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Abstract 

This thesis is focused on the study of bimetallic nanoparticles, their structure and 

evolution as small molecules and reactive species interact with them. Initially we 

describe Density Functional Theory (DFT), which will be used to find the energies of 

the nanoparticles and other properties with reasonable computational efficiency. 

Chapter three focuses on the structural properties of RhPd nanoparticles, including a 

search of low energy isomers. This is too expensive to be performed at the DFT 

level, so the Gupta potential was used along with the Birmingham Cluster Genetic 

Algorithm (BCGA) and Basin Hopping algorithm to conduct the search.  

Studies were performed on small gold, palladium and gold-palladium bimetallic 

clusters, with CO adsorption also investigated to see how the structure of the cluster 

was affected by CO adsorption. This work was then expanded to larger clusters. The 

38 atom Truncated Octahedron (TO) was used as a model system to research how 

CO molecules, atomic hydrogen and atomic oxygen effected the structure of 

bimetallic nanoparticles. Four separate bimetallic systems were studied: RhPd, PdPt, 

CuPt and AuPd. The last part of this thesis focuses on AuPt with an emphasis on 

charge effects and the energy of the d-band.    
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Call on me in prayer and I will answer you. I will show you great and 

mysterious things you did not know before. 

Jeremiah 33:3 (NET)
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Chapter 1-  Introduction 

Nanoparticles are aggregates of atoms or molecules, made up of a few to tens of 

millions of atoms or molecules with sizes varying from one to a few hundred 

nanometres(1). Due to their small size, they often exhibit different properties from the 

corresponding bulk material. Clusters are similar to nanoparticles, and the terms are 

often used interchangeably, although clusters can be smaller than nanoparticles(1, 

2). Due to their small size, there are many different shapes of nanoparticle that can 

be created, enabling a fine tuning of the shape of the structure depending on the 

properties required. Examples of different shapes include decahedra, icosahedra, 

and fragments of bulk crystals or combinations of the above (1, 3, 4). Nanoparticles 

have a high surface to volume ratio, which is particularly useful in catalysis as most 

reactions happen at the surface, so only a small amount of catalyst is required, 

decreasing the cost. However, with this ability to change shape and size searching 

for the correct structure to get the desired properties becomes increasing 

problematic.  

1.1 History 

Nanoparticles have been used for thousands of years, although their exact nature 

and structure has only been discovered relatively recently. Metallic nanoparticles 

have been found in glaze on medieval pottery(5), and nanoparticles have been 

discovered in ancient Egyptian makeup. Nanoparticles also provided the colour in 
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stain glass windows throughout the middle ages, with the nanoparticles stabilised 

within the glass. 

All these developments were used as a recipe without knowing how the colour 

or effect was produced. The first scientific work on nanoparticles was published by 

Michael Faraday is 1857(6). He looked at gold nanoparticles suspended in a colloidal 

solution, and found that different colours could be produced. He predicted (correctly) 

that the size of the gold nanoparticles in the colloidal solution affected the colour of 

the solution, and that the particles were too small to see through any microscope 

available at the time.  

The next big leap was a lecture by the physicist Richard Feynman(7), who 

presented a lecture entitled “there is plenty of space at the bottom”. He reasoned that 

if the smallest building block physicist’s could use was an atom then there was a 

huge gap between the length scales of what was being built and what could be 

possible. In addition he offered a prize to anyone who could build a motor less than 

“1/64 inch cube” (approximately 0.25cm3), which was achieved one year later. 

The paper which started the analysis of the catalytic properties was in 1987 

(8), with Haruta studying gold nanoparticles on different surface. In the bulk, gold is 

well known to be the most noble metal. However, as the size of the gold particle 

decreased, the activity for CO oxidation increased and had a higher turnover 

frequency than the best catalysts of that time. Haruta studied the nanoparticles on 

different oxide supports, including SiO2, TiO2, which also affected the activity of the 

catalyst.  
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1.2 Bimetallic Nanoparticles 

 

Figure 1-1 Schematic representation of some of the different mixing patterns available for bimetallic 

nanoparticles. Top row from left: a segregated nanoparticle, a ball and cup arrangement and a core-shell 

nanoparticle. Bottom row from left: a mixed nanoparticle with random ording, known as a solid solution, a 

nanoparticle with ordered mixing, and a layered onion structure with alternating atomic layers from the center of 

the cluster. Based on figure 1 in reference (1). 

Bimetallic nanoparticles and bimetallic clusters are aggregates of two different metals 

that bring additional benefits and disadvantages(1). Using two different metals 

enables them to mix in different ways, as shown in figure 1-1. These are different 

homotops; clusters with the same geometry and number of A and B atoms, but with 

different chemical ordering. There are two main types of particles: mixed and 

segregated. Mixed clusters can be ordered or randomly mixed in a solid solution. 

Segregated structures can be separated further, with sub cluster segregation being 

the least mixed A-B bonds. The other extreme is the core-shell arrangement, with a 

core of one element and a shell of another. Intermediate between the two extremes is 
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the ball and cup arrangement. Other systems have also been created 

experimentally(9), such as the onion structure of alternating layers of elements, and 

hollow nanoparticles. Clearly, the additional metal increases the complexity of the 

system. In theory, any metal can be mixed with any other metal, even in cases where 

the metals do not mix in the bulk (silver and copper, as an example). If we limit 

ourselves to the 30 transition metals, that gives 435 combinations. Searching through 

all of these experimentally is a challenge, and theoretical techniques can be used to 

assist experimentalists with finding low energy structures and useful properties. 

The number of homotops increases combinatorially with the number of A and 

B atoms. For a binary cluster AnBm, the number of homotops (NH) is given in formula 

1-1 (1). 

   
      

    
 1-1 

For a binary cluster of A15B15, the number of combinations is 15,117,520 

different combinations. Although some of these may be symmetry equivalent, it is 

impossible to complete a structural search of all possible combinations and a search 

algorithm must be used for all but the smallest cases (see Chapter 3-  for a study on 

RhPd clusters). 

1.3 Synthesis of Nanoparticles 

Clusters (both mono and bimetallic varieties) can be studied either in the gas phase, 

on surfaces or in solution using various techniques which are described below 
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1.3.1 Molecular Beams 

These types of methods were developed for studying free clusters, so adsorption 

effects do not change the cluster geometry. This technique was developed over 30 

years(10-12) ago and enables the creation of size selected nanoparticles with a 

selected number of atoms(11) and a narrow composition range. For example, Knight 

et al. (13) studied size selected sodium clusters and were able to determine the 

different sizes down to the atom. More recently Qian et al.(14, 15) have studied thiol 

protected gold clusters containing 40 gold atoms. Finally Li et al. have studied larger 

size selected gold clusters with up to 309 atoms(16). The cluster generation occurs in 

three steps: vaporization, growth and analysis. This stage can happen in various 

ways, depending on the nature of the element, or elements, involved. This includes 

heating using a laser(17, 18) or an inert ion (for example Ar+) beam, or by passing an 

electrical current through the sample. For bimetallic nanoparticles, the sample can be 

a mixed powder, an alloy of the two different elements or two different samples 

vaporized one after another(18). They can then pass through a carrier gas to cool the 

atoms down so they agglomerate. After this the clusters pass through a supersonic 

jet, increasing their velocity so no further growth is likely to occur. This gives the 

cluster a narrow size distribution(1). Analysis can happen within an inert gas 

matrix(19), or can be placed on a surface for further study using electron 

microscopy(20).  

1.3.2 Colloidal methods 

Although molecular beams can generate atomic clusters with a selected number of 

atoms to a high precision(21, 22), they cannot generate clusters in large quantities 
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required for industry. Therefore ’wet’ colloidal methods can be used instead. These 

are created by precipitating a metal salt inside a solution containing some surfactant. 

The surfactant then binds to the clusters surface, limiting its growth. This method of 

creating nanoparticles is not new; it was the method Faraday used to create gold 

nanoparticles(6), although now different shapes of nanoparticle can be created, 

including cubes(23), flowers(9) and geometric polyhedral nanoparticle (23, 24). 

Bimetallic nanoparticles can be created in different ways- either precipitating two 

different metal salts at the same time, or creating nanoparticles from one metal first, 

followed by a second metal using the first as a seed to nucleate their growth(25).  

1.4  Uses of Nanoparticles 

Nanoparticles have been studied for many diverse applications. They have 

been studied for their magnetic properties (10, 26); with possible uses including data 

storage devices. Optical properties have also been studied (25). 

Nanoparticles have been extensively studied for catalytic applications. Over 

180 tons of palladium has been used in the automotive industry in 2011, along with 5 

tons of rhodium for catalytic converters (27). Platinum has been extensively studied 

for fuel cell applications(28), although the costs are currently prohibitive for mass 

adoption. Alloying platinum with other metals has been studied, to reduce the overall 

cost of the fuel cell. In addition, alloying can reduce the effect of other gases 

poisoning the catalyst (29). However, alloying can also affect the stability of the 

catalyst, altering its structure to strengthen the binding of poisons. This has been 

shown to occur for CO on copper-platinum surfaces (30, 31). 
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Chapter 2-  Density Functional Theory 

2.1 Basic Quantum Mechanics 

Quantum mechanics was developed early in the 20th century, as classical mechanics 

could no longer explain various experimental results known at that time. As an 

example, when light is passed through two slits with a distance similar to its 

wavelength, a diffraction pattern is observed(32). However, this effect not only 

applies to light but can also apply to electrons(33, 34) and similar experiments have 

even resulted in the diffraction of much larger clusters(35). Other examples include 

the quantisation of light to explain black body radiation(33, 36). 

Erwin Schrödinger(37, 38) introduced the concept of the wavefunction, 

commonly denoted as Ψ, from which all observable qualities (such as energy) can be 

found. Classical mechanics, based around Newton’s laws of motion, assumes that all 

quantities (energy, momentum, position etc) can be perfectly known. This is no longer 

the case with a quantum mechanical system, due to Heisenberg’s uncertainty 

principle(39). This makes finding observables for a quantum system, such as the 

positions of electrons in a nanoparticle, problematic.  

To find the energy of N electrons interacting with M nuclei without relativistic 

effects or external fields is given in equation 2-1(40). 

                                                                  2-1 
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  denotes the position of the electrons and R the location of each nucleus. It is 

worth noting that the wavefunction is not directly observable, although the 

wavefunction multiplied by its complex conjugate Ψ* is the probability of finding the 

particles 1 through N within a small volume element(40). Ĥ is the Hamiltonian 

operator upon the wavefunction to get the energy E, which is given in equation 2-2. 

    
 

 
   

 

 

   

  
 

   
  
 

 

   

   
  
   

 

   

 

 

   

  
 

   

 

   

 

   

   
    
   

 

   

 

   

 2-2 

Each term represents a different contribution towards the energy. The first and 

second terms represent the kinetic energy of the electrons and nuclei, respectively. 

The third, fourth and fifth terms represent the nuclear-electron, electron-electron and 

nuclear-nuclear coulombic interactions. Z is the charge of each nucleus, and M its 

mass. R is the distance between nuclei, rij the distance between the electron i and j, 

and riA the distances between the atom A and the electron i. Clearly this is an 

impossible equation to solve, except for the simplest systems, so approximations 

have to be made. 

It is now worth noting that equation 2-2, and all the formulae in this chapter, 

uses atomic units with the rest mass of the electron, electron charge and        set 

to unity. This is a common method to simplify the equations slightly (40). 

The first approximation that is often used is the Born-Oppenheimer 

approximation(41). As the nuclei are over 1800 times heavier than the electron, we 

can assume that the nuclei are fixed with respect to the electrons and do not move, 

or move so slowly that the electrons react immediately to the moving nuclei. This 

makes the second term in equation 2-2 is effectively equal to zero, and the fifth term 
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becomes a constant, which is trivial to calculate. This still leaves us with the 

electronic Hamiltonian to calculate, given in equation 2-3. 

    
 

 
   

 

 

   

   
  
   

 

   

 

 

   

  
 

   

 

   

 

   

 

                

2-3 

The wavefunction must be normalised, such that all electrons must be 

somewhere in space (equation 2-4). 

                   
                  2-4 

Electrons are also indistinguishable fermions, with a magnetic quantum 

number ms=±1/2, which make the wavefunction anti-symmetric. If two electrons are 

interchanged, the sign of the wavefunction changes as shown in equation 2-5. 

                               2-5 

This is the mathematical notation of the Pauli exclusion principle(42, 43). 

2.1.1 Variational principle 

The variational principle is used widely in both quantum mechanics and in 

DFT. It can be shown that the expectation value of any observable O can be found 

from its wavefunction using equation 2-6. 

                                    2-6 
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The important part of the variation principle is that a trial wavefunction can be 

used, and this can then be minimised relative to the desired quantity. If we look at the 

energy E’ of a trial wavefunction Ψtrial, we end up with equation 2-7. 

                                    2-7 

The equality holds if the trial wavefunction is equal to the ground state 

wavefunction Ψ0. To get to E0 we use equation 2-8. 

      
   

        
   

                   2-8 

Then we can take an external potential from the nuclei and construct Ĥ. Then 

we can guess at a trial wavefunction which can give us the desired ground state 

wavefunction, from which the energy and any other observable can be found if the 

trail wavefunction is the same form as the ‘real’ wavefunction. If the function isn’t in 

the correct form it will always be higher in energy than the actual systems energy. 

2.1.2 Limits of ‘true’ quantum mechanical methods 

The problem with this is the computational resources needed to calculate the 

wavefunction. Every electron is interacting with every other electron, giving us 4N 

degrees of freedom (3 dimensions of space, plus spin). It has been noted that even 

great advances in computer power can’t overcome the ‘exponential wall’ when large 

systems containing hundreds of electrons are treated(44). However, the electron 

density (which is simply the square of the wavefunction) only varies in three 

dimensions, so is it should be possible to get observables from the density (often 

denoted as ρ) as well as the wavefunction. 
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2.2 Density Functional Theory (DFT) 

2.2.1 Early Attempts- The Thomas-Fermi Model 

The very earliest attempt at using the density instead of the wavefunction was 

published only a year after Schrödinger’s work independently by Enrico Fermi(45) 

and Llewellyn Thomas(46). Assuming a homogenous electron gas, the kinetic energy 

    of the electrons is given in equation 2-9(40). 

    
 

  
                     2-9 

This can be combined with nuclear-electron attraction and electron-electron 

repulsion to give a total energy (equation 2-10). 

            
     

 
   

 

   

 
 

 
 

            

   
         2-10 

ZM is the charge on each nucleus M. This approach gave reasonable atomic 

energies, although chemical bonding was found to be an endothermic process, with 

the separate atoms having a lower energy than molecules, or with atoms only binding 

weakly to each other(47, 48). Expansions have been made to the Thomas-Fermi 

model, for example treating the electrons as an inhomogeneous gas by adding 

gradient terms, but the lack of quantum mechanical exchange and correlation effects 

(see below) limited the results of the theory. Despite this, it is worth noting that the 

wavefunction was not used to get the energy of the system, even though it had not 

been explicitly proven that electron energies can be found from the density alone. 
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2.2.2 The Hohenberg-Kohn Theorems 

2.2.2.1 The First Hohenberg-Kohn Theorem 

The proof that it is possible (at least in theory) to get the correct ground state 

energy from the density alone was achieved by Hohenberg and Kohn in 1964(49). 

