Ca2+ influx through L-

type Ca2+ channels (38). In contrast to the excitatory neurotransmitters, DA seems to 

exert an autoinhibitory action on the type I cell sensory response to hypoxia, specifically 

by attenuating inward Ca2+ currents (39). A more detailed consideration of the role of 

neurotransmitters in CB hypoxia stimulus excitation coupling is presented in Section 1.8.  

 

Stimulation of CSN chemoafferent fibres 

The overall functional effect of hypoxia induced type I cell depolarisation, Ca2+ influx and 

neurosecretion is the stimulation of the chemoafferent fibres in the CSN and subsequent 

transmission of this neural signal into the CNS. This initiates a series of well 

characterised reflex changes in cardiovascular and respiratory function that allow for 

corrective regulation of arterial O2 tension and the maintenance of cellular metabolism 

throughout the whole organism (1).  

 

The hypoxia evoked increase in single fibre chemoafferent firing frequency has been 

described in multiple studies both in vivo (40, 41) and in vitro (42-46). Recordings of 

single fibre chemoafferent activity made in vivo, have identified a normoxic frequency of 

approximately 0.2 to 2.3 Hz in the cat (47) and 0.25 to 1.5 Hz in the rat (41). In severe 

hyperoxia (up to 600 mmHg PaO2) the single fibre frequency is depressed, but not 

completely abolished (40), consistent with a degree of tonic O2 independent 

neurotransmitter release or spontaneous neuronal activity.  
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The precise arterial O2 tension at which the discharge frequency begins to increase is 

variable but it appears to lie somewhere between a PaO2 of 60 and 100 mmHg (41, 47). 

It is recognised that as the PaO2 continues to decrease, the single fibre discharge 

frequency increases exponentially and peaks in vivo between 9 and 25 Hz (41, 47). This 

hypoxia stimulated exponential rise in chemoafferent activity has also been 

demonstrated in multiple in vitro intact CB preparations (42, 45, 46). The hypoxic 

response curves generated from the superfused in vitro CB preparations seem to be 

relatively ‘right shifted’ compared to those obtained in vivo. This discrepancy is most 

likely a consequence of the diffusion limitations present across the whole organ (48). If 

the hypoxic stimulus is sustained for more than 5 to 10 minutes the peak discharge 

frequency is not maintained but gradually begins to decline (42).  

 

Summary 

All of the sensory transduction processes described above (from the attenuation of 

outward K+ channel current, to the exponential elevation in chemoafferent discharge 

frequency) are well established and are summarised in Figure 1.1. However, 

characterisation of a detailed interaction between O2 and a CB specific O2 binding 

molecule or sensor, that couples directly to K+ channel deactivation, remains elusive. A 

number of hypotheses have been proposed and some are described in the ensuing 

sections. One of these hypotheses, the ‘mitochondrial’ hypothesis, is examined directly 

in this thesis. Modulation of the sensory chemotransduction processes by a number of 

chemical mediators may also impact on the overall function of the CB. Some of these 

potential mediators are introduced later in this chapter and are subsequently 

investigated directly in this thesis.  
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Figure 1.1 Hypoxic chemotransduction processes in the carotid body. 
The carotid body is stimulated in response to reductions in arterial and tissue O2 tensions at levels well 
above those that impact on the metabolism of other cell types. Three K+ channels have been implicated in 
carotid body O2 sensing including BKCa, TASK and TREK-1. Attenuation of these channels in hypoxia 
reduces the outward K+ current and causes cellular depolarisation. This in turn activates voltage sensitive 
L-type Ca2+ channels leading to Ca2+ influx and a rise in type I cell [Ca2+]i. The elevation in [Ca2+]i 
promotes the release of stored neurotransmitters that are responsible for increasing the action potential 
generation in the adjacent chemoafferent neurone. Precise characterisation of a type I cell specific O2 
sensitive molecule (hypoxic sensor) that couples directly to inhibition of the K+ channels in hypoxia 
remains elusive.  
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1.3 The mitochondrial hypothesis 

 

1.3.1 Chemoexcitation evoked through mitochondrial inhibition and hypoxia share 

a number of similar chemotransduction processes 

In mammalian cells, O2 is the terminal electron acceptor in the mitochondrial respiratory 

chain. Continuous binding and reduction of O2 in the CuB/haem a3 binuclear centre of 

complex IV drives mitochondrial electron transport and promotes activation of the 

mitochondrial ATP synthase. The ‘mitochondrial’ hypothesis for chemoreception 

proposes that CB excitation induced by hypoxia is initiated by a reduction in O2 

dependent mitochondrial energy respiration.  

 

It is well established that mitochondrial poisons cause intense CB chemostimulation. 

This was originally identified in an early report demonstrating that injection of cyanide 

into the carotid sinus region immediately evoked an increase in minute ventilation that 

was dependent on an intact CSN (49). It is now recognised that the elevation in 

chemoafferent activity induced by saturating doses of mitochondrial poisons is similar in 

magnitude to that evoked by severe hypoxia (50-52). Mitochondrial inhibitors or 

uncoupling agents also enhance 3H-DA neurotransmitter release from the in vitro CB, 

indicating that the excitatory actions of these compounds is mediated through the actual 

type I cell and not the afferent nerve ending (52, 53).  

 

It is widely accepted that mitochondrial poisons are able to induce rapid increases in 

type I cell [Ca2+]i. The scale and immediacy of the [Ca2+]i elevation in response to a 

range of different mitochondrial inhibitors or uncouplers closely resembles the action of 

hypoxia (30, 54, 55). Furthermore, the rise in [Ca2+]i is highly dependent on extracellular 
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Ca2+ and almost completely reliant on cellular depolarisation (54). This implies that the 

vast majority of the rise in [Ca2+]i induced by mitochondrial poisons, as with hypoxia, is a 

consequence of Ca2+ influx through voltage gated Ca2+ channels. However, a small 

persistent elevation in [Ca2+]i has been observed even in the absence of extracellular 

Ca2+ or when type I cells were voltage clamped (54, 56). A definitive mechanism 

underpinning this residual rise in Ca2+ is equivocal but may involve the release of Ca2+ 

from an intra-mitochondrial store (56) or Ca2+ entry following acid induced reversal of the 

Na+/Ca2+ exchanger (53).  

 

A number of different K+ channels have been implicated in CB hypoxia sensing including 

BKCa (21, 22, 57), TASK (27) and TREK-1 (29). As with hypoxia, rotenone, cyanide and 

FCCP all attenuate the background TASK-like current in isolated CB type I cells (54). It 

has also been reported that complex IV inhibition with sodium azide leads to the 

depression of TASK and TREK-1 currents (29). Type I cell depolarisation evoked by a 

run-down in mitochondrial energy metabolism is therefore likely to involve at least two K+ 

channels that are associated with CB O2 sensing.  

 

1.3.2 The mitochondria in the carotid body type I cells appear to have a uniquely 

low affinity for O2  

A fundamental feature of the CB type I cell is its ability to respond to hypoxic stimuli at 

PO2 levels well above those that evoke changes in the metabolism of other cell types. 

For the mitochondrial hypothesis to be validated the mitochondria in the type I cells 

would have to show some degree of highly specialised low affinity binding for O2 that 

made mitochondrial electron flux significantly more susceptible to changes in PO2.  
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The Km of the cytochrome a3 for O2 in the mammalian mitochondrial complex IV is 

reported to be < 1 mmHg in isolated mitochondria and between 1 and 5 mmHg in 

dissociated cells and tissue preparations, with no significant differences existing 

between most cell varieties (58, 59). Within the CB, it has been established that there 

exists a cytochrome a3 with an unusually low binding affinity for O2, with a significant 

degree of it being reduced at PO2 tensions as high as 40 to 80 mmHg in the perfused 

organ preparation (3, 60, 61).  

 

Consistent with these findings, later studies performed by Biscoe and Duchen showed 

that in isolated type I cell clusters, mitochondrial function, measured by NADH 

autofluorescence, started to be impaired at a PO2 value of approximately 40 mmHg (4). 

Construction of PO2-NADH response curves revealed that the mitochondrial function in 

the type I cell was much more susceptible to a fall in PO2 compared to sensory 

neurones, as evidenced by the curves generated from type I cells being significantly 

‘right shifted’. Mitochondrial depolarisation, measured by rhodamine 123 fluorescence, 

was also detected at significantly higher O2 tensions in type I cells (56). In view of these 

observations, it does appear that type I cell mitochondria have a highly specialised low 

affinity for O2 and that mitochondrial energy metabolism may begin to be inhibited at 

remarkably high O2 tensions.  

 

1.3.3 Interaction between mitochondrial inhibitors and hypoxia 

The degree of stimulation elicited by mitochondrial poisons is similar to that evoked by 

severe hypoxia/anoxia in terms of the extent of mitochondrial depolarisation, the rise in 

NADH autofluorescence, elevation of [Ca2+]i and augmentation of chemoafferent 

discharge frequency (4, 52, 54, 56, 62). Wyatt and colleagues showed that the 
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attenuation of TASK-like current by high doses of rotenone, cyanide and FCCP was not 

further depressed by hypoxia (54). This perhaps suggests that all of these stimuli act 

through a common sensory pathway. However, it could be argued that the suppression 

of the TASK-like current evoked by the mitochondrial poisons was not further decreased 

by hypoxia because the maximal decline in TASK-like current had already been 

attained.  

 

In a different study, using the CB slice preparation, application of a range of 

mitochondrial inhibitors increased the basal level of DA secretion but did not prevent 

additional responses to hypoxia (63). The same group demonstrated that CB slices 

isolated from mice partly deficient in the succinate dehydrogenase anchoring protein 

(SDHD) had a preserved secretory response to hypoxia (64). In view of these results it 

was concluded that impairment of mitochondrial electron transport was not necessary 

for coupling hypoxia with CB excitation. However, the authors did not examine a 

potential change in CB hypoxic sensitivity in the SDHD heterozygous KO mice or 

following inhibition of the mitochondria using pharmacological agents. This may have 

been crucial for their conclusions to be validated, given that mitochondrial activity was 

likely to have only been partially attenuated.  

 

For the impairment of mitochondrial function to be contributory to CB hypoxic 

chemoexcitation, when sub-saturating concentrations of mitochondrial inhibitors are 

applied, it would be predicted that the threshold required for hypoxic response initiation 

would be modified. Mild mitochondrial inhibitors would be expected to sensitise the CB 

to hypoxia. Due to the exponential shape of the CB hypoxic response curves, an 

interaction of this nature would produce multiplicative rather than additive responses. Up 
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to now, no investigation has examined continuous graded responses to hypoxia in the 

presence of mild mitochondrial inhibitors. A better knowledge of the interaction between 

these two stimuli may be important to more clearly establish or rule out a role for 

mitochondrial energy metabolism in the CB hypoxic chemotransduction process and for 

this reason it is examined directly in this thesis.  

 

1.3.4 Is hypoxia coupled to a decrease in [ATP]i? 

If the rate of mitochondrial electron transport is attenuated during hypoxia, it may be 

reasonable to hypothesise that this would be coupled to a decrease in mitochondrial 

ATP generation and a reduction in the cellular energy status. As yet, no evidence has 

been published reporting the precise type I cell [ATP]i, either in normoxic conditions or 

during hypoxia. In other cell types including skeletal muscle cells and hepatocytes, very 

severe hypoxia (< 1% O2) reduces the [ATP]i consistent with a fall in the rate of oxidative 

phosphorylation (65, 66). In acutely O2 sensitive pulmonary artery smooth muscle cells, 

hypoxia enhanced [Ca2+]i, and this was associated with an increase in the AMP:ATP 

ratio, indicative of a concurrent depletion in cellular energy status (5).  

 

For CB tissue, measurements of whole organ ATP content have been made to reflect 

potential alterations in type I cell [ATP]i. Studies have reported that hypoxia and 

metabolic inhibitors, applied at an intensity sufficient to evoke intense CSN stimulation 

and 3H-CA release, reduced the whole CB ATP content (67, 68). It has also been shown 

that exposure of intact CBs to hypoxia, cyanide or antimycin A caused a significant 

depletion in whole organ ATP and an increase in AMP content (69).  
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In direct contrast to the above studies, it has been observed that the ATP content of the 

whole CB was not significantly diminished following whole animal exposure to severe 

hypoxia (5% O2 in N2) (70). Another investigation reported that two different 

mitochondrial uncoupling agents, DNP and CCCP, both increased the CSN discharge 

frequency without reducing ATP content (52). At present, there seems to be no clear 

correlation between metabolic or hypoxic induced stimulation and a variation in whole 

CB ATP content.  

 

In all of the above studies, the measured ATP content will have had contributions from 

type I cells, type II cells, neurones, blood vessels and interstitial fluid. In view of this, it is 

hard to justify that any alteration in whole organ ATP content accurately reflects an 

equivalent adjustment in type I cell [ATP]i. Conclusions are further complicated by the 

fact that ATP is an established neurotransmitter that is stored in type I cells and is 

released in hypoxia (71, 72). Therefore, whether or not type I cell [ATP]i or the AMP:ATP 

ratio are modified directly by hypoxia remains to be resolved.  

 

1.3.5 Is chemoexcitation evoked in hypoxia dependent on mitochondrial reactive 

oxygen species generation? 

Generation of reactive oxygen species (ROS) has been implicated in a number of 

important physiological processes in mammals including the control of the systemic 

vascular tone, pulmonary artery vasoconstriction and production of erythropoietin 

(reviewed in detail in (73)). In the mitochondria, it has been estimated that 1 to 2% of O2 

is not completely converted to H2O but instead is reduced by single electron addition to 

form the highly reactive superoxide anion O2
- (74). O2

- conversion to hydrogen peroxide 

(H2O2) is catalysed by specific superoxide dismutases (SOD) within the mitochondria 
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(MnSOD) or the cytosol (Cu/ZnSOD) (75). Catalase activity leads to thermodynamically 

favourable decomposition of H2O2 to form of H2O and O2. In the presence of certain 

transition metals such as Fe2+, H2O2 may be cleaved to produce the highly unstable 

hydroxyl radical (OH•); the third major ROS (76).  

 

The formation of O2
- is thought to be dependent on the concentration of O2 as defined by 

the reaction; 

d[O2
-]/dt ∝ [O2].[R•], 

where t is time and R• is the concentration of available reducing equivalents (77). The 

majority of cellular ROS is generated from initial formation of O2
- in the mitochondria 

(78), primarily a consequence of electron leakage at mitochondrial complexes I and III. It 

has been demonstrated that in isolated mitochondria, formation of O2
- was favoured in 

hyperoxic conditions (79).  

 

Strong evidence also supports the hypothesis that the upregulation of mitochondrial 

ROS formation in hypoxia is essential for pulmonary artery vasoconstriction (80). The 

mechanism underpinning the elevation in [O2
-]i in hypoxia is still not understood and 

appears to be contradictory to the idea that the rate of O2
- production is dependent on 

mass action as described by the above reaction. It has been suggested that in hypoxia, 

a run-down in the rate of electron flux increases the electron ‘dwell time’ on certain 

complexes of the mitochondrial respiratory chain and augments the number of reducing 

equivalents (81). This in turn would promote mitochondrial O2 reduction and enhance 

O2
- production. A similar mechanism is thought to account for the increase in complex III 
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ROS generation observed in the presence of mitochondrial inhibitors antimycin A and 

cyanide (81).  

 

It has been observed that ROS production was enhanced by hypoxia in both the mouse 

(82) and rat (83) CB type I cells. Despite this, ROS formation is not thought of as the 

fundamental process that links hypoxia with type I cell activation. Very high exogenous 

H2O2 administration (up to 632 mM) has been reported to activate rather than inhibit 

TASK channel activity in type I cells, an effect that would tend to cause 

hyperpolarisation rather than depolarisation (84). In the same study, H2O2 had no impact 

on the open probability of the O2 sensitive TREK-1 and BKCa channels. Changes in type 

I cell [Ca2+]i also seem to be insensitive to H2O2 when applied under normoxic or hypoxic 

conditions (54).  

 

In another study, a series of oxidants and inhibitors of ROS disposing enzymes were 

used to monitor the potential effect of redox homeostasis on CB activation by hypoxia. 

All drugs were reported to decrease the reduced glutathione (GSH) to oxidised 

glutathione (glutathione disulphide; GSSG) ratio in isolated diaphragm, consistent with a 

switch to a relatively oxidised intracellular redox environment (85). A number of these 

oxidising agents did augment CB 3H-CA release, but others were found to have no 

effect. This apparent lack of correlation between redox status and CB stimulation led 

authors to conclude that hypoxic chemotransduction was not dependent on ROS 

generation. This was further supported by observations showing that in vivo 

administration of buthionine sulphoximine (an inhibitor of GSH synthesis) failed to 

significantly alter the ventilatory response to hypoxia.  
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The same group also revealed that N-acetylcysteine (NAC; a potent antioxidant) 

reversed the change in redox status evoked by a number of mitochondrial poisons but 

had no impact on the CB secretory response induced by these same agents (86). 

Finally, NAC applied to the isolated calf CB, despite augmenting the GSH/GSSG ratio, 

did not modify the level of 3H-CA release in normoxia or hypoxia (87).  

 

Despite a variation in the type I cell redox status appearing not to be directly implicated 

in acute CB O2 sensing, a chronic upregulation in local ROS production has been 

suggested to account for the increase in basal chemoafferent activity and heightened 

CB hypoxic sensitivity in a number of different pathologies (discussed in Section 1.9). 

 

1.4 Linking cellular metabolic stress to type I cell activation: a role for 

the Lkb1-AMPK pathway  

 

1.4.1 Basic properties of AMPK and Lkb1 

It has been proposed that stimulation of AMPK, secondary to a hypoxia induced change 

in cellular energy status, is necessary to activate the CB in hypoxia (5, 88). AMPK is a 

heterotrimeric protein complex composed of the catalytic α and regulatory β and γ 

subunits (89), and for each subunit multiple different isoforms are expressed. AMPK is 

often referred to as the global sensor of cellular energy status because of its ability to 

acutely respond to changes in the AMP:ATP ratio (6).   

 

Regulation of AMPK activity is complex and highly integrated. It is now accepted that 

phosphorylation of the specific threonine residue (Thr 172) in the N-terminal kinase 

domain on the catalytic α subunit by upstream kinases is required to achieve full 
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activation (90). In addition, the regulatory γ subunit contains two pairs of adenosine 

nucleotide binding motifs termed ‘Bateman’ or cystathione β synthase (CBS) domains 

(labelled sites 1–4) (91, 92). Observations of the partial crystal structure of AMPK 

identified that only 3 of the 4 ‘Bateman’ domains could be occupied by adenosine 

nucleotides (with site 2 adopting a permanently ‘closed’ conformation) and one of these 

domains, site 4, was permanently bound to AMP (93). Reversible and competitive 

binding of ATP, ADP and AMP is only considered to take place at sites 1 and 3 and 

variations in the occupancy of these sites by the different nucleotides is thought to 

account for the overall degree of AMPK activation (94). 

 

AMP is the only adenosine nucleotide that allosterically activates AMPK and complete 

saturation of the exposed CBS motifs produces a modest 1.5–3 fold elevation in activity 

(95, 96). However, AMP also enhances α subunit phosphorylation (95) and restricts the 

rate of α subunit dephosphorylation by protein phosphatase 2C (PP2C) (97). In 

combination, the overall impact of AMP is to elevate AMPK activity by approximately 

1000 fold (96). ADP is another adenosine nucleotide capable of binding to and activating 

AMPK (94). It is thought that this is achieved not through direct allosteric activation but 

by attenuating PP2C mediated Thr 172 dephosphorylation.  

 

The ability for ATP to bind to the available CBS domains on α subunit of AMPK is well 

characterised. ATP effectively deactivates AMPK by competing with AMP and ADP for 

the occupancy of these two ‘free’ CBS domains (94, 95). The overall regulation of AMPK 

phosphorylation, dephosphorylation and activation is therefore highly dependent on the 

relative intracellular concentration of ATP, ADP and AMP.  
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For a number of years the identity of the upstream AMPK kinase remained elusive. In 

2003, Woods and colleagues detected a 45 kDa fragment from the isolated and purified 

rat liver AMPK kinase that reacted positively with anti Lkb1 (Liver kinase B 1) antibodies 

(7). The authors went on to demonstrate that purified Lkb1 activated AMPK by targeted 

phosphorylation of the Thr 172 residue in the activation loop on the catalytic α subunit. 

Furthermore, pharmacological activation of AMPK was prevented in cells expressing a 

mutant deactivated form of Lkb1. These were the first observations implying that Lkb1 is 

the essential upstream kinase required for complete phosphorylation and activation of 

AMPK.  

 

It is now established that Lkb1 exists as part of a globular 1:1:1 heterotrimeric complex 

in combination with two other proteins; STRAD (Ste20-related adaptor) and MO25 

(Mouse protein 25) (98, 99). The whole Lkb1-STRAD-MO25 complex phosphorylates 

the Thr 172 residue in the activation loop on the catalytic α subunit of AMPK (98). The 

degree of AMPK activation is closely associated with the level of Lkb1 activity. Full 

activation of AMPK is only achieved in the presence of Lkb1 and both STRAD and 

MO25 peptides. Direct interactions between STRAD/MO25 and Lkb1 cause allosteric 

activation of Lkb1 independent of phosphorylation (99). For this reason STRAD and 

MO25 are regarded as important regulators of Lkb1 function. The regulation of AMPK 

activity by Lkb1 and adenosine nucleotides is illustrated in Figure 1.2.  
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Figure 1.2 Regulation of AMPK phosphorylation status by Lkb1 and adenosine nucleotides. 
Lkb1 is the key upstream kinase that phosphorylates AMPK and is necessary to achieve complete 
enzyme activation. AMP binding to the CBS domains on the regulatory γ subunit increases AMPK 
activation by 1) direct allosteric activation 2) enhancing Lkb1 phosphorylation and 3) inhibiting AMPK 
dephosphorylation by PP2C. ADP binding at the available CBS domains also restricts AMPK 
dephosphorylation. ATP competes with AMP and ADP for binding at the CBS domains on the γ subunit 
and limits AMPK phosphorylation and activation. The phosphorylation status of AMPK is therefore 
dependent on the AMP:ATP and ADP:ATP ratios. Adapted from Hardie et al. 1999 (6). 
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1.4.2 Physiological and pharmacological activation of AMPK  

A rise in the ADP:ATP ratio is a consequence of the rate of ATP generation being less 

than the rate of ATP hydrolysis. The rise in [ADP]i activates adenylate kinase and drives 

the reaction; 2ADP ⇔ AMP + ATP, that acts to partially restore the [ATP]i (100). As a 

consequence of the adenylate kinase reaction it has been estimated that the AMP:ATP 

ratio varies as the square of the ADP:ATP ratio (100).  

 

AMPK can be activated by a number of different physiological or pharmacological 

stimuli, the majority of which are associated with an induction of metabolic stress. In 

HEK293 cells over expressing the γ2 subunit of AMPK, it was observed that a number of 

metabolic poisons including 2-deoxyglucose, oligomycin, DNP and metformin, all 

activated AMPK and this was coupled with a rise in the ADP:ATP ratio and, in most 

cases, a fall in O2 consumption (101). AMPK is also activated in skeletal muscle 

following periods of stimulated contraction (102). In cell lines derived from pancreatic β-

cells, a graded reduction in the superfusate glucose concentration from 10 to 0 mM was 

shown to evoke a concomitant graded elevation in AMPK activity and a rise in both the 

AMP:ATP and ADP:ATP ratios (103).  

 

Importantly, hypoxia is acknowledged as a key physiological stimulus that can activate 

AMPK. For example, it has been identified that the Thr 172 phosphorylation status in 

cardiac AMPK was significantly enhanced following a 10 minute period of regional 

cardiac ischaemia in vivo (104). In acutely O2 sensitive smooth muscle cells, hypoxia 

augmented the level of α subunit phosphorylation and increased the level of acetyl CoA 

carboxylase phosphorylation (a downstream substrate of AMPK), indicative of an up 
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regulation in AMPK activation (5). This was associated with an elevation in the 

AMP:ATP and ADP:ATP ratios. It was also demonstrated that AICAR, a compound that 

activates AMPK via intracellular generation of ZMP (an AMP analogue), augmented 

Ca2+ influx into smooth muscle cells and evoked vasoconstriction of isolated pulmonary 

arterioles in vitro. These findings described by Evans et al. were the first to reveal that 

activation of AMPK by AICAR mimicked the physiological action of hypoxia in an O2 

sensitive tissue.  

 

The importance of Lkb1 in regulating AMPK activity when exposed to physiological or 

pharmacological stimulation is becoming more apparent. For example, it has been 

reported that Lkb1 deficient murine embryonic fibroblasts, upon exposure to 

pharmacological AMPK activators, had reduced levels of α subunit Thr 172 

phosphorylation and acetyl CoA carboxylase phosphorylation compared with wild type 

controls (105). Restoration of AMPK phosphorylation and activity was achieved by re-

expression of an active form of Lkb1, implying that Lkb1 was essential for AMPK 

activation in response to these pharmacological stimuli. In mouse heart tissue deficient 

in Lkb1, AMPK (α2) activity was not enhanced following ischaemia or anoxia (106), 

emphasising a critical role for Lkb1 in mediating AMPK activation by hypoxia.  

 

1.4.3 Carotid body stimulation by hypoxia; a role for AMPK 

Recent evidence suggests that AMPK may be an important component of the signalling 

cascade that couples hypoxic sensing with CB type I cell excitation. It has been 

confirmed that the α1 subunit of AMPK is present in the rat type I cells and is co-

localised with the BKCa channel at the plasma membrane (5, 88). A strong degree of 

mRNA expression encoding the α1 subunit of AMPK has also been detected in CBs 
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isolated from human patients (107). Functionally, AMPK activation with AICAR mimics 

the effect of hypoxia by eliciting type I cell Ca2+ influx and raising CSN discharge 

frequency (5). Inhibitory targeting of AMPK with Compound C diminishes the rise in type 

I cell [Ca2+]i in response to hypoxia and attenuates the increase in CSN single fibre 

discharge frequency by approximately 50% (88). Finally, mice deficient in the α2 subunit 

of AMPK appear to have an impaired hypoxic ventilatory response (108).  

 

In the type I cell, multiple targets of AMPK have been proposed. Wyatt and colleagues 

observed that exposure of type I cells to AICAR caused a reduction in the BKCa current 

(88). This effect was dependent on direct channel phosphorylation and was abolished by 

AMPK deactivation with Compound C. The same study demonstrated that AICAR 

attenuated the background TASK-like current, although a specific phosphorylation site 

was not elucidated. A more recent article has shown that AICAR depressed both the 

TREK-1 and TREK-2 conductances and this was associated with selective serine 

residue phosphorylation within the C-terminal domains (29). These data indicate that 

AMPK phosphorylates a collection of K+ channels in the type I cell, all of which are 

closely related to CB O2 sensing.  

 

1.5 Gasotransmitters in the carotid body; alternative hypotheses for 

acute hypoxia sensing in the carotid body 

 

The hypothesised mechanisms coupling low O2 tensions with type I cell stimulation are 

not only confined to a depletion in mitochondrial electron transport and changes in 

cellular energy status. Three biologically active gases, carbon monoxide (CO), hydrogen 
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sulphide (H2S) and nitric oxide (NO) have all been identified as effectors of the CB 

response to hypoxia (reviewed in (8)). If high enough concentrations of one or all of 

these gases are generated under hypoxic conditions then they may act to directly 

mediate the CB response to hypoxia. The evidence for a physiological role of these 

gases in CB hypoxia stimulus response coupling is considered in this section.  

 

1.5.1 A role for carbon monoxide in mediating the carotid body response to 

hypoxia 

The impact of CO on CB activity is variable and appears to be directly dependent on the 

overall CO:O2 ratio. A very high relative proportion of CO compared to O2 causes 

intense chemoexcitation (109, 110). Superfusate concentrations of CO (> 300 mmHg) 

rapidly increase type I cell [Ca2+]i (111) and enhance the chemoafferent discharge 

frequency (109, 110). These effects are abolished by antagonism of L-type Ca2+ 

channels, suggesting that the response to CO is secondary to Ca2+ influx. CO also 

suppresses the type I cell resting membrane conductance and evokes cellular 

depolarisation. Thus, responses to high [CO] are comparable with those seen in 

hypoxia.  

 

A number of investigations have reported that the CO induced augmentation in 

chemoafferent activity was reversed by white light (109, 110, 112). The earliest of these 

demonstrated that the depression in discharge frequency was critically dependent on 

the wavelength of the illuminating light, being maximal at approximately 430 nm (110). 

This photosensitivity was consistent with formation of CO-haem complexes. Detailed 

analysis of the photochemical action spectra revealed that the excitatory effects of CO 

were probably mediated through binding to cytochrome a3 in the mitochondria. In view of 
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these observations, it was concluded that the chemoexcitation induced by [CO] was 

most likely to be a consequence of the depletion in mitochondrial electron transport.  

 

In biological systems the formation of physiologically active CO is dependent on the 

catalytic activity of haemoxygenase (HO) (113). CO is produced through the enzymatic 

degradation of haem in the presence of sufficient O2 and a number of key co-factors 

including NADPH and cytochrome P450. Biliverdin is released as a by-product of this 

reaction (113). Two isoforms of HO have been characterised, the inducible isoform HO-

1, detected in liver and spleen where the turnover rate of haem is high, and the 

constitutively expressed isoform HO-2, predominately present in brain and other 

neuronal tissue (reviewed in (114)).  

 

It has been proposed that physiological concentrations of CO derived from HO-2 may 

directly modulate the CB response to hypoxia, in a manner that is independent of an 

alteration in mitochondrial function (8, 115). Immunocytochemical analysis has revealed 

that HO-2 is expressed positively in type I cells (116). Pharmacological inhibition of HO-

2 elevates type I cell [Ca2+]i (117) and enhances chemoafferent activity (116), with the 

latter being reversed by application of exogenous CO. Inhalation of 0.25–2% CO 

attenuates the hypoxic ventilatory response in the rat (118) and infusion of tin 

protoporphyrin (another HO-2 inhibitor), augments phrenic nerve activity in 10% O2, 

indicative of a sensitised reflex response to hypoxia (114).  

 

Mechanistically, it has been suggested that CO impacts on type I cell excitability by 

directly interacting with the BKCa channel (119, 120). Analysis of whole cell patch clamp 

recordings revealed that the depression of the outward K+ current induced by hypoxia 
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was restored by addition of CO (119). A reduction in single K+ channel open probability 

in hypoxia was reversed by co-administration of exogenous CO. In HEK293 cells 

transfected with BKCa, immunocytochemical analysis was used to demonstrate co-

localisation of BKCa and HO-2 (120). In the same study, knock down of HO-2 expression 

by siRNA ablated the single K+ channel activity in normoxia and abolished the channel 

hypoxic sensitivity. Exogenous application of a CO donor increased the K+ channel open 

probability by more than 15 fold. A similar effect was observed upon addition of NADPH 

and haem, both predicted to elevate HO-2 activity. In a follow up investigation, the CO 

sensitivity of BKCa channel was eradicated following complete C-terminal tail substitution 

(121), implying that CO regulated BKCa channel function through a specific binding 

interaction within the C-terminal (Ca2+ binding) domain. 

 

As a result of these data, CO has been now been proposed as an important signalling 

molecule involved in hypoxia stimulus response coupling within the CB (115). It is 

suggested that, in normoxia, CO generated from HO-2 and haem, increases the open 

probability of BKCa, thereby amplifying the constitutive outward K+ current and 

preventing type I cell stimulation. In hypoxia, catalytic generation of CO is diminished 

and the absence of local CO acts to depress BKCa channel activation and reduces the 

K+ current. This evokes type I cell depolarisation, Ca2+ influx, neurosecretion and 

chemoafferent excitation (115).  

 

However, results taken from studies that evaluated the impact of genetic knock down of 

HO-2 on O2 sensing indicate that a role for HO-2 derived CO in CB hypoxic signal 

transduction may not be as definitive as first thought. In HO-2 null mice, minute 

ventilation seems to be unaffected in normoxia and this is contradictory with the idea 
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that BKCa is constitutively active (122). In hypoxia, the overall elevation in minute 

ventilation is reduced in these mice, but a strong component of the response 

(approximately 66%) is preserved. Perhaps even more surprising, examination of CB 

function in HO-2 deficient mice has revealed the conservation of a strong 

neurotransmitter secretory response to hypoxia coupled with the absence of alteration in 

hypoxic sensitivity (123). The authors of this study concluded that HO-2 and CO were 

not required for CB activation by hypoxia. The reason for these apparent contradictory 

results obtained from genetic and pharmacological studies is yet to be resolved and the 

physiological action of CO in the CB is still being investigated.  

 

1.5.2 Hydrogen sulphide in carotid body oxygen sensing 

Emerging evidence supports the hypothesis that endogenously produced H2S is a 

critical signalling molecule in the mammalian CB. H2S is primarily generated from serine 

and cysteine amino acid metabolism through a series of reactions that are dependent on 

the enzymatic activity of cystathione β synthase (CBS) and cystathione γ lyase (CSE) 

(124, 125). The relative importance of these enzymes in generating H2S seems to be 

tissue specific, with CBS accounting for the vast majority of H2S production in the brain 

and kidney, whereas in the liver, H2S is synthesised predominantly via CSE (124, 126).  

 

It is established that H2S formed from exogenous NaHS, causes a marked degree of 

respiratory stimulation in a number of different mammalian species including the mouse 

(127), rat (128) and the sheep (129). Observations from in vitro CB preparations, have 

shown that supraphysiological doses of H2S or H2S donors evoked type I cell 

depolarisation (130) and [Ca2+]i elevation (130, 131), and these effects appear to be 

quantitatively similar to those of hypoxia. Coupled to the type I cell excitation is the 
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capacity for exogenous H2S to augment the chemoafferent discharge frequency, a 

response which is dependent on Ca2+ influx and neurosecretion of ATP and ACh (127, 

132).  

 

The precise mechanism of H2S induced excitation is still to be clarified. H2S attenuates 

type I cell TASK-like (130) and BKCa (127) currents in a manner that resembles the 

actions of hypoxia. In contrast to CO, the H2S mediated depression of BKCa function 

appears not to involve specific interaction within the C-terminal domain (133), although 

an alternative binding site has not been identified.  

 

Perhaps more importantly, is the suggestion that the exogenous concentrations of H2S 

required to stimulate type I cells may be sufficient to impair mitochondrial function (130). 

H2S is a recognised mitochondrial inhibitor characterised by its capacity to bind to and 

deactivate complex IV (134). It has been revealed that exogenous application of H2S to 

dissociated type I cells, at concentrations equivalent to those that produce 

chemostimulation, significantly augmented NADH autofluorescence and increased Mg2+ 

fluorescence (130). These observations are consistent with a H2S induced run-down in 

mitochondrial electron transport and a reduction in [ATP]i. Therefore, a significant 

proportion of CB activation, caused by exogenous H2S, probably occurs secondary to a 

reduction in mitochondrial ATP synthesis and cellular energy status.  

 

A number of key investigations have examined whether endogenous generation of H2S 

is necessary to activate the CB in hypoxia. The presence of CSE in mouse and rat type I 

cells has been confirmed by immunohistochemical techniques (127, 131, 132). 

Expression of CBS has also been reported in rat (133), mouse (127) and cat (135) type I 
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cells. In rats and mice it has been shown that CB H2S production significantly increased 

in hypoxia (131, 132). Functionally, inhibitory targeting of CBS is reported to have 

abolished the hypoxic ventilatory response in vivo (127). On isolated CB tissue, hypoxia 

induced elevations in type I cell [Ca2+]i, dopamine secretion and chemoafferent 

discharge frequency, have all been shown to be diminished by pharmacological 

deactivation of CSE (131, 132).  

 

More conclusive evidence has been presented in studies utilising transgenic KO models. 

Mice deficient in CSE (CSE-/-) were observed to have an impaired ventilatory response 

to hypoxia (132). On in vitro CB preparations isolated from these mice, hypoxia evoked 

augmentations in [Ca2+]i, DA secretion and chemoafferent activity were all powerfully 

attenuated and this apparent down-regulation in hypoxic sensitivity was associated with 

a complete absence of hypoxia stimulated CB H2S synthesis (131, 132).  

 

Collectively, these data indicate that although the precise downstream target(s) of H2S 

are unknown, endogenous H2S generation in the type I cell is physiologically active and 

is necessary for evoking full CB stimulation in hypoxia.  

 

1.5.3 Regulation of the carotid body response to hypoxia by nitric oxide  

NO is considered to be an important chemical mediator in CB sensory 

chemotransduction. In contrast to CO and H2S, the majority of evidence suggests that 

NO only has an inhibitory impact on CB activity.  

 

In CB tissue, non-specific nitric oxide synthase (NOS) expression has been identified in 

both the efferent autonomic nerve bundles and in distal arterioles and capillaries (136-
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138). Functionally, non-selective antagonism of NOS stimulates dose dependent 

increases in CSN discharge frequency, in vitro, indicative of a basal inhibitory action of 

NO (136). Similar agents also enhance the chemoafferent response to hypoxia, in vitro 

(138, 139). NO donors however, significantly attenuate chemoafferent activity and 

suppress ACh release in hypoxia (140-142).  

 

Two isoforms of NOS have been proposed as contributing to NO generation within the 

CB; NOS-1 and NOS-3. Utilising transgenic mice, a number of studies have directly 

examined the functional significance of these NOS isoforms on regulating CB responses 

to hypoxia. NOS-1 homozygous KO mice were observed to have an exaggerated 

hypoxic ventilatory response compared with wild type littermates (143). In addition, 

exposure to 100% O2 had a more pronounced inhibitory effect on ventilation and on 

phrenic nerve activity in the NOS-1 mutant mice, consistent with an up-regulation of 

basal chemoafferent discharge frequency. These observations suggest that NO derived 

selectively from NOS-1 inhibits chemoafferent activity in both normoxia and hypoxia.  

 

In a similar study, mice deficient in NOS-3 appeared to have an impaired hypoxic 

ventilatory response and a diminished reflex increase in phrenic nerve activity upon 

exposure to cyanide (144). Delivery of 100% O2 to these NOS-3 KO mice caused a 

smaller reduction in respiratory drive compared to wild type controls. These data 

perhaps support a role for NO derived from NOS-3 in excitatory regulation of CB activity. 

However, the authors proposed that chronic depletion of NOS-3 activity in the vascular 

endothelial cells would have evoked systemic vasoconstriction. It was hypothesised that 

vasoconstriction of the arterial supply to the CB would have subjected the organ to 

chronic hypoxia from birth. Chronic neonatal hypoxia is associated with an impairment of 
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the CB tissue to develop hypoxic chemosensitivity (45, 145). Using this explanation, the 

authors considered the attenuation of CB activity in these NOS-3 KO mice to be a 

consequence of chronic hypoxia rather than the loss of a direct stimulatory effect of NO 

derived from NOS-3. Although plausible, this conclusion might be questioned since 

quantitative analysis also revealed that CBs isolated from the NOS-3 mutant mice 

exhibited no significant increase in type I cell number compared with wild type controls. 

This suggests an absence of significant type I cell hyperplasia, a condition that is highly 

characteristic of chronic hypoxia (146, 147).  

