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ABSTRACT

Since the completion of the Human Genome Project in 2003, it has become increasingly apparent

that while genomics has a major role to play in the understanding of human biology, information

from other disciplines is necessary to explain the web of interacting signals that allow our bodies

to function on a day to day basis and respond to rapid changes in our local environment.

One such field, that of metabolomics, focuses on the study of the set of low molecular weight

compounds (metabolites) involved in metabolism. Metabolomic studies aim to quantify the

concentrations of each of these compounds within a subject under particular conditions, resulting

in either information on the physiological effects of a disease or environmental factor (such as a

toxin) on the organism, or the identification of metabolites or groups of metabolites that serve

as biochemical markers for a state or illness.

Whilst metabolite concentrations alone can give great insight into a chosen state, additional

information can be obtained by considering the ways in which metabolites interact with each

other as parts of a larger system. One method of tackling this problem, metabolic networks, is

gaining popularity within the community as it offers a complementary approach to the traditional

biological method for studying metabolism, the metabolic pathway. Construction methods are

varied; ranging from the mapping of experimental data onto pathway diagrams, through the use

of correlation-based techniques, to the analysis of time-series data of metabolic fluxes. However,



while many attempts have been made to capture and visualise the complex web of reactions

within an organism, few have yet succeeded in showing how they can be used to help identify

the metabolites that are most significantly involved in the differences between groups of biological

samples.

This thesis discusses ways in which graphs may be used to aid researchers in both the visu-

alisation and interpretation of metabolomic datasets, and provide a platform for more auto-

mated analysis techniques. To that end, it first presents the background to the relevant topics,

metabolomics and graph theory, before moving on to show how metabolic correlation networks

can be used to identify and visualise differences in metabolism between groups of subjects.

It then introduces Linked Metabolites, a software package that has been developed to help

researchers explain differences in metabolism by highlighting relationships between metabolites

within the metabolic pathways, and to compile those relationships into directed metabolic graphs

suitable for analysis using metrics from graph theory. Finally, the thesis explains how the di-

rected metabolic graphs produced by Linked Metabolites could potentially be used to integrate

data gathered from the same sample using different experimental techniques, refining the areas

of the underlying biochemistry needing further investigation.
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CHAPTER 1

INTRODUCTION

Metabolomics, the study of the set of low molecular weight compounds involved in metabolism,

is an ideal tool for the monitoring the physiological state of a cell or organism. In particular,

its ability to be used non-invasively either in vitro on samples of biofluids (for example blood,

urine, or breath condensates) or in vivo by Magnetic Resonance Spectroscopy (MRS), mean

that it has strong potential in fields such as medical screening, toxicology and environmental

monitoring.

In order to separate groups of subjects within a study (for example diseased and healthy) many

metabolomics experiments aim to identify a list of key compounds, known as biomarkers, whose

concentrations differ substantially between the groups. The identification of biomarkers is often

performed using statistical tools such as Principal Components Analysis (PCA) and can result

in a long list of potential biomarkers, which then have to be checked by hand in order to remove

“the usual suspects”[1], compounds that are involved in processes such as cell death and will

appear to alter in many different diseases.

One way in which biomarkers are validated is through identifying their roles in important

metabolic processes, such as the breaking down of sugars releasing energy (glycolysis). Each

1



process, known as a metabolic pathway, has been identified through experimentation over a

number of years and is commonly presented as a metabolic pathway diagram[2]. Unfortunately,

while individual metabolic pathways can be interpreted reasonably easily by eye, the complete

metabolic network in a cell or organism is made up of over one hundred pathways, all of which

are interconnected. As a result of this, the validation of biomarkers is a difficult and time

consuming task.

1.1 Aim and objectives

This thesis will investigate the relationship between biomarkers and the underlying biochemical

processes as represented by the metabolic pathways. As part of this we will explore how exper-

imental data can be visualised in ways that enable the relationship between metabolites to be

easily determined, how automated searching of the metabolic pathways might be implemented

and used to reduce the complexity of biomarker validation, and how, in the future, data from

other -omics approaches, such as genomics or transcriptomics, might be combined and used to

further refine the search space. All of this work is presented as a step towards the long-term

goal of providing a platform for the application of techniques from graph theory to search and

pattern-matching problems in biological networks.

1.2 Thesis organisation and contributions

Chapter 2 provides the background to the area, beginning with a brief discussion of metabolomics

along with some examples of its use and moving on to discuss the challenges facing the field over

the next few years. It then provides an introduction to graph theory and a selection of different

graph structures & metrics, before finally discussing the metabolic pathways and methods for
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constructing different types of biological networks.

Chapter 3 explains how the background provided in the previous chapter relates to the topic of

the thesis, and formulates the problem it will address.

Chapter 4 gives an example of how correlation networks, built from experimental data, were used

to investigate the metabolic changes taking place in liver tumours in dab, a common flatfish.

It shows how the networks allow the identification of possible relationships between compounds

and how they also allow the researcher to see where changes in those relationships are taking

place between sample groups. It also serves as an example of how metabolomics practitioners

then go on to relate compounds that may be potential markers to the metabolic pathways, in

an attempt to explain the biochemical reasons for their differing behaviour between groups.

Chapter 5 introduces Linked Metabolites, a software package that allows the user to combine

metabolic pathways and then search them for paths between two groups of compounds, forming

what we call directed metabolic graphs. Linked Metabolites is the major contribution of this

work to the field, and is intended to assist researchers with the most time-consuming section

of the biomarker validation process; explaining how compounds seen to be acting as potential

biomarkers are related in the underlying biochemistry. The directed metabolic graphs it produces

also provide a basis for the extension of this work with metrics from graph theory. The chapter

then goes on to discuss different ways in which compounds might be grouped based on the

experimental data, and compares the performance of Linked Metabolites against that of a similar

tool, KEGG PathComp. Finally, it provides an example of the use of Linked Metabolites in the

investigation of a set a ratios that can be used to differentiate between three types of childhood

cerebellar tumour.

Chapter 6 discusses how a graph-based approach to metabolomics might fit into a larger, inte-

grated genomics study. It gives some examples of how directed metabolic graphs can be built

3



from gene expression (microarray) data, which could then, in combination with suitable graph

alignment techniques, be used to refine the graphs produced by Linked Metabolites.

Chapter 7 then summarises the work, discusses how it addresses the original problem, and

speculates on how it could be extended in the future.
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CHAPTER 2

BACKGROUND

This chapter presents the background for the thesis. It begins with a discussion of metabolomics,

including examples of its applications in both bioscience and medicine. It then goes on to

introduce graph theory, discussing a number of different graph topologies and the metrics that

can be used to classify them. Finally, it brings the two topics together, describing the ways

in which metabolomics is suited to a graph theory-based analysis approach; this is done with

reference to the traditional method of presenting metabolic knowledge, the metabolic pathway

diagrams, and a method of exploring metabolomic datasets, metabolic correlation networks.

2.1 Metabolomics

In 2005, Hatzimanikatis et al. began a paper by stating that “Metabolism, the network of

chemical reactions that make life possible, is one of the most complex processes in nature.”[3]

It is unlikely that there are many who would dispute this statement; estimates suggest for

example, that as many as 200,000 different metabolites (the low molecular weight compounds

that act as substrates or products in metabolic reactions) may exist within the plant kingdom[4],

although this figure is much lower for animals. The complete set of metabolites found within
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an organism is referred to as the metabolome, although it has been argued that since not all

cells within an organism contain the same set of metabolites the term should actually refer to

the set of metabolites encountered within a cell type[5]. Regardless of whether you subscribe

to the local or global view of the metabolome, metabolomics (as with other -omics technologies

such as transcriptomics for the transcriptome or proteomics for the proteome) is simply the

measurement of the concentrations of its constituent compounds with the aim of determining

the physiological, developmental or pathological state of a cell, tissue, organ or organism[6].

A typical metabolomics experiment involves the following steps:

1. Samples, either tissues, biofluids (blood, urine) or gas condensates (often breath samples

collected as the subject exhales) are gathered and prepared as appropriate for the technique

to be used.

2. High-throughput technologies such as Nuclear Magnetic Resonance (NMR) or Mass Spec-

trometry (MS), which may be used in conjunction with separation techniques such as

liquid or gas chromatography to improve their resolution, are then used to record spectra

for the samples.

3. Peaks in the recorded spectra may be identified and assigned to particular metabolites.

Whether or not this step takes place is determined at least in part by the aim of the

study; be it a metabolomics experiment in the canonical sense, where changes in the

metabolome are quantified and interpreted in terms of the underlying biochemical pro-

cesses, or a metabonomics experiment, in which traditionally the goal was the identification

of a fingerprint for a particular condition or state[7].

4. Multivariate statistical analysis techniques such as Principal Components Analysis (PCA)

are applied to the data to determine whether groups of samples within the dataset (for ex-

ample diseased and healthy) can be distinguished from one another and which metabolites
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are primarily responsible for the separation.

In recent years, despite the availability of other, more established -omics approaches such as

transcriptomics (the measurement of gene expression via mRNA) and proteomics (the levels of

proteins within a sample), there has been a steady increase in the use of metabolomics within

the biological and medical communities. There are several reasons for this growth. Firstly, it

should be noted that far from being in competition with each other, -omics technologies are

complementary. Cancer, for example, is often ultimately the result of a genetic problem and a

genomics-based technique such as a microarray analysis would help to establish this; however

it would not show us how the genetic change was reflected in the function of the sufferer’s

cells, which is important when considering potential treatments or monitoring their effects.

Secondly, after the initial purchase of a spectrometer a metabolomics analysis can cost as little

as US$1 per sample, this compares very favourably with the cost of transcriptional or proteomic

approaches[8]. Finally, metabolomics is a reasonably portable technique, since while gene and

protein sequences vary between species, the metabolites are largely the same. Thus, rather than

trying to measure the amount of a particular enzyme, requiring the design of protein microarrays

with the appropriate sequences for each organism being studied, it may be much more convenient

to measure the effect on the concentrations of the substrates and products of reactions that the

enzyme catalyses[9].

2.1.1 Applications of metabolomic datasets

While metabolomics has been applied to a range of different fields, two of the most interesting

areas are environmental studies (such as the work on dab liver tumours, see chapter 4), which use

metabolomics to investigate the response of an organism to natural or anthropogenic stresses

under real or simulated environmental conditions[10], and medical applications such as drug
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toxicity, disease diagnosis and the monitoring of response to treatments.

Much of the early metabolomics work focused on plants. In 2000, Fiehn et al.[4] published a

paper that demonstrated the use of metabolic profiling in functional genomics. In their study,

which involved four different strains of Arabidopsis (two different ‘parent’ ecotypes and a mu-

tated version of each), they showed that by performing PCA on the relative concentrations

of 326 metabolites it was possible to separate the samples into their four groupings (although

the separation was much better between the parent strains than between the parents and their

children).

In 2003, Viant et al.[11] published the first application of NMR-based metabolomics to the

aquatic environment. Their study, which focused on Withering Syndrome, a fatal disease that

had already decimated black abalone (a type of edible sea snail) populations in California,

showed that it was possible to distinguish between healthy and diseased red abalone, as well as

those with stunted growth, using metabolomic data from samples of the animal’s foot muscle,

digestive gland and hemolymph tissue. The study also identified several potential biomarkers

for the condition, including decreased levels of phenylalanine, tryptophan, tyrosine & glycine,

and increased levels of formate and homarine.

In 2004, Bundy et al.[12] performed a study to determine if an NMR metabolomic analysis of

relative histidine concentrations, which had previously been identified as a potential biomarker

for copper contamination in semi-field-scale trials, could be effectively used in the field as an

indicator of metal contamination. The study involved three species of earthworm (as does much

of the literature in the area owing to their relative immobility and close contact with their

surround environment[13]), two native and one imported, spread across six sites with varying

degrees of contamination. No species of worm was at all six sites. While the experiments did

show that separations between groups of worms from the different sites could be created based
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on PCA for all three species, the degree of contamination at which the separation took place

differed for each species. The analysis also identified maltose as a potential biomarker for metal

contamination, although while one of the native species of worm showed an increasing relative

concentration of maltose in the more highly contaminated sites, the other species showed a

decreasing level of maltose. This is a good illustration of the need to apply biomarkers carefully

due to differences in metabolism between species.

Metabolomics has a role to play in a whole range of healthcare-related fields; in disease pre-

vention, through studies of how diet and nutrition impact on various forms of illness[14], in

disease diagnosis, where biomarkers for particular conditions can help with their rapid diagno-

sis, and in treatment, both through drug development and selection and through the monitoring

of responses to therapy.

While the primary aim of any preclinical toxicology study has to be to ensure the safety of

any recipients of a new treatment, an important secondary consideration is that “the later

that a molecule or molecular class is lost from the drug development pipeline, the higher the

financial cost”[15]. As such, preclinical toxicology studies require a careful balance to be struck

between assuring the rapid loss of dangerous drugs and permitting those that have clinical

benefits to pass through the development process. Toxicity studies typically generate clearly

definable endpoints such as clinical signs or histopathology and can be arrived at reasonably

quickly due to high dosage; however, these studies tend to take place after the in vivo testing

of the effectiveness of the compound and those effectiveness tests seldom have as many robust

endpoints that could be used as early warnings of potential toxic effects and frequently take

several weeks to complete[1]. Metabolomics can therefore, play an important role in the drug

development process by allowing the early screening of biofluid samples from the efficacy test

animals for biomarkers of toxic effects. While these markers may not themselves be sufficient
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evidence to stop the development of a drug, they can be used to suggest target organs for later full

toxicology studies. Metabolomics also has a role to play in the later, testing phases of the drug

development process. Here, biofluid samples from the test subjects can be used to ensure the

absence of toxic effects, helping to avoid situations such as that seen in 2006 when six volunteers

suffered multiple organ failures after taking part in the trial of a new anti-inflammatory drug[16].

Although the non- or minimally-intrusive nature of metabolomics of biofluids lends itself to

use in clinical practice, a great deal of preclinical work has also been done to try and identify

biomarkers and understand the metabolic processes going on in diseases. Metabolomics has for

example been used to distinguish between different types of tumour cell lines for a number of

years[8]. The question remains however as to how reflective of a tissue an extracted sample for

metabolomic analysis can be when it has potentially undergone any number of non-biological re-

actions associated with the extraction procedure[1]. One variant of NMR metabolomics, Magic

Angle Spinning (MAS) avoids this problem by allowing the experiment to be performed on

a small sample of intact tissue, rather than an extract. This has the advantage that all the

metabolites are still in-situ within the cellular structures that normally contain them and the

risk of them undergoing additional reactions is much reduced. They can also be related to the

histology[15]. Magic Angle Spinning also allows water and lipid soluble metabolites to be ob-

served simultaneously, a process that would otherwise require separate extraction procedures[8].

Rapid and unobtrusive disease diagnosis and screening is one of the most attractive features

of metabolomics in a clinical setting and much work has been published on the topic. In

2002 for example, Brindle et al.[17] showed that it was possible to diagnose and determine the

severity of coronary heart disease in patients using NMR of serum samples. In 2005, Kenny

et al.[18] identified a pair of rules involving three key metabolite concentrations that could

be used to diagnose pre-eclampisa from the blood plasma of pregnant women; early diagnosis
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is of great importance in such cases as the potential therapies are most likely to be effective

before the clinical presentation of the disease. Coen et al.[19] have shown that it is possible to

distinguish patients with bacterial meningitis from those with viral meningitis based on NMR of

cerebrospinal fluid, a step that can be key in ensuring the patient receives the correct treatment

and therefore has the best chance of survival. Finally, Carraro et al.[20] have shown that exhaled

breath condensate can be used to distinguish children with asthma from those without.

Abnormal brain masses, both malignant and benign, pose difficult diagnostic problems and

require critical therapeutic decisions that can involve risk and possible damage to the patient[21].

This is a particularly important issue in children, where brain tumours are a leading cause of

cancer-related death and the tumours seen differ from those in adults[22]. While Magnetic

Resonance Imaging (MRI) is widely used for determining the extent of a mass and to provide

an initial diagnosis, surgical biopsies are still the gold standard for diagnosis[23]. However, not

all masses are cancerous[21] and many that are display a high degree of heterogeneity meaning

that a histopathological diagnosis from a single site may not fully characterise the bulk of the

tumour[23]. As such, there is a need within oncology for a non-invasive technique that can serve

as a guide for biopsy procedures or provide indications as to whether abnormal masses are likely

to be cancerous to assist with treatment planning and reduce the need for unnecessary surgery.

Magnetic Resonance Spectroscopy (MRS) allows a low-resolution NMR metabolomics experi-

ment to be performed non-invasively on a patient’s tissues using a conventional MRI scanner.

While it had been shown as early as the mid-1990s that MRS could be used to distinguish be-

tween the four most common types of brain tumour (meningioma, astrocytic, oligodendroglioma

& metastasis, and cysts) in adults using pattern recognition techniques[24, 21], its adoption into

routine clinical usage has been hampered by a lack of available data and of simple rules for

diagnosis that can be easily applied by radiologists. These issues are now beginning to be ad-
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dressed, both through work such as that by Harris et al.[25] which uses ratios of the heights of

key points in a spectrum to distinguish between different types of childhood cerebellar tumour

with parameters that can be easily updated as more data becomes available (this work is the

basis for the example usage of Linked Metabolites, see chapter 5), and through multi-centre

databases such as that being produced by the eTumour project[26] or distributed database and

classification systems such as HealthAgents[27]. Even so, despite its potential, data obtained

from MRS can not yet be used independently because of significant overlap and non-specificity

of the results[28].

2.1.2 Challenges facing metabolomics

The metabolism of an organism (as we have seen from the applications to environmental studies)

is extremely sensitive to the environment around it (factors such as availability of food, tempera-

ture and local pollutants) as well as to its own biological characteristics (age, sex etc.). As such,

many metabolomics studies suffer from noise due to biological variation and experiments must

be carefully planned to try and ensure that all the subjects are as closely matched as possible in

every respect save the factor under investigation. While such approaches can help to ensure that

the biomarkers identified are indeed due to the factor under investigation, they also introduce

the risk that the markers may only be applicable under a very narrow subset of conditions and

in a particular location. It has been suggested that these difficulties can be overcome by defin-

ing a Normal Metabolic Operating Range (NMOR) for an organism at a particular site, that

being an area of the multi-dimensional metabolic space that contains 95% of the individuals of

a population at that site and then describing markers as a deviation relative to that space[10].

Alternatively, it has been proposed that composite biomarkers should be utilised, groups of

changes that together can be used to characterise the change in metabolism, thus reducing the

effect of noise on any one metabolite concentration due to external factors[29]. Even so, much
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work remains to be done in this area.