The proof was surprisingly simple, although it was found 38 years after Schrödinger’s 

work. It states that “the ground state energy must be a unique functional of ρ, which 

is a function of the wavefunction” (50) (shown in equation 2-11). 

                             2-11 

The kinetic energy   and electron-electron energy     terms are often referred 

to as the Hohenberg-Kohn functional, as it is the part that is dependent on the 

density alone, and not any external potential (equation 2-12).  

                   2-12 

The nuclei- electron interaction     is the simplest, as it is the columbic 

interaction between the nuclei (with charge Z) and the electron density (equation 2-

13). 

          
     

 
    2-13 

The Hohenberg-Kohn functional is more problematic due to quantum 

mechanical electron-electron interactions, so this can be split into different sections. 

Firstly, a classical electron kinetic energy without any electron-electron effects 
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included; secondly, a coulombic repulsion of the electron density with itself and thirdly 

all the other ‘unknown’ quantum mechanical effects, Encl.  

             
 

 
 

            

   
             

                 

2-14 

2.2.2.2 The Second Hohenberg-Kohn Theorem 

We have already found that variation theory can be used to find the lowest 

energy for a wavefunction. The second Hohenberg-Kohn theory states that a 

variation principle can be used to find the lowest energy E from varying a trial density 

   (equation 2-13). 

                               2-15 

      is the energy of the trial density.  

In principle, the Hohenberg-Kohn theorem is exact, as no approximations 

have been made in the approach thus far. Therefore, if the kinetic energy operator, 

electron-electron and nuclear electron functional were known perfectly, then DFT 

could be used to find the exact energy for a system. Unfortunately, we hit a 

roadblock; that the kinetic energy functional is not known completely and the 

electron–electron interaction can’t be modelled completely due to quantum 

mechanical effects(40, 44).  
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2.2.3 The Kohn-Sham Equations 

The Kohn-Sham equations were published one year after Hohenberg and 

Kohn’s work, giving details of how to apply the Kohn-Hohenberg principle to a multi-

electron system(49).  

The electrons are treated as a collection of spin orbitals φi. Doing this enables 

the kinetic energy to be treated as a homogenous electron gas, (similar to the 

Thomas-Fermi model, but only for each orbital) as shown in equation 2-16. Any 

changes in kinetic energy due to electron interactions can be found using Encl in 

equation 2-14. 

       
 

 
      

     

 

   

 2-16 

We can now define Exc as everything else, and contains terms for how the 

other electrons moves with respect to every other electron (first part of equations 2-

17), and the repulsion of each electron due to the Pauli Exclusion Principle (second 

term in equation 2-17). Of course the Pauli Exclusion Principle only applies to 

electrons which have the same spin state. 

                               

               

2-17 

From Exc we can define a potential, which is how Exc affects the density, as 

defined in equation 2-18.  
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 2-18 

The orbitals can then be treated using a single Slater determinant, Φ with the 

additional potential VXC added to account for the exchange correlation function. This 

is almost identical to the Hartree-Fock scheme, but including the exchange 

correlation term in the additional potential. The determinant is given in equation 2-19. 

  
 

   
 
               

   
               

  2-19 

The prefactor before the determinant is the normalisation constant. The 

energy of each orbital is given by the Kohn-Sham operator,      in equation 2-20 and 

2-21. 

              

      
 

 
    

  
   

 

 

  
      

   
             

2-20 

2-21 

Clearly, the number of electrons must equal the amount of electron density, 

which is equal to the sum of all occupied orbitals across both spin states as given in 

equation 2-22. 

              
 

 

 

   

 2-22 
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2.2.4 Basis Sets 

There are different ways of defining the orbitals within an atom or a molecule, 

split into two main categories: Linear Combination of Atomic Orbitals (LCAO) 

methods, and plane waves.  

2.2.4.1 LCAO Basis Sets 

Each orbital within the LCAO method is defined in equation 2-23. 

         

 

   

 2-23 

Where c is a coefficient describing how much a function η contributes to the 

overall orbital, and L is the maximum number of functions and coefficients for the 

orbital   . To model the orbital perfectly, there would be an infinite number of 

functions, L. This is clearly unfeasible for a computer to be able to calculate.  

The first functions are Slater Type Orbitals (STOs) suggested by Slater for 

Hartree-Fock calculations (51), and is defined in equation 2-24. 

                         2-24 

n is the principle quantum number,          denotes the angular momentum 

contributions and ζ is a variable coefficient. The other forms are called Gaussian 

Type Orbitals (GTO’s) (52), and are based on Gaussian distributions (equation 2-25).  

                    2-25 
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This time x, y and z denote the angular momentum contributions; N is a 

normalisation constant and α is a variable exponent. Although GTO’s normally 

require more coefficients (higher L in equation 2-23) than STO’s, as they don’t have 

exhibit the correct density at the nucleus and decay too rapidly as the distance away 

from the nucleus increases, integration and differentiation is computationally cheaper 

as the multiplication of two Gaussian functions results in another Gaussian, so all 

integrals can be completed analytically.  

2.2.4.2 Plane Wave basis Sets 

Plane waves are another method of defining the orbitals, instead of using the 

LCAO method. These are exponential functions as shown in equation 2-27(40). 

            2-27 

    is the wave-vector which is related to the momentum of the electron. Importantly, 

these functions are not based around a nucleus but are spread across space and 

require periodic boundary conditions, so that infinite periodic systems (like crystals or 

bulk solids) can be calculated cheaply. Because of this the number of functions 

required to acquire reasonable energies is much larger than for STO’s or GTO’s. Gas 

phase molecules or atoms can be modelled using plane waves by placing it within a 

large enough box to minimise the interactions between neighbours. There are various 

different methods and implementations(53), including projected augmented wave 

(PAW) functions (54) norm-conserving (NC) pseudo potentials(55) and ultrasoft 

pseudo potentials(56).  
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2.2.5 Solving the Kohn Sham Equations 

Now we have defined the equations for the atomic orbitals and the different 

potentials we are using, it is possible to explain how DFT can be used in a 

computational context, and we will use the LCAO method as an example. As stated 

above in equation 2-23, each orbital is defined as a combination of L coefficients c 

connected to some function η. Merging equation 2-23 with equation 2-21 gives us the 

energy of the orbital φi (equation 2-28). 

                    

 

   

              

 

   

 2-28 

This is then integrated over all space, giving a set of L equations (equation 2-29). 

                               

 

   

                         

 

   

 2-29 

The integral on the left of equation 2-28 is called the Kohn-Sham matrix    , 

while the equation on the right is referred to as the overlap matrix S, (as it gives the 

level of overlap between the functions ημ and ηv. Both matrices have dimensions L by 

L. We also end up with L by L dimensional matrices of the coefficients, C, and the 

energies ε given in equation 2-30 and 2-31. 

   

          
          
 
   

 
   

  
    

  2-30 
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  2-31 

These matrices can be summarised as equation 2-32. 

         2-32 

This has turned a complex non-linear wavefunction (equation 2-1) where every 

wavefunction depends on every other, into a much simpler linear expression that can 

be solved.  

It is now necessary to describe the elements of the Kohn Sham matrix and the 

Kohn Sham operator. As the kinetic energy and nucleus electron energies depend 

only on one electron, these can be easily merged into a single integral, h (equation 2-

33). 

              
 

 
    

  
   

 

 

             2-33 

The coulombic electron-electron interaction term is more problematic, as it 

depends on two electrons. Initially, as the function η is a constant function and the 

occupancies of each orbital are defined by the c coefficients, a density matrix P can 

be defined in equation 2-34. 

           

 

   

 2-34 

This gives us a collection of four-centre-two-electron integrals to solve. In equation 2-

35, the four centres are ημ, ηv, ηλ, and ησ, and the electron density at     and    . 
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 2-35 

It is worth noting that this is often the slowest step in DFT, and slows down the 

calculation significantly, as L4 four centre two electron calculations must be 

completed. A quicker method was suggested by Baerends, Ellis and Ros in 1973 

(57), and reduces the complexity of solving this by using a charge fitting basis set. 

This replaces the                term with a sum of predefined functions, giving 

equation 2-36. 

                        

 

   

 2-36 

This reduces the calculation to a two-centre-two-electron integral and a summation, 

reducing the computational cost of the calculation significantly (58, 59).  

2.2.6 Effective Core Potentials (ECP’s) 

For larger atoms, such as transition metals, the core electrons are often not 

involved in bonding to other nuclei and very little change is observed with their 

energy or density distribution. It is therefore common to fit a potential to all the core 

electrons and treat them as a single unit, as initially suggested by Hellmann in 

1935(60). In the case of gold, this can reduce a 79 electron atom to 11 electrons and 

a core potential of 68 electrons (with [Xe], 4f14 electrons treated by the core potential, 

significantly reducing the complexity of the calculation(61). Smaller effective core 

potentials can be used to increase the accuracy of the calculations(62).  
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ECP’s are required for plane wave calculations, as the number of plane waves 

needed to define the core electrons rapidly becomes prohibitively expensive(63) as a 

large number of pseudopotentials are required to model the core electrons 

accurately. 

2.3 The Exchange Correlation Function 

The exchange correlation (XC) function is split into two separate parts, 

electron exchange and electron correlation. The electron exchange is as a result of 

the Pauli Exclusion Principle that the wavefunction is antisymmetric. If we take a two 

electron system, swapping the two electron positions gives the density in equation 2-

37. 

                   2-37 

This can only be true if and only if the probability of finding both the electrons 

at the same point in space is zero. It is worth noting this has nothing to do with the 

coulombic repulsion, and is applicable to uncharged fermions (for example, neutrons) 

(40). Electron correlation is the reduction in coulomb repulsion due to the electrons 

avoiding each other. In addition, the semi-classical coulombic term in equation 2-14 

includes the unphysical quantity of the electron interacting with its own charge. This 

effect should be cancelled out within the XC function.  

2.3.1 The LDA and LSDA 

The first attempt to define the exchange correlation is the Local Density 

Approximation (LDA) and assumes the electron density is constant or at least slowly 

varying (equation 2-38). 
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                           2-38 

The term εXC is split into its corresponding exchange and correlation 

contributions, as in equation 2-39. 

                               2-39 

εX can be derived exactly, whereas εC has been found by fitting to quantum 

Monte-Carlo simulations(40).  

The LDA functional assumes that all the electrons are spin paired, with no 

unpaired electrons. It is however trivial to expand this, resulting in the Local Spin 

Density Approximation (LSDA) (equation 2-40). 

   
                                   2-40 

LDA and LSDA have a tendency towards over binding, as they overestimate the 

correction to the electron-electron repulsion(64).  

2.3.2 GGAs 

The next obvious step is to assume the density is slowly varying, resulting in 

exchange-correlation functions that contain gradient terms(65). There are many 

variations, all based on the Generalised Gradient Approximation (GGA) (equation 2-

41). These are related to a function of the density and its gradients. 

   
                            2-41 

As with the LDA and LSDA, these can be split into exchange and correlation terms. 
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The two main exchange correlation functions used in this work are the 

Perdew-Wang 91 (PW91) (64) and the Perdew-Becke-Ernzerhof (PBE) (65, 66) 

exchange correlation functional, both of which are GGA’s. 

2.3.3 Hybrid functionals 

Hybrid functionals contain a mixture of LDA and GGA terms, with electron 

exchange explicitly calculated using Hartree Fock techniques. The most famous 

example(67) is the B3LYP functional developed by Becke, Lee, Yang and Parr(68, 

69), and is given in equation 2-42 

   
                   

          
         

          
   

           
     

2-42 

Where   
     and   

      are the respective exchange and correlation parts of 

the LDSA,   
   is the exchange functional by Becke,   

    the correlation functional 

by Lee Yang and Parr and   
   is the exchange found using Hartree Fock. The 

coefficients are fitted to various experimental results, including atomisation energies 

and ionisation potentials. Many other hybrid functionals exist, including PBE0(70), 

mPW1PW91(71) and X3LYP(72). 

2.4 Relativistic DFT (RDFT) 

Relativity plays a large role in the electron structure of heavier atoms(73), including 

the late transition metals gold and platinum. Due to the large charge at the nucleus, 

the core electron exhibit strong nuclear-electron interaction, increasing their kinetic 

energy to velocities approaching the speed of light. This causes the core electron 
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orbitals to contract, and has been found to be the main reasons why small gold 

clusters are planar, and for gold’s yellow colour(74). There are three major effects 

that occur when relativity is taken into account(74). 

 As the electron reach velocities approaching the speed of light near the 

nucleus, their mass increases and the s and p orbitals contract. 

 As the s and p orbitals contract, the d and f orbitals expand as they 

have larger orbital momentum so spend more time outside the core. In 

addition, the contraction of the s and p orbitals results in more 

shielding, again increasing orbital expansion 

 Spin orbit coupling occurs; coupling the orbital angular momentum l 

with the intrinsic spin angular momentum s.  

There are various levels of approximation for RDFT calculations. For lighter 

atoms where relativistic effects are small, perturbation theory can be used, with the 

relativistic effects treated as a small perturbation of the non-relativistic density. For 

heavier atoms, the relativistic effects are no longer negligible, so other methods must 

be used. The full RDFT approach uses a 4-component Dirac Hamiltonian(73). 

Unfortunately, this method gives no bound states with two or more electrons, and is 

very computationally expensive. Other methods exist, including the Zeroth Order 

Regular Approximation(75, 76) (ZORA) which can be used to account for relativistic 

effects cheaply(77). The kinetic energy functional T is replaced with equation 2-43 

(78). 
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     are the Pauli spin matrices, p the momentum, c is the speed of light and V the 

potential.  

 A further approximation can be made by neglecting the spin matrices. This 

was first implemented for closed shell systems but can be expanded for open 

systems, and is called the scalar relativistic (SR) approximation (equation 2-44). It is 

the SR approximation that will be used for most of this work. This approximation is 

valid for calculating binding energies of larger clusters, but has been shown to affect 

the structure of the global minima for small gold clusters. In addition, calculating 

excitation spectra (such as UV/vis spectra) would require ZORA, as the electron 

energy spacing would change due to spin orbit coupling. 
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2.5 DFT Programs 

Many programs exist for performing DFT calculations. Including the Gaussian 

package(79), VASP(80-82), GPAW(83) and CASSTEP(84) each using different 

syntax and optimised for different problems. This work has used two different DFT 

codes, NWChem(85) and Quantum Espresso(53), a brief introduction is included 

below. 

2.5.1 Quantum Espresso 

Quantum Espresso(53) (opEn Source Package for Research in Electronic 

Structure, Simulation and Optimisation) is a modular DFT code for calculating 

structures and energies of quantum mechanical systems. It is exclusively a plane 



Chapter 2- Density Functional Theory  

26 

 

wave code, although calculations of gas phase molecules can be achieved by 

performing the calculations using the gamma point within a large box. The ECP basis 

sets are available with the program or they can be created by different modules 

within quantum espresso. Phonon calculations can be performed, as can geometry 

relaxation and variable cell calculations. Quantum espresso is also extensively 

parallelised, using a mixture of OpenMP and the Message Parsing Interface (MPI) 

protocol. It contains packages for analysing charges on atoms, and Partial Density of 

States (PDOS). 

