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Abstract

Temporally-correlated neutron counting, including the passive neutron coincidence

counting (PNCC) and passive neutron multiplicity counting (PNMC) techniques,

is widely used at nuclear fuel cycle facilities for the non-destructive assay (NDA)

of plutonium (Pu). Correlated event rates are used to quantify mass values of

spontaneously fissile nuclides and derive total Pu mass. These methods are limited

in accuracy by uncertainty in the deadtime correction. A pulse train analysis method

has been developed and applied to the re-evaluation of deadtime correction factors

for correlated neutron counting.

The Monte-Carlo transport code MCNPXTM was used to generate a time-

stamped list of neutron captures in 3He. Event times were processed in software to

create neutron pulse trains akin to list mode data. The action of multiplicity shift

register (MSR) electronics was modelled in software to analyse these pulse trains.

Prior to MSR analysis, stored pulse trains could be perturbed in software to apply

the effects of deadtime. In this work, an updating (paralyzable) deadtime model

was chosen to replicate existing theoretical approaches to deadtime correction.

Traditional deadtime correction methods for temporally-correlated neutron

counting have been found to be accuracy limiting in cases where highly correlated

rates occur over a short coincidence gate width i.e. high instantaneous rates

associated with high multiplicity bursts. Here, empirical results are presented which

support the development of an alternative formalism for both the traditional Singles

and Doubles deadtime correction factors for PNCC. Deadtime effects are found

to be dependent on the level of correlation in the pulse train yet independent of

gate fraction, which is set by the shift register gate structure, for Singles deadtime

correction factors. Doubles deadtime correction factors were found to have a slight

dependence on gate fraction.

Research work was conducted at the University of Birmingham, UK in close

collaboration with Canberra Industries, Inc., USA.
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to Mum, Dad & Lucy

Nothing in life is to be feared. It is only to be understood.

- Marie Curie 1867 - 1934



In Loving Memory of Grandad Drury.

I’m still expecting the wheel barrow...
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Chapter 1

INTRODUCTION

This chapter explains the motivations for conducting research into the physics of

Non-Destructive Assay (NDA) techniques. The discussion is set in the broader

context of the nuclear fuel cycle. Challenges facing nuclear materials management

are discussed, identifying some of the ways in which nuclear measurements need to

evolve to meet these challenges. The importance of simulation as a research tool is

highlighted. First, several research questions are posed. These are addressed in later

sections of this work.

1.1 Scope

Temporally-correlated neutron counting techniques are potentially limited in ac-

curacy by traditional deadtime correction methods. Measured correlated count

rates are reduced due to deadtime thus, if not performed accurately, deadtime

correction itself may lead to uncertainties in derived total plutonium (Pu) mass

values. For safeguards measurements, target accuracies of less than 0.25% may

be needed in demanding cases to maintain material balance areas and, even with

careful item specific calibration, variations between items mean that dead time

corrections are significant. This is discussed in a recent paper by Croft, et

al [1]. It is costly to retrofit new hardware to existing assay systems to reduce

the effects of deadtime, therefore it is advantageous to develop and implement

new deadtime correction algorithms as an alternative approach to ameliorate this

problem. There has been a general trend to field neutron instruments with higher

efficiencies and shorter die-away times and hence these designs present the need for

improved deadtime treatments. For these reasons, deadtime correction methods for

temporally-correlated neutron counting are currently being re-visited by both the

waste characterisation and safeguards communities in the nuclear industry.
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Developments in list mode data acquisition (LMDA) have also stimulated growing

interest in direct analysis of neutron pulse trains. In principle LMDA provides a

complete record of the experiment and can be analysed in such a way as to simulate

multiplicity shift register (MSR) action and investigate the MSR algorithms used for

conducting neutron assay online. Examples of recent studies include those conducted

by Bondar [2], Swinhoe, et al [3] and Peerani, et al [4]. This study thus began with

the following research question in mind:

• Can existing neutron pulse train analysis methods be extended to include a full

systematic study of deadtime behaviour and effects in passive neutron counting

systems?

The first objective was therefore to research existing pulse train analysis techniques

and extend their application to a systematic investigation of deadtime behaviour in

correlated neutron counting, over a range of operational conditions of a multiplicity

counter. A study of this nature has not been conducted by the community until

now [1] [5], but provides a convenient means to study the validity of both the

theoretical models of deadtime and empirical approximations. List mode data is now

available for comparison and multiplicity data has been added to the Monte-Carlo

transport code MCNPXTM [6], which make this an opportune time to conduct an

investigation of this nature. Following on from this work, further research questions

developed:

• Are there differences between the deadtime correction factors for uncorrelated

(e.g. AmLi) and correlated neutron sources (e.g. Cf)?

• To what extent does multiplication (e.g. Pu items) impact the deadtime

correction factors (impact the existing theoretical approaches to deadtime

correction)?

These research questions are part of a larger study to re-evaluate deadtime correction

factors for correlated neutron counting in commercial applications and to develop

a unified approach to deadtime correction for different multiplicity distributions.

Broader questions are being addressed by other researchers in this field:

• How does the multiplicity distribution impact deadtime correction factors? [7] [8]

• Are existing algorithms for the shift register the most efficient? i.e. is there

merit to an improved sampling regime for the MSR? [9]
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1.2 Non-Destructive Assay

The term Non-Destructive Assay (NDA) covers a range of techniques for the

measurement of both radioactive waste and special nuclear material (SNM); for

example, fissile plutonium (239Pu), uranium (233,235U) and enriched uranium, held

at nuclear fuel cycle facilities. NDA techniques are used for the characterisation (e.g.

elemental or isotopic composition) and quantification (e.g. mass, activity) of these

materials when contained or stored within sealed packages and waste drums. These

containers are collectively known as “assay items”. It is an essential feature of NDA

that items are not opened or changed when conducting NDA measurements, hence

preserving the physical and chemical state of the nuclear material under assay [10].

This type of nuclear measurement is therefore non-destructive in nature, involves

the assay of the bulk item in situ and generally in toto, and relies on the detection of

emitted penetrating radiation. The detected radiation can be correlated to specific

radionuclides present and used to determine their characteristics and quantity [11].

NDA techniques for SNM were originally developed for nuclear materials

safeguards measurements, requiring a rapid assay without interfering with the

item [12]. NDA techniques therefore present certain advantages over Destructive

Assay or Destructive Analysis (DA) which involves the collection of samples from

the bulk material for radiochemical analysis [10]: NDA requires no preparation

or transportation of radioactive samples and therefore no residual waste forms are

created, operator radiation exposure is greatly reduced for NDA compared to DA,

NDA measurements are faster than destructive techniques leading to higher assay

throughput in fuel cycle facilities and a corresponding reduction in cost [12].

Moreover NDA of the bulk item is potentially more accurate than a physical

sampling (often accompanied by radiochemical analysis) because the finite number

of samples may not be representative of the bulk nuclear material, depending on

the homogeneity of the item. For example, the distribution of radioisotopes and

therefore radioactivity may not be uniform across the item. DA methods therefore

require a strategy to homogenise and sample the item, ensuring a representative

sampling scheme is obtained [11]. Typically, samples need to be sent to a laboratory

for preparation, prior to analysis. This imposes further time and cost restraints on

this choice of assay method. Sample preparation and transportation of radioactive

materials to a laboratory may also result in the generation of unwanted secondary

wastes. NDA does not require a sampling scheme and is thus free from the classical

sampling error otherwise associated with DA. Bulk assay also obviates the need for

repeated measurements to improve precision [11].
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Advantages of NDA techniques have meant that their application has extended

beyond nuclear safeguards measurements to other aspects of nuclear materials

management for both safety and security. At present, NDA techniques are employed

for a wide variety of applications at nuclear fuel cycle facilities, including: radioactive

waste characterisation, process flow monitoring, enrichment monitoring, and spent

fuel verification [12], among other examples given in section 1.4.

There are, however, disadvantages of NDA in comparison to DA. Unlike DA,

NDA relies on the detection of emitted radiation outside a container, which may

be a large waste drum or shipping container. Emitted radiation may therefore

be subject to unwanted “matrix effects” such as attenuation or absorption as it

traverses the surrounding matrix material, leading to uncertainty in the assay result.

This means that NDA is usually less accurate than DA [12], provided the DA

sampling protocol is representative. Typically DA samples are small compared to

the overall volume of the item and so the dilemma is whether the samples collected,

together and after homogenisation, are truly representative of the whole. This is

a statistical problem. Depending on the nature of the material and practically

acceptable sampling strategy the sampling errors can be large. Very often however

sampling is not an option since the item can not be readily opened.

In many cases NDA measurements must be used in conjunction with DA, or

results interpreted using process knowledge relating to the isotopes present in the

waste form. Furthermore, NDA simply cannot be applied to the assay of some

radionuclides. For example, pure β emitters are measured using DA, due to the

short range of β particles in matter. Very long lived radionuclides are a further

example.

Radioactive waste and nuclear material arise in a variety of physical and chemical

forms which also have to be taken into account during the selection of an appropriate

assay technique. For example, the assay of Pu metal generally requires neutron

measurements for accurate absolute mass determination due to gamma ray self-

absorption and the large attenuation of the gamma ray signal in dense waste drum

matrices [12]. Calorimetry may also be applied to the assay of Pu; for example,

PuO2 and Pu metal product [13].
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Table 1.1 provides a summary of the relative advantages and disadvantages of NDA

and DA methods.

NDA DA

Non-Destructive Destructive

In-situ Transportation of Radioactive
Samples

Measurement of bulk item, generally
in-toto

Physical sampling

Radiometric measurements Radiochemistry

Radioactively “clean” Residual waste forms, secondary
wastes

Matrix Effects: attenuation, self-
absorption, short range of α and β
particles

Sampling error, non-homogeneity of
matrix

Rapid measurement Time consuming, expensive

Table 1.1: NDA vs DA

Reducing total measurement uncertainty (TMU) values in NDA measurements is

the goal of current research, which would in turn lead to a reduced reliance on

DA. Typically, DA techniques may be up to 10 times more accurate than an NDA

result, however this does not merit the use of these techniques if the sampling errors

are large i.e. imperfect sampling performed with exact analysis, as opposed to an

NDA assay on the whole item performed imperfectly; as considered by Bronson [14].

Trade-offs between cost, time, simplicity and secondary waste generation come in to

play during the selection of an appropriate assay technique, and it depends crucially

on what is known about the assay items beforehand. NDA is generally the preferred

approach when prior knowledge about an item is not available. Limitations in

accuracy must therefore be investigated to enable the application of NDA techniques

to continue to broaden to a greater range of measurement scenarios and more

demanding items. Research can also lead to improvements in the way measurements

are both conducted and interpreted.
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1.3 NDA Techniques

This section provides an outline of the main NDA techniques currently applied in

the nuclear fuel cycle. It is not intended to be extensive since several texts exist;

these include the Los Alamos National Laboratory (LANL) Passive Non-Destructive

Assay of Nuclear Materials [12] and the US Nuclear Regulatory Commission (NRC)

manual Active Non-Destructive Assay of Nuclear Materials [15].

Three main classifications of NDA techniques are currently available: gamma-

ray spectroscopy, neutron counting and calorimetry. Detecting emitted gamma

radiation, neutrons and heat output, respectively. These techniques can be thought

of as forming the “NDA triangle” shown in figure 1.1, with an assay radionuclide e.g.

Pu at the centre. High Resolution Gamma Ray-Spectroscopy (HRGS) measurements

are used to identify specific radionuclides present in assay items from their gamma-

ray energy spectra. Neutron measurements are used to detect the presence of

and determine the mass of U and transuranic (TRU) isotopes such as plutonium

(238,239,240,241,242Pu), americium (241Am) and curium (242,244,246,248Cm), as these

isotopes emit neutrons during both spontaneous and induced fission. Calorimetry

is useful for determining total Pu mass under certain conditions where neutron

measurements are limited in accuracy. It is especially useful for determining Pu

content in mixed oxide fuel (MOX) where a high background from (α, n) reactions

would otherwise mask a useful neutron assay signal.

Figure 1.1: NDA Triangle
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NDA measurements may be either passive or active, depending upon the radiation

emission process. Passive measurements rely on counting the natural radiation

emissions from an item following a spontaneous decay; these can be gamma rays from

nuclear transitions following α or β decay, gamma rays following nuclear reactions

or neutrons born in spontaneous fission. Heat generation from radioactive decay,

due to the interaction of decay products in the surrounding material, is also classed

as a passive process. Hence, all three groups of NDA techniques can be used in the

passive mode.

Passive gamma measurements alone are used for assay. However, the interpreta-

tion of results from passive neutron measurements and calorimetry requires known

isotopics from relative HRGS measurements or declared isotopic composition. Pas-

sive gamma measurements therefore accompany both passive neutron measurements

and calorimetry where limited process knowledge is available. For this reason, HRGS

can be thought of as forming the base of the NDA triangle in figure 1.1.

Items containing Pu lend themselves well to passive assay due to the relatively

high spontaneous fission rates of the even-even isotopes: 238,240,242Pu; 240Pu being

the dominant nuclide and the effective mass of 240Pu the main assay parameter.

Active measurements, alternatively, are required where spontaneous fission

neutron emission rates (or spontaneous fission yields) are not high enough to

provide a detectable signal for assay. Measurement of the fissile isotope 235U is

conducted actively due to the low spontaneous fission rates of odd-even nuclei

and corresponding low neutron yields. An active measurement uses an external

interrogation source to stimulate emissions from the assay item, which may be a

gamma ray, x-ray or neutron source. Gamma ray sources are more commonly used

for transmission correction methods to account for spatial inhomogeneities in the

waste matrix [11]. Neutron sources utilise the following reactions to induce fission

within the assay item and therefore stimulate neutron emission [12]: (α,n) reactions

(e.g. AmLi); spontaneous fission (e.g. 252Cf) in the case of the Cf Shuffler assay

system; and T(d,n) 14 MeV pulsed neutron generators for Differential Die-Away

(DDA).

This thesis is concerned with passive neutron NDA measurements. The main

area of research is the study of deadtime correction factors for correlated neutron

counting, specifically the techniques of Passive Neutron Coincidence Counting

(PNCC) and Passive Neutron Multiplicity Counting (PNMC).
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1.4 Nuclear Fuel Cycle

Nuclear measurements, including NDA techniques, are widely used at nuclear fuel

cycle facilities. The term nuclear fuel cycle is defined by the International Atomic

Energy Agency (IAEA) [10] as: “A system of nuclear installations and activities

connected by streams of nuclear material.” Broadly, this refers to all facilities and

processing stages required to fabricate nuclear fuel and generate power in a nuclear

reactor, followed by the direct storage or reprocessing of the spent nuclear fuel at

the end of its useful lifetime in the reactor core and subsequent waste management.

However, the nuclear fuel cycle can greatly vary between countries; from a single

reactor supplied with fuel from abroad, to a fully developed cycle which includes all

the aforementioned processes [10].

The main stages of the UK nuclear fuel cycle are illustrated in figure 1.2 with

arrows indicating the flow of nuclear material [16]. Not all stages of the UK fuel

cycle take place in the UK itself, thus material is transported between countries. For

example, U mining and milling are carried out overseas; mainly in Canada, Australia

and Kazakhstan [17]. Stages are described here to highlight where radioactive waste

and SNM arise within the cycle and thus where material monitoring is required. The

different stages mean U and Pu may arise in many forms. LLW, ILW and HLW in the

figure refer to Low-Level Waste, Intermediate-Level Waste and High-Level Waste,

respectively; which are defined in section 1.5.1:

Figure 1.2: Overview of the UK Nuclear Fuel Cycle - Courtesy of A. Worrall, NNL
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1.4.1 Front End Nuclear Fuel Cycle

Worrall, Barré and Wilson provide detailed descriptions of the nuclear fuel cycle

in references [16], [17] and [18]. The “front end” of the fuel cycle refers to all

activities prior to power generation in a nuclear reactor. Each activity takes place

in a designated facility or plant. Front end activities include: mining of the raw U

ore, milling of the ore and extraction of U concentrate (U3O8), conversion of U to

UF6, enrichment (increasing the concentration of the fissile isotope 235U within the

U), fabrication of the fuel and its arrangement into assemblies, and loading of the

fuel in the reactor core. The composition of reactor fuel varies with reactor type,

therefore enrichment of the fuel is not always a requirement; for example, Candu

reactors operate using Natural U metal fuel (∼99.3% 238U, 0.7% 235U).

1.4.2 Pu Production in Nuclear Fuel

Nuclear fuel is exposed to a high neutron flux during irradiation in a reactor core

e.g. ∼ 1014 n.cm−2s−1 thermal flux in a Light Water Reactor (LWR). Fissile1 235U

has a high capture cross-section for thermal neutrons, resulting in the fission of
236U∗ (thermal fission). Fertile2 238U may also lead to fission following capture of

neutrons at higher energies (fast fission). Nuclear fission results in fuel burn-up (i.e.

a reduction in the proportion of fissionable isotopes in the fuel) and the production

of highly radioactive (and in some cases, long-lived) fission products. The quantity

of these fission products in spent fuel is therefore related to fuel burn-up, allowing

for radioactive decay.

Neutron capture reactions occuring within the fuel that do not lead to fission

can lead to the production of other isotopes - the actinides, including transuranic

(TRU) isotopes - via a series of neutron capture reactions and β decays. Examples

of minor actinides in spent fuel include: neptunium (237Np), americium (241Am)

and curium (242Cm). Fissile 239Pu is produced following neutron capture on 238U.

Further neutron captures lead to the production of the transuranic (TRU) isotopes
240Pu, 241Pu and 242Pu. However the production of 244Pu is inhibited by the β decay

of 243Pu. The final composition of spent fuel at the time of removal from the reactor

includes a high proportion of U (∼95%), some Pu (∼1%), and smaller amounts of

fission products and minor actinides [16] [17].

1Fissile = Isotopes that can undergo fission following neutron capture at all neutron energies.
2Fertile = Isotopes that can capture neutrons leading to the direct production of fissile isotopes

or production via daughter products.
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The isotopic composition of Pu in a given spent fuel assembly is dependent upon

the reactor type, the initial U enrichment, the irradiation period of the fuel in the

reactor and the reactor operating conditions [19].

Figure 1.3 illustrates the series of neutron capture reactions and decay mecha-

nisms that lead to the production of actinides in nuclear fuel, when exposed to a

high neutron flux in a nuclear reactor core. For passive neutron NDA measurements,

the region of interest of the chart of the nuclides is shown, indicating the proton

(Z) and neutron (N) numbers (i.e. isotopes) of U and TRU nuclides. The red

arrows in the figure indicate neutron capture reactions that lead to the production

of higher N isotopes. This occurs when the neutron is captured, but the isotope

does not undergo immediate fission or decay. Neutron rich isotopes are β-unstable

and therefore decay via β particle emission, resulting in the conversion of a neutron

to a proton. Thus the proton number of the nuclide increases by one, but its mass

number is unchanged. This decay mode is indicated by black arrows on the diagram.