Metabolomics practitioners must also address the problem of “the usual suspects”[1]; compounds

that frequently appear in the literature as biomarkers for a huge range of conditions. These com-

pounds, which include molecules such as citrate, creatine, glucose and lactate are actually often

related to other cellular processes, such as energy metabolism or apoptosis, and hence frequently

appear altered in organisms experiencing some type of stress. Thus, while these compounds may

indeed be altered in the conditions under investigation, they are an important reminder that

metabolomics needs to focus on the most specific markers to a particular condition, and that

the metabolites driving pattern separations in PCA are not necessarily the most interesting

or appropriate for use as biomarkers[1]. The natural solution to this problem lies in relating

the biomarkers to the underlying biology of the system (see chapter 5), both by placing them

in the context of biological processes that are already known to be involved in the condition

under investigation, and potentially by using the presence of particular markers to infer new

knowledge about a particular condition based on biological processes that have been investigated

elsewhere. Traditionally, these comparisons are performed using a set of graphs known as the

metabolic pathway diagrams (for a description of the metabolic pathways, see section 2.2.6), as

such the following sections will provide a brief introduction to graph theory before returning to

the biology in order to discuss some of the ways in which experimental data can be presented

as a graph.
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2.2 Graphs as representations of real-world systems

2.2.1 What is a graph?

In mathematics a graph is a collection of points (commonly referred to as nodes or vertices)

that are connected by a set of links (either called edges if the link is bidirectional or arcs if the

link only applies in a single direction). More formally a graph G = (V,E), is a mathematical

structure consisting of two sets V and E[30]. The elements of the set V are the nodes (or

vertices) of the graph, while the elements of the set E are pairs of nodes representing the start

and end points of the edge. If the graph is directed, then the elements of E are an ordered pair;

in this case the directed edge (or arc) runs from the first node in the pair (the source) to the

second (the target).

In real-world contexts, graphs are often, although by no means exclusively, used to represent

systems where some kind of transfer is involved; these include communications networks where

nodes (senders or receivers) exchange information, power distribution networks, in which nodes

commonly represent power stations, distribution units such as sub-stations or consumers and

the edges represent power lines, and transportation networks, where nodes commonly represent

stations, airports or cities and edges represent the tracks, flight paths or roads between them.

Graph-based models are commonly used to solve a wide range of problems, from network routing

to epidemiology and the determination of the most efficient order for robots to place components

onto printed circuit boards.

2.2.2 The bridges of Königsberg

Graphs have been used in the mathematical modeling of real-world systems since the early

eighteenth century. The first recognised use of a graph as a modeling technique was in the
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1730’s when the Swiss-born mathematician Leonhard Euler used it as the basis for his solution

to the Königsberg bridge problem. The problem is as follows: in the city of Königsberg, on the

banks of the Pregel, there are seven bridges (Figure 2.1). Is it possible for a man to walk across

all seven bridges and never cross the same bridge twice?

Euler’s solution to the problem was beautifully simple, rather than taking the approach used in

coffee shops throughout the city and attempting to find a path that crossed all seven bridges,

he decided to try to prove whether or not such a path could ever be found. In order to achieve

this he drew out the map of the city in a simplified form, as a graph (Figure 2.2), to which he

applied the following reasoning:

1. Nodes in a graph that have an odd number of links must be either the starting point or

the end point of a path.

2. A single, continuous path covering every edge in a graph can only have one starting point

and one end point.

3. Therefore, no single, continuous path covering every edge in a graph can exist if that graph

has more than two nodes with an odd number of links.

In the graph of the Königsberg bridges, Euler noted, there were four nodes with an odd number

of edges and therefore there could be no route that crossed all of the seven bridges exactly once.

In the 140 years that followed the publication of Euler’s solution to the Königsberg bridge

problem, nobody ever found a route across the seven bridges. It wasn’t until 1875, when the

townsfolk built a new bridge between the banks of the river (thus making two of the four nodes

even) that a walk fulfilling the criteria was finally found.
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Figure 2.1: A map of the city of Königsberg in the eighteenth century.

Reproduced from [31].

Figure 2.2: A graph representation of the bridges of Königsberg. The

dotted edge represents the 1875 bridge.
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2.2.3 Small worlds

By the mid 1960’s the idea that how people were connected to each other on a local level had

an important effect on the overall structure of the society as a whole was already well accepted

by sociologists. The use of random graphs as models of large social systems was also beginning

to become more popular (indeed sociology was one of very few areas outside of mathematics

where graph theory was actively used as an analysis technique at the time). Initial work by Pool

and Kochen[32], which was originally written in 1958 but didn’t appear as a published work for

another two decades, had suggested that in random graph models of human contact networks

(where nodes represent individuals and links represent a relationship between them such as a

friendship, business relationship or a familial tie) if each person knew, on average, 1000 other

people then most people should be able to be linked to each other via a chain of at most two

intermediaries. This result appeared to agree well with the reasonably common “small world

phenomenon”; the experience of meeting a person who you believe to be a complete stranger

and discovering that you have a common acquaintance. Such a discovery is often accompanied

by the exclamation “It’s a small world!”

In 1967, sociologist Stanley Milgram (who was by this point a rather controversial figure in the

field following his research into the human response to authority figures) began an experiment

designed to investigate the length of chains linking individuals in real social groupings. This

was an experiment that he would repeat in greater detail and with a large sample two years

later[33]. In his experiments Milgram asked groups of volunteers to attempt to pass a letter

to a target person, a Boston stockbroker, identified by his name, address, occupation, place of

work, college, year of graduation, military service dates, wife’s maiden name and hometown.

The only stipulation was that the letter should be passed only to a person known to the sender

on a personal basis and whom the sender believed was more likely to know the target than the
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sender themselves. In addition to the passing of the letter, participants were asked to add their

name to a list that accompanied the letter (to prevent the creation of loops) and also to send a

card back to Milgram so that he could track chains that were incomplete as far as was possible.

The 296 initial volunteers for the 1969 study formed three groups, blue-chip stockholders from

Nebraska, randomly selected individuals from Nebraska, and randomly selected individuals from

the Boston area. Of these initial volunteers, approximately 2
3 actually passed on the letter and

therefore began a chain. Ultimately 1
3 of the letters reached the target recipient.

The mean chain length across all three groups was 5.2 steps; while this is considerably larger

than Pool and Kochen’s figure of two, it is still small compared to the size of the population

of the United States at the time (approximately 200 million). Perhaps more impressive is the

fact that the figure didn’t alter hugely with geographical area, with the Boston random group

having a mean chain length of 4.4 compared to a mean chain length of 5.4 for the Nebraska

stockholders and a mean chain length of 5.7 for the Nebraska random group. Milgram’s results

were the first study into what is now commonly referred to as the “six degrees of separation”,

although that term was never used by Milgram himself, it originated instead in John Guare’s

1991 play of the same name[34].

In 1973, around five years after Milgram’s experiments, Mark Granovetter published a paper

based on research he had performed as part of his doctoral dissertation[35]. For his study,

Granovetter questioned a number of professional, managerial and technical workers living in a

Boston suburb; each of the subjects had recently changed job and Granovetter was interested in

how they had come upon the information that led to their new positions. In those cases where

the information had come through a contact, Granovetter asked the subjects how regularly they

saw that contact based on the following scale: often = at least twice a week, occasionally =

more than once a year but less than twice a week, rarely = once a year or less. Over half of the
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subjects reported that they only saw the contact occasionally and additionally, in many cases

indicated that the source of the information was not someone in their current network of contacts.

Instead the contact was commonly a former college friend or an ex business contact such as a

former employer. When tracing the original source of the information back through the contact,

Granovetter discovered that in the vast majority of cases (over 80%) the contact either knew

the source of the information directly, or were within one intermediary of them. Granovetter’s

research showed two things; firstly that ‘new’ information within a social network is unlikely to

come from those people that you interact with on a regular basis, those with whom you have a

‘strong’ tie, as it is likely that you have access to the same information sources. Secondly, that

it is likely the person you do get such information from will be someone you only have a ‘weak’

tie to, an occasional contact who moves in another circle of people and who acts as a bridge

between you and that group. It is that remote group who will have access to information that

is different to your own. The presence of this type of bridge in social networks had two main

implications; firstly, that the larger-scale, macroscopic structure of the system could be at least

as important as the microscopic structure surrounding the subject, but also that the structure

of some networks may differ in very significant ways from that of the random graphs that were

being used to model them on a large scale.

MTV’s “Jon Stewart Show” might seem an unlikely source for an academic idea to be brought

squarely into the public eye; however it was on an edition of that programme in 1994 that

three students of Albright College, Pennsylvania grabbed the attention of the audience with

their ability to link the actor Kevin Bacon, who they claimed was the centre of the Hollywood

universe∗, to any other actor or actress suggested to them[34]. The “six degrees of Kevin Bacon”

as the game became known is played as follows: first, select an actor or actress. The object of
∗Kevin Bacon is not actually the best connected actor in Hollywood, that honour goes to Rod Steiger with

Bacon ranking 1049th (based on the IMDB in June 2004).
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the game is to link that person to Kevin Bacon via a chain of intermediaries they have worked

with on the big screen. As an example, consider Star Trek’s DeForest Kelly; Kelly worked with

Christian Slater on “Star Trek VI” in 1991 and Slater would later work with Kevin Bacon on

“Murder in the First” in 1995.

A few months after the programme aired, a web-based version of the game, “The Oracle of

Bacon”[36] was created by two computer scientists from the University of Virginia. The website

used information from the Internet Movie Database (IMDB)[37] to calculate the shortest path

from an actor to Bacon. Borrowing from a similar game played by academics, in which people

linked themselves to Paul Erdös via coauthorships and then assign themselves a number equiv-

alent to the length of the shortest path[38], the site also came up with ‘Bacon numbers’ for each

actor. In the earlier example, DeForest Kelly was linked to Kevin Bacon in two steps, hence he

has a Bacon number of two. There are of course, plenty of other examples; Kyle MacLachlan

for instance was in “Dune” with Max von Sydow, who was in “Minority Report” with Tom

Cruise. Cruise acted alongside Kevin Bacon in “A Few Good Men” and so Kyle MacLachlan

has a Bacon number of three. While such games are fun they are included here for a good

reason; which is that just like Milgram’s letters or Granovetter’s contacts in the labour market,

they display a surprisingly short average path length between individuals. According to “The

Oracle of Bacon” the mean path length in the “six degrees of Kevin Bacon” is 2.946 (based

on the IMDB in June 2004), while the mean path length for coauthorships with Paul Erdös is

4.65[39].

20



In 1998, Duncan Watts and Steven Strogatz proposed a new graph model, one which encap-

sulated both the highly clustered nature of regular lattices and the short average path length

seen in random graphs[40]. The model was called the “small-world network”, a reference to the

small-world phenomenon that it displayed.

In order to generate small-world networks, Watts and Strogatz started with a standard ring

lattice containing n nodes each with k edges. The networks were sparse, meaning that the

number of nodes was far greater than the number of edges per node, however not so sparse that

the graphs were in danger of becoming disconnected (having isolated fragments that are not

connected to the rest of the structure). They then proceeded to rewire each edge at random,

with a probability p. By altering the value of p, Watts and Strogatz were able to investigate

how the degree of randomness they introduced into the graph affected two key parameters; the

average path length, L(p) and the clustering coefficient C(p).

L is defined as the average shortest path length between all pairs of nodes in the graph. C is

defined locally for a node v, with kv neighbours (nodes connected to it by a single edge) and Ev

edges between its neighbours by:

C =
Ev

1
2kv(kv − 1)

(2.1)

This can then be averaged to give C for a graph containing n nodes:

C =

∑n
v=1

Ev
1
2
kv(kv−1)

n
(2.2)

In regular lattices, there is no rewiring and therefore p = 0. In these cases the degree of clustering

C(0) is high, while the average path length L(0) grows linearly with n. By comparison, in a

random graph, where every edge is placed at random p = 1. The degree of clustering C(1) for
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a random graph is low and the average path length L(1) only grows logarithmically with n.

While the logical assumption based on these boundary conditions might be that a large average

path length always accompanies a large clustering coefficient and vice versa, Watts and Strogatz

found that for a broad range of values of p, graphs were produced in which L(p) was nearly

as small as it is in random graphs and yet C(p) was still considerably larger than in random

graphs. The reason for this was that for small values of p, each rewiring, while only having a

minor effect on the degree of clustering of the system as a whole, would reduce the distance

not only between the source and the target nodes of the rewired edge but also between their

neighbours, the neighbours of their neighbours, and so on. An important implication of this is

that the change from the highly clustered lattice to a small-world would be almost imperceptible

at a local level, since the degree of clustering remained largely unchanged.

Watts and Strogatz then checked their results by measuring L and C for three well-studied

graphs; the network of collaborations between actors, the electrical power grid of the western

United States, and the neural network of the nematode worm Caenorhabditis elegans. In all

three systems they found the same characteristic low average path lengths combined with a high

degree of clustering, demonstrating that far from being a fluke of social networks, the small-world

phenomenon was probably common to many large, sparse networks in nature. The small-world

property is displayed by the directed metabolic graphs in chapter 6.

2.2.4 Scale-free networks

In 1999, Réka Albert, Hawoong Jeong and Albert-László Barabási published the results of a

study they had performed while investigating the topology of the World-Wide Web[41]. It should

be noted at this point that the World-Wide Web, the network of interconnected documents that

are commonly accessed through a browser such as Mozilla Firefox or Microsoft Internet Explorer,
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is distinct from the Internet, the hardware on which the documents are stored. In order to

gather data on the topology of the web, Albert, Jeong and Barabási built a piece of software

commonly known as a web spider; spiders gather information on web pages by recursively

following URLs and adding the pages they discover to a database as they proceed. Using the

topological information gathered by their spider (which they had set to explore the University

of Notre Dame’s domain, nd.edu), Albert, Jeong and Barabási began to investigate the in and

out-degree distributions of the system (since a hyperlink is a directed concept, running from one

page to another, each node will have a number of links that head into it, the in-degree of that

node, and a number of links leaving, the out-degree). They discovered that the distributions of

both the in and out degrees across the graph as a whole differed significantly from both those

predicted by Erdös and Rényi for random graphs, which would be expected to form a Poisson

distribution, and from that of the small-world networks of Watts and Strogatz. Instead, the

distributions formed a power-law; meaning that for the vast majority of nodes the number of

links was very small. As the number of links increased, the probability of a node having that

number of links dropped logarithmically resulting in very few highly connected nodes, which

dominated the topology of the graph.

On further investigation, Albert, Jeong and Barabási found that although the degree distribution

of their data did not match with that of small-world networks, the data did form a small-world as

it displayed the characteristic short average path length (11.2 steps for the nd.edu domain, which

contained 325,729 nodes and 1,469,680 links). The reason for this was the few highly connected

nodes (or hubs) in the system, which acted as short-cuts between otherwise distant parts of the

graph. Albert, Jeong and Barabási’s “scale-free” graphs, so called because of the several orders

of magnitude over which the degree distributions displayed a power law tail, quickly became

a topic of great research interest, with several groups worldwide reporting them in a diverse

range of systems; including the routing topology of the Internet[42], metabolic networks[43],
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and social networks including the network of scientific collaborations[44], the network of human

sexual contacts[45] and the terrorist cell responsible for the September 11th attack on the World

Trade Center in New York[46].

Scale-free networks appeared to be common in nature, but what caused them and their unusual

degree distribution? As a follow-up to their work describing scale-free networks, Barabási and

Albert published a paper arguing that a combination of network growth over time and preferen-

tial attachment could result in just such a graph[47]. Barabási and Albert noticed the following:

in the graphs normally used to model large systems (either the random graphs of Erdös and

Rényi or more recently the small-world networks of Watts and Strogatz) the size of the system

is fixed at the time of its creation. A graph is generated, which contains N nodes, and these

are then either connected with a given probability or formed into a lattice that is then rewired.

In real-world systems this is seldom the case; the core of a network will form and it will then

expand, with new nodes being added over time. They also noted that rather than being con-

nected at random to other nodes in the graph, a new node, upon joining the network is more

likely to be connected to some of the existing nodes than it is to others. Actors staring in their

first movie for example, are likely to be working alongside more established figures rather than

in a cast comprised entirely of newcomers. In the same way, a new website is far more likely to

link to sites such as Google or Amazon than it is to a page describing sheep farming methods

in the Ukraine, unless of course it is about a similar topic. In real-world systems it seemed, the

“rich get richer”.

Based on their observations, Barabási and Albert proposed the following growth model for scale-

free networks (Figure 2.3 – Figure 2.6). Start with a small number of nodes, m0. Now begin to

add additional nodes to the graph one at a time. As each node is added create edges between it

and a number of the existing nodes in the graph less than or equal to the number of nodes that
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Figure 2.3: Early stage of a scale-free network. This network began with 2

nodes connected by a single edge. With each new node either 1 or 2 edges

were added giving an effective m of 1.5.

Figure 2.4: The network after 18 time-steps (now containing a total of 20

nodes). At this stage nodes 0, 1, 2 and 3 can be seen to be emerging as

hubs.
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Figure 2.5: The network after 48 time-steps (a total of 50 nodes).

26



0.00001

0.0001

0.001

0.01

0.1

1
1 10 100

k + 1
P

(k
)

Figure 2.6: The probabilities of a node having degree k for 1 ≤ k ≤ 100

as taken from the completed scale-free network of 100,000 nodes. The

trendline is for a power law with the equation P (k) = 7.4k−2.998
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were initially placed. Select the nodes to which the edges will be attached based on a probability

that is individually scaled, (for each node) according to its degree at that time. Specifically, at

any given time t the graph contains n nodes and the probability of attachment to node i, which

has degree ki, is given by:

∏
(ki) =

ki∑n
j=1 kj

(2.3)

While Barabási and Albert’s model does generate scale-free networks, it has problems. It does

not state how to perform the preferential attachment in the case of the initial graph (where

there are no edges) and it can only generate graphs where the exponent of the power law is 3

(in real-world systems this parameter can vary)[48]. A more mathematically rigorous process,

based on Baraási and Albert’s criteria, is the LCD model of Bollobás and Riordan[49].

The LCD growth model differs from Barabási and Albert’s in several ways; firstly self-loops

(edges that link a node to itself) are allowed, as are multiple edges between a pair of nodes.

These features, which are not created by the Barabási-Albert model, can be seen in real-world

networks in situations such as a webpage linking to itself (often found in contents tables for long

documents) or as multiple links between two pages (for example references to another topic from

different parts of an online encyclopedia article). In order to allow the creation of self-loops, the

probability of attachment to each node in the graph has to take into account the contribution

to the degree distribution made by the outgoing half of the edge being added. As such, the

probability that a given node, V (s) should be the target of one of the edges from the node being

added in the current time-step, V (t) is given by:

p(Edge(V (t), V (s))) =


d

Gt−1
1

V (s)

2t−1 1 ≤ s ≤ t− 1

1
2t−1 s = t

(2.4)
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Where dGt−1
1

V (s) is the degree of node V (s) in the graph at the previous time-step.

It should be noted that since the outgoing portion of each new edge being added to the graph

counts towards the degree of the source node, V (t) the probabilities for each node need to

be recalculated as every edge is added and not just for each time-step as is the case in the

Barabási-Albert model.

The second major difference between the two models is in the state of the initial graph; under

the LCD model the initial graph is empty (it contains no nodes or edges) or it only contains a

single node with a self-loop. This combined with the new formula for determining which node

should be the target of the edge being added means that unlike in the Barabási-Albert model

there is never any ambiguity over how the preferential attachment should take place (no nodes

exist with degree zero).

Albert, Jeong and Barabási went on to study the vulnerability of the networks generated using

the Barabási-Albert model to random failures and targeted attacks[42]. They found that in

random graphs, the failure of a small fraction of the nodes caused a noticeable increase in the

diameter of the graph (the length of the shortest path between the two most distant nodes in

the graph) but that it made no difference to the rate of change of the diameter if the nodes

that failed were selected at random or as the result of a targeted selection process. In scale-free

networks by comparison, the effects of random failures were much less pronounced, however

targeted removal of the most connected nodes caused a rapid increase in diameter. The effect of

the removals on the structure also differed, with failures in the random graphs causing them to

fragment at a given threshold, whereas failures in the scale-free networks initially only caused

the size of the largest cluster to gradually decrease, with fragmentation only taking place when

the largest cluster became very small. In a targeted attack scenario however, the effect of node

removals on scale-free networks is similar to that observed in random graphs but it occurs at a
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much higher rate.

