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ABSTRACT 

 

 

 

Point machines are the key actuator used in railways to provide a means of moving a 

switch blade from one position to the other. Failure in the point actuator has a 

significant effect on train operations. Condition monitoring systems for point machines 

have been therefore implemented in some railways, but these condition monitoring 

systems have limitations for detecting incipient faults. Furthermore, the majority of 

condition monitoring systems which are currently in use cannot diagnose faults. The 

ability to diagnose faults is useful to maintenance staff who need to fix problems 

immediately. 

This thesis proposes a methodology to detect and diagnose incipient faults using an 

advanced algorithm. In the main body of this thesis the author considers a new approach 

using Wavelet Transforms and Support vector machines for fault detection and 

diagnosis for railway electrical AC point machines operated in Japan.  

The approach is further enhanced with more data sets collected from railway electrical 

DC point machines operated in Great Britain. Furthermore, a method to express the 

qualitative features of healthy and faulty waveforms was proposed to test the 

transferability of the specific algorithm parameters from one instance of a point machine 

to another, which is tested on railway electrical DC point machines used in Great 

Britain. 

Finally, an approach based on Wavelet Transforms and Neural networks is used to 

predict the drive force when the point machine is operating. The approach was tested 

using electrical DC point machines operated in Great Britain. 

It is shown through the use of laboratory experimentation that the proposed methods 

have potential to be used in a real railway system.  
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CHAPTER 1 INTRODUCTION 

 

 

 

1.1 Background 

1.1.1 Railways and point machines 
 

Recently, in part due to environmental issues and also because of congestion on the 

roads, the utilisation of railways has been increasing all around the world. The safe and 

reliable operation of trains is therefore becoming ever more important. To achieve this 

objective, most of the actuators in railways are designed to be redundant; when one of 

the actuators fails, the railway can still maintain its function using another actuator. 

Although many actuators in railways are designed in this way, there are some that 

cannot be designed to be redundant because of their inherent structural and mechanical 

nature. One of them is the point machine.  

The point machine is the actuator that drives the switch blade from one position to the 

opposite position in order to offer different routes to trains. Failure in the point actuator 

has a significant effect on train operations. If this failure occurs, it leads to a less reliable 

service and causes discredit to the railway company. It can also lead to more disastrous 

consequences. In 2002 a train derailment accident caused by poor maintenance of a 

point machine occurred near Potters Bar railway station in the UK, killing seven people. 

As a result, the railway infrastructure company paid several million pounds as 
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compensation to victims and their relatives [1]. It is therefore important for all 

infrastructure companies to minimise the occurrence of point machine failure. 

 

1.1.2 Point machines in Japan 
 

In Japan, many types of points are used, according to company preferences and 

geographic areas. Table 1-1 shows the different type of point machines used by the 

Central Japan Railway Company.  

All the power sources to the points are AC single phase (50 or 60 Hz). The NS-type 

model is the prevalent model and is used on local lines and also in rolling stock depots 

of the High Speed Train (HST), known as Shinkansen. The CS-type model is a 

successive model of the NS-type model developed by the Central Japan Railway 

Company and has a stronger force (approximately 30% greater) than the NS-type model 

[2]. The TS-type model is used exclusively on HST routes. The NTS-type is a 

successive model of the TS-type model and most of the main tracks on HST lines now 

use the NTS-type model [2].  

Figure 1-1 shows the point mechanism of a NS-type point. 
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Table 1-1  Types of points in Japanese Railway 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1  Point mechanism (NS-type model) 
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1.2 Current maintenance practice on the railways 

1.2.1 Definition 
 

The terminology and general concept of fault diagnosis is described in this chapter. 

A “failure” is defined as ‘the inability of any asset to do what its users want it to do’ [3]. 

Furthermore, anything that users want it to do is defined as a “function”; there are 

usually several different functions in every system. A “functional failure” is defined as 

‘the inability of any asset to fulfil a function to a standard of performance that is 

acceptable to the user’ [3]. A “fault” (potential failure) is defined as ‘an identifiable 

condition that indicates that a functional failure is either about to occur or is in the 

process of occurring’ [3]. In general, a “fault” can be identified by an experienced 

maintenance engineer if the engineer went to the site to carry out a full inspection. 

To prevent assets from failure, there is a need to detect a “fault” (potential failure) 

before a “failure” occurs. Tasks designed to check and detect a “fault” to prevent the 

“functional failure” or to avoid the consequences of the “functional failure” are known 

as “on-condition tasks”. The interval between the occurrence of a “fault” (potential 

failure) and its degradation into a “functional failure” is defined as the “P-F interval”: 

“P” and “F” stand for “potential failure” and “functional failure” respectively [3]. “On-

condition tasks” have to be undertaken during the “P-F interval” to avoid “functional 

failure”. Figure 1-2 shows the outline of a “P-F interval”.  
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Figure 1-2   P-F interval [3] 

 

1.2.2 Current practice and condition monitoring for point machines 
 

Currently, maintenance tasks are undertaken at fixed intervals to minimise the 

likelihood of any failure of the point machines. Intervals may differ depending on the 

level and type of use of the machine and also company policy; maintenance tasks are 

undertaken every 2 weeks by the Central Japan Railway Company, whereas London 

Underground undertakes maintenance tasks every 6 weeks. When these maintenance 

tasks take place, maintenance staff use their own experience and their own senses (sight, 

sound, touch and smell) to detect any faults (potential failure). Condition monitoring 

systems have been developed to aid maintenance work. These condition monitoring 

systems use thresholds for the monitored parameters, creating an alarm whenever the 

monitored parameters exceed the predetermined thresholds. Experience in the field has 

shown that a problem exists with many of these systems, as an alarm is only created 

either after a failure has occurred or when the points are very close to failure [4]. 

Furthermore, the majority of condition monitoring systems which are currently in use 

cannot diagnose faults; the system simply creates an alarm to indicate abnormal 

behaviour. This can result in a delay in repairing the point machine, as the maintenance 
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staff do not know what the fault is until they arrive on site. A condition monitoring 

system for point machines which generates an alarm in the early stages of the 

development of the fault and which diagnoses faults correctly is therefore desired. 

1.2.3 Condition monitoring systems for point machines in Japan 
 

This sub-section provides details of the current condition monitoring systems used in 

Japanese point machines. Table 1-2 shows the parameters and technical methods of 

condition monitoring by type of point. The TS type and NTS type use four parameters 

for condition monitoring, whereas the NS type and CS type use only two parameters. 

Both systems are based on “thresholding techniques”: a technique that uses a priori 

thresholds for monitoring. 

 

Table 1-2  Condition monitoring systems in Japanese Railways 

Type of point Parameters Method of condition monitoring 

TS type 

NTS type 

 Current  
 Voltage 
 Motor speed 
 Lock position 

 
 

 Thresholding 

NS type 
CS type 

 Current 
 Voltage 
 (Lock error detection) 

 Thresholding 

 

All of the NTS type point machines in the field are equipped with condition monitoring 

systems on the Japanese HST lines. The sensors equipped inside a NTS type point 

machine are a current sensor, voltage sensor, rotary encoder and a lock position sensor. 

A lock position sensor is a sensor that sensing when the machine is in the locked 
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position and is used specifically to detect ‘locking failure’. The system creates an alarm 

if the lock position exceeds the pre-determined position. The system also utilises three 

sensors (a current sensor, voltage sensor and rotary encoder) to detect an abnormality of 

current, voltage and force in the point machine. The torque of the point machine is 

calculated based on a calculation table that is called the ‘Torque measurement table’. 

The table relates voltage and rotational speed to torque. Maintenance personnel will set 

an upper limit for the calculated torque, and the system generates an alarm if the torque 

exceeds the limit. Current and voltage are also monitored using a thresholding technique 

in the system. An outline of the system is depicted in Figure 1-3. 

 

Figure 1-3  Outline of condition monitoring system (NTS type point machine) 

In the NS type, on the other hand, only two sensors are equipped: a current sensor and a 

voltage sensor. NS type condition monitoring systems are only utilised on local lines 

(not on HST lines). Torque is estimated based on a lookup table that relates current and 

Signal Box Maintenance office

Current
Voltage
Rotation

Lock position

hours

Lock position

0

Upper threshold

Lower threshold

second

Torque
Upper threshold

NTS type

seconds
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voltage of the motor to the value of torque. The user sets an upper threshold for torque, 

and the system generates an alarm if the calculated torque exceeds the threshold. 

Although the NS type cannot acquire continuous measurement of the locking position, it 

does have an ability to confirm that the lock is in the correct position by means of a 

LED detector inside the point machine that generates an alarm if a locking failure 

occurs. 

 

 

1.3 Proposal for improvement of the condition monitoring system 
 

It is proposed that an improvement could be made if the condition monitoring system 

could detect and diagnose faults in the early stage of their development. By developing 

a system with this capability it would be possible to reduce the number of point machine 

failures, which would reduce the cost that an infrastructure company would have to pay 

to train operation companies and increase the reputation of the company.  

It would also be possible to increase the safety of point machines by the condition 

monitoring system which will prevent critical accidents from happening that will 

potentially save a passenger’s life. 

It would also lead to a reduction in maintenance costs, as the frequency of maintenance 

tasks could be reduced. In Europe, there is a movement in the railway industry to shift 

from scheduled maintenance to condition based maintenance, in which the condition of 

the actuator determines whether maintenance is necessary (with the aid of sophisticated 
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condition monitoring systems). This will potentially lead to huge cost savings on 

maintenance tasks. 

 

1.4 Systems engineering approach 
 

Systems engineering is gaining popularity among many industries for developing 

complex and time-consuming systems. Although there is no commonly accepted and 

clear definition of systems engineering in the literature, the definition of systems 

engineering is usually based on the background and experience of the individual or the 

organisation [5]. The International Council on Systems Engineering defines systems 

engineering as “An interdisciplinary approach and means to enable the realisation of 

successful systems” [6]. 

Since the system which is needed to be developed in this thesis is related to a real 

industrial problem, it will be beneficial to utilise an approach which is used in industrial 

system development. It is therefore appropriate to use a systems engineering approach 

to develop a condition monitoring system for point machines. In this thesis, a 

requirements analysis is carried out in the initial stage of system development in order 

to avoid inefficiency. The requirements analysis was carried out using a top-down 

approach. 

 

1.5 Scope of this thesis 
 

The structure of the thesis is outlined below. 
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Chapter 2 

Requirements for the system are presented in this chapter. Firstly, a high level mission 

is presented. Secondly, this is decomposed into single, testable statements so that each 

can be tested individually. This analysis helped to determine the direction of the 

solution presented in this thesis.  

Then, details of the experimental setup and fault simulations are presented. Firstly, the 

different point machines considered in this thesis are introduced and the method of data 

acquisition is described. Secondly, fault simulations considered are described. 

 

Chapter 3 

 A full literature review was conducted in this chapter. Firstly, a general survey of fault 

detection and diagnosis methodologies was undertaken and the methodologies were 

categorised into three categories. Secondly, a survey of condition monitoring 

specifically for point machines was carried out. Finally, the conclusion considered the 

current state-of-the art methodologies and requirements of the system set out in Chapter 

2. 

 

Chapter 4 

The aim of this chapter is to develop an algorithm for fault detection and diagnosis 

utilising parameters collected from low-cost and practical sensors. Data was collected 

from an AC point machine (NTS-type point machine) used in Japan. Drive force, 

electrical current and electrical voltage data were collected and analysed from an AC 
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point machine (NTS-type point machine). Three fault conditions were simulated. Firstly, 

a cluster analysis was carried out to choose the best parameter for condition monitoring. 

Secondly, a feature extraction method was considered. Thirdly, a classification method 

was considered. Finally, experimental results were written. It was found that the method 

presented can detect and diagnose faults to a high degree of accuracy. It was also proved 

that the approach can provide an indication of the severity of the faults, which is 

important for practical implementation. 

 

Chapter 5 

The aim of this chapter is to: (1) test the method developed in Chapter 4 for other types 

of point machines to verify the transferability of the approach and (2) test the 

transferability of the specific algorithm parameters from one instance of a point machine 

to the next. To achieve this, data was collected from three different types of DC point 

machine used in Great Britain (Surelock-type point machine, M63-type point machine 

and HW-type point machine).  

Drive force, electrical current and electrical voltage data were collected and analysed 

from two types of DC point machine: the Surelock-type and the M63-type. Five fault 

conditions were simulated. A cluster analysis was carried out to choose the best 

parameter for condition monitoring, as in Chapter 4. The same feature extraction and 

classification method presented in Chapter 4 were applied to the DC point machine data. 

It was found that the method can detect and diagnose faults to a high degree of accuracy. 

It was also proved that the approach can provide an indication of the severity of the 

faults, similarly to the results obtained for the Japanese point machine. 
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Then, the approach is used to test the transferability of the specific algorithm parameters 

from one instance of a point machine to the next (using HW-type point machines). To 

achieve this, the feature extraction method is modified to express the feature 

qualitatively. 

 

Chapter 6 

The aim of this chapter is to further develop the algorithm discussed in Chapter 4 and 

Chapter 5 so that the system can directly predict drive force which can be useful for 

inspection and maintenance. Data collected from British point machines (Surelock-type 

point machine and HW-type point machine) was used to demonstrate the method. It was 

found that the method can predict drive force to a high degree of accuracy. 

 

Chapter 7 

In this chapter, all the methods and results are reviewed and conclusions are made. 

Future work including recommendation of system architecture is discussed. 
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CHAPTER 2  REQUIREMENTS ANALYSIS 

AND EXPERIMENTAL SETUP 

 

 

 

 

2.1 Requirements analysis 

2.1.1 Initial requirements analysis 
 

In this section a requirements analysis is carried out to identify a suitable condition 

monitoring system. A high level mission is presented, requirement decomposition is 

carried out and finally a conclusion is drawn. This requirements analysis, however, was 

carried out to help understand the general aspirations for the system and to provide the 

direction to the research. 

The first stage of a requirements analysis is to set out a clear top-level requirement. 

Railway condition monitoring systems were classified by Roberts into three levels [7]: 

 

‘Level one: Data Logging and Event Recording Systems – primarily used to provide 

hard evidence in cases where major incidents happen.’ 

‘Level two: Event Recording and Data Analysis Equipment – have the same functions 

as Level one, but are also equipped with basic data analysis options, such as 
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statistical/sequence analysis, (generally equipped with additional communication 

modules for remote access).’ 

‘Level three: On-Line Health Monitoring Systems – defined as the highest level 

condition monitoring systems. These analyse data into characteristic signatures, 

compare these with an in-built database of healthy and simulated faulty operational 

modes, and flag alarms and fault diagnosis information to the operator-maintainers.’ 

[7] 

 

By categorising condition monitoring system into three levels, the advantages of the 

higher level systems are highlighted, helping to inform the direction of development. 

Most existing condition monitoring systems for railways are categorised as level two (or 

even level one in some instances). Japanese condition monitoring systems for railway 

points are categorised as level two, where warning alarms are generated according to the 

pre-determined thresholds in the system. A more advanced condition monitoring system 

for railway points is therefore needed to improve the safety and reliability of train 

operations. 

The top-level requirement for this thesis is therefore to propose the highest level 

condition monitoring system, a ‘level three’ condition monitoring system for point 

machines. In ‘Level three’ condition monitoring systems, not only fault detection 

information but also fault diagnosis information will be informed to the user. This will 

be extremely useful since the maintenance staff can know before arriving on site the 

fault type, making it quicker to fix the fault.  
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2.1.2 Requirements decomposition 
 

The top-level requirement is stipulated in Section 2.1 above. The purpose of 

requirements decomposition is to break down the initial requirement into a set of 

individual testable statements which are described in detail [5]. The following 

requirements were derived from the top-level requirement; these are further 

decomposed into testable statements. 

 

1. Early detection and diagnosis: The system should detect and diagnose faults 

before failure occurs. 

 

2. High accuracy: The system should detect and diagnose faults to a high level of 

accuracy so that the user will trust the system.  

 
3. Informing fault level: The system should inform users of the fault level. When 

the minor fault level is alarmed, maintenance staff can wait until non-service 

time to repair the machine. However, if the major fault level is alarmed, it will 

be repaired during in-service time. 

 

4. Not affecting operation: The system should utilise sensors which will not affect 

the operation of the machine. Even if the sensors break, the point machine must 

be able to operate normally. 

 
5. The approach developed should be generic so that it can be applied to many 

different types of point machine. 
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These requirements can be decomposed further and written explicitly to result in a set of 

single, testable statements. 

 

1. Early detection and diagnosis: The system should detect and diagnose faults 

before failure occurs. 

1.1 The system should classify the fault free condition and abnormal 

conditions. 

1.2 The system should diagnose faults; the system shall classify different 

fault conditions and inform users. 

1.3 Point machines should not fail to operate during the simulated fault 

conditions. 

 

2. High accuracy: The system should detect and diagnose faults to a high level of 

accuracy so that the user will trust the system.  

2.1 The system should detect and diagnose the test data to high accuracy. 

(The highest accuracy achieved in the previous work was 91% [8].) 

2.2 The system should not raise false alarms (an alarm which is incorrectly 

triggered during “Fault free” conditions) so that users will trust the 

system 

 

3. Informing fault level: The system should inform users of the fault level. When the 

minor fault level is alarmed, maintenance staff can wait until non-service time to 
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repair the machine. However, if the major fault level is alarmed, it will be 

repaired during in-service time. 

3.1 (optional) The system should inform the user of two levels of severity: 

minor fault alarm and major fault alarm (to be later defined). 

 

4. Not affecting operation: The system should utilise sensors which will not affect 

the operation of the machine. Even if the sensors break, the point machine must 

be able to operate normally. 