Figure 1.3: Actinide Production in Nuclear Fuel: When exposed to a neutron flux
in a nuclear reactor
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1.4.3 Back End Nuclear Fuel Cycle

The “back end” of the nuclear cycle refers to all activities following power generation.

After de-fuelling of the reactor core, spent fuel has to be managed safely. The nuclear

fuel cycle may operate as an open (“once-through”) or closed cycle, based on different

approaches to spent fuel management in a given country. In both cycles, spent fuel

assemblies are usually stored in a water pond at the reactor site for ∼ 5-6 years

for cooling. There are cases where an air-cooled store is used; for example, storage

of Candu reactor spent fuel [16]. In an open fuel cycle, spent fuel is considered

waste and continues to be stored, pending final disposal. In the closed fuel cycle

approach, spent fuel is treated and reprocessed to recover U and Pu. The resulting

separated Pu can be mixed with tails U as mixed oxide (MOX) fuel for recycling

in a reactor [17]. Recycling has the advantage of minimising the total volume of

waste going to a repository, as well as extracting the fissile material for potential

subsequent re-use in reactors (Pu and reprocessed U) [16]. Since U and Pu are

considered to be useful in this approach and therefore recyclable, it is only the fission

products and actinides which are treated as waste and are ultimately disposed [17].

An alternative management option is spent fuel storage with provision for eventual

retrieval of the fuel [16].

Although the UK manufactures MOX fuel, to date this fuel is exported as UK

reactor designs do not currently utilise this fuel type. This is due to the higher

cost of MOX fuel compared to UO2 fuel, the technical modifications required to

the reactors and the associated safety cases [20]. The use of MOX fuel may be a

potential option for a programme of new reactor build in the UK [19]. Future fuel

cycle options will be addressed in section 1.6.1 on challenges facing nuclear materials

management which have a potential impact on nuclear measurement technologies.

1.5 Applications of Nuclear Measurements in the

Nuclear Cycle

Nuclear fuel cycle activities lead to the production of nuclear materials and

radioactive waste. The safe storage and transportation of nuclear materials is

therefore a requirement throughout the fuel cycle. Nuclear measurements are an

integral part of the safe management of nuclear materials at all stages of the cycle

for tracking and accounting for nuclear material, thus ensuring its safe handling and

storage, and avoiding clandestine use.
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Non-Destructive Assay provides the physical measurements which underpin safety,

security and safeguards [12]:

Safety

• Criticality safety,

• Waste characterisation,

• Plant process control,

• Verification of process quality assurance (QA),

• Regulatory compliance, and

• Environmental monitoring.

Security

• Access control, and

• Homeland security (e.g. portal monitoring at borders and points of entry).

Safeguards

• IAEA safeguards inspection,

• Inventory management (e.g. verification of radioactive inventory and inventory

changes),

• Nuclear materials accountancy and control,

• Surveillance and plant monitoring,

• Undeclared activities,

• Site perimeter radiation monitoring,

• Enrichment monitoring,

• Spent fuel verification, and

• Shipper-receiver differences.
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Figure 1.4 is an illustration of applications of nuclear measurements in the nuclear

fuel cycle. The techniques of PNCC and PNMC are commonly applied to both waste

characterisation and nuclear safeguards. These applications will now be described.

Figure 1.4: Examples of NDA Applications in the UK Nuclear Fuel Cycle
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1.5.1 Radioactive Waste Characterisation

Radioactive waste is defined by the IAEA [10] as: “nuclear material in concentrations

or chemical forms which do not permit economic recovery and which is designated

for disposal.” The main contribution to the UK’s radioactive waste inventory is

from the nuclear power industry. Radioactive waste arises as a result of nuclear

fuel cycle activities, as previously described. Radioactive waste may also arise

from the decommissioning of reactor sites and from military nuclear programmes

- both weapons and propulsion. Other minor contributions to UK radioactive waste

volumes arise from the use of nuclear materials in industry, medicine and research

laboratories [21].

The radioactive waste classification system in the UK is based on the type and

quantity of radioactivity contained within the waste form and its heat generating

capacity. There are three main classifications of radioactive waste in the UK, as

defined in [21]:

• High-Level Waste (HLW)

• Intermediate-Level Waste (ILW)

• Low-Level Waste (LLW)

Table 1.5.1 provides a summary of this classification system, based on information

presented in the 2007 UK Radioactive Waste Inventory [21]. The table includes a

description of each classification and gives examples of waste forms, together with

their designated disposal route.

According to the 2007 inventory [21], Very-Low Level Waste (VLLW) is a sub-

category of LLW. This includes waste containing levels of radioactivity low enough

for disposal alongside non-radioactive waste in landfill sites - less than 400 kBq per

m3 of beta/gamma activity or less than 40 kBq of β/γ activity for single items.

Radioactivity limits are given in table 1.5.1 to distinguish between LLW and

ILW. These limits are defined in legislation to ensure that background levels of

radioactivity are not exceeded in storage or disposal sites for the purpose of

environmental protection. Measurement of the total radioactivity (using NDA, DA

or a combination) contained within a waste drum is used to determine whether it

can be disposed of as LLW or has to be consigned to an ILW store. ILW storage is

more expensive than LLW disposal due to the additional shielding requirements.
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UK Radioactive Waste Classification
Classification Description Examples Disposal Route
HLW Significant heat

generation due to the
high concentration
of radioactivity.
Heat generation has
to be taken into
account in the design
of storage or long-
term repository
facilities with
additional cooling
and shielding.

The highly active
nitric acid solution
or liquor containing
the waste products
from spent fuel re-
processing, includ-
ing fission products
and actinides.

No long-term
disposal route
currently available.
Liquid HLW is
conditioned (i.e.
immobilised into
a stable vitrified
borosilicate glass)
and packaged for
storage at the
Sellafield site,
Cumbria.

ILW No significant heat
generation. Contain-
ing levels of radioac-
tivity greater than
the upper limits de-
fined for LLW.

Metal items
(mainly steel)
including fuel rod
cladding, reactor
components and
plant equipment.
Graphite from
moderator blocks in
dismantled reactor
cores (Magnox,
AGR stations).
Pu Contaminated
Materials (PCM).
Scrap metal.
Sludges from the
treatment of liquid
waste effluents.

No disposal route
currently available.
ILW is packaged
and stored on the
site where it was
produced pending
final disposal in the
proposed national
waste repository.
ILW holdings include
a ILW store at
Harwell and storage
facilities at Sellafield.

LLW Containing levels of
radioactivity not ex-
ceeding 4 GBq/te of
α or 12 GBq/te of
β/γ activity.

Operational wastes
including protective
clothing, gloves,
laboratory and
site equipment
used on a nuclear
plant. Waste
forms are mainly
paper, plastics and
scrap metal items.
Decommissioning
wastes such as
contaminated soil
and building rubble.

Most solid LLW is
currently disposed of
at the national Low
Level Waste Repos-
itory (LLWR) near
the village of Drigg in
Cumbria.

Table 1.2: UK System of Radioactive Waste Classification
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Figure 1.5: Low-Level Waste: (a) UK LLW Repository near Drigg (b) 208` Drum
of LLW Items (c) LLW Drum following Supercompaction into a ‘Puck’ for Volume
Reduction

The safe and cost effective storage and ultimate disposal of radioactive waste

relies on knowing the type of radionuclides present in a waste form and their

quantity. Waste characterisation is therefore an essential part of effective waste

management. Another part of waste management is minimising secondary waste

arisings or secondary waste forms where possible [16]. As previously mentioned,

NDA techniques obviate the need for physical sampling of the item therefore no

residual waste forms are created. NDA therefore meets this requirement, whereas

DA does not. Waste volumes should also be minimised where practicable. Figure 1.5

provides a good example: (a) shows an aerial photograph of the UK national

LLW repository near Drigg [22]. Drums of LLW shown in photograph (b) [16]

are supercompacted to reduce their volume before final disposal in the repository.

A 208` LLW drum following supercompaction is shown in photograph (c) [22].
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1.5.2 Nuclear Safeguards Measurements

Nuclear materials and nuclear technology have beneficial and peaceful applications in

energy (i.e. nuclear power) and medicine (i.e. nuclear imaging, nuclear medicine).

However, the civilian use of nuclear technology grew rapidly from military use,

but not exclusively (e.g. Radium). In 1953, Eisenhower addressed the members

of the United Nations General Assembly during his Atoms for Peace speech [23].

Eisenhower publicly acknowledged this “dual nature” of nuclear fission and agreed to

transfer nuclear reactor technology from military to civilian use. This speech paved

the way for the development of an independent international body to safeguard

fissile materials and therefore prevent nuclear proliferation3. The IAEA was thus

established in 1957 [17] and still exists in this founding role today and promotes

peaceful uses of nuclear technology.

The fundamental objectives of the IAEA (under the IAEA statute) are to

encourage member states to be “open and transparent” regarding the use of

nuclear materials in all their nuclear facilities and to declare all peaceful activities.

Activities are monitored to ensure no illicit diversion of nuclear material and

that any undeclared nuclear materials or clandestine activities can be detected.

Nuclear measurements play a central role in this monitoring process. Results from

inventory verification measurements and facility surveillance allow the IAEA to

draw independent conclusions regarding nuclear fuel cycle activities in a country.

This ensures that a country is compliant with peaceful use commitments via non-

proliferation4 agreements, such as the 1968 Treaty on the Non-Proliferation of

Nuclear Weapons (NPT) [17].

Correlated neutron counting techniques such as PNMC are used to non-

destructively determine mass values of spontaneously fissile materials for nuclear

materials accountability and control. PNMC is an NDA technique employed by

IAEA inspectors for materials accountability measurements, verification measure-

ments and excess weapons materials inspections [24].

3Nuclear Proliferation = Where a greater number of countries acquire nuclear weapons. This
is sometimes referred to as “Horizontal Proliferation” [17].

4Non-proliferation = Political or technical measures implemented to reduce the spread of nuclear
weapons.
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1.6 Technology Trends and Research Needs for

Neutron NDA Systems

1.6.1 Challenges Facing Nuclear Materials Management

Several pressing challenges currently face the field of nuclear materials management.

These challenges represent key drivers for further research into nuclear measurements

and NDA techniques, for both waste management and safeguards, in ways which

will now be described.

Global Expansion of Nuclear Power

An increase in world energy demand and growing concerns over climate change,

coupled with an increasing dependence on diminishing supplies of fossil fuels, have

led to the planned global expansion of nuclear power, or “nuclear renaissance”. In

many countries (e.g. China, Japan, France, Finland), new civilian nuclear build is

underway and is being planned in others (e.g. UK). Even countries such as Sweden,

that have previously had a ‘phasing out’ of nuclear power, are showing a renewed

interest in new nuclear build.

Expansion of Nuclear Fuel Cycle Facilities and Activities

A global expansion of nuclear power leads to the growth of activities across the

nuclear fuel cycle and a corresponding expansion of nuclear power plants and fuel

cycle facilities. New technologies are being considered and evaluated; under many

multi-national partnerships, for example, the Generation IV programme. As a

result, the need for both nuclear materials safeguards and facility surveillance is

increased. Safeguards measurements are also evolving: there is a greater requirement

for remote monitoring, remote review and a reduction in operator intervention.

Sprinkle [25] stated that safeguards measurements should incorporate advances in

detection, automation and information technology. It was also noted that a new

generation of safeguards technologies is needed, to adapt to new waste processes

and reactor technology.

The concept of “safeguards by design” is also being considered i.e. the

opportunity for new build facilities to plan and include safeguards measurements

during the design phase.
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Increased Security Climate

Increasing security concerns are also placing greater emphasis on nuclear safeguards.

These include concerns over general acts of terrorism on nuclear plants, and theft

of radioactive materials leading to the production of improvised, explosive radiation

dispersal devices (“dirty bombs”).

New Fuel Cycles

Potential new fuel cycles present the challenge of new materials and measurement

scenarios i.e. potentially harder to assay items. Current measurement solutions need

to be adapted to meet the needs of new fuel cycles (e.g. thorium cycle) and new

materials. New reprocessing techniques (e.g. pyroprocessing) change the nature of

the material being measured.

Resources

Resources commonly used for neutron detection in both waste and safeguards

applications are becoming limited. There is currently a shortage of supply of 3He

and demand is increasing sharply. Other options of detector materials are being

considered.

1.6.2 Technology Trends

Technology trends in NDA systems can be used to predict trends in future counter

designs and thus highlight where research into NDA physics is required. Here, the

need for research into deadtime correction algorithms will be discussed in the context

of future counter designs, since this is the main subject of this thesis.

There are several practical motivations driving an investigation into deadtime

correction factors for PNMC. Evolution of counter design features, together with an

extension of the technique to a greater range of applications and the assay of more

demanding items, are likely to result in the need for improved deadtime treatments.

19



1.6. TECHNOLOGY TRENDS AND RESEARCH NEEDS FOR NEUTRON
NDA SYSTEMS

Evolution of Neutron Counter Designs

There has been a general trend to field neutron instruments with higher efficiencies

and shorter die-away times (see section 2.3.2). Figure 1.6 shows two recent

neutron multiplicity counter designs: the Canberra PSMC-01 Pu Scrap Multiplicity

Counter [26] and the Canberra LEMC Large Epithermal Multiplicity Counter [27].

Figure 1.6: Evolution of neutron counter designs. From left: Canberra PSMC-01
Pu Scrap Multiplicity Counter; MCNPTM model of the PSMC-01; Canberra LEMC
Large Epithermal Multiplicity Counter; MCNPTM model of the LEMC.

Table 1.3 illustrates the difference in design features between the LEMC and the

PSMC-01. The LEMC has an increased number of 3He gas proportional tubes

and higher fill pressure than the PSMC-01, and thus higher efficiency for neutron

capture. The LEMC also has a smaller die-away time than the PSMC-01.

Design Feature PSMC-01 LEMC
Number of 3He Tubes 80 126
3He Partial Pressure 4 atm 10 atm

Rings 4 3
Counter Efficiency, ε > 50% 51%

Die-away Time, τ (µs) 50 24
Cavity Dimensions:

Inner Diameter 200 mm 400 mm
Cavity Height 400 mm 500 mm

Outer Dimensions:
Footprint 661 mm × 661 mm 889 mm × 889 mm

Height 992 mm 1156 mm

Table 1.3: Evolution of neutron counter design features: comparison of design
features between the Canberra PSMC-01 Pu Scrap Multiplicity Counter and the
Canberra LEMC Large Epithermal Multiplicity Counter.
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Future generations of neutron counters and their applications will trend towards the

following [1]:

• Increased neutron detection efficiencies (currently ε ∼ 50%),

• Shorter capture time distributions and hence reduced die-away times

(currently τ ∼ 30 - 40 µs),

• Higher sustained count rates as a result of increasing the range of masses of

assay items e.g. ILW, high rate safeguards applications,

• Assay of impure items with high (α, n) rates i.e. an increased ratio, α, of (α,

n) neutrons to neutrons born in spontaneous fission,

• Increased induced fission as a result of self-interrogation, and

• High self-leakage multiplication, ML, resulting in long fission chains.

1.6.3 Research Needs

A reduced counter die-away time means that neutrons are detected over shorter

timescales, requiring counter operation at shorter coincidence gate widths. For a

given detection efficiency, ε, higher instantaneous count rates will be imposed by

this reduction in gate width, potentially with a corresponding increased item count

rate (high sustained rate). High instantaneous count rates mean there is an increased

likelihood of detecting a large number of events in a single coincidence gate width,

hence detecting higher multiplicities of events resulting in the multiplicity histogram

extending to high order. Consequently, there is an increased likelihood of overlapping

events or pulse pile-up and thus deadtime losses. When the instantaneous counting

rate is high, the uncertainties in the applied deadtime corrections can be the accuracy

limiting factor in the derived count rates. This subject will be discussed in greater

detail in chapter 6.

Since the underlying physical behaviour of deadtime to date has not yet been

thoroughly investigated in PNMC, there is a corresponding physics motivation to

investigate the analytical forms of the deadtime correction factors themselves to

improve general understanding.
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Koskelo [28] addressed technology trends in NDA systems and future research

needs during the 2008 meeting of the Institute of Nuclear Materials Management

(INMM) NDA Users Group. The following research topics were highlighted as being

important for neutron NDA systems:

• Deadtime correction algorithms.

• Faster, more capable electronics e.g. Canberra JSR-14, JSR-15, list mode data

acquisition (LMDA).

• 3He has been the staple detector material for neutron systems, but is in

short supply and hence is expensive i.e. new detector materials need to be

investigated. Need for high efficiency, shorter die-away time and low deadtime.

• The cost of High Density Polyethylene (HDPE) has increased (tracks oil

prices). This presents a need to develop new moderator and shield materials.

• New and improved mathematics e.g. add-a-source method, cosmic ray

interference, and coincidence vetoes.

• Sourceless calibration i.e. computation.

• Combination of NDA systems and surveillance - integrated, remote, unat-

tended.

• Networked systems for unattended and fully automated systems. This is a

capability that will be required for IAEA inspections and will also reduce

operator costs.

• Reporting back remotely e.g. results of IAEA safeguards inspections, or

systems requiring maintenance, via the introduction of flags in software etc.

• Encryption and identification.

• Remote data analysis.

• Expert systems with automated local review, remote expert review. Reduce

the need to send experts to site.
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1.7 Simulation Applied to NDA Physics Research

This section discusses one aspect of meeting the NDA challenge in more detail.

Simulation can be applied to a wide range of research problems in NDA physics.

The principal advantage of simulation is the ability to extend the range of research

problems that can be addressed which cannot be solved by empirical work alone, or

have proven to be challenging practically. Simulation has several advantages (over

calculational methods and, in some cases, over experimental work):

• Forward calculations - complete control over input parameters and problem

definition,

• Convenient means to validate empirical correlations,

• Simulation allows full systematic study of dead-time behaviour (MSR param-

eters, input channels, detection geometry),

• Support developments in detector design and the design of future counters,

• Reduces the need for physical calibration standards,

• Variety of post-processing algorithms,

• List mode data available for comparison, making benchmarking practically

viable,

• Newer versions of transport codes now available, not previously available, and

• Allows full range of detection geometries to be modelled and investigated. In

turn this can support developments in detector design by simulating design

features envisaged for the next generation of multiplicity counters. Facilitating

the modelling of high efficiency systems, allowing a larger range of materials

to be assayed.
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Simulation is also a useful tool for detector design studies. Figure 1.7 shows an

example of an MCNPTM Model for a neutron counter: a Canberra PSMC-01 Pu

Scrap Multiplicity Counter. This type of MCNPTM model is created for each counter

to optimise counter design features e.g. number of 3He gas-filled proportional tubes,

thickness of HDPE moderator etc. Simulation can therefore aid the development of

future NDA systems.

Figure 1.7: MCNPTM Model of a Canberra PSMC-01 Pu Scrap Multiplicity Counter
- courtesy of R.D. McElroy, Canberra Industries, Inc.

Simulation provides a convenient means to examine the range of applicability of

current analytical models. The deadtime algorithms researched in this work provide

a good example. Studies of this nature are made possible by the availability of

nuclear data, for example, the inclusion of multiplicity distributions in MCNPX.

