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ABSTRACT 

 

 

Studies of the physical and chemical properties of airborne particulate matter were carried out 

in the UK atmosphere. Aerosol samples were collected at the Elms Road observatory site 

(500 daily samples) and Harwell (100 daily samples) site representing urban background and 

rural area, respectively. The chemical components of both PM2.5 and PM2.5-10 were mainly 

analysed for carbonaceous compounds, sulphate, nitrate, chloride and oxalate. Size 

distributions of aerosol components were also investigated by size-segregated air samplers in 

conjunction with the study of ammonia gas to stabilise semi-volatile species such as NH4NO3 

and NH4Cl in atmospheric particles. Concentrations and composition of carbonaceous 

compounds (organic (OC) and elemental (EC) carbon) in particulate matter clearly showed 

higher value in the urban background than those in the rural area. An OC/EC minimum ratio 

of 0.35 was used to distinguish between primary and secondary OC, as EC was a good 

indicator of primary sources. Sulphate and nitrate showed a close relationship, indicating that 

these two species undergo similar formation and removal processes in the atmosphere. 

Chloride in coarse particles is mainly originated from marine aerosol with a weak correlation 

observed with other major species. Additionally, chloride was also observed significantly in 

the fine fraction, suggesting the importance of anthropogenic sources, as indicated also by air 

mass trajectory analysis.  

 

Oxalate is reported as one of the major components of organic aerosol and average 

concentrations sampled over different intervals in PM10 were 0.04 ± 0.03 µg m-3 at the rural 

site and 0.06 ± 0.05 at the urban background site. Similarity between oxalate concentrations 

during a period of simultaneous sampling at the urban and rural sites was observed. A good 

correlation and similar pattern of size distribution between oxalate and sulphate was found, 

suggesting formation from the same atmospheric processes such as in-cloud formation or 

cloud processing of oxalate and sulphate formed in homogeneous reaction processes. 

Clustering of air mass trajectories showed important sources of oxalate in continental areas 

associated with the high levels of other atmospheric pollutants. Excess ammonia gas supplied 

during a size-segregated air sampling experiment revealed higher concentrations of nitrate 

and chloride particles, indicating that ammonia could stabilise semi-volatile aerosol species 

such as nitrate and chloride which are expected in form of ammonium salts. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

An aerosol consists of tiny liquid or solid particles which are suspended in a gaseous medium 

long enough to enable observation and measurement. The aerosol particle samples are 

generally called particulate matter (PM). PM covers a very wide size range from a few 

nanometres (nm) to tens of micrometres (µm). With reference to the Air Quality Standards 

Regulations 2010 for the United Kingdom, PM10 defines as particulate matter which passes 

through a size-selective inlet as defined in the reference method for the sampling and 

measurement of PM10, EN 12341, with a 50% efficiency cut-off at 10 µm aerodynamic 

diameter, whilst PM2.5 means particulate matter which passes through a size-selective inlet as 

defined in the reference method for the sampling and measurement of PM2.5, EN 14907, with 

a 50% efficiency cut-off at 2.5 µm aerodynamic diameter. The concentrations of particulate 

matter in ambient air are measured and recorded in term of the mass of particulate matter in 

one cubic metre of air, mostly using the units of microgram per cubic metre, µg m-3. 

Atmospheric aerosols are of interest mainly because of their effects on health and climate. 

PM affects the climate by absorbing and scattering solar radiation, and by altering the 

properties and lifetime of clouds (Solomon et al., 2007). Scattering and absorbing the solar 

radiation is known as the “direct” effect of aerosols on the global climate, which can lead 

either cooling or warming of the atmosphere depending on the proportion of light scattered to 

that absorbed. Atmospheric particles also have an “indirect” effect on climate by altering the 

properties of clouds, resulting in a change of their scattering properties and longevity. 

 

Concerning human health, many epidemiological studies have shown a link between 

increased mortality and/or morbidity with increased PM10 or PM2.5 (Laden et al., 2006 and 

references therein). An increase of 1.3% in the total daily mortality with an increase of 10 µg 

m-3 in 2-day mean PM2.5 concentration has been reported. For PM10 or PM15, the estimated 

association of 10 µg m-3 increase in 2-day mean particulate matter on total mortality was 

0.4%. This value calculated based on the reconstruction of data reported in six U.S. cities and 

replication of the original analysis (Schwartz et al., 1996; Rebecca et al, 2000). UK estimates 

indicate that short-term exposure to the level of PM10 which they experienced in 2002 led to 
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6500 deaths and 6400 hospital admissions (AQEG, 2005). In addition, the report by the 

Committee on Medical Effects of Air Pollution (COMEAP) in 2001 showed that for each 1 

µg m-3 decrease in PM2.5 over the lifetime of the current population of England and Wales, 

between 0.2 and 0.5 million years of life will be gained. This is equivalent, on average, to 1.5 

– 3.5 days or much more for every individual. The UK Air Quality Standards Regulations 

have released the standards of PM10 and PM2.5 in ambient air as shown in Table 1.1 in order 

to set the limit values for the protection of human health (Statutory Instruments, 2010). In 

addition, Table 1.1 also shows the EU directive 2008/50/EC on ambient air quality and 

cleaner air concerning PM10 limit values for the protection of human health (Official Journal, 

2008). 

 

All effects are influenced by the chemical and physical properties of airborne particulate 

matter, which make these properties very important to be analysed and monitored. In addition, 

the study of the properties of particulate matter including their chemical composition and size 

distributions will provide invaluable data in order to understanding about the sources and 

formation mechanisms of the atmospheric aerosols. 

 

Table 1.1  Limit values of PM for the protection of human health 

The UK Air Quality Standards Regulations 2010 which come into force on 11th June 2010 
PM10    
Average period  Limit value  
One day  50 µg m-3, not to be exceeded more 

than 35 times a calendar year 
 

Calendar year  40 µg m-3  
PM2.5    
Average period Limit value Margin of tolerance Date by which limit 

value is to be met 
Calendar year 25 µg m-3 20% on 11th June 2008, decreasing 

on the next 1st January and every 
12 months thereafter by equal 
annual percentages to reach 0% by 
1st January 2015 

1st January 2015 

The EU directive 2008/50/EC 
PM10    
Average period  Limit value Margin of tolerance 
One day  50 µg m-3, not to be exceeded more 

than 35 times a calendar year 
50% 

Calendar year  40 µg m-3 20% 
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Particulate matter in ambient air  

 

Particles or particulate matter consist of both primary constituents, which are directly emitted 

from the source into the ambient air, and secondary constituents, which are produced in the 

atmosphere by chemical reactions. The relative importance of primary and secondary 

constituent depends mainly on geographical region, with its particular mix of emissions, and 

on atmospheric chemistry. For example, in the UK, Harrison et al. (2012) reported that 

PM2.5:PM10 ratios declined from around 0.8 in southeast England to below 0.6 in Scotland 

consistent with a higher contribution of secondary particulate matter southeast England. 

Significant gradients of particulate matter were observed between rural, urban background 

and roadside sites, especially the high increment for heavily trafficked street canyon locations. 

In addition, their studies showed that concentrations of PM2.5 were highest in the winter 

months and lowest in the summer consistent with better mixing and volatilization of semi-

volatile compounds in the high temperature condition. Regionally, PM can be transported 

from areas of high emissions to relatively clean remote regions. 

 

Primary particles 

 

Primary particles are emitted cover a wide size ranges. The particles with aerodynamic 

diameter of less than 1 µm commonly found from combustion sources when fuels are burned. 

The particles with larger than 1 µm in aerodynamic diameter were from dust sources. 

Particles larger than 10 µm in aerodynamic diameter, which of less concern in atmospheric 

aerosols, usually deposit to the surface within a short period after being emitted and do not 

have a large effect on light scattering, unless strong winds and turbulence re-suspend the 

particles. There are significant sources of primary particles such as mobile source and 

stationary source. The major mobile source is road transport which produces both fine (from 

fuel burning) and coarse (from tyres and brake wear) primary particles. Stationary sources are 

the burning of fuels for industrial, commercial and domestic purposes. Primary particles also 

emitted from natural sources such as sea spray, biogenic sources (pollen fragments and 

particulate abrasion products from leaf surfaces). 
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Secondary particles 

 

Secondary particulate matter is produced from chemical reactions of the gas precursors 

released into the atmosphere. The important primary emissions of precursors also include 

motor vehicles, residential wood combustion, meat cooking etc., which contain very complex 

mixtures of organic and inorganic substances to be released in the gas and particulate phases. 

The formation of secondary particles takes time according to their properties of precursors 

under the meteorology conditions. During the hours or even days over which this happens, 

the air containing the pollution can transport to other areas.  

 

Figure 1.1 shows the sources of particulate matter with the contribution of primary and 

secondary particles. On the right side of the figure, there are urban background site located 

away from specific emission sources and roadside site located between busy road and the 

pavement. People live and work in both sites. On the left of the figure, the sources of 

secondary particulate matter are seen and the secondary particles take time before arriving the 

mainland area. The sources of primary particulate matter are demonstrated in the centre of the 

figure. 

 

 

  

 

Figure 1.1  Sources of particulate matter (source: AQEG, 2005) 
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1.2 Physical properties of airborne particulate matter 

 

There are various properties of airborne particulate matter which are important to their role in 

atmospheric process. These include their number concentration, their mass, size, chemical 

composition, and aerodynamic and optical properties (Finlayson-Pitts and Pitts, 1986). The 

most important physical property is size of particle. Particle size reflects the nature of source 

of the particles and relates to their health effects including to their aesthetic and climatic 

effects via their light scattering properties. Size of particulate matter covers a wide range 

between approximately 0.002 µm to 100 µm, however the most important particles with 

respect to atmospheric chemistry and physics are in the 0.001 – 10 µm. Size is often 

expressed in terms of effective diameter, which depends on a physical rather than a geometric 

property. The most commonly used effective diameter is the aerodynamic diameter, Dp, 

which is defined as the diameter of the unit density (ρp = 1 g cm-3) sphere that has the same 

settling velocity as the particle being measured (Hinds, 1999). 

 

With regard to the current atmospheric measurements, particulate matter can be classified as 

PM10 (50% cut-off aerodynamic diameter of 10 µm), PM2.5 (fine particles, 50% cut-off 

aerodynamic diameter of 2.5 µm) and PM2.5-10 (coarse particles with aerodynamic diameter 

between 2.5 µm – 10 µm) including PM0.1 (ultrafine particles, 50% cut-off aerodynamic 

diameter of 0.1 µm). The latter is a recent focus because these small particles might penetrate 

the issue in the deep lung, leading to the respiratory health effects (Hughes et al., 1998; 

Pakkanen et al., 2001). Due to the mechanism of formation, Whitby (2007) produced a 

simplified size distribution model called the Whitby trimodal model. This model showed that 

transforming atmospheric aerosol number distributions to volumer distributions revealed 

three distinct size modes, which he labeled the nuclei, accumulation and coarse modes. Each 

of particle modes consisted of the size range of Dp less than 0.1µm for a nucleation mode, Dp 

from 0.1 µm to 1.0 or 2.0 µm for an accumulation mode, and Dp more than 1.0 or 2.0 µm for 

a coarse mode. Each mode was fitted by a lognormal function. The nucleation mode may be 

divided into two modes that are a nucleation and Aitken mode. Most studies regard the 

nucleation mode as being smaller than the Aitken mode, so the nucleation mode has an upper 

limit of around 0.02 or 0.03 µm whereas the Aitken mode is significantly larger (Jaffrezo, et 

al., 2005; Kerminen, et al., 1999; Pakkanen et al., 2001). Whitby separated the particles into 

two main fractions; fine particle with diameters less than 1.0 or 2.0 µm and coarse particles 
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with diameters of more than 1.0 or 2.0 µm. Currently, legislative air quality objectives are 

defined in term of PM10 and PM2.5 that fractions of particles with an aerodynamic diameter 

below 10 µm and 2.5 µm, respectively. Therefore, the trimodal size distribution is 

represented and modified as; nucleation or Aitken mode, below approximately 0.1 µm in 

diameter; accumulation mode (0.1 µm < Dp < 2.5 µm), and the coarse mode (2.5 µm < Dp < 

10 µm). With regard to fine fraction, the particle size classification is also divided into the 

fine (Dp < 2.5 µm) and ultrafine (Dp < 0.1 µm) fractions.  

 

The size distribution of aerosol particle is changed in the atmosphere by the processes of new 

particle formation (gas to particle by photochemical oxidation of precursors), following by 

growth (coagulation and condensation), evaporation and removal (diffusion, settling, 

impaction, washout and rainout) (Hinds, 2001). An increase in the particle size occurs 

through coagulation and condensation of aerosol particles. Coagulation is the growth process 

of aerosol from the collision of particles whilst particle condensation occurs when more 

vapor molecules arrive on their particle’s surface. Evaporation is the reverse process 

changing the size and results in a net loss of molecules and reduction of airborne particles. 

 

Fine mode and coarse mode particles differ not only in size but also in formation mechanism, 

sources, removal, and chemical, physical and biological properties (Table 1.2). The fine 

mode particles are often directly emitted as primary particles from combustion sources or 

formed by condensation of gaseous compounds via gas to particle conversion processes, or 

by coagulation and adsorption mechanisms (secondary particles). Particles in find mode are 

often related to long-range transport, while large particles may be formed locally by 

mechanical demolition, disintegration processes (sea spray), industrial activities or re-

suspension of surface material, especially during drier conditions. In the UK urban areas, fine 

particles are mainly produced by vehicle exhaust emissions from road traffic. The major 

sources of coarse particles are from re-suspended road dusts, windblown soils and sea spray 

particles (QUARG, 1996). 
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Table 1.2  Characteristics of airborne particulate matter; fine (ultrafine plus accumulation- mode) and 
coarse mode particles (source: U.S. EPA, 2009) 

 Fine 
Coarse 

 Ultrafine Accumulation 
Formation 
Processes 

Combustion, high-temperature processes, and atmospheric reactions Break-up of large solids/droplets 

Formed by 

Nucleation of atmospheric gases 
including H2SO4, NH3 and some 
organic compounds 
 
Condensation of gases 

Condensation of gases 
 
Coagulation of smaller particles 
 
Reactions of gases in or on 
particles 
 
Evaporation of fog and cloud 
droplets in which gases have 
dissolved and reacted 

Mechanical disruption (crushing, 
grinding, abrasion of surfaces) 
 
Evaporation of sprays 
 
Suspension of dusts 
 
Reactions of gases in or on 
particles 

Composed of  

Sulphate 
 
EC 
 
Metal compounds 
 
Organic compounds with very low 
saturation vapor pressure at 
ambient temperature 

Sulphate, nitrate, ammonium, and 
hydrogen ions 
 
EC 
 
Large variety of organic 
compounds 
 
Metals: compounds of Pb, Cd, V, 
Ni, Cu, Zn, Mn, Fe, etc. 
 
Particle-bound water 
 
Bacteria, viruses 

Nitrates/chlorides/sulfates from 
HNO3/HCl/SO2 reactions with 
coarse particles 
 
Oxides of crustal elements (Si, 
Al, Ti, Fe) 
 
CaCO3, CaSO4, NaCl, sea salt 
 
Bacteria, pollen, mold, fungal 
spores, plant and animal debris 

Solubility Not well characterized Largely soluble, hygroscopic, and 
deliquescent 

Largely insoluble and 
nonhygroscopic 

Sources 

High temperature combustion 
 
Atmospheric reactions of primary 
gaseous compounds. 

Combustion of fossil and biomass 
fuels, and high temperature 
industrial processes, smelters, 
refineries, steel mills etc. 
 
Atmospheric oxidation of NO2, 
SO2, and organic compounds, 
including biogenic organic species 
(e.g., terpenes) 

Resuspension of particles 
deposited onto roads 
 
Tire, brake pad, and road wear 
debris 
 
Suspension from disturbed soil 
(e.g., farming, mining, unpaved 
roads) 
 
Construction and demolition 
 
Fly ash from uncontrolled 
combustion of coal, oil, and 
wood 
 
Ocean spray 

Atmospheric 
half-life Minutes to hours Days to weeks Minutes to hours 

Removal 
Processes 

Grows into accumulation mode 
Diffuses to raindrops and other 
surfaces 

Forms cloud droplets and rains out 
 
Dry deposition 

Dry deposition by fallout 
Scavenging by falling rain drops 

Travel 
Distance <1 to 10s of km 100s to 1000s of km 

<1 to 10s of km (100s to 1,000s 
of km in dust storms for the 
small size tail) 

 

 

1.3 Chemical properties of airborne particulate matter 

 

Measurement of chemical composition in PM2.5 is required under the directive on ambient air 

quality and cleaner air for Europe (Directive 2008/50/EC of the European Parliament and of 

the Council of 21 May 2008). According to the directive, the measurements are to ensure that 

adequate information is made available on levels in the background locations. Measurement 
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of PM2.5 must include at least the total mass concentration and concentrations of appropriate 

compounds to characterise its chemical composition. Chemical species should be analysed 

and list at least SO4
2-, NO3

-, Na+, K+, NH4
+, Cl-, Ca2+, Mg2+, elemental (EC) and organic 

carbon (OC). The data is necessary to judge the enhanced levels in more polluted locations, 

assess the possible contribution from long-rang transport of air pollution, support source 

apportionment analysis and for the understanding of specific pollutants. 

 

Many previous studies reported the chemical composition of airborne particulate matter 

(Chow et al., 1994; Harrison and Jones, 1995; Eldred et al., 1997; Muller, 1999; Harrison and 

Yin, 2000; Yin and Harrison, 2008). Those results indicate that the composition of PM 

showed various components which are influenced by pollution sources, chemical reactions in 

the atmosphere, long-range transport effect and meteorological conditions. In the UK, the 

recent study by Yin and Harrison (2008) reports that typical overall aerosol particle 

composition in an urban location (City Centre, Birmingham) obtained from application of a 

mass closure model are expressed as follows; (NH4)2SO4 ∼16.0%, NH4NO3/NaNO3 ∼18.5%, 

Organics ∼23.7%, EC ∼8.0%, NaCl ∼9.3%, Calcium salts ∼7.4%, Iron-rich dusts ∼13.4%, 

other ∼ 3.7% for PM10; (NH4)2SO4 ∼24.0%, NH4NO3/NaNO3 ∼21.2%, Organics ∼26.1%, EC 

∼11.2%, NaCl ∼4.0%, Calcium salts ∼2.5%, Iron-rich dusts ∼5.9%, other ∼ 5.2% for PM2.5. 

 

Airborne particles contain both major and minor components. The relative abundance of the 

major chemical components, termed as ‘bulk chemical composition’ was reviewed in the 

study of Harrison and Yin (2000) for urban areas in the UK and around the world. These 

major components include sulphate, nitrate, ammonium, chloride, elemental and organic 

carbon, crustal materials and biological materials. There are many minor chemical 

components present in airborne particles depending on the detection limit, sensitivity of the 

analytical procedure to determine their concentrations. Minor components comprise the 

following; trace metals (lead, cadmium, mercury, nickel, chromium, zinc and manganese) 

which are used in metallurgical processes or in industrial products, trace organic compounds 

as presented at a very low concentration even though the total mass of organic compounds 

comprise a significant part of the overall mass of particles. Table 1.3 shows the 

measurements of chemical composition in PM and the results indicate the variation of 

component concentrations at different locations around the world including substantial 

temporal variability in chemical concentrations of PM. In Europe, Putaud et al. (2010) have 

summarized the data on chemical characteristics of PM obtained in the European aerosol 
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research activities at rural, urban and kerbside sites over the past decade. The results show in 

Table 1.4 for PM2.5, PM2.5-10 and PM10. 
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Table 1.3  Chemical composition (%) of airborne particulate matter around the world (modified from Harrison and Yin, 2000) 

Sampling site PM Total Mass 

(µg m-3) 

EC OC Organics TC SO4
2- NO3

- Cl- NH4
+ Crustal Minerals Other Reference 

Birmingham, UK PM2.5 15.8 11.2 - 26.1 - 24.0 21.2 4.0 - 8.4 - 5.2 Yin and Harrison, 

2008  PM10 23.9 8.0 - 23.7 - 16.0 18.5 9.3 - 20.8 - 3.7 

Birmingham, UK PM10 25.7 18.0 20.0 - 38.0 17.0 6.0 2.0 6.0 - - 31.0 Harrison et al., 1997 

 PM2.5 22.5 - - - 50.0 26.1 6.6 1.8 9.9 - 5.6 0.0  

Leeds, UK PM2.5-15 13.3 - - - 13.3 7.4 5.8 8.2 2.5 - 62.8 0.0 Clarke et al., 1984 

 PM15 35.5 - - - 33.8 19.2 7.9 4.2 6.8 - 28.1 0.0  

Southern California 

(urban) 

PM2.5 37.0 5.0 - 26.5  20.9 9.8 0.4 9.0 2.5 - 23.9 Chow et al., 1994 

PM10 37.0 3.5  20.0  13.2 12.7 1.3 5.7 18.2 - 19.3  

Edison California PM2.5 49.6 6.0 31.4 44.0 37.4 6.0 3.0 - 2.0 35.0 - 0.0 Chow et al., 1996 

 PM10 52.5 5.7 19.7 27.6 25.4 6.3 3.0 - 2.0 46.1 - 4.3  

 PM2.5 - 3.9 14.9 20.9 18.8 34.1 1.1 - 13.0 - 4.3 22.8  

Eastern U.S. PM2.5-10 - - - - - 4.9 - - 1.8 - 51.8 41.5 U.S. EPA, 1996  

 PM10 - 3.3 6.1 8.5 9.4 27.8 1.2 - 10.7 - 19.6 18.9  

 PM2.5 - 14.7 27.8 38.9 42.5 10.8 15.7 - 7.5 - 14.6 0.0  

Western U.S. PM2.5-10 - - - - - 3.1 - - 0.8 - 69.3 26.8 U.S. EPA, 1996 

 PM10 - 5.1 21.4 30.0 26.5 4.6 24.0 - 6.7 - 36.3 0.0  

Lahore Parkistan TSP 607 2.9 13.1 - 16.0 3.0 2.1 - 1.2 - 16.4 61.3 Smith et al. 1996 

Hong Kong RSP 66.2 - - - 57.1 14.4 2.8 2.3 3.3 - 6.1 14.0 Qin et al., 1997 

Beijing China PM2.5 66  4.7 - 24.2 - 24.9 9.7 0.3 14.3 1.7 - 20.1 Huang et al., 2005 

Nanjing,(urban) 

China 

PM2.5 - 5.0 - 37.3 - 20.9 12.0 3.9 12.5 3.8 - - Yang et al., 2005 
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Table 1.4  Relative contributions (%) of major chemical composition to PM mass by site types in Europe (source: Putaud et al., 2010) 

   PM10    PM2.5    PM2.5-10  
   Rural* Urban* Kerbside*   Rural* Urban* Kerbside*   Rural* Urban* Kerbside* 
             
N-western 
Europe 

Min.dust 
Sea salt 
SO4

2- 
NO3

- 
OM 
EC 
TC 

4% 
12% 
13% 
16% 
15% 
4% 
14% 

12% 
10% 
14% 
14% 
18% 
5% 
18% 

 
7% 
8% 
12% 
16% 
9% 
20% 

  5% 
4% 
21% 
16% 
25% 
7% 
25% 

1% 
1% 
18% 
 

  26% 
15% 
6% 
20% 
14% 
1% 
12% 

 

             
Southern 
Europe 

Min.dust 
Sea salt 
SO4

2- 
NO3

- 
OM 
EC 
TC 

15% 
3% 
16% 
14% 
 
 
13% 

21% 
12% 
12% 
9% 
26% 
6% 
21% 

28% 
5% 
12% 
8% 
 
 
28% 

  11% 
6% 
15% 
7% 
23% 
8% 
30% 

14% 
2% 
15% 
7% 
 
 
38% 

  42% 
22% 
4% 
11% 
13% 
2% 
11% 

69% 
11% 
5% 
9% 

             
Central 
Europe 

Min.dust 
Sea salt 
SO4

2- 
NO3

- 
OM 
EC 
TC 

9% 
2% 
19% 
13% 
23% 
6% 
32% 

12% 
2% 
15% 
12% 
21% 
10% 
32% 

15% 
2% 
9% 
8% 
21% 
17% 
38% 

 3% 
1% 
17% 
6% 
15% 
5% 
19% 

5% 
1% 
19% 
13% 
22% 
14% 
31% 

6% 
1% 
12% 
10% 
26% 
21% 
35% 

 22% 
2% 
5% 
10% 
5% 
3% 
6% 

25% 
3% 
4% 
7% 
15% 
3% 
14% 

29% 
5% 
4% 
6% 
13% 
10% 
19% 

*   Rural background represents the distance of area from large pollution sources 10 – 50 km 
Urban background represents the area of <2500 vehicals/day with a radius of 50 km 
Kerbside represents area located by traffic lanes 
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Sulphate is mainly formed within the atmosphere by oxidation of SO2, which is itself directly 

emitted from i.e. fossil fuel combustion, industrial processes, and volcanoes or produced 

within the atmosphere by oxidation of reduced sulphur species such as dimethyl sulphide 

(DMS) emitted by oceanic phytoplankton. Sulphate is expected to be found mostly in the fine 

fraction as ammonium sulphate and may be present as sodium sulphate of marine origin 

(Harrison and Pio, 1983). The oxidation of SO2 can be found both in gas phase 

(homogeneous processes) (Calvert and Stockwell, 1983) and in the aqueous phase 

(heterogeneous processes) in the presence of cloud, fog or aerosol droplets (Schwartz, 1987). 

In practice, hydroxyl radical usually plays an important oxidant in homogeneous gas phase 

oxidation of SO2 and dissolved ozone and hydrogen peroxide rapidly reacted with dissolved 

SO2 in aqueous phase.  

 

Nitrate occurs in the atmosphere due to the formation of nitric acid (HNO3), which can then 

form particles by reacting with ammonia or sodium chloride. It is mainly found as 

ammonium nitrate (NH4NO3) produced via the reaction between gaseous nitric acid and 

ammonia, which is a major component in the fine particle fraction. In some environment, 

particulate nitrate is also observed in the coarse particle fraction in association with sodium. 

This is expected to be sodium nitrate (NaNO3) produced from the reaction between nitric acid 

and sodium chloride (NaCl). Nitric oxide (NO) directly emitted converts to nitrogen dioxide 

(NO2), primarily through reaction with ozone. The major pathway to nitric acid is reaction 

with the same hydroxyl radicals that transform sulphur dioxide to sulphuric acid (Calvert and 

Stochkwell, 1983). Ammonium sulphate is a fairly stable compound in atmosphere but 

ammonium nitrate does not exhibit the same behaviour. The atmospheric equilibrium of 

gaseous ammonia and nitric acid is strongly influenced by temperature and relative humidity 

(Russell et al., 1983). Under the lower temperature and higher relative humidity, ammonium 

nitrate favours in the particulate phase.  

 

Ammonium is usually produced via the neutralisation of aerosol acids (i.e. H2SO4, HNO3 and 

HCl) by atmospheric ammonia forming ammonium salts (Harrison and Kitto, 1992). 

Ammonium is almost entirely confined to the fine fraction where it is present in forms of 

chlorides, sulphates and nitrates. 
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Chloride mainly contributes by primary emissions from sea salt and possible associates in 

PM during the winter months by the grit used for de-icing road. These contribute mostly to 

the coarse fraction. Chloride may be found as secondary particle in the form of ammonium 

chloride derived from the reaction between ammonia and hydrochloric acid (HCl) vapour 

emitted from combustion sources such as incinerators and power plants. In the UK, it is likely 

to be of modest importance due to low concentration of its precursor, HCl. Under normal 

atmospheric conditions, ammonium nitrate and ammonium chloride are unstable existing in 

the reversible phase equilibrium with the gaseous precursors. These equilibriums are largely 

controlled by temperature and relative humidity. 

 

Elemental carbon (EC) and organic carbon (OC) are the atmospheric particulate carbons 

with a complex mixture of substances containing carbon atoms. These compounds make up a 

major contribution to airborne particulate matter. Carbon compounds, sometimes called 

“carbonaceous materials” consist mainly of elemental carbon (EC) and organic carbon (OC). 

The total carbon (TC) term is defined as the sum of all carbon in particulate matter (OC and 

EC). EC is essentially a primary pollutant originated mainly from the incomplete combustion 

of fossil fuels and the pyrolysis of biological material during combustion. These particles are 

predominately less than 1 µm in size and are found in fine fraction. OC is a mixture of 

hydrocarbons and oxygenates, constituting most of the remaining particulate carbon. It has 

been divided into water-soluble organic carbon (WSOC) and water-insoluble organic carbon 

(WISOC), or into primary organic aerosol (POA) and secondary organic aerosol (SOA) 

(Seinfeld and Pankow, 2003). POA emitted directly into the atmosphere, for example as 

products of fossil fuel combustion or biomass burning. On the contrary, particulate organic 

carbon formed in the atmosphere by the photochemical oxidation of volatile organic 

compounds (VOC) is referred to as SOA. The contribution of POA and SOA to particulate 

matter can vary greatly, depending on the distance and strength of the sources, the 

photochemical processes and the age of the aerosol. In order to estimate the concentrations of 

primary and secondary OC, however, there is no direct measurement method to quantify the 

distinction between these OC. One of the estimation methods is to use the EC as the tracer of 

primary OC and consequently the secondary OC is calculated based on the OC/EC minimum 

ratios. This method describes and details in Chapter 3. 
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Crustal materials include soil dusts and windblown rock-derived minerals. The main sources 

of dust are unpaved roads, agricultural tilling and construction. Harrison et al. (1997) reported 

that largely crustal minerals were mostly associated with coarse particulate matter in 

Birmingham, UK. Soil-related material is composed mainly of silicon, calcium, iron, 

aluminium, potassium and titanium compounds; additionally, road dust includes the elements 

associated with vehicular emissions such as Cu, Zn and Pb (Swietlicki et al., 1996). However, 

the composition and concentrations for this particulate fraction could be variable due to local 

geology, surface conditions, meteorology and human activities including construction and 

traffic. 

 

Biological materials consist of both small organisms like bacteria as well as spores of fungi, 

myxomycetes, bryophytes and pteridophytes and larger particles such as pollen grains of 

flowering plants, moss gemmae and fragments of cellulose plant materials (Matthias-Maser 

and Jaenicke, 1994; Morris, 1995). Particles of biological origin usually vary in size from 

below 1 µm to approximately 50 µm or larger. They are generally in coarse sizes except 

viruses, which range from 0.005 to 0.05 µm. Many studies have been characterized as 

organic carbon instead of as individual constituents (Ion et al., 2005; Sun and Ariya, 2006). 

Furthermore, the biological viability of any given species in the ambient air will depend upon 

its tolerance of UV radiation, impact of rainfall, high wind speeds, relative humidity and 

temperature fluctuations. 

 

1.4 Oxalate in ambient air 

 

Aerosol particles are known to contain organic carbon material in variable concentrations, 

depending on their locations. Organic compounds which include soluble and insoluble 

species account for a significant fraction of the fine particulate mass in the atmosphere 

(Jacobson, et al., 2000; Zhang et al., 2007). The most important compounds which contribute 

a significant fraction to organic aerosol mass are WSOC. WSOC represented a significant 

water-soluble component of the atmospheric aerosol (Zappoli et al., 1999; Krivacsy et al., 

2001; Yang et al. 2003; Wang et al., 2005; Fosco and Schmeling, 2007). Much of the 

research work found that WSOC had potential to act as cloud condensation nuclei (CCN) 

(Novakov and Penner, 1993; Yu, 2000; Mircea et al., 2002; Yao et al., 2002; Sun and Ariya, 

2006) and also reduced surface tension of CCN, which is one of the parameters determining 

cloud formation (Facchini et al., 1999).  
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Among the different types of WSOC, monocarboxylic acids (MCA) and dicarboxylic acids 

(DCA) are currently significant group of interest in the chemical characterisation of PM 

(Chebbi and Carlier, 1996; Cecinato et al., 1999; Zlotorzynska and McGranth, 2000; 

Limbeck et al., 2001; Falkovich et al., 2004; Karthikeyan and Balasubramanian, 2005; Wang 

et al., 2007). Formic and acetic acids are ubiquitous components in aerosol particles (Chebbi 

and Carlier, 1996). Oxalic acid is the dominant dicarboxylic acids followed by malonic and 

succinic acids (Kawamura and Ikushima, 1993; Kawamura and Usukura, 1993; Yao et al., 

2002) and it constituents up to 50 - 70% of total atmospheric DCA (Sempere and Kawamura, 

1994; 1996). In the real atmospheric particles, oxalate was found as a mixture of various 

inorganic and organic compounds but the previous studies have provided its chemical 

properties and experimental data shown in Table 1.5. 

 

Table 1.5  Chemical properties of oxalic acid and experimental data (source: Sun and Ariya, 2006) 

Compound Oxalic acid 

Formula C2H2O4 

Molecular weight 90.03 

Solubility in water 2.2 × 105 mg L-1 at 25 oC 

Density 1.900 g cm-3 at 25 oC 

Vapour pressure 3.5 × 10-5 mmHg at 30 oC 

 

 

1.4.1 Occurrence of oxalic acid and/or oxalate 

 

Chebbi and Carlier (1996) state that carboxylic acids have been detected in atmospheric 

aqueous and gas phases since the seventies. To the author’s knowledge, the occurrence of 

oxalate measured in aerosols and in precipitation have been demonstrated using ion 

chromatography by Norton et al. (1983). Thereafter, Kawamura and Kaplan (1987) found 

that the diacids (C2-C10) were mainly associated with particles but a minor fraction of these 

compounds have been sampled in vapour phase. They suggested the possibility of low 

molecular weight diacids (i.e. oxalic) presented in the vapour phase under elevated 

temperature conditions. Oxalic acid is mostly present in particulate phase in the ambient 

atmosphere due to the less volatile comparing with formic and acetic acids, which are the 

main monocarboxylic acids present in the gas phase (Chebbi and Carlier, 1996). Limbeck et 

al. (2001) measured the gas/aerosol distribution of oxalic acid and reported a gas phase 

concentration of 23 ± 15 ng m-3 and aerosol concentration of 68 ± 40 ng m-3. Concentration 
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of oxalic acid shows seasonal variation with a maximum in summer (Kawamura and 

Ikushima, 1993; Sempere and Kawamura, 1994).  

 

1.4.2 Source of oxalic acid and/or oxalate 

 

The main sources of oxalic acid in the atmosphere comprise primary biogenic and 

anthropogenic emission and photochemical transformations of precursors in aqueous, gaseous, 

and particulate phases (Chebbi and Carlier, 1996). 

 

1.4.2.1 Biogenic sources 

 

DCAs are common metabolic products, therefore oxalic acid is a major metabolic product of 

fungi in natural environments and is present in soils as calcium oxalate. The concentration of 

oxalic acid in the soil (156-166 nmol g-1) is less abundant than its (2330-2510 nmol g-1) in 

urban dust, which is originated from the dry deposition of aerosols (Kawamura and Kaplan., 

1987). Kawamura and Kaplan also point out that DCAs in the bog sediment are metabolic or 

alteration products of plant debris. The distribution of DCAs in bogs is similar to that of soil 

samples but different from that of atmospheric DCAs, suggesting the formation process in 

soil would be considered. It should be noted that if the soil was the source of atmospheric 

DCAs, there would inevitably be some fractionation during the evaporation process. On the 

other hand, if the atmosphere was the source of the DCAs in soils, then soil degradation 

processes might be important. 

 

1.4.2.2 Anthropogenic sources 

 

Motor exhaust emission have been suggested as a source of low molecular weight DCAs (C2-

C10). The measurement results show a similar distribution of DCAs to that found in the 

ambient air, indicating that incomplete combustion of aromatic hydrocarbons i.e. benzene, 

toluene and naphthalenes in gasoline and diesel engines could be the potential sources of 

atmospheric DCAs with oxalic acid concentrations range between 25% - 50% of the total 

DCA (Kawamura and Kaplan., 1987, Kawamura and Ikushima, 1993). Oxalic acid is the 

dominant species, followed by succinic, malonic, maleic, glutaric, adipic, and phthalic acids. 

The concentration of oxalic acid in motor exhausts is 30 – 60 times higher than the average 

atmospheric concentrations. On the other hand, Yao et al. (2004), Yu et al. (2005), Huang 
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and Yu (2007) concluded that vehicle exhaust is not expected to be a significant primary 

source of oxalic acid in atmosphere. 

 

Biomass burning can be a significant process for the emission of oxalic acid and its 

precursors in the atmosphere. Jaffrezo et al. (1998) indicate that biomass burning plumes 

contributed the very high concentration of oxalate. Yamasoe et al. (2000) reported that 

oxalate accounted for about 0.1% of the total aerosol mass emitted during the burning 

processes. Schmidl et al. (2008) showed that the mean oxalate concentration in smoke from 

the burning of wood was around 0.1% - 0.3% of the total emitted mass. In addition, Kundu et 

al. (2010a,b) measured the aerosols in Amazonian during biomass burning season and 

reported high concentrations of oxalic acid in range 0.7 µg m-3 – 2.1 µg m-3. 

 

1.4.2.3 Photochemical oxidation 

 

DCAs generally agree that their sources are produced by the photooxidation of precursors in 

aqueous, gaseous and particulate phases (Dabek-Zlotorzynska and McGrath, 2000). 

Precursors include cycloolefins, aliphatic diolefins (Chebbi and Carlier, 1996) and aromatic 

hydrocarbons such as benzene and toluene (Kawamura et al., 1996). The atmospheric 

chemical sources of DCAs are not quantitatively well known but the possible qualitative 

picture of photochemical production shows in Figure 1.2. Oxalic acid can be formed by 

glyoxal and methylglyoxal, which are the oxidation products of aromatic hydrocarbons. With 

regard to the modeling study by Myriokefalitakis et al. (2011), anthropogenic hydrocarbons 

contribute by about 21% to the global oxalate chemical production. Alkenes (ethene and 

propene), acetylene and aromatics (benzene, toluene and xylene) contribute 3%, 10% and 8%, 

respectively to global oxalate production. The formation pathway of oxalate by 

anthropogenic hydrocarbons is through glyoxal, glycolaldehyde and methylglyoxal 

intermediates. 

 

The oxidation of biogenic volatile organic compound is responsible for 79% of the global 

oxalate chemical production (Myriokefalitakis et al., 2011). Isoprene is the major organic 

compound emitted by plants and trees (Taalman, 1996; Borbon et al., 2001). Global emission 

of isoprene estimated at 175 billion to 503 billion kilograms per annum (386 billion to 1,109 

billion pounds) and account for an estimated 57% of total emission of natural volatile organic 

compounds (NTP, 2011). It has been shown that intermediate products from the oxidation of 
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isoprene i.e. glyoxal, glycolaldehyde and methylglyoxal can be transformed into oxalic acid 

(Lim et al., 2005; Ervens et al., 2004). This pathway could contribute to about 70% (∼ 22 Tg 

yr-1) to the global oxalate production (Myriokefalitakis et al., 2011).  

 

 

Figure 1.2  Possible photochemical production of oxalic (C2), malonic (C3), succinic (C4) and 

azelaic (C4) acids in the atmosphere (source: Kawamura et al., 1996) 

 

1.4.3 Concentration of atmospheric oxalate 

 

The concentrations of oxalate range from several ng m-3 up to a thousand ng m-3 (or a few 

tens of pmol m-3 to a few tens of nmol m-3) depending on location. Table 1.6 lists the 

published oxalic/oxalate concentrations in ambient air by locations, sampling types and time. 

Among the different types of atmospheric pollutants, oxalic acid which is a major 

dicarboxylic acids has been a target of interest in the chemical characterization of the 

atmosphere. Aerosols samples in many research works were collected at the sampling 

location across a wide range of ambient environments, from coastal to rural to urban. The 

oxalate concentrations changed in different atmosphere because of their possible sources 

associated with anthropogenic and biogenic emissions, their temporal and geographical 

variability and the several mechanisms for their productions. 
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Table 1.6  Literature data of oxalic acid (oxalate) in the aerosol samples 

Sampling site Site type Date Concentration of 
oxalic acid (oxalate) 
(ng m-3) 

Reference 

Japan Urban April 1988 – 
February 1989 
 

279 ± 190 Kawamura and 
Ikushima, 1993 

New York Semiurban October 1991 
 

58 – 360 Khwaja, 1995 

Hungary  September 1995 – 
February 1996 
 

130.9 Kiss et al., 1997 

Brazil Urban July 1996 
 

1140 ± 1200 Souza et al., 1999 

Northwest 
Pacific Ocean 

Marine December 1994 – 
January 1997 
 

89.4 Matsumoto et al., 
1998 

Sonnblick Continental 
background  
 

May 1997 153 Limbeck and 
Puxbaum, 1999 

South Africa Savanna May 1997 193 Limbeck and 
Puxbaum, 1999 
 

Las Vegas Urban April – June 1997 
 

0 – 800 Tran et al., 2000 

Vienna Urban June 1997 340 Limbeck and 
Puxbaum, 1999 
 

Italy Urban May – December 
1997 
 

19 Cecinato et al., 1999 

South Africa Rural background October 1997 – 
February 1998 
 

14.8 – 179.5 Limbeck et al., 2001 

California Marine June 1999 
 

(8 – 59) Hegg et al., 2002 

Germany One coastal rural, 
two rural, two 
urban 
 

February 1998 – 
August 1999 

16 – 637 Rohrl and Lammel, 
2001 

Brazil Rainforest September – 
October 1999 
 

329 – 619 Graham et al., 2002 

China Urban 1999 – 2000 
 

(300 – 500)  Yao et al., 2002a 

Alert Arctic Feb – May 2000 
 

13.2 – 40.9 Narukawa et al., 
2002 

Hong Kong Urban June 2000 – May 
2001 
 

350 Yao et al., 2002b 

Nanjing Urban February – May 
2001 
 

178 – 1423 Wang et al., 2002 

Nanjing Urban, suburban February – 
September 2001 
 

(220 – 299) Yang et al., 2005 

Chicago Urban and lake 
shore 
 

July – August 2002 (186 ± 81) Fosco and 
Schmeling, 2007 
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Table 1.6  (continued) 
Sampling site Site type Date Concentration of 

oxalic acid (oxalate) 
(ng m-3) 

Reference 

Brazil Amazonia September - 
November 2002 
 

22 – 1340 Falkovich et al., 2004 

Chicago Urban and lake 
shore 
 

June – July 2003 (193 ± 86) Fosco and 
Schmeling, 2007 

Beijing, China Three urban, one 
rural 
 

March 2002 – 
October 2003 

(353 ± 259  - 377 ± 
320) 

Wang et al., 2007 

Beijing Three urban, one 
rural 
 

2001 – 2003 (350) Wang et al., 2005 

Singapore n.a. May 2004 32.7 - 34.2 
(361.4 – 481.4) 
 

Yang and Yu, 2008 

Chicago Urban and lake 
shore 

June – August 
2004 
 

(99 ± 44) Fosco and 
Schmeling, 2007 

Shenzhen, 
China 

Coastal urban July 2004 – 
January 2005 
 

(47 ± 28 – 220 ± 
140)  

Huang et al., 2006 

Indonesia Urban, semirural, 
rural 
 

March 2005 (1300 ± 500 – 2900 
± 170) 

See et al.,2007 

Mexico Urban March 2006 
 

1330 ± 620 Stone et al., 2010 

Baoji, China Urban February 2008 
 

816 ± 172 Wang et al., 2010 

Baoji, China Urban April 2008 
 

532 ± 247 Wang et al., 2010 

Helsinki, Finland Urban April –May 2006 
 

(91 ± 110) Saarnio et al., 2010 

Helsinki, Finland Urban July and 
September 2006 
 

(50 ± 37) Saarnio et al., 2010 

Chennai, India Urban January 2007 
 

472.4 ± 136.9 Pavuluri et al., 2010 

New Delhi, India Urban November 2006 – 
February 2007 
 

1431 Miyazaki et al., 2009 

Mt. Rax, Austria Urban 
background 

April 1999 
 

52 Limbeck et al., 2005 

Mangsham, 
China 

Rural September – 
October 2007 
 

607 - 806 He and Kawamura, 
2010 

Jesu Island, 
Korea 

Marine April 2003 – April 
2004 
 

458 Kundu et al., 2010 

Hyytiala, Finland Rural 2001 – 2005 
 

(91 – 204) Niemi et al., 2009 

Lahore, Pakistan Urban December 2005 – 
February 2006 
 

(970 ± 400) Biswas et al., 2008 

PRD, China Urban 
Semi-rural 
Urban/roadside 
Rural 

December 2006 – 
January 2007; 
July – August 2007 

199 
261 
278 
274 

Ho et al., 2011 
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Table 1.6  (continued) 
Sampling site Site type Date Concentration of 

oxalic acid (oxalate) 
(ng m-3) 

Reference 

Lasi, Romania Urban 
background 

January 2007 – 
March 2008 
 

(35 – 109) Arsene et al., 2011 

Mountain Tai, 
China 

Mountain March – June 
2006; March – May 
2007 

(100 – 480) Deng et al., 2010 

 

 

1.4.4 The studies of the sources and production of atmospheric oxalate  

 

1.4.4.1 Sampling and extraction methods 

 

In general, airborne particulate matters could be collected on Teflon membrane, quartz fiber 

filters and aluminium foils to characterise the chemical composition and the particle sizes.  

All the quartz filters were baked at a minimum of 500 oC for a period of time before sampling 

to reduce organic residues. Filter samplers include high-volume or low-volume dichotomous 

samplers which utilize a virtual impactor. The high-volume samplers are commonly used to 

collect particles with aerodynamic diameters less than 10 µm (PM10) at flow rate of 1.1 to 1.4 

m3 min-1. The low-volume dichotomous sampler separates particle into fine PM2.5 and coarse 

(PM2.5 – PM10) size fractions at flow rate of approximately 16.7 L min-1. Size distribution 

measurements were made using a cascade impactor (e.g. a Micro-Orifice Uniform Deposit 

Impactor). This sampler operates several impactors in series, arranged in order of decreasing 

cutoff size with the largest cutoff size first. In its operation, each stage is assumed to capture 

all particles reaching it that are larger than its cut off size. Because the aerosol flows in 

sequence through successive stages, the particles captured on the impaction plate of a given 

stage represent all particles smaller than the cutoff size of the previous stage and larger than 

the cutoff size of the given stage. The sequential separation divides the entire distribution of 

particles into a series of contiguous groups according to their aerodynamic diameters.  

 

DCAs collected onto filters are polar compounds. The low molecular weight DCAs are 

miscible with water, so water extraction technique is the commonly used for extraction of 

aerosol samples. Ultrasonication was frequently employed during extraction for the filter-

collected acids. Other extraction methods reported, especially for gas chromatography 

determination of DCAs in particulate matter, are sequential extraction by the Soxhlet 
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technique or shaking with organic solvents. This procedure utilized evaporation of organic 

solvent resulting in preconcentration of trace organic acids before analysis. 

 

1.4.4.2 Analytical methods 

 

Much of the research work used the ion chromatography technique to determine the ionic 

concentrations of the aqueous extracted air samples (Zlotorzynska and McGrath, 2000). It has 

been shown that ion chromatography continues to be a reliable and effective method for ionic 

species identification. This technique is very attractive for the monitoring of atmospheric 

pollution because it shows the good separation of many similar species, the provision of 

reliable information on the presence or absence of a wide variety of ions including its 

versatility and high sensitivity. Ion chromatography typically does not require extensive 

sample preparation and is an effective method for the separation of low-molecular-weight 

carboxylic acids, so why a number of research workers have performed this in their study. 

 

Kawamura et al. (2010) studied for the intercomparison of the measurements of oxalate in 

aerosol samples by gas chromatography (GC) and ion chromatography (IC). The air samples 

were collected by a high volume virtual impactor sampler and extracted to be analysed 

following the reference methods. Practically, this bifunctional species has been analysed by 

GC after derivatization to butyl ester and by IC without derivatization. The results indicate 

that oxalate concentrations obtained by GC method and IC technique were consistent and the 

two data sets could be used for the comparison of the concentrations. It should be noted that 

the recovery of oxalic acid measurements would be reported, especially by the GC method in 

order to obtain the best and reliable results. 

 

1.4.4.3 Seasonal variation of oxalate 

 

Kerminen et al. (2000) investigated the chemistry of low molecular weight dicarboxylic acids 

at urban and rural conditions and at a site intermediate between these two in Finland. The 

behavior of fine-particle (< 2.3 µm) oxalate, malonate and succinate had a clear winter 

minimum, with especially low for malonate. Concentrations of malonate and succinate were 

of similar magnitude over most of the time and roughly ten times lower than that of oxalate. 