(No further decomposition required) 

 

5. The approach used should be generic so that it can be applied to many different 

types of point machine. 

5.1 The approach should be demonstrated on at least two different types of 

point machine. 

5.2 (Optional) Once the algorithm has been trained, it should be usable on 

multiple instances of the same type of point machine. 

 

2.1.3 Conclusion from requirements analysis 
 

A requirements analysis has been carried out to make the objectives of this thesis clear. 

The initial requirement is to propose a method which is categorised as a ‘level three’ 

condition monitoring system for point machines. The initial requirement was 

decomposed to five requirements and described further in detail. The requirements of 
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the thesis were sufficiently decomposed and can be used to fix the direction of the 

research. By defining clear requirements from the beginning of the thesis, it is possible 

to establish the method and develop the system quickly and efficiently. 

 

2.2 Experimental setup 

2.2.1 Point machines and data acquisition box 
 

In order to help address requirement 5.1, data was acquired from four different types of 

point machine. Table 2-1shows a list of the point machines considered in this thesis.  

Table 2-1 A list of Point machines tested 

 

 The NTS-type point machine is operated by a single-phase AC 210 V power supply. 

The single phase induction motor is located inside the point machine. M63-type, 

Surelock-type and HW-type point machines are operated using a DC 110V power 

supply. The M63-type machine is fitted with snubbing gear which brings the machine 

quickly to rest at the end of its stroke [9]. A brushed DC motor is located inside the 

M63-type point machine. 

Point machine type Country operated Supply-voltage to motor 

 

Date of data collection, 

place 

NTS-type Japan AC 210V January 2011, Japan 

Surelock GB DC 110V September 2011, London 

M63-type GB DC 110V September 2011, London 

HW-type GB DC 110V 
May 2012, Derby 
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A photograph of each of the point machines taken during the data collection phase of 

the research is shown in Figure 2-1.  

 

Figure 2-1 Photograph of (a) NTS-type point machine, (b) Surelock-type point 
machine, (c) M63-type point machine, (d) HW-type point machine 1 and (e) HW-
type point machine 2 

In order to acquire data from the point machines, a data acquisition box was developed. 

Figure 2-2 shows a circuit schematic of the data box. Five sensors can be connected to 
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the data box to acquire electrical current data, displacement data, force data and 

electrical voltage data. A National Instruments NI-6210 data acquisition unit is installed 

inside the data box for data collection. All the data were captured at a sampling rate of 

10 kHz. (A high frequency rate generally does not harm the data whereas low frequency 

can harm the data considering “Nyquist” sampling theorem. 10kHz, which is close to 

the upper limit for the data acquisition box utilised, was therefore used.) Force in the 

drive rod was measured using a load pin specially designed to fit into point machine. 

The load pin for the Japanese point machine was manufactured by Strainstall UK Ltd, 

whereas the load pin for the UK point machine was manufacture by Applied 

Measurements Ltd. The load pin was fitted to replace a pin in the drive assembly. 

Electrical current data were collected inside the point machine using a LEM PCM-30 

transducer capable of a range of -30 A to +30 A; electrical voltage data were collected 

using a LEM AV100-500 sensor, capable of a range of -750 V to +750 V. 
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Figure 2-2  A circuit schematic of the data acquisition box 

 

2.2.2 Fault simulations for point machines 
 

In order to help address requirement 1.1 and 1.2, common faults experience in the field 

for point machines are considered. Generally, there are three types of faults which can 

affect the operation of point machines [4]: 

 

Abrupt fault – a fault that appears suddenly without any prior indication 

Intermittent fault – a fault that appears sporadically 
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Incipient fault – a fault that develops gradually over a period of time 

 

An abrupt fault is generally difficult to detect in advance because of its inherent nature; 

a point machine may seem to be operating normally but then suddenly fails without any 

prior indication of having a fault. An intermittent fault is also difficult to detect in 

advance because the indication of a fault may disappear at any moment. Conversely, 

incipient faults can be predicted if the parameters and methodology are adequate in the 

system.  

 

Figure 2-3 Fish bone diagram of faults for point machines [10] 
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There are a number of faults that will lead to the failure of a point machine. Figure 2-3 

shows a fish-bone diagram of point machine failures [10]. The original diagram has 

been translated into English and faults that are irrelevant to the point machine currently 

in operation have been removed from the diagram. As shown in Figure 2-3, point 

machine faults can be categorised as follows. 

1. Faults caused by components in the point machine 

2. Faults caused by external components 

3. Faults caused by human error and misalignment 

4. Faults caused by temperature, track foundation movement and humidity changes 

5. Faults caused by an obstruction 

Faults ‘1’ and ‘2’ can be avoided if adequate maintenance is carried out and the 

components are replaced at suitable intervals. Since ‘4’ and ‘5’ tend to be either abrupt 

faults or intermittent faults, they are generally difficult to predict. Fault ‘3’ (faults 

caused by misalignment) was selected as the fault type that would benefit most from 

automatic detection and diagnosis by a condition monitoring system.  

An example of a point machine installation as used in Japan and Great Britain is 

depicted in Figure 2-5 and Figure 2-6 respectively.  

 A Point machine moves the switch blade in the following procedure: 

(1) Transmit the signal to turn over the point machine from the signal box to the 

point machine 

(2) Short-circuit the indication relay (which indicates whether the point machine is 

in ‘Normal’ position or ‘Reverse’ position)  
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(3) Complete the electrical circuit to move the motor 

(4) Unlock the point machine with the locking mechanism 

(5) Move the drive rod until the switch blade is fully moved 

(6) Lock the point machine with the locking mechanism 

(7) Break the electrical circuit to move the motor and complete indication circuit 

(8) Indication relay operates and the signal indicating the position of the point 

machine is transmitted from the point machine to the signal box. 

 A mechanical locking mechanism is implemented inside the point machine, as 

illustrated in Figure 2-4. A lock dog will be situated inside a notch after the completion 

of the throw, which mechanically locks the point machine in place. 

 

Figure 2-4  A mechanical locking mechanism implemented inside a point machine 

 

 Periodic railway maintenance is usually carried out to check the internal lock position 

and also the force between the stock rail and the switch blade. Since this maintenance is 

carried out by maintenance staff, there is always the possibility that human error may 

Lock dog

40 mm

43 mm

Notch
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occur, and hence misalignment. In Japan, an existing condition monitoring system is 

used to detect and diagnose a lock position fault, which uses a displacement sensor 

located inside the point machine [11]. However, there is currently no method to 

monitor misalignment of the driving rod, that is, the force between the stock rail and 

the switch blade. 

Furthermore, Table 2-2 shows the ‘top 5’ defects recorded in Network Rail’s failure 

management system for the point machines in use [12]. Considering the table, it has 

been found that the faults related to drive rod misalignment (HW3 and HW5 in the 

table) consisted approximately 14% of the total faults [12]. Additionally, the drive rod 

misalignment can potentially cause severe consequences such as train derailment (the 

previously mentioned accident at Potters Bar was partly caused by overdriving of the 

drive rod, stressing and eventually fracturing the lock stretcher bar, which led to the 

derailment of the train [1]), whereas other faults generally do not cause such severe 

consequences.  

Table 2-2  Defects recorded in Network Rail’s failure management system [12] 

Defective 
Subassembly 

Defect 
code 

Defect text Count of 
fail no 

Percentage Potential Risk 

 HW1 T.O.K RIGHT ON 
ARRIVAL 

666 17.02% - 

ROD DETECTOR   HW2 OUT OF 
ADJUSTMENT 

356 9.10%  Disrupt the operation 
(Failure to turnover) 

ROD DRIVE  HW3  OUT OF 
ADJUSTMENT  

348  8.89%  Train derailment 
(Fracture the rod) 

 Disrupt the operation 
(Failure to turnover) 

FACING POINT 
LOCK  

HW4  OUT OF 
ADJUSTMENT  

245  6.26%  Disrupt the operation 
(Failure to turnover) 

ROD DRIVE  
 

HW5  
 

OUT OF 
ADJUSTMENT 
/GAUGE  

196  5.01%  Disrupt the operation 
(Failure to turnover) 
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 In this thesis, three fault conditions were therefore considered: (1) fault free, (2) 

overdriving of the drive rod, and (3) underdriving of the drive rod.  

 Fault free is the condition where the point machine is functioning within its normal 

operating conditions. 

 Overdriving of the drive rod was simulated by adjusting the nut of the drive rod 

(turning the nut clockwise and therefore increasing the force between the stock rail and 

the switch blade) which is indicated by the red circle in Figure 2-5 and Figure 2-6 for 

Japanese and UK point machines respectively. Overdriving is a condition in which the 

force between the switch blade and the stock rail is over the range of the ideal force (in 

the fault free condition). As written earlier, this condition led to the Potters Bar accident 

which was caused by the fracture of the lock stretcher bar [1]. The force can ideally be 

monitored by inserting the load pin inside the drive assembly, but usually the force will 

be checked using spanners or other tools, actually opening the switch blade when the 

switch blade was attached to the stock rail. All the conditions apart from the drive force 

condition were in an adequate condition when the fault was simulated. 

 Underdriving of the drive rod was simulated by adjusting the nut of the drive rod 

(turning the nut anti-clockwise and weakening the force between the stock rail and the 

switch blade) which is indicated by the red circle in Figure 2-5and Figure 2-6 for 

Japanese and UK point machines respectively. Underdriving is a condition in which the 

force between the switch blade and the stock rail is under the range of the ideal force (in 

fault free condition). The underdriving condition can affect the operation of the train 

because the point machines may fail to move fully if the underdrving condition is 
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sufficiently severe. All the conditions apart from the drive force condition were in an 

adequate condition when the fault was simulated. 

 

Figure 2-5 A schematic of a Japanese point machine 

Stock rail

Switch blade

Drive rod

Point 
machine
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Figure 2-6 A schematic of a British point machine  

Point 
machine

Switch blade

Stock rail

Drive rod
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CHAPTER 3 LITERATURE REVIEW 

 

 

 

 

 

This chapter provides a review of published literature on fault detection and 

diagnosis for point machines. Firstly, a general categorisation of the methodology for 

fault detection and diagnosis is given, followed by a review and categorisation of 

published literature on fault detection and diagnosis for point machines. Finally, 

conclusions are drawn from the literature review. 

3.1 A general categorisation for fault detection and diagnosis methods 
 

 

There has been much research into fault detection and diagnosis, particularly in the 

field of chemical engineering. Venkatasubramanian et al categorised various research 

methods into three classes [13-15]: (1) quantitative model-based methods; 

(2) qualitative model-based methods; and (3) process history based methods. Table 3-1 

shows the categorisation of the various methods for fault detection and diagnosis. 
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Table 3-1 Categorisation of methods on fault detection and diagnosis [13-15] 

Category Methodology 

Quantitative model 

based 

Diagnostic observer 

Kalman filter 

Qualitative model based 
Expert systems 

Fault trees 

Process history based 

Qualitative trend analysis 

Neural network 

Support vector machine 

3.1.1 Quantitative model based method 
 

 

Figure 3-1  Quantitative model based method 

 

The general idea of quantitative model-based approaches is to create a mathematical 

or physical model that expresses the behaviour of the monitored object based on a 

fundamental understanding of the process. These approaches typically entail both input 

and output parameters. A model generates estimated outputs from input parameters and 

these estimated outputs are then compared to the real outputs. Fault detection is 

generally carried out in the following steps: 
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(1) Construction of a mathematical model which estimates outputs from the gained 

inputs;   

(2) Calculate residuals by comparing the monitored outputs and estimated outputs 

from (1); 

(3) Make a decision from calculated residuals (a simple threshold function is used in 

residual evaluation in most work [13-15]).  

Figure 3-1 depicts the block diagram of the quantitative model based method. 

Typical methods that are used in the quantitative model based approach include: 

 Diagnostic observer, which is ‘expressed in state-space equations and generates 

a set of residuals that detect and uniquely identify different faults’ [13]. Frank 

proposed a solution to the fundamental problem of robust fault detection, 

providing the maximum achievable robustness by decoupling the effects of 

faults from each other and from the effects of modelling errors [16].  

 The Kalman filter, which is ‘equivalent to an optimal predictor for a linear 

stochastic system in the input-output model’ [14]. Chang and Hwang presented a 

technique using a suboptimal extended Kalman Filter to make the computations 

required for fault detection simpler [17]. 
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3.1.2 Qualitative model based method 
 

 

Qualitative model-based approaches are based on a fundamental understanding 

of the process that is expressed in terms of qualitative functions [14]. Additionally, 

diagnostic activity generally comprises of two important components: a priori domain 

knowledge and search strategy [14]. A priori domain knowledge utilises the empirical 

knowledge of professional engineers or experts; this knowledge is then expressed by 

rules. A search strategy will be carried out to search rules for a monitored system. If the 

rules indicating faulty conditions are found in the monitored system, the system will 

generate alarms. Typical methods that are used in the qualitative model based approach 

include: 

 Expert system, which is ‘generally a very specialised system which solves 

problems in a narrow domain of expertise’ [15]. Wu et al proposed an expert 

fault diagnosis strategy for industrial chemical processing [18]. An example of 

an expert system for a chemical process is depicted in Figure 3-2. By utilising 

the knowledge of experts, the expert system can detect and diagnose faults. 

 Fault tree, which is ‘a logic tree that propagates primary events or faults to the 

top level event or hazard’ [14]. Fault trees determine a fault condition by using 

layers of nodes which perform different logic operations such as “AND” or 

“OR”. Ulerich and Powers present a method for fault diagnosis in a chemical 

process using a Digraph and Fault tree [19].  
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Figure 3-2  An expert system for chemical process [18] 

3.1.3 Process history based method 

 

Figure 3-3  Process history-based approach 

Inference engine

• Knowledge base
• Data base

User interface

Process measurement and control interface

Chemical process

Engineers and operatersEngineers and operators



34 
 

 Process history-based approaches require ‘the availability of a large amount of 

historical process data’ [15]. Process history-based approaches collect data from 

experiments and then this data is transformed and presented as a priori knowledge to 

the system. This process is known as feature extraction. Feature extraction can be either 

quantitative or qualitative [15]. Figure 3-3 depicts a block diagram of the process 

history based approach. Typical methods that are used in the process history based 

approach include: 

 Qualitative trend analysis, which uses the abstraction of trend information. 

Trend modelling can be used to explain the various important events occurring 

in the process, carrying out malfunction diagnosis and prediction of future states 

[15]. QTA is often combined with other classification methods. Rengaswamy 

and Venkatasubramanian proposed a method that utilises neural networks for 

classification of a waveform into an alphabetic expression [20]. Wong combined 

QTA with a Hidden Markov model for classification of fault free and faulty 

waveforms of process data [21]. 

 Neural network, which is a network of artificial neurons based on human brain. 

Wang compared recurrent neural networks (RNNs) with neuro-fuzzy (NF) 

systems, concluding that a properly trained NF system performs better than 

RNNs [22]. Wang also presented a neuro-fuzzy condition prognostic system for 

rotary machinery [22]. 

 Support vector machine (SVM) transfer the acquired data to a higher dimension 

through the use of a specific function (kernel function). An appropriate kernel 

function is selected in order to maximise the margin between the faulty data sets 



35 
 

when separated by a hyper-plane (border) in the higher dimension. Ge proposed 

a fault diagnosis method using the SVM for a sheet metal stamping operation 

[23]. 

 

3.2 Research in condition monitoring of point machines 
 

Much research related to point machines has already been carried out. This section 

provides a review and classification of research related to railway point machines. Table 

3-2 shows research related to point machines classified by research methods. It shows 

that much research is based on simple thresholding techniques: techniques setting a 

threshold to a monitored parameter to detect a fault or failure. Research using advanced 

techniques, such as neuro-fuzzy and qualitative trend analysis, have recently been 

presented. 

Different researchers have acquired and used different parameters for condition 

monitoring of point machines. In Figure 3-4, the point machine is represented by a 

black box model; using this model it can be seen that the parameters acquired for the 

condition monitoring of point machines can be categorised into four classes: inputs, 

external influences, internal measures and outputs. Internal measures are generally only 

measured in specific types of point machine where it is possible to add sensors within 

the main actuator, for example: the pneumatic point machine and the hydraulic point 

machine. Table 3-3 shows research related to points classified by the class of parameters 

and acquired parameters of the system. It is shown that parameters such as force, current, 

voltage and position are commonly used for point machine research. 
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Table 3-2 Research of point according to method 

  
Point mechanism 

Method 
classification 

Method DC 
Electric-
motor 

AC 
electric-
motor 

Pneumatic
-motor 

Hydraulic
-motor 

Unknown Synthetic 
data 

Quantitative 
model-based 
 

Thresholding 
technique 

[24] [25] 
[26] [27] 

[11] [28] [29]    

 Polynomial    
curve-fitting 

    [30]  

 Time domain 
analysis 

    [30]  

 Regression 
modelling 

[31]   [31]   

 Moving average 
filter 

[32]      

 Kalman filter [32, 33]  
[34, 35] 
[36] [31, 
37] 

  [31]   

 Unobserved 
component model 

[34-37]      

 H2 norm [38]      

Qualitative 
model-based 

Binary decision 
diagram 

    [39]  

Process history-
based 

Statistic parameters [40]      

 Wavelet transform [40]      

 Principal 
component analysis 

[40]      

 Transient analysis [41]      

 Spectral analysis [41]      

 Net energy analysis [42] [41]      

 Mixture 
discriminant 
analysis 

 [8] [43]     

 Expectation 
maximisation 

 [8] [43]     

 Qualitative trend 
analysis 

[4] [44] [45]    [46] [47] 

 Neuro fuzzy 
(ANFIS) 

  [48] [49]    

 State automata [48]   [48]   
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Figure 3-4 Model representation of a point machine 

Table 3-3 Research of point according to parameter 

 

 
 
 
Parameter  

point mechanism 

Parameter 
Classification 

DC Electric-
motor 

AC Electric-
motor 

Pneumatic-
motor 

Hydraulic-
motor 

Unknown Synthetic 
data 

Inputs Current [32] [33] [34, 
40] [41, 42] [31] 
[37] [4, 38, 48] 
[44] [25-27] 
 

[45]  [48] [30]  

 Voltage [32] [41, 42]  
[24, 38] [25-27] 

     

 Power [41, 42]  [8] [43] [28]     

External 
influences 

Temperature [25-27]      

Internal 
measures 
 

Pneumatic 
pressure 

  [29] [48] [49]    

 Air volume   [48] [49]    

 Hydraulic 
pressure 

   [48]   

 Oil level    [31, 48]   

Outputs Time [31, 35, 36]  [29]    

 Force [32, 34-36, 40] 
[31, 37] [48]  
[4, 25-27] [44] 
 

[45]  [48]   

 Position [42] [41]  
[4, 25-27] [44] 

[11] [45] [29] [48] [49]  [30]  

 Velocity [42] [41]  [48] [49]    
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3.2.1 Quantitative model-based approaches for railway point machines 
 

Numerous point condition monitoring research projects have been carried out to date 

using thresholding techniques. This research can be categorised as the simplest of the 

quantitative model-based approaches, assuming that all of the output signals should be 

smaller than the pre-determined thresholds in healthy conditions. All techniques 

(including process history methods) eventually use a threshold of some sort in the final 

decision making step, but thresholding techniques defined here simply means the 

techniques in which a fault detection of the system was carried out by defining a 

threshold of the monitored parameter and creating an alarm when the parameter exceeds 

a predetermined threshold. 