The reason for this difference in behaviour was the topology of the graphs. In random graphs,

where the degree of each node is approximately the same, all nodes contribute equally to the

network’s connectivity. As such, the removal of a node will always have an effect on the diameter

of the system and that effect will be similar regardless of the node selected. In scale-free networks

by comparison, the vast majority of the nodes are of low degree and therefore play a very minor

role in the connectedness of the graph. As such the removal of a node at random, which is highly

likely to be a node of low degree, will have a negligible effect on the diameter of the graph. In a

targeted attack however, a hostile agent can choose to remove one of the few, highly connected

hubs; in this case a much larger than normal proportion of the paths through the graph would

be lost, leading to a rapid rise in the diameter of the system.

Based on their studies of the World-Wide Web, Albert, Jeong and Barabási had shown over

the course of two years that scale independence existed in real-world, large-scale systems. They

has also demonstrated that such systems were resilient to the random failure of a significant

fraction of their nodes, and developed a growth model that explained both their evolution over

time. Additionally, they had offered an explanation as to why other traditional models had

not shown similar behaviour. Now they moved away from the web and began working with

a set of important biological graphs, metabolic networks[43] (for an introduction to metabolic

networks see section 2.2.6). For this study Albert, Jeong and Barabási joined with two biologists

from Northwestern University in Chicago, Bálint Tombor and Zoltán Oltvai. Using data from

the WIT (now ERGO) database, they built graphs of the metabolic processes predicted to be

taking place in 43 different organisms, based on their annotated genomes. Analysis of the graphs

showed that they did indeed possess the characteristic power-law degree distribution of scale-free

networks; furthermore, it showed that the substrates acting as hubs in the metabolic networks
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were practically identical across all the graphs, despite only 4% of the complete list of substrates

being present in all 43 systems (the directed metabolic graphs presented in chapter 6 are also

scale-free). The diameter of the networks showed almost no variation with the complexity of

the organism, which given the average value of just over three steps made metabolism a very

small-world indeed.

The scale-free network model seemed to fit with a wide range of metabolic systems, but was it

solely responsible for their topology? Two years later, and now working with Ravasz, Somera

and Mongru, Oltvai and Barabási published another paper about the structure of metabolic net-

works, this time discussing how they apparently differed from the standard scale-free model[50].

Looking at the same 43 systems, they showed that the clustering coefficients of the graphs were

an order of magnitude higher than was predicted by the scale-free model. This suggested that

the traditional, biologists’ viewpoint of metabolism as a modular system, consisting of strongly

linked groups of nodes with weaker ties between them (much like Granovetter’s model of the

labour market), may also be an important element in the topology of metabolic networks. To

explain this phenomenon, Ravasz et al. proposed the ‘hierarchical network’, a scale-free system

made up of repeating, nested groups of nodes rather than individuals thus allowing both a high

clustering coefficient and a power-law degree distribution.

2.2.5 Metrics for the determination of network structure

The range of metrics that can be used in the determination of network structure is huge and

a small section in a document such as this can not hope to give any more than a superficial

coverage of the topic. With this in mind the following section attempts to briefly discuss some

very basic metrics and their uses, and then moves on to cover two more complex metrics that

are likely to be of use within the field of metabolomics. For a more complete review of metrics
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and how they relate to graph structure, the reader is directed to the papers by Newman[51],

Albert[52] and Dorogovtsev[53].

A number of very simple metrics can give a surprising amount of important information about

the structure of a graph. The numbers of nodes and edges alone can for example, be used

to suggest how dense the graph is and whether it is likely to be a single, large structure or

a collection of fragments. Knowing the degree of each node, the number of edges that are

incident to it, is also important; the degree distribution for a graph, node degree plotted against

the probability that a node in the graph has that degree, can be suggestive of many types of

architecture. A Poisson distribution for example, might indicate a random structure, whereas a

distribution that is sharply spiked at a particular value is more suggestive of a regular structure

such as a lattice. It might also indicate a graph that has evolved from a regular structure such as

the small-world networks of Watts and Strogatz. A degree distribution that follows a power-law

is often considered indicative of a scale-free system, although caution is advised as many systems

have been reported as scale-free based on questionable fits of power-laws to the data. In directed

graphs, the degree of each node may be subdivided into an indegree, the number of arcs leading

into the node, and an outdegree, the number of arcs leaving it. The indegree and outdegree

distributions can further assist in the determination of structure by suggesting features such

as layered structures, where one group of nodes within the graph feeds into another. Paths

between nodes play an important part in many graph applications and the determination of

structure is no exception to this; the network diameter, the length of the longest shortest path

between two nodes within the graph, and the average path length between all node pairs in the

graph, can be used to help separate small-world structures (both Watts/Strogatz and scale-free)

from others. Another path metric, betweenness centrality, is the fraction of the shortest paths

between all pairs of nodes within the graph that pass through the node or edge for which it is

being calculated. High betweenness centrality values indicate that the node or edge may be a
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‘bottleneck’ in the graph and that the structure may consist of groups of nodes connected by

a few key elements (this is particularly interesting when considering how automated searches

might identify chains of reactions responsible for observed biological effect, see chapter 5). The

level of grouping of the nodes within a graph can also be investigated using clustering coefficients,

a measure of the extent to which the neighbours of a node are also connected to each other. A

low average clustering coefficient might indicate a tree structure or random graph, while higher

values would suggest lattices or, as above, groups of nodes that are densely connected within

themselves but only connected to each other by a few links. Figure 2.7 shows an example of

how these simple metrics might be used to distinguish between some of the graph structures

discussed.

While metrics such as the network diameter aim to describe the overall structure of the network

under investigation, other metrics attempt to describe how the local environment around the

nodes might appear. One such method, Triadic Census, was proposed by Holland and Leinhardt

in 1970[54]. A triadic census is a survey of the graph for the sixteen unique configurations of

three nodes and the arcs between them (Figure 2.8), and the comparison of the frequencies of

occurrence for each of these structures against a set of ‘expected’ frequencies for a random graph

of the same size. The sixteen triads used during the triadic census are not the only possible

ways of linking three nodes with arcs; if you consider each of the nodes to have a label and

therefore be different from the others, then there are 64 possible configurations. The triads are

an example of the graph isomerism problem, the way in which two structures can appear to be

different because of their layout or numbering but are identical from the structural point of view

(Figure 2.9).

Motif search[55] uses the same ideas as triadic census but applies them to subgraphs of size n;

effectively replacing the dictionary of sixteen, three node structures with that of the n node
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Tree Random Watts / Strogatz Scale-free

Does the degree distribution
display a power-law?

YesNo

Does the network display a
short average path length?

Does the network display a
low degree of clustering?

Yes No

No Yes

Figure 2.7: An example of how a collection of simple metrics can be used

to guide the determination of network structure.
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003 012 021U 021D

102 021C 030T 030C

111U 120U 120D

120C 201 210 300

111D

Figure 2.8: The complete set of triads used during triadic census. The

numbering system xyz describes the triads based on x, the number of pairs

of nodes linked by a bidirectional arc, y, the number of pairs of nodes linked

by a unidirectional arc, and z, the number of unlinked pairs. The letter

is used to further distinguish between the shapes, up, down, transitive or

cyclic.
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1 2

3 4

1 2

3 4

Figure 2.9: An example of the graph isomerism problem. The graphs on

the left and in the centre of the figure appear to be different, but if the

numbering is ignored and the nodes on the right-hand side of the graph in

the centre (2, 4) are swapped we can see that it forms the graph on the

right. Thus the graphs are the same from the structural point of view.
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structures. Triadic census and motif search are both of potentially great value when dealing

with very large graphs, since a knowledge of the types of structures that exist within a graph

can give us some idea of how it might behave on a larger scale. This was perhaps best illustrated

by Milo and Shen-Orr in 2002[56], who having applied motif search to the transcriptional regu-

latory network of E. coli showed that three motifs they had identified were of known biological

significance. Later in the same year they published a second paper, which went on to show

how the technique could also be applied to a range of other systems including food webs, the

connections between neurons in C. elegans and electronic circuits.

Since Milo and Shen-Orr’s papers in 2002, a great deal of additional work has been done in

order to speed up the search for motifs and make the technique more accessible to a range of

users. Of particular interest is the work by Berg and Lässig[57], which extends the idea of a

motif by introducing scoring to allow partial but not necessarily identical structures to also be

counted as part of the motif search. This could be used to take into account incomplete datasets

(often the case in large networks) and in the case of biological systems in particular, the effects

of evolution on the structure of the motif. A range of software tools for motif search exist, most

notably Mfinder[58], MAVisto[59] and FANMOD[60].

2.2.6 Metabolic pathways

Metabolic pathways are chains of reactions which when combined show how a particular function

such as the extraction of energy from food (glycolysis) or the biosynthesis of important molecules

is performed by a cell. Metabolic pathways are usually presented as graphs in which nodes rep-

resent compounds and edges represent reactions, often labeled with the enzymes that catalyse

them. The complete set of metabolic pathways for an organism is known as its metabolic

network. A number of online resources that include information on metabolic pathways ex-
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ist, of which arguably the most well-known is the Kyoto Encyclopedia of Genes and Genomes

(KEGG)[61, 62]; a suite of databases that aim to assist scientists integrating genomic and

metabolic data. The KEGG PATHWAY database (the component of KEGG that deals with

metabolic pathway information and the current basis for the Linked Metabolites software pre-

sented in chapter 5) is a collection of static “reference pathways”, that is to say that each of the

pathways contains experimentally determined reactions contributing to the process it describes

but taken from a variety of organisms and then combined to form a single graph. As many key

metabolic processes are well preserved amongst most organisms from mammals to bacteria[63] it

is possible for KEGG and other similar resources to computationally generate organism specific

pathways from the reference pathways by highlighting enzymes (and the reactions they catalyse)

in the reference pathways that are known to be present in the organism based on its annotated

genome (Figure 2.10).

MetaCyc[64, 65] is a database of reference pathways used by the BioCyc project as a base from

which to generate organism specific pathways. Unlike in KEGG, where the generated pathways

are presented as overlays to the reference pathway diagrams, the BioCyc project stores the

extracted pathways as separate databases, effectively creating whole, organism specific pathway

databases that can then be queried, edited and updated independently. When first created, the

computationally generated pathway databases have not been subject to any human curation

and may include errors or omissions; as such BioCyc has an evidence coding system to indicate

the original source of the information, be it from primary literature, computationally predicted,

predicted and then subject to curation etc. As of October 2008, over 370 computationally-derived

pathway databases were available as part of the BioCyc project, of which 20 had undergone a

limited curation effort. These included HumanCyc[66], an organism specific pathway database

for Homo sapiens.
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Figure 2.10: KEGG pathway diagrams for the TCA cycle. The top diagram

is the reference pathway and below is the same diagram highlighted based

on the annotated genome for Homo sapiens.
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While the reference pathways in databases such as KEGG and MetaCyc represent specific bio-

logical processes, the point at which a process becomes a pathway can be somewhat arbitrary,

with a single pathway in one database being represented by two or three in another. Meth-

ods exist that aim to allow the creation of organism specific metabolic pathways based on a

definition of the concept of a pathway rather than from experimentally determined reference

pathways. In 2003, Masanori Arita[67] published a method that generated possible metabolic

pathways from a graph in which edges represented a transfer of atoms between the source and

target molecules. Since creating pathways based on this type of transfer could in theory lead

to almost any molecule transforming into any other, an important concept in Arita’s work was

that there should be some degree of conservation of moiety (a structural fragment of a molecule)

along the entire length of any valid pathway, that is to say at least one atom from the source

molecule should have been passed along the pathway to the target. This is analogous to the idea

that a brush that has had two new handles and three new heads over a period of years is not the

same brush. Arita’s method contained three steps; in the first stage, just under 2,800 reference

metabolic reactions were taken from the Enzyme Nomenclature database, manually checked

against the literature for correctness (in some cases the reactions were either rearranged or bal-

anced) and then passed to a software package that mapped carbon, nitrogen and sulphur atoms

in the substrates of each of them to the equivalent atoms in their products. As was the case

with the reactions from which they were generated, the mappings were then checked by hand

and corrected where appropriate. Finally, the mappings were used to construct reference graphs

for carbon metabolism, nitrogen metabolism and sulphur metabolism, in which the nodes rep-

resented metabolites and edges represented the transfer of molecular fragments between them.

The second stage of the method involved the search for potential metabolic pathways between

source and target compounds, however for this to take place the actual metabolism of the or-

ganism of interest (in Arita’s case E. coli) needed to be selected in the reference graphs. As is
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the case in other methods using reference pathways, Arita’s method achieved this by selecting

reactions based on enzymes referenced in the annotated genome, which could be downloaded

from the KEGG database. Rather than excluding reactions that were not reported as present

in E. coli, Arita instead assigned them a much higher weighting† than those reported as present.

As a result of this, the searching of the graph for potential pathways, which was performed

using a k-shortest paths algorithm, could still report pathways that included those reactions

even though it would preferentially select those pathways that only included reported reactions.

This was important, since the annotated genome may have been either incomplete or contain

errors and thus relying on it alone could cause valid pathways to be overlooked. Any potential

pathways that looped back on themselves were rejected at this point, since while there are a

small number of genuine metabolic pathways that form loops, for example the TCA cycle (also

known as the citric acid cycle or the Krebs cycle), the vast majority of those results would be

artifacts due to the reversible nature of chemical reactions. The third and final stage of the

method involved the filtering of the potential pathways against the conservation of moiety cri-

teria discussed earlier; this involved the checking of the entire pathway against the individual

mappings in order to ensure that at least one atom from the source molecule passed along the

entire length of the path to become part of the target molecule, thus making it a valid biochem-

ical pathway. Ultimately, pathways derived in this way may prove a much more useful basis for

automated search techniques than those arranged to be easily viewed by humans and currently

available in KEGG (see chapters 5 and 6).

The computational derivation of organism specific metabolic pathways from reference pathways

has one important advantage of methods such as Arita’s; it avoids the problems associated

with compartmentalisation, the idea that only a subset of the complete genome is expressed
†When searches are performed using a shortest paths algorithm, as was the case in Arita’s work, edges with

high weights are less likely to be selected than those with low weights as they increase the length of the path.

Hence, in these cases a high edge weight is a penalty.
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in a particular tissue or cellular structure, by virtue of the experimentally determined nature

of the reference pathways. Despite this, computationally-derived databases are of limited use

because of the lack of curation (in order to remove or correct erroneous pathways) and lack

of references to evidence describing the pathway in the literature. An alternative group of

metabolic pathway databases exist that address this question by focusing on a single organism

and only containing curated data. The huge effort associated with the curation of such databases

means that they can only be created for important model organisms. A good example of this

type of database (and the database that provided much of the initial pathway information for

MetaCyc) is EcoCyc[68], a metabolic pathway database for E. coli. More recently another

curated database, Reactome[69, 70], was launched that focuses on human metabolism and then

computationally extends that effort to a small number of other important organisms. Along with

the human-specific pathway diagrams, Reactome contains citations to the literature, links to

information in external resources such as UniProt and GO, and the ability to layer experimental

results onto the diagrams. Critically, unlike other pathway databases, Reactome also includes

information on sub-cellular compartmentalisation and citations to experimental evidence for

each of its reactions; information that is vital if the database is to be used as the foundation for

in silico simulation of the pathways.

The computer simulation of metabolic pathways is an important area of research, enabling the

testing of theoretical models of metabolism against experimental results. Yet despite kinetic

modeling and simulation packages such as Gepasi[71]. E-Cell[72] and Virtual Cell[73] having

been available (in some cases) for two decades, it is only recently that the community has really

begun to embrace the field. While a component of this new-found interest is almost certainly

due to the increasing availability of low-cost, high-performance computing facilities, a large part

of the credit must also go to efforts designed to facilitate interoperability between the myriad

compound and pathway databases, the exchange of models between simulation packages and
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the reuse of existing models as components of larger systems. Amongst these two stand out,

BioPAX[74] and the Systems Biology Markup Language (SBML)[75].

BioPAX is a data exchange format for biological pathway information and is of great importance

since its ontology allows the unambiguous description of pathway objects, thus avoiding the issue

of different naming conventions across databases. BioPAX data is stored using OWL/RDF and

is therefore suitable for automated querying and combination of data from multiple sources by

web services or software agents. Most critically for any data exchange format, BioPAX has good

community support, which currently includes the BioCyc databases and Reactome.

SBML is an xml-based format for the representation of models of biochemical reaction networks,

allowing the specification of information such as reactant species, cellular compartments and

mathematical descriptions of the interactions between objects. Its aim is to provide a common

format for the exchange of such models between simulation packages thus removing the risk of

models becoming unusable if the package they were originally written in ceases to be supported,

while also making it easier for researchers to check and reuse published models that previously

may have needed to be manually recoded in the proprietary formats of multiple simulation

packages.

While metabolic pathway information in BioPAX format is available in great volume and with

unambiguously named elements allowing the easy combination of smaller pathways to form larger

ones, it does not encode all the information required for the simulation of the pathways. SBML

by comparison does contain the necessary equations and rate parameters but does not require

the unambiguous naming of elements outside the scope of an individual model. While recent

versions of SBML partially address this by allowing models to be annotated with references to

external information, the annotations are optional and SBML does not impose any restrictions

on their content. Thus, while SBML does allow models to be used in multiple simulation tools,
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it does not necessarily solve the issue of reuse of models as parts of more complex systems.

Projects such as the BioPAX modeling framework[76] are currently attempting to address this

problem by allowing fully annotated SBML models to be constructed from BioPAX data.

The methods chosen for the visualisation and exploration of metabolic pathways can have a

great impact on their usefulness, particularly if the features of interest are spread across mul-

tiple pathways. Traditionally, metabolic pathways are visualised using semi-static views like

those in KEGG, diagrams created and laid out in advance by a curator. Typically such di-

agrams cannot be edited by the end user, although they may have the facility for additional

information such as experimental results to be overlaid on them, and can only be navigated by

the use of hyperlinks, with the diagram of the linked pathway replacing that of the pathway

previously being examined. While this method can be appropriate for the visualisation of well-

defined reference pathways (particularly when there is only one pathway being investigated) it

is not at all suited to the visualisation of large systems containing multiple pathways or to the

potentially huge numbers of computationally-derived pathways. In response to this need, pack-

ages such as KGML-ED[77] have been created, which based on xml versions of the metabolic

pathways allow users to create customised, dynamic views of the pathways. These often include

the ability to customise the pathways by adding or removing elements, include multiple path-

ways in a single diagram, hide information by collapsing pathways into single nodes that can

be expanded as required, and change the layout either manually or based on standard layout

algorithms from graph theory. Many also allow the customised pathways to be exported in

formats such as SBML for visualisation elsewhere or as the basis for simulations. Packages such

as Cytoscape[78] and VisANT[79] take this a stage further by allowing the user to combine data

on metabolic pathways with gene regulation networks or by facilitating the colouring of the

on-screen network with experimental data emulating functionality previously available as part

of semi-static visualisations through tools such as those based on the KEGG EXPRESSION
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database[80], which enables the intensity ratios of spots on gene expression arrays to be mapped

onto the corresponding objects in appropriate pathway diagrams. Metabolite data has also been

visualised in-context as an overlay to the pathway diagrams, with work by Dwyer et al.[81] that

used columns of coloured blocks to represent time series concentration data being a particularly

good example. Finally, it would be inappropriate to talk about the visualisation of experimental

data in the context of metabolic pathways without mentioning VANTED[82]; a recent software

package that includes many of the techniques mentioned (combination of data from multiple

fields into pathway diagrams, flexible layouts) and combines them with analysis techniques such

as the ability to build correlation networks from experimental data.