Both oxalate and malonate display high concentrations during the spring and autumn. The 

ratio of malonate to oxalate is relatively stable outside the winter period, being suggestive of 
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similarities in their sources and/or atmospheric formation processes. On the contrary, Wang 

et al. (2007) indicate that the concentration of oxalic acid shown higher concentration at 

traffic urban site in the winter season (spring, winter>summer, autumn). This variation 

implied that road transportation might be the significant sources of oxalic acid in the urban 

environment, however the traffic emissions could be constant all the year round, the seasonal 

variation might be related to other emission sources and the meteorological conditions. For 

example, at Beijing in winter, the high value of oxalic acid in atmosphere suggested that coal 

burning for heating might be a major source of particulate oxalate. A weak source of coal 

burning or rainy season during summer and autumn contribute low levels of oxalate causing 

from the efficient scavenging of soluble aerosol species. Moreover, summer and autumn are 

also the favorable seasons for atmospheric diffusion and pollutant dispersion. The data from 

industrial and residential sites do not show the seasonal variation of oxalic acid. 

 

1.4.4.4 Spatial variation of oxalate 

 

Observations of oxalic acid in motor exhaust have been found so that the speculations of 

direct emission from combustion could be sources of it in urban areas, which are exposed to 

traffic (Kawamura and Kaplan, 1987). The concentrations of oxalate were clearly higher at 

the urban site compared to the rural site. The concentrations of oxalate and malonate were 

roughly 1.3 – 1.6 times higher at urban site compared to rural site (Kerminen et al., 2000). 

This result supports the significant role of local traffic as a source of oxalate in urban 

conditions. Kerminen et al. (2000) indicate that both oxalate and malonate mostly produced 

via photochemical reactions in the atmosphere but their nature in local traffic emissions is 

quite difficult to estimate based on their data. Furthermore, Yao et al. (2002) studied the 

concentrations of dicarboxylic acids in PM2.5 in Hong Kong. The aerosol samples were 

collected from Tsim Sha Tsui (TST) East in Kowloon. TST is a commercial area with many 

high-rise commercial buildings and many restaurants at the street level. The sampling site 

was located around 40m from a heavily trafficked road. The gas–phase oxalate 

concentrations were found more than twice the concentrations of the field blanks and were 

about 6 - 12% of the total oxalate found in the samples. Overall, oxalate principally 

partitioned in the particulate phase. The oxalate concentration (0.35 µg.m-3) was large than 

the malonate (0.09 µg.m-3) and succinate (0.05 µg.m-3) concentration. In their study, the sum 

of the concentration of these three dicarboxylic acids (oxalate, malonate and succinate) was 

4-7% of the sulphate concentration in PM2.5. The spatial variation also investigated in the 
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measurement by Wang et al. (2007). The results indicate that the concentration of oxalic acid 

shown higher concentration at traffic urban in the winter. It seems the traffic activities might 

be the major source of oxalic acid in the urban area. The study of correlation coefficients of 

oxalic acid between different sites was evaluated and the result shown that oxalic acid has 

also regional sources in the urban scale. In addition to those data, oxalate only shown strong 

correlation with NO2, which is a traffic source indicator, so motor exhaust hydrocarbon 

emissions might be its major source. 

 

On the other hand, Yu et al. (2005) reported that among some of the measurement made in 

Hong Kong which the aerosol samples were collected at three locations at the same time 

throughout a year. Two of the locations, one in a rural environment and the other in a 

roadside environment with heavy vehicular traffic, were contrasting in relation to influence 

from vehicular emissions; however, the levels of oxalic acids were similar at the two 

locations in all four seasons. This data and that of Yao et al. (2004) data clearly indicate that 

vehicular emissions contribute little to ambient oxalic acid. The weak correlations between 

oxalate and elemental carbon, a tracer for primary emissions from incomplete combustion, 

provided additional supporting evidence for this. Yu et al. (2005) also mention that oxalic 

acid was at or near the end of many oxidation chains of hydrocarbon compounds. The most 

immediate precursors were conceivably C2 difunctional compounds such as glyoxylic acid, 

glycolic acid, glycoaldehyde and glyoxal. Among them, glyoxal had the most abundant gas-

phase source. Model calculation of an urban scenario was able to generate an oxalate 

concentration of 180 ng. m-3 from in-cloud oxidation of glyoxal derived from a gas-phase 

concentration of 0.1 ppbv of glyoxal. This level of oxalate was of the same order of 

magnitude found in aerosol samples from field measurements made in polluted environments. 

This demonstrates that in-cloud formation pathways were capable of producing a significant 

portion of observed oxalate concentrations in urban environments. 

 

In marine atmosphere, Warneck (2003) presented a chemical mechanism that offered a 

natural route to the production of oxalic acid in marine clouds. The formation pathways 

leading to oxalic acid in atmosphere were from acetylene proceeding via glyoxal as 

intermediate and from ethene proceeding via glycolaldehyde intermediate. 
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1.4.4.5 Size distributions of oxalate 

 

The size distribution of aerosols is modified in the atmosphere by the processes of new 

particle formation (gas-to-particle conversion and photochemical reactions), growth 

(coagulation and condensation), evaporation and removal (diffusion, settling, impaction, 

washout and rainout). The knowledge of the size distributions provides important information 

about their sources, formation and growth mechanism. Size distribution data of dicarboxylic 

acids are also useful understanding of their potential contributions to CCN. The typical 

modes in the mass size distributions of ambient aerosols include nuclei, accumulation and 

coarse modes (Hinds, 1999). The nuclei mode consists of gases and vapors emitted directly 

into atmosphere and particles produced in the atmosphere by gas-to-particle conversion. This 

mode is usually found near the sources because of their high number concentration. These 

particles coagulate rapidly with each other and in particular with the accumulation mode 

particles. Nuclei particles may provide as site for the formation of cloud droplet and may be 

removed from the atmosphere as rain droplet. The accumulation mode comprises combustion 

particles, smog particles and nuclei-mode particles that have coagulated with accumulation-

mode particles. The nuclei and accumulation modes together constitute fine particles. The 

accumulation mode may have two submodes: a condensation mode with the mass median 

aerodynamic diameters (MMAD) of 0.2 – 0.3 µm and a droplet mode with MMAD of 0.5 – 

0.8 µm. The droplets are formed by the growth of hygroscopic condensation-mode particles. 

Coarse particles included sea salts or particles generated through abrasion mechanisms (e.g. 

dust from the wind-driven erosion of soils or released plant fragments). The separation of 

particle size between coarse and fine particles is the point between 1 and 3 µm. Each mode 

has different chemical composition, source, size range and formation mechanism. 

 

The size distributions of oxalate were dominated by the large droplet mode while the 

condensation mode and the coarse mode were both small. The droplet mode oxalate and 

sulphate were found to be highly correlated (Huang et al., 2006). In this study, the sample 

collected at coastal city in southern China and size distribution measured in the range of 

0.056 – 18 µm. The diameter of 1.8 µm was used at the split size between fine and coarse 

particles. The results shown the three modes as resolved by positive matrix factorization 

(PMF) with the mass medium aerodynamic diameters (MMAD) at 0.4, 1.0 and 5.5 µm 

corresponding to the condensation, droplet and coarse modes, respectively. Oxalate had a 

dominant droplet mode, a minor condensation mode, and a minor coarse mode. The 
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contribution of individual identified sources to oxalate was examined in the size bin of 1.0 – 

1.8 µm. The results found that in-cloud processing had a dominant contribution of 79% in the 

summer and 73% in the winter. In general, the condensation mode at 0.2 ± 0.1 µm is 

attributed to gas-particle condensation and the droplet mode at 0.7 ± 0.2 µm is attributed to 

in-cloud processes including cloud droplet activation, physical transferring and chemical 

transformation in cloud droplets and evaporation of cloud droplets (Yao et al., 2003). Oxalate 

was dominant in the fine mode with MMAD of 0.7 ± 0.1 µm so it is possibly a droplet mode 

formed by in-cloud processes. Moreover, in the 0.54 – 1.0 µm particles, oxalate was highly 

correlated with sulphate with a correlation coefficient of 0.99 similar to the study of Huang et 

al. (2006). Since sulphate in the droplet mode has been attributed to in-cloud processes, 

oxalate in the droplet mode can also be produced by similar processes. Yao et al. (2002) 

found that the condensation mode of oxalate was usually observed at 0.177 – 0.32 µm. The 

droplet mode of oxalate was slightly shift from 0.32 – 0.54 to 0.54 – 1.0 µm and from 0.54 – 

1.0 to 1.0 – 1.8 µm, suggesting that the minor oxalate evaporation after in-cloud formation 

could be considered. Yao et al. (2002) also conclude that in-cloud processes were the 

principal pathways to form dicarboxlic acids including oxalate in aerosol particles and 

sometimes result in shifting the oxalate peak to slightly larger particles due to oxalate 

evaporation after in-cloud formation. The more explanation about this behaviour is that 

oxalate form in particulate phase is stable during the cloud evaporation stage and remains in 

the aerosol phase. Species like nitrate or chloride that may have existed as ammonium salt 

particles can be displaced by the oxalate produced and forced them to return to the gas phase. 

The result of these aqueous-phase processes usually causes an overall increase in particle 

mass and size (Seinfeld and Pandis, 1998). 

 

Kerminen et al. (2000) state that oxalate size distributions displayed a dominant in 

accumulation mode and the minor two supermicron modes. As the presence of oxalate peak 

in coarse mode (two supermicron modes), oxalate was associated with sea-salt and crustal 

particles. Sodium had typically a single coarse mode peaking between 2 and 3 µm and non-

sea-salt calcium, a tracer for crustal material, peaked between 3 and 10 µm. The larger mean 

size of non-sea-salt calcium compared with sodium was indicative of more local sources for 

crustal particles compared with sea-salt. Contribution of sea-salt to oxalate particle was 

supported by the reasonably good correlation between the sodium to non-sea-salt calcium 

ratio and the relative magnitude of oxalate in two coarse modes. The mean diameter of 
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oxalate in the lower supermicron mode was usually smaller than that of sodium, indicating a 

surface reaction of gaseous oxalic acid or its precursor with sea-salt particles. 

 

1.4.4.6 Correlation studies of oxalate to identify primary and secondary sources 

 

Sources of oxalic acid in atmosphere associated with anthropogenic and biogenic emissions 

and several photochemical reactions. A number of research works have studied the possible 

sources and formation mechanism of oxalic acid in the aerosol by correlation analysis 

between oxalic acid and several source indicators including within their category (low-

molecular weight dicarboxylic acids). These source indicators are selected in some 

measurements such as Al and Ca2+ for crustal material, K+ for biomass burning, Cl- for waste 

or coal burning, NO2 for traffic emission, SO4
2- and methanesulfonate (MSA) for secondary 

formation of different mechanism (Wang et al., 2007; Yao et al.,2004; Yu et al.,2005; 

Yamasoe et al., 2000). Kerminen et al. (2000) found that the ratio of malonate to oxalate was 

relatively stable outside the winter period and the correlation between the oxalate and 

malonate was high at both rural (R2 = 0.63) and urban site (R2 = 0.75), being suggestive of 

similarities in their sources and/or atmospheric formation processes. Correlation of succinate 

with oxalate (R2 = 0.67) and malonate (R2 = 0.80) was high at urban environment but not so 

at rural environment. At urban site, Yao et al. (2002) also reported on the moderate 

correlations between succinate and malonate (R2 = 0.78) and between malonate and oxalate 

(R2 = 0.78). This result suggests that malonate was an intermediate in the transformation of 

succinate to oxalate which is stated by Kawamura et al. (1996). Furthermore, relationships 

study of low molecular weight dicarboxylic acid between sulphate and oxalate, sulphate and 

malonate and sulphate and succinate showed the correlation coefficients of R2 = 0.73, R2 = 

0.85 and R2 = 0.88, respectively. Yao et al. (2003) studied the size distribution and formation 

of oxalate in the summer in Beijing representing an urban area. The results found that in the 

fine particle samples (0.54 – 1.0 µm), oxalate was highly correlated with sulphate with a 

correlation coefficient of 0.99, suggesting that oxalate and sulphate originated from similar 

atmospheric processes.  

 

The researches on sulphate and oxalate collected across a wide geographical span in the East 

Asia region up to Beijing in the north and down to Hong Kong in the south, indicate that the 

two species were highly correlated among samples (Yu et al., 2005). Sulphate and oxalate 

concentrations at each location or at multiple locations in the same region showed good 
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correlation with the correlation coefficients from R2 = 0.69 to R2 = 0.95. To estimate the 

production of oxalate in atmosphere, the production rate of sulphate can be used as the model 

because of the good correlation between their species. The production rate of sulphate from 

the in-cloud processes can be demonstrated as the equation below 

 

    [ ][ ]22
SOOkfkP x

H
SOcloudsulphate=     (Equation 1.1) 

 

Where f is the frequency of cloud events, kcloud  is the rate constant of SO2 oxidation, H
SOk

2
 is 

the Henry’s law constant of SO2, [ ]xO  is the oxidant concentration in the cloud that is 

responsible for  oxidation of aqueous S(IV) into sulphate,[ ]2SO  is the gaseous SO2 

concentration 

 

Then, the production rate of oxalate via in-cloud mechanisms can be approximated as 

 

    [ ][ ]XOkfkP X
H
Xcloudoxalate

''=     (Equation 1.2) 

 

Where f is the frequency of cloud events, k’cloud  is the oxidation rate constant leading to 

oxalate formation, H
Xk  is the Henry’s law constant of precursor X, [ ]'

XO  is the oxidant 

concentration in the cloud that is responsible for oxidation of X to oxalate, [ ]X  is the gaseous 

concentration of precursor X 

 

Sulphate and MSA have been used as reference to investigate the major formation pathways 

of dicarboxylic acids (Huang et al., 2005; Yuan et al., 2004). Since sulphate has been well 

understood that its formation pathway is the most effective and predominant by in-cloud 

processes, and MSA is generally believed to be produced via gas-phase oxidation of 

dimethylsulfide (DMS) by OH and NO3 radicals, followed by condensation on particles 

(Kerminen et al., 1997). Previous studies shown that in-cloud and heterogeneous formation 

can yield a good correlation between sulphate and oxalate, whilst gas-phase oxidation 

followed by gas-particle condensation can observe a high correlation between MSA and 

oxalate in atmosphere. For example, Huang et al. (2006) reported the high correlation of 

droplet mode oxalate and sulphate (R2 = 0.92), a strong indication of a common in-cloud 

formation mechanism. On the contrary, in Beijing, Wang et al. (2007) indicate that oxalate 
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was found moderate correlation with MSA but weak correlation with sulphate, suggesting 

that gas-phase formation is important for the formation of oxalic acid in atmosphere. This 

result was in total disagreement with the studies of Yao et al. (2003), Yu et al. (2005) and 

Huang et al. (2006). 

 

Ammonium in general also had a similar positive correlation with oxalate. It is know that 

ammonium tracks sulphate since it is mainly produced by the reaction between gaseous NH3 

and acidic sulphate particles. Consequently, the positive correlation between ammonium and 

oxalate is linked with that between sulphate and oxalate. This correlation coefficient between 

ammonium and oxalate reported in the measurement of aerosol samples by Yu et al. (2005) 

with R2 from 0.44 to 0.91.  

 

Primary emissions of oxalic acid from biomass burning were analysed by the correlation 

analysis of oxalate with K+. To study the contribution of biomass burning, the ratio of 

carboxylic acid CA to K+ (CA/ K+) indicated the different sources between biomass burning 

and other sources of CA (Wang et al., 2007). The calculation of contribution of the biomass 

burning to CA is detailed in Wang et al. (2007). In Beijing, the biomass burning contributed 

about 30 – 60% to formic and oxalic acid. The seasonal variation of the contribution followed 

the order of autumn > summer > winter, which was consistent with the land farming activities. 

The contribution of biomass burning was higher in PM10 than in PM2.5, suggesting that coarse 

CAs were more from this primary source. The correlation coefficients (R2) between oxalate 

and K+ were 0.77 – 0.91 and 0.71 – 0.86 for PM10 and PM2.5, respectively. Huang et al. (2006) 

reported that oxalate shown approximately the same moderate correlation with K+ (R2 = 0.75) 

as that between sulphate and K+ (R2 = 0.74). The significant relationship between the droplet 

oxalate and K+ was from biomass burning particles acting as effective CCN to promote in-

cloud sulphate and oxalate production. For the condensation mode of oxalate, it was found 

that biomass burning unlikely appear to be a significant primary source, as its poor 

correlation with the condensation mode K+ (R2 = 0.10). Huang et al. (2006) concluded that 

oxalate in condensation mode was mainly produced by photochemical processes in the gas 

phase after that it was condensed onto existing particles in the condensation mode. On the 

contrary, in the study of biomass burning, the result of Yao et al., (2003) shown poor 

correlation between oxalate and K+ (R2 = 0.58), therefore, primary biomass burning was not a 

major source of the oxalate in atmosphere.  
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The other research works try to determine the correlation between oxalate with other 

important source indicators. For example, Yao et al. (2003) also mentioned that their previous 

work on the measurement of oxalate and organic carbon (OC) showing low correlation 

coefficient (R2 < 0.1) in PM2.5 in Beijing, so non-cloud heterogeneous reactions of particulate 

organic carbon were not a major process for the formation of oxalate. Yu et al. (2005) states 

that oxalate had poor correlations with elemental carbon (EC), a tracer for primary emissions 

from incomplete combustion of fuels in transportation, heating, power generation, and wood 

in residential heating, and agriculture. Sulphate also had poor correlations with EC, which 

was anticipated as a result of their different production sources. Moreover, sources of 

dicarboxylic acids can be identified by correlation study of the ubiquitous monocarboxylic 

acids, acetic and formic acid, in the ambient air. Wang et al. (2007) determined the ratio of 

acetic to formic acid (A/F) in or order to investigate CA sources. In that study, acetic acid 

was mainly from primary emissions, whilst formic acid was largely from secondary 

formation. Therefore, the high A/F ratio indicate the important of direct emission and low 

A/R ratio imply the photochemical processes accounting for CA in ambient air. Wang et al. 

(2007) have proved that A/F ratio was a suitable indicator to study the relative contribution of 

primary and secondary sources to CA. It shows significant difference between primary (A/F > 

1) and secondary (A/F < 1) sources. The annual average A/F ratio was 0.71 in PM2.5 in 

Beijing indicating that secondary formation was the dominant source of dicarboxylic acids in 

urban environments. The relationship of oxalic acids in PM2.5 with those in PM10 was also 

investigated by Wang et al. (2007). It can be seen that the concentration of oxalic acid in 

PM2.5 shown strong correlations with those in PM10. The results indicate that oxalic acid 

mainly presented in the fine mode with the linear regression equations as PM2.5 = 0.767 × 

PM10 in summer and PM2.5 = 0.869 × PM10 in winter. 

 

With regard to oxalate in coarse fraction, Huang et al. (2006) indicate that oxalate in coarse 

particle shown a moderate correlation with the coarse mode Ca2+ (R2 = 0.56) and Na+ (R2 = 

0.37), suggesting an association with soil particles and sea salt particles. The correlation 

coefficient between the coarse mode NO3
- and oxalate found a high value (R2 = 0.68), 

supporting the suggestion of coarse oxalate producing from adsorption by coarse particles. 

This is because oxalic acid and other acidic species in the gas phase could be adsorbed onto 

alkaline coarse particles similar to the formation pathway of NO3
- in coarse mode (Mochida 

et al., 2003). 
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1.4.4.7 Conclusions of oxalate in ambient air from literature data 

 

� Oxalic acid is typically the single most abundant DCA in aerosols in both rural 

and urban environments. Its concentration ranges from several ng m-3 up to a 

thousand ng m-3 depending on location. 

� Ion chromatography is the main analytical technique in the analysis of oxalic acid 

in atmospheric aerosol. This technique shows the good separation of low 

molecular weight carboxylic acid and typically does not require extensive sample 

preparation. The measurement results obtained from IC technique were consistent 

with those from GC method. 

� To date, a limited number of studies have investigated the seasonal variations of 

oxalic acid in the atmosphere and some results showed the different patterns. For 

example, in Bejing representing the urban condition, the concentration of oxalic 

acid shown higher in winter but in Finland at urban condition, it clearly had a 

winter minimum. 

� Concentration level of oxalate was clearly higher at urban site compared to rural 

site. The estimation of photochemical reactions in causing elevated oxalate 

concentration in local traffic emission is quite difficult to demonstrate clearly and 

needs more experimental data. 

� Size distribution data of oxalate in aerosol provide important data about its 

sources and formation pathway. Oxalate was dominantly in size distributions by 

the large droplet mode while the condensation mode and the coarse mode were 

both small. Oxalate was highly correlated with sulphate in many research works. 

Since sulphate in the droplet mode has been attributed to in-cloud processes, 

oxalate in the droplet mode can also be formed by similar processes. 

� The correlation study between oxalic acid in aerosol and source indicators can be 

used to identify the possible sources and formation mechanism of oxalic acid. 

� Due to the lack and uncertain information on sources and formation pathway of 

oxalate in aerosol, the comprehensive study on the measurement and source 

apportionment of airborne particulate matter to better understanding and accurate 

measurement of oxalate component is very interesting. 
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1.5 Objectives of this study 

 

The purpose of this thesis is to study the properties of airborne particulate matter in the UK 

atmosphere both physical and chemical properties. The specific objectives are shown as the 

following; 

 

� To analyse the major chemical components of airborne particulate matter both 

fine (PM2.5) and coarse (PM2.5-10) fractions at selected locations (EROS 

representing urban background site and Harwell representing rural site). The 

aerosol samplers and chemical measurement methods are shown in Chapter 2. 

� To quantify the carbonaceous material in particulate matter including identify 

their sources by the relationship studies between carbonaceous material with 

major chemical composition (Chapter 3). 

� To measure the ionic components in airborne particulate matter and examine their 

sources affecting concentrations via the relationship studies of interested species 

both inter- and intra-site concentrations (Chapter 4). 

� To estimate the local contribution of air pollution by comparison the concentration 

difference between both sites when aerosol samples taken simultaneously 

(Chapter 3 – 4). 

� To determine the air mass trajectories of major aerosol species in particulate 

matter in order to investigate their sources by long-range transport (Chapter 5). 

� To study the mass size distributions of major aerosol species in particulate matter 

in order to better understanding their formation pathways (Chapter 6). 

� To examine whether ammonia would stabilise the semi-volatile species in 

atmospheric aerosol by experiment designed with direct comparison between the 

air sampling under ammonia gas atmosphere and normal conditions (Chapter 6). 

� To focus on the particulate oxalate in the UK atmosphere not only concentrations 

in ambient air but also its sources and formation mechanisms (Chapter 4 – 6). 
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CHAPTER 2 

AEROSOL SAMPLING DEVICES AND ANALYTICAL 
METHODOLOGY 

 

2.1 Synopsis 

 

The principles of aerosol collection devices used in this study are shown in this chapter 

including sampling method, filter extraction and chemical analysis of aerosol samples. The 

quality control (QC) and quality assurance (QA) procedures are also described in the 

experiment to achieve an accurate and reliable measurement results. In addition, a brief 

summary of data and statistical analysis is given at the end of the chapter. 

 

2.2 Aerosol sampling devices 

 

In this work, the low-volume Partisol Plus samplers and the cascade impactors were 

employed in order to collect airborne particulate matter for bulk chemical analysis. Bulk 

chemical composition refers to the relative abundance of the major chemical components in 

aerosol samples (Harrison and Yin, 2000). 

 

2.2.1 Partisol Plus air samplers 

 

The Partisol Plus Model 2025 Sequential Air Sampler combined the unit of automatic filter 

exchange capabilities with well-established dichotomous splitting methodology developed by 

the US EPA. The system contained two supply and two storage magazines, each with a 

capacity of up to 16 filter cassettes, as well as a filter exchange mechanism that replaced two 

filter cassettes at the same time. The Partisol fitted with PM10 inlet and can separate particles 

into fine (PM2.5) and coarse (PM2.5-10) size fractions at a flow rate of 16.7 l min-1 (Figure 2.1). 

The device maintained the fine and coarse particle stream by the separated flow controllers at 

15.0 and 1.7 l min-1, respectively. It is important to maintain a constant flow rate during the 

sampling period so precise flow control is essential to its operation. The particle size 

discrimination characterietics of both the inlet and the virtual impactor depend critically on 

specified air velocities. A change in velocity will result in a change in the nominal particle 

size collected. The air stream containing PM10 is forced into the virtual impactor where the 

air flow is split. Most or the fine particles make a sharp turn to follow the higher velocity 
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flow stream and pass onto the fine filter whilst the coarse particles are collected onto the 

coarse filter. Electronic flow controllers maintain their calibrated settings well, but must be 

occasionally checked for dust build-up on the sensor that would change heat transfer 

characteristics. Furthermore, accurate air flow is needed because the mass concentration of 

atmospheric particles is computed as mass of component species divided by the actual 

volume of air samples. In this study, Partisol is regularly sent to company for the calibration 

of the system and for maintaining the consistent operation of the hardware. The routine check 

for air flow in order to verify the calibration of the Partisol is performed using the sampler’s 

Audit screen, which is accessed via the Service Mode when the sampler is in the Stop Mode. 

The current flow should be read within ±5% of set flow. The coarse particle sample was 

corrected for the collection of fine particles in the carrier flow. Because a small proportion of 

the fine particles are collected on coarse particle filter. The calculation of coarse PM is 

achieved by the correction of fine particles in the carrier flow using the formula, Cc = Mc/Vt – 

Vc/Vt.Cf (where Cc is the mass concentration of the coarse particle fraction, Mc is the mass 

collection on coarse particle fraction filter, Vc and Vt are the volumes of air samples through 

the coarse fraction filters and the sum of coarse and fine fraction filters, respectively, and Cf 

is the mass concentration of the fine particle fraction). The system collected particulate matter 

onto 47 mm diameter filters. The quartz fibre filters, Whatman Grade QM-A Circles, were 

used in this study. All the quartz filters were baked for 4 h at 500 oC before sampling to 

reduce organic residues (Harrison et al., 2003). 
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Figure 2.1 The Partisol Plus Model 2025 Sequential air sampler and operating diagram 

 

2.2.2 Micro-Orifice Uniform-Deposit Impactors (MOUDI) 

 

In the study of mass size distribution and form of chemical components, 10-stage micro-

orifice uniform-deposit impactors (MOUDI) were employed in order to collect the various 

size fractions of particulate matter. Basically, the MOUDI is designed such that as the aerosol 

stream flows through each stage, particles having sufficient inertia will deposit on that 

particular stage collection plate, whilst smaller particles with insufficient inertia will associate 

with the stream lines and pass to the next collection stage. The stages are assembled in a stack 

in order of reducing particle size until the smallest particles are collected at an after filter. 

Total nozzle area decreases with increasing stage number, so providing that the volumetric 

flow rate remains constant, the air velocity increases at each stage. Significant variation in the 

air flow rate leads to incorrect particle size measurement. The cascade impactors give 

basically well-defined stage cut-off diameters, which are the aerodynamic diameter of 

particles that accumulate on any given collection surface, at given inlet air flow rates. The 

impactor plates in this model were able to rotate for spreading out the particle deposit 

uniformly over the stage. This minimised particle build up under each nozzle and reduced 

possible particle blow off by the jets. The calibrated cut-points (d50 –values) at 30 l min-1 for 
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the inlet and 10 stages of the MOUDI were 18, 9.9, 6.2, 3.1, 1.8, 1, 0.55, 0.325, 0.175, 0.099 

and 0.054 µm. Aluminium foil and Teflon filters (1 µm pore size PTFE) with 47 mm 

diameter were used as the collection substrates in the impaction stages. The MOUDI was 

equipped with a back-up filter stage, which contained 37 mm diameter filter. The quartz fibre 

filters, Whatman Grade QM-A Circles, were used in this stage. In this experiment, the back-

up filter stage collected the particulate matter smaller than 0.175 µm. 

 

The system was designed for the injection of ammonia gas into aerosol stream during the 

sampling as shown in Figure 2.2. The ammonia gas cylinder with concentration of 50 ppm 

(NH3 in synthetic air) was supplied by Teflon tube and connected to the MOUDI inlet. The 

gas flow controller was used to adjust and control the flow rate of ammonia gas to the desire 

value based on the total air flow rate of the MOUDI. Calibrated rotameters were used to 

measure the air and ammonia gas flow rate before starting and at the end of air sampling. The 

inline filter which contained Teflon filter (1 µm) was connected between the gas flow 

controller and the MOUDI inlet to minimise the impurities of ammonia gas. To ensure that 

the ammonia is reasonably well mixed with the air coming into the MOUDI, the flow 

Reynolds number, a dimensionless number, that characterised gas flow through a pipe was 

also calculated as shown in Appendix B. 

 

Even though concentration of ammonia gas nearby the MOUDI system did not monitor, the 

dispersion of ammonia gas coming from exhaust stream of MOUDI’s pump might not have 

any influence on each other. This was because the air samplers were set separately around 5 

metres. Additionally, this experiment was operated with the relative low ammonia gas 

concentration (50 ppb in total air flow). 
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Figure 2.2 Air sampling by the MOUDI with ammonia experiment 

 

2.3 Aerosol sampling 

 

Airborne particulate matter both fine (PM2.5) and coarse (PM2.5-10) fractions have been 

collected daily with filter changing normally taking place at 1200 noon over the period 

November 2008 to April 2011 using Partisol samplers. The exposed filters were stored in 

filter cassettes within the storage magazines inside of the instrument and then transferred to 

small sealed polyethylene bags. The filters were then kept in a freezer until being analysed to 

prevent loss of volatile compounds. 

 

As mentioned above in ammonia experiment, a set of size-segregated samples were collected 

for 72 h during November 2010 to January 2011. Then the filters were transferred to plastic 

Petri dish and stored in a freezer. To obtain the mass concentrations of aerosol particles, the 

filters were weighed before and after sampling under the same conditions as described more 

detail in 2.5.5. 
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2.4 Extraction from filters 

 

The aerosol quartz fibre filters remaining from carbon analysis, which detailed in section 

2.5.1, were transferred from their bags to a narrow neck 15 ml of HDPE bottles. Vinyl gloves 

and tweezers were used when handling the filters throughout the extraction process and the 

filters were extracted the same day as removed from the freezer. The distilled deionised water 

(DDW) (10 ml) were added and the bottles were extracted in an ultrasonic bath for 30 min at 

room temperature. After ultrasonication, the filter extracts were filtered through a syringe 

filter (0.2 µm) and then kept in a cold room until analysis. For particulate matter collected 

onto aluminium foil and PTFE filters in ammonia experiment, the filters were wetted with 

propan-2-ol (0.5 ml) to eliminate the natural hydrophobicity of filters. Then, 15 ml of ddw 

were added and ultrasonication performed for 30 min. The leachate was filtered and kept in 

the same manner until being analysed. 

 

2.5 Chemical analysis 

2.5.1 Determination of organic carbon, elemental carbon and total carbon with carbon 

aerosol analyser 

 

For the determination of organic (OC), elemental (EC) and total carbon (TC = OC + EC) 

concentration, a Sunset Laboratory Thermal-Optical Carbon Aerosol Analyser was used in 

this study. It uses thermal desorption in combination with optical transmission of laser light 

through the sample to speciate carbon collected on a quartz fibre filter (Sunset Laboratory 

Inc., 2004). All carbon evolving from the filter is oxidised to carbon dioxide, the carbon 

dioxide is reduced to methane, and the methane is measured using a flame ionisation detector 

(FID). A red-light laser and photocell are used to monitor transmittance of the filter, which 

typically darkens as refractory OC chars during a non-oxidising heat ramp and then lightens 

as the char burns off during an oxidizing heat ramp. The calculation software divides TC into 

OC and EC by setting the split time between the two as the time in the analysis when the 

transmittance of the filter returns to its original value at the beginning of the analysis. 

 

The schematic diagram of the Sunset Laboratory is shown in Figure 2.3. A punch (a nominal 

area of 1.5 or 1.0 cm2) from a quartz filter sample was placed on a quartz boat and put in the 

main oven positioned in the path of a red light diode laser. A thermocouple at the end of the 

boat was used to monitor sample temperature during analysis. All carbon species evolved 
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from the filter were converted to carbon dioxide in an oxidation oven immediately 

downstream from the primary oven, and the carbon dioxide was reduced to methane before 

passing into a flame ionization detector (FID). The parameter file or the temperature program 

for this work used a protocol recently developed for the European Super-sites for 

Atmospheric Aerosol Research project (EUSAAR_2) (Cavalli et al., 2010). The analysis 

started in a non-oxidising atmosphere (helium) with a 10-second purge followed by four 

temperature ramps to a maximum of 650 oC. The temperatures in He steps were at He 200 oC 

for 120s, at He 300 oC for 150s; at He 450 oC for 180s and at He 650 oC for 180s. A cooling 

blower then came on and the temperature dropped below 500 oC. Approximately 10 seconds 

before the temperature reached 500 oC, an electronic gas valve switched to 10% oxygen in He, 

which arrived at the sample about the time of the temperature dropped below 500 oC. A series 

of four heating ramps, this time with the sample in an oxidizing atmosphere, then brought the 

sample to a temperature of 850 oC. The temperatures in this step were at O2/He 500 oC for 

120s; at O2/He 550 oC for 120s; at O2/He 700 oC for 70s and at O2/He 850 oC for 80s. Any 

carbon remaining on the filter was burned off during these final heat ramps. Approximately 2 

minutes after 850 oC set point was initiated, a gas valve switched to flush a standard gas of 5% 

methane in He from the loop and into the analyser and the heater was switched off. An 

example of the temperature programme run by sucrose standard is shown in Figure 2.4. 

 

Two software programmes, namely the instrument programme and the calculation 

programme, were used in this instrument. The instrument programme set up and maintained 

control of the system during operation according to the preset temperature programme and 

stored the raw data (output signals from the FID, laser detector, thermocouple, and flow 

sensors) into a text format output file for subsequent calculation of the results. The instrument 

program also displayed the thermogram for the analyses sample; this included the time 

signals, the front oven temperature, the laser transmittance, the oven pressure, and the FID 

detector. After the analysis of a series of samples, the calculation programme was run to 

obtain quantitative data (in µgC cm-2 of filter) for OC, EC and TC. The data were saved into 

a spreadsheet format for further calculation (i.e., multi-point sucrose standard correction and 

conversion of OC, EC and TC concentrations to unit of µgC m-3 for fine and coarse particles). 

 



 40 

 
Figure 2.3 Schematic diagram of the Thermal-Optical Carbon Aerosol Analyser (Sunset Laboratory 
analyser) 
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Figure 2.4 Thermogram obtained by thermal-optical transmission (TOT) analysis with EUSAAR_2 
temperature programme for sucrose standard 
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The quality control experiment of the OC/EC analysis is an essential parameter to achieve the 

reliable results. As mentioned above, an injection loop in the analyser was used to inject a 

fixed volume of nominal 5% methane in He standard at the end of each analysis. The 

standard was treated as an internal standard for calculation of OC, EC and TC concentrations. 

The mass of carbon in the loop was determined by running a three-point calibration using 

standard aqueous solutions of sucrose, calculating an average FID response factor for the 

calibration runs, and applying that average calibration response factor to the average FID 

response to the internal standard for the calibration runs to calculate the average measured 

mass of carbon (as methane) in the loop. For analysis of a filter sample, the FID response to 

the known mass of carbon (as methane) in the loop was used by the software to determine the 

FID response factor (counts µgC-1) for the methane standard for a given analysis, and this 

FID response factor was then used to calculate OC, EC, and TC loading for the filter portion 

used in the analysis. For quality assurance, daily checks were performed by running 

instrument blanks and a single sucrose standard. Instrument blank, which was analysed by 

pre-fired quartz fibre filter, was used to verify that the inside of the carbon analyser over and 

sample transfer lines were clean. It should be less than 0.2 µgC cm-2. The first blank analysis 

also used to observe that the laser, the pressure of oven, the FID signal and the heating 

programme behaved correctly throughout the analysis. A single calibration check by applied 

sucrose solution onto blank quartz filter was used to confirm that the FID response had not 

shifted substantially since the late three-point calibration. The acceptance criterion for the 

accuracy was calculated within 5%.  

 

The method detection limits of OC/EC analysis were determined by measuring of ten pre-

fired quartz fibre filters. The detection limits, which were estimated as three times the 

standard deviation shown in equation 2.1, were 0.83, 0.11 and 0.83 µg m-3 for OC, EC and 

TC, respectively. In this work, the detection limit for EC was calculated on the order of 

instrument blanks acceptance criterion of 0.2 µgC cm-2. 

 

 filterblankincomponentofSDliDetection ×= 3mit   (Equation 2.1) 

 

The precision of this method was also evaluated by analysis of six replicate punches from the 

same filter to determine the uniformity of the deposit on filter. The relative standard 

deviations for OC, EC and TC were 3.7%, 13.8% and 1.5%, respectively (Table 2.1). In 

addition, the inter-laboratory comparison on the analysis of OC/EC was also run for further 
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assurance of analyses. The programme of GGD/LO 09-1117 was conducted by GGD 

Amsterdam in 2009 and the test was carried out by four participants. 

 

Table 2.1 The detection limits and precision study of OC/EC analysis 

 Concentration (µg m-3)a 

 OC EC TC 
 

Pre-fired QMA    
1 0.2 0.0 0.2 
2 0.3 0.0 0.3 
3 0.2 0.0 0.2 
4 0.8 0.0 0.8 
5 0.7 0.0 0.7 
6 0.9 0.0 0.9 
7 0.1 0.0 0.1 
8 0.6 0.0 0.6 
9 0.7 0.0 0.7 

10 0.7 0.0 0.7 
Mean 0.53 0.00 0.53 
S.D. 0.28 0.00 0.28 

Detection limit (3*S.D.) 0.83 0.11b 0.83 
    

PM2.5 (18/05/10)    
1 3.4 0.9 4.3 
2 3.3 1.0 4.3 
3 3.5 0.9 4.4 
4 3.4 1.1 4.5 
5 3.3 1.0 4.4 
6 3.6 0.8 4.4 

Mean 3.41 0.96 4.37 
S.D. 0.13 0.13 0.07 
RSD 3.7 13.8 1.5 

a air volume based on a nominal PM fine fraction collected 24h sampling period. 
b calculated based on instrument blank acceptance of 0.2 µgC cm-2. 
 

 

2.5.2 Determination of water-soluble organic carbon with carbon aerosol analyser 

 

Measurement of the water-soluble organic carbon (WSOC) is a relatively simple extension of 

the total carbon measurement and supplies valuable clues regarding the chemistry of organic 

aerosol. In practice, the two instruments for trace analysis of carbon in environmental 

samples are total organic carbon (TOC) analyser and aerosol carbon analyser (Sunset 

Laboratory). TOC mostly used for water samples and Sunset Laboratory is designed for 

determing particulate matter collected on filter substrates. Yang et al (2003) indicate that the 

two methods gave equivalent results by measuring of standards compounds and aerosol 
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samples. In this work, a Sunset Laboratory was chosen as the simplest way of determining 

this fraction by measuring OC before and after treatment with water. 

 

The collected aerosol quartz fibre filters were cut into two 1.5 cm2 pieces by using a filter 

punch in laminar flow fume-hood. One portion was analysed for OC/EC and the other portion 

used for water extraction process before being analysed into ACA. The extraction method 

was applied by using Buchner filtration to separate the wsoc in the samples as shown in 

Figure 2.5. The ddw (2.5 ml) were gently and slowly dropped onto the filters to minimise the 

loss of EC and water insoluble organic carbon. The filtration process took place around 10 

min for each sample and then the filters were left over night in laminar flow fume-hood. The 

extracted filters were kept in freezer until being analysed by ACA. For the quality control, the 

pre-fired quartz fibre filters were water extracted in the same manner as aerosol sample. The 

results of OC/EC analysis were corrected by the controlled samples. 

 

 

Figure 2.5 Diagram of water extraction of aerosol samples collected onto QMA filters 

 

2.5.3 Determination of anion components with ion chromatography 

 

Ion chromatography (IC) was selected as the analysis of choice for the determination of anion 

components in airborne PM samples. The advantage of using IC analysis is to minimise the 

samples preparation and the instrument has a good separation and high sensitivity for 

multiple ion analysis (Zlotorzynska and McGrath, 2000). In this work, inorganic anions 

(sulphate-SO4
2-, nitrate-NO3

- and chloride-Cl-) including dicarboxylic acid (oxalate, C2O4
2-) 
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were analysed by using Dionex ICS2000 Ion Chromatography System (ICS-2000). An IC 

system typically consists of a liquid eluent, a high-pressure pump, a sample injector, a guard 

and separator column, a chemical suppressor, a conductivity cell, and a data collection system 

as shown in Figure 2.6.  

 

 

Figure 2.6 Ion analysis process 

 

The ICS-2000 is an integrated ion chromatography system containing an analytical column 

(IonPac AS11HC with 2 × 250 mm) with a guard column (IonPac AG11HC with 2 × 50 mm). 

The eluent for these samples was the potassium hydroxide (gradient) and its flow rate during 

the analyses was equal to 0.38 ml min-1. The injection sample volume of 200 µl was loaded 

into the eluent stream and 5 ml sample vials were used with the auto sampler. The ICS-2000 

was controlled by Chromeleon software which also provided data acquisition and data 

processing functions. The data collection system identified the ions based on retention time 

and quantified each analyte by integrating the peak area or peak height. IC system was 

calibrated using a series of mixed anion standards of known concentration (0.2 – 20 ppm) 

before running a sample. The mixed standard solutions containing SO4
2-, NO3

-, Cl- and C2O4
2- 

were prepared and kept in the cold room to avoid losses of volatile species. By comparing the 
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data obtained from a sample to that obtained from the standards, the ions component 

concentrations were to be identified and quantified. In this analysis, samples were filtered 

with syringe filters (0.2 µm) before loading into IC to avoid blockages or damage to 

connecting tubing, column end frits, and other hardware components of IC system as detailed 

in section 2.4. 

 

For quality control and quality assurance, fresh mixed standard solutions were prepared and 

used in every analysis before running the samples. These standards were made from stock 

standard solutions which were prepared every six months. The detection limits of IC 

technique were determined for anion components as three times the standard deviation from 

the analysis of ten blank filters. Pre-fired quartz fibre filters were allowed to equilibrate to 

room temperature and then placed in polyethylene bottle. Filters were water extracted 

following the procedure in section 2.4. The method detection limits as calculated according to 

equation 2.1 were 0.007, 0.044, 0.011 and 0.002 µg m-3 for SO4
2-, NO3

-, Cl- and C2O4
2-, 

respectively, at a nominal volume of 21.6 m-3 for a typical 24h sample period of fine fraction 

(Table 2.2). The recovery determination was performed by the analysis of spiked filters. The 

mixed calibration solutions of 500 µl with ions concentration range 5-120 ppm were spiked 

onto pre-fired filters and then kept the samples dry overnight in the laminar flow fume-hood. 

The samples were then water extracted and kept in the cold room until IC anlaysis. The 

control blank filters were also performed in the same procedure in order to use for correction 

of recovery calculation. The recovery is calculated according to the following equation; 

 

  (Equation 2.2) 

 

Average recovery efficiency for anionic species appeared at 95%, 99%, 100% and 81% for 

SO4
2-, NO3

-, Cl- and C2O4
2-, respectively. To determine the method repeatability, which 

assesses the precision of the IC analysis, ionic components analysed on multiple filters were 

compared. The relative standard deviations of ten spiked samples were calculated and the 

results showed good repeatability with RSDs less than 2.5%. 
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2.5.4 Determination of cation components with ion chromatography 

 

The IC technique was also used to determine the major cation components by using a Dionex 

DX 500. The samples were analysed for sodium (Na+), ammonium (NH4
+) and potassium 

(K+). A GP40 gradient pump was used to deliver eluent to Dionex system. A 1000 µl sample 

loop was loaded via an AS40 Automated Sampler, using 5 ml sample vials. A CD20 

Conductivity Detector was used as the detection for measuring the electrical conductance of 

the sample ions based on a chemical or physical property of the analyte. The analytical 

column used was an IonPac CS12A (4 × 250 mm) and a guard column IonPac CG12A (4 × 

50 mm) with an eluent of 20 mM methanesulfonic acid (MSA, CH4O3S). This eluent was 

freshly prepared by dissolving 0.9 ml of MSA in distilled deionised water (l000 ml). A 

personal computer associated with Dionex PeakNet software was used for instrument control, 

data collection and data processing. Only samples collected by MOUDI were be analysed for 

cation species. Method detection limits for analysis of cation components were determined by 

water extracted of ten blank aluminium foil substrates. The detection limits of Na+, NH4
+ and 

K+ were 0.095, 0.078 and 0.030 µg m-3 respectively, at a nominal volume of 123.5 m-3 for a 

typical 72h sample period of MOUDI experiment (Table 2.2). Due to the hydrophobicity of 

Teflon and aluminium foil surface, the standard solutions were not be able to spike onto their 

surfaces hence the recoveries of cations anlaysis were not studied in this work. To ensure the 

accuracy of measurement results, a series of mixed cation standards in concentration range 

0.2 – 20 ppm was used for calibrating of IC system prior to sample analysis. 

 

Table 2.2 The detection limits and recoveries study of ionic analysis by IC 

 Concentration (µg m-3)a 
 SO4

2- NO3
- Cl- C2O4

2- Na+ NH4
+ K+ 

Blank filtersb 
       

1 0.01 0.01 0.01 0.001 0.06 0.00 0.03 
2 0.01 0.03 0.01 0.000 0.00 0.00 0.00 
3 0.01 0.00 0.01 0.002 0.00 0.07 0.00 
4 0.01 0.00 0.01 0.000 0.06 0.03 0.00 
5 0.01 0.02 0.01 0.000 0.00 0.00 0.00 
6 0.01 0.00 0.01 0.000 0.02 0.00 0.01 
7 0.02 0.03 0.01 0.000 0.00 0.00 0.00 
8 0.01 0.00 0.01 0.001 0.00 0.00 0.00 
9 0.01 0.03 0.02 0.000 0.00 0.00 0.00 
10 0.01 0.00 0.01 0.000 0.08 0.04 0.02 

Mean 0.011 0.012 0.010 0.000 0.022 0.015 0.006 
S.D. 0.002 0.015 0.004 0.001 0.032 0.026 0.010 

Detection limit 
(3*S.D.) 

0.007 0.044 0.011 0.002 0.095 0.078 0.030 
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Table 2.2 (continued)  
 Concentration (µg m-3)a 

 SO4
2- NO3

- Cl- C2O4
2- Na+ NH4

+ K+ 
Spiked filtersc     n.a. n.a. n.a. 

1 2.63 2.82 2.32 0.098 - - - 
2 2.63 2.77 2.32 0.097 - - - 
3 2.64 2.80 2.32 0.101 - - - 
4 2.65 2.86 2.32 0.103 - - - 
5 2.65 2.84 2.33 0.102 - - - 
6 2.66 2.82 2.33 0.102 - - - 
7 2.65 2.85 2.33 0.099 - - - 
8 2.65 2.81 2.32 0.100 - - - 
9 2.66 2.88 2.33 0.095 - - - 
10 2.69 2.90 2.35 0.099 - - - 

Mean 2.651 2.834 2.326 0.100 - - - 
S.D. 0.015 0.040 0.011 0.002 - - - 
RSD 0.6 1.4 0.5 2.4 - - - 

After blank 
correction 

2.637 2.757 2.315 0.094 - - - 

Spiked conc. 2.778 2.778 2.315 0.116 - - - 
Recovery (%) 95 99 100 81 - - - 

a air volume based on a nominal PM fine fraction collected 24h sampling period for anions and 72h in 
MOUDI experiment for cations. 

b quartz fibre filters and aluminium foil substrates were used as blank analysis for anions and cations 
analysis, respectively. 

c the standards could not be spiked onto Teflon filters or aluminium foils due to hydrophoblic surface 
hence there were no data available for recoveries of cations analysis in MOUDI experiment. 

 

The blank concentrations of ionic species were typically found with a very small (∼1%) of 

the field measurements. Therefore, the data presented in this study were not corrected for the 

blank concentrations. Recoveries were studied as for QA/QC purpose and associated with the 

calculation of measurement uncertainty as detailed in Appendix A. The recovery values of 

ionic species were not used to correct values in the rest of the thesis. Additionally, the 

detection limits were analysed as the lowest levels at which those concentrations may be 

quantified with confidence (Harrison and Mora, 1996). In this study, the samples which were 

present below detection limits were calculated as half of detection to obtain the best and 

reliable data. 