 

It is becoming more apparent that NO is capable of modifying type I cell function by 

acting on various targets in different cellular compartments. In dissociated type I cells it 

has been demonstrated that sodium nitroprusside (NO donor) depressed whole cell Ca2+ 

channel current and this action was attributed to a mechanism of NO mediated channel 

S-nitrosation (148). It has also been reported that type I cell BKCa current was enhanced 

by exogenous NO donors, but this effect was shown to be dependent on an 

augmentation in cGMP and PKG signalling (149, 150).  

 

It has been ascertained that hypoxia leads to an elevation in the type I cell NO 

concentration (83). Since NOS-3 but not NOS-1 is localised in the type I cell (83), it 

seems logical to suggest that intracellular NO production is derived specifically from 

NOS-3 activity. Interestingly, by use of NO selective fluorescent dyes, Yamamoto et al. 

have been able to detect measurable amounts of NO in the mitochondrial membranes of 

type I cells in hypoxia. It is universally accepted that NO restricts mitochondrial energy 

metabolism through competitive binding with O2 at the CuB/haem a3 binuclear centre in 

complex IV (151). In the CB, this potential effect of NO on modifying the mitochondrial 
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function has not been investigated. However, in contrast to the vast majority of studies, it 

has been revealed that some NO donors may elevate the chemoafferent discharge 

frequency in normoxia (141). The reason for this contradictory finding is unclear but, as 

with CO, NO may have an additional and as yet uncharacterised excitatory impact on 

CB function and this may be mediated through the mitochondria.  

 

Whether or not physiological concentrations of NO acutely or chronically alter type I cell 

mitochondrial energy metabolism remains an important area for consideration, 

especially given the close association between mitochondrial dysfunction and CB 

hypersensitivity in certain disease states (2).  

 

1.5.4 Enzymatic nitric oxide generation from nitrite 

Nitrite (NO2
-) was originally thought to be an inert end product of NO metabolism that 

was of little/no functional significance in mammalian physiology. More recently, NO2
- has 

been identified as an important mediator of systemic and pulmonary vasodilatation in 

rodents and in humans (152-155). Furthermore, pre-administration of NO2
- has been 

shown to have cytoprotective effects during ischaemia-reperfusion injury in cardiac, 

renal, hepatic and brain tissue (156-158). As a consequence, NO2
- biochemistry is 

currently receiving attention due to its potentially high level of biological and clinical 

significance.  

 

The majority of the observed physiological actions of NO2
- are thought to be a direct 

consequence of NO2
- reductase activity and generation of NO. NO2

- is now widely 

regarded as the largest biological store of NO in mammals, with tissue NO2
- 

concentrations ranging from approximately 0.5-25 µM (159). Several enzymatic NO2
- 
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reductases have been identified including deoxyhaemoglobin in blood, deoxymyoglobin, 

xanthine oxidoreductase, NOS-3, aldehyde dehydrogenase and carbonic anhydrase in 

the systemic and pulmonary vasculature, deoxymyoglobin in the heart and 

deoxyneuroglobin in brain and other neuronal tissues (155, 160-167). Of these the most 

widely characterised NO2
- reductases by far is the family of haem-globins composed of 

haemoglobin, myoglobin and neuroglobin. Single electron reduction of NO2
- in the 

presence of a proton and the deoxygenated ferrous haem-group leads to the formation 

of NO, as shown in the reaction below (in this case with myoglobin); 

 

NO2
- + deoxyMb(Fe2+) + H+ → NO + metMb(Fe3+) + OH- (168) 

 

Since the reaction requires a proton and is favoured in the presence of the 

deoxygenated form of the ferrous haem group, the rate of NO generation is dependent 

on PO2 and on pH. It has been reported that greater than 80% of NO2
- reduction was 

inhibited in the presence of only 0.5% O2 when measuring the rate of NO2
- reduction in 

liver, red blood cell and heart tissue samples in vitro (169). In a different investigation, 

an acidic buffered (pH 6.6) solution increased the rate of NO2
- reduction and NO 

production in vitro and this was coupled with a rise in the degree of aortic vessel 

relaxation (170).  

 

1.5.5 Mitochondrial nitrite reduction as a novel mechanism for NO generation  

In addition to NO2
- reduction by cytosolic enzymes it has been proposed that NO2

- 

reductase activity within the mitochondria may contribute to local mitochondrial NO 

production and in turn allow for direct modulation of mitochondrial oxidative 

phosphorylation and O2 consumption (168). The earliest study investigating this novel 
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function of the mitochondria was performed using isolated hepatic mitochondria and 

demonstrated that under anoxic conditions addition of exogenous NO2
- led to the 

subsequent generation of NO (171). Complex III (171), complex IV (172, 173) and 

cytochrome c (174) have all since been proposed as potential mitochondrial NO2
- 

reductases and the overall mitochondrial NO generation from NO2
- may have varying 

contributions from each source.  

 

In the case of NO generation from NO2
- by cytochrome c oxidase, a mechanism of 

single electron reduction at the site of the reduced haem (Fe2+) group has been 

advocated, similar to that observed in the presence of the cytosolic haem-globin proteins 

(see above reaction) (172). As in the cytosol, mitochondrial reduction of NO2
- is 

considered to be exquisitively sensitive to O2 and pH and is favoured in hypoxia and 

acid (171, 172, 174). In contrast to cytosolic enzymatic NO2
- reduction, that can occur at 

physiological (µM) concentrations of NO2
-, mitochondrial NO2

- reduction seems only to 

occur at supraphysiological (mM) NO2
- concentrations (172-174). This may in part be 

due to the limited mitochondrial uptake of exogenous NO2
-. Castello and colleagues 

found that only 10% of exogenous NO2
- added to the superfusate was subsequently 

internalised into the mitochondria (172). It has been speculated that very high local 

concentrations of NO2
- may exist within the mitochondria, but as yet there is no evidence 

to substantiate this claim (168). Although intriguing, a definitive physiological role for NO 

formed from endogenous NO2
- at the mitochondria remains to be verified.  

 

1.5.6 Modification of mitochondrial oxidative phosphorylation by nitrite 

Cellular NO2
- reductase activity leading to the local generation of NO has the potential to 

evoke post-translational changes in mitochondrial proteins through nitrosation of amino 
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acid thiol (R-S-H) and amine (R-N-H2) groups (159). Rises in NO produced from NO2
- in 

hypoxia may also promote the formation of haem-NO complexes (175, 176). Inhibitory 

regulation of mitochondrial oxidative phosphorylation through binding of NO to the 

CuB/haem a3 binuclear centre within complex IV is well characterised (177, 178). The 

impairment of complex IV activity by NO is considered to be O2 dependent and rapidly 

reversible with a Ki of approximately 60-150 nM NO at O2 concentration of 5–10 µM 

(179).  

 

NO derived specifically from NO2
- has now been demonstrated to significantly diminish 

mitochondrial respiration via inhibitory targeting of complex IV (180). The degree of NO-

haem complex formation and mitochondrial inhibition with NO2
- appears to be highly 

dependent on PO2 and only occurs in hypoxia (176, 180). In the absence of cytosolic 

NO2
- reductases, mitochondrial activity is only depressed by supraphysiological NO2

- 

concentrations, consistent with those shown to generate NO directly from the 

mitochondria (180).  

 

Attenuation of mitochondrial function by NO2
- may also be dependent on post-

translational modification of mitochondrial proteins. Treatment of isolated cardiac 

mitochondria in anoxic conditions with NO2
- has been shown to produce dose dependent 

reductions in the respiration rate through complex I and this was coupled to a decrease 

in complex I ROS generation upon reoxygenation (181). In the same investigation, R-

SNO levels, measured by chemiluminescence, were augmented in the mitochondrial 

fraction containing complex I following NO2
- treatment, leading authors to conclude that 

a dampening of total mitochondrial electron flux was a direct consequence of complex I 
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protein S-nitrosation. A summary of the mitochondria being both metabolisers and 

targets of NO2
- is presented in Figure 1.3.  

 

NO2
- is recognised as a novel and rapidly reversible inhibitor of mitochondrial electron 

transport in various tissues and acts primarily through generation of NO. NO2
- reductase 

activity has never been detected within the CB. In contrast to other NO donors used 

previously in the CB, NO2
- may be able to form NO exclusively in the type I cell 

mitochondria. In this way, NO2
- may be a useful agent to examine whether NO can 

adjust the CB hypoxic sensitivity by selective modification of type I cell mitochondrial 

function.  
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Figure 1.3 The mitochondria as metabolisers and targets of nitrite. 
A) Supraphysiological (mM) concentrations of nitrite (NO2

-) can be reduced at three sites within the 
mitochondria to generate NO. These sites are; complex III, complex IV and cytochrome c. NO2

- reduction 
is favoured in acidic and hypoxic conditions and requires continuous mitochondrial substrate supply 
(NADH/FADH2) and electron flux (indicated by the dotted line). B) The NO generated from NO2

- reduction 
has the potential to impair mitochondrial electron transport by nitrosation of amino acid thiol groups in 
complex I (generating R-SNO groups) or by forming haem-NO complexes in complex IV. Adapted from 
Shiva, 2010 (168).  
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1.6 Mechanisms of hypercapnic chemotransduction in the carotid 

body 

 

1.6.1 Established hypercapnic chemotransduction processes in the carotid body  

Approximately 30-50% of the reflex ventilatory response to arterial hypercapnia is 

mediated through direct stimulation of the CB chemoreceptors (182, 183), with the 

remaining contribution arising from chemoreceptors located in the CNS. Complete 

silencing of the CSN chemoafferent output, using a local hyperoxic and hypocapnic 

solution, has been shown to severely depress the reflex ventilatory response to systemic 

hypercapnia to only 20% of control (184). Therefore, in addition to the reflexes arising 

directly from hypercapnic CB excitation, maintenance of a definitive CB chemoafferent 

input into the CNS seems to have a role in establishing the acute hypercapnic sensitivity 

of the central chemoreceptors.  

 

The CB chemoafferent response curve to increasing PaCO2 (at constant PaO2) has a 

sigmoid shape with a linear increase in discharge frequency identified over a range of 

approximately 25-80 mmHg PaCO2 (40, 41, 185). At a higher or lower PaCO2 the 

discharge frequency tends to plateau (40, 186). A similar correlation between 

superfusate PCO2 and chemoafferent discharge has been detected in the intact CB 

preparation in vitro (46). The chemoafferent response to a single level of hypercapnia is 

rapid, peaking within 2-4 s, and then it adapts quickly, within 10 s, to a slightly lower 

steady state frequency (187) that is maintained for up to 240 minutes, with very little 

further depression (186).  

 



 

	   42	  

Transduction of the hypercapnic stimulus into a functional chemoafferent neural signal 

involves many of the same processes associated with hypoxic sensing. These include, 

type I cell depolarisation, Ca2+ influx and neurosecretion (18). As with hypoxia, the vast 

majority of the [Ca2+]i rise in response to hypercapnia is dependent on type I cell 

depolarisation and Ca2+ influx through L-type Ca2+ channels (188). The mechanism 

behind the small residual rise in Ca2+ independent of L-type Ca2+ channel activity has 

not been clearly defined, but evidence implies that it may involve Ca2+ entry through the 

P/Q type Ca2+ channels (189) or acid induced reverse activation of the Na+/Ca2+ 

exchanger (53).  

 

The hypercapnic induced elevation in [Ca2+]i is essential for the secretion of stored 

neurotransmitters that stimulate post-synaptic action potential generation in the adjacent 

chemoafferent fibres. As in hypoxia, the two critical excitatory neurotransmitters are 

considered to be ACh and ATP, as evidenced by the concurrent block of both nicotinic 

ACh receptors (nAChR) and purinergic P2 receptors causing a complete obliteration of 

the chemoafferent response to hypercapnia (190). The release of DA has also been 

reported under hypercapnic conditions, although this most likely has an autoinhibitory, 

rather than excitatory function (191).  

 

1.6.2 Linking hypercapnia with type I cell depolarisation; a role for carbonic 

anhydrase and H+  

The precise signalling mechanism that couples high extracellular PCO2 with type I cell 

depolarisation remains unresolved. A number of studies have proposed that the crucial 

step in the transduction process is the intracellular hydration of CO2 to form H2CO3 

followed by dissociation into HCO3
- and H+ (190, 192, 193). The rate of CO2 hydration is 
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rapidly increased in the presence of carbonic anhydrases (CAHs) (194) and the function 

of these enzymes within the type I cell may be functionally relevant in mediating the 

response to hypercapnia. Expression of CAHs in the CB has been widely reported (195) 

(196) and the most detailed analysis has revealed the presence of CAHI, CAHII and 

CAHIII isoforms within the type I cell (197). 

 

On a functional level, inhibition of CAH using acetazolamide has been associated with a 

delayed and a depressed CB chemoafferent response to hypercapnia in vitro (192), 

consistent with a reduction in the rate of intracellular CO2 hydration. The absolute level 

of steady state suppression seems to be dependent on the CB preparation used; CAH 

inhibition almost completely ablated the frequency response to hypercapnia in petrosal 

neurones co-cultured with type I cell clusters (190), but evoked a much less severe 

reduction in chemoafferent frequency in the intact perfused CB preparation (198). In 

vivo, it has been observed that chemoafferent elevations in hypercapnia were 

significantly attenuated by acetazolamide, a membrane permeable CAH inhibitor, but 

not by benzolamide, a membrane impermeable CAH inhibitor (199).  

 

Perhaps the most obvious explanation for the impact of CAH activity on type I cell 

excitability would be the increase in [H+]i leading to a fall in intracellular pH (pHi). A rise 

in extracellular PCO2 in isohydric conditions (achieved by concurrently raising the 

superfusate HCO3
-) causes only a small transient intracellular acidosis that gradually 

recovers over 4-8 minutes (200). This restoration of pHi is probably a consequence of an 

increased rate of H+ extrusion. The maintenance of a steady state acidic pHi in 

hypercapnia has therefore been proposed as being dependent not only on the 

intracellular hydration of CO2 by CAH and generation of H+, but also on a concurrent 
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extracellular acidosis and a depression of type I cell H+ extrusion (200). In hypercapnia, 

a clear linear correlation between extracellular pH (pHo) and type I cell pHi has been 

described over the physiological range (200). Impairment of H+ extrusion following a 

decrease in pHo may be due to the H+ induced inhibition of the H+/Na+ exchanger and 

up-regulation of the HCO3
-/Cl- exchanger and the activity of the non-specific (HCO3

- 

conducting) anion channel (200, 201).  

 

If secondary acidosis is central to the process of CB CO2 sensing then there must exist 

a mechanism of acid induced cellular excitation. A number of channels expressed in the 

type I cell are recognised as being sensitive to alterations in pH and modification of their 

activity may directly lead to type I cell depolarisation. Severe acidosis (pH 6.4) directly 

attenuates the background TASK-like current and the same stimulus can evoke type I 

cell depolarisation (27). A similar reduction of the background K+ leak current during 

hypercapnic stimulation has been demonstrated (188). Accordingly, TASK-1 KO mice 

were reported to have a blunted ventilatory response to hypercapnia (202). Subsequent 

in vitro analysis identified an impaired augmentation of chemoafferent activity in 

response to hypercapnia in CBs isolated from TASK-1 KO mice, suggestive of a 

diminished CO2 sensitivity. However, these findings were in contrast to an earlier 

investigation that described a maintained DA secretory response to hypercapnia in CB 

slices harvested from TASK-1/3 deficient mice (203). Thus, a role for TASK channels in 

CB PCO2/H+ remains to be verified.  

 

In addition to TASK, it has been established that the outward K+ current conducted 

through the BKCa channel is suppressed by acidosis (25, 201). Emerging evidence also 

indicates that inward Na+ (204) and Cl- (205) currents are activated in type I cells in 
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response to a fall in extracellular pH. The relative contribution of all of the currents 

described in mediating type I cell depolarisation in hypercapnia is still to be fully 

characterised.  

 

1.6.3 Effects of CO2 on carotid body function that are independent of pH changes  

If CB activation in hypercapnia is purely a consequence of intracellular acidosis, (which 

in itself is dependent on simultaneous extracellular acidosis), then it might be expected 

that responses to hypercapnia when the extracellular pH is maintained at 7.4 are either 

severely diminished or absent. However, it has been reported that isohydric hypercapnia 

can evoke increases in type I cell Ca2+ current (206), neurotransmitter release (191) and 

activation of the CSN afferents (190). In these latter two studies the magnitude of the 

response in isohydric hypercapnia was not as great as that observed in acidic 

hypercapnia but a large residual response was still preserved. Isohydric hypercapnia 

does generate a small transient intracellular acidosis in type I cells (200), but the size of 

these responses is still conceivably greater than would be expected if hypercapnic 

chemotransduction was completely dependent on intracellular acidosis. This indicates 

that there may be excitatory mechanisms induced by hypercapnia that are independent 

of concurrent acidosis.  

 

The elevation in type I cell Ca2+ current identified in isohydric hypercapnia (described 

above) was shown to be mimicked by cAMP analogues and abolished by inhibition of 

PKA (206). This suggests that cAMP production and subsequent PKA activation is 

functionally relevant in CB hypercapnia stimulus response coupling. The authors 

hypothesised that cAMP generation may be a consequence of the increase in HCO3
- 

production from CAH, leading to the direct stimulation of the HCO3
- sensitive soluble 
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adenylate cyclase (sAC). The expression of sAC mRNA in type I cells has recently been 

confirmed (207) and CB cAMP levels do increase in hypercapnia (208). However, it 

remains to be seen whether sAC is functionally active in the CB and has a specific role 

in the chemotransduction process of hypercapnia.  

 

1.6.4 CO2-O2 interactions in the carotid body 

A considerable quantity of evidence suggests that hypoxic and hypercapnic stimuli 

interact at the level of the CB. The in vivo chemoafferent response to hypercapnia is 

highly dependent on the PaO2 (185, 209). Although a significant elevation in frequency 

upon hypercapnic stimulation occurs at any PO2, the absolute rise in frequency per 

mmHg increase in PCO2 is strongly diminished by arterial hyperoxia (185, 209).  

 

It has also been established that the CB response to hypoxia is sensitive to variations in 

CO2. Detailed analysis of CB chemoafferent activity in vitro revealed that hypercapnia 

caused a significant ‘right shift’ of the CB hypoxic response curve (46). This implies that 

hypercapnia reduces the hypoxic threshold required for response initiation. In the same 

investigation, the absolute impact of hypercapnia on discharge frequency was 

augmented in hypoxia, again emphasising the synergy between these two stimuli (46). 

The precise site of O2-CO2 interaction remains elusive but the transduction pathways 

involved in hypoxia and hypercapnia signalling have much in common (18). Since the 

[Ca2+]i elevation in response to hypercapnia is enhanced in hypoxia (210), the 

convergence of these two signalling cascades is most likely to occur within the type I 

cell, at or before the generation of [Ca2+]i. Further evaluation of the interaction between 

these two stimuli and the magnification of CB output on the control of respiratory and 



 

	   47	  

cardiovascular reflexes could be of importance given the close association between CB 

hyperexcitability and disease (2).  

 

1.7 The carotid body in glucose sensing 

 

1.7.1 General overview of the properties and mechanisms of some glucose 

sensitive tissues 

Glucose homeostasis in mammals is an essential process that allows for continuous 

maintenance of glycolysis. Counter regulatory responses to hyper or hypoglycaemia are 

dependent on a number of specialised glucose sensitive cells that respond to glucose 

concentrations over a range that fails to evoke stimulation in all other cell types. 

Whether the CB type I cell is one of these physiological glucose sensors, currently, 

appears equivocal. Experiments performed in this thesis aim to examine the direct 

sensitivity of the CB to low glucose and to unify the apparent contradictory observations 

that have been previously reported in the literature. 

 

Pancreatic β-cell 

The most commonly studied mammalian glucose sensor is the pancreatic β-cell. Insulin 

secretion induced by hyperglycaemia is coupled tightly with changes in the rate of 

glucose metabolism and ATP generation (reviewed in (211)). An increase in [ATP]i 

through glycolysis and oxidative phosphorylation reduces KATP channel activity. This 

promotes cellular depolarisation (212, 213), an increase in voltage dependent Ca2+ influx 

(214) and insulin secretion.  
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The primary regulator of glycolysis in the β-cell is glucokinase (hexokinase IV). 

Glucokinase has an exceptionally low affinity for glucose; it has a Km of approximately 

8 mM glucose, which is far higher than other hexokinases that are in the µM range (215, 

216). This makes it exquisitively sensitive to fluctuations in glucose concentrations 

across the entire physiological range. In isolated β-cells it has been demonstrated that 

elevations in glucose metabolism and insulin secretion in response to hyperglycaemia 

were associated with an increase in glucokinase expression and activity (217). A later 

report showed that a 70% reduction in β-cell glucokinase expression was associated 

with a diminished the rate of pancreatic insulin secretion in response to hyperglycaemia 

(218).  

 

The glucose transporter GLUT-2 may also control glucose utilisation in the β-cell by 

modifying the rate of glucose uptake. GLUT-2 is highly expressed in the pancreatic β-

cell and its Km for glucose (approximately 17 mM) is far higher than that reported for 

GLUT-1, GLUT-3 and GLUT-4 (219). Observations made by Johnson et al. indicate that 

extracellular glucose uptake into the β-cell is directly dependent on the level of GLUT-2 

activity (220). Complete knockdown of glut2 gene expression in mice has been shown to 

dramatically reduce the degree of the glucose induced insulin secretion (221). Thus, the 

physiological acute glucose sensitivity of the β-cell appears to be critically dependent on 

the expression and activity of both GLUT-2 and glucokinase.  

 

Glucose sensitive neurones 

Glucose sensitive neurones in the mammalian brain are found predominantly in the 

arcuate nucleus (ARC) and the lateral hypothalamic region (LH) (222-224). These 

neurones are either acutely stimulated (GE) or inhibited (GI) by rises in glucose 
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concentrations (reviewed in (225)). Despite the lack of specific cell markers there is 

some degree of association between both GE and GI neurones and the presence of 

glucokinase, with 64% of GE neurones and 43% of GI neurones expressing glucokinase 

mRNA (226-228).  

 

As in the pancreatic β-cell, the majority of GE neurones are activated subsequent to the 

inhibition of KATP channels (229, 230) following a glucokinase mediated up-regulation in 

glycolysis and ATP synthesis (227). Some GE neurones seem to be stimulated via 

glucose mediated activation of the glucose, Na+ co-transporter and this mechanism is 

independent of an elevation in glycolysis (231).  

 

The means by which GI neurones are stimulated in response to low glucose is less well 

defined. A reduction in glucose metabolism appears to be significant in the coupling 

process in some GI neurones. In these neurones glucokinase is central to the regulation 

of glycolysis and ATP synthesis (reviewed in (232)). It has been reported that acute 

activation of glucokinase by Compound A significantly reduced glucagon secretion in 

response to insulin induced hypoglycaemia (233). In the same study, chronic knock 

down of glucokinase mRNA increased the level of adrenaline release during 

hypoglycaemia. An earlier study showed that pharmacological inhibition of glucokinase 

rapidly increased [Ca2+]i in isolated GI neurones (229), indicative of a reduction in 

glucokinase activity coupling directly to GI neurone excitation.  

 

Activation of some GI neurones is considered to be conferred through an increase in the 

AMP:ATP ratio and activation of AMPK subsequent to a fall in glycolysis and ATP 

synthesis. Intracerebral venous administration of 2-deoxyglucose (glycolysis inhibitor) 
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has been shown to increase AMPK activity in hypothalamic neurones, and this was 

associated with an elevation in food intake (234). In a later study, microinjection of the 

AMPK inhibitor Compound C into the ARC, attenuated the level of adrenaline and 

glucagon secretion in response to hypoglycaemia (235). Observations made on isolated 

brain slices have also revealed that exogenous application of AICAR stimulated GI 

neurones in a manner that was comparable to low glucose (236). Alternatively, it has 

been proposed that other GI neurones may respond to low glucose following a run-down 

in the Na+/K+ ATPase (237). As with AMPK activation, this is probably due to a low 

glucose mediated reduction in glycolysis and ATP synthesis.  

 

1.7.2 A role for the carotid body in systemic glucose homeostasis 

The emerging consensus is that the CB is involved in glucose homeostasis. Direct 

pharmacological stimulation of the CB in vivo evokes a reflex elevation in arterial 

glucose concentration (238). This increase is reliant on a heightened chemoafferent 

input into the NTS that in turn leads to the augmentation of adrenaline secretion from the 

adrenal medulla and an increase in hepatic glucose release into the systemic circulation 

(238, 239).  

 

Koyama and colleagues have reported that during insulin induced hypoglycaemic clamp, 

the rate of glucose infusion required to maintain the hypoglycaemic level was elevated in 

dogs following CB resection (240). These dogs also exhibited a reduced level of 

endogenous hepatic glucose production. In humans, throughout a similar insulin induced 

hypoglycaemic clamp, the rate of glucose infusion necessary to maintain the serum 

glucose at 3.3 mM was increased following proposed silencing of chemoafferent activity 

by hyperoxia (241). Taken together, these data indicate that the CB is stimulated in 
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hypoglycaemia and contributes to the counter regulation required to restore a normal 

plasma glucose concentration.  

 

1.7.3 Altered chemosensitivity and ventilatory responses in hypoglycaemia 

A number of investigations have evaluated potential changes in peripheral 

chemoreceptor sensitivity and ventilation during hypoglycaemia. Bin-Jaliah et al. 

demonstrated that insulin induced hypoglycaemia augmented minute ventilation (VE) 

and the rate of O2 consumption (VO2), so that the VE:VO2 ratio remained constant (242). 

The precise matching of ventilation with the elevation in metabolism during 

hypoglycaemia was shown to be critically dependent on the preservation of CB 

chemoafferent activity. In a follow up article, a similar insulin induced hypoglycaemic 

clamp significantly augmented the CB sensitivity to hypercapnia (243). Since exposure 

of the intact in vitro CB to 2 mM glucose did not directly potentiate chemoafferent 

responses to hypercapnia, the authors proposed that the elevation of CB CO2 

chemosensitivity observed in vivo was an indirect consequence of systemic 

hypoglycaemia, most likely related to a simultaneous increase in metabolic rate.  

 

In a less severe model of hypoglycaemia, induced by fasting the animals for 12 hours, it 

has been observed that a 25% reduction in basal serum glucose had no effect on 

normoxic ventilation, O2 consumption or CO2 production (244). During acute hypoxia 

there was no difference in the increase in minute ventilation between fed and fasted 

animals. This suggests that mild hypoglycaemia, at a level that does not alter whole 

body metabolism, does not augment CB chemosensitivity.  
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In humans, it has been reported that severe hypoglycaemia (2.8 mM) increased basal 

ventilation and augmented ventilatory responses to hypoxia (245). These effects were 

coupled with rises in serum glucagon, adrenaline, noradrenaline and cortisol 

concentrations. Interestingly, immediately following the restoration of a normal plasma 

glucose concentration, the ventilatory response to hypoxia remained elevated. Analysis 

of serum hormones revealed that noradrenaline and cortisol had not returned to 

baseline. In view of these findings, it is possible that the CB activation in hypoglycaemia 

is mediated indirectly through the release of counter regulatory endocrine or 

neuroendocrine factors that may also be partially responsible for elevating whole body 

metabolism.  

 

1.7.4 Acute sensitivity of the carotid body to low glucose in vitro 

A number of studies have assessed the direct low glucose sensitivity of in vitro CB 

tissue in order to determine whether it can act as a physiological glucose sensor in the 

whole animal (242, 246-249). So far, the findings from these investigations have been 

unable to establish a clear relationship between low glucose and CB activation. Several 

clear discrepancies have been reported and at present the direct low glucose sensitivity 

of the CB is ambiguous. It has been suggested that the reason for these disparities may 

be due to dissimilar isolation procedures or tissue incubation conditions utilised 

throughout the different investigations (250). In addition, Zhang et al. have proposed that 

the explanation for the absence of low glucose sensitivity reported in certain CB 

preparations was purely a consequence of the high PO2 levels used (248). A summary 

of the current evidence regarding the direct low glucose sensitivity of the CB is 

described in this section.  
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The freshly isolated intact CB appears to be acutely unresponsive to fluctuations in the 

superfusate glucose concentration. Bin-Jaliah and colleagues showed that exposure of 

the CB to 2 mM glucose failed to acutely enhance the CSN chemoafferent activity (242). 

Consistent with these findings, Conde et al. reported that 3H-CA neurotransmitter 

release was not acutely augmented even by 1 mM glucose in normoxia or moderate 

hypoxia (247). In addition, complete glucose deprivation does not acutely alter the CB 

secretion of the two primary excitatory neurotransmitters; ATP (247) and ACh (251). An 

increase in 3H-CA has been observed but only after the intact CB has been exposed to 

glucose deprivation for at least 40 minutes (247).  

 

A similar lack of intrinsic low glucose sensitivity has been identified in freshly dissociated 

type I cells. The background TASK-like channel current was shown to be completely 

unaffected by glucose deprivation (252). The recently characterised ATP sensitive K+ 

(KATP-like) current (distinguishable from TASK) is also reported to be completely 

insensitive to the removal of superfusate glucose (252). Finally, dissociated type I cells, 

experimented on within hours of CB isolation, exhibit no degree of [Ca2+]i elevation in 

response to removal of glucose from the superfusate (249). This is consistent with the 

absence of low glucose induced cellular activation.  

 

In contrast with the studies described above, it is also accepted that several long term 

culture CB preparations are acutely stimulated by low glucose. In the CB slice 

(incubated for 24-48 hours prior to experimentation), low glucose activates the type I cell 

leading to a rapid increase in the rate of DA release (246, 253). Low glucose also 

enhances the CB slice secretory response to hypoxia (246). In common with hypoxia, 

DA secretion in response to glucose deprivation is dependent on Ca2+ influx through 
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voltage gated Ca2+ channels (253). In the 6-10 day old CB co-culture preparation (type I 

cell clusters co-cultured with chemoafferent petrosal neurones) low glucose evoked an 

increase in afferent fibre spike frequency that was equivalent in amplitude to that 

induced by hypoxia (248). The same concentration of glucose significantly potentiated 

the response to hypercapnia, indicative of a significant degree of stimulus interaction.  

 

In both the CB slice and co-culture preparations, activation in response to physiological 

levels of low glucose was induced by reducing the superfusate PO2 to approximately 

90 mmHg (246, 248). This raises the idea that the CB sensitivity to low glucose may be 

dependent on the background level of O2 tension. Experiments by Bin-Jaliah et al. (242, 

243) utilising the intact preparation were performed in hyperoxia (superfusate PO2 of 

approximately 400 mmHg), and it has been suggested that this high O2 tension may 

have acted to conceal the low glucose sensitivity of the tissue (248).  

 

Alternatively, it has been speculated that the intrinsic low glucose sensitivity of the CB 

slice and co-culture preparations is a consequence of an alteration in metabolic status 

following prolonged tissue incubation (250). Some support for this idea has come from a 

recent article demonstrating the induction of small [Ca2+]i responses to glucose 

deprivation following 24 hours of culture (249). However, in this same study, the rate of 

cellular DA secretion was still unaffected by glucose deprivation after the equivalent time 

of incubation, implying that the rise in [Ca2+]i was not sufficient to elicit neurotransmitter 

release. Further evaluation of the CB response to low glucose is therefore required to 

fully unite the apparent contradictory findings that have been described in different CB 

preparations. Experiments performed in this thesis aimed to clarify whether the low 
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glucose sensitivity of the CB is dependent on an interaction with O2 and/or is induced 

following long term tissue incubation in vitro.  

 

1.8 Neurotransmission and neuromodulation in the carotid body 

 

1.8.1 Acetylcholine and ATP 

It is thought that the hypoxia induced release of excitatory neurotransmitters from the 

type I cell is crucial for the elevation in action potential generation in the chemoafferent 

petrosal neurones. This is primarily based on evidence that identified a lack of intrinsic 

O2 sensitivity in petrosal neurones that were cultured in the absence of co-localised type 

I cells (254). In Ca2+ free media, rises in type I cell [Ca2+]i and chemoafferent excitation 

in hypoxia are almost completely abolished (31). This indicates that Ca2+ evoked 

neurosecretion is necessary for post-synaptic action potential generation.  

 

The majority of evidence suggests that the two main excitatory neurotransmitters 

synthesised and released from type I cells are ACh and ATP. Hypoxia stimulated 

secretion of ACh has been detected both in vivo (35) and in vitro (36). The type I cell 

exhibits positive immunoreactivity for a number of cholinergic markers including choline 

acetyl transferase (ChAT; ACh synthesising enzyme) (255), the vesicular ACh 

transporter (VChaT) (256) and acetylcholine esterase (AChE) (257). These findings 

imply that the type I cell is a primary source of hypoxia induced synaptic ACh 

generation.  

 

Direct application of ACh to isolated chemoafferent petrosal neurones evokes a 

depolarisation that is coupled to the generation of a fast and rapidly desensitising inward 
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current (258). This current is mimicked by nicotine and abolished by hexamethonium 

(HEX; nAChR antagonist); thus strongly indicative of the presence of functional nicotinic 

ACh receptors (nAChR) on these petrosal neurones. Selective inhibitory targeting of 

nAChR in vivo using mecamylamine has been observed to attenuate the increase in 

chemoafferent firing frequency during hypoxia (259). In petrosal neurones co-cultured 

with type I cell clusters, in vitro, the rise in action potential frequency evoked by hypoxia 

is partially impaired by a number of different nAChR antagonists (72, 254). In contrast, a 

recent study has reported that in the intact CB preparation, a very high dose of 

mecamylamine (nAChR antagonist) completely ablated the chemoafferent response to 

ACh, but had little or no effect on the elevation induced by hypoxia (260). Although ACh 

is widely regarded as an important and functional excitatory neurotransmitter in the CB, 

its precise physiological role in post-synaptic action potential generation in hypoxia is 

perhaps not as definitive as originally thought.  

 

Findings from the above investigations indicate that another excitatory neurotransmitter 

in addition to ACh must be secreted in order to attain peak chemoafferent frequencies 

upon CB stimulation. ATP is now widely acknowledged as this neurotransmitter. ATP is 

stored in secretory granules within the type I cell (71) and is released upon hypoxic 

stimulation secondary to Ca2+ influx through L-type Ca2+ channels (34). 

Immunohistochemical analysis has revealed the presence of P2X2 and P2X3 purinergic 

receptors in the chemoafferent nerve terminals adjacent to type I cell clusters (261). 

These receptors were co-localised, which is indicative of the formation of P2X2-P2X3 

heteromultimers, similar to those detected in sensory neurones in the dorsal root 

ganglion (262). It has been demonstrated that exogenous application of ATP to isolated 
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chemoafferent petrosal neurones elicits a large inward current that slowly desensitises, 

consistent with the currents carried through P2X2-P2X3 heteromultimers (72, 262).  

 

Intravenous infusion of the ATP analogue (α,β-methylene ATP) has been shown to 

induce significant hyperventilation in the anaesthetised rat and this was coupled with a 

marked escalation in CB chemoafferent activity (263). In unanaesthetised rats, suramin 

infusion (a non-specific P2 receptor antagonist) decreased the ventilatory response to 

hypoxia, primarily by impairing the reflex increase in respiratory frequency (264). In the 

CB co-culture preparation, in vitro, suramin application strikingly attenuated the hypoxia 

evoked rise in petrosal action potential frequency (72). Suramin also markedly reduces 

the CB sensitivity to hypoxia in the intact CB preparation (72, 260).  

 

More conclusive evidence in support of the idea that ATP is an important excitatory 

neurotransmitter has been provided from studies utilising genetically modified mice. 

P2X2 -/- and P2X2-P2X3 dbl -/- mice exhibit a suppressed hypoxic ventilatory response 

(265), and in intact CBs isolated from these mice, the peak chemoafferent response to 

hypoxia and the hypoxic sensitivity are both markedly diminished.  

 

1.8.2 Dopamine and serotonin 

The CB contains a large amount of stored catecholamines (CAs) in dense core vesicles, 

and for its mass the overall CA content is equivalent only to that seen in adrenal 

medullary tissue (266). The enzyme tyrosine hydroxylase (TH), that initiates the 

synthesis of CAs from tyrosine, has now emerged as a well established type I cell 

marker (267). Comparatively, dopamine (DA) is the most abundant CA in type I cells, 

forming more than 50% of the overall CA content (266, 268). Noradrenaline and 
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adrenaline account for the rest of the CB CA content and are produced at much lower 

levels (266, 268). Although it is known that DA is secreted from type I cells in abundance 

in hypoxia (33, 37), its action seems to be autoinhibitory rather than excitatory, providing 

the CB with a degree of inhibitory feedback control (269-271).  

 

The inhibitory effects of DA appear to be mediated through activation of the D2 receptor. 

Radio-ligand binding was implemented to originally identify the presence of numerous 

D2 receptors throughout the whole CB tissue (272). More recently, D2 receptor mRNA 

was detected in the type I cell (273). Direct application of DA to dissociated type I cells 

has been shown to attenuate the voltage dependent inward Ca2+ current (39). Hypoxia 

induced rises in Ca2+ are recognised as being depressed in the presence of specific D2 

receptor agonists (274). Similar D2 receptor agonists were also reported to decrease 3H-

DA neurosecretion both in normoxia and in hypoxia (275). Importantly, this action was 

associated with a decrease in CB cAMP content under both conditions. Therefore, the 

inhibitory effects on DA are considered to be dependent on a D2 receptor mediated 

reduction in the type I cell [cAMP]i.  

 

Serotonin (5-HT) is another monoamine that is stored in the type I cell (276). Unlike DA, 

5-HT appears to be an excitatory neuromodulator of type I cell activity. It has been 

observed that the spontaneous depolarisations and action potentials generated in large 

clusters of type I cells (> 30 cells) were almost completely ablated by the 5-HT2 receptor 

antagonist ketanserin (277). This led authors to suggest that endogenous release of 5-

HT in normoxia established the basal type I cell electrical rhythm. The same group 

showed that the spontaneous action potential generation in type I cells in normoxia was 

mimicked by application of a DAG analogue (OAG), was attenuated by PKC inhibition 
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and was dependent on a reduction in background K+ channel current (278). It has been 

reported that ketanserin does not reduce the CB chemoafferent response to hypoxia, 

suggesting that the excitatory actions of 5-HT are limited to normoxia and that 5-HT is 

not an essential neurotransmitter for CB activation by hypoxia (279).  

 

1.8.3 Adenosine signalling in normoxic/hyperoxic conditions 

Chapter 6 focuses on investigating whether adenosine has an important 

neuromodulatory function in mediating CB responses to hypoxia, mitochondrial inhibition 

and hypercapnia. Endogenously produced adenosine has often been regarded as an 

overlooked signalling molecule in the CB (9). A comprehensive understanding of the 

physiological role of adenosinergic signalling in establishing the overall sensitivity of the 

CB to physiological or pathological stimuli may allow for the development of additional 

therapeutic agents to modify CB excitability in certain pathologies. The following 

sections describe what is currently known about the actions of adenosine in the CB.  