Advances in computation and the availability of list mode data for comparison,

such as the data used for the inter-comparison exercise reviewed in chapter 5, also

support work in this area.
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Chapter 2

THEORETICAL ASPECTS OF

CORRELATED NEUTRON COUNTING

A review of theoretical aspects of temporally-correlated neutron counting is presented

in this chapter, prior to an account of practical aspects in Chapter 3. Concepts of

temporal correlations, neutron multiplicity, time correlation analysis, neutron pulse

train analysis, multiplicity shift register (MSR) action, the analytical point model,

and deadtime (both updating and non-updating) are introduced to aid understanding

of later discussion.

2.1 Temporal Correlations

The detection of temporally-correlated neutrons from spontaneous fission provides a

unique time signature for the non-destructive assay of spontaneously fissile nuclides.

Passive neutron counting methods for waste assay and nuclear safeguards utilise 3He

for neutron detection. Detected neutrons are indistinguishable in energy, therefore

counting methods rely on this time signature to distinguish between temporally-

correlated neutrons (from both spontaneous and induced fission) emitted from assay

items and single, random-in-time neutrons arising from background events (e.g. from

(α, n) reactions).

Temporal correlations arise from the fact that prompt neutrons are emitted

from spontaneous fission events in groups or time-correlated ‘bursts’. Each ‘burst’

of prompt neutrons is emitted within ∼ 10−14 seconds [29] of the initial fission

event. These neutrons are therefore closely correlated in time. Correlated event

rates are used to quantify mass values of special nuclear materials, such as Pu.

Items containing Pu lend themselves well to passive assay due to the relatively

high spontaneous fission rates of the even-even isotopes: 238,240,242Pu; 240Pu being

the dominant nuclide and the effective mass of 240Pu, m(240Pueff) the main assay

parameter. For the NDA of spent nuclear fuel, the spontaneous fission of 244Cm is

the major contributor to the neutron emission.
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Pu isotopes also decay via α-particle emission, therefore (α, n) reactions may

occur if light elements are present in fuel cycle materials and in contact with

the Pu; for example, Pu oxide (PuO2) or fluoride (PuF3). Other light elements

such as Al, Mg and Be present as impurities also lead to high (α, n) yields [12].

These reactions provide an additional background source of single, random-in-

time neutrons. Temporal correlations therefore allow neutron measurements to be

conducted in the presence of high background. The contribution of background

(α, n) neutrons to the detected signal can be quantified using the ratio α of (α, n)-

to-(spontaneous fission, n) production rates. Typical α values range from 0 for

metallic Pu up to ∼ 35 for weapons grade (WG) Pu fluoride [30].

2.1.1 Item Characteristics

In most circumstances, a variety of materials are present within the assay item. The

following parameters therefore need to be determined in order to fully interpret the

response of neutron counters; as explained in references [30] [31]:

1. Effective mass of 240Pu, m(240Pueff), derived from the specific fission rates, g,

of isotopes present in the assay item.

2. Multiplication, M , which includes the contribution to neutron numbers from

induced fissions within the item.

3. Ratio, α, of the neutrons produced by (α,n) reactions to those produced by

spontaneous fission.

4. Efficiency of counting system, ε, which includes the spatial variation of

efficiency across the assay system and the effect of the energy of the

detected neutrons. Matrix Effects (e.g. moderating, reflecting and absorbing

properties) can also have an effect on the detection efficiency.
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2.2 Correlated Neutron Counting

2.2.1 Techniques

Temporally-correlated neutron counting techniques include:

• Passive Neutron Coincidence Counting (PNCC), and

• Passive Neutron Multiplicity Counting (PNMC).

2.2.2 Passive Neutron Coincidence Counting (PNCC)

Standard PNCC is used to obtain two measured count rates: Totals and Reals.

Total neutron events (Totals) or pairs of neutron events (Reals) are detected within

a defined coincidence gate width. The Reals response is a function of all the

spontaneously fissile isotopes, including the even isotopes of plutonium: 238Pu,
240Pu, 242Pu; as well as other isotopes such as: 242Cm, 244Cm, 252Cf, and a small

contribution from 238U.

Four unknown parameters need to be determined in order to fully interpret the

neutron counter response (as described in section 2.1.1): m(240Pueff), M , α and ε.

It is assumed that α is known when applying PNCC to waste assay. Efficiency, ε

can be obtained from the calibration of the assay system with known sources. By

equating the two measured Totals and Reals count rates to the first two point model

equations (see section 2.2.4), 2.6 and 2.7 respectively, assay results can be used to

solve for two unknown parameters: M and m(240Pueff) [30].

The measured response is expressed as an effective mass of 240Pu, m(240Pueff).

This represents the mass of 240Pu that would give the same coincidence response as

that obtained from all the even isotopes in the assay item [12]. The effective mass

of 240Pu is thus given by the following [32]:

m(240Pueff) = 2.52 m(238Pu) +m(240Pu) + 1.70 m(242Pu) (2.1)

The co-efficients will vary slightly based on the energy dependence of the detectors

used in the counting system [12]. A coupled measurement of the isotopic composition

of the Pu is used to relate the measured m(240Pueff) to the total Pu mass [33].
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2.2.3 Passive Neutron Multiplicity Counting (PNMC)

Passive neutron multiplicity counting (PNMC), based on Multiplicity Shift Register

(MSR) electronics (a form of time correlation analysis) is used to differentiate

between coincidence events involving different numbers of neutrons [31]. Three

measured count rates are obtained: Singles, Doubles, and Triples. To date the

technique of PNMC has been routinely applied to the assay of Pu metal, oxide,

scrap, residues, waste and Pu oxide in excess weapons materials [24].

Neutron Multiplicity Distribution

The number of prompt neutrons emitted from individual spontaneous fission events

is known as the neutron multiplicity, ν [24]. This quantity may vary between zero to

six or more, with the shape of the multiplicity distribution governed by the mass of

the fissile nuclide and the kinematics of the fission process [29]. The average neutron

multiplicity increases with the mass of the spontaneously fissile nuclide. The neutron

multiplicity distribution is therefore characteristic of the nuclide. Table 2.1 provides

a comparison of neutron multiplicity data for two different spontaneously fissile

nuclides: 252Cf and 240Pu; where P (ν) is the probability of a spontaneous fission

event occurring with multiplicity ν. Values in the table were taken from Ensslin, et

al [24], based on the evaluation by Zucker and Holden [34]. The quantities ν1, ν2

and ν3 are the first, second and third moments of spontaneous fission, respectively;

which will be explained in the next section.

ν P(ν) 252Cf s.f. P(ν) 240Pu s.f.
0 0.002 0.066
1 0.026 0.232
2 0.127 0.329
3 0.273 0.251
4 0.304 0.102
5 0.185 0.018
6 0.066 0.002
7 0.015
8 0.002
ν1 3.757 2.156
ν2 11.962 3.825
ν3 31.812 5.336

Table 2.1: Spontaneous Fission Multiplicity Distribution for 252Cf and 240Pu.
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These neutron multiplicity distributions are normalised to one [24]:

νmax∑
ν=0

P (ν) = 1 (2.2)

Figure 2.1 provides an illustration of the neutron multiplicity distributions for AmLi

(α, n) reactions, alongside both 240Pu and 252Cf spontaneous fission. A common

neutron source used for assay system calibration is AmLi. AmLi emits single

neutrons via (α, n) reactions and can therefore be regarded as having a multiplicity

distribution ν = 1, with 100% emission probability.

Figure 2.1: Neutron Multiplicity Distributions for AmLi, 240Pu and 252Cf neutron
sources.
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Moments of the Multiplicity Distribution

The first moment of the multiplicity distribution, ν1, describes the average number

of prompt neutrons emitted per spontaneous fission event, or mean multiplicity. The

first moment is therefore given by the following expression [24]:

ν1 =
νmax∑
ν=1

ν · P (ν) (2.3)

The second moment of the neutron multiplicity distribution is then given by the

following expression [24]:

ν2 =
νmax∑
ν=2

ν · (ν − 1) · P (ν) (2.4)

By extension, the third moment of the neutron multiplicity distribution can be

calculated from the following [24]:

ν3 =
νmax∑
ν=3

ν · (ν − 1) · (ν − 2) · P (ν) (2.5)

Correlated Count Rates

PNMC is used to differentiate between coincidence events involving different neutron

multiplicities [31]. A multiplicity shift register (MSR), which is described in

section 2.3.6, is used to count the number of times events are observed at each

multiplicity to build up a multiplicity histogram. Multiplicity analysis is based on

the use of factorial moments [30]: the first moment of the detected multiplicity

distribution gives the total number of single neutron events recorded. The response

of a PNMC counter allows both the Singles and Doubles rates to be calculated as

in PNCC, and extends this analysis to Triples counting.

By equating the Singles, Doubles and Triples rates to the three point model

equations, 2.6, 2.7 and 2.8 respectively, assay results can be used to solve for three

unknown parameters. PNMC can be used to solve for M, α and ε in the case where a

neutron counter is calibrated with known masses. For safeguards measurements, it is

generally assumed that ε is known and assay results are used to solve for m(240Pueff),

M and α [30].

30



2.2. CORRELATED NEUTRON COUNTING

In principle, the extension of PNMC to higher orders, for example; Quads (four

neutron coincidence events) yields four measured count rates allowing for the

solution of four unknown parameters. Temporally correlated counting techniques

can then be applied to the assay of more complex items, such as the case where the

α ratio is unknown [30] which may be of benefit to future fuel cycles.

Multiplicity counting also provides useful features such as the filtering out of

spallation neutrons from the interaction of background cosmic ray events in counter

shielding, occurring in coincident bursts greater than the number of neutrons emitted

from fission.

Singles and Doubles vs. Totals and Reals

Note that PNMC Singles and Doubles rates are numerically equivalent to Totals and

Reals rates obtained from PNCC. However, during an assay, Singles and Doubles

rates are derived from the measured multiplicity histograms (see section 2.2.4) while

the Totals and Reals rates are obtained directly from the the shift register hardware

(see section 2.3.6).
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2.2.4 Analytical Point Model

The results obtained from PNCC and PNMC are commonly interpreted using a

model representing characteristics of the neutron source and detector, known as

the Point Model by Böhnel [35]. Böhnel’s Point Model equations define the Singles

(equation 2.6), Doubles (equation 2.7) and Triples (equation 2.8) rates in terms of

the item characteristics described in section 2.1.1. Equations 2.6, 2.7 and 2.8 are

the first three factorial moments of the detected combined multiplicity distribution

of both spontaneous fission and (α, n) neutrons; as discussed in detail by Ensslin,

et al. [24].

The Singles rate, S (or Totals) is given by the following expression [35]:

S = m g M ε νs1 (1 + α) (2.6)

where m is the mass of fissile material, g is the specific fission rate, M is the

multiplication, ε is the detection efficiency, νs1 is the first moment of spontaneous

fission (average number of prompt neutrons per spontaneous fission) and α is the

alpha ratio. The Singles rate is the first factorial moment of the detected combined

multiplicity distribution and is the sum of all the single neutrons detected; including

neutrons from spontaneous fission, induced fission, and (α, n) reactions [24]. The

terms in equation 2.6 therefore describe the following contributions to the Singles

rate [30]:

• Single neutron events from spontaneous fission,

• Single neutron events from (α, n) reactions, and

• Single neutron events from induced fission - where the fission is induced by a

neutron from a spontaneous fission or an (α, n) reaction.

The Doubles rate, D (or Reals) is given by [35]:

D =
m g M2 ε2 fd

2

{
νs2 +

(
M − 1

νi1 − 1

)
νs1 νi2 (1 + α)

}
(2.7)

where fd is the Doubles gate fraction (see section 3.5.12), νs2 is the second moment

of spontaneous fission, νi1 is the first moment of induced fission and νi2 is the second

moment of induced fission.
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The terms in equation 2.7 describe the following contributions to the Doubles

coincident rate [30]:

• Spontaneous fission Doubles,

• Induced fission Doubles - induced by a spontaneous fission neutron where no

other spontaneous fission neutron is detected (if it were one of two spontaneous

fission neutrons emitted it would be a triple), and

• Induced fission Doubles - induced by an (α, n) neutron.

The Triples rate, Tr is given by [35]:

Tr =
m g M3 ε3 ft

6
·{

νs3 +

(
M − 1

νi1 − 1

)
[3 νs2 νi2 + νs1 νi3 (1 + α)] + 3

(
M − 1

νi1 − 1

)2

νs1 (1 + α) νi2
2

}
(2.8)

where ft is the Triples gate fraction, νs3 is the third moment of spontaneous fission

and νi3 is the third moment of induced fission. The terms in equation 2.8 describe

the following contributions to the Triples coincident rate [30]:

• Spontaneous fission Triples,

• Induced fission Triples - induced by a spontaneous fission neutron where no

other spontaneous fission neutron is detected,

• Induced fission Double plus spontaneous fission Single,

• Induced fission Single plus spontaneous fission Double, and

• Induced fission Triples - induced by an (α, n) neutron.

Expressions 2.6, 2.7 and 2.8 for the Singles, Doubles and Triples rates can be used

to solve for the mass of spontaneously fissile material, expressed as an effective mass

of 240Pu, m(240Pueff).
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2.3 Time Correlation Analysis

2.3.1 Temporally-Correlated Detection

Standard multiplicity counter designs use 3He gas-filled proportional counters

embedded in High Density Polyethylene (HDPE) for the detection of neutrons.

Nuclear safeguards measurements are commonly conducted using cylindrical well

counters with several rings of 3He detectors surrounding a central cavity in which the

assay item is placed (see section 3.2.1 for further detail on counter design features).

Neutrons from fission are emitted essentially isotropically and are slowed in the

HDPE so that the likelihood of absorption in the 3He active volume is increased.

The cluster of neutrons following a spontaneous fission event is slowed and migrates

in the moderator. The detection is therefore spread out in time and amongst the

array of 3He tubes. The use of multiple rows of counters facilitates high efficiency

measurements at high speed via the detection of neutrons from individual fission

events. The pattern is usually chosen to minimise the spatial and energy dependence

of detection and to control the timing characteristics of the counter; for example,

with the use of liners such as Cd.

2.3.2 Die-Away Time

The characteristic time for a neutron, once thermalised, to undergo capture or leak

from the system is known as the die-away time, τ and is characteristic of the specific

detector. Note typically the die-away time is measured relative to a neutron trigger

and the trigger is likely a thermal neutron. If the trigger is a fast neutron, then a

thermalisation time comes into play.

2.3.3 Neutron Pulse Trains

Neutron pulse trains are the stream of digital electronic pulses representing the time-

stamp of neutron captures in the detector; produced following amplification and

discrimination of the analogue signal from the detector output. Neutron pulse trains

are stored in the Multiplicity Shift Register (MSR) to carry out time correlation

analysis by overlaying coincidence gating. The neutron pulse train from a counter

contains the time-stamp of neutron captures originating from all source events: both

spontaneous fission and background (α, n) reactions. Pulse trains therefore provide a

complete record of an assay. Correlated event data must be extracted and accurately

corrected for the effects of deadtime.
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2.3.4 Rossi-Alpha Distribution

Coincidence gating is based on the detection of temporally correlated events occuring

during a gate width Tg following an initial trigger from a fission event occuring at

t = 0. The probability of detecting a neutron from the same fission event falls

exponentially with time; as shown in figure 2.2. This is known as the Rossi-Alpha

distribution [36]. Neutrons from the same fission event as the initial trigger event

are detected in the R+A (reals + accidentals) gate. The contribution from random

background events is measured in a delayed gate known as the A (accidentals) gate,

set far apart enough in time so as not to be related to the initial fission event.

Figure 2.2: Above: Rossi-Alpha Distribution. Below: Schematic of neutron pulse
train containing correlated and random-in-time events.

2.3.5 Pulse Train Analysis

A neutron pulse train contains a complete record of an assay. It is now practically

viable to store this pulse train using List Mode Data Acquisition (LMDA). Neutron

pulse trains provide the input to correlation analysers, such as the MSR.
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2.3.6 Multiplicity Shift Register (MSR)

The Multiplicity Shift Register (MSR) provides a method of time correlation

analysis. Each event in the stored pulse train acts as a trigger event and can

therefore be compared to every other event in the pulse train, using forward-in-

time sampling. The trigger extends a pre-delay, Tp (see section 3.5.8) followed by a

R+A gate, then a delayed A gate after a time interval, TL has elapsed. For PNCC

measurements, the total number of events occuring within the R + A gate and A

gate are calculated and are used to calculate the Reals via the difference between

the counts in these two gates: R = (R + A) − A. For PNMC measurements, the

number of events occuring within the R + A gate and A gate are recorded in an

accumulator and are then transferred to individual scaler totals at the time of the

next trigger event. This generates a histogram of event data over the time period of

the assay. Singles, Doubles and Triples are calculated by factorial moments analysis

of the resulting MSR histograms; which is discussed in section 3.5.6. The action of

the MSR is shown schematically in figure 2.3.

Figure 2.3: Multiplicity Shift Register Action.
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2.4 Deadtime

This section provides a discussion of theoretical aspects of deadtime behaviour in

PNMC systems and the basis of two familiar theoretical models of deadtime - both

non-paralyzable (see section 2.4.3) and paralyzable (see section 2.4.4). Practical

challenges associated with deadtime behaviour and correction for these effects are

discussed in chapter 3. Deadtime is the time by which two events must be separated

in order to be processed independently. Deadtime can be due to charge collection

in a detector or arise as a result of pulse-processing in electronics. Events must be

registered as two separate or distinguishable pulses in acquisition electronics.

2.4.1 System Deadtime Parameter, δ

Deadtime can be reasonably well characterised by an overall system parameter, δ.

This includes contributions to the deadtime from the detector, amplifier, signal pile-

up at the discriminator and synchronisation losses at the MSR input. Deadtime

losses will be described in a practical context in section 3.4.

2.4.2 Theoretical Models of Deadtime

There are two dominant single-parameter theoretical models of deadtime, represent-

ing the two limiting cases: type I (non-paralyzable or non-updating) deadtime and

type II (paralyzable, updating, extendable or cumulative) deadtime. These models

were first proposed by Vincent [37].

2.4.3 Type I: Non-Paralyzable Deadtime

Type I deadtime takes the system deadtime parameter to be of fixed value, δ

following every pulse that is counted. Vincent’s equations describing deadtime can

be found in Knoll’s text [38]. Non-paralyzable deadtime can be modelled by the

following equation:

n =
m

1−m · δ
(2.9)

where m is the recorded or measured count rate, n is the true interaction rate and

δ is the system deadtime parameter.
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2.4.4 Type II: Paralyzable Deadtime

Type II deadtime takes δ to extend from every pulse, whether counted or suppressed

due to the arrival during the deadtime of the preceding pulse. For well defined

passive neutron counters operated with fast electronics the major contributor to the

deadtime is the action of the pulse discriminator (time above threshold) and the

closest model is traditionally considered to be the paralyzable model. Paralyzable

deadtime can be modelled by the following equation [38]:

m = n · exp(−n · δ) (2.10)

where m is the recorded or measured count rate, n is the true interaction rate and

δ is the system deadtime parameter, as before.