2.5.2 NWChem 

NWChem(85) is an extensive chemistry package, able to calculate properties 

using DFT, coupled cluster, Møller–Plesset perturbation theory and force-field 

methods. It can also perform Time Dependent DFT (TDDFT) calculations, and 

Quantum Mechanical Molecular Mechanics (QM-MM) simulations, such that a small 

area can be treated using QM whereas the rest can be treated using computationally 

cheaper methods. It has been extensively parallelised using the Global Array 

method(86), so that large calculations can be run on multiple processors with minimal 

overhead. For DFT, it utilises the Gaussian LCAO method, and charge fitting basis 

sets can also be used. It can be used to calculate DFT calculations using plane 

waves. Many properties can be calculated, including energies, geometry optimisation 

and vibration frequencies. The current version is version 6.0, contains over 11 million 

lines of C and Fortran 77 code, and is released under Open Source Educational 

Community Licence. It was used to compare some of our results to previous work 

performed using the same package, basis sets and XC functional(3, 4, 87-90).  
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2.6 Conclusions 

The DFT approach has been used extensively for the study of metallic 

clusters, which traditional wavefunction based methods fail to complete within a 

desired timeframe. Although issues due to the exchange correlation function exist, 

these errors are small if a suitable functional is used. As such, most of the work in 

this thesis is based on DFT calculations. Where DFT becomes too expensive, such 

as for energy landscape searches or for very large (a few hundred atoms) metal 

clusters, lower level techniques can be used. 
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Chapter 3-  The Structure of RhPd Nanoparticles 

3.1 Introduction 

3.1.1 Rhodium and Palladium Nanoparticles 

3.1.1.1 Rhodium Nanoparticles 

Rhodium has been extensively studied as a three-way catalyst in motor vehicle 

exhausts; for NOx reduction; CO oxidation and of un-burnt hydrocarbons (91-94). It 

has also been investigated for the hydrogenation of various compounds and found to 

be active in the hydrogenation of arenes(95). Zhang et al.(96) synthesised different 

shaped Rh nanoparticles by using different rhodium salts, creating Rh cubes(97), 

cuboctahedra(97), tetrahedra(98) and icosahedra(98) by changing the reaction 

conditions. Hydrogenation of aromatic compounds has been achieved with Rh 

nanoparticles, using different phosphine groups to modify the surface of the cluster 

and change the selectivity of the nanoparticles(29). 

3.1.1.2 Palladium Nanoparticles 

Palladium has also been used in automotive catalysis to remove greenhouse gases. 

Over 150 tonnes of Pd was used in the automotive industry in 2010 (27). For this 

use, an ‘intelligent’ Pd catalyst has been developed to increase the lifetime of the 

catalyst, by regenerating the palladium from a perovskite to the Pd nanoparticle(99, 

100). Due to the high price of platinum, Pd is often added to decrease the cost of Pt 

catalysts(27). It has also been investigated for NOx adsorption(92) and 
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rearrangement of alkene-alcohols to carbonyl compounds(101). Pd in the bulk is able 

to absorb hydrogen, and this has been investigated within nanoparticles(102). 

3.1.2 Rhodium-Palladium Bimetallic Nanoparticles 

RhPd in the bulk has an extensive miscibility gap, and only forms an alloy at high 

temperature or low concentration of the impurity atoms. However, RhPd 

nanoparticles have been synthesised for various applications, across the entire 

composition range(103). These include mixed nanoparticles(103),  RhcorePdshell 

nanoparticles and PdshellRhcore nanoparticles(104-106). The bimetallic system has 

been studied to improve various catalytic reactions, both using theoretical(107) and 

experimental methods(95, 108) compared with the bulk alloys. Hollow RhPd nano 

spheres have also been created(109). 

3.2 Searching the Potential Energy (PES) Landscape 

Searching for the lowest energy clusters and searching for the global minimum (GM) 

structure is a difficult task. The challenge is due to the large number of possible 

structures and, for bimetallic clusters, their homotops(2, 110). Performing this search 

through systematically searching the whole Potential Energy Surface (PES) is 

unfeasible except for the smallest systems(111). In this chapter, various methods are 

used to search the energy landscape. 

3.2.1 The Gupta Potential 

DFT relaxation calculations typically take a few hours using multiple processors even 

for a 38 atom system. As such, a full search at the DFT level is unfeasible except for 

the smallest clusters(112-114). Therefore, it is necessary to search at a lower level of 
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theory, before moving to DFT. This enables a wide search of the PES to be 

completed accurately, while maintaining computational speed. The Gupta potential 

was selected, as it contains five different parameters which can be fitted to 

experimental(115) or theoretical data. It is a many body additive potential, based on 

the second moment approximation in tight binding theory. The attractive term (Va) 

and repulsive (Vr) are summed over all atoms N. 
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The four parameters ρ     , q     , A      and ζ      are the fitted parameters 

between atoms a and b. r0      is the bond length of the bulk material. This bond 

length is often unavailable for the bimetallic system, so is taken as the average 

between the bulk values of the pure metals (3, 4, 87, 89, 116-118) in agreement with 

Vegards law(119). 

3.2.2 Genetic Algorithm 

Genetic Algorithm’s (GA’s) (120) are based on Darwin’s principle of natural 

section(121) using operators analogous to those used in nature to optimise the 

structures. In nature, parents that are best suited to their environment are more likely 
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to survive for longer and have more offspring. In addition, mutations may create 

beneficial attributes, and improve the individual’s life expectancy and therefore its 

chance of producing children.  

For cluster optimisation, an initial population is generated from random 

coordinates. These are optimised locally (similar to young growing up into adulthood). 

Each cluster is then assigned a fitness value based on its energy. The best clusters 

then undergo crossover, by merging different clusters together to make new 

structures. A small number of clusters also undergo mutation operations, such as 

swapping atoms or moving them a small distance.  

We used the Birmingham Cluster Genetic Algorithm (BCGA) for this research, 

which has been used extensively for optimisation of metal clusters and nanoalloys (3, 

110, 116, 122). 

3.2.3 Basin Hopping 

The BCGA described above is very good at finding structures, but sometimes has 

difficulties finding the correct homotop; particularly for larger clusters. Basin Hopping 

(BH) is a method of crossing the energy barriers between local minima involving 

moving or swapping an atom, followed by a local minimisation. If the new structure is 

of a lower energy than its predecessor, it is accepted. If it is higher it is accepted if a 

random number N is less than the metropolis criterion: 

   
 

  
    3-4 

Where ΔE is the energy difference between the structures, T the (fictitious) 

temperature variable that decides how high in energy structures will be accepted, 
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and kb is the Boltzmann constant. When T is higher, higher energy homotops are 

accepted to enable a wider search of the energy landscape to be conducted. This is 

repeated for a set number of runs. 

3.2.4 High Symmetry Searches 

Different high symmetry homotops can also be studied to compare the relative 

energies of higher energy structures, while limiting the number of homotops to be 

studied. For example, a 38 atom Truncated Octahedral (TO) cluster has three sets of 

symmetry-equivalent sites: core, surface and vertex sites as shown in figure 3-1. This 

limits the number of different clusters to eight different compositions, of which six are 

bimetallic. This enables a systematic search of various compositions at the DFT 

level. 

For 98 atom structures, it is known for a Lennard Jones cluster that the 

putative global minimum structure is the Leary Tetrahedron (LT) (123), and its 

construction is shown in figure 3-1. This structure had full Td symmetry and is known 

to be a challenging structure to find on the potential energy landscape. It is made up 

of a 20 atom tetrahedral core, which is capped twice on the (111) faces of the 

tetrahedral core. Then 7 atoms are added to each face along in between the caps on 

the (100) sites. For full Td symmetry, there are 9 different symmetry equivalent sites 

(also shown in figure 3-1) giving 512 different combinations. These structures can all 

be minimised and compared with low energy structures from the GA or BH 

calculations.  
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Figure 3-1 (Left) The different symmetry equivalent sites for the 38 atom TO cluster. Core sites are shown in red, 

and surface and vertex sites are shown in yellow and blue, respectively. The 98 atom Leary Tetrahedron, with 

each symmetry equivalent site shown in a different colour. 

3.3 Methodology 

3.3.1 Potentials 

For the pure metal (Pd-Pd and Rh-Rh) interactions, two different potentials were 

used. Firstly, the potentials fitted by Cleri and Rosato were used(115), and were 

created by fitting the parameters to experimental results for lattice constants, 

cohesive energies and elastic constants. The second potential was fitted to DFT 

calculations. First, the energies of the Rh and Pd face centred cubic (FCC) solids 

were calculated with different lattice constants, varying from 6.4 to 9.0 bohr (3.39Å to 

4.76Å). From these calculations, the lattice constant and the energy were found. The 

bulk modulus was found by fitting a quadratic equation to the bottom of the potential 

well, and the second differential was found with respect to the lattice constants   

(equations 3-5 and 3-6). 

           3-5 
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The values for the lattice constant, binding energy and bulk modulus were 

then shifted, so that they were equal to their corresponding experimental values. A 

basin hopping fitting program, written by Giovanni Barcaro (CNR, Pisa), was then 

used to fit the parameters to the energy curves. 

In previous work by Pittaway et al. on AuPd (87), the bimetallic potentials were 

based on the average of the Cleri and Rosato values. The geometric and arithmetic 

potentials give similar coefficients so were rounded between the two averages. For 

RhPd, this is no longer the case, probably due to the larger difference between the 

cohesive energies of Rh and Pd compared with Pd and Au. Therefore two different 

bimetallic potentials were calculated using the Cleri and Rosato values. “Arith” was 

taken as the arithmetic mean of pure Rh and Pd, whereas “Geomt” was taken as the 

geometric mean.  

The bimetallic DFT fitted potential was created in the same way as the pure 

Rh and Pd DFT potentials, but with the ordered alloys of Rh1Pd3, Rh2Pd2 and 

Rh3Pd1. The parameters for each potential are shown in Table 3-1. 
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Parameters Arith Geomt DFT-fit 

Rh-Rh A 0.0629 0.048803 
Rh-Rh ζ 1.66 1.588098 
Rh-Rh p 18.45 18.454169 
Rh-Rh q 1.867 1.922829 
Rh-Rh r0 2.689 2.6890 

Rh-Pd A 0.11875 0.1048 0.089646 

Rh-Pd ζ 1.689 1.6888 1.87609 

Rh-Pd p 14.6585 14.1597 14.677739 
Rh-Pd q 2.8045 2.6432 2.882234 
Rh-Pd r0 2.719 2.7188 2.71875 

Pd-Pd A 0.1746 0.172925 
Pd-Pd ζ 1.718 1.70946 
Pd-Pd p 10.867 10.867475 
Pd-Pd q 3.742 3.738965 
Pd-Pd r0 2.749 2.7485 
   

Table 3-1 The parameters for the three different potentials. The pure “Arith” and “Geomt” potentials are both 

from reference (115), with the bimetallic coefficients calculated using the arithmetic and geometric means, 

respectively. The “DFT-fit” coefficients are derived from bulk DFT calculations on FCC Rh and Pd for the 

monometallic potentials, and Rh1Pd3, Rh2Pd2 and Rh3Pd1 FCC bulk alloys for the Rh-Pd coefficients. 

3.3.2 Genetic Algorithm 

An initial population of 40 clusters was chosen, with the GA ceasing operation after 

10 runs when the population reaches stagnation and no lower energy structures are 

found. Clusters have a 10% chance of undergoing mutation, where the entire cluster 

is replaced with a random geometry. The fitness is based on the hyperbolic tangent 

function. A cluster with energy Ei is compared with the highest (Emax) and lowest (Emin) 

energy structure within the population, using formulae 3-7 and 3-8. 
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The cluster is selected if the fitness fi is greater than a random number 

between 0 and 1. Each composition was run for 100 runs to increase the chance of 

finding the lowest energy structure, with each run starting with a different random 

seed to ensure initial structures are different for each run. 

3.3.3 Basin Hopping 

Basin hopping was performed using the program written by Giovanni Barcaro(3). It 

performs swaps of different atoms, followed by a minimisation routine. As the 

purpose of the basin hopping algorithm is to finding lower energy homotops, kbT was 

set to 0.02eV (3). The program was run for 500 generations. 

3.3.4 DFT Calculations 

DFT calculations were performed with the Quantum Espresso quantum chemistry 

package(53), using scalar relativistic ultrasoft pseudopotentials(124, 125) explicitly 

accounting for the 5s, 5p and 4d orbitals for Pd and Rh. The PBE(65) functional has 

been used extensively to model metal systems, and was used for these calculations. 

An energy cut-off of 30 Ry was used with a kinetic energy cut-off of 240 Ry. Cluster 

calculations were performed at the gamma point, whereas the bulk measurements to 

create the DFT fitted potential were completed on a large k-point grid. Smearing was 

applied using gaussian broadening to assist convergence, and the calculations were 

spin-unrestricted. 
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3.3.5 Energy Analysis 

There are multiple ways of analysing the energy of clusters, with differences between 

potential and DFT methods. For a cluster RhxPdy The binding energy per atom (Eb) 

can be found using 
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ERh and EPd are the energies of the Rh and Pd atoms. The excess energy (Ex) is 

defined as the mixing energy, and gives the energy of a bimetallic system relative to 

the pure clusters.  
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It is worth noting that using this notation mixing is preferred over segregation if Ex is 

negative, and Ex is zero by definition for the pure clusters.  

A similar method of comparing the energy is the second difference energy 

(EΔ). This is similar to Ex but is set relative to the nearest neighbours in the 

composition range, rather than to the pure clusters. 

                                           3-12 

Both Ex and EΔ can be used unmodified at the Gupta potential and DFT level. 
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3.4 Results 

3.4.1 34 Atom Clusters 

 

Figure 3-2 The different structures found for 34 atom RhPd clusters for each of the three potentials.  Different 

colours denote the different structures. Yellow- decahedra, magenta- icosahedra, cyan- face centered cubic- 

hexagonal closed pack (FCC-HCP), green- decahedral-icosahedral mixed structure (Dh-Ih) and red- C3 

tetrahedra. 

 

Figure 3-3 The different structures found by the BCGA for the 34 atom clusters. Borders indicate the colours in 

the composition diagram (figure 3-2). From left: C3 Tetrahedra, Decahedra, decahedra-icosaahedra (Dh-Ih), 

FCC-hcp structure, icosahedra 

These structures were optimised at the Gupta potential level using the BCGA, and 

the different structures for the three potentials are shown in figure 3-2 and figure 3-3. 

For the pure Rh34 and Pd34 cluster, all the potentials converge onto the same 

structures; an icosahedra-decahedral arrangement for Pd34 and a fragment of an 

icosahedron for Rh34. The three potentials broadly agree on the energetically 

favoured structural families for Rh rich clusters. Icosahedral structures are preferred 

for a larger Rh content, before shifting to decahedral arrangements. At high to mid 

range Pd compositions, the three different potentials give different structural families. 