Shaw used thresholding techniques for DC electric point machines and pointed out the 

necessity of a universal approach to condition monitoring [24]. It was found that failure 

detection of the point machine can be achieved by monitoring the detection voltage. 

Zhou et al used an array of sensors to monitor all relevant parameters of the point 

machine. Thresholding techniques are used to create alarms in the system [25-27]. 

Various parameters are monitored such as force, electrical current, displacement, 

voltage and temperature. 

Igarashi and Shiomi proposed a magnetic sensor to detect lock warp on an electric point 

machine. This sensor can monitor a slight lock warp displacement according to the 

variation of temperature. This system also generates an alarm if the lock warp is larger 

than the given threshold [11]. Since a displacement sensor dedicated to detect lock warp 
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is implemented inside the point machine, this method can accurately detect and 

diagnose lock position faults. 

Pabst used a thresholding technique for the AC electric point machine by considering 

the power over time [28]. It was found that the power changed significantly when there 

was an obstruction inside the stock rail and the switch blade, and also when a poor lock 

adjustment occurred. 

Abed et al proposed a PC-based condition monitoring system based on a thresholding 

technique for a pneumatic point machine [29]. This system creates a position profile 

model by simply averaging ten consecutive operations of the point machine. An alarm 

is generated if the sum of absolute errors calculated by comparison exceeds a pre-set 

margin. Since a failure or fault did not actually happen during the monitoring period, 

the effectiveness of the system is unknown. 

There is also other research using quantitative model-based approaches which do not 

use thresholding techniques.  

Rouvray et al presented a polynomial curve-fitting technique and time domain 

analysis (ARMAX) modelling techniques using Matlab and Simulink to model signals 

of point machines [30]. It was found that, due to the non-linearity, the use of polynomial 

curve fitting did not achieve a sufficient level of accuracy to model the position signal. 

Marquez et al presented a method which uses three steps for detecting a fault signal, 

comparing the reference signal data  and actual data: (1) detection of irregularity in the 

curves, (2) checking the maximum position of the curve and (3) checking whether the 

curve is symmetrical with respect to the position of the maximum with a margin of a 



40 
 

given width [35, 36]. It was found that a good result in terms of fault detection was 

achieved employing a Kalman filter to the original signal with this approach. 

Marquez and Pedragal used an Unobserved Components model, set up in a State Space 

framework. The detection of faults is carried out based on the correlation estimate 

between a curve free from faults with the current curve data [34, 37]. The method is 

reported to detect faults to a high degree of accuracy. 

Pedragal et al also proposed a method using state space models for predicting the throw 

times of points, and created estimated shapes using harmonic regression based on 

calculated throw times. These estimated shapes are then compared with actual data and 

generate an alarm if the standard deviation of errors exceeds the pre-determined 

limit [31]. The method is reported to detect faults to a high degree of accuracy. 

Later, Marquez presented a method using a Kalman filter for filtering the current curve, 

and similarly, a moving average filter for noisy signals [32, 33]. It was found that by 

using these filters, faults could be detected accurately. It was showed that a moving 

average filter outperformed a Kalman filter in terms of fault detection accuracy [32]. 

Zattoni proposed a method to detect incipient failure using residuals calculated from H2 

norm. Experimental results show that this method can detect a silted bearing error [38]. 

Whether this method can be applied to other types of faults is yet to be examined. 
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3.2.2 Qualitative model-based approaches for railway point machines 
 

There has been very little research based on purely qualitative model-based approaches 

to date. This is because most of the approaches which use qualitative model-based 

approaches in part are categorised as process history-based approaches.  

Marquez proposed binary decision diagrams for remote condition monitoring and a case 

study for point mechanisms in railway systems has been analysed using this 

method [39]. 
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3.2.3 Process history-based approaches for railway point machines 
 

Most of the recent research is focused on the process history-based approach. 

Approaches range from a method using statistic parameters to a method using a neuro-

fuzzy network. 

McHutchon et al used statistic and geometric parameters, a wavelet transform and 

Principal Component Analysis (PCA) to classify nine different faults and concluded that 

applying statistical parameters to the decomposed wavelets gives a good degree of 

clustering [40]. 

 Oyebande and Renfrew made analysis of six statistical parameters to discriminate 

between the performance of a DC electric-point machine under faulty conditions: 

(1) transient analysis of current waveforms, (2) spectral analysis of current waveforms, 

(3) transient analysis of position waveforms, (4) analysis of throw times, (5) analysis of 

end-of-stroke positions and (6) net energy analysis [41, 42]. 

Chamroukhi et al presented a method, based on Mixture Discriminant Analysis (MDA) 

and Expectation-Maximisation (EM) algorithms, which utilise seven statistic parameters 

acquired from the AC electric point machine, and classifies the signals into three 

classes: class without defect, class with minor defect and class with critical defect [43]. 

They also proposed a method for modelling a signal by using a regression approach, and 

classified signals similarly using MDA and EM algorithms utilising estimated 

parameters acquired from the regression approach as the feature vector [8]. 

 Roberts et al proposed a method using a neuro-fuzzy network. They created 

mathematical models that estimate the outputs from acquired inputs, and calculated 
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residuals by comparing actual data and estimated outputs. These residuals were then 

used as inputs to a neuro-fuzzy network for classifying the process faults [48, 49]. In the 

research, the seven residual outputs are used as inputs for the ANFIS. After an adequate 

amount of training using training data sets (each data set comprising the seven residual 

inputs and associated fault code), the ANFIS was able to diagnose faults. An example of 

a two input, single output ANFIS is depicted in Figure 3-5. 

 

Figure 3-5  An example of ANFIS 

 

Silmon and Roberts presented a new method to detect incipient failure based on 

Qualitative Trend Analysis (QTA). In this method, the shapes of waveforms that are 

common to all fault conditions, called “common episodes”, are found based on QTA, 

and a signal is classified using a fuzzy rule based on the difference of the value of 

“common episodes” between fault free and fault signals [46, 47]. The QTA can express 
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the rough shape of the waveforms using alphabetic characters. An illustration of QTA 

used in the method is depicted in Figure 3-6. 

 

Figure 3-6  An illustration of QTA [4] 
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3.3 Conclusion from literature and future work 
 

A thorough literature review has been carried out on condition monitoring research for 

point machines. The research methods have been categorised into three categories: 

Quantitative model-based methods, Qualitative model-based methods and Process 

history based methods. It has been found that most of the research was focused on either 

Quantitative model-based methods or Process history based methods. The ‘categories’ 

of fault detection schemes are not mutually exclusive. A combination of methodologies 

is likely to be applied in practice.  

A significant amount of research on the Quantitative model-based method has been 

carried out using the thresholding technique. The problem with the thresholding 

technique is that often it cannot detect subtle changes of waveforms, therefore a system 

which utilises this technique can only detect failure, or faults that are very close to 

failure [4]. Other research in this category utilised state space modelling, such as the 

Kalman filter. These techniques appear to detect faults to a high degree of accuracy but 

do not diagnose faults, limiting their usefulness. If the system can diagnose faults, the 

maintenance staff can fix faults quickly because they know what is actually wrong with 

the point machine in advance. 

A more sophisticated method that can detect and diagnose the subtle changes of 

waveforms is therefore required. 

As for the Process history method, recent research has been carried out using techniques 

that are also used in the pattern recognition field, such as Mixture discriminant analysis, 

Neuro-fuzzy, Qualitative trend analysis and Fuzzy logic. By using these methods, it 
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may be possible to detect and diagnose faults. These methods would potentially meet 

the requirements discussed in Chapter 2 of this thesis since methods can carry out not 

only fault detection but also fault diagnosis. Among the previous research utilising 

process history, only the research carried out by Roberts and Silmon enabled both fault 

detection and diagnosis which was one of the key requirements discussed in Chapter 2. 

Consequently, the methods presented by Roberts and Silmon will be further examined 

in the rest of this section. 

Roberts et al used neuro-fuzzy technology, an extension of neural-networks, for 

classifying process faults of the point machine [48, 49]. An Adaptive Neuro-Fuzzy 

Inference System (ANFIS), which is proposed by Jang [50], was used in the method.  

The research acquired good results, and fuzzy rules created by the system can be 

transferred between the same type of point machine. The disadvantage of the research, 

however, is that the method entails both input and output parameters to create residuals. 

In many railway fields, such parameters are not readily available because the 

implementation of many sensors would be necessary to acquire the parameters, which 

would cost a lot of money and labour. The introduction of many sensors also potentially 

introduces additional failure modes; a breakage of a sensor can adversely affect the 

operation of point machine. Furthermore, a large amount of training data is needed to 

train the model since the method requires a significant number of parameters to be 

optimised. As a consequence, a research method which only uses parameters commonly 

available in point machines and also only requires a small amount of data for training 

will be necessary in this thesis. 
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Silmon presents research that uses parameters such as time, current, position and 

force [4, 45-47] for electric points. Interestingly, his research method can be used for 

any parameters acquired because the method is generic. This research utilises 

‘Qualitative Trend Analysis (QTA)’ for feature extraction, and ‘Fuzzy logic’ for 

classification. In addition, since the research method is generic, it can be applied to 

different equipment such as train doors and level crossings.  

However, this research method has two disadvantages. The first is that it utilises a 

number of filters so that the original waveform changes dramatically [4]. Without this 

filtering, the output trend from the QTA can fluctuate and be difficult to interpret 

afterwards. These filters may remove significant features from the monitored waveform. 

The second disadvantage is that through the use of QTA, which classifies a partition of 

the original waveforms into only nine characters by the first and second differentials, 

the original information of the waveforms is reduced significantly in a discrete form, as 

will be demonstrated in the following chapter. The classification result can be further 

improved if an advanced pattern recognition method is implemented instead of using 

simple fuzzy logic. A feature extraction method which expresses the original data more 

precisely and a pattern recognition method that can classify the data in high accuracy 

will therefore be required in this thesis. 

To summarise, the method that meets the following statements will be needed for this 

thesis. 

 

(1) A feature extraction method which represents the original shape information of the 
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waveforms in a reduced number of samples.  

(2) A method that implements a state-of-the-art pattern recognition method to diagnose 

fault conditions. 

 

Condition monitoring systems for railways are still at an early stage of development; 

there is not yet a fixed way to accomplish these requirements. There is a need for the 

new area of work to create effective condition monitoring systems for point machines. 

By using an effective process history method, there is potential to develop practical 

solutions for condition monitoring. 

The following chapters consider railway point machine case studies. By analysing 

acquired data the methodology which meets these requirements will be proposed. 
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CHAPTER 4 DEVELOPMENT OF AN 

ALGORITHM FOR FAULT DETECTION 

 AND DIAGNOSIS 

 

 

 

4.1 Introduction 

In this chapter, an algorithm for fault detection and diagnosis is developed using the 

data collected from an NTS-type point machine. Drive force, electrical current and 

electrical voltage data were acquired using a data acquisition box whilst simulating 

three fault conditions: ‘Fault free’, ‘(Left-hand) Overdriving’ and ‘(Left-hand) 

Underdriving’ (as discussed in Chapter 2). 

 

4.2 Parameter selection 
 

Figure 4-1 shows the drive force, electrical current and electrical voltage data (three 

data sets per fault condition) where each plot shows one throw of the point machine 

(‘Right to Left’ throw). Electrical current and electric voltage data were converted to 

root mean square (r.m.s.) format after capture, as this is a more appropriate for analysis 

in a fault diagnosis system; using raw AC data, it is generally difficult to interpret due to 

data fluctuation. The sum of the square of the current (and voltage) over one time period 
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(20ms) was calculated, and it was divided by one time period (window size). Then, the 

square root was calculated. 

 

Figure 4-1  Waveforms acquired during point machine operation (Right to Left): 
(a) Drive Force, (b) Electrical Current, and (c) Electrical Voltage 

 

As can be seen from Figure 4-1, the force plot clearly shows a distinction between 

different fault conditions, whereas the electrical current and electrical voltage data plots 

do not appear to show any visible distinction between different fault conditions. The 

drive force graph in the figure shows that the operation to turn over the point machine 

ends within 3 seconds, as there are no changes of the force after 3 seconds. The 

electrical circuit to move the motor was broken at 3 seconds, at this point the brake 

circuit is applied and the rotational energy of the motor is consumed by the brake circuit, 

producing voltage and current. After 3.6-3.7 seconds, the point machine returns to a 

static state. 
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A cluster analysis is one of the techniques used in data mining to categorise data into 

subsets (or clusters). Here it is used to cluster the acquired data associated with different 

fault conditions. The output of the cluster analysis can be used to evaluate the 

appropriateness of a parameter (electrical current, electrical voltage and electrical 

power) for condition monitoring. Appropriate parameters are those that have a clear 

distinction (i.e. large distance) between different fault conditions and are similar (small 

distance) for the same fault condition. If the parameter is appropriate for condition 

monitoring, the data (including various fault conditions) should divide in to clusters 

where each cluster contains the data with the same fault conditions after cluster analysis.  

A cluster analysis using the k-means method [51] was carried out with the force, 

electrical current and electrical voltage data to investigate which parameter would be the 

best to use for a condition monitoring system. The k-means method is explained in 

detail by Han [52].  

(1) The k-means method randomly selects k objects, and these k objects represent 

cluster centres. 

(2) Each remaining object is assigned to the cluster which is the most similar based on 

the distance between the cluster centre and the object (after calculation of distance). 

(3) After assigning all the objects to clusters, the k-means algorithm computes the new 

cluster centre (called as centroid) using the assigned objects. 

(4) Each object is assigned again based on the distance between the new cluster centre 

(centroid) and the object. 
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(5) (3) and (4) continue iteratively until the new cluster centres (centroid) calculated in 

the current iteration are the same as those calculated in the previous iteration [52].  

A subset of the total data set (10 data per each fault condition) has been used to carry 

out the cluster analysis. This subset is sufficient to characterise the data, while retaining 

unseen data in the test data set to be used later in the experiment. The centroid of the 

cluster was calculated by mean and the squared-Euclidean distance was used to choose 

the points for clusters; 10 data per fault condition were used. Figure 4-2 shows the result 

of the k-means clustering for force, electrical current and electrical voltage data. 

 

 

Figure 4-2  Cluster analysis for (a) Drive Force, (b) Electrical current, and (c) 
Electrical Voltage 

 

It can be seen that the force data were divided clearly by fault conditions, whereas 

electrical voltage and electrical current were not. Although the force data would give a 

good result in terms of fault diagnosis, in a practical condition monitoring system it 

would be more difficult to acquire this data, as it requires the additional cost of the load 
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pin and the necessity of the pin to be fitted into the drive assembly. The introduction of 

the load pin also potentially introduces additional failure modes. The use of a load pin 

was therefore discounted for practical application as the parameters of the condition 

monitoring system should be acquired using sensors that will not directly affect the 

operation, as per requirement ‘5’. 

Figure 4-3 shows an electrical active power waveform, calculated using the electrical 

current and voltage data. It can be seen that the middle part of the electrical active 

power shows a distinction between different fault conditions, whereas the beginning and 

ending part of the waveform does not show a distinction between different fault 

conditions.  

 

Figure 4-3  Electrical active power data for an AC point machine (Right to Left 
operation) 
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Figure 4-4 shows an electrical active power waveform removing the beginning and 

ending of the waveforms. Electrical reactive power and electrical apparent power were 

also calclulated but neither showed clearer distinction between different fault conditions 

compared to electrical active power. 

 

Figure 4-4  Electrical active power data for an AC point machine (Right to Left 
operation removing the beginning and ending) 

 

Figure 4-5 shows the result of cluster analysis carried out on the electrical active power 

data. 
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Figure 4-5  Cluster analysis for electrical active power data 

 

It can be seen that the clusters are clearly divided by fault conditions, indicating that 

electrical active power can be used as a parameter for fault detection and diagnosis. 

To investigate how well the cluster has been divided for force and electrical active 

power data after k-means clustering, the silhouette width [53] was calculated. Silhouette 

width is one of the methods (called intrinsic methods) to assess the clustering quality. 