2.4.5 Deadtime Effects

The effect of deadtime is to perturb the neutron pulse trains and thus affect the

measured count rates, thereby introducing a bias in the final assay result. Singles,

Doubles and Triples count rates are increasingly affected by deadtime. The effect

is complicated because the input pulse train is not random in time by definition

of the assay problem. The higher orders are expected to be effected more since

they correspond to the registration of a higher number of events in a time scale

commensurate with the die-away time (a higher instantaneous rate).
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Chapter 3

PRACTICAL ASPECTS OF

CORRELATED NEUTRON COUNTING

This chapter provides an account of the characterisation of a neutron counter

operated in passive multiplicity mode. It sets a practical context to the simulated

parameters described in chapter 4. A neutron counter performance may be

characterised by the following: high voltage (HV) plateau, (R + A)/A bias, die-

away time, deadtime and efficiency at a given HV. Several operating parameters

may be chosen by the user, based on these characteristics: operating voltage,

pre-delay time, coincidence gate width, long-delay time, and both coincidence

mode and multiplicity deadtime parameters. Careful selection of these operating

parameters is needed if the ’best’ neutron time correlation measurements are to

be made using the counter. Operating parameters are therefore chosen based on

these characterisation measurements and the physics behind this selection process

is explained. Furthermore, the theoretical basis of neutron detection and origin of

deadtime effects in the counter are also discussed as a precursor to a discussion of

the simulation of neutron capture and deadtime behaviour in chapter 4.

3.1 Neutron Counter Characterisation

Characterisation measurements were performed by the author at the Meriden facility

of Canberra Industries using an Active Well Coincidence Counter (AWCC): a

Canberra JCC-51 [39]. The JCC-51 counter is a standard counter for neutron

measurements with many units operating in the field, thus plenty of data exists

for comparative studies and peer review. The ESARDA multiplicity benchmark

exercise [4] is an example of an intercomparison study that uses list mode data taken

using a JCC-51 counter as the reference case. This was used to benchmark the MSR

software algorithms developed for this thesis work and is reviewed in chapter 5.
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3.2. JCC-51 COUNTER

3.2 JCC-51 Counter

The Canberra JCC-51 counter [39] is based on the Los Alamos National Laboratory

Active Well Coincidence Counter (AWCC) design. This instrument was first

developed by Menlove in 1979 [40] for the active assay of 233U and 235U present

in U fuel materials in field inspection applications. The current counter design is

applied to the assay of bulk UO2 samples, high-enrichment U (HEU) metals, UAl

alloy scraps, light water reactor (LWR) fuel pellets and fuel materials containing
238U, as detailed in the counter technical specification [39]. With the AmLi sources

removed from the end plugs the AWCC also serves as a mid performance PNMC.

3.2.1 AWCC Design Features

Figure 3.1 shows a drawing of the JCC-51 counter geometry [39]. The counter

uses forty-two 3He proportional tubes for neutron detection. These 3He tubes are

arranged in two concentric rings surrounding a central assay cavity and embedded

in high-density polyethylene (HDPE) to maximise detection efficiency.

Figure 3.1: Canberra JCC 51 Active Well Coincidence Counter (Note the
measurement cavity is reconfigurable; one arrangement is shown).
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3.2. JCC-51 COUNTER

Neutron coincidence counters can be used in the passive mode for the assay of Pu.

However, the assay of U generally requires active neutron interrogation, due to the

low spontaneous fission neutron yields of the U isotopes 233U and 235U; as explained

in chapter 1. 234U and 238U are always present with 235U in practice and in special

cases, especially for enrichments . 18% (Low Enriched Uranium or LEU), PNCC

can be used. For UF6, total neutron counting dominated by 234U (α, n) induced

reactions is commonplace. AmLi neutron sources are therefore present in the end

plugs (both top and bottom) for conducting U assay by active neutron interrogation.

Removal of these sources facilitates passive neutron counting for Pu assay [39].

The counter is designed to optimise performance; one aspect is the positioning of

the AmLi sources within the polythene end plugs. This tailors the interrogation

spectrum which improves the signal-to-interrogation neutron background ratio, as

described by Menlove [40] in the report on the original counter design.

Figure 3.2 shows photographs of the JCC-51 counter on the test laboratory

floor in the Meriden facility of Canberra Industries, taken whilst preparing for

performing characterisation measurements using the counter. These measurements

were performed in the passive mode without the use of an AmLi interrogation source.

Figure 3.2: Left: JCC-51 AWCC on the test laboratory floor in the Meriden facility
of Canberra Industries. Right: The author is shown removing the end plug with Dr
Nabil Menaa in attendance.
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3.3 Neutron Detection

Calibration sources or assay items (in this case 252Cf used as a surrogate for Pu,

and AmLi chosen as a random source) are placed inside the central assay cavity.

Neutrons from the source are emitted essentially isotropically and migrate in to the

high-density polyethylene (HDPE) moderator surrounding the central cavity wall.
3He gas proportional counters are embedded in the HDPE for neutron detection via

the detection of charged reaction products of the 3He(n, p)3H reaction:

3He + n→ 3H + 1H (3.1)

with a reaction Q-value of 0.764 MeV. The thermal neutron (2200 ms−1) cross-

section for this reaction is 5330 barns. These values are quoted from the standard

text by Knoll [38]. Neutrons from a given fission remain correlated in time during

their lifetime in the system so that statistically a correlated signal can be extracted.

Figure 3.3: Neutron detection in the Canberra JCC-51 AWCC. Left: Drawing
of the JCC-51 AWCC. Right: Schematic diagram of neutron emission from 235U
induced fission, migration of neutrons from the central cavity to the HDPE, neutron
moderation in the HDPE, and detection in 3He gas-filled proportional tubes.
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Table 3.1 summarises the main parameters for the 3He gas-filled proportional tubes

used in the JCC-51, taken from the counter technical specification in [41].

Active length 50.8 cm
Diameter 2.54 cm
Fill Pressure 4 atm 3He
Quench Gases (P-10) Argon (Ar), Methane (CH4)
Cladding Aluminium (Al)
Operating High Voltage 1680 V

Table 3.1: 3He Tube Parameters

The forty-two 3He tubes are divided into six groups of seven, and each group is

connected to one JAB-01 Amplifier/ Discriminator circuit board, to form a single

detection channel, as described in the counter technical specification [39]. Three

boards service each of the inner and outer rings of 3He tubes. The six JAB-01

boards are mounted inside a sealed high voltage (HV) junction box at the top of the

JCC-51 counter. The photograph on the left in figure 3.4 shows the HV junction box

with the lid removed. The six JAB-01 boards can be observed in the photograph.

The photograph on the right shows a single JAB-01 amplifier/ discriminator circuit

board.

The main output signal is a TTL pulse train from all detector outputs. This

pulse train provides the input to the MSR (i.e. JSR-12, JSR-14 or JSR-15 neutron

multiplicity coincidence analyser). The JAB-01 is built around an Amptek-A111

integrated circuit. The logic pulse is formed when the shaped pulse crosses a fixed

threshold. The gain is trimmed according to a factory calibration procedure and

this results in a 1680 V operating point for these tubes.

Figure 3.4: Signal Processing Electronics. Left: JCC-51 counter HV junction box
with the lid removed. Right: JAB-01 amplifier/ discriminator circuit board.
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3.4 Deadtime

3.4.1 Analogue signal from charge collection in the 3He

tubes

It is possible to observe deadtime effects from the detected analogue pulse alone.

Figure 3.5 shows a range of analogue pulses from the collection of charge in the
3He tubes of the JCC-51 counter. These shaped analogue pulses are the summed

detector output from a single Canberra JAB-01 board, taken from test point TP1

before the discriminator.

Figure 3.5: Analogue pulses from the collection of charge in the 3He tubes of the
JCC-51 counter; (a) single pulse; (b) suspected double pulse; (c) collection of pulses.
These images were taken from the display of a digital storage oscilloscope with time
base 400 ns/ division and amplitude 100 mV/ division.

Figure 3.5(a) shows a single pulse from a single charged particle event in a single

detector. Figure 3.5(b) shows a suspected double pulse, possibly created from the

interaction of two charged particles in the neutron counter.
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Figure 3.5(c) shows a collection of pulses, created from multiple charged particle

events. For pulse mode operation of the neutron counter, all pulses above a lower

level threshold are registered from the detector [38]. When multiple particle events

lead to a ‘double pulsing’ or pulse pile-up, the action of the pulse discriminator

remains above threshold for longer than processing a single pulse, thus other

pulses detected during this time period cannot be registered. This is the basis

of the paralyzable model of deadtime. The action of the pulse discriminator is the

dominant source of deadtime in a neutron counting system. Thus, the paralyzable

model of deadtime is thought to be the most accurate representation of deadtime

effects in the counter. In reality, deadtime is thought to be a combination of both

paralyzable and non-paralyzable models as these represent the two extreme cases.

The discriminator cannot re-trigger until the pulse falls below the threshold, but

pulses show a large variation in shape hence their die-away time is not constant.

Since more than one detector is connected to a single JAB-01 board i.e. a single

channel, a reduction in the deadtime effect could be achieved by a reduction in the

detector-to-board ratio (increasing the number of detection channels).

3.4.2 Sources of Deadtime

The following list summarises the main sources of deadtime in a neutron counting

system [12]:

• Detector charge collection time,

• Amplifier pulse shaping time,

• Amplifier baseline restoration time,

• Losses in the discriminator OR gate, and

• Synchronisation losses at the shift register input.

3.5 Characterisation Measurements

The following measurements were used to determine the performance characteristics

of the JCC-51: HV plateau, die-away time, τ and effective deadtime parameter.
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Characterisation measurements can be used to determine the basic neutron mul-

tiplicity counter operating or calibration parameters listed in table 3.2. A brief

definition is given for each parameter [42]:

Basic Operating Parameters5

Operating Parameter Description
Operating HV Optimal setting of the bias supply HV
Pre-delay time, Tp Short coincidence time cut-off after each trigger

event for recovery
Die-away time, τ Time constant representing the characteristic time

required to detect coincident neutrons over a given
interval of the capture distribution measured by
the shift register; an effective value over the fitted
range

Coincidence gate width, Tg Coincidence time window width
Coincidence mode deadtime pa-
rameters, a and b

Deadtime correction parameters for standard
neutron coincidence counting

Multiplicity deadtime parameter,
δ

Primary deadtime correction parameter for neu-
tron multiplicity counting

Multiplicity deadtime parameter,
c

Deadtime correction parameter for neutron multi-
plicity counting, applied only to Doubles rates

Multiplicity deadtime parameter,
d

Deadtime correction parameter for neutron multi-
plicity counting, applied only to Triples rates

Efficiency, ε Neutron detection efficiency for neutrons emitted
in the centre of the empty assay cavity

Doubles gate fraction, fd Fraction of Doubles or Reals coincidence events
which occur within the coincidence gate

Triples gate fraction, ft Fraction of Triples events which occur within the
coincidence gate

Rho zero, ρ0 Reference ratio of Reals-to-Totals neutron events
for a non-multiplying metallic 240Pu sample for
use with the multiplication correction for neutron
coincidence counting

Table 3.2: Basic operating parameters (to be determined from measurements of the
JCC-51 performance characteristics) and corresponding definitions.

5The following operating parameters were determined based on measurements performed by
the author: operating HV (see section 3.5.4), die-away time (see section 3.5.7), pre-delay (see
section 3.5.8 and 3.5.9), coincidence gate width (see section 3.5.11), Doubles gate fraction (see
section 3.5.12) and Triples gate fraction (see section 3.5.13).
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3.5.1 Software

Data was taken using a JCC-51 AWCC and JSR-14 coincidence analyser (MSR).

Analysis software included NDA2K, Assay Supervisor and Genie 2K (products of

Canberra Industries).

3.5.2 252Cf Calibration Source

252Cf is an important spontaneous fission source for both counter characterisation

and determination of counter operational parameters, such as coincidence and

multiplicity deadtime parameters. 252Cf has a multiplication close to one (M = 1)

i.e. no induced fission. 252Cf can also be taken to have an alpha ratio of zero

(α = 0) because the (α, n) neutron yield is small for commercial Cf-oxides (present

in calibration sources) compared to the spontaneous fission neutron yield. From work

conducted by Croft [43], it is known that 252Cf dilutely distributed in a pure heavy

metal dioxide (UO2) matrix generates (α, n) neutrons with a specific rate of 6.4×105

ns−1g−1 or equivalently 3.2× 10−8 nBq−1. The thick target yield may be scaled to

other materials using the rules described by Croft and Yates [44] to show that for
252Cf2O3 an (α, n) neutron production of ∼ 2.6×10−8 nBq−1 is expected. This is

small compared with a spontaneous fission neutron production of ∼ 0.12 nBq−1 in

the case of 252Cf.

A 252Cf source was used for the JCC-51 characterisation measurements (source

I.D. Cf-01-1). The calculated source activity on 1 July 2008 was 31026 ns−1 (+1.8%),

where the uncertainty represents the +1σ value based on the certificate value and

includes allowances for half-life, T 1
2
, measurement time, and a minor correction for

the presence of 250Cf (13y).
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3.5.3 HV Plateau

The HV plateau is characteristic of the 3He proportional counters used in the JCC-51

and is the region of greatest stability for detection operation i.e. the least variation

in detection efficiency for small changes in HV setting. The HV plateau region

could be determined from a plot of count rate against HV. A 252Cf neutron source

was placed in the assay cavity and the Singles, Doubles and Triples count rates were

recorded as a function of HV setting. The voltage was incremented by 20 V between

1200 V and 2200 V. Count rate data was acquired over a 30 s count time at each HV

setting, using a coincidence gate width of 64 µs and a pre-delay setting of 4.5 µs,

which are standard for this type of counter [39] [42]. Figure 3.6 shows the recorded

data: Singles (S), Doubles (D) and Triples (Tr) count rates as a function of HV.

Figure 3.6: Measured HV Plateau for the JCC-51 AWCC: Measured Singles, Doubles
and Triples count rates (from multiplicity analysis) vs. HV.
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3.5.4 Operating HV

The optimal HV setting is determined from the measurement of this plateau region.

The traditional method of determining the operating HV is to select a value ∼40V

above the knee on the plot in figure 3.6. This is usually achieved visually by a

technician. This places the operating voltage on the plateau and therefore in the

region of greatest stability, yet also far below the γ-breakthrough. This reduces

detector sensitivity to gamma radiation and also the sensitivity of efficiency to

variations in HV setting [30]. The knee was measured and occurred at 1640 V.

The JCC-51 operating voltage was therefore shown to be 1680 V.

Note the high voltage setting does not have direct relevance to the simulated

neutron counter in chapter 4, but is included for completeness.

3.5.5 MSR Histogram Output

The MSR R + A and A histograms are output to the assay report. Figure 3.7 shows

an example of this section of an assay report file.

Figure 3.7: R + A and A Histograms from the Assay Report.
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3.5.6 Calculation of Count Rates from the Multiplicity

Histograms

The measured Singles, Doubles and Triples count rates, uncorrected for the effects

of deadtime, can be calculated directly from the multiplicity histograms in the assay

report. The measured Singles rate, Sm is the sum of all trigger events, equivalent

to summation over the elements of the raw Accidentals histogram data, divided by

the assay time, t given by the following equation:

Sm =
1

t

255∑
i=0

Ai (3.2)

The measured Doubles rate, Dm is given by the first factorial moment of the

difference between the R + A and A histograms:

Dm =
1

t

255∑
i=1

i · [(R + A)i − Ai] (3.3)

The measured Triples rate, Trm is given by the second factorial moment:

Trm =
1

t

255∑
i=2

i · (i− 1)

2
· [(R + A)i − Ai]− Sm ·Dm · Tg (3.4)

where Tg is the coincidence gate width. The assay time or experimental count time,

t in each case represents the time between the first and final trigger events in the

MSR.

Expressions 3.2, 3.3 and 3.4 are taken from the software algorithms detailed in

the Canberra NDA2K User’s Manual [45].
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3.5.7 Die-Away Time

The die-away time, τ is used to characterise the temporal behaviour of the neutron

counter i.e. the characteristic time required for fast neutrons to slow down in the

HDPE moderator and be detected in 3He for a given neutron counting system [30].

The die-away time was determined from measurements of the Reals coincidence rate

as a function of coincidence gate width for a 252Cf source. These measurements were

performed for a fixed pre-delay setting of 4.5 µs over the following gate settings: 8,

16, 24, 32, 64 and 128 µs. Figure 3.8 shows the recorded Reals rate as a function of

gate width.

Figure 3.8: Die-away time determination for the JCC-51 AWCC using 252Cf:
measured Reals coincidence count rate vs. gate width.

For a given 252Cf source, the Reals rate can be expressed by the following:

R = const× fd (3.5)

where fd is the Doubles gate fraction.
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The Reals rate can be approximated by the following expression, for a near

exponential chamber [30]:

R ≈ R0 · exp(
−Tp
τ

) · (1− exp(
−Tg
τ

)) (3.6)

where R0 is a constant. By fixing the pre-delay, the first two terms in the above

expression remain constant, hence the measured Reals rate follows a saturating

exponential form with increasing gate width. The measured Reals rate data as a

function of gate width could therefore be fit to the following expression to determine

the die-away time:

R(Tg) ≈ const · (1− exp(
−Tg
τ

)) (3.7)

The die-away time for the JCC-51 was calculated by the author to be 51.31 µs + 0.27 µs

from a chi-squared, χ2 minimisation fit of the measured data to the expected form

of equation 3.7.

3.5.8 Pre-delay Setting using 252Cf

During MSR pulse train analysis the coincidence gate width is not opened

immediately following a start trigger pulse. Instead it is opened after a short period

of time known as the pre-delay time, Tp has elapsed. The pre-delay setting can

therefore be defined as the short coincidence time cut-off [42]. The function of the

MSR pre-delay setting is to remove any bias in the R + A and A histograms due

to transient effects in the amplifier. The optimum pre-delay setting is therefore

determined when the bias in the ratio of the mean Reals rate ((R+A) - A) and the

mean Accidentals rate (A) is a minimum. In other words, set the pre-delay to the

lowest value where the bias is essentially zero:

(
R + A

A
− 1) ≈ 0 (3.8)

If the pre-delay setting is too small, then a bias may be introduced due to transients

in the electronics following a detected event not clearing (e.g. baseline shift in the

channel that fired). If the pre-delay is set too high, then real coincidences may be

missed.
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By analogy to equation 3.7, the Reals rate for a 252Cf source as a function of pre-

delay, for a fixed gate width, is given by the following expression:

R(Tp) ≈ const · exp(
−Tp
τ

) (3.9)

The optimal pre-delay setting, Tp for the JCC-51 can be determined by adjusting the

value of Tp until the Reals rate curve follows the form of equation 3.9. Historically

at Canberra, a pre-delay setting of 4.5 µs is chosen for the JCC-51. τ � Tp therefore

a linear behaviour is expected:

exp(
−Tp
τ

) ∼ 1− −Tp
τ

(3.10)

Conventionally, Tp is not calculated but is chosen to be a small value (so Real

coincidence events are not lost) but high enough for the transient to pass and the

linear behaviour to be established.