 

2.5.5 Determination of mass of particulate matter with gravimetry 

 

Particulate matter mass concentration was measured by weighing of aluminium foil and the 

Teflon filters using a Sartorius model MC5 microbalance before and after air sampling. These 

filters were used as the collected substrates in MOUDI experiment. All filters were 

equilibrated at a relative humidity of 45-55% and a temperature of 20±2 oC in the weighing 

room for at least 24h before weighing commenced. An ionising blower and alpha particle 
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source were used to eliminate the effects of static electricity on the weighing process. The 

filters were weighed three or more times to ensure reliability and sample mass concentrations 

were subsequently calculated using the net filter weight gain after air sampling. 

 

2.6 Data and statistical analysis 

 

All datasets obtained in the study were used to analyse and evaluate the sources and 

formation pathways of major chemical components in airborne particulate matter. In principle, 

the two most common practices to analyse datasets are nonparametric and parametric analysis. 

Nonparametric statistical procedures are used to evaluate research data which do not require 

and restrict the assumptions about the distribution of the data. On the contrary, parametric 

method strongly requires that the form of the population distribution be completely specified 

as normal distribution. This makes nonparametric statistical methods more flexible and 

appropriate in this study since the data observed tend to be heterogeneous, and the 

heterogeneity is not well described. The Kolmogorov-Smirnov test was applied to dataset to 

investigate the sample distribution. These nonparametric tests used mostly for testing 

hypotheses of data comparison such as the Mann-Whitney test and Kruskal-Wallis test. 

However, nonparametric procedures are less suited for the estimation of association for this 

datasets. The following are the details of methods of data analysis. 

 

Determination of association 

The measurements of levels of association or the relationships between chemical components 

in air samples were determined both inter- and intra-sites in order to investigate their origins 

as well as formation pathways. The Pearson (product-moment) correlation should be the first 

choice (Belle, 2008) to measure the correlation coefficients (r). This test measures the 

strength of the linear relationship between two variables. Because of all concentrations data 

(raw data) used without removing outlier in this study, Peason correlation test is appropriate 

and higher sensitive than rank correlation analysis (nonparametric method). A linear 

association implies that as one variable increases, the other increases or decreases linearly. 

The correlation coefficient does not imply cause and effect. Test results between two 

variables should report as high correlation or strong relationship. The values of these 

correlation coefficients usually range from -1.00 to +1.00. Values of the correlation 

coefficient close to +1.00 indicate that as one variable increases, the other increases nearly 

linearly. On the contrary, a correlation coefficient close to -1.00 indicates that as one variable 
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increases, the other decrease nearly linearly. Values close to 0 imply little correlation 

between the variables. A rough guide to the degree of the association given by some 

statistical references (Yin, 2002) indicates that r, in the range 0.00 - 0.19, represents a very 

weak correlation, 0.20 - 0.39 a weak correlation, 0.40 - 0.69 a modest correlation, 0.70 - 0.89 

a strong correlation and 0.90 - 1.00 a very strong correlation. In order to know whether the 

correlation is significant between two variables, the null hypothesis, a hypothesis of no 

correlation, was tested consulting a table for Pearson product moment correlation values at 

the 0.05 levels of significance, with the number of degrees of freedom n – 2 (n is the number 

of observations). The distributions of both variables should be analysed because a skewed 

distribution produces a smaller r than a normal distribution. The Kolmogorov-Smirnov was 

used to determine the distribution of datasets and reported in Appendix E. Test results, 

however, indicate that ionic species analysed in air samples deviate significantly from a 

normal distribution. Thus, smaller r values might be observed and reported for the 

determination of association. In this thesis, the “good” correlations of chemical components 

in aerosol samples denote strong and very strong correlations. The “poor” correlations of 

chemical components denote weak and very weak correlations. 

 

Regression analysis 

The correlation analysis is always used in conjunction with regression analysis. When data of 

two variables are plotted on a graph, they are said to have a linear relationship if the points 

tend to fall in a straight line. The strength of the association between the variables can be 

estimated by judging how close the points are to the line. The correlation between the 

variables is high when the points are very near the line and low when the line is a poor 

summary of the positions of the points. The position of the line shows how a change in one 

variable is expected to affect the other. The reduced major axis (RMA) regression was 

applied in this study (Ayers, 2001). The best linear fitting line is achieved by minimising the 

deviations of both variables. The coefficients of determination or coefficients of regression 

were reported as R2. If there is a perfect relationship, the coefficient of determination is 1.00. 

This means all the points on the graph lie on the regression line and all the variation in one 

variable is explained by the other one. RMA regression was applied to the dataset in order to 

determine the relationship between rural and urban background concentration during the 

samples collected simultaneously (chapter 3.3.3, 4.4). 
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Measures of central tendency 

The measures of central tendency of samples were estimated by the sample mean in this 

study. In case of mean value higher than 75th percentile of the observations, the discussion 

still based on this value with special cautions and data also presented the sample median as 

reported in Table 3.1. The reasons of this case mostly come from the measurement data 

observed outliers. Outliers result commonly from transcription errors, data-coding errors, or 

measurement system problems. However, outliers may also represent true extreme values of a 

distribution and indicate more variability in the population than was expected. Not removing 

true outliers and removing false outliers both lead to a distortion of calculates of population 

parameters. Rejecting an outlier from a dataset should be done with extreme caution, 

particularly for environmental data sets, which often contain legitimate extreme values (U.S. 

EPA, 2006). 

 

Data below the limits of detection 

As mentioned about the method of determination of detection limits of chemical analysis, 

some data obtained from this study fell below the detection limit of the analytical procedure. 

These measurement data are generally reported as non-detects (<dl). In these cases, the 

concentrations of analysed species are unknown although they lie somewhere between zero 

and the detection limits. There are a variety ways to evaluate data that includes values below 

the detection limit. However, there are no general procedures that are applicable in all cases 

(U.S. EPA, 2006). In this thesis, data below the limits of detection are replaced with dl/2 and 

the usual analysis performed. 

 

Comparision of two populations 

Generally, it is difficult to obtain a truly random sample in the environmental sciences (Watts 

and Halliwell, 1996). Many of statistical tests described are based on the assumption that the 

observations being tested have a normal or almost normal distribution. When this condition 

cannot be met, a range of distribution-free or nonparametric statistical tests are appropriate. 

In this study, Kolmogorov-Smirnov test was applied to datasets and test results indicated that 

chemical components analysed in air samples deviate significantly from a normal distribution 

as shown Appendix E. Therefore, nonparametric tests were used in all hypothesis tests of 

significant differences. The Mann-Whitney U test is a nonparametric test that can be used to 

analyse data from two-group independent groups design when measurement can at least be 

ranked or be ordered. This test makes no assumptions about data distribution. It does assume 
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that the two distributions are similar in shape but the distributions need not be symmetric. 

The two datasets need not be drawn from normal distributions. This test evaluates the null 

hypothesis that two groups of sample come from the same population. 

 

Comparison of several populations 

The Kruskal-Wallis nonparametric test can be used to assess whether any significant 

differences between k independent samples. It is used for comparing more than two samples. 

The test assumes that the measurements under study are at least on an ordinal scale and that 

underlying variable has a continuous distribution. The null hypothesis is that the k samples 

come from the same population, or that their underlying distributions have the same average. 

This test was performed to investigate the significant differences for component 

concentrations between clusters of air back trajectories (chapter 5.5). For trajectory analysis, 

cluster method was used for classifying air mass backward trajectories generated from the 

HYSPLIT4 (HYbrid Single-Particle Lagrangian Integrated Trajectory) model as detailed in 

Chapter 5. 

 

Lastly, estimation of measurement uncertainty associated with analysed data was also 

evaluated in order to achieve the reliability and traceability of measurement results as 

described in Appendix A. 

 



 53 

CHAPTER 3 

INTERPRETATION OF CARBONACEOUS AEROSOL 
CONCENTRATIONS IN PARTICULATE MATTER 

 

3.1 Synopsis 

 

In this chapter, concentration composition data of aerosol collected at urban background 

(EROS) and rural (HAR) are presented in all particle size ranges (PM2.5, PM2.5-10, PM10) with 

basic statistical characteristic. Carbonaceous material, which is commonly divided into an 

organic carbon (OC) and elemental carbon (EC) fraction, are mainly discussed. The data set 

presented here compares with the other important components such as sulphate, nitrate and 

nitrogen oxides in order to investigate their sources of particles at both sites. The commonly 

used method to distinguish primary organic carbon (OCprim) from secondary organic carbon 

(OCsec) on the basis of the OE/EC minimum ratios of individual samples is determined. The 

OE/EC ratio used in this calculation is considered carefully following the recently published 

paper. Relationship between OC and EC including graphical presentation of their 

concentrations will also be explored. Furthermore, this chapter reports and discusses the 

interpretation of inter-site difference of carbonaceous aerosol data collected simultaneously. 

 

3.2 Sampling locations 

 

• The Elms Road Observatory Site (EROS) 

 

EROS was located within the ‘‘green space’’ of the University of Birmingham campus. This 

is an urban background site located in an open field within the university. The site is about 

3.5 km southwest of the centre of Birmingham, which has a population of over one million 

and is part of a conurbation of 2.5 million population. The nearest anthropogenic sources are 

a nearby railway, some moderately trafficked roads about 500 m and other surrounding 

activities from the university and local residents. 
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• Harwell (HAR) 

 

This rural site is located within the grounds of the Harwell Science Centre, Didcot, 

Oxfordshire. The Partisol air sampler was installed outside the monitoring station which is a 

self-contained, air conditioned housing and located within the grounds. The surrounding area 

is generally open with agricultural fields. There is limited activity in the area and the nearest 

road about 400 metres from the monitoring site is used only for access to buildings within the 

Science Park. The nearest trees are at a distance of 200 - 300 metres from the monitoring 

station. Distant sources include the busy A34 dual carriageway about 2 km to the east and the 

Didcot Power Station about 5 km to the north-east. 

 

The sampling locations are shown in Figure 3.1. At both sites, the PM samples were collected 

daily onto quartz fibre filters by using the Partisol Plus samplers as mentioned in section 

2.2.1. The sampling periods were from November 2008 to April 2011 and from July 2010 to 

December 2010 for EROS and Harwell, respectively. 

Figure 3.1  Locations of the two sampling sites in the UK; EROS and Harwell 
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3.3 Summary of atmospheric aerosol concentrations 

 

A summary of the concentration data of oxalate, nitrate, sulphate, chloride, organic (OC) and 

elemental carbon (EC) in the PM2.5, PM2.5-10 and PM10 appears in Table 3.1. The sampling 

periods were split into four seasons as follow  summer is defined to comprise the months 

of June, July and August; autumn is September, October and November; winter is December, 

January and February; and spring is March, April and May. Basic statistical characteristics 

are shown in term of mean, median, minimum, maximum, percentile and sampling number. It 

needs to be noted that the data obtained from Harwell were mainly used for comparison with 

EROS data collected simultaneously. This interpretation will be described later in section 

3.3.3. For the quality assurance, comparison of ionic species in PM collected for the thesis at 

Harwell with national data shows in Figure 3.4. Since 24 h aerosol samples did not collect at 

the same time, individual data comparison cannot be evaluated. Only monthly mean 

concentratios of chemical components were determined and presented. 

 

Table 3.1  Summary of chemical composition statistics (µg m-3) in PM2.5, PM2.5-10 and PM10 at EROS and Harwell 
sites for the entire period (EROS – from November 2008 to April 2011 and Harwell – from July 2010 to December 
2010) 
 

 
 

Sampling 
period 

N 
 

Maximun 
 

75%ile Median 25%ile Minimum 
 

Mean 
 

EROS         

PM2.5         

Oxalate Whole 500 0.34 0.06 0.03 0.01 <dl 0.05 

 Summer 116 0.14 0.04 0.02 0.02 <dl 0.03 

 Autumn 165 0.16 0.03 0.02 0.01 <dl 0.03 

 Winter 101 0.30 0.10 0.02 0.01 <dl 0.05 

 Spring 118 0.34 0.12 0.05 0.02 <dl 0.07 

         

Nitrate Whole 500 25.51 3.45 1.24 0.56 <dl 2.72 

 Summer 116 6.83 0.86 0.56 0.41 0.19 0.92 

 Autumn 165 10.88 2.33 0.99 0.54 <dl 1.75 

 Winter 101 13.26 5.49 3.47 1.41 0.15 3.97 

 Spring 118 25.51 5.84 2.29 0.88 0.16 4.80 

         

Sulphate Whole 500 9.63 2.46 1.44 0.90 0.17 1.86 

 Summer 116 4.44 1.71 1.22 0.91 0.44 1.45 

 Autumn 165 6.48 1.98 1.11 0.79 0.24 1.57 

 Winter 101 7.49 2.88 2.00 1.02 0.31 2.25 

 Spring 118 9.63 2.92 1.80 1.17 0.17 2.32 

         

Chloride Whole 500 4.07 0.98 0.46 0.21 <dl 0.73 

 Summer 116 2.37 0.38 0.20 0.11 0.04 0.37 

 Autumn 165 4.07 0.60 0.40 0.22 <dl 0.53 

 Winter 101 3.29 1.86 1.17 0.50 0.09 1.25 

 Spring 118 3.92 1.32 0.69 0.28 <dl 0.93 
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Table 3.1  (continued) 
 
 

Sampling 
period 

N 
 

Maximun 
 

75%ile Median 25%ile Minimum 
 

Mean 
 

OC Whole 500 18.8 3.7 2.5 1.6 <dl 3.0 

 Summer 116 7.0 2.1 1.7 1.4 0.9 1.9 

 Autumn 165 18.8 3.4 2.4 1.7 0.9 3.0 

 Winter 101 12.1 5.9 4.3 3.1 2.0 4.9 

 Spring 118 6.4 3.4 2.4 1.5 <dl 2.6 

EC Whole 500 8.2 1.4 0.8 0.5 <dl 1.1 

 Summer 116 2.8 0.6 0.5 0.4 0.2 0.6 

 Autumn 165 8.2 1.5 1.0 0.7 0.2 1.4 

 Winter 101 8.2 2.4 1.3 0.7 <dl 1.7 

 Spring 118 4.0 1.1 0.6 0.4 <dl 0.9 

         

PM2.5-10         

Oxalate Whole 500 0.058 0.021 0.010 0.002 <dl 0.013 

 Summer 116 0.058 0.027 0.020 0.008 <dl 0.019 

 Autumn 165 0.054 0.020 0.010 0.002 <dl 0.012 

 Winter 101 0.021 0.003 0.001 0.001 <dl 0.003 

 Spring 118 0.049 0.023 0.016 0.008 <dl 0.016 

         

Nitrate Whole 500 5.27 0.90 0.53 0.33 <dl 0.73 

 Summer 116 2.56 0.74 0.48 0.37 0.04 0.62 

 Autumn 165 3.29 0.78 0.47 0.32 <dl 0.70 

 Winter 101 1.70 0.66 0.42 0.25 <dl 0.52 

 Spring 118 5.27 1.48 0.80 0.49 <dl 1.08 

         

Sulphate Whole 500 1.89 0.34 0.24 0.16 <dl 0.27 

 Summer 116 0.55 0.26 0.20 0.15 <dl 0.21 

 Autumn 165 0.89 0.34 0.22 0.15 <dl 0.26 

 Winter 101 1.11 0.33 0.24 0.15 <dl 0.27 

 Spring 118 1.89 0.41 0.30 0.23 <dl 0.36 

         

Chloride Whole 500 3.70 1.17 0.63 0.24 <dl 0.82 

 Summer 116 2.37 0.77 0.37 0.19 <dl 0.53 

 Autumn 165 3.52 1.26 0.78 0.35 <dl 0.92 

 Winter 101 2.96 1.24 0.65 0.32 <dl 0.87 

 Spring 118 3.70 1.48 0.73 0.23 <dl 0.94 

         

OC Whole 500 6.6 1.5 1.2 0.9 <dl 1.3 

 Summer 116 5.3 1.5 1.1 0.9 <dl 1.3 

 Autumn 165 6.6 1.5 1.2 1.0 <dl 1.4 

 Winter 101 5.7 1.3 1.0 0.8 <dl 1.1 

 Spring 118 3.8 1.5 1.2 0.8 <dl 1.2 

         

EC Whole 500 0.96 0.13 0.05 0.05 <dl 0.11 

 Summer 116 0.23 0.08 0.05 0.05 <dl 0.07 

 Autumn 165 0.86 0.17 0.05 0.05 <dl 0.14 

 Winter 101 0.96 0.15 0.05 0.05 <dl 0.13 

 Spring 118 0.62 0.12 0.05 0.05 <dl 0.11 

         

PM10         

Oxalate Whole 500 0.38 0.08 0.04 0.02 0.01 0.06 

 Summer 116 0.20 0.07 0.04 0.02 0.01 0.05 

 Autumn 165 0.16 0.05 0.03 0.02 0.01 0.04 
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Table 3.1  (continued) 
 
 

Sampling 
period 

N 
 

Maximun 
 

75%ile Median 25%ile Minimum 
 

Mean 
 

 Winter 101 0.30 0.10 0.02 0.01 0.01 0.05 

 Spring 118 0.38 0.14 0.07 0.04 0.01 0.09 

         

Nitrate Whole 500 29.27 4.53 1.92 0.97 <dl 3.46 

 Summer 116 8.35 1.69 1.09 0.82 0.28 1.54 

 Autumn 165 12.49 3.37 1.48 0.95 <dl 2.44 

 Winter 101 14.67 6.06 4.05 2.02 0.15 4.48 

 Spring 118 29.27 7.51 3.49 1.54 0.46 5.88 

         

Sulphate Whole 500 11.18 2.72 1.69 1.13 0.31 2.13 

 Summer 116 4.68 1.91 1.42 1.11 0.55 1.67 

 Autumn 165 7.37 2.24 1.32 0.96 0.50 1.82 

 Winter 101 8.11 3.27 2.21 1.32 0.31 2.52 

 Spring 118 11.18 3.35 2.13 1.49 0.55 2.67 

         

Chloride Whole 500 7.03 2.14 1.23 0.68 0.06 1.56 

 Summer 116 3.46 1.21 0.73 0.35 0.10 0.90 

 Autumn 165 5.01 1.88 1.24 0.79 0.19 1.45 

 Winter 101 5.40 2.72 1.95 1.17 0.21 2.12 

 Spring 118 7.03    0.06 1.87 

         

OC Whole 500 20.9 5.3 3.6 2.7 0.9 4.3 

 Summer 116 8.1 3.5 2.9 2.3 1.6 3.2 

 Autumn 165 20.9 5.1 3.7 2.8 2.1 4.4 

 Winter 101 16.5 7.0 5.3 4.1 2.5 6.0 

 Spring 118 8.4 5.1 3.4 2.4 0.9 3.8 

         

EC Whole 500 8.3 1.5 0.8 0.5 0.1 1.2 

 Summer 116 3.0 0.7 0.5 0.4 0.2 0.6 

 Autumn 165 8.2 1.7 1.1 0.8 0.2 1.5 

 Winter 101 8.3 2.5 1.4 0.8 0.1 1.8 

 Spring 118 4.3 1.2 0.7 0.5 0.1 0.9 

         

Harwell         

PM2.5         

Oxalate Whole 107 0.18 0.03 0.01 0.01 0.01 0.02 

 Summer 57 0.11 0.03 0.02 0.01 0.01 0.02 

 Autumn 50 0.18 0.02 0.01 0.01 0.01 0.02 

         

Nitrate Whole 107 11.65 1.21 0.58 0.35 <dl 1.29 

 Summer 57 3.45 0.64 0.42 0.30 <dl 0.57 

 Autumn 50 11.65 2.75 1.17 0.50 0.15 2.10 

         

Sulphate Whole 107 6.76 1.63 1.01 0.72 0.05 1.40 

 Summer 57 3.98 1.54 0.95 0.77 0.30 1.20 

 Autumn 50 6.76 2.15 1.02 0.61 0.05 1.62 

         

Chloride Whole 107 0.87 0.32 0.17 0.09 0.01 0.23 

 Summer 57 0.82 0.20 0.11 0.08 0.01 0.17 

 Autumn 50 0.87 0.43 0.23 0.16 0.01 0.30 
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Table 3.1  (continued) 
 
 

Sampling 
period 

N 
 

Maximun 
 

75%ile Median 25%ile Minimum 
 

Mean 
 

OC Whole 107 4.8 1.9 1.5 1.2 0.5 1.7 

 Summer 57 2.7 1.6 1.4 1.1 0.5 1.4 

 Autumn 50 4.8 2.6 1.7 1.2 0.7 2.1 

         

EC Whole 107 1.9 0.5 0.2 0.1 <dl 0.4 

 Summer 57 0.7 0.3 0.2 0.1 <dl 0.2 

 Autumn 50 1.9 0.8 0.5 0.2 0.1 0.6 

PM2.5-10         

Oxalate Whole 107 0.05 0.03 0.02 <dl <dl 0.02 

 Summer 57 0.05 0.04 0.03 0.018 <dl 0.03 

 Autumn 50 0.03 0.01 <dl <dl <dl 0.01 

         

Nitrate Whole 107 3.40 0.84 0.60 0.26 <dl 0.71 

 Summer 57 1.96 0.67 0.43 0.25 <dl 0.52 

 Autumn 50 3.40 1.22 0.74 0.33 <dl 0.93 

         

Sulphate Whole 107 2.08 0.29 0.21 0.15 <dl 0.29 

 Summer 57 0.42 0.21 0.17 0.13 <dl 0.18 

 Autumn 50 2.08 0.51 0.26 0.21 <dl 0.42 

         

Chloride Whole 107 2.60 0.85 0.46 0.21 0.04 0.61 

 Summer 57 2.60 0.63 0.29 0.17 0.04 0.50 

 Autumn 50 2.21 0.94 0.63 0.41 0.09 0.74 

         

OC Whole 107 3.3 1.2 0.9 0.8 <dl 1.0 

 Summer 57 3.3 1.3 1.0 0.8 <dl 1.1 

 Autumn 50 2.2 1.0 0.8 0.8 <dl 1.0 

         

EC Whole 107 0.5 <dl <dl <dl <dl 0.1 

 Summer 57 <dl <dl <dl <dl <dl <dl 

 Autumn 50 0.5 <dl <dl <dl <dl 0.1 

         

PM10         

Oxalate Whole 107 0.18 0.05 0.03 0.02 <dl 0.04 

 Summer 57 0.14 0.06 0.05 0.03 <dl 0.05 

 Autumn 50 0.18 0.03 0.02 0.01 <dl 0.03 

         

Nitrate Whole 107 14.75 2.00 1.21 0.70 0.16 2.00 

 Summer 57 4.76 1.28 0.81 0.59 0.24 1.10 

 Autumn 50 14.75 3.83 1.82 0.86 0.16 3.02 

         

Sulphate Whole 107 7.53 1.97 1.24 0.95 0.36 1.69 

 Summer 57 4.14 1.76 1.13 0.96 0.40 1.38 

 Autumn 50 7.53 2.55 1.33 0.94 0.36 2.04 

         

Chloride Whole 107 3.33 1.17 0.68 0.30 0.09 0.84 

 Summer 57 3.33 0.85 0.39 0.23 0.09 0.67 

 Autumn 50 3.08 1.26 0.87 0.63 0.15 1.04 

         

OC Whole 107 7.0 3.2 2.5 2.0 1.0 2.8 

 Summer 57 4.7 2.8 2.5 2.1 1.0 2.5 

 Autumn 50 7.0 3.7 2.8 2.0 1.5 3.1 
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Table 3.1  (continued) 
 
 

Sampling 
period 

N 
 

Maximun 
 

75%ile Median 25%ile Minimum 
 

Mean 
 

EC Whole 107 2.2 0.5 0.2 0.1 <dl 0.4 

 Summer 57 0.7 0.3 0.2 0.1 <dl 0.2 

 Autumn 50 2.2 0.9 0.5 0.2 <dl 0.6 

 

3.3.1 Carbonaceous aerosol concentrations in urban background and rural sites 

 

Carbonaceous aerosol consists of both EC and OC, which were also the major species of 

interest in this study. In the case of EC at EROS, as shown in Table 3.1, the average 

concentrations with estimated uncertainties of measurement were 1.1 ± 0.08 µg m-3, 0.2 ± 

0.01 µg m-3 and 1.2 ± 0.09 µg m-3 in PM2.5, PM2.5-10 and PM10, respectively. For EC at HAR, 

the average concentrations with estimated uncertainties of measurement were 0.4 ± 0.03  

µg m-3, 0.2 ± 0.01 µg m-3 and 0.4 ± 0.03 µg m-3 in PM2.5, PM2.5-10 and PM10, respectively. 

There is a clear higher concentration at urban background site comparing to rural site both in 

PM2.5 and PM10 indicating that the impact of local sources contribution is very appreciable 

and would be expected for pollutants with anthropogenic sources. A similar EC concentration 

in PM2.5 at EROS was observed in this study when compared with the previous study (Yin et 

al., 2010), showing the EC concentration at 1.41 ± 0.44 µg m-3. EC observed in PM2.5 and 

PM10 at EROS are lower than the previous results obtained in Birmingham City Centre Site 

(BCCS) which is a central urban background site within the city of Birmingham (Harrison 

and Yin, 2008). Those EC reported at 1.6 ± 1.1 µg m-3 and 1.7 ± 1.1 µg m-3 in PM2.5 and 

PM10, respectively. The time series, mean monthly concentrations and seasonal patterns of 

organic and elemental carbon at EROS and HAR are shown in Figures 3.2, 3.3 and 3.5, 

respectively. According to quality assurance, comparisons of mean monthly concentrations of 

chemical components with national network data at Harwell present in Figure 3.4. 

 

Given the current regulatory focus on PM2.5 and the dominant proportion of OC and EC in 

fine fraction (21 – 78 %) rather than in the coarse fraction, the major discussions in this 

section focus upon PM2.5 (Na et al., 2004). In addition to the low level of EC in coarse 

fractions, the proportion of EC in PM2.5-10 to PM10 contains around 17% but a rather greater 

proportion of the EC appeared at 92% in PM2.5 to PM10. The EC concentration measured at 

EROS over a year period showed the highest concentration in the winter as same as OC 

concentration. From the time series, it further appears that the EC levels during the summer 

were low as well at both sites. As EC is a primary source emission, derived from ground-
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level of the incomplete combustion of fossil fuels and the pyrolysis of biological material 

during combustion, this behaviour is expected due to less effective dispersion processes in the 

colder months of the year. The NOx data obtained from the adjacent Birmingham Tyburn site, 

which represents as urban background site, showed well correlated with EC concentration( r 

= 0.61). This correlations support the suggestion that at EROS, the EC derives mainly from 

transportation as NOx to be a good tracer of road traffic emissions in the atmosphere of 

Birmingham (Harrison et al, 1997) 

 

With regard to OC at EROS, the average concentrations with measurement uncertainties were 

3.0 ± 0.22 µg m-3, 1.3 ± 0.09 µg m-3 and 4.3 ± 0.31 µg m-3 in PM2.5, PM2.5-10 and PM10, 

respectively. For OC at HAR, the average concentrations were 1.7 ± 0.12 µg m-3, 1.0 ± 0.07 

µg m-3 and 2.8 ± 0.20 µg m-3 in PM2.5, PM2.5-10 and PM10, respectively. In the case of PM2.5 

and PM10, the urban background site clearly exceeds the rural site. On the contrary, the 

difference is quite small between both sites for OC in coarse fractions (PM2.5-10).  

 

 

Figure 3.2  Time series of OC, EC concentrations in PM2.5 measured at EROS and Harwell sites 
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Figure 3.2 (continued) 

 

 

 

 

Figure 3.3  Box-whisker plots of monthly major component concentrations in PM2.5 at EROS and 
Harwell sites 
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Figure 3.3 (continued) 
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Figure 3.3 (continued) 

 

 

 
 

 
 

 

Figure 3.4 Comparisons of monthly average chemical concentrations in PM10 at Harwell with 
network data. Error bars denote standard deviations (Each individual data cannot be compared 
because 24h air samples did not collect at the same time) 
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(a) 

 

 

(b) 

 

Figure 3.5  Seasonal average concentrations at EROS and Harwell site; (a) PM2.5; (b) PM10 
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3.3.2 Relationships between organic and elemental carbon 

 

As mentioned in 3.3.1 that EC has only a primary origin from the burning of carbonaceous 

matter and is a good tracer for emissions from fossil fuel combustion namely urban emissions 

from road transport (ECff), OC may be emitted directly to the atmosphere in many ways 

(OCprim) including from fossil fuel emissions (OCff), biomass burning (OCbb) or biological 

particles or plant debris (OCbio). Secondary OC (OCsec) is formed when organic carbon gases 

are oxidised in the atmosphere to form higher polarity and therefore lower volatility reaction 

products that then condense and increase the mass concentration of particulate matter 

(Seinfeld and Pankow, 2003). The sources of carbonaceous particles can be qualitatively 

evaluated by finding the relationship between OC and EC concentrations. If major fractions 

of OC and EC are emitted by a dominant primary source, for example, road transport 

emission, meat cooking and biomass burning, the good correlation between OC and EC 

concentrations should be observed because the relative rates of EC and OC emission would 

be proportional to each other (Na et al., 2004). In this study, the correlations between OC and 

EC in PM2.5, PM2.5-10 and PM10 at EROS and Harwell sites present in Table 3.2. The good 

correlation relationships are found for whole data both in PM2.5 (r = 0.83 and r = 0.86 for 

EROS and Harwell, respectively) and PM10 (r = 0.83 and r = 0.76 for EROS and Harwell, 

respectively). These findings suggest that OC and EC fractions at EROS and Harwell may be 

impacted from local vehicular emission. If the data are sorted by season, it can be seen that a 

poor correlation between OC and EC concentrations are observed in summer at Harwell (r = 

0.48 and r = 0.33 for PM2.5 and PM10, respectively). Similar lower correlation coefficient 

values are seen at EROS for PM2.5 and PM10 in summer comparing to winter. These indicate 

that the influence of other significant primary sources or OCsec, which are formed in higher 

photochemical activity on summer days, may be related source (Strader et al., 1999).  

 

With regard to coarse fractions (PM2.5-10), weak correlation coefficients are observed at both 

sites. It is likely that the coarse OC has arisen largely from processes other than fossil fuel 

combustion for example, in urban areas, the mechanical wear of tyres known as a source of 

supermicrometer OC particles to the atmosphere (Thorpe and Harrison, 2008) including 

particles of biological origin like plant debris, pollen, fungal spores also accumulated in the 

aerosol coarse fraction (Bauer et al., 2002; Matthias-Maser and Jaenicke, 2000). 
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Table 3.2  Correlation coefficients (r) calculated between OC and EC concentration in PM2.5, PM2.5-10 
and PM10 at EROS and Harwell sites 

 
 

PM2.5 PM2.5-10 PM10 

EROS    
Whole 0.83 0.50 0.83 

Summer 0.75 0.37 0.60 
Autumn 0.88 0.50 0.86 
Winter 0.81 0.65 0.82 
Spring 0.67 0.45 0.72 

    
HAR    

Whole 0.86 0.57 0.76 
Summer 0.48 n.a 0.33 
Autumn 0.88 0.52 0.85 

 

The study of relationship between OC and EC mainly used to distinguish OCprim from OCsec 

in atmospheric particles. This classical method is based on the minimum values of OC/EC 

ratios and the concentration of OCsec is estimated from the following equation; 

 

  ECECOCOCOC total ×−= minsec )/(     (Equation 3.1)  

where 

  biobbff OCOCOCOCOC +++= sec     (Equation 3.2) 

and 

  bbff ECECEC +=       (Equation 3.3) 

 

As recently studied by Pio et al. (2011), the OC/EC ratio could be represented as 

 

  ffff ECOCECOC /)/( min ≈      (Equation 3.4) 

 

Under this assumption, the urban areas, principally during winter and the periods of low 

photochemical activity, the contributions of OCbb, OCbio, and the OCsec to the OC aerosol 

fraction may be unimportant, allowing the following simplification; OC ≈ OCff and EC ≈ 

ECff.  

 

In this study, aerosol samples were collected onto quartz filter and it is found that OC 

concentration measured at both sites did not show zero value as presented in Figure 3.6. This 

is probably because there will always be some secondary OC present in atmosphere, even 

when EC concentration are zero. The OC/EC minimum ratio calculated by this method is also 
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influenced by sampling artifacts as well as variability of sampling location, meteorology and 

uncertainty of OC and EC measurement. The adsorption of organic gases referred to a 

positive artefact could result in the overestimation of particulate OC concentrations because 

the adsorbed organics contribute to the total carbon in samples during filter analysis. On the 

contrary, a negative artefact is due to evaporation of organic particles during sample 

collection. The evaporation of collected particles may result in the underestimation of OC 

concentrations (Kirchstetter et al., 2001; Fitz, D.R., 1990). Since the OC/EC minimum lines 

estimated passed through the origin, the artefacts would be negligible and only the analytical 

uncertainty was evaluated in this study. This is because if there is an OC artifact, the 

minimum line would not go through the origin as there would always be OC in samples with 

no EC. The uncertainty of OC/EC minimum ratios was estimated based on propagation of 

error and calculated by the square root of the sum of the squares of individual measurement 

uncertainty of OC and EC. These uncertainties were from repeatability, sensitivity, 

calibration of OC/EC analyser by standard solutions and uncertainty in the volume of particle 

steam. The measurement uncertainties for OC and EC analysis are calculated and estimated 

approximately 7.2% as detailed in Appendix A, then each data points has uncertainty, ��, of  

 

    �� = ��(��)	 + �(��)	    (Equation 3.5) 

 

where, �(��)  and �(��)  are the uncertainties of OC and EC analysis, respectively. 

Therefore, uncertainty of OC/EC line, �(��), calculated as; 

 

    � ���� = �∑ ��	����      (Equation 3.6) 

 

where, n is the number of samples  

 

The plots of OC versus EC at EROS give the OC/EC minimum ratio with uncertainties of 

0.75 ± 0.05 for PM2.5 and 1.20 ± 0.10 for PM10 (Figure 3.6). These observed OC/EC ratios 

are consistent with results reported by Pio et al. (2011) for urban background conditions of 

large urban areas (0.6 – 0.8 in PM2.5) but a higher OC/EC ratio estimated for PM10 (0.8 – 1.1). 

The OC/EC ratio observed in PM10 was higher than those in PM2.5 indicate that EC was only 

associated with incomplete combustion processes, which released into the atmosphere 

carbonaceous compounds mainly in the form of submicron particles (Smekens et al., 2005). 
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On the contrary, the OC/EC ratio at HAR showed very high values (1.80 ± 0.03 and 2.15 ± 

0.05 for PM2.5 and PM10, respectively) as normally observed with the samples from remote 

and rural areas. In order to determine primary and secondary OC, the minimum OC/EC ratio 

value of 0.7 was used for PM2.5 at HAR and 1.0 for PM10 at both sites as giving higher 

confidence because those ratios derived from many data located in different sites across 

Europe. Those results concluded that the pattern of the OC/EC minimum ratio decreased and 

represented by the best fit line of a minimum stable value at high EC median concentration 

(0.7 and 1.0 for PM2.5 and PM10, respectively) (Pio et al., 2011). The results of OCprim and 

OCsec for all data and seasonal calculated based on these minimum OC/EC ratios for PM2.5 

and PM10 appear in Table 3.3. Changes of OC/EC minimum ratio affect the estimation of 

OCsec as shown in Figure 3.7. Positive and negative sampling artifacts observed for the OC 

concentration introduce additional uncertainty in the estimation of secondary OC. There may 

be other possibility to obtain a higher OC/EC ratio such as the contribution of OC from 

primary sources other than fossil fuel combustions in urban environment. Unfortunately, 

there were no measurement data for positive artefacts in this study. However, the influence of 

OC artefacts on the estimates of primary and secondary OC were evaluated based on the 

measurement uncertainty associated with OC/EC ratio. OC artefacts affected the 

concentration of primary and secondary OC in PM2.5 around 7% and 3%, respectively. At 

EROS site, the whole mean secondary OC concentrations were 2.2 ± 0.8 µg m-3 and 3.1 ± 1.6 

µg m-3 for PM2.5 and PM10, respectively. As expected in rural area, the OCsec concentrations 

were observed lower at Harwell sits (1.5 ± 0.7 µg m-3 for PM2.5 and 2.4 ± 0.8 µg m-3 for 

PM10).  
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Figure 3.6  Relationships of organic carbon to elemental carbon in PM2.5 and PM10 at EROS and HAR 
sites 
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Figure 3.6  (continued) 

 

Figure 3.6  (continued) 
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Table 3.3  Primary and secondary OC concentrations (µg m-3) based on the common minimum 
OC/EC ratio in PM2.5 and PM10 at EROS and HAR sites 

Sampling 
site Season N 

Secondary OC  Primary OC 

Mean ± S.D. Range  Mean ± S.D. Range 

PM2.5
*        

EROS Whole 500 2.2 ± 0.8 (71) 0.2 – 12.7  0.9 ± 0.8 <dl – 6.2 

 Summer 116 1.4 ± 0.7 (78) 0.6 – 5.7  0.4 ± 0.3 0.1 – 2.1 

 Autumn 165 2.0 ± 1.6 (67) 0.3 – 12.7  1.0 ± 0.9 0.2 – 6.2 

 Winter 101 3.6 ± 1.7 (73) 1.3 – 8.7  1.3 ± 1.1 <dl – 6.1 

 Spring 118 2.0 ± 1.1 (74) 0.2 – 5.7  0.7 ± 0.5 <dl – 3.0 

        

HAR Whole 107 1.5 ± 0.7 (83) 0.5 – 4.2  0.3 ± 0.3 <dl – 1.3 

 Summer 57 1.3 ± 0.4 (93) 0.5 – 2.2  0.1 ± 0.1 <dl – 0.5 

 Autumn 50 1.7 ± 0.9 (81) 0.7 – 4.2  0.4 ± 0.3 <dl – 1.3 

        

PM10
**        

EROS Whole 500 3.1 ± 1.6 (72) 0.6 – 12.7  1.2 ± 1.1 0.1 – 8.3 

 Summer 116 2.5 ± 1.0 (81) 1.2 – 7.3  0.6 ± 0.4 0.2 – 3.0 

 Autumn 165 3.0 ± 1.6 (67) 1.2 – 12.7  1.5 ± 1.2 0.2 – 8.2 

 Winter 101 4.2 ± 1.8 (70) 1.5 – 10.2  1.8 ± 1.5 0.1 – 8.3 

 Spring 118 2.9 ± 1.3 (76) 0.6 – 6.5  0.9 ± 0.8 0.1 – 4.3 

        

HAR Whole 107 2.4 ± 0.8 (86) 0.8 – 5.9  0.4 ± 0.4 <dl – 2.2 

 Summer 57 2.3 ± 0.7 (92) 0.8 – 4.5  0.2 ± 0.1 <dl – 0.7 

 Autumn 50 2.5 ± 0.9 (81) 1.4 – 5.9  0.6 ± 0.5 0.1 – 2.2 
Note : Percentage of secondary OC in brackets. 
* (OC/EC)min = 0.75 for EROS and (OC/EC)min = 0.70 for Harwell 
** (OC/EC)min = 1.0 at both sites 

 

Figure 3.7  Secondary organic carbon in PM2.5 at EROS estimated using the OC/EC ratio of 0.75, 
while the error bars represent a range of the OC/EC ratio from 0.70 to 0.80 
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transport. This additional OC may be contributed from OCsec, other OCprim sources than fossil 

fuel combustion and biomass burning; and evaporation, oxidation and condensation processes 

affecting organic aerosol loadings and composition in the atmosphere. Therefore, the 

recommended OC/EC minimum ratio, which reflected the composition of vehicle combustion 

emissions, was in the range of 0.3 – 0.4. Table 3.4 summarises the OCprim and OCsec in PM2.5 

and PM10 calculated based on the OC/EC ratio of 0.35 (±0.05). As appeared in this study, the 

calculated OCsec concentrations in PM2.5 slightly increased about 18% and 7% at EROS and 

HAR sites, respectively. In consistent with the higher OCsec concentrations in PM10 were 

observed about 26% and 8% at EROS and HAR sites, respectively. These suggest that there 

are a few more organic compounds from other sources mainly occurred by secondary 

formation in the atmosphere and the impact of sources unrelated to local vehicular emissions. 

The discussions on OCprim and OCsec in following section mainly refer to the concentration 

calculated based on the OC/EC ratio of 0.35. As application of this method of OC/EC 

minimum ratio, OCprim anticipated the same marked inter-seasonal as those in EC. The winter 

showed the highest OCprim concentration in PM2.5 at 0.6 ± 0.5 µg m-3 and the lowest in 

summer at 0.2 ± 0.1 µg m-3 for EROS. This behaviour was consistent with the relationship 

between EC and OCprim and the inverse of the daily mean temperature as plotted in Figure 3.8. 

There is some scatter but EC and OCprim show more a good fit to a linear regression 

especially at EROS (R2 = 0.37). This temperature dependence could be explained by greater 

atmospheric stability and lower mixing depths at lower temperatures leading to poorer 

dispersion characteristics for the primary pollutants. Referring to the sampling in cold months, 

atmospheric stability was evaluated following Pasquill stability classes (Pasquill, 1961). The 

Pasquill stability categories originally defined as extremely unstable (A), moderately unstable 

(B), slightly unstable (C), neutral (D), slightly stable (E) and stable (F) conditions. These 

categories are deteminded from wind speed (at 10 m height above ground) and incoming 

insolation as controlling parameters. The Pasquill stability classes were roughly estimated 

during air sampling in midwinter (22 samples in January 2011). The results show that most 

stability classes appeared in neutral condition (D) during night time and in slightly unstable 

condition (C) during daytime with the wind speed range 1.4 – 6.7 m s-1, suggesting a good 

atmospheric stability and poor dispersion of pollutants in lower temperature. The plots of 

sulphate and nitrate versus mean temperature also include in Figure 3.6 in order to support 

the assumption of volatile loss during the high temperature. Nitrate shows the better 

correlation with inverse temperature than suphate at both sites as the loss of ammonium 

nitrate in the high temperature condition and the relative low temperature favouring 
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ammonium nitrate formation (Allen et al., 1989). It is likely that OCsec and nitrate appear to 

increase as temperature decreases (for EROS, R2 = 0.39 and R2 = 0.24, respectively). OCsec 

concentration data presented much higher in winter at EROS (4.3 ± 2.0 µg m-3 and 5.4 ± 2.4 

µg m-3for PM2.5 and PM10, respectively) than those in summer (1.7 ± 0.8 µg m-3 and 3.0 ± 1.1 

µg m-3 for PM2.5 and PM10, respectively). These results are against the assumption of the 

contribution of lower photochemical reaction in the atmosphere during winter. The 

atmospheric mixing depths are also used to explain as the lower mixing depth during the 

winter may contribute to the higher concentrations of OCsec. The accumulation of OCsec 

precursors and the acceleration of OCsec formation could be observed in the low mixing depth 

conditions especially in the winter (low temperature). In the previous study by Strader et al. 

(1999) on modeling the secondary organic aerosol formation, decreasing the mixing depth by 

a factor of 2 resulted in an increase in the maximum OCsec concentration by 60%. On the 

other hand, increasing the mixing depth by a factor of 2 resulted in a decrease in maximum 

OCsec concentration by 45%. The behaviour of OCsec is closer to nitrate than that of sulphate 

so that it is probably the temperature dependence equilibrium between particulate and vapour 

phase which is driving the temperature dependence of concentration. These results are 

strongly supportive of the previous conclusion reported by Harrison and Yin (2008). 
 

Table 3.4  Primary and secondary OC concentrations (µg m-3) based on the minimum OC/EC ratio in 
PM2.5 and PM10, (OC/EC)min = 0.35 

Sampling 
site 

Season N 
Secondary OC  Primary OC 

Mean ± S.D. Range  Mean ± S.D. Range 
PM2.5

*        
EROS Whole 500 2.6 ± 1.8 (87) 0.3 – 16.0  0.4 ± 0.4 <dl – 2.9 
 Summer 116 1.7 ± 0.8 (89) 0.7 – 6.4  0.2 ± 0.1 0.1 – 1.0 
 Autumn 165 2.5 ± 0.8 (83) 0.8 – 16.0  0.5 ± 0.8 0.1 – 2.9 
 Winter 101 4.3 ± 2.0 (88) 1.7 – 10.1  0.6 ± 0.5 <dl – 2.9 
 Spring 118 2.3 ± 1.2 (88) 0.3 – 5.9  0.3 ± 0.3 <dl – 1.4 
        
HAR Whole 107 1.6 ± 0.8 (94) 0.5 – 4.5  0.1 ± 0.1 <dl – 0.7 
 Summer 57 1.3 ± 0.4 (93) 0.5 – 2.5  0.1 ± 0.0 <dl – 0.2 
 Autumn 50 1.9 ± 1.0 (90) 0.7 – 4..5  0.2 ± 0.2 <dl – 0.7 
        
PM10

**        
EROS Whole 500 3.9 ± 2.1 (91) 0.8 – 18.0  0.4 ± 0.4 <dl – 2.9 
 Summer 116 3.0 ± 1.1 (94) 1.4 – 7.8  0.2 ± 0.1 0.1 – 1.1 
 Autumn 165 3.9 ± 2.2 (89) 1.9 – 18.0  0.5 ± 0.4 0.1 – 2.9 
 Winter 101 5.4 ± 2.4 (90) 2.2 – 14.3  0.6 ± 0.5 <dl – 2.9 
 Spring 118 3.5 ± 1.6 (92) 0.8 – 7.4  0.3 ± 0.3 <dl – 1.5 
        
HAR Whole 107 2.6 ± 1.0 (96) 0.9 – 6.6  0.1 ± 0.1 <dl – 0.8 
 Summer 57 2.4 ± 0.7 (96) 0.9 – 4.7  0.1 ± 0.0 <dl – 0.2 
 Autumn 50 2.9 ± 1.2 (94) 1.4 – 6.6  0.2 ± 0.2 <dl – 0.8 
        

Note: Percentage of secondary OC in brackets. 
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In order to evaluate the contribution of road transport to OCprim and OCsec at both sites, 

correlation analysis was applied to all data between OCprim and OCsec with nitrogen oxides 

(NOx (NOx = NO + NO2)). NOx is formed by the combustions of fuels used in power 

generation, domestic heating and traffic and are mainly emitted as nitric oxide (NO). NO 

reacts with ozone (O3) in the atmosphere to form NO2 known as secondary NO2. Primary 

NO2 emissions are also important and directly emitted from diesel vehicles (especially when 

moving slowly), and can make up as much as 25% of the total NOx emissions from this 

source (AQEG, 2004). In this study, NOx data obtained from Harwell and the Birmingham 

Tyburn site were used as the marker for road traffic. The relationships between OCprim and 

OCsec with NOx were investigated and the results show a significant correlation for PM2.5 (for 

Harwell, r = 0.71 and r = 0.67 for OCprim and OCsec, respectively and for EROS, r = 0.61 and 

r  = 0.45 for OCprim and OCsec, respectively). As would be anticipated, the good relationships 

between OCprim and NOx were found at both sites. 

 

With regard to OCsec, these results are in agreement with local transport being the most 

important source of OCsec as well because good correlations of OCsec with NOx were 

observed in this study. Therefore, the origin of OC in aerosol particle measured in these 

conditions (low photochemical activity, minor contribution of primary sources from OCbb and 

OCbio) may contain OCff plus complementary OC resulting probably from gas-to-particle 

condensation of freshly emitted anthropogenic VOCs and their oxidation products and OCsec  

formed from VOCs emitted by vegetation, OCbio and/or biomass burning, OCbb.(Jones and 

Harrison, 2005; Gelencser, et al., 2007). 
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Figure 3.8  Plots of EC, OCprim, OCsec, sulphate and nitrate in PM2.5 versus daily mean temperature 
(1/K) at EROS and HAR sites collected simultaneously 
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Figure 3.8  (continued) 
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Figure 3.8  (continued) 
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reaction such as the hydroxyl radical (OH), nitrate radical (NO3) and ozone (O3) (Seinfeld 

and Pandis, 1998). 