By using silhouette width, it is possible to evaluate a clustering by examining how well 

the clusters are separated and how compact the clusters are [52]. Equation (4-1) shows 

the formula used to calculate the silhouette width, swi. 

s𝑤𝑖 =
(𝑏𝑖 − 𝑎𝑖)

max⁡(𝑎𝑖, 𝑏𝑖)
 (4-1) 
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where 𝑎𝑖 is the value which reflects compactness of the cluster to which i belongs and  

𝑏𝑖 is the value which reflects the degree to which i is separated from other clusters [52].  

Figure 4-6 shows the silhouette width for force and electrical active power. 

 

 Figure 4-6  Silhouette width for (a) Drive force and (b) Electrical active power 

From Figure 4-6 it can be seen that the force data were divided more clearly than the 

electrical active power data. The mean silhouette width gives an indication of how well 

the clusters divided. The mean silhouette width for the force data was found to be 0.946, 

whereas for the electrical active power it was 0.833. From the calculation, it can be seen 

that the force data has more useful information than the electrical active power data, 

however, as previously discussed, electrical active power is more practical to acquire.  

In summary, both force data and electrical active power have potential to be used as 

parameters for fault detection and diagnosis. Cluster analysis has been carried out to 

verify this hypothesis. Although the force data contains more useful information than 



57 
 

the electrical active power data, using electrical power is the only feasible option 

because acquiring the force data is impractical. 

4.3 Proposed method 

4.3.1 Feature extraction 
The active power data is not easy to handle by a classifier without feature extraction, as 

the data size is too large. A method which extracts the features of the original waveform 

is therefore required. Previous researchers have used Fourier analysis [54] and QTA 

[44] to carry out this operation. These feature extraction methods will be demonstrated 

and validated. 

 

4.3.1.1 Fourier analysis 
Previous work was carried out using the spectral features, derived from a discrete 

Fourier transform [54]. It was found that this approach is effective for certain types of 

train door faults, but it is not known whether this approach can be effective for incipient 

faults of point machines.  A discrete Fourier transform of electrical active power (three 

fault conditions) was carried out. It has been founded that the main features were lost 

from the original waveforms after the discrete Fourier transform. A more effective 

feature extraction method that retains the original feature is therefore required for this 

thesis. 

4.3.1.2 Qualitative trend analysis (QTA) 
Qualitative trend analysis was used for incipient faults of point machines by Silmon 

[44]; the same feature can potentially be used in this thesis. Since the parameters used in 

the previous work were different from those in this thesis, it is not known whether this 

feature extraction method can still be applied. Figure 4-7 shows graphically how values 
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are chosen and stored from the k’th partition. Then, qualitative classification is carried 

out using the acquired values ( ,  ,  ̇,  ̇) [44]. Table 4-1 shows the rules determining 

the qualitative state of the partition. 

 

Figure 4-7  Assignment of values in the partition k [44] 

Table 4-1  Table of criteria for deducing the qualitative state of a partition [44] 

Qualitative state [y − x] [ ̇ −  ̇] 

 
sign( ̇ ×  ̇) 

1 [0] (<e1) [0] (<e2) any 

2 [+] [+] [+] 

3 [+] [0] (<e2) [+] 

4 [+] [−] [+] 

5 [−] [+] [+] 

6 [−] [0] (<e2) [+] 

7 [−] [−] [+] 

8 Any [−] [−] 

9 Any [+] [−] 
 

Figure 4-8 shows the result of QTA for two data sets (each data set contains ‘Fault free’, 

‘Overdriving’ and ‘Underdriving’ data) after filtering the electrical active power using a 

N (samples) 
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moving average filter (without filtering, the result will fluctuate and be difficult to 

interpret). Since the original waveform is divided into only nine discrete states, it can be 

seen that the original information of the waveforms is significantly lost. It can be seen 

that the waveforms are not consistent for the same fault condition, making it difficult to 

use as a feature extraction method. The result may change depending on the filtering 

method and the parameters such as N (number of samples per partition), e1 (threshold 

for first differential) and e2 (threshold for second differential). There is a need to adjust 

these parameters depending on monitoring equipment and parameters. A feature 

extraction method that makes features consistent in the same fault condition and does 

not require any adjustment of parameters is required for this thesis. 

 

Figure 4-8  Generation of qualitative strings from electrical active power 
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4.3.1.3 Discrete Wavelet Transform 
One method which does retain the original information is the Discrete Wavelet 

Transform (DWT) [55]. By using DWT, the original waveform is transformed to 

multiple levels of resolution, sustaining local (time) information in each level of 

resolution. The DWT decomposes a discrete signal into two sub-signals of 

(approximately) half its length. One sub-signal is a running average or trend (referred to 

as scaling coefficients); the other sub-signal is a running difference or fluctuation 

(referred to as detail coefficients) [56]. There are various types of wavelets and the 

calculation (for trend and fluctuation) will change depending on the type of wavelet. 

The ‘Haar’ wavelet is the simplest type of wavelet and widely used for many 

applications. The theory of the discrete wavelet transform using the ‘Haar’ wavelet is 

explained in detail by Walker [56]. If a discrete signal is expressed in the form: 

 = (  ,   ,  ,   ) 

Scaling coefficients can be calculated as: 

𝑎 =
         

√ 
 (4-2) 

for m = 1,2,3,…,N/2. 

Detail coefficients can be calculated as 

  =
     −    

√ 
 

 

(4-3) 

for m = 1,2,3,…,N/2. 
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The scaling coefficients can be further decomposed recursively. These decomposed 

scaling coefficients will represent the trend of original waveforms in a much smaller 

number of samples using an adequate level of scaling coefficients. 

Figure 4-9 shows an example of scaling coefficients using ‘Haar’ wavelets at level 9. 

After DWT waveforms have been normalised by the maximum value of the ‘Fault free’ 

waveform; only the shape information is important, not the actual value of the original 

waveform. It can be seen that Figure 4-9 expresses the approximate shape of the 

original waveform (Figure 4-4) while the original dimension, 25000, was decreased to 

49 after feature extraction. 

 

Figure 4-9  Scaling coefficients using ‘Haar’ wavelets at level 9 

Table 4-2 shows the result of k-means clustering for scaling coefficients using different 

wavelets at different levels of decomposition. ○ means that the data divided by cluster 

correctly whereas × means that the data did not divided by cluster correctly. It can be 
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seen that some wavelets are able to make the right clustering even at decomposition 

level 10. 

 

Table 4-2  Result of cluster analysis using different wavelets at different levels of 
decomposition 

 

 

 

 

 

 

 

 

 

 

 

Table 4-3 shows the result of mean silhouette width using different wavelets at different 

levels of decomposition. From Table 4-3, it can be seen that ‘Haar’ wavelets had the 

best performance. Consequently, scaling coefficients at level 9 using ‘Haar’ wavelets 

are chosen as the feature. The mean silhouette width after feature extraction was 0.844, 

while the mean silhouette width before the feature extraction was 0.833. A slight 

improvement of the silhouette width may be caused by the noise reduction of the 

original waveform. Finally, the features extracted from ‘Right to left’ and ‘Left to right’ 

operations have been concatenated (the features of the “Right to Left” and “Left to 

 

Levels of decomposition by DWT 

Wavelets Level 8 Level 9 Level 
10 

Level 
11 

Haar ○ ○ ○ × 
Daubechies 2 ○ ○ ○ × 
Daubechies 3 ○ ○ ○ × 
Daubechies 4 ○ ○ ○ × 
Daubechies 5 ○ ○ ○ × 
Daubechies 6 ○ ○ ○ × 
Symlets 4 ○ ○ ○ × 
Symlets 5 ○ ○ × × 
Symlets 6 ○ ○ × × 
Coiflets 1 ○ ○ × × 
Coiflets 2 ○ ○ × × 
Coiflets 3 ○ ○ × × 
Coiflets 4 ○ ○ × × 
Coiflets 5 ○ ○ × × 
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Right” were calculated individually and then simply concatenated to make a longer 

feature), as shown in Figure 4-10. A concatenation of “Right to Left” and “Left to Right” 

features may have drawbacks; this approach may cause discontinuity to the features at 

the concatenation point; some point machines may not operate frequently and there 

might be a time lag between the data collection of the “Right to Left” waveform and the 

“Left to Right” waveform. It is, however, reasonable to use all the information available 

to carrying out fault detection and diagnosis. 

Table 4-3  Mean silhouette width using different wavelets 

 

 

 

 

 

 

 

Different levels of decomposition by DWT 

Wavelets Level 8 Level 9 Level 10 
Haar 0.840 0.844 0.838 
Daubechies 2 0.840 0.843 0.823 
Daubechies 3 0.839 0.839 0.757 
Daubechies 4 0.836 0.837 0.780 
Daubechies 5 0.835 0.837 0.824 
Daubechies 6 0.835 0.837 0.804 
Symlets 4 0.836 0.834 0.753 
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Figure 4-10  Concatenation of ‘Right to left’ and ‘Left to right’ operations 

 

4.3.2 Fault detection and diagnosis 
Nowadays, one of the most widely supported classifiers for pattern recognition is the 

Support Vector Machine (SVM). The basic principle of the SVM is to make a 

maximum margin possible between different classes after transferring to a higher 

dimension using the kernel function. C-SVM is an extension of SVM, allowing an 

overlap of data by introducing a penalty, making the boundary of the classes more 

general [57]. 

The theory of SVM is explained in detail by Bishop [58]. In the support vector machine, 

a decision boundary (hyper-plane:  ( ) = 𝑤  ( )  𝑏) is selected to be the one for 

which the margin (which is defined to be the smallest distance between the decision 

boundary and any of the samples) is maximised [58], as illustrated in Figure 4-11.  
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Figure 4-11  The decision boundary for support vector machine [58] 

 

N input vectors   , ,    with target values   , ,    where    {  ,− }, are used as 

the training data set [58]. New data points x are classified based on the sign of y(x) that 

is given in the form 

y( ) = 𝑤  ( )  𝑏 (4-4) 

where w denotes the normal vector to the hyper-plane, b denotes the bias parameter and 

 ( ) denotes a fixed feature-space transformation. 

The distance between  ( ) =   (the decision boundary) and x𝑖 can be given as follows 

| ( 𝑖)|

‖𝑤‖
 

(4-5) 

This equation can be transformed as follows using   ⁡(target values) 
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   (  )

‖𝑤‖
=
  (𝑤

  (  )  𝑏)

‖𝑤‖
 

(4-6) 

 

The equation that makes the margin between two classes maximum can be written as 

follows 

argmax
𝑤,𝑏

{
 

‖𝑤‖
min
 
[  (𝑤

  (  )  𝑏)]} 
(4-7) 

 

Noting that, even if we make the rescaling (w to kw) and (b to kb), the distance from any 

point    to the decision boundary remains the same, this freedom can be used to set 

  (𝑤
  (  )  𝑏) =   (4-8) 

 

for the point that is nearest to the decision boundary. Then, all data points shall satisfy 

the constraints 

  (𝑤
  (  )  𝑏) ≥   (4-9) 

 

The optimisation problem then simply requires to maximise ‖𝑤‖  ,which is equivalent 

to optimising the form 

argmin
𝑤,𝑏

 

 
‖𝑤‖  

(4-10) 

Subject to   (𝑤  (  )  𝑏) ≥    
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To solve this constrained optimisation problem, Lagrange multipliers 𝑎 ≥   can be 

introduced. Equation (4-10) can be written in the form 

L(w, b, a) =
 

 
‖𝑤‖ −∑𝑎 {  (𝑤

  (  )  𝑏) −  }

 

 = 

 (4-11) 

where a = (𝑎 ,  , 𝑎 )  

Optimising equation (4-11) requires minimising (4-11) with respect to w and b and 

maximising with respect to a (considering the minus sign in front of the Lagrange 

multiplier term). 

If the derivatives of equation (4-11) are set equal to zero with respect to w and b, the 

following two conditions can be obtained 

𝜕𝐿

𝜕𝑤
=  →  =∑𝑎    (  )

 

 = 

 (4-12) 

𝜕𝐿

𝜕𝑏
=  → ∑𝑎   =  

 

 = 

 (4-13) 

w and b can be eliminated from equation (4-11) using equation (4-12) and (4-13). Then, 

the problem to select the decision boundary which maximises two classes can be 

expressed in the dual representation where the following equation is maximised 

𝐿̃(𝑎) = ∑𝑎 

 

 = 

−
 

 
∑ ∑ 𝑎 𝑎     𝑘(  ,   )

 

 = 

 

 = 

 (4-14) 

with respect to a subject to the constraints 

 ≤ 𝑎  (4-15) 
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∑𝑎   =  

 

 = 

 (4-16) 

This problem is known as a quadratic programming problem (a common mathematical 

optimisation problem [58]). 

After solving this problem, w and b will be decided. Then the decision function can be 

expressed in the form 

sgn(𝑤  ( )  𝑏) (4-17) 

 

C-SVM is an extension of SVM, allowing an overlap of data by introducing a penalty 

[57]. The theory of SVM explained above is modified so that data points are allowed to 

be on the ‘wrong side’ of the decision boundary, but with a penalty (if the distance from 

the decision boundary gets larger, the penalty gets larger) [58]. By doing this, the 

boundary for two classes can be further generalised. The theory of C-SVM is explained 

in detail by Bishop [58]. 

For problems involving I>2 classes, classification can be carried out by (1) training I(I-

1)/2 different 2-class SVMs on all possible pairs of classes and (2) classifying test data 

according to which class has the highest number of ‘votes’ [58]. 

If the system can accurately classify three fault conditions (including fault free) using 

the classifier, it can be said that the system can carry out fault detection and diagnosis 

successfully.  
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4.4 Experiments and Results 

4.4.1 Experiment 1: fault detection and diagnosis for ‘Overdriving’ and 
‘Underdriving’ 

 

In this experiment, 92 data sets were used; each data set comprised of electrical active 

power data collected during‘Right to Left’ operation and‘Left to Right’ operation whilst 

simulating a single fault condition (from five fault conditions). These 92 data sets were 

made up as follows: 31 ‘Fault free’ data sets, 30 ‘Overdriving’ data sets and 31 

‘Underdriving’ data sets.  

A feature extraction was carried out using scaling coefficients (using ‘Haar’ wavelet at 

decomposition level nine) after a DWT and a classification was done by C-SVM using 

Linear kernel and RBF kernel. All of the calculations in the experiment were made 

using Libsvm software [59].  

5-fold cross validation was performed to evaluate the method. [Step 1] 92 data sets were 

divided into five subsets. [Step 2] C-SVM was trained from 4 subsets excluding one 

subset. [Step 3] The performance (the percentage: the number of correctly classified 

data sets against the total number of data sets) was evaluated with the excluded subset. 

[Step 4] The same procedure was repeated for each subset (five times). [Step 5] 

Average performance for all the subsets (cross validation accuracy) was calculated.  

Before the training using 4 subsets in Step 2, parameters of C-SVM have to be tuned 

properly using 4 subsets (since the performance changes depending on parameters). 

Parameters of C-SVM were tuned using a “grid-search” on parameters (again 

calculating 5-fold cross-validation accuracy). The following parameters were selected; 
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C = 0.0625 and gamma = 4 for the RBF kernel and C = 0.25 was selected for Linear 

kernel. 

As a result, 100% cross validation accuracy (standard deviation = 0) was accomplished 

for both the Linear kernel and RBF kernel. This result demonstrates that highly accurate 

fault detection and diagnosis can be achieved by applying the proposed method to 

electrical active power data. Furthermore, a high degree of classification accuracy 

achieved in the Linear kernel implies that the data split linearly in multi dimension. 

4.4.2 Experiment 2: fault detection and diagnosis for ‘Overdriving (minor 
severity)’, ‘Overdriving’, ‘Underdriving (minor severity)’ and 
‘Underdriving’ 

 

Ten data sets were added to those used in Experiment 1, making the total number of 

data sets 102. The ten added data sets were made up as follows: 5 data sets 

of‘Overdriving (minor severity)’, simulating an intermediate severity of faults 

between‘Fault free’ and‘Overdriving’; 5 data sets of ‘Underdriving (minor severity)’, 

simulating an intermediate severity of faults between ‘Fault free’ and ‘Underdriving’. 

Figure 4-12 shows the drive force data acquired in 5 fault conditions: ‘Fault free’, 

‘Overdriving (minor severity)’, ‘Overdriving’, ‘Underdriving (minor severity)’ and 

‘Underdriving’.  

A feature extraction and a classification were carried out in the same way as in 

Experiment 1.  

5-fold cross validation was performed to evaluate the method. [Step 1] 102 data sets 

were divided into five subsets (each subset containing a similar number of five fault 

conditions). [Step 2] C-SVM was trained from 4 subsets excluding one subset. [Step 3] 
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The performance was evaluated with the excluded subset. [Step 4] The same procedure 

was repeated for each subset (five times). [Step 5] Average performance for all the 

subsets (cross validation accuracy) was calculated.  

Before the training using 4 subsets in Step 2, parameters of C-SVM have to be tuned 

properly using 4 subsets (since the performance changes depending on parameters). 

Parameters of C-SVM were tuned using a “grid-search” on parameters (again 

calculating 5-fold cross-validation accuracy). The following parameters were selected; 

C = 1 and gamma = 32 were selected for RBF kernel and C = 32 was selected for Linear 

kernel. 