3.5.9 Pre-Delay Setting using AmLi

AmLi calibration sources can be used to obtain the counter pre-delay setting, as

an alternative to using 252Cf. For a random neutron source, there should be no

difference within sampling limits in the R + A and A histograms.

3.5.10 Effect of Deadtime on Pre-delay Setting

It has been found by the author, through the simulation work detailed in chapter 4,

that setting a pre-delay less than the overall system dead-time parameter also

introduces an unwanted bias in the MSR histogram data. Therefore the following

condition should be met when approximating the system deadtime to a single

parameter, δ:

Tp � δ (3.11)

This is not discussed in literature as the above condition is true for real experimental

PNMC systems in use today, in the context of safeguards measurements. For

example, high performance PNMC systems such as the Canberra PSMC-01 Pu

Scrap Multiplicity Counter [26]; introduced in chapter 1 (see section 1.6.2). The

PSMC-01 Counter has a deadtime parameter, δ of 46.22 ns + 0.45 ns [42] and is

operated with a pre-delay setting, Tp of 4.5 µs [42].
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Ensslin, et al. [24] provide a survey of existing multiplicity counters in use at United

States Department of Energy (DOE) facilities, which includes a list of counter

deadtime parameters.

3.5.11 Gate Width Optimisation

The coincidence gate width setting, Tg determines the time window over which real

coincidence events are detected. The optimal coincidence gate width setting can

be determined from the same data used to calculate the die-away time, recorded

over a range of gate settings using a fixed pre-delay of 4.5 µs. The gate width is

chosen to minimise the uncertainty in the Reals rate i.e. to maximise the number

of true coincidences measured. Figure 3.9 shows the measured relative Reals rate

uncertainty as a function of coincidence gate width. From this plot, the minimum

relative Reals rate uncertainty occurs at a coincidence gate width ≈ 35 µs. However,

it is conventional to use a gate width setting of 64 µs for the JCC-51 counter to

follow type tests on previous units.

Figure 3.9: Gate width optimisation for the JCC-51 ACC: Measured relative Reals
rate uncertainty (%) vs. gate width.
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3.5.12 Doubles Gate Fraction

The Doubles gate fraction, fd is defined as the fraction of Doubles or Reals

coincidence events which occur within the coincidence gate [42], given by the

following calculation using the counter die-away time [30]:

fd = exp (
−Tp
τ

) · (1− exp (
−Tg
τ

)) (3.12)

The Doubles gate fraction for the JCC-51 was calculated to be 0.6521 + 0.0014 from

the die-away time and MSR settings determined in sections 3.5.7, 3.5.8 and 3.5.11.

In reality, the gate fraction is determined from the 252Cf rates (deadtime and

background corrected).

3.5.13 Triples Gate Fraction

The Triples gate fraction, ft is defined as the fraction of Triples events which occur

within the coincidence gate [42], given by the following relation [30]:

ft = fd
2 (3.13)

The Triples gate fraction for the JCC-51 was calculated to be 0.425 + 0.053 from a

calculated Doubles gate fraction of 0.6521 + 0.0014.
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3.6 Deadtime Correction

The JCC-51 can be operated in both conventional coincidence counting mode and

multiplicity mode. The measured count rates in each case need to be corrected

for the effects of deadtime (rate-related) losses. The deadtime parameters are

determined in separate ways for each mode. The method of deadtime correction

for the rates obtained from conventional neutron coincidence counting (NCC) is

empirical [46]. The method of deadtime correction for the rates obtained from

multiplicity analysis is more complex and follows the method of Dytlewski [7], with

two additional correction factors for the Doubles and Triples rates based on the

method of Krick and Harker [47].

3.6.1 Conventional NCC Deadtime Correction

Traditionally, the count rates obtained from PNCC are corrected for deadtime using

coincidence deadtime parameters, a and b extracted based on the expectation that

the Reals-to-Totals ratio, R
T

for 252Cf will be constant once corrected for deadtime.

The measured Totals count rate, Tm is corrected for deadtime to obtain the true

Totals rate, Tc by applying the following expression:

Tc = Tm · exp(
a+ b.Tm

4
.Tm) (3.14)

where a and b are empirical parameters to be determined for the system. This is the

most commonly adopted approach and is referred to in a discussion by Swansen [46]:

the factor 4 in the exponential is empirical. By analogy to equation 3.14, the

measured Reals coincidence rate, Rm is corrected for deadtime to obtain the true

Reals rate, Rc by applying the following expression:

Rc = Rm · exp((a+ b.Rm).Tm) (3.15)

Here, the traditional deadtime correction factors for PNCC are stated without

discussion, but refer to section 6.2.
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NCC Deadtime Parameters

Reals and Totals count rates were recorded from measurements of 252Cf sources

spanning a range of source intensities between 103 to 106 ns−1. Coincidence deadtime

parameter b was set equal to zero. Historically, setting b = 0 has been found

to yield a lower χ2 value. Coincidence deadtime parameter a was determined by

performing a chi-squared, χ2 minimisation on the Reals-to-Totals, R
T

ratios obtained

from these measurements. Here, χ2 is defined as the difference between the deadtime

corrected ratios for each of the individual sources and the average value of these

ratios, weighted by the uncertainty in the ratio [48].

Deadtime corrected Reals and Totals rates, Rc and Tc were calculated from

measured count rates, Rm and Tm using expressions 3.15 and 3.14 while parameter

a is varied.

3.6.2 Multiplicity Deadtime Correction

The count rates obtained from neutron multiplicity counting are corrected for

deadtime using multiplicity deadtime parameters, δ, c and d (see table 3.2). System

deadtime parameter δ is a measured parameter. Parameters c and d are treated as

empirical parameters [45].

Multiplicity Deadtime Parameters

Multiplicity deadtime parameters δ, c and d are determined by chi-squared, χ2

minimisation of the Triples-to-Doubles, Tr

D
, Doubles-to-Singles, D

S
and Triples-to-

Singles, Tr

S
ratios, respectively. Again, these ratios should remain constant for all

252Cf measured when corrected for deadtime.

Determination of the multiplicity deadtime parameter, δ is analogous to the

determination of the coincidence deadtime parameter a. Singles, Doubles and Triples

count rates were recorded from measurements of 252Cf sources spanning a range of

source intensities between 103 to 106 ns−1.
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3.6.3 Summary: JCC-51 Deadtime Parameters

Table 3.3 provides a summary of the measured coincidence and multiplicity mode

deadtime parameters for the JCC-51 counter; as determined by Croft, et al [48].

Coincidence Deadtime Parameters
a 812 ns +4 ns
b 0

Multiplicity Deadtime Parameters
δ 207 ns +5 ns
c 145 ns +4 ns
d 145 ns +4 ns

Table 3.3: JCC-51 deadtime parameters.

3.7 Summary: JCC-51 Operating Parameters

Table 3.4 provides a summary of the value of the basic operating parameters for the

JCC-51, determined from the results of characterisation measurements.

Basic Operating Parameters and Values for the JCC-51
Operating Parameter Value
Operating HV 1680 V
Pre-delay time, Tp 4.5 µs
Die-away time, τ 51.31 µs + 0.27 µs (for procedure adopted)
Coincidence gate width, Tg 64 µs
Coincidence mode deadtime pa-
rameters, a and b

812 ns +4 ns and 0

Multiplicity deadtime parameter,
δ

207 ns +5 ns

Multiplicity deadtime parameter,
c

145 ns +4 ns

Multiplicity deadtime parameter,
d

145 ns +4 ns

Doubles gate fraction, fd 0.6521 + 0.0014
Triples gate fraction, ft 0.425 + 0.053

Table 3.4: Basic operating parameters and values for the JCC-51.
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Chapter 4

SIMULATION OF DEADTIME BEHAVIOUR IN

PNMC SYSTEMS

Chapters 2 and 3 reviewed both theoretical and practical aspects of correlated

neutron counting and deadtime behaviour, together with the motivations driving an

investigation into deadtime correction factors for PNMC. Here, a detailed account is

given of the development of a simulation method to investigate deadtime behaviour

in PNMC systems over a range of operational conditions of a multiplicity counter.

The chapter will provide a full description of the pulse train generation and MSR

software.

4.1 A Monte Carlo Approach to the Simulation

of Deadtime Losses in PNMC

The radiation transport code MCNPXTM (Monte Carlo N-Particle eXtended) [6],

together with a bespoke auxiliary code developed by the author using the C++

programming language, was used to simulate ideal neutron pulse trains for a range

of spontaneous fission sources and idealised detection geometry; providing an event

by event record of the time distribution of neutron captures within the detection

system. Stored pulse trains were then perturbed in software to apply the effects of

deadtime according to the chosen physical process; for example, the ideal paralyzable

(extending) and non-paralyzable deadtime models with an arbitrary dead-time

parameter. The action of the MSR electronics was modelled in software to analyse

these pulse trains.
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4.1. A MONTE CARLO APPROACH TO THE SIMULATION OF DEADTIME
LOSSES IN PNMC

This method of Monte Carlo Pulse Train Analysis (MC-PTA) was initially developed

to address the first research question posed in chapter 1: Can existing neutron pulse

train analysis techniques be extended to include a full systematic study of deadtime

behaviour and effects in passive neutron multiplicity counting systems?

Note that the detection geometry is idealised in the sense that physical realisation

would not be practical but it represents one extreme case with performance

indicative of limiting high efficiency, ε and low die-away time, τ . This represents the

performance expected for future generations of passive neutron multiplicity counting

systems.

4.1.1 Motivation

This work has been motivated by the recent work of Croft et al. [1] which recognises

that the current semi-empirical analytical approaches to dead-time corrections are

inadequate in certain situations of practical interest; for example, the assay of bulk

quantities of PuO2 fuel feed-stock and the measurement of lean impure scrap and

waste materials which have both high (α, n) to spontaneous fission yields and high

absolute emission rates.

The need for re-evaluation of existing dead-time corrections has prompted work

to improve the empirical models. Once established, this simulation code provided a

tool to facilitate a systematic investigation of dead-time behaviour and to support

current and future work on the re-evaluation of deadtime correction methods for

correlated neutron counting.
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LOSSES IN PNMC

4.1.2 Merits of Chosen Approach

The analytical point model is presently the most common approach applied to

interpret experimental MSR data. This model can be replaced by a detailed Monte

Carlo simulation to create a pulse train that can be analysed in software including

allowance for deadtime losses, as demonstrated in the numerical model described

by Bondar [2]. The Monte Carlo simulation can take into account explicit physical

characteristics which the point model does not incorporate. Table 4.1 compares

point model parameters with Monte Carlo simulation.

Parameter Point Model Monte Carlo Simulation
Detection Efficiency ε ε(r,E)

Multiplication M M(r,E)
Gate Factor f f(matrix)

Probability of Capture pc = 0 pc 6= 0
Induced Fission Multiplicity νIj νIj(E)

Table 4.1: Point Model vs. Monte Carlo Simulation

Simulation allows the effects of deadtime to be directly applied to ideal neutron

pulse trains, according to any chosen model. Deadtime behaviour and corresponding

deadtime correction factors can then be investigated for a range of sources.

In addition, input parameters are fully known, including counter operational

parameters and the input system deadtime parameter. This simulation approach

therefore allows a full systematic study of deadtime behaviour across a range of

input parameters for the MSR, including variation of the coincidence gate width

and pre-delay settings. In future work, count rates may be distributed between

different numbers of pre-amplifier boards i.e. detector outputs, to investigate the

effect of different input channels to the MSR on the deadtime behaviour. This can

be used to aid the development of future counter designs.

A software multiplicity counter has the additional advantage that list mode data

can be saved so that post-processing of the data can be carried out using many

different algorithms.
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4.2 Simulation Method Overview

Simulation took place over the following stages:

(1) Neutron pulse train generation

- Modelling neutron captures in MCNPX

- Processing the MCNPX output to generate pulse trains in software

(2) Simulation of MSR action in software

(Post-processing option not available in MCNPX)

4.3 Neutron Pulse Train Generation

Neutron pulse trains are the stream of digital electronic pulses representing the time-

stamp of neutron captures in the detector; as described in section 2.3.3. Neutron

capture may be simulated and used to generate ideal neutron pulse trains in software.

Neutron pulse train generation took place over two stages: in the first stage, the

radiation transport code MCNPX was used to model neutron captures from a

spontaneous fission source in a large 3He detector. A list of neutron capture times

for individual neutrons from spontaneous fission events were output to a file known

as the MCNPX PTRAC file. The second stage involved processing this output file

in software to generate an ideal neutron pulse train, akin to a list mode data file

from an actual multiplicity counter. The effect of deadtime could then be overlaid

on the pulse train at this stage.

The method of neutron pulse train generation described in detail here is based

in essence on a previous approach by Swinhoe, et al. [3]. To date, no attempt has

been made to carry out a full systematic investigation of deadtime behaviour. In

this work, ideal neutron pulse trains are subjected to a range of deadtimes and two

deadtime models. This enabled the creation of a tool for the systematic study of

deadtime behaviour and hence study of deadtime correction factors for a range of

neutron sources.
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4.3. NEUTRON PULSE TRAIN GENERATION

4.3.1 Modelling Neutron Capture in MCNPX

3He Detector Model

A large 3He neutron detector with 4π geometric coverage was modelled. This

detection geometry was chosen to enable generation of ideal neutron pulse trains

and thus allow direct comparison of simulated data to existing theory once the

effects of deadtime had been applied. Detector parameters were then chosen to

maximise detection efficiency and shorten the capture time distribution in order to

mimic the expected behaviour of future extreme counter designs. The detector was

modelled with a large radius of 1000 m so that the detector could be considered to be

self-moderating and hence ensure that the maximum number of neutron interactions

led to neutron capture in the 3He. This resulted in a high efficiency, ε ∼ 99.4 %. As

a result, it was not necessary to model a polythene moderator. The density of the

fill gas was chosen to be 1.65 kgm−3. This density corresponds to a relatively high

pressure of 13.5 atm at 300 K for the detector volume, resulting in a short dieaway

time of ∼ 3.4 µs.

There are no structural materials and no hydrogen (CH2) and hence no losses

to capture in these materials. The system is self-moderating and since 3He is light,

moderation is a reasonably fast process. This, combined with the rapid dieaway

time and the high efficiency, allows operation at short gates which translates into

high rate applications and the best chance to separate fission events from random

events. In many respects this detector represents the ultimate 3He based detection

system [49].

252Cf Spontaneous Fission Source Model

A point like 252Cf spontaneous fission source was modelled with small spherical

volume (radius 1 mm) at an artificial density of 15,100 kgm−3, and positioned at

the centre of the 3He detector in the MCNPX input file geometry (see Appendix F).

A spherical volume distribution was defined to sample spontaneous fission neutrons

uniformly throughout the source volume. Neutron energies were sampled from a

Watt fission energy spectrum:

p(E) = C exp(−E/a)sinh(bE)
1
2 (4.1)

with spontaneous fission parameters a and b equal to 1.175 MeV and 1.04 MeV−1

respectively for the nuclide 252Cf. These parameters have been taken from [6].

Energy E is defined in units of MeV.
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4.3. NEUTRON PULSE TRAIN GENERATION

The use of the spontaneous fission source card in MCNPX enables spontaneous

fission events to be sampled from the “correct” multiplicity distribution for the

fissile nuclide, a capability which was unavailable in earlier versions of the MCNP

code (which used ν one above and one below the mean in a proportion in order to

obtain the mean but not the distribution). The 252Cf spontaneous fission multiplicity

distribution is given in Table 4.2. Values were taken from Ensslin, et al [24], based

on the evaluation by Zucker and Holden [34].

ν P(ν) 252Cf s.f.
0 0.002
1 0.026
2 0.127
3 0.273
4 0.304
5 0.185
6 0.066
7 0.015
8 0.002
ν1 3.757
ν2 11.962
ν3 31.812

Table 4.2: Spontaneous Fission Multiplicity Distribution for 252Cf

The number of fission histories or events (or NPS value) was also specified in the

MCNPX input file. Once spontaneous fission events were distributed in time (see

section 4.3.5), this parameter could be varied in order to select the source intensity.

A NONU card was used to “turn off” induced fissions within the source material. This

meant that the resulting pulse train consisted of neutron events from spontaneous

fission only, which is a good approximation for actual 252Cf sources.
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4.3. NEUTRON PULSE TRAIN GENERATION

Figure 4.1 provides a graphical representation of the multiplicity data for 252Cf

presented in table 4.2.

Figure 4.1: Plot of Spontaneous Fission Multiplicity Distribution for 252Cf
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4.3. NEUTRON PULSE TRAIN GENERATION

Choice of 252Cf

252Cf was chosen to simplify calculations and because 252Cf sources are commonly

used for the calibration of PNMC systems, as detailed in section 3.5.2. 252Cf has a

multiplication close to one i.e. no induced fission: M = 1. 252Cf can also be taken

to have an alpha ratio of zero: α = 0. Based on these properties, the Point Model

equation 2.6 for the Singles rate in section 2.2.4 becomes:

S = mgενs1 (4.2)

where m is the mass of 252Cf material, g is the specific fission rate, ε is the detection

efficiency, and νs1 is the first moment of spontaneous fission (average number of

prompt neutrons per spontaneous fission). Equation 2.7 for the Doubles rate also

simplifies for 252Cf:

D =
mgε2fdνs2

2
(4.3)

where fd is the Doubles gate fraction and νs2 is the second moment of spontaneous

fission.

Equation 2.8 for the Triples rate also simplifies for 252Cf:

Tr =
mgε3ftνs3

6
(4.4)

where ft is the Triples gate fraction and νs3 is the third moment of spontaneous

fission.

Detection Efficiency

The detection or capture efficiency of the MCNPX detector, ε, for neutrons from the
252Cf source was ∼ 99.4%. This was calculated using data in the MCNPX output

file.

The point model approximation is valid in this case since all neutrons captured

within the 3He can be considered to arise from spontaneous fission reactions in the
252Cf. Contributions from break-up reactions and fission reactions (induced fissions

within the source) can be assumed to be negligible compared to the source neutrons

from spontaneous fission.
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4.3. NEUTRON PULSE TRAIN GENERATION

4.3.2 Capture Time Distribution

Coincidence Capture Tally

Neutron captures in 3He were tallied using the coincidence capture tally (FT8 CAP

2003). This recorded the time in shakes (1 shake ≡ 10 ns) from neutron birth at the

time of the initiating spontaneous fission event (t = 0) to neutron capture in 3He.

This tally was specified in the data card block of the MCNPX input deck as:

F8:N 2

FT8 CAP 2003

3He captures and moments are tallied in the detector which is cell number 2 in the

MCNPX input file geometry (see Appendix F). Optional gating structure (i.e. pre-

delay and coincidence gate width [6]) has not been chosen for this tally, since this is

overlaid on the pulse train at a later stage in the analysis using the MSR software

algorithms. The capture tally is written to the PTRAC file for further analysis,

using the following input in the problem physics cards:

PTRAC EVENT=CAP FILE=ASC

where FILE=ASC generates an ASCII output file and EVENT=CAP writes coincident

capture events to this output PTRAC file. PTRAC stands for Particle Track Output.