 

 

Figure 3.9  Monthly average of primary and secondary OC calculated based on OC/EC minimum 
ratio of 0.35 and secondary OC/OC ratio in PM2.5 at EROS 
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EC, OCprim and OC in PM2.5 were difference with p < 0.05 and OCsec were observed with no 

difference (p > 0.05). All carbon compounds (EC, OC, OCprim and OCsec) in PM10 were found 

to be different with p < 0.05. However, as expected, carbonaceous aerosol concentrations 

show higher mean at the urban background than the rural site in all PM size ranges. The local 

contributions of carbonaceous compounds were determined by subtraction of rural (Harwell) 

concentrations from urban background concentrations and the results show in Table 3.6. This 

method used the same assumption as the study by Pakkanen et al. (2001) to estimate the local 

and long-range transport (LRT) contributions of elemental compositions to fine particle. The 

fine particle concentrations are considered to represent the sum of LRT and local 

contributions. The assumption of this method was set that the LRT of components to be 

similar at rural and urban background sites, and the rural site was assumed to represent purely 

LRT compound, consequently the contributions from local sources at the urban background 

site were estimated roughly as the difference between the urban background and the rural 

concentrations. In this assumption, the air mass backward trajectories should be investigated 

as for identifying a good representation of rural site (Harwell) for Birmingham (EROS) site. 

The air masses analysis will be discussed in the chapter 5. 

 

As expected, EC shows a strong local contribution (0.6 µg m-3) in PM2.5 suggesting that local 

emission at EROS site was affected by fuel combustion as EC mostly presented in fine 

fraction. OCsec and OCprim show the lower local contribution (0.4 µg m-3
 and 0.3 µg m-3). In 

order to investigate the significant of local contribution to OCsec, the relationship between 

OCsec and source indicators were applied. Correlation analysis with simultaneous data 

between OCsec and nitrate concentration in PM2.5 showed good correlations at EROS and 

Harwell sites (r = 0.62 and r = 0.75, respectively). Both sites also showed a decrease in 

correlation with sulphate especially at EROS (r = 0.43 and r = 0.66 for EROS and Harwell, 

respectively). In addition to the relationship between OCsec  and daily mean ozone data 

obtained from Harwell (UK- air database) and Birmingham Tyburn for EROS site, the weak 

correlations were observed at both sites ( r = -0.44 and r = -0.37 for EROS and Harwell, 

respectively). These results are strongly supportive of the good correlation between OCsec and 

NOx data mentioned in the previous section. It is likely that the local contribution from road 

transport might be an important effect to OCsec with temperature dependent equilibrium 

between particulate and gaseous phases, as for nitrate strengthening the correlation with this 

ion. 
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Table 3.5  Statistical data of EC, OC, OCprim and OCsec (µg m-3) at EROS and Harwell sites during the 
simultaneous period, (OC/EC)min = 0.35 

 PM2.5  PM2.5-10  PM10 

 Mean ± S.D. Range  Mean± S.D. Range  Mean± S.D. Range 

EROS         

EC 1.0 ± 1.1 0.2 – 8.2  0.04 ± 0.1 <dl – 0.5  1.0 ± 1.1 0.2 – 8.3 

OC 2.3 ± 1.6 0.9 – 12.1  1.2 ± 0.6 0.5 – 5.3  3.5 ± 1.8 1.6 – 13.7 

OCprim 0.4 ± 0.4 0.1 – 2.9  n.a n.a  0.4 ± 0.4 0.1 – 2.9 

OCsec 2.0 ± 1.3 0.7 – 9.2  n.a n.a  3.1 ± 1.5 1.4 – 10.8 

Nitrate 1.61 ± 2.11 <dl – 10.88  0.63 ± 0.64 <dl – 3.29  2.25 ± 2.49 <dl – 12.49 

Sulphate 1.60 ± 1.35 0.32 – 6.48  0.25 ± 0.17 <dl – 0.89  1.85 ± 1.47 0.55 – 7.37 

         

HAR         

EC 0.4 ± 0.4 <dl – 1.9  0.03 ± 0.1 <dl – 0.5  0.4 ± 0.4 <dl – 2.2 

OC 1.8 ± 0.9 0.5 – 4.8  1.0 ± 0.5 0.4 – 3.3  2.8 ± 1.1 1.0 – 7.0 

OCprim 0.1 ± 0.1 <dl – 0.7  n.a n.a  0.1 ± 0.2 <dl – 0.8 

OCsec 1.6 ± 0.8 0.5 – 4.5  n.a n.a  2.7 ± 1.0 0.9 – 6.6 

Nitrate 1.44 ± 2.02 0.03 – 11.65  0.71 ± 0.68 <dl – 3.40  2.16 ± 2.50 0.16 – 14.75 

Sulphate 1.47 ± 1.24 0.05 – 6.76  0.35 ± 0.40 <dl – 2.36  1.82 ± 1.40 0.36 – 7.53 

 

Table 3.6  The local contributions of carbonaceous materials, sulphate and nitrate in PM2.5, PM2.5-10 
and PM10 

Components Local contribution, µg m-3 
PM2.5 PM 2.5-10 PM10 

EC 0.6 0.01 0.6 
OC 0.5 0.2 0.7 

OCprim 0.3 n.a 0.3 
OCsec 0.4 n.a 0.4 
Nitrate 0.17 -0.08 0.09 

Sulphate 0.13 -0.10 0.03 
 

 

The reduced major axis (RMA) method is recommended to use for the regression analysis of 

air quality datasets in order to estimate the influence of local contribution at urban 

background site. This linear fit is achieved by minimising the product of the x and y 

deviations between the data values and fitted values (Ayers, 2001). On the contrary, the 

standard linear regression minimises deviations only in the y direction. The ionic 

compositions data including carbonaceous compounds of particulate matter obtained from 

urban background and rural site were determined the relationship by plotting the former 

versus the latter. The deviations between fitted and measured data value will occur in both x 

and y directions due to random measurement errors. Focusing on PM2.5, Figure 3.10 shows 

the relationships of EC, OC, OCprim and OCsec between EROS and Harwell site and the 
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results of regression analyses are summarized in Table 3.7. In this study, a greater gradient of 

EC (2.72) and OCprim (2.76) with a very small intercept as assumed a zero interception were 

observed. In addition to the high gradients of OC (1.78) and OCsec (1.62), it would be 

interpreted that the local contributions of carbonaceous particles at urban background 

influence their concentrations in the same way as influence at rural site. A high gradient of 

EC and OCprim might be based on the road transportation contributed to urban background 

(EROS) causing very largely of EC and calculated OCprim. Moreover, the relationship for 

OCsec shows more a reasonable fit to the y = x line, it would be interpreted that the average 

concentrations at the two sites for OCsec are broadly similar. This suggests that the selection 

of minimum OC/EC ratio of 0.35 to estimate OCprim and OCsec is appropriate and the OC 

appears mostly as secondary formation. It is consistent with the plot in Figure 3.11 presenting 

the relationship between OC difference and EC difference data collected simultaneously at 

EROS and Harwell. There appear only a few data scattered below minimum ratio line of 

OC/EC = 0.35. In order to evaluate the significant difference of OCsec, the Mann-Whitney U 

test was applied to assess whether any significant difference of OCsec between the two sites as 

mentioned above. The Mann-Whitney U test is a nonparametric test that can be used to 

analyse data from two-group independent groups design when measurement can at least be 

ranked or be ordered. This test evaluates the null hypothesis that two groups of sample come 

from the same population and therefore, because sampling was random, the two groups of 

scores do not differ systematically from each other. Test result indicated that OCsec 

concentrations measured simultaneously at EROS and Harwell were no difference which 

accepted the null hypothesis that there was no difference between the two data sets (p > 0.05). 
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Figure 3.10  Relationships between EROS and Harwell concentrations of EC, OC, primary and 
secondary OC calculated by the OC/EC minimum ratio of 0.35 
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Figure 3.10  (continued) 
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Figure 3.11  Plot of OC difference (∆OC = OCEROS – OCHAR) versus EC difference (∆EC = ECEROS – 
ECHAR) data taken simultaneously between EROS and Harwell 
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Figure 3.12  Time series of OCprim and OCsec concentrations in PM2.5 measured at EROS and Harwell 
sites during the simultaneous period. 
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The correlation analysis was determined between carbonaceous species at EROS and Harwell 

sites in order to investigate the origin of particles. Table 3.8 shows the correlation between 

carbonaceous species analysed in PM2.5, PM2.5-10 and PM10 and data collected simultaneously. 

As OCprim calculated based on OC/EC minimum ratio, the same correlation values of EC 

were showed in all data. The modest correlations of OCprim and EC were observed between 

EROS and Harwell both in PM2.5 and PM10 (r = 0.48 and r = 0.47 for PM2.5 and PM10, 

respectively). This can be attributed to the fact that OCprim and EC mainly contribute from the 

local source especially traffic transportation. A slightly higher correlation coefficient values 

were seen for OC and OCsec between EROS and Harwell sites, with medium correlation of 

OC(r = 0.55 for PM2.5, and r = 0.44 for PM10) followed by the similar correlation of OCsec (r 

= 0.56 for PM2.5 and r = 0.43 for PM10). These findings indicate that OC and OCsec 

concentrations measured at both sites were mainly from regional formation. Moreover, the 

results are strongly supportive of no difference between OCsec at both sites as above 

significant tested. The same behaviour of OC and OCsec concentrations in two sites were 

exhibited. This was because the compositions of OC were highly contributed by OCsec (PM2.5, 

87% and 97% for EROS and Harwell; PM10, 91% and 96% for EROS and Harwell, 

respectively). As expected, a very weak correlation of OC in coarse faction between two sites 

was observed (r = 0.16) indicating that the coarse particles originated from primary emissions 

or local sources.  

 

Table 3.8  Inter-site correlation coefficients (r) calculated between carbonaceous species concentrations 
in PM2.5, PM2.5-10 and PM10 

 EC EROS OC EROS OCprim EROS OCsec EROS 
PM2.5     
EC HAR 0.48 0.53 0.48 0.52 
OC HAR 0.44 0.55 0.44 0.57 
OCprim HAR 0.48 0.53 0.48 0.52 
OCsec HAR 0.42 0.54 0.42 0.56 
     
PM2.5-10     
EC HAR 0.24 0.09 n.a n.a 
OC HAR -0.03 0.16 n.a n.a 
OCprim HAR n.a n.a n.a n.a 
OCsec HAR n.a n.a n.a n.a 
     
PM10     
EC HAR 0.47 0.50 0.47 0.48 
OC HAR 0.34 0.44 0.34 0.45 
OCprim HAR 0.47 0.50 0.47 0.48 
OCsec HAR 0.30 0.42 0.30 0.43 
Values shown in italics are not significant at p < 0.05 (the 95% level of significance). 
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3.4 Conclusions 

 

The concentration of carbonaceous aerosol measured in PM2.5, PM2.5-10 and PM10 samples 

collected from two sampling sites representative of urban background (EROS) and rural 

(Harwell) locations has revealed some interesting and useful data for Birmingham. This is 

one of the most comprehensive speciation studies on OC and EC concentration in airborne 

particulate matter. These data clearly show that EC observed high concentrations at urban 

background comparing with rural site in all size ranges. Maximum EC and OC values in 

winter have been associated to meteorological conditions favorable to pollutant accumulation. 

In case of maximum EC level in winter, this has been associated to less effective dispersion 

process in the low temperature, and for maximum OC concentration, it could be explained by 

the lower atmospheric mixing depth favouring secondary organic aerosol formation and 

accumulation of secondary organic precursors. There are the significant problems of using 

the OC/EC minimum ratio to distinguish between primary and secondary OC such as the 

OC/EC ratio is not consistent from source to source but a number of OC/EC ratios previously 

studied show constant in urban background atmosphere. Those findings indicate that the 

minimum OC/EC ratio still uses as an effective tool to differentiate OC from primary and 

secondary sources. The other significant issue is some additional OC measuring as usual in 

urban background causing higher the OC/EC minimum ratio. This result may overestimate 

the primary OC from vehicle emissions and underestimates OC components from other 

sources especially from secondary formation. Therefore, the OC/EC minimum ratio of 0.35 

have been used in accordance with the recent study by Pio et al. (2011). The selection of this 

minimum ratio is appropriate in this work with two reasons. Firstly, the good fit of OCsec to 

the y = x line for data collected simultaneously between EROS and Harwell sites. This is 

because OCsec with mainly accounting for OC concentration was affected by regional 

contribution. Secondly, the scatter of data of OC difference and EC difference lay above the 

minimum ratio line of OC/EC = 0.35 for simultaneous data. Calculated OCprim and OCsec 

show a winter maximum and the strong correlation with nitrogen oxides (NOx) at both sites 

suggesting that the local transport plays an important source of OCprim and OCsec. In this 

study, the behaviour of OCsec is close to nitrate than that of sulphate consistent with the 

observation made by Harrison and Yin (2008). This indicates that the regional transport and 

temperature have a major influence upon OCsec concentrations. 
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It is seen from data collected simultaneously that EC presents a significant local contribution 

especially in PM2.5 and EC mostly contributed in fine fraction. The reduced major axis (RMA) 

analysis also reveals the local contributions of carbonaceous aerosol at EROS influence their 

concentrations in the same way as at Harwell site. Moreover, as significant tested, it appears 

that there is no difference between OCsec concentration at both sites suggesting a high 

influence or contribution of long-lived species. 
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CHAPTER 4 

INTERPRETATION OF ION COMPONENT COMPOSITION OF 
PARTICULATE MATTER 

 

4.1 Synopsis 

 

The samples collected from EROS and Harwell as mentioned in chapter 3.2 were mainly 

analysed for sulphate, nitrate, chloride and oxalate. This chapter describes the results of those 

chemical analyses, with comparison made between rural and urban background sites. The 

relationships between major components in PM were investigated and discussed to identify 

their sources and possible formation pathways. Focusing on oxalate aerosol, there is rarely 

dataset available in the UK and its precursors have not been exactly identified including its 

formation not well understand. The comparisons between oxalate with sulphate, nitrate and 

chloride were determined as their formation mechanisms have been established. Oxalate 

represented the most abundant water-soluble organic carbon (WSOC) in PM stated in many 

previous studies, therefore the analysis of WSOC in samples collected simultaneously was 

reported in order to better understanding oxalate sources. The possible formation pathway of 

oxalate by in-cloud process and potential precursors are illustrated as the important formation 

of secondary organic aerosols. 

 

4.2 Particulate matter chemical components 

 

Airborne particulate matter (PM) presents a far greater complexity than most other common 

air pollutants. It consists of different chemical substances and individual particles also span a 

wide range of sizes. Both chemical composition and size distribution can identify the sources 

of airborne particles, and these factors also determine the atmospheric behaviour and fate of 

particles as well as influencing human health effects. 

 

Chemical composition of PM varies at different regions due to PM consists of a complex 

mixture of various chemical components which cloud be contributed from different pollution 

sources. In addition to chemical reactions in the atmosphere, long-range transport effect, 

removal processes and meteorological conditions, these factors result in a variation of 

chemical composition in atmospheric aerosol. Their components include neutral and highly 

soluble substances such as (NH4)2SO4, NH4NO3 and NaCl through to sooty particles 
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composed of largely elemental carbon coated in organic compounds, and insoluble minerals 

such as particles of clay (Brook et al, 1997). 

 

Airborne particles contain both major and minor components. The relative abundance of the 

major chemical components, termed as ‘bulk chemical composition’ was reported in the 

study of Harrison and Yin (2000) for urban areas in the UK and around the world. These 

major components include sulphate, nitrate, ammonium, chloride, elemental and organic 

carbon, crustal materials and biological materials. There are many minor chemical 

components present in airborne particles depending on the detection limit, sensitivity of the 

analytical procedure to determine their concentrations. Minor components comprise the 

following; trace metals (lead, cadmium, mercury, nickel, chromium, zinc and manganese) 

which are used in metallurgical processes or in industrial products, trace organic compounds 

as presented at a very low concentration even though the total mass of organic compounds 

comprise a significant part of the overall mass of particles. 

 

In this study, two of the main chemical components of PM in polluted atmospheres  sulphate 

and nitrate  are determined the concentration in aerosol samples. There are both 

photochemical and heterogeneous thermal oxidation pathways from their precursor gases. 

 

Sulphate are found as a combination of H2SO4, ammonium bisulphate (NH4HSO4), 

ammonium sulphate ((NH4)2SO4) and sodium sulphate (Na2SO4) of marine origin (Harrison 

and Pio, 1983). Sulphate is mainly formed within the atmosphere by oxidation of SO2, which 

is itself directly emitted from i.e. fossil fuel combustion, industrial processes, and volcanoes 

or produced within the atmosphere by oxidation of reduced sulphur species such as dimethyl 

sulphide (DMS) emitted by oceanic phytoplankton. Sulphate is expected to be present mostly 

in the fine fraction. The oxidation of SO2 can occur both in gas phase (homogeneous 

processes) (Calvert and Stockwell, 1983) and in the aqueous phase (heterogeneous processes) 

in the presence of cloud, fog or aerosol droplets (Schwartz, 1987). In practice, hydroxyl 

radical usually plays an important oxidant in homogeneous gas phase oxidation of SO2. The 

formation pathway of sulphate occurs via the following equations. 

 

     SO2 + OH + M → HSO3 + M   (Equation 4.1) 

     HSO3 + O2 → SO3 + HO2   (Equation 4.2) 

     SO3 + H2O + M → H2SO4 + M  (Equation 4.3) 
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Where M = N2 or O2. Since SO2 is a highly water-soluble gas, it partitions appreciably into 

the aqueous phase as the following reactions.  

 

     SO2 (g) + H2O ↔ SO2.H2O   (Equation 4.4) 

    SO2.H2O ↔ HSO3
-
 + H+   (Equation 4.5) 

     HSO3
- ↔ SO3

2- + H+    (Equation 4.6) 

 

If hydrogen peroxide and ozone are dissolved in the droplet, the sulphur dioxide is quickly 

oxidized to sulphuric acid. 

 

     H2O2(g) ↔ H2O2(aq)    (Equation 4.7) 

     HSO3
- +  H2O2(aq) +  H+ ↔ SO4

2- + 2H+ +  H2O (Equation4.8) 

     O3(aq) + SO3
2- ↔ O2 + SO4

2-   (Equation 4.9) 

 

Sulphate formed from the oxidation of SO2 is initially in the form of sulphuric acid (H2SO4). 

In gas phase, H2SO4 vapour can nucleate new particles under favorable conditions and can 

grow by condensing water vapour or in the presence of ammonia gas (NH3), becomes 

neutralised as NH4HSO4 or (NH4)2SO4. In aqueous phase, if ammonia is also dissolved in the 

droplet, H2SO4 is also neutralized to NH4HSO4 and (NH4)2SO4. The major sources of NH3 

are from agricultural activities, for example through the use of fertilizers and the disposal of 

animal waste to land. Aqueous transformations rates of sulphur dioxide to sulphate are 10 to 

100 times as fast as gas-phase rates.  

 
Nitrate occurs in the atmosphere due to the formation of nitric acid, which can then form 

particles by reacting with ammonia or sodium chloride. It mainly found as ammonium nitrate 

(NH4NO3) produced from the reaction between gaseous nitric acid with ammonia, which is a 

major component of particle in fine fraction. Nitric oxide (NO) directly emitted into 

atmosphere converts to nitrogen dioxide (NO2) by reaction with ozone. The major pathway to 

form nitric acid is reaction with hydroxyl radicals (Calvert and Stochkwell, 1983). The 

formation of nitric acid in daylight presents as following reaction. 

 

     NO2 + OH → HNO3    (Equation 4.10) 
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This reaction also provides a significant loss mechanism for OH under polluted conditions. 

The rate of oxidation of NO2 is faster than the rate of sulphate formation from SO2 during the 

high daytime OH. At night-time the rate of production of OH drops and other mechanisms 

will occur as equation 4.11. This process only occurs at night as the nitrate radical is readily 

photolysed during the day. 

 

     NO2 + O3 → NO3 + O2   (Equation 4.11) 

 

NO3 radical further reacts with NO2 to form nitric acid by the pathways through dinitrogen 

pentoxide (N2O5). N2O5 is thermally unstable and decomposes back to NO2 and NO3, 

building up an equilibrium. 

 

     NO3 + NO2 ↔ N2O5    (Equation 4.12) 

     N2O5 + H2O ↔ 2HNO3   (Equation 4.13) 

 

NO3 also reacts with a number of volatile organic compounds (VOC) to form nitric acid and 

organic products as; 

 

     NO3 + RH → HNO3 + R   (Equation 4.14) 

 

where RH is volatile organic compounds and R is organic product. 

 

Although HNO3, NH4NO3 and N2O5 all have relatively low volatilities compared with NOx, 

they are unable to undergo homogeneous nucleation. Instead, they attach themselves to pre-

existing particles to undergo heterogeneous nucleation. The particulate nitrate can produce by 

the reaction of HNO3 with ammonia and sodium chloride. The coarse mode nitrate which is 

predominant in the marine atmosphere generate by the reaction of nitric acid and sea salt via 

the following equation. 

 

    HNO3 (g) + NaCl (aq) → NaNO3 (aq) + HCl (g) (Equation 4.15) 

 

Or through nitrogen pentoxide, 
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   N2O5 (g) + 2NaCl (aq) + H2O → 2NaNO3 (aq) + 2HCl (g) (Equation 4.16) 

 

Ammonium sulphate is a fairly stable compound found in particulate phase but ammonium 

nitrate is not. The equilibrium of gaseous ammonia and nitric acid is strongly influenced by 

temperature and relative humidity. Russell et al. (1983) show that lower temperatures and 

higher relative humidities favor ammonium nitrate in particulate phase. 

 

Chloride is the other major anion in atmospheric aerosols and also analysed in this work. 

Contributions are also primary emissions from sea salt and also possible during the winter 

months by road deicing salt. These contribute mostly to chloride in coarse particles. Chloride 

may be also produced by secondary formation and observed in the form of ammonium 

chloride derived from the reaction of ammonia and hydrochloric acid (HCl) vapour emitted 

from combustion sources such as incinerators and power plants. In the UK, it is likely to be 

of modest importance due to low concentration of its precursor, HCl. Under normal 

atmosphere, ammonium nitrate and ammonium chloride are unstable existing in the 

reversible phase equilibrium with the gaseous precursors. Theses equilibrium are mainly 

controlled by atmospheric temperature and relative humidity. 

 

With regard to OCsec mentioned in chapter 3.3.2, some part of OCsec is water-soluble because 

they have polar functional groups (e.g. hydroxyl, carbonyl, and carboxyl) produced by the 

photochemical reaction. OCsec can be considered to be water-soluble organic carbon (WSOC). 

WSOC, therefore, represented a significant water-soluble component of the atmospheric 

aerosol and accounted for approximately 20% to 67% of the total particulate carbon in the 

atmosphere (Muller et al., 1982, Zappoli et al., 1999; Krivacsy et al., 2001; Yang et al. 2003; 

Wang et al., 2005; Fosco and Schmeling, 2007). Much research work has shown that WSOC 

had potential to act as cloud condensation nuclei (CCN) (Novakov and Penner, 1993; Yu, 

2000; Mircea et al., 2002; Yao et al., 2002) and also reduced surface tension of CCN, which 

is one of the parameters determining cloud formation (Facchini et al., 1999). Measurement of 

the WSOC concentrations is necessary for quantifying the relative contribution of individual 

water-soluble organic components to the total WSOC mass and assessing the need for 

identifying additional water-soluble components. The method used for determining WSOC 

concentration is described in chapter 2.5.2. Only aerosol samples collected simultaneously 

between EROS and Harwell sites were analysed for WSOC concentrations. 
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The most abundant class of the identified water soluble organic compounds in the 

atmospheric aerosol is usually the class of the dicarboxylic acids (DCA) which can be 

responsible for 5 – 20% of the total WSOC in urban areas (Sempere and Kawamura, 1994). 

However, at rural continental sites, the fraction of DCA in the WSOC was found to be <2% 

(Sarvari et al., 1999). Oxalic acid and/or oxalate is the most abundant dicarboxylic acids 

followed by malonic and succinic acids (Kawamura and Ikushima, 1993; Kawamura and 

Usukura, 1993; Yao et al., 2002) and shows a strong correlation between CCN and its 

concentration, suggesting that it may play a role in activating CCN (Yu, 2000; Sun and Ariya, 

2006). Oxalate is greatly present in particulate phase in the ambient atmosphere due to the 

lower volatility compared to formic and acetic acids, which are the main monocarboxylic 

acids (MCA) present in the gas phase (Chebbi and Carlier, 1996). Kawamura and Kaplan 

(1987) found that the diacids (C2-C10) were mostly associated with particles but a minor 

fraction of these compounds have been sampled in vapour phase. The concentrations of 

oxalic acid and/or oxalate range from several ng m-3 up to a thousand ng m-3 (or a few tens of 

pmol m-3 to a few tens of nmol m-3) depending on location. Oxalic acid and/or oxalate was 

reported to constitute up to 86% of total DCA in urban PM10 and up to 65% of the total DCA 

in PM2.5 fraction (Wang et al., 2002). Concentration of oxalic acid and/or oxalate shows 

seasonal variation with a maximum in summer (Kawamura and Ikushima, 1993; Sempere and 

Kawamura, 1994). 

 

Currently in the UK, no work has been reported on measurement and source of oxalic acid 

and/or oxalate in particulate matter. Therefore, this study also intend to analyse daily aerosol 

samples collected both EROS and Harwell sits in order to obtain a number of oxalate 

concentration data. This dataset of oxalate was used in comparison with the major chemical 

components in ambient atmosphere. We aim to better understanding of sources and the 

formation pathway of oxalate in aerosol. 
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4.3 Atmospheric aerosol concentrations in urban background and rural sites 

 

As appeared in Table 3.1, the results are presented in terms of the major chemical 

constituents in PM2.5, PM2.5-10 and PM10 at EROS and Harwell sites. The composition of PM 

at both sites is seen to be dominated by carbonaceous materials which are interpreted in 

chapter 3. The aerosol component concentrations discussed hereafter are from the measured 

chemical species including sulphate, nitrate, chloride and oxalate. For PM2.5, the whole mean 

concentrations of sulphate with measurement uncertainties were 1.86 ± 0.06 µg m-3 and 1.40 

± 0.05 µg m-3 at EROS and Harwell, respectively. For PM10, the whole mean concentrations 

of sulphate with measurement uncertainties were 2.13 ± 0.07 µg m-3 and 1.69 ± 0.06 µg m-3 at 

EROS and Harwell, respectively. The highest concentration was measured in spring, whereas 

the lowest was found in summer at EROS. Nitrate was present in all fractions at both sites, 

with a higher contribution in spring at EROS (for PM2.5, PM2.5-10 and PM10; 4.80 ± 0.16 µg 

m-3, 1.09 ± 0.04 µg m-3 and 5.88 ± 0.20 µg m-3, respectively). These finding of seasonal 

observation both sulphate and nitrate were in agreement with the measurement at Belfast and 

North Kensington in the UK studied by Abdalmogith and Harrison (2006). Moreover, the 

concentrations of secondary aerosols at Harwell site in those report also showed similar 

seasonal patterns to this study with autumn higher than summer. As anticipated, the coarse 

(PM2.5-10) fraction was found the highest ion component of chloride whole concentration of 

0.83 ± 0.03 µg m-3 at EROS and the PM2.5-10 is dominated by the chloride (the whole 

concentration of 0.61 ± 0.02 µg m-3) at Harwell. It should be noted that chloride in fine 

fraction also measured high concentration at EROS (0.73 ± 0.02 µg m-3 for whole data), 

suggesting that there might be the importance of anthropogenic sources. The whole mean 

concentrations of oxalate with measurement uncertainties at EROS were 0.05 ± 0.002 µg m-3 

in PM2.5, 0.02 ± 0.001 µg m-3 in PM2.5-10 and 0.06 ± 0.002 µg m-3 in PM10. Considering the 

concentration level of oxalate, there observed in range with the comparison to the results 

reported by Khwaja (1995), Tran et al. (2000), Limbeck et al. (2001), Rohrl and Lammel 

(2001), Huang et al. (2006), Fosco and Schmeling (2007) and Agarwal (2010). The time 

series of sulphate, nitrate, chloride and oxalate in fine fraction at EROS and Harwell sites are 

shown in Figure 4.1. It is likely that the temporal variation of ionic species in PM was 

dominant comparing with the spatial variation. 

 

 



 96 

(a) 

 

 

 

(b) 

 

 

Figure 4.1  Time series of (a) sulphate, (b) nitrate, (c) chloride and (d) oxalate concentrations in PM2.5 

measured at EROS and Harwell sites 
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(c) 

 

 

 

(d) 

 

 

Figure 4.1  (continued) 
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As ionic components data split into four seasons during the period of November 2008 to 

April 2011 at EROS (Table 3.1 and Figure 3.4), the significant differences in aerosol 

concentration between the seasons were determined by applying the statistical test. The 

number of data in whole, summer, autumn, winter and spring were 500 samples, 116 samples, 

165 samples, 101 samples and 118 samples, respectively. The Kruskal-Wallis nonparametric 

test can be used to assess whether any significant differences between k independent samples. 

It is used for comparing more than two samples. The test assumes that the measurement data 

are at least on an ordinal scale and that underlying variable has a continuous distribution. The 

null hypothesis is that the k samples come from the same population, or that their underlying 

distributions have the same average. When the Kruskal-Wallis test leads to significant results, 

then at least one of the samples is different from the other samples. In this data, test results 

indicate significant differences for each sulphate, nitrate, chloride and oxalate concentrations 

between the four seasons (p ≤ 0.05). It is clear that sulphate, nitrate and chloride in fine 

fraction observed low in summer months suggesting the atmospheric mixing depth played an 

important factor on aerosol concentrations at EROS site. For chloride, the mean concentration 

in PM2.5 and PM10 observed high in the winter and low in the summer as expected due to 

generally much wind speeds in winter leading to greater generation of marine aerosol. 

Seasonal trend for particulate oxalate does not show through so clearly but the concentration 

level revealed highest in spring. 

 

4.3.1 Relationships between major component composition in PM 

 

The correlation analysis was determined between aerosol species at EROS sites in order to 

investigate the origin of particles. The Pearson’s correlation coefficient (r) was calculated to 

measure the association between two species. Table 4.1 shows the correlation between major 

components analysed in PM2.5, PM2.5-10 and PM10 in whole, summer, autumn, winter and 

spring at EROS. 
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Table 4.1  Correlations (r) calculated between analysed species in PM2.5, PM2.5-10 and PM10 at EROS 
during the period from November 2008 to April 2011 

  SO4
2- NO3

- Cl- C2O4
2- OC EC 

Whole       
PM2.5       

NO3
- 0.72      

Cl- 0.31 0.19     
C2O4

2- 0.60 0.48 0.27    
OC 0.44 0.45 0.27 0.23   
EC 0.28 0.32 0.22 0.07 0.83  
OCsec 0.45 0.46 0.27 0.25 0.99 0.76 

       
PM2.5-10       

NO3
- 0.53      

Cl- 0.33 -0.09     
C2O4

2- 0.29 0.35 -0.05    
OC 0.02 0.14 0.06 0.12   
EC 0.17 0.25 0.06 -0.09 0.50 1.00 
OCsec n.a. n.a. n.a. n.a. n.a. n.a. 
       

PM10       
NO3

- 0.73      
Cl- 0.12 -0.05     
C2O4

2- 0.59 0.49 0.11    
OC 0.39 0.42 0.05 0.17   
EC 0.29 0.33 0.01 0.04 0.83  
OCsec 0.40 0.42 0.05 0.19 0.99 0.76 
       

Summer       
PM2.5       

NO3
- 0.72      

Cl- 0.36 0.42     
C2O4

2- 0.70 0.79 0.48    
OC 0.44 0.50 0.12 0.55   
EC 0.35 0.49 0.03 0.40 0.75  
OCsec 0.44 0.48 0.13 0.54 0.99 0.67 

       
PM2.5-10       

NO3
- 0.58      

Cl- 0.46 -0.06     
C2O4

2- 0.45 0.49 0.00    
OC 0.06 0.09 -0.06 0.32   
EC 0.11 0.10 -0.30 0.21 0.37 1.00 
OCsec n.a. n.a. n.a. n.a. n.a. n.a. 
       

PM10       
NO3

- 0.79      
Cl- 0.09 0.09     
C2O4

2- 0.69 0.78 0.17    
OC 0.39 0.48 -0.05 0.50   
EC 0.38 0.55 -0.15 0.41 0.60  
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Table 4.1  (continued) 
  SO4

2- NO3
- Cl- C2O4

2- OC EC 

OCsec 0.37 0.45 -0.03 0.49 1.00 0.52 
       

Autumn       
PM2.5       

NO3
- 0.70      

Cl- 0.23 0.12     
C2O4

2- 0.42 0.13 -0.07    
OC 0.40 0.46 0.24 0.17   
EC 0.34 0.45 0.21 0.06 0.88  
OCsec 0.40 0.44 0.24 0.19 0.99 0.82 

       
PM2.5-10       

NO3
- 0.48      

Cl- 0.22 -0.22     
C2O4

2- 0.53 0.43 -0.06    
OC -0.02 0.04 0.20 0.11   
EC 0.14 0.34 0.11 0.05 0.50 1.00 
OCsec n.a. n.a. n.a. n.a. n.a. n.a. 
       

PM10       
NO3

- 0.72      
Cl- 0.02 -0.24     
C2O4

2- 0.48 0.27 0.05    
OC 0.38 0.38 -0.02 0.25   
EC 0.32 0.41 -0.10 0.07 0.86  
OCsec 0.38 0.36 -0.01 0.28 0.99 0.80 
       

Winter       
PM2.5       

NO3
- 0.73      

Cl- 0.53 0.35     
C2O4

2- 0.58 0.38 0.66    
OC 0.45 0.54 0.39 0.28   
EC 0.31 0.40 0.36 0.12 0.81  
OCsec 0.46 0.54 0.37 0.30 0.99 0.71 

       
PM2.5-10       

NO3
- 0.39      

Cl- 0.31 0.03     
C2O4

2- -0.07 0.18 -0.07    
OC 0.00 0.17 0.03 0.30   
EC 0.25 0.21 -0.05 -0.11 0.65 1.00 
OCsec n.a. n.a. n.a. n.a. n.a. n.a. 
       

PM10       
NO3

- 0.72      
Cl- 0.20 -0.01     
C2O4

2- 0.55 0.38 0.43    
OC 0.38 0.51 0.12 0.26   
EC 0.33 0.44 0.06 0.13 0.82  
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Table 4.1  (continued) 
  SO4

2- NO3
- Cl- C2O4

2- OC EC 

OCsec 0.37 0.50 0.13 0.27 0.99 0.74 
       

Spring       
PM2.5       

NO3
- 0.76      

Cl- -0.01 -0.17     
C2O4

2- 0.63 0.47 -0.03    
OC 0.57 0.68 -0.41 0.33   
EC 0.22 0.40 -0.21 0.08 0.67  
OCsec 0.60 0.68 -0.42 0.35 0.99 0.55 

       
PM2.5-10       

NO3
- 0.54      

Cl- 0.34 -0.13     
C2O4

2- 0.33 0.22 0.06    
OC 0.14 0.39 -0.03 -0.32   
EC 0.27 0.42 0.02 -0.25 0.45 1.00 
OCsec n.a. n.a. n.a. n.a. n.a. n.a. 
       

PM10       
NO3

- 0.75      
Cl- -0.06 -0.32     
C2O4

2- 0.63 0.48 -0.15    
OC 0.49 0.66 -0.40 0.19   
EC 0.27 0.44 -0.34 0.07 0.72  
OCsec 0.50 0.66 -0.39 0.20 0.99 0.63 

 Values shown in italics are not significant at p < 0.05 (the 95% level of significance). 

 

Sulphate both in PM2.5 and PM10 show strong correlation with nitrate during the sampling 

period (for PM2.5; r = 0.72, r = 0.72, r = 0.70, r = 0.73, r = 0.76 and for PM10; r = 0.73, r = 

0.79, r = 0.72, r = 0.72, r = 0.75 in whole, summer, autumn, winter and spring, respectively), 

whereas  modest correlations are observed in coarse fraction (for PM2.5-10; r = 0.53, r = 0.58, 

r = 0.48, r = 0.39 and r = 0.54 in whole, summer, autumn, winter and spring, respectively). 

The good relationships between sulphate and nitrate consistent with results reported by 

Arimoto et al. (1996), Hu et al. (2002), Abdalmogith and Harrison (2006) and Murillo et al. 

(2010). These findings could be attributed to the fact that two species undergo similar 

formation and removal processes in atmosphere. The weak correlations between aerosol 

chloride with sulphate, nitrate and oxalate in PM are consistently seen in this study together 

with the higher correlation coefficients observed during the winter. It is clear that the 

common source is expected to be marine aerosol with very much wind speed in winter. 
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4.3.2 Relationships between oxalate and major component composition in PM 

 

Oxalate in PM2.5 and PM10 show the modest correlation higher r value with sulphate (r = 0.60 

and r = 0.59, respectively) than with nitrate (r = 0.48 and r = 0.49, respectively) in whole 

period at EROS. These results suggest that oxalate originated from similar atmospheric 

processes as sulphate i.e., from secondary formation. The good relationships of oxalate with 

sulphate consistent with results reported by Kerminen et al. (2000), Yao et al. (2003) and Yu 

et al. (2005). Moreover, the strong relationships of oxalate with sulphate and nitrate are also 

observed in summer (for PM2.5, r = 0.70 and r = 0.79, respectively; for PM10, r = 0.69 and r = 

0.78, respectively). With regard to the form of oxalate in particulate phase, the semi-volatile 

behaviour such as in form of ammonium oxalate would expect to be appeared in oxalate 

particle. The good correlations between oxalate and nitrate anticipated that the temperature 

affected the oxalate concentration as nitrate mostly presented as ammonium nitrate which 

was the temperature dependence. The equilibrium between particulate nitrate and vapour 

phase is affected by temperature and consequently, if oxalate formed as ammonium oxalate, 

it may predict the observed temperature dependence behaviour of the oxalate aerosol. The 

further experiment of air sampling under ammonia gas atmosphere will be discussed more in 

chapter 6. In this study, there were weak correlations between oxalate and chloride (in whole 

period; r = 0.27, r = -0.05 and r = 0.11 for PM2.5, PM2.5-10 and PM10, respectively) indicating 

that a contribution from sea spray or coal burning during the winter was not expected to 

effect on oxalate concentration. As EC is a primary pollutant derived from incomplete 

combustion of fuels in transportation, heating, power generation, and wood in residential 

heating and agriculture, the mean oxalate concentration in whole data at EROS had a very 

weak correlations with EC in PM2.5, PM2.5-10 and PM10 (r = 0.07, r = -0.09 and r = 0.04, 

respectively). These were anticipated as a result of its different production sources. The 

similar observation was reported by the works of Yao et al. (2004) and Yu et al. (2005), 

which clearly indicated a little contribution of vehicular emissions to ambient oxalic acid. 

 

Oxalate in coarse particle show a modest correlation with nitrate and sulphate in summer (r = 

0.49 and r = 0.45, respectively). Coarse oxalate probably caused via the gas-phase oxalic acid 

reacting with the pre-existing particles and it may also be formed by heterogeneous 

mechanisms with additional precursors other than oxalic acid. However, for the entire data, 

oxalate in coarse mode appeared the weak correlations with the other ionic species. The 

general assumption is that oxalate in ambient air is formed in the aqueous phase and therefore 
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the coarse mode oxalate can be produced by aqueous phase process. Russell and Seinfeld 

(1998) have also proposed that the supermicron particles can be formed by in-cloud processes. 

The previous studies by Dutton and Evans (1996) and Gadd (1999) stated that oxalate was a 

by-product of the hydrolysis of oxaloacetate from citric acid and glyoxylate via the metabolic 

mechanism of fungi in the soil. This could be the significant source of oxalate in coarse mode 

from soil particles.  

 

Figure 4.2 to Figure 4.5 show a graphical representation of relationships between oxalate and 

sulphate and nitrate in PM2.5 at EROS and Harwell sites. 
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Figure 4.2  Relationship between oxalate and sulphate concentrations in PM2.5 measured at EROS 
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Figure 4.3  Relationship between oxalate and sulphate concentrations in PM2.5 measured at Harwell 
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Figure 4.4  Relationship between oxalate and nitrate concentrations in PM2.5 measured at EROS 
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Figure 4.5  Relationship between oxalate and nitrate concentrations in PM2.5 measured at Harwell 
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In order to investigate the secondary sources of oxalate aerosol, the relationships between 

oxalate and secondary OC are determined and the plots of oxalate versus OCsec in PM2.5 at 

EROS and Harwell show in Figure 4.6 and Figure 4.7, respectively. The highest regression 

coefficient and the modest correlation of oxalate with OCsec was found in PM2.5 at EROS (r = 

0.54) during summer as the favouring of secondary OC formation by photooxidation process. 

This is in agreement with the study reported by Kawamura and Ikushima (1993) and Sempere 

and Kawamura (1994).  
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Figure 4.6  Relationship between oxalate and secondary OC concentrations in PM2.5 measured at EROS 
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Figure 4.7  Relationship between oxalate and secondary OC concentrations in PM2.5 measured at 
Harwell 
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4.3.3 The ratios calculated between major component composition in PM 

 

As the fluctuation in temperature, relative humidity, meteorology, oxidant levels and the 

degree of long-range transport, the variations of chemical component ratios in particulate 

matter will be observed in different sampling sites and samples collecting period. The whole 

average sulphate-to-nitrate ratios at EROS were 0.68, 0.37 and 0.62 for PM2.5, PM2.5-10 and 

PM10, respectively and at Harwell were 1.09, 0.39 and 0.85 for PM2.5, PM2.5-10 and PM10, 

respectively (Table 4.2). In comparison between seasons, the highest SO4
2-/NO3

- ratio for 

PM2.5 and PM10 at both sites were seen during the summer (at EROS; 1.58 and 1.08 for PM2.5 

and PM10, respectively; at Harwell; 2.11 and 1.25 for PM2.5 and PM10, respectively), 

suggesting that the production of sulphate aerosol by photochemical oxidation of the 

atmosphere (aqueous oxidation) slightly reflected on its concentration but there was the 

significant of volatile loss of nitrate aerosol as ammonium nitrate during high temperature. 

Moreover, SO4
2-/NO3

- ratios were extremely high for PM2.5 in summer (1.58 and 2.11 at 

EROS and Harwell, respectively), indicating that the suphate aerosol was more stable than 

nitrate aerosol during long-rang transport. These results also observed in the study of 

Abdalmogith and Harrison (2006).  

 

The whole mean chloride-to-nitrate ratios were 0.27, 1.11 and 0.45 for PM2.5, PM2.5-10 and 

PM10, respectively at EROS and were 0.18, 0.80 and 0.42 for PM2.5, PM2.5-10 and PM10, 

respectively at Harwell. As expected at both sites, the Cl-/NO3
- ratios presented high in coarse 

fraction because the major source of chloride in coarse fraction mostly contributed from sea 

spray which can be transported from the sea to rural and urban areas (Gustafsson and Franzen, 

2000). Chloride is normally associated with sodium. The average Cl-/NO3
- ratio is also 

observed high in coarse particle during the winter (1.63) causing by fast back trajectories pass 

over the marine atmosphere before arriving at this site (detailed in chapter 5). In addition, the 

contribution from coal burning in the winter would be considered. 

 

The variations of the oxalate-to-sulphate ratio and the oxalate-to-nitrate ratio were not clearly 

observed in this study at EROS. For the coarse fraction, it should be noted that the C2O4
2-

/SO4
2- ratio appeared high in summer (0.09) and oxalate did not present in winter at EROS as 

the observed C2O4
2-/SO4

2- ratio of 0, suggesting that oxalate in coarse fraction could be 

generated by the photochemical reaction in high temperature condition. At Harwell, the 

C2O4
2-/SO4

2- ratios in PM2.5, PM2.5-10 and PM10 revealed high during the summer (0.02, 0.17 
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and 0.04, respectively). In addition, the C2O4
2-/NO3

- ratios of PM2.5, PM2.5-10 and PM10 in 

summer were dominant values of 0.04, 0.06 and 0.05, respectively. Since Harwell is a rural 

site, these results indicating that the contribution of oxalate during the summer by 

photochemical oxidation was a significant source. The dissociation of oxalate compounds (as 

expected in the form of ammonium salt) in atmosphere may also play an important role to 

contribute its concentration during the high temperature. As nitrate in the form of ammonium 

nitrate represented the temperature dependence, the good correlation coefficients of oxalate 

with nitrate were observed in summer (Table 4.1; r = 0.79 and r = 0.78 for PM2.5 and PM10, 

respectively). It is likely that the rate of dissociation of aerosol nitrate was higher than 

particulate oxalate with evidence on the high ratios of the oxalate-to-nitrate found in airborne 

PM during summer. 

 

Table 4.2  Mean SO4
2-/NO3

-, Cl-/NO3
-, C2O4

2-/SO4
2- and C2O4

2-/NO3
- ratios at the two sampling sites 

 N Mean   Mean   Mean   Mean  

  SO4
2-/NO3

- Ratio  Cl-/NO3
- Ratio  C2O4

2- 

/SO4
2- 

Ratio  C2O4
2- 

/NO3
- 

Ratio 

EROS             

PM2.5             

Whole 500 1.86/2.72 0.68  0.73/2.72 0.27  0.05/1.86 0.03  0.05/2.72 0.02 

Summer 116 1.45/0.92 1.58  0.37/0.92 0.40  0.03/1.45 0.02  0.03/0.92 0.03 

Autumn 165 1.57/1.75 0.90  0.53/1.75 0.30  0.03/1.57 0.02  0.03/1.75 0.02 

Winter 101 2.25/3.97 0.57  1.25/3.97 0.31  0.05/2.25 0.02  0.05/3.97 0.01 

Spring 118 2.32/4.80 0.48  0.93/4.80 0.19  0.07/2.32 0.03  0.07/4.80 0.01 

             

PM2.5-10             

Whole 500 0.28/0.75 0.37  0.83/0.75 1.11  0.02/0.28 0.07  0.02/0.75 0.03 

Summer 116 0.22/0.62 0.35  0.53/0.62 0.85  0.02/0.22 0.09  0.02/0.62 0.03 

Autumn 165 0.27/0.72 0.38  0.93/0.72 1.29  0.02/0.27 0.07  0.02/0.72 0.03 

Winter 101 0.27/0.54 0.50  0.88/0.54 1.63  0.00/0.27 0.00  0.00/0.54 0.00 

Spring 118 0.36/1.09 0.33  0.95/1.09 0.87  0.02/0.36 0.06  0.02/1.09 0.02 

             

PM10             

Whole 500 2.13/3.46 0.62  1.56/3.46 0.45  0.06/2.13 0.03  0.06/3.46 0.02 

Summer 116 1.67/1.54 1.08  0.90/1.54 0.58  0.05/1.67 0.03  0.05/1.54 0.03 

Autumn 165 1.82/2.44 0.75  1.45/2.44 0.59  0.04/1.82 0.02  0.04/2.44 0.02 

Winter 101 2.52/4.48 0.56  2.12/4.48 0.47  0.05/2.52 0.02  0.05/4.48 0.01 

Spring 118 2.67/5.88 0.45  1.87/5.88 0.32  0.09/2.67 0.03  0.09/5.88 0.02 

             

HAR             

PM2.5             

Whole 107 1.40/1.29 1.09  0.23/1.29 0.18  0.02/1.40 0.01  0.02/1.29 0.02 

Summer 57 1.20/0.57 2.11  0.17/0.57 0.30  0.02/1.20 0.02  0.02/0.57 0.04 

Autumn 50 1.62/2.10 0.77  0.30/2.10 0.14  0.02/1.62 0.01  0.02/2.10 0.01 
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Table 4.2  (continued) 
 N Mean   Mean   Mean   Mean  

  SO4
2-/NO3

- Ratio  Cl-/NO3
- Ratio  C2O4

2- 

/SO4
2- 

Ratio  C2O4
2- 

/NO3
- 

Ratio 

             

PM2.5-10             

Whole 107 0.30/0.76 0.39  0.61/0.76 0.80  0.02/0.30 0.07  0.02/0.76 0.03 

Summer 57 0.18/0.52 0.35  0.50/0.52 0.96  0.03/0.18 0.17  0.03/0.52 0.06 

Autumn 50 0.43/1.08 0.40  0.74/1.08 0.69  0.01/0.43 0.02  0.01/1.08 0.01 

             

PM10             

Whole 107 1.69/2.00 0.85  0.84/2.00 0.42  0.04/1.69 0.02  0.04/2.00 0.02 

Summer 57 1.38/1.10 1.25  0.67/1.10 0.61  0.05/1.38 0.04  0.05/1.10 0.05 

Autumn 50 2.04/3.02 0.68  1.04/3.02 0.34  0.03/2.04 0.01  0.03/3.02 0.01 

 

4.4 Interpretation of ion species in PM between sites 

 

The major ion species interested were sulphate, nitrate, chloride and oxalate measured in 

aerosol samples collected simultaneously. As mentioned in 4.2 about the importance of 

oxalate in activating CCN, its component also plays a good indicator for water-soluble 

organic carbon (WSOC), which is a significant portion of organic carbon as well as OCsec in 

PM (Huang et al., 2006). In this study, water-extractable organic carbon taken by the method 

referred in chapter 2 is regarded as WSOC. The method efficiency was examined by the plot 

of all measured data of WSOC versus organic carbon in fine fraction (both at EROS and 

Harwell) showing the good correlation with R2 of 0.86 (Figure 4.8). Typically, WSOC 

constitute a substantial fraction of OC and account for 20 – 80% of particulate OC (Saxena 

and Hildemann, 1996). Consequently, the completion of procedure for water extracted should 

be evaluated by the good relationship observed between OC and WSOC in aerosol samples. 