As a result, 100% cross validation accuracy (standard deviation = 0) was accomplished 

for both Linear kernel and RBF kernel. This result shows that the proposed method can 

accurately diagnose two levels of severity. 
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Figure 4-12  Introducing intermediate severity levels of fault between ‘Fault free’ 
and ‘Overdriving’ and ‘Fault free’ and ‘Underdriving’ 

 

4.5 Conclusions 
In this case study, adjustment faults were induced on a Japanese point machine. 

Electrical active power (which can be collected using electrical current and voltage 

sensors) was selected as a parameter for condition monitoring taking into account the 

practical requirements of the railway. A novel approach for fault detection and 

diagnosis using Wavelet Transforms and Support Vector Machines was presented. The 

new approach was shown to be accurate for classifying different fault conditions, 

including different levels of severity. This methodology will be further tested in 

different types of point machines in the next chapter. 
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CHAPTER 5 TRANSFERABILITY OF THE 

ALGORITHM TO OTHER TYPES OF 

POINT MACHINE AND 

TRANSFERABILITY OF THE SPECIFIC 

ALGORITHM PARAMETERS TO 

MULTIPLE POINT MACHINES 

 

 

 

5.1 Introduction 
 

In this chapter, the method developed in Chapter 4 will be further tested and developed. 

First, the method is tested on other types of point machine operated in Great Britain (the 

Surelock-type and the M63-type) to verify the transferability of the approach to other 

types of point machine. If the same method developed in Chapter 4 can be applied to 

other types of point machine, it will make the approach more general and stronger. 



74 
 

Second, transferability of the specific algorithm parameters from one instance of a point 

machine to the next is also tested using the data collected from multiple point machines 

(HW-type point machines). The approach will be slightly modified to fulfil this task. 

 

5.2 Transferability of the algorithm to other types of point machine 
(Surelock-type and M63-type point machine) 
 

5.2.1 Parameter selection and feature extraction (Surelock-type point machine) 
 

Figure 5-1 shows the drive force, electrical current, electrical voltage and electrical 

power data (three data sets per fault condition) acquired from the Surelock-type point 

machine where each plot shows one throw of the point machine (‘Left to Right’ throw 

on the top row, and ‘Right to Left’ throw on the bottom row). 
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Figure 5-1  Waveforms acquired during point machine operation: (a) Drive force 
during left to right operation, (b) Drive force during right to left operation, (c) 
Electrical current during left to right operation, (d) Electrical current during right 
to left operation, (e) Electrical voltage during left to right operation, (f) Electrical 
voltage during right to left operation, (g) Electrical power during left to right 
operation and (h) Electrical power during right to left operation 

 

As can be seen from Figure 5-1, only the force plot clearly shows a distinction between 

different fault conditions, whereas the electrical current, electrical voltage and electrical 

power data plots do not appear to show a clear visible distinction between different fault 

conditions. This result is similar to Japanese point machine data described in Chapter 4. 

The voltage experienced a sharp fluctuation due to the switched mode power supply. 

The similar sharp fluctuation of the current may be caused by the switched mode power 

supply and also picking up the noise from adjacent high voltage cables. Furthermore, 

the peak voltage varied between 150 and 200 Volts. In ideal conditions, the voltage 

remains constant even though the load varies as the internal resistance is close to 0 ohm. 
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In reality, however, there is a small amount of internal resistance in the power supply, 

affecting the voltage of the power supply. 

Again, although the force data would give a good result in terms of fault diagnosis, in a 

practical condition monitoring system, it would be difficult to acquire this data, as 

discussed in Chapter 4. Electrical current and voltage sensors can be implemented away 

from the track side. They are usually less expensive than the load pin and more practical 

to install, as they can be implemented inside a signal box or relay room where electrical 

current and voltage to the point machine are supplied. The sensors will not affect the 

operation of the point machine as they are not implemented directly on the machine, as 

discussed in Chapter 4. 

The electrical current, electrical voltage and electrical power parameters cannot be used 

directly for a condition monitoring system because the data size is too large to handle 

and the data acquired fluctuates (Figure 5-1) due to the switched-mode power supply. A 

feature extraction method is therefore needed for these parameters to be used in a 

condition monitoring system. 

The Discrete Wavelet Transform (DWT) is used to extract features from the original 

waveforms, as discussed in Chapter 4. 

Figure 5-2 shows scaling coefficients using the ‘Haar’ wavelet at decomposition level 

nine (three data sets per fault condition). After the DWT, waveforms have been 

normalised by the maximum value of the ‘Fault free’ waveform, as was the case in 

Chapter 4. 
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Figure 5-2  Trend features extracted from (a) Electrical Current, (b) Electrical 
Voltage and (c) Electrical Power 

From the figure, it can be seen that electrical current and electrical power data shows a 

distinction between different fault conditions, whereas the electrical voltage plot does 

not appear to show a clear visible distinction between different fault conditions. 

Furthermore, it can be seen from the figure that the underdriving condition is difficult to 

distinguish from fault free conditions for all of the parameters. 

A cluster analysis using the k-means method [51] was carried out to the electrical 

current, electrical voltage and electrical power data to investigate which parameter 

would be the best to use for a condition monitoring system, as in Chapter 4. The 

centroid of the cluster was calculated by finding the mean value and the squared-

Euclidean distance was used to select the points for clusters; 10 data per fault condition 

were used. Figure 5-3 shows the result of the k-means clustering for electrical current, 

electrical voltage and electrical power data. 
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Figure 5-3  Cluster analysis using five clusters for five fault conditions of 
(a) Electrical Current, (b) Electrical Voltage and (c) Electrical Power 

Unfortunately, clusters did not clearly separate by fault conditions in any of the three 

parameters. This result may be caused by the subtle difference between the ‘Fault Free’ 

condition and the ‘Underdriving’ condition. A further cluster analysis was therefore 

carried out using three fault conditions: ‘Fault Free’, ‘Left hand Overdriving’ and ‘Right 

hand Overdriving’. Figure 5-4 shows the result of cluster analysis for these three classes. 

 

Figure 5-4  Cluster analysis using three clusters for three fault conditions of (a) 
Electrical Current, (b) Electrical Voltage and (c) Electrical Power 

From the figure, it can be seen that the electrical current and electrical power data 

divided clearly by different fault conditions. Both electrical current and electrical power 

therefore have the potential to be used as the parameter for a condition monitoring 
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system. To investigate how well the cluster was divided for these two parameters after 

k-means clustering, the silhouette width [53] was calculated, as in Chapter 4 (Japanese 

point machine case). 

Figure 5-5 shows the silhouette width for electrical current and electrical power. 

 

Figure 5-5  Silhouette width for: (a) Electrical current and (b) Electrical power 

From Figure 5-5 it can be seen that electrical current and electrical power showed a 

similar result. Calculating the mean value of the silhouette width, electrical current 

showed a slightly better result than electrical power; 0.955 for electrical current and 

0.949 for electrical power. This result implies that the electrical current has more useful 

information in terms of condition monitoring than the electrical power. Consequently, 

the electrical current data has been selected as the parameter for the condition 

monitoring system. 

The calculations above were carried out using scaling coefficients acquired from the 

‘Haar’ wavelet at the decomposition level of nine, as it was previous used in the 

Japanese case. It is, however, important to verify that the use of the ‘Haar’ wavelet at a 

decomposition level of nine is a good choice. The same methodology (calculating the 

mean value of the silhouette width) was followed to perform the analysis of different 
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wavelets and decomposition levels, as was the case in Chapter 4. Electrical current data 

(with three fault conditions: ‘Fault free’, ‘Left hand Overdriving’ and ‘Right hand 

Overdriving’) were considered for this analysis.  The result of the calculation is shown 

in Table 5-1. 

Table 5-1  Mean silhouette width using different wavelets at different levels of 
decomposition 

 
Levels of decomposition by DWT 

wavelets Level 8 Level 9 Level 10 Level 11 Level 12 Level 13 
Haar 0.938 0.955 0.961 0.968 0.969 0.966 
Daubechies2 0.943 0.955 0.959 0.962 0.964 0.935 
Daubechies3 0.944 0.953 0.958 0.959 0.950 0.912 
Daubechies4 0.943 0.953 0.958 0.960 0.944 0.925 
Daubechies5 0.942 0.954 0.958 0.961 0.953 0.933 
Daubechies6 0.942 0.954 0.957 0.960 0.957 0.924 
Symlets4 0.944 0.952 0.957 0.958 0.941 0.900 
Symlets5 0.941 0.952 0.955 0.955 0.946 0.881 
Symlets6 0.943 0.952 0.955 0.954 0.936 0.867 
Coiflets1 0.945 0.953 0.959 0.959 0.950 0.908 
Coiflets2 0.943 0.952 0.955 0.954 0.938 0.863 
Coiflets3 0.943 0.952 0.956 0.956 0.943 0.881 
Coiflets4 0.943 0.953 0.958 0.961 0.954 0.911 
Coiflets5 0.943 0.953 0.959 0.962 0.955 0.916 
Average 0.943 0.953 0.958 0.959 0.950 0.909 
 

It can be seen from the table that the levels of decomposition at nine, ten, eleven and 

twelve showed relatively good results. At these levels of decomposition, the ‘Haar’ 

wavelet showed the highest value.  

Although the ‘Haar’ wavelet at decomposition level twelve showed the best result in the 

table, it is important to consider that this result was calculated from only three classes 

(‘Fault Free’, ‘Left hand overdriving’ and ‘Right hand overdriving’) since it was not 

possible to make the right clustering using five classes (‘Fault Free’, ‘Left hand 
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Overdriving’, ‘Right hand Overdriving’, ‘Left hand Underdriving’ and ‘Right hand 

Underdriving’). It is therefore reasonable to say that retaining information using a lower 

level of decomposition would be necessary for more complex classification: i.e. five 

class classification. Consequently, it can be considered that using the ‘Haar’ wavelet at 

a decomposition level nine is good choice. 

Finally, a cluster analysis using three clusters for five classes (‘Fault Free’, ‘Left hand 

Overdriving’, ‘Right hand Overdriving’, ‘Left hand Underdriving’ and ‘Right hand 

Underdriving’) of electrical current was carried out, as shown in Figure 5-6. 

 

Figure 5-6  A cluster analysis using three clusters for five classes of electrical 
current 

The figure shows that the ‘Fault Free (indices 1-10)’, ‘Left hand Underdriving (indices 

31-40)’ and ‘Right hand Underdriving (indices 41-50)’ were grouped in the same 

cluster, implying that these three classes have similar data. It was not possible to make 

the correct clustering using five clusters for five fault conditions, however, it may still 

be possible to make the right classification using a more sophisticated classifying 

algorithm.  
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To summarise, four potential parameters were examined: Drive force, Electrical current, 

Electrical voltage and Electrical power. For practical reasons, drive force was excluded. 

Trend information was then extracted using the DWT (as in Chapter 4) for electrical 

current, electrical voltage and electrical power. After a cluster analysis, it was 

discovered that electrical current is the best of the three parameters for condition 

monitoring.  

 

5.2.2 Fault detection and diagnosis (Surelock-type point machine) 
 

If the system can accurately classify five fault conditions (including fault free) using the 

classifier, it can be said that the system can carry out fault detection and diagnosis 

successfully. C-SVM is used as a classifier, as in Chapter 4. 

An experiment was carried out to verify the approach, as in Chapter 4. In this 

experiment, 142 data sets were used; each data set comprised of electrical current data 

collected during ‘Right to Left’ operation and ‘Left to Right’ operation whilst 

simulating single fault condition (from five fault conditions). These 142 data sets were 

made up as follows: 30 ‘Fault free’, 26 ‘Left hand Overdriving’, 26 ‘Right hand 

Overdriving’, 30 ‘Left hand Underdriving’ and 30 ‘Right hand Underdriving’ data sets. 

A feature extraction was carried out using scaling coefficients (using the ‘Haar’ wavelet 

at decomposition level nine) after DWT and a classification was done by C-SVM. A 

five-fold cross validation was performed to evaluate the method, as in Chapter 4. First, 

142 data sets were divided into five subsets. Second, C-SVM was trained from 4 subsets, 

excluding one subset. Third, the performance (the percentage: the number of correctly 

classified data sets against the total number of data sets) was evaluated with the 
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excluded subset. Fourth, the same procedure was repeated for each subset (five times). 

Finally, average performance for all the subsets (cross validation accuracy) was 

calculated. 

Table 5-2 shows the result of the classification using C-SVM. Two kernel functions 

were tested: ‘Linear kernel’ 𝑘 ( ,  ′) =    ′⁡and ‘RBF kernel’ 𝑘 ( ,  ′) =

 x ⁡(− ‖ −  ′‖). All the classifications in the experiment were made using the 

Libsvm software [59], as was the case in Chapter 4.  

 
Table 5-2  Classification accuracy for five fault conditions (Linear kernel and RBF 

kernel) 

 Fault Free LH Over RH Over LH 

Under 

RH 

Under 

(Accuracy) 

Subset 1 6/6 6/6 6/6 6/6 5/6 96.66% (29/30) 

Subset 2 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

Subset 3 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

Subset 4 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

Subset 5 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

CV accuracy 99.33% ±1.49 

 

As can be seen from Table 5-2, a high rate of accuracy was achieved using the C-SVM 

approach, similarly to the results obtained for the Japanese point machine. The result of 

the classification for Linear kernel and RBF kernel was the same (Table 5-2). 

Further work was carried out to consider the intermediate severity of faults (as in 

Chapter 4) between (1) ‘Fault free’ and ‘Left hand Overdriving’, (2) ‘Fault free’ and 

‘Right hand Overdriving’ and (3) ‘Fault free’ and ‘Right hand Underdriving’, as shown 
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in Figure 5-7. It was not possible to introduce the intermediate severity of faults 

between ‘Fault free’ and ‘Left hand Underdriving’ since a failure occurred to the point 

machine after underdriving the drive rod nut for only 2/6th of a turn; underdriving the 

drive rod nut for 1/6th of a turn was the maximum severity for ‘Left hand Underdriving’ 

and there was no intermediate severity for this fault condition. 

 

 

Figure 5-7  Drive force during Left to Right operation introducing intermediate 
severity of faults between (1) ‘Fault free’ and ‘Left hand Overdriving’, (2) ‘Fault 

free’ and ‘Right hand Overdriving’ and (3) ‘Fault free’ and ‘Right hand 
Underdriving’ 

 

The intermediate severity of faults and the original fault conditions were re-named 

according to Table 5-3. If the system is able to classify these eight fault conditions 

accurately, it can then be said that the system can diagnose the severity of faults, 

making it more practical for real use, as discussed in Chapter 4.  
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Table 5-3  Re-naming of fault conditions including intermediate severity of faults 

Fault condition (Original name) New name 

Fault free Fault free 

(Left hand Overdriving) Left hand Overdriving (major severity) 

(Right hand Overdriving) Right hand Overdriving (major severity) 

(Left hand Underdriving) Left hand Underdriving (major severity) 

(Right hand Underdriving) Right hand Underdriving (major severity) 

Intermediate condition between ‘Fault free’ 

and ‘Left hand Overdriving’ 

Left hand Overdriving (minor severity) 

Intermediate condition between ‘Fault free’ 

and ‘Right hand Overdriving’ 

Right hand Overdriving (minor severity) 

Intermediate condition between ‘Fault free’ 

and ‘Right hand Underdriving’ 

Right hand Underdriving (minor severity) 

 

 In this experiment, 227 data sets were used; each data set comprised of electrical 

current data collected during ‘Right to Left’ operation and ‘Left to Right’ operation. 

These 227 data sets were made up as follows: 30 ‘Fault free’, 26 ‘Left hand Overdriving 

(major)’, 25 ‘Left hand Overdriving (minor)’, 26 ‘Right hand Overdriving (major)’, 30 

‘Right hand Overdriving (minor)’, 30 ‘Left hand Underdriving (major)’, 30 ‘Right hand 

Underdriving (major)’ and 30 ‘Right hand Underdriving (minor)’. A feature extraction 

was carried out using scaling coefficients (using the ‘Haar’ wavelet at decomposition 

level nine) after DWT and a classification was done by C-SVM. Five-fold cross 

validation was performed to evaluate the method, as was the case in Chapter 4. 

Table 5-4 and Table 5-5 show the result of classification. As can be seen from Table 5-4 

and Table 5-5 , a high accuracy rate has been achieved using the C-SVM approach, 
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similarly to the results obtained for the Japanese point machine. The system can now 

diagnose the faults at two levels of severity: minor severity and major severity (for 

Surelock-type point machine). 

Table 5-4  Classification accuracy for eight fault conditions (Linear kernel) 

 

Table 5-5  Classification accuracy for eight fault conditions (RBF kernel) 

5.2.3 Parameter selection and feature extraction (M63-type point machine) 
 

Figure 5-8 shows the drive force, electrical current, electrical voltage and electrical 

power data (three data sets per fault condition) acquired from the M63-type point 

machine.  

 Fault 

Free 

LH Over RH Over LH 

Under 

RH 

Under 

LH Over 

(Minor) 

RH Over 

(Minor) 

RH 

Under 

(Minor) 

(Accuracy) 

Subset 1 6/6 6/6 6/6 6/6 5/6 5/5 6/6 6/6 97.87% (46/47) 

Subset 2 6/6 5/5 5/5 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

Subset 3 6/6 5/5 5/5 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

Subset 4 6/6 5/5 5/5 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

Subset 5 6/6 5/5 5/5 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

CV accuracy 99.57% ±0.95 

 Fault 

Free 

LH Over RH Over LH 

Under 

RH 

Under 

LH Over 

(Minor) 

RH Over 

(Minor) 

RH 

Under 

(Minor) 

(Accuracy) 

Subset 1 6/6 6/6 6/6 6/6 5/6 5/5 6/6 6/6 97.87% (46/47) 

Subset 2 6/6 5/5 5/5 6/6 6/6 5/5 6/6 6/6 100%    (45/45) 

Subset 3 6/6 5/5 5/5 6/6 5/6 5/5 6/6 6/6 98.68% (44/45) 

Subset 4 6/6 5/5 5/5 6/6 6/6 5/5 6/6 6/6 100%    (45/45) 

Subset 5 6/6 5/5 5/5 6/6 6/6 5/5 6/6 5/6 97.78% (44/45) 

CV accuracy 98.68% ±1.20 
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Figure 5-8  Waveforms acquired during point machine operation: (a) Drive force 
during left to right operation, (b) Drive force during right to left operation, (c) 
Electrical current during left to right operation, (d) Electrical current during right 
to left operation, (e) Electrical voltage during left to right operation, (f) Electrical 
voltage during right to left operation, (g) Electrical power during left to right 
operation and (h) Electrical power during right to left operation 

 

From the discussion and analysis carried out in the previous section (which implies that 

electrical current is the best parameter), the electrical current was selected as a 

parameter for the M63-type point machine. Although the current data shows a lot of 

noise, it is still possible to notice a distinction between different fault conditions (Figure 

5-8). 