 

Exogenous adenosine administration has been shown to increase the chemoafferent 

discharge frequency in a dose dependent manner in vivo (280, 281) and in vitro (282, 

283). CB activation by adenosine in vivo evokes an acute increase in respiratory 

frequency, tidal volume and minute ventilation that are dependent on A2 receptor 

stimulation (284). In arterial normoxia, suppression of adenosine metabolism or uptake 

mimics the excitatory action of exogenous adenosine and causes acute respiratory 

stimulation. Since these ventilatory effects are abolished by CSN section, it has been 

proposed that adenosine is generated endogenously in the CB and mediates the basal 

chemoafferent activity and the peripheral component of respiratory drive in arterial 

normoxia (285).  
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The peripheral chemoexcitatory actions of adenosine on the CB function have also been 

detected in humans. Intra-aortic adenosine infusion was shown to increase minute 

ventilation in patients undergoing cardiac catheterization (286). In addition, exogenous 

adenosine application has been linked to an increase in muscle sympathetic neuronal 

firing frequency (287). A later study demonstrated that augmentation of endogenous 

adenosine signalling by dipyridamole (a re-uptake inhibitor), during room air breathing, 

augmented sympathetic activity and increased ventilation in all subjects (288). Since 

these potentiations were blunted in hyperoxia it was suggested that the adenosine 

mediated increase in sympathetic firing frequency was attributable to a concurrent 

elevation in CB chemoafferent activity.  

 

Generation of adenosine in the synapse between the CB type I cell and the adjacent 

petrosal afferent neurone may be the result of extracellular ATP catabolism. ATP is 

stored in vesicles in type I cells (71) and released in normoxia/hyperoxia (34). 

Extracellular ATP and ADP can be converted to AMP in the presence of ectonucleoside 

triphosphate diphosphohydrolyase 1 (CD39), and then into adenosine by the membrane 

bound ecto-5’-nucleotidase (CD73) (289). Alternatively, adenosine can be produced 

from intracellular ATP catabolism and released into the synapse through the 

bidirectional equilibrative adenosine transporter (ENT) (290). Adenosine derived from 

the whole CB has been detected under normoxic conditions in vitro (11). The level of 

adenosine recovered in normoxia was depressed in the presence of the CD73 inhibitor 

α,β-methylene ADP (AOPCP) but not by the ENT blocker S-(4-nitrobenzyl)-6-thioinosine 

(NBTI), indicating that adenosine is predominately produced in normoxia through 

extracellular ATP catabolism mediated by CD39 and CD73 activity.  
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1.8.4 Adenosine generation and signalling in hypoxia 

Adenosine has been advocated as an important substance in neuromodulation of the 

peripheral chemoreceptor response to hypoxia. This was first evidenced by observations 

in vivo in the cat demonstrating that the characteristic increase in CSN discharge 

frequency in hypoxia was attenuated by non-selective adenosine receptor blockade 

(291). Inhibition of adenosine receptors with 8-(p-sulfophenyl) theophylline (8-SPT) in 

rats also decreases, but does not abolish, the acute phase of the hypoxic ventilatory 

response (292). In humans, adenosine infusion at a level that does not alter baseline 

MABP increases basal minute ventilation and augments the hyperventilatory response 

to hypoxia but not to hypercapnia (293).  

 

On isolated CB tissue, the inhibitory impact of adenosine receptor antagonism on 

chemoafferent activity is more prominent in mild compared to severe hypoxia (10). ATP 

appears to account for the majority of the increase in chemoafferent activity in severe 

hypoxia. Consistent with these findings, whilst the extracellular adenosine concentration 

was raised in mild hypoxia, no further increase was observed in more severe hypoxic 

conditions (10).  

 

The increase in extracellular adenosine concentration measured following CB exposure 

to mild hypoxia (10, 11) may be dependent on an up-regulation of extracellular CD39 

and CD73 activity following the concurrent increase in neurosecretion of ATP from type I 

cells (34). ATP may also be released from sympathetic terminals as a co-transmitter in 

hypoxia, although no study has examined this in detail. Alternatively, augmented 
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intracellular adenosine generated within type I cells during hypoxia may be released into 

the synapse through ENT.  

 

It has been reported that extracellular release of adenosine from the whole CB in mild 

hypoxia was depressed by both pharmacological inhibition of ENT and CD73 (11). Mild 

hypoxia induced increases in extracellular ATP were augmented 3-4 fold by CD73 

inhibition indicative of an extremely high rate of extracellular ATP catabolism (10). These 

data are indicative of a role for both intracellular and extracellular ATP catabolism in the 

synaptic generation of adenosine during mild hypoxia. As yet the relative functional 

contribution of intracellular and extracellular derived adenosine on establishing the CB 

sensitivity to hypoxia has not been investigated. The effect of adenosine, produced 

purely from CD73 activity, in setting the stimulus threshold required for chemoafferent 

activation in response to mild mitochondrial inhibition and hypercapnia has not been 

previously evaluated. The impact of adenosine derived selectively from CD73 on 

modulating functional chemoafferent responses to all of these stimuli was therefore 

examined directly in this thesis. The potential role of synaptic adenosine derived from 

intracellular or extracellular ATP catabolism in mediating carotid body function is 

summarised in Figure 1.4.  
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Figure 1.4 Summary of some of the neurotransmitters in the carotid body. 
The type I cell contains a number of stored neurotransmitters that are released following an increase in 
intracellular Ca2+ in hypoxia or hypercapnia. Strong evidence suggests that ATP directly stimulates P2X2-
P2X3 heteromultimers on the post-synaptic membrane and is responsible for a large component of the 
increase in action potential frequency in the adjacent chemoafferent fibre. ACh is also regarded as an 
excitatory co-transmitter that acts on post-synaptic nAChRs. In contrast, DA exerts an autoinhibitory 
action on type I cell function mediated through stimulation of pre-synaptic D2 receptors and a reduction in 
intracellular cAMP. Adenosine is acknowledged as an excitatory neuromodulator of CB function acting on 
pre and post-synaptic A2 receptors. There are two potential sources of synaptic adenosine 1) intracellular 
catabolism of ATP and the release of adenosine through ENT and 2) extracellular catabolism of ATP by 
synaptic CD39 and CD73. The contribution of these two sources of adenosine on establishing the CB 
sensitivity to physiological or pathological stimuli is currently not well characterised. Adapted from Nurse, 
2010 (294) 
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1.8.5 The mechanisms accounting for excitatory modulation of the carotid body 

by adenosine  

Extracellular adenosine produced in normoxic and hypoxic conditions has the potential 

to act post-synaptically on the afferent neurone or pre-synaptically on the type I cell in 

order to modulate CB excitability. Four G-protein coupled adenosine receptors have 

been cloned to data (A1, A2A, A2B and A3) and exert their actions through inhibition or 

excitation of adenylate cyclases and production of cAMP (reviewed in (295)).  

 

In the CB, in situ hybridization and immunohistochemical techniques have been used to 

identify A2A receptor mRNA and protein in type I cell clusters and in petrosal neurones 

(273, 296). A2B receptor protein has also been detected in dissociated type I cells (297). 

In contrast, A1 and A3 receptors do not appear to be present in the CB (273, 296).  

 

The precise functional contribution of A2A and A2B receptors in modulating chemoafferent 

activity under basal conditions and during hypoxia or hypercapnia induced 

chemostimulation remains unresolved. Conde et al. reported that caffeine, a non-

selective A2 receptor antagonist, inhibited 3H-CA secretion and CSN discharge under 

basal conditions and during hypoxia, in vitro (297). A2B, but not A2A, receptor antagonists 

mimicked the effects of caffeine on catecholamine secretion, suggestive of a selective 

A2B mediated action of adenosine on the type I cell. A2B receptor antagonism also 

reduced the hypoxia stimulated increase in CSN discharge frequency. Since further 

inhibition of the chemoafferent activity was observed in the presence of A2A antagonists 

it was concluded that adenosine mediated stimulation of the CB was a consequence of 

presynaptic A2B and post-synaptic A2A receptor activation (297).  
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Stimulation of adenosine receptors leads to changes in [cAMP]i through either activation 

or inhibition of transmembrane adenylate cyclases. It has been demonstrated that 

exogenous adenosine increased cAMP content of the whole rat CB, in vitro (298). In a 

later investigation, non-specific A2 receptor agonists augmented whole CB cAMP 

concentrations in normoxia and counteracted the decrease in cAMP elicited by D2 

receptor activation (275). Since these effects were mimicked by A2B but not A2A 

agonists, it was proposed that pre-synaptic interactions between A2B and D2 receptors 

account for the overall [cAMP]i in the type I cell.  

 

In contrast with the findings described above, it has been reported that an increase in 

type I cell [Ca2+]i, observed following application of adenosine, was abolished by 

selective A2A receptor antagonism (299). The rise in [Ca2+]i was mimicked by forskolin 

(cAMP activator), abolished by H89 (PKA inhibitor) and attenuated by anandamide 

(TASK channel blocker). This led the authors to promote a mechanism of adenosine 

mediated type I cell depolarisation dependent on pre-synaptic A2A receptor stimulation, 

cAMP generation, PKA activation and TASK channel inhibition. However, it has also 

been reported that pre-synaptic A2A receptor stimulation reduced the inward Ca2+ 

conductance under hypoxic conditions (296). This is consistent with an inhibitory rather 

than excitatory action on type I cell excitability. An explanation for these collective 

disparities has not been established and comprehensive characterisation of the 

downstream adenosinergic signalling pathways within the type I cell and the petrosal 

neurone leading to an increase in chemoafferent discharge remains to be more clearly 

defined.  
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1.9 The clinical implications of carotid body plasticity 

 

The CSN chemoafferent fibres form synapses with neurones in the NTS in the medulla. 

The functional consequence of CB stimulation is the induction of a series of well 

characterised cardiovascular, respiratory and endocrine reflex responses. Specifically, 

these include hyperventilation, tachycardia, systemic vasoconstriction (secondary to an 

elevation in vascular sympathetic outflow), and an increase in adrenaline secretion from 

the adrenal medulla (1). Chronic up-regulation of these reflex pathways, secondary to 

plastic changes in CB function, is implicated in a number of clinical conditions or 

diseases including sleep disordered breathing (SDB), chronic heart failure (CHF) and 

spontaneous/essential hypertension (2). Currently, research is focusing on 

characterising the mechanisms underpinning CB hyperactivity in these disease states in 

order to develop treatments that may restrict the progression of disease morbidities and 

improve patient prognoses.  

 

1.9.1 Sleep disordered breathing and chronic intermittent hypoxia 

In the western world, estimates based on sample population studies suggest that the 

prevalence of SDB in the middle aged or elderly is 19-24% in males and 9-15% in 

females, (300, 301). SDB is characterised by periods of apnoea or hypopnoea (≥ 30% 

airflow cessation) occurring at a rate of ≥ 5 events per hour, with each being 

accompanied by a ≥ 4% decrease in oxyhaemoglobin saturation (302, 303). Patients 

with SDB are more likely to develop cardiovascular related diseases such as coronary 

heart disease and heart failure (304) and have increased risk of cerebral vascular 
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events and death (305). SDB is also associated with a resting elevation in sympathetic 

outflow (306, 307) and an increased incidence of hypertension (302, 308).  

 

Proposed silencing of the CB chemoafferent activity by administration of 100% O2 has 

been shown to reduce the muscle sympathetic nerve activity (MSNA) and mean arterial 

blood pressure (MABP) in patients with SDB, but not in healthy controls (309). This 

suggests that tonic input from the CB significantly contributes to the generation of the 

elevated MSNA and hypertension in these patients. Similar findings have been observed 

in animals following pre-conditioning with chronic intermittent hypoxia (CIH). Fletcher 

and colleagues identified that CB denervation prevented the rise in MABP in rats 

following 35 days of CIH (310). In a later study it was observed that the CIH induced 

increase in MABP was dependent on the preservation of both CB chemoafferent activity 

and sympathetic outflow, implying that both are up-regulated in these disease models 

and together are central to the emergence of hypertension.  

 

It has been reported that patients with SDB have an augmented ventilatory response to 

hypoxia, combined with an amplification of hypoxia induced sympathetic outflow (311, 

312). Animals pre-conditioned with CIH exhibit an elevated basal CB chemoafferent 

activity in normoxia (termed sensory long term facilitation; sLTF) and exaggerated 

chemoafferent responses to hypoxia (313, 314). Interestingly, these effects are 

abolished by administration of a SOD mimetic during the CIH conditioning period (313). 

This provides strong evidence supporting the notion that CB hypersensitivity following 

CIH is critically dependent on an elevation in type I cell ROS production.  
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The proposed mechanism leading to the tonic up-regulation of ROS generation and 

sLTF following CIH appears to involve a number of different pathways but ultimately 

relies on the increased type I cell expression and activity of NADPH oxidase 2 (NOX-2) 

(315). Conclusive evidence has demonstrated that sLTF following CIH cannot be 

induced in CBs isolated from mice that are deficient in gp91phox, a key membrane 

subunit of NOX-2 (315). Furthermore, pharmacological inhibition of NOX, in vitro, can 

completely prevent any CB sLTF induced by CIH (315).  

 

Chronic NOX-2 activation seems to be secondary to 5-HT2 receptor stimulation. 5-HT is 

released in hypoxia (315) and intermittent exogenous application of 5-HT can evoke 

sLTF in isolated CBs in vitro (316). In this study, the 5-HT induced sLTF was abolished 

by 5-HT2 receptor antagonists and by inhibition of PKC. In addition, the NOX-2 

phosphorylation elicited by 5-HT was also attenuated by inhibitory targeting of PKC. 5-

HT application also failed to induce sLTF in CBs isolated from mice that were deficient in 

gp91phox. In summary, the authors proposed that intermittent release of 5-HT during CIH 

and subsequent 5-HT2 receptor stimulation gave rise to chronic up-regulation in PKC 

activity, thus promoting NOX-2 phosphorylation, activation and ROS generation.  

 

The relative balance of hypoxia inducible factors HIF-1α and HIF-2α expression and 

activity within the type I cell may also be important in conferring CB sLTF following CIH. 

HIF-1α does not appear to signal the acute response to hypoxia in the type I cell. 

However, Peng and colleagues found that, following CIH, CBs harvested from mice 

partially deficient in HIF-1α (HIF-1α-/+) did not exhibit any sLTF (317). In addition, 

augmentation of the hypoxic ventilatory response observed in wild type controls was 

absent in the HIF-1α-/+ mice, indicating that HIF-1α stabilisation was necessary for 
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promoting the elevation in CB excitability. In PC12 cells HIF-1α and NOX-2 expression 

is augmented following periods of CIH (318, 319). Pharmacological inhibition or siRNA 

knockdown of HIF-1α in PC12 cells significantly reduces the degree of NOX-2 

expression (319). This illustrates a mechanism by which NOX-2 can be regulated in CIH 

by HIF-1α in PC12 cells, but whether the equivalent mechanism exists in the CB type I 

cells remains to be confirmed.  

 

Unlike HIF-1α, HIF-2α is considered to be active under normal conditions, and exerts an 

inhibitory action on CB hypoxic sensitivity (320). In PC12 cells, reduced levels of HIF-2α 

have been detected following CIH, indicative of an increased rate of protein degradation 

(321). Since mice partly deficient in HIF-2α have decreased levels of sod-2 mRNA 

expression (encoding the mitochondrial isoform of SOD) in CB type I cells (320), it has 

been suggested that following CIH, lower concentrations of HIF-2α may be coupled to 

increased levels of mitochondrial ROS, thereby further amplifying the CB sLTF (322).  

 

The specific downstream targets of ROS generated from NOX-2 or the mitochondria 

following CIH are still to be identified. Associations between CIH, ROS generation and 

an inhibition of mitochondrial complex I activity have been established both in PC12 

cells (323) and in CB type I cells (313). Given the strong link between mitochondrial 

function and CB activity, it is perhaps logical to hypothesise that the sLTF following CIH 

may be a consequence of impaired mitochondrial energy respiration and a change in 

overall cellular energy status.  
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1.9.2 Chronic heart failure and spontaneous hypertension 

Patients with CHF present with higher levels of resting sympathetic nerve activity (SNA) 

and it has been reported that in moderate/severe cases, the sympathetic bursting 

frequency is more than 100% elevated compared with healthy age matched controls 

(324). In addition, these patients also exhibit an augmented ventilatory response to 

hypoxia (325). The direct contribution of the CB in mediating the rise in basal SNA at 

rest has not been evaluated in human CHF patients. However, in animals with pacing 

induced heart failure, chemical suppression of chemosensory activity with 100% O2 has 

been shown to reduce resting renal SNA, whereas it had no effect on healthy controls 

(326). These CHF animals also displayed an increased chemoafferent response to 

hypoxia, indicative of an elevation in CB hypoxic sensitivity.  

 

Modifications in type I cell chemoreceptor function in CHF appear to involve a number of 

different signalling pathways. It has been proposed that the magnification of 

chemoafferent activity is a consequence of a reduction in NOS-1 derived NO generation 

(327, 328) and down-regulation of CO production (329). Li and colleagues reported that 

in vivo application of an adenovirus containing NOS-1 DNA was able to completely 

restore CB NO production and reversed the CB hypoxic hypersensitivity (328). However, 

it has also been suggested that NOX-2 activity is up-regulated in type I cells in CHF and 

this in turn leads to an elevation in cellular ROS generation (330). In this instance it is 

thought that the increase in NOX-2 expression and activity is dependent on signalling 

through the angiotensin 1 receptor pathway (331) (330). The precise downstream 

targets of NOX-2 derived ROS are unknown. However, in a recent study, Ding and 

colleagues demonstrated that insertion of DNA encoding mitochondrial SOD was able to 
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completely restore normal CB hypoxic sensitivity in CHF animals (332). Therefore, the 

excitatory impact of ROS may be conferred through chronic inhibition of mitochondrial 

complexes and a change in the type I cell energy status. Demonstration of this 

mechanism in the type I cell remains to be confirmed.  

 

Recent evidence also supports the hypothesis that the increase in sympathetic outflow 

and development of hypertension in spontaneous hypertensive animals is dependent on 

chemoafferent input from the CB (333). If similar evidence is found in humans then this 

could have important clinical implications for patients with essential hypertension who 

are known to have elevated basal levels of SNA (334). The increased excitability of the 

CB type I cells in spontaneous hypertensive animals may in some part be due to 

increased expression of TASK-1 and ASIC3 (335). However, identification of the full 

molecular adaptations in the type I cell in humans or animals with essential/ 

spontaneous hypertension is at an early stage. Comprehensive characterisation of the 

mechanisms underpinning the CB hyperexcitability may be important in order to develop 

better treatments for this disease in the future.  
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1.10 Overview of project aims 

 

The precise mechanism by which the CB type I cell senses acute hypoxia is unresolved. 

One of the main hypotheses is that a reduction in O2 impairs mitochondrial electron 

transport and the rate of ATP generation and causes a change in the cellular energy 

status. Therefore, the initial aim of the project is to examine the impact of mild 

mitochondrial inhibition on CB hypoxic sensitivity (Chapter 3). If these two stimuli act 

through the same chemotransduction pathway then they would be expected to interact 

and generate functional responses that were multiplicative rather than additive. 

Downstream of the mitochondria, the linking of cellular metabolic stress to type I cell 

depolarisation is hypothesised to be dependent on activation of the cellular energy 

sensor AMPK. The second aim of the project is to evaluate the hypoxic sensitivity of 

CBs isolated from animals deficient in Lkb-1; the essential upstream activator of AMPK 

(Chapter 4). This will provide more conclusive evidence supporting or rejecting the claim 

that Lkb1-AMPK signalling is necessary for CB hypoxia stimulus response coupling.  

 

If CB stimulation is closely associated with cellular metabolic stress then it is logical to 

suggest that any stimulus capable of impairing ATP generation may cause 

chemoexcitation. It has been proposed that the CB is directly activated by physiological 

concentrations of low glucose. The functional chemoafferent response to glucose 

deprivation is examined in this thesis and also whether CB activation by this stimulus is 

dependent on a time dependent run-down of glycolysis (Chapter 5).  

 

As well as a potential signalling molecule within the type I cell, ATP is also widely 

regarded as an essential neurotransmitter required for stimulation of post-synaptic 
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chemoafferent fibres. The release of ATP and extracellular catabolism by CD39 and 

CD73 may lead to tonic production of adenosine. As yet the neuromodulatory impact of 

this potentially significant ‘pool’ of extracellular adenosine on CB chemoafferent function 

has been largely overlooked. The role for extracellular adenosine derived from CD73 in 

establishing the CB sensitivity to a number of different stimuli is therefore investigated in 

the final results chapter (Chapter 6).  

 

An elevation in chemoafferent activity at rest and an exaggerated CB response to 

hypoxia are closely associated with pathologies including SDB, CHF and 

essential/spontaneous hypertension. A reduction in CB chemoafferent activity in patients 

with these diseases may restrict reflex sympathetic outflow and the development of 

hypertension. This may limit the risk of cardiovascular complications and improve patient 

outcomes. The experiments performed in the current study are designed to more clearly 

establish whether a change in cellular energy status is central to CB stimulation. In 

addition, it is examined whether adenosine generated from extracellular catabolism of 

ATP is an important mediator of chemoafferent discharge frequency. It is anticipated 

that the findings presented in this thesis will advance the understanding of mammalian 

CB function and promote the future development of clinical interventions targeted to 

reduce CB chemoafferent activity in patients with SDB, CHF and essential/spontaneous 

hypertension.  
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2. Methods 

 

2.1 Extracellular electrophysiological recordings 

 

2.1.1 Surgical procedures and carotid body tissue isolation  

All experiments and surgical procedures were performed in accordance with the UK 

Animals (Scientific Procedures) Act 1986 and were approved by the Biomedical 

Services Unit at the University of Birmingham. Tissue was isolated from adult male 

Wistar rats (50–200 g) (Chapters 3,5,6) or adult male C57BL/6J mice (Chapter 4). 

Anaesthesia was induced in an airtight induction chamber using 4% isoflurane in 

medical O2 administered at a flow rate of 1.5–3 L / min. Any excess anaesthetic gas was 

scavenged using a Fluovac anaesthetic scavenging system (Harvard Apparatus) with a 

Fluosorber canister containing charcoal to adsorb the isoflurane vapour. The depth of 

surgical anaesthesia was considered to be sufficient only when the animal was 

determined to have an absent hind limb flexor withdrawal reflex in response to noxious 

(pressure induced) stimulation. The animal was transferred to a surgical table and 

surgical anaesthesia was continuously maintained by administration of 1.5–2.0% 

isoflurane in O2 through a nose cone, at a flow rate of 1.5–3 L / min. Continuous 

monitoring of the depth of anaesthesia was ascertained by observing the rate and depth 

of breathing and by examining the hind limb flexor withdrawal reflex. Anaesthetic levels 

were adjusted accordingly in order to maintain surgical anaesthesia.  
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The animal was placed ventral side uppermost and the skin and superficial fascia of the 

neck were removed to expose the underlying tissues. The most superficial salivary 

glands and the sternocleidomastoid muscle were both retracted. The infrahyoid 

muscles, positioned superficial and immediately lateral to the trachea, were removed 

exposing the carotid sheath. The CCA was identified immediately lateral and parallel to 

the trachea in the carotid sheath, co-localised with the vagus nerve. The suprahyoid 

muscles, the greater horn of the hyoid bone and the hypoglossal nerve were all 

removed. The carotid bifurcation was identified branching into the ECA (superficial) and 

the ICA (deep). The CB was unable to be visualised, however, it was predicted to lie 

immediately deep to the occipital artery (a proximal branch of the external carotid artery) 

and just cranial to the carotid bifurcation. The glossopharyngeal nerve was exposed and 

a branch of this, the CSN, was identified crossing over the vagus nerve and coursing 

towards the carotid bifurcation and CB.  

 

The CCA was clamped and then sectioned, caudal to the carotid bifurcation. A further 

incision was made cranial to the glossopharyngeal nerve so that the whole carotid 

bifurcation, the superior cervical ganglion, glossopharyngeal nerve, CSN and CB were 

all excised. The tissue was immediately placed in an ice-cold bicarbonate buffered 

extracellular Krebs solution containing, in mM: 115 NaCl, 4.5 KCl, 1.25 NaH2PO4, 5 

Na2SO4, 1.3 MgSO4, 24 NaHCO3, 2.4 CaCl2, 11 D-glucose, equilibrated with 95% O2 

and 5% CO2. In order to minimise CB ischaemia, the tissue was removed within 

30 seconds of clamping of the CCA. Animals were immediately killed by exsanguination.  

 

Following isolation, the tissue was pinned out at points on the CCA, ECA and ICA in a 

small volume (approximately 0.2 ml) dissecting chamber with a Sylgard 184 base (Dow 



 

	   76	  

Corning). The tissue was continuously superfused with a bicarbonate buffered 

extracellular Krebs solution containing, in mM: 115 NaCl, 4.5 KCl, 1.25 NaH2PO4, 5 

Na2SO4, 1.3 MgSO4, 24 NaHCO3, 2.4 CaCl2, 11 D-glucose, equilibrated with 95% O2 

and 5% CO2. The superfusion solution was maintained at room temperature. Using a 

light microscope, the CB was identified just above the carotid bifurcation. The CSN was 

identified by its connection into the glossopharyngeal nerve. Connective tissue was 

removed and the superior cervical ganglion, branches of the vagus nerve and the 

occipital artery were all individually excised. The CSN was sectioned exposing nerve 

fibres and axons. To facilitate the later extracellular neuronal recordings, the whole 

tissue was partially digested by incubation in a bicarbonate buffered enzyme Krebs 

solution (0.075 mg / ml collagenase type II, 0.0025 mg / ml dispase type I; Sigma 

Aldrich), equilibrated with 95% O2 and 5% CO2, at a temperature of 37ºC, for 20–30 

minutes.  

 

2.1.2 Superfusion system 

During experimentation, the CB was continuously superfused with a bicarbonate 

buffered extracellular Krebs solution containing, in mM: 115 NaCl, 4.5 KCl, 1.25 

NaH2PO4, 5 Na2SO4, 1.3 MgSO4, 24 NaHCO3, 2.4 CaCl2, 11 D-glucose, in a small 

volume (approximately 0.1 ml) recording chamber. This solution was continuously 

equilibrated with 5% CO2 (unless stated otherwise) to hold the pH at approximately 7.4. 

All solutions were heated to 37ºC using a water bath (Grant W14, Grant Instruments). 

Transfer of the superfusate to the recording chamber was achieved through the use of a 

peristaltic pump (Miniplus 3, Gilson) and 2.5 mm internal diameter O2 impermeable 

Tygon tubing (Anachem). Before entering the recording chamber, the solution was 

reheated to 37ºC using a self-developed in line heating system. The superfusate 
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temperature was continuously recorded using a thermister (Digitron Instruments) and 

the PO2 was measured using a standard O2 electrode (ISO2; World Precision 

Instruments). Both were positioned in the superfusion system at a point immediately 

before the solution entered the recording chamber. The solution was removed from the 

recording chamber by use of another peristaltic pump (R323, Watson Marlow), and it 

was either discarded or returned to the original measuring cylinder for recirculation. In 

experiments using exogenous NaNO2, osmolality was balanced by appropriate 

subtraction of NaCl from the superfusate. For glucose free solutions, 11 mM mannitol 

was added to maintain constant osmolality. 

 

2.1.3 Extracellular recordings of single and few-fibre chemoafferent neurones  

Extracellular recordings of single or few-fibre chemoafferent activity were made from the 

cut end of the CSN using glass suction electrodes pulled from GC150-10 capillary glass 

(Harvard Apparatus). The glass electrode enclosed a silver-silver chloride wire 

connected to a NL100 Neurolog head stage (Digitimer). The voltage was amplified using 

a NeuroLog NL104 AC pre-amplifier (Digitimer), band-pass filtered between 50 Hz and 

50 kHz (NeuroLog NL125; Digitimer) and amplified further with an AC amplifier 

(NeuroLog 105; Digitimer). Total amplification was x4000. Another silver chloride wire 

was placed in the recording chamber and was used as a reference electrode. The 

superfusate PO2 was continuously measured using an O2 electrode (ISO2; World 

Precision Instruments) and O2 meter (OXELP; World Precision Instruments). The PO2 

and chemoafferent derived voltage were both recorded using a CED micro1401 

(Cambridge Electronic Design) and visualised on a PC with Spike2 (version 7.1) 

software (Cambridge Electronic Design), as two individual waveforms. The 

chemoafferent voltage signal was sampled at 15000 Hz and the PO2 at 100 Hz.  
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Offline analysis using Spike2 (version 7.1) (Cambridge Electronic Design) allowed for 

discrimination of electrical activity originating from a single chemoafferent fibre. Voltages 

detected above a certain threshold were collected and formed discrete 1.0 ms 

wavemarks (0.3 ms before and 0.7 ms after the original initial threshold trigger point). 

Using the in-built wavemark analysis in the Spike2 software (Cambridge Electronic 

Design), these wavemarks were then discriminated into discrete groups depending on 

wavemark voltage frequency, shape and amplitude. Wavemarks from each group were 

counted and binned into 10 second time intervals so that the action potential discharge 

frequency for each single chemoafferent fibre could be calculated over the course of the 

whole experiment.  

 

2.1.4 Flow meter calibration 

Flow meters with high precision valves (Cole Palmer Instruments) were used in order to 

equilibrate the superfusate with a desired gas mixture. This was important in 

experiments where specific PO2 and PCO2 values were required or in studies where the 

PO2 needed to be gradually reduced in order to observe a graded hypoxic response. 

The scale values required to produce specific gas flow rates were provided by the 

manufacturer and these data were used to plot calibration curves for O2, CO2 and N2 

(Figure 2.1A). The overall outflow rate of the mixed gases was 160 ml / min and the total 

outflow pressure was 760 mmHg. To generate an outflow of a specific PO2 and PCO2, 

the corresponding individual gas flow rates were calculated as a necessary fraction of 

the overall total flow rate (160 ml / min), and the balance was made up with nitrogen. 

The calibration data was then used in order to determine the required scale values to 

achieve the individual calculated gas flow rates. An algorithm was established in Excel 
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(Microsoft), which calculated the precise scale values necessary to achieve any desired 

O2 and CO2 gas tensions. An example of the scale values required to achieve an 

increasing superfusate PO2, with a fixed PCO2 of 40 mmHg, is shown in Figure 2.1B. 
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Figure 2.1 Precision flow meter calibration data used to equilibrate the superfusate with a specific 
PO2 and PCO2.  
A) For each individual gas (oxygen, nitrogen and carbon dioxide) data was provided by the manufacturer 
(Cole-Palmer) detailing the output flow rate at given flow meter scale values. B) The superfusate could be 
equilibrated at different partial pressures of oxygen, nitrogen and carbon dioxide by appropriately 
adjusting the scale values on the flow meters. An example of the scale values required to equilibrate the 
superfusate with an increasing PO2, fixed PCO2 and decreasing PN2 is demonstrated. The combined gas 
mixture outflow pressure was fixed at 760 mmHg and total flow was constant at 160 ml / min.  
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2.1.5 Oxygen electrode calibration 

A standard O2 electrode (ISO2; World Precision Instruments) was placed in the 

superfusate system, at the point of entry to the recording chamber, in order to 

continuously record the superfusate PO2. The O2 electrode signal was measured by an 

O2 meter (OXELP, World Precision Instruments) and subsequently recorded by a CED 

micro1401 (Cambridge Electronic Design). The electrode signal was visualised as a 

single voltage waveform using Spike2 software (Cambridge Electronic Design). Values 

across a full voltage range were compared with superfusate PO2 values, which were 

measured by a blood gas analyser (GEM4000; Instrumentation Laboratory). A linear 

relationship was calculated between the superfusate PO2, and the corresponding 

recorded voltage. A PO2 calibration curve was fitted to the equation:  

y = mx + c 

where y is the PO2 in mmHg, x is the O2 electrode recorded voltage in Volts, m is the 

gradient of the curve and c is the PO2 when the recorded voltage is 0. A PO2 calibration 

curve is shown in Figure 2.2. The calibration curve was used to continuously record the 

actual superfusate PO2 throughout experimentation.  
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Figure 2.2 Oxygen electrode calibration curve.  
Superfusate PO2 values measured using a blood gas analyser were plotted against the corresponding 
voltage recorded from the O2 electrode. Therefore an O2 calibration curve was fitted to the equation: 

y = mx + c 
where y is the PO2 in mmHg, x is the O2 electrode recorded voltage in Volts, m is the gradient of the curve 
and c is the PO2 (mmHg) when the recorded voltage is 0V. The calibration curve was used to continuously 
record the actual superfusate PO2 throughout experimentation.  
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2.1.6 Generation of hypoxic response curves to monitor the hypoxic sensitivity of 

the carotid body  

Functional hypoxic response curves were generated in order to directly analyse any 

potential changes in CB hypoxic sensitivity in the presence and absence of proposed 

external pharmacological or physiological stimuli, or following changes in type I cell gene 

expression. The single fibre chemoafferent discharge frequency was plotted against the 

superfusate PO2, over a desired range of superfusate PO2 values. To produce the 

hypoxic response curves, the data points were fitted to an exponential decay curve with 

offset, as shown below.  

y = a + be-cx 

For the above equation, y is the single fibre discharge frequency in Hz, x is the 

superfusate PO2 in mmHg, a is the discharge frequency as the PO2 tends to infinity 

(offset), b is the discharge frequency when the PO2 is 0 mmHg (minus the offset) and c 

is the exponential rate constant.  

 

It has been estimated that in the in vitro intact rat CB preparation (approximately 200 µm 

diameter), the maximum difference between the superfusate PO2 at the CB surface and 

the tissue PO2 at the centre of the CB was approximately 80 mmHg (48). This was 

predicted as being the result of significant diffusion limitations across the whole CB 

tissue. Therefore, the actual PO2 at the level of a type I cell cluster may be up to 80 

mmHg lower than the recorded superfusate PO2. It has been shown previously that 

functional chemoafferent hypoxic response curves observed in superfused CB 

preparations in vitro were significantly ‘right shifted’ compared to those generated by 

measuring the PaO2 in vivo (46, 48). Accordingly, in the current project, all hypoxic 

response curves produced from intact CB preparations were relatively ‘right shifted’ 
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compared with those obtained from in vivo CSN recordings (41). As a proposed 

consequence of the O2 diffusion gradients across the CB tissue, hypoxic response 

initiation tended to be observed when the PO2 was in the region of 125-200 mmHg. 

Superfusate PO2 values of less than 100 mmHg were considered to be severely 

hypoxic.  

 

As the superfusate PO2 was gradually reduced, the single fibre chemoafferent discharge 

began to increase exponentially. However, if the superfusate PO2 continued to decrease 

for a prolonged period, the single fibre chemoafferent frequency would reach a maximal 

value, plateau and then begin to diminish. For certain experiments the superfusate PO2 

was only changed to normoxia/hyperoxia after the frequency had reached a plateau or 

had begun to diminish in order to characterise the absolute peak frequency attained 

during severe hypoxia. An example of this is shown in Figure 2.3A. Importantly, if the CB 

was exposed to a sustained period of severe hypoxia initially, the response recorded to 

a second hypoxic stimulus was of a smaller magnitude (Figure 2.3A). In addition, the 

calculated hypoxic response curve was comparatively ‘left shifted’ suggestive of a 

depression in CB hypoxic sensitivity (Figure 2.3B).  

 

In order to generate multiple reproducible hypoxic response curves the superfusate PO2 

was changed to normoxia/hyperoxia (thereby terminating the response) before a 

maximum chemoafferent frequency had been attained. In these instances, 

normoxia/hyperoxia was restored when the single fibre discharge frequency was 

observed as being approximately 10 Hz. An example of two reproducible hypoxic 

response curves produced from the same single chemoafferent fibre in the same 

preparation is demonstrated in Figure 2.4. The ability to generate reproducible hypoxic 
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response curves under control conditions was essential in order to reliably examine the 

impact of external pharmacological or physiological stimuli on CB hypoxic sensitivity.  
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Figure 2.3 An example of two consecutive carotid body chemoafferent responses to severe 
hypoxia.  
A) The superfusate PO2 was continuously recorded and is shown in the upper panel. Raw neuronal 
discharge is demonstrated (middle) along with the single fibre frequency histograms (lower) grouped in 10 
s intervals. During the initial hypoxic stimulation the chemoafferent frequency increased exponentially, but 
began to diminish (fail) when the hypoxic stimulus became too severe. The peak frequency observed 
during a secondary hypoxic stimulation was not of the same magnitude. B) Single fibre chemoafferent 
discharge frequency was plotted against the superfusate PO2 during hypoxia. For generation of hypoxic 
response curves, the data points were fitted to an exponential decay curve with offset. For the control 
curve the exponential elevation in chemoafferent discharge frequency peaked and subsequently failed in 
more severe hypoxic conditions. The hypoxic response curve generated to a secondary hypoxic stimulus 
was ‘left shifted’ indicative of a run-down in hypoxic sensitivity.  
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Figure 2.4 Two reproducible hypoxic response curves observed from the same single 
chemoafferent fibre in the same experiment.  
A) The superfusate PO2 was continuously recorded and is shown in the upper panel. Raw neuronal 
discharge is demonstrated (middle) along with the single fibre frequency histograms (lower) grouped in 
10 s intervals. B) Single chemoafferent fibre discharge frequency was plotted against the superfusate PO2 
for the two consecutive hypoxic responses in the same experiment, separated by approximately 30 
minutes. The initial response was reversed well before the peak chemoafferent frequency had been 
achieved to limit the possibility of reducing the sensitivity of the CB to subsequent hypoxic stimulation. 
Reproducibility in standard conditions was important if hypoxic sensitivity was to be later assessed in test 
conditions.  
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2.1.7 Analysing the parameters of the hypoxic response curves to identify 

changes in carotid body hypoxic sensitivity  

Specific components of the calculated hypoxic response curves were compared to 

identify any potential changes in CB hypoxic sensitivity. Firstly, comparison of the 

exponential rate constant between two hypoxic response curves allowed for 

determination of any alteration in the rate of increase in chemoafferent frequency per 

mmHg reduction in the superfusate PO2. Secondly, using the calculated curves, the 

discharge frequency could be derived from any defined level of superfusate PO2. 

Therefore, the difference in discharge frequency between two different hypoxic response 

curves could be determined at any level of superfusate PO2. This was important for 

investigating if the impact of pharmacological or physiological stimuli on CB function was 

PO2/hypoxia dependent. This method of analysis is outlined in Figure 2.5A. 