2.2.7 Metabolic correlation networks

One of the major challenges in metabolomics is the inherent biological variability between sam-

ples, both across groups of subjects and between samples taken from the same subject at different

points in the day. Factors such as diet, the age of the subject and environmental stresses can all

lead to large variations in the metabolic profile of a sample, making direct comparisons difficult.

Fortunately, this variability also has its uses; pairwise comparisons of the levels of metabolites

across whole groups can lead to the identification of correlations within the data, indicating a

possible relationship between the metabolites in question. While heatmaps offer one method

of visualising this type of data, an alternative option is to generate a metabolic correlation

network[83], in which metabolites that are correlated more strongly than a given threshold are

linked together to produce a graphical representation of the important relationships within the

system (Figure 2.11).

The first stage in the creation of a metabolic correlation network is the assignment of correlation

values to each pair of metabolites being studied. Correlations may be calculated in a number
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Figure 2.11: Example of a metabolic correlation network.
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of ways, but the most common are the Pearson Correlation Coefficient (Equation 2.5) and the

Spearman Rank Correlation Coefficient (Equation 2.6).

r =
∑n

i=1(Xi − X̄)(Yi − Ȳ )
(n− 1)σXσY

(2.5)

r = 1−
6 ·

∑n
i=1(xi − yi)2

n(n2
−1)

(2.6)

The major difference between the Pearson and Spearman correlation coefficients lies in the fact

that the Pearson coefficient is parametric (there is an assumption that the data is normally

distributed) while the Spearman coefficient is not. If the data can be assumed to be normally

distributed, the Pearson correlation coefficient should be used in preference to the Spearman

correlation coefficient. They also differ due to the ranking approach used by the Spearman

correlation coefficient. In the Pearson coefficient, the correlations are calculated based on the

distance between equivalent points in the data series being used. The Spearman correlation

coefficient however, uses the distance between the ranked order of the equivalent points, meaning

that data series that are identical in shape but differing in average amplitude will appear more

highly correlated than they would using the Pearson correlation coefficient. The Spearman

correlation coefficient will also return a more favourable result in situations where the data

contains a relatively small number of outliers, as the difference in the rankings will be small

compared to the actual difference between the values of those points.

The strength of a correlation is not necessarily proof of its significance, which is affected by

factors such as the size of the underlying dataset. As such before a metabolic correlation

network can be constructed a p value (measure of significance) must be calculated for each r

value (strength of correlation). Correlations that result in a p value of less than 0.05 are normally

considered to be significant, although this value should really be adjusted to reflect the number of
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correlations being calculated through the use of Bonferroni corrections, false discovery rates[84]

or similar. The conversion of r to p values can be performed either by reference to standard

tables, or through the use of t-tests. Since t-tests require the assumption that the samples within

the dataset are normally distributed, metabolic correlation networks should not be constructed

from datasets with fewer than 20-30 samples.

Once p values have been determined for all pairs of metabolites under investigation, the con-

struction of the network becomes a simple task. Every metabolite is represented in the network

by a node. Next, the correlation value for each pair of metabolites is considered; if the signifi-

cance (p value) for that correlation is below the threshold value determined previously then an

edge is added to the network between the correlated metabolites. Commonly, the weighting of

the new edge is then set to the strength (r value) of the correlation it represents.

For an example of the use of metabolic correlation networks in the investigation of tumours in

dab liver samples, see chapter 4.

2.2.8 Time-series methods for biochemical network discovery

While metabolic correlation networks can be a useful tool for the exploration of experimental

data, the difficulties associated with relating interesting features in the networks to the un-

derlying biochemistry mean that the results of such analyses can at best only be considered

indicative. There are however, a set of methods that allow the direct reconstruction of networks

of biochemical reactions from time-series data of simple systems. Although the type of data

required for this process‡ means that such approaches are currently of limited applicability to
‡When not being driven by external factors such as changes in temperature or the lack of availability of required

‘input’ compounds, systems of chemical reactions will tend to settle into a steady state where each of the reactions

proceeds at a constant rate and the concentrations of the compounds involved are effectively fixed. The network

reconstruction methods discussed here require the perturbation of the system away from this state and as such

can only really be used on data gathered in vitro.
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metabolomics, a summary of them is included in appendix A as an interesting future alternative

to the use of metabolic correlation networks and reference pathways.

2.3 Summary

This chapter has introduced the key concepts that will be used in this thesis. It began with

a description of metabolomics, the study of the low molecular weight compounds involved in

metabolic processes, and went on to give examples of its applications in environmental toxicology

and healthcare. The following sections discussed graph theory, introducing a number of different

types of graph and metrics that could be used to distinguish between them, before showing how

the structure of a graph can give insights about the system that it is modeling. Finally, it

brought the two topics together, showing how biologists have chosen to represent their current

knowledge of metabolism in a series of graphs known as the metabolic pathway diagrams, how

they are attempting to explore their experimental datasets using metabolic correlation networks,

and mentioning how they might reconstruct networks of biochemical reactions from experimental

datasets in the future. The next chapter will go on to discuss some of the limitations of the

current approaches, and ask what might be done to address them.
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CHAPTER 3

LIMITATIONS OF CURRENT APPROACHES

3.1 Metabolomics and the identification of biomarkers

Although a comparatively recent addition to the -omics family, metabolomics with its low per-

sample cost and good portability across species (when compared to other -omics technologies),

has huge potential both as a standalone analytical technique and as a component of larger

integrated genomics studies. In particular, two key features of the technology, the fact that it

focuses on the low-level molecular processes of the cell and its ability to be used non-invasively

through MRS or on biofluids such as urine, make it an ideal tool for screening work in areas

such as medicine or environmental toxicology.

Unfortunately, many of the factors that contribute to the strengths of metabolomics within

these fields are also its greatest weaknesses. The biological variation between subjects due to

age and sex, local environmental conditions and dietary differences are all reflected in the results

of a metabolomics experiment and often make the data noisy and difficult to use. While it is

sometimes possible to reduce the impact of these effects on the data, through the use of careful

experimental design, this is often undesirable as the control measures themselves may mask

interesting features in the data or add to the risk of any discoveries that are made only being
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applicable in a narrow range of experimental conditions, greatly limiting their more general

usefulness. The experimental difficulties will however be reduced as the technology matures,

and ultimately it will be the ease of interpretation of the data that determines how widely and

in which fields metabolomics is adopted.

Since it is highly unlikely that the concentration of a single compound alone will uniquely iden-

tify and determine the extent of a particular condition, current methods for the identification

of biomarkers centre on multivariate statistical tools such as Principal Components Analysis

(PCA). These techniques, when used in conjunction with significance tests, will often identify

an extensive list of compounds that in some way contribute to the differences between the sam-

ples in a study. Many of these will be “usual suspects”; compounds that are involved in processes

related to, but not the root cause of, the condition being studied such as apoptosis (cell death)

or anaerobic respiration. The inclusion of such compounds in a list of biomarkers would lead

to highly complex identification rules for the condition - rules that would be cumbersome to

implement, difficult to extend as further data became available, and most importantly consider-

ing the essentially safety-critical nature of many of the applications∗, impossible to explain and

validate.

Thus, within every metabolomics study a careful balancing act must be performed. The set

of biomarkers for a condition needs to be complex and resilient enough to specifically identify

that condition despite experimental noise and biological variation, simple enough that it can

be easily applied by practitioners in the field, and only contain compounds that have a clear

and understandable biological rationale for their inclusion. At the heart of this problem is the

ability to relate trends observed in the experimental data, to the well-characterised biochemical
∗In this case, the safety-critical component is due not to a risk to the subject posed by the use of metabolomics

itself (which owing to its potential for non-invasive use actually carries a lower risk of damage to the subject than

current methods such as biopsy), but to the potential for problems that would result in the case of false-negative

results, where diseases or toxic effects were allowed to continue untreated.
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processes that make up the metabolic pathways.

3.2 Relating experimental data to biological processes

The generation of a mapping between experimental data and the metabolic pathways is far

from being a trivial task. It could be argued that to date the most effective approaches have

also been the most straightforward; those that layer experimental data onto pathway diagrams.

These techniques, initially driven by work such as that of Dwyer[81] and available as part of tools

like VANTED[82], prove most useful when the set of metabolites being studied is taken from

either a single or a small number of pathways, allowing the researcher to judge the relationship

between the metabolites by eye. They are also particularly effective when used with time-series

data, allowing changes in concentrations to be traced through the pathways. However, studies

focused on a single pathway are far from the norm and the large number of pathways stored

in databases like KEGG can make comparison by eye alone a slow and difficult task. This

problem is compounded by the relatively low-resolution of the technology as it currently stands;

a difficulty that is particularly evident in the case of MRS where the number of metabolites that

can be observed is presently only a small fraction of that for in-vitro methods. This low coverage

of the metabolome means that it is highly unlikely that the set of metabolites being observed

in an experiment will naturally fall in close proximity to one another within a single metabolic

pathway diagram. Instead, they are likely to be spread over several different pathways, making

it difficult to form coherent chains of reactions that link the compounds together.

Correlation analyses can be very helpful when interpreting metabolomic data, as they can be used

to indicate how compounds might be related before the time-consuming process of searching the

known metabolic pathways takes place. However, difficulties do exist with this approach; firstly

the existence of a correlation between two metabolites is not in any way proof that it is significant.
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While a number of methods for determining the significance of a correlation exist, including both

Bonferroni and false discovery rate-corrected p values from t tests, the choice of method and

of threshold value still has a very noticeable effect on the selection of correlations, an effect

that is undesirable when trying to establish a common basis for further research. Secondly, we

have the issue of “long-range” effects; just because a correlation exists between two metabolites

there is not necessarily an obvious link between them in the underlying biochemistry, as Steuer,

Kurths, Fiehn and Weckwerth remarked “...there is no straightforward connection between the

observed correlations and the underlying reaction network. We observe strong correlations

between seemingly distant metabolites, whereas metabolites sharing a common reaction are

not necessarily correlated.”[85]. Still, while the combination of correlation analyses and the

metabolic pathway diagrams may be a far from perfect way of determining how experimental

results can be explained in terms of the underlying biochemistry, they are considerably more

practical (given current experimental limitations) than more advanced methods such as those

based on the reconstruction of the metabolic network from time-series data.

Since a correlation analysis of even a small system produces a reasonably large number of results

(a correlation analysis of time-series data of 4 metabolites results in 6 correlations assuming

you ignore correlations of a compound to itself), the method chosen for the visualisation is

important. Correlations are normally viewed as heatmaps, however an interesting alternative

is the metabolic correlation network (Section 2.2.7) as proposed by Steuer et al.[85]. Metabolic

correlation networks offer possibilities to further automate the process of relating experimental

data to the metabolic pathways since they are essentially in the same form, graphs.

The categorisation of graph structure has been developed greatly over the past 50 years, mainly

due to the interest of sociologists, and a wide range of metrics have been devised to determine the

types of properties a graph may have based on its structure. Of these, motif search (Section 2.2.5)
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stands out as a particularly good example, showing how repeated structural features within the

network may be related to important functions within the system it represents. The expected

types of structure within the network being studied do of course impact heavily on the metrics

that should be used. In the case of locating a set of reactions that correspond to a correlation

for example, one sensible approach might be to study the betweenness centrality values of

metabolic pathways that link the compounds involved in the correlation. High betweenness

centrality would suggest that a large proportion of the routes involve that step and therefore

that it is likely to be involved in the observed correlation.

To assume that such simple rules of thumb could be made to solve all the issues involved in

this problem would however be a gross under-estimation, as the way a correlation appears can

depend on a large number of factors. As an example, consider a short section of the glycolysis

pathway (Figure 3.1(a)) in which circles represent metabolites, arrows represent reactions, and

the numbered boxes represent enzymes. To begin with, assume that there is a metabolomics

dataset that has concentrations for glycerate 3-phosphate (glycerate-3P) and phosphoenolpyru-

vate. In glycolysis glycerate-3P is turned into phosphoenolpyruvate so we’d expect that these

two compounds would be correlated (Figure 3.1(b)). Now assume that our dataset has been ex-

panded to include glycerate 2-phosphate (glycerate-2P), since glycerate-3P forms glycerate-2P

and glycerate-2P then goes on to form phosphoenolpyruvate we might expect the correlation

network to look much like the pathway (Figure 3.1(c)); however, correlation networks are not

like pathway diagrams, glycerate-3P and phosphoenolpyruvate will still be correlated, despite

not being directly connected in the pathway (Figure 3.1(d)). This is an example of how the

experimental ‘coverage’ of the compounds can drastically alter the appearance of the correlation

network compared to the metabolic pathway it represents; a small number of relatively distant

compounds may look quite similar to the pathway (although there is of course a risk that some

other factor might mean they are no longer correlated), whereas compounds that are close to-
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(a)

Glycerate-3P

Phosphoenol-
pyruvate

(b)

Glycerate-3P
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Phosphoenol-
pyruvate

(c)

Glycerate-3P

Glycerate-2P

Phosphoenol-
pyruvate

(d)

Glycerate-3P

Glycerate-2P

Phosphoenol-
pyruvate

(e)

Figure 3.1: A small section of the glycolysis pathway shown with several

possible metabolic correlation networks.
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gether will tend to form cross-connected groups. To further complicate this situation, while the

metabolic pathways are drawn to represent particular processes in an easily interpretable form,

many pathways are at work within a single cell at any one time forming a much larger, intercon-

nected system. The dotted arrow coming into the pathway (Figure 3.1(a)) from the right hand

side is KEGG’s way of showing that glycerate-2P can also be formed in another pathway (in

this case the pentose phosphate pathway) and feed into glycolysis at that point. If in the other

pathway glycerate-2P is formed from a compound other than glycerate-3P, and the rate of flow

of glycerate-2P into glycolysis from the other pathway is faster than the rate of formation from

glycerate-3P, then the correlation between glycerate-3P and glycerate-2P may not be significant

(Figure 3.1(e)). The correlation network does not of course, contain any information on our ar-

tificial partitioning of the metabolic system; however, when looking at it you could be forgiven

for thinking that the glycolysis pathway is not involved in the process the network represents,

when actually it may be important but just flowing at a low rate.

Thus, while correlation networks can be used to represent experimental data in a form that is

comparable to the metabolic pathways, issues of “coverage” of the pathways by the experimental

data, the completeness in terms of the underlying metabolism of the metabolic pathways them-

selves, and the current dynamic state of the metabolic networks within the subjects (the rates of

flow through various parts of the pathways as determined by enzyme activity, temperature etc),

mean that there is currently no straightforward way of automatically aligning the two. Indeed,

the question of network dynamics is as of yet largely untouched and while likely form the major

area of research for the graph theory community over the next decade.

Given the lack of a suitable framework for the development of a completely automated solution

to this problem, we are left with attempting to facilitate current manual efforts. Many of the

current approaches involve selecting compounds from the lists generated by statistical tests
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that all feature in the same pathways, and then investigating the links between them by eye.

Alternatively tools such as KEGG PathComp might be used to link them automatically, but this

is usually limited to either a single-source to multiple-targets, or multiple-sources to single-target

search.

Here, we will investigate how metabolic correlation networks can be used to identify sets of

related metabolites which seem to contribute to the differences between the sample groups. We

will then look at how an all simple paths search algorithm can be used to perform multiple-

source, multiple-target searches, creating a directed metabolic graph, which can be used to

visualise the relationship between the compounds groups in terms of the biochemistry.
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CHAPTER 4

METABOLIC CORRELATION NETWORKS OF LIVER

TUMOURS IN DAB

4.1 Background

One of the greatest strengths of metabolomics as an analysis technique lies in the ability of

the metabolome to quickly reflect the effects of changes in the environment. Unfortunately

this means that the data gathered is often very noisy, due not only to biological variation but

also factors such as diet, age and time of day, along with those being studied. In situations

where sufficiently large numbers of subjects are available, using correlations between metabolite

concentrations can help overcome this problem. Unfortunately, even a relatively small dataset

of 30 metabolites will result in over 400 separate correlations∗, leaving the researcher facing

what is still a highly complex analysis task. This chapter aims to show how using metabolic

correlation networks (Section 2.2.7) to present the data in a manner that is easily interpretable

by eye can help researchers identify features in their data, which they can then use as the basis

for further research such as searches of the metabolic pathway diagrams.
∗Assuming the correlation between A & B is the same as the correlation between B & A, the number of unique

correlations is given by n2−n
2

where n is the number of metabolites.
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4.2 Initial investigation (2005 analysis)

4.2.1 Method

Metabolic correlation networks were constructed from NMR metabolomics data of 20 samples

taken from dab, a common flatfish. Flatfish are frequently used in environmental monitoring

work, since they live in close proximity to the ocean floor and are therefore exposed to the

chemicals that accumulate there. Of the 20 samples, which were taken from a total of 10 fish,

10 were samples of tumour tissue (one per fish) and the remaining 10 were matched samples

of normal liver tissue taken from the same 10 fish. Analysis of the NMR data led to the

identification of 33 separate metabolites, each of which was then quantified. All data collection

and metabolite quantification work was performed by metabolomics practitioners within the

School of Biosciences. The samples were then analysed as three groups; normal tissue, tumour

tissue, and a third group in which both the normal and tumour tissue samples were treated as

a single, combined dataset. In each case, a series of networks was produced with cut-off values

for the inclusion of a correlation into the network ranging from ± 0.1 to ± 0.9. The Pearson

correlation coefficient was used to generate correlation values for all pairs of metabolites within

the groups. Positive correlations were represented in the networks by solid lines, while dashed

lines were used to represent negative correlations. The calculations were performed using R[86],

a free software environment for statistical computing that is widely used within the biological

community.

While the metabolic correlation networks do summarise a large amount of information effectively,

they can still be difficult to compare by eye. In order to highlight the differences between the

groups and thereby ease the task of analysis, the intersection between the normal and tumour

tissue networks was taken for each threshold value and subtracted from both of the networks.
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Calculate Pearson 
correlation coefficients 

for each pair of 
metabolites

Compile correlation 
network for each 
threshold value

Perform network 
intersections to produce 
networks of correlations 
present in normal tissue 
only, tumour tissue only, 
and in both normal and 

tumour tissue

Assign and quantify 
metabolites in raw data

Figure 4.1: Process used for the generation of the metabolic correlation

networks in the 2005 analysis.
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This had two effects, firstly two new series of metabolic correlation networks were created that

contained only those correlations which appeared in either the normal tissue network or the

tumour tissue network at that threshold value. Secondly, the intersections themselves could be

used as a third new series of networks, which showed those correlations common to the normal

and tumour tissue networks. The key steps in the method are summarised in figure 4.1. The

networks were manipulated and visualised using Pajek[87], a program originally designed for the

analysis of social networks (Figures 4.2 to 4.11).