Doping a small number of Rh atoms into the Pd34 cluster does not affect the 

structural preference for the arithmetic or geometric potentials, whereas a single Rh 

atom changes the structure to decahedra for the DFT fitted potential. Interestingly, 
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the Rh4Pd30 arithmetic potential structure is based on a Rh4 tetrahedron, surrounded 

by the Pd30 atoms in a chiral arrangement with C3 symmetry, which is the same as 

the structure of the Au34
- cluster(126).  For low to mid range Rh compositions, the 

arithmetic potential shifts back to the icosahedral clusters, whereas geometric and 

DFT-fit potentials prefer FCC-hcp fragments. These are similar to fragments of the 

FCC truncated octahedral (TO) structures, with stacking faults on the incomplete 

side. All structures exhibit core-shell segregation, with the Rh in the core positions. At 

low Pd compositions, Pd atoms cap the vertex sites of the icosahedral structures. 

 

Figure 3-4 (Left) The excess energy of the three different potentials for the 34 atom structures across the 

composition range from pure Palladium (left) to pure Rhodium (right). (Right) the second difference energy of 

the three different potentials across the composition range. 

Plots of the excess energy are shown in figure 3-4. The Arith and DFT-fitted 

potentials form similar curves, with the Geomt potential showing a more negative 

excess energy. The steep slope for increasing Rh content is due to placing Rh in the 

core positions. Rh has a higher cohesive energy than Pd (5.75 eV for Rh compared 

with 3.94 eV for Pd(127)). The curve remains on the negative slope until a 

composition of around Rh10Pd24, when most of the ‘flat’ surface sites are occupied 

with Rh.  
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EΔ values are also shown in figure 3-4. The most obvious minimum for is at 

Rh4Pd30, with the perfect core-shell structure, whereas Rh5Pd29 must have Rh atoms 

on the surface. Another important minimum in EΔ is at Rh17Pd17, probably due to the 

Pd atoms occupying all the vertex sites. 

The arithmetic and DFT-fitted potentials exhibit similar characteristics to the 

palladium platinum system(117). On increasing the Pt concentration, the excess 

energy is relatively flat up to Pd16Pt18. At the DFT level, the energy landscape of 34 

atom palladium platinum clusters was found to be complicated, with many competing 

low level minima(118). It also shows similarities to the copper silver system(128), with 

Cu occupying core sites. The CuAg system has a stronger peak at Cu7Ag27. 

DFT calculations have been performed on the lowest lying minima of the 

Rh4Pd30 clusters for each potential. The lowest energy cluster was the C3 tetrahedral 

cluster found with the arithmetic potential, with the decahedral structure from the 

DFT-fitted potential 0.1eV higher in energy and the geometric potentials dh-ih 

structure is 0.16eV higher in energy than the C3 tetrahedron. 

3.4.2 38 Atom Clusters 

 

Figure 3-5 The different structures found for 38 atom RhPd clusters for each of the three potentials.  Different 

colours denote the different structures. Yellow- Truncated Octahedron (TO), red- decahedral-icosahedral mixed 

structure (Dh-Ih), green- icosahedra and cyan- deahedra. 

These structures were optimised using the same method as the 34 atom clusters. For 

38 atom structures, figure 3-5 shows that the TO structure predominates for all three 

potentials at many compositions due to complete shell closure. Some icosahedral 
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and decahedral clusters are found in the composition range of Rh20Pd18 to Rh31Pd7 

depending on the potential. In addition, for the arithmetic potential, a small number of 

decahedra-icosahedral structures are found between a composition range of Rh3Pd35 

and Rh5Pd33. These structures have a 5 atom trigonal bipyramidal core and a pure 

Pd33 surface which may explain its stability.  

The excess energies and second difference energies are shown in figure 3-6. 

The steepest part of the excess energy curve is between pure Pd38 and Rh6Pd32, 

which is the perfect RhcorePdshell structure. The minima for all potentials at Rh14Pd24 

have Rh occupying the eight central (111) sites and the six core sites, resulting in all 

the Pd atoms on the vertex sites of the TO. The arithmetic and DFT fitted potentials 

exhibit a less negative slope between Rh6Pd32 and Rh14Pd24 the geometric potential, 

which is similar to the 34 atom clusters, although it is more pronounced for 38 atoms.  

 

Figure 3-6 (Left) The excess energy of the three different potentials for the 38 atom structures across the 

composition range. (Right) the second difference energies of the three different potentials across the composition 

range. 

The second difference energies for all three potentials exhibit strong minima 

for Rh6Pd32 and Rh14Pd24. These structures correspond to the Oh-symmetry 

RhcorePdshell and RhcoreRhsurfacePdvertex TO structures. 
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DFT calculations were performed on all high symmetry TO structures, to 

compare how the energies of the different potentials compare with the higher level 

calculations. The difference between the binding energy of the potentials and DFT 

calculations were calculated using formula 3-13, and the results are shown in figure 

3-7. 

                   3-13 

 

 

Figure 3-7 (Left) Difference between Ex for each potential and DFT calculations. (Right) Difference between Eb 

for each potential and the DFT calculations. 

The geometric potential clearly does not give energies that are similar to the 

DFT calculations, having a strong tendency of overbinding. Ex shows that the DFT-

fitted potential and the arithmetic potential exhibit similar errors, with the DFT-fitted 

potential suffering from overbinding by 0.30 eV on average and the arithmetic 

potential underbinding by 0.24 eV. 

Comparing the binding energies to DFT calculations shows that the pure Pd38 

cluster is over bound by 0.7 eV while the pure Rh38 cluster is underbound by between 

0.35 eV and 0.44 eV. The pure potentials fitted by Cleri and Rosato are fitted to 
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experimental results, and the DFT-fitted potential was modified to fit experimental 

values of cohesive energy, bond lengths and bulk modulus. Therefore some of the 

error could be due to the difference between the PBE functional and the experimental 

fitting. Of course, these potentials have not been modified to account for surface 

energy that will have an effect. 

3.4.3 55 Atom Clusters 

 

Figure 3-8 Different structures across the composition range for the 55 atom clusters for each potential, with 

colour’s referring to different structures. Green- icosahedra, red- FCC-HCP, yellow- FCC fragment (FCC), blue- 

decahedra, cyan- poly-decahedra, pink FCC/HCP/icosahedral mixed cluster and grey poly-icosahedra. 

For Rh rich to medium compositions, the icosahedral motif dominates across all 3 

potentials, due to the magic shell closure of the 55 atom icosahedron, as shown in 

figure 3-8. Unusually, the icosahedral structures are the only structure found for the 

DFT fitted potential. However, for the Pd rich clusters using the arithmetic and 

geometric potentials a large array of structures are found based around either FCC-

hcp packing or decahedral clusters, rather than icosahedra.  

 The energies of the 55 atom clusters are shown in figure 3-9. The minimum of 

the excess energy for the arithmetic potential and the DFT fitted potential is Rh13Pd42, 

which corresponds to the perfect core-shell structure for icosahedral structures. This 

corresponds to a minimum at Rh13Pd42 in the second difference energy plots for all 
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potentials. The other major change in gradient for the arithmetic and DFT fitted 

potentials occurs at Rh43Pd12. After this point the Rh atoms have to occupy the vertex 

sites which greatly increase the surface energy. 

The geometric potential mirrors the 34 and 38 atom excess energy plot with a 

more negative excess energy compared with the arithmetic or the DFT fitted 

potential. However the 55 atom structures also have clear minima corresponding to 

changes when different sites start being occupied by different atoms. The minima for 

the second difference energies are shown in figure 3-10. Rh13Pd42 is the perfect core-

shell structure, and Rh43Pd12 has all the Pd atoms occupying the vertex sites. There 

is similar behaviour for the arithmetic and DFT fitted potentials. The Rh23Pd32 and 

Rh33Pd22 structures have interesting mixing motifs. Rh23Pd32 has all Rh surface sites 

surrounded by Pd atoms, whereas Rh33Pd22 has two helical chains of Pd atoms 

circling around the cluster. Rh33Pd22 and Rh23Pd32 have D2 symmetry and Rh13Pd42 

and Rh43Pd12 have high Ih symmetry. 

 

Figure 3-9 Variation in energy of the 55 atom clusters across the composition range. Left- excess energy, right- 

second difference energy. 
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Figure 3-10 Structures corresponding to minima for the second difference energy with the geometric potential 

(figure 3-9).  

3.4.4 98 Atom clusters 

3.4.4.1 Genetic Algorithm 

 

Figure 3-11 Different structures across the composition range for the 98 atom clusters for each potential, found 

using the Genetic Algorithm. Yellow- decahedra, magenta- icosahedra, cyan- FCC, blue- FCC-HCP, light green- 

Leary Tetrahedra (LT) and dark green- incomplete tetrahedral. 

The 98 atom structures only exhibit shell closure for FCC and LT. Decahedral clusters 

have complete shell closure for 101 atoms. figure 3-11 shows that decahedral 

structures predominate over most of the composition range. At the rhodium rich end 

icosahedral clusters dominate. This mirrors what is found in the AuPd system(117). 

Interestingly the lowest energy structure for pure rhodium is the Leary Tetrahedron for 

all three potentials and as far as the author is aware this is not the case for any other 

metal. The lowest energy pure palladium structure was found to be a fragment of the 

FCC lattice. The LT structure was found to be the lowest energy structure for a few 
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compositions including Pd46Rh52, Pd36Rh62 and Pd29Rh69 for the DFT-fit potential, 

Pd47Rh51 for the arithmetic potential and Pd47Rh51 and Pd1Rh97 for the geometric 

potential. As with the previous structures, Pd preferentially occupies the surface or 

vertex sites. 

3.4.4.2 98 Atom Symmetry Searches 

 

Figure 3-12 Excess energies of the structures generated with the GA (solid lines) compared with the all high 

symmetry LT structures. Each colour corresponds to a different potential. 

The comparison between all the high symmetry LT clusters and the lowest GA 

energies is shown in figure 3-12. Many of these structures have positive Ex, which 

corresponds to PdshellRhcore structures, the opposite of the preferred geometry. 

However, some LT structures were found to be lower in energy than the previous 

best structures obtained by the GA.  
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3.4.4.3 Basin Hopping 

 

Figure 3-13 The five structures used for the BH algorithm. From left to right: Decahedra (1), Decahedra (2), 

FCC, icosahedra, leary tetrahedra 

 

Figure 3-14 Different structures across the composition range for the 98 atom clusters for each potential, found 

using the basin hopping algorithm. Blue- pure clusters (FCC for Pd98 and LT for Rh98), cyan- FCC, magenta- 

icosahedra, yellow- decahedra and green LT. 

Using the structures from the GA, five different structures were selected for basin 

hopping runs across the PES. The structures selected were two different decahedral 

clusters, the Pd98 FCC cluster, the Leary Tetrahedra and an incomplete icosahedral 

cluster. These are shown in figure 3-13. The decahedral and icosahedral clusters 

were selected for further searching as they had been found across extensive parts of 

the composition range using the GA. The FCC and LT clusters were selected to see if 

lower energy structures could be found, as these structure was only rarely found by 

the GA. This is especially true for the LT clusters, as high symmetry searches had 
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found lower energy structure but keeping the symmetry limits structures to certain 

compositions. 

The lowest energy structures found by the BH algorithm are shown in figure 3-

14. As the basin hopping algorithm used in this work only involved swapping the 

positions of Rh for Pd atoms, the pure clusters were taken from the genetic 

algorithm. For the Pd rich clusters, the FCC structure is found to be lower in energy 

than the decahedral structure in most cases, contradicting what is found using the 

genetic algorithm. This could be because the FCC structure is in a narrow potential 

well on the PES and is therefore difficult to find using a GA. The BH algorithm here 

keeps the structure constant, so it only searches the bottom of the FCC well. In 

addition, the two structural motifs are similar in energy, separated by a few tenths of 

an electron volt, and increase the difficulty of the structural search. Decahedral 

structures are preferred from Rh33Pd65 to Rh38Pd60-Rh40Pd58, depending on the 

potential. LT structures dominate the structural landscape around the decahedral 

structures. This again contradicts the GA results, again due to the narrow nature of 

the LT potential well, and it is known that the LT structure is challenging to find even 

using simpler potentials(123).  
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3.4.4.4 Combined Approach 

 

Figure 3-15 Different structures across the composition range for the 98 atom clusters for each potential, using 

symmetry searches, basin hopping and the genetic algorithm. Yellow- decahedra, magenta- icosahedra, cyan- 

FCC, blue- FCC-HCP, light green- Leary Tetrahedra (LT) and dark green- incomplete tetrahedral. 

Figure 3-15 shows the lowest energy structures at each composition for the 98 atom 

clusters. At the Rh rich end of the composition spectrum, FCC clusters dominate up 

to Rh24Pd74. This shifts to a decahedral arrangement until between Rh39Pd59 to 

Rh53Pd45 to the LT structures. Icosahedral clusters dominate the rhodium rich part of 

the composition range. The GA had difficulty finding the LT structures and the FCC 

structures, although it also found the incomplete tetrahedral cluster and the FCC-hcp 

structure within the arithmetic potential (Rh26Pd72 and Rh27Pd71, respectively). 
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Figure 3-16 The excess energies for the lowest energy structures of the 98 atom clusters for all three potentials, 

using the lowest energy structure from the BCGA, BH and symmetry search methods.  

Excess energies are shown in figure 3-16. The minimum at Rh50Pd48 

corresponds to the LT structure with the Pd atoms on all the vertex sites. The other 

local minima in the curve correspond to the GM decahedral structures, which have 

fewer vertex sites than the LT. 

3.5 Conclusions 

We have studied different Gupta potentials for 34, 38, 55 and 98 atom clusters. The 

geometric potential exhibits poor fitting to DFT calculations, suffering from strong 

overbinding compared with DFT results. The arithmetic potential seems to be able to 

explore larger parts of the energy landscape, discovering the Rh4Pd30 C3 tetrahedral 

cluster, the 38 atom Dh-Ih structure and additional geometries that were not found 

with the geometric or DFT-fitted potential. This is ideal behaviour, as it gives a larger 
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range of clusters for further optimisation at a higher level of theory, making it more 

probable that the lowest energy structure will be found.  

For cluster with 38 or 55 atoms, the TO structure and the icosahedra 

structures dominate the energy landscape across the entire composition range, due 

to the magic shell closure. This is not the case for 34 atoms clusters, resulting in 

different structural motifs across the composition range. Although the 98 atom 

clusters do have structural motifs that exhibit shell closure (namely the LT and FCC 

structures), these are difficult to find without using both GA and BH algorithms, 

probably due to the narrowness of the potential well for these structures and the 

broadness of the decahedral and icosahedral well. The GA specialises in finding 

different structural motifs, whereas BH is better at finding the correct homotop for a 

particular structure or composition. Further runs for the GA or BH may improve the 

global minima, but only at additional computational expense. 

 Due to the limitations of current computer hardware, it is not possible to study 

much larger clusters using the current version of the BCGA or the Basin hopping 

algorithm. The current iterations of these programs are serial, and parallelisation 

would increase the maximum size that can be studied. However, larger clusters can 

be generated by using symmetry equivalent shells and minimized rapidly, with cluster 

sizes up to 10,000 atoms (about 7Å across) achievable on current computer 

hardware. 
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Chapter 4-  Chemisorption on Bimetallic 

Nanoparticles 

4.1 Introduction 

For hydrogen fuel cells, an ideal catalyst would have a thin single atom thin 

layer of expensive catalyst (for fuel cells this is normally platinum), with the rest of the 

nanoparticle made of a cheaper metal. However, recent work has shown that for 

many systems nanoparticles undergo structural inversion under different ambient 

conditions (30, 31, 105). For example, in vacuum AuPd particles adopt a PdcoreAushell 

arrangement. However, when the particles are exposed to the air, the particles 

undergo core-shell inversion. Also, heating the particles using an electron beam 

resulted in mixed nanoparticles.  