 

Thirdly, for any given discharge frequency, the corresponding PO2 could be calculated 

using the inverse function of the exponential decay curve, 

x = (Ln((y – a)/b))/-c 

where x is the PO2 in mmHg, y is the single fibre discharge frequency in Hz and a,b and 

c are constants as above. Specifically, superfusate PO2 levels were compared when the 

single fibre chemoafferent discharge frequency was at 5 Hz (see Figure 2.5B). A value 

of 5 Hz was chosen as it lies on the exponential region of the hypoxic response curve, 

but is not of a magnitude at which the discharge is likely to have begun to diminish (see 

Figure 2.5B and 2.3B). This method was used to clearly define any PO2 shift in the 

hypoxic response curve thereby providing information of a potential change in the PO2 

threshold required for hypoxic response initiation.  
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In specific studies using CBs isolated from transgenic mice, the single fibre discharge 

frequency did not always reach 5 Hz even in severe hypoxia (see Chapter 4). In these 

cases, a shift in the hypoxic response curve was defined by comparing the superfusate 

PO2s at which the peak hypoxic frequency was achieved.  
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Figure 2.5 Examples of two methods used to define changes in carotid body responses to 
hypoxia.  
A) Using the hypoxic response curve equation, the discharge frequency could be calculated at any 
defined level of superfusate PO2. Therefore, the difference in discharge frequency between two different 
hypoxic response curves could be determined at any level of superfusate PO2. This was important for 
investigating if the effect of pharmacological or physiological stimuli on CB chemoafferent discharge 
frequency was PO2/hypoxia dependent. B) For any given discharge frequency the corresponding 
superfusate PO2 could be calculated using the inverse function of the hypoxic response curve equation. 
Comparison of the PO2 at a 5 Hz frequency was used to define any potential shift in the hypoxic response 
curve. A significant change in the PO2 required to achieve a 5 Hz frequency would suggest an alteration in 
the PO2 threshold required for hypoxic response initiation.  
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2.1.8 Monitoring the chemoafferent response to an increase in superfusate PCO2 

to assess changes in carotid body hypercapnic sensitivity  

Single or few fibre CB chemoafferent responses to hypercapnia were induced by raising 

the superfusate PCO2 from approximately 40 mmHg to 80 mmHg at a constant PO2, as 

has been previously reported for the intact in vitro CB preparation (243). Since the 

chemoafferent response to hypercapnia is thought to peak initially and then adapt to a 

lower sustained frequency (187), measurements of chemoafferent activity were taken 

from the fifth minute of the hypercapnic stimulus (PCO2 approximately 80 mmHg) after a 

relatively steady state frequency had been achieved. The elevation in single fibre 

frequency evoked by this level of hypercapnia was observed to be considerably less 

than that induced by moderate or severe hypoxia. This was consistent with previous 

reports identifying that the frequency response to supra-physiological concentrations of 

CO2 (at normoxic/hyperoxic O2 tensions) measured only approximately 10-50% of the 

peak response to severe hypoxia (46, 185, 209). 

 

It has been observed that the single fibre chemoafferent discharge frequency increases 

in a linear manner over a range of approximately 25-80 mmHg PaCO2 (40, 41, 185). At a 

higher or lower PaCO2 the discharge frequency tends to plateau (40, 186). A similar 

linear relationship between superfusate PCO2 and chemoafferent discharge has been 

reported for the intact CB preparation in vitro (46). In view of these findings it was 

assumed that in the present study there was a linear increase in chemoafferent activity 

between the two PCO2 values (40 and 80 mmHg) at which the discharge frequency was 

measured. CO2 sensitivity was subsequently estimated as the predicted increase in 

single fibre discharge frequency per mmHg increase in superfusate PCO2 (ΔHz / mmHg 

PCO2), given that the rise in discharge frequency was linear over the superfusate PCO2 
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range used (40-80 mmHg PCO2). This method of estimating single fibre CO2 sensitivity 

was equivalent to that previously described for the intact superfused CB preparation 

(243).  
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2.2 Isolation of carotid body type I cells and detection of Ca2+ and 

NADH fluorescence 

 

2.2.1 Carotid body type I cell dissociation  

All experiments using dissociated CB type I cells were performed at the University of 

Oxford in collaboration with Dr K. Buckler. CBs were harvested from 9–12 day old 

immature male rats. The method of surgical isolation was as described in Section 2.1.1 

except that halothane was used as the inhalation anaesthetic. In accordance with Home 

Office legislation, all animal handling and surgical procedures were performed by Dr K. 

Buckler and not by the author of this thesis.  

 

The whole carotid bifurcation, the superior cervical ganglion, CSN, and CB were all 

excised together and immediately placed in a dissecting dish containing an ice-cold 

bicarbonate buffered PBS solution (Dulbecco’s PBS; Sigma-Aldrich) pre-equilibrated 

with 95% O2, 5% CO2. The tissue was pinned out at points on the CCA, the ICA and 

ECA with the SCG upper most. The SCG was removed along with the vagus nerve. In 

this orientation the CB was located superficial to the occipital artery near to the carotid 

bifurcation. Any fat or loose connective tissue was removed. The CB was teased away 

from the adjacent arterial walls and then placed in another ice-cold bicarbonate buffered 

PBS solution (Dulbecco’s PBS; Sigma-Aldrich) pre-equilibrated with 95% O2, 5% CO2.  

 

After both CBs had been dissected out they were transferred into a bicarbonate buffered 

enzyme solution containing 2 ml HAMS F-12 nutrient mixture (Sigma-Aldrich), L-

glutamine (2 mM) (Sigma-Aldrich), penicillin (100 IU / ml) (Sigma-Aldrich), streptomycin 

(100 µg / ml) (Sigma-Aldrich), insulin (4 µg / ml) (Sigma-Aldrich), collagenase (0.4 mg / 
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ml) (Sigma-Aldrich) and trypsin (0.2 mg / ml) (Sigma-Aldrich). The CBs and enzyme 

solution were placed in a tissue culture incubator at 37°C, 5% CO2 and 21% O2, for 23 

minutes. CBs were then removed from the incubator and gently teased apart before 

being placed back into the incubator for a further 7 minutes.  

 

CBs were subsequently transferred to an enzyme free bicarbonate buffered solution 

containing 1 ml HAMS F-12 nutrient mixture (Sigma-Aldrich), L-glutamine (2 mM) 

(Sigma-Aldrich), penicillin (100 IU / ml), streptomycin (100 µg / ml) (Sigma-Aldrich), 

insulin (4 µg / ml), FBS (10% v/v) (Sigma-Aldrich) and trypsin inhibitor (0.5 mg / ml) 

(Sigma-Aldrich), for 4 minutes. This was the standard culture medium used. CBs were 

transferred to a clear fluorimeter cuvette (Sigma-Aldrich) containing the same culture 

medium. CBs were triturated using fine bore glass pipettes (200, 100 and 50 µm internal 

diameter), which had previously been heat-sterilised. 30 µl aliquots of the cell 

suspension were then transferred to individual poly-D-lysine coated 6 mm diameter 

coverslips (VWR). These coverslips, positioned in a culture media dish, were placed in 

the incubator at 37°C, 5% CO2 and 21% O2, for 2 hours. Afterwards, a further 2 ml of the 

above culture media was added to the culture dish and the dissociated type I cells were 

then left in the incubator until required.  

 

2.2.2 Measurement of NADH and [Ca2+]i  

Ca2+ and NADH fluorescence measurements were made using an inverted microscope 

(Nikon Diaphot 200; Nikon) equipped with a 100 W xenon lamp that provided the 

fluorescence excitation light source. Photomultiplier tubes (PMT; Thorn EMI), cooled to 

minus 20°C, were used to detect the emitted fluorescence. The output signal was fed 

through a current-voltage converter and the voltage was recorded using a CED 
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micro1401 (Cambridge Electronic Design) and visualised on a PC with Spike2 (version 

7.1) software (Cambridge Electronic Design) as an individual waveform. The voltage 

signal was sampled at 250 Hz.  

 

NADH autofluorescence was excited at 340 nm and the emission was measured at 450 

± 30 nm. [Ca2+]i was determined by using the fluorescent dye, Indo-1 (336). Cells were 

initially loaded by incubation with the Indo-1 acetoxymethyl ester (Indo-1-AM; Sigma-

Aldrich) for 1 hour. After transferring the cells to the recording chamber, cells were 

illuminated at 340 nm and emission was measured at 405 ± 16 nm (F405; Ca2+ bound 

Indo-1) and 495 ± 10 nm (F495; Ca2+ free Indo-1). A further channel was created using 

the Spike2 (version 7.1) software (Cambridge Electronic Design) that calculated and 

recorded the ratio of F405 / F495 (R).  

 

In order to directly quantify the type I cell [Ca2+]i the constants Rmin, Rmax and F495 (max / 

min) were initially determined. To do this, type I cells loaded with Indo-1 were transferred 

into a HEPES buffered Krebs Ca2+ free solution (see below) containing 10 mM EGTA 

(Sigma-Aldrich) for 1 hour at room temperature. This method was performed to 

completely de-saturate the Indo-1. Cells were subsequently placed in a recording 

chamber and superfused with the same solution. Under these conditions, fluorescence 

measurements were made to detect the Rmin from a single type I cell. To identify the 

Rmax, the superfusate was modified to a similar HEPES buffered Krebs solution 

containing 2.5 mM Ca2+ and 10 µM ionomycin. Using this method the F495 (max / min) could 

also be calculated. The Kd (dissociation constant) of the equation: 

[Ca2+-Indo-1] ⇔ [Ca2+] + [Indo-1] 
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was taken as 250 nM as has been characterised previously (336). The [Ca2+]i was 

calculated throughout experimentation according to the equation described by 

Grynkiewicz and colleagues, shown below. 

[Ca2+]i = Kd(((R – Rmin) / (Rmax – R)) / (F495 (max / min))). 

 

2.2.3 Solutions 

The dissociated type I cells were continuously superfused with a standard bicarbonate 

buffered Krebs solution containing, in mM: 115 NaCl, 4.5 KCl, 1.25 NaH2PO4, 5 Na2SO4, 

1.3 MgSO4, 24 NaHCO3, 2.4 CaCl2 and 11 D-glucose. Normoxic/hyperoxic solutions 

were equilibrated with 5% CO2 and 95% air. Mild hypoxic solutions were equilibrated 

with 5% CO2, 2% O2 and 93% N2 and severe hypoxic solutions with 5% CO2 and 95% 

N2. All solutions were heated to 37ºC using a water bath (Grant W14, Grant 

Instruments). Transfer of the superfusate to the recording chamber was achieved 

through gravity via 3 mm internal diameter O2 impermeable stainless steel tubing. In 

experiments using exogenous NaNO2, osmolality was balanced by appropriate 

subtraction of NaCl from the superfusate. For glucose free solutions, 11 mM mannitol 

was substituted in place of glucose to maintain constant osmolality.  

 

The HEPES buffered Krebs solution used for Indo-1 calibrations contained in mM: 140 

NaCl, 4.5 KCl, 1 MgCl2, 2.4 CaCl2, 11 D-glucose and 20 HEPES. The Ca2+ free solution 

was deficient in CaCl2 and contained 10 mM EGTA. During Indo-1 calibration 

procedures the HEPES buffered Krebs solution was equilibrated with 5% CO2 and 95% 

air.  
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2.3 Carotid body tissue immunohistochemistry 

 

The whole carotid bifurcation, the superior cervical ganglion, glossopharyngeal nerve, 

CSN, and CB were all surgically isolated from anaesthetised (isoflurane 1.5-2%) adult 

(50-200 g) male Wistar rats as described in Section 2.1.1. Following tissue procurement, 

all animals were immediately killed by exsanguination. The tissue was immediately fixed 

for 2 hours at room temperature in 2.2% formaldehyde (TAAB Laboratories) in 10 mM 

PBS, pH 7.4, containing 2% glucose and 0.02% sodium azide (Sigma-Aldrich). The 

tissue was rinsed once in PBS and left in a 30% sucrose solution (for cryoprotection) 

overnight before being embedded in frozen optimal cutting temperature compound 

(OCT; TAAB Laboratories). 10µm thick tissue sections were cut using a cryostat and 

adhered onto charged glass slides (Thermo Scientific). The tissue sections were 

washed three times in PBS, and then permeabilised by incubation in PBS containing 1% 

Triton X-100 (Sigma-Aldrich) for 10 minutes at 21°C. To limit non-specific antibody 

staining, tissue samples were incubated with PBS containing 1% BSA and 0.05% 

Tween20 (Sigma-Aldrich) for 30 minutes at 21°C.  

 

The tissue sections were incubated in a 0.1% BSA, 0.1% Tween20 PBS solution 

containing the appropriate primary antibodies, in a humidified chamber at 4°C for 24 

hours. Mouse monoclonal anti-rat tyrosine hydroxylase antibodies (Abcam) were applied 

(1:20) for the positive identification of type I cells. In addition, rabbit monoclonal anti-rat 

glycogen synthase I (1:50; Abcam) or rabbit polyclonal anti-human glycogen 

phosphorylase BB (1:100; AbD Serotec) antibodies were applied to establish the 

presence or absence of enzymes capable of glycogen synthesis and metabolism. The 
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rabbit polyclonal anti-human glycogen phosphorylase BB antibody was predicted to 

react with the rat glycogen phosphorylase BB isoform because of strong (greater than 

95%) sequence homology between the human and rat isoforms (UniProt protein 

database).  

 

Tissue sections were washed in a 0.1% Tween20 PBS solution to remove excess 

primary antibodies and then incubated in a 0.1% BSA, 0.1% Tween20 PBS solution 

containing anti-rabbit Alexa flura 488 (green) and anti-mouse Alexa flura 594 (red) 

(1:250; Molecular Probes) conjugated secondary antibodies to allow for subsequent 

fluorescent detection of the protein-immunoglobulin complexes. Tissue sections were 

washed in a 0.1% Tween20 PBS solution to remove unbound secondary antibody and 

then mounted in Vecta-mounting medium containing the nuclear stain DAPI (Vector 

Labs) (Figure 2.6). Images were viewed using an epifluorescent microscope (Zeiss).  
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Figure 2.6 Example images showing the location of the carotid body in relation to the surrounding 
structures near the carotid bifurcation.  
10 µm thick tissue sections were cut and stained with DAPI to specifically identify cell nuclei. In the rat, the 
carotid body (CB) is closely associated with the internal carotid artery (ICA), the external carotid artery 
(ECA), the occipital artery (OA) and the superior cervical ganglion (SCG).  
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3. Examining the interaction between mild mitochondrial 

inhibition and hypoxia in the carotid body using exogenous 

nitrite 

 

3.1 Chapter introduction and overview 

 

A unique feature of the mammalian CB is the ability to detect and respond to a fall in 

tissue PO2 at levels significantly higher than those that impair the metabolism of most 

other cell types. Whilst a number of putative mechanisms sensitive to changes in PO2 

have been described, it is less apparent how these might contribute to this heightened 

O2 sensitivity in the CB. It has been hypothesised that the hypoxia detecting mechanism 

may be purely a consequence of a run-down in mitochondrial electron transport and a 

change in the cellular energy status (4, 50, 51, 54). In support of this mitochondrial 

hypothesis, it has been identified that chemostimulation evoked by a number of different 

mitochondrial poisons shares many of the same downstream transduction processes 

that are known to be present in hypoxia stimulus excitation coupling. These include 

deactivation of background K+ (TASK-like and TREK-1) currents (29, 54), Ca2+ influx 

through L-type Ca2+ channels (54), neurosecretion (52) and stimulation of the CSN 

afferents (50-52, 337). 

 

For the mitochondrial hypothesis to be further strengthened, administration of 

mitochondrial inhibitors at sub-saturating concentrations would ideally show a degree of 

response interaction with hypoxia, thus evidencing that these stimuli are intimately 
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associated. To date, specific investigations examining the potential alterations of the CB 

hypoxic sensitivity caused by mild mitochondrial inhibition have not been performed.  

 

The rapidly reversible and O2 dependent reduction in mitochondrial energy metabolism 

caused by binding of NO to the haem a3/CuB binuclear centre in cytochrome c oxidase is 

well established (177, 178). However, potential modulation of mitochondrial function by 

NO has not been studied directly in the type I cell. This is possibly due to the overall 

impact of NO on CB chemostimulation being inhibitory rather than excitatory (136, 338). 

This attenuation is thought to be mediated primarily by S-nitrosation and deactivation of 

the L-type Ca2+ channels and by cGMP dependent activation of BKCa current (148, 149).  

 

Within the CB type I cell the only NOS isoform identified to date has been NOS-3 (83). 

The same study showed that hypoxia increased the NO content of the mitochondrial 

membranes. In addition, it is recognised that the NOS-3 KO mouse has an impaired 

ventilatory response to hypoxia coupled with a down-regulation in CB function (144). 

Therefore, NO produced locally at the level of the mitochondria may have excitatory 

actions on CB hypoxic sensitivity through direct modulation of mitochondrial function. 

Importantly, the impact of NO on mitochondrial activity may have been masked in 

previous studies using exogenous NO donors due to the additional inhibitory effect of 

NO in other cellular compartments.  

 

Relatively recent findings have identified NO2
- as a novel NO producing molecule. 

Generation of NO is achieved through single electron reduction of NO2
- and is favoured 

in the presence of a reduced environment and under conditions of acidosis or hypoxia. 

Multiple enzymes have been proposed as putative NO2
- reductases (see Chapter 1) with 
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the best characterised being the deoxygenated forms of the family of haem-globins 

(180). In the absence of a high level of cytoplasmic NO2
- reductase activity it has also 

been demonstrated that the mitochondria can directly reduce NO2
- to form NO, although 

this requires supraphysiological (mM) concentrations of exogenous NO2
- (172-174). As 

is the case with the haem-globins, NO production from NO2
- by the mitochondria is 

potentiated in an acidic and hypoxic environment (172-174). Potentially, the addition of 

exogenous NO2
- may generate NO locally at the mitochondria and modify CB 

mitochondrial activity without directly impacting on the ion channel function in other 

cellular compartments.  

 

The aims of the investigations in this chapter are summarised below: 

 

1. To investigate if supraphysiological (mM) concentrations of exogenous NO2
- can 

evoke reversible and dose dependent mitochondrial inhibition that is directly associated 

with CB chemoexcitation. 

 

2. To examine if mild mitochondrial inhibition with NO2
- subsequently changes the 

hypoxic sensitivity of the CB. 

 

3. To explore if further similarities exist between mitochondrial inhibition and hypoxia, 

including the potential activation of AMPK and synergy with hypercapnia.  
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3.2 Results 

 

3.2.1 Nitrite causes dose dependent carotid body chemostimulation that is 

coupled with an inhibition of mitochondrial electron transport 

Experiments were initially performed on the isolated intact CB to measure the single 

fibre chemoafferent discharge frequency in normoxia/hyperoxia and normocapnia 

(superfusate PO2 approximately 300 mmHg, PCO2 approximately 40 mmHg). Only 

supraphysiological (mM) concentrations of NO2
- elevated the chemoafferent frequency 

under these conditions, consistent with those known to generate NO at the mitochondria 

(Figure 3.1A). Chemostimulation induced by NO2
- was rapidly induced (less than 1 

minute) and well maintained throughout the application and was reversed within 1 to 2 

minutes of removal from the superfusate (Figure 3.1A). Significant dose dependent 

increases in mean chemoafferent activity were observed at concentrations of 3.3, 10 

and 33 mM NO2
- with the mean response to 33 mM NO2

- measuring 69.3 ± 6.5 % of the 

absolute peak frequency response to hypoxia (PO2 approximately 60 mmHg) (Figure 

3.1B). 

 

The novel ability of supraphysiological (mM) concentrations of exogenous NO2
- to 

induce dose dependent chemoexcitation was consistent with the hypothesis that 

reduction of NO2
- to form NO subsequently inhibited type I cell mitochondrial function 

and activated downstream signalling pathways. To test this mitochondrial hypothesis 

directly, studies were subsequently performed on dissociated type I cell clusters and 

records of NADH autofluorescence were taken as a measure of mitochondrial function 

as has been previously described for the CB (4, 54). For these experiments, the 

superfusate was equilibrated with 2% O2. This is the highest dissolved O2 concentration 
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known to allow for NO to be generated from NO2
- by isolated mitochondria (172) and is a 

level of hypoxia that causes partial, but not full, type I cell mitochondrial inhibition.  

 

Similar supraphysiological concentrations of NO2
- to those that increased chemoafferent 

frequency in the intact CB organ also generated significant elevations in NADH 

autofluorescence, indicative of an attenuation of mitochondrial electron transport (Figure 

3.2A). Increases in NADH autofluorescence were almost instantaneous upon NO2
- 

application and reversed within 1 to 2 minutes of removal from the superfusion (Figure 

3.2A). The grouped data showed that addition of 10 mM NO2
- evoked a 25.5 ± 1.3 % 

and 33 mM NO2
- a 79.2 ± 13.8 % rise in NADH autofluorescence, when measured as 

the proportion of the mean paired peak responses to 0% O2 (Figure 3.2B). Collectively, 

these data suggest that concentrations of NO2
- capable of inducing whole organ 

chemoexcitation also produce concurrent impairment of type I cell mitochondrial 

function. 
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Figure 3.1 Supraphysiological concentrations of exogenous nitrite evoke increases in carotid body 
chemoafferent activity.  
The data presented was taken from 9 fibres from 6 CB preparations. A) An example trace showing the 
effect of different doses of nitrite (NO2

-) on the chemoafferent frequency recorded from a single fibre. For 
comparison with the peak chemoafferent response to hypoxia, the tissue was stimulated by a severe 
hypoxic stimulus (PO2 approximately 60 mmHg) following the final dose of NO2

-. Raw discharge is shown 
(upper) along with frequency histograms (lower) grouped in 10 s intervals. Overdrawn action potentials 
are shown inset to demonstrate the single fibre discrimination from which the frequency was taken.  
B) Mean frequencies induced by different concentrations of NO2

-, expressed as a percentage of the paired 
peak frequency response to severe hypoxia (PO2 approximately 60 mmHg). Error bars indicate ± S.E.M.  
* denotes P < 0.05 compared with initial NO2

- dose; one way repeated measures ANOVA with Dunnett’s 
post hoc analysis.  
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Figure 3.2 Supraphysiological concentrations of exogenous nitrite evoke increases in NADH 
autofluorescence indicative of a reduction in mitochondrial energy metabolism.  
A) Example spectra of the effect of 10 mM and 33 mM nitrite (NO2

-) on the NADH autofluorescence 
measured from two different dissociated type I cell clusters. For comparison with the change in NADH 
autofluorescence induced by severe hypoxia, a 0% O2 stimulus was applied before and after addition of 
NO2

-. B) Mean NADH autofluorescence induced by 10 mM NO2
- (4 clusters, 4 CB preparations) and by 

33 mM NO2
- (6 clusters from 4 CB preparations), expressed as a percentage of the paired mean peak 

NADH autofluorescence responses evoked by severe hypoxia (0% O2). Error bars indicate + S.E.M.  
* denotes P < 0.05 compared with 10 mM NO2

-; unpaired t-test.  
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3.2.2 Carotid body type I cell Ca2+ responses to nitrite are PO2 dependent 

The binding of NO to cytochrome c oxidase is rapidly reversible and highly dependent 

on PO2 with increased NO dependent mitochondrial inhibition taking place under more 

hypoxic conditions (179). Furthermore, mitochondrial reduction of NO2
- to release NO is 

tightly regulated by PO2 and is favoured under conditions of increasing hypoxia (172-

174). Studies were undertaken to investigate whether the impact of NO2
- on type I cell 

stimulation was PO2 dependent and therefore indicative of a downstream NO mediated 

effect.  

 

In these experiments, dissociated type I cell Ca2+ fluorescence was recorded as a 

measure of the level of chemostimulation intensity. Ca2+ responses to 33 mM NO2
- were 

evaluated at two levels of dissolved O2: 20% and 2%. An example trace from a single 

cluster is shown in Figure 3.3A. In 20% dissolved O2, addition of 33 mM NO2
- did not 

evoke further elevations in type I cell [Ca2+]i (Figure 3.3A and B). In contrast, when the 

superfusion was switched to 2% O2 (generating a small initial rise in [Ca2+]i), 33 mM 

NO2
- stimulated an almost instantaneous and substantial rise in [Ca2+]i that was well 

maintained and rapidly reversible (Figure 3.3A and B). Therefore, the response to 

33 mM NO2
- appeared to be critically dependent on the O2 concentration. Since the 

excitatory actions of NO2
- were only observed in hypoxia these data supported the 

hypothesis that the NO2
- induced stimulation was due to the initial formation of NO.  
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Figure 3.3 The carotid body type I cell [Ca2+]i response to nitrite is PO2 dependent.  
A) Example Ca2+ fluorescence spectra measured from a single type I cell cluster showing the effect of 
33 mM nitrite (NO2

-) in 20% and 2% dissolved O2. B) Mean Ca2+ fluorescence data taken from 3 type I cell 
clusters from 2 CB preparations. Error bars indicate + S.E.M. * denotes P < 0.05 compared with 2% O2; 
one way repeated measures ANOVA with Bonferroni post hoc analysis test.  
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3.2.3 Mild mitochondrial inhibition with nitrite alters the carotid body response to 

hypoxia  

Previous experiments in this chapter characterised NO2
- as a novel and highly reversible 

type I cell mitochondrial inhibitor that was also able to elicit dose dependent increases in 

CB chemostimulation and single fibre CSN afferent activity. The ability for mitochondrial 

inhibitors to evoke CB stimulation is well known. However, if hypoxic sensing is purely a 

consequence of reduced mitochondrial energy respiration, it would be predicted that 

mild mitochondrial inhibition would augment the CB sensitivity to hypoxia, thereby 

showing that these stimuli were closely related and were not acting independently. 

 

Experiments in this section were performed on the superfused intact CB and recordings 

of single fibre chemoafferent activity were made in order to generate functional hypoxic 

response curves. The CB was stimulated by hypoxia in the presence and absence of 

3.3 mM NO2
-, a concentration previously shown to evoke only a very small increase in 

basal activity (0.60 ±0.10 Hz; control, compared with 1.11 ± 0.21 Hz; 3.3 mM NO2
-) and 

was hypothesised as inducing only a very mild level of mitochondrial inhibition (see 3.2.1 

and 3.2.2). Importantly, the addition of 3.3 mM NO2
- evoked a marked ‘right shift’ of the 

CB hypoxic response curve (Figure 3.4A). The mean ‘right shift’ was quantified by 

measuring the PO2 when the discharge frequency was at 5 Hz (see Section 2.1.7). To 

attain a frequency of 5 Hz, the mean superfusate PO2 was 105 ± 7 mmHg under control 

conditions and 141 ± 11 mmHg in the presence of 3.3 mM NO2
- (Figure 3.4B). This 

effect was consistent across all fibres recorded from (Figure 3.4B). In addition, a similar 

‘right shift’ was observed in the presence of 3.3 mM NO2
- when the discharge frequency 

was collated from a nerve trunk preparation containing multiple fibres (Supplementary 

figure 1).  
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The rate of chemoafferent increase following hypoxic response initiation was not 

different in the presence of 3.3 mM NO2
-. This was evidenced by paired exponential rate 

constants not being significantly different between groups; 0.032 ± 0.004 for the control 

and 0.032 ± 0.005 for 3.3 mM NO2
-. Therefore, the data suggested that the overall ‘right 

shift’ of the hypoxic response curve in the presence of NO2
- was a consequence of a 

change in the ‘set point’ or ‘threshold’ for hypoxia response initiation rather than a 

change in the rate of increase.  

 

Analysis of the paired differences in discharge frequency calculated at fixed levels of 

PO2, in the presence or absence of 3.3 mM NO2
-, showed that the augmentation in 

frequency evoked by 3.3 mM NO2
- was magnified in more hypoxic conditions (Figure 

3.4A). Specifically, the excitatory impact of NO2
- on the chemoafferent activity was 

enhanced at superfusate PO2s of 125 and 100 mmHg (Figure 3.4A). These data are 

strongly indicative of a degree of significant multiplicative interaction between NO2
- and 

hypoxic stimuli suggesting that the two stimuli act through the same pathway and are 

not independent. In view of the findings earlier in this chapter, it is proposed that the 

interaction takes place at the mitochondria and that pre-conditioning by NO2
- (through 

NO production), makes the mitochondrial electron transport more susceptible to a fall in 

PO2 and the CB more sensitive to hypoxia.  
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Figure 3.4 Nitrite sensitises the carotid body to hypoxia.  
The data presented was from 9 fibres from 7 CB preparations A) Characteristic example from a single 
chemoafferent fibre demonstrating the reversible ‘right shift’ induced by 3.3 mM nitrite (NO2

-) on the 
hypoxic response curve. B) For all fibres the PO2 was measured at 5 Hz in the presence and absence of 
3.3 mM NO2

- in order to quantify the mean ‘right shift’. + denotes P < 0.05, 3.3 mM NO2
- compared with 

control; paired t-test. C) The calculated augmentation in single fibre discharge frequency induced by 
3.3 mM NO2

- was plotted over a range of defined superfusate PO2 values and shows an enhanced impact 
in hypoxia. Error bars indicate ± S.E.M. * denotes P < 0.05 compared with the frequency difference at 
300 mmHg PO2; one way repeated measures ANOVA with Dunnett’s post hoc analysis. 
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3.2.4 Mild mitochondrial inhibition with nitrite alters the carotid body response to 

hypercapnia  

Hypoxia is associated with a multiplicative augmentation of the CB response to 

hypercapnia, showing that these two stimuli are highly interdependent (46, 185, 210). 

The precise site of interaction remains unknown. If hypoxic stimulus response coupling 

is specifically initiated through depletion of mitochondrial electron transport it would be 

expected that mitochondrial inhibitors, like hypoxia, are able to evoke changes in the CB 

sensitivity to hypercapnia.  

 

Chemoafferent responses to hypercapnia (PCO2 approximately 80 mmHg) of the intact 

CB were performed in the presence and absence of 3.3 mM NO2
-. A mean discharge 

frequency in hypercapnia was taken from the final minute of exposure, after a relatively 

stable steady state discharge frequency had been established. An example trace of a 

single chemoafferent fibre response to hypercapnia in the presence and absence of 3.3 

mM NO2
- is shown in Figure 3.5A. 3.3 mM NO2

- elevated both the basal and the 

frequency response to hypercapnia (Figure 3.5B). Calculations of the differences 

between the paired hypercapnic and basal frequencies showed that 3.3 mM NO2
- 

significantly enhanced the absolute frequency rise induced by hypercapnia in all fibres 

tested (0.90 ± 0.20 Hz; control, 1.7 ± 0.30; nitrite) (Figure 3.5C). The calculated CO2 

sensitivity (Δ Hz / mmHg PCO2) was significantly elevated in the presence of 3.3 mM 

NO2
- (Figure 3.5D). Therefore, as in hypoxia, mild mitochondrial inhibition with NO2

- 

increases the CB sensitivity to hypercapnia. This provides further evidence indicating 

that the impact of mitochondrial inhibition on the CB has much in common with hypoxia.  
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Figure 3.5 Nitrite enhances the carotid body sensitivity to hypercapnia. 
The data presented was from 10 fibres from 6 CB preparations A) Characteristic example recording of the 
response to hypercapnia in the presence and absence of 3.3 mM nitrite (NO2

-). Raw discharge is shown 
(upper) along with frequency histograms (lower) that collate single fibre action potentials in 10 s intervals. 
Overdrawn action potentials are shown inset to demonstrate the single fibre discrimination used to 
measure the frequency. B) Mean discharge frequencies recorded under normocapnic (PCO2 = 40 mmHg) 
and hypercapnic (PCO2 = 80 mmHg), in control conditions and following addition of 3.3 mM NO2

-. Error 
bars indicate ± S.E.M.* denotes P < 0.05 compared with control group; one way repeated measures 
ANOVA with Bonferroni post hoc analysis. C) Discharge frequency differences (80 – 40 mmHg PCO2) for 
each fibre in the presence and absence of 3.3 mM NO2

-. D) Calculated mean CO2 sensitivity (Δ Hz / 
mmHg PCO2) in control conditions and following NO2

- application. For D), error bars indicate + S.E.M. * 
denotes P < 0.05 compared with control group; paired t-test.  
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3.2.5 Carotid body chemostimulation by mild mitochondrial inhibition with nitrite 

is mediated through activation of AMPK  

Type I cell depolarisation secondary to inhibition of mitochondrial electron transport in 

hypoxia has been proposed as being a consequence of either direct deactivation of 

background or whole cell K+ current by a fall in [ATP]i (339) or through activation of 

AMPK (5, 88). Inhibition of AMPK by Compound C has been shown to depress, but not 

abolish, the CB chemoafferent response to acute hypoxia, indicative of hypoxia stimulus 

response coupling being mediated in part by AMPK (88). It is not clear whether CB 

excitation induced by mitochondrial inhibition is regulated by AMPK activation or through 

some other mechanism independent of cellular energy status, such as a change in ROS 

generation. Full characterisation of the downstream signalling processes in the CB 

secondary to impaired mitochondrial activity may be important given the link between 

chronic mitochondrial dysfunction and CB sLTF following CIH (2). 

 

In the current study, 10 mM NO2
- was applied for 5 minutes in order to achieve a 

measurable and reversible level of CB chemoexcitation. Following the initial response to 

10 mM NO2
-, 40 µM Compound C (dissolved in DMSO, final DMSO concentration 0.4%) 

was added to the superfusate for 40-50 minutes to allow for sufficient drug uptake. 

These concentrations of Compound C and DMSO were consistent with those that have 

been described previously for the intact CB preparation (88). A characteristic example 

trace is shown in Figure 3.6A. Inhibitory targeting of AMPK attenuated the CB basal 

activity and the response to 10 mM NO2
- by approximately 42% (Figure 3.6B). Following 

removal of Compound C responses to moderate hypoxia remained intact indicating that 

the inhibition was not secondary to CB tissue damage or neurotransmitter depletion 

during the period of drug incubation (Figure 3.6A). For all fibres the absolute increase in 
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frequency induced by 10 mM NO2
- was depressed in the presence of Compound C, with 

a mean reduction of approximately 39% (Figure 3.6C). These results suggested that, as 

with hypoxia, a component of the chemostimulation induced by mitochondrial inhibition 

was dependent on AMPK activation.  
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Figure 3.6 Chemostimulation evoked by mitochondrial inhibition with nitrite is dependent on 
AMPK activation. 
The data presented was from 6 fibres from 4 CB preparations A) Characteristic example recording of the 
response to 10 mM nitrite (NO2

-) in the presence and absence of the AMPK inhibitor Compound C. Raw 
discharge is shown (upper) along with frequency histograms (lower) that group single fibre action 
potentials in 10 s intervals. Overdrawn action potentials are shown inset to demonstrate the single fibre 
discrimination used to measure frequency. B) Mean discharge frequencies recorded in basal conditions 
and in response to 10 mM NO2

-, in the presence and absence of Compound C. Error bars indicate ± 
S.E.M.* denotes P < 0.05 compared with control group; one way repeated measures ANOVA with 
Bonferroni post hoc analysis. C) Discharge frequency differences (NO2

- - basal) for each fibre in the 
presence and absence of Compound C. * denotes P < 0.05 Compound C compared with control group; 
paired t-test.  
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3.3 Chapter synopsis and discussion 

 

3.3.1 Summary of key findings 

The main findings of the current chapter are described as follows; 

 

• Mild mitochondrial inhibition using exogenous NO2
- changed the set point for 

hypoxia stimulus response coupling in the CB and therefore for the first time 

provides direct evidence of a significant interaction between these two stimuli. In 

this way these data strongly support the hypothesis that CB hypoxia sensing is 

influenced by a reduction in mitochondrial energy metabolism. 

 

• The PO2 dependent action of NO2
- on type I cell stimulation indicates that NO2

- 

induced mitochondrial inhibition and CB stimulation is a consequence of NO 

generation. This suggests that in the CB type I cell, NO has the potential to 

directly modulate mitochondrial function and type I cell excitability.  

 

• Mitochondrial inhibition with NO2
-, as with hypoxia, sensitised the CB to 

hypercapnic stimulation. 

 

• Chemostimulation evoked by mitochondrial inhibition with NO2
-, as with hypoxia, 

is partly blocked by Compound C, an inhibitor of AMPK.  
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3.3.2 Mild inhibition of mitochondrial function changes the set point for hypoxia 

stimulus response coupling in the carotid body  

A number of studies have identified similarities in transduction processes between 

hypoxia and mitochondrial inhibition induced chemostimulation, specifically those being 

deactivation of background K+ (TASK-like and TREK-1) currents (54), Ca2+ influx 

through L-type Ca2+ channels (54), neurosecretion (52) and stimulation of the CSN 

afferents (50-52, 337). Furthermore, CB type I cell mitochondrial function seems to be 

more sensitive to a fall in PO2 than other cell types showing a reduction in mitochondrial 

electron transport and mitochondrial depolarisation at PO2 levels as high as 40 mmHg 

(4, 56).  

 

The main focus of the current chapter was to identify the presence of any response 

interaction between mild mitochondrial inhibition and hypoxia in the mammalian CB. 

Evaluation of the impact of mild mitochondrial inhibition on CB hypoxic sensitivity over a 

range of different PO2s has not been examined previously in this tissue. For 

mitochondrial inhibition to be further implicated in CB hypoxia stimulus response 

coupling, when the two stimuli were applied concurrently, they would ideally produce 

multiplicative responses. Here, by using NO2
- as a novel and rapidly reversible inhibitor 

of mitochondrial metabolism, it was demonstrated that under conditions of mild NO2
- 

induced basal CB stimulation, the subsequent hypoxic sensitivity of the CB was 

significantly augmented. Analysis of the hypoxic response curves showed that mild 

mitochondrial inhibition with NO2
- changed the ‘set point’ of hypoxic response initiation, 

suggesting that the level of mitochondrial function is central in setting the threshold for 

CB hypoxic stimulation. Inspection of the absolute increase in chemoafferent activity 

evoked by NO2
- over a full range of PO2 levels showed that this elevation was further 



 

	   119	  

increased in hypoxia. This was indicative of a strong multiplicative interaction between 

mitochondrial inhibition and hypoxic stimuli and ruled out the notion that these stimuli act 

independently. These data are consistent with the hypothesis that CB hypoxic sensing is 

critically dependent on a run-down in mitochondrial function.  

 

Recently, support for H2S in mediating the CB response to hypoxia has received much 

attention. This is based on experiments that have demonstrated an elevation in both 

CSN discharge frequency and DA secretion in response to high doses of exogenous 

H2S donors (131, 132). A role for H2S is further strengthened by observations showing 

that functional CB hypoxic responses are attenuated, but not abolished in cystathione γ 

lyase (an enzyme capable of generating H2S) deficient mice (132). It has been proposed 

that the direct target of H2S in type I cells is the BKCa channel and H2S concentrations of 

40	  µM and above have been shown to inhibit K+ conductance of this channel (133). 

However, it has also been demonstrated that exogenous H2S concentrations similar to 

those that stimulate the CB and deactivate the BKCa channel also produce intense 

inhibition of mitochondrial function in type I cells (130). In view of the findings from this 

chapter, whilst a role for H2S in CB hypoxic sensing cannot be ruled out, it is proposed 

that its actions are most probably a consequence of a reduction in mitochondrial energy 

metabolism and activation of signalling pathways that are dependent on a 

depleted/altered cellular energy status.  

 

3.3.3 The use of exogenous nitrite as a novel type I cell mitochondrial inhibitor  

The use of exogenous NO2
- in the current study was not only because it has recently 

been shown to reversibly impair mitochondrial function in other tissues, but also 

because this mechanism is thought to be regulated specifically through generation of 
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NO (172, 176, 179). Despite NO being known to reversibly inhibit mitochondrial electron 

transport through binding to cytochrome c oxidase in other cells (177), the potential 

modification of mitochondrial function by NO in the CB type I cells has not been 

examined before. An effect of NO on the mitochondria may have been masked in 

previous studies on the CB (using other NO donors or NOS blockers) because of its 

known inhibitory actions at other sites within the type I cell (148, 149).  