The feature extraction method (using Discrete Wavelet Transform) was also applied to 

the electrical current data of the M63-type point machine, as was in Chapter 4 (Japanese 

point machine). 



88 
 

 

Figure 5-9  Trend features extracted from electrical current 

 

Scaling coefficients using the ‘Haar’ wavelet at decomposition level nine were used as a 

feature, following the discussion and analysis carried out in 5.2.1 (Surelock-type point 

machine). Figure 5-9 shows scaling coefficients using the ‘Haar’ wavelet at 

decomposition level nine (three data sets per fault condition). After the DWT, 

waveforms have been normalised by the maximum value of the ‘Fault free’ waveform, 

as was the case in Chapter 4. The distinction between different fault conditions can be 

seen from the figure. 
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5.2.4 Fault detection and diagnosis (M63-type point machine) 
 

 C-SVM was also used for making a fault detection and diagnosis from the extracted 

feature, as in Chapter 4. 

An experiment was carried out to verify the approach, as in Chapter 4. In this 

experiment, 140 data sets were used; each data set comprised of electrical current data 

collected during ‘Right to Left’ operation and ‘Left to Right’ operation whilst 

simulating single fault condition (from five fault conditions). These 140 data sets were 

made up as follows: 30 ‘Fault free’, 25 ‘Left hand Overdriving’, 25 ‘Right hand 

Overdriving’, 30 ‘Left hand Underdriving’ and 30 ‘Right hand Underdriving’ data sets. 

A feature extraction was carried out using scaling coefficients (using the ‘Haar’ wavelet 

at decomposition level nine) after DWT and a classification was done by C-SVM. A 

five-fold cross validation was performed to evaluate the method, as in Chapter 4. First, 

140 data sets were divided into five subsets. Second, C-SVM was trained from 4 subsets, 

excluding one subset. Third, the performance (the percentage: the number of correctly 

classified data sets against the total number of data sets) was evaluated with the 

excluded subset. Fourth, the same procedure was repeated for each subset (five times). 

Finally, average performance for all the subsets (cross validation accuracy) was 

calculated. 

Table 5-6   and Table 5-7 show the result of classification using C-SVM. Two kernel 

functions were tested: Linear kernel and RBF kernel, as was the case in Chapter 4. 
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Table 5-6  Classification accuracy for five fault conditions (Linear kernel) 

 Fault Free LH Over RH Over LH 

Under 

RH 

Under 

(Accuracy) 

Subset 1 6/6 5/5 5/5 5/6 6/6 96.43% (27/28) 

Subset 2 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

Subset 3 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

Subset 4 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

Subset 5 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

CV accuracy 99.33% ±1.49 

Table 5-7   Classification accuracy for five fault conditions (RBF kernel) 

 Fault Free LH Over RH Over LH 

Under 

RH 

Under 

(Accuracy) 

Subset 1 6/6 5/5 5/5 4/6 6/6 92.86% (26/28) 

Subset 2 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

Subset 3 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

Subset 4 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

Subset 5 6/6 5/5 5/5 6/6 6/6 100% (28/28) 

CV accuracy 98.57% ±3.19 

 

As can be seen from Table 5-6  and Table 5-7, a high rate of accuracy was achieved 

using the C-SVM approach, similarly to the result obtained for the Japanese point 

machine. 

Further work was carried out to consider the intermediate severity of faults (as in 

Chapter 4) between (1) ‘Fault free’ and ‘Left hand Overdriving’, (2) ‘Fault free’ and 

‘Right hand Overdriving’, (3) ‘Fault free’ and ‘Left hand Underdriving’ and (4) ‘Fault 

free’ and ‘Right hand Underdriving’.  
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The intermediate severity of faults and the original fault conditions were re-named 

according to Table 5-8. 

Table 5-8  Re-naming of fault conditions including intermediate severity of faults 

Fault condition (Original name) New name 

Fault free Fault free 

(Left hand Overdriving) Left hand Overdriving (major severity) 

(Right hand Overdriving) Right hand Overdriving (major severity) 

(Left hand Underdriving) Left hand Underdriving (major severity) 

(Right hand Underdriving) Right hand Underdriving (major severity) 

Intermediate condition between ‘Fault free’ 

and ‘Left hand Overdriving’ 

Left hand Overdriving (minor severity) 

Intermediate condition between ‘Fault free’ 

and ‘Right hand Overdriving’ 

Right hand Overdriving (minor severity) 

Intermediate condition between ‘Fault free’ 

and ‘Left hand Underdriving’ 

Left hand Underdriving (minor severity) 

Intermediate condition between ‘Fault free’ 

and ‘Right hand Underdriving’ 

Right hand Underdriving (minor severity) 

 

In this experiment, 256 data sets were used; each data set comprised of electrical current 

data collected during ‘Right to Left’ operation and ‘Left to Right’ operation. These 256 

data sets were made up as follows: 30 ‘Fault free’, 25 ‘Left hand Overdriving (major)’, 

30 ‘Left hand Overdriving (minor)’, 25 ‘Right hand Overdriving (major)’, 25 ‘Right 

hand Overdriving (minor)’, 30 ‘Left hand Underdriving (major)’, 30 ‘Left hand 

Underdriving (minor)’, 30 ‘Right hand Underdriving (major)’ and 31 ‘Right hand 

Underdriving (minor)’. A feature extraction was carried out using scaling coefficients 
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(using a ‘Haar’ wavelet at decomposition level nine) after DWT and a classification was 

done by C-SVM. A five-fold cross validation was performed to evaluate the method, as 

was the case in Chapter 4. Table 5-9 and Table 5-10 show the result of classification. As 

can be seen from the table, a high accuracy rate has been achieved using the C-SVM 

approach, similarly to the result obtained for the Japanese point machine. The system 

can now diagnose the faults at two levels of severity: minor severity and major severity 

(for M63 point machine). 

Table 5-9  Classification accuracy for nine fault conditions (Linear kernel) 

 Fault 

Free 

LH 

Over 

RH 

Over 

LH 

Under 

RH 

Under 

LH 

Over 

(Minor) 

RH 

Over 

(Minor) 

LH 

Under 

(Minor) 

RH 

Under 

(Minor) 

(Accuracy) 

Subset 1 6/6 5/5 5/5 6/6 6/6 6/6 5/5 6/6 7/7 100% (52/52) 

Subset 2 6/6 5/5 5/5 6/6 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

Subset 3 6/6 5/5 5/5 6/6 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

Subset 4 6/6 5/5 5/5 6/6 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

Subset 5 6/6 5/5 5/5 6/6 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

CV accuracy 100% ±0 

 

Table 5-10  Classification accuracy for nine fault conditions (RBF kernel) 

 Fault 

Free 

LH 

Over 

RH 

Over 

LH 

Under 

RH 

Under 

LH 

Over 

(Minor) 

RH 

Over 

(Minor) 

LH 

Under 

(Minor) 

RH 

Under 

(Minor) 

(Accuracy) 

Subset 1 6/6 5/5 5/5 5/6 6/6 6/6 5/5 6/6 7/7 98.08% (51/52) 

Subset 2 6/6 5/5 5/5 6/6 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

Subset 3 6/6 5/5 5/5 6/6 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

Subset 4 6/6 5/5 5/5 6/6 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

Subset 5 6/6 5/5 5/5 6/6 6/6 6/6 5/5 6/6 6/6 100% (45/45) 

CV accuracy 99.62% ±0.86 
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5.2.5 Conclusions 
A cluster analysis was carried out to the data collected from the DC-type point machine 

which is operated in Great Britain (Surelock-type point machine) and it was concluded 

that electrical current is the best parameter for condition monitoring of the DC-type 

point machine. Then, an approach using Wavelet Transforms and Support Vector 

Machines was applied to both the Surelock-type point machine and the M63-type point 

machine, as was in Chapter 4 (Japanse point machine). Good classification results were 

achieved using the C-SVM for both types of point machine, similarly to the result for 

Japanese point machine. It was proved that this method can also make an accurate 

classification for two levels of severity, making the system more practical for real use.  

 

5.3 Transferability of the specific algorithm parameters to multiple point 
machines (HW-type point machine) 

5.3.1 Introduction and motivation 
The aim of this section is to test the transferability of the specific algorithm parameters 

from one instance of a point machine to the next.  

So far, training data sets and test data sets have been collected from the same point 

machine for fault detection and diagnosis. Since condition and characteristics of a point 

machine (including conditions and characteristics of external components such as drive 

rod) vary from one to another, achieving a high classification accuracy essentially 

requires the training data sets collected from the point machine to be monitored in the 

system. The problem for doing this is that it may cause a lot of time and labour to 

collect training data sets from all the point machines to be monitored (for example, train 

depot). Collecting data sets from a single point machine may require only 1-2 hours if 
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the maintenance engineers get used to the data collection procedure, but since there are 

a lot of point machines operated in the field, collecting the training data sets from all the 

point machines to be monitored requires a tremendous effort. Furthermore, it is 

necessary to collect a new training data set each time a new point machine (or an 

external component) is installed in the field, or even if significant maintenance and/or 

adjustment is carried out on a machine. 

It is, therefore, more practical and useful if the training data sets collected from one 

point machine can be used to monitor other point machines. If this is the case, massive 

training data sets can be collected from training or test facilities and these data sets can 

be used to monitor all the point machines operated in the field.  

In this chapter, a method using qualitative features to make the features transferable 

from one point machine to another is presented. 

 

5.3.2 Data analysis and qualitative features 
Data were collected from two HW-type point machines, as shown in Figure 2-1 in 

Chapter 2: point machine 1 and point machine 2. The main difference between the two 

point machines is that the backdrive of one point machine is located inside the track, 

whereas the backdrive of the other point machine is located outside the track. 

Figure 5-10 shows the electrical current collected from two HW-type point machines: 

point machine 1 and point machine 2. 
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Figure 5-10   Electrical current for (a) point machine 1 during Left to Right 
operation, (b) point machine 1 during Right to Left operation, (c) point machine 2 
during Left to Right operation and (d) point machine 2 during Right to Left 
operation 

 

As can be seen from the figure, the shape of the waveforms is not identical, even in the 

“Fault free” condition, although data were collected from the same type of point 

machine. This is caused by the different settings of switch components: backdrive, slide 

chairs, rails, nuts, etc.  

So far, feature extraction has been carried out using DWT, which extracts the 

approximate shape of the original waveforms. However, it was discovered that even the 
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shape of ‘Fault free’ waveforms can be different because of the different settings of the 

switch components. The feature extraction method has to be changed in order to make 

the specific algorithm parameters transferable to the other point machine.  

Figure 5-11 shows the feature extracted from two point machines using DWT: point 

machine 1 and point machine 2. 

 

 

Figure 5-11 A feature extracted from (a) point machine 1 and (b) point machine 2 

 

Again, it can be seen from the figure that the shape of the waveforms is not same, even 

for the same fault condition. It seems, however, that the change of tendency (from 
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“Fault Free” condition) remains similar to some extent. In order to qualitatively express 

the change from a “Fault Free” condition to a faulty condition, the features of “Fault 

Free” were subtracted from all of the features. Figure 5-12 depicts the qualitative 

features subtracting the “Fault Free” waveform from the original features. 

  

Figure 5-12 A qualitative feature extracted from (a) point machine 1 and (b) point 
machine 2 

 

From the figure, it can be seen that the qualitative features remain similar (if not 

identical) between point machine 1 and point machine 2. These qualitative features can 

therefore be used to make the specific algorithm parameters transferable to the other 

point machine. 
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5.3.3 Fault detection and diagnosis 
 

5.3.3.1 Experiment 1 
The aim of this experiment is to prove that the qualitative features proposed in Section 

5.3.2 will not decrease the high classification accuracy achieved in Section 5.2 for one 

instance of the point machine. 

In this experiment, 61 data sets were used; each data set comprised of electrical current 

data collected during ‘Right to Left’ operation and ‘Left to Right’ operation. These 61 

data sets were made up as follows: 10 ‘Fault free’, 10 ‘Left hand Overdriving’, 11 

‘Right hand Overdriving’, 15 ‘Left hand Underdriving’ and 15 ‘Right hand 

Underdriving’. A feature extraction was carried out using scaling coefficients (using a 

‘Haar’ wavelet at decomposition level nine) after DWT subtracting the feature of ‘Fault 

free’ from all the features (to make the features qualitative) and a classification was 

carried out by C-SVM. A five-fold cross validation was performed to evaluate. 

Table 5-11  shows the result of classification using C-SVM.  

Both the Linear and RBF-kernel were used as kernel functions. All the classifications in 

the experiment were made using the Libsvm software [59].  

Table 5-11 Classification accuracy for Experiment 1 

 

 

 

 

 

Kernel function Cross validation accuracy 
 

(Standard deviation) 
Linear kernel 100% 

(± 0) 
RBF kernel 
 

100% 
(± 0) 
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As can be seen from the table, a high rate of accuracy was achieved using the C-SVM 

approach. From this experiment, it was proved that accurate classification can be done 

with qualitative features for one instance of the point machine. 

 

5.3.3.2 Experiment 2 
The aim of this experiment is to prove that the qualitative features can be transferable 

from one point machine to others (from point machine 1 to point machine 2). 

All the data sets collected from point machine 1 (61 data sets in total) were used as 

training data sets; each data-set comprised of qualitative features extracted from 

electrical current data collected during the ‘Left to Right’ operation and ‘Right to Left’ 

operation (subtracting the ‘Fault Free’ feature from original features).  

Test data sets were collected from the different point machine (point machine 2). 

56 data sets were used as test data sets: 6‘Fault Free’, 15 ‘Left hand Overdriving’, 15 

‘Right hand Overdriving’, 15 ‘Left hand Underdriving’ and 5 ‘Right hand Underdriving’ 

data sets. Table 5-12 shows the result of classification using C-SVM.  

Both Linear and RBF kernel were used as kernel functions. All the classifications in the 

experiment were made using the Libsvm software [14].  

Table 5-12 Classification accuracy for Experiment 2 

 Fault Free LH Over RH Over LH 

Under 

RH 

Under 

(Accuracy) 

Linear kernel 6/6 15/15 15/15 9/15 0/5 80.4% (45/56) 

RBF kernel 6/6 15/15 11/15 9/15 0/5 73.2% (41/56) 
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As can be seen from the table, classification accuracy decreased from the previous 

experiment. It can be seen from the table that especially ‘Right hand Underdriving 

(class 5)’ had a low classification accuracy (the data sets for ‘Left hand Underdriving’ 

and ‘Right hand Underfdriving’ were classified as ‘Fault free’ class).  

 

5.3.3.3 Experiment 3 
The aim of this experiment is to prove that the qualitative features can be transferable 

from one point machine to others (from point machine 2 to point machine 1). 

All the data sets collected from point machine 2 (56 data sets in total) were used as 

training data sets; each data-set comprised of qualitative features extracted from 

electrical current data collected during ‘Left to Right’ operation and ‘Right to Left’ 

operation (subtracting the ‘Fault Free’ feature from original features).  

Test data sets were collected from the different point machine (point machine 1). 

61 data sets were used as test data sets: 10‘Fault Free’, 10 ‘Left hand Overdriving’, 11 

‘Right hand Overdriving’, 15 ‘Left hand Underdriving’ and 15 ‘Right hand 

Underdriving’ data sets. Table 5-13 shows the result of classification using C-SVM.  

Both Linear and RBF kernel were used as kernel functions. All the classifications in the 

experiment were made using the Libsvm software [14]. 
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Table 5-13 Classification accuracy for Experiment 3 

 Fault Free LH Over RH Over LH 

Under 

RH 

Under 

(Accuracy) 

Linear kernel 10/10 10/10 5/11 15/15 0/15 65.57% (40/61) 

RBF kernel 10/10 10/10 11/11 15/15 0/15 75.41% (46/61) 

 

As can be seen from the table, classification accuracy was similar to Experiment 2. 

As was seen in the previous experiment, it can be seen from the table that especially 

‘Right hand Overdriving (class 5)’ had a low classification accuracy (the data sets for 

‘Right hand Overdriving’ and ‘Right hand Underdriving’ were classified as ‘Fault free’ 

class).  

 

5.3.4 Conclusions 
The transferability of the specific algorithm parameters from one instance of a point 

machine to the next was tested in this section. To make the features transferable, 

qualitative features were proposed, subtracting the ‘Fault Free’ feature from all the 

features. Classification accuracy was not as high as the results of previous experiments 

(section 5.1 and 5.2); however, 65%-80% classification accuracy was still achieved 

using the proposed method. A classification for ‘Right hand Underdriving’ had a 

particularly low classification accuracy. This result may be partly caused by different 

setting of the backdrive: the backdrive of point machine 1 was located outside the track 

(right of the right stock rail) whereas the backdrive of point machine 2 was located 

inside the track (between the left stock rail and the right stock rail). This change of the 
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setting may have influenced the change of behaviour between point machine 1 and point 

machine 2, eventually leading to poor accuracy for this particular fault condition. 