Chemisorption has been used to affect the surface of some bimetallic alloys. 

Andersson et al.(30) have shown experimentally that carbon monoxide can bring a 

copper under layer to the surface. Interestingly, the Cu does not bind to the CO 

directly, but surrounds the Pt sites of the surface. Theoretical investigations have 

been taken on AuPd with CO and O, and found it is more energetically favourable to 

have Pd on the surface with CO bound to the Pd over Au.  

This behaviour becomes more pronounced in the nanoscale regime, as the 

number of surface atoms greatly increases. Also other effects play a part in the 

morphology of clusters which are not an issue in the bulk. For example, DFT 
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calculations have shown that the cluster morphology changes as CO or atomic H is 

added to the surfaces of Pd, Au and Pt 38 atom nanoparticles. Experimental results 

have shown that RhPd undergoes structural inversion depending on the ambient 

atmosphere(105). In addition, they find the process is partly reversible, which the 

authors suggest could be useful in so called ‘smart catalysis’. This is where the 

nanoparticles perform one reaction under certain conditions, and create a completely 

different set of products under different conditions.  

We investigated the binding of carbon monoxide, atomic hydrogen and atomic 

oxygen on many different bimetallic clusters, to find how the homotop energy 

landscape is affected in the presence of ligands. 

4.2 Methodology 

4.2.1 Cluster Geometry 

 

Figure 4-1 (Top) the three different structures studied. From left to right- core, centroid (cent) and hex. (Bottom) 

The eight centroid sites make up a cube, and the three different homotops of these structures are shown. The 

symmetry point group of the respective cubes are given in brackets. 
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A 38-atom truncated octahedron (TO), see figure 4-1, was chosen as a model for the 

chemisorption on bimetallic nanoparticles, due to the high symmetry of the parent TO 

structure (Oh). The CO, H and O were bound to all non-symmetrically equivalent 

(111) centroid sites in the atop position. It should be noted that this may not be the 

most energetically preferred site, although the energetic trends between different 

clusters can be compared directly, whereas the 2 fold ‘bridge’ sites and 3 and 4 fold 

hollow sites may not be stable (particularly for CO on gold clusters, see Chapter 5- ). 

Multiple adsorption of H and CO on the TO and other 38-atom clusters of Pd, Pt, and 

Au have previously been reported (88, 117).  

A composition of A6B32 was used, along with the inverse composition (B6A32) 

as this corresponds to the perfect core-shell structure for the 38 atom TO structure. 

Four different homotops were studied:  

4.2.1.1 Core 

A core−shell configuration, in which the 6 A atoms form an octahedral core 

surrounded by a shell of 32 B atoms. This homotop has the full Oh symmetry of the 

parent TO. 

4.2.1.2 Hex 

The 6 A atoms form a hexagonal ring surrounding the centroid of one of the 

(111) facets, mimicking the local structure found by Andersson et al. on the (111) 

CuPt surface after CO adsorption. This homotop has C3v symmetry. 
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4.2.1.3 Centroid 

The 6 A atoms occupy 6 of the 8 (111) centroids. The 8 (111) centroids define 

a cube and there are three ways in which the 6 A and 2 B atoms can decorate a 

cube, as shown in figure 4-1: (a) C1, the 2 B atoms are arranged across a body-

diagonal of the cube (i.e., diametrically opposed)—this homotop has D3d symmetry; 

(b) C2, the 2 B atoms are arranged across a face-diagonal of the cube—this 

homotop has C2v symmetry; (c) C3, the 2 B atoms are arranged along an edge of the 

cube—this homotop also has C2v symmetry. The three centroid homotops (C1−C3) 

have identical distributions of A−A, A−B, and B−B bonds and are expected to have 

very similar energies. The C1 and C2 isomers were compared for PdPt and CuPt 

systems. 

4.2.2 Adsorption structures 

The three ligands investigated were CO and atomic H for investigating reducing 

conditions and atomic O for oxidizing conditions. For CO and H ligands on AuPd, 

CuPt and PdPt, energies for all non-symmetry equivalent atop sites for the central 

atom in the (111) face were found. The energies for binding to the C2 structure are 

not shown, due to the similarities between the C1 and C2 energies. For all O-bound 

structures and all RhPd homotops, all atop (111) sites were investigated excluding 

the hex2-4 structures. These structures, with CO as an example, are shown in figure 

4-2. Relative energies were calculated relative to the lowest energy homotop. 



Chapter 4- Chemisorption on Bimetallic Nanoparticles  

56 

 

 

Figure 4-2 Adsorption sites studied in this work, with carbon and oxygen shown in black and red, respectively. 

Atomic hydrogen and oxygen are adsorbed to the same sites. The point group of each cluster is shown in 

brackets. 

 When multiple ligands were placed on the cluster, symmetry was kept as high 

as possible to lower the computational time so not all atop adsorption sites were 

considered. For the core-shell structure, one, two, four, six and eight adsorbates 

were considered, and for the centroid structures one, two, four and six were 

considered. The hex structure allows only four absorbates to be added, with three 

surrounding the central hexagon of minority A atoms and one bound to the atom in 

the center of the hexagon. This structure has C3v symmetry. The 3 absorbate 

structure which also has C3v symmetry was also considered. Not all the calculations 

were performed at the highest symmetry, as the highest point group was not detected 

by NWChem. These structures are shown in figure 4-3. 
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Figure 4-3 the adsorption sites studied for the multiple ligand clusters, with the point group for each structure 

shown in brackets.  

4.2.3 DFT Calculations 

Calculations were performed using the NWChem 5.1 Quantum chemistry 

package(85). The PW91 GGA exchange correlation function was used(64) with 

LCAO basis set using Gaussian type Orbitals paired with relativistic effective core 

potentials and coulomb fitting basis sets. A double zeta basis set was used for the 

geometry optimisation, followed by a single point calculation at the triple zeta level to 

improve accuracy. The double zeta basis sets used were: Pd (7s6p5d1f)/[5s3p3d1f], 

Pt (7s6p5d1f)/[6s3p3d1f], Au (7s6p5d1f)/[6s3p3d1f], Cu (8s7p6d1f)/[6s5p3d1f], Rh 

(7s6p5d)/[5s3p3d], H (5s1p)/[3s1p], C (11s6p1d)/[5s3p1d] and O (11s6p1d)/[5s3p1d]. 
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A Gaussian smearing energy of 0.14eV was used in the calculations, to assist 

convergence. This improves convergence by partially occupying orbitals that are 

close in energy to the Fermi level. This is required as the molecular orbitals are close 

in energy, so choosing the lowest energy orbital between multiple competing orbitals 

is either difficult or impossible, particularly in high symmetry clusters. 

It is worth noting that it is difficult to find the correct binding site for CO on Pt 

using DFT calculations (129), with relativistic effects (including spin-orbit coupling) 

playing a large role in the energy landscape(130). However, this work is focused on 

trends in binding energy between the different metals and these relationships should 

hold even when the ‘incorrect’ binding site is used. For example, CO prefers to 

occupy the 3-fold hollow site on Pd (131), whereas only atop sites have been studied 

in order to reduce the number of calculations. 

The Basis Set Superposition Error (BSSE) was also calculated for pure copper 

clusters. As an adsorbate is on the surface, additional basis functions are included in 

the calculation. This artificially increases the binding energy. The BSSE was found by 

comparing the energy of the bare cluster with the energy of the same cluster with 

CO, H or O ‘ghost’ atoms on the surface. These ghost atoms contain no electrons but 

do have the basis function of their respective element. 

4.2.4 Energy calculations 

For the bare clusters and single adsorbate structures, relative energies were 

calculated relative to the lowest energy structure. For the multiple adsorbate clusters, 

the number of atoms is no longer constant, so another method is used. First, the 

absolute relative energies are calculated using equation 4-1 
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                                            4-1 

Where               is the energy of the cluster with a number of CO molecules 

bound to the surface,       is the energy of the CO molecule (found to be -113.3139 

Hartrees) and x is the number of CO molecules adsorbed to the surface. 

                   is the lowest energy isomer with the composition A6B32 and any 

number of CO molecules bound to the surface. These energies were then shifted 

relative to the core-shell energies, as shown in figure 4-4. A line is fitted to the core-

shell structures, and all structures were shifted relative to this line. The core-shell 

structures were selected as they had the largest number of points. 

 

Figure 4-4 A diagram showing how the relative energies were calculated for the multiple adsorption clusters. The 

left hand diagram shows the relative energies, as calculated using equation 4-1, of different homotops with 

different numbers of ligands (x axis) on them. A straight line is fitted to the core-shell structure (thin black line 

fitted to the red line). All the points are then shifted relative to this line, resulting in the diagram on the right.  

4.3 Results 

4.3.1 Bare clusters 

Before comparing clusters with ligands attached, it is necessary to analyse the 

energetic of the bare clusters. These are shown in figure 4-5. 
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Figure 4-5 Relative energies in eV of different homotops for the bare A6B32 and B6A32 clusters. Gray lines 

separate different bimetallic compositions. 

4.3.1.1 AuPd Clusters 

For Au6Pd32, the energetic ordering is Ehex < Ecent < Ecore, and the inverse is true for 

the Pd6Au32 structures. Au prefers to occupy the hex sites on the truncated 

octahedron, followed by the centroid surface sites and the core is the highest energy 

structure. Au has a lower surface (96.8 meVÅ-2) and cohesive energy (3.81 eV) 

compared to Pd in the bulk (131 meVÅ -2 and 3.89 eV). This is particularly 

pronounced for Au6Pd32, where the AucorePdshell structure is 3.9eV higher in energy 

than the hex structure. Au has the larger atomic radius (Au=2.88 Å, Pd=2.75 Å) so 

the Aucore-Pdshell induces strain in the TO structure, which geometrically has bond 

lengths which are identical. Experimentally, bare AuPd alloys show an increased 

amount of Au on the surface relative to the bulk composition for polycrystalline films 

and single crystal foils. 
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 This compares well with theoretical work by Yuan, Gong and Wu(132), who 

found that the corner site was the least preferred site for Pd on Au55 and Au98 by 

0.267 eV and 0.12 eV, respectively.. They also found that Pd tends to agglomerate on 

the surface, although they did not investigate Pd atoms in the core.  

4.3.1.2 PdPt 

PdPt has similar characteristics to the AuPd system, with the same energetic 

ordering as AuPd with the Pt replacing Pd and Pd replacing Au. In this system, Pd 

has the lower surface energy (by 20 meVÅ-2) and Pt has the much higher cohesive 

energy (5.84 eV/atom for Pt). The energy range is much narrower for PdPt and this 

can be explained by the ratio between the bulk surface and cohesive energies. The 

cohesive energy difference between PdPt is larger for PdPt (Ecoh(Pt)/Ecoh(Pd)= 1.5, 

Ecoh(Pd)/Ecoh(Au)= 1.02). However, the surface energy’s ratio is smaller 

(Esurf(Pt)/Esurf(Pd)= 1.15, Esurf(Pd)/Esurf(Au)=  1.35). As these are small clusters, 32 of 

the 38 atoms are on the surface, increasing the importance of this term. For larger 

PdPt TO structures, an onion like structure is adopted. In addition, due to the 

similarity of the atomic radii, there is minimal strain induced effects.  

 For the centroid structures, both the C1 and C2 isomers were studied. The 

difference in energy between the two structures was minimal, with an energy gap of 

0.03eV for Pd6Pt32 and Pt6Pd32. The difference can probably be attributed to small 

differences in the convergence of the geometry or electronic states due to the 

different symmetry. 
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4.3.1.3 RhPd 

RhPd is also qualitatively similar to AuPd and PdPt, although with larger energy gaps 

between structures than AuPd. Rh has the higher surface energy (168 meVÅ-2). The 

ratio between the surface energies is 1.32, similar to AuPd but the cohesive energy 

difference is much larger, (Ecoh(Rh)/Ecoh(Pd) equals 1.46). Therefore Rh atoms prefer 

the core sites with Pd preferentially occupying the hex sites. 

4.3.1.4 CuPt 

CuPt differs from all the above systems, with the ordering of centroid < core < hex for 

both Cu6Pt32 and Pt6Cu32. This is despite Cu having the lower surface energy (114 

meVÅ-2 for Cu and 155meVÅ-2 for Pt) and Pt having the larger cohesive energy 

(5.85eV for Pt over 3.54eV for Cu). This can be explained by the strength of the Cu-

Pt bond. PtPd and RhPd are both immiscible in the bulk, and AuPd has a few 

ordered phases at Au1Pd3, Au1Pd1 and Au3Pd1 compositions. The CuPt phase 

diagram has many ordered phases, suggesting strong bonding. In the 38 atom TO, 

the centroid structure has the greatest number of mixed Cu-Pt bonds, as shown in 

Table 4-1. 

 Core Centroid Hex 

A-A 12 0 6 

A-B 48 54 24 

B-B 84 90 114 

Table 4-1 The number of nearest neighbour bonds for each structure, for each cluster, with a composition of 

A6B32. 

As with the PdPt system, two different centroid structures were optimised and 

the energy gap between them was still small (0.001eV for Cu6Pt32 and 0.07eV for 

Pt6Cu32). 
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4.3.2 Clusters Bound To Single H, CO and O Ligands 

4.3.2.1 Pure Clusters 

The interaction energies of the atop binding sites are shown in Table 4-2. Due to the 

different interaction energies, binding to different elements should be favoured, which 

could result in changes in energetic ordering of the investigated structures. However 

the local structural environment may affect the interaction energies, resulting in 

further changes in energetic ordering. All the structures converged upon the atop 

geometry. 

As a large TZVP basis was used for the final electronic optimisation stage of 

the calculation, the BSSE shows only a small gain in energy due to the additional 

basis functions. The hydrogen ligand has a lower BSSE energy than oxygen by 

0.019eV, probably due to the short copper-hydrogen bond (1.5 Å, compared with 1.9 

Å for Cu-O and 1.8 Å for Cu-CO).  

 Au38 BSSE Cu38 Pd38 Pt38 Rh38 

CO -0.217 -0.038 -0.350 -1.330 -1.895 -1.672 

H -1.997 -0.034 -1.885 -2.391 -2.926 -2.296 

O -1.980 -0.013 -3.004 -2.817 -3.023 -3.352 

Table 4-2 The adsorption energies (in eV) of  CO, atomic H and O on the atop site of the centroid atom for each 

38 atom cluster. Cu38 BSSE shows the Basis Set Superposition Error (BSSE) for O, CO and H basis sets a copper 

cluster. 
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4.3.2.2 AuPd 

 

Figure 4-6 Relative energies of Au6Pd32 (left) and Pd6Au32 (right) clusters with and without ligands. The far left 

and right columns show the relative energies of the bare Au6Pd32 and Pd6Au32 clusters, respectively. The 6 

central columns show the relative energies of the cluster with (from centre) H, CO and O ligands bound to it. The 

Au6Pd32 “Cent Au” energy is not shown, as this structure was not a local minima.  