 

In the present experiments very high supraphysiological concentrations of NO2
- evoked 

dose dependent elevations in chemoafferent discharge frequency; an effect that was 

coupled to dose dependent mitochondrial inhibition in isolated type I cells as evidenced 

by rises in NADH autofluorescence. Therefore, as in other cell types, NO2
- was shown to 

depress mitochondrial electron transport.  

 

It is proposed that the action of NO2
- on the mitochondria was a consequence of NO 

production. The formation of NO from NO2
- was not measured and NO scavengers were 

not used because of their limited cell permeability (340). However, it was observed that 

the impact of NO2
- on type I cell [Ca2+]i responses was critically dependent on O2, with 

NO2
- only evoking rises in [Ca2+]i at a dissolved O2 concentration of 2% and not 20%. 

Given that the reduction of NO2
- to form NO and the NO binding to cytochrome c 

oxidase are both favoured in hypoxia (172, 179), these current results are consistent 

with the excitatory effect of NO2
- being a consequence on the formation and action of 

NO. Future studies should be performed to measure NO production directly upon 

addition of NO2
- within each cellular compartment of the type I cell, to confirm that these 

excitatory actions of NO2
- are NO dependent.  
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If the impact of NO2
- on CB function was through production of NO, it may be plausible 

to question why the well characterised inhibitory actions of NO on CB activity were not 

observed here. It is hypothesised that NO2
- itself was reduced at the site of the 

mitochondria and only generated local rises in NO that were limited to the mitochondrial 

compartments. Mitochondrial reduction of NO2
- into NO has been shown to only occur 

when supraphysiological (mM) concentrations of NO2
- are applied exogenously (172-

174). Accordingly, the inhibition of mitochondrial function and elevation in chemoafferent 

discharge were only detected in these experiments when at least 3.3 mM NO2
- was 

applied to the superfusate, indicative of selective mitochondrial dependent NO2
- 

reduction and NO generation. Cytosolic NO2
- reductase activity in cardiac or smooth 

muscle cells has been shown to take place at physiological µM concentrations of NO2
- 

(154, 175, 180, 341). It is speculated that the number of type I cell cytosolic NO2
- 

reductases was not sufficient to generate enough cytosolic NO to inhibit L-type Ca2+ 

current or activate BKCa channels, and for this reason no inhibitory effects of NO were 

observed in the presence of NO2
-.  

 

3.3.4 A role for endogenous nitric oxide in modulating type I cell mitochondrial 

function   

The evidence described in the current chapter indicates that only supraphysiological 

concentrations of exogenous NO2
- are able to reduce type I cell mitochondrial activity. It 

is unlikely that enough NO can be generated from endogenous concentrations (µM) of 

NO2
- to be functionally active in the CB. However, the results also imply that if enough 

NO is produced locally at the mitochondria then it has the potential to reduce 

mitochondrial energy metabolism and sensitise the CB to hypoxia. Since measurable 

amounts of NO have been identified in mitochondrial membranes of type I cells following 
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hypoxia, it is possible that NO may be available endogenously to alter mitochondrial 

function (83).  

 

The source of this endogenous NO is most likely to be from NOS-3 given that this is the 

only NOS isoform to be detected in the type I cell (83). Accordingly, Kline and 

colleagues identified that NOS-3 deficient mice had a significantly diminished ventilatory 

response to hypoxia; an observation that was coupled with a downgraded CB function 

(144). It was hypothesised that chronic vasoconstriction of the arterial supply to the CB 

would have subjected the organ to chronic hypoxia from birth. Since chronic neonatal 

hypoxia is known to be associated with an impairment of the CB tissue to develop 

hypoxic chemosensitivity (45, 145), the authors concluded that this was the sole reason 

for the reduction in CB function. Whilst this is a plausible explanation, in view of the 

current findings, it is proposed that maybe a component of the inhibition of CB hypoxic 

sensitivity was a consequence of the absence of NOS-3 derived NO and its action on 

type I cell mitochondria. In conclusion, it is suggested that NO may have dual effects on 

type I cell function; an inhibitory action exerted through modulation of ion channels and a 

novel stimulatory action achieved through regulation of mitochondrial electron transport. 

In this respect it may be similar to the previously proposed dual actions of CO (109, 110, 

116, 120). 

 

3.3.5 Mitochondrial inhibition with nitrite sensitised the CB to hypercapnic 

stimulation  

An interaction between hypoxic and hypercapnic stimuli leading to the generation of 

multiplicative responses has been observed previously in the CB (46, 210). Data from 

the current study suggests that mild mitochondrial inhibition with NO2
- was capable of 
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significantly augmenting the absolute chemoafferent frequency response of the CB to 

subsequent hypercapnic stimulation. Thus, for the first time in the CB, a multiplicative 

interaction between mitochondrial inhibition and hypercapnia was demonstrated. This 

provided further evidence suggesting that mitochondrial inhibition and hypoxic stimuli 

have very similar actions on CB chemoreceptor function.  

 

The exact site of interaction between mitochondrial inhibition and hypercapnic stimuli 

was not investigated in this study. These stimuli share a number of key transduction 

processes including attenuation of background TASK-like conductance, activation of L-

type Ca2+ channels, neurosecretion and stimulation of the CSN afferents (18). Potential 

interaction could be a consequence of up-regulation of any or all of these processes. 

However, it is also known that NO2
- reduction is favoured in acidic conditions. Therefore, 

in the current investigation, it is possible that the generation of NO was increased during 

the acidic hypercapnic conditions, causing further impairment of mitochondrial activity 

and chemostimulation. Nevertheless, the data still supports a role for the mitochondria in 

setting not only the CB threshold for the response to hypoxia but also to hypercapnia. 

Whether it may set the threshold to other putative stimuli of the CB is not known.  

 

3.3.6 Carotid body chemoafferent stimulation produced by mitochondrial 

inhibition with nitrite is regulated by activation of AMPK   

The CB chemoafferent response to hypoxia is recognised as being attenuated by the 

AMPK inhibitor Compound C (88). This suggests that a degree of hypoxia induced 

metabolic stress may be necessary for activating the downstream signalling pathways 

associated with type I cell stimulation. In this study, Compound C also reduced the 

chemoafferent response to NO2
-, in every fibre tested. The magnitude of this response 
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depression was consistent with that described previously for hypoxia (88). This indicates 

that, as in hypoxia, the type I cell response to mitochondrial inhibition is dependent on a 

change in cellular energy status and activation of AMPK.  

 

CB hypersensitivity and a baseline elevation in chemoafferent outflow is associated with 

mitochondrial dysfunction in animals pre-conditioned with CIH (313). Based on the novel 

associations between mitochondrial impairment, AMPK activation and chemoafferent 

stimulation identified in this chapter, it is proposed that a proportion of the CB 

hypersensitivity following CIH is likely to be mediated through an increase in AMPK 

activity in the type I cell. Future investigations could examine this directly by 

characterising the phosphorylation status of AMPK and its downstream target acetyl 

CoA carboxylase following periods of CIH. Furthermore, pharmacological inhibition of 

AMPK using Compound C could be used to more clearly define a functional role for 

AMPK in evoking CB sLTF following CIH.  

 

The results presented in this chapter also demonstrate that a significant component of 

the chemoafferent response to mitochondrial inhibition with NO2
- was still preserved in 

the presence of Compound C. This may have been because of incomplete deactivation 

of AMPK as a consequence of the restricted uptake or activity of Compound C. 40 µM 

Compound C was used as a pharmacological inhibitor of AMPK as has been described 

previously in both whole CB tissue and single cell hepatocyte preparations (88, 342). In 

the single cell preparations 40 µM Compound C has been shown to deactivate AMPK 

activity by up to 75% following exposure to AICAR or metformin (342). In whole CB 

preparations the response to hypoxia, following 40 µM Compound C incubation, was 

reduced (by approximately 50%) but not abolished (88). Therefore, the inhibitory impact 
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of Compound C on the CB chemoafferent stimulation by mitochondrial inhibition 

observed in this study was similar to that previously seen in hypoxia.  

 

Alternatively, a significant element of the stimulation evoked by mitochondrial inhibition 

may have been dependent on a reduction in [ATP]i and direct inhibition of the ATP 

sensitive TASK-like channel K+ current (343). Another possibility is that the impairment 

of mitochondrial function by NO2
- may have activated signalling pathways dependent on 

ROS formation. Preliminary experiments performed in our laboratory have demonstrated 

that the chemoafferent frequency increase induced by NO2
- was preserved in the 

presence of the superoxide scavenger Tempol (1 mM), indicative of the response to 

NO2
- not being mediated through increased ROS generation (Supplementary figure 2).  

 

A dose of 40 µM Compound C was used to inhibit AMPK. Compound C has been shown 

to deactivate AMPK by altering the configuration of the α subunit phosphorylation 

activation loop (344). Compound C was dissolved in DMSO (final DMSO concentration 

0.4%) and the CB incubation time in Compound C was between 40–50 minutes as 

described previously (88). To investigate if the inhibitory effect observed following 

incubation in Compound C and DMSO was a consequence of tissue damage or 

neurotransmitter depletion, a mild hypoxic stimulus was applied following removal of the 

drug and solvent from the superfusate. In all experiments the chemoafferent responses 

to hypoxia were greater than that observed in response to the original NO2
- stimulation 

(See example in Figure 3.6A). It is suggested that the CB tissue was still viable and 

retained normal chemoreceptor function and that the suppression of the response to 

NO2
- was a consequence of the pharmacological inhibition of AMPK activity.  
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Because of the potential limitations of Compound C to completely deactivate AMPK, 

some of subsequent studies described in this thesis were performed on CBs isolated 

from animals with partial or complete knock down in Lkb1 (the upstream kinase required 

for AMPK activation). This was done in order to more clearly define a role for the Lkb1-

AMPK signalling pathway in CB hypoxia stimulus response coupling.  

 

3.3.7 Conclusions 

Chemoafferent responses evoked by the novel type I cell mitochondrial inhibitor NO2
- 

are comparable with those induced by hypoxia. Mild mitochondrial inhibition with NO2
- 

significantly enhanced the CB sensitivity to hypoxia. This previously uncharacterised 

finding suggests that the sensing of hypoxia in the CB is closely associated with a 

hypoxia evoked impairment of mitochondrial electron transport. This has the potential to 

induce cellular metabolic stress leading to the direct activation of AMPK. However, the 

precise mechanism that links a reduction in mitochondrial energy metabolism with type I 

cell stimulation needs to be evaluated further.  
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4. Does the Lkb1-AMPK signalling pathway provide the key to 

carotid body activation by hypoxia? 

 

4.1 Chapter introduction and overview 

Studies performed in the previous chapter supported the hypothesis that CB hypoxia 

stimulus response coupling is a consequence of a run-down in mitochondrial energy 

metabolism. A definitive signalling process that links the reduction in mitochondrial 

function with type I cell depolarisation and stimulation remains unidentified. With this in 

mind, the primary focus of the current chapter was to investigate whether activation of 

the Lkb1-AMPK pathway is a necessary intermediate step in mediating this hypoxia 

chemotransduction process.  

 

It is hypothesised that depletion of mitochondrial electron transport in the type I cell has 

the potential to directly evoke local or whole cell changes in either [ATP]i or the 

AMP:ATP ratio subsequent to adenylate kinase activation. A decrease in the [ATP]i in 

hypoxia has the potential to depolarise the type I cell by directly reducing the ATP 

sensitive background TASK-like channel current (343). It has also been proposed that 

type I cell hypoxia stimulus response coupling may be conferred through changes in the 

AMP:ATP ratio via AMPK, a ubiquitously expressed protein kinase and sensor of cellular 

energy status (6, 88).  

 

It is now recognised that the overall activity of AMPK is augmented by approximately 

1000 fold as a consequence of AMP binding at the two available CBS domains on the 
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regulatory γ subunit (93, 96). This AMP mediated increase in AMPK activation is 

achieved through a combination of direct allosteric activation and the promotion of Thr 

172 residue phosphorylation in the kinase activation loop on the catalytic α subunit (90, 

96). The latter is thought to be dependent on the up-regulation of upstream kinase 

activity (95) and a reduction in PP2C phosphatase activity (97). ATP is also capable of 

binding at the two available CBS domains on the γ subunit but, in contrast to AMP, this 

binding reduces the extent of AMPK phosphorylation and limits activation (93, 97, 100). 

The overall level of AMPK activation seems to be dependent on the cellular AMP:ATP 

ratio (6). A number of pharmacological and physiological stimuli, associated with 

increasing the AMP:ATP ratio, activate AMPK. These include mitochondrial poisons 

(101), glucose deprivation (103), skeletal muscle contraction (102), regional ischaemia 

(104) and hypoxia (5).  

 

In mammalian cells Lkb1 has been identified as the predominant upstream kinase that 

phosphorylates and activates AMPK (7). In certain cell types the calmodulin dependent 

kinase kinase beta (CaMKKβ), has been expressed as an alternative kinase capable of 

phosphorylating AMPK in response to elevated [Ca2+]i  (345). Lkb1 forms a 

heterotrimeric complex with STRAD and MO25 and direct interactions with these two 

regulatory proteins augment the overall Lkb1 activity, thereby promoting the 

phosphorylation of Thr 172 on the α subunit of AMPK (98, 99). It has now been 

established that sufficient levels of Lkb1 are required to activate AMPK during muscle 

contraction, ischaemia and hypoxia (106, 346).  

 

In the CB, the α1 subunit of AMPK is positively expressed in the type I cells and is co-

localised with the BKCa channel at the plasma membrane (5, 88). Pharmacological 



 

	   129	  

activation of AMPK with AICAR elevates the type I cell [Ca2+]i and increases the CSN 

discharge frequency (5). Thus, activation of AMPK mimics, to a certain degree, the 

actions of hypoxia. A number of specific AMPK phosphorylation targets in the type I cell 

have been identified including the TASK, TREK-1 and BKCa channels, all of which are 

associated with CB hypoxia chemotransduction (29, 54, 88). Inhibition of AMPK with 

Compound C also virtually abolishes the hypoxia induced elevation in type I cell [Ca2+]i 

and reduces the increase in CSN chemoafferent discharge frequency by approximately 

50% (88). Finally, respiratory measurements indicate that mice with global deletion of 

the gene encoding the α2 subunit of AMPK have an impaired hypoxic ventilatory 

response (108).  

 

The work performed by Evans and colleagues regarding the role for AMPK in CB 

hypoxic chemotransduction has been viewed with a high degree of caution. This is 

primarily because the physiological actions of both AICAR and Compound C may be 

exerted through kinases independent of AMPK activation (347). The dose of 1 mM 

AICAR, used by Wyatt et al. (88) potentially may also have enhanced the chemoafferent 

activity by elevating synaptic adenosine concentrations subsequent to the saturation of 

the bidirectional ENT adenosine transporter, although this is yet to be confirmed. In 

addition, even though the ventilatory response to hypoxia was reduced in the α2 AMPK 

KO mice, a significant element was still preserved. Finally, the inability of Compound C 

to completely abolish the increase in CSN frequency evoked by hypoxia (88) suggests 

that AMPK activation may only be a single component of the complete hypoxia 

transduction process and/or Compound C does not completely deactivate AMPK.  
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The experiments presented in the current chapter were performed on CBs isolated from 

animals with partial or complete knock down in the Lkb1, the essential upstream kinase 

and activator of AMPK (7). This was done to more clearly establish or reject a role for 

the Lkb1-AMPK signalling pathway in CB hypoxia stimulus response coupling.  

 

Potential changes in the hypercapnic sensitivity of CBs deficient in Lkb1 were also 

investigated. Any alteration in hypoxic sensitivity may be expected to impact on the 

response to hypercapnia given the strong degree of synergy known to exist between 

these two stimuli (46, 210).  

 

The aims of the investigations in this chapter are summarised below: 

 

1. To investigate if Lkb1-AMPK signalling is necessary for the generation of basal CB 

chemoafferent activity.  

 

2. To establish if progressive depletion of Lkb1 correlates with a progressive depression 

in the CB response to hypoxia. 

 

3. To examine if Lkb1-AMPK signalling is essential for CB stimulation by hypercapnia.  
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4.2 Results 

 

4.2.1 Mouse model development and generation of carotid body type I cells 

deficient in Lkb1  

All breeding and genetic development of mice was performed at the University of 

Edinburgh and not by the author of this thesis. Transgenic C57BL/6J mice with the loxP 

excision sequence flanking the stk11 gene encoding Lkb1 on each chromosome 10 

were termed Lkb1fl/fl or Lkb1 flox. Transgenic C57BL/6J mice homozygous for the gene 

that encoded the Cre recombinase protein under the tyrosine hydroxylase promoter (Th-

IRES-Cre) were supplied by the European Mutant Mouse Archive (EMMA) and were 

termed Cre+/+ or TH-Cre.  

 

First generation crossing of the Lkb1fl/fl
 with the Cre+/+ mice generated a population of 

mice heterozygous for both the loxP excision sequence (flanking the stk11 gene) and 

the gene encoding Cre recombinase enzyme and these mice were termed Lkb1fl/-Cre+/-. 

Crossing of these second generation mice generated multiple genetically different mice 

populations, two of which were of interest. The first was heterozygous for the loxP 

excision sequence flanking the stk11 gene on chromosome 10 and homozygous for the 

gene encoding Cre recombinase enzyme. These mice were termed Lkb1fl/-Cre+/+ or Lkb1 

het KO and were estimated to have a 50% reduction in Lkb1 protein in cells expressing 

TH. The second group of interest was homozygous for the loxP excision sequence and 

homozygous for the gene encoding Cre recombinase enzyme. These mice were termed 

Lkb1fl/flCre+/+ or Lkb1 hom KO and were predicted to have a complete knock down in 

Lkb1 protein expression in TH positive cells. A simplified version of breeding patterns 

used to generate these mice is shown in Figure 4.1.  
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Since global knock down of Lkb1 is embryonic lethal (346), Cre-Lox recombination 

technology was used to ensure that only cells expressing TH were partially or totally 

deficient in Lkb1. In the Lkb1 hom KO (Lkb1fl/flCre+/+) mice for example, because the Cre 

recombinase gene was under the TH promoter (THRES-Cre), whenever TH was 

expressed so was Cre recombinase enzyme. Cre recombinase subsequently 

recognised the loxP excision sequence and deleted the flanked gene (in this case 

stk11), completely preventing the expression of Lkb1 in these TH positive cells. 

 

mRNA analysis from single type I cells revealed that stk11 gene expression was 

completely absent in the Lkb1 hom KO (Lkb1fl/flCre+/+) mice but was positively detected 

in WT C57BL/6J mice strains (data not shown). In the TH positive adrenal chromaffin 

cells, Lkb1 protein expression in Lkb1 hom KO (Lkb1fl/flCre+/+) was almost completely 

abolished compared with TH-Cre (Cre+/+) controls (data not shown). All single cell RT-

PCR and protein quantification assays were performed by colleagues at the University 

of Edinburgh and not by the author of this thesis. These data provide confirmatory 

evidence of Lkb1 hom KO mice being deficient in Lkb1 in TH positive cells.  
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Figure 4.1 A simplified schematic of the breeding patterns used to generate the first generation of 
mice partially or totally deficient in Lkb1 in tyrosine hydroxylase (TH) expressing cells.  

Cre+/+&&(TH#Cre'control)&Lkb1fl/fl&&(Lkb1'flox)&

TH&Promoter& Cre&loxP& loxP&Stk11&(Lkb1)&

1st&Genera;on&Cross&

Lkb1fl/<Cre+/<&

2nd&Genera;on&Cross&

Lkb1fl/<Cre+/<&

2'further'groups'of'interest'from'mul:ple'popula:ons:'

Lkb1fl/<&Cre+/+:'Lkb1'het'KO''

Lkb1fl/fl&Cre+/+:&Lkb1'hom'KO'
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4.2.2 Deletion of Lkb1 in carotid body type I cells virtually abolishes the 

chemoafferent response to hypoxia  

In vitro recordings of the chemoafferent activity were made from CBs isolated from 4 

different mouse groups; TH-Cre (Cre+/+), Lkb1 flox (Lkb1fl/fl), Lkb1 het KO (Lkb1fl/-Cre+/+) 

and Lkb1 hom KO (Lkb1fl/flCre+/+). These groups were chosen as they had a proposed 

progressive depletion of type I cell Lkb1 mRNA and protein expression. Previous studies 

have reported that Lkb1 flox mice had a 5-10 fold reduced expression of Lkb1 compared 

with wild type littermates (106, 346). Therefore, in this study, the TH-Cre group was 

taken as the only control.  

 

Initial experiments were performed to detect any potential alterations in basal 

chemoafferent activity and hypoxic sensitivity in CBs deficient in Lkb1. Basal activity was 

monitored at a superfusate PO2 of approximately 200 mmHg and a PCO2 of 

approximately 40 mmHg. To induce responses to hypoxia, the superfusate PO2 was 

slowly reduced to a minimum of 40 mmHg or was reversed prior to this when the 

chemoafferent response had stabilised or had begun to diminish. Characteristic raw 

trace examples for all mouse groups are shown in Figure 4.2 and demonstrate that CB 

single fibre chemoafferent responses to hypoxia were depressed according to the extent 

of type I cell Lkb1 depletion.  

 

Analysis of grouped data revealed that the basal single fibre chemoafferent discharge 

frequency was not significantly different between the TH-Cre and the Lkb1 flox groups 

measuring 0.69 ± 0.21 Hz and 0.72 ± 0.14 Hz respectively (Figure 4.3A and B). The 

basal activity was significantly depressed in the Lkb1 het KO and Lkb1 hom KO groups, 

and by the same magnitude, compared with the TH-Cre and the Lkb1 flox groups, 
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measured as 0.20 ± 0.05 Hz and 0.20 ± 0.04 Hz respectively (Figure 4.3A and B). 

Taken together, these data indicate that a degree of Lkb1 expression was highly 

significant, but not completely essential, for the generation of basal CB chemoafferent 

activity.  

 

Analysis of the responses to hypoxia showed that the absolute peak single fibre 

discharge frequency recorded in severe hypoxia was significantly attenuated in the Lkb1 

flox group (7.26 ± 1.00 Hz) compared with the TH-Cre control (13.00 ± 1.51 Hz) (Figure 

4.3C). This was further significantly suppressed in CBs from Lkb1 het KO (4.17 ± 0.34 

Hz) and Lkb1 hom KO (2.84 ± 0.78 Hz) mice (Figure 4.3C). Although the magnitude of 

the mean peak hypoxic frequency tended to be smaller in the Lkb1 hom KO group 

compared with the Lkb1 het KO group, no statistical difference was observed between 

these two groups (Figure 4.2 and 4.3C).  

 

Mean hypoxic response curves were constructed by plotting the calculated discharge 

frequency against a range of defined PO2 levels. Statistical analysis revealed that the 

shape of chemoafferent hypoxic response curves obtained from CBs partially or 

completely deficient in Lkb1 were significantly different compared with the TH-Cre 

controls (P < 0.05; Two way repeated measures ANOVA with Bonferroni post hoc 

comparisons test) (Figure 4.3A). Hypoxic response curves plotted for Lkb1 het KO and 

Lkb1 hom KO groups were also significantly different compared with the Lkb1 flox group 

(P < 0.05; Two way repeated measures ANOVA with Bonferroni post hoc comparisons 

test) (Figure 4.3A). Although the mean single fibre discharge frequency recorded from 

the Lkb1 hom KO group was reduced at every PO2 value compared with the Lkb1 het 



 

	   136	  

KO group, the overall response to hypoxia showed no statistical difference (Figure 

4.3A).  

 

Analysis of specific parameters of these hypoxic response curves identified that the rate 

of increase in discharge frequency with decreasing PO2 was depressed in Lkb1 hom KO 

mice CBs as evidenced by the mean exponential rate constant being significantly 

smaller than that calculated from the TH-Cre group (0.024 ± 0.007 v 0.041 ± 0.006) 

(Figure 4.4A). The PO2 recorded when the peak discharge frequency had been attained 

was significantly lower in Lkb1 hom KO group compared with TH-Cre controls (60 ± 3 

mmHg v 71 ± 2 mmHg), indicative of a marked ‘left shift’ in the hypoxic response curve 

(Figure 4.4B). Both of these factors may account for the relative ‘flattening’ and ‘left shift’ 

of Lkb1 hom KO hypoxic response curve observed in Figure 4.4A. These observations 

showed that Lkb1 depletion severely diminished the CB peak frequency response to 

hypoxia, changed the PO2 set point required for CB hypoxic response initiation and 

significantly attenuated the CB hypoxic sensitivity. These findings strongly support the 

hypothesis that Lkb1-AMPK signalling is required for CB activation by hypoxia.  
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Figure 4.2 Sequential deletion of Lkb1 progressively attenuates the carotid body response to 
graded hypoxia.  
Upper: Example raw traces of single/few fibre in vitro extracellular chemoafferent recordings during 
exposure to graded hypoxia for each transgenic mouse group: TH-Cre (control), Lkb1 flox, Lkb1 het KO 
and Lkb1 hom KO. Frequency time histograms (middle) and frequency PO2 response curves (lower) for 
each example trace are shown, with a progressive decrease in hypoxia sensitivity observed with 
incremental deletion of Lkb1. Single fibre discriminations is shown in middle panel insets.  
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Figure 4.3 Lkb1 deletion impairs basal chemoafferent activity and diminishes the hypoxic 
sensitivity of the in vitro mouse carotid body.  
A) Mean hypoxic response curves for each of the 4 transgenic mouse groups as follows: TH-Cre control; 
n=8 fibres from 6 mice, Lkb1 flox; n=8 fibres from 7 mice, Lkb1 het KO; n=12 fibres from 8 mice and Lkb1 
hom KO; n=7 fibres from 5 mice. Single fibre discharge frequency is plotted against PO2 between basal 
discharge to a maximum mean frequency plateau or failure. Mean response curves for Lkb1 flox, Lkb1 het 
KO and Lkb1 hom KO were significantly different to the TH-Cre (control) curve (P < 0.05) and Lkb1 het 
KO and Lkb1 hom KO hypoxic response curves were significantly different to the Lkb1 flox response 
curve (P < 0.05); two way repeated measures ANOVA with Bonferroni post hoc comparisons test. 
B) Mean basal single fibre discharge frequency observed for each of the 4 transgenic mouse groups. 
Error bars indicate mean + S.E.M. * denotes P < 0.05 vs TH-Cre and + denotes P < 0.05 vs Lkb1 flox; one 
way factorial ANOVA with Bonferroni post hoc comparisons test. 
C) As in B) but for the single fibre peak discharge frequency attained in hypoxia. Error bars indicate mean 
+ S.E.M. * denotes P < 0.05 vs TH-Cre and + denotes P < 0.05 vs Lkb1 flox; one way factorial ANOVA 
with Bonferroni post hoc comparisons test. 
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Figure 4.4 Lkb1 deletion depresses the carotid body hypoxic response curve exponential rate 
constant and lowers the PO2 at which the maximum discharge frequency is achieved.  
A) Mean exponential rate constants calculated from hypoxic response curves from TH-Cre (control; n=8 
fibres from 6 mice) and Lkb1 hom KO (Lkb1 hom KO; n=7 fibres from 5 mice) groups. Error bars indicate 
mean + S.E.M. * denotes P < 0.05 vs TH-Cre; unpaired t-test. B) As in A) but for the superfusate PO2 
measured at the point when the peak discharge frequency had been attained.  
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4.2.3 Deletion of Lkb1 in carotid body type I cells attenuates the chemoafferent 

response to hypercapnia  

Significant multiplicative CSN response interactions measured during simultaneous 

hypoxic and hypercapnic stimulation have been described previously (46). In Section 

4.2.2, it was demonstrated that partial or complete deletion of type I cell Lkb1 markedly 

diminished the chemoafferent response to hypoxia. It was next examined whether the 

CBs isolated from Lkb1 hom KO mice, that had a significant down-regulation in hypoxic 

sensitivity, had a suppressed chemoafferent response to hypercapnia, as would be 

expected if these stimuli were interdependent.  

 

Chemoafferent responses to hypercapnia (PCO2 approximately 80 mmHg, PO2 

approximately 200 mmHg) were performed on CBs isolated from TH-Cre (control) and 

Lkb1 hom KO mice. The mean discharge frequency in hypercapnia was recorded from 

the final minute of exposure after a relatively stable steady state discharge frequency 

had been established. Characteristic example traces of single/few fibre chemoafferent 

responses to hypercapnia for each group are shown in Figure 4.5A. Consistent with 

Section 4.2.2, the chemoafferent discharge frequency recorded under basal conditions 

was markedly reduced in the Lkb1 hom KO group compared with TH-Cre controls, 

measuring 0.22 ± 0.07 Hz and 0.54 ± 0.12 Hz respectively (Figure 4.5B). The absolute 

steady state discharge frequency detected during hypercapnic stimulation was also 

depleted in CBs isolated from Lkb1 hom KO mice (0.47 ± 0.18 Hz) in comparison with 

the TH-Cre controls (2.13 ± 0.33 Hz)(Figure 4.5B). Accordingly the CO2 sensitivity 

(calculated as Δ discharge frequency (Hz) / mmHg PCO2) was significantly depressed in 

Lkb1 hom KO CBs measuring only approximately 15% of that calculated for TH-Cre 

control group (Figure 4.5C). Lkb1 depletion appears not only to diminish the CB 
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response to hypoxia, but also the chemoafferent response to hypercapnia. These 

findings are therefore consistent with the idea that hypoxic and hypercapnic stimuli are 

exquisitively interdependent. 
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Figure 4.5 Lkb1 is an important mediator of the carotid body response to hypercapnia. 
A) Example raw traces of single/few fibre chemoafferent recordings during exposure to hypercapnia for 
TH-Cre (control) and Lkb1 hom KO mouse groups. Raw discharge is shown (upper) along with frequency-
time histograms that collated single fibre action potentials over 10 s intervals (lower). Single fibre 
discriminations are shown inset. B) Mean discharge frequencies recorded under normocapnic (PCO2 ~ 
40 mmHg) and hypercapnic (PCO2 ~ 80 mmHg) conditions for TH-Cre (control); n=6 fibres from 4 mice, 
and Lkb1 hom KO; n=4 fibres from 4 mice. Error bars indicate Mean ± S.E.M. * denotes P < 0.05 TH-Cre 
v Lkb1 hom KO; one way factorial ANOVA with Bonferroni post hoc analysis. C) Calculated mean CO2 
sensitivity (Δ Hz / mmHg PCO2) for TH-Cre and Lkb1 hom KO mouse groups. Error bars indicate Mean + 
S.E.M. * denotes P < 0.05 compared with TH-Cre; unpaired t-test.  
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4.3 Chapter synopsis and discussion 

 

4.3.1 Summary of key findings 

The main findings of the current chapter are described as follows; 

 

• A reduction in Lkb1 protein expression significantly diminished basal CB 

chemoafferent activity. 

 

• Lkb1 deletion virtually abolished the functional CB chemoafferent response to 

hypoxia.  

 

• Depletion in Lkb1 also significantly suppressed the magnitude of CB excitation 

induced by hypercapnic stimulation.  
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4.3.2 Lkb1 expression in the carotid body is central to the generation of basal 

chemoafferent discharge frequency  

Findings from the current study showed that a reduction in Lkb1 expression significantly 

depressed basal CB chemoafferent activity. This suggests that tonic Lkb1-AMPK 

signalling is necessary for the generation of a large component of the basal CSN 

discharge frequency.  

 

The mechanism underpinning the precise origin of post-synaptic action potential 

production in the absence of any external stimulus is not known. Some reports indicate 

that type I cells spontaneously depolarise in normoxia/hyperoxia as a consequence of 5-

HT mediated PKC activation and transient attenuation of the background K+ current 

(277, 278). This in turn would evoke Ca2+ influx and neurotransmitter release leading 

directly to post-synaptic action potential generation.  

 

A similar mechanism involving Lkb1-AMPK may also contribute to these spontaneous 

type I cell depolarisations. A number of specific AMPK phosphorylation targets in the 

type I cell have been characterised to date including the TASK, TREK-1 and BKCa 

channels (29, 54, 88). Of these, the TASK and TREK-1 channels would be expected to 

be active at the type I cell resting membrane potential. In the presence of Lkb1, a 

degree of AMPK activation even in normoxia/hyperoxia would potentially allow for some 

direct phosphorylation and inhibition of TASK and TREK-1 channel activity. This would 

reduce the background K+ current and cause a transient type I cell depolarisation before 

the channel(s) was subsequently dephosphorylated. Future studies may focus on 

whether the overall phosphorylation status of TASK and TREK-1 channels dependent 

on PKC, AMPK and potentially PKA (see Chapter 6) activity may specifically determine 
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the rate and magnitude of spontaneous cellular depolarisations and regulate the basal 

chemoafferent discharge frequency. A mechanism of this nature may also act to 

establish the sensitivity of the type I cell to a range of physiological or pathological 

stimuli.  

 

Identification of Lkb1-AMPK signalling in mediating basal CB activity may be of 

significant clinical importance. Elevations in basal CSN discharge frequency (termed 

sensory long term facilitation; sLTF) have been associated with an increase in 

sympathetic outflow and hypertension in animals and humans following periods of 

chronic intermittent hypoxia (2, 310). Interestingly, the sLTF following CIH has been 

proposed as being a consequence of higher rates of ROS production and inhibition of 

mitochondrial complex I activity (313). A sufficient depression of mitochondrial energy 

metabolism, even in normoxia, has the potential to increase the AMP:ATP ratio and 

further activate AMPK. Preliminary findings in Chapter 3 demonstrated that moderate 

chemostimulation (comparable to that seen in sLTF) induced by NO2
- (a mild 

mitochondrial inhibitor) was partially reversed by pharmacological inhibition of AMPK. It 

may be plausible to suggest that the CB sLTF following CIH is a direct consequence of 

an increase in Lkb1-AMPK signalling following mild ROS induced mitochondrial 

inhibition. This should be examined directly in future work. Selective inhibitory targeting 

of the Lkb1-AMPK pathway in the CB may prove to be clinically important in reducing 

the sLTF and hypertension in patients with sleep disordered breathing.  

 

4.3.3 Lkb1 provides the key to carotid body activation by hypoxia 

The experiments performed in Chapter 3 showed that mild mitochondrial inhibition 

enhanced the CB hypoxic sensitivity. This provided further evidence emphasising that 
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mitochondrial inhibition is the key to CB O2 sensing. The identification of a clearly 

defined signalling cascade that links the run-down in mitochondrial energy metabolism 

with type I cell stimulation has remained elusive. The principal focus of the current 

chapter was to investigate if activation of the Lkb1-AMPK pathway was the critical 

intermediate step in mediating this process. 

 

Partial or complete Lkb1 deletion significantly diminished the functional CB 

chemoafferent response to hypoxia. The findings from the current study provide 

conclusive support for the proposal that Lkb1-AMPK signalling is necessary for full 

carotid body activation by hypoxia. It is suggested that the Lkb1-AMPK system acts as 

the primary sensor of a run-down in mitochondrial oxidative metabolism during hypoxia 

and is also the principal effector in mediating hypoxia stimulus response coupling within 

the type I cell.  

 

Additional experiments were performed on isolated type I cells by colleagues at the 

University of Leeds and not by the author of this thesis. These results demonstrated that 

the elevation in [Ca2+]i observed in response to hypoxia was almost completely 

abolished in type I cells isolated from Lkb1 hom KO mice (data not shown). It is 

proposed that the lack of a full chemoafferent response to hypoxia seen in the intact CB 

preparation was due to a depression in type I cell hypoxic sensitivity and not because of 

any functional deficit in the chemoafferent neurones.  

 

An elevation in the AMP:ATP ratio and subsequent activation of AMPK in response to 

mitochondrial poisons and hypoxia is well characterised (5, 101). Lkb1 mediated 

phosphorylation of the Thr 172 residue on the α subunit of AMPK is recognised as the 
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essential process that activates AMPK in response to a number of pharmacological and 

physiological stimuli including hypoxia (105, 106, 346). It is proposed that the deletion of 

Lkb1 in these experiments prevented any hypoxia induced AMPK activation and 

subsequent phosphorylation of downstream targets and this accounted for a reduction in 

type I cell depolarisation, Ca2+ influx, neurosecretion and the whole organ chemoafferent 

response to hypoxia. The precise downstream AMPK phosphorylation targets in the CB 

type I cell include sites on the TASK, TREK-1 and BKCa channels (29, 54, 88), all of 

which are implicated in CB O2 sensing.  

 

CBs isolated from Lkb1 het KO and Lkb1 hom KO animals both showed the same 

statistical degree of response attenuation upon hypoxic stimulation. Measurements of 

type I cell Lkb1 protein expression for all groups were not made, but it is estimated that 

Lkb1 expression in the Lkb1 het KO CB was approximately 50% of the TH-Cre control. 

This may be an overestimate given that insertion of the loxP excision sequence has 

been shown to depress Lkb1 expression even in the absence of Cre recombinase (106). 

It still appears that depletion of CB Lkb1 expression in the Lkb1 het KO group by 

approximately 50% severely depressed the CB response to hypoxia, and further 

deletion in the Lkb1 hom KO group caused no further functional shortfall. This implies 

that AMPK-mediated activation of the CB response to hypoxia requires a minimum of 

50% of the control level of Lkb1 protein expression.  

 

Mean data from both the Lkb1 hom KO and Lkb1 het KO CB groups suggested that 

although the response to hypoxia was markedly attenuated, a very small residual 

component was still preserved. Type I cell Lkb1 protein expression analysis did not 

positively detect any Lkb1 mRNA expression in cells isolated from the Lkb1 hom KO 
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group. Therefore, the residual response is unlikely to be because of incomplete knock 

down of Lkb1. Rather, the small elevation in discharge frequency is most probably due 

to CB activation evoked independently of Lkb1-AMPK signalling. Given the link between 

mitochondrial electron transport and CB hypoxic chemotransduction highlighted in 

Chapter 3 it is suggested that some type I cell depolarisation may be a consequence of 

direct TASK-like channel deactivation following the absolute reduction in [ATP]i, perhaps 

under conditions of very severe hypoxia (343). Even so, these data clearly emphasise 

that the vast majority of hypoxia stimulus response coupling in the CB is critically 

dependent on Lkb1-AMPK signalling.  

    

4.3.4 Lkb1 deletion attenuates the carotid body response to hypercapnia; is this 

due to a complete lack of type I cell function? 

Complete deletion of Lkb1 expression significantly diminished the CB chemoafferent 

response to hypercapnia. The reasons for this are unclear. It has been shown that the 

hypoxic sensitivity of the CB is augmented by hypercapnia, indicative of a strong 

interaction between these two stimuli (46). The observed absence of hypercapnic 

sensitivity in the Lkb1 hom KO group may have been a direct consequence of a 

diminished hypoxic sensitivity.  

 

Translation of hypoxic or hypercapnic stimuli into a functional elevation in chemoafferent 

discharge frequency involves many of the same chemotransduction processes including 

inhibition of background TASK-like and BKCa conductances, type I cell depolarisation, 

Ca2+ influx and neurosecretion (18). Whilst there is little evidence for AMPK being 

stimulated directly by hypercapnia, the absence of basal Lkb1 mediated AMPK 
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activation may have altered the threshold required for hypercapnic response initiation by 

downregulating any or all of the processes described above.  