 

5.4 Conclusions 
 

In this chapter, the method proposed in Chapter 4 was further developed and applied 

into DC-type point machines operated in Great Britain. It was found that accurate fault 

detection and diagnosis can also be carried out for DC-type point machines using the 

approach, including different levels of severity. 

Furthermore, in order to make the training data sets collected from one point machine 

transferable to others, a method to express the qualitative features was proposed. If this 

is successful, data sets can be collected from training or test facilities and these data sets 

can be used to monitor all the point machines in the field, which can save a lot of time 

and labour. The classification accuracy was eventually lower than that of single instance 

(particularly, the classification of ‘Right hand Underdriving’ was low), although the 

result shows that fault detection and diagnosis can be carried out with 65%-80% 

classification accuracy. This result may be improved in the future by collecting more 

data and carrying out further data analysis. 

As a conclusion, it has been shown that using training data sets collected from the point 

machine to be monitored provides much better performance from the condition 

monitoring system. This means that each point machine requires specific preliminary 

measurement (collecting training data) before monitoring. Although this preliminary 
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measurement is time consuming, this may only require 1-2 hours for maintenance staff 

to carry out and will significantly improve the performance.  
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CHAPTER 6 DRIVE FORCE PREDICTION 

 

 

 

 

 

6.1 Introduction 
 

In this chapter, the approach will be further developed so that the system can directly 

predict drive force; this can be useful for inspection and maintenance purposes. 

So far in this thesis, a classification using the SVM algorithm was demonstrated for 

fault detection and diagnosis from waveforms of point machines. As a result, it was 

found that accurate fault detection and diagnosis can be carried out using the approach 

(as described in Chapter 4 and 5), including different levels of fault severity. In the 

experiments in Chapter 4 and 5, two levels of severity were tested: major severity and 

minor severity. The natural progression of these experiments is to  develop an accurate 

prediction for the force between stock rail and switch blade. Since drive force is a direct 

and understandable parameter for maintenance staff, predicting drive force can be 

beneficial in real operational use.  

Drive force and electrical current data were acquired using a data acquisition box whilst 

simulating different strengths of drive force from Surelock-type and HW-type point 

machines. 
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6.2 Further developing the algorithm to predict drive force: Surelock-type 
point machine 

6.2.1 Neural network for drive force prediction 
 

In Chapter 5, drive force faults were detected and diagnosed by utilising electrical 

current as an input parameter. Feature extraction was carried out using the DWT, and 

the classification was done using a SVM. For drive force prediction, it is necessary to 

modify the approach. The basic idea is to predict the drive force (either at the beginning 

or end of the throw) from the extracted feature, so the DWT feature extracted from the 

electrical current will be used as an input to the neural network with the drive force 

(either at the beginning or end) being the output of the neural network. 

As for the parameter and feature extraction method, a similar approach to the method 

used in Chapter 5 can be used for drive force prediction, considering the successful 

results of classification in Chapter 5. Unlike the case in Chapter 5, there are no ‘Fault 

free’ waveforms that can be used to normalise the extracted features, since the aim of 

the method is to directly predict the drive force. Scaling coefficients (without 

normalisation) are therefore used for drive force prediction. Additionally, there could be 

slight changes in the value of drive force for each operation, so the prediction of drive 

force is carried out separately for each operation (‘Left to Right’ or ‘Right to Left’ 

operation).  

Figure 6-1 shows the extracted features (for drive force prediction) from ‘Left to Right’ 

for electrical current. 
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Figure 6-1 Extracted feature from the ‘Left to Right’ electrical current 

 

The classification algorithm also has to be changed so that the system can predict drive 

force from extracted features.  

Predicting drive force from inputs (extracted features from electrical current) can be 

conducted by non-linear function approximation. Neural networks are well known to 

have the ability to address non-linear function approximations [60]. An appropriate 

neural network can fit any input and output data relations into a non-linear function after 

training (e.g. house price prediction [61]). As for predicting drive force, the neural 

network shall take the extracted features (which are the scaling coefficients after the 

discrete wavelet transform) as inputs and predict drive force as the output. A typical 

three-layer neural network architecture, which consists of ‘input layer’, ‘hidden layer’ 

and ‘output layer’, can be used to address the problem. 
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Figure 6-2 shows a neural network designed to predict drive force. 

 

Figure 6-2 Neural network architecture 

 

The theory of neural networks is provided in detail by Bishop [58]. 

Input variables   ,  ,    will be transferred to the j’th hidden layer    in the form 

  =∑𝐰 𝐢
( )
𝐱𝐢  𝐰 𝟎

( )

𝐃

𝐢= 

 (6-1) 

Each    is then transformed using an activation function h(.) to give 

𝒛𝒋 = 𝒉(  ) (6-2) 

where an activation function is given by 

𝒉(𝒂) = ⁡𝒕𝒂𝒏𝒉(𝒂) = ⁡
𝐞 − 𝐞  

𝐞  𝐞  
 (6-3) 

These values are again combined to give single output unit activation 
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𝐲 =∑𝐰  
(𝟐)
𝐳  𝐰 𝟎

(𝟐)

𝐌

 = 

 (6-4) 

Since the output activation function is a linear function, this 𝐲  will directly become the 

output of the network. 

Parameters (w) have to be tuned to minimise the performance function (defined later) in 

order to make accurate drive force prediction. 

A training algorithm, which is called the ‘Levenberg-Marquardt’ algorithm [62], was 

applied to tune the parameter, since this algorithm is known to perform efficiently [60]. 

The performance function is defined as: 

𝑭 = 𝒎𝒔𝒆 =
 

𝑵
∑(𝒕𝒊 − 𝒚𝒊)

𝟐

𝑵

𝒊= 

 (6-5) 

which is simply a mean squared error between targets and network outputs (i.e. neural 

network predictions). 

Generally, by using a training algorithm, parameters of neural networks will be tuned to 

fit the relations between inputs and outputs of the training data sets. If the training is 

overdone, however, the network will only perform well for training data sets and will 

perform poorly for other data sets which are not used as training data sets [58]. This 

phenomenon is called ‘Overfitting’ and it is therefore necessary to avoid this occurring.  

One of the methods to avoid ‘Overfitting’ is (1) to provide other data sets apart from 

training data sets (which are called ‘validation data sets’) and (2) to stop training 

(adjusting weights) at the early stage (at the point of smallest error with respect to the 

‘validation data sets’) [58]. This approach is called ‘Early stopping’ and is widely used 
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to avoid ‘Overfitting’ of neural networks [58]. This ‘Early stopping’ approach is used to 

prevent the neural network from ‘Overfitting’ in this method. 

6.2.2 Deciding the number of hidden neurons 
 

The number of hidden neurons in the hidden layer (Layer 2 in Figure 6-2) is important 

to make an accurate prediction of the drive force. The optimum number of hidden 

neurons may change depending on the problem, so it is needed to evaluate the 

performance changing the number of hidden neurons. 

An experiment to optimise the number of hidden neurons was therefore conducted.  

Twenty-one drive force conditions were simulated and data were collected from the 

point machine, as shown in Figure 6-3. 
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Figure 6-3  Drive force condition simulated 

 

In the experiment, 63 data sets (3 data sets per drive force condition) were used as 

training data sets; each data set comprised of electrical current data collected during 

‘Left to Right’ operation associated with ‘Left-hand force’. Twenty-one data sets (with 

a single data set per drive force condition) were used as validation data sets. Validation 

data sets were used for ‘Early stopping’ and also measuring performance. 

A feature extraction was carried out using scaling coefficients (using the ‘Haar’ wavelet 

at decomposition level nine) after DWT and the neural network was used for drive force 

prediction. 
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Performance (which is the mean squared error between targets and predictions) of 

validation data sets is examined changing the number of hidden neurons. The average 

performance over thirty iterations was calculated (changing initial weights each time), 

since the performance results fluctuated depending on the initial value (of the weight). 

 

Figure 6-4 Performance for validation data changing number of hidden neurons 

 

Figure 6-4 shows the result of the experiment. It was found that using a neural network 

with nine hidden neurons had the best performance for the particular problem. Nine 

hidden neurons are therefore used for the rest of the experiments detailed in this chapter. 
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6.2.3 Experiments for predicting drive force 
 

 The aim of the first experiment is to make a ‘Left hand’ drive force prediction from 

‘Left to Right’ electrical current data. 

Sixty-three training data sets (3 data sets per drive force condition), 21 validation data 

sets (single data set per drive force condition) and 206 test data sets (remaining data 

sets) were used in this experiment; each data set comprised of electrical current data 

collected during ‘Left to Right’ operation associated with ‘Left-hand force’. 

Validation data sets were used for ‘Early stopping’ to avoid ‘Overfitting’. By using the 

‘Early stopping’ method, the performance of the validation data is monitored and the 

iteration (to adjust parameters) is stopped when the magnitude of the gradient of the 

performance is small or the number of successive iterations that the performance fails to 

decrease reaches a predetermined number. 

Nine hidden neurons were utilised, given the result of the previous experiment. Since 

there is a risk that the neural network would tune the weights into local optima (and 

therefore perform poorly) because of bad initial weights, the neural network which had 

the best performance for validation data over fifty calculations (changing initial weights 

each time) was used for drive force prediction. Figure 6-5 shows the result of 

performance for ‘Training data sets’, ‘Validation data sets’ and ‘Test data sets.  Figure 

6-6 shows the regression plot for test data sets. 
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Figure 6-5 Performance of the neural network for Training, Validation and Test 
data sets 

 

Figure 6-6 Regression plot for test data sets 
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From Figure 6-5, it can be seen that the performance of the validation data sets and the 

test data sets was similar and the mean squared error for the test data sets was small, 

which implies that the drive force prediction was accurate.  

From Figure 6-6 it can be seen that prediction of the drive force is highly correlated 

with the real measurement (target). The value “R” in the figure shows the correlation 

coefficient which means ‘how well the variation in the output is explained by the targets’ 

[60]. 

From the experiment carried out so far, it was found that an accurate ‘Left hand’ drive 

force prediction can be carried out using electrical current waveform acquired during 

‘Left to Right’ turn. Drive force predictions for other combinations are yet to be 

examined: Right hand drive force prediction from ‘Left to Right’ waveform, Right hand 

drive force prediction from ‘Right to Left’ waveform and Left hand drive force 

prediction from ‘Right to Left’ waveform. 

Further experiments were carried out to predict ‘Right hand’ force from ‘Left to Right’ 

electrical current data, to predict ‘Right hand’ force from ‘Right to Left’ electrical 

current data and to predict ‘Left hand’ force from ‘Right to Left’ electrical current data, 

using the same method. Figure 6-7, Figure 6-8 and Figure 6-9 show the results of the 

experiments. The number of training data sets, validation data sets and test data sets 

remains the same as the first experiment in this section for all the experiments: 63 

training data sets (3 data sets per drive force condition), 21 validation data sets (single 

data set per drive force condition) and 206 test data sets (remaining data sets). 
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Figure 6-7  (a) Performance plot and (b) regression plot for predicting ‘Right hand’ 
force from ‘Left to Right’ electrical current data 

 

 

Figure 6-8  (a) Performance plot and (b) regression plot for predicting ‘Right hand’ 
force from ‘Right to Left’ electrical current data 
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Figure 6-9  (a) Performance plot and (b) regression plot for predicting ‘Left hand’ 
force from ‘Right to Left’ electrical current data 

 

It was found that accurate drive force prediction can be carried out in all cases (Right 

hand drive force prediction from ‘Left to Right’ waveform, Right hand drive force 

prediction from ‘Right to Left’ waveform and Left hand drive force prediction from 

‘Right to Left’ waveform), showing similar results to the first experiment in 6.2.3. From 

this result, it can be said that each waveform contains information for both direction of 

drive force; i.e. the ‘Left to Right’ waveform contains both Left hand drive force and 

Right hand drive force information, and the ‘Right to Left’ waveform contains both Left 

hand drive force and Right hand drive force information. 
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6.3 Transferability of the algorithm to other types of point machine and 
further testing the ability of the algorithm: HW-type point machine 

 

 The aims of this section are: (1) to examine whether the method proposed in the 

previous section can be applied to other types of point machine (HW-type point 

machine), and; (2) to further test the ability of the method using further data sets. 

Feature extraction and drive force prediction were carried out in the same way as 

described in the previous section; scaling coefficients after DWT were used as extracted 

features and drive force prediction was carried out using a Neural Network (the same 

number of hidden neurons as set out in the previous section were utilised, since the data 

and difficulty of the prediction remain the same for the HW-type point machine). Figure 

6-10 shows the extracted feature (for drive force prediction) from the ‘Left to Right’ 

electrical current. 

 

Figure 6-10  Extracted feature from the ‘Left to Right’ electrical current 
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6.3.1 Experiment 1: Testing the transferability of the algorithm to other types of 
point machine (HW-type point machine) 
 

 

The aim of this experiment is to test the transferability of the algorithm to other types of 
point machine: the HW-type point machine. 

The first experiment is carried out to predict ‘Left hand’ drive force from ‘Left to Right’ 

electrical current data, as in the previous section. 

Nine drive force conditions were simulated and data were collected from the point 

machine, as shown in Figure 6-11, as in the previous section. 

 

Figure 6-11 drive force conditions simulated 
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Twenty-seven training data sets (3 data sets per drive force condition), 9 validation data 

sets (single data set per drive force condition) and 78 test data sets (remaining data sets) 

were used in this experiment; each data set comprised of electrical current data collected 

during ‘Left to Right’ operation associated with ‘Left-hand force’. 

Validation data sets were used for ‘Early stopping’ to avoid ‘Overfitting’. Nine hidden 

neurons were utilised, as in the previous section. The neural network which had the best 

performance for validation data over fifty calculations (changing initial weights each 

time) was used for drive force prediction. Figure 6-12 shows the performance results for 

‘Training data sets’, ‘Validation data sets’ and ‘Test data sets.  Figure 6-13 shows the 

regression plot for test data sets. 

 

Figure 6-12  Performance of the neural network for Training, Validation and Test 
data sets 
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Figure 6-13  Regression plot for test data sets 

 

From Figure 6-12, it can be seen that the performance of the validation data sets and test 

data sets was similar and the mean squared error for the test data sets was small, which 

implies that the drive force prediction was accurate.  

From Figure 6-13 it can be seen that prediction of drive force is highly correlated with 

real measurement (target), similarly to the results obtained for the Surelock-type point 

machine.  

It was found that the method used to predict drive force can be used for HW-type point 

machines. From the experiment carried out so far, it was found that an accurate ‘Left 

hand’ drive force prediction can be carried out using electrical current waveform 

acquired during ‘Left to Right’ turn. Drive force predictions for other combinations are 
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yet to be examined: Right hand drive force prediction from ‘Left to Right’ waveform, 

Right hand drive force prediction from ‘Right to Left’ waveform and Left hand drive 

force prediction from ‘Right to Left’ waveform. 

Further experiments were carried out to predict ‘Right hand’ force from ‘Left to Right’ 

electrical current data, to predict ‘Right hand’ force from ‘Right to Left’ electrical 

current data and to predict ‘Left hand’ force from ‘Right to Left’ electrical current data 

using the same method, as was in 6.2.3 (Surelock-type point machine). Figure 6-14, 

Figure 6-15 and Figure 6-16 show the results of the experiments. The number of 

training data sets, validation data sets and test data sets remain the same as for the first 

experiment in this section for all the experiments: 27 training data sets (3 data sets per 

drive force condition), 9 validation data sets (single data set per drive force condition) 

and 78 test data sets (remaining data sets). 

 

Figure 6-14  (a) Performance plot and (b) regression plot for predicting ‘Right 
hand’ force from ‘Left to Right’ electrical current data 
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Figure 6-15  (a) Performance plot and (b) regression plot for predicting ‘Right 
hand’ force from ‘Right to Left’ electrical current data 

 

Figure 6-16  (a) Performance plot and (b) regression plot for predicting ‘Left hand’ 
force from ‘Right to Left’ electrical current data 

 

It was found that accurate drive force prediction can be carried out for all the cases 

showing similar results to the first experiment carried out in 6.3.1. From this result, it 
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can be said that each waveform contains information for both side of drive force, as was 

the case for the experiment carried out in 6.2.3 (Surelock-type point machine). 

6.3.2 Experiment 2: Further testing the ability of the algorithm (increasing data 
sets) 
 

The aim of this experiment is to test the algorithm for further data sets. So far, the 

algorithm has been tested for the data in which one side of the drive force was fixed to 

the normal drive force. It is, however, possible that both sides of drive force will be 

misaligned. Figure 6-17 shows 16 drive force conditions added to the drive force 

conditions used in Experiment 1 (Figure 6-11). 

 

Figure 6-17  Drive force conditions simulated 

Together with the drive force conditions used in Experiment 1, there are 25 drive force 

conditions. 
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75 training data sets (3 data sets per drive force condition), 25 validation data sets 

(single data set per drive force condition) and 178 test data sets (remaining data sets) 

were used in this experiment; each data set comprised of electrical current data collected 

during ‘Left to Right’ operation associated with ‘Left-hand force’. 

Validation data sets were used for ‘Early stopping’ to avoid ‘Overfitting’. Nine hidden 

neurons were utilised, as in 6.2.3 (Surelock-type point machine). The neural network 

which had the best performance for validation data over fifty calculations (changing 

initial weights each time) was used for drive force prediction. Figure 6-18 shows the 

result of performance for ‘Training data sets’, ‘Validation data sets’ and ‘Test data sets’. 