The percentage contributions of WSOC to OC at EROS and Harwell were 75% and 72%, 

respectively. It is likely that the formation mechanism of WSOC can be suggested for the 

secondary pathway with discussions later in comparison with OCsec. 
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Figure 4.8  Plot of all data of WSOC versus organic carbon concentrations measured at EROS and 
Harwell 
 

 

Figure 4.9  Relationships between WSOC and secondary organic carbon concentrations in PM2.5 
measured at EROS and Harwell 
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The concentration data of major anionic species including OCsec and WSOC in PM2.5, PM2.5-

10 and PM10 at EROS and Harwell sites appear in Table 4.3 in term of mean and range. With 

regard to fine fraction, the inter-site differences of SO4
2-, NO3

-, Cl-, C2O4
2-, OCsec and WSOC 

are 8%, 11%, 26%, 0%, 22% and 27%, respectively. For PM10, the inter-site differences of 

SO4
2-, NO3

-, Cl-, C2O4
2- and OCsec are 2%, 4%, 3%, 29% and 14%, respectively. The Mann-

Whitney U test was applied in order to evaluate the significant difference between the two 

sites. Test results indicated that SO4
2-, NO3

-, C2O4
2- and OCsec concentrations measured in 

PM2.5 simultaneously at EROS and Harwell were no difference with p > 0.05. There were the 

differences of Cl- and WSOC concentrations in fine particle between the two sites (p < 0.05). 

The same calculation in order to quantify the influence of local contribution on secondary 

aerosol formation was applied by subtraction of Harwell concentrations representing rural 

site from EROS concentrations representing urban background site (as mentioned in 3.3.3). 

The results of local contribution show in Table 4.4. The lower local contributions were 

observed in fine sulphate, nitrate and chloride in this study (0.13 µg m-3, 0.17 µg m-3 and 0.08 

µg m-3, respectively), suggesting that the secondary formations by oxidation in atmosphere 

mostly effected in these species. There is no difference mean concentration of oxalate in 

PM2.5 between both sites. This finding is strongly supportive the formation of oxalate by 

photochemical transformations of precursors in the atmosphere with long-lived species. 

Backward air trajectories arriving at both sites are determined in the following chapter in 

order to investigate the reflection of regional contribution. 

 

The mean concentrations of WSOC in PM2.5 at EROS and Harwell sites are 1.7 ± 1.0 µg m-3 

and 1.3 ± 0.8 µg m-3, respectively. The ratios of WSOC-to-secondary OC at both site do not 

show significant difference and present high percentage contributions to OCsec (0.9 ± 0.2 and 

0.8 ± 0.2 for EROS and Harwell, respectively) including the very good correlations between 

WSOC and OCsec within sampling site (r = 0.94 for PM2.5 at both sites) (Table 4.6). The 

relationships between WSOC and OCsec at EROS and Harwell sites are plotted in Figure 4.9 

with the good R2 of 0.89. In addition, modest correlations of WSOC with sulphate and nitrate 

are observed at EROS (r = 0.45 and r = 0.58, respectively) and WSOC showed strong 

relationships with sulphate and nitrate at Harwell site (r = 0.69 and r = 0.79, respectively). 

These suggest that WSOC substances mainly occur by the secondary formation in the 

atmosphere especially in rural site, consistent with the study by Yang et al. (2005) and 

Sullivan et al. (2004). Basically, OCsec components are water soluble because the oxidation 

reactions leading to their formation given polar functional groups i.e. hydroxyl, carbonyl and 
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carboxyl, to the secondary organic carbons. WSOC formation for the secondary pathway can 

be suggested as homogeneous photooxidation from VOC precursors and heterogeneous 

oxidation in the presence of clouds and fog (Huang et al., 2006). The local contribution of 

WSOC is observed in the concentration of 0.4 µg m-3 in this work. It is likely a combined 

result of more aged aerosols and probably higher contributions of biomass burning aerosols at 

the sampling sites as also stated by Yang et al. (2005). Although, it is recognised that 

emission from biomass burning include a large portion of soluble organic compounds 

(Schauer, et al., 2001, Mayol-Bracero et al., 2002, Park et al., 2006), there were quite low 

concentration of potassium (0.11 µg m-3 with approximately 6% to WSOC) at EROS, a tracer 

for biomass burning (Hu, 2011). Thus, the other sources of local WSOC should be considered 

(i.e. biogenic emission sources) as well. 

 

Table 4.3  Statistical data of sulphate, nitrate, chloride, oxalate, secondary OC and WSOC (µg m-3) 
concentrations including the ratio of WSOC/OCsec at EROS and Harwell sites measured 
simultaneously 

 PM2.5  PM2.5-10  PM10 

 Mean ± S.D. Range  Mean± S.D. Range  Mean± S.D. Range 

EROS         

SO4
2- 1.60 ± 1.35 0.32 – 6.48  0.25 ± 0.17 <dl – 0.89  1.85 ± 1.47 0.55 – 7.37 

NO3
- 1.61 ± 2.11 <dl – 10.88  0.63 ± 0.64 <dl – 3.29  2.25 ± 2.50 <dl – 12.49 

Cl- 
0.35 ± 0.27 <dl – 1.29 

 

0.61 ± 0.51 0.08 – 

2.79 
 

0.96 ± 0.67 0.16 – 3.38 

C2O4
2- 0.02 ± 0.02 <dl – 0.10  0.01 ± 0.01 <dl – 0.05  0.03 ± 0.02 <dl – 0.12 

OCsec* 2.0 ± 1.3 0.7 – 9.2  n.a n.a  3.1 ± 1.5 1.4 – 10.8 

WSOC 1.7 ± 1.0 0.1 – 6.7  n.a n.a  n.a n.a 

WSOC/OCsec 0.9 ± 0.2 0.1 – 1.2  n.a n.a  n.a n.a 

         

HAR         

SO4
2- 1.47 ± 1.24 0.05 – 6.76  0.35 ± 0.40 <dl – 2.36  1.82 ± 1.40 0.36 – 7.53 

NO3
- 1.44 ± 2.02 0.03 – 11.65  0.71 ± 0.68 <dl – 3.40  2.16 ± 2.50 0.19 – 14.75 

Cl- 0.27 ± 0.23 <dl – 1.22  0.66 ± 0.60 
0.04 – 

3.17 
 0.93 ± 0.80 0.09 – 4.39 

C2O4
2- 0.02 ± 0.03 <dl – 0.18  0.02 ± 0.02 <dl – 0.05  0.04 ± 0.03 <dl – 0.19 

OCsec* 1.6 ± 0.8 0.5 – 4.5  n.a n.a  2.7 ± 1.0 0.9 – 6.6 

WSOC 1.3 ± 0.8 0.1 – 4.0  n.a n.a  n.a n.a 

WSOC/OCsec 0.8 ± 0.2 0.2 – 1.1  n.a n.a  n.a n.a 

* Secondary organic carbon calculated based on the ratio of (OC/EC)min = 0.35 
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Table 4.4  The local contributions of sulphate, nitrate, chloride, oxalate, OCsec and WSOC in PM2.5, 
PM2.5-10 and PM10 calculated based on mean differences concentration between EROS and Harwell 
during the simultaneous period (EROS conc. – HAR conc.) 

Components Local contribution, µg m-3 
PM2.5 PM 2.5-10 PM10 

SO4
2- 0.13 -0.10 0.03 

NO3
- 0.17 -0.08 0.09 

Cl- 0.08 -0.05 0.03 
C2O4

2- 0 -0.01 -0.01 
OCsec 0.4 n.a. 0.4 

WSOC 0.4 n.a. n.a. 

 

Regression analysis of ion species in PM2.5 obtained from EROS and Harwell data was run 

using the reduced major axis (RMA) regression. The relationships between the urban 

background (EROS) concentration and the rural (Harwell) concentration were plotted (Figure 

4.10) and the results of regression analyses are summarized in Table 4.5. In this data, the 

regression coefficients (R2) of sulphate and nitrate in fine particle show high value of 0.67 

and 0.70, respectively. On the contrary, the low values of regression coefficient of chloride, 

oxalate, WSOC and OCsec were observed in range from 0.20 to 0.32. 

 

Sulphate in fine mode showed the zero intercept with a gradient close to 1.0 indicating that 

the regional contributions by long-range transport and photochemical oxidation in the 

atmosphere play an important factor on its concentration. In addition, there was the same 

local sulphate both in EROS and Harwell sites. For nitrate in PM2.5, it is clear that the higher 

local nitrate concentration was found at urban background to rural area as the intercept value 

of 0.11 in agreement with the local fine nitrate contribution of 0.17 µg m-3. This finding 

suggests that the nitrate increment probably arises from anthropogenic sources in the 

conditions of high conversion of nitric acid vapour to nitrate aerosol. As mentioned in the 

previous chapter, the road traffic might be the related source as NOx showing a significant 

correlation with EC at EROS site, consequently, HNO3 is the primary chemical sink for NOx 

in urban environments. With regard to chloride, oxalate and WSOC, the intercept values of 

chloride, oxalate and WSOC in fine fraction were low (0.05 µg m-3, 0.01 µg m-3 and 0.01  

µg m-3, respectively) indicating that any local chloride, oxalate and WSOC contributions at 

EROS are similar to those at Harwell site. 
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(a) 

 

(b) 

 

 

Figure 4.10  Relationships between EROS and Harwell concentrations of (a) sulphate, (b) nitrate, (c) 
chloride, (d) oxalate and (e) WSOC during the simultaneous period 
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(c) 

 

(d) 

 

 

Figure 4.10  (continued) 
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(e) 

 

 

Figure 4.10  (continued) 

 

 

Table 4.5  Results of regression analysis of EROS (urban background) and Harwell (rural) 
concentrations of ion components in PM2.5 

Analyte RMA regression 
Sulphate y = 1.09x  (R2 = 0.67) 
Nitrate y = 1.05x + 0.11 (R2 = 0.70) 

Chloride y = 1.13x + 0.05 (R2 = 0.27) 
Oxalate y = 0.67x + 0.01 (R2 = 0.20) 
WSOC y = 1.25x + 0.01 (R2 = 0.27) 
OCsec y = 1.62x - 0.67 (R2 = 0.32) 

Note: y  represents urban background (EROS) concentration of analyte in µg m-3; x  represents rural (HAR) 
concentration of analyte in µg m-3 
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4.4.1 Seasonal behaviour of ion species  

 

It is advantage to have a look at the seasonal behaviour of major ion species from data 

collected simultaneously. Figure 4.11 shows daily data of (a) sulphate, (b) nitrate, (c) chloride, 

(d) oxalate and (e) WSOC concentration in fine particle observed simultaneously at EROS 

and Harwell. As appeared in time series, each of these ions presents quite similar temporal 

variation patterns between EROS (urban background) and Harwell (rural). This indicates the 

dominance of long-range transport and meteorological conditions over the local sources in 

determining the concentration of these secondary aerosols. This is also supported by the quite 

low local contribution value of these compound already showed in Table 4.4.  

 

 

(a) 

 

 

Figure 4.11  Time series of (a) sulphate, (b) nitrate, (c) chloride, (d) oxalate and (e) WSOC 
concentrations in PM2.5 measured simultaneously at EROS and Harwell sites 
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(b) 

 

 

(c) 

 

 

Figure 4.11  (continued) 
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(d) 

 

 

(e) 

 

 

Figure 4.11  (continued) 
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4.4.2 Implication of relationships between oxalate and major component composition 

between sites  

 

As mentioned in 4.3.2 about the relationships between oxalate and ion species in PM, 

hereafter the data collected simultaneously between EROS and Harwell will be included in 

order to better understanding the sources and formation pathways of oxalate in atmospheric 

particles. Since major inorganic species are not the same category as oxalate, the concurrent 

measurement of WSOC concentrations can be provided the convenient reference for oxalate. 

This also includes the study of relationship between oxalate and secondary organic carbon as 

also in the same category. The plots of oxalate concentrations with WSOC and OCsec at 

EROS and Harwell show in Figure 4.12 and Figure 4.13, respectively. Table 4.6 shows the 

correlation between aerosol species analysed in PM2.5, PM2.5-10 and PM10 collected 

simultaneously at both sites. Oxalate in fine faction showed the modest correlation with 

WSOC and OCsec within sampling site (at EROS, r = 0.42 and r = 0.37, respectively; at 

Harwell, r = 0.42 and r = 0.46, respectively). Furthermore, the intra-site relationship of 

oxalate concentration in PM2.5 with WSOC appeared higher correlation (r = 0.61). It is likely 

that oxalate play an important indicator and/or contributor to WSOC species as referred in 

many studies (Huang et al., 2006; Yu et al., 2005 and Yang et al., 2005). Despite the intra-site 

correlation coefficient of oxalate and OCsec  in PM2.5 also appeared higher value (r = 0.58), 

oxalate seems not a good indicator for OCsec causing from the weak correlation shown in 

whole data of PM2.5 (500 samples) at EROS site (r = 0.25 as in Table 4.1). 
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Figure 4.12  Relationship between oxalate and WSOC concentrations in PM2.5 measured 
simultaneously at EROS and Harwell 
 

 

Figure 4.13  Relationship between oxalate and secondary OC concentrations in PM2.5 measured 
simultaneously at EROS and Harwell 
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Table 4.6  Intra- and inter-site correlation coefficients of aerosol species in PM2.5, PM2.5-10 and PM10 

calculated from samples measured simultaneously 

  
SO4

2- 
EROS 

NO3
- 

EROS 
Cl- 

EROS 
C2O4

2- 
EROS 

OCsec 
EROS 

WSOC 
EROS 

SO4
2- 

HAR 
NO3

- 
HAR 

Cl-  
HAR 

C2O4
2- 

HAR 
OCsec 
HAR 

PM2.5            

NO3
- EROS 0.72           

Cl- EROS 0.21 0.39          

C2O4
2- EROS 0.65 0.59 0.11         

OCsec EROS 0.43 0.62 0.34 0.37        

WSOC EROS 0.45 0.58 0.31 0.42 0.94       

SO4
2- HAR 0.82 0.72 0.06 0.71 0.33 0.37      

NO3
- HAR 0.60 0.84 0.25 0.64 0.48 0.47 0.76     

Cl- HAR -0.07 0.11 0.52 -0.04 0.10 0.07 0.04 0.06    

C2O4
2- HAR 0.32 0.32 0.04 0.45 0.14 0.20 0.42 0.43 -0.09   

OCsec HAR 0.63 0.71 0.30 0.58 0.56 0.55 0.68 0.79 0.11 0.46  

WSOC HAR 0.67 0.75 0.40 0.61 0.52 0.52 0.69 0.79 0.14 0.42 0.94 

            
PM2.5-10            

NO3
- EROS 0.57           

Cl- EROS 0.17 -0.18          

C2O4
2- EROS 0.66 0.49 -0.09         

SO4
2- HAR 0.22 0.14 0.21 0.11        

NO3
- HAR 0.54 0.86 -0.13 0.47 -  0.13     

Cl- HAR 0.05 -0.25 0.63 -0.08 - - 0.40 -0.23    

C2O4
2- HAR -0.23 0.07 -0.35 -0.09 - - -0.27 -0.01 -0.42 1.00 - 

            
PM10            

NO3
- EROS 0.79           

Cl- EROS -0.07 -0.06          

C2O4
2- EROS 0.73 0.72 -0.09         

OCsec EROS 0.40 0.58 -0.04 0.31        

SO4
2- HAR 0.80 0.78 -0.04 0.73 0.35       

NO3
- HAR 0.67 0.86 -0.01 0.71 0.48 - 0.76     

Cl- HAR -0.14 -0.08 0.68 -0.16 -0.03 - 0.03 -0.16    

C2O4
2- HAR 0.25 0.19 -0.30 0.35 0.01 - 0.31 0.28 -0.35   

OCsec HAR 0.61 0.68 0.02 0.60 0.43 - 0.68 0.77 -0.10 0.44 1.00 

Values shown in italics are not significant at p < 0.05 (the 95% level of significance) 

 

 

Oxalate shows the strong correlation with sulphate and nitrate between sites (for PM2.5, r = 

0.71 and r = 0.64, respectively; for PM10, r = 0.73 and r = 0.71, respectively). Similar higher 

correlation values of oxalate with sulphate than nitrate in PM2.5 and PM10 are seen for intra-

site as mentioned in the whole data at EROS (Table 4.1). These findings indicate that the 

elevated oxalate aerosol could be formed by secondary formation and affected by regional 

contribution. The dominant formation pathway of oxalate could be attributed the in-cloud 

process as same as in-cloud sulphate formation. The further study on the measurement of size 

distribution of oxalate in comparison with the other major components revealed that the 

dominant oxalate in droplet mode was similar to the sulphate droplet mode (as detailed later 

in chapter 6). This result suggests the activation of condensation mode of oxalate particles to 
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form fog or cloud droplets followed by aqueous-phase chemistry and cloud/fog evaporation 

(Meng and Seinfeld, 1994; Kerminen and Wexler, 1995). In addition, oxalate and sulphate 

are expected to have similar removal rate via wet deposition as both are highly water-soluble. 

Typically, the formation pathways of sulphate are well- investigated as a number of previous 

studies (Seinfeld and Pandis, 1998). The heterogeneous pathway through in-cloud process by 

aqueous oxidants can rate 10 to 100 times as fast as gas-phase. This process requires the 

presence of clouds and clouds are discrete events. Therefore, the relative contribution of the 

heterogeneous pathway depends on the frequency and duration of clouds. The production rate 

of sulphate from the in-cloud pathway can be expressed as the equation below (Yu et al., 

2005); 

 

    [ ][ ]22
SOOkfkP x

H
SOcloudsulphate=     (Equation 4.17) 

 
 where   f   is the frequency of cloud events 

    kcloud  is the rate constant of SO2 oxidation 

    H
SOk

2
 is the Henry’s law constant of SO2 

    [ ]xO  is the oxidant concentration in the cloud that is responsible for

             oxidation of aqueous S(IV) into sulphate 

    [ ]2SO  is the gaseous SO2 concentration 

 

The recent modeling research by Myriokefalitakis et. al (2011) on a 3-D modeling study 

revealed that the in-cloud global oxalate net chemical production was calculated to be about 

21-31 Tg yr-1 with almost 79% originating from biogenic hydrocarbon precursors, mainly 

isoprene. The possible formation pathway of oxalate in PM via isoprene shows in Figure 4.14 

as in-cloud isoprene chemistry. In this study, the direct emissions from road transportation 

and incomplete combustion of fossil fuels do not play an important source of oxalate causing 

from the very weak correlations with EC observed as mentioned in 4.3.2. Isoprene (biogenic 

source) emitted from plants and trees, (Taalman, 1996; Borbon et al., 2001) may be expected 

as the potential source of oxalate in ambient air. This could be supported by the weak 

correlation coefficients between oxalate and OCsec (r = 0.25 and r = 0.19 in PM2.5 and PM10, 

respectively for the entire data at EROS), which is originated mainly from anthropogenic 

sources. However, there were the modest correlations of oxalate and OCsec during the 



 

summer (r = 0.54 and r = 0.49 in PM

indicating that the significant sources of anthropogenic precursors would be considered. 

 

 

Figure 4.14 In-cloud isoprene chemistry for the formation of hygroscopic organic acids: glycolic acid, 
glyoxylic acid, pyruvic acid, and oxalic acid. (source: Lim et al., 2005)
 

Similar to suphate formation mechanism

processes can be approximated as

 

    Poxalate

 

 where   f   is the frequency of cloud events

    '
cloudk  

    H
Xk   is the Henry’s law constant of precursor X

    [ ]'
XO  is the oxidant concentration in the cloud 

            oxidation of X to oxalate

    [ ]X  is the gaseous concentration of precursor X
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= 0.49 in PM2.5 and PM10, respectively for the entire data at EROS), 

indicating that the significant sources of anthropogenic precursors would be considered. 

cloud isoprene chemistry for the formation of hygroscopic organic acids: glycolic acid, 
d, pyruvic acid, and oxalic acid. (source: Lim et al., 2005) 

Similar to suphate formation mechanism, the production rate of oxalate through in

processes can be approximated as (Yu et al., 2005); 

[ ][ ]XOkfk X
H
Xcloudoxalate

''=     

is the frequency of cloud events 

 is the oxidation rate constant leading to oxalate formation

is the Henry’s law constant of precursor X 

is the oxidant concentration in the cloud that is responsible 

oxidation of X to oxalate 

is the gaseous concentration of precursor X 

, respectively for the entire data at EROS), 

indicating that the significant sources of anthropogenic precursors would be considered.  

 

cloud isoprene chemistry for the formation of hygroscopic organic acids: glycolic acid, 

, the production rate of oxalate through in-cloud 

(Equation 4.18) 

is the oxidation rate constant leading to oxalate formation 

that is responsible for 



 

Oxalate formation by in-cloud chemistry was also investigated in the marine 

Warneck (2003). The proposed precursors for the formation were acetylene and ethene via 

glyoxal and glycolaldehyde, respectively (

difunctional compounds in urban background and rural environ

complicated, therefore, the potential precursor would be considered for the other compounds 

(i.e. aromatic hydrocarbons, cyclic olefins and aldehydes) as proposed by Kawamura et al. 

(1996). Oxalic acid can be produced in the atmosphere as

photochemical reaction of anthropogenic aromatic hydrocarbons i.e. benzene and toluene and 

their oxidation intermediates i.e. glyoxal and methylglyoxal. 

 

 

Figure 4.15 Flow chart for the in
precursors (source: Warneck, 2003)
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cloud chemistry was also investigated in the marine 

Warneck (2003). The proposed precursors for the formation were acetylene and ethene via 

glyoxal and glycolaldehyde, respectively (Figure 4.15). On the contrary, the precursors of C

difunctional compounds in urban background and rural environments may be more 

complicated, therefore, the potential precursor would be considered for the other compounds 

(i.e. aromatic hydrocarbons, cyclic olefins and aldehydes) as proposed by Kawamura et al. 

(1996). Oxalic acid can be produced in the atmosphere as a result of secondary 

photochemical reaction of anthropogenic aromatic hydrocarbons i.e. benzene and toluene and 

their oxidation intermediates i.e. glyoxal and methylglyoxal.  

Flow chart for the in-cloud formation of oxalic acid from acetylene and ethene as 
precursors (source: Warneck, 2003) 

cloud chemistry was also investigated in the marine atmosphere by 

Warneck (2003). The proposed precursors for the formation were acetylene and ethene via 

). On the contrary, the precursors of C2 

ments may be more 

complicated, therefore, the potential precursor would be considered for the other compounds 

(i.e. aromatic hydrocarbons, cyclic olefins and aldehydes) as proposed by Kawamura et al. 

a result of secondary 

photochemical reaction of anthropogenic aromatic hydrocarbons i.e. benzene and toluene and 

 

acetylene and ethene as 
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4.5 Conclusions 

 

The determination of chemical composition of ionic species including carbonaceous materials 

(as discussed in chapter 3) in PM samples collected from EROS and Harwell provide the 

better understanding of their sources in the UK. Moreover, this study reveals and focuses on 

the new data series of oxalate concentration in the atmosphere. The discussion data were 

based on the aerosol samples measured in urban background (EROS) during November 2008 

to April 2011 and rural (Harwell) sites during July 2010 to December 2010. The studies of 

local contribution of ionic species were calculated based on mean differences concentration 

between sites collected simultaneously (EROS conc. – HAR conc.). The results show a minor 

local contribution of WSOC, OCsec, sulphate, nitrate and chloride in PM2.5 (0.4 µg m-3, 0.4  

µg m-3, 0.13 µg m-3, 0.17 µg m-3 and 0.08 µg m-3, respectively). There is no difference in 

mean concentration for oxalate in fine fraction suggesting that oxalate formation by 

photooxidation of precursors in the atmosphere with long-lived species. The strong 

correlation between sulphate and nitrate is consistent with previous studies indicates the fact 

that two species undergo similar formation and removal processes in atmosphere. For 

chloride, the results strongly support the common source from marine aerosol with the weak 

correlation observed with other species. The seasonal behaviour of sulphate, nitrate, chloride 

and oxalate show a dominant temporal variation over the spatial variation. In addition, the 

same patterns of time series appear between EROS and Harwell for simultaneous data. These 

findings indicate the important of long-rang transport on the contribution to the secondary 

aerosols. Particulate oxalate reveals not clear a seasonal pattern but the concentration show 

highest in spring. The study on the ratio of sulphate-to-nitrate indicates the stability of 

sulphate higher than nitrate because SO4
2-/NO3

- ratios were extremely high for PM2.5 in 

summer. The formation of sulphate by photooxidation in the atmosphere (aqueous oxidation) 

slightly reflects on its concentration but there was the significant of volatile loss of nitrate 

aerosol as ammonium nitrate during the summer. 

 

In this study, the whole mean concentrations with measurement uncertainties of oxalate are 

from 0.02 ± 0.001 µg m-3 to 0.06 ± 0.002 µg m-3 at urban background and from 0.02 ± 0.001 

µg m-3 to 0.04 ± 0.001 µg m-3 at rural site. These concentration levels are in range with a 

number of studies in the past. The relationships of oxalate with major chemical composite 

provide the useful information on its formations and sources. Oxalate shows a good 

correlation with sulphate suggesting that its formation pathway could be from similar 
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atmospheric processes. The significant correlation between oxalate and nitrate especially in 

summer can be interpreted as that oxalate formed in PM is affected by temperature in the 

same way as nitrate. This is strongly supported by the C2O4
2-/NO3

- ratio observed high during 

the summer. The weak relationship between oxalate and chloride indicate little contribution 

from marine aerosol or coal burning in winter on oxalate concentration. Since oxalate is 

believed as the most abundant species of WSOC, this study confirms that oxalate plays an 

important indicator and contributor to WSOC with the significant correlation of both species 

observed. The dominant formation pathway of oxalate could be demonstrated as the in-cloud 

process and the potential precursor from biogenic sources i.e. isoprene emitted mainly from 

plants and trees may contribute oxalate particle at EROS and Harwell site. However, this 

seems unlikely to be the main source as this would produce a pronounced seasonality which 

is not observed. The study of relationships between oxalate and OCsec in PM2.5 and PM10 

showed the weak correlations for the whole data. A modest correlation of oxalate and OCsec 

were observed during the summer. This finding indicates the important of precursors 

originated from anthropogenic sources. The further analysis of air mass backward trajectories 

discussed in chapter 5 will provide the evidence of long-range transport as expected the 

important formation pathway. Future work is also suggested to investigate the sources of 

oxalate aerosol from precursors such as aromatic hydrocarbons, cyclic olefins and aldehydes. 
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CHAPTER 5 

A TRAJECTORY ANALYSIS OF LONG-RANGE TRANSPORT OF 
MAJOR AEROSOL SPECIES AT EROS AND HARWELL SITES 

 

5.1 Synopsis 

 

Backward air mass trajectories were determined as diagnostic tools for interpreting the long-

rang transport (LRT) of major secondary aerosols in this study. This is because the temporal 

variability of atmospheric particulate matter concentrations at the sampling sites highly 

involved to the history of the airflows arriving at the sites. HYSPLIT_4 model available on 

NOAA Laboratory website was used for calculation of backward trajectories. This model is a 

complete system for calculating simple trajectories to complex dispersion and deposition 

simulations using either puff or particle approaches (Draxler and Hess, 1997). Calculations 

perform by using previously gridded meteorological data from archive data field. The 

meteorological data used have been downloaded from Air Resource Laboratory (ARL) 

archives. The cluster analysis was used to group the back trajectories into homogeneous 

groups depending on direction and speed of transport in order to minimise errors associated 

with individual trajectory. The time period for generating the trajectories was performed for 

the whole dataset at EROS and the simultaneous data of air sampling between EROS and 

Harwell sites. In this study, 3-day back trajectories arriving at both sites were calculated. At 

Harwell site representing the rural area, it is expected that the major contribution to the 

concentrations of major atmospheric components was from regional sources associated with 

the LRT and the contribution to PM is slightly affected by the primary sources. Significant 

differences of major chemical composition in PM between clusters were analysed by using 

nonparametric statistics. A seasonal pattern is also discussed for the back trajectories arriving 

at EROS for the whole period (500 trajectories). Each individual chemical component in 

PM2.5 is represented by box-whisker plots in each cluster in order to clearly show the 

influence of their sources by air mass transport paths. 

 

5.2 Overview of air mass back trajectories 

 

Trajectories are known as the paths of infinitesimally air parcels and represent as the curves 

denoting successive three-dimensional positions in time of the air parcels (Dutton, 1986; 

Stohl, 1998). As air parcels followed either forward or backward in time, there are two types 
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of trajectories that are forward trajectories and back trajectories. Trajectories have been used 

for study dynamical behaviour in the atmosphere including meteorology, climatology, 

environmental sciences. The major application of trajectory analysis of air parcels is to 

investigate the transport processes of air pollutants. Back trajectories obtained from trajectory 

models, which computed based on archived meteorological data, provide an advantage on 

identification of source regions of pollutants. It is well know that the accuracy of an 

individual trajectory depends on the temporal and spatial resolution of meteorological data, 

measurement errors, analysis errors and by any simplifying assumptions used in the trajectory 

model (Brankov, et al., 1998). Errors in the individual trajectories could be minimised by 

cluster analysis which will be discussed later.  

 

Currently, the HYSPLIT_4 (Hybrid Single-Particle Lagrangian Inegrated Trajectory) model 

(Draxler and Hess, 1997, 1998) is a complete system that can be used to calculating 

trajectories and air concentration for analytical studies including the atmospheric transport 

and dispersion of pollutants. The method of model calculation is a hybrid between the 

Lagrangian approach, which uses a moving frame of reference as the air parcels flow from 

their origin, and the Eulerian approach, which uses a fixed three-dimensional grid as a frame 

of reference. The minimum requirements of meteorological data for HYSPLIT model are the 

horizontal wind components, temperature, height, pressure and the pressure at the surface. 

Trajectories (the integrated advection term of a particle) are calculated from the mean of the 

three-dimensional velocity vectors for the initial-position )(tP  and the first-guess position 

).(' ttP ∆+  The velocity vectors are linearly interpolated in both space and time. The first 

guess position shows as following equation (Draxler and Hess, 1998); 

 

   ttPVtPttP ∆+=∆+ ),()()('     (Equation 5.1) 

 

And the final position is given by 

 

   [ ] tttPVtPVtPttP ∆∆+++=∆+ ),'(),(5.0)()(  (Equation 5.2) 

 

where )(' ttP ∆+ and )( ttP ∆+ are the first-guess and the final positions of a particle or puff, 

respectively, )(tP  is the initial-position of a particle or puff, ),( tPV  and ),'( ttPV ∆+ are the 

average of the three-dimensional velocity vectors for a particle or puff at the initial and the 
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first-guess positions, respectively, t∆  is the integration time step which can vary during the 

simulation. A more detailed description of the equations, algorithms and meteorological data 

is reported by Draxler and Hess (1998). 

 

5.2.1 Meteorological data 

 

Meteorological data for the calculation of trajectories are downloaded from the National 

Oceanic and Atmospheric Administration (NOAA)’s Air Resources Laboratory (ARL) 

archives. The operational system used for calculation is the Global Data Assimilation System 

(GDAS) run at the U.S. National Weather Service’s National Centers for Environmental 

Prediction (NCEP). The meteorological data include basic fields such as the u- and v-wind 

components, temperature, and humidity. NCEP’s GDAS is run 4 times a day e.g. at 00, 06, 

12, and 18 UTC. Model output is for the analysis time and 3h, 6h, and 9h forecasts. ARL 

saves the successive analyses and 3h forecast, four times each day to produce a continuous 

data archive. The ARL archiving program produces a 3 hourly, global, 1 degree latitude 

longitude dataset on pressure surfaces. The data are put into weekly files and made available 

online as GDAS1. GDAS1 data are shown as the files called gdas1.mmmyy.w#, where mmm 

is the month (e.g. jul) and yy is the year (05) and # refer to: 

 

   #  =  1  →  days 1 -7 

   #  =  2  →  days 8 – 14 

   #  =  3  →  days 15 – 21 

   #  =  4  →  days 22 – 28 

   #  =  5  →  days 29 – rest of the month 

 

5.3 Calculation of trajectories and cluster analysis 

 

In the present study, air parcel trajectories arriving at EROS and Harwell sites during the 

sampling period at 12:00 h GMT (500 metre above ground level (a.g.l)) were computed for 

each day by using HYSPLIT_4 model. These trajectories are consistent with the time of 

changing the filters for 24h sampling period overall this work. Each of the trajectories 

comprised 72h back trajectories ending at each site. The back trajectories with a timescale of 

72h are appropriate for the lifetime of secondary aerosol species to describe the long-rang 

transport (Wojcik and Chang, 1997).  
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In order to minimise the uncertainty of individual trajectories associated by the resolution and 

accuracy of the meteorological data and by any simplifying assumptions used in the 

trajectory model (Stohl, 1998), a cluster analysis was applied in many studies (Buchanan et 

al., 2002; Abdalmogith and Harrison, 2005; Borge et al., 2007; Baker, 2010). Cluster analysis 

is a multivariate statistical technique, which groups the individual trajectories into a smaller 

number of clusters, where the errors in the individual trajectories trend to average out. The 

objective is to maximise between-group variance and to minimise within-group variance 

(Dorling, 1992). All back trajectories are used as the clustering variables. The calculation 

process of clustering starts by the spatial variance (SV) computed between each endpoint (k) 

along trajectory (j) with its cluster (i) as the following equation (Air Resources Laboratory, 

2011); 

 

   2
,,, )( kikjkji MPSV −= ∑     (Equation 5.3) 

 

Where the sum is taken over then number of endpoints along the trajectory and P and M are 

the position vectors for the individual trajectory and its cluster mean trajectory, respectively. 

The cluster spatial variance (CSV) is then just the sum of the spatial variance of all 

trajectories within its cluster; 

 

   ∑=
j jii SVCSV ,      (Equation 5.4) 

 

And the total spatial variance (TSV) is the sum of the CSV over all clusters: 

 

   ∑=
i kjCSVTSV ,      (Equation 5.5) 

 

The clustering process describes more in Air Resources Laboratory, 2011. Basically, the ideal 

final number of clusters would be prior to the point of TSV rise significantly. The 

recommended criterion for the percentage change of TSV according to HYSPLIT_4 software 

calculation in order to pairing of different clusters is indicated by at least 30% of TSV (or 20% 

of TSV in the case of no identification of appropriated final number of clusters). The 

maximum is arbitrarily set to 20 clusters. 
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5.4 Atmospheric boundary layer 

 

Once air pollution is emitted into the atmosphere, chemical, physical and meteorological 

factors determine how it is distributed. The location of air pollution sources with referring to 

local, regional, and global air circulation patterns influences how efficiently pollutants are 

transported and dispersed. The winds transport air both horizontally and vertically. Vertical 

transport is important when considering atmospheric long-range transport because pollutants 

distributed to higher altitudes usually encounter stronger winds that provide rapid transport to 

distant locations. Atmospheric stability, controlled by how temperature varies with height, 

determines whether vertical transport will be slow or rapid. 

 

Pollutant transport occurs in the lowest two layers of the atmosphere  the troposphere and 

stratosphere (National Research Council, 2009). Most weather phenomena that affect 

pollutant transport occur in the troposphere, which extends from the surface to approximately 

18 km in the tropics and approximately 8 km near the poles. The boudndary layer is the 

lowest part of the atmosphere and its behaviour is directly influenced by its contact with a 

planetary surface. The working definition of the boundary layer provided by Garratt (1992) 

(cited in Barlow, 2009) is the layer of air directly above the Earth’s surface in which the 

effects of the surface (heating and cooling, friction) are felt directly on time scales less than a 

day, and in which significant fluxes of momentum, heat or matter are carried by turbulent 

motions on a scale of the order of the depth of the boundary layer or less. The boundary layer 

is approximately 1 – 2 kilometres deep and above boundary layer is the “free atmosphere”. 

The vertical structure of the boundary layer is denoted by variations of temperature, moisture 

and wind speed. Table 5.1 shows the characteristics of the boundary layer and free 

troposphere. Air movements within the boundary layer are strongly influenced by energy 

inputs from the surface and most of the energy in the Sun’s rays reaches the surface. Both 

shortwave and longwave radiation are absorbed at the surface. By day the energy due to the 

net radiation is used in different processes i.e. evaporation of surface moisture into vapour. 

The diurnal cycle of heating and cooling of the surface causes distinct changes in boundary 

layer structure.  
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Table 5.1 Comparison between the boundary layer and the free troposphere characteristics (modified from Stull, 
1950) 

Property Boundary layer Free troposphere 

- Turbulence Almost continuously turbulent over its whole depth More seldom turbulent, mostly in clouds 

and near the jet stream 

- Friction Large dissipation, large friction at surface Small dissipation, “friction” in gravity 

waves 

- Mixing Strong mixing daytime and rapid turbulent mixing 

in the vertical and horizontal, weaker at night 

Weak mixing, small molecular diffusion. 

Often rapic horizontal transport by mean 

wind 

- Winds Large vertical variation, near logarithmic profile at 

surface, ageostrophic flow across isobars 

Near geostrophic wind, small vertical 

variation, thermal wind balance 

- Vertical transport Turbulent transport dominates Transport by mean vertical wind, small in 

synoptic systems, locally larger with 

convection 

 

The atmosphere’s vertical temperature profile plays the dominant role in controlling whether 

and how quickly an air pollutant will be dispersed upward from its point of emission. Large 

lapse rates (change of temperature with height), especially those near the surface on a sunny 

day, are associated with atmospheric instability, which promotes turbulence. On the other 

hand, small lapse rates near the surface denote stability that suppresses vertical motion. 

Layers containing temperature inversions (a negative lapse rate) are very stable, greatly 

inhibiting vertical transport and promoting the accumulation of pollutants. Inversions in the 

troposphere can occur when the surface is colder than the overlying air and in subsiding air, 

which occurs in regions of high pressure. 

 

The stratosphere is a permanently stable region, with a near zero lapse rate between 11 and 

20 km and increasingly negative (stable) rates above. As a result of this stability pollutants 

injected into the stratosphere tend to remain there for much longer periods than in the 

troposphere. 

 

With regard to the calculation of trajectories, three-day backward trajectories arriving at noon 

(500 metre above ground level (a.g.l)) at EROS and Harwell were generated by HYSPLIT_4 

model. The arrival elevation and time were chosen because the optimum profiles of potential 

temperature, wind and specific humidity within the boundary layer appeared in a well-mixed 

layer. This is because air mass trajectories did not maintain the same height for the duration 

of the back trajectory due to vertical motion and often vary considerably from the receptor 

height selected. Consequently, each back trajectory generated for the same location and time 

but with different receptor heights may show significantly different air flow patterns for part 
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of or the entire trajectory. Air sampling performed at ground level was strongly affected by 

the ability of atmosphere to disperse of pollutants as related to vertical atmospheric motion. 

By day the surface layer, typically 100 – 200 m thick, occupies the lowest 10% of the 

boundary layer (Barlow, 2009). This layer is unstable because the potential temperature 

decreases with height. Thermals are driven by the surface heating but their action is to cause 

the rest of the boundary layer to be a well-mixed layer. There is little or no wind shear within 

the well-mixed layer. Specific humidity within the mixed layer shows a similar profile to 

temperature except that air above the boundary layer is much drier. On the contrary, the 

weaker mixing of air appears at night time. During the air mass transport, changes of 

pollutant concentrations are also affected by secondary formation, precipitation, wet and dry 

deposition. 72h back trajectories are suitable for lifetime of secondary pollutants to study the 

long-range transport (Wojcik and Chang, 1997).  

 

After clustering analysis of all back trajectories, each group of trajectories represents a 

distinct transport pathway bringing air masses into sampling sites. The transport frequency 

associated with a pathway is defined as the percentage of trajectories in that grop. 

 

5.5 Results and discussion 
 

5.5.1 Whole dataset at EROS 

 

The daily midday back trajectories arriving at EROS during the sampling period between 

November 2008 to April 2011 were 500 trajectories generated by HYSPLIT_4 model. The 

average of 3-day back trajectories of each cluster is calculated from its trajectories members. 

The result of the cluster analysis of the trajectories is presented in Figure 5.1. This graph 

shows the change in total spatial variance with number of clusters. The average back 

trajectories for five clusters at EROS are observed as 31.24% change in TSV when reducing 

the number of clusters from five to four, indicating five clusters for this period. Diagram 

showing the individual trajectories which combined to make up each cluster are available in 

Appendix C. These five clusters are shown in Figure 5.2. In this study, they have been 

labeled according to their overall wind speed and direction; cluster 1 – the fast south westerly 

accounted for 22% of the total trajectories, cluster 2 – the north westerly accounted for 21% 

of the total trajectories, cluster 3 – the slow southerly accounted for 19% of the total 

trajectories, cluster 4 – the fast westerly accounted for 9% of the total trajectories, cluster 5 – 

the slow easterly accounted for 29% of the total trajectories. The highest number of 
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trajectories was from the slow easterly airflow (cluster 5) whilst the lowest number of 

trajectories was from the fast westerly airflow (cluster 4). Cluster 5 occurred more frequently 

during autumn and spring (Figure 5.3). The fastest maritime represented in cluster 4 occurred 

predominantly both in the winter and autumn months and less during the summer. Many of 

trajectories during summer grouped in the slow southerly airflow (cluster 3) whilst many of 

winter time trajectories were accounted significantly both in cluster 2 and cluster 5. 

 

 
Figure 5.1  The percent change in total spatial variance with cluster number for the clustering of 
trajectories arriving at EROS from November 2008 to April 2011  
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Figure 5.2  Average 3-day back trajectory for the main trajectory clusters arriving at EROS from 
November 2008 to April 2011. Symbols denote the location of the air parcel every 24 hours. 
(Individual trajectories contributing to each cluster are presented in Appendix C) 

 
Figure 5.3  Seasonal number of trajectories analysed for each cluster at EROS 
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When major chemical composition of PM are analysed following air mass cluster type, 

differences in concentration are also observed. Table 5.2 presents the average concentration 

of sulphate, nitrate, chloride, oxalate, OC, EC, primary and secondary OC in fine fraction for 

all trajectory clusters arriving at EROS site. This site represents an urban background with 

the aerosol components comprising the sum of local contribution and the LRT. The 

estimation of local contribution for aerosol species was calculated in chapter 3 and chapter 4 

by using the data collected simultaneously between EROS and Harwell (rural site). The 

concentrations of chemical components analysed at Harwell were assumed purely 

representing the LRT. The further interpretation of LRT for simultaneous data between both 

sites will be presented in the following section. 

 

For the whole data at EROS, the slow easterly (cluster 5) and the slow southerly (cluster 3) 

airflows appeared significantly for chemical components in PM. The highest concentrations 

of ionic species associated with cluster 5 except chloride concentration. This result indicates 

that for urban background site (EROS, Birmingham), the concentrations of major aerosol 

species associated with the LRT of pollutants emitted from Eastern European sources are 

consistent with the study reported by Baker (2010), Abdalmogith and Harrison (2005) and 

Buchanan (2002). The low atmospheric mixing depth could be contributed the high 

concentration of OC and OCsec in cluster 5 affecting by the lower mean temperature of 8 oC 

(Table 5.3). Moreover, EC concentration is elevated with cluster 5, indicating that the poor 

dispersion of pollutants associated in trajectories with the low temperature. As anticipated, 

the fastest maritime cluster 4 originated from Atlantic ocean appears the highest chloride 

concentration of 1.12 ± 0.98 µg m-3. The Kruskal-Wallis non-parametric technique was also 

used to test the significant of inter-cluster variation in the concentrations of major component 

composition in PM2.5. This technique tests the null hypothesis that sample clusters have been 

drawn from the same population. If the test leads to the rejection of null hypothesis, it is 

interpreted that major components in aerosols collected at the sampling site are influenced by 

the LRT air masses arriving at this site, which are shown by the clusters (Moody and 

Galloway, 1988). At EROS, the test results indicate significant differences (p < 0.05) in 

major component concentrations among clusters of air back trajectories arriving at this site, 

then LRT affected to aerosol concentration by transport paths. 
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Table 5.2  Average concentrations (± S.D.) of major chemical components in PM2.5 by trajectory clusters at EROS 
for the entire dataset  
 

PM2.5 n Concentration, µg m-3     

  SO4
2- NO3

- Cl- C2O4
2- OC EC OCprim OCsec 

          

Cluster 1 108 1.30±1.04 1.18±2.21 0.79±0.78 0.03±0.03 2.3±1.6 0.8±0.8 0.3±0.3 2.0±1.4 

Cluster 2 105 1.59±0.99 2.04±2.20 0.69±0.72 0.04±0.04 3.3±2.4 1.3±1.2 0.4±0.4 2.8±2.0 

Cluster 3 95 1.63±0.93 2.08±2.20 0.52±0.59 0.05±0.05 2.5±1.3 0.9±0.6 0.3±0.2 2.2±1.2 

Cluster 4 45 1.49±1.14 1.40±1.49 1.12±0.98 0.05±0.05 2.6±2.0 0.9±0.8 0.3±0.3 2.3±1.8 

Cluster 5 147 2.71±1.76 5.16±5.07 0.74±0.65 0.06±0.06 3.9±2.4 1.5±1.3 0.5±0.5 3.4±2.1 

          
OCsec calculated based on (OC/EC)min of 0.35 

 

Table 5.3  Average ratios of SO4
2-/NO3

-, Cl-/NO3
-, C2O4

2-/SO4
2-, C2O4

2-/NO3
- and C2O4

2-/OCsec by trajectory 
clusters including meteorological data (± S.D.) at EROS for the entire dataset 
 

 
SO4

2-

/NO3
- 

Cl- 
/NO3

- 
C2O4

2-

/SO4
2- 

C2O4
2-

/NO3
- 

C2O4
2-

/OCsec 
Temperature 

(oC) 
Relative humidity (%) 

        

Cluster 1 1.10 0.66 0.02 0.02 0.01 11 ± 4 81 ± 9 

Cluster 2 0.78 0.34 0.02 0.02 0.01 9 ± 6 79 ± 9 

Cluster 3 0.78 0.25 0.03 0.02 0.02 12 ± 5 81 ± 8 

Cluster 4 1.06 0.80 0.03 0.04 0.02 8 ± 4 79 ± 9 

Cluster 5 0.53 0.14 0.02 0.01 0.02 8 ± 6 81 ± 10 

        

 

The sulphate-to-nitrate ratio was observed to be low from slow easterly (cluster 5) airflow 

(Table 5.3). This finding was quite similar to the study reported by Abdalmogith and 

Harrison (2005) as possibly expecting the reflection of the high NOx/SO2 emission ratios 

originating from Western Europe. Baker (2010) indicated that sulphur dioxide in Europe 

associated high with easterly airflows originated from coal and oil fired power stations and 

heavy industry with emissions via tall stacks. The additional contribution of NOx by local 

traffic emissions was also from the LRT transportation associated with this continental 

airflow. Under high NOx condition, a low SO4
2-/NO3

- ratio was revealed since a decrease in 

OH radical levels, an inhibition of the peroxide formation pathways and the consequent 

decrease in the formation of sulphate (Stein and Lamb, 2003). The possible reason of lower 

SO4
2-/NO3

- ratio includes the presence of high particulate nitrate in form of NH4NO3 during 

the low temperature. This was because the winter trajectories accounted in cluster 5 more 

than summer trajectories (Figure 5.3) and consequently, the lower mean temperature was 

observed in this cluster (8 oC). The behaviour of temperature dependence of nitrate in aerosol 

was evident that cluster 5 also revealed the lowest ratios of Cl-/NO3
- and C2O4

2-/NO3
- (0.14 

and 0.01, respectively). The concentration of nitrate associated with cluster 1 was observed 

low (1.18 µg m-3) with the cluster mean temperature of 11 oC. It is likely that the dissociation 

of ammonium nitrate plays an important influence on nitrate concentration because the 
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highest ratio of SO4
2-/NO3

- was also observed in cluster 1 (1.10). The fast moving maritime 

trajectories (cluster 4) normally observed in winter showed the dominant ratio of Cl-/NO3
-.  