 

Alternatively, the absence of responses to both hypoxia and hypercapnia may have 

been due to a complete loss of type I cell chemoreceptor function. The STRAD-Lkb1-

MO25 complex is known to phosphorylate a total of 13 kinases, all of which are part of 

the AMPK sub-family (348). At present very little is known about the function of these 

proteins but it has been suggested that some may be involved in regulation of cell 

growth, proliferation and polarity (reviewed in (349)). It is possible that the loss of Lkb1 

disrupts the full development of important type I cell specific chemotransduction 

processes.  

 

That said, experiments performed on isolated type I cells by colleagues at the University 

of Leeds demonstrated that Lkb1 deficient cells had an augmentation in [Ca2+]i in 

response to a 60 mM K+ external stimulus (albeit seemingly less than those rises 

recorded for TH-Cre control type I cells) (data not shown). In addition, a small degree of 

chemoafferent excitation was observed in almost all Lkb1 hom KO CBs in very severe 

hypoxic conditions and all fibres generated a measurable level of basal discharge. This 

indicates that some of the key processes involved in type I cell hypoxic and hypercapnic 

chemotransduction are maintained even in the complete absence of Lkb1. Future 

studies should, however, be performed to demonstrate that the isolated CBs from the 

Lkb1 hom KO mice are capable of generating robust responses to stimuli that are 

unaffected by the loss of hypoxic sensitivity. This could be achieved by administration of 

exogenous doxapram (TASK channel inhibitor) (350), a substance that would be 
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predicted to depolarise the type I cell directly and elevate chemoafferent discharge 

frequency independent of Lkb1-AMPK activation (351).  

 

The full impact of Lkb1 deletion on type I cell phenotype is unknown. Although the 

results presented in this chapter are strongly indicative of Lkb1-AMPK signalling being 

central to the CB hypoxia stimulus response coupling process, they should still be 

viewed with a significant degree of caution given the other uncharacterised potential 

effects that partial or total Lkb1 deletion may have on type I cell function or viability.  

 

4.3.5 Conclusions 

In the CB, Lkb1 is required for the generation of the majority of the basal chemoafferent 

discharge frequency. Furthermore, Lkb1 is essential for evoking the full chemoafferent 

response to hypoxia. This suggests that, even in normoxia, Lkb1 phosphorylates AMPK, 

thus provoking a degree of basal AMPK activation. Importantly, increased 

phosphorylation of AMPK by Lkb1 is necessary to further activate the CB and to 

enhance the chemoafferent discharge frequency in hypoxia. These data support the 

proposal that Lkb1-AMPK signalling provides the critical link between hypoxia induced 

suppression of mitochondrial energy metabolism and type I cell stimulation.  

 

 

 



 

	   151	  

5. Studying the effects of glucose deprivation on the intact 

carotid body in vitro: low glucose sensing or metabolic 

depletion?  

 

5.1 Chapter introduction and overview 

 

A number of previous studies have proposed that the CB is sensitive to low glucose and 

functions as a physiological glucose receptor within the whole animal (238, 246, 248). 

Given the strong association between metabolic stress and CB stimulation in hypoxia 

described in the previous two chapters, it is possible that a similar mechanism leading to 

CB excitation may exist in response to a fall in glucose concentration. If a reduction in 

substrate delivery into the mitochondria leads to the depression of ATP synthesis then, 

as with hypoxia, this may lead to activation of Lkb1-AMPK. Accordingly, central low 

glucose sensing neurones are recognised as being stimulated subsequent to an 

increase in AMPK activity (235, 236).  

 

Whilst a role for the mammalian CB in glucose homeostasis has been clearly defined 

(see Chapter 1), there remains a debate as to whether the CB responds either directly 

and rapidly to low glucose, or indirectly to some other blood-borne stimulus released as 

a consequence of systemic hypoglycaemia.  

 

The direct impact of low glucose on CB function appears equivocal. Freshly isolated 

intact CB preparations seem to be acutely unresponsive to low glucose even at sub-
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physiological concentrations. Kumar and colleagues demonstrated that the in vitro CB 

chemoafferent activity was not enhanced upon exposure to 2 mM glucose (242) and this 

same glucose concentration reduced the CB sensitivity to hypercapnia (243). Conde et 

al. observed that complete glucose deprivation did not acutely stimulate whole CB 3H-

CA or ATP release and failed to potentiate the CB response to mild (7% O2) hypoxia 

(247). However, sustained exposure to glucose deprivation has been shown to stimulate 

the intact CB, with an augmented secretion of neurotransmitters being observed after 

approximately 40 minutes (247).  

 

In contrast, long-term (> 24 hours) in vitro CB culture preparations show robust and 

acute sensitivity to physiological levels of low glucose. In the CB slice preparation, 

3.3 mM glucose inhibited type I cell K+ conductance and evoked a rapid and measurable 

elevation in DA release (246). Intracellular voltage recordings of petrosal neurones co-

cultured with type I cell clusters demonstrated that 3.3 mM glucose almost 

instantaneously enhanced the action potential firing frequency, indicative of intrinsic type 

I cell low glucose sensitivity (248). In both instances, responses to physiological levels of 

low glucose were only detected when the superfusate PO2 was lowered to 90 mmHg, 

demonstrating a PO2 dependence on the CB low glucose sensitivity. Zhang et al 

suggested that the absence of a response in the intact CB, observed in other studies, 

was due to the high level of PO2 used in these experiments (248). Given that hyperoxia 

attenuates the response to hypercapnia (46), it is notional that hyperoxia may act to 

impair responses to low glucose in a similar way. In the intact CB explant model, 

following 24 hours of whole organ culture, complete removal of glucose from the 

superfusate did not increase 3H-CA release in 20% O2 but it did potentiate the response 

to hypoxia, again emphasising that low glucose sensitivity is dependent on PO2 (249).  
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The focus of the following set of experiments was as follows: 

 

1. To establish if the nature of the response of the freshly isolated intact carotid body in 

vitro to prolonged glucose deprivation is a consequence of direct low glucose sensing or 

time dependent metabolic reserve depletion.  

 

2. To examine if there is a dependence of PO2 on the excitation evoked by glucose 

deprivation in the freshly isolated CB.  

 

3. To investigate whether the conditions of CB tissue incubation, following isolation, 

altered the sensitivity of the whole organ to subsequent low glucose stimulation.  
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5.2 Results 

 

5.2.1 The impact of basal chemoafferent fibre discharge frequency on the time 

taken for the carotid body to respond to glucose deprivation 

Recordings of single unit chemoafferent discharge frequency made in the rat in vivo 

have shown a frequency of approximately 0.25–1.5 Hz in arterial normoxia (41). In the 

first experiments in the present study, the superfusate PO2 was adjusted (at a fixed 

PCO2 of approximately 40 mmHg) to set a basal frequency of 0.25–1.5 Hz in 11 mM 

glucose consistent with those observations made in vivo in arterial normoxia. After this 

baseline level of discharge frequency was established the CB was exposed to a glucose 

free superfusate (osmolality balanced with mannitol) equilibrated at the equivalent PO2. 

The time taken to respond to the glucose free stimulus was taken when a level of 

discharge 10% or greater than the mean control basal discharge frequency had been 

achieved and maintained for at least 30 seconds.  

 

An example of a characteristic response to glucose deprivation at a basal level of 

discharge between 0.25–1.5 Hz is shown in the upper panel of Figure 5.1A. All fibres set 

at a basal level of discharge frequency between 0.25–1.5 Hz, did not respond acutely to 

glucose deprivation, consistent with a lack of intrinsic low glucose sensitivity. At this 

level of basal discharge frequency an increase in discharge frequency was detected 

only after at least 20 minutes of glucose free exposure. After a short period of measured 

excitation, peaking at 3.73 ± 0.90 Hz, the discharge frequency fell to below basal levels 

or was completely abolished.  
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The delayed response to glucose free exposure observed after 20 minutes or more was 

hypothesised as being a consequence of time dependent depletion in metabolic reserve. 

In the next series of experiments, the superfusate PO2 was decreased so that the basal 

chemoafferent discharge frequency increased to levels consistent with moderate 

hypoxia (see Chapter 2). This was predicted to elevate the rate of glucose utilisation 

through increased glycolysis (352). After a steady state basal frequency had been 

established (that was still significantly below the level of a peak hypoxic response) 

glucose was removed from the superfusate.  

 

Example traces of the effect of an increase in basal frequency on the response time to 

glucose deprivation are shown in the middle and lower panels of Figure 5.1A. 

Regression analysis of the grouped data showed a strong correlation between the level 

of basal chemoafferent fibre discharge frequency and response time to glucose 

deprivation (R2 = 0.7, P < 0.05) (Figure 5.1B). The stimulation induced by glucose 

deprivation was still not instantaneous even at very high basal frequencies (Figure 

5.1B). These results are consistent with the notion that the basal rate of glycolysis 

determines the time taken for the CB to respond to glucose deprivation and that a 

moderate level of steady state hypoxia does not induce any acute low glucose 

sensitivity.  
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Figure 5.1 The time taken to respond to glucose deprivation is dependent on basal chemoafferent 
activity.  
The data presented was taken from 16 single chemoafferent fibres from 13 CB preparations. A) Example 
traces showing the responses to glucose deprivation with increasing initial basal discharge frequencies 
(upper to lower). Chemoafferent single fibre raw discharge was recorded and expressed in frequency 
histograms binned at 10 second intervals. For each trace multiple action potentials have been overdrawn 
to show the single fibre discrimination. B) Grouped data showing a correlation between basal frequency 
and the time taken to respond to glucose deprivation (R2 = 0.7, P < 0.05; linear regression analysis).  
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5.2.2 Exposure of the carotid body to severe hypoxia reduces the time taken to 

respond to subsequent glucose deprivation  

The level of glucose utilisation through glycolysis in the CB is known to be dependent on 

the severity of hypoxia (352). It was next examined whether stimulation of the CB by 

severe hypoxia had the potential to reduce the time taken to respond to a subsequent 

glucose free stimulus; potentially through depletion of any metabolic reserve stored 

within either the type I cell clusters or the afferent neurones. The CB was exposed to 

one or two 4-5 minute periods of severe hypoxia (superfusate PO2 approximately 60 

mmHg) in 11 mM glucose. Subsequently, after a steady state level of discharge 

frequency had been re-established (between 0.25–1.5 Hz), superfusate glucose was 

removed and the time taken to a response was measured. An example of the 

characteristic response to glucose deprivation following two exposures to severe 

hypoxia is shown in Figure 5.2A. Control experiments were performed on CBs that were 

not subjected to hypoxia before removal of glucose. This control group was the same as 

described in 5.2.1.  

 

A single episode of severe hypoxia decreased the time taken to respond to subsequent 

glucose deprivation by approximately 40% and a greater reduction in time of 65% was 

observed following two hypoxic exposures (Figure 5.2B). The peak frequency response 

to glucose deprivation was not significantly different among the three groups (3.73 ± 

0.90 Hz; control, 2.83 ± 0.35 Hz; post one hypoxic exposure, 4.02 ± 0.53 Hz; post two 

hypoxic exposures). This verified that prior exposure to severe hypoxia did not attenuate 

the magnitude of the chemoexcitation evoked by glucose deprivation but did lessen the 

time taken to respond.  
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In all experiments where severe hypoxia was applied before the glucose free stimulus, 

the maximum hypoxic frequency was initially recorded (Figure 5.2A). The peak 

chemoafferent discharge frequency was also measured in glucose free conditions 

before it diminished. Examples of the responses of the same fibre to glucose deprivation 

and hypoxia are shown in Figure 5.3A. Comparison of the mean peak frequencies 

attained in severe hypoxia and glucose deprivation identified that the degree of 

chemostimulation induced by glucose deprivation was less than 15% of that observed 

during severe hypoxia (Figure 5.3B).  
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Figure 5.2 The time taken to respond to glucose deprivation is significantly reduced by prior 
exposure to severe hypoxia. 
The data presented was taken from 7 single chemoafferent fibres from 6 CB preparations in the control 
group, 9 fibres from 5 CB preparations in the post one hypoxic exposure group and 12 fibres from 8 CB 
preparations in the post two hypoxic exposures group. A) Example trace showing the response to a 
glucose free stimulus following two 4-5 minute episodes of severe hypoxia. Raw neuronal discharge is 
shown in the upper panel and discharge from a single fibre is expressed in frequency histograms binned 
at 10 second intervals below. Inset; Multiple action potentials have been overdrawn to show the single 
fibre discrimination. B) Grouped data showing that one or two exposures to severe hypoxia significantly 
decreased the time taken to respond to subsequent glucose deprivation. Error bars indicate + SEM.  
* denotes a significance of P < 0.05 compared with the time to a response to glucose free in the control 
group and + denotes a significance of P < 0.05 compared with the time taken to a response to glucose 
free in the post single hypoxic episode group; one way factorial ANOVA with Bonferroni post hoc analysis. 
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Figure 5.3 The amplitude of a chemoafferent excitation induced by glucose deprivation is 
significantly less than that evoked by severe hypoxia.  
A) Example of the raw discharge taken from the same single fibre showing a 10 second period of maximal 
hypoxic (upper) and glucose free (lower) stimulation. B) Grouped data demonstrating that the response to 
glucose deprivation was significantly smaller than that induced by hypoxia. The mean data was taken from 
12 fibres from 8 CB preparations that were exposed to both severe hypoxia and glucose deprivation. Error 
bars indicate + SEM. * denotes a significance of P < 0.05 compared with hypoxia; paired t-test.  
 

0"

100"

$100"

100"

0"

$100"Ra
w
"d
is
ch
ar
ge
"(μ

V)
"

Ra
w
"d
is
ch
ar
ge
"(μ

V)
"

peak"frequency"in"glucose"free"

peak"frequency"in"hypoxia"

1s"
Pe
ak
"fr
eq

ue
nc
y"
(H
z)
"

hypoxia" glucose"free"

A" B"

*"

0"

10"

20"

30"



 

	   161	  

5.2.3 The lack of acute excitation induced by glucose deprivation in the carotid 

body; a functional role for glycogen  

Failure of glucose deprivation to acutely stimulate the CB would indicate that type I cells 

have a level of metabolic reserve that can be utilised in the event of complete absence 

of extracellular substrate delivery. The most common form of metabolic reserve in 

neuronal brain tissue is glycogen, stored predominately in the neighbouring astrocytes 

(353). Glycogen is metabolised in astrocytes to form glucose-6-phosphate, which in turn 

can be converted to lactate and released into the interstitium (354, 355). Uptake of 

lactate by the adjacent neurones supports their metabolism in times of increased activity 

(356, 357). Very recently, glycogen metabolism to form lactate has also been implicated 

in supporting the function of peripheral nerves during glucose free exposure (358). To 

this point a functional role for glycogen in the CB has not been defined.  

 

Immunohistochemical staining of 10 µm sections of CB tissue showed co-localisation of 

tyrosine hydroxylase (TH) (a classical type I cell marker) with both glycogen synthase I 

and the brain/neuronal isoform of glycogen phosphorylase BB (Figure 5.4A and B 

respectively). In both instances, staining was reproducible in a total of 3 sections from 3 

different CBs. In all sections staining for glycogen synthase I and glycogen 

phosphorylase BB was not completely confined to TH positive type I cells suggesting a 

presence of these enzymes in other non TH containing cells e.g. chemoafferent 

neurones or possibly type II cells (Figure 5.4A and B). Addition of the secondary 

antibodies without prior primary antibody staining was performed to examine potential 

non-specific secondary antibody binding. In these instances fluorescence intensity was 

almost completely abolished. These data indicate that type I cells along with other cells 

in the CB contained enzymes capable of both synthesis and metabolism of glycogen.  
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To study the functional importance of glycogen in maintaining CB activity during glucose 

deprivation, experiments were performed on CB tissue exposed to the glycogen 

phosphorylase inhibitor 1, 4-Dideoxy-1, 4-imino D-arabinitol hydrochloride (DAB); an 

agent shown to attenuate glycogenolysis in isolated rat hepatocytes (359). A DAB 

concentration of 100 µM was chosen (five times that used on single cells), in order to 

overcome any diffusion limitations present within the intact CB preparation. 100 µM DAB 

was initially added during superfusion with 11 mM glucose and the same DAB 

concentration was maintained during glucose free exposure. An example response to 

glucose deprivation in the presence of DAB is shown in Figure 5.5A.  

 

Partial or complete inhibition of glycogen metabolism with DAB significantly reduced the 

time taken to respond to glucose free exposure by approximately 33% (Figure 5.5B). In 

all experiments, initial basal discharge was established between 0.25–1.5 Hz before 

removal of glucose. Maximal stimulation evoked by glucose deprivation was not 

significantly different between groups; control 5.1 ± 1.2 Hz and DAB 3.3 ± 0.7 Hz 

(unpaired t-test). These data support the proposal that glycogen metabolism has an 

important role in supporting the chemoafferent discharge frequency during glucose 

deprivation.  
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Figure 5.4 Co-localisation of tyrosine hydroxylase with glycogen synthase I and neuronal 
glycogen phosphorylase in the rat carotid body.  
CB sections (10 µm) were stained with antibodies specific to glycogen synthase I (A) and neuronal 
glycogen phosphorylase (B) along with tyrosine hydroxylase (TH), a marker for type I cells. Merged 
images are shown in the right hand panels suggesting significant co-localisation. (Scale bar : 50 µm).  
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Figure 5.5 Glycogen is significant in maintaining chemoafferent discharge frequency during 
glucose deprivation.  
Glycogen reserve was inhibited using a known blocker of glycogen phosphorylase, 4-Dideoxy-1, 4-imino 
D-arabinitol hydrochloride (DAB). Data presented is taken from 8 fibres from 8 CB preparations (control), 
and 6 fibres from 4 CB preparations (DAB). A) Example traces showing the response to glucose 
deprivation are demonstrated in control CBs and in CBs treated with DAB. Chemoafferent single fibre raw 
discharge was recorded and expressed in frequency histograms binned at 10 second intervals. For each 
trace multiple action potentials have been overdrawn to show single fibre discrimination. B) Grouped data 
showing that DAB significantly decreased the time taken to respond to glucose deprivation. Error bars 
indicate + SEM, * denotes a significance level of P< 0.05 compared with the time to a response in the 
control group; unpaired t-test.  
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5.2.4 Stimulation evoked by glucose deprivation can be reversed by 1 mM 

glucose; evidence against the carotid body being a physiological glucose 

receptor  

For the CB to be considered a direct physiological gluco-sensitive tissue it would be 

expected to show a degree of stimulation to concentrations of low glucose within the 

physiological range. Two studies have reported acute CB tissue stimulation induced by 

physiological low glucose concentrations in vitro in the CB slice and the CB co-culture 

preparations respectively (246, 248). However, an acute response to physiological low 

glucose has not been observed in the intact CB preparations monitoring either 

chemoafferent discharge frequency or 3H-CA release (242, 247).  

 

Experiments performed in all previous sections of this chapter have identified a 

response to prolonged glucose deprivation. In this section, it was examined if this 

response was maintained by adding back just 1 mM glucose, as would be predicted if 

the CB tissue was a functional low glucose sensor. CBs were first exposed to a single 5 

minute period of severe hypoxia in order to reduce the time taken for them to respond to 

subsequent glucose deprivation (see Section 5.2.2). A baseline discharge frequency 

between 0.25–1.5 Hz was established and the same PO2 was sustained for the 

remainder of the experiment. During the initial glucose free evoked stimulation 1 mM 

glucose was returned to the superfusate. A second glucose free stimulus was then 

maintained for the duration of the protocol. A characteristic example is shown in Figure 

5.6A. In all experiments the chemoexcitation generated by glucose deprivation was 

rapidly (within seconds) reversed by the addition of only 1 mM glucose (Figure 5.6B). 

Chemoafferent stimulation to a second glucose free stimulus was observed that was 

equal or greater in magnitude compared with the initial response indicating that the 
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decline in discharge frequency evoked by 1 mM glucose was not due to CB failure or 

neurotransmitter depletion (Figure 5.6A and B).  
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Figure 5.6 Stimulation evoked by glucose deprivation is completely reversed by 1 mM glucose.  
A) Example trace showing the effect of 1 mM glucose on the response to complete glucose deprivation. 
Raw neuronal discharge is shown in the upper panel and discharge from a single fibre is expressed in 
frequency histograms binned at 10 second intervals below. Inset; Multiple action potentials have been 
overdrawn to show the single fibre discrimination. B) Grouped data showing that addition of 1 mM glucose 
abolishes the response to initial glucose free stimulation. Data presented was taken from 6 spikes from 3 
CB preparations. Error bars indicate + SEM. * denotes a significance of P < 0.05 compared with the basal 
frequency in 11 mM glucose; one way repeated measures ANOVA with Dunnett’s post-hoc comparisons 
test.  
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5.2.5 Excitation induced by glucose deprivation can be abolished or is rapidly 

reversed by lactate and pyruvate; evidence for a response to metabolic stress 

rather than directly to low glucose  

Prolonged exposure of the CB to glucose deprivation would be expected to reduce the 

rate of glycolysis following total depletion of any glycogen reserve. In the absence of 

other substrates entering the TCA cycle or electron transport chain this would 

subsequently decrease cytosolic and mitochondrial NADH levels, causing a reduction in 

electron flux and decreased ATP production.  

 

Studies in this section were designed to investigate if prolonged glucose deprivation 

stimulated chemoafferent excitation through a reduction in glycolysis and cellular energy 

status. CBs were exposed to a glucose free superfusate with or without the addition of 

5 mM lactate and 0.5 mM pyruvate. Lactate and pyruvate concentrations were selected 

to maintain a standard lactate: pyruvate ratio of approximately 10:1 (360). The PO2 was 

adjusted to set a basal level of chemoafferent discharge frequency between 0.25–1.5 Hz 

and remained the same throughout the protocol.  

 

Examples of the chemoafferent discharge frequency measured from two individual 

preparations during glucose free exposure with and without lactate and pyruvate are 

shown in Figure 5.7A. An increase in mean discharge frequency was detected in the 

glucose free only group at 30, 35 and 40 minutes (Figure 5.7B). In contrast no 

chemoafferent stimulation was detected in the presence of lactate and pyruvate 

(Figure 5.7B). This suggests that stimulation during glucose deprivation is a 

consequence of a time dependent run-down in energy status.  
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However, sustained incubation of the CB tissue in lactate and pyruvate may have 

encouraged generation of de novo glucose through the gluconeogenesis pathway. An 

absence of a response therefore may have been due to the maintenance of intracellular 

glucose concentration generated from the lactate and pyruvate substrates.  

 

Investigations subsequently focused on whether the potential metabolic stress and 

chemostimulation during prolonged glucose deprivation could be acutely reversed by 

addition of lactate and pyruvate. During the first glucose free induced response 5 mM 

lactate and 0.5 mM pyruvate were added to the superfusate. An example of the impact 

of lactate and pyruvate on the chemoafferent discharge frequency recorded from a 

single fibre at the point of glucose free induced stimulation is shown in Figure 5.7C. In all 

fibres studied, addition of lactate and pyruvate rapidly restored the enhanced 

chemoafferent discharge frequency to basal levels within seconds (5.7C and D). 

Because of the immediate nature of the decline in chemoafferent activity evoked by 

addition of these substrates it was proposed that they bypassed the glycolysis pathway 

and entered the TCA cycle independent of de novo glucose synthesis through 

gluconeogenesis. This is consistent with the chemostimulation caused by prolonged 

glucose deprivation being purely dependent on a complete run-down in glycolysis.  
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Figure 5.7 Chemoexcitation evoked by glucose deprivation can be abolished or is rapidly reversed 
by lactate and pyruvate. 
A) Individual traces showing the chemoafferent discharge frequency in the glucose free with and without 
5 mM lactate and 0.5 mM pyruvate, upper and lower panels respectively. Discharge frequency is 
expressed in 10 second interval histograms. Single fibre discrimination is shown inset. B) Mean discharge 
frequencies calculated at time points during exposure to glucose deprivation in the presence or absence 
of 5 mM lactate and 0.5 mM pyruvate. Data is presented from 8 fibres from 8 CB preparations (glucose 
free only) and 8 fibres from 6 CB preparations glucose free plus lactate and pyruvate. Error bars indicate ± 
SEM, * denotes P < 0.05 compared with basal frequency; one way repeated measures ANOVA with 
Dunnett’s post-hoc comparisons test. C) As in A) but with lactate and pyruvate rapidly reversing the initial 
stimulation evoked by glucose deprivation. Raw discharge frequency from a single fibre is demonstrated 
(upper) along with frequency histograms (lower). D) Mean data showing that the response to glucose 
deprivation is restored to basal levels by the addition of lactate and pyruvate. Data presented is from 9 
fibres from 5 CB preparations. Error bars indicate + SEM, * denotes P < 0.05 compared with basal 
frequency in 11 mM glucose; one way repeated measures ANOVA with Dunnett’s post-hoc comparisons 
test.  
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5.2.6 Evaluating the effects of glucose deprivation on acute hypoxic sensitivity  

Augmentation of hypoxic sensitivity by mild mitochondrial inhibition using 3.3 mM NO2
- 

has been demonstrated in Chapter 4. These data supported the hypothesis that hypoxic 

sensing in the CB is centred on a reduction in mitochondrial electron transport. 

Earlier in this chapter it was shown that glucose deprivation did not acutely stimulate the 

CB. However, it was put forward that a very small down-regulation in mitochondrial 

electron transport caused by glucose deprivation, although not great enough to elicit 

stimulation on its own, may sensitise the CB to acute hypoxia. 

 

Paired hypoxic responses were recorded in either 11 mM glucose or glucose free 

solutions from the same chemoafferent fibre. The initial PO2 was 300 mmHg and slowly 

decreased until the CB chemoafferent discharge frequency started to increase 

exponentially. At a frequency of approximately 10–12 Hz (below levels of maximal 

excitation), the response was rapidly terminated by switching to a 95% O2, 5% CO2 

superfusate.  

 

An example of the hypoxic response curves performed in 11 mM glucose or 0 mM 

glucose measured from a single fibre is shown in Figure 5.8A. Paired analysis showed 

that to attain a discharge frequency of 5 Hz, the PO2 was lower in the glucose free 

superfusate, indicating a ‘left shift’ of the hypoxic response curve (Figure 5.8B). 

Calculating the difference in discharge frequency at selected PO2 levels during hypoxia 

identified a significant reduction in frequency induced by glucose deprivation at a 

superfusate PO2 of 125 mmHg (Figure 5.8C). Collectively, these data imply that glucose 

deprivation evoked a slight, but significant, attenuation of the CB response to hypoxia.  
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Figure 5.8 Glucose deprivation moderately attenuates the carotid body response to hypoxia.  
Data presented was taken from 8 chemoafferent fibres from 6 CB preparations. A) An example of the 
hypoxic response curves recorded from a single chemoafferent fibre from a single CB preparation 
observed in either glucose free or 11 mM glucose superfusates. B) Paired data showing the PO2 required 
to attain a frequency of 5Hz in 11 mM glucose and glucose free respectively. * denotes P < 0.05 
compared with PO2 in 11 mM glucose; paired t-test. C) The calculated difference in discharge frequency in 
glucose free or 11 mM glucose measured at selected levels of superfusate PO2 during hypoxia. Error bars 
indicate mean ± SEM. * denotes p < 0.05 compared with the difference at the PO2 of 300 mmHg; one way 
repeated measures ANOVA with Dunnett’s post-hoc comparisons test. 
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5.2.7 The impact of carotid body tissue incubation on the subsequent response to 

glucose deprivation  

Published evidence has demonstrated that long term (> 24 hours) culture CB 

preparations had an acute sensitivity to physiological low glucose (246, 248). In these 

studies, CB tissue was cultured in hyperoxic conditions. Whether prolonged hyperoxic 

incubation of the intact CB directly sensitises it to low glucose was investigated in the 

experiments performed in this section.  

 

Freshly isolated CB tissue was immediately placed in ice-cold bicarbonate buffered 

Krebs solution equilibrated with 95% O2 and 5% CO2 (severe hyperoxia) as described in 

Chapter 2. Tissue was incubated under these conditions for less than one hour (< 1 hr, 

hyperoxia), between 4 and 8 hours (4–8 hr, hyperoxia) or for 24 hours (24 hr, 

hyperoxia), before experiments proceeded. Upon recording, a baseline level of 

chemoafferent frequency was established between 0.25 and 1.25 Hz in 11 mM glucose 

by adjusting the superfusate PO2, before exposing the CB to glucose deprivation. 

Characteristic examples of the responses to glucose deprivation following each 

incubation time period in hyperoxia are shown in Figure 5.9A. Incubation of tissue for 4–

8 hours reduced the time taken to respond to glucose deprivation by approximately 30% 

compared with the < 1 hr, hyperoxia group (Figure 5.9B). A greater reduction in the time 

of approximately 65% was observed after 24 hours of incubation (Figure 5.9B).  

 

Additional experiments were performed to examine if ROS production during the 

incubation period was necessary for modifying the CB response to glucose deprivation. 

Tissue was incubated in an ice-cold bicarbonate buffered Krebs solution for 24 hours 

equilibrated with 95% O2, 5% CO2 or air and 5% CO2, in the presence of 1 mM Tempol 
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(superoxide scavenger). Treatment of the CB with Tempol for 24 hours under these 

conditions did not significantly restore the time taken to respond to subsequent glucose 

deprivation (Figure 5.9B). In all groups the initial basal discharge frequency and the 

peak responses to glucose deprivation were not significantly different. These data 

suggest that incubation of the CB in hyperoxia prior to experimentation does impair the 

ability of the CB to maintain discharge in the absence of superfusate glucose (thereby 

diminishing the time taken to respond) but this does not appear to be dependent on the 

generation of ROS.  
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Figure 5.9 The duration of hyperoxic tissue incubation but not the generation of reactive oxygen 
species alters the time for the carotid body to respond to subsequent glucose deprivation.  
Example traces showing the response to glucose deprivation are demonstrated in CBs following 
incubation in ice-cold bicarbonate buffered Krebs equilibrated with 95% O2, 5% CO2 for less than 1 hour 
(i), between 4 and 8 hours (ii) and after 24 hours (iii). Chemoafferent single fibre discharge is expressed in 
frequency histograms binned in 10 second intervals. For each trace multiple action potentials have been 
overdrawn to show single fibre discrimination. B) Grouped data showing the impact of hyperoxic 
incubation, in the presence or absence of Tempol (ROS scavenger), on the subsequent time taken to 
respond to glucose deprivation. Data presented is taken from 10 fibres from 8 CB preparations (< 1 hr, 
hyperoxia), 8 fibres from 5 CB preparations (4–8 hr, hyperoxia), 8 fibres from 7 CB preparations (24 hr 
hyperoxia), 3 fibres from 3 CB preparations (24 hr, hyperoxia, Tempol) and 3 fibres from 3 CB 
preparations (24 hr, air, Tempol). Error bars indicate + SEM, * denotes a significance level of P< 0.05 
compared with the time to a response in the < 1 hr, hyperoxia group, + denotes a significance level of P< 
0.05 compared with the time to a response in the 4-8 hr, hyperoxia group; one way factorial ANOVA with 
Bonferroni post hoc analysis. 
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5.2.8 The impact of glucose deprivation on dissociated rat carotid body type I 

cells  

Preliminary investigations monitoring changes in the type I cell [Ca2+]i were performed to 

investigate the potential origin of the response to glucose deprivation. Dissociated type I 

cells were experimented on within 8 hours of CB isolation. The control superfusate was 

equilibrated at 10% O2, to obtain a PO2 of approximately 80 mmHg. This value is 

consistent with the PO2 used in the studies performed on the CB slice and co-culture 

preparations that reported an acute sensitivity to low glucose (246, 248). [Ca2+]i 

elevations in response to 0% O2 were recorded initially to confirm normal type I cell 

function (Figure 5.10). Exposure of the type I cells to glucose deprivation for 40 minutes 

did not stimulate any increase in [Ca2+]i above baseline levels (Figure 5.10). The 

magnitude of the hypoxia induced elevation in [Ca2+]i during glucose free exposure was 

also suppressed compared to that measured in 11 mM glucose (Figure 5.10). Similar 

results were observed in one other type I cell cluster dissociated from a CB isolated from 

a different animal. These preliminary findings indicate that the chemoafferent response 

to glucose deprivation described earlier in this chapter may not have been of type I cell 

origin.  
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Figure 5.10 Dissociated type I cells do not show an increase in [Ca2+]i in response to glucose 
deprivation for up to 40 minutes of exposure.  
An example spectrum demonstrating the impact of hypoxia and glucose deprivation on [Ca2+]i in type I 
cells. Responses to hypoxia were intact indicative of normal type I cell function. Glucose deprivation failed 
to enhance the type I cell [Ca2+]i at any point over the course of the 40 minute period of exposure.  
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5.3 Chapter synopsis and discussion  

 

5.3.1 Key Findings 

The main points demonstrated in the current chapter are outlined below: 

• The intact CB did not respond acutely to glucose deprivation at a normoxic basal 

discharge frequency of 0.25–1.5 Hz. A response was observed only after at least 20 

minutes of sustained glucose free exposure.  

• The time taken to respond to glucose deprivation was significantly reduced by 

raising basal chemoafferent activity or by prior exposure to severe hypoxia.  

• Tyrosine hydroxylase positive type I cell clusters stained positively for both glycogen 

synthase I and glycogen phosphorylase BB. 

• Pharmacological inhibition of glycogen phosphorylase decreased the response time 

to glucose deprivation.  

• A response to glucose deprivation was immediately reversed by 1 mM glucose. 

• The response to glucose deprivation was abolished or rapidly reversed by lactate 

and pyruvate.  

• Glucose deprivation moderately attenuated the CB chemoafferent response to 

hypoxia. 

• The time taken to respond to glucose deprivation was dependent on the duration of 

CB tissue incubation following isolation from the animal. 

• Freshly isolated type I cells showed no sensitivity to glucose deprivation for up to 40 

minutes of exposure.  

• These data do not support the proposal that the CB is a physiological low glucose 

sensor.  
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5.3.2 The mechanism of glucose free induced chemoexcitation in the intact 

carotid body  

Low glucose sensitive neurones in the brain are thought to be stimulated primarily as a 

consequence of a down-regulation in cellular energy status leading to direct activation of 

AMPK (235, 236). Some reports propose that a reduction in Na+/K+ pump activity 

subsequent to impaired glycolysis may also evoke GI neuronal excitation (237). Central 

to both of these mechanisms is a low glucose induced run-down in metabolism and ATP 

synthesis. Consistent with GI neurones, it has been suggested that CB stimulation 

evoked by glucose deprivation is a consequence of decreased ATP generation (249). 

However, evidence has also been described indicating that alterations in glucose 

metabolism and [ATP]i were not necessary for low glucose induced type I cell excitation, 

(246, 253). This implied that the CB contained some form of unidentified glucose 

sensitive receptor, maybe analogous to those present in the gastro-intestinal tract. 

Experiments performed in this study aimed to resolve these contradictory observations 

and conclusively support the hypothesis that chemoafferent stimulation following 

prolonged periods of glucose deprivation is purely dependent on the complete inhibition 

of glycolysis and a reduction in ATP production.  

 

Pyruvate is the final product of glycolysis. Lactate can generate pyruvate and is utilised 

as an alternative metabolic substrate by some central neurones during glucose free 

exposure (357). In the current investigation, addition of lactate and pyruvate completely 

abolished the CB response to glucose deprivation. These substrates also immediately 

reversed the increase in chemoafferent activity caused by the absence of superfusate 

glucose. Thus, substrates capable of by-passing the glycolytic pathway and rapidly 
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entering the TCA cycle to drive ATP synthesis effectively nullified any glucose free 

induced stimulation.  

 

In the vast majority of recognised mammalian glucose sensors, cell activation or 

deactivation is achieved through the direct modulation of glycolysis and [ATP]i (211, 227, 

232). Central to the control of glycolysis in these cells is the highly specialised enzyme 

glucokinase (211, 227-229, 361). Glucokinase has a very high Km for glucose 

(approximately 8 mM) compared with all other hexokinases that are in the µM range 

(215, 216). This ensures precise control of glycolysis over the full range of physiological 

glucose concentrations and makes these cells exquisitely sensitive to small fluctuations 

in plasma glucose (216).  

 

In the CB, the absence of glucokinase in the type I cell (253) indicates that the rate of 

glycolysis will only begin to be impaired at very low concentrations of intracellular 

glucose. In the current study, the response to prolonged glucose deprivation was 

completely reversed by only 1 mM glucose. This strongly suggests that the stimulation 

was purely a consequence of time dependent run-down in glycolysis following the 

complete depletion of intracellular glucose. This could be the justification as to why a 

complete lack of chemoexcitation was observed in other intact CB preparations where 

2 mM glucose was used as the low glucose stimulus (242, 243). Detection of a response 

only in the complete absence of glucose and not over a physiological range supports the 

proposal that the CB cannot function as an effective physiological glucose sensor.  
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5.3.3 The intact carotid body did not respond acutely to glucose deprivation; a 

role for glycogen 

The central aim of the chapter was to characterise the response of the intact freshly 

isolated CB to prolonged glucose deprivation. The lack of an acute response to 

physiological low glucose has been described previously in this intact preparation (242, 

247). Other different CB preparations appear to have a degree of intrinsic low glucose 

sensitivity (246, 248). It has been speculated that the apparent absence of low glucose 

sensitivity in the intact CB was due to the high level of PO2 used in those investigations 

(248).  

 

In experiments described in this thesis, the basal chemoafferent activity was adjusted to 

frequencies (0.25–1.5 Hz) consistent with those observed in vivo in arterial normoxia, in 

the rat (41). At this level of basal discharge frequency, exposure of the CB to glucose 

deprivation did not produce any further elevation in chemoafferent activity for at least 20 

minutes. Increasing basal chemoafferent frequency to levels consistent with moderate 

hypoxia did reduce the time taken to respond. Even at these relatively high frequencies 

(6-8 Hz), the stimulation was still not rapid, taking at least 4 to 5 minutes to begin. In 

view of these findings it is suggested that the absence of low glucose sensitivity reported 

in previous studies was not a consequence of a high background PO2. It could be 

argued that a PO2 of 90 mmHg used on the monolayer of type I cells co-cultured with 

petrosal neurones (that showed intrinsic low glucose sensitivity) (248) is relatively 

hyperoxic compared to what these cells would be exposed to in vivo. Therefore, another 

mechanism independent of PO2 must account for the low glucose sensitivity of these 

cultured type I cells.  
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Maintenance of basal chemoafferent discharge in glucose free conditions demonstrated 

that the CB tissue was able to sustain metabolic activity in the complete absence of 

extracellular substrate delivery. This is probably due to the presence of a significant 

level of intracellular metabolic reserve within either the type I cell, the afferent neurone 

or another neighbouring cell. In the complete absence of glucose uptake, glycogen 

metabolism would be fundamental for the preservation of glycolysis. In the brain tissue, 

astrocyte glycogen metabolism has been shown to increase during global ischaemia in 

vivo (362) and during glucose deprivation in vitro (355, 363). Functionally, regional 

escalations in astrocytic glycogenolysis have been shown to preserve central neuronal 

cell viability during glucose deprivation (364). It now appears that Schwann cell glycogen 

metabolism is essential in supporting the metabolism and function of peripheral 

myelinated neurones during prolonged glucose deprivation (358).  