4.2.2 Results

The networks showing the correlations present in the normal tissue samples but absent in the

tumours (Figures 4.5, 4.6 and 4.7) indicate that there are strong positive correlations between

fumarate and leucine, and fumarate and isoleucine (Figure 4.6). A positive correlation usually

indicates that one of the metabolites in involved either directly or indirectly in the formation

of the other. In this case the valine, leucine and isoleucine degradation pathway feeds into the

TCA cycle just upstream of fumarate (although both leucine and isoleucine can also feed in

at an alternative point further round the cycle). The presence of these correlations in normal

tissue but not in the tumour tissue suggests therefore that there may be an alteration to the

activity of that section of the TCA cycle within the tumour tissue. The presence of additional,

weaker positive correlations between isoleucine and malate, fumarate and valine, and malate

and valine (Figure 4.7), when malate is also involved in the TCA cycle immediately downstream

of fumarate also appear to support this hypothesis. In contrast to this, the correlation between

fumarate and malate appears in both normal and tumour tissue (although at slightly higher

strength in the tumour tissue) suggesting that this step remains largely unaltered, possibly due

to one of the alternative pathways that can feed fumarate into the system (Figure 4.12).
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Figure 4.2: Metabolic correlation networks from dab liver samples. Normal

tissue group. Thresholds from±0.1 (top left) to±0.9 (bottom). Data taken

from the 2005 analysis.
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Figure 4.3: Metabolic correlation networks from dab liver samples. Tumour

tissue group. Thresholds from±0.1 (top left) to±0.9 (bottom). Data taken

from the 2005 analysis.

63



Acetate

Adenine

Adenosine

Alanine

Arginine

Choline

Creatine

Formate Fumarate

Glucose

Glutamate

Glutamine

Glutarate

Glycerol

Histidine

Isoleucine

Lactate

Leucine

Lysine

Malate

Malonate

Methanol

O.Phosphocholine

Oxalacetate

Proline

Propionate

SerineSuccinate
Taurine

Threonine

Trimethylamine.N.oxideValinemyo.Inositol

Pajek

Acetate Adenine

Adenosine

Alanine

Arginine
Choline

Creatine

Formate

Fumarate

Glucose

Glutamate

Glutamine
Glutarate

Glycerol

Histidine

Isoleucine

Lactate

Leucine

Lysine

Malate

Malonate

Methanol

O.Phosphocholine

Oxalacetate

Proline

Propionate

Serine

SuccinateTaurine

Threonine

Trimethylamine.N.oxide

Valine

myo.Inositol

Pajek

Acetate

Adenine
Adenosine

Alanine
Arginine

Choline

Creatine

Formate

Fumarate

Glucose

Glutamate

Glutamine

Glutarate

Glycerol

Histidine

Isoleucine

Lactate

Leucine

Lysine

Malate

Malonate

Methanol

O.Phosphocholine

Oxalacetate

Proline

Propionate

Serine

Succinate

Taurine

Threonine

Trimethylamine.N.oxide

Valine

myo.Inositol

Pajek

Acetate
Adenine

Adenosine

Alanine
Arginine

Choline

CreatineFormate

Fumarate

Glucose

Glutamate

Glutamine

Glutarate

GlycerolHistidine
Isoleucine

Lactate

LeucineLysine

Malate Malonate

Methanol

O.Phosphocholine

Oxalacetate

Proline

Propionate

Serine

Succinate

Taurine

Threonine

Trimethylamine.N.oxideValine

myo.Inositol
Pajek

Acetate

Adenine

Adenosine

Alanine

Arginine
Choline

Creatine

Formate

Fumarate
Glucose

Glutamate
Glutamine

Glutarate

Glycerol

Histidine

Isoleucine

Lactate
Leucine

Lysine
Malate

Malonate Methanol

O.Phosphocholine

Oxalacetate
Proline

Propionate

Serine

Succinate
Taurine

Threonine

Trimethylamine.N.oxide

Valine

myo.Inositol
Pajek

Acetate
Adenine

Adenosine

Alanine

Arginine

Choline

Creatine

Formate

Fumarate

Glucose

Glutamate

Glutamine

Glutarate

Glycerol

Histidine

Isoleucine LactateLeucine

Lysine

Malate

Malonate

Methanol

O.Phosphocholine

Oxalacetate

Proline
Propionate

Serine

Succinate

Taurine
Threonine

Trimethylamine.N.oxide

Valine

myo.Inositol

Pajek

Acetate

Adenine

Adenosine

Alanine
Arginine

Choline

Creatine

Formate

Fumarate

Glucose

Glutamate

Glutamine

Glutarate
Glycerol

Histidine

Isoleucine

Lactate

Leucine

Lysine
Malate

Malonate

Methanol

O.Phosphocholine

Oxalacetate

Proline

Propionate

Serine

Succinate

Taurine

Threonine

Trimethylamine.N.oxide
Valine

myo.Inositol

Pajek

Acetate

Adenine

Adenosine

Alanine

Arginine

Choline

Creatine

Formate

Fumarate

Glucose

Glutamate

Glutamine

Glutarate

Glycerol

HistidineIsoleucine

Lactate

Leucine

Lysine

Malate

Malonate

Methanol

O.Phosphocholine
Oxalacetate

Proline

Propionate

Serine

Succinate

Taurine

Threonine

Trimethylamine.N.oxide

Valine

myo.Inositol

Pajek

Acetate

Adenine

Adenosine

Alanine

Arginine

Choline

Creatine

Formate

Fumarate

Glucose

Glutamate

Glutamine

Glutarate

Glycerol

Histidine

Isoleucine

Lactate

Leucine

Lysine

Malate

Malonate

Methanol

O.Phosphocholine

Oxalacetate

Proline

Propionate

Serine

Succinate

Taurine

Threonine

Trimethylamine.N.oxide

Valine

myo.Inositol

Pajek

Figure 4.4: Metabolic correlation networks from dab liver samples. Normal

and tumour tissue combined group. Thresholds from ±0.1 (top left) to ±0.9

(bottom). Data taken from the 2005 analysis.
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Figure 4.5: Metabolic correlation networks from dab liver samples. Cor-

relations present only in normal tissue group. Thresholds from ±0.1 (top

left) to ±0.9 (bottom). Data taken from the 2005 analysis.
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Figure 4.6: Metabolic correlation networks from dab liver samples. Corre-

lations present only in normal tissue group. Threshold of ±0.9. Data taken

from the 2005 analysis.
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Figure 4.7: Metabolic correlation networks from dab liver samples. Corre-

lations present only in normal tissue group. Threshold of ±0.8. Data taken

from the 2005 analysis.
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Figure 4.8: Metabolic correlation networks from dab liver samples. Cor-

relations present only in tumour tissue group. Thresholds from ±0.1 (top

left) to ±0.9 (bottom). Data taken from the 2005 analysis.
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Figure 4.9: Metabolic correlation networks from dab liver samples. Corre-

lations present only in tumour tissue group. Threshold of ±0.9. Data taken

from the 2005 analysis.
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Figure 4.10: Metabolic correlation networks from dab liver samples. Cor-

relations present only in tumour tissue group. Threshold of ±0.8. Data

taken from the 2005 analysis.

70



The networks showing the correlations present in the tumour tissue samples but absent in the

normals (Figures 4.8, 4.9 and 4.10) show a high negative correlation between alanine and formate,

and alanine and acetate(Figure 4.9). This is interesting as the US National Cancer Institute say

that a high level of the enzyme alanine transferase may be a sign of liver damage, cancer and

other diseases [88]. It is also known that under fasting conditions, alanine, derived from protein

breakdown, can be converted into pyruvate and used to synthesise glucose in the liver via the

gluconeogenic pathway[89]. Since it is common for tumours to rapidly outgrow the sources of

oxygen and nutrients available to them (leading to necrosis in the centre of the tumour) it would

not be surprising for tumour tissue to behave in a way which resembled fasting, hence altering

alanine metabolism within the sample. An apparently strong correlation between fumarate

and malate can also be seen in the tumour tissue at the ± 0.9 threshold(Figure 4.9), although

looking back at the ± 0.8 threshold level it no longer appears (Figure 4.10). This suggests that

the correlation is not a result of a major difference in metabolism within the tumour tissue, but

is instead due to a slight alteration in the strength of the correlation between the normal and

tumour tissue sample groups that occurs near the threshold.

4.3 Detailed investigation (2008 analysis)

4.3.1 Method

The data from the dab samples was recently reanalysed prior to publication in the Journal of

Proteome Research[90], resulting in the identification of two additional metabolites. Pearson,

Spearman and Kendall correlation coefficients were all calculated for the normal and tumour

tissue groups, although only the results of the Pearson correlations were used in the paper. The

thresholding approach used in the previous analysis was rejected in favour of a more formal

method, which used p values and a false discovery rate[84] less than 10% for the calculation
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Figure 4.11: Metabolic correlation networks from dab liver samples. Cor-

relations present in both the normal tissue group and the tumour tissue

group. Thresholds from ±0.1 (top left) to ±0.9 (bottom). Data taken

from the 2005 analysis.
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Figure 4.12: A section of the KEGG metabolic pathway diagram for the

TCA cycle. The green arrows indicate the points at which the valine, leucine

and isoleucine degradation pathway feeds into the cycle. The red arrow

shows the direction of the dominant flow around the cycle. fumarate and

malate are shown in blue.
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of significance and hence inclusion in the networks. Two metabolic correlation networks, one

for normal and one for tumour tissue were produced and these were manually inspected for

differences. The key steps in the method are summarised in figure 4.13.

4.3.2 Results

The 2008 analysis was performed by an expert biologist and the results are included here to

allow a comparison to be made with the results of the 2005 analysis. A total of 33 significant

correlations were noticed in two groups. Of these, fumarate was involved in seven correlations

and six of those were present only in the healthy tissue. Several significant correlations involving

acetate were seen in the tumour tissue samples, as were correlations involving alanine, succinate,

and NAD+. All of these were interpreted as being indicative of a switch from aerobic to anaerobic

metabolism in the tumour tissue due, at least initially, to the tumour outgrowing its oxygen

supply; it is also thought however, that many of the metabolic processes involved in anaerobic

metabolism may be beneficial to the growth of tumour cells. One result of a switch to anaerobic

metabolism would be a reduction in the amount of NAD+, normally produced by oxidative

phosphorylation in the mitochondria. NAD+ is required for the generation of ATP by glycolysis

and is hence vital to the function of cells. The production of NAD+ normally takes place as

part of the TCA cycle, and a slowing of its production and feeding into the electron transport

chain would also impact on the formation of FADH2 during the succinate to fumarate step of the

cycle. This would be in line with the number of altered correlations in that region of the cycle

noted in the previous analysis. An alternative mechanism for the production of NAD+ involves

the conversion of alanine to pyruvate and then to lactate, producing NAD+ as a byproduct.

This would explain the correlations involving alanine seen in the tumour tissue, and again, is

consistent with the findings of the previous analysis. A slowing of the TCA cycle would also cause

a buildup of compounds that feed into it such as acetyl CoA, this could be broken down by an
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alternative mechanism forming acetate, explaining the correlations involving it and compounds

such as alanine that can form pyruvate and then acetyl CoA.

A set of findings of the 2008 analysis that were not noticed in the earlier analysis involve

choline metabolism. The alteration of choline metabolism, a process that can create a compound

(S-adenosyl-L-methionine) which regulates gene expression, might lead to the expression of

unwanted genes including those involved in the development of cancers. While these correlations

were present in the networks built during the previous analysis, the difficulties associated with

deciding which thresholds to use meant they were missed. This is a strong endorsement of the

more formal thresholding approach used in the more recent analysis.

4.4 Conclusions

While metabolic correlation networks offer little additional information than the correlations

themselves they are certainly easier to interpret by eye, highlighting features and interrelation-

ships that might otherwise be missed. As the issue of choline metabolism in this work has

illustrated, the selection of thresholds is vital to the construction of a meaningful network; too

low a threshold value and non-significant results are included making it difficult to see impor-

tant features, too high and information is lost. As such, selecting an appropriate thresholding

approach such as p values combined with Bonferroni corrections or a false discovery rate is of

great importance to the success of a metabolic correlation network based analysis.
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CHAPTER 5

THE DISCOVERY OF LINKS BETWEEN GROUPS OF

COMPOUNDS WITHIN THE KEGG PATHWAY

DIAGRAMS

5.1 Background

Multi-dimensional analysis techniques such as PCA will often, when combined with statistical

significance tests and applied to complex datasets, identify multiple compounds that may be

used to differentiate between groups of samples within the data. However, identifying these com-

pounds is frequently only part of the battle as the much more difficult task involves establishing

why they seem to contribute to the difference between the samples, placing that information in

a biological context, and determining what, if anything, their ability to distinguish between the

groups can tell us about the diseases or conditions that define them.

One way in which this problem can be tackled is through the identification of routes (chains of

reactions and intermediary compounds) linking the compounds of interest within the metabolic

pathways. Since a large number of routes can exist between two compounds, particularly if the

77



search is allowed to span multiple pathways, many of the major metabolic pathway databases

provide tools that allow this process to be performed quickly and efficiently. By carefully ex-

amining the routes produced it is possible to identify reactions, enzymes and compounds that

may also be involved in the process under investigation; these can then be used either in the

validation of the compounds as biomarkers for the disease or condition being studied (by the

prediction of their behaviour and comparison of this to experimental results) or as the basis for

further research. By combining the routes between a pair of compounds (Figure 5.1) it is possi-

ble to produce a network that in this document will be referred to as a directed metabolic graph;

this is in order to draw a distinction between it and other types of metabolic networks such as

the metabolic pathways or metabolic correlation networks. The combination of the individual

routes into a directed metabolic graph has the advantage of allowing graph theory metrics for

the determination of key structural features, such as betweenness centrality or motif search, to

be applied to the data. These can be used to efficiently identify features such as reactions that

are common to a number of routes, which may not be immediately apparent from the routes

when considered in isolation (Figure 5.2). By extending the initial route search to allow either

a group of source compounds or a group of target compounds, several of the available database

search tools increase the amount of information in the directed metabolic graph; despite this

the full potential of the technique is not realised, as no tool currently provides multiple source

to multiple target searches and therefore the complete set of routes between all the compounds

is not available in a single graph.

Thus, there is a need within the community for a tool that can take two groups of compounds,

find routes between them through the metabolic pathways, and present the results both in the

context of the pathway diagrams and as directed metabolic graphs suitable for further analysis

using graph theoretical techniques.

78



Figure 5.1: A section of the KEGG pathway diagram for methionine

metabolism (top). Two routes exist between L-homocysteine and S-methyl-

5’-thioadenosine (bottom left, bottom centre), which can be combined to

form a directed metabolic graph (bottom right). Since in this example the

routes are taken from a single pathway, the directed metabolic graph looks

very similar to the metabolic pathway from which it was derived. How-

ever, in situations where additional pathways or compounds are included

the graph will become too complex for easy manual interpretation and met-

rics that can summarise the structure will be required for analysis.
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Figure 5.2: A directed metabolic graph with betweenness centrality val-

ues giving an indication of how the shortest paths through the graph are

distributed
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5.2 Method

Linked Metabolites, a graphical tool (Figure 5.3) written in Python was produced that creates

directed metabolic graphs for two groups of compounds based on the KEGG pathway database.

Python, which is an interpreted rather than a compiled language and therefore not known for its

speed, may not seem the obvious choice for this type of application. There were, however, several

good reasons for its selection. Firstly, Python is cross-platform making it easy to circulate the

code. This was important as although the application was not originally intended for release

to the community, different members of the group work with a range of operating systems

and supporting them all in a compiled language such as C would have been time consuming.

Python also offered significant benefits when used for rapid prototyping; its ease of use and

clear syntax, which are comparable to those of a scripting language, coupled with its support for

object-oriented programing, allowed quite major changes to be made to the code in a relatively

short time. Most critically, Python is based on C. Thus while Python itself is not particularly

fast, natively compiled, third-party libraries written in C/C++ could be used for many of the

important processing steps, greatly reducing the runtime. Of these, the most important was

the Boost Graph Library[91], which contains fast implementations of a number of key graph

algorithms including shortest paths, depth- and breadth-first searches, and checks for connected

components.

The KEGG database was chosen for use in the tool as its diagrams of reference metabolic

pathways allowed for the possibility that multi-species support may have needed to be added

to the code at a later date. Unfortunately, it also meant that several compromises had to be

struck. The KEGG database contains far more than just information on the metabolic pathways,

including information on compounds, enzymes, and a number of annotated genomes. As a result,

it would be impractical to expect every end-user to install complete, local copies of KEGG for
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Figure 5.3: The graphical user interface of Linked Metabolites displaying

a directed metabolic graph.
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use with the tool. Fortunately, a SOAP web service is provided to allow developers to get around

this problem, and is used by Linked Metabolites to obtain pathway diagrams, but the volume

of data needed to perform the searches themselves was far too great to allow this type of access.

As a result, Linked Metabolites relies on both the KEGG’s web service and a locally-stored copy

of the xml files for the pathways, plus definitions for the appropriate compounds and reactions.

While this solution provides an acceptable balance between installed size and speed/runtime for

the searches, it also generates several problems; Linked Metabolites must have a connection to

the internet in order to function, the locally-stored information can quite rapidly fall behind the

current version of KEGG being used by the web service forcing time-consuming updates, and

debugging becomes very difficult as each user has a subtlety different version of the database

(dependent on the time they last updated the stored files). Implementing the tool as a web

service would have removed many of these issues as there would have been only one installation

to update, however the processor and memory intensive nature of the searches and a lack of

resources made this impractical at the time of coding.

Linked Metabolites constructs directed metabolic graphs in three stages. In the pre-processing

stage potentially relevant information is extracted from the XML representations of the metabolic

pathways for Homo sapiens and compiled into a series of temporary graphs, one for each path-

way. The second stage of the algorithm involves the searching of those graphs for routes between

pairs of compounds as selected from the source and target groups specified by the user. Finally,

the post-processing stage combines the routes identified into directed metabolic graphs of vary-

ing forms; from a single source to a single target, from a single source to multiple targets, from

multiple sources to a single target, and from multiple sources to multiple targets.
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5.2.1 Pre-processing

The pre-processing stage of the algorithm (Figure 5.4) is concerned with the construction of the

directed graphs on which the route searches will be performed from a user-defined subset of

the XML representations of the KEGG pathway diagrams. Within a graph each compound is

featured as a single node, regardless of the number of occurrences of that compound within the

pathway diagrams themselves. Arcs linking the nodes are created based on substrate to product

relationships between compounds in relevant reactions. Parallel arcs between compounds are

permitted and occur if two compounds share a substrate to product relationship in multiple

reactions. If the route search is to be performed within individual pathways a separate graph

is created for each pathway, whereas if the search is to be performed across a set of pathways

a single, combined graph is used. The graphs produced by this stage of the algorithm will

henceforth be referred to as the “base graphs”.

5.2.2 Route search

Once the base graphs have been compiled, the algorithm enters its second stage (Figure 5.5). A

pre-search is performed on each base graph to ensure that at least one member of each compound

group features within it. Pairwise searches are then performed using an algorithm devised by

Rubin[92] to identify all the simple paths (where a simple path is a route in which each node

can feature only once) between members of the two compound groups. Since the algorithm is

O
(
V 3

)
it is important to reduce the size of the graph on which the search is performed as far as

is possible, as such a cut-down graph for each of the pairwise searches is constructed from the

appropriate base graph. The cut-down graph features only those nodes from the base graph for

which the sum of the shortest path from the source node to the node of interest (calculated as a

single step for each cut-down graph using the Bellman-Ford all shortest paths algorithm[93, 94])
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Figure 5.4: Flowchart showing the pre-processing stage of the algorithm.
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and the shortest path from the node of interest to the target (calculated individually for each

node using Dijkstra’s algorithm[95]) is within the maximum number of steps specified by the

user. This filtering stage is safe, as if the shortest route from source to target via the node

of interest is not within the maximum length, no simple paths of appropriate length will pass

through the node. It should however be noted that inclusion at this point does not imply that all

routes through a node will be valid, as many may be over-length. Since Rubin’s algorithm does

not support parallel arcs, only one arc (in each direction if appropriate) is included between

compounds in the cut-down graph. Once the paths have been identified the arcs are then

expanded recursively using the appropriate base graph in order to obtain the complete set of

simple paths featuring all the possible combinations of reactions. Finally, any remaining routes

that are longer than the maximum length are filtered out.