 

For the oxalate ratios to sulphate, nitrate and secondary OC, they represented by the less 

dependence upon cluster. In this work, it could be noted that oxalate in fine fraction 

associated more with the long maritime cluster 4 (C2O4
2-/SO4

2-, C2O4
2-/NO3

- and C2O4
2-/OCsec 

for 0.03, 0.04 and 0.02, respectively). These findings supported the significance of the LRT 

of oxalate which could be generated by its formation pathway in the marine atmosphere 

(Warneck, 2003) and the results are in consistent with the study of air mass back trajectories 

identifying the potential source areas of diacids produced by involving marine biogenic 

emission (Salvador et al., 2010). In order to evaluate the significance of the marine source 

contribute to oxalate concentration in terrestrial environment, the more seasonal data of 

oxalate are needed and this point will be more discussion later. However, these findings could 

be attributed the effect from lower mean temperature (8 oC) associated with cluster 4 and 

consequently, oxalate as expected in form of semi-volatile specie favoured to account in 

particulate phase. Despite cluster 5 exhibited the low mean temperature (8 oC), the oxalate 

ratios to sulphate, nitrate and OCsec were still observed low comparing with the oxalate ratios 

in cluster 4. This finding could be explained by the fact that the contributions of pollutants 

(sulphate, nitrate and OCsec) from marine sources are much lower than the terrestrial 

environment. In this study, the slow easterly (cluster 5) airflow coming from eastern part of 

the UK before arriving at EROS are observed the highest concentrations of suphate, nitrate 

and OCsec with the relative higher concentrations than oxalate and consequently the low 

oxalate ratios to these species were obtained. 

 

The graphical illustrations of chemical components in aerosol in each cluster are shown by 

box-whisker plots. The plots of major components in PM2.5 for the whole data at EROS by 

the clusters are presented in Figure 5.4. The middle line and open circle in the box represent 

the median and the mean in that cluster, respectively. The box ends represents the 25th and 

75th percentiles of their concentrations. The whiskers show the minimum and maximum 

concentrations in that cluster. These plots show the dominant aerosol transport with the slow 

easterly airflow (cluster 5) contributing the high concentrations of SO4
2-, NO3

-, C2O4
2-, OC, 

EC, OCprim and OCsec. Overall, the little polluted trajectories at EROS are associated with the 

fast south westerly and slow southerly airflows in cluster 1 and 3, respectively. 
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(a) 

 

 

(b) 

 

Figure 5.4  Box-whisker plots of major components in PM2.5 at EROS by clusters for the whole 
dataset; (a) sulphate, (b) nitrate, (c) chloride, (d) oxalate, (e) OC, (f) EC, (g) OCprim and (h) OCsec 
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(c) 

 

 

(d) 

 

Figure 5.4  (continued) 
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(e) 

 

 

(f) 

 

Figure 5.4  (continued) 
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(g) 

 

 

(h) 

 

Figure 5.4  (continued) 
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5.5.2 Seasonal variation 

 

In order to investigate seasonal patterns, the whole data set between November 2008 and 

April 2011 at EROS was split into four seasons; summer (Jun – Aug), autumn (Sep – Nov), 

winter (Dec – Feb) and spring (Mar – May). The cluster analysis was tested to each of the 

seasons and the mean trajectories are shown in Figure 5.5. The numbers of trajectories 

generated in accordance with the sampling time in each season were 116, 165, 101 and 118 

trajectories for summer, autumn, winter and spring, respectively. In the summer, there were 

significant air flow coming both from north westerly (cluster 4 and cluster 7 with 16% and 8% 

of total trajectories, respectively) and from south westerly (cluster 8 and cluster 9 with 9% 

and 14% of total trajectories, respectively). The slow air mass back trajectories observed 

within UK (cluster 2 with 10% of total trajectories) during summer months. The southerly 

(cluster 5), northerly (cluster 1) and easterly (cluster3) air flows accounted for 14%, 9% and 8% 

of the data, respectively. The slow westerly and slow easterly airflows were outstanding and 

accounted for 24% and 18% of data during the spring, respectively. In summary, there was no 

clear seasonal trends of air mass back trajectories representing by cluster analysis. These 

airflows have been registered throughout the year and it should be noted that the westerly 

trajectories both fast and slow airflows were the most frequent at the UK passing over the 

marine atmosphere. 

 

Table 5.4 represents the mean concentrations of aerosol components in PM2.5 by cluster in 

each season. At EROS, it is clear that the easterly airflow contributed the highest 

concentrations of chemical composition for summer (cluster 3), autumn (cluster 7) and spring 

(cluster 5, 8). During the winter, the higher concentrations were observed with very slow 

southerly airflow (cluster 5) than easterly airflow (cluster 8). The chloride observed highest in 

winter with the fast maritime airflow trajectories (cluster 4) causing by the very much wind 

speed comparing with the fast maritime in other seasons. 
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Figure 5.5  Average 3-day back trajectories for the main trajectory clusters in each season arriving at 
EROS. Symbols denote the location of the air parcel every 24 hours. (Individual trajectories 
contributing to each cluster are presented in Appendix C) 



 150 

 

 

 
Figure 5.5  (continued) 
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Table 5.4  Average concentrations (± S.D.) of major chemical components in PM2.5 by trajectory clusters in each 
season at EROS (Box-whisker plots of each component by clusters in each season detailed in Appendix D) 

PM2.5 n Concentration, µg m-3      
T RH 

  SO4
2- NO3

- Cl- C2O4
2- OC EC OCprim OCsec 

(oC) 
(%) 

Summer        
   

 

Cluster 1 11 1.65±0.81 1.00±0.67 0.22±0.25 0.03±0.03 2.9±1.7 1.0±0.7 0.3±0.3 2.5±1.6 14±2 71±9 

Cluster 2 12 1.99±0.92 1.84±2.01 0.44±0.38 0.06±0.04 2.3±1.0 0.7±0.3 0.2±0.1 2.0±0.9 15±2 79±7 

Cluster 3 9 2.66±0.97 2.39±1.84 0.85±0.49 0.07±0.04 2.3±1.0 0.8±0.4 0.3±0.1 2.0±0.9 14±3 79±9 

Cluster 4 18 1.41±0.77 0.67±0.48 0.34±0.36 0.03±0.02 1.8±0.6 0.5±0.2 0.2±0.1 1.7±0.6 16±2 73±6 

Cluster 5 16 1.14±0.30 0.57±0.18 0.30±0.42 0.03±0.01 1.6±0.4 0.5±0.2 0.2±0.1 1.4±0.4 16±2 83±9 

Cluster 6 15 1.25±0.64 0.67±0.74 0.48±0.66 0.02±0.02 1.4±0.3 0.4±0.1 0.1±0.0 1.3±0.3 16±2 76±4 

Cluster 7 9 0.79±0.33 0.46±0.20 0.50±0.36 0.02±0.01 1.4±0.4 0.4±0.2 0.1±0.1 1.3±0.4 14±1 71±2 

Cluster 8 10 1.09±0.37 0.44±0.12 0.24±0.27 0.02±0.01 1.4±0.3 0.4±0.1 0.1±0.1 1.3±0.2 17±2 79±5 

Cluster 9 16 1.37±0.57 0.78±0.50 0.14±0.06 0.03±0.02 2.0±0.5 0.7±0.3 0.2±0.1 1.7±0.4 16±2 75±5 

          
 

 

Autumn          
 

 

Cluster 1 16 1.29±1.21 0.85±0.86 1.13±0.99 0.03±0.04 2.2±1.0 0.8±0.4 0.3±0.2 1.9±0.9 11±3 82±4 

Cluster 2 21 1.32±0.81 1.36±1.18 0.68±0.56 0.03±0.04 3.1±1.8 1.6±1.0 0.5±0.4 2.5±1.5 6±4 79±7 

Cluster 3 15 1.23±0.90 0.99±1.20 0.58±0.48 0.03±0.04 2.1±1.3 1.1±1.0 0.4±0.3 1.7±1.0 13±3 83±5 

Cluster 4 11 0.95±0.38 0.97±0.59 0.41±0.28 0.02±0.03 4.2±3.8 2.0±1.6 0.7±0.6 3.5±3.3 10±3 80±7 

Cluster 5 27 1.15±0.86 1.35±1.30 0.34±0.36 0.02±0.02 2.8±2.2 1.3±1.1 0.4±0.4 2.3±1.9 10±4 83±7 

Cluster 6 14 1.47±0.99 0.75±0.51 0.28±0.30 0.06±0.06 2.1±0.9 0.8±0.3 0.3±0.1 1.9±0.8 10±3 80±6 

Cluster 7 9 2.97±2.16 4.14±3.82 0.32±0.23 0.05±0.04 3.4±1.3 1.1±0.5 0.4±0.2 3.0±1.2 10±5 86±6 

Cluster 8 26 2.31±1.61 3.13±2.48 0.61±0.56 0.03±0.02 4.3±3.7 2.1±1.9 0.7±0.7 3.6±3.1 9±5 83±9 

Cluster 9 18 1.46±0.86 1.83±1.65 0.36±0.26 0.03±0.02 2.5±1.1 1.1±0.4 0.4±0.2 2.1±1.0 11±2 87±6 

Cluster 10 8 2.07±1.36 2.73±1.32 0.43±0.19 0.03±0.03 3.5±1.5 1.4±0.8 0.5±0.3 3.0±1.3 6±7 88±6 

          
 

 

Winter          
 

 

Cluster 1 22 2.36±1.09 4.21±2.17 1.19±0.75 0.04±0.05 5.4±2.7 2.3±1.7 0.8±0.6 4.6±2.2 1±4 88±4 

Cluster 2 14 1.97±1.64 2.82±2.09 1.21±0.82 0.03±0.03 4.4±2.4 1.3±1.2 0.5±0.4 4.0±2.1 4±3 86±5 

Cluster 3 12 2.45±0.88 5.58±2.67 1.52±0.91 0.05±0.04 6.3±3.0 2.9±1.5 1.0±0.5 5.3±2.5 -1±4 90±5 

Cluster 4 8 2.46±1.16 3.43±1.53 2.18±0.44 0.10±0.05 4.4±2.4 1.4±1.4 0.5±0.5 3.9±2.0 3±3 87±4 

Cluster 5 13 3.68±1.62 7.52±3.33 1.43±0.53 0.11±0.08 6.1±1.9 1.8±1.2 0.6±0.4 5.5±1.8 1±6 90±5 

Cluster 6 4 1.34±0.72 3.45±2.17 0.97±0.90 0.03±0.04 4.3±1.7 1.5±1.1 0.5±0.4 3.8±1.5 0±3 87±5 

Cluster 7 10 2.43±1.68 3.16±2.38 1.29±0.78 0.06±0.05 4.4±1.9 1.4±0.8 0.5±0.3 3.9±1.7 6±3 87±10 

Cluster 8 8 2.71±2.02 3.91±2.33 0.99±0.72 0.05±0.06 3.9±1.5 1.3±0.6 0.4±0.2 3.4±1.3 -1±2 83±9 

Cluster 9 2 0.74 0.95 0.32 0.01 3.3 0.9 0.3 3.0 5 88 

Cluster 10 8 0.61±0.21 0.49±0.27 0.71±0.41 0.002±0.002 3.1±0.3 0.3±0.3 0.1±0.1 3.0±0.3 9±2 85±8 

          
 

 

Spring          
 

 

Cluster 1 28 2.36±1.12 4.96±4.47 0.86±0.74 0.08±0.06 2.8±0.9 1.1±0.6 0.4±0.2 2.4±0.8 8±3 74±7 

Cluster 2 12 1.49±0.70 1.40±1.52 1.91±1.23 0.04±0.03 1.7±1.1 0.6±0.5 0.2±0.2 1.5±0.9 8±2 71±7 

Cluster 3 18 1.45±0.72 1.45±1.10 1.02±0.91 0.05±0.04 2.0±1.0 0.7±0.6 0.2±0.2 1.7±0.9 9±2 78±7 

Cluster 4 9 1.70±1.42 2.83±6.88 1.54±0.72 0.04±0.05 1.3±0.6 0.3±0.1 0.1±0.0 1.2±0.6 10±2 75±5 

Cluster 5 8 5.53±3.41 10.41±6.68 1.01±0.50 0.17±0.11 4.1±1.2 1.0±0.8 0.4±0.3 3.7±1.2 10±2 83±9 

Cluster 6 9 1.95±1.27 1.82±1.23 0.95±0.65 0.05±0.05 2.2±0.9 0.6±0.3 0.2±0.1 2.0±0.8 9±3 68±6 

Cluster 7 13 1.29±0.60 2.09±1.95 0.36±0.28 0.06±0.05 2.1±0.6 0.6±0.2 0.2±0.1 1.9±0.6 10±3 80±7 

Cluster 8 21 3.32±1.37 11.07±6.70 0.43±0.36 0.10±0.07 4.1±1.5 1.4±1.1 0.5±0.4 3.6±1.3 10±3 74±9 
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With regard to the sources of oxalate in aerosol, oxalate was found high concentrations for 

the air mass trajectories coming from continental airflows and was generally associated with 

high sulphate and nitrate concentrations (cluster 3, 7, 5 and 5 in summer, autumn, winter and 

spring, respectively), suggesting that marine precursors for production of oxalate were not 

very important. Since there was no obvious strong seasonality in oxalate concentrations at 

this site, the precursors from anthropogenic sources may be considered more than biogenic 

isoprene. 

 

5.5.3 Cluster analysis for simultaneous data between EROS and Harwell 

 

As mentioned in 5.5.1, it is useful to evaluate the air mass back trajectories in order to know 

the LRT paths of aerosol composition in air samples collected simultaneously between EROS 

and Harwell. There were 100 back trajectories computed by HYSPLIT_4 during 12 Jul to 6 

Dec 2010 and the cluster analysis was applied to each of the site locations. Figure 5.6 shows 

the change in total spatial variance with number of clusters at EROS and Harwell. The mean 

back trajectories for nine clusters were represented at both sites as change in TSV when 

reducing the number of clusters from nine to eight (49.87% and 33.48% for EROS and 

Harwell, respectively), indicating nine clusters for this sampling period. The clustering results 

were quite similar at EROS and Harwell (Figure 5.7), despite some minor cluster differences 

from the very slow easterly airflow (cluster 1) accounted for 12% of the data for EROS and 

not for Harwell including the slow southerly airflow (cluster 2) accounted for 8% of the data 

for Harwell and not for EROS. In comparison the clustering data of Harwell with the study 

by Abdalmogith and Harrison (2005), the clustering paths in this study yielded mostly the 

same direction as during the period of 2002 - 2003 data. The fast easterly flows were 

registered at both sites (cluster 9) and accounted for 3% and 5% of the data for EROS and 

Harwell, respectively. The significant slow westerly airflows were seen in this period (cluster 

4 accounted for 25% of the trajectories and cluster 1 accounted for 16% of the trajectories for 

EROS and Harwell, respectively). Meteorological scenarios favouring the transport of air 

masses from the northern part passing over the UK before arriving at EROS and Harwell also 

appeared during this period with the slow and fast airflows accounted between 8% to 15% of 

the data (cluster 7, 8 and cluster 6, 7 for EROS and Harwell, respectively). 

 

 

 



 

Figure 5.6  The percent change
trajectories arriving at EROS and Harwell during the period of simultaneous air sampling (12 July 
2010 to December 2010) 
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The percent changes in total spatial variance with cluster number for the clustering of 
trajectories arriving at EROS and Harwell during the period of simultaneous air sampling (12 July 

 

 
in total spatial variance with cluster number for the clustering of 

trajectories arriving at EROS and Harwell during the period of simultaneous air sampling (12 July 
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Figure 5.7  Average 3-day back trajectories for the main trajectory clusters arriving at EROS and 
Harwell during the period of simultaneous air sampling (12 July 2010 and December 2010). Symbols 
denote the location of the air parcel every 24 hours. (Individual trajectories contributing to each 
cluster are presented in Appendix C) 
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Table 5.5 summarises the average concentration of chemical components in PM2.5 for clusters 

arriving at EROS and Harwell during the period of simultaneous sampling. As the local 

contribution calculated by the subtraction of the LRT from urban background concentration, 

the assumption of this method also included the formation of secondary aerosol species by 

photochemical oxidation contributed insufficiently for local formation of ion species to 

influence the analysed concentrations appreciably. For EROS, the local contribution to the 

major chemical components in fine fraction dominated for carbonaceous particles (EC, OC, 

OCprim, OCsec and WSOC for 0.6 µg m-3, 0.5 µg m-3, 0.3 µg m-3, 0.4 µg m-3 and 0.4 µg m-3, 

respectively) as presented in chapter 3 (Table 3.6) and chapter 4 (Table 4.4). The low local 

contributions were observed for nitrate, sulphate, chloride in this study (0.17 µg m-3, 0.13 µg 

m-3 and 0.08 µg m-3, respectively).  There was mostly influence of regional contribution for 

oxalate in ambient air as a zero value obtained from mean concentration difference between 

the two sites during the simultaneous period. 

 

With regard to Harwell represented purely LRT, the fast easterly (cluster 9) and the slow 

southerly (cluster 2) airflows contribute the significant concentration of chemical 

composition levels. Nitrate and sulphate concentrations associated with the slow southerly 

airflow and the fast easterly airflow, respectively appeared the highest concentrations. (4.25 

µg m-3 and 3.17 µg m-3 for nitrate and sulphate, respectively). This transport path of cluster 2 

also dominantly contributed the highest concentration of oxalate in fine fraction (0.06 µg m-3). 

These findings indicate that the secondary aerosols could be transported from the polluted 

urban in Western Europe, mainly during the autumn. For oxalate at Harwell, the biogenic 

emissions from vegetation especially isoprene could be the important precursor in associated 

with southerly trajectories as stated by Legrand et al. (2007). Their study confirmed the role 

of isoprene on the contribution of oxalic acid since the high estimated isoprene emissions in 

Europe especially in the east flank of France (Simpson et al., 1995) with the isoprene 

emissions of 1.5 to 2.5 tons km-2 yr-1. However, the sources of oxalate from the other 

anthropogenic precursors would be considered because the slow southerly trajectory did not 

contribute for the highest oxalate concentration at EROS site as later discussion. 

 

Although the large concentration of chloride associated with the fast maritime airflows 

coming form Atlantic ocean (cluster 4, 5), it should be noted that the highest chloride 

concentration was from the continental air masses with the fast easterly trajectory (cluster 9). 
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This finding indicates the important sources of chloride in fine fraction originated from urban 

and industrial regions passing over Europe. 

 

Table 5.5  Average concentrations (± S.D.) of major chemical components in PM2.5 by trajectory clusters arriving 
at EROS and Harwell during the period of simultaneous air sampling  

PM2.5 n Aerosol Concentration, µg m-3       
  SO4

2- NO3
- Cl- C2O4

2- OC EC OCprim OCsec WSOC WSOC/ 
OCsec 

EROS            

Cluster 1 12 2.83±2.00 3.18±3.34 0.27±0.22 0.04±0.03 2.8±1.3 1.1±1.0 0.4±0.3 2.4±1.0 2.2±0.9 0.92 

Cluster 2 11 2.28±1.72 2.91±2.21 0.44±0.23 0.02±0.01 3.3±1.8 1.5±1.0 0.5±0.4 2.8±1.4 2.2±1.0 0.79 

Cluster 3 5 1.46±0.94 1.85±2.36 0.49±0.46 0.02±0.02 1.7±0.5 0.6±0.3 0.2±0.1 1.4±0.4 1.3±0.3 0.93 

Cluster 4 25 1.00±0.40 0.56±0.51 0.21±0.15 0.01±0.01 1.6±0.6 0.5±0.2 0.2±0.1 1.4±0.5 1.2±0.6 0.86 

Cluster 5 12 1.04±0.65 0.45±0.17 0.30±0.22 0.01±0.01 1.3±0.3 0.5±0.1 0.2±0.0 1.2±0.3 1.1±0.2 0.92 

Cluster 6 12 0.84±0.35 0.56±0.52 0.42±0.25 0.01±0.01 1.5±0.3 0.6±0.2 0.2±0.1 1.3±0.2 1.2±0.2 0.92 

Cluster 7 12 2.50±1.65 2.46±2.81 0.42±0.38 0.02±0.01 3.6±3.0 2.1±2.2 0.7±0.8 2.9±2.3 2.5±1.6 0.86 

Cluster 8 8 1.10±0.95 1.60±1.42 0.44±0.27 0.01±0.01 3.2±2.0 1.5±0.9 0.5±0.3 2.7±1.8 1.9±1.6 0.70 

Cluster 9 3 1.37±0.45 3.43±2.28 0.56±0.13 0.02±0.01 3.3±1.1 1.2±0.9 0.4±0.3 2.9±0.8 2.2±0.5 0.76 

            

Harwell            

Cluster 1 16 0.85±0.36 0.49±0.30 0.13±0.08 0.02±0.02 1.2±0.3 0.1±0.1 0.1±0.0 1.2±0.3 0.8±0.4 0.67 

Cluster 2 8 3.02±2.58 4.25±4.96 0.21±0.19 0.06±0.07 2.7±1.3 0.6±0.5 0.2±0.2 2.4±1.2 2.1±1.3 0.88 

Cluster 3 6 1.09±0.66 0.36±0.14 0.23±0.24 0.004±0.005 1.0±0.3 0.1±0.1 0.03±0.02 1.0±0.4 0.5±0.2 0.50 

Cluster 4 19 0.82±0.43 0.53±0.41 0.35±0.26 0.01±0.01 1.3±0.4 0.2±0.1 0.1±0.0 1.3±0.4 1.0±0.5 0.77 

Cluster 5 10 1.10±0.63 0.83±0.97 0.40±0.29 0.02±0.02 1.6±0.8 0.3±0.6 0.1±0.2 1.5±0.6 1.2±0.7 0.80 

Cluster 6 10 1.89±1.11 2.20±1.96 0.20±0.14 0.02±0.02 2.3±0.8 0.6±0.4 0.2±0.1 2.1±0.6 1.8±0.7 0.86 

Cluster 7 15 1.03±0.69 1.32±1.33 0.22±0.12 0.01±0.02 1.5±0.6 0.4±0.3 0.1±0.1 1.4±0.6 1.3±0.5 0.93 

Cluster 8 11 2.27±0.96 2.10±0.78 0.24±0.25 0.01±0.01 2.2±0.6 0.7±0.4 0.2±0.1 2.0±0.4 1.7±0.5 0.85 

Cluster 9 5 3.17±1.13 2.07±1.08 0.67±0.37 0.02±0.02 2.8±1.3 0.6±0.3 0.2±0.1 2.6±1.2 2.4±1.2 0.92 

            

 

Concerning the secondary OC transport paths at Harwell, OCsec formed in the atmosphere 

dominantly associated with easterly airflow (cluster 8, 9) including the slow southerly 

(cluster 2) and the northerly airflows (cluster 6). The slow and fast trajectories coming from 

northern and eastern part of UK before arriving EROS were influence on OCsec 

concentrations (cluster 1, 2, 7, 8 and 9). The similar observations appeared for the transport 

paths of WSOC as mainly produced by secondary formation stated in the previous chapter. 

Kruskal-Wallis non-parametric tests indicates no significant difference (p > 0.05) in ratio of 

WSOC/OCsec among clusters arriving at EROS but significant difference is observed at 

Harwell site. This could be evident the important secondary source of WSOC associated with 

the LRT arriving EROS site. As seen in Table 5.5, WSOC also associated with the clusters 

containing significant of OC at both sites (cluster 1, 2, 7 and 9 for EROS and cluster 2, 6 and 

9 for Harwell). This is because a large fraction of OC is water soluble and it contains the 

more oxygenated and polar fraction of particulate organic carbon. 
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For EC and primary OC concentrations, they were expected the local contribution rather than 

the LRT as EC was formed during the incomplete combustion and a good indicator for 

primary source. The highest concentration of EC was observed dominantly in association 

with northerly airflow (cluster 7) for EROS, whilst the easterly airflow (cluster 8) made the 

significant contribution to EC concentration at Harwell. A similar pattern was seen for OCprim 

as its concentration calculated based on the minimum ratio of 0.35 (OCprim = 0.35 × EC). 

Since both clusters were the slow moving airflows, it seems likely the airmasses to be 

associated with low local wind speeds and low mixing depths associated with the cold 

conditions which would lead to poor dispersion of local urban emissions. This is evidenced 

by the highest concentrations of EC and OCprim associated with cluster 3 during the winter 

moth for EROS site. 

 

In comparison between dataset collecting in this period with the whole data at EROS, the 

major chemical composition in PM2.5 associated with the airflows mainly from Western 

Europe which is industrialized European continent (cluster 1, 2, and 9). The significant 

northerly trajectories passing over the UK before arriving EROS also contributed the high 

concentrations of atmospheric pollutants. The westerly airflows (cluster 4, 5 and 6) were 

observed low major component concentrations similar to the results obtained from whole 

EROS data. The oxalate concentration revealed the highest concentration with the slow 

easterly airflow (cluster 1) from continental Europe in consistent with the continental air 

masses (cluster 2) affecting its concentration at Harwell during this period. These results 

could be attributed the fact that the regional contribution of oxalate concentration in fine 

fraction coming from continental airflows at both sites. Similarly, Salvador et al. (2010) 

observed the source of oxalic and other diacids from central Europe before arriving France 

and Germany (Puy de Dome-PDD and Schauinsland-SIL sampling sites, respectively). 

 

The box-whisker plots of chemical composition of PM2.5 for simultaneous data between 

EROS and Harwell by the clusters are presented in Figure 5.8 and Figure 5.9. The pattern of 

oxalate in Figure 5.9 looks very similar to that for nitrate but rather different from sulphate. 

This finding could be attributed the fact that oxalate exhibit the same behaviour as nitrate 

aerosol mostly found in form of NH4NO3 which is a temperature dependent species. On the 

other hand, sulphate in form of (NH4)2SO4 is more stable in ambient air. As expected, the 

patterns of WSOC were similar to that for OCsec and OC at both sites, it could be confirmed 
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that WSOC mostly formed by secondary formation and WSOC accounted for the significant 

fraction of OC in atmospheric particle. 

 

(a) 

 

 

(b) 

 
Figure 5.8  Box-whisker plots of major components in PM2.5 at EROS by clusters during the 
simultaneous air sampling with Harwell; (a) sulphate, (b) nitrate, (c) chloride, (d) oxalate, (e) OC, (f) 
EC, (g) OCprim, (h) OCsec, (i) WSOC and (j) WSOC/OCsec 
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(c) 

 

 

(d) 

 
Figure 5.8  (continued) 
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(e) 

 

 

(f) 

 
Figure 5.8  (continued) 
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(g) 

 

 

(h) 

 
Figure 5.8  (continued) 
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(i) 

 

 

(j) 

 

Figure 5.8  (continued) 
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(a) 

 

 

(b) 

 
Figure 5.9  Box-whisker plots of major components in PM2.5 at Harwell by clusters during the 
simultaneous air sampling with EROS; (a) sulphate, (b) nitrate, (c) chloride, (d) oxalate, (e) OC, (f) 
EC, (g) OCprim, (h) OCsec, (i) WSOC and (j) WSOC/OCsec 
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(c) 

 

 

(d) 

 
Figure 5.9  (continued) 

 

 

 

 

Harwell (12Jul-6Dec2010)

0.00

0.30

0.60

0.90

1.20

cluster 1
cluster 2

cluster 3
cluster 4

cluster 5
cluster 6

cluster 7
cluster 8

cluster 9

C
hl

or
id

e,
 µ

g 
m

-3

Mean

Harwell (12Jul-6Dec2010)

0.00

0.03

0.06

0.09

0.12

0.15

0.18

cluster 1
cluster 2

cluster 3
cluster 4

cluster 5
cluster 6

cluster 7
cluster 8

cluster 9

O
xa

la
te

, µ
g 

m
-3

Mean



 165 

(e) 

 

 

(f) 

 
Figure 5.9  (continued) 
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(g) 

 

 

(h) 

 
Figure 5.9  (continued) 
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(i) 

 

 

(j) 

 
Figure 5.9  (continued) 
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5.6 Conclusions 

 

The air mass back trajectories arriving at EROS and Harwell sites provide the effective 

evidence in the sources of airborne particulate matter by long-rang atmospheric transport. 

HYSPLIT_4 model available online at NOAA website used for the calculation of air mass 

back trajectories arriving at both sites. Application of cluster analysis in order to groups the 

similar trajectories showed the major five distinct clusters at EROS for the whole data and 

nine clusters at both EROS and Harwell for simultaneous data during this sampling period. 

At EROS, the slow-easterly airflow accounted for the highest trajectories of the data with 

more frequent during the autumn. Overall, the westerly airflows arriving EROS are the most 

frequent trajectories during this sampling period. These comprised the north westerly, 

westerly and south westerly and accounted for 21%, 9% and 22% of the data, respectively. 

The highest potential source regions of major chemical components of PM2.5 were emitted 

from European mainland regions rather than westerly airflows at this site.  

 

As the calculation of local contribution mentioned in the previous chapter, the sum of local 

and regional contribution on the chemical composition of PM2.5 in urban background (EROS) 

would be considered, whilst the purely LRT affecting the rural site (Harwell) was assumed. 

The back trajectories arriving at EROS and Harwell during the simultaneous sampling time 

were clustered and consequently the clustering analysis revealed the significant nine main air 

mass transports at both sites. The LRT pathways of high major component (SO4
2-, NO3

-, Cl-, 

C2O4
2-, EC, OC, OCprim, OCsec and WSOC) concentrations at both sites were from continental 

Europe (easterly and southerly air flows) which is polluted urban and industrial regions with 

many of precursor sources compared to the westerly trajectories with mostly passing over 

marine atmosphere. Although chloride commonly associated with air mass trajectories 

passing over marine atmosphere, it should be noted that there was an important 

anthropogenic sources contributed to fine chloride as shown in this study. 

 

With focusing on oxalate concentration, cluster analysis of air mass trajectories indicates that 

the dominant sources of oxalate were observed to be associated with airmasses originating 

from continental air flows consist with the other pollutants (sulpphate, nitrate, OC, EC and 

OCsec). As repoted by Legrand et al. (2007), diacids which dominated by oxalate were not 

only related to the LRT from continents but also to marine biogenic emissions from 

phytoplankton. The contributions of oxalate by the long maritime trajectories yielded the 
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small ratios of C2O4
2-/SO4

2-, C2O4
2-/NO3

- and C2O4
2-/OCsec for the whole data at EROS (500 

trajectories). In addition, there were observed the weak correlation between oxalate and 

chloride commonly generated from sea spray (as mentioned in chapter 4), indicating the 

insignificant sources of oxalate from marine atmosphere. At EROS and Harwell sites, this 

could conclude that the sources of anthropogenic precursors for oxalate formation are more 

likely than biogenic sources because there was the lack of strong seasonality in oxalate 

concentration observed in this study. It should be noted that the secondary formations of 

oxalate in atmosphere play an important contribution to particulate oxalate as the weak 

relationships observed for oxalate with EC, which is a good indicator of primary origins of 

incomplete combustion from the burning of carbonaceous materials including emission from 

fuel combustion. 
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CHAPTER 6 

INTERPRETATION OF SIZE DISTRIBUTIONS OF MAJOR 
COMPONENTS IN AIRBORNE PARTICULATE MATTER 

 

6.1 Synopsis 

 

In this chapter, the size distributions of anionic and cationic species in ambient aerosols at 

EROS are presented. The analysed species were sulphate, nitrate, chloride, oxalate, sodium, 

potassium, ammonium, total carbon and PM mass. The measurement and interpretation of 

size distributions of major component composition in PM are useful in order to the overall 

understanding their origins and formation mechanisms. The modes of aerosol size 

distribution were defined according to the size-segregated configuration of the MOUDIs, 

therefore, collected aerosol particles were divided into four modes; a nuclei mode with 

particle diameters less than 0.175 µm, a condensation mode with particle diameters between 

0.175 µm and 0.325 µm, a droplet mode with particle diameters between 0.325 µm and 1.8 

µm and a coarse mode with particle diameters between 1.8 µm and 18 µm. The distinction of 

size fractions between fine and coarse particles was defined by MOUDI’s cut point of 1.8 µm. 

Many of the studies have indicated that atmospheric particles most presented as ammonium 

neutralised forms such as (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, (NH4)2SO4⋅ 2NH4NO3, 

(NH4)2SO4⋅ 3NH4NO3 etc. (Harrison and Jones, 1995; Allen, 1989; Yin and Harrison, 2008). 

In order to study the effect of ammonia gas on aerosol particles, the direct comparison of air 

samplings was carried out between aerosols collected by the MOUDI with and without NH3 

gas supply. The concentrations and mass size distributions of component composition of 

atmospheric particles collected by both systems were determined and investigated. To 

author’s knowledge, studies and data on the size distributions of oxalate are limited within 

the UK. Hence, the discussions on oxalate concentration and its size distribution including 

the neutralised form in atmospheric particles were emphasized in comparison with data of 

inorganic aerosol species. 

 

 

 

 

 

 



 171 

6.2 Size distributions of ionic species in atmospheric aerosols 

 

Airborne particulate matter is commonly characterised by its size, more precisely by 

aerodynamic diameter. The aerodynamic diameter is defined as the diameter of the unit 

density (ρp = 1 g cm-3) sphere that has the same settling velocity as the particle being 

measured (Hinds, 1999). For example, a particle with an aerodynamic of 1 micrometre will 

exhibit the same inertial properties as a sphere with a diameter of 1 micrometre and a density 

of 1 g cm-3 – irrespective of the actual size, shape or density of the particle. PM in the 

ambient atmosphere have diameters spanning the entire range within the definition of an 

aerosol. Whitby (2007) remarked the simplification size distribution model called the Whitby 

trimodal model. The model described the particle size distributions consisting of a nucleation 

or Aitken mode (0.005 µm < Dp < 0.1 µm), an accumulation mode (0.1 µm < Dp < 2.0 µm), 

and a coarse mode (Dp > 2.0 µm). Each mode was fitted by a lognormal function. Whitby 

separated the particles into two main fractions; fine particle with diameters less than 2 µm 

and coarse particles with diameters of more than 2 µm. Currently, legislative air quality 

objectives are defined in term of PM10 and PM2.5 that fractions of particles with an 

aerodynamic diameter below 10 µm and 2.5 µm, respectively. Therefore, the trimodal size 

distribution is represented and modified as; nucleation or Aitken mode, below approximately 

0.1 µm in diameter; accumulation mode (0.1 µm < Dp < 2.5 µm), and the coarse mode (2.5 

µm < Dp < 10 µm). With regard to fine fraction, the particle size classification is also divided 

into the fine (Dp < 2.5 µm) and ultrafine (Dp < 0.1 µm) fractions. The latter is focused 

because these small particles might penetrate the issue in the deep lung, leading to the 

respiratory health effects (Hughes et al., 1998; Pakkanen et al., 2001). The typical particle 

size distribution of aerosols is shown in Figure 6.1.  
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Figure 6.1  Mass size distribution of airborne particulate matter in urban atmosphere (source : modified 
from U.S.EPA, 2012) 
 

Each mode in the mass size distributions of aerosols has different major sources, formation 

pathways and chemical composition. The size distribution is changed in the atmosphere by 

the mechanisms of new particle formation (gas to particle by photochemical oxidation of 

precursors), following by growth (coagulation and condensation), evaporation and removal 

(diffusion, settling, impaction, washout and rainout) (Hinds, 2001). An increase in the 

particle size occurs through coagulation and condensation of aerosol particles. Coagulation is 

the growth process of aerosol from the collision of particles whilst particle condensation 

occurs when more vapor molecules arrive on their particle’s surface. Evaporation is the 

reverse process changing the size and results in a net loss of molecules and reduction of 

airborne particles. 

 

Nucleation or Aitken mode consists gases and vapors emitted directly into atmosphere and 

particles produced in the atmosphere by gas-to-particle conversion. This mode is usually 

found near the sources so that the greatest numbers of particles originate in the nucleation 

mode. These particles coagulate rapidly with each other and in particular with the particles in 
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accumulation mode. Nuclei particles can also grow by condensation of vapour on their 

surface, or by cloud processing during transport from source locations. Due to ultrafine 

particles rapidly diffuse and undergo agglomeration ending up in the accumulation mode, 

most of them have a short lifetime in the atmosphere probably form minutes to hours. 

Moreover, these particles may serve as nuclei for the production of cloud droplets and may be 

discharged from the ambient air as rain droplets.  

 

The accumulation mode comprises mainly combustion particles (i.e. anthropogenic 

emissions), smog particles and the growth nuclei-mode particles that have coagulated with 

accumulation-mode particles. Smog particles are aerosols formed in the atmosphere by the 

presence of sunlight on vapors (Baron and Willeke, 2001). The nuclei and accumulation 

modes together constitute fine particles (PM2.5). The accumulation mode may have two 

submodes: a condensation mode with the mass median aerodynamic diameters (MMAD) of 

0.2 ± 0.1 µm and a droplet mode with MMAD of 0.7 ± 0.2 µm (John et al., 1990). The 

condensation mode was formed and growth by condensation of gases either directly of 

indirectly through coagulation with nuclei mode particles. The rate of growth of particles in 

condensation mode declines with increasing particle size. The droplets are formed by the 

growth of hygroscopic condensation-mode particles.  

 

Coarse particles are attributed to sea salts or atmospheric particles produced via abrasion 

mechanisms (e.g. dust from the wind-driven erosion of soils or released biogenic particles). 

These particles are readily removed by gravitational settling at appreciable rated or impaction 

on surfaces as their large size. The residence time in the atmosphere is only from hours to 

days. The separating line between coarse and fine particles is the saddle point between 1 and 

3 µm. Coarse fraction may be accounted for various concentrations in airborne particulate 

matter depending on area conditions. In the UK urban areas, the major sources of coarse 

particles are a re-suspended road dusts, windblown soils and sea spray particles (QUARG, 

1996). 

 

6.3 Measurement of aerosol size distributions at EROS 

 

In this study, size-segregated aerosol samples were colleted by two Micro Orifice Uniform 

Deposit Impactors (MOUDI) at EROS. One MOUDI was supplied by ammonia gas with a 

concentration of 52.08 ppm cylinder (NH3 in synthetic air). The other one was operated to 
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collect the air samples under a normal instrumental procedure as detailed in chapter 2. The 

sampling was conducted over fifteen periods from 23 November 2010 to 24 January 2011 

(Table 6.1). Because of the instrument problem, there were only three sampling periods 

which the aerosol samples were collected simultaneously by both MOUDIs (P1-P9, P2-P10 

and P6-P14). Totally 15 sets of samples were collected at this site. Eight sets of 72h samples 

were obtained by MOUDI supplied with NH3 gas and seven sets of 72h samples were 

collected by MOUDI with usual operation. More detailed information of meteorological 

parameters and analysed species is also given in Table 6.1. 
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Table 6.1  Summary of air sampling conditions by MOUDI and chemical analysis of aerosol samples at EROS 

Period Sampling date Sampling 

volume (m3) 

Temperature (oC) Relative humidity (%) Instrument Analytes 

Max Min Mean Max Min Mean 

P1* 23 – 26/11/10 123.5 7 -5 1 ± 2 100 65 86 ± 2 

MOUDI with NH3 supply 

 

SO4
2-, NO3

-, Cl-, C2O4
2-, 

Na+, NH4
+, K+, PMmass, TC 

P2* 26 – 29/11/10 125.3 3 -10 -3 ± 2 100 65 91 ± 3 

P3 30/11 – 3/12/10 124.4 1 -8 -2 ± 1 100 80 92 ± 2 

P4 7 – 10/12/10 117.6 7 -12 -2 ± 5 100 74 88 ± 5 

P5 14 – 17/12/10 118.4 7 -5 1 ± 3 100 64 88 ± 5 

P6* 11 – 14/01/11 115.8 13 1 7 ± 3 100 76 91 ± 3 

P7 14 – 17/01/11 116.2 12 2 8 ± 1 100 76 89 ± 4 

P8 18 – 21/01/11 118.0 7 -5 1 ± 2 100 65 90 ± 3 

           

P9* 23 – 26/11/10 123.5 7 -5 1 ± 2 100 65 86 ± 2 

MOUDI without NH3 supply 
SO4

2-, NO3
-, Cl-, C2O4

2-, 

Na+, NH4
+, K+, PMmass, TC 

P10* 26 – 29/11/10 125.3 3 -10 -3 ± 2 100 65 91 ± 3 

P11 3 – 6/12/10 121.7 4 -9 -2 ± 4 100 80 95 ± 2 

P12 10 – 13/12/10 116.9 8 -5 3 ± 3 100 76 89 ± 6 

P13 17 – 20/12/10 116.4 -1 -15 -7 ± 3 100 64 91 ± 6 

P14* 11 – 14/01/11 111.5 13 1 7 ± 3 100 76 91 ± 3 

P15 21 – 24/01/11 116.6 7 -4 2 ± 2 100 65 87 ± 3 

* both MOUDIs were sampling simultaneously 
Meteorology data available from: www.wunderground.com 
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The primary objectives of this experiment are; 

- To better understanding the formation mechanisms and sources of ionic species in 

ambient aerosols by interpretation of particle size distributions.  

- To characterise and quantify the particle mass and chemical composition of PM 

samples in each size range. 

- To study the effect of ammonia gas concentration whether to stabilise the semi-

volatile species in atmospheric particulate matter when air samples were collected 

under the ammonia gas atmosphere. 

 

With regard to the form of inorganic chemical constituents in aerosol particles, ammonia 

originated from primarily biological source readily dissolves in aqueous particles and 

neutralises sulphate, nitrate and chloride, which are usually observed as ammonium sulphate 

((NH4)2SO4), ammonium nitrate (NH4NO3) and ammonium chloride (NH4Cl) in atmosphere 

(Yin et al., 2010; Yin and Harrison, 2008; Harrison et al., 2003; Zhuang et al., 1999). At 

EROS site, Yin et al. (2010) indicated that the most significant sources of PM2.5 were 

ammonium salts (sulphate plus nitrate) contributing about 52.6% in summer and 33.7% in 

winter. The instrument designed for ammonia gas feeding during the air sampling is 

expecting to produce more substantial neutralisation of ammonium salt aerosol particles. 

Hence, the excess ammonia in the concentration of 50 ppb (at final mixing) was accurately 

supplied and controlled for the MOUDI during the sampling (chapter 2.2.2). The reactions of 

ammonia gas to form ammonium salts are presented as following equations (Kitto and 

Harrison, 1992; Allen et al., 1989; McCulloch et al., 1998); 

 

In gas phase; 

 

    H2SO4(g) + 2NH3(g) → (NH4)2SO4(aq,s)  (Equation 6.1) 

    HNO3(g) + NH3(g) ↔ NH4NO3(aq,s)  (Equation 6.2) 

    HCl(g) + NH3(g) ↔ NH4Cl(aq,s)   (Equation 6.3) 

 

In aqueous phase by dissolved ammonia; 

 

    H2SO4(aq) + 2NH4OH(aq) → (NH4)2SO4(aq,s) + 2H2O  (Equation 6.4) 

    HNO3(aq) + NH4OH(aq) ↔ NH4NO3(aq,s) + H2O (Equation 6.5) 

    HCl(aq) + NH4OH(aq) ↔ NH4Cl(aq,s) + H2O (Equation 6.6) 
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Moreover, the study of particulate oxalate, which was a dominant WSOC species of aerosol, 

was emphasized in this work. The mass size distribution of oxalate is also important evidence 

to investigate its formation pathway. Lefer and Talbot (2001) reported the similarity of the 

size distribution between oxalate and ammonium and proposed that ammonium oxalate 

aerosol may be directly formed from the gaseous precursors (heterogeneous production) that 

were ammonia and oxalic acid. With the same assumption of form of oxalate aerosol and the 

neutralisation reaction of oxalate by ammonia gas, the air samples obtained from MOUDI 

with NH3 gas supplied were analysed and expected to yield high concentration of particulate 

oxalate. The reactions of ammonia to form ammonium oxalate salt in gas and aqueous phases 

are shown below. 

 

    H2C2O4(g) + 2NH3(g) ↔ (NH4)2C2O4(aq)          (Equation 6.7) 

    H2C2O4(aq) + 2NH4OH(aq) ↔ (NH4)2C2O4(aq) + 2H2O  (Equation 6.8) 

 

In this study, collected aerosol particles were divided into four modes of size distributions 

according to the restriction of the MOUDI size configuration; a nuclei mode with particle 

diameters less than 0.175 µm, a condensation mode with particle diameters between 0.175 

µm and 0.325 µm, a droplet mode with particle diameters between 0.325 µm and 1.8 µm and 

a coarse mode with particle diameters between 1.8 µm and 18 µm. Since MOUDI does not 

have a 2.5 µm cutoff point, the cut size of 1.8 µm is defined as the cutoff point to separate the 

fine and coarse particles. Therefore, PM in fine and coarse fractions represented the sum of 

species with diameter below 1.8 µm and above 1.8 µm, respectively. 

 

In order to evaluate the measurement data obtained from MOUDI experiment, the 

measurement uncertainties of ionic component data were investigated and estimated to be 

included systematic and analytical errors. Since K+ and Na+ are the non-volatile species and 

do not neutralise by ammonia gas, their concentrations measured from the two systems 

should be observed in identical value. In this experiment, there were slightly differences in 

concentrations of both species found in samples collected in both samplers with and without 

NH3. The concentrations of Na+ were 0.53 µg m-3 and 0.55 µg m-3 in aerosol samples taken 

with and without NH3, respectively and the concentrations of K+ were 0.08 µg m-3 and 0.07 

µg m-3 in aerosol samples taken with and without NH3, respectively. These findings are 

indicative of sampling and analytical variability. For the measurement of K+, many samples 
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observed below the detection limit, therefore the estimation of experiment uncertainty in this 

system was estimated based on Na+ species. The error value of 5% from Na+ concentration 

was one of additional parameter for the calculation of ionic measurement uncertainty as 

detailed in Appendix A. The expanded uncertainty of the measurement of ionic species (SO4
2-, 

NO3
-, Cl-, C2O4

2-, K+, Na+ and NH4
+) was 6.6%. 

 

Table 6.2 summarises the major components concentration of aerosol into nuclei, 

condensation, droplet and coarse modes. Each mode represents the sum concentration of 

species in defined stage ranges. For particle mass, PMmass in nuclei modes are not reported 

due to the technical problem in gravimetric analysis. After sampling, the quartz fibre filters in 

the back-up stage were damage at the edge when unscrewing the cover to remove them, so 

this resulted in the loss of filter mass. With regard to total carbon (TC), there are not data 

available for TC in some periods (P6, P7, P8, P14 and P15) due to the air samples collected 

on Teflon filters were not able to analyse by thermal optical transmission technique. For other 

periods, aerosol samples were collected onto Al foil substrates in order to investigate their 

PMmass, chemical components including carbonaceous materials in atmospheric particles. The 

analytical method used described in chapter 2. Only TC data reported by thermal optical 

transmission (TOT) analysis in this case because the analyser was not able to split TC into 

OC and EC when measuring samples taken by aluminium substrates. A red-light laser, which 

is used to monitor transmittance of the filter, cannot pass through the Al foils and 

consequently the software does not calculate the split time between OC and EC. 

 

With regard to aerosol samples taken by MOUDI under normal conditions (P9 – P15), SO4
2- 

concentrations by modes of size distribution were in range of 0.07 − 2.62 µg m-3. There is 

clear that the lowest concentration observed in nuclei mode and the highest concentration 

presented in droplet mode accounting for 4.1% and 50.0% of the total suphate concentration, 

respectively for the whole data (Table 6.3). Nitrate in four modes were observed in the 

concentration range from 0.04 µg m-3 to 2.66 µg m-3. Mean NO3
- fraction for entire data 

contributions to total nitrate concentration were 4.3%, 37.2%, 52.0% and 6.6% for nuclei, 

condensation, droplet and coarse modes, respectively. The sea salt ions Na+ and Cl- were 

dominate in coarse mode and contribute to their total concentrations for 40.4% and 45.8%, 

respectively. Although sea salt ions commonly observed in coarse particle, they may exist as 

nanoparticles, evidenced by the presence of Na+ and Cl- in the nuclei mode at 19.0% and 

9.2%, respectively, of their total concentrations. These indicate the significance of 
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anthropogenic sources. At this site, C2O4
2-, NH4

+ and K+ also found mainly in accumulation 

(condensation + droplet) mode and the concentrations in four modes of distribution were in 

range 0.001 – 0.073 µg m-3, 0.00 – 0.54 µg m-3 and 0.00 – 0.05 µg m-3 for C2O4
2-, NH4

+ and 

K+, respectively. Total carbon (TC) which was the sum of OC and EC were found in range 

from 0.2 µg m-3 to 3.8 µg m-3 within four modes of size distribution. 