 

In this investigation, immunohistochemical analysis of CB sections positively identified 

both glycogen synthase I and glycogen phosphorylase BB in type I cell clusters. This 

implies that the type I cell is able to synthesise and metabolise glycogen. 

Pharmacological inhibition of glycogen phosphorylase significantly decreased the time 

taken for the CB to be stimulated by glucose deprivation. This outlined a functional role 

for glycogen in supporting chemoafferent function in the absence of external glucose 

consumption. However, the response was still not immediate, potentially signifying a 

residual degree of glycogen metabolism. A commercially available inhibitor selective for 

glycogen phosphorylase BB is not available and the DAB concentration used (100 µM) 

may have not been sufficient to completely ablate glycogenolysis in this intact CB 

preparation. The concentration of 100 µM DAB used was 5 fold higher than that 
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previously shown to partially impair hepatocyte glycogenolysis, in order to try and 

overcome diffusion limitations present in this whole organ preparation. A very recent 

study showed that glycogen metabolism in Schwann cells was dramatically impaired 

using 1 mM DAB (358). These cells were also incubated for 2 hours in the presence of 

DAB before experimentation. On reflection, a similar concentration and time of 

incubation in DAB may have further reduced the time taken for the CB to respond to 

glucose deprivation and this would have more conclusively established a functional role 

for glycogen in the CB.  

 

It is established that hypoxia increases the rate of glucose uptake into the CB and this is 

highly indicative of an increase in glycolysis and glucose utilisation (352). The key 

allosteric activator of glycogen phosphorylase BB is AMP (365). Potential hypoxia 

evoked increases in AMP (see Chapter 4) would favour the metabolism of glycogen in 

the CB. Together these two mechanisms are predicted to have enhanced CB glycogen 

depletion in severe hypoxia. It is proposed that this run-down of glycogen accounted for 

the dramatic reduction in time taken for the CB to be stimulated by glucose deprivation 

following exposure to severe hypoxia. During glucose free exposure, a diminished initial 

store of glycogen would be consistent with a more rapid run-down in glycolysis and a 

faster reduction in the cellular energy status. Direct biochemical measurements of tissue 

CB glycogen content were not made because of the exceedingly small quantity of 

tissue. Cellular quantification of glycogen may be estimated by use of electron 

microscopy (358). Using this method, future experiments may focus on monitoring CB 

glycogen content to confirm the presence of glycogen in type I or other cells and 

depletion following severe hypoxia, ischaemia or glucose deprivation.  
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5.3.4 Is the chemoafferent response to glucose deprivation of type I cell origin? 

The chemoafferent response to prolonged glucose deprivation could be a consequence 

of type I cell depolarisation, Ca2+ influx and neurosecretion leading to an increase in 

post-synaptic action potential generation. Alternatively, the increase in frequency could 

be the outcome of an increase in afferent neuronal excitability independent of any type I 

cell activation.  

 

The chemoafferent response to prolonged glucose free exposure is observed 

approximately 20–40 minutes after the initial exposure. Preliminary data presented in 

this chapter indicates that dissociated type I cells are not stimulated by glucose 

deprivation for at least 40 minutes. The reason for this discrepancy was not definitively 

resolved. The chemoafferent responses to glucose deprivation and hypoxia are both 

suggested as being highly dependent on a reduction in cellular energy status. If this 

metabolic stress acted through the type I cell following prolonged removal of superfusate 

glucose (as it does in hypoxia) then the degree of chemoafferent excitation evoked by 

hypoxia and glucose deprivation may be expected to be equivalent.  

 

The findings from this chapter identified that the magnitude of enhanced chemoafferent 

activity observed during prolonged glucose deprivation was only approximately 15% of 

that induced by hypoxia. It may be that the signalling within the type I cell following a 

reduction in energy status is fundamentally different between hypoxia and glucose 

deprivation. This is highly unlikely given that AMPK is activated by hypoxia and glucose 

deprivation (5, 102). It is more probable that the response to glucose deprivation is 

purely of neuronal identity and this would account for the discrepancy between cellular 

and whole organ responses described in this chapter.  
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Prolonged glucose deprivation does stimulate peripheral neurones. Consistent with data 

from the current study, a rise in the rate of spontaneous axonal depolarisations was 

reported in neurones in the optic nerve 35 to 40 minutes following removal of 

superfusate glucose (366). Electron microscopy has detected glycogen like granules in 

both the synaptic and non-synaptic elements of the sensory nerve endings in the CB 

(367, 368). The proposal that the lack of an acute response to glucose free media was 

dependent on glycogen remains plausible even if the excitation is purely of neuronal 

origin. The type I cell may contain more glycogen than the afferent neurone. On the 

other hand, a more rapid run-down of glycogen in the nerve ending compared with the 

type I cell, in normoxia or hypoxia, could be due to the increase in energy demand relied 

upon to generate neuronal action potentials. Calculations derived from neuronal activity 

estimated that an augmentation in single fibre frequency from 0 to 6 Hz increased ATP 

consumption by 8 fold (369). Following faster glycogen depletion in the afferent neurone, 

glycolysis would be impaired leading to a metabolic compromise before having any 

effect on the type I cell. Linking a depression in cellular energy status with an elevation 

in neuronal excitability could be through impairment of the Na+/K+ ATPase but a 

mechanism of this nature is still to be confirmed.  

 

5.3.5 The effect of low glucose on the carotid body response to acute hypoxia 

The mitochondrial hypothesis puts forward that chemoexcitation in hypoxia is dependent 

on a reduction in electron transport and the induction of metabolic stress. In the intact 

CB acute glucose deprivation was unable to increase chemoafferent frequency in basal 

conditions. Glucose deprivation has been shown to augment the CB response to acute 

hypoxia in vitro without stimulating the CB in more normoxic conditions (249, 251). In 
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this study, chemoexcitation evoked by hypoxia was slightly attenuated by glucose 

deprivation as evidenced by a small ‘left shift’ in the hypoxic response curve. The 

discharge frequency at any PO2 was lower in the glucose free solutions and this became 

more exaggerated in more hypoxic conditions. [Ca2+]i elevation in 0% O2 was also 

inhibited in type I cells following 40 minutes of glucose deprivation.  

 

A definitive explanation for this attenuation of the hypoxic response in glucose free 

conditions remains unidentified. Earlier findings in this thesis were consistent with the 

mitochondrial hypothesis and a hypoxia induced reduction in cellular energy status. 

However, the response to hypoxia may still require a significant amount of ATP 

consumption to drive many of the chemotransduction processes. An increase in ATP 

derived independently of the mitochondria may be attained by increased activation of 

adenylate kinase, or through an increase in the rate of glycolysis. The absence of 

extracellular glucose may have led to an inability to produce enough ATP through 

glycolysis to drive the full hypoxic response even when glycogen metabolism was 

maximal.  

 

5.3.6 The effect of tissue incubation on the carotid body response to glucose 

deprivation  

The data from the current study is consistent with those made in other studies indicating 

an absence of acute low glucose sensitivity in freshly isolated CB tissue (242, 243, 247, 

249). Other studies using more long-term CB preparations including CB thin slices and 

co-cultures of type I cell clusters with petrosal neurones have reported rapid CB 

stimulation in response to low glucose (246, 248). Evidence from a recent investigation 
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showed that a single day of culture induced a degree of low glucose sensitivity in type I 

cells that was absent immediately following isolation (249).  

 

The CB tissue that showed acute low glucose sensitivity appeared to have been 

cultured for a period of days under hyperoxic conditions. In vitro preparations incubated 

in hyperoxia are characterised by an increase in ROS production (370-372), an up 

regulation of anti-oxidant enzymes (373), DNA damage (374) and alterations in 

metabolism. More specifically, it has been reported that mitochondrial energy production 

is impaired by selective inhibition of succinate dehydrogenase and aconitase in the TCA 

cycle and ETC. It has been observed that hyperoxia induces a shift away from 

mitochondrial ATP generation in favour of anaerobic glycolysis (375). Pulmonary tissue 

exposed to hyperoxia for 7 days showed an increase in GLUT-1 and GLUT-4 mRNA 

and an increase in mRNA and protein expression of hexokinase II; both consistent with 

enhanced glucose utilisation (376). The same group also showed that ATP generated 

specifically through glycolysis was critical in maintaining lung tissue viability and 

preventing cell death in hyperoxia. Thus, it would seem that in vitro preparations 

exposed to prolonged periods of hyperoxia become more reliant on the availability of 

extracellular glucose uptake.  

 

In this series of experiments, incubation of the whole CB organ in hyperoxia significantly 

decreased the time taken for it to be stimulated by glucose deprivation. The response 

time to glucose deprivation following 24 hours of hyperoxic incubation was only about 

30% of that compared with freshly isolated tissue. These findings suggest that 

prolonged tissue incubation following isolation had a striking effect on the ability of the 

CB to maintain metabolism in the absence of superfusate glucose. Two hypotheses for 
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this are proposed. Firstly, incubation may have caused either a reduction in or an 

impairment of the capability of the organ to utilise metabolic glycogen reserves. 

Secondly, diminished TCA and ETC activity may have made the CB more dependent on 

glycolysis that generates far less ATP per molecule of glucose than total oxidative 

metabolism. 24 hour incubation either in lower PO2 containing conditions or in the 

presence of Tempol (free radical scavenger) did not reverse the time of response of the 

CB to glucose deprivation. It is concluded that, in this instance, any variation in 

metabolic status seems to be independent of ROS generation.  

 

The discrepancies in CB sensitivity to low glucose reported across a number of different 

investigations may be a consequence of two factors. Firstly, both groups that observed 

an acute sensitivity to low glucose used a method of decapitation before removing the 

CB tissue up to 5 minutes later. It is probable that this method caused a significant 

period of sustained ischaemia and severe hypoxia that increased CB metabolism and 

caused a dramatic reduction in metabolic glycogen reserves. Secondly, acute low 

glucose sensitivity was shown in tissue following a prolonged period (days) of incubation 

in conditions different to those in vivo. The acute low glucose sensitivity of this CB tissue 

is suggested as being a consequence of change in metabolic status of the cells 

following this incubation period leading to the total reliance on the extracellular glucose 

uptake for maintenance of glycolysis.  

 

5.3.7 A role for the carotid body in glucose homeostasis 

The findings described in this thesis are conceivably contradictory to previous reports, 

conclusively demonstrating that the CB is stimulated in hypoglycaemia in vivo. A number 

of studies have shown that CB activation has an important role in restoring plasma 
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glucose concentrations in response to hypoglycaemia, both in animals (240) and 

humans (241, 377). CB excitation in hypoglycaemia also appears to be fundamental in 

matching ventilation with the increase in metabolic rate and thereby preventing systemic 

acidosis (242, 243).  

 

The global counter-regulatory response to hypoglycaemia is multi-faceted and highly 

integrated. Direct or indirect actions of hypoglycaemia include sympathetic activation 

(378), systemic hypokalaemia (379), cerebral vasodilatation (380), augmented 

ventilation and an increase in whole body metabolism (242). In addition, a number of 

counter-regulatory endocrine or neuro-endocrine factors are released into the systemic 

circulation including adrenaline, noradrenaline, cortisol and glucagon (245, 381). 

Consistent with the results identified in this thesis it is hypothesised that one of these 

factors released as a consequence of hypoglycaemia may stimulate the CB rather than 

low glucose per se. Of these the most probable CB activator may be a catecholamine 

given that a number of investigations have demonstrated that exogenous adrenaline and 

noradrenaline administration both elevated CSN activity and increased ventilation in vivo 

(382-384). This excitatory impact does however seem to show some inter-species 

variability, with intra-carotid administration of noradrenaline appearing to decrease 

ventilation in goats (385). Future experiments may aim to fully characterise the 

importance of adrenaline or noradrenaline in activating the CB and augmenting 

ventilation in hypoglycaemia. If catecholamines are found to stimulate the CB in humans 

then they may have an additional, and as yet unidentified, physiological role in 

enhancing ventilation during exercise.  
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5.3.8 Conclusions 

The freshly isolated intact CB does not have an inherent sensitivity to physiological 

concentrations of low glucose and these observations indicate that it cannot act as a 

functional low glucose receptor in the whole animal. The maintenance of normal basal 

chemoafferent activity during glucose deprivation is supported by metabolism of 

glycogen to generate glucose that drives glycolysis. Prolonged glucose deprivation does 

evoke chemoafferent stimulation in the intact preparation and this is probably a 

consequence of a time dependent depletion in cellular energy status in the afferent 

neurone and not the type I cell. The intrinsic low glucose sensitivity described in other 

CB preparations is proposed as being dependent on an alteration of metabolic status 

subsequent to tissue ischaemia during surgery or following long term incubation ex vivo. 

These findings do not rule out a role for the CB in glucose homeostasis in the whole 

animal but suggest that the CB is activated indirectly by another blood-borne stimulus 

released as a consequence of the systemic hypoglycaemia and not directly by low 

glucose.  
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6. A functional role for adenosine derived from ecto-5’-

nucleotidase in mediating the carotid body responses to 

hypoxia, hypercapnia and mitochondrial inhibition.  

 

6.1 Chapter introduction and overview 

 

The previous three chapters have focused on the impact of changes in cellular energy 

status on initiating CB chemoafferent stimulation, either in hypoxia or prolonged glucose 

deprivation. The results presented in Chapters 3 and 4 indicate that ATP, ADP and AMP 

are important intracellular signalling molecules and determine the extent of type I cell 

stimulation by modifying AMPK activity in the presence of Lkb1. The final results chapter 

now switches to investigate the effect of extracellular ATP metabolism on CB function. 

ATP is recognised as an important excitatory neurotransmitter. Upon hypoxic or 

hypercapnic stimulation it is released from type I cells and acts on the post-synaptic 

membrane to induce action potential generation. ATP is highly unstable and in the 

presence of ectonucleoside triphosphate diphosphohydrolyase 1 (CD39) and ecto-5’-

nucleotidase (CD73) it can be rapidly metabolised to form adenosine. Adenosine is a 

well established neuromodulator in the CNS but its effects in the CB are less well 

characterised. This chapter focuses on the potential of this ‘pool’ of extracellular 

adenosine, derived from ATP metabolism, to modulate CB excitability.  

 

Previous studies have established that exogenous adenosine administration acutely 

increases the CSN firing frequency in vivo and in vitro (280-283). This stimulation is 
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coupled to an increase in minute ventilation (284, 285) and in humans augmentation of 

adenosine signalling has been shown to amplify sympathetic outflow in skeletal muscle 

subsequent to the increase in respiration (288). In hypoxia, pharmacological inhibition of 

adenosine receptors causes an attenuation of both the increase in CSN discharge 

frequency (291) and the acute phase of the ventilatory response in vivo (292). On 

isolated CB tissue, non-selective A2 receptor antagonism by caffeine inhibits both the 

3H-CA release and CSN activity under basal conditions and during hypoxic stimulation 

(297). It has been proposed that the importance of adenosine on modulating 

chemoafferent activity is most obvious in conditions of mild hypoxia (10).  

 

The identification of significant levels of extracellular adenosine within the CB has been 

reported in normoxic/hyperoxic conditions and the degree of endogenous production is 

now known to increase in hypoxia (11). A recent study demonstrated that the increase in 

adenosine production under mild hypoxic conditions was not further amplified in extreme 

hypoxia (10).  

 

Adenosine may also be generated within the actual type I cell through intracellular ATP 

catabolism. It may be released through the bidirectional nucleotide transporter ENT 

thereby contributing to the overall synaptic adenosine concentration (290). 

Pharmacological inhibition of ENT appears not to modify CB extracellular adenosine 

concentrations in normoxia, but does attenuate the increase in synaptic adenosine 

during hypoxia (11). The same study reported that CD73 deactivation with AOPCP 

significantly reduced adenosine concentrations in both normoxia and hypoxia. As yet the 

relative functional significance of intracellular and extracellular derived adenosine on CB 

sensory activity has not been defined in normoxia, hypoxia, hypercapnia or in response 
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to mild mitochondrial inhibition associated with sLTF in animals pre-conditioned with CIH 

(313). With this in mind the experiments in the current chapter were designed to 

examine the functional impact of adenosine derived specifically from CD73 on the CB 

basal discharge frequency and on the chemoafferent response to hypoxia. A role for 

adenosine produced purely from CD73 activity in establishing the stimulus threshold 

required for chemoafferent activation in response to mild mitochondrial inhibition and 

hypercapnia was also investigated in later sections.  

 

The aims of the studies in this chapter are summarised below: 

 

1. To establish if adenosine derived from CD73 was important in the generation of the 

basal chemoafferent discharge frequency in normoxia/hyperoxia. 

 

2. To examine if CD73 activity was significant in eliciting peak chemoafferent responses 

to severe hypoxia or in modifying the sensitivity of the CB to graded hypoxia. 

 

3. To investigate if chemoafferent stimulation evoked by mild mitochondrial inhibition 

with NO2
- was altered by impaired adenosinergic signalling or reduced CD73 activity.  

 

4. To study if the functional CB response to hypercapnia had any dependence on 

adenosine derived specifically from CD73 or on cAMP generated from transmembrane 

adenylate cyclase.  
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6.2 Results 

 

6.2.1 Neuromodulation of the carotid body response to hypoxia by adenosine 

generated from ecto-5’-nucleotidase 

The first set of experiments in this chapter were designed to evaluate the functional 

significance of the CD73 derived adenosine on single fibre CSN activity under basal 

normoxic/hyperoxic conditions and in hypoxia.  

 

Isolated intact CBs were superfused at a control PO2 of 300 mmHg to establish an initial 

baseline firing frequency (Figure 6.1A). Although seemingly hyperoxic, it was 

hypothesised that due to the diffusion gradient across the tissue the PO2 at the site of 

individual type I cell clusters would be significantly lower. The mean basal discharge 

frequency in 300 mmHg PO2 was 0.58 ± 0.34 Hz (Figure 6.1B) and this value was 

consistent with in vivo recordings made in the rat in arterial normoxia. The superfusate 

PO2 was then changed to a single fixed value of 60 mmHg (estimated as being severely 

hypoxic in the superfused intact CB preparation) to induce a maximal level of 

chemoafferent hypoxic discharge frequency. Paired experiments were performed in the 

presence and absence of 100 µM α,β-methylene ADP (AOPCP), an inhibitor of CD73. 

This concentration was consistent with that previously used on the whole intact CB 

preparation and is known to decrease adenosine production in both normoxic and 

hypoxic conditions (11).  

 

The impact of AOPCP under normoxic/hyperoxic (superfusate PO2 of approximately 300 

mmHg) conditions was striking and almost completely abolished the basal 

chemoafferent activity (Figure 6.1A and B). However, this level of inhibition was not 
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maintained in severe hypoxia as evidenced by the increase in discharge frequency 

evoked at a superfusate PO2 of 60 mmHg being equivalent in the presence and 

absence of AOPCP (Figure 6.1C).  

 

Further experiments examined a potential effect of CD73 generated adenosine on the 

chemoafferent response to graded hypoxia. Rather than switching to a single level of 

severe hypoxia, the superfusate PO2 was slowly reduced from 300 mmHg to 

approximately 100 mmHg before being rapidly reversed to avoid potential organ 

damage or neurotransmitter depletion. A characteristic example of the discharge 

frequency recorded from a single fibre during graded hypoxia in the presence and 

absence of AOPCP is shown in Figure 6.2A. The individual hypoxic response curves 

obtained from the same fibre are plotted in Figure 6.2B, showing a characteristic 

reduction in the PO2 threshold required for initiation of hypoxia response coupling 

evoked by concomitant application of AOPCP. The inhibition caused by AOPCP was 

rapidly reversible and the original response to hypoxia was almost fully recovered 

following removal of the agent from the superfusate (Figure 6.2A and B).  

 

In order to quantify this change in PO2 threshold or ‘left shift’, PO2 values were 

calculated from the response curves when the discharge frequency was at 5 Hz, and 

compared in the presence and absence of AOPCP. This frequency was selected as it 

lies on the exponential region of the curve but is not at a point at which the response 

may have begun to decline (see Chapter 2). Grouped paired measurements showed 

that AOPCP significantly reduced the superfusate PO2 required to elicit a discharge 

frequency of 5 Hz by a mean value of approximately 30 mmHg and this reduction was 

consistent across all fibres (Figure 6.2C). This emphasised a significant role for 
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extracellular adenosine generated from CD73 in establishing the set point for the 

initiation of CB response to hypoxia.  

 

Detailed analysis of individual hypoxic response curves showed that the exponential rate 

constant was significantly elevated in the presence of AOPCP (0.054 ± 0.009) compared 

with the paired controls (0.038 ± 0.006, n=8; paired t-test). This demonstrates that the 

rate of increase in discharge frequency upon onset of the response was greater in the 

presence of AOPCP. The shape of the response curve (an example of which is shown in 

Figure 6.2B) suggests that AOPCP effectively abolished the graded nature of 

chemoafferent response to hypoxia.  

 

Data from individual response curves was used to calculate the difference in absolute 

discharge frequency in the presence of CD73 inhibition over a range of PO2 values 

during hypoxia (Figure 6.2D). At all superfusate PO2 levels between 300 and 

100 mmHg, AOPCP depressed the single fibre discharge frequency. The magnitude of 

attenuation was significantly enhanced at PO2 values of 125 and 100 mmHg (Figure 

6.2D). Therefore, the absolute effect of CD73 inhibition on the chemoafferent activity 

exhibited a clear PO2 dependence and this demonstrates that adenosine is significant in 

establishing the acute hypoxic sensitivity of the in vitro CB.  
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Figure 6.1 Inhibition of CD73 almost completely abolishes the chemoafferent basal discharge 
frequency but does not change the peak response to a single level of severe hypoxia.  
A) An example trace of the effect of CD73 inhibition with 100 µM AOPCP on basal frequency and on the 
peak response to a single level of severe hypoxia. Raw discharge is shown (upper) along with frequency 
histograms (lower) that collate single fibre action potentials in 10 s intervals. Overdrawn action potentials 
are shown inset to demonstrate the single fibre discrimination from which the frequency was taken.  
B) Mean basal frequency in the presence and absence of the CD73 inhibitor AOPCP. C) The mean 
change in frequency evoked by severe hypoxia (PO2 ~ 60 mmHg) in the presence and absence of the 
CD73 inhibitor AOPCP. The data presented is taken from 6 fibres from 4 CB preparations. Error bars 
indicate + S.E.M. * denotes P < 0.05 compared with control frequency; paired t-test.  
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Figure 6.2 Adenosine generated from CD73 is important in establishing the hypoxic sensitivity of 
the in vitro carotid body.  
A) Characteristic example of the response to graded hypoxia (300–100 mmHg PO2) in the presence and 
absence of CD73 inhibition with AOPCP. Raw discharge is shown (upper) along with frequency 
histograms (lower) that collate single fibre action potentials in 10 s periods. Overdrawn action potentials 
are shown inset to demonstrate the single fibre discrimination from which the frequency was taken.  
B) Individual hypoxic response curves taken from the same fibre recorded in A), showing a reversible ‘left 
shift’ in the presence of AOPCP. C) PO2 values for each fibre when the discharge frequency was at 5 Hz 
in the first control and following addition of AOPCP. D) Calculated mean difference in discharge frequency 
evoked by AOPCP over a range of superfusate PO2 levels. The data presented is from 8 fibres from 5 CB 
preparations. Error bars indicate ± S.E.M. For C), * denotes P < 0.05 compared with control PO2; paired t-
test. For D), + denotes P < 0.05 compared with the frequency difference at 300 mmHg PO2; one way 
repeated measures ANOVA with Bonferroni post hoc analysis.  
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6.2.2 Neuromodulation of the carotid body response to nitrite by extracellular 

adenosine 

Results from Section 6.2.1 demonstrated that adenosine derived from CD73 almost 

completely abolished basal chemoafferent discharge and altered the PO2 threshold 

required for initiation of the response to hypoxia. These data support the idea that 

downstream effectors of adenosinergic signalling pathways are significant in 

establishing the hypoxic sensitivity of the CB. It was hypothesised that adenosine 

generated from CD73 may have a similar neuromodulatory role in regulating the CB 

sensitivity to other related or unrelated stimuli. As yet, the impact of adenosinergic 

signalling on the CB response to mitochondrial inhibition has not been investigated. 

Detailed examination of neuromodulators and their effects on CB responses to mild 

mitochondrial inhibitors may be of particular importance given that the sLTF associated 

following CIH is closely associated with mild inhibition of mitochondrial electron transport 

(313).  

 

In these experiments, the rapidly reversible mitochondrial inhibitor nitrite (NO2
-) was 

used to induce moderate elevations in chemoafferent discharge frequency consistent 

with those frequencies observed in sLTF following CIH (313). The CB was exposed to 

10 mM NO2
- for 5 minutes and a mean discharge frequency was taken from the final 

minute, once a relatively stable level of excitation had been achieved (Figure 6.3A and 

B). The non-specific adenosine receptor antagonist 8-SPT (300 µM) significantly 

diminished basal chemoafferent activity and attenuated the frequency attained upon 

stimulation with NO2
- (Figure 6.3A and B). These inhibitory actions of 8-SPT were 

reversible as shown in the example trace in Figure 6.3A. The absolute increase in 

discharge frequency elicited by NO2
- (NO2

- – basal) in the presence of 8-SPT was 
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reduced in each fibre studied and the calculated mean NO2
--induced frequency elevation 

with concurrent 8-SPT application was approximately 25% of that observed in control 

conditions (Figure 6.3C).  

 

Inhibition of CD73 with 100 µM AOPCP produced even more striking results. An 

example trace demonstrating the impact of AOPCP on the response to 10 mM NO2
- is 

shown in Figure 6.4A. AOPCP almost completely abolished basal discharge and 

eradicated the response to NO2
- (Figure 6.4B). In every fibre tested, the absolute 

elevation in discharge frequency evoked by NO2
- (NO2

- – basal) was almost completely 

ablated in the presence of AOPCP (Figure 6.4C). These data indicate that 

chemoafferent stimulation evoked by mild mitochondrial inhibition with 10 mM NO2
- is 

critically dependent on receptor mediated actions of adenosine generated from CD73.  
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Figure 6.3 Adenosine receptor blockade attenuates the carotid body response to mitochondrial 
inhibition with 10 mM nitrite 
A) Characteristic example recording of the response to nitrite (NO2

-) in the presence and absence of the 
non-specific adenosine receptor antagonist 8-SPT. Raw discharge is shown (upper) along with frequency 
histograms (lower) that group single fibre action potentials in 10 s intervals. Overdrawn action potentials 
are shown inset to demonstrate the single fibre discrimination used to measure frequency. B) Mean 
discharge frequencies recorded under basal conditions and following addition of NO2

-, in control and 
following addition of 8-SPT. The data presented is from 8 fibres from 5 CB preparations. Error bars 
indicate ± S.E.M. * denotes P < 0.05 compared with control frequency; one way repeated measures 
ANOVA with Bonferroni post hoc analysis test. C) Discharge frequency differences (NO2

- – basal) for each 
fibre in the presence and absence of 8-SPT. * denotes P < 0.05 compared with control frequency; paired 
t-test.  
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Figure 6.4 Adenosine derived from CD73 is a critical mediator of the carotid body response to 
mitochondrial inhibition with 10 mM nitrite. 
A) Characteristic example recording of the response to nitrite (NO2

-) in the presence and absence of the 
CD73 inhibitor AOPCP. Raw discharge is shown (upper) along with frequency histograms (lower) that 
group single fibre action potentials in 10 s periods. Overdrawn action potentials are shown inset to 
demonstrate the single fibre discrimination used to calculate the frequency. B) Mean discharge 
frequencies recorded under basal conditions and following addition of NO2

-, in control and following 
addition of AOPCP. The data presented is from 10 fibres from 5 CB preparations. Error bars indicate ± 
S.E.M. * denotes P < 0.05 compared with control frequency; one way repeated measures ANOVA with 
Bonferroni post hoc analysis test. C) Discharge frequency differences (NO2

- – basal) for each fibre in the 
presence and absence of AOPCP. * denotes P < 0.05 compared with control frequency; paired t-test.  
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6.2.3 Neuromodulation of the carotid body response to hypercapnia by 

extracellular adenosine 

The importance of adenosine derived from CD73 on CB basal chemoafferent activity 

and responses to graded hypoxia or mild mitochondrial inhibition was observed in the 

previous two sections. These results are consistent with the idea that the 

neuromodulatory function of adenosine is to contribute to the resting excitability of the 

CB and to establish a threshold for activation in response to any stimulus. To investigate 

this idea further, measurements of chemoafferent activity were made in response to 

hypercapnia (another comparatively mild stimulus), in the presence and absence of 

pharmacological agents that impaired adenosinergic signalling pathways.  

 

Experiments initially evaluated the effect of adenosine receptor antagonism on the 

chemoafferent response to hypercapnia. Addition of non-selective adenosine receptor 

antagonist 8-SPT (300 µM) to the superfusate significantly diminished discharge 

frequency in both normocapnic (40 mmHg PCO2) and hypercapnic conditions (80 mmHg 

PCO2) (Figure 6.5A and B). Measurements from all fibres showed that the absolute 

increase in discharge frequency evoked by hypercapnia was significantly depressed in 

the presence of 8-SPT (Figure 6.5C). The calculated CO2 sensitivity (Δ Hz / mmHg 

PCO2) following application of 8-SPT was approximately 20% of control (Figure 6.5D).  

 

Selective inhibition of CD73 with 100 µM AOPCP almost completely abolished the single 

fibre discharge frequency recorded in both normocapnic and hypercapnic conditions 

(Figure 6.6A and B). This inhibitory effect was rapidly reversed once the drug was 

removed from the superfusate as demonstrated in the raw trace example in Figure 6.6A. 

Recordings from all single fibres showed that the absolute increase in discharge 
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frequency evoked by hypercapnia was decreased with AOPCP application compared 

with control (Figure 6.6C). The mean increase in discharge frequency in the presence of 

AOPCP upon hypercapnic stimulation was just above 0 Hz, demonstrating almost 

complete ablation of the response to hypercapnia (Figure 6.6C). Subsequent calculation 

of CO2 sensitivity identified a remarkable reduction with AOPCP and again 

demonstrated that inhibitory targeting of adenosine derived from CD73 effectively 

abolished the functional response of the CB to hypercapnic stimulation (Figure 6.6D). In 

view of these findings, it is proposed that tonic generation of adenosine from CD73 has 

a functional role in establishing the CB sensitivity to hypercapnia.  
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Figure 6.5 Adenosine receptor blockade attenuates the carotid body response to hypercapnia.  
A) Characteristic example recording of the response to hypercapnia in the presence and absence of the 
non-specific adenosine receptor antagonist 8-SPT. Raw discharge is shown (upper) along with frequency 
histograms (lower) that group single fibre action potentials in 10 s periods. Overdrawn action potentials 
are shown inset to demonstrate the single fibre discrimination used to measure frequency. B) Mean 
discharge frequencies recorded in normocapnia (PCO2 = 40 mmHg) and hypercapnia (PCO2 = 80 mmHg), 
in control and following addition of 8-SPT. C) Discharge frequency differences (80–40 mmHg PCO2) for 
each single fibre in the presence and absence of 8-SPT. D) Calculated mean CO2 sensitivity (Δ Hz / 
mmHg PCO2) in control conditions and following 8-SPT application. The data presented is from 7 fibres 
from 3 CB preparations. Error bars indicate ± S.E.M. For B), * denotes P < 0.05 compared with control 
group; one way repeated measures ANOVA with Bonferroni post hoc analysis. For C) and D), * denotes P 
< 0.05 compared with control group; paired t-test. 
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Figure 6.6 Adenosine derived from CD73 is a critical neuromodulator of the carotid body 
chemoafferent response to hypercapnia. 
A) Characteristic example recording of the response to hypercapnia in the presence and absence of the 
CD73 inhibitor AOPCP. Raw discharge is shown (upper) along with frequency histograms (lower) that 
group single fibre action potentials in 10 s intervals. Overdrawn action potentials are shown inset to 
demonstrate the single fibre discrimination used to measure frequency. B) Mean discharge frequencies 
recorded in normocapnia (PCO2 = 40 mmHg) and hypercapnia (PCO2 = 80 mmHg), in control conditions 
and following addition of AOPCP. C) Discharge frequency differences (80–40 mmHg PCO2) for each fibre 
in the presence and absence of AOPCP. D) Calculated mean CO2 sensitivity (Δ Hz / mmHg PCO2) in 
control conditions and following AOPCP drug application. The data presented is from 6 fibres from 5 CB 
preparations. Error bars indicate ± S.E.M. For B), * denotes P < 0.05 compared with control group; one 
way repeated measures ANOVA with Bonferroni post hoc analysis. For C) and D), * denotes P < 0.05 
compared with control group; paired t-test. 
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6.2.4 The impact of cAMP generated from transmembrane adenylate cyclase on 

the carotid body response to hypercapnia 

The final experiments were designed to investigate the potential role of effectors 

downstream of adenosine A2 receptors in mediating CB chemoafferent excitability. 

Stimulation of G-protein coupled adenosine A2 receptors increases neuronal excitability 

by directly activating transmembrane adenylate cyclases (tmAC) and augmenting 

[cAMP]i. The significant inhibitory effects of CD73 deactivation on basal chemoafferent 

activity and on responses to a number of stimuli described earlier in the section were 

hypothesised as being primarily due to a decrease in basal [cAMP]i generation. 

Inhibition of tmAC has been shown previously to attenuate the response to hypoxia 

(386) and so was not studied in this section. However, the impact of direct inhibition of 

tmAC on the basal CB chemoafferent activity and on the functional sensory neuronal 

response to hypercapnia has not previously been examined.  

 

Addition of the tmAC selective antagonist SQ22536 (200 µM) (387) elicited a rapid 

reduction of the basal chemoafferent discharge frequency in normocapnic conditions in 

all fibres tested (Figure 6.7A and B). In addition, the absolute mean discharge frequency 

observed upon hypercapnic stimulation was significantly attenuated by SQ22536 (Figure 

6.7A and B). This inhibitory action of SQ22536 on normocapnic and hypercapnic 

discharge frequency was reversed upon removal of the agent from the superfusate as 

shown in the raw trace example in Figure 6.7A. In all fibres, the absolute increase in 

discharge frequency evoked by hypercapnia was depressed in the presence of 

SQ22536 (Figure 6.7C). The calculated CO2 sensitivity was significantly reduced by 

SQ22536, measuring only approximately 60% of the control CO2 sensitivity (Figure 

6.7D). These data identify a functional role for cAMP derived from tmAC in setting the 
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basal chemoafferent discharge in normocapnia and in establishing a significant 

component of the CB sensitivity to hypercapnia.  
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Figure 6.7 Pharmacological inhibition of transmembrane adenylate cyclase attenuates basal 
chemoafferent activity and the response to hypercapnia. 
A) Characteristic example recording of the response to hypercapnia in the presence and absence of the 
tmAC inhibitor SQ22536. Raw discharge is shown (upper) along with frequency histograms (lower) that 
collate single fibre action potentials in 10 s periods. Overdrawn action potentials are shown inset to 
demonstrate the single fibre discrimination used to measure frequency. B) Mean discharge frequencies 
recorded under normocapnic (PCO2 = 40 mmHg) and hypercapnic (PCO2 = 80 mmHg), in control 
conditions and following addition of SQ22536. C) Discharge frequency differences (80–40 mmHg PCO2) 
for each fibre in the presence and absence of SQ22536. D) Calculated mean CO2 sensitivity (Δ Hz / 
mmHg PCO2) in control conditions and following SQ22536 drug application. The data presented is from 7 
fibres from 4 CB preparations. Error bars indicate ± S.E.M. For B), * denotes P < 0.05 compared with 
control group; one way repeated measures ANOVA with Bonferroni post hoc analysis. For C) and D), * 
denotes P < 0.05 compared with control group; paired t-test. 
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6.3 Chapter synopsis and discussion 

 

6.3.1 Summary of key findings 

The main findings of the current chapter are described as follows; 

 

• Inhibition of the extracellular adenosine generated from CD73 almost completely 

abolished CB basal chemoafferent activity, significantly altered the set point for 

hypoxia stimulus response coupling and impaired hypoxic sensitivity, but did not 

change the absolute peak discharge frequency induced under severe hypoxic 

conditions. 

 

• The CB response to mild mitochondrial inhibition with NO2
- was significantly 

attenuated by non-selective adenosine receptor antagonism. Inhibition of 

extracellular adenosine derived from CD73 almost completely eradicated the CB 

excitation induced by NO2
- in all fibres tested.  

 

• Hypercapnia stimulus response coupling in the CB was markedly reduced by 

adenosine receptor blockade and was almost entirely removed in the absence of 

CD73 activity. Selective inhibitory targeting of transmembrane adenylate cyclase 

evoked a significant reduction in the CB basal chemoafferent activity and 

impaired the sensory response to hypercapnia.  
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6.3.2 The neuromodulatory actions of extracellular adenosine derived from ecto-

5’-nucleotidase on the chemoafferent discharge frequency in normoxia  

Findings from this study suggest that extracellular adenosine derived specifically from 

ATP and CD73 activity in normoxic/hyperoxic conditions is necessary for the generation 

of basal chemoafferent discharge frequency in the CB. A tonic release of ATP into 

interstitium from type I cells has been proposed previously, based upon findings that 

measurable amounts of ATP can be recovered from the superfusate of the whole organ 

following periods of relative normoxia (10). The same study reported that inhibition of 

CD73 with AOPCP evoked a 2-3 fold increase in extracellular ATP concentration in the 

same normoxic conditions, indicative of a very high rate of basal extracellular ATP 

catabolism. It was observed that production of adenosine in normoxia was dependent on 

CD73 activity and not on the ENT transporter.  

 

The results described in this chapter show that this pool of adenosine is of critical 

functional importance for the maintenance of CSN activity in vitro. In view of this 

previously uncharacterised finding it is proposed that in vivo maintenance of 

adenosinergic pathways would be central to the respiratory drive arising from the CB in 

arterial normoxia. 

 

6.3.3 The impact of adenosine on carotid body stimulation by hypoxia  

Adenosine formation through extracellular purine catabolism by CD73 also seems to be 

of functional importance in mediating the CB response to hypoxia. CD73 inhibition 

attenuated the chemoafferent discharge frequency during the entire response to graded 

hypoxia (PO2 approximately 300–100 mmHg). The degree of inhibition was enhanced in 

moderate hypoxia indicating that CD73 deactivation impairs the overall CB hypoxic 
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sensitivity. That said, at a single level of very severe hypoxia (PO2 approximately 

60 mmHg) inhibition of CD73 did not depress the peak level of chemoafferent excitation. 

Collectively, these data imply that at any level of mild to moderate hypoxia, a restriction 

on the adenosinergic signalling pathways translates into a functional depression of the 

chemoafferent discharge frequency. Once a critical hypoxic threshold has been 

reached, this inhibition is overcome, allowing for the discharge frequency to increase, 

albeit at a lower PO2. This is consistent with previous reports showing that the effect of 

A2 receptor blockade was greater in mild to moderate hypoxic conditions than in a very 

severe hypoxic environment (10).  