Figure 6-19 shows the regression plot for test data sets. 

 

Figure 6-18  Performance of the neural network for Training, Validation and Test 
data sets 
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Figure 6-19  Regression plot for test data sets 

From Figure 6-18, it can be seen that the performance of the validation data sets and the 

test data sets was similar and the mean squared error for test data sets was small, which 

implies that the drive force prediction was accurate.  

From Figure 6-19 it can be seen that prediction of drive force is highly correlated with 

real measurement (target), similarly to the results obtained for the Surelock-type point 

machine.  

It was found that the method used to predict drive force can be used for drive force 

conditions in which one side is not fixed to normal drive force. From the experiment 

carried out so far, it was found that an accurate ‘Left hand’ drive force prediction can be 

carried out using electrical current waveform acquired during ‘Left to Right’ turn. Drive 

force predictions for other combinations are yet to be examined: Right hand drive force 

prediction from ‘Left to Right’ waveform, Right hand drive force prediction from 
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‘Right to Left’ waveform and Left hand drive force prediction from ‘Right to Left’ 

waveform. 

Further experiments were carried out to predict ‘Right hand’ force from ‘Left to Right’ 

electrical current data, to predict ‘Right hand’ force from ‘Right to Left’ electrical 

current data and to predict ‘Left hand’ force from ‘Right to Left’ electrical current data 

using the same method, as was in 6.2.3 (Surelock-type point machine). Figure 6-20, 

Figure 6-21 and Figure 6-22 show the results of the experiments. The number of 

training data sets, validation data sets and test data sets remain the same as the first 

experiment in this section for all the experiments: 27 training data sets (3 data sets per 

drive force condition), 9 validation data sets (single data set per drive force condition) 

and 78 test data sets (remaining data sets). 

 

 

Figure 6-20  (a) Performance plot and (b) regression plot for predicting ‘Right 
hand’ force from ‘Left to Right’ electrical current data 
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Figure 6-21  (a) Performance plot and (b) regression plot for predicting ‘Right 
hand’ force from ‘Right to Left’ electrical current data 

 

 

Figure 6-22  (a) Performance plot and (b) regression plot for predicting ‘Left hand’ 
force from ‘Right to Left’ electrical current data 

It was found that accurate drive force prediction can be carried out for all cases, 

showing similar results to the first experiment carried out in 6.3.2. 

(a) (b)
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6.3.3 Experiment 3: Testing the data which is not from the drive force conditions 
as in training data sets 

 

The aim of this sub-section is to test the data which is not from the drive force 

conditions as in the training data sets (to check the generalisation ability of the 

algorithm). 

The Neural network model trained in Experiment 2 was used for predicting drive forces. 

Figure 6-23 shows the drive force conditions simulated for the test data sets (the drive 

force simulated was in-between the conditions of the drive force condition used in 

Experiment 1 in 6.3.1). 

 

Figure 6-23 Drive force conditions simulated 
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Twenty-one data sets (3 data sets per drive force condition) were used as test data sets. 

Figure 6-24 and Figure 6-25 shows the regression plot for test data sets predicting ‘Left 

hand’ force from ‘Left to Right’ electrical current data.  

 

Figure 6-24  Regression plot for test data sets predicting ‘Left hand’ force from 
‘Left to Right’ electrical current data 
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Figure 6-25  Regression plot for test data sets predicting ‘Left hand’ force from 
‘Left to Right’ electrical current data (drive force for training data is plotted in 

dotted lines) 

From Figure 6-24, it can be seen that prediction of drive force is highly correlated with 

real measurement (target). It was found that the method can achieve a good result for 

the data from in-between conditions of training data sets. Furthermore, Figure 6-25 

shows regression plot in which drive force for training data is also depicted (an average 

drive force for each drive force condition as in training data is calculated and depicted 

in dotted lines in the figure). From Figure 6-25, it can be seen that the outputs (drive 

force prediction) were accurate even in the case where no similar drive force condition 

was contained in the training data. This result shows the generalisation ability of the 

trained network. 

From the experiment carried out so far, it was found that an accurate ‘Left hand’ drive 

force prediction can be carried out using electrical current waveform acquired during 
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‘Left to Right’ turn. Drive force predictions for other combinations are yet to be 

examined: Right hand drive force prediction from ‘Left to Right’ waveform, Right hand 

drive force prediction from ‘Right to Left’ waveform and Left hand drive force 

prediction from ‘Right to Left’ waveform. 

Further experiments were carried out to predict ‘Right hand’ force from ‘Left to Right’ 

electrical current data, to predict ‘Right hand’ force from ‘Right to Left’ electrical 

current data and to predict ‘Left hand’ force from ‘Right to Left’ electrical current data 

using the same method, as was in 6.2.3 (Surelock-type point machine). Figure 6-26, 

Figure 6-27, Figure 6-28, Figure 6-29, Figure 6-30 and Figure 6-31 show the results of 

the experiments. The number of test data sets remains the same as the first experiment 

in this sub-section for all the experiments: 21 test data sets (3 data sets per drive force 

condition). 

 

Figure 6-26  Regression plot for test data sets predicting ‘Right hand’ force from 
‘Left to Right’ electrical current data 
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Figure 6-27  Regression plot for test data sets predicting ‘Right hand’ force from 
‘Left to Right’ electrical current data (drive force for training data is plotted in 

dotted lines) 

 

Figure 6-28  Regression plot for test data sets predicting ‘Right hand’ force from 
‘Right to Left’ electrical current data 
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Figure 6-29  Regression plot for test data sets predicting ‘Right hand’ force from 
‘Right to Left’ electrical current data (drive force for training data is plotted in 

dotted line) 

 

Figure 6-30  Regression plot for test data sets predicting ‘Left hand’ force from 
‘Right to Left’ electrical current data 
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Figure 6-31  Regression plot for test data sets predicting ‘Left hand’ force from 
‘Right to Left’ electrical current data (drive force for training data is plotted in 

dotted lines) 

It was found that accurate drive force prediction (for test data where no similar drive 

force condition was obtained in the training data) can be carried out for all the cases, 

showing the similar results to the first experiment carried out in 6.3.3. It can be said that 

the trained neural network had generalisation ability for all the cases. 

6.4 Conclusions 
 

In this chapter, a method to predict drive force was developed based on the method 

written in Chapter 4 and 5. The method utilises the DWT for feature extraction and a 

Neural network for drive force prediction.  
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Two point machines were tested: the Surelock-type point machine and the HW-type 

point machine. It was found that an accurate drive force prediction can be carried out 

using the proposed method for both point machines. As for HW-type point machine, it 

was found that an accurate drive force prediction can be done even if both sides of drive 

force are misaligned simultaneously. Finally, the data which is not from the drive force 

conditions as in the training data sets were tested to check the generalisation ability of 

the algorithm, and it was found that the system can accurately predict the drive force. 

Eventually, the error between the target (actual drive force) and the output (drive force 

prediction) was approximately 20% for the worst case.  

An advantage of using this method is that it can directly predict drive force. Since drive 

force is a direct and understandable parameter for maintenance staff, predicting drive 

force can be beneficial in real operational use.  

A disadvantage, however, might be that it is necessary to collect more data (including 

different drive force condition) than the classification method to make an accurate 

prediction. Additionally, since the neural network is susceptible to bad initial weights, it 

was necessary to carry out the calculation a number of times to find the initial weights 

of the neural network which has good performance (otherwise, the neural network could 

possibly tune the weights into local optima and therefore perform poorly). 
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CHAPTER 7 CONCLUSIONS AND 

FURTHER WORK 

 

 

7.1 Introduction 
 

 In this chapter, conclusions are presented that have been drawn during the course of the 

research. Details of suggested future work including recommendations for an 

appropriate system architecture for practical implementation are also presented in the 

chapter. 

 

Many years have passed since the first point machine condition monitoring systems 

were installed in the field. Currently condition monitoring systems are becoming widely 

accepted by many railway companies around the world, however, the fault detection of 

the point machine is still carried out by simple threshold algorithms. During this period 

of time, computers (both hardware and software) have developed significantly. Machine 

learning algorithms have also developed and they are used in many applications around 

the world (e.g. speech recognition and character recognition [61]). In this thesis, the 

fault detection and diagnosis of point machines are carried out using machine learning 

algorithms (k-means, silhouette width, support vector machine, and neural networks). 

 



137 
 

During the course of the research a total of five data sets from both Japanese and British 

point machines were collected to ensure that the results of the research were generic. 

 

Research regarding point machine condition monitoring has been carried out previously 

(for more than 10 years) at the Birmingham Centre for Railway Research and Education 

at the University of Birmingham; the research detailed in this thesis was developed from 

this existing knowledge. 

 

7.2 Conclusions 
 

The current methodology for condition monitoring of point machines has limitation in 

terms of the ability to detect incipient faults prior to failure (so when the system detects 

faults the point machine has already failed or nearly failed). Significant improvements 

of the railway service (in terms of dependability) can be made if the system can detect 

these incipient faults in the early stage of their development and inform users of faults 

before these faults get worse. 

To accomplish this task, a detailed analysis has been carried out to the waveforms and 

advanced machine learning algorithms have been utilised in this thesis. 

The following is a short summary of the achievements presented in this thesis: 

 Collected data from Japanese point machine (NTS-type point machine used in 

Central Japan Railway Company, Japan) simulating multiple fault conditions 

(data acquired: January 2011); 
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 Developed an algorithm for fault detection and diagnosis for Japanese AC point 

machine, as presented in Chapter 4. 100% cross validation accuracy was 

achieved for data relating to three fault conditions (experiment 1 in Chapter 4) 

and five fault conditions (experiment 2 in Chapter 4); 

 Collected data from a type of point machine operated in Great Britain (Surelock-

type point machine used in London Underground, London) where multiple fault 

conditions were simulated (data acquired: September 2011) 

 Collected data from a type of point machine operated in Great Britain (M63-type 

point machine used in London Underground, London) where multiple fault 

conditions were simulated (data acquired September 2011) 

 Collected data from a type of point machine (two data sets) operated in Great 

Britain (HW-type point machine used in Network Rail, Derby) where multiple 

fault conditions were simulated (data acquired May 2012) 

 Applied the algorithm of fault detection and diagnosis (developed for Japanese 

point machine) to DC point machines operated in Great Britain to check the 

transferability of the algorithm to other types of point machine, as written in 

Chapter 5.  

For the Surelock-type point machine, a 99.33% cross validation accuracy was 

achieved for five fault conditions using both Linear and RBF kernel, whereas a 

99.57% and a 98.68% cross validation accuracy were achieved for eight fault 

conditions using Linear and RBF kernel respectively.  

For M63-type point machine, a 99.33% and a 98.57% cross validation accuracy 

were achieved for five fault conditions using Linear and RBF kernel respectively, 
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whereas a 100% and a 99.62% cross validation accuracy were achieved for nine 

fault conditions using Linear and RBF kernel respectively; 

 A method to express the qualitative features was proposed to test the 

transferability of the specific algorithm parameters from one instance of a point 

machine to the next, which was tested on point machines operated in Great 

Britain (two HW-type point machines), as presented in Chapter 5. An 80.4% and 

a 73.2% classification accuracy were achieved using Linear kernel and RBF 

kernel respectively (data collected from point machine 1 were used as training 

data; data collected from point machine 2 were used as test data). A 65.57% and 

a 75.41% classification accuracy were achieved using Linear Kernel and RBF 

kernel respectively (data collected from point machine 2 were used as training 

data; data collected from point machine 1 were used as test data). 

 A method to directly predict the drive force (from current data) was proposed 

and tested, as written in Chapter 6. An accurate drive force prediction was 

achieved (an average of the correlation coefficients over all the combinations 

was 0.996) for the Surelock-type point machine.  

An accurate prediction was also achieved (an average of the correlation 

coefficients over all the combinations was 0.998) for the HW-type point 

machine. More data were added, but still an accurate prediction was achieved 

(an average of the correlation coefficients over all the combination was 0.999).  

As listed above, there are a lot of benefits using the fault detection and diagnosis 

methods proposed in this thesis. Both fault free data and faulty data of the point 

machine have been collected from various type of point machines and it was found that 
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the proposed method can accurately detect and diagnose the faults (when the training 

data sets and test data sets have been collected from the same point machine). It was not 

possible to accomplish these results using conventional methods such as thresholding 

methods since the changes of the waveforms are subtle.  Furthermore, a method to 

predict drive force was proposed. A good result (accurate prediction) was also acquired 

using the proposed method, as written in the list above. 

 

 The method proposed in the thesis requires only current and voltage transducers for 

condition monitoring (a single current transducer for DC point machines and both 

current and voltage transducers for AC point machines). This is important in real 

implementation since it is possible to acquire the data without the possibility of 

affecting the operation of the point machine. (Conversely, as described in Chapter 4, a 

load pin inserted in the drive assembly of the point machine can directly affect the 

operation of the point machine if the sensor goes wrong and this can be a significant 

risk for the railway) Therefore, the fact that a good result was accomplished only using 

accessible sensors (current transducer and voltage transducer) has a significant 

advantage for practical condition monitoring of point machines. 

 

The work presented in this thesis has been published in an academic conference paper 

and two journals, which can be found in Appendix A. 
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7.3 Further work 
 

It has been demonstrated in the thesis that the proposed method using the developed 

machine learning algorithm is valid for detecting and diagnosing incipient faults. It is, 

however, important to mention the further work required before fully implementing the 

proposed algorithm. 

 

Firstly, a system architecture should be provided to achieve a practical condition 

monitoring system. 

A recommendation towards a condition monitoring system architecture is provided. It is 

important to propose a system architecture as well as an algorithmic approach to support 

the practical realisation of a system. 

Condition monitoring systems are already used in Japanese railway and it is practical to 

make use of the existing system architecture and make necessary changes in order to 

realise the proposed condition monitoring method. A system architecture for the 

existing Japanese point machine condition monitoring system in Central Japan Railway 

Company is depicted in Figure 7-1. 
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Figure 7-1  A system architecture for Japanese point machine condition monitoring 
system 

 

 A Point control box is installed near the point machine and a computer (for processing 

control and status signals) and a transmission device (for transmitting data) is installed 

in the box. Electrical current and voltage are provided from a point control box to a 

point machine, and electrical current and voltage transducers are already implemented 

in the point control box in the Japanese railway (Central Japan Railway Company). 

A point control box is connected to the field control logic block (which processes all the 

control and status signals from all the point machines and signals in the field) via a 

LAN. Finally, a point machine condition monitoring system (a computer) is connected 

to the field control box via the LAN. 

An approach proposed for Japanese point machines (in Chapter 4) is using (1) wavelet 

transforms for feature extraction and (2) a Support Vector Machine for classifying. 

Changes to the existing software are enough to implement the proposed method since 
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the proposed method only requires current and voltage transducers which are already 

implemented in the point control box. 

Feature extraction should be carried out locally to the point machine. Feature extraction 

can be carried out through the upgrading of software on the existing embedded 

computer located in the point control box. Once a point machine is operated, the 

embedded computer inside the point control box can calculate the active power of the 

point machine and then run the feature extraction routine. The extracted features will be 

passed to the point condition monitoring system via the LAN using the existing 

transmission device in the box. Using this approach the amount of data transmitted 

across the LAN can be contained, thus ensuring a minimal load on the network. The 

Support Vector Machine classifier can be installed in the point machine condition 

monitoring system inside the signal box. It is important to note that these changes can 

be carried out by making only software changes (therefore not changing the system 

architecture of the existing system). 

 

Secondly, further data collection and analysis should be carried out. The data collection 

and analysis needed to be carried out  in the future is listed below: 

 More data should be collected from point machines actually operating in the 

field (outside). All of the data of the point machines (throughout the thesis) was 

collected from the training facilities maintained by railway companies. These 

point machines contains all the switch components (switch blade, drive rod, etc.), 

so it can be said that the data collected are highly realistic data. But considering 
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the fact that some of the point machines (Surelock, HW and M63 point 

machines) are installed inside buildings (therefore, maintained in a good 

condition) and that there are no trains run over these switches, it may be 

necessary to collect and validate the approach using the data from point 

machines installed in the railway field in the future; 

 Data including temperature changes of the switch blade should be collected. All 

of the data of point machines (throughout the thesis) was collected within 2-3 

days (during the daytime) because of the limitation of the usage of the facility 

(the data was collected from training facilities in railway companies). It is 

important to carry out an analysis of how temperature changes (i.e. seasonal 

changes) affect the performance of the fault detection and diagnosis approach; 

 Data including various lengths and various components of switches should be 

collected. It is needed to analyse how the length of switches (and components) 

can affect the data. This may help develop a more sophisticated algorithm that 

can make the training data sets collected from one point machine transferable to 

others and thus reliably carrying out fault detection and diagnosis; 

 Long-term data should be collected. Due to the limitation in time for the 

research, it was not possible to collect long-term data (for example, one or two 

years of operational data of point machines in the field). Data from the point 

machine may change because of the changes of condition and maintenance 

actions. It may be necessary to collect and analyse the long-term data before 

actually implementing the proposed method. 
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APPENDIX A  PUBLISHED PAPERS 

 

 

 

The following shows the papers that have been published during the course of the PhD 

study. 

1. Asada T, Roberts C. (2011). Development of an effective condition monitoring 

system for AC point machines, 5th International Conference on Railway 

Condition Monitoring and Non-destructive Testing (RCM 2011), UK. 

2. Asada T, Roberts C, Koseki T. An algorithm for improved performance of 

railway condition monitoring equipment: Alternating-current point machine case 

study (published in Transportation Research Part C – Emerging Technologies) 

3. Asada T, Roberts C. Improving the dependability of DC point machines with a 

novel condition monitoring system, (published in the Proceedings of the 

Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit). 
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