The relative energies of AuPd clusters with and without ligands are shown in figure 4-

6. CO, H and O all have higher interaction energies with Pd rather than Au which 

results in changes to the energy landscape of the clusters. In the bulk, CO binds to 

the Pd (111) surface with an interaction energy of 1.47eV, whereas CO binds only 

weakly to the Au(111) surface(133). For the cases where the ligand is bound to the 

majority atom, in either Au6Pd32 or Pd6Au32, the relative energies remain qualitatively 

constant, implying the interaction energies of ligands to Au or Pd remain fairly 

constant despite changing the local environment. Small changes are seen in the hex 

structures, which are discussed below. However, binding to the minority atoms does 

affect the relative energies. This is shown clearly with the centroid structures, with 

Pd- bound species lower in energy. Hydrogen shows the smallest splitting of 0.33eV, 
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followed by oxygen (0.75eV) and CO (1.0eV), probably due to the weakness of CO 

binding to gold. This is important for Au6Pd32CO, as the energy gap between the 

core-shell and the centroid structure narrows from 1.4eV to 0.2eV.  

Different hex structures were investigated for the CO and H bound cases. For 

the low energy Au6Pd32 hex structures, the least stable hex structure was the hex-1 

structure for both H and CO binding. The can be compared with bulk calculation by  

4.3.2.3 PdPt 

 

Figure 4-7 Relative energies of Pd6Pt32 (left) and Pt6Pd32 (right) clusters with and without ligands. The far left 

and right columns show the relative energies of the bare Pd6Pt32 and Pd6Au32 clusters, respectively. The 6 central 

columns show the relative energies of the cluster with (from centre) H, CO and O ligands bound to it. 

It can be seen from figure 4-7 that energetic inversion is achieved between the 

centroid and core-shell structure for Pt6Pd32O, and for hex to centroid structure for 

Pd6Pt32O.  

It can be seen from figure 4-7 that CO, H and O bind more strongly to Pt than 

for Pd, with the effect most noticeable in the oxygen adsorbed case with a centroid 
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splitting energy of 1.1eV for Pd6Pt32O and 0.4eV for Pt6Pd32O. The splitting is large 

enough that energetic inversion is seen between the centroid and hex structure for 

Pd6Pt32O and the core-shell structure for Pt6Pd32O. For the Pt6Pt32O systems, the 

splitting energy of the centroid structures is always smaller than the Pt majority case 

as Pd- ligand bonding is weakened by surface Pt atoms, and Pd strengthens Pt- 

ligand interactions.  

It is known that relativistic effects have a strong effect on the binding energy of 

Pd and Pt. If relativity is not taken into account, Philipsen et al. found that CO binds 

more strongly to Pd than to Pt by 0.19eV(78). This changes to Pt having the stronger 

interaction energy by 0.21eV for scalar relativity and to 0.1eV when full relativistic 

effects are included.  

4.3.2.4 CuPt 

 

Figure 4-8 Relative energies of Cu6Pt32 (left) and Pt6Cu32 (right) clusters with and without ligands. The far left 

and right columns show the relative energies of the bare Cu6Pt32 and Pt6Cu32 clusters, respectively. The 6 central 

columns show the relative energies of the cluster with (from centre) H, CO and O ligands bound to it. 
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Figure 4-8 shows the relative energies for CO, O and H bound to Cu6Pt32 and 

Pt6Cu32. Cu binds with more weakly to all the ligands studied than Pt, and splitting of 

the centroid structure is observed, depending on the binding site. The splitting of the 

centriod homotop is 1.3 eV for CO, 1.5eV for H and 1.2eV for O. In the bulk, the atop 

adsorption energies for Cu(111) and Pt(111) are 0.5eV and 1.5eV respectively. In 

addition, all Cu6Pt32 structures see a destabilisation of the core-shell geometry, 

indicating that Cu surface atoms are preferred to having Cu in the core by between 

1.0-1.4eV depending on the ligand. This is further confirmed by considering the hex 

structures. The hex structures have an energy span of 0.4eV for CO and an energetic 

ordering of hex1 < hex2 < hex3 < hex 4. The hex structures for the H ligands have a 

smaller energy range of 0.2eV, and a similar ordering to the CO structures, although 

the hex 4 structure is 0.028eV lower in energy than the hex3 structure, probably due 

to numerical error. For oxygen on Cu6Pt32, structural inversion occurs between the 

core-shell and hex structure, due to the strength of the O-Pt bond.  

 These results can be compared to work on PtCu (111) surface and subsurface 

alloys by Andersson et al. (30). Adding CO to Pt with a Cu subsurface leads to Cu 

atoms migrating to the surface, resulting in an ordered Cu hexagonal lattice 

surrounding isolated Pt atoms. The adsorption energy increases by 0.65eV after this 

rearrangement, with the surface segregation of Cu being endothermic by between 

0.3 to 0.4 eV. In addition, Knudsen et al. also investigated CO on PtCu near surface 

alloys. However, they only investigated low Cu surface concentration, as they had to 

anneal the alloy to acquire a flat (111) surface and Cu diffused into the bulk of the 

material(134). Despite this, the energy of the hex is still 1.4eV higher in energy than 

the lowest centroid structure. This may change if further ligands are added. 



Chapter 4- Chemisorption on Bimetallic Nanoparticles  

68 

 

  

4.3.2.5 RhPd 

 

Figure 4-9 Relative energies of Rh6Pd32 (left) and Pd6Rh32 (right) clusters with and without ligands. The far left 

and right columns show the relative energies of the bare Rh6Pd32 and Pd6Rh32 clusters, respectively. The 6 central 

columns show the relative energies of the cluster with (from centre) H, CO and O ligands bound to it.  

Figure 4-9 shows the relative energies of the RhPd clusters. Rh binds more strongly 

to all the species studied, resulting in the splitting of the centroid structures as seen 

in the other systems. For Rh6Pd32, the energy gap between the cent-Rh structure and 

the core-shell structures decreases from 2.2eV to 0.2 eV. The energy gap is larger 

with CO (0.5 eV) or H (0.2 eV) on the surface compared with atomic oxygen. In all 

cases, the ligands have a stronger binding energy to the Rh over the Pd. However, 

the difference in energy between Rh38-X and Pd38-X is only 0.04eV when X=H, 

0.34eV where X=CO and 0.53eV when X=O. Additionally the surface energy will 

increase this energy difference as well, as the metal atom is now bond to the ligand 

so contributes less to the surface energy. For Rh6Pd32, the energies differences 
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between the core-shell, centroid-Pd and Hex structure remain constant, whereas for 

Pd6Rh32 the trend is less clear.  

4.3.3 Multiple Adsorption 

4.3.4 AuPd 

 

Figure 4-10 Relative energies of multiple CO molecules on (left) Au6Pd32 and (right) Pd6Au32 clusters. X denotes 

the number of CO molecules bound to the cluster. 

Figure 4-10 shows the relative energies of multiple CO molecules on the 

surface of Au6Pd32 and Pd6Au32. For Au6Pd32, the hex structure remains the lowest 

energy structure, although energetic crossing occurs between the centroid and core 

structures after two CO molecules are added to the surface. For the Pd6Au32 cluster, 

energetic inversion between the centroid and core structures occurs as a second CO 

molecule is added. This is in agreement with results by Shan et al, who used DFT 

calculations on surfaces to show Pd segregates to the surface. 
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Figure 4-11 Relative energies of multiple H atoms on (left) Au6Pd32 and (right) Pd6Au32 clusters. X denotes the 

number of H atoms on the cluster 

Due to the smaller energy gap between the interaction energies of Au-H and 

Pd-H compared with Au-CO and Pd-CO, (0.39 eV compared with 1.13 eV) energetic 

inversion does not occur with H on Au6Pd32, as shown in figure 4-11. It does occur 

between the centroid and core homotops for Pd6Au32, although only after four H 

atoms are added to the cluster.  
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4.3.5 PdPt 

 

Figure 4-12 Relative energies of multiple CO molecules on (left) Pd6Pt32 and (right) Pt6Pd32 clusters. X denotes 

the number of CO molecules on the cluster. 

As with the single adsorption studies, PdPt exhibits similar trends to the AuPd 

system, as shown in figure 4-12. The energy differences are much lower than for 

AuPd, due to the smaller difference in binding energy and surface energy. However, 

energy level exchange still occurs for both Pd6Pt32 and Pt6Pd32, although for Pd6Pt32 

the inversion only occurs after six ligands are bound to the surface of the cluster. 

both the Pd6Pt32 and Pt6Pd32 hex structures are not as strongly correlated as the hex 

structures for AuPd. This is probably due to the differences in binding strength 

between the hex-1 binding site and the hex-2 binding site (see figure 4-2), which is 

larger for Pd6Pt32 than for Au6Pd32. 
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Figure 4-13 Relative energies of multiple H atoms bound to (left) Pd6Pt32 and (right) Pt6Pd32 clusters. X denotes 

the number of H atoms on the cluster. 

Hydrogen ligands also cause the core and centroid geometries to undergo 

structural rearrangement, with a slightly larger energy gap between the core and 

centroid structures for Pt6Pd32H6 (1.35 eV) than for Pt6Pd32(CO)6 (0.95 eV). The core-

shell Pd6Pt32(H)6 exhibits unusual instability compared with its neighbours, and this 

could be due to convergence criteria or electronic effects. 

4.3.6 CuPt 

For Cu6Pt32(CO)x, complete structural inversion is found, as demonstrated in figure 4-

14. When the number of ligands on the surface is zero, the energy ordering is 

centroid < core < hex, which changed to hex < core < centroid. This is in agreement 

with the experimental results by Andersson et al. (30, 31). However, Anderssons 

work was on extended surfaces so the Cu atoms had a co-ordination of nine, 

whereas in this work the Cu atoms are on the disfavoured vertex sites and have a 

coordination number of six. In addition, the vertex sites have the lowest number of 
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mixed Pt-Cu bonds, so the hex arrangement should still be disfavoured. This could 

be due to the transfer of electron density from the CO molecule to the Pt, with the 

resulting charge transfer stabilising the Cu on the vertex sites. 

The Pt6Cu32 system shows no energy reordering, although the stability of the 

centroid structure increases relative to the other species. 

 

Figure 4-14 Relative energies of multiple CO molecules on (left) Cu6Pt32 and (right) Pt6Cu32 clusters. X denotes 

the number of CO molecules on the cluster. 
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Figure 4-15 Relative energies of multiple H ligands on (left) Cu6Pt32 and (right) Pt6Cu32 clusters. X denotes the 

number of atoms on the cluster. 

Figure 4-15 shows hydrogen on Cu6Pt32 shows a similar trend to CO, although 

the effect is lessened by the unusual stability of Cu6Pt32H2, and the smaller energy 

differences between the hex and core-shell structures of 2.05 eV and 1.26eV for CO 

and H respectively. Interestingly the energy gap between the Pt6Cu32 structures with 

CO or H bound to the surface is quantitatively similar, with energies between the hex 

and centroid structures where X=4 of 6.8 eV for H ligands and 7.21eV for CO. 
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4.3.7 RhPd 

 

Figure 4-16 Relative energies of multiple CO ligands on (left) Rh6Pd32 and (right) Pd6Rh32 clusters. X denotes 

the number of ligands on the cluster. 

Figure 4-16 shows RhPd shows similar character to both AuPd and PdPt clusters, 

with energetic inversion occurring between the core-shell and the centroid structures 

for both Rh6Pd32 and Pd6Rh32. In addition, the energy gap between the core and the 

centroid structure is larger for Rh32Pd6(CO)6 (2.6eV) compared with Pt6Pd32(CO)6 

(0.96eV) and smaller than Pd6Au32(CO)6. This is in agreement with the work by Tao 

et al. (104, 105), who found adding a mixture of CO and NO gas increased the 

amount of Pd in the surface layers of RhPd nanoparticles.  

4.3.8 Summary- Multiple Adsorption  

In general a linear trend is observed such that further adsorption on 

energetically unfavourable sites increases the energy of that site relative to others. 

This trend is most clearly observed with Pd6Rh32COx (figure 4-16), Pt6Cu32COx 

(Figure 4-14), Pt6Cu32Hx (Figure 4-15), and Pd6Au32COx (figure 4-10). There seems 
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to be certain structures which act as the exception to this trend. For example, 

Cu6Pt32H2 is a particularly striking example of this and could be caused by charge 

and electronic effects. In addition, the method of shifting the energies relative to the 

core-shell structure may have amplified differences that are small when using the 

absolute relative energies, as shown on the left hand side of figure 4-4. 

It is probable that many systems would undergo structural inversion. Either CO 

or H may be strong enough to bring Pd to the surface of a PdcoreAushell nanoparticle, 

due to the stronger interaction energy of CO and H to Pd. This would also be the 

case for PtcorePdshell and PdcoreRhshell nanoparticles. Due to rhodium’s strong binding 

energy to oxygen (see Table 4-2) this explains the structural inversion found by Tao 

et al (105).  

CuPt is slightly different to the aforementioned examples, for two reasons. 

Firstly, CuPt has a strong preference for bimetallic Cu-Pt bonds instead of adopting a 

core-shell arrangement to minimise surface energy. Inversion is seen when CO or H 

is bound to the surface of PtCu, but the Cu is bound to the surface because it 

stabilises the Pt bound to the ligand molecule. This could be due to the Cu localising 

the charge on the Pt atom, resulting in strong back donation of charge from the metal 

to the ligand. Analysing the local density of states on the Pt atom would reveal if this 

is the case.  

4.4 Conclusions 

The stabilities of different nanoparticles were investigated, with energetic reordering 

common where the interaction energies between different metals in the cluster is 

large enough. The inversion of structure appears dependent on the surface energy of 
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the element and the strength of the interaction energy with the ligand. This enables 

RhPd nanoparticles to undergo a reversible reaction, as both Rh and Pd can bind 

strongly to different ligands. In addition, local effects can play a role in effecting the 

clusters structure. Of the systems studied here, only CuPt exhibited this 

phenomenon, with Cu finding it energetically favourable to move to a vertex site 

usually disfavoured due to its high surface energy (compared with Pt) and the 

reduced number of preferred Pt-Cu bonds. 

This work could be expanded to study more systems. TiPt would be an 

interesting system to study, as it has been suggested for use in fuel cells. In this 

case, a Ti-core Pt-shell nanoparticle would be preferred to decrease cost but keep 

the chemical activity, but avoid Ti coming to the surface of the cluster and poisoning 

the catalyst(135).  

In addition, further analysis of the CuPt system will be beneficial to 

understanding why Cu prefers to occupy surface sites. This could be achieved by 

investigating charges or the density of states.  

In addition, truncated octahedra were used exclusively in this work, although 

clusters can adopt many different geometries. For pure metals, it has been shown 

that adsorbates can affect the structure of a cluster(88), and extending this to 

bimetallic clusters may be useful. Finally, larger clusters can give a better 

approximation to experiments on catalysts. As an example, the work by Tao et al. 

was performed using clusters 15 nm ±2 nm across(105). Although this is clearly 

beyond what can be modelled using DFT, increasing the size slightly would represent 

a closer link to experimental systems.  