 

More detailed analysis of the parameters of the hypoxic response revealed that 

adenosine produced from CD73 is specifically important in setting the PO2 threshold at 

which the response to hypoxia is initiated. This was demonstrated by all hypoxic 

response curves being ‘left shifted’ in the presence of the CD73 inhibitor AOPCP 

compared to their paired controls. This change in PO2 threshold is also the most 

plausible explanation for the overall depression in CB hypoxic sensitivity. Whilst the 

initiation of the increase in discharge frequency occurred consistently at a lower PO2 

value, the actual rate of exponential increase following onset of the response was 

enhanced by the CD73 inhibition. The exaggerated augmentation of the exponential 

increase in discharge frequency produced response curves that lacked any significant 

gradation. This may have been because of a ‘build up’ of excitatory factors during the 

inhibitory phase, making the response to hypoxia more discrete rather than continuous. 

Taken together these data indicate that adenosine derived from CD73 is not only an 

important mediator in establishing the hypoxic sensitivity of the CB but its production 

also allows for the early phase of the chemoafferent response to hypoxia to be graded.  
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6.3.4 A role for adenosine derived from ecto-5’-nucleotidase on the carotid body 

sensory response to mild mitochondrial inhibition with nitrite  

CB stimulation evoked by mitochondrial inhibition shares a number of the transduction 

processes known to be present in hypoxia signalling, including inhibition of TASK-like 

and TREK-1 conductances, Ca2+ influx and neurosecretion (18). It was predicted that 

attenuation of the adenosinergic signalling through targeting of CD73 would have a 

similar inhibitory action on the CB response to mitochondrial inhibition as with hypoxia. 

Previously, the neuromodulatory action of adenosine on the CB response to mild 

mitochondrial inhibition had not been studied. Chronic mild inhibition of mitochondrial 

complex I has been put forward as being central to the chronic increase in both CB 

basal activity and the response to hypoxia following CIH (313). Although the precise 

mechanism of NO2
- induced mitochondrial inhibition may be different to that seen after 

CIH, it was used here to give a potential insight into the neuromodulatory actions of 

adenosine on a mild mitochondrial stimulus similar in magnitude to that observed 

following CIH.  

 

Adenosine receptor antagonism and inhibition of CD73 both significantly depressed the 

level of chemoafferent excitation induced by NO2
- and these findings are indicative of an 

important role for adenosine in mediating the CB response to mild mitochondrial 

inhibition. Attenuation by selective targeting of CD73 produced greater attenuation than 

that elicited by adenosine receptor antagonism alone. This suggests that at the dose of 

8-SPT used in these studies, full antagonism of all adenosine receptors may not have 

been achieved or maintained throughout the entire protocols.  
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These findings also suggest that for chemoafferent responses to NO2
- to be preserved, 

generation of adenosine from extracellular rather than intracellular ATP catabolism is of 

more functional significance. Pharmacological inhibition of CD73 almost completely 

prevented the rise in chemoafferent discharge frequency induced by NO2
-. If adenosine 

produced within the type I cell and released through ENT was important in mediating CB 

excitability then a large component of this response would have been preserved even in 

the presence of CD73. Since this was not the case, it is proposed that adenosine 

released through ENT is not functionally significant under these circumstances. This 

could be confirmed in future experiments by demonstrating that the response to NO2
- is 

unaffected by pharmacological blockade of ENT.  

 

These results do support the hypothesis that adenosine generated from CD73 

significantly contributes to setting the chemosensitivity of the CB to mild mitochondrial 

inhibition. If adenosine has a similar role in mediating CB excitability following CIH then 

inhibitory targeting of CD73 may be able to partially reverse the sLTF. Future 

experiments may aim to characterise a role for adenosinergic signalling in modifying CB 

hypersensitivity in animals following CIH or CHF. Therapeutically, selective targeting of 

the CD73 within the synapse between the type I cell and afferent neurone may be 

necessary because of the other numerous essential physiological actions of adenosine 

that are also dependent on CD73 activity. Comprehensive characterisation of the 

downstream effector molecules involved in CB adenosinergic neuromodulation may 

allow for the development of alternative pharmacological agents that selectively reduce 

CB chemoafferent activity without provoking systemic complications.  
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6.3.5 The impact of adenosine and cAMP in establishing the carotid body 

sensitivity to hypercapnia and other related stimuli.  

Chemoafferent excitation induced by hypercapnia (80 mmHg PCO2) was significantly 

diminished by adenosine receptor antagonism and almost completely abolished by 

inhibition of CD73 activity. The suppressing effect caused by loss of CD73 activity was 

greater than that of adenosine receptor blockade. Consistent with Section 6.3.4, this 

was indicative of a failure of 8-SPT (at the concentration used) to evoke complete 

adenosine receptor antagonism throughout the entire protocols. The data also implies 

that extracellular generation of adenosine through CD73 activity, rather than adenosine 

release through ENT, was necessary for coupling hypercapnia to CB chemoafferent 

stimulation. 

 

The findings described in this chapter identify an essential role for endogenous CD73 

generated adenosine in establishing the sensitivity of the CB to hypercapnia. This was 

consistent with the impact of adenosine on mediating CB responses to mitochondrial 

inhibitors and hypoxia. These three stimuli share many of the same chemotransduction 

processes including TASK-like and TREK-1 channel inhibition, Ca2+ influx and 

neurosecretion (18). Synergistic interactions between the hypercapnic and hypoxic 

stimuli have been described in previous reports (46, 210), and in Chapter 3 it was shown 

for the first time that mitochondrial inhibition with NO2
- potentiated the chemoafferent 

response to hypercapnia. The precise site of interaction remains unidentified but the 

generation of multiplicative responses may be a consequence of an up-regulation in 

some or all of the processes mentioned above. Given the close association between 

these stimuli it is probable that adenosine establishes the sensitivity to all three by acting 
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on the same as yet unidentified intracellular target directly involved in one of the shared 

chemotransduction mechanisms.  

 

All cloned adenosine receptors are coupled to tmACs and receptor activation induces 

changes in [cAMP]i (reviewed in (295).It is established that exogenous adenosine 

application increases the cAMP content of the intact in vitro CB (298). Elevations in 

cAMP content have also been identified in hypoxia and hypercapnia (206, 208). 

Inhibitory targeting of tmAC has recently been shown to attenuate CB 3H-DA secretion in 

response to hypoxia (386). In the present investigation, the same inhibitor of tmAC 

(SQ22536) significantly reduced the basal chemoafferent frequency and attenuated the 

CB response to hypercapnia. Collectively, these data suggest that cAMP is an important 

intermediate downstream signalling molecule that is involved in modulating basal CB 

excitability and in establishing the sensitivity of the CB to hypoxia and hypercapnia.  

 

Full characterisation of the direct and indirect intracellular targets of cAMP is yet to be 

fully resolved. It has been proposed that within the CB type I cell the activity of PKA and 

EPAC is enhanced in response to increased levels of cAMP (299, 386). Exogenous 

adenosine also directly attenuates the TASK-like K+ current (299). A depression in 

TASK-like current has been previously implicated in both hypoxic and hypercapnic 

signalling in the CB. PKA phosphorylation of the TASK-like channels could potentially 

impair K+ current in a similar manner to that observed in the presence of AMPK (88). 

Thus, the importance of adenosine derived from CD73 in mediating basal CB excitability 

and in establishing the CB sensitivity to hypoxia and hypercapnia may be conferred 

through selective attenuation of the TASK-like current. Whether PKA or EPAC directly 
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modifies TASK-like or other channels in the CB is unknown and may be the focus of 

future investigations.  

 

In addition, the observed functional impact of adenosine on CB function may be in part 

due to the activation of A2A receptors on the post-synaptic chemoafferent neurone (297). 

Post-synaptic A2A mediated modification of chemoafferent neuronal activity is likely to 

involve alterations in [cAMP]i and activation of downstream targets such as PKA and 

PKC, consistent with the excitatory adenosinergic signalling pathways that have been 

characterised in a number of different regions in the CNS (388). The consequence of 

variations in [cAMP]i on post-synaptic chemoafferent neuronal excitability has not been 

reported in the CB and may be the subject of future studies.  

 

6.3.6 Justification of drug concentrations  

Conclusions from the present work are based on the selectivity of the drugs used. Drug 

types and concentrations were chosen primarily, based on previous work performed in 

the CB field, but also to overcome potential diffusion distance limitations known to be 

present in the whole intact CB preparation. A dose of 100 µM AOPCP was chosen as 

this concentration has been shown previously to decrease adenosine generation in both 

normoxic and hypoxic conditions in the intact CB preparation (11). 8-SPT was used at 

300 µM, the same concentration previously reported to decrease the chemoafferent 

response to AICAR in the intact CB preparation (88). Importantly, in superfused arterial 

ring preparations, similar concentrations of 8-SPT (100–300 µM) have been 

demonstrated to inhibit responses to adenosine whilst allowing for responses to ATP or 

ATP analogues to remain intact, indicative of adenosine receptor selectivity (389, 390). 

SQ22536 has been used as an inhibitor of tmAC in the CB in both whole organ and cell 
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preparations (299, 386, 391). The concentration used in this study (200 µM) was 2-3 

times greater than that used on type I cells in previous studies in order to overcome 

diffusion limitations. Despite this relatively high concentration, the smaller inhibitory 

effect of SQ22536 compared with AOPCP and 8-SPT is maybe suggestive of a degree 

of incomplete tmAC saturation. Given that the CB expresses mRNA for 9 isoforms of 

tmAC (Nunes et al, unpublished findings) it is plausible to suggest that SQ22536 may 

not have caused full inhibition of each tmAC isoform activated by adenosine because of 

varying selectivity towards each subtype. Other similar non-selective tmAC inhibitors are 

available and future experiments could be performed using a combination of these 

agents to confirm the importance of tmAC derived cAMP in modulating CB excitability.  

 

6.3.7 Conclusions 

Endogenous adenosine produced from extracellular catabolism of ATP in the presence 

of ecto-5’-nucleotidase (CD73) is necessary for the generation of a basal chemoafferent 

discharge frequency. This source of adenosine is also significant in establishing the 

sensitivity of the CB to mitochondrial inhibition, hypoxia and hypercapnia. The excitatory 

actions of adenosine are most likely to be mediated through changes in [cAMP]i. 

Comprehensive characterisation of adenosinergic signalling pathways inherent within 

the CB needs to be evaluated further.  
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7. Overall discussion 

 

7.1 General summary of key findings 

 

A key finding in the studies described in this thesis is that mild mitochondrial inhibition 

with exogenous NO2
- increased the sensitivity of the CB to hypoxia. An interaction of this 

nature has been previously uncharacterised and these results provide direct evidence 

showing that modification of mitochondrial function is integral to CB O2 sensing. 

Subsequent studies showed that the chemoafferent response to hypoxia was almost 

completely abolished in CBs isolated from mice deficient in Lkb1. Lkb1 is recognised as 

the essential kinase required to achieve full activation of AMPK, a protein widely 

regarded as the sensor of cellular energy status. The observations described in this 

report strongly suggest that activation of the Lkb1-AMPK signalling cascade is the 

fundamental process that couples hypoxia induced mitochondrial inhibition with type I 

cell depolarisation and stimulation. A mechanism of this type unifies the two previously 

described ‘mitochondrial’ and ‘membrane’ hypotheses for CB hypoxia sensing.  

 

Despite the close association between impaired cellular metabolism and CB stimulation, 

further observations demonstrated that the freshly isolated intact CB was not acutely 

sensitive to glucose deprivation. This confirms previous reports suggesting that the CB 

is highly unlikely to act as a physiological gluco-sensor. The ability for the CB to sustain 

basal chemoafferent activity in the absence of glucose was found to be dependent on 

the metabolism of glycogen. The chemoafferent stimulation described in response to 



 

	   220	  

prolonged glucose deprivation was consistent with a time dependent run-down in 

glycogen and a complete inhibition of glycolysis. A significant change in the metabolic 

status or glycogen content of the type I cell or afferent neurone may account for the 

acute sensitivity to low glucose observed in other long-term culture CB preparations. 

These data also demonstrate, for the first time, an energy store in type I cells that might 

account for its ability to sustain activity during high and/or prolonged periods of 

stimulation. In addition, the potentially labile nature of this store, under in vitro 

conditions, might account for the qualitative discrepancies in the literature regarding the 

response of the CB to glucose deprivation.  

 

The final set of experiments showed that pharmacological deactivation of CD73 led to 

the obliteration of basal CB chemoafferent activity, decreased the hypoxic sensitivity and 

completely abolished the responses to hypercapnia and mild mitochondrial inhibition. 

This indicates that extracellular catabolism of ATP is the main source of adenosine 

within the CB in normoxia and that tonic generation of adenosine acts to establish the 

overall sensitivity of the CB to a number of different physiological stimuli. Future 

development of clinical interventions targeted to selectively modify CD73 activity or 

adenosinergic signalling within the CB may be used to reduce the increase in 

chemoafferent activity associated with certain pathologies.  

 

7.2 The carotid body mitochondrion as an acute O2 sensor 

 

The fundamental feature of the CB is its ability to produce functional responses to 

reductions in PaO2 before the whole body metabolism is irreversibly impaired. In this 

way, the CB must have a highly specialised acute O2 sensing mechanism that is 
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activated before the PaO2 falls to levels that begin to reduce mitochondrial electron 

transport and ATP generation in other cell types. It is recognised that mitochondrial 

poisons in the absence of hypoxia, are able to evoke CB stimulation. Observations from 

Chapter 3 emphasised that the extent of chemoafferent excitation was closely 

associated with the degree of mitochondrial inhibition. More importantly, additional 

results showed that mild inhibition of the type I cell mitochondria using exogenous NO2
- 

sensitised the CB to hypoxia. In the presence of NO2
-, functional chemoafferent 

responses to hypoxia were initiated at higher PO2 values. When applied simultaneously, 

these two stimuli generated multiplicative, rather than additive responses indicative of a 

significant degree of stimulus interaction. In view of these findings it is proposed that 

inhibition of type I cell mitochondrial function is the fundamental mechanism required for 

initiation of the CB response to hypoxia.  

 

The type I cell mitochondria appear to have a uniquely low affinity for O2. Previous 

experiments have detected a degree of mitochondrial depolarisation and attenuation of 

electron transport at PO2 levels as high as 40 mmHg (4, 56). This suggests that type I 

cell mitochondrial function will start to be impaired at PO2s significantly above those that 

would begin to reduce mitochondrial activity in other cell types. This feature is highly 

significant because it identifies a precise mechanism by which the type I cell can be 

exquisitively sensitive to relatively small reductions in PO2.  

 

But why does the type I cell mitochondrion have such a low affinity for O2? It has been 

previously reported that cytochrome a3 in complex IV in the CB was reduced at PO2 

values between 40 and 80 mmHg (3). This perhaps indicates that the CB possesses a 

unique isoform of cytochrome a3 with a configuration that makes binding of O2 to the 
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CuB/haem a3 binuclear centre much less favourable. Alternatively, another 

endogenously produced factor may act to impair O2 binding at this site. Exogenous NO2
- 

was used in this study because of its unique potential to generate NO locally at the 

mitochondria. Observations from Chapter 3 were consistent with the excitatory actions 

of NO2
- being a consequence of initial NO formation and impairment of mitochondrial 

function. This implies that if enough endogenous NO is produced locally at the 

mitochondria (either through NOS or NO2
-) then it may act to reduce the affinity of 

cytochrome a3 for O2 in complex IV. However, a physiological role for endogenous NO in 

modifying type I cell mitochondrial activity is yet to be confirmed.  

 

7.3 Lkb1-AMPK signalling as a fundamental process that couples 

hypoxia to chemoafferent excitation  

 

Experiments performed in Chapter 4 aimed to characterise a component of the 

signalling process that couples hypoxia induced mitochondrial impairment with 

chemoafferent stimulation. It was observed that conditional deletion of Lkb1 almost 

completely ablated the CB chemoafferent response to hypoxia. This suggests that Lkb1 

is necessary for eliciting CB activation in hypoxia.  

 

The best characterised function of Lkb1 is its ability to phosphorylate the Thr 172 

residue in the activation loop on the catalytic α subunit of AMPK, thereby promoting 

activation. Lkb1 mediated phosphorylation is recognised as the essential step required 

for complete activation of AMPK. AMPK is widely regarded as the global sensor of 

cellular energy status because its activity is tightly regulated by the relative intracellular 

concentration of adenosine nucleotides, and in particular the AMP:ATP ratio. In the CB, 
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impairment of mitochondrial electron transport in hypoxia has the potential to cause a 

reduction in [ATP]i, through decreased ATP synthesis, and an increase in [AMP]i, 

subsequent to activation of adenylate kinase. It is proposed that, as long as Lkb1 is 

functional, an increase in the AMP:ATP ratio would account for activation of AMPK 

following a depression in mitochondrial energy metabolism in hypoxia.  

 

Previous studies have shown that AMPK activation with AICAR stimulates CB 

chemoafferent activity and this effect is associated with type I cell depolarisation and 

Ca2+ influx (5, 88). The direct targets of AMPK in the type I cell appear to be a number of 

different K+ channels including TASK, TREK-1 and BKCa, all of which have been 

implicated in CB O2 sensing (5, 29, 88). Proposed deactivation of AMPK by Compound 

C is known to partially attenuate the chemoafferent response to hypoxia by 

approximately 50% (88). The results presented in this thesis (utilising genetic technology 

to entirely diminish Lkb1-AMPK signalling) are more conclusive and indicate that 

activation of AMPK by Lkb1 phosphorylation is the essential process that couples 

mitochondrial induced metabolic stress with CB activation in hypoxia.  

 

7.4 The importance of glycogen metabolism in the carotid body upon 

exposure to glucose deprivation 

 

The findings described in Chapter 5 clearly establish that the freshly isolated intact CB is 

not acutely sensitive to glucose deprivation. A significant chemoafferent response was 

recorded, but only after approximately 20-40 minutes of exposure to the glucose free 

stimulus. In preliminary experiments, isolated type I cells did not exhibit any excitation in 
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response to glucose deprivation even after 40 minutes of exposure. It is therefore 

proposed that the CB cannot function as a physiological low glucose sensor in vivo.  

 

The preservation of normal chemoafferent activity in glucose free conditions suggests 

that the CB is able to maintain metabolic status in the absence of extracellular substrate 

delivery. This is based on findings from previous chapters clearly suggesting that a 

reduction in mitochondrial activity and cellular energy status would lead directly to Lkb1-

AMPK activation and CB excitation. The reason for this apparent lack of metabolic 

stress in glucose free conditions was shown to be dependent on the metabolism of 

glycogen, allowing for the maintenance of glycolysis and sufficient acetyl CoA delivery 

into the mitochondria. Pharmacological inhibition of glycogen phosphorylase activity or 

proposed AMP mediated depletion of glycogen during periods of severe hypoxia, both 

significantly reduced the time taken for the CB to respond to glucose deprivation. The 

increase in chemoafferent stimulation following prolonged glucose free exposure was 

rapidly reversed by only 1 mM glucose or by addition of lactate and pyruvate. This 

supported the idea that the CB was only stimulated in response to a depleted cellular 

energy status following complete inhibition of glycolysis and exhaustion of glycogen 

reserves.  

 

These findings are in direct contrast with others that have shown a direct sensitivity of 

the CB to low glucose (246, 248). The reason for these clear discrepancies may be 

dependent on a variation in metabolic status of the CB tissue used across all of the 

different in vitro preparations. In the investigations performed by Pardal et al. (246) and 

Zhang et al. (248) the CB was only isolated up to 5 minutes after decapitation. This is 

likely to have subjected the CB tissue to a period of severe ischaemia and hypoxia and 
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consequentially may have significantly depleted glycogen stores. This may have made 

the CB much more sensitive to a reduction in extracellular glucose concentration. 

Furthermore, a sensitivity to low glucose reported in these same studies was only 

observed in CB tissue following periods of long term (between 3 and 7 days) hyperoxic 

incubation. The evidence presented in Chapter 5 identified a significant reduction in the 

time taken to respond to glucose deprivation 18-24 hours after removal of the CB from 

the animal. A reason for this change remained unidentified although it appeared not to 

be dependent on hyperoxic induced ROS generation. Nevertheless, long term 

incubation does seem to be important in altering the CB sensitivity to low glucose and 

this may significantly account for the findings reported in other investigations.  

 

7.5 Adenosine derived from ecto-5’-nucleotidase as an important 

neuromodulator in the carotid body  

 

The main focus of the final results chapter was to examine the potential impact of 

adenosine on CB function. ATP is not only a metabolic signalling molecule in the CB, it 

is also an important excitatory neurotransmitter that evokes depolarisation in the 

adjacent chemoafferent neurone leading to post-synaptic action potential generation.  

Following release, extracellular catabolism of ATP in the presence of CD39 and CD73 

has the added potential to rapidly form a significant pool of extracellular adenosine.  

 

Initial studies found that pharmacological inhibition of CD73 failed to depress the 

chemoafferent responses to a single level of very severe hypoxia. However, more 

detailed analysis of graded chemoafferent hypoxic response curves revealed that 

deactivation of CD73 significantly impaired CB hypoxic sensitivity. This was achieved by 
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altering the threshold required for hypoxic response initiation. In other words the PO2 at 

which the CB began to respond was lower in the absence of adenosine derived from 

CD73. These observations provide direct evidence supporting the proposal that 

adenosine generated from extracellular catabolism of ATP in the presence of CD73 has 

an important role in establishing the sensitivity of the CB to hypoxia.  

 

The impact of CD73 antagonism on basal CB activity and on responses to more 

moderate stimuli was even more striking. The basal chemoafferent discharge frequency 

was obliterated following inhibition of CD73. The sensory responses to hypercapnia and 

a moderate dose of NO2
- were almost entirely abolished. This establishes that 

adenosine is tonically produced from CD73 and is essential in generating the basal 

chemoafferent discharge frequency. Adenosine also seems to have a critical functional 

role in setting the threshold at which the CB begins to respond to a number of different 

stimuli.  

 

Adenosine is likely to act through stimulation of A2 receptors leading to an increase in 

cAMP production from tmACs. Similar inhibitory effects on CB basal activity and on 

responses to hypercapnia were observed in the presence of adenosine receptor 

blockade and upon non-specific antagonism of tmACs. Previous studies have also 

reported that the same inhibitor of tmAC (SQ22536) attenuated the CB response to a 

single level of hypoxia (386). In view of these observations, it is proposed that cAMP has 

a vital role in regulating the basal CB excitability and in part controls the stimulus 

intensity threshold required for response initiation. The downstream targets of cAMP 

were not identified in this project. Intermediate activation of PKA and/or EPAC may be of 

significance given their established association with cAMP. However, the ultimate target 
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is likely to be common to the pathways involved in sensing hypoxia and hypercapnia 

and additionally, the target must be active under basal conditions. Modification of 

adenosinergic signalling or of the as yet unidentified downstream targets of cAMP may 

prove to be important in reversing the hyperexcitability of the CB in CHF or following 

CIH.   

 

7.6 Key method limitations 

 

7.6.1 Carotid body isolation  

All of the experiments described in this thesis were performed in vitro, on CB tissue or 

cells following surgical isolation of the intact organ from the animal. In all surgeries, the 

CB was harvested only after the CCA had been clamped. The organ would have been 

exposed to a short period of ischaemia, hypoxia and potentially acidosis, all likely to 

have induced intense CB stimulation. This may have evoked an irreversible depletion of 

neurotransmitter stores and glycogen content and in some cases may have brought 

about permanent cell damage or even necrosis. To limit the time of ischaemia, CB 

tissue was isolated as rapidly as possible and within 30 seconds of clamping of the 

CCA. However, it is predicted that chemoafferent responses recorded in vitro would not 

have absolutely corresponded to the equivalent responses had they been measured in 

vivo.  

 

7.6.2 The in vitro superfused whole organ carotid body preparation  

The majority of studies in this report were performed using the in vitro superfused intact 

carotid body preparation. This is a widely used preparation and it allows for the 

maintenance of structural organ integrity. However, gases, substrates or drugs must 
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diffuse or be transported across the whole organ from the external superfusate in order 

to reach the cellular targets within the tissue. As a consequence of potential diffusion or 

transport limitations, superfusate recordings of PO2s, PCO2s and drug concentrations 

may not have accurately reflected the actual levels that the individual type I cells were 

exposed to.  

 

It has been estimated that in the intact rat CB preparation in vitro (approximately 200-

300 µm diameter), the maximum difference between the superfusate PO2 at the CB 

surface and the tissue PO2 at the centre of the CB was approximately 80 mmHg (48). 

Therefore, the actual PO2 at the level of a type I cell cluster may be up to 80 mmHg 

lower than the recorded superfusate PO2. Impairment of O2 diffusion may be amplified 

further depending on the amount of connective tissue and fat that surrounds the surface 

of the CB capsule. In order to ensure adequate metabolism for all cells, basal 

chemoafferent discharge frequency (unless stated otherwise, as in Chapter 5) was 

determined at a superfusate PO2 of 300 mmHg in the rat CB and 200 mmHg in the 

mouse CB (assumed to have a smaller diameter). There is a strong possibility that a 

number of cells would have been exposed to hyperoxia under these conditions. The 

term ‘basal discharge frequency’ described in this thesis is only used as a 

representation of spontaneous CB activity and should not be thought of as the absolute 

frequency that would be expected in normoxia. However, because of the known shape 

of the chemoafferent PO2 response curve (see Chapter 2), these values are 

hypothesised as being similar.  

 

In all experiments described in this thesis, the superfusate PO2 at which the 

chemoafferent response to hypoxia was initiated was consistent with the range reported 
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in previous studies using the in vitro mouse (132) and rat (46) CB preparations. The 

hypoxic response curves generated from these superfused in vitro CB preparations 

seem to be relatively ‘right shifted’ compared to those obtained in vivo. This apparent 

discrepancy is most likely a consequence of the PO2 diffusion limitations present across 

the whole organ.  

 

The position of a single chemoafferent response curve in relation to the superfusate PO2 

will depend on the relative depth of the type I cell cluster and chemoafferent neurone 

within the CB. This ensures that for a single CB preparation, PO2 responses curves may 

be observed over a wide range of different PO2s. Therefore, for the majority of studies, 

the PO2 response curves calculated in the presence and absence of exogenous drug 

applications were made from recordings of the same chemoafferent fibre (innervating 

the same type I cluster). This ensured that data was ‘paired’ and that the conclusions 

were based on the impact of the drug on CB function and not on inconsistencies in the 

PO2 across the whole tissue.  

 

A number of the conclusions formed in this thesis are largely based on the action of 

exogenous pharmacological agents. Drug types and concentrations were chosen 

primarily based on precedents established in previous work performed in the CB field. In 

some cases higher concentrations were used than have been reported in the literature. 

This was to overcome the potential diffusion and transport limitations across the CB 

tissue. The absolute drug concentration that type I cells were exposed to when the 

chemoafferent discharge frequency was being recorded was unable to be determined. 

Therefore, these results should be viewed with some caution because of the potential 

partial or non-selective actions of the agents used.  
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7.7 Future experiments 

 

7.7.1 Characterisation of the carotid body mitochondrial complex IV 

In view of the results from this thesis and others, it is suggested that O2 in the CB type I 

cell is detected at the level of the mitochondria and specifically within complex IV. The 

unique low affinity binding of O2 to complex IV could be related to the expression of cell 

type specific mitochondrial isozymes of the O2 sensitive proteins. A key experiment 

would be to characterise the phenotype of the type I cell mitochondria. This could be 

done by initially extracting mRNA from dissociated CB type I cells. As comparators, 

mRNA would be extracted from rat liver (often used for mitochondrial studies, and 

represents a ‘standard’ and well-defined mitochondrial phenotype) and adrenal 

medullary cells. These mRNA samples would be subjected to transcriptomic analysis. 

Gene expression data would be analysed and based on databases of mitochondrial 

proteins altered isozyme mRNA expression in type I cells in comparison to liver and 

adrenal medullary cells could be detected.  

 

Data from this transcriptomic study would provide a ‘model’ isozyme profile of the 

electron transport chain (and in particular complex IV) in type I cells compared to both 

liver and adrenal medullary cells. Then, using siRNA and expression constructs, the 

adrenal medullary isozyme expression profile would be altered to mimic the type I cell, 

starting with single component changes in complex IV. Having confirmed the correct 

profile, changes in the mitochondrial function and excitability of the adrenal medullary 

cells in response to O2 would be examined to see whether this had been altered to 

mimic the type I cell phenotype.  
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Alternatively, the low affinity binding of O2 in complex IV may be mediated by some 

other extra-mitochondrial factor. A potential candidate identified from studies in this 

thesis is NO. Whether or not endogenous NO sets the mitochondrial O2 sensitivity 

remains to be determined. Interestingly, hypoxic ventilatory responses appear to be 

attenuated in NOS-3 deficient mice, suggestive of a reduction in CB hypoxic sensitivity. 

Future studies using isolated CB tissue could examine whether mitochondrial sensitivity 

to O2 is altered in these NOS-3 KO mice and if so, is this coupled to an attenuation of 

the functional chemoafferent response to hypoxia? Conditional deletion of NOS-3 in 

cells expressing TH would be achieved by use of Cre-Lox recombination technology 

similar to that described in Chapter 4. This would eliminate the potential confounding 

complication of chronic local vasoconstriction and chronic hypoxia from birth, a condition 

also known to impair acute CB hypoxic sensitivity.  

 

7.7.2 Confirmation of AMPK as the link between the mitochondria and K+ channels 

The data presented in this thesis strongly supports the hypothesis that activation of 

Lkb1-AMPK signalling subsequent to the hypoxia induced impairment of mitochondrial 

energy metabolism couples directly to CB stimulation. This was based on observations 

from experiments identifying a powerful attenuation of hypoxic sensitivity in CBs 

deficient in Lkb1, the essential kinase required to activate AMPK. However, since the 

STRAD-Lkb1-MO25 complex is known to phosphorylate a total of 13 kinases (348), it is 

possible that the loss of hypoxic sensitivity was achieved through the diminished activity 

of any one of these other proteins.  
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To confirm the role of AMPK in O2 sensing, similar experiments to those described in 

Chapter 4 should be performed on CBs isolated from mice deficient in AMPK. Total 

global AMPK deficiency is embryonic lethal and so again the use of Cre-Lox 

recombination technology would be used to conditionally delete AMPK expression in 

cells only expressing TH. Single KO of the α1 subunit may not be sufficient to 

completely obliterate AMPK activity because of the potential for compensatory up-

regulation of the α2 subunit. Development of a conditional α1, α2 double AMPK KO 

mouse model would be required. In addition to recordings of CB chemoafferent activity, 

measurements of whole animal ventilation and type I cell [Ca2+]i elevations in response 

to hypoxia could be made to further confirm the importance of AMPK in CB O2 sensing. 

Techniques required for the successful generation of the conditional α1, α2 double 

AMPK KO mouse are currently in development. 

 

7.7.3 Identification of a molecular mechanism involved in carotid body plasticity 

Both CHF and CIH have been shown to alter the O2 sensitivity of type I cells. This could 

be due to transcriptional modifications such as changes in isozyme expression or post-

translational mechanisms, such as protein S-nitrosation or carbonylation. Evidence 

suggests that a reduction in mitochondrial complex I activity subsequent to ROS 

generation from NOX-2 may underpin this CB hyperexcitability following CIH. A similar 

mechanism is likely to exist in the type I cell during CHF. Importantly, this tonic 

deactivation of complex I may induce chronic cellular metabolic stress leading to a 

chronic increase in the expression or activity of Lkb1-AMPK signalling. Experiments 

performed on type I cells or CBs from mice deficient in Lkb1 or AMPK following pre-

conditioning with CIH would demonstrate whether Lkb1-AMPK activation is necessary to 
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induce sLTF. If this is found to be the case then inhibitory targeting of Lkb1-AMPK may 

act to attenuate CB hypersensitivity in CHF or following CIH.  

 

7.7.4 Characterising the downstream targets of adenosine and cAMP in the 

carotid body type I cell 

The results described in Chapter 6 suggest that adenosine is an important excitatory 

neuromodulator of CB chemoafferent activity. The impact of adenosine on type I cell 

function is predicted to be mediated through changes in cellular [cAMP]i. All of the 

downstream targets of cAMP are yet to be comprehensively characterised in the type I 

cell. Two intermediate effector candidates are PKA and EPAC, both known to be 

stimulated by cAMP. Initially, inhibitors of PKA and/or EPAC would be used to see if 

they mimicked the inhibitory effect of CD73 antagonism on CB chemoafferent activity, 

thereby resolving whether PKA or EPAC were involved in establishing the CB sensitivity 

to physiological stimuli. Potentially PKA could phosphorylate a number of different 

proteins or channels in the CB including TASK-1, TASK-3, TREK-1, or BKCa. Western 

blot analysis using phosphorylation specific antibodies could be implemented to identify 

these potential modifications. Furthermore, pharmacological inhibition of PKA in type I 

cells could be used to identify whether phosphorylation of any of these channels directly 

impairs their K+ conductance. Characterisation of a PKA mediated attenuation of the 

background K+ current in normoxia may explain how adenosine is able to regulate basal 

chemoafferent activity and establish the threshold at which the CB begins to respond to 

a number of different physiological stimuli.  
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7.8 Concluding remarks 

	  
Augmentation of the sensory chemoafferent activity originating in the CB both under 

basal conditions and in response to hypoxia is becoming more apparent in a wide 

number of pathologies including SDB, CHF and essential/spontaneous hypertension (2). 

Up-regulation of the downstream reflex pathways tightly associated with CB stimulation 

in these disease states leads to a chronic increase in sympatho-adrenal activation, an 

elevation in baseline vascular tone and the progression of hypertension (392). Selective 

targeting of the CB using pharmacological agents to reduce chemoafferent outflow may 

therefore be crucial for restricting the development of hypertension and cardiovascular 

complications in these patient populations.  

 

The development of therapeutic agents for use in clinical practice has, however, been 

limited due to the fact that the identity of the type I cell specific O2 sensor and its 

associated downstream effectors have remained elusive. The primary experiments in 

the present study were designed to generate findings that advance the understanding of 

the precise mechanisms underpinning CB activation by hypoxia.  

 

The results presented in this thesis demonstrate that a reduction in type I cell 

mitochondrial electron transport by NO2
- directly enhances the sensitivity of the CB to 

hypoxia. These findings provide evidence suggesting that mitochondrial function lies at 

the centre of CB O2 sensing. More specifically the results strengthen the hypothesis that 

the first step in the CB hypoxia stimulus response coupling process is a reduction in 

mitochondrial energy respiration following an impaired binding of O2 to the CuB / 

haem a3 binuclear centre within complex IV. Further studies indicate that activation of 

the Lkb1-AMPK signalling pathway (subsequent to an increase in the AMP:ATP ratio) 
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appears to be the key step in linking a decrease in mitochondrial function with type I cell 

stimulation in hypoxia. A degree of Lkb1 mediated phosphorylation of AMPK in normoxia 

also seems to be necessary for the generation of basal chemoafferent discharge 

frequency. It is predicted that future development of therapeutic agents able to 

selectively target and deactivate Lkb1 or AMPK in the type I cell may prove to be 

clinically important in reducing the augmented chemoafferent activity in certain 

pathologies.  

 

In addition to hypoxia, the CB may be stimulated by a number of other external stimuli 

such as hypercapnia and acidosis (393). Although there is strong evidence implying that 

the CB is involved in systemic glucose homeostasis, the findings described in this thesis 

indicate a lack of intrinsic low glucose sensitivity in the type I cell. The maintenance of 

cellular energy status in the complete absence of external glucose consumption seems 

to be achieved by the metabolism of stored glycogen. This raises the intriguing question 

as to what factor, released as a consequence of systemic hypoglycaemia, stimulates the 

CB, thereby promoting the downstream reflex increase in blood glucose. This may be 

the focus of future investigations and could be of significant clinical importance given the 

rapid emergence of diseases associated with dysfunctional systemic glucose regulation.  

 

Chemoafferent signalling into the NTS may also be modified by a host of different 

neurotransmitters and neuromodulators. The final chapter in this thesis identifies an 

important and novel functional role for endogenous adenosine, derived specifically from 

extracellular catabolism of ATP, in mediating basal chemoafferent outflow and in 

establishing the CB sensitivity to multiple related stimuli. The results suggest that the 

tonic production of adenosine in this manner acts to prime the CB to subsequent 
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stimulation. Future comprehensive characterisation of the adenosinergic pathways 

present in the CB may allow for the development of pharmacological agents capable of 

suppressing the increase in chemoafferent activity in patients with SDB, CHF and 

spontaneous/essential hypertension without impacting on other organ systems. All of the 

key findings described in this thesis are summarised in Figure 7.1. 
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Figure 7.1 Summary of key findings. 
Carotid body (CB) activation is tightly coupled to a decrease in cellular energy status. In hypoxia, an 
increase in the AMP:ATP ratio enhances AMPK phosphorylation by Lkb1 thereby activating downstream 
chemotransduction processes necessary to elevate the chemoafferent fibre discharge frequency. Type I 
cell mitochondrial function can be impaired by NO generated directly from NO2

-. Mild mitochondrial 
inhibition with NO2

- enhances the sensitivity of the CB to hypoxia. This suggests that the elevation in the 
AMP:ATP ratio required to stimulate Lkb1-AMPK in hypoxia is a secondary consequence of a reduction in 
mitochondrial electron transport and ATP synthesis. In response to glucose deprivation, metabolism of 
glycogen acts to maintain substrate delivery into the mitochondria allowing for sufficient ATP synthesis to 
preserve the cellular energy status. Therefore, glucose deprivation does not acutely activate the CB. ATP 
released as an excitatory neurotransmitter in normoxia and hypoxia is metabolised by CD39 and CD73 
and leads to the generation of synaptic adenosine. This ‘pool’ of adenosine has a crucial function in 
establishing the basal chemoafferent discharge frequency and the sensitivity of the CB to stimulation by 
hypoxia, hypercapnia and mitochondrial inhibitors. The impact of adenosine is mediated through A2 
receptors and an increase in pre- or post-synaptic cAMP concentration.  
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Appendix I: Supplementary data 

     

Supplementary figure 1 The excitatory impact of nitrite on augmenting the chemoafferent 
response to hypoxia in a single fibre is also apparent in a multiple fibre preparation when 
discharge frequency is collated.  
A) An example raw trace taken from a multiple fibre recording showing the effect of 3.3 mM nitrite (NO2

-) 
on the chemoafferent frequency response to graded hypoxia. Raw discharge is shown (upper) along with 
frequency histograms (lower) grouped in 10 s intervals. B) The characteristic ‘right shift’ induced by 
3.3 mM NO2

- on the chemoafferent hypoxic response curve calculated from single fibre recordings is also 
evident when the discharge frequency is collated from multiple fibres within the same preparation.  
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Supplementary figure 2 Pharmacological scavenging of superoxide (O2

-) does not reduce the 
chemoafferent response to nitrite. 
An example trace showing the absence of an effect of the superoxide (O2

-) scavenger Tempol (1 mM) on 
the chemoafferent frequency response to 10 mM nitrite (NO2

-). Raw discharge is shown (upper) along with 
frequency histograms (lower) grouped in 10 s intervals. Overdrawn action potentials are shown inset to 
demonstrate the single fibre discrimination from which the frequency was taken.  
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