The PTRAC file is one of several optional files that can be output from MCNPX to

provide more detailed information on the problem physics and radiation transport,

containing user-filtered particle events [6]. The use of the filter EVENT=CAP ensured

that only neutron capture events were written to the output file. Whereas all particle

events would be written to file without the use of this filter.

PTRAC File

Capture data was written to the PTRAC file for post-processing in software. Each

row of the data file represents a single neutron capture event within the 3He detector.

The number of rows in the PTRAC file was therefore equal to the total number of

neutron capture events in the 3He detector (detection system).
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Figure 4.2 provides an example of the first 10 fission events taken from a MCNPX

PTRAC file. It can be seen that the PTRAC file comprises four columns of data.

The first column lists the fission event (history) number from which the neutron

originated. The second column lists the capture time in shakes (1 shake ≡ 10 ns).

The capture time is defined as the time from the source fission event to analog

capture in 3He. The third column lists the location of the neutron capture in the

problem geometry (cell number) i.e. the number of the cell in which the capture

occurred. This cell number is flagged with a minus sign if the neutron originated

from an induced fission event. The final column lists the source particle number of

a given history; for example, the first spontaneous fission history (1 in first column)

emitted four spontaneous fission neutrons (4, 3, 2, 1 in fourth column).

Figure 4.2: Example of first 10 fission events from a MCNPX PTRAC File
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Figure 4.3 provides an example of a single fission event, again taken from a MCNPX

PTRAC file. There are four rows of data for this event, corresponding to four

captured neutrons. Column one shows that all four captured neutrons originated

from the spontaneous fission event history number 1. Column 2 shows that these

neutron captures occurred at 151.125, 189.638, 20.562 and 223.610 shakes after the

initiating fission event 1, respectively. Column three shows that all neutrons were

captured in cell 2, the 3He detector. The top value of column 4 indicates the total

number of neutron events recorded for that history i.e. the multiplicity. Figure 4.3

is simply an extract from the data in figure 4.2.

Figure 4.3: Example of first event from a MCNPX PTRAC File

4.3.3 Auxiliary Code

A bespoke auxiliary code was developed by the author to process the PTRAC file

data in order to generate the capture time distribution for the detector and the

neutron pulse train. All software was written using the C++ programming language.

PTRAC File Handling: File I/O

The first step in generating the neutron capture time distribution and pulse train

was to read the PTRAC file to disk for further processing. Note that early working

versions of the software read the PTRAC file events into a vector in program memory

in order to store these events for later analysis. This imposed a limit on the total

number of events that could be allocated space in memory at any one time. The

limit was ∼ 2 × 107 events. This in turn limited the length of the pulse train that

could be handled and hence the precision for a given simulated experimental run.
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A data structure event was defined containing variables nps, time, cell and

source representing the four columns of the PTRAC file:

struct event{

int nps;

double time;

int cell;

int source;}; // data structure event

Contributions to event were determined by the data in the PTRAC file. This data

structure remained the same whether modelling spontaneous fission events or (α, n)

events, since the structure of the PTRAC output file remained the same.

The use of structures is standard within C++ and has not been designed

specifically for this work. However storing data in this manner, not just capture

times as with previous methods, enabled data on capture locations to be preserved

alongside the individual capture time values. This feature was added to facilitate

future work looking at pulse trains for individual detectors and the effects of

summation on counting system deadtime.

Time Conversion

The time of all neutron captures in shakes were converted to nanoseconds by

multiplying by the factor 10.

Capture Time Distribution

Binning the capture times recorded in the PTRAC file in software enabled the

capture time distribution for the detector to be generated. 107 fission events were

launched from the 252Cf source in the idealised 3He detector. A capture time

histogram was generated with 250 bins of width 0.1 µs each, covering the range

from 0 µs to 25 µs. Figure 4.4(a) shows the resulting capture time distribution for

the idealised 3He detector. Figure 4.4(b) shows the capture time distribution viewed

on a semi-log scale, over a short timescale of the order of one die-away time.
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Figure 4.4: (a) Capture time distribution for an idealised 3He detector modelled
in MCNPX. (b) Capture time distribution viewed on a semi-log scale, over a short
timescale of the order of one die-away time.

At t = 0, few to no capture reactions would be expected since fast neutrons must

be slowed to thermal energies before the capture reaction becomes dominant. At

short timescales, t� τ , a weak fast neutron reaction rate is expected. The thermal

neutron population is then expected to grow and the reaction rate to follow as

it builds. This transient behaviour must happen over extremely short timescales

because there is no evidence of it from figure 4.4(b) [50].
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Treatment of Zero Neutron Captures

Neutron events that appear in the PTRAC file with a zero time stamp and a zero

in the cell number column represent spontaneous fission neutrons that were not

captured in 3He. These events were therefore filtered out in software so as not to

appear in the first bin of the capture time histogram.

4.3.4 Calculation of Die-Away Time

The die-away time, τ describes the characteristic time for a neutron, once

thermalised, to undergo capture or leak from the detection system, as described in

section 2.3.1. The die-away time for the detector modelled in MCNPX was calculated

to be ∼ 3.4 µs from two different fitting methods. The exact value depends on the

choice of fitting range and procedure.

Method (1): Fitting the Capture Time Distribution to a

Single Exponential

The die-away time was calculated to be 3.401 µs+ 0.011 µs by fitting the capture

time distribution to a single exponential. Performing the fit over the whole curve

includes fast neutron contributions to the 3He(n, p) reaction as they are slowed.

Method (2): Fitting the Capture Time Distribution to a

Double Exponential

A two component fit was performed for the die-away profile to improve upon the

single exponential approximation. This was done on the basis that the early part

of the curve may involve non-exponential transients, such as neutron slowing down,

that will influence the extraction of the principal component of the distribution. In

practical systems other weak but long lived components may be present and it is

typical not to include these in a simple exponential fit. In a mathematical sense, the

two die-away components can be thought of as the various terms in an expansion

solution of the Boltzmann equation, representing the diffusion of neutrons in a

finite sized assembly with a complex material shape [50]. The die-away profile was

approximated by a double exponential with die-away times τ1 of 3.546 µs + 0.006 µs

and τ2 of 0.807 µs + 0.003 µs using the method of Bourva and Croft [51].
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4.3.5 Neutron Pulse Train Generation in Software

Following the generation of the capture time distribution in software, ideal neutron

pulse train files were generated.

Spontaneous Fission as a Poisson Random Process

Spontaneous fission is a nuclear decay mechanism and is therefore a Poisson random

process i.e. each spontaneous fission event has a constant probability of occurrence

per unit time [38].

MCNPX does not distribute spontaneous fission events according to the fission

rate of the source. Capture times in the PTRAC file are for neutrons starting from

fission events that occurred at t = 0. The absolute start times of the spontaneous

fission events needed to be randomly distributed in time and added to the capture

times from the PTRAC file in order to generate a true Poisson pulse train.

Knoll [38] gives an equation to describe the time intervals between successive

random events. The probability distribution function p(t).dt that the time between

successive events will be in the increment dt about t is given by:

p(t).dt = λ.exp(−λ.t).dt (4.5)

where λ is the time averaged mean event rate of the Poisson random pulse train.

Time Distribution of Fission Events

Random starting times for fission events were generated and added to neutron

capture times from the MCNPX PTRAC file to give the absolute times of neutron

detection. This is statistically equivalent to sampling the time to the next event

from a Poisson distribution.

A total experiment (or assay) time, t was defined as the time period for NPS

fission events to occur for a mean event rate, λ. Time t was calculated separately

in Microsoft ExcelTM, according to the desired event rate, λ using the following

equation:

t =
NPS

λ
(4.6)

where NPS is the number of simulated fission events defined in the MCNPX input

file.
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A number between 0 and 1 was then generated using a pseudo random number

generator [52] and multiplied by the experiment time, t to give the random start

time of an individual fission event. This start time was added to the time values of

all captured neutrons originating from that fission event.

Time Sorting the Data

After assigning a random time to each event, based on a Poisson distribution, capture

times were sorted in ascending order using a standard sort algorithm in C++. This

resulted in a capture time distribution in list mode format. The output from this

part of the code was an ideal neutron pulse train that could be analysed using a

C++ software model of the MSR.
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4.4 Simulation of MSR Action in Software

The action of the MSR electronics (as described in section 2.3.6) was modelled in

software to analyse simulated pulse trains and mimic the action of hardware MSR

(e.g. JSR-14, AMSR).

4.4.1 Pulse Train File Handling: File I/O

The pulse train file was read to disk for further processing. A data structure event

was defined containing the variable time to represent the single column of time

values in the pulse train file:

struct event{

double time;}; // data structure event

Contributions to event were determined by the data in the pulse train file.

This single variable file input was used to enable two file types to be read into

software:

• Pulse train files from neutron pulse train generation software

• List mode data files (as in the ESARDA exercise detailed in chapter 5) from

an assay performed prior to processing in software or an on-line experiment.

Both file types will contain a single column of data listing neutron capture times.

Pulse train files were read into the MSR software in segments, in order to mimic

repeated counting of an item and to generate statistical uncertainties on the mean

count rates. The number of segments could be defined by the user by specifying a

value for the variable segments. Where int segments = 1 is defined, MSR analysis

will be conducted for a single segment i.e. over the entire pulse train.
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4.4.2 MSR Parameters

Table 4.3 lists the MSR parameters that were defined in software, together with the

corresponding software variable name.

Parameter Symbol Software Variable
Coincidence gate width Tg Tg

Pre-delay Tp Tp

Long-delay TL Tl

Table 4.3: MSR Software Parameters

TL is typically fixed in the firmware. For the ideal case, setting the pre-delay to zero

i.e. Tp = 0 and setting the coincidence gate width equal to the total experiment

time, Tg = t (i.e. Tg � die-away, τ) ensures all event times are included in the

analysis.

4.4.3 Triggering

The software uses triggering for every pulse in the train [2]. This method of triggering

is known as Signal Triggered Inspection (STI). Each individual neutron capture

event (originating from a fission event) acts as a trigger, defining or extending a

pre-delay, Tp, reals plus accidentals (R + A) gate width, Tg, long delay, TL and

final accidentals (A) gate width, Tg.

The signal trigger (trigger pulse) itself is affected by system deadtime; for

example, if the trigger falls within the deadtime of another trigger event (the

preceding pulse), this trigger is lost. This influence of deadtime on the correlated

rates extracted by random signal triggering or inspection (RTI) will be different.

RTI is not covered in this thesis because it is not commonly used owing to the

overall statistical precision being poor.

4.4.4 MSR Algorithm

The MSR algorithm acts forwards in time, hence the trigger time is compared to any

events arriving after that trigger event in time and falling within the gate widths.

Gating Structure

MSR pulse train analysis was conducted using the standard algorithm for multiplic-

ity analysis: each neutron event acted as a trigger and extended a pre-delay, Reals

plus Accidentals (R + A) gate and Accidentals (A) gate following a long delay time.
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Accumulator and Scaler Counters

Events falling within the gate width defined by the time of the trigger event are

tallied i.e. used to increment an up-down counter or accumulator. The number of

counts in the coincidence gate are therefore recorded at the time of the trigger event,

providing a sample of the gate totals.

Upon the action of the next trigger event, accumulator totals are transferred to

scaler counters representing the number of events per gate width. This generates a

multiplicity histogram, representing the frequency of the number of events observed

in the coincidence gate width. MSR histogram data is then analysed using factorial

moments analysis to calculate the Singles, Doubles and Triples count rates using the

method detailed in section 3.5.6.

4.5 Simulation of Deadtime Behaviour

Pulse trains could be perturbed using a single system deadtime parameter, δ to

overlay the effects of deadtime according to any chosen model i.e. paralyzable and

non-paralyzable deadtime models.
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4.6 Simulation Method Summary

In summary, figure 4.5 provides an overview of the simulation method. This

highlights the ability to vary the point model parameters ε, m, g, α and M . In

addition, the system deadtime parameter, δ and the gating structure overlaid on the

pulse train can be varied. These features of the simulation would not be possible in

practical counting systems.

Figure 4.5: Overview of Simulation Method
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Chapter 5

MULTIPLICITY INTER-COMPARISON

EXERCISE

The MSR software algorithms coded for this thesis work were submitted to an inter-

national inter-comparison exercise on neutron multiplicity analysis. This chapter

briefly reviews the European Safeguards Research and Development Association

(ESARDA) Multiplicity Benchmark Exercise, performed by the ESARDA NDA

Working Group. The author submitted simulation results for phase IV of this

exercise and contributed to the statistical analysis and final report. This report is

currently being reviewed and is due for publication in the ESARDA bulletin. The

report is included in appendix A in the form in which it will appear in print for

reference.

5.1 ESARDA NDA Working Group

The ESARDA Working Group on techniques and standards for Non-Destructive

Analysis (NDA-WG) was established with the objective of providing the safeguards

community with expert advice on: NDA methods, procedures on standards and

reference materials, and the performance of NDA methods; as stated in [53]. As

part of meeting this objective, the group determines the reliability of NDA methods

where possible by inter-comparison exercises of safeguards measurements. These

exercises may involve measurements by participant laboratories on a common set of

samples, or inter-comparison of the codes used for data analysis [54].

5.1.1 Technical Activities

The activities of the NDA-WG are outlined in a recent report by Peerani and

Weber [54]. One of the main technical areas of activity for the ESARDA NDA-

WG is the modelling of NDA instruments, primarily using Monte Carlo techniques.
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Three benchmark exercises have been carried out since 2003 in order to assess

the capabilities of Monte Carlo modelling to reproduce experimental data. The

ESARDA Multiplicity Benchmark is one such exercise, carried out to compare

the different algorithms and codes used in the simulation of neutron multiplicity

counters. This encourages best practice and the continuous improvement of neutron

NDA measurements.

5.2 ESARDA Multiplicity Benchmark Exercise

Phase IV of the benchmark closely ties in with the themes discussed in this

thesis. Thesis chapters 2 and 3 describe the pulse train obtained from neutron

detection in a multiplicity counter that can be fed into a MSR for time correlation

analysis. Chapter 4 describes the development of a simulation method for pulse train

generation (including deadtime effects) and pulse train analysis using a software

MSR. Phase IV of the benchmark involved software processing of the digital pulse

trains that were obtained from LIST mode data acquisition using an Active Well

Coincidence Counter (AWCC): a Canberra JCC-51 and a multi-event datation

system (MEDAS) card. Neutron multiplicity measurements were performed prior

to the benchmark in the PERLA laboratory at the JRC site in Ispra, Italy. Pulse

trains were distributed to all participant laboratories as LIST mode data files and

analysed independently in software by each participant.

Results of phase IV were used to assess the relative performance of the different

algorithms used for pulse train analysis. Comparison of this kind facilitates the

validation of MSR software algorithms against experimental data, with a view to

investigate the replacement of hardware MSR with software for future practical

applications.

5.2.1 Participants

Eleven laboratories participated in the benchmark exercise: European Commission

Joint Research Centre (JRC), Los Alamos National Laboratory (LANL), Canberra

Industries (University of Birmingham), Institute for Physics and Power Engineering

(IPPE), Institut de Radioprotection et Surete Nucleaire (IRSN), Commissariat a

l’Energie Atomique (CEA-DAM and CEA-LMN), Chalmers University, Institute of

Isotopes of the Hungarian Academy of Sciences (IKI), AREVA, and the University

of Michigan. There were twenty-three contributing scientists in total. A full list of

participants can be found in table 4 of the ESARDA report [4] (see Appendix A).
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5.3 Author’s Contribution

The author participated in phase IV of the multiplicity benchmark. The MSR

software developed by the author, described in chapter 4 of this thesis, was used

to independently perform multiplicity analysis of the pulse trains contained in the

LIST mode data files. Singles, Doubles and Triples count rates, together with their

statistical uncertainties, were determined for the six source cases and submitted as

the data sets labelled “Canberra” in Table 3 of the final report [4].

Once data had been collated from all participants, in a blind fashion, the author

also contributed to statistical analysis of the results from phase IV. This analysis

produced figures 4, 5a, 5b and 5c in the ESARDA report [4] (see appendix A) and

led to contribution to the write up on the results of phase IV in section 5 of the

same report [4].

5.3.1 Report for the ESARDA Bulletin

The final report on phases III and IV of the ESARDA Multiplicity Benchmark has

been drafted and is due for publication in the ESARDA bulletin. The report is

included in appendix A for completeness and for reference.
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Chapter 6

A NEW THEORETICAL APPROACH TO

DEADTIME CORRECTION FOR PNCC

Traditionally, deadtime correction factors for neutron coincidence counting (NCC)

are based on the paralyzable model. Both the Singles and Doubles rate correction

factors are approximated by an exponential dependence similar to those for a pure

random (Poissonian) neutron source. However, the pulse trains are not random

for fission sources. This chapter presents the development of alternative deadtime

correction factors for the Singles and Doubles rates derived from NCC, to extend

their application to correlated neutron sources. Note that NCC is a standard

technique for accountancy measurements and for process hold-up determination, for

example, in gloveboxes. For spent fuel assay PNMC is often not viable due to high

(α, n) emission rates whereas PNCC may be. Therefore the fact that this work

concentrates on Singles and Doubles (but not Triples) does not diminish the practical

importance.

6.1 Motivation

As presented in chapter 3, 252Cf is an important spontaneous fission source for

characterisation of neutron counters and determination of calibration parameters,

including both NCC and multiplicity deadtime parameters. It has been observed

in work presented by the author, Evans, et al [55] (see appendix C) that, even

at low event rates, correlated neutron counting using 252Cf suffers a deadtime

effect. In contrast to counting a random neutron source (e.g. AmLi to a good

approximation), deadtime losses do not vanish in the low rate limit. Consequently,

deadtime corrected count rates are not equivalent to true count rates. This is because

neutrons are emitted from spontaneous fission events in time-correlated ‘bursts’, and

are detected over a short period commensurate with their lifetime in the detector

(characterised by the system die-away time, τ).
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Even at low event rates when spontaneous fission events themselves are unlikely to

overlap, neutrons within the detected ‘burst’ are subject to intrinsic deadtime losses

since within the group there is a high instantaneous rate. Therefore, it is somewhat

surprising that the deadtime loss within the group is not taken into account in

deadtime correction algorithms in the leading NCC analysis software (e.g. Canberra

NDA2K and Los Alamos National Laboratory (LANL) INCC).

6.1.1 Thought Experiment

The concept that deadtime losses can occur even in the limit that the Singles rate

tends to zero can be illustrated by the example of a spallation neutron ‘burst’ of

high multiplicity, ν ∼ 50 say. Spallation neutrons can arise as a result of a cosmic

ray interaction with a high Z material such as lead (Pb) counter shielding. The

next event could, for the sake of argument, occur one day later. Assuming 100%

detection efficiency, this single event would result in 50 neutrons being observed in

a 24 hour observation period, the assay time in this example. This can be thought

of as a pulse train of maximum period 24 hours, with just a single pulse consisting

of a burst of 50 neutrons.