It should be noted that while a compound can feature in both the source and target groups,

the algorithm will not search for routes between a compound and itself (as this would not be a

simple path). Such paths may, however, appear in the results if a route with a compound as its

source intersects with another route in the graph for which that same compound is a target.

5.2.3 Compilation and presentation of routes and directed metabolic graphs

In the final stage of the algorithm (Figure 5.6) the simple paths identified during the route search

are returned to the user in several forms; as generic routes, in which objects (compounds or the

reactions that link them) are not placed in any specific context, as pathway-specific routes, in

which every object in the route is assigned to a particular pathway, and as directed metabolic

graphs, which are combinations of the generic routes. While the first two forms can already be

obtained via the KEGG PathComp tool, their identification is a necessary step in the generation

of the networks and so it is appropriate to include them here.
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Generic routes

The generic routes are the raw results of the route search, comprising chains of compounds

and reactions with no additional contextual information. In many ways the generic routes are

more useful than the more complicated pathway-specific routes that are generated from them,

as they allow the user to easily see how many non-identical paths exist between the source and

target compounds; a task that often becomes far more complex when considering routes that

are effectively identical but are being presented from the point of view of a different metabolic

pathway.

Pathway-specific routes

The pathway-specific routes are generated from the generic routes by the recursive expansion

of each of the objects in a route according to the pathways in which it features. As any given

reaction can occur in a number of different pathways, this process can result in a large number

of pathway-specific routes being generated from each of the generic routes. Once identified (and

before it is presented to the user), each of the pathway-specific routes is ranked based on the

minimisation of a heuristic function:

Score = (
n∏

p=1

sr

sp
)× n− n

sr
(5.1)

Where n is the number of metabolic pathways referred to by the route, sp is the number of steps

in metabolic pathway p, and sr is the total number of steps in the route. The ranking is designed

to promote shorter routes within a single pathway, routes involving small numbers of pathways

or routes where the steps in the route are evenly distributed across the pathways involved, over

those that feature larger numbers of steps spread over multiple pathway diagrams. The ranked

89



pathway-specific routes are then presented to the user both as textual descriptions and coloured

pathway diagrams obtained via the KEGG API.

Directed metabolic graphs

Directed metabolic graphs are generated from the generic routes based on the combination of

compounds in the user-specified groups as previously discussed; single source to single target,

multiple sources to single target, single source to multiple targets and multiple sources to multiple

targets. The construction of the graphs themselves is a trivial process, purely a case of merging

the appropriate generic routes. The directed metabolic graphs are returned to the user as images,

in which compounds that are the source of routes are coloured green, targets are coloured red,

and those compounds that are both sources and targets are yellow∗. The remaining compounds

are coloured blue. Graph layouts are calculated using the GEM algorithm[96].

Combined, the three stages form the complete algorithm (Figure 5.7).

5.3 Results

5.3.1 Comparison with KEGG PathComp

In order to obtain an estimate of the coverage of the tool, routes searches were performed

between a series of compound pairs selected at random from the first one hundred compound

codes in the KEGG database. It was necessary to use pairs of compounds as opposed to groups

because KEGG PathComp, the tool against which the results were compared does not support

searches between groups of compounds. Of the 200 compound pairs initially generated, 45

were rejected because they included a compound that did not feature in any of the metabolic
∗In order to be coloured yellow a compound must be acting as a source and a target for routes in the graph,

not just feature in both the user-specified source and target groups.
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Figure 5.7: Flowchart showing the complete algorithm used by Linked

Metabolites.
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pathways. Each of the remaining 155 pairs was then randomly assigned a maximum path length

of between four and eight steps. Searches for routes (up to the assigned length) between each

compound pair were then performed using Linked Metabolites and KEGG PathComp and the

results summarised (Table 5.1, Figure 5.8).

Overall, Linked Metabolites found nearly twice as many routes between the 155 compound

pairs as KEGG PathComp, although PathComp found routes between a higher proportion of

pairs. In those cases where PathComp outperformed Linked Metabolites the cause was usually

that PathComp was finding routes via compounds or reactions that were not included in the

metabolic pathways and were, therefore, unavailable to Linked Metabolites when its searches

were performed.

KEGG Linked

PathComp Metabolites

Total number of routes found 628 1152

Percentage of pairs for which routes were found 29.7 19.4

Average number of routes per pair 4.1 7.4

Table 5.1: Summary of the results of the random route searches.
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Figure 5.8: Comparison between Linked Metabolites and KEGG PathComp

of average number of paths found per compound pair.
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5.3.2 Example usage: Investigation of the biology underpinning a set of ratios used to

differentiate between tumour types

In a study by Harris et al.[25] the ratios between the heights of peaks due to four metabolites

in short-echo-time, single-voxel MRS spectra were used to differentiate between three types of

childhood cerebellar tumour. Here we will use Linked Metabolites to investigate the relationships

between those compounds in the metabolic pathways, in order to suggest why those ratios are

able to discriminate between the different groups.

N-acetyl-L-aspartate and creatine

In their paper, Harris et al. used the N-acetyl-L-aspartate (NAA) to creatine (Cr) ratio to differ-

entiate between pilocytic astrocytomas and the other tumour types being studied (medulloblas-

toma and ependymoma). The cut-off point was set at 4, with higher ratios indicating that the

tumour was an astrocytoma. This could suggest that the rate of conversion from NAA to Cr is

slower in astrocytomas than it is in medulloblastomas or ependymomas. The Linked Metabolites

search for routes between NAA and Cr produced a relatively diverse directed metabolic graph

(Figure 5.9) made up of more than a dozen generic routes, or over two hundred pathway-specific

routes. Fortunately, a number of these can be rejected based on compartmentalisation issues.

Figure 5.10 shows a route involving the alanine & aspartate and arginine & proline metabolism

pathways. Within it, NAA is converted to aspartate and then on to Cr via L-argininosuccinate,

arginine and guanidinoacetate. Based on the information available in KEGG, this route is quite

plausible; all of the enzymes involved are coded for by the human genome, and it even follows

the recognised entry points between the pathways rather than simply moving between instances

of the same compound. However, the reactions between aspartate and arginine form part of the

urea cycle, a pathway that takes place in the liver, and therefore is unlikely to be appropriate for
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Figure 5.9: Directed metabolic graph produced by Linked Metabolites

showing the routes up to a maximum of 8 steps long from N-acetyl-L-

aspartate (cpd:C01042) to creatine (cpd:C00300).
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Figure 5.10: KEGG pathway diagrams showing a route found by Linked

Metabolites between N-acetyl-L-aspartate and creatine. The route involves

the alanine & aspartate metabolism and arginine & proline metabolism path-

ways. 96



use when explaining the behaviour of metabolites in the brain. While Linked Metabolites allows

the user to specifically remove pathways from its search it would not have helped in this case,

since KEGG’s version of the arginine and proline metabolism pathway contains an instance of

the urea cycle itself and that local version of the pathway could not be removed from the search

without removing the entire arginine and proline metabolism pathway. The nesting of pathways

in this way is a very significant issue, which has no easy resolution since the ways in which path-

ways are defined can have a huge impact on their usefulness in different types of task. KEGG’s

pathways are arranged in a way that best supports manual interpretation by a domain expert;

however for computational tasks, redefining the pathways based on a more physical criteria such

as the conservation of moiety used by Arita would be far more appropriate. This is also a good

illustration of why the results of a Linked Metabolites search are only intended as a guide to

possible chains of reactions that may be involved in an observed biological effect, the manual

checking and interpretation of the results is still an important step.

Figures 5.11 & 5.12 show another two examples of pathway-specific routes between NAA and

Cr. The route in figure 5.11 involves the alanine & aspartate metabolism, pyruvate metabolism

and glycine, serine & threonine metabolism pathways, whereas the route in figure 5.12 replaces

pyruvate metabolism with the glycolysis / gluconeogenesis pathway. However, as with the urea

cycle previously, this is not because they are different routes; it is instead due to KEGG’s

version of the glycolysis / gluconeogenesis pathway including elements of pyruvate metabolism.

Fortunately, unlike the earlier example all these pathways can take place in the brain and

therefore the routes are still valid. The first point of interest to be considered here is that in

the alanine & aspartate metabolism pathway, the route includes a compound (oxaloacetate)

that is involved in the citrate cycle (also know as the TCA cycle), a major component of energy

metabolism. Alterations to energy metabolism between tumour types are common, due to a wide

range of factors such as the aggressiveness of the tumour, the type of tissue it originated in,
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Figure 5.11: KEGG pathway diagrams showing a route found by Linked

Metabolites between N-acetyl-L-aspartate and creatine. The route involves

the alanine & aspartate metabolism, pyruvate metabolism and glycine, ser-

ine & threonine metabolism pathways.
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Figure 5.12: KEGG pathway diagrams showing a route found by Linked

Metabolites between N-acetyl-L-aspartate and creatine. The route in-

volves the alanine & aspartate metabolism, glycolysis / gluconeogenesis

and glycine, serine & threonine metabolism pathways.
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and the availability of sufficient resources for continued growth. It seems sensible therefore,

that features in pathways responsible for energy metabolism would be able to differentiate

between tumour types to some extent. This hypothesis would also apply to changes involving

the glycolysis / gluconeogenesis pathway, as are suggested by the version of the route in figure

5.12.

Next, we should consider how a slowing of this pathway in pilocytic astrocytomas relative to

medulloblastomas and ependymomas would affect the concentrations of compounds that feature

within it, such as NAA and glycine. If there were a low rate of flow through the pathway (as

we predict to be the case for pilocytic astrocytomas), then there should be a comparatively

low concentration of glycine, owing to the smaller amount of serine, the compound required for

its formation. We would also expect to see a buildup of NAA at the entry to the pathway.

By comparison, in the cases where the pathway is supposed to be flowing more quickly (as

we predict to be the case for medulloblastomas and ependymomas) we should see a larger

concentration of glycine, because more serine will be available, but we should also see a drop in

the concentration of NAA, because it is now able to to enter and be passed down the pathway.

Precisely these results; high NAA and low glycine in astrocytomas, low NAA and high glycine

in medulloblastoma and ependymomas, have been reported in connection with in vitro studies

of these tumour types[97].

As this search is based on compounds that are being used in ratios rather than compounds

selected based on correlation networks, it is quite possible that the difference in their relative

concentrations is not due to an alteration in the biochemistry linking them and is instead due

to some external process. Fortunately, an examination of the directed metabolic graph of these

routes (Figure 5.9) can in this case show us other compounds that owing to the topology of the

graph, should behave in the same way as the compounds involved in the ratios (assuming the

100



change in relative concentration of the compounds is due to an alteration somewhere in the routes

Linked Metabolites has identified). In this case, we can see that all the routes involve aspartate

(cpd:C00049) and therefore it should also work as part of the ratio in place of NAA, although it

will of course have a different cut-off value. Likewise guanidinoacetate (cpd:C00581) should act

as an appropriate substitute for Cr. This information could also have been extracted from the

directed metabolic graph automatically using a betweenness centrality algorithm (Section 2.2.5),

a good example of the potential strength of the graph theory approach.

For completeness, a search was also performed for routes running from Cr to NAA although

nothing appropriate was found.

Choline and creatine

Linked Metabolites also found a route between choline (Cho) and Cr, within the glycine, serine

& threonine metabolism pathway (Figure 5.13). This route is well recognised in connection

with tumours due to its role in the formation of S-adenosyl-L-methionine (SAM), a coenzyme

involved in the transfer of methyl groups during DNA methylation (a process that can alter

the regulation of gene expression)[2]. This was previously mentioned in the work on dab liver

tumours (see section 4.3.2). In the classification chart devised by Harris et al. the threshold

values for the Cr/Cho ratio differed significantly between the pilocytic astrocytomas (where

the Cr/Cho ratio was specified as less than 0.35) and the other two tumour types (where the

threshold value used to differentiate between them was 0.75). The lower threshold value for the

pilocytic astrocytomas suggests that the difference in the relative amounts of Cho and Cr in

this tumour type is greater than it is in the other two, and this could be due to either a larger

amount of Cho, a smaller amount of Cr, or a combination of both of these changes. Looking

at the route between the two compounds identified by Linked Metabolites (Figure 5.13), it can
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Figure 5.13: KEGG pathway diagrams showing a route found by Linked

Metabolites between choline and creatine.
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be seen that Cho forms Cr and thus it seems likely that the rate of flow through this pathway

is slower in pilocytic astrocytomas than in the two other tumour types. A lower rate of flow

would explain the greater difference in the relative amounts of the compounds (Cho and Cr) as

a larger amount of Cho will build up at the entry to the pathway. Furthermore, the betaine

to dimethylglycine step of the pathway is the link between it and the formation of SAM, as

mentioned earlier. A lower rate of flow of this pathway in pilocytic astrocytomas, would imply a

lower rate of formation of SAM, and therefore a lower rate of DNA methylation than in the two

other tumour types. It has been reported that the number of hypermethylated (overmethylated)

genes increases with the malignant potential of primary tumours[98], and this fits well with the

low rate of methylation that was predicted (based on Linked Metabolites’ route) for the pilocytic

astrocytomas (a low-grade, and therefore relatively benign, glial tumour[22]) relative to the more

aggressive medulloblastomas.

As the route between Cho and Cr intersects with those found previously between NAA and Cr,

the directed metabolic graph for those routes can be expanded to include it (Figure 5.14). The

fact that the routes intersect adds further weight to the idea that the alterations in the underlying

biochemistry responsible for the difference between these tumour types may be related to the

routes identified by Linked Metabolites. It also suggests that the point of intersection, arginine

(cpd:C00062), may be an interesting target for further investigation.

The Cho and Cr peaks seen in a 1H MRS experiment are actually a combination of the peaks for

several different Cho and Cr containing compounds, merged due to the comparatively low reso-

lution of the current technology. By extending the Linked Metabolites search from a maximum

of 8 to a maximum of 9 steps we can include more of these constituent compounds (Figure 5.15)

and as before, extend our directed metabolic graph (Figure 5.16).

103



Figure 5.14: Directed metabolic graph produced by Linked Metabo-

lites showing the routes up to a maximum of 8 steps long from N-

acetyl-L-aspartate (cpd:C01042) and choline (cpd:C00114) to creatine

(cpd:C00300).
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Figure 5.15: Directed metabolic graph produced by Linked Metabolites

showing the routes up to a maximum of 9 steps long from phosphocholine

(cpd:C00588) and glycerophosphocholine (cpd:C00670) to phosphocreatine

(cpd:C02305).
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Figure 5.16: Directed metabolic graph produced by Linked Metabolites

showing the routes up to a maximum of 9 steps long from phospho-

choline (cpd:C00588), glycerophosphocholine (cpd:C00670) and N-acetyl-

L-aspartate (cpd:C01042) to phosphocreatine (cpd:C02305).

106



5.4 Discussion

The directed metabolic graphs produced by Linked Metabolites have a range of potential appli-

cations. In metabolomics, multivariate analysis techniques such as PCA and partial least squares

discriminant analysis are commonly used in combination with significance tests to produce a list

of metabolites that contribute to the differences between samples. Subsequent interpretation

of this list, with the aim of finding major metabolic perturbations, is often a time consuming

process whereby the metabolites are “grouped” manually by inspection of known metabolic

pathways. When used in conjunction with clustering metrics, the directed metabolic graphs

produced by Linked Metabolites would offer a rapid, automated solution to this problem.

In the diagnosis and treatment of paediatric brain tumours, MRS can be used to gather quanti-

tative information on the concentrations of key chemicals non-invasively. Analysis of this data

will often indicate pairs of compounds that appear to be elevated in concentration for a particu-

lar tumour type, although small numbers of samples can make achieving statistical significance

difficult. The directed metabolic graphs produced by Linked Metabolites can assist in the study

of these compounds, firstly by providing information on possible biochemical relationships be-

tween them and secondly by helping to identify other compounds that may also have altered in

concentration but that can not be seen using MRS.

Correlation networks, such as those discussed in the previous chapter, are often used to identify

compounds within a dataset that may be involved in common processes. Unfortunately the

presence of a correlation between two compounds does not imply that there is an obvious link

in the underlying biochemistry; as Steuer, Kurths, Fiehn and Weckwerth remarked “...there

is no straightforward connection between the observed correlations and the underlying reac-

tion network. We observe strong correlations between seemingly distant metabolites, whereas

metabolites sharing a common reaction are not necessarily correlated.”[83] By combining infor-
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mation from multiple metabolic pathways and presenting only those routes of potential relevance

to the compounds under investigation, Linked Metabolites can greatly reduce the complexity of

the search for chains of reactions that may be responsible for an observed correlation.

When considering the potential impact of Linked Metabolites, one must first consider how a list

of metabolites can be grouped in a way that is appropriate for answering a particular type of

question. In the simplest case, where purely exploratory work is being undertaken and no further

information is available, all the compounds could be placed in both groups. This would result

in the complete set of routes from every compound to every other being generated, allowing

the broadest possible base for the application of metrics such as motif search. Alternatively,

one may wish to investigate how changes in the concentration of one compound might affect

the concentrations of each of the others; this could be achieved by building a series of directed

metabolic graphs with a single sources and multiple targets, rotating the source compound for

each graph until the entire list of compounds has been covered. In situations where an earlier

analysis of the experimental data has revealed compounds whose concentrations are elevated

relative to another set of compounds, one might wish to use those groups as the basis for two

directed metabolic graphs, one focusing on the routes from the group of compounds with elevated

concentrations to the rest and vice versa. If the previous analysis involved the construction of

correlation networks then several possibilities exist; a directed metabolic graph of all the possible

routes between the compounds could be created as described above and then compared to the

correlation network by searching for common subgraphs. If Pearson correlations were used, then

it may also be appropriate to build graphs showing routes between the positively and negatively

correlated compound groups for each compound. If clearly defined clusters exist within the

correlation network, then these too could be used as the basis for a search.

At this point it is also necessary to consider the limitations of Linked Metabolites and the areas
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in which there is room for development in the future. Firstly, since KEGG does not contain

information on the tissues or cellular compartments in which particular reactions take place,

none of this information is considered during the route search. This is not an issue when the

user has chosen to search for routes that take place within individual metabolic pathways, as the

experimentally determined nature of the reference pathways means that compartmentalisation is

already effectively dealt with; however, when searching across a set of pathways the way in which

Linked Metabolites condenses instances of the same compound from a range of pathways into a

single node means that a pathway that produces a given compound in one type of tissue could

then be linked to a pathway that breaks the same compound down in a completely different area

of the body, without any guarantee that there is a suitable transportation method between the

two. This problem is compounded when in the last stage of the algorithm the identified routes

are combined to form the directed metabolic graphs, again potentially mixing processes taking

place in completely different areas of the body. There are both pros and cons to this behaviour.