Chapter 5- Structure and CO Adsorption of Small AuPd Clusters  

78 

 

Chapter 5-  Structure and CO Adsorption of Small 

AuPd Clusters  

5.1 Introduction 

Small clusters made of a few atoms can be studied relatively easily using both 

experimental and theoretical methods. This enables us to test theoretical methods or 

predictions or to provide greater insight into experimental data. In addition, high 

levels of theory (such as coupled-cluster methods) can be used to study small 

systems (136-138), confirming the reliability of XC functionals (137). This means a 

dual approach of searching at a lower level of theory followed by a subsequent high 

level theory (as described in previous work (3, 87, 117, 118) and in Chapter 3- ) is no 

longer necessary and can in fact be detrimental to searching the energy landscape. 

For example, using the Gupta potential for Au4 with the BCGA only finds the 

tetrahedral geometry, whereas Au4 has been found to be a planar rhombus structure 

at the DFT level (114, 139). 

Experiments on gas phase clusters made of only a few atoms are much 

trickier, particularly as an ultra high vacuum is often required. In addition, uncharged 

clusters are often difficult to study. A common method is to use a stabilisation media, 

such as inert argon gas, to trap the clusters which can then be studied using infra red 

(IR) or Photo-Electron Spectroscopy (PES).  
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Typically, argon is used as a carrier gas with any other gaseous molecules 

added to it in low concentrations. A laser is used to ablate atoms from a surface. 

These condense onto a CsI salt window, from which they can be studied as shown in 

figure 5-1. This has been used to study various systems, including water (140), boric 

oxides (19) and metal clusters (141, 142). 

 

Figure 5-1 Experimental setup for studying small gas phase clusters. Based on the design in (19). A Nd:YAG 

laser beam atomises metal atoms from a target, which are then trapped inside a nobel gas liquid deposited onto a 

CsI plate. 

Charged clusters are also studied experimentally, and have the advantage that 

beams of particles can be created and directed so they can be studied using 

techniques like time-of-flight mass spectrometry or deposited onto a surface (143, 

144). 

5.1.1 Previous work on small gold, palladium and AuPd clusters 

Gold has been extensively studied due to its unusual properties at the 

nanoscale (145-147).  At the smallest sizes, gold clusters are planar, and the planar 

structures are the most favourable structures up to 7 atoms for cationic clusters (148) 

and 12-15 for neutral and anionic clusters (145, 149). The potential energy surface 
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using high level calculations has been found to be quite flat, which makes the global 

minima a challenge (136). Full relativistic calculations by Guo et al. find the triangular 

structure is more stable for Au3, with the spin-orbit coupling quenching the Jahn-Teller 

distortion effects (150). In the same paper, Guo et al. confirmed this structure using 

laser-ablation and matrix-infrared spectroscopy. 

PdCO has been studied at the coupled cluster level by Filatov et al., with 

relativistic effects strengthening the Pd-C bond (138). The Pd2 dimer has been found 

to have a bond length of 2.53Å (131) and an energy of 1.04eV±0.16eV (151) and a 

triplet ground state (152). Schultz et al. (137) have looked at the Pd2CO system with 

many different XC functionals, and find the PW91 functional gives a small error of 2% 

for the dissociation energy of Pd2. The ground state of Pd4 has been found to adopt a 

tetrahedral geometry in the triplet state (153), and adding CO changes the electronic 

state from triplet to singlet, with the CO molecule occupying the 3-fold hollow site 

(131).  

Bimetallic systems have attracted less attention, and have tended to be 

studied at a lower level of theory. Jian-Jun et al. (154) studied AunPd2 (where n=1–4) 

finding a triangular structure for Au1Pd2 and the tetrahedral geometry for Au2Pd2. 

However, they used a small (DZ) basis set and the B3LYP functional, which gives a 

larger error than the PW91 function for the dissociation energy of Pd2 (137). Wu et al. 

(111) studied AunPd clusters, also using the B3LYP functional and a DZ basis set, 

finding the linear Pd-Au-Au structure as the most stable, followed by the other linear 

homotop (Au-Pd-Au) as 0.91eV higher in energy. They also find Au3Pd1 adopts a 

tetrahedral geometry. 
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In this work, we investigate AuPd clusters with different geometries and spin 

states, and how these clusters are affected upon adsorption of CO. There are many 

studies on these clusters, although some of this work uses a small (DZ) basis set and 

the B3LYP XC functional (154). This functional is fitted to experimental results to the 

first 18 elements (68, 69), and sometimes gives inaccurate results for the later 

transition metals, failing to account for the delocalised character of the electron cloud 

within metals (155).  

5.2 Methodology 

5.2.1 Structures 

5.2.1.1 Bare clusters 

All sizes and compositions were investigated from dimers up to tetramers (4 atoms), 

including different spin states. For the dimers, an initial bond length of 2.5 Å was 

chosen.  

For trimers, 3 different structures were chosen: linear, triangular and bent. The 

initial angles for the bent and triangular geometries were 170o and 60o, respectively. 

The bent geometry was based on work on Au3 by de Bas et al. (114). All the different 

homotops for each geometry were selected. For example, the linear geometry for 

Au2Pd1 can be either Au-Au-Pd or Au-Pd-Au, and both initial geometries were 

selected.  

For tetramers, the different initial structures were linear, rhombus, square, 

tetrahedral and a triangular structure which contains a single ad-atom. The initial 

rhombus geometry was set as two equilateral triangles, with bond angles of 60o. The 
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initial bond length was set to 2.5 Å in all cases. This results in 42 separate non-

symmetry equivalent structures across all homotops and compositions. The starting 

structures are shown in figure 5-2. 

(a) 
 

(b) 
 

Figure 5-2 Initial geometries of the bare (a) three atom clusters and (b) four atom clusters. 

5.2.1.2 CO bound clusters 

As stated in Chapter 4- , nanoparticles have many different binding sites, so 

more calculations are required. All metal-metal bond lengths were set to 2.5 Å, metal-

carbon bond lengths to 2.0 Å and carbon-oxygen to 1.5 Å. CO was added to the 

unminimised structure. 

For dimers, 4 different geometries were considered: linear, bridge, bent around 

the C-M-M bond and the O-C-M bond, with a bond angle of 135o. These structures 

are shown in figure 5-3. For the bimetallic Au1Pd1 both the Au and Pd sites 

underwent geometry minimisation.  

Triangular trimers enable the 3 fold hollow sites to be investigated. CO was 

bound to all other bridge and atop sites, excluding symmetry equivalent positions. 
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For tetramers, all atop, bridge, 3 and 4 fold hollow sites were investigated when the 

structure allowed it. The structures of the trimers and tetramers are shown in figure 5-

3b and figure 5-3c, respectively. 

(a) 
 

(b) 
 

(c)  

Figure 5-3 Initial geometries of (a) dimers (b) trimers and (c) tetramers of PdAu clusters, all with CO. Colour 

refer to metal (Au or Pd) blue, carbon black and oxygen red. 



Chapter 5- Structure and CO Adsorption of Small AuPd Clusters  

84 

 

5.2.2  DFT Calculations 

DFT was used for structure optimisation, using a triple zeta basis set with polarisation 

function (TZVP) (156). Scalar relativistic ECP's were used for Au and Pd, along with 

charge fitting basis sets (157). A large basis set including 19 electrons 

((7s6p5d)/[6s3p3d] for gold and 18 (7s6p5d)/[5s3p3d] electrons for palladium were 

used in the calculations. All electrons were calculated explicitly without core 

potentials for the carbon ((11s6p1d)/[5s3p1d]) or oxygen ((11s6p1d)/[5s3p1d]) atoms. 

Calculations performed using the NWChem quantum chemistry package version 5.1 

(85). Vibrational frequencies were calculated after geometry optimisation was 

completed to confirm the structure was a local minima and not on a saddle point on 

the PES. Smearing was not used, as the small size of the clusters it should not 

normally be required to assist the convergence.  

Different spin states were investigated. For the bare clusters, six different spin 

states were investigated. For clusters with an even number of electrons, singlet, 

triplet and quintet states were calculated and for an odd number of electrons the 

doublet, quartet and sextet spin states. When CO was bound to the cluster, only low 

spin (singlet or doublet, for even and odd numbers of electrons respectively) and mid 

spin (triplet or quartet) states were calculated. Symmetry was utilised during the 

calculations, to enable freedom for the geometry optimisation 

5.2.3 Calculations 

All energies in this chapter are reported in eV. Binding energies for the bare clusters 

were calculated using equation 5-1.          ,       and       are the energies 

for the cluster, the gold atom and the palladium atom, respectively.  
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                           5-1 

The energies for the atoms were found to be -135.80129 Hartrees for gold and 

-127.90861 Hartrees for Palladium. For some structures the relative energies were 

used. These are calculated relative to the lowest energy structure for that 

composition and size. 

5.3 Results 

5.3.1 Bare Clusters 

5.3.1.1 Dimers 

Electron 

Multiplicity 
Structure 

Frequency 

(cm-1) 

Bond length 

(Å) 
Eb (eV) 

Singlet Au2 171.7 2.539 -2.270 
Doublet Au1Pd1 187.7 2.503 -1.988 
Singlet Pd2 168.9 2.664 -1.067 

Triplet Au2 100.2 2.794 -0.464 
Quartet Au1Pd1 153.6 2.603 0.137 
Triplet Pd2 208.9 2.488 -1.555 

Septet Au2 134.8 2.621 4.799 
Sextet Au1Pd1 118.9 2.619 5.222 
Septet Pd2 188.0 2.491 0.459 

Table 5-1 The vibration frequencies (cm
-1

), bond lengths (Å) and binding energies (in eV) of Au2, Pd2 and 

Au1Pd1 at different spin states.  

Table 5-1 shows the binding energies, bond lengths and stretching frequency 

of Au2, Au1Pd1 and Pd2, with different spin states. None of the clusters had imaginary 

frequencies, so all the structures and spin states studied are local minima. 

For the quartet, sextet and septet electron multiplicities, the binding energies 

are positive, such that the separate atoms have a lower energy than the high spin 
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dimers. In agreement with previous results, the AuPd and Au2 dimer are more stable 

in the lowest available spin state, whereas the triplet state in Pd2 has a lower energy 

than the singlet state.  

Our results for the bond length for Au2 of 2.54 Å agree reasonably well with 

results from previous DFT calculations (2.48-2.49 Å) (26), and are slight 

overestimations compared with experimental results (2.47 Å) (158) and high level 

CCSD(T) calculations with a complete basis set (2.44 Å) (159).  

The Pd2 dimer has a bond length of 2.49 Å, which compares very favourably 

with experimental data (2.47 Å) (159) and high level CCSD(T) calculations (2.44 Å) 

(158). 

5.3.1.2 Trimers 

 

Figure 5-4 Binding energies of the 3 atom AuPd clusters. In the key, 'L' refers to the low-spin (doublet for Au3 

and Au1Pd2, singlet for Pd3 and Au2Pd1) clusters whereas 'M' refers to mid-spin clusters (triplet state for Au2Pd1 

and Pd3, quartet state for Au3 and Au1Pd2). Structural labels are lin- linear and tri- triangle. 
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The energies of the different low and mid spin structures are shown in figure 5-4. The 

lowest energy structure of Au3 is the low (doublet) bent structure, with an angle of 

140o, arising from Jahn-Teller distortion of the equilateral triangle. This was the only 

stable low spin state structure, with the linear and triangular geometries converging 

upon the same structure. The same occurred with the quartet (mid) spin case, where 

the only stable structure was the triangular structure. The bond length for the Au3 

(bent) structure was 2.58 Å, and for the triangular structure 2.66 Å, due to the weaker 

bonding of having electrons in the high energy states.  

The bimetallic clusters exhibit more similar behaviour to the Pd3 system, as 

their global minima are triangular structures. Both Au1Pd2 and Au2Pd1 have more 

stable higher energy structures, due to the presence of different homotops and 

increased complexity in the electronic landscape. The results for Au1Pd2 agree with 

Jian-Jun et al (154), with a Pd-Pd bond length of 2.53 Å compared with 2.57 Å and 

Au-Pd length of 2.61 Å compared with 2.67 Å. Energies also compare reasonably 

favourably (1.37eV compared with 1.1eV for Jian-Jun). The difference is due to the 

different exchange correlation functional used, and because Jian-Jun used a smaller 

basis set. 
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5.3.1.3 Tetramers 

 

Figure 5-5 Binding energies of the 4 atom AuPd clusters. In the key, 'L' refers to the low-spin clusters whereas 

'M' refers to mid-spin clusters. Structural labels are: lin-linear, rom- rhombus, tetra- tetrahedral and tri- triangle 

with an ad-atom. 

Figure 5-5 shows the energies of the four atom clusters, indicating the energy 

landscape is more complicated due to the high number of different structures, in 

addition to different homotops for bimetallic clusters. Linear structures are high in 

energy, and have imaginary frequencies for Au4 and Pd1Au3, indicating they are not 

locally stable. In addition, all high spin state linear structure were not stable, either 

having imaginary frequencies or converging on a different geometry. Many more 

structure were found for Au2Pd2 than reported elsewhere (154). 

The tetrahedron is the most stable cluster geometry for Pd4, Au1Pd3 and 

Au2Pd2 with the triplet state preferred for Pd4, the doublet state is preferred for 

Au1Pd3 and the singlet for Au2Pd2. The Pd4 geometric and electronic structure is in 

agreement with previous calculations (153). The second most stable geometric 
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structure for Pd4 was a square geometry, in disagreement with results by Dai, who 

find the rhombus is lower in energy than the square geometry (153). Small Au 

clusters are known to be planar in the bulk, and we find the singlet rhombus slightly 

lower (0.01eV) in energy than the singlet triangle. This is in agreement with other 

theoretical calculations (139). 

5.3.2 CO bound clusters 

5.3.2.1 Dimers 

The low spin Au2CO structures only converged onto two different structures: a 

linear geometry and a bridge geometry with the linear geometry over 1.1 eV lower in 

energy. For the bridge geometry the Au-C-O bond angle is 124o and Au-Au bond 

length is 3.29 Å. Indicating the carbon is sp2 hybridised with negligible Au-Au 

bonding.  

Pd2CO exhibits the opposite character, with the bridge geometry preferred 

over the linear geometry by 1.5 eV. This is in agreement with previous calculations 

(131). The low spin state was lower in energy as the CO quenches the electron 

orbitals. 

AuPd bimetallic clusters exhibit a larger number of stable structures. The two 

lowest structures were both bound atop to Pd, in either a linear or bent geometry with 

an energy separation of 0.06eV. Again the CO quenched the electronic states so the 

doublet state is the preferred electronic configuration. It is unsurprising that the Pd 

site is preferred, as bulk Pd has a stronger adsorption energy than Au, where CO 

barely binds to the Au (111) surface (160). 
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The results for Au2CO and Pd2CO agree with results by Peng et al. (161), 

although they find the linear structure is preferred for the bimetallic cluster. 

5.3.2.2 Trimers 

 

Figure 5-6 The relative energies of the pure clusters, and the structure of each. Left- Au3CO. Right- Pd3CO. 