 

Table 6.2  Four modes of size distribution in concentrations of anions, cations, TC and PMmass of 
aerosol at EROS 

Period Modes of size 
distributions* 

Aerosol concentration, µg m-3 (±6.6%) 
SO4

2- NO3
- Cl- C2O4

2- Na+ NH4+ K+ TC PMmass 
with NH3           

P1 Nuclei 0.10 0.17 0.01 0.003 0.05 0.04 0.01 1.2 n.a. 

 Condensation 0.89 1.42 0.17 0.005 0.01 0.30 0.03 1.9 5.22 

 Droplet 1.44 1.05 0.32 0.007 0.23 0.21 0.01 1.7 4.67 

 Coarse 0.66 0.23 0.62 0.004 0.41 0.03 0.02 0.4 4.21 

           

P2 Nuclei 0.15 0.24 0.03 0.003 0.05 0.07 0.01 1.4 n.a. 

 Condensation 1.05 2.25 0.31 0.007 0.01 0.51 0.03 3.0 8.54 

 Droplet 2.42 2.26 0.43 0.008 0.11 0.72 0.04 2.4 10.20 

 Coarse 0.76 0.22 0.56 0.004 0.33 0.03 0.01 0.3 3.75 

           

P3 Nuclei 0.11 0.12 0.02 0.002 0.05 0.03 0.00 1.1 n.a. 

 Condensation 1.24 1.36 0.21 0.005 0.00 0.39 0.02 1.3 4.98 

 Droplet 1.64 1.32 0.56 0.006 0.37 0.32 0.03 0.8 5.26 

 Coarse 0.98 0.22 0.73 0.002 0.43 0.05 0.02 0.2 3.01 

           

P4 Nuclei 0.19 0.18 0.02 0.002 0.06 0.05 0.00 1.3 n.a. 

 Condensation 1.18 1.81 0.34 0.005 0.02 0.46 0.03 2.8 7.65 

 Droplet 2.24 1.23 0.44 0.005 0.20 0.32 0.02 1.7 6.34 

 Coarse 0.86 0.19 0.69 0.004 0.43 0.03 0.02 0.3 3.71 

           

P5 Nuclei 0.08 0.01 0.01 0.000 0.07 0.01 0.00 1.0 n.a. 

 Condensation 0.86 1.06 0.16 0.004 0.03 0.27 0.03 1.3 3.78 

 Droplet 1.40 1.58 0.33 0.005 0.13 0.31 0.03 1.0 5.03 

 Coarse 0.22 0.15 0.33 0.002 0.15 0.02 0.03 0.4 2.00 

           

P6 Nuclei 0.11 0.03 0.02 0.002 0.07 0.00 0.00 n.a. n.a. 

 Condensation 1.18 0.35 0.02 0.005 0.01 0.14 0.00 n.a. 2.16 

 Droplet 1.12 0.43 0.18 0.005 0.16 0.08 0.00 n.a. 2.36 

 Coarse 0.69 0.08 0.24 0.001 0.14 0.02 0.00 n.a. 1.70 

P7 Nuclei 0.06 0.02 0.02 0.003 0.05 0.01 0.00 n.a. n.a. 

 Condensation 0.70 0.16 0.03 0.019 0.01 0.06 0.02 n.a. 2.13 

 Droplet 1.21 0.67 1.61 0.020 0.89 0.12 0.02 n.a. 5.89 

 Coarse 1.19 0.18 1.61 0.004 0.81 0.05 0.01 n.a. 5.35 

           

P8 Nuclei 0.12 0.10 0.03 0.004 0.06 0.03 0.00 n.a. n.a. 

 Condensation 1.10 1.84 0.34 0.013 0.03 0.51 0.03 n.a. 8.34 

 Droplet 3.16 2.63 0.79 0.016 0.27 0.91 0.05 n.a. 11.93 

 Coarse 1.22 0.35 0.95 0.002 0.56 0.05 0.02 n.a. 5.30 
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Table 6.2  (continued) 

Period Modes of size 
distributions* 

Aerosol concentration, µg m-3 (±6.6%) 
SO4

2- NO3
- Cl- C2O4

2- Na+ NH4+ K+ TC PMmass 
without NH3          

P9 Nuclei 0.11 0.09 0.02 0.003 0.10 0.01 0.00 1.4 n.a. 

 Condensation 1.17 0.77 0.03 0.009 0.06 0.23 0.03 1.6 4.57 

 Droplet 0.93 0.39 0.20 0.005 0.22 0.05 0.00 0.7 2.77 

 Coarse 0.10 0.04 0.40 0.001 0.33 0.02 0.00 0.2 3.07 

           

P10 Nuclei 0.21 0.08 0.40 0.003 0.29 0.02 0.00 1.7 n.a. 

 Condensation 1.30 1.93 0.08 0.013 0.01 0.34 0.05 3.0 8.65 

 Droplet 2.62 1.77 0.19 0.011 0.11 0.41 0.01 2.2 8.82 

 Coarse 0.17 0.09 0.40 0.004 0.25 0.02 0.01 0.3 3.83 

           

P11 Nuclei 0.18 0.07 0.02 0.002 0.11 0.05 0.03 1.2 n.a. 

 Condensation 1.22 0.86 0.03 0.006 0.00 0.20 0.01 2.0 4.89 

 Droplet 2.44 2.02 0.15 0.010 0.09 0.53 0.01 1.5 7.95 

 Coarse 0.07 0.09 0.19 0.002 0.11 0.05 0.00 0.2 1.50 

           

P12 Nuclei 0.15 0.06 0.04 0.002 0.00 0.00 0.00 1.1 n.a. 

 Condensation 1.05 0.20 0.03 0.008 0.06 0.13 0.02 1.4 3.20 

 Droplet 1.36 1.53 0.71 0.012 0.47 0.21 0.00 1.6 6.53 

 Coarse 0.38 0.14 0.65 0.006 0.38 0.03 0.00 0.4 3.07 

           

P13 Nuclei 0.09 0.05 0.01 0.002 0.00 0.00 0.03 1.4 n.a. 

 Condensation 0.83 2.66 0.17 0.022 0.01 0.54 0.04 3.8 10.17 

 Droplet 1.18 2.46 0.34 0.032 0.11 0.25 0.05 2.2 9.10 

 Coarse 0.22 0.24 0.21 0.007 0.14 0.00 0.05 0.5 3.25 

           

P14 Nuclei 0.03 0.04 0.04 0.000 0.09 0.01 0.01 n.a. n.a. 

 Condensation 0.59 0.09 0.01 0.029 0.00 0.10 0.01 n.a. 1.95 

 Droplet 0.27 0.12 0.13 0.015 0.13 0.02 0.00 n.a. 1.36 

 Coarse 0.08 0.05 0.13 0.005 0.07 0.00 0.00 n.a. 1.58 

           

P15 Nuclei 0.06 0.04 0.01 0.001 0.05 0.01 0.01 n.a. n.a. 

 Condensation 0.80 1.20 0.04 0.040 0.01 0.34 0.03 n.a. 7.39 

 Droplet 1.76 2.05 0.25 0.073 0.28 0.25 0.02 n.a. 9.47 

 Coarse 0.23 0.33 0.39 0.020 0.26 0.02 0.01 n.a. 2.67 

           

* Nuclei mode represents the sum of species concentrations in sizes below 0.175 µm 
* Condensation mode represents the sum of species concentrations in sizes between 0.175 µm and 0.325 µm 
* Droplet mode represents the sum of species concentrations in sizes between 0.325 µm and 1.8 µm 
* Coarse mode represents the sum of species concentrations in sizes between 1.8 µm and 18 µm 
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6.3.1 Contribution of aerosol particles by ammonia experiment 

 

Table 6.3 shows fraction contributions of aerosol species in each size mode for the whole and 

simultaneous datasets as well as their mean concentrations.  

 

Table 6.3  Mean fraction contributions of aerosol species in different size modes for the whole and 
simultaneous datasets  

 MOUDI with NH3  
 

MOUDI without NH3 

 Fraction contributions in each mode (%) Concentration* 
(nmol m-3) 
(±6.6%) 

 
Fraction contributions in each mode (%) Concentration* 

(nmol m-3) 
(±6.6%)  Nuclei Conden. Droplet Coarse Fine 

 
Nuclei Conden. Droplet Coarse Fine 

Whole       
 

      

SO4
2- 3.0 28.0 47.4 21.6 78.4 39.5 

 
4.1 38.9 50.0 7.0 93.0 29.2 

NO3
- 3.5 40.4 48.1 8.0 92.0 48.2 

 
4.3 37.2 52.0 6.6 93.4 44.9 

Cl- 1.7 14.5 36.6 47.2 52.8 42.8 
 

9.2 7.7 37.3 45.8 54.2 21.2 

C2O4
2- 11.1 34.5 39.7 14.7 85.3 0.3 

 
6.8 39.2 41.7 12.3 87.7 0.6 

Na+ 9.7 2.6 35.3 52.4 47.6 33.7 
 

19.0 3.2 37.4 40.4 59.6 23.3 

NH4
+ 3.7 44.3 45.4 6.6 93.4 42.7 

 
3.0 53.8 39.4 3.8 96.2 30.5 

K+ 3.6 35.9 36.2 24.3 75.7 2.0 
 

20.3 58.3 13.2 8.3 91.7 1.6 

TC 24.7 39.6 29.0 6.7 93.3 5.1 
 

25.2 40.5 28.5 5.7 94.3 5.7 

PMmass n.a ** 34.3 41.1 24.6 75.4 15.44 
 

n.a ** 38.1 41.6 20.3 79.7 15.11 

       
 

      

Simultaneous data     
 

            

SO4
2- 3.4 30.3 46.0 20.3 79.7 36.7 

 
4.2 47.2 43.0 5.5 94.5 26.3 

NO3
- 4.7 44.7 43.5 7.1 92.9 47.0 

 
7.5 46.5 38.7 7.4 92.6 29.4 

Cl- 2.5 14.3 33.3 49.9 50.1 27.4 
 

17.8 5.1 30.2 47.0 53.0 19.1 

C2O4
2- 14.9 32.2 37.2 15.6 84.4 0.2 

 
9.4 50.0 31.1 9.5 90.5 0.4 

Na+ 11.9 2.0 32.3 53.8 46.2 22.9 
 

28.2 8.1 28.7 35.0 65.0 24.1 

NH4
+ 8.7 46.7 39.7 4.9 95.1 39.8 

 
3.1 51.2 36.7 6.0 94.0 22.8 

K+ 12.7 38.1 29.4 19.8 80.2 2.0 
 

19.0 42.9 19.0 19.0 81.0 1.0 

TC 21.4 39.4 33.2 6.0 94.0 6.2 
 

29.8 41.3 24.3 4.6 95.4 5.6 

PMmass n.a ** 36.6 38.8 24.6 75.4 14.27 
 

n.a ** 41.5 31.9 26.6 73.4 12.20 
* Concentration calculated from mean of the sum of species concentrations in all size ranges during the sampling period. TC 

and PMmass were in unit of µg m-3 
** All exposed back-up filters (QMA filter) were damaged and loosen at the edge when unscrewing to remove from the filter 

base cover. Therefore, the PM mass was not measured by gravimetric analysis.  
*** Fine fraction is defined by the cut point below 1.8 µm 

 

In comparison between air sampling under the normal condition and under ammonia supply, 

the mean concentrations of SO4
2-, NO3

-, Cl- and NH4
+ revealed the lower values in samples 

collected under normal condition than those samples collected under NH3 atmosphere for the 

entire data (Table 6.3). This finding can be attributed the fact that ammonia gas neutralises 

the anionic aerosol species to form ammonium salts as (NH4)2SO4, NH4NO3 and NH4Cl in 

particulate matter. On the contrary, particulate oxalate observed high concentration in the 

samples collected under normal atmosphere (0.6 nmol m-3 and 0.3 nmol m-3 in air samples 

collected without and with NH3, respectively for the entire data). This finding will be 
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discussed later in comparison with data collected simultaneously. There was higher mean 

concentration of TC (5.7 µg m-3) in aerosol collected under normal condition than those (5.1 

µg m-3) in aerosol collected under ammonia gas experiment for the whole data. PMmass 

showed high concentration in samples taken under NH3 gas atmosphere (15.44 µg m-3 and 

15.11 µg m-3 for samples collected with NH3 supply and without NH3, respectively). 

Focusing on the data collected simultaneously by both MOUDIs, there were 3 datasets 

obtained from ammonia experiment (P1, P2 and P6) and normal air sampling (P9, P10 and 

P14). Figure 6.2 shows the major component concentrations in aerosols by modes of size 

distributions for the samples collected simultaneously under NH3 atmosphere and normal 

conditions. The mean concentrations and fraction contributions of chemical components for 

simultaneous data also summarised in Table 6.3. It is clear that SO4
2-, NO3

-, C2O4
2-, NH4

+, K+, 

TC and PMmass accounted much higher in fine fraction than in coarse particle both in samples 

with and without ammonia gas supply. The accumulation modes (condensation + droplet) 

were the dominant size distributions for these species. There were significant contributions in 

coarse fraction for Na+ and Cl- commonly originated from sea spray in samples taken from 

both systems. For samples taken under NH3 supply; there were 53.8% and 49.9% 

contribution to their total concentrations in coarse mode for Na+ and Cl-, respectively. In 

addition, the contribution of 35.0% and 47.0% for coarse mode Na+ and Cl-, respectively 

were observed in the samples collected in normal condition. The important anthropogenic 

sources of Cl- showing significantly in the fine fraction accounted for 50.1% and 53.0% for 

data with and without ammonia systems, respectively.  

 
In principle, after NH3 emitted into the atmosphere, NH3 may undergo conversion to NH4

+ 

aerosol. The rate of this conversion, which is mostly unknown, depends on the regional 

impact of NH3 emissions (McCulloch, 1998). The conversion of NH3 to NH4
+ aerosol is 

affected by the concentration of acids in the ambient air especially HNO3 and HCl as shown 

in Equation 6.1 – 6.6. Two common volatile inorganic aerosol species are NH4NO3 and 

NH4Cl and the equilibrium constants based on Equation 6.2 and 6.3 are Kn  = [NH3][HNO3] 

and Kc  = [NH3][HCl], where Kn and Kc are the equilibrium concentration products of 

ammonium nitrate and ammonium chloride, respectively (Allen et al., 1989). Since 

equilibrium constant is temperature and humidity dependent, the measured concentrations of 

gases would change during the sampling periods depending on temperature and humidity. For 

example, at mean ambient RH above the deliquescence RH, the measured concentration of 
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NH3 and/or HNO3 is present in the gas phase more than those predicted by theoretical 

calculation.  

 

There were no data analysed for the concentrations of acid gases in this experiment, then the 

calculation of equilibrium/dissociation constants was not tested. The effect of NH3 gas supply 

during air sampling (50ppb ≈ 2.235 µmol m-3) on the chemical component composition was 

investigated by calculation of the difference between the concentrations of component 

species in aerosol collected under NH3 atmosphere and the normal condition. In NH3 system, 

NH3 gas was continually supplied in constant rate in order to maintain the atmospheric 

equilibrium between gaseous and aerosol phases. Table 6.4 presents the contribution 

concentration of chemical composition in fine (particle diameter < 1.8 µm) and coarse 

(particle diameter between 1.8 µm to 18 µm) fractions in this experiment. 

 

PMmass were measured higher during the sampling under NH3 atmosphere (1.68 µg m-3 and 

0.39 µg m-3 for fine and coarse fraction, respectively). Sulphate, nitrate and chloride both in 

fine and coarse mode were also found the higher concentration in aerosols during the 

experiment taken under NH3 atmosphere. The contribution concentrations were 0.006 µmol 

m-3, 0.018 µmol m-3 and 0.004 µmol m-3 for SO4
2-, NO3

- and Cl-, respectively in fine fractions 

and were 0.006 µmol m-3, 0.002 µmol m-3 and 0.005 µmol m-3 for SO4
2-, NO3

- and Cl, 

respectively in coarse fraction. These findings could be attributed the fact that the productions 

of ammonium salts ((NH4)2SO4, NH4NO3, NH4Cl) were highly generated and stabilised in air 

particles. It is possible to calculate concentration of NH3 which was used for stabilising 

aerosol salts as 2[SO4
2-], [NO3

-] and [Cl-] where all concentrations are in unit of µmol m-3. 

The results show that concentration of NH3 used were 0.012 µmol m-3 (0.204 µg m-3), 0.018 

µmol m-3 (0.306 µg m-3) and 0.004 µmol m-3 (0.068 µg m-3) for SO4
2-, NO3

- and Cl-, 

respectively in fine fractions. The NH4
+ in fine fraction was found significant contribution 

(0.018 µmol m-3), suggesting that excess NH4
+ may react with other anionic species to form 

the stable particle in fine mode.  

 

With regard to particulate oxalate, there were no concentration contributions of particulate 

oxalate observed in both fine (-0.0002 µmol m-3) and coarse (0 µmol m-3) fractions during the 

simultaneous sampling period. If particulate oxalate is expecting in form of ammonia salt in 

ambient air and behaves as volatile compound like NH4NO3 and NH4Cl, it should be 
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observed high concentration in ammonia atmosphere. Since oxalate shows a significant 

correlation with nitrate which is the temperature dependent specie, especially in summer at 

EROS (r = 0.79) as mentioned in chapter 4, this can be interpreted as that oxalate form in PM 

is affected by temperature. This discordant result which found more oxalate concentration in 

samples without NH3 addition might be indicative of an analytical measurement uncertainty 

including errors from air sampling by the MOUDI. In this work, the uncertainty of the 

determination of ionic species by IC method was estimated around 6.6% as shown in 

Appendix A. There were 3 samples collected simultaneously between the two systems in this 

study. Each of the samples also observed high oxalate in samples taken without NH3 supply. 

Thus, the analytical uncertainty had only a minor influence on oxalate analysis. Alternatively, 

the physical and chemical atmospheric processes for oxalate formation would be considered 

in this case. An excess of NH3 might contribute the formation of oxalate in gas phase by the 

reaction with various oxalate precursors. This was not clear in this experiment because 

oxalate in gas phase was not measured. Additionally, the lower concentration of oxalate in 

sample taken under NH3 atmosphere in freezing cold temperature during this experiment 

could be described as well by thermodynamic of aerosols as discussed in section of oxalate 

size distribution.  

 

As expected for TC, there were the contributions of 0.3 µg m-3 and 0.1 µg m-3 in fine and 

coarse particles, respectively, suggesting that ammonia gas may stabilise some semi-volatile 

organic carbon species in the atmosphere. Particulate mass of aerosol samples collected under 

NH3 gas were observed higher than those in normal condition with the contributions of 1.68 

µg m-3 and 0.39 µg m-3 in fine and coarse fractions, respectively.  

 

It was also observed from ammonia experiment that contributions of ammonium salt species 

are lower than computed value approximately 2.235 µmol m-3 (50 ppb). This would be 

possible from the kinetic limitations in the formation/evaporation of aerosol particles and 

timescale for re-equilibrium the gas-aerosol system. The variation of atmospheric conditions 

especially diurnal cycle of temperature and humidity during the sampling periods (72h) may 

disturb the equilibrium including the organics formation coating at the surface of aerosol 

droplets delaying the achievement of equilibrium relationships. All factors will invalidate 

thermodynamically calculated concentrations. Furthermore, there might have rarely or 

insufficiently acid gases (precursor’s emission/formation) to form ammonium salts at this site. 

In addition, there might be also the presence of other nitrate and chloride containing species, 
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which are less volatile than NH4NO3 and NH4Cl. Some parts of fine nitrate and chloride 

might be formed as non-volatile salts such as Ca2+, Mg2+, K+ or Na+ salts. 

 
 

Table 6.4  Contributions of major components in aerosol as the difference between air samples 
collected with and without ammonia atmosphere (conc.with – conc.without) 
 

Component Contribution concentration µmol m-3 

 Fine* Coarse** 

SO4
2- 0.006 0.006 

NO3
- 0.018 0.002 

Cl- 0.004 0.005 
C2O4

2- -0.0002 0 
NH4

+ 0.018 0 
TC 0.3 0.1 
PMmass 1.68 0.39 

* Fine fraction is defined by the cut point below 1.8 µm.  
** Coarse fraction is defined by the cut point between 1.8 µm to 18 µm 
     TC and PMmass were in unit of µg m-3 
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Figure 6.2  Major component composition by modes during the periods of samples collected 
simultaneously with (P1, P2 and P6) and without (P9, P10 and P14) NH3 gas supply 
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Figure 6.2  (continued) 
 
 
6.4 Size distributions of inorganic ions 

 

In order to study the formation pathways and sources of chemical components in PM, the 

measured mass size distributions of inorganic species in aerosol samples collected by 

MOUDI without ammonia gas atmosphere were investigated and results show in Figure 6.3. 

The comparisons of mean size distributions of major components in the samples taken with 

and without ammonia gas for the whole and simultaneous period also present in Figure 6.4 (a) 

– (e). 

 

Chloride and sodium 

 

The average mass size distributions of chloride and sodium revealed bimodal mode (Figure 

6.3 and Figure 6.4 (c), (e)). The first peak in fine mode appeared at 0.4 µm – 0.5 µm and the 

second coarse mode mostly dominated with a concentration peak around 2.0 µm – 6.0 µm. In 

comparison with size distribution data available within research group (Figure 6.5), chloride 

size distribution showed the same structure with two peaks as data obtained from Marylebone 

road (MR) and Regents College (RC) representing roadside and background sites, 
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respectively. The very strong correlation between Na+ and Cl- in coarse mode (r = 0.98) was 

observed for the whole data (Figure 6.6) indicating the common contribution, especially in 

coarse mode of sea spray, which can be transported from the sea to rural and urban areas 

(Gustafsson and Franzen, 2000). As chloride is normally associated with sodium, a 

significant correlation between Na+ and Cl- in fine fraction also observed in nuclei (r = 0.95) 

and droplet (r = 0.91) mode, indicating the presence of sea spray in these modes of size 

distribution. However, fine mode chloride was observed dominantly in aerosol samples 

collected under NH3 atmosphere as same as the mass size distribution of NH4
+ in fine mode 

(0.4 µm – 0.5 µm), suggesting that chloride is more likely to be formed and stabilised as 

ammonium chloride in fine particles. The contribution of particulate chloride in aerosol 

particle was observed clearly from plot of mean size distribution of chloride during the 

simultaneous sampling period (Figure 6.4(c)). The occurrence of chloride in fine mode 

probably contributed from the local emissions affecting its concentration by anthropogenic 

sources such as waste incineration, local HCl emissions, the resuspension of sea salt 

deposited on roads or other paved areas (Kaneyasu et al., 1999; Clarke et al., 1999). In 

addition, chloride depletion associated with coarse particle may occur at EROS site then it 

could be enhanced the fine mode chloride. Loss of chloride from particulates may be ascribed 

to reaction of H2SO4 and HNO3 with NaCl to produce gaseous HCl as follows (Parmar et. al., 

2001): 

 

  H2SO4(g)  +  2NaCl(aq)  →  Na2SO4(aq)  +  2HCl(g) (Equation 6.9) 

  HNO3(g)  +  NaCl(aq)  →  NaNO3(aq)  +  HCl(g)  (Equation 6.10) 

 

The relationships of Na+ and Cl- with SO4
2- both in nuclei and coarse mode showed the 

significant and higher value of correlation than those with NO3
- (for Na+ with SO4

2-; r = 0.54 

and r = 0.80 for nuclei and coarse mode, respectively; for Cl- with SO4
2-; r = 0.51 and r = 

0.81 for nuclei and coarse mode, respectively), suggesting that the reaction of NaCl favoured 

with H2SO4 when the air masses travelling before arriving at the site. 

 

Potassium 

 

The mass size distribution of potassium was dominated by peaking around 0.4 µm – 0.5 µm 

in the droplet mode and a minor peak observed in coarse mode (4.0 µm – 5.0 µm) (Figure 6.3, 

6.4 (e) ). K+ is one of the most important and abundant nutrient elements of plants and 
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therefore, K+ in fine particles can serve as an effective tracer for biomass burning aerosols 

(Yamasoe et al., 2000). Fresh biomass burning particles mostly found in the size range of 

0.1 µm – 0.5 µm (Remer et al, 1998; Kleeman et al., 1999) in agreement with data observed 

within range in this study. The formation mechanism of K+ in the droplet mode could be 

regarded fresh and cloud-processed biomass burning aerosols (Huang et al., 2006). 

Furthermore, Hsieh (2008) suggested the possible source of K+ from agricultural waste 

burning with the indicative of relationship between K+ and NH4
+. At EROS site, there is low 

potential of this source with the modest correlation coefficients of K+ and NH4
+ (r = 0.59 and 

r = 0.46 for condensation and droplet modes, respectively). 

 

A small coarse mode presented for K+ at this site peaked over the coarse mode of sea salt 

particles (Na+ and Cl-), indicating the contribution by sea spray to K+ could be ignored. In 

consistent with the study of relationship between K+ with Na+ and Cl- in coarse mode, it was 

found that the insignificant correlations were observed at this site (r = -0.48 and r = -0.44 for 

correlation coefficients of K+ with Na+ and Cl-, respectively). At EROS, soil particles would 

be considered to be the important source of K+ in coarse mode as K+ is also a constituent of 

soil. 

 

Ammonium 

 

The mass size distributions of ammonium are presented in Figure 6.3 and Figure 6.4 (d). 

Ammonium size distribution exhibited a dominant peak in the 0.4 µm – 0.5 µm range for 

both samples collected with and without NH3 atmosphere. A small peak around 1.0 µm – 2.0 

µm was observed in some sampling periods (P13 and P15), indicating that the fine mode of 

ammonium probably overlaid the coarse mode when the experiment set by NH3 feeding as 

appeared only one dominant peak in fine mode (Figure 6.4 (d)). As expected, the higher mean 

concentration of particulate ammonium was seen in the aerosol samples collected under NH3 

atmosphere in comparison to air samples obtained by normal condition (44.8 nmol m-3 and 

30.5 nmol m-3 for samples taken simultaneously with and without NH3 supply, respectively) 

(Table 6.3). The mean size distribution of NH4
+ was clearly shown the high concentration in 

samples taken under ammonia atmosphere during the simultaneous period (Figure 6.4 (d)). 

The major peak of NH4
+ in droplet mode displayed a similar distribution to sulphate, nitrate 

and chloride, suggesting that the productions of ammonium salts ((NH4)2SO4, NH4NO3 and 

NH4Cl) generated in this size range. The stability of these ammonium salts are different and 
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depend on temperature and relative humidity. (NH4)2SO4 is the most stable while NH4Cl is 

the most volatile, therefore NH4
+ favours to react with particulate sulphate (Parmar et al., 

2001). This behaviour is supported by the study of correlations of NH4
+ with SO4

2-, NO3
- and 

Cl- in droplet mode and the results showed the very strong relationships of NH4
+ with SO4

2- 

and NO3
- (r = 0.90 and r = 0.80, respectively) (Figure 6.6). The insignificant correlation of 

NH4
+ and Cl- was found in aerosol droplet (r = 0.08). 

 

A small fraction of ammonium was also observed in the coarse fraction with the average 

contributions of 6.6% and 3.8% to total ammonium concentration for the whole data with and 

without NH3 atmosphere, respectively (Table 6.3). For the simultaneous data, the coarse 

ammonium accounted for 4.9% and 6.0% to total ammonium concentration in aerosol 

samples collected with and without NH3 supply, respectively. When excess NH3 gas was 

available, the potential formation of ammonium salts of sulphate and nitrate in coarse particle 

may be found in this condition as the small peaks of sulphate and nitrate exhibited around 1.0 

µm – 2.0 µm (Figure 6.4 (a), (b)). 

 

Sulphate 

 

Sulphate had a predominant concentration peak in the droplet mode (0.4 µm – 1.0 µm) both 

in samples taken under ammonia and normal atmosphere (Figure 6.3, 6.4 (a)). The 

condensation modes may contribute and observed dominantly in this study during period of 

P6, P9 and P14 for the concentrations of 1.18 µg m-3, 1.17 µg m-3 and 0.59 µg m-3, 

respectively (Table 6.2). Most of the sulphate size distribution exhibited the high 

concentration values of droplet mode and consequently it overlaid the condensation mode. 

The highest concentration of sulphate in droplet mode occurred in the samples collected 

under NH3 atmosphere (3.16 µg m-3 during the P8), suggesting that sulphate aerosol in forms 

of ammonium salts such as ammonium sulphate ((NH4)2SO4), ammonium bisulphate 

(NH4HSO4), triammonium sulphate ((NH4)3HSO4)2), Metal ammonium sulphate 

((NH4)2SO4.MSO4 : (M = metal)) may be favour to produce in aerosol particle in this 

condition. It is clear that the ammonia gas has little effect on stabilising sulphate aerosol, 

which is non-volatile specie at atmospheric conditions, as the mean size distribution of 

sulphate during simultaneous period observed the same pattern with slightly difference in 

concentration (Figure 6.4 (a)). In contrast, nitrate and fine particulate chloride which are 

volatile species observed higher concentration in samples taken simultaneously (Figure 6.4 
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(b), (c)). The average size distribution of sulphate at EROS showed a similar pattern to those 

sulphate in aerosol samples taken at MR and RC sites (Figure 6.5). Sulphate size distributions 

have been investigated in the past studies so that its formation mechanisms and size 

distribution characteristics are fairly well understood (Kerminen and Wexler, 1995; Meng 

and Seinfeld, 1994; Seinfeld and pandas, 1998; Zhuang et al., 1999).  

 

Sulphate can be originated by both primary and secondary sources (Yamasoe et al., 2000; 

Herner et al., 2006; Guo et al., 2010). Biomass burning such as wood burning and meat 

cooking was a dominant contributor for particulate sulphate at the size range around 0.1 µm 

in diameter (Kleeman et al., 1999). The nucleation mode of sulphate (Dp < 0.175 µm) 

accounted to sulphate concentration less than 5% in both air sampling with and without NH3 

atmosphere. In addition, there was not significant correlation between SO4
2- and K+, a good 

tracer for biomass burning, in nuclei mode (r = 0.46 in Figure 6.6) observed in this work. 

These results indicate that a contribution of direct sulphate emission by biomass burning 

could not be effected on aerosol sample at EROS site. Particulate sulphate in the size range of 

0.32 µm – 0.6 µm can be emitted directly by gasoline-powered vehicles (Kleeman et al., 

2000). The dominate peak of sulphate observed in droplet mode between 0.4 µm and 1.0 µm 

and some samples (P1, P3, P7, P9 and P14) clearly appeared at particle size range of 0.4 µm 

– 0.5 µm, suggesting that primary sulphate emission would be considering as the primary 

sulphate sources during these period. Parmar et. al. (2001) stated that the occurrence of SO4
2- 

particles in the size range of 0.7 µm – 1.6 µm cannot be explained by primary emission, gas-

phase nucleation or condensation, such as in the case of smaller diameters. Growth of the 

condensation mode particles and evaporation of large droplets may form these particles.  

 

For sulphate formed by secondary sources, the condensation mode of sulphate as H2SO4 

vapour was firstly produced by homogeneous gas phase photochemical oxidation of SO2 

followed by gas-to-particle conversion. For the droplet mode, in-cloud process was suggested 

to be the dominant pathway (Kerminen and Wexler, 1995; Meng and Seinfeld, 1994). The 

possible formation pathway for sulphate was generated through the following chemical 

reactions; 

 

  SO2(g) + H2O ↔ SO2 ⋅ H2O     (Equation 6.11) 

  SO2 ⋅ H2O ↔ HSO3
- + H+     (Equation 6.12) 
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  H2O2(g) ↔ H2O2(aq)      (Equation 6.13) 

  HSO3
- +  H2O2(aq) +  H+ ↔ SO4

2- + 2H+ +  H2O  (Equation 6.14) 

 

Sulphate in coarse particles can be contributed by sea salt particles and photochemical 

reaction of SO2 to generate higher amounts of sulphuric acid which reacted with sodium and 

calcium containing particles such as soil particles (Pakkanen, 1996). In this data, the mass 

size distribution of Na+ showed dominant peak in coarse mode at 2.0 µm – 6.0 µm and the 

strong correlation between SO4
2- and Na+ in coarse mode was observed (r = 0.80). This 

finding is consistent with the previous study by Zhao and Gao (2008), suggesting that 

sulphate could occur as sea salt sulphate (Na2SO4). However, the low concentration of coarse 

sulphate and contribution of sulphate in the coarse mode (whole data; 21.6% and 7.0% for 

sample with and without NH3 supply as in Table 6.3) indicates that the reaction of sulphuric 

acid and sea spray particles was slow or the reaction time of sea salt sulphate was short 

(equation 6.7). In case of aerosol sample under NH3 atmosphere, the excess of NH3 could be 

attributed the fact that (NH4)2SO4 in coarse particle generated in this condition with the 

contribution of coarse particle around 20.3% to total sulphate for simultaneous data. This was 

evident by the average size distribution of SO4
2- in coarse mode clearly observed for the 

samples taken under NH3 atmosphere (Figure 6.4 (a)). In addition, the moderate correlation 

between SO4
2- and NH4

+ in coarse mode (r = 0.59) was found in this experiment. 

 

Nitrate 

 

The mass size distribution of nitrate exhibited two modes, with a droplet mode in the size 

range of 0.4 µm – 0.5 µm (P9, P10, P13 and P15) and a coarse mode in the size range of 1.8 

µm – 3.1 µm appeared during P9 and P14 (Figure 6.3, 6.4 (b)). The mean nitrate 

concentrations were 50.6 nmol m-3 and 44.9 nmol m-3 in samples collected under NH3 

atmosphere and without NH3, respectively for the entire data. For simultaneous data between 

experiment with and without NH3 supply, the aerosol nitrate in the concentrations of 49.3 

nmol m-3 and 29.4 nmol m-3, respectively were observed. Most of particulate nitrate 

accounted in fine mode more than 90% of total nitrate in both experiment. These findings 

indicate the combination of NO3
- and NH4

+ in fine fraction as both particles exhibited the 

dominant peaks in droplet mode. The possible two pathways have been suggested to explain 

the formation of nitrate in the accumulation mode; in-cloud processes and condensation of its 

precursors onto pre-existing particles (Zhuang et al., 1999; Herner et al., 2006). In this study, 
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droplet mode nitrate and sulfate showed a strong correlation with r = 0.73, suggesting that 

their formation mechanisms may be the same. In the presence of clouds, rain or moist aerosol 

surfaces, the heterogeneous pathway for production of nitrate from NO2 involving the 

heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) on the surface of aqueous aerosol 

particles (Riemer et al., 2003). 

 

  N2O5  + H2O   →aerosol  2HNO3    (Equation 6.15) 

 

For the condensation mechanism, after NH4NO3 predominantly produced by the 

photochemical transformation of NOx in the gas-phase, the condensation of NH4NO3 onto 

hygroscopic sulphate particles would be favoured to contribute nitrate in fine mode. It is clear 

that NH4NO3 which is highly volatile particle, can be stable and found higher concentration in 

aerosol samples collected under ammonia gas supply as NH4NO3 in the atmosphere exists in 

reversible phase equilibrium with gaseous HNO3 and NH3.  

 

The average mass size distribution of nitrate in the samples collected without NH3 supply 

exhibited a small peak in coarse fraction (Figure 6.4 (b)). For the other sampling period, 

coarse nitrate may be overlaid by fine nitrate fraction with showing the very high 

concentration. The presence of coarse mode nitrate was clearly observed in the average mass 

size distribution of nitrate for the samples taken without NH3 atmosphere (P9 and P14). 

Coarse mode nitrate is mainly formed through the reactions of nitric acid onto existing coarse 

particles such as NaNO3 and Ca(NO3)2 (Pakkanen, 1996). The mass size distribution of 

nitrate in coarse mode was in the corresponding peak with sodium in this work. However, the 

correlation of NO3
- and Na+ in coarse mode was shown insignificant relationship (r = 0.42), 

suggesting that the low contribution from sea salt particles effected on particulate nitrate in 

coarse fraction (Equation 6.10). Coarse mode nitrate accounted equally to total nitrate around 

7% both in aerosol samples collected with and without NH3 atmosphere, indicating that 

coarse nitrate as NH4NO3 salts did not generate more under NH3 atmosphere. In addition, the 

relationship between NH4
+ and NO3

- in coarse mode observed insignificant correlation 

coefficient (r = 0.31). Coarse nitrate originated by reaction between nitric acid and crustal 

particles which are from suspended soil and road dust, and dust from construction and 

demolition sites, especially in form of Ca(NO3)2 or primary emissions by local traffic would 

be considering at EROS site. 
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Compared to nitrate size distribution in other locations, the tri-modal pattern in nitrate size 

distribution was observed at Marylebone road (roadside) and Regents College (background) 

(Figure 6.5). The difference in size distribution suggests that the formation pathway should 

be not the same way. The variation of the nitrate in aerosol was mainly driven by fluctuation 

in temperature, relative humidity, meteorology, oxidant levels and the degree of long-range 

transport. As appeared the peak in nuclei mode at these two sites, this indicated that nuclei 

mode gas-to-particle conversion occurred to form primary nitrate particles during that period.  
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Figure 6.3 Size distributions of chemical species in aerosol samples collected with MOUDI operated 
under normal conditions for all periods 
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Figure 6.3 (continued) 
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Figure 6.3 (continued) 
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(a) 

 

 

(b) 

 

 

Figure 6.4 (a)  Comparisons of mean size distributions of sulphate during the air sampling with and 
without NH3 supply for (a) the whole period and (b) the simultaneous period (with NH3 – mean of P1, 
P2 and P6; without NH3 – mean of P9, P10 and P14) 
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(a) 

 

 

(b) 

 

 

Figure 6.4 (b)  Comparisons of mean size distributions of nitrate during the air sampling with and 
without NH3 supply for (a) the whole period and (b) the simultaneous period (with NH3 – mean of P1, 
P2 and P6; without NH3 – mean of P9, P10 and P14) 
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(a) 

 

 

(b) 

 

 

Figure 6.4 (c)  Comparisons of mean size distributions of chloride during the air sampling with and 
without NH3 supply for (a) the whole period and (b) the simultaneous period (with NH3 – mean of P1, 
P2 and P6; without NH3 –  mean of P9, P10 and P14) 
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(a) 

 

 

 

(b) 

 

 

Figure 6.4 (d)  Comparisons of mean size distributions of ammonium during the air sampling with and 
without NH3 supply for (a) the whole period and (b) the simultaneous period (with NH3 – mean of P1, 
P2 and P6; without NH3 –  mean of P9, P10 and P14) 
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(a) 

 

 

(b) 

 

 

Figure 6.4 (e)  Mean size distributions of sodium  and potassium during the air sampling without NH3 supply 

for the whole period 
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(a) 

 

 

(b) 

 

 

Figure 6.5  Mean size distributions of (a) sulphate, (b) nitrate, (c) chloride and (d) oxalate measure at 
Marylebone road (MR) and Regents College (RC) sites during March 2007 
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(c) 

 

 

(d) 

 

 

Figure 6.5  (continued) 
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NO3
- - Nuclei 0.47                        

NO3
- - Condensation  0.27                       

NO3
- - Droplet   0.73                      

NO3
- - Coarse    0.52                     

Cl- - Nuclei 0.51    -0.02                    

Cl- - Condensation  0.24    0.73                   

Cl- - Droplet   0.07    0.00                  

Cl- - Coarse    0.81    0.38                 

C2O4
2- - Nuclei 0.12    0.30    0.23                

C2O4
2- - Condensation  -0.64    -0.07    -0.34               

C2O4
2- - Droplet   -0.02    0.34    0.01              

C2O4
2- - Coarse    -0.24    0.48    -0.10             

Na+ - Nuclei 0.54    -0.15    0.95    0.17            

Na+ - Condensation  0.27    -0.41    -0.19    -0.29           

Na+ - Droplet   -0.17    -0.25    0.91    0.12          

Na+ - Coarse    0.80    0.42    0.98    -0.08         

NH4
+ - Nuclei 0.62    0.85    -0.12    0.05    -0.16        

NH4
+ - Condensation  0.27    0.95    0.83    -0.05    -0.28       

NH4
+ - Droplet   0.90    0.80    0.08    -0.06    -0.23      

NH4
+ - Coarse    0.59    0.31    0.59    -0.27    0.55     

K+ - Nuclei 0.46    -0.39    -0.31    -0.22    0.79    0.30    

K+ - Condensation  0.27    0.72    0.32    -0.01    -0.39    0.59   

K+ - Droplet   0.07    0.62    0.17    0.07    -0.10    0.46  

K+ - Coarse    -0.31    0.06    -0.44    -0.15    -0.48    0.00 
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Values shown in bolds are significant at p < 0.05 (the 95% level of significance).  

Figure 6.6  Correlation coefficient matrix among the measured ionic components by modes of size distribution 
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6.5 Size distribution of oxalate 

 

Oxalate was the most abundant dicarboxylic acid in atmospheric aerosols. In most of the 

samples, the mass size distribution displayed bimodal structure consisting one submicron 

mode and one supermicron mode. Few samples exhibited a complex structure which included 

additional submicron and supermicron modes such as samples collected during P10 and P15. 

The size distribution of oxalate exhibited the dominant mode peaking at 0.4 µm – 0.5 µm and 

the small coarse mode (1.0 µm – 2.0 µm) (Figure 6.7 and 6.9). The size distributions of 

oxalate were similar to the results measured in the previous study at Marylebone road and 

Regent College sites (Figure 6.5). In comparison its size distribution with major anionic 

species in PM (sulphate, nitrate and chloride), oxalate size distributions were similar to those 

of sulphate both in samples taken with NH3 and without NH3 atmosphere (Figure 6.8). 

Reference with the relationships of major components in aerosols discussed in chapter 4, the 

good relationship between C2O4
2- and SO4

2- in fine fraction (PM2.5) was found at this site for 

the samples collected by Partisol Plus air samplers (500 samples). These can be attributed to 

the fact that the formation pathway of oxalate in 0.4 µm – 0.5 µm was dominated by in-cloud 

processes as same as sulphate in droplet mode. This was in agreement with Yao et al. (2002) 

concluded that oxalate in 0.32 µm – 0.54 µm and sometimes shifted to 0.54 µm – 1.0 µm was 

produced by in-cloud processes. Other studies also reported that suphate in the droplet mode 

has been attributed to in-cloud processes (Meng and Seinfeld, 1994; Kerminen and Wexler, 

1995; Yu et al., 2005).  

 

In principle, sulphate and oxalate are chemically distinct since one is an inorganic compound 

and the other is an organic compound. This means that their precursors are basically different. 

Oxalate has been found in aerosol in various environments. The possible sources include 

from primary emission of vehicular transportation (Kawamura and Kaplan, 1987), biomass 

burning (Narukawa et al., 1997), biogenic activity (Kawamura, 1996; Jones, 1998) and plant 

emission which do not emit oxalic acid directly, but isoprene could be the important 

precursor (Lim et al., 2005). Oxalate concentrations in PM appeared various levels based on 

the spatial and temporal characteristics. In the previous section of this work, aerosol samples 

were collected simultaneously at EROS and Harwell representing urban background and rural 

sites, respectively. Although there was found some effect from road traffic contributed to 

aerosol composition at EROS site, the mean oxalate concentration in PM2.5 (0.02 µg m-3) was 

the same as those samples taken from Harwell. In addition, there was a poor correlation 
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between oxalate and EC, a primary pollutant derived from incomplete combustion of fuels in 

transportation, observed in the whole data at EROS. It is clear that vehicle exhausts do not 

play the important source for oxalate in ambient air. Moreover, this is also supported by the 

results obtained from previous study in our research group. Those measurements were carried 

out by the analysis of aerosol samples collected simultaneously at Marylebone road and 

Regents College representing roadside and background roadside sites, respectively during 

March 2007. The mean concentrations of oxalate were similar at two sites (0.35 µg m-3 in 

PM2.5). This conclusion on less contribution of vehicular emissions to ambient oxalate is 

consistent with the reported by Yu et al. (2005), Yao et al. (2004) and Poore (2000). Despite 

the same peak of K+ and oxalate in droplet mode (0.4 µm – 0.5 µm), oxalate by modes of size 

distribution revealed the insignificant correlation with K+ which was an indicator of biomass 

burning in atmospheric particles (Figure 6.6). Therefore, primary biomass burning was not a 

significant source of oxalate in fine fraction. 

 

For the secondary formation of oxalate, Kawamura et al., (1996) and Kalberer et al., (2001) 

stated that the condensation mode oxalate was from the photochemical formation in the gas 

phase by the reaction of organic compounds with photochemical oxidants such as OH free 

radicals and O3 to form gaseous oxalic, followed by its condensation onto existing particles. 

If gas-particle condensation is main process to form oxalate, the highest concentration of 

condensation mode (0.175 µm – 0.325 µm) should be found in the samples at this site. On the 

contrary, the results showed the highest concentration of oxalate in droplet mode, suggesting 

that the condensation mode oxalate-containing particles were activated and became the 

droplet mode particles due to cloud processing. A further proposed mechanism of formation 

of oxalic acid is from isoprene by in-cloud oxidation processes (Lim et al. 2005). 

 

In coarse mode, oxalate was found in the smaller concentration than that in the fine mode 

during all sampling periods (Table 6.2). For the entire data, oxalate in coarse mode accounted 

range from 12% to 15% of total oxalate for the samples collected both with and without NH3 

supply. There were no significant correlations observed between cationic species and oxalate 

in coarse mode in this study. Similarities in coarse mode size distribution with sodium (2.0 

µm – 6.0 µm), suggest the possibility of formation within, or uptake of gaseous oxalate by 

sea salt particles. Alternatively, Russell and Seinfeld (1998) have proposed that supermicron 

particles can be formed by in-cloud processes. It should be noted that coarse mode oxalate 

may form from soil particles since oxalic acid also present in the soil. Oxalate is a by-product 
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of the hydrolysis of oxaloacetate from citric acid and glyoxylate via the metabolic mechanism 

of fungi in the soil (Dutton and Evans, 1996; Gadd, 1999).  

 

 

  

 

Figure 6.7  Size distributions of oxalate in aerosol samples collected with MOUDI operated under 
normal conditions for all period 

 

 

 

 

Figure 6.8  Size distributions of sulphate and oxalate in aerosol samples collected during the 
simultaneous period 
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(a) 

 

(b) 

 

 

 

Figure 6.9  Comparisons of mean size distributions of oxalate during the air sampling with and without 
NH3 supply for (a) the whole period and (b) the simultaneous period (with NH3 – mean of P1, P2 and 
P6; without NH3 – mean of P9, P10 and P14) 
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With regard to aerosol samples taken simultaneously under NH3 atmosphere and normal 

conditions, particulate oxalate mainly accounted in fine fraction in both experiment with 84.4% 

and 90.5% to total oxalate, respectively. There was a difference in the average oxalate 

concentration observed between samples obtained by the two MOUDI systems (Table 6.3). 

The increment of oxalate was determined by the subtraction of component concentration 

under normal sampling from component concentration under NH3 atmosphere (-0.0002 µmol 

m-3 and 0 µmol m-3 in fine and coarse fractions, respectively). Mass size distributions of 

oxalate in aerosols collected simultaneously by both MOUDIs are demonstrated in Figure 6.9. 

Oxalate in droplet mode exhibited the dominant peak around 0.4 µm – 0.5 µm with the minor 

coarse mode.  