The obvious disadvantage is that routes and networks are likely to be generated that contain

errors, linking compounds via intermediaries that can never interact, at least in the context

from which the experimental data was gathered. On the other hand, the original motivation

for the creation of Linked Metabolites was that under certain circumstances such as disease or

external stress, changes to body chemistry might result in novel pathways temporarily becoming

significant and as such “blue-sky” suggestions for interactions that might possibly take place

could provide useful information. This would be particularly relevant in diseases such as cancer,

where the activation and suppression of particular genes may drastically alter the enzymes

present in a particular tissue type, and hence the reactions that could be taking place. Despite

this, there is a strong argument for some form of compartmentalisation to be incorporated into

the search, at least at the tissue level. This could be an optional criteria in the same vein as the

selection of pathways for inclusion, thus allowing the current behaviour to remain if required.
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Unfortunately, such a modification would require the database on which Linked Metabolites’

search is based to be changed from KEGG to something more specialised such as Reactome,

making it more difficult to add support for additional species; a feature that would certainly

be of interest to the biological community, although possibly of less interest to those involved

in medical research. Next we have the issue of how to make the graphs produced by Linked

Metabolites available outside the program, as currently they can only be accessed through the

internal view created after the search has been performed. It would be desirable for the directed

metabolic graphs to be exported in a well-supported graph language, such as the graph modeling

language (GML) so that graph theory tools can be easily applied in other applications; however,

in order to facilitate the testing of the practicalities of the routes, it would also be advantageous

to export the graphs in a format such as SBML, allowing them to be imported into kinetic

modeling packages. In this case it would be sensible to include some other basic information

in the model such as rate constants for each of the reactions, an operation that would not be

difficult if the correct database was used.

The incorporation of the building of correlation networks into the workflow of Linked Metabo-

lites would be an important step in its development for the biological and medical research

communities, allowing researchers to enter their data, view the correlations, and then base their

searches on this information. Figure 5.17 shows how this might be achieved in a future version

of Linked Metabolites, while appendix B contains prototypes for some of the key screens.

One of the key contributions of Linked Metabolites to the field is in the way that it searches for

routes between compounds. Many of the existing database search tools use an all-pairs shortest

paths algorithm for this process, as it is relatively quick to compute. Linked Metabolites by

comparison uses an all simple paths search, which is far more computationally intensive (indeed

for many searches the memory requirements will make the problem intractable) but will find
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Linked Metabolites might incorporate the construction of metabolic cor-

relation networks. The coloured blocks represent different screens in the

interface.
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not only the shortest route between a pair of compounds, but also the next shortest and so

on. All of these additional routes, which would be missed by a route search using only an all-

pairs shortest paths algorithm, may in fact contain important information; particularly when

considering situations in which pathways that would normally be dominant are being altered by

disease or stress conditions.

5.5 Conclusions

This chapter has introduced Linked Metabolites, a tool that allows researchers to examine the

relationships between groups of metabolites in the context of the Homo sapiens specific versions

of the metabolic pathways stored in the KEGG database. It has shown a comparison between

the route search capabilities of Linked Metabolites and those of another tool based on the

same database, KEGG PathComp. It gave an example of how a researcher might use Linked

Metabolites to investigate the relationships in the underlying biochemistry between compounds

that appear to differentiate between tumour types. Finally, it has shown how despite some

areas that still need development, the approach used by Linked Metabolites could be applied

in a variety of different fields and how one might go about representing problems in ways that

would be compatible with the use of the tool.
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CHAPTER 6

DIRECTED METABOLIC NETWORKS FROM GENE

EXPRESSION DATA

6.1 Background

Early in this thesis, we described metabolomics as “complementary” to other -omics technologies.

So far we have seen how metabolomics datasets can be used to construct directed metabolic

graphs, with the aim of identifying key features in the underlying biochemistry. These can then

be used to help explain the observed biological changes in the subjects. In this chapter we will

consider how this approach might be extended in the future, using additional information from

other -omics technologies to help us limit the scope of our search of the metabolic pathways still

further. Specifically, we will see how a directed metabolic graph might be used to visualise the

potential metabolic changes resulting from differential gene expression, and how we might then

go about integrating that information into the results of searches from Linked Metabolites.
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6.2 Method

6.2.1 Data

As gene expression data is costly to gather and the early-stage nature of this work required

the use of a relatively small microarray, the raw data used in this chapter was taken from three

previously published studies by Grützmann et al.[99], Groene et al.[100] and Smirnov et al.[101],

and downloaded from the European Bioinformatics Institute’s (EBI) ArrayExpress service[102].

In all three cases, the data was gathered using either the Affymetrix Human Genome Focus

(HGF) array or a larger array that contains the probes of the HGF array as a proper subset. In

the latter case, the HGF array probes were extracted from the larger dataset and then used for

the construction of the graphs.

6.2.2 Construction of the directed metabolic graphs

The creation of the directed metabolic graphs is performed in two stages; firstly, differentially

expressed genes are selected from the datasets and associated with the enzymes that they encode.

Differential expression is determined through the use of p values (preferably calculated by a non-

parametric test such as the Kruskal-Wallis test) and optionally a two-fold change criteria. Data

processing associated with the microarrays was performed using R[86] and the Bioconductor

package[103]. In the second step, the enzymes associated with the differentially expressed genes

are used to add reactions to the directed metabolic graph based on their involvement as a

catalyst for the reaction. At the time this work was performed, pathway specific directional

information for each reaction was not available in a computer-readable form from the KEGG

database, requiring an enhanced version of the database including this information to be created.

The labour-intensive nature of this process was the main reason for the use of the HGF array.
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Now, the same functionality could be achieved using the XML versions of the pathways, making

the choice of array far less significant.

Since multiple probes on the array might be associated with a single enzyme, reactions are

normally only added to the graph if all the probes associated with them are significantly altered

in expression in the same direction. In the case of particularly noisy datasets meeting this

criteria may be a problem, so a “grey area” could be introduced into the construction process.

In this case, reactions could be added to the graph as long as at least one of the associated probes

is significantly up/downregulated and the others all fall inside the grey area (for example, the

threshold for significance could be set at p of 0.05 but the grey area might extend to p of 0.075).

Compounds are added to the directed metabolic graph if they are either a substrate or a product

for one of the reactions being added. Three directed metabolic graphs are created for each

dataset; one containing those reactions associated with upregulated probes, one containing the

reactions associated with downregulated probes, and a third that contained both the upregulated

and the downregulated reactions. The reactions in the latter graph are colour-coded to indicate if

they were more frequently upregulated (green), downregulated (red) or up/downregulated with

the same frequency (yellow). A flowchart was created to summarise this process (Figure 6.1).

6.3 Results

In order to validate the construction method, directed metabolic graphs were built for three

different types of cancer, pancreatic cancer, colorectal cancer and metastatic breast cancer.

Each graph was built using preexisting, publically available data as described previously, and

the graphs produced were checked for compounds linked to the cancer types in the literature.
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Threshold Mean Node-Node Distance, l Network Diameter

0.01 4.2748 11

0.02 3.9109 11

0.03 3.5565 8

0.04 3.6836 9

0.05 3.8576 9

Table 6.1: The mean node-node distances for the directed metabolic

graphs at each p value along with the graph diameter.

6.3.1 Pancreatic cancer

Pancreatic cancer was the ninth most common malignancy in the United States in 1994[104]

and is one of the most dangerous, with nearly 100% of patients developing metastases and dying

within 5 years[105]. The most common form of the cancer, Pancreatic Ductal Adenocarcinoma

(PDAC), accounts for 90% of all cases[104].

Existing microarray data produced as part of a study into PDAC by Grützmann et al.[99] was

used to generate directed metabolic graphs for the condition. As the data was gathered using

the Affymetrix U133A microarray, only the subset of the probes that corresponded to the HGF

array were included in the construction of the graphs. The graphs were produced for a range of

p values from 0.01 to 0.05; the graph for p = 0.03 containing reactions associated with both the

upregulated and downregulated probes is shown (Figure 6.2).

Looking briefly at the topology of the graph, the mean distance between node pairs (Table 6.1)

is comparatively small when compared to the network diameters suggesting that these graphs

are small worlds. The degree distribution for the graph shown also displays a power-law with

exponent ≈ 2, in line with figures previously reported for metabolic networks[43].

117



ATP
AMP

Pyrophosphate

L-Lysyl-tRNA

L-Lysine

tRNA{Lys}
ADP 3-Phospho-D-glyceroyl phosphate

3-Phospho-D-glycerate

Orthophosphate

1-{5’-Phosphoribosyl}-5-amino-4-{N-succinocarboxamide}-imidazole

1-{5-Phospho-D-ribosyl}-5-amino-4-imidazolecarboxylate

L-Aspartate

Aminoimidazole ribotide

CO2

UDP-N-acetyl-D-glucosamine

UDP

G00013

G00012

L-Threonyl-tRNA{Thr}
L-Threonine

tRNA{Thr}

Vitamin K
Reduced Vitamin K

NADH

NAD+

dADP

Thioredoxin

Oxidized thioredoxin

H2O

dUDP

UDP

dGDP

GDP

dCDP

CDP

D-Sorbitol

D-Fructose

H+

dUMP Dihydrofolate

dTMP

5,10-Methylenetetrahydrofolate

L-Glutamate

Carbamoyl phosphate
L-Glutamine

HCO3-

N-Carbamoyl-L-aspartate

{S}-Dihydroorotate

NADPH

NADP+

Adenine

5-Phospho-alpha-D-ribose 1-diphosphate

IMP

Hypoxanthine

GMP

Guanine

Xanthosine 5’-phosphateXanthine

Uridine

Uracil
C00442

Tetrahydrofolyl-[Glu]{n}

Poly-L-glutamate

Tetrahydrofolate

GDP-L-fucose

GDP

G00016

G00015

UTP

GDP-mannose
GDP-4-dehydro-6-deoxy-D-mannose

Glycyl-tRNA{Gly}

Glycine

tRNA{Gly}

10-Formyltetrahydrofolate

1-{5’-Phosphoribosyl}-5-formamido-4-imidazolecarboxamide

1-{5’-Phosphoribosyl}-5-amino-4-imidazolecarboxamide

5-Phosphoribosylamine

UDP-N-acetyl-D-glucosamine

UMP
N-Acetyl-D-glucosaminyldiphosphodolichol

Dolichyl phosphate

L-Tyrosyl-tRNA{Tyr}

L-Tyrosine

tRNA{Tyr}

{2R}-2-Hydroxy-3-{phosphonooxy}-propanal

Glycerone phosphate

5-Amino-4-imidazolecarboxyamide

Phenylpyruvate

enol-Phenylpyruvate

3-{4-Hydroxyphenyl}pyruvate

2-Hydroxy-3-{4-hydroxyphenyl}propenoate

UDP-D-galactose

T antigen
Tn antigen

Cholesterol

20alpha-Hydroxycholesterol
Oxygen

22beta-Hydroxycholesterol

20alpha,22beta-Dihydroxycholesterol

4-Methylpentanal
Pregnenolone

Ferredoxin

17alpha,20alpha-Dihydroxycholesterol

17alpha-Hydroxypregnenolone

4-Trimethylammoniobutanoate

Carnitine

Succinate2-Oxoglutarate

3-Dehydroxycarnitine

NH3

D-Glutamine

D-Glutamate

Tetrahydrobiopterin

Dihydrobiopterin

L-Phenylalanine

N-Acetyl-L-aspartate

Acetate

N-Formyl-L-aspartate

Formate

P1,P3-Bis{5’-adenosyl} triphosphate

G00021G00020

Choloyl-CoA

CoA

Glycocholate Taurocholate

Taurine

Chenodeoxyglycocholoyl-CoA

Chenodeoxyglycocholate

G00104

G00103

III3Fuc-nLc4Cer

Paragloboside

V3Fuc-nLc6Cer

nLc6Cer

G00084

nLc8Cer

IV3NeuAc,III3Fuc-nLc4Cer

Sialyl-3-paragloboside

G00081

VI2Fuc-nLc6

III3,IV2Fuc-nLc4Cer

IV2Fuc-nLc4Cer

S-Adenosyl-L-methionine

S-Adenosyl-L-homocysteine

Sarcosine

Formaldehyde

Reduced acceptor

Acceptor

L-Serine

L-Cysteine
Sulfide

L-Cystathionine L-Homocysteine

Selenocystathionine

Selenohomocysteine

N6-D-Biotinyl-L-lysine

Biotin

Palmitoyl-CoA

trans-Hexadec-2-enoyl-CoA

Octanoyl-CoA

trans-Oct-2-enoyl-CoA

Lauroyl-CoA

2-trans-Dodecenoyl-CoA

Tetradecanoyl-CoA

trans-Tetradec-2-enoyl-CoA

Decanoyl-CoA

trans-Dec-2-enoyl-CoA trans-Hex-2-enoyl-CoA

Hexanoyl-CoA

D-Aspartate

Oxaloacetate
H2O2

Figure 6.2: A directed metabolic graph produced from microarray data of

gene expression in Pancreatic Ductal Adenocarcinoma.
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Amongst the important nodes in the system is the H+ ion, which has a large number of out-

going links all associated with downregulated probes. This connection pattern would lead to

an increase in the concentration of H+ ions in the system and is consistent with the low extra-

cellular pH frequently seen in expanding tumours[105]. The amino acid glycine also features,

with a pattern of connections suggestive of a drop in its concentration (although without rate

constants in the graph this is a matter of debate); this is consistent with the mutation of the

K-ras oncogene that is seen in the vast majority of patients suffering from this condition[106].

While valine, one of the other possible results of the K-ras mutation is present in the graph,

the clear suggestion is that its concentration would drop. This may however be due to a lack

of coverage of appropriate enzymes (and hence reactions) on the HGF array. Other vertices of

high degree include “usual suspects” such as water, and energy-metabolism related compounds

such as ATP, AMP, pyrophosphate, orthophosphate, NADP+ and NADPH.

6.3.2 Colorectal cancer

The stage of a malignancy is an important determinant of survival. Amongst patients with

colorectal cancer for example, stage 2 tumours have a 20-25% chance of recurrence within 5

years. For stage 3 tumours the rate nearly doubles, rising to 40%[100]. Existing data taken

from a study be Groene et al.[100] was used to construct directed metabolic graphs showing

potential differences in metabolism between stage 2 and stage 3 tumours.
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Figure 6.3: A directed metabolic graph produced from gene expression data

showing potential differences in metabolism between stage 2 and stage 3

colorectal cancers.120



The list of important nodes for the graph at p = 0.06 (Figure 6.3) is dominated by compounds

linked to the TCA cycle (CoA, succinate, succinyl-CoA) and to energy production (ATP, AMP,

NAD+, NADH, NADP+, NADPH), with connection patterns indicative of reductions in the

concentrations of high-energy species such as ATP and increases in the concentrations of lower-

energy species such as AMP. This suggests that the energy requirements of stage 3 colorectal

cancers are very different to those of stage 2, most likely due to the generally accepted view that

stage 3 tumours are more aggressive than stage 2 tumours[100]. As with the PDAC graphs,

H+ ions are shown to be of increasing concentration. The connection pattern surrounding S-

adenosyl-L-methionine indicates a reduction in concentration, and it has been suggested that this

could lead to a decrease in DNA methylation and a loss of the normal controls on proto-oncogene

expression[107]. This process would result in an increased number of oncogenes being over

expressed, which would be consistent with the more aggressive tumour type. The alteration in

DNA methylation is a good example of how important biological processes can still be identified

in graphs despite the type of data used to generate them; here, we see it in a directed metabolic

graph generated from gene expression data, and earlier (in Section 4.3.2) the same process was

seen in the metabolic correlation networks derived from dab liver samples as an alteration in

choline metabolism.

6.3.3 Metastatic breast cancer

An existing HGF array dataset by Smirnov et al.[101] was used to generate a set of directed

metabolic graphs showing potential differences in metabolism between circulating endothelial

cells (a type of cell that forms the internal surface of blood and lymphatic vessels) taken from

healthy volunteers and from patients with metastatic breast cancer.

For the graph at p = 0.05, interesting features include the presence of spermidine and putrescine;
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both of these chemicals are known biomarkers found in the plasma and urine of cancer patients

and are indicative of tumour growth and cell turnover[108]. Folate, a deficiency of which is

increasingly thought to be a factor in the carcinogenesis of many different tumour types in-

cluding breast cancer[109, 110] also features, along with several chemicals (sarcosine, glycine,

and threonine) which are involved in choline metabolism and are immediately downstream of

the choline/betaine oxidation known to be enhanced in malignant breast tumours[111]. Finally,

hydrogen peroxide, which displays a pattern of connections suggestive of an increasing concen-

tration, has been shown to be produced in human tumour cell lines at a far greater rate than

normal[112].

6.4 Discussion

Whilst Linked Metabolites allows researchers to compile directed metabolic graphs showing how

metabolites of interest in a particular condition relate to each other, it is difficult to say how

those relationships behave dynamically. By building additional graphs from gene expression

data, the same information can be viewed from the point of view of the control of the metabolic

pathways, indicating which of the enzymes (that catalyse the metabolic reactions) may be altered

in concentration and therefore cause an associated change in rates of metabolic reactions. It is

important to note that gene expression data is just one more facet of a very complex, integrated

system; however, there is no reason that other data types could not be compiled into directed

metabolic graphs in similar ways.

A major advantage of this approach is that both the metabolic data, from Linked Metabolites,

and the regulatory information, as determined from the gene expression data are in the same

form; as a result they could be combined and processed as a single object. The way in which

this type of data integration is handled will impact on the types of metrics that could be applied
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to the data in the future, and therefore it is important to consider these factors. By simply

taking the areas of intersection between the graphs, for example, you could greatly reduced the

number of chains of reactions that would need to be investigated later by the researcher. Care

must be taken however, as different experimental techniques will have very different coverage

of the system and it is likely that a simple intersection would therefore result in important

information being missed. Instead, it may be more sensible to adopt an approach similar to

Arita’s, in which those routes suggested by both methods would receive a more favourable

weighting in the combined graph. It is also likely that the areas of intersection between the

graphs will not correspond to complete chains of reactions but instead effectively form hot-

spots, where attention should be focused and the most likely routes are likely to fall. Again, this

would suggest that an approach that somehow favourably weighted & highlighted the areas of

intersection between the graphs within the final, combined graph, would be the best solution to

this problem. Unfortunately, a lack of metabolomic and gene expression datasets for the same

conditions prevent us from exploring these ideas any further at present.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The visualisation and interpretation of data from metabolomics experiments is a complicated

topic. When studies are known to involve a single or a small number of pathways, the colour-

ing of metabolic pathway diagrams based on metabolite concentrations can be a very effective

approach; allowing the researcher to study the relationships between compounds by eye, and in

the context of the underlying biochemistry. However, such studies are far from being the norm

and the low-coverage of the metabolome by many current experimental techniques often mean

that the identification of markers by this approach is ineffective. While statistical tools such as

PCA and significance tests are a great aid to biomarker identification, reducing the number of

metabolites being considered by perhaps an order of magnitude depending on the technology,

the compounds they select as most responsible for the separation between sample groups will not

necessarily be the most appropriate for use as biomarkers and therefore still require validation

with reference to the metabolic pathways.

Metabolic correlation networks present interesting possibilities for both the visualisation of

metabolic datasets and the early stages of the identification of biomarkers. By compiling net-

works for each of the groups of samples in a study, relationships between the various metabolites

can be determined and areas of difference or intersection between the networks used to identify
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potential biomarkers. Correlations might also be used to indicate groups of metabolites that are

potentially involved in the same metabolic pathways, and these can then be used as the basis

for a search. Care must be taken however, since as with other statistical approaches there is no

guarantee that the differences in the networks are specific to the condition being investigated.

The issue of “coverage” of the metabolic pathways also poses problems, and can have a dramatic

impact on the pattern of connections between a group of metabolites in the network. This dif-

ficulty in particular currently makes a more automated approach to biomarker discovery based

on metabolic correlation networks and the metabolic pathways impractical; although as experi-

mental techniques improve, and the coverage of each of the metabolic pathways by experimental

data becomes more predictable, the situation will change.