The 50 neutrons would be detected over a time scale of the order of a few µs in

a counter with short die-away time, and therefore appear as a high instantaneous

rate within a short coincidence gate. Overlapping events within the burst will result

in the pulse train being subject to a large deadtime effect. Since the next event

occurs one day later, this scenario does not correspond to a high sustained event

rate. From this illustration, there is a clear need to build the effect of correlations

into the correction factors for deadtime losses, even at low (∼ zero) average event

rates.

Mathematical Illustration

The average (sustained) count rate for a single neutron burst of multiplicity, ν = 50

in a 24 hour observation period can be calculated using the following:

Average count rate =
50 neutrons

3600× 24s
= 5.79× 10−4n/s (6.1)

Within a single coincidence gate width of 4.5 µs for a counter with short die-away

time, however, the instantaneous rate is calculated from:

Instantaneous count rate =
50 neutrons

4.5× 10−6s
= 1.11× 107n/s (6.2)
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The instantaneous count rate in this case is a factor of ∼ 1010 larger than the average

count rate.

6.1.2 Deadtime Losses in Neutron Counting at Low Rates

with 252Cf

For 252Cf the effect is less severe than in the cosmic ray thought experiment, but

nevertheless in Evans, et al [55] (appendix C) it has been demonstrated that a

deadtime effect can be observed even at low count rates. The effect was emphasised

by modelling a neutron counter with high efficiency and short die-away time;

representing a future counter design. This led to extending present deadtime

correction formalisms in an attempt to quantify this effect. In this work, Monte

Carlo simulation and subsequent numerical calculation were used to address this

problem, as opposed to assuming an empirical correction factor as has been the

tradition in the past.

New solutions are presented here as to how the equations for the deadtime

correction factors may be modified. Empirical results from simulation, quantifying

the magnitude of the effect for different deadtimes and covering a range of gate

fractions, are then presented.

6.2 Traditional NCC Deadtime Correction

Traditionally, the count rates obtained from PNCC are corrected for deadtime using

parameters extracted based on the expectation that the Reals-to-Totals ratio, R
T

for
252Cf will be constant, as explained in section 3.6.1. For consistency with previous

notation, this will herein be referred to as the Doubles-to-Singles ratio, D
S

. The

Reals-to-Totals ratio, R
T

and Doubles-to-Singles ratio, D
S

are numerically equivalent.

However, during an assay, the Reals and Totals rates are obtained directly from the

the shift register hardware while Doubles and Singles are derived from the measured

multiplicity histograms.
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6.2.1 Traditional NCC Deadtime Correction Factors

The traditional form of the deadtime correction factors (DTCFs) for the Singles

and Doubles rates obtained from standard NCC are based on a simple paralyzable

model.

Singles DTCF

The traditional deadtime correction formalism for NCC Singles counting relates the

deadtime corrected Singles rate, Sc to the measured Singles count rate, Sm through

the following transcendental expression:

Sc ≈ Sm. exp(δ.Sc) (6.3)

The simple paralyzable form of the Singles deadtime correction factor is therefore

defined as:

DTCFS ≈
Sc
Sm
≈ exp(δ.Sc) (6.4)

Practically, this is normally applied as:

DTCFS ≈ exp(
a+ b.Sm

4
.Sm) (6.5)

This exponential form of the deadtime correction factor is referred to in a discussion

by Swansen [46]. The current form of the NCC deadtime parameter is empirical [56].

Doubles DTCF

By extension, the traditional deadtime correction formalism for NCC Doubles

counting relates the deadtime corrected Doubles rate, Dc to the measured Doubles

count rate, Dm through the following expression:

DTCFD ≈
Dc

Dm

≈ exp(4.δ.Sc) (6.6)

The factor 4 in the exponential is empirical. The theoretical basis, drawn on by [46],

of the factor 4 is unknown and currently no formal discussion in literature exists.

By analogy to equation 6.5, this correction factor is normally applied as:

DTCFD ≈ exp((a+ b.Sm).Sm) (6.7)
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6.3 New Theoretical Approach

6.3.1 Developing an alternative formalism for the Singles

DTCF

Applying equation 6.4 for the Singles DTCF is straightforward when simulated

data is analysed because Sc is known. The existing expression for the Singles

deadtime correction factor is dominated by the Singles rate with no treatment

for correlation within the pulse train. For a correlated neutron source, however,

correlated events within the fission burst itself can also lead to deadtime losses, as

previously described. The deadtime correction factor for Singles should therefore

include terms for correlations. Empirically it is proposed here that additional

exponential terms may be added to the correction factor, to account for deadtime

arising from higher order correlations. The Singles deadtime correction factor would

therefore, to first order in S, D and Tr, take the following form:

Sc
Sm

= DTCFS = exp(δ.Sc + “s1.D + s2.Tr + 0”) (6.8)

where “s1” and “s2” are constants to be determined. The terms enclosed in

quotations relate to the correlations and have been determined by Croft [57] as

described in section 6.3.2. The additional term exp(“s1.D”) is added to take into

account the effect of correlations on the pulse train analysis i.e. the effect of Doubles

on the Singles rate deadtime in this case. Quotations “ ” are used to emphasise that

the above discussion is not quantitative, but indicates that some dependence of the

kind should exist. In equation 6.9 Triples and higher terms are neglected since

Triples rates are often low in practical applications due to low detection efficiency

(ε� 100%) and low Triples gate fractions (< 1
2
):

DTCFS ≈ exp(“s1.D”). exp(δ.Sc).1 (6.9)
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6.3.2 Revised Singles DTCF

Croft [57] has proposed an alternative form for the Singles DTCF:

DTCFS ≈ [1 +
(Dc/fd)

Sc
.
δ

τeff
]. exp(δ.Sc) (6.10)

in the limit where δ
τeff
� 1 and δ

τeff
is roughly constant for a given system. This

was inspired by the work of Matthes & Haas [58], Haas [59], Haas & Swinhoe [60],

Pederson, et al. [61], and Srinivasan [62].

The terms in equation 6.10 are justified by the following arguments:

• The Singles deadtime correction factor should have a direct dependence on

deadtime to first order and is therefore linearly related, in the multiplier, to a

single system deadtime parameter, δ.

• The form of the deadtime correction factor is thought to include a direct

dependence on deadtime yet be independent of gate fraction. That is the

deadtime affects the pulse train and not the processing overlaid on top of

it. Since deadtime effects are manifest in the pulse train itself, deadtime is

thought to be independent of gate fraction6, fd i.e. independent of pre-delay

and coincidence gate width.

• The deadtime imposed by correlated events is expected to depend on

parameters related to the proportion of correlation in the pulse train (which

will in turn depend on the source multiplicity distribution). The level of

correlation in the pulse train can be characterised by the ratio D
S

. The Doubles-

to-Singles ratio, D
S

can therefore be thought of as the “volume control” on the

level of correlation in the pulse train.

• The deadtime correction is inversely proportional to a single exponential

dieaway, τeff . This is defined as the effective dieaway time of the detection

system, when approximated to a single exponential. The ratio 1
τeff

therefore

determines the timescale over which events are detected i.e. how concentrated

events from an individual burst are or how close together in time.

6Dividing Dc by fd eliminates the gate fraction dependence. This can be shown via the
cancellation of the fd terms in the following expression, derived from the Doubles point model
equation for 252Cf (equation 6.16):

Dc

fd
=
mgε2 νs2

2 fd

fd
(6.11)
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• The ‘in-burst’ deadtime correction factor is independent of mass (i.e. “rate”)

except through multiplication, M .

• Equation 6.10 is also dimensionally correct. Dividing D by S also eliminates the

rate (non-multiplying mass) dependence for a given fissioning system. Likewise
δ

τeff
is dimensionless.

Equation 6.10 can be expressed as:

DTCFS ≈ KS. exp(δ.Sc) (6.12)

where KS is defined as the vanishing (Singles) rate deadtime CF multiplier i.e. this

parameter determines the deadtime in the limit where the event rate tends to zero.

KS is given by the following expression:

KS ≈ [1 +
(Dc/fd)

Sc
.
δ

τeff
] (6.13)

For a given system, KS is a constant for 252Cf. Values for this constant have been

derived for a range of system deadtime parameters and gate fractions from empirical

results presented in section 6.5. For actual Pu assays, KS will depend on the leakage

self-multiplication, ML and random to spontaneous fission neutron production rate,

α; that is on the item dependent (Dc/fd)
Sc

value.

6.3.3 Developing an alternative formalism for the Doubles

or Reals DTCF

By analogy to equation 6.12, the Doubles correction factor can be expressed as:

DTCFD ≈ KD. exp(4.δ.Sc) (6.14)

where KD is defined as the vanishing (Doubles) rate deadtime CF multiplier. Again,

KD is a modifier to the traditional NCC Doubles DTCF. Initially, the factor 4 has

been retained from the original expression. KD is also item dependent and will be

discussed in more detail later in section 6.5.2.
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6.4 Simulation

Deadtime correction factors have been simulated over a range of source intensities

for 252Cf. Simulation provides a means to:

• Investigate the functional form of the revised Singles and Doubles DTCFs

for PNCC.

• Evaluate performance of revised DTCFs, relative to traditional NCC

DTCFs.

Simulated measured Singles and Doubles rates were recorded at a range of values

of system deadtime parameter (for a constant gate fraction) and range of gate

fractions (for a constant system deadtime parameter). By this method, the proposed

alternative formalisms for the Singles and Doubles DTCFs, given by equations 6.12

and 6.14, were evaluated.

Ideal neutron pulse trains were generated for 252Cf using the simulation method

developed in chapter 4 and published in Evans, et al [63] (see appendix C). A
252Cf source was modelled as a point isotropic source positioned at the centre of

an idealised 3He detector, using the MCNPXTM model described in section 4.3.1.

Thirteen pulse trains were generated in total. An assay time of 600 s was chosen in

each case, with 10 counting cycles for statistical analysis.

A range of 252Cf source intensities were simulated, between 6.262×103 ns−1 (6.262

kHz) and 2.505×105 ns−1 (0.251 MHz). The detection efficiency was ∼ 99.4% and

the die-away profile could be approximated by a double exponential with die-away

times 3.06 µs and 4.41 µs, with relative intensities 74% and 26%. Table 6.1 shows

the full range of 252Cf source intensities chosen, where each row of the table relates

to an individual pulse train.

The first column of table 6.1 displays the number of source spontaneous fission

events, or NPS value, defined in the MCNPXTM input file. Changing this variable

allows the source intensity, or neutron emission rate, to be tuned to a given value.

The average number of prompt neutrons emitted per fission, or first moment of

spontaneous fission, νs1 is 3.757 for 252Cf (see table 4.2). Multiplying the number of

spontaneous fission events by the first moment gives the average number of prompt

neutrons emitted from spontaneous fission events over the 600 s assay period and

thus available for neutron capture (values are listed in the second column). Dividing

these values by the assay time gives the average source intensity, listed in the third

column.
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Taking the average number of prompt neutrons emitted over a 600 s assay period,

then multiplying by the detection efficiency (ε ∼ 99.4 %) and dividing by the number

of time segments (10 in this case), gives the average number of captured neutrons

per segment. Due to software limitations this value should not exceed 2.000×107,

as noted in section 4.3.3.

Number
of
Spontaneous
Fission
Events (NPS)

Average
Number
of
Prompt
Neutrons

Average
Source
Intensity
(ns−1)

Average
Number
of Captured
Neutrons
per Segment

1.000×106 3.757×106 6.262×103 3.736×105

2.000×106 7.514×106 1.252×104 7.471×105

3.000×106 1.127×107 1.879×104 1.121×106

4.000×106 1.503×107 2.505×104 1.494×106

5.000×106 1.879×107 3.131×104 1.868×106

6.000×106 2.254×107 3.757×104 2.241×106

7.000×106 2.630×107 4.383×104 2.615×106

8.000×106 3.006×107 5.009×104 2.989×106

9.000×106 3.381×107 5.636×104 3.362×106

1.000×107 3.757×107 6.262×104 3.736×106

2.000×107 7.514×107 1.252×105 7.471×106

3.000×107 1.127×108 1.879×105 1.121×107

4.000×107 1.503×108 2.505×105 1.494×107

Table 6.1: Calculated Source Intensities for Simulated 252Cf Sources.

Simulated measured Singles and Doubles rates were recorded at zero deadtime,

δ = 0. These values are equivalent to true count rates. Ideal pulse trains were

then perturbed by overlaying the effect of a paralyzable deadtime model. Simulated

measured Singles and Doubles rates were recorded at the range of system deadtime

parameters given in table 6.2.

δ (µs)
0.010
0.050
0.075
0.100
0.150

Table 6.2: Range of system deadtime parameters, δ used in the simulations.
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The shift register settings of pre-delay, Tp, coincidence gate width, Tg, and long

delay, TL, were fixed at values of 0.3 µs, 4.5 µs and 200 µs, respectively in the main

results presented. Hence the Doubles gate fraction, fd remained constant whilst the

deadtime was varied. Empirical simulation results could be used to determine the

following:

• Dependence of vanishing Singles rate DTCF multiplier, KS on system

deadtime parameter, δ

• Dependence of vanishing Doubles rate DTCF multiplier, KD on system

deadtime parameter, δ

The Point Model equations provide one method to calculate the gate fraction, fd.

Re-visiting the 252Cf Point Model equations in chapter 4 for the Singles and Doubles

rates leads to an expression for Dc

Sc
from which fd can be derived. The Singles and

Doubles rates for 252Cf are given by the following expressions:

Sc = (mg).ε.νs1 (6.15)

Dc = (mg).ε2.fd.
νs2
2

(6.16)

The gate fraction, fd can therefore be derived from the following expression:

Dc/fd
Sc

= ε.(
νs2
2
/νs1) (6.17)

Using this expression as an alternative means to calculate the gate fraction, as

opposed to using the standard expression for detection system die-away time, τ ,

eliminates any uncertainty that may arise as a result of using an effective system

die-away time, τeff from a single exponential approximation. Since Dc/fd

Sc
is a term

in the revised form of the Singles and Doubles DTCFs, equation 6.17 can also be

used in the calculation of KS (equation 6.13) and KD (equation 6.25).

The first and second moments of spontaneous fission can be calculated from data

given in the MCNPXTM output file and are displayed in table 6.3. νs1 and νs2 have

uncertainties associated with them due to experimental uncertainty and evaluation,

but in the MCNPXTM model the multiplicity distribution is exact. The Point Model

assumptions are valid in this case because 252Cf was modelled as a point source i.e.

there is no contribution to the captured neutrons from induced fission (M = 1) or

from (α, n) reactions (α = 0).
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252Cf Spontaneous Fission Moment
νs1 3.757
νs2 5.974

Table 6.3: First and second moment of spontaneous fission, νs1 and νs2 for a point
source of 252Cf modelled in MCNPXTM.

Simulated measured rates were recorded for a range of gate fractions between 0.141

and 0.743, listed in table 6.4. Gate fractions were varied by fixing the MSR pre-

delay, Tp at a constant value of 0.3 µs and varying the coincidence gate width, Tg

between 0.5 µs and 6.0 µs in increments of 0.5 µs. The system deadtime parameter

was also held constant at a value of 0.01 µs for these simulations to determine the

dependence of the Singles and Doubles DTCFs on gate fraction.

Tp (µs) Tg (µs) fd
0.3 0.5 0.141
0.3 1.0 0.255
0.3 1.5 0.347
0.3 2.0 0.423
0.3 2.5 0.488
0.3 3.0 0.542
0.3 3.5 0.589
0.3 4.0 0.629
0.3 4.5 0.664
0.3 5.0 0.694
0.3 5.5 0.720
0.3 6.0 0.743

Table 6.4: Range of coincidence gate widths, Tg and calculated gate fractions, fd
used in simulation of the MSR.

In this case, empirical simulation results could be used to determine the following:

• Dependence of vanishing Singles rate DTCF multiplier, KS on gate fraction,

fd

• Dependence of vanishing Doubles rate DTCF multiplier, KD on gate fraction,

fd
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6.5 Empirical Results

DTCF multipliers KS and KD were determined by fitting empirical simulation

data to the forms of the DTCFs proposed in equations 6.12 and 6.14. Curve

fitting was performed using the Deming non-linear weighted least-squares fitting

method [64] as implemented in the DEM4 27 code [65] which was available in the

BASIC programming language. This approach has been previously applied to the

analysis of calibration data collected by IAEA inspectors from NDA instruments; as

detailed by Goldman, et al. [66]. Results obtained using the Deming method were

consistent with Microsoft ExcelTM Solver, with the limitation that Solver could not

facilitate a full uncertainty analysis.

Fits to the data were found to improve by allowing the multipliers in the

exponential, nS and nD to vary, as opposed to using a value of 1 in the case of

Singles and a factor of 4 in the case of Doubles. Simulated data were therefore fit

to the following forms of the Singles and Doubles DTCFs:

Sc
Sm

= DTCFS ≈ KS. exp(nS.δ.Sc) (6.18)

where nS is a free parameter derived from the data itself.

Dc

Dm

= DTCFD ≈ KD. exp(nD.δ.Sc) (6.19)

where nD is again a free parameter derived from the data itself.
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Table 6.5 provides a summary of the KS, KD, nS and nD parameters derived from

the Deming fitting method, together with their uncertainties.

δ (µs) KS + σ(KS) nS + σ(nS) KD + σ(KD) nD + σ(nD)
0.010 1.0058

+2.5× 10−6

1.0059
+1.6× 10−11

1.0099
+1.6× 10−5

4.0458
+1.3× 10−10

0.050 1.0288
+1.1× 10−5

0.9924
+6.9× 10−11

1.0502
+3.6× 10−5

3.9512
+3.0× 10−10

0.075 1.0432
+1.1× 10−5

0.9830
+6.6× 10−11

1.0758
+4.3× 10−5

3.9041
+3.5× 10−10

0.100 1.0575
+1.5× 10−5

0.9752
+8.7× 10−11

1.1019
+5.1× 10−5

3.8611
+4.0× 10−10

0.150 1.0862
+1.8× 10−5

0.9613
+1.1× 10−10

1.1550
+7.5× 10−5

3.7929
+5.6× 10−10

Table 6.5: DTCF parameters derived from non-linear weighted least-squares curve
fitting to the simulation data as a function of δ, together with their uncertainties7.

7Note that the uncertainties in the KS , KD, nS and nD parameters are very much smaller than
the precision with which the parameters have been determined within the Deming fitting method.
It was however not deemed necessary to re-code the Deming fitting method in this case.
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From equations 6.12 and 6.14, nD is expected to vary with nS as follows:

nD ≈ 4 · nS (6.20)

nD
nS
≈ 4 (6.21)

Table 6.6 shows the ratio nD

nS
calculated from the data in table 6.5, together with

the calculated uncertainty on this ratio.