 

If ammonium oxalate is expecting to present and stabilise by ammonia gas atmosphere in 

aerosol phase, the higher concentration may observe in samples collected in NH3 atmosphere 

as same as nitrate and chloride particles causing by equilibrium condition. The contribution 

of oxalate in ammonia experiment appeared discordant value comparing with concentrations 

of particulate nitrate and chloride. Although concentrations of the oxalic acid in gas phase 

were not measured in this work, the atmospheric aerosol equilibrium may describe according 

to the hypothesis of thermodynamic of aerosols (Seinfeld and Pandis, 1998). It may be 

anticipated that the ambient gas-aerosol system will be at equilibrium if the rates of change of 

the concentrations of gaseous species are slow compared with the characteristic times for 

diffusion of these species to the particles and for equilibrium within the particle. In this 

sampling conditions with high relative humidity and freezing cold temperature, ammonium 

oxalate form exhibited as solid (NH4)2C2O4 (non-deliquescence). For solid-phase aerosol 

particles, the equilibrium concentration of aerosol species is constants and does not change as 

species are transferred to the aerosol phase. In comparison with atmospheric inorganic salts 

(NH4NO3, NH4Cl – deliquescent species), the equilibrium concentrations of these salts will 

increase as condensation proceeds, and equilibration between the two phases will be 

accelerated. Moreover, the timescales to approach equilibrium condition in aqueous aerosols 

are shorter for the order of a fraction of a second than in solid aerosol particles. Therefore, in 

case of ammonium oxalate salt, the characteristic time for mass transfer to and form oxalate 

aerosol was likely longer than rate of change of gaseous species concentration so there might 

rarely be oxalate equilibrium in this sampling condition. The preceding analysis suggests that 

under conditions of low aerosol mass concentrations, low temperatures and large particle 

sizes, the timescale can be on the order of several hours or even days and the aerosol phase 
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may not be in equilibrium with the gas phase (Seinfeld and Pandis, 1998). Consequently, 

excessive ammonia gas during air sampling does not effect on oxalate salts concentration in 

atmospheric aerosol. The thermodynamic equilibrium between gas- and particle-phase 

depends on the ambient temperature, relative humidity and chemical composition of particles 

and gases.  

 

In comparison between ammonium salts of oxalate and nitrate with the latter represented the 

temperature dependence specie, nitrate concentration in aerosol taken under NH3 gas was 

observed higher than those samples taken with normal system (0.018 µmol m-3 in fine 

particle). The discordant measurement result was seen in aerosol oxalate with negative 

difference in concentration of -0.0002 µmol m-3 in fine particle. However, the correlation 

analysis of oxalate and nitrate showed the moderate relationships at this site (r = 0.48, r = 

0.35 and r = 0.49 for PM2.5, PM2.5-10 and PM10, respectively for the whole Partisol data) and 

the strong correlations were observed during summer (r = 0.79 and r = 0.78 for PM2.5 and 

PM10, respectively for the whole Partisol data as mentioned in chapter 4). It is likely that 

oxalate aerosol exhibited the temperature dependence including oxalic acid is typically the 

lowest molecular weight dicarboxylic acids in atmosphere with vapour pressure of 3.5 × 10-5 

mmHg at 30 oC. The feature of NH4NO3 probably explains by its hygroscopic properties. 

Even though Allen et al. (1989) reported that the good equilibrium formation of NH4NO3 was 

found at ambient temperature above ca 5 oC and at RH below about 80% and in the other 

cases higher NH3 and HNO3 concentration was measure in the gas phase. The meteorology 

data during this sampling period shown in Table 6.1, there were only P6, P7 and P14 with the 

ambient temperature over 5 oC. The results found that particulate nitrate still appeared higher 

concentration in atmospheric aerosol collected under NH3 atmosphere. This is because 

NH4NO3 is deliquescent and can form solution droplets at RH 62% (at 25 oC), and therefore 

in this air sampling condition of very high humidity and freezing cold temperature, NH4NO3 

can grow in the droplet fractions. In contrast, ammonium oxalate is not deliquescent under 

these conditions. This is also strongly supported by the relationships study as shown in Figure 

6.6. The good correlation coefficients between NO3
- and NH4

+ in fine mode were observed 

but there were no significant correlations between C2O4
2- and NH4

+ in this study. 
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6.6 Conclusions 

 

The study on the mass size distributions of major components in aerosols in term of the direct 

comparison between samples collected with and without NH3 provided the useful information 

about the sources and formation pathway of aerosol species. Measurement results indicated 

that the systematic and analytical errors were observed by the difference of concentration 

data of K+ and Na+ analysed in both samplers with and without ammonia gas supply. Since 

both species are the non-volatile components, the concentrations would expect to be identical 

in samples both with and without ammonia. Thus experimental uncertainty was estimated 

based on these results. Particulate NO3
-, Cl- and NH4

+ were present in higher concentrations 

in the samples taken under NH3 atmosphere. On the contrary, there was high oxalate 

concentration observed in samples taken under normal condition. Since oxalate shows a 

significant correlation with nitrate which is the temperature dependent species, especially in 

summer at EROS as mentioned in chapter 4, this can be interpreted as that oxalate form in 

PM is affected by temperature. This discordant data might also be indicative of the analytical 

and sampling errors by the two systems. However, the lower concentration of oxalate in 

samples collected under ammonia might be described by physical and chemical atmospheric 

processes for oxalate formation in gas phase affected the formation of oxalate in particulate 

phase. There was not clear explanation in this experiment because there was no data of 

components in gas phase. Sulphate was the dominant inorganic species contributed in the 

concentration of 3.79 µg m-3 and 2.80 µg m-3 for samples collected with and without NH3, 

respectively for the whole data. As expected, there was little effect of ammonia gas to stablise 

particulate sulphate as ammonium sulphate represented non-volatile specie in atmosphere. Its 

mass size distribution dominated broadly in droplet mode peaking at 0.55 µm. suggesting in-

cloud processes were the significant formation pathway following many previous studies. 

Coarse mode sulphate was contributed from sea spray to form sea salts sulphate (Na2SO4). 

Since ammonium also appeared in coarse mode during some sampling periods, ammonium 

sulphate could be contributed in coarse mode sulphate even in NH3 experiment. Under 

ammonia sampling condtions, it was not clearly observed ammonium in coarse particle 

because this may be overlaid by fine ammonium fraction. 

 

Nitrate size distributions were bimodal with a droplet mode peaking at 0.4 µm – 0.5 µm and a 

coarse mode peaking at 1.8 µm – 3.1 µm. The secondary photochemical formation was 

expected in the droplet mode via the condensation of NH4NO3 onto the surface of existing 
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particles such as sulphate particle. NH4NO3 was firstly produced by the photochemical 

oxidation of NOx in gas phase and neutralised by gaseous ammonia and consequently the 

condensation of NH4NO3 proceeded. The high contribution of nitrate in droplet mode was 

observed in the samples collected under NH3 atmosphere, indicating that the stable 

ammonium nitrate was found in aerosol particles in this condition. Coarse mode nitrate could 

be formed through the reactions of nitric and crustal particles at this site or a minor 

contribution of primary nitrate emissions by local traffic. 

 

Chloride and sodium which are commonly contributed by sea salt aerosol were investigated 

and both components revealed bimodal mode of size distribution. The coarse mode was 

dominant with a concentration peak around 2.0 µm – 6.0 µm and fine mode appeared at 0.4 

µm – 0.5 µm. The findings suggest that the influence of sea spray and anthropogenic 

emissions including the process of chloride depletion may affect at EROS site. Chloride in 

fine mode as expected to be present as ammonium chloride was stablise and observed higher 

concentration in aerosol particles collected under NH3 gas. 

 

Oxalate had similar formation pathway as sulphate with a dominant peak at 0.4 µm – 0.5 µm. 

The formation mechanism of particulate oxalate could be attributed to in-cloud processes. As 

oxalate did not appear any peak in nucleation mode which were particles formed mostly by 

gas-to-particle conversion and usually found near the sources, there was less important of 

primary oxalate sources in atmosphere. The evidences of this also support by the weak 

correlations of oxalate with EC and K+ which are good indicator of primary combustion 

sources and biomass burning, respectively. Coarse mode oxalate probably caused by the 

contribution of biological processes. The equilibrium phase of particulate oxalate and gaseous 

phase in expected form of ammonium salts ((NH4)2C2O4) was different from the semi-volatile 

species such as NH4NO3 and NH4Cl. This was because the concentration of oxalate did not 

increase in aerosol samples collected under NH3 atmosphere. On the contrary, the other major 

components were observed higher concentrations when air sampling experiment taken under 

NH3 supply. This might be explained by the difference in physical and chemical atmospheric 

processes for oxalate formation. In addition, NH3 system may contribute the formation of 

oxalate in gas phase which did not measure in this experiment. In overall, ammonia gas does 

not affect the size distribution patterns of component species but it rather influences the 

contribution on their modes concentration of the semi-volatile species in ambient air.  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 

 

 
7.1 Conclusions 

 

In this study, comprehensive studies of chemical and physical properties of airborne 

particulate matter have been presented. It is clear that airborne particulate matter originated 

from many sources depending on location and meteorological conditions. Understanding both 

chemical and physical properties of PM is highly valuable for evaluation of the sources and 

formation pathways. The measurements of PM have been conducted at the Elms Road 

Observatory Site (EROS) located in the University of Birmingham and Harwell (HAR) 

located in the Harwell Science Centre. These two sites represent an urban background and 

rural area, respectively. Data analysed from Harwell was mainly used for comparison of 

major chemical components of PM collected simultaneously with EROS. Daily aerosol 

samplings have been employed for collecting of fine (PM2.5) and coarse (PM2.5-10) particles. 

The concentration data of PM10 were also calculated based on the sum of fine and coarse 

fractions. The major chemical composition of SO4
2-, NO3

-, Cl-, C2O4
2-, OC, WSOC and EC in 

PM were analysed according to analytical methods described in chapter 2. Particle size 

distribution data in this study have been obtained from the experiment designed for studying 

the effect of ammonia gas to stabilise semi-volatile aerosol species. 

 

Concentration composition for carbonaceous materials, which consisted mainly of particulate 

organic and elemental carbon, measured in all samples collected at both sites. The mean 

concentrations with measurement uncertainties of EC measured ranged from 0.4 ± 0.03, 0.2 ± 

0.01 and 0.4 ± 0.03 µg m-3for PM2.5, PM2.5-10 and PM10, respectively at the rural site to 1.1 ± 

0.08, 0.2 ± 0.01 and 1.2 ± 0.09 µg m-3 for PM2.5, PM2.5-10 and PM10, respectively for the 

whole data at the urban background. The mean concentrations with measurement 

uncertainties of OC measured ranged from 1.7 ± 0.12, 1.0 ± 0.07 and 2.8 ± 0.20 µg m-3for 

PM2.5, PM2.5-10 and PM10, respectively for the whole data at the rural site to 3.0 ± 0.22, 1.3 ± 

0.09 and 4.3 ± 0.31 µg m-3 for PM2.5, PM2.5-10 and PM10, respectively at the urban background. 

These data clearly show that OC and EC observed higher concentrations at urban background 

than those at rural area. Maximum EC and OC values in winter have been associated to 

meteorological conditions favourable to pollutant accumulation. In case of maximum EC 
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concentration, this has been associated to less effective dispersion process in the low 

temperature, and for maximum OC concentration, it could be explained by the lower 

atmospheric mixing depth favouring secondary organic aerosol formation and accumulation 

of secondary organic precursors. The sources of carbonaceous particles can be qualitatively 

evaluated by finding the relationship between OC and EC concentrations. The OC/EC 

minimum ratio of 0.35 has been used to distinguish between primary and secondary OC 

according to research recently reported by Pio et al. (2011). This ratio was used to determine 

values of OCprim and OCsec in PM. With focusing on PM2.5, the mean OCsec concentrations (± 

S.D.) were 2.6 ± 1.8 µg m-3 and 1.6 ± 0.8 µg m-3 for the whole data at EROS and Harwell, 

respectively. The mean OCprim concentrations (± S.D.) were 0.4 ± 0.4 µg m-3 and 0.1 ± 0.1 µg 

m-3 for the whole data at EROS and Harwell, respectively. Calculated OCprim and OCsec show 

a winter maximum and the strong correlation with nitrogen oxides (NOx) at both sites 

suggesting that the local transport plays an important source of OCprim and OCsec. In this 

study, the behaviour of OCsec is closer to nitrate than that of sulphate, consistent with the 

observation made by Harrison and Yin (2008). This indicates that regional transport and 

temperature have a major influence upon OCsec concentrations. The local contributions of 

carbonaceous compounds were roughly calculated by subtraction of rural (Harwell) 

concentrations from urban background (EROS) concentrations in aerosol samples collected 

simultaneously. It was found that EC, especially in PM2.5, exhibited a strong local 

contribution (0.6 µg m-3), suggesting that local emission at EROS was affected by fuel 

combustions as EC mostly associated in fine particles. The local contributions of OCprim and 

OCsec in PM2.5 were 0.3 µg m-3
 and 0.4 µg m-3, respectively. The good correlations between 

OCsec with NOx and NO3
- which are indicators for road traffic and temperature dependent 

specie as NH4NO3, respectively, indicate that OCsec may be affected by local contribution 

from road transport with temperature dependent equilibrium of OCsec in particulate phase and 

gaseous phase. The reduced major axis (RMA) regression analysis also reveals the local 

contributions of carbonaceous aerosol at EROS influence their concentrations in the same 

way as at Harwell site. Moreover, as significant tested, it appears that there is no difference 

between OCsec concentration at both sites suggesting a high influence or contribution of long-

lived species. 

 

For ionic component composition in PM, SO4
2-, NO3

- and Cl- are basically required analysed 

species in fine fraction under the directive on ambient air quality and cleaner air for Europe. 

The whole mean concentrations with measurement uncertainties of sulphate, nitrate and 
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chloride were 1.86 ± 0.06 µg m-3 2.72 ± 0.09 µg m-3 and 0.73 ± 0.02 µg m-3, at EROS 

respectively and were 1.40 ± 0.05 µg m-3 1.29 ± 0.04 µg m-3 and 0.23 ± 0.01 µg m-3, at 

Harwell, respectively. Oxalate also measured at both sites and whole mean concentrations 

with measurement uncertainties were 0.05 ± 0.002 µg m-3 and 0.02 ± 0.001 µg m-3 at EROS 

and Harwell, respectively. The calculated local contributions of ionic species were also 

estimated from the differences concentration in PM collected simultaneously between two 

sites. Water-soluble organic carbon (WSOC), which is a significant group of OCsec, 

represents mostly in the atmospheric aerosol as the secondary formation by photochemical 

oxidation. The results show slightly local contribution of WSOC, OCsec, sulphate, nitrate and 

chloride in PM2.5 (0.4 µg m-3, 0.4 µg m-3, 0.13 µg m-3, 0.17 µg m-3 and 0.08 µg m-3, 

respectively). There is no difference in mean concentration for oxalate in fine fraction 

suggesting that oxalate formation by photochemical oxidation of precursors in the 

atmosphere with long-lived species. The seasonal behaviour of sulphate, nitrate, chloride and 

oxalate show a dominant temporal variation over the spatial variation. In addition, the same 

patterns of time series appear between EROS and Harwell for simultaneous data. These 

findings indicate the important of long-rang transport on the contribution to the secondary 

aerosols. Particulate oxalate reveals no clear seasonal pattern but the concentration show 

highest in spring. The study on the ratio of sulphate-to-nitrate indicates the stability of 

sulphate higher than nitrate because SO4
2-/NO3

- ratios were extremely high for PM2.5 in 

summer. This could be interpreted that formation of sulphate by photooxidation in the 

atmosphere (aqueous oxidation) slightly reflects on its concentration but there was more 

volatile loss of nitrate aerosol as ammonium nitrate during the high temperature. As expected 

at both sites, the Cl-/NO3
- ratios were high in the coarse fraction because the major source of 

chloride in coarse fraction mostly contributed from sea spray which can be transported from 

the sea to rural and urban areas (Gustafsson and Franzen, 2000). The average Cl-/NO3
- ratio 

in coarse particle is also observed high during the winter probably causing by the high wind 

speed blowing pass the marine origin. 

 

The relationships and size distributions of major ionic species were investigated in order to 

identify the sources and formation pathways of their components. With regard to the size 

distribution study, the air sampler designed for collecting aerosol particles under ammonia 

atmosphere was employed at EROS site as well as the aim of studying the effect of ammonia 

gas to stabilise the semi-volatile species in ambient air. The results for anionic species can be 

summarised as follows; 
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Sulphate - the strong correlation between sulphate and nitrate (as observed both in PM2.5 and 

PM10 at EROS) in consistent with previous studies indicates the fact that two species undergo 

similar formation and removal processes in atmosphere. When the regression analysis was 

applied for simultaneous data between the two sites, sulphate in fine mode showed the zero 

intercept with a gradient close to 1.0 indicating that the regional contributions by long-range 

transport and photochemical oxidation in the atmosphere play an important factor on its 

concentration. Sulphate was the dominant inorganic species: 3.79 µg m-3 and 2.80 µg m-3 for 

samples collected with and without NH3, respectively for the whole data. Its mass size 

distribution dominated broadly in droplet mode peaking at 0.55 µm, suggesting that in-cloud 

processes were the significant formation pathway following many previous studies. As 

expected, there was little effect of ammonia gas to stabilise particulate sulphate as ammonium 

sulphate represented non-volatile specie in atmosphere. Coarse mode sulphate was 

contributed from sea spray to form sea salts sulphate (Na2SO4). Under the condition of excess 

NH3 gas during air sampling, ammonium sulphate could be contributed in coarse mode 

sulphate. 

 

Nitrate – the results of the reduced major axis (RMA) regression show that the higher local 

nitrate concentration in PM2.5 was found at urban background to rural area as the intercept 

value of 0.11 consistent with the local fine nitrate contribution of 0.17 µg m-3 calculated from 

the difference concentration of simultaneous data. This finding suggests that the nitrate 

increment probably arises from anthropogenic sources in the conditions of high conversion of 

nitric acid vapour to nitrate aerosol. Nitrate size distributions were bimodal with a droplet 

mode peaking at 0.4 µm – 0.5 µm and a coarse mode peaking at 1.8 µm – 3.1 µm. The 

secondary photochemical formation was expected in the droplet mode via the condensation of 

NH4NO3 onto the surface of existing particles such as sulphate particle. NH4NO3 was firstly 

produced by the photochemical oxidation of NOx in gas phase and neutralized by gaseous 

ammonia and consequently the condensation of NH4NO3 proceeded. The high contribution of 

nitrate in droplet mode was observed in the samples collected under NH3 atmosphere, 

indicating that the stable ammonium nitrate was found in aerosol particles in this condition. 

Coarse mode nitrate could be formed through the reactions of nitric and crustal particles at 

this site or a minor contribution of primary nitrate emissions by local traffic. 

 

Chloride - the results of relationship study strongly support a common source from marine 

aerosol with the weak correlation observed with other species (sulphate, nitrate, oxalate). 



 218 

Chloride and sodium which are commonly contributed by sea salt aerosol were investigated 

and both components revealed bimodal mode of size distribution. The coarse mode was 

dominant with a concentration peak around 2.0 µm – 6.0 µm and fine mode appeared 

between 0.4 µm and 0.5 µm. The findings suggest that the influence of sea spray and 

anthropogenic emissions including the process of chloride depletion may affect at EROS site. 

The appearance of anthropogenic sources for chloride was shown by air mass trajectory 

analysis. Chloride concentration associated with back trajectories coming from Europe 

mainland revealed high concentration during simultaneous sampling period (100 daily 

samples) between the two sites. Chloride in fine mode as expected to be present as 

ammonium chloride was stabilised and observed higher concentration in aerosol particles 

collected under NH3 gas. 

 

Oxalate – these are the dominant dicarboxylic acids observed in aerosol particles. The whole 

mean concentrations with measurement uncertainties of oxalate are from 0.02 ± 0.001 µg m-3 

to 0.06 ± 0.002 µg m-3 at urban background and from 0.02 ± 0.001 µg m-3 to 0.04 ± 0.001  

µg m-3 at rural site. These concentration levels are in range with a number of studies in the 

past as shown in Table 1.6 and there are very similar at the urban and rural sites. The 

relationships of oxalate with major chemical composite provide useful information on its 

formations and sources. Oxalate shows a good correlation with sulphate, suggesting that 

oxalate originates from similar atmospheric processes as sulphate i.e., from secondary 

formation. The significant correlation between oxalate and nitrate especially in summer can 

be anticipated that temperature may influence the oxalate concentration as it does for nitrate 

through the ammonium nitrate dissociation. Oxalate exhibited the weak correlations with EC 

in PM2.5, PM2.5-10 and PM10 in the whole dataset. This was anticipated from its regional 

distribution and reflects an insignificant contribution to oxalate from primary combustion 

sources. Moreover, a poor correlation between oxalate and potassium, a tracer for biomass 

burning, was observed in the fine fraction at EROS suggesting that primary biomass burning 

or rapid formation in biomass burning plumes was also not a major source of the oxalate. The 

weak relationship between oxalate and chloride indicate a little contribution from marine 

aerosol or coal burning in winter on oxalate concentration. Oxalate in PM2.5 shows a 

significant correlation with secondary OC in summer, suggesting the important of 

photochemical contribution to oxalate aerosol. Furthermore, it should be noted that there was 

no significant difference in fine oxalate collected simultaneously between EROS and Harwell 
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sites, indicating the significant sources of secondary oxalate formation by precursors with 

long-lived species. 

 

Oxalate had similar size distribution to sulphate with dominant mode peaked at 0.4 µm – 0.5 

µm, suggesting that oxalate and sulphate may have similar formation pathways. Kawamura et 

al., (1996) and Kalberer et al., (2001) concluded that the condensation mode oxalate was 

from the photochemical formation in the gas phase by the reaction of organic compounds 

with photochemical oxidants such as OH free radicals and O3 to form gaseous oxalic acid, 

followed by its condensation onto existing particles. If gas-particle condensation were the 

main process to form oxalate, the highest concentrations should be found in the condensation 

mode (0.175 µm – 0.325 µm). On the contrary, the results showed the highest concentration 

of oxalate in the droplet mode, suggesting that condensation mode oxalate-containing 

particles were activated and became droplet mode particles due to cloud processing. A further 

proposed mechanism of formation of oxalic acid is from isoprene by in-cloud oxidation 

processes (Lim et al. 2005). 

 

Oxalate in the coarse mode accounted for 12% to 15% of total oxalate for the samples 

collected by cascade impactor. There were no significant correlations observed between 

cationic species and oxalate in the coarse mode. Similarities in coarse mode size distribution 

with sodium (2.0 µm – 6.0 µm), suggest the possibility of formation within, or uptake of 

gaseous oxalate by sea salt particles. Alternatively, Russell and Seinfeld (1998) have 

proposed that supermicron particles can be formed by in-cloud processes. 

 

In ammonia experiment, oxalate salt as expected in form of (NH4)2C2O4 show discordant 

results to inorganic atmospheric salts such as NH4NO3, (NH4)2SO4 and NH4Cl. The 

measurement observed that concentration of oxalate did not increase in aerosol samples 

collected under NH3 atmosphere. On the contrary, the other major components were observed 

higher concentrations when air sampling experiment taken under NH3 supply especially 

nitrate and chloride salts in fine particle. It should be noted that this experiment was observed 

the systematic and analytical errors by showing the difference of concentration data of K+ and 

Na+ in both samplers with and without ammonia. Since both species are the non-volatile 

components, the concentrations would expect to be identical in the two samplers. However, 

the discordant result of oxalate might be from the difference of physical and chemical 

atmospheric processes for oxalate formation in gas phase which did not measure in this 
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experiment. In addition, behaviour of oxalate could also be explained by the hypothesis of 

thermodynamic of aerosols (Seinfeld and Pandis, 1998). (NH4)2C2O4 which is non-

deliquescence, exhibits as solid phase aerosol particles during high relative humidity and 

freezing cold temperature but NH4NO3 and NH4Cl which are deliquescent species, show as 

aqueous aerosols. The time scales of NH4NO3 and NH4Cl to approach equilibrium condition 

in aerosols are shorter than in solid aerosol particles as (NH4)2C2O4. In overall, ammonia gas 

does not affect the size distribution patterns of component species but it rather influence on 

the contribution on their modes concentration. The principal role of NH3 is to neutralising 

acidic substances which are directly emitted or produced in the atmosphere and excess NH3 

gas could stabilise the semi-volatile species in particulate phase. 

 

The further analysis of air mass back trajectories arriving at EROS and Harwell sites 

provided the effective evidence in the sources of airborne particulate matter by long-range 

atmospheric transport. Cluster analysis was applied in order to group similar trajectories for 

the whole dataset and simultaneous data between the two sites. The LRT pathways of high 

major component (SO4
2-, NO3

-, Cl-, C2O4
2-, EC, OC, OCprim, OCsec and WSOC) 

concentrations at both sites were from continental Europe (easterly and southerly air flows) 

which is polluted urban and industrial regions with many of precursor sources compared to 

the westerly trajectories with mostly passing over marine atmosphere. 

 

Focusing on oxalate concentration, trajectory cluster analysis of oxalate indicates the highest 

concentrations of oxalate were found to be associated with airmasses originating over the 

European mainland consistent with the behaviour of sulphate, nitrate and secondary organic 

carbon. It should, however, be noted that the elevation of oxalate in the continental trajectory 

is less than that for sulphate, nitrate or secondary organic carbon and the inter-site correlation 

between the urban EROS and rural Harwell sites is less strong for oxalate than for sulphate 

and nitrate. This is interpreted as oxalate having a number of secondary sources through 

different reaction pathways, depending upon different precursors which react at different 

rates, consequently leading to less spatial homogeneity than for sulphate and nitrate which 

have predominantly single precursor compounds. A significant source of biogenic emissions 

from vegetation especially isoprene, could be a potential precursor associated with 

continental trajectories as stated by Legrand et al. (2007). Their study confirmed the role of 

isoprene as a precursor of oxalic acid associated with the high estimated isoprene emissions 

in Europe especially in the east flank of France (Simpson et al., 1995). This seems unlikely to 
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be the main source, however, as this would produce a pronounced seasonality which is not 

observed. Thus, at EROS and Harwell sites, this could conclude that the sources of 

anthropogenic precursors for oxalate formation are more likely than biogenic isoprene. This 

research does not clearly identify the precursors of oxalate in atmospheric particles but the 

information about spatial and temporal variations, correlations with other chemical 

components and size distributions provide the useful behaviour of oxalate in atmosphere. 

 

7.2 Recommendations for further work 

 

There are some recommendations for further work as following;  

 

� The studies of chemical and physical properties of airborne particulate matter 

should be performed in more different types of sampling locations such as urban, 

kerbside, industrial areas in order to make various factors of comparison and 

represent the good data source for the UK. The knowledge of properties of aerosol 

would help in designing a better legislation with the objective of limiting air 

pollution and climate change. Moreover, there is not clear about the precursors of 

particulate oxalate in this study, concentration data of chemical composition in 

PM obtained in difference locations can be used for study the relationships 

between oxalate with other components in order to confirm its sources and maybe 

identify its important precursors. 

� Because there are many chemical components in aerosols affecting human health 

and climate, the further aerosol chemical composition analysis would be 

recommended for example elemental species (silicon (Si), aluminium (Al), iron 

(Fe), titanium (Ti), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) 

etc.), organic species (PAHs, acids, alkanes, alkenes, aldehydes, ketones, phenols 

etc.). These data will be useful because their composition impact the size, density, 

volatility, reactivity and toxicity of the particles.  

� With regard to particulate oxalate in atmosphere, this study is expecting that 

oxalate in PM should be presented as ammonium salts as same as the form of 

inorganic species (NH4SO4, NH4HSO4, NH4NO3, NH4Cl). It would be useful to 

apply the specific and reliable analytical methods to identify the form of oxalate in 

aerosol for example high performance liquid chromatography (HPLC) or gas 

chromatography (GC) combined with mass spectrometry (MS). Commercially 
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available chemistry databases would allow the identification of unknown 

compounds present in the aerosol samples. 

� It was difficult to identify the equilibrium concentrations between gaseous and 

aerosol phases in the study of effect of ammonia gas on stabilising the semi-

volatile species since there were no data of concentration in gaseous phase. The 

air sampling system with denuders is recommended for the further work. 

Denuders are often used as part of, or immediately behind, size-selective inlets to 

remove gases that might interfere with the aerosol sampling, or to quantify the 

concentrations of gaseous species that are precursors to secondary aerosols. The 

experiment should be also conducted in different conditions such as in summer, 

spring, autumn and winter. This is because the fluctuation of chemical 

components in aerosol particles depends on the meteorological conditions (i.e. 

temperature, humidity, wind speed). Measurements and records of meteorological 

data especially temperature and relative humidity at the sampling sties should be 

performed. A number of samples collected simultaneously from the systems with 

and without ammonia gas supply were recommended in order to obtain the 

reliable and accurate results. 

� According to quality assurance and quality control (QA/QC) in the measurement 

and chemical characterization of aerosol particles, the development and use of 

standard reference materials (SRM) in this field would be focused in order to 

evaluate the measurement results for national traceability. There are some SRMs 

produced by the National Institute of Standards and Technology such as urban 

dust (SRM1649b), air particulate on filter media (SRM2783 and 8785) and ultra 

fine test dust (SRM8632). Inter-laboratory comparison programme for the 

measurement of aerosol particles should be conducted regularly and carried out by 

reference or national laboratory to monitor and maintain the quality of analysed 

data obtained from network and individual laboratory to be national acceptance. 
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APPENDIX A 

ESTIMATION OF MEASUREMENT UNCERTAINTY 
 
 

Calculation of the measurement uncertainties associated with analysed data 
 

The objective of estimation of measurement uncertainties associated with analysed data is to 

compare results from similar measurements, or the same system over time (method 

reproducibility and repeatability). The uncertainties of the results can be calculated in 

accordance with NPL report (2007) and JCGM 100:2008 (2010). In general, the result of a 

measurement is only an approximation or estimate of the value of the measurand and 

therefore, is complete only when accompanies by a statement of the uncertainty of that 

estimate. The uncertainty components basically divide into two categories based on their 

method of evaluation; a Type A and a Type B are associated with errors arising from random 

effects and know systematic effects, respectively. There are three important terms used in this 

calculation as following; 

 

 Standard uncertainty – uncertainty of the result of a measurement expressed as a 

standard deviation. 

 Combined standard uncertainty -  standard uncertainty of the result of a measurement 

when that result is obtained from the values of a number of other quantities, equal to the 

positive square root of a sum of terms, the terms being the variances or covariances of these 

other quantities weighted according to how the measurement result varies with changes in 

these quantities. 

 Expanded uncertainty – quantity defining an interval about the result of a 

measurement that may be expected to encompass a large fraction of the districution of values 

that could reasonably be attributed to the measurand. 

 

Organic carbon, elemental carbon and total carbon (OC, EC and TC) 

 

The analytical method used to determine OC, EC and TC was detailed in chapter 2. The 

overall measurement equation for concentrations of OC, EC and TC in the ambient air is: 

 

    
air

air V

m
c =      (Equation A.1) 
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where cair  is the concentration of carbon fraction in the ambient air, µg m-3, m is the mass of 

carbon on a filter, µg, Vair  is the volume of air sample, m-3 

 

Partisol 2025 as mentioned in chapter 2 utilises a PM-10 inlet operating at 16.7 l min-1 (1 m3 

h-1) to provide the initial D50 particle size cut-off at a 10 micron diameter. The virtual 

impactor is located after the inlet and two separate flow controllers maintain the coarse 

particle stream at 1.7 l min-1 and the fine particle stream at 15 l min-1. 

 

Then, the concentration of carbon in fine particle (PM2.5) can be calculated as; 

 

    
f

f
PM V

m
c =

5.2
     (Equation A.2) 

 

where 
5.2PMc  is the concentration of carbon in fine particle in the ambient air, µg m-3, mf is the 

mass of carbon on the filter of fine fraction, µg, Vf  is the volume of air sample in the fine 

particle steam, m-3 

and, the concentration of carbon in coarse particle (PM2.5-10) can be calculated as; 
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   (Equation A.3) 

 

where 
105.2 −PMc and 

5.2PMc  are the concentrations of carbon in coarse and fine particles in the 

ambient air, respectively, µg m-3, mc is the mass of carbon on the filter of coarse fraction, µg, 

Vc  is the volume of air sample in the coarse particle steam, m-3, Vt  is the total volume of air 

sample, m-3 

 

The uncertainty of measurement can be estimated with the following equation; 

 

for the concentration of carbon in PM2.5 
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for the concentration of carbon in PM2.5-10 
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� Uncertainty in the mass of carbon analysed by carbon aerosol analyser (Sunset 

Laboratory) were from repeatability, sensitivity, calibration of instrument by sucrose 

standard solutions. The acceptance criterion for the accuracy of analyser run by 

standards was calculated within 5%. The repeatability of measurement calculated 

from the standard deviation of total carbon in same sample filter was within 0.07 µg 

m-3 (1.5%) based on air volume of a nominal PM fine fraction collected 24h sampling 

period.  

 

 Calibration standards of sucrose solutions were prepared from the stock sucrose 

solution in concentration of 4.2 g. l-1 (analytical laboratory grade). Three standard 

solutions were used to calibrate the instrument in concentration of 0.42, 0.85 and 2.12 

g. l-1 during every month and the QC solution was run every time before performing 

routine analysis. 

 

� Uncertainty in the volume of particle steam includes uncertainties of flow controller, 

temperature and pressure correction. This has been reduced and estimated with a flow 

calibration during the routine audit round. The expanded uncertainty for 

measurements of analyser flow is taken to be ± 3% (NPL report, 2007). Flow rate is 

multiplied by time (assume uncertainty is negligible) to calculate the volume of 

particle stream. 

 

� Uncertainties due to sampling and storage are not included. 
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The measurement uncertainty of OC, EC and TC analysis was; 

 

 Distribution Standard uncertainty 

Repeatability Normal 1.5 

Accuracy of analyser Rectangular 5/ 3  

Flow Normal 3/2 

Combined standard uncertainty 3.6% 

Expanded uncertainty (k = 2) 7.2% 

 

With regard to WSOC determination, aerosol carbon analyser was used to quantify this 

component by measuring OC in samples before and after water extracted. The differences of 

OC content represent WSOC in aerosol samples. The uncertainties of measurement results 

were consistent with OC, EC and TC analysis. The extraction efficiency was also 

investigated by plot of relationships between WSOC and OC showing the good correlation as 

mentioned in chapter 4. 

 

Ionic species 

 

Ion chromatography was used to analyse ionic components (sulphate, nitrate, chloride, 

oxalate, sodium, potassium, ammonium) in PM. Partisol 2025 sampler was used for 

collection of samples both fine and coarse fractions.  

 

The mixed anion standard solutions were prepared from standard solutions of sulphate, 

nitrate, chloride and oxalate and mixed cation standard solutions were prepared from standard 

solutions of sodium, ammonium and potassium. The ranges of concentrations for each ion 

species are given as follow;  

 

Species 
Concentration, µg ml-1 

Minimum Maximum 

Sulphate 

Nitrate 

Chloride 

Oxalate 

2.0 

2.0 

2.0 

0.2 

20.0 

20.0 

10.0 

1.0 
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Sodium 

Ammonium 

Potassium 

0.2 

2.0 

0.2 

1.0 

20 

1.0 

 

There were five concentration level of mixed calibration standards measured during every 

analysis and they were used to relate the sample peak area to concentration of the ions the 

extracted solution. 

 

Then, the mass of the ion species on the exposed filter can be calculated as; 

 

    
e

f
ii A

A
Vcm ××=     (Equation A.6) 

 

where mi  is the mass of the ion on the exposed filter, µg, ci  is the concentration of the ion in 

the extracted solution, µg ml-1, V  is the volume of the extracted solution, ml, Af  is the area of 

exposed filter, cm2, Ae  is the area of the extracted filter, cm2 

The overall measurement equation for ionic species concentrations in the ambient air is; 

 

    
air

i
i V

m
C =      (Equation A.7) 

 

where Ci  is the concentration of the ionic specie in the ambient air, µg m-3, mi  is the mass of 

the ion on the exposed filter, µg, Vair  is the volume of air sample, m-3 

 

The concentrations of the ionic species both in fine and coarse particle were calculated based 

on the volume of each particle steam. The concentrations in coarse particle was also corrected 

by fine particle concentration in the carrier flow as same as the calculation of carbon 

concentrations in PM mentioned above. 

 

The uncertainty of measurement can be estimated with the following equation; 
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� Uncertainties in the mass of the ionic species analysed by IC were from repeatability, 

sensitivity, linearity of calibration standards, instrument accuracy. Chromeleon 

software was used to generate the calibration curve including ionic species 

concentrations. The accuracy of the generation of this line and uncertainty of 

identification of peaks and accurate integration should be further investigated. The 

preparation of the calibration standards series was done volumetrically by calibrated 

micro pipettes. Moreover, the uncertainties from stock standard solutions associated 

with gravimetric and volumetric preparation. 

 

The overall uncertainty of the ion mass could be estimated by the replication 

measurement of calibration standards yielded the repeatability of 0.5% (based on air 

volume of a nominal PM fine fraction collected 24h sampling period). 

� The extraction efficiency of the sonication process was also investigated by the study 

of recoveries presented in chapter 2. Since the remained filters after carbon analysis 

were all extracted by DDW, there was not be able to replicate extraction in this study. 

 

� Uncertainty in the volume of particle steam includes uncertainties of flow controller, 

temperature and pressure correction. This has been reduced and estimated with a flow 

calibration during the routine audit round. The expanded uncertainty for 

measurements of analyser flow is taken to be ± 3% (NPL report, 2007). Flow rate is 

multiplied by time (assume uncertainty is negligible) to calculate the volume of 

particle steam. 

 

� Uncertainties due to sampling and storage are not included for Partisol data. 

 

The measurement uncertainty of ion analysis by IC was; 

 

 Distribution Standard uncertainty 

Repeatability Normal 0.5 

Flow Normal 3/2 

Combined standard uncertainty 1.6% 

Expanded uncertainty (k = 2) 3.2% 
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As mentioned in chapter 2, the recoveries of the analysis of anionic species were studied by 

spiking of standard solution onto QMA filters and spiked filters were extracted by water in 

the same procedure as aerosol samples. The uncertainty of recovery was estimated to be 0.5%. 

Then the expanded uncertainty of ions measurement including recovery was calculated to be 

3.4%. 

 

In case of aerosol sampling by MOUDI with ammonia experiment, the measurement 

uncertainties due to systematic and analytical errors were investigated. Since K+ and Na+ 

which are the non-volatile components observed slightly differences in concentration during 

the simultaneous sampling period between the two MOUDIs, the error value was estimated 

around 5%. For the measurement of K+, many samples observed below the detection limit, 

therefore the estimation of error value in this experiment was estimated based on Na+ species. 

The calculation of the measurement uncertainty of ionic data shows as follow; 

 

 Distribution Standard uncertainty 

Repeatability Normal 0.5 

Flow Normal 3/2 

Sampling and analytical errors Rectangular 5/ 3  

Combined standard uncertainty 3.3% 

Expanded uncertainty (k = 2) 6.6% 

 

 

Particulate matter mass 

 

Mass of particulate matter is determined by gravimetric analysis. Only samples which were 

collected on PTFE and aluminium foil substrates by MOUDI sampler are measured for mass 

concentration in ambient air. This gravimetric method is described in chapter 2. 

 

The overall measurement equation is; 

 

   
air

mass V

m
PM

∆
=       (Equation A.9) 
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Where PMmass  is the mass concentration of particulate matter, µg m-3, ∆m  is the mass 

difference of the PM on the filer before and after sampling, µg, Vair  is the volume of air 

sample, m-3 

 

The uncertainty of measurement can be estimated with the following equation; 
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� Uncertainties in the mass of PM determined by gravimetry were from repeatability, 

sensitivity, linearity and readability of microbalance. The filters were weighed at least 

three times and consequently the mean values were used to calculate the mass 

difference. The repeatability was obtained by the ten replicated weighing of filter, 

estimated to be 0.6%. 

 

� Uncertainty in the volume of air based on the efficiency of pump used and calibrated 

rotameter was used to measure the air flow rate. The accuracy of flow is taken to be 

1.25%. Flow rate is multiplied by time (assume uncertainty is negligible) to calculate 

the volume of ambient air. 

 

The measurement uncertainty of PMmass analysis was; 

 

 Distribution Standard uncertainty 

Repeatability Normal 0.6 

Flow Rectangular 1.25/ 3  

Combined standard uncertainty 0.9% 

Expanded uncertainty (k = 2) 1.8% 
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APPENDIX B 

CALCULATION OF CONCENTRATION OF AMMONIA GAS SUPPLY 
 
 

Calculation of the concentration of ammonia gas use in cylinder 
 

In the experiment of air sampling with ammonia gas, the target NH3 supplied concentration is 

50 ppb in total air flow in order to exceed its concentration over the average concentrations of 

major ionic species in atmospheric particles at EROS site. According to the specifications of 

MOUDI sampling flow rate, the total air flow of 30 L min-1 should be operated during air 

sampling. 

 

If a mixing ratio of NH3 gas is based on a dilution of one percent (1 : 100), the flow rate of 

NH3 will control around 0.3 L min-1. The expected NH3 concentration is 50 ppb in total air 

flow so there need NH3 in a concentration of ; 50 ppb × 100  = 5 ppm 

 

The certified NH3 standard (NH3 in synthetic air) concentration of 52.08 ppm (uncertainty 

less than 5%) was used in this study in order to supply enough amounts during the sampling 

period. The flow rate of NH3 was controlled at 0.03 L min-1.  

 

Calculation of the concentration of ammonia gas during the air sampling 

 

 Convert 50 ppb NH3 into µg m-3 (for example @ 0 oC and 761 torr) 

 17 g NH3 occupy 22.41 L at STP 

 17 g NH3 occupy 22.41 x 
273

273
 x 

761

760
 L =  22.39 L @ 0 oC and 761 torr 

 50 ppb NH3 is 5 x 10-8 L. L-1 = 5 x 10-5 L. m-3 

 so 5 x 10-5 L NH3 at 20 oC and 750 torr contain 17 x 
39.22

105 5−×
g = 38 µg NH3 

 ∴ NH3 concentration = 38 µg m-3 = 2.235 µmol m-3 
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Calculation of the flow Reynolds number  

 

To ensure that the ammonia is reasonably well mixed with the air coming into the MOUDI, 

the flow Reynolds number, a dimensionless number, that characterised gas flow through a 

pipe was also calculated  

 

  Flow Reynolds number  = Vd
Vd

6.6=
η

ρ
 (@ 20 oC)  (Equation B.1) 

 Where  ρ  = the density of air 

   η  = the coefficient of viscosity 

   V = the relative flow velocity in cm s-1 

   d = the diameter of tube in cm 

 

In this experiment, the air sample was taken at the air flow rate of 30 L min-1 in the tube of 

inner diameter less than 1 cm. 

 

Then, the velocity of the air relative to the tube was calculated as; 

 

   
A

Q
V =  

Where 

   scm
s

LcmL
Q /500

min)/(60

)/(1000min)/(30 3
3

=
×

=  

 

and A is the cross-sectional area of the tube, 

 

   2
2

79.0
44

cm
d

A ===
ππ

 

   scm
cm

scm
V /91.632

/

79.0

500
2

3

==  

 

Substituting gives 

  Flow Re = Vd6.6 = 6.6 x 632.91 x 1 = 4177.21 

(The flow in the tube is turbulent for higher Re than 4000)  
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APPENDIX C 

AIR MASS BACK TRAJECTORIES 
 
 

CLUSTER ANALYSIS OF 
AIR MASS BACK TRAJECTORIES ARRIVING AT EROS 
FOR THE WHOLE PERIOD (November 2008 – April 2011) 
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CLUSTER ANALYSIS OF 
AIR MASS BACK TRAJECTORIES ARRIVING AT EROS 

DURING SUMMER 
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CLUSTER ANALYSIS OF 
AIR MASS BACK TRAJECTORIES ARRIVING AT EROS 

DURING AUTUMN 
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CLUSTER ANALYSIS OF 
AIR MASS BACK TRAJECTORIES ARRIVING AT EROS 

DURING WINTER 
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CLUSTER ANALYSIS OF 
AIR MASS BACK TRAJECTORIES ARRIVING AT EROS 

DURING SPRING 
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CLUSTER ANALYSIS OF 
AIR MASS BACK TRAJECTORIES ARRIVING AT EROS 
DURING THE PERIOD OF SIMULTANEOUS SAMPLING 

WITH HARWELL (12 July – 6 December 2010) 
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CLUSTER ANALYSIS OF 
AIR MASS BACK TRAJECTORIES ARRIVING AT HARWELL 

DURING THE PERIOD OF SIMULTANEOUS SAMPLING 
WITH EROS (12 July – 6 December 2010) 
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APPENDIX D 
BOX-WHISKER PLOTS OF MAJOR COMPONENTS IN PM 2.5 BY CLUSTERS IN 

EACH SEASON AT EROS 
 
 
 

SUMMER 
 

  

  

  

  
 
 

EROS (Summer)

0.00

1.00

2.00

3.00

4.00

5.00

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9

S
ul

ph
at

e,
 µ

g 
m

-3

Mean EROS (Summer)

0.00

2.00

4.00

6.00

8.00

cluster 1
cluster 2

cluster 3
cluster 4

cluster 5
cluster 6

cluster 7
cluster 8

cluster 9

N
itr

at
e,

 µ
g 

m
-3

Mean

EROS (Summer)

0.00

0.50

1.00

1.50

2.00

2.50

cluster 1
cluster 2

cluster 3
cluster 4

cluster 5
cluster 6

cluster 7
cluster 8

cluster 9

C
hl

or
id

e,
 µ

g 
m

-3

Mean EROS (Summer)

0.00

0.03

0.06

0.09

0.12

0.15

cluster 1
cluster 2

cluster 3
cluster 4

cluster 5
cluster 6

cluster 7
cluster 8

cluster 9

O
xa

la
te

, µ
g 

m
-3

Mean

EROS (Summer)

0.0

2.0

4.0

6.0

8.0

cluster 1
cluster 2

cluster 3
cluster 4

cluster 5
cluster 6

cluster 7
cluster 8

cluster 9

O
C

, µ
g 

m
-3

Mean

EROS (Summer)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cluster 1
cluster 2

cluster 3
cluster 4

cluster 5
cluster 6

cluster 7
cluster 8

cluster 9

E
C

,  
µg

 m
-3

Mean

EROS (Summer)

0.0

0.2

0.4

0.6

0.8

1.0

cluster 1
cluster 2

cluster 3
cluster 4

cluster 5
cluster 6

cluster 7
cluster 8

cluster 9

O
C

pr
im

, µ
g 

m
-3

Mean EROS (Summer)

0.0

2.0

4.0

6.0

8.0

cluster 1
cluster 2

cluster 3
cluster 4

cluster 5
cluster 6

cluster 7
cluster 8

cluster 9

O
C

se
c ,

 µ
g 

m
-3

Mean



 272 

AUTUMN 
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WINTER 
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SPRING 
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APPENDIX E 
THE KOLMOGOROV-SMIRNOV TEST 

 
 
Tests of Normality 
 
Component Kolmogorov-Smirnov 

Statistic df Sig. 
EROS 
PM2.5 

OC 
EC 
Oxalate 
Nitrate 
Sulphate 
Chloride 
OCpri 
OCsec 

 
PM2.5-10 

OC 
EC 
Oxalate 
Nitrate 
Sulphate 
Chloride 

 
PM10 

OC 
EC 
Oxalate 
Nitrate 
Sulphate 
Chloride 
OCpri 
OCsec 

 
HARWELL 
PM2.5 

OC 
EC 
Oxalate 
Nitrate 
Sulphate 
Chloride 
OCpri 
OCsec 

 
 

 
 

.168 

.203 

.236 

.234 

.139 

.167 

.231 

.152 
 
 

.168 

.431 

.203 

.192 

.136 

.133 
 
 

.161 

.196 

.181 

.210 

.142 

.134 

.227 

.142 
 
 
 

.219 

.245 

.294 

.286 

.204 

.186 

.284 

.213 
 
 

 
 

500 
500 
500 
500 
500 
500 
500 
500 

 
 

500 
500 
500 
500 
500 
500 

 
 

500 
500 
500 
500 
500 
500 
500 
500 

 
 
 

107 
107 
107 
107 
107 
107 
107 
107 

 
 

 
 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
 
 

.000 

.000 

.000 

.000 

.000 

.000 
 
 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
 
 
 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
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Component Kolmogorov-Smirnov 
Statistic df Sig. 

 
PM2.5-10 

OC 
EC 
Oxalate 
Nitrate 
Sulphate 
Chloride 

 
PM10 

OC 
EC 
Oxalate 
Nitrate 
Sulphate 
Chloride 
OCpri 
OCsec 

 

 
 

.193 

.506 

.213 

.198 

.270 

.139 
 
 

.151 

.249 

.158 

.253 

.194 

.140 

.292 

.142 

 
 

107 
107 
107 
107 
107 
107 

 
 

107 
107 
107 
107 
107 
107 
107 
107 

 

 
 

.000 

.000 

.000 

.000 

.000 

.000 
 
 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
 

 