In the medium term, metabolic correlation networks may have a much more significant role to

play in the analysis of metabolomics datasets, particularly while experimental limitations prevent

the use of time-series methods for the determination of biochemical network structure. This may

well begin with the extension of the underlying correlation analysis to groups rather than pairs

of compounds, creating hyperedges (edges that link more than two compounds together), which

would provide additional information and allow the scope of a search of the metabolic pathways

to be further refined. It is also possible that correlation networks have a role to play in peak

assignment in experimental techniques such as MRS, where issues of resolution mean that it

is not always possible to be sure which compound is responsible for a feature in the spectrum.

By building correlation networks for that data, and determining which other metabolites form

a cluster with the unknown peak, it should be reasonably straightforward to identify it given

there would be a limited number of possible options in that area of the spectrum.

As the major contribution of this work to the field, Linked Metabolites attempts to ease the

task of researchers looking to validate potential biomarkers identified using multivariate statis-
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tical analysis techniques such as PCA, correlation analysis or other similar approaches. Linked

Metabolites has two key advantages over other similar tools that are already used for this task;

firstly, it offers the possibility of searching for routes between two groups of metabolites. This

is an important advance, since as it becomes increasingly apparent that single compounds are

unlikely to prove specific enough to act as biomarkers on their own, the idea that a researcher

might wish to investigate the links between the compounds forming one “composite” biomarker

and another becomes a distinct possibility and one which would not be possible using single-

source compound or single-target compound searches. Secondly, Linked Metabolites uses an

all simple paths search for the identification of paths between the compound groups. This is

an important advantage over the all simple paths algorithm used by similar packages, since al-

though it is slower in many cases, it has the potential to find a far more diverse range of possible

solutions as demonstrated by its performance relative to that of KEGG PathComp. The way

in which Linked Metabolites combines the metabolic pathways before searching is also unusual,

as it collapses all instances of a particular compound into a single node rather than linking the

pathways only at specific points. This behaviour has both positive and negative aspects, mak-

ing “novel” chains of compounds more likely, but increasing the likelihood that errors will be

introduced. It is important to stress, that while Linked Metabolites is supposed to ease the task

of relating compounds identified in experimental data via the metabolic pathways, the results

still need to be checked and interpreted by a domain expert.

The directed metabolic graphs produced by the Linked Metabolites package open up several

interesting avenues for the advancement of the work. Most promising is the possibility that

through the use of directed metabolic graphs data from other parts of an integrated genomics

study could be merged with the results of the metabolomics study. This would allow information

on the current state of the cell or tissue, as stored in the metabolome, to be combined with

regulatory information, from gene expression, refining the sets of possible reactions further.
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The prospect of using metrics from graph theory, such as betweenness centrality, to identify

other compounds that are likely to be of altered concentration but not necessarily visible to the

experimental technique being used is also important, and could provide an interesting source of

compounds whose behaviour could be used for experimental validation of the biomarkers.

The evolution of the Linked Metabolites software itself would be an important next step in

the process. The development of a tool, probably web-based, which could perform the entire

analysis pipeline is of potentially great use to researchers in the area. As a specific example, it

would be advantageous to be able to move from raw, experimental data, through the production

of correlation networks, and the running of searches against the metabolic pathways in a single

tool. The graphs produced could then be exported in a standard form for use either as the basis

for simulation or fed into other software packages for further analysis, for example motif search.

A new version of the tool would also require a careful rethink of its expected areas of use; in

particular whether a sufficiently large group of users would require the flexibility of switching

between organisms, which is potentially available through the use of the KEGG database as

opposed to the advantages in terms of cellular compartmentalisation that would be gained by

moving to say Reactome. It may be that multiple databases would need to be supported,

that way researchers involved in the medical community could perform more restricted searches

that included compartmentalisation, while others who were interested in species other than

Homo sapiens or who wanted a more “exploratory” answer could use KEGG. With that in

mind, further development of the software will require extensive user assessment by the medical

community and biologists to determine the best way forward and test the current system on a

range of datasets. This work is currently being considered in collaboration with researchers at

the Birmingham Children’s Hospital.
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APPENDIX A

TIME-SERIES METHODS FOR BIOCHEMICAL

NETWORK DISCOVERY

The following appendix summarises a number of different methods for the reconstruction of

biochemical reaction networks from time-series concentration data for the participating com-

pounds. While they are currently of limited applicability to metabolomics (as they require the

reacting system to be forced away from its steady state and as such can only really be used on

data gathered in vitro) they are included here as an interesting future alternative to the use of

metabolic correlation networks and reference pathways.

Chevalier’s method

In 1993, Chevalier et al.[113] published a paper that examined several different experimental

methods for the discovery of unknown or partially unknown reaction mechanisms and compared

their performance based on a model of an oscillating chemical system. Each of the methods

represented a different way to gather time-series information on the concentrations of the com-

pounds making up the system but they all shared the same goal; the formation of a Jacobian
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matrix that described how an alteration in the concentration of one compound would impact

on the concentrations of the others, and from which the reaction network could be determined.

The three methods investigated were pulse perturbation (the sudden introduction of a given

compound into a system in a steady state), concentration shift experiments (in which the con-

centration of a compound feeding into the system is altered) and delayed feedback experiments

(where one of the feeds into the system reflects the concentration of the same compound at

an earlier point in time). Of the three methods, only the delayed feedback experiments failed

to produce an acceptable approximation of the Jacobian for the system. Concentration shift

experiments produced the most accurate version of the Jacobian. Despite producing accurate

models of the system under study, Chevalier’s methods suffered from several flaws that made

them infeasible for large-scale practical use. Firstly and foremost amongst these was the need

to perform multiple experiments in order to allow the perturbation of every compound within

the system. Perturbations also had to be of known magnitude, making it difficult to perturb

the system in ways that were not direct alterations to the concentrations of compounds (such

as temperature changes).

The CMC method

In 1995, Arkin and Ross[114] proposed a method for the identification of reaction pathways

based on multiple correlation analyses of time-series data. The Correlation Metric Construction

(CMC) method differed from Chevalier’s in many ways, but the most significant alteration was

in the way in which the system was forced from the steady state. In Chevalier’s method this was

either done through the use of a pulse perturbation or a series of sustained concentration shifts,

whereas in CMC those compounds that served as the inputs to the reaction pathway were

continuously driven to random concentrations throughout the recording process. The CMC
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method consists of seven steps:

1. A set of measurements of the concentrations of all the compounds in the system are taken

over an extended period, the sampling interval is set to be approximately the time that it

takes for the system to settle back into its steady state and the inputs of the system are

forced to random (Gaussian distributed) concentrations each time a sample is made. The

total experimental time should be long enough to ensure that all possible combinations of

the input compounds have been sampled.

2. The correlation matrix, R(τ) = (rij(τ)) is calculated from the time-series using the equa-

tions:

Sij(τ) = 〈(xi(t)− x̄i)(xj(t + τ)− x̄j)〉 (A.1)

rij(τ) =
Sij(τ)√

Sii(τ)Sjj(τ)
(A.2)

Where angle brackets denote an average, xi(t) is the tth timepoint of the time-series for

compound i and x̄i is the average of the ith time-series.

3. A clustering algorithm is used to group the compounds in the system based on maximum

correlations between all species, this produces a representation of the system in which

every compound is connected to at least one other.

4. The correlation matrix, R(τ) is converted into a Euclidean distance matrix, D = (dij)

using the transform:

dij = (cii − 2cij + cjj)
1
2 (A.3)
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cij = max |rij(τ)|τ (A.4)

For those pairs of variables which had a low correlation value the corresponding Euclidean

distance is large and vice-versa.

5. The classical multidimensional scaling method is applied to the distance matrix producing

a consistent configuration of the points, while at the same time establishing the dimen-

sionality of the data. Once projected in 2-D the points will be separated by a distance

which is less than or equal to the actual distance in the distance matrix.

6. An optimisation-based multidimensional scaling algorithm is applied to the dataset which

produces an alternative representation in which the distances between the points may be

less than, equal to or greater than the actual distance values. The optimisation processes is

based on the minimisation of a stress function using a simulated annealing algorithm. The

stress value for both representations is then calculated to determine which is the better

solution.

7. Finally, a cluster analysis is performed on the distance matrix to establish a hierarchy

amongst the interactions of each of the sub-systems within the pathway.

Despite the advantages of Arkin’s method, which not only establishes the structure of the reac-

tion pathway but also highlights areas of tight regulation (the compounds involved lying very

close to each other in the 2-D projection) difficulties do exist; these include the need to know

the inputs to the system under study a priori, the need to continuously alter the concentration

of those compounds throughout the acquisition of the time-series, the selection of the number of

datapoints required for analysis and the problem of assessing the significance of the correlations

calculated.
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D́ıaz-Sierra’s method

In 1999, Dı́az-Sierra et al.[115] published an improved version of Chevalier’s pulse perturbation

method which when applied to well-defined data led to not only the identification of the chemical

processes at work, but also the stoichiometric coefficients and rate constants for each of the

reactions.

The method Chevalier had used to obtain an estimate for the Jacobian was sometimes numer-

ically problematic; an alternative that had since been proposed by Sorribas et al.[116] used an

intermediate matrix Φ as the basis for the calculation of the eigenvalues of the Jacobian. Φ was

calculated from the equation:

δX(ti + h) = Φ · δX(ti) (A.5)

Unfortunately, the calculation of the eigenvalues of Φ was sensitive to noise and rounding errors

in the experimental data. To avoid this problem, Dı́az-Sierra adapted Sorribas’ method by using

Φ as a term in:

J =
1
h

[I + (Φ− I)] (A.6)

When expanded in its Taylor series, the above could then be used to calculate the Jacobian as

long as the sampling period, h was constant and long enough to capture the greatest relaxation

time for the system.

J =
1
h

[(Φ− I)− (Φ− I)(Φ− I)
2

+ . . . ] (A.7)

The reaction mechanisms are determined from the Jacobian as follows:
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1. The matrix of coefficients, JijXj,0 is created by the element-wise multiplication of each

column of the Jacobian by its equivalent steady state concentration. The number of generic

reaction steps can then be determined by counting the number of independent entries. For

each of the remaining entries, linear relationships should be expressed in the form:

n∑
ij

I
(r)
ij (JijXj,0) = 0 r = 1, . . . , p (A.8)

where I
(r)
ij are low integers and p is the number of dependent entries.

2. The linear equations are then substituted into:

m∑
s=1

αjsγisνs,0 = JijXj,0 i, j = 1, . . . , n (A.9)

to obtain equations in the form:

n∑
ij

I
(r)
ij (αjsγis) = 0 r = 1, . . . , p, s = 1, . . . ,m (A.10)

3. While these equations can not be used to directly infer the values of α and γ, they do

imply that α and γ can be expressed as parameter-dependent functions of the form:

αis(µ1, . . . , µR), γis(µ1, . . . , µR) (A.11)

The values of µR can then be determined by the substitution of the above into the first

set of equations in step 2, followed by the use of the known rates at which compounds are

being fed into the system.
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Schmidt’s method

Recently, Schmidt et al.[117] have produced a method specifically tailored towards the identi-

fication of small scale biochemical networks based on time-series in which both the magnitude

and effects of the perturbation are unknown. Their method has several important characteristics

in that it not only produces an estimate for the continuous time Jacobian of the system, but

also produces estimates for the perturbation to individual system components and can indicate

elements of the system possessing faster dynamics than can be captured by the experimental

sampling time; however to date it has only been applied to in silico systems.

The method assumes a fixed sampling time ∆T and that the perturbation to the system is con-

stant between two sampling points. It also assumes that in a system consisting of n components,

the concentration of every component is measured at each timepoint and that a minimum of

n + 2 timepoints are recorded with the first being taken before the perturbation is applied.∗

The estimates for Ad, the discrete time Jacobian of the system and ∆u, the constant unknown

perturbation to the system are obtained simultaneously from ∆xk, the measurement vectors

using the equation:

[Âd,∆û] = RMT (MMT )−1 (A.12)

Where R, the result matrix assuming m relative timepoints is given by:

R = [ ∆xm ∆xm−1 . . . ∆x2
] (A.13)

∗This is the absolute minimum and in real-world systems more timepoints are needed and multiple experiments

should be performed from the same steady state. The first recorded timepoint is only used as a reference from

which to calculate the relative values, so n + 2 recorded timepoints will result in n + 1 relative timepoints in the

calculations.
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and M , the measurement matrix is given by:

M = [ ∆xm−1 ∆xm−2 . . . ∆x1
] (A.14)

Since all of the values are relative, a system from which you have recorded information at six

timepoints will therefore result in (4)×(4) result and measurement matrices.

When r experiments are performed the result and measurement matrices are constructed as

follows:

R = [ R1 . . . Rr
] M =



M1 M2 . . . Mr

1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


(A.15)

and the estimate becomes:

[Âd,∆û1, . . . ,∆ûr] = RMT (MMT )−1 (A.16)

where ∆ûr is the estimate of the perturbation in experiment r.

Âzoh, the estimate of the continuous time Jacobian is then calculated from the estimated discrete

time Jacobian using the inverse form of the zero-order hold discretisation:

Âzoh =
1

∆T
logm

(
Âd

)
(A.17)

where logm

(
Âd

)
denotes the matrix logarithm of the estimation of the discrete time Jacobian.
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The identification of system components with dynamics that are faster than can be captured

by the chosen experimental sampling time is an important issue since if not removed from

the analysis they lead to inaccurate representations of the system. The identification process is

relatively straightforward, first the singular values of the measurement matrix, M are calculated.

If θ1 is relatively close to zero compared to the other singular values of the system then the chosen

sampling time is too short relative to the system’s dynamics. Next, the singular vector which

corresponds to the singular value identified must be examined, the most dominant element of

which indicates the component with the fast dynamic. This component is then removed from

the system and the network for the remaining elements calculated as normal.

The extraction of the network underlying the system is now performed in the same way as for

the other methods.
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APPENDIX B

PROTOTYPE SCREENS FOR THE WEB VERSION OF

LINKED METABOLITES

The following appendix presents a number of prototype screens for a web-based version of Linked

Metabolites. The new version could expand on the functionality of its predecessor by allowing

the entry of experimental datasets and the construction of metabolic correlation networks, thus

guiding the users selection of search groups.

B-1



Figure B.1: The data entry screen (part 1). Here the user defines the

dataset by specifying a name, the number of samples and the metabolites

measured.B
-2



Figure B.2: The data entry screen (part 2). Here the user enters the

concentrations for each metabolite.B
-3



Figure B.3: The network review screen. Here the user can view the corre-

lation network for their dataset. The threshold values can be selected using

the sliders. On the right hand side of the screen the user can edit the search

groups while still viewing the correlation network.

B
-4



Figure B.4: The network group selection screen. Here the user checks

the groups they have set. They may then either confirm that they want to

proceed with the search, or choose to manually add additional metabolites.B
-5



Figure B.5: The group selection screen. Here the user may edit the search

groups independently of the correlation analysis.
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Figure B.6: The pathway selection screen. Here the user selects the path-

ways that will be included in the search.

B
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GLOSSARY

-

-omics An area of study in biology focusing on a particular set of compounds such as

genomics (the study of the genome) or metabolomics (the study of the metabolome).

A

apoptosis The process of cell death.

B

betweenness centrality The proportion of the paths through a graph that feature a given node

or edge. High betweenness centrality values may indicate a bottleneck.

biofluid A fluid such as blood or urine that can be taken from a biological specimen.

biomarker A compound or group of compounds that in particular concentrations can be used

to determine an organism’s condition (e.g. determine whether it has a particular

disease).

BioPAX A data exchange format for metabolic pathway information.

Bonferroni correction A method of correcting for multiple significance tests by dividing the

significance value by the number of tests to be performed against it.

C

clustering coefficient The extent to which the neighbours of a node are also connected to each

other.

correlation coefficient A measure of how closely two vectors are related. In biology this is

usually the concentrations of two compounds across a set of samples.



D

degree The total number of edges or arcs incident on a node in a graph.

degree distribution The range of probabilities showing how likely it is a node in the graph will

be connected to a given number of edges.

directed metabolic graph A graph showing metabolites and the directed flow of reactions

between them.

F

false discovery rate A method of selecting the significance threshold based on an expected

frequency of false-positive results.

G

glycolysis A metabolic pathway in which sugars are broken down to form energy.

graph theory A branch of mathematics that studies the properties of graphs.

I

in vitro Within the glass. In vitro experiments are performed on biological samples that are

outside an animal or plant.

in vivo Within an organism. In vivo imaging techniques include x-rays, where bones are

examined without removing them from the individual.

indegree The number of arcs heading into a node in a graph.

K

KEGG See Kyoto Encyclopedia of Genes and Genomes.

Kruskal-Wallis A non-parametric, variance-based test for statistical significance. Since it is

non-parametric, the Kruskal-Wallis test has no underlying assumption that the data

follows a normal distribution.

Kyoto Encyclopedia of Genes and Genomes A biological database that contains, amongst

other things, a set of metabolic pathway diagrams.



L

Linked Metabolites A graphical tool for route search within the metabolic pathways and the

construction of directed metabolic graphs.

M

Magnetic Resonance Imaging An in vivo branch of NMR that uses the water within tissues

to create images of the body.

Magnetic Resonance Spectroscopy An in vivo branch of NMR that focuses on the detection

of metabolites.

metabolic correlation network A graph in which nodes, representing metabolites, are linked

by edges that represent a significant correlation between the concentrations of the

two in an experimental dataset.

metabolic pathway A set of reactions that perform a particular metabolic function such as

the release of energy from sugars.

metabolome The complete set of low molecular weight compounds involved in metabolism.

metabolomics The study of the set of low molecular weight compounds involved in metabolism.

microarray A piece of apparatus that can be used to measure gene expression.

motif search The extension of triadic census to n-node subgraphs.

MRI See Magnetic Resonance Imaging.

MRS See Magnetic Resonance Spectroscopy.

N

necrosis The premature death of cells and tissue.

NMR See Nuclear Magnetic Resonance.

Nuclear Magnetic Resonance A way of determining the molecules that are present in a sample

based on the magnetic properties of some atomic nuclei (e.g. hydrogen).

O

outdegree The number of arcs leaving a node in a graph.



P

Pajek A program for the analysis of networks.

PCA See Principal Components Analysis.

Principal Components Analysis A statistical technique that describes a dataset with a large

number of dimensions in terms of a smaller number of vectors that represent the

variance in the original data.

Python A scripting language.

R

Reactome A metabolic pathway database.

S

SBML See the Systems Biology Markup Language.

scale-free network A graph with a degree distribution that follows a power-law. Amongst

other interesting features, scale-free systems display a higher than normal resilience

to random node failures.

simple path A path between two nodes that does not loop back on itself at any point.

small-world network A graph with a small average path length between nodes compared to

that of a random graph of similar size and density.

Systems Biology Markup Language An xml standard for the exchange of biological models.

T

TCA cycle A metabolic pathway, also known as the citric acid cycle or the Krebs cycle, that

is key to energy metabolism and electron transport.

triadic census A survey of a graph for the frequencies of the sixteen possible non-identical,

three-node subgraphs and the comparison of those frequencies against a set of ex-

pected values.
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[44] A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek, “Evolution of

the social network of scientific collaborations,” Physica A, vol. 311, pp. 590–614, 2002.

[45] F. Liljeros, C. Edling, L. N. Amaral, H. E. Stanley, and Y. Åberg, “The web of human
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