δ (µs) nD

nS
+ σ(nD

nS
)

0.010 4.022
+1.469×10−10

0.050 3.982
+4.080×10−10

0.075 3.972
+4.431×10−10

0.100 3.959
+5.412×10−10

0.150 3.945
+7.344×10−10

Table 6.6: Ratio nD

nS
derived from fitted simulation data, expected to be close to 4.
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Figure 6.1 shows nS and nD against system deadtime parameter, δ. Values of nS

and nD are seen to be close to 1 and 4, respectively, and remain approximately

constant over the range of simulated source intensities. Uncertainties in nS and nD

are plotted, but are small.

Figure 6.1: nS and nD vs. system deadtime parameter, δ.
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6.5.1 Dependence of Singles and Doubles DTCFs on System

Deadtime Parameter

The empirical results demonstrate the Singles DTCF to be dependent on system

deadtime parameter and independent of gate fraction (see figure 6.3) in the

functional manner expected. This analysis supports the proposed form of the Singles

DTCF given by equation 6.10. Figure 6.2(a) shows a linear dependence of the

vanishing Singles rate DTCF multiplier, KS on system deadtime parameter, δ.

Figure 6.2: (a) Vanishing Singles rate DTCF multiplier, KS vs. system deadtime
parameter, δ (b) Vanishing Doubles rate DTCF multiplier, KD vs. system deadtime
parameter, δ (K → y; δ → x) Uncertainties in K are plotted, but are small.

The following function was derived from a standard linear fit to the data in

figure 6.2(a):

KS = 1 + 0.5749.δ (6.22)

A generalisation of equation 6.10 for the linear fit to the data is given by:

KS ≈ [θ1 + θ2.
(Dc/fd)

Sc
.
δ

τeff
] (6.23)

where θ1 is the intercept on a plot of KS vs. δ, and the gradient is given by

θ2.
(Dc/fd)
Sc

. 1
τeff

.
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The intercept θ1 was expected to be unity, but was allowed to be a free parameter.

Equation 6.23 was used to calculate the value expected for the gradient in an

absolute sense using parameters obtained from the simulation. This gave a value

between 0.465 and 0.516, depending on the chosen value of τeff (with lower limit

corresponding to a single exponential approximation and upper limit corresponding

to a two component fit to the dieaway curve i.e. 3.40 µs and 3.06 µs, respectively).

It is interesting to note that twice the value of this upper limit of 0.516 is 1.032,

which closely corresponds to the gradient of the graph in figure 6.2(b) for Doubles.

Perhaps this justifies further study for systems of widely different characteristics to

see if there is a general relation. For example, this is reminiscent of the ∼ factor

4 between the Singles DTCF and Doubles DTCF in traditional PNCC. This might

also fall out of a deeper theoretical treatment and future work is proposed with

I. Pázsit, Professor of Nuclear Engineering at Chalmers University.

Note that τeff is used on the basis of the understanding that the die-away of real

systems do not follow a single exponential. For example, if there are 3 components

to the die-away, 1
τeff

is a combination of τ1, τ2 and τ3. The parameter 1
τeff

can

therefore be treated as an empirical parameter, expressed as the following:

1

τeff
=

1

f(τ1, τ2, τ3)
(6.24)

where f(τ1, τ2, τ3) is a function that depends on the region of the die-away curve

fitted. Equation 6.24 is a valid assumption for both KS and KD, since the DTCFs

will need to include a multiplier on the gradient, θ2 and λ2 (see equation 6.25).
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6.5.2 Dependence of Singles and Doubles DTCFs on Gate

Fraction

Figure 6.3(a) shows the vanishing Singles rate DTCF multiplier, KS to be

independent of Doubles gate fraction, fd. The slight downward trend in figure 6.3(b),

indicated by the negative gradient of magnitude 0.0044, shows that the vanishing

Doubles rate DTCF multiplier is, however, dependent on gate fraction. Results

showing a similar trend are presented in appendix G for system deadtime parameter

values: 0.050 µs, 0.075 µs, 0.100 µs and 0.150 µs. To account for this dependence, the

vanishing Doubles rate DTCF multiplier can therefore be written as the following:

KD ≈ [λ1 + λ2.
(Dc/fd)

Sc
.
δ

τeff
.fd] (6.25)

Figure 6.3: (a) Vanishing Singles rate DTCF multiplier, KS vs. Doubles gate
fraction, fd (b) Vanishing Doubles rate DTCF multiplier, KD vs. Doubles gate
fraction, fd. System deadtime parameter, δ = 0.01 µs. Uncertainties in K are
plotted, but are small.
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6.6 Comparison

Here, both the traditional and revised forms of the DTCFs are applied to the

simulated measured Singles and Doubles rates (acquired over a range of δ values)

and compared. Singles and Doubles DTCFs should correct the measured rates to

obtain a constant D
S

ratio. In other words, the ratio ξ should be unity across the

range of count rates simulated:

ξ =
Dc

Sc
|δ

Dc

Sc
|δ=0

= 1 (6.26)

Table 6.7 shows the true D
S

ratios (δ = 0), together with statistical uncertainties on

this ratio, as a function of true Singles rate (δ = 0). Statistical uncertainties were

obtained from the propagation of uncertainties in the true Singles and Doubles rates

i.e. simulated Singles and Doubles rates at δ = 0, via the following expression:

σ(
D

S
) =

D

S
·
√

(
σ(D)

D
)2 + (

σ(S)

S
)2 (6.27)

where σ(S) and σ(D) are the statistical uncertainties in the true Singles and Doubles

rates, respectively. The pulse train was divided into 10 time segments. True Singles

and Doubles rates are the mean count rates, averaged over the individual count

rates recorded across the 10 segments. Uncertainties are therefore expressed as the

standard error of the mean count rates.
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Sc + σ(Sc) Dc + σ(Dc)
D
S

+
σ(D

S
)

D
S

(%)

6224 + 3 6531 + 7 1.0494 + 0.11
12451 + 3 13061 + 10 1.0490 + 0.08
18676 + 4 19589 + 13 1.0489 + 0.07
24899 + 5 26110 + 18 1.0487 + 0.07
31123 + 4 32640 + 10 1.0488 + 0.03
37348 + 4 39169 + 14 1.0487 + 0.04
43577 + 6 45700 + 14 1.0487 + 0.03
49804 + 5 52207 + 18 1.0482 + 0.04
56032 + 7 58750 + 21 1.0485 + 0.04
62255 + 7 65273 + 29 1.0485 + 0.05
124528 + 10 130596 + 52 1.0487 + 0.04
186789 + 12 195997 + 72 1.0493 + 0.04
249055 + 14 261360 + 81 1.0494 + 0.03

Table 6.7: True D
S

ratios (δ = 0) and associated statistical uncertainties as a function
of true Singles rate, Sc (δ = 0).

The true Doubles-to-Singles ratios, D
S

for the range of simulated 252Cf sources are

listed in column 2 of table 6.7. It can be shown that in the case where ε→ 1, then
Dc

Sc
> 1 via the following expression; derived from the Singles and Doubles point

model equations for 252Cf (equations 6.15 and 6.16):

D

S
=
mgε2fd

νs2

2

mgενs1
(6.28)

As ε→ 1, equation 6.28 becomes:

D

S
≈
fd

νs2

2

νs1
(6.29)

where fd ≈ 0.65 + 1.42× 10−3, νs2 = 11.962 and νs1 = 3.757.

∴
D

S
> 1 (6.30)
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Statistical uncertainties in the true D
S

ratios were used to assign lower and upper

bounds in the expected deviation in the ratio ξ (given by equation 6.26) from unity,

listed in table 6.8.

Sc Ratio ξ Lower Bound Upper Bound
6224 1.000000 0.998853 1.001147
12451 1.000000 0.999159 1.000841
18676 1.000000 0.999317 1.000683
24899 1.000000 0.999274 1.000726
31123 1.000000 0.999661 1.000339
37348 1.000000 0.999638 1.000362
43577 1.000000 0.999670 1.000330
49804 1.000000 0.999644 1.000356
56032 1.000000 0.999621 1.000379
62255 1.000000 0.999536 1.000464
124528 1.000000 0.999591 1.000409
186789 1.000000 0.999625 1.000375
249055 1.000000 0.999683 1.000317

Table 6.8: Ratio ξ together with lower and upper bounds on this ratio.

An ideal DTCF should be able to correct the measured D
S

within these bounds i.e.

the deviation in the ratio ξ from unity should not exceed these bounds therefore the

deviation in the corrected D
S

ratios should not exceed the uncertainties in the true
D
S

ratios.
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6.6.1 Deadtime Corrected Doubles to Singles Ratios using

the Traditional Theoretical Approach

When traditional NCC DTCFs are applied, figure 6.4 provides an illustration that

the D
S

ratio does not correct to a constant value in the limit that the Singles tends

to zero. Figure 6.4 therefore shows the deviation from unity (where unity is the

expected value for Cf). A 0.5% deviation in the D
S

ratio can be calculated (at the

lowest count rate, at the highest value of δ) compared to the true value (at δ = 0),

when performing deadtime correction using the traditional NCC DTCFs. This is

significant compared to the small 0.1% statistical uncertainty in the true D
S

ratio at

this count rate. The deviation of this ratio from unity is just 0.01 % when performing

deadtime correction using the revised NCC DTCFs. The magnitude of this effect is

emphasised by the extreme efficiency of the chamber modeled and the choice of δ.

Figure 6.4: Ratio ξ using traditional NCC deadtime correction factors vs. Sc
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6.6.2 Deadtime Corrected Doubles to Singles Ratios using

the New Theoretical Approach

Figure 6.5 shows that the ratio ξ is consistent with unity and the new approach

is able to correct the measured D
S

ratio within the statistical uncertainties in the

true D
S

ratio. The blue solid diamonds on the curve illustrate the lower and upper

bounds for the statistical uncertainties in the true D
S

ratio, as listed in table 6.8 i.e.

the simulated D
S

ratio when δ = 0. All corrected rates lie within these bounds.

Figure 6.5: Ratio ξ using revised NCC deadtime correction factors vs. Sc. The
δ = 0 case lies on the unity line.
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6.7 Practical Implications

6.7.1 Calibration using 252Cf

Conventionally, assay system calibration is performed using 252Cf. A bias in the

ratio ρ0 for 252Cf has been observed even in the limit of low rates and a correction

factor has been applied. The quantity ρ0 is defined as the Doubles-to-Singles ratio

for a non-multiplying metallic item of 240Pu. The ratio ρ0 can also be defined for
252Cf since M = 1 and α = 0. This is given by the following expression:

ρ0(
252Cf) =

Dc

Sc
(6.31)

The first and second moments of spontaneous fission for 252Cf and 240Pu are

compared in table 6.9.

252Cf s.f. 240Pu s.f.
νs1 3.757 2.156
νs2 5.974 3.825

Table 6.9: First and second moments of spontaneous fission for 252Cf and 240Pu.

The multiplicity distribution for 240Pu is softer than that of 252Cf i.e. the

spontaneous fission moments are lower for 240Pu than 252Cf, hence the 240Pu

multiplicity distribution has a lower mean multiplicity. A conversion factor is

therefore expected to be needed to relate ρ0 for 252Cf to 240Pu when applying

calibration data to real items:

ρ0(
240Pu) = ρ0(

252Cf)×DTCF × Conversion Factor (6.32)

for a non-multiplying sample e.g. Pu metal. The conversion factor is just a ratio

of nuclear data. Therefore, this presents a future need to quantify the difference in

the relative effects of deadtime for 252Cf and 240Pu.

DTCF ≈
KD

KS
|252Cf

KD

KS
|240Pu

(6.33)

which can be evaluated from equations 6.23 and 6.25.
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6.7.2 In Application

Item dependent correction factors will need to be applied when measuring multiply-

ing items such as Pu oxides. Then factors come about naturally via the appearance

of the term Dc

Sc
in the expressions for KS (equation 6.23) and KD (equation 6.25).
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

7.1 Summary and Conclusions

In chapter 1, the following main research question was posed:

• Can existing neutron pulse train analysis methods be extended to include a full

systematic study of deadtime behaviour and effects in passive neutron counting

systems?

In answering this question, a simulation method has been established for the

systematic investigation of deadtime losses over a range of neutron sources, source

intensities and operational parameters of a neutron counter. The development of

this method was presented in chapter 4. This led to a further research question:

• Are there differences between the deadtime correction factors for uncorrelated

(e.g. AmLi) and correlated neutron sources (e.g. Cf)?

Differences between deadtime losses in random neutron sources (e.g. AmLi) and

correlated fission sources (e.g. Cf) have been found and attributed to deadtime

losses within fission bursts themselves. Results are presented in appendices B, C

and D, which are expanded upon in chapter 6.

New forms of the Singles and Doubles deadtime correction factors for PNCC

are presented in chapter 6, together with empirical simulation data which supports

the functional form of these correction factors. Simulation data has shown that

these formalisms are applicable to correlated neutron sources. In addition, the new

deadtime correction factors have improved performance compared to the traditional

NCC deadtime correction factors, when correcting for deadtime based on a constant
D
S

ratio.
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The revised deadtime correction formulae explicitly make allowance for “within burst

losses” at low sustained rates. This allows the small biases to parameters such as ρ0

to be corrected and provides the appropriate allowance in switching between fission

sources. The effect of multiplication on these deadtime losses was considered in the

following research question:

• To what extent does multiplication (e.g. Pu items) impact the deadtime

correction factors (impact the existing theoretical approaches to deadtime

correction)?

As the multiplication, M, becomes greater than one, the pulse train becomes more

correlated e.g. the term Dc

Sc
in the vanishing (Singles or Doubles) rate deadtime

correction factor multiplier increases; first introduced in section 6.3.2. As a result,

the deadtime correction factor becomes larger due to the greater probability of

neutrons being closer together in time. This effect has not been studied in the same

detail as the first two research questions, but remains an open research question for

future work, alongside other topics discussed in section 7.2.

7.2 Recommendations for Future Work

7.2.1 Experimental Validation

The high efficiency and short die-away time counter used for this work does not exist

in practice and therefore empirical validation of results could only be performed via

simulations. The validity of new deadtime correction factors presented in chapter

6 to current state of the practice systems could be performed via experiment on

systems of diverse type (e.g. including variations in efficiency, system die-away time

and system deadtime parameter). Experiments could also be performed using a

range of fission neutron sources with different neutron multiplicities, and assaying

both multiplying and non-multiplying items.

7.2.2 Extension of Modelling Beyond the Ideal Case

The simulation work could also be extended beyond the ideal case to cross-check

against experimental results. Both experimental work and extended simulations can

be used to determine the limits of traditional NCC deadtime correction algorithms

i.e. assign an upper limit on efficiency and lower limit on system die-away time for

the regime in which traditional algorithms may be applied.
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The simulation work can be extended to more realistic cases to include the

following [49]:

• Distribution of count rates between different numbers of pre-amplifier boards,

varying the number of input channels to the MSR

• He-3 pulse shape variation

• Discriminator action

• Derandomisers

• MSR clock speeds

• Finite time resolution of the MSR

• Extension of MSR algorithms to the coding of the fast accidentals method i.e.

sampling the A gate more frequently than the R + A gate

• Investigation of Random Triggered Inspection (RTI) versus Signal Triggered

Inspection (STI)

7.2.3 Improved MSR Algorithms

List mode data provides a complete record of an assay therefore analysis algorithms

used during the post-processing of this data should be optimised to extract all

available information. A future research question is proposed:

• Are existing algorithms for the shift register the most efficient? Is there merit

to an improved sampling regime for the MSR?

7.2.4 Inverse Calculations

The forward simulation method has been successfully applied to the extension of

deadtime correction factors for correlated neutron counting. Inverse calculations

are still needed for practical applications [49].

7.2.5 Triples DTCF

The new forms of the deadtime correction factors for PNCC developed in this work

can be extended to derive a deadtime correction factor for Triples count rates.
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7.2.6 Correlated Neutron Counting Applied to the Assay of

Spent Nuclear Fuel

Temporally correlated neutron counting techniques are being considered for the

assay of spent nuclear fuel under a current research program; as discussed by Tobin,

et al [67].

Spent nuclear fuel contains 244Cm which can account for greater than 95% of

the neutron emission [68]. When placed in a chamber, the fuel pin neutrons that

emerge in to the moderator are detected and can be used as a trigger to sense

induced fissions from those that return; as proposed by Menlove, et al [69].

These experiments, aimed at Pu accountancy in new reprocessing cycles, take

place at high rates. The approaches developed here are expected to have direct

applicability in this emerging field.
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Appendix F: MCNPX Input File



cf2b.x
cf2b.x
c cell cards
1     1 -15.1     -1             $ cf-252 sphere
2     2 -0.00165   1 -2          $ He-3 4pi detector
3     0            2             $ External void      

c surface cards
1     SO 0.1                    $ cf-252 sphere, point like
2     SO 100000                 $ detector sphere, radius = 1000m

c materials cards
c material one is cf-252
M1    98252 1.0 
c material two is He-3 detector
M2     2003 1.0
NONU $ fission turnoff
c energy and thermal cards
MODE N
PHYS:N J 100 3J 1
c analog capture
CUT:N 2J 0 0
c SF source, spherical volume distribution
SDEF  PAR = SF
      ERG = D1
      CEL = 1
      SUR = 0 $ volume distribution
      POS = 0.0 0.0 0.0 $ defines centre of sphere
      RAD = D2 $ power law with a=2 to sample uniformly in cell volume
SP1 -3 1.175 1.04 $ Watt fission spectrum for Cf-252
SI2 0.09 $ value of radius
SP2 -21 $ power law, defaults to a=2
c tally specification cards
FC8 coincidence capture tally
F8:N 2
FT8 CAP 2003
c variance reduction cards
IMP:N 1 1 0
c output control cards
PRINT 38 110 117 118
c ptrac capture file
PTRAC EVENT=CAP FILE=ASC
NPS 50000000

Page 1



Appendix G: Additional Results:

Dependence of Singles and

Doubles Vanishing Rate DTCF

Multiplier on Gate Fraction



Figure 1: (a) Vanishing Singles rate DTCF multiplier, KS vs. Doubles gate fraction, fd (b) Vanishing
Doubles rate DTCF multiplier, KD vs. Doubles gate fraction, fd. System deadtime parameter,
δ = 0.05 µs.
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Figure 2: (a) Vanishing Singles rate DTCF multiplier, KS vs. Doubles gate fraction, fd (b) Vanishing
Doubles rate DTCF multiplier, KD vs. Doubles gate fraction, fd. System deadtime parameter,
δ = 0.075 µs.
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Figure 3: (a) Vanishing Singles rate DTCF multiplier, KS vs. Doubles gate fraction, fd (b) Vanishing
Doubles rate DTCF multiplier, KD vs. Doubles gate fraction, fd. System deadtime parameter,
δ = 0.100 µs.
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Figure 4: (a) Vanishing Singles rate DTCF multiplier, KS vs. Doubles gate fraction, fd (b) Vanishing
Doubles rate DTCF multiplier, KD vs. Doubles gate fraction, fd. System deadtime parameter,
δ = 0.150 µs.
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