For the pure clusters CO binds in different locations for Pd3 and Au3, continuing the 

trend that was found in the dimers. The most stable structure found for Pd3CO is with 

the CO bound to the 3 fold hollow site of the Pd3 triangle (as shown in figure 5-6), 

whereas for Au3 the lowest energy geometry changes from the bent structure to a 

triangle, with the CO bound atop to a gold atom. In both cases, the spins are 

quenched such that the low spin state is preferred. Other local minima were found, 

and these are shown in figure 5-6. For gold, lots of different local minima were found, 

including both bridge and hollow binding sites. However, for CO bound to the 3-fold 

hollow site, the gold atoms were moved apart to a distance of 2.7 Å or 3.2 Å, 

probably to strengthen the C-Au bonds instead of the Au-Au bonding. 
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Figure 5-7 relative energies of the 3 atom bimetallic clusters and their structures. Left- Pd2Au1. Right Au2Pd1 

The different bimetallic structures are shown in figure 5-7. For both Au1Pd2CO 

and Au2Pd1CO the lowest energy structures are low spin structures, with the Au1Pd2 

and Au2Pd1 adopting a triangular and bent geometry respectively. Notably absent is 

the CO occupying a Pd-Pd bridge site. The triangular geometry with the CO on this 

bridge site was found, but had imaginary frequencies indicating it occupied a saddle 

point on the energy landscape. Au2Pd1 clusters have a more complex energy 

landscape with more local minima found relative to Pd3 or Pd2Au1. This can be 

explained by Au3 having a more complicated landscape compared with Pd3 and 

additional structures as different homotops of the same geometry exist for bimetallic 

structures.  
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5.3.2.3 Tetramers 

 

Figure 5-8 Low energy structures for (A) Au4CO and (B) Pd4CO with their relative energies (in eV). Energies 

shown in blue indicate a singlet state structure, whereas an energy in red indicates the structure has a doublet 

spin state. Atom colours are: yellow- gold, blue- palladium, cyan- carbon and red- oxygen. 

Many different structures were found for each composition, so only the five lowest 

energy structures were investigated in detail. For Au4, Au3Pd1, Au2Pd2 and Au1Pd3 the 

lowest five structures were in the singlet or doublet state. Pd4 has one structure that 

occupies the mid-spin state. The lowest energy structures for Au4 and Pd4 are shown 

in figure 5-8, along with their relative energies. For Au4 the two lowest lying isomers 

are only separated by 0.01 eV, making it difficult to confirm the triangular structure is 

the global minima. Most of the low energy structures are planar, which contrasts with 

Pd4CO which prefers to adopt the three dimensional structure. Both of these 

compare favourably with previous work (131). The three lowest energy Pd4CO 

structures are all tetrahedral, whereas Au4CO has a wider range of structures over a 

narrower energy range. Interestingly, the linear structure has been heavily stabilised 

by adding CO. for the bare cluster, the linear Au4 cluster was not even locally stable 

as it had multiple imaginary frequencies.  
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Figure 5-9 Low energy structures for (A) Au1Pd3CO, (B) Au2Pd2CO and (C) Au3Pd1CO with their relative 

energies (in eV).  The same colour scheme is used to that in figure 5-8. 

The bimetallic structures are shown in figure 5-9. All show a complex energy 

landscape with multiple minima within 0.5eV of the lowest energy structure. The 

global minima for Au1Pd3CO is the analogue to the Pd4CO global minima, and 

Au3Pd1CO shows similar character to Au4CO, although the two lowest energy 

structures are swapped over, and spread over an energy range of 0.26eV.  

5.4 Conclusions and Future Work 

We have found many of the low energy structures for small AuPd clusters up to 4 

atoms in size, both with and without CO adsorbed to the surface. The IR frequencies 

and intensities have been calculated, such that it may be possible to compare these 
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results with gas phase experiments, with the CO molecule being used as a probe 

molecule to find the shape of the cluster. 

There are numerous way in which this work could be expanded. At the time 

this work was started, computational resources were more limited and advances in 

computing have opened up the chance to expand this work to higher levels of theory, 

such as Coupled Cluster (CC) methods. This has the advantage that the energy 

found is truly variational, whereas DFT is reliant on the imperfect although useful 

exchange correlation functional. Also, these calculations were calculated using scalar 

relativistic calculations. It has been shown that spin-orbit coupling can affect the 

structure of small gold clusters(150). 

In addition, different search methods can be used. Negreiros et al. (112) has 

created a Eigen Vector following approach to study oxygen binding to Ag3. These 

calculations work by calculating the hessian (the second derivative of the energy) to 

search for saddle points, local and global minima. An additional method that has 

been used is the genetic algorithm, which has recently been used to study small 

silver-gold clusters(113) and tin-bismuth bimetallic clusters(162, 163). This uses the 

same methods as shown in Chapter 3- . 
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5.5 Appendix- Relative Energies and Vibration Frequencies 

5.5.1 Dimers 

Structure Spin Relative Energy 

(eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

Low 0.00 1840 49, 176, 341, 341, 

424 

 

Low 1.12 2101 76, 275, 360, 422, 

683 

Table 5-2 Relative energies (in eV) and vibration frequencies (in cm
-1

) for different stable structures of Au2CO. 

Gold atoms are shown in yellow, carbon in cyan and oxygen in red. 

Structure Spin Relative Energy 

(eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

Low 0.00 1864 171, 215, 363, 

448, 587 

 

Low 1.56 2036 99, 100, 157, 428, 

429, 514 

 

Mid 1.72 2026 40, 188, 253, 304, 

453 

 

Mid 1.77 2030 27 , 43, 169, 286, 

315, 417 

 

Mid 1.78 2039 9, 180, 280, 312, 

417 

Table 5-3 Relative energies (in eV) and vibration frequencies (in cm
-1

) for the different stable structures of 

Pd2CO. Palladium atoms are shown in dark blue, carbon in cyan and oxygen in red. 
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Structure Spin Relative Energy 

(eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

 

Low 0.00 2102 36, 163, 269, 313, 

471  

 

Low 0.07 2041 41, 42, 165, 333, 

334, 429 

 

Low 0.18 1911 110, 200, 330, 

332, 528 

 

Low 0.47 2067 35, 41, 196, 305, 

306, 397 

 

Mid 2.62 1850 124, 153, 225, 

345, 381 

 

Mid 2.89 1927 18, 71, 129, 272, 

415 

 

Mid 2.95 1954 40, 68, 138, 273, 

430 

Table 5-4 Relative energies (in eV) and vibration frequencies (in cm
-1

) for the different stable structures of 

Au1Pd1CO. Gold atoms are shown in yellow, palladium in dark blue, carbon in cyan and oxygen in red. 
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5.5.2 Trimers 

Structure Spin Relative Energy 

(eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

Low 0.00 2079 41, 53, 93, 104, 

159, 331, 339, 

431 

 

Low 0.32 2092 19, 33, 41, 126, 

171, 301, 311, 

411 

 

Low 0.54 1907 32, 45, 69, 168, 

220, 346, 366, 

518 

 

Low 1.70 1734 19, 64, 118, 140, 

250, 324, 345, 

584 

 

Mid 2.46 1837 58, 60, 104, 112, 

116, 268, 346, 

350 

 

Mid 2.50 1869 55, 83, 115, 156, 

254, 309, 414 

 

Mid 2.68 1919 21, 44, 81, 96, 

110, 143, 248, 

416 

Table 5-5 Relative energies (in eV) and vibration frequencies (in cm
-1

) for the different stable structures of 

Au3CO. Gold atoms are shown in yellow, carbon in cyan and oxygen in red. 
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Structure Spin Relative Energy 

(eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

Low 0.00 1736 118, 120, 183, 

207, 210, 416, 

494, 498 

 

Low 1.03 1641 50, 115, 138, 146, 

306, 353, 466, 

671 

 

Low 1.29 2044 107, 173, 176, 

226, 460, 462, 

483 

 

Mid 1.42 1781 140, 159, 203, 

212, 242, , 416, 

492, 542 

 

Mid 1.65 1874 8, 33, 126, 217, 

220, 358, 435, 

539 

 

Low 2.93 2045 82, 99, 107, 128, 

233, 427, 446, 

447 

Table 5-6 Relative energies (in eV) and vibration frequencies (in cm
-1

) for the different stable structures of 

Pd3CO. Palladium atoms are shown in dark blue, carbon in cyan and oxygen in red. 
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Structure Spin Relative Energy 

(eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

Low 0.00 2045 41, 48, 122, 136, 

199, 337, 347, 

467 

 

Low 0.81 1905 36, 48, 121, 185, 

210, 352, 362, 

536 

 

Low 0.89 2056 31, 34, 97, 148, 

230, 258, 293, 

391 

 

Low 1.25 1917 35, 39, 104, 204, 

213, 387, 391, 

562 

 

Mid 1.81 2037 44, 46, 115, 131, 

179, 317, 347, 

422 

 

Mid 1.99 1878 11, 62, 109, 171, 

185, 244, 306, 

437 

 

Mid 2.59 2020 26, 45, 112, 120, 

189, 262, 322, 

415 

Table 5-7 Relative energies (in eV) and vibration frequencies (in cm
-1

) for the different stable structures of 

Au1Pd2CO. Gold atoms are shown in yellow, palladium in dark blue, carbon in cyan and oxygen in red. 
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Structure Spin Relative Energy 

(eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

Low 0.00 1920 34, 43, 119, 178, 

211, 360, 377, 

551 

 

Low 0.35 2065 41, 42, 92, 149, 

198, 327, 329, 

422 

 

Low 0.49 1939 37, 38, 98, 201, 

215, 390, 395, 

569 

 

Low 1.07 1791 33, 89, 143, 162, 

206, 329, 399, 

535 

 

Mid 1.14 1887 10, 75, 101, 151, 

194, 302, 320, 

490 

 

Mid 1.51 2054 10, 39, 44, 121, 

171, 313, 318, 

413 

 

Mid 1.64 2051 37, 46, 105, 109, 

173, 310, 324, 

429 

 

Low 1.73 

 

1857 29, 35, 60, 186, 

250, 364, 400, 

605 

 

Mid 1.88 2047 24, 27, 47, 127, 

189, 249, 282, 

394 

 

Mid 1.93 1878 15, 61, 128, 163, 

185, 193, 288, 

493 

 

Mid 2.06 1908 36, 45, 81, 185, 

205, 310, 329, 

490 

Table 5-8 Relative energies (in eV) and vibration frequencies (in cm
-1

) for the different stable structures of 

Au2Pd1CO. Gold atoms are shown in yellow, palladium in dark blue, carbon in cyan and oxygen in red. 
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5.5.3 Tetramers 

Structure Spin Relative Energy 

(eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

Low 0.00 2096 17, 35, 37, 48, 88, 

105, 143, 193, 

337, 341, 433 

 

Low 0.01 2091 30, 32, 51, 58, 76, 

92, 157, 159, 320, 

335, 422 

 

Low 0.34 1949 20, 38, 38, 52, 79, 

162, 189, 215, 

374, 377, 510 

 

Low 0.55 2087 10, 15, 16, 31, 64, 

83, 156, 180, 292, 

299, 384 

 

Low 1.06 2090 44, 53, 61, 81, 87, 

95, 138, 177, 298, 

324, 339 

Table 5-9 Relative energies (in eV) and vibration frequencies (in cm
-1

) of the five lowest energy structures for 

Au4CO. Gold atoms are shown in yellow, carbon in cyan and oxygen in red. 
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Structure Spin Relative 

Energy (eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

Low 0.00 1677 76, 78, , 133, 144, 

146, 205, 211, 212, 

408, 531, 534 

 

Low 0.56 1801 11, 73, 98, 128, 142, 

155, 209, 233, 372, 

431, 659 

 

Mid 0.74 1863 16, 85, 89, 109, 125, 
158, 163, 223, 256, 
389, 453 

 

Low 0.90 1479 25, 94, 99, 128, 150, 

177, 214, 344, 441, 

548, 571 

 

Low 0.98 1862 65, 105, 119, 147, 

171, 199, 215, 246, 

431, 482, 615 

Table 5-10 Relative energies (in eV) and vibration frequencies (in cm
-1

) of the five lowest energy structures for 

Pd4CO. Palladium atoms are shown in dark blue carbon in cyan and oxygen in red. 
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Structure Spin Relative 

Energy (eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

Low 0.00 1746 65, 67, 116, 123, 126, 

182, 190, 378, 421, 

428 

 

Low 0.06 1749 23, 91, 98, 123, 162, 

172, 198, 208, 394, 

413, 499 

 

Low 0.09 1863 25, 40, 89, 100, 130, 

171, 190, 208, 383, 

417, 528 

 

Low 0.20 1866 24, 45, 69, 113, 120, 

154, 183, 195, 306, 

404, 478 

 

Low 0.33 2022 18, 43, 64, 96, 126, 

130, 155, 211, 285, 

322, 445 

Table 5-11 Relative energies (in eV) and vibration frequencies (in cm
-1

) of the five lowest energy structures for 

Au3Pd1CO. Gold atoms are shown in yellow, palladium in dark blue, carbon in cyan and oxygen in red. 

Structure Spin Relative 

Energy (eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

Low 0.00 1869 10, 36, 74, 94, 107, 

148, 180, 207, 368, 

408, 530 

 

Low 0.41 1794 33, 60, 84, 117, 132, 

156, 184, 223, 358, 

468, 549 

 

Low 0.44 1889 15, 28, 63, 87, 88, 

146, 163, 189, 253, 

375, 396 

 

Low 0.47 2032 18, 35, 61, 83, 101, 

128, 132, 187, 290, 

309, 453 

Table 5-12 Relative energies (in eV) and vibration frequencies (in cm
-1

) of the five lowest energy structures for 

Au2Pd2CO. Gold atoms are shown in yellow, palladium in dark blue, carbon in cyan and oxygen in red. 
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Structure Spin Relative 

Energy (eV) 

CO Stretching 

Frequency (cm
-1

) 

Other Frequencies 

(cm
-1

) 

 

Low 0.00 2045 25, 44, 48, 64, 93, 

119, 153, 159, 328, 

336, 455 

 

Low 0.26 2063 19, 32, 44, 47, 95, 

125, 149, 191, 334, 

344, 439 

 

Low 0.40 1888 21, 40, 58, 66, 98, 

141, 151, 197, 338, 

363, 502 

 

Low 0.48 1961 23, 28, 47, 81, 110, 

133, 148, 210, 345, 

371, 497 

 

Low 0.60 2047 51, 66, 71, 84, 106, 

119, 122, 173, 399, 

404, 452 

Table 5-13 Relative energies (in eV) and vibration frequencies (in cm
-1

) of the five lowest energy structures for 

Au3Pd1CO. Gold atoms are shown in yellow, palladium in dark blue, carbon in cyan and oxygen in red. 
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Chapter 6-  The Electronic Structure of AuPt 

Clusters 

6.1 Introduction 

In this work thus far we have looked primarily at the energies of different clusters, 

along with surface and size effects. Further information can be acquired by studying 

the filling and energies of the different orbitals within the cluster. DFT calculations 

give us this information regarding the density of states (DOS). These electronic 

properties of nanoparticles can tell us about more about the chemical bonding within 

a system. For example, it has been shown that lowering the average energy of the d-

electrons (called the d-band centre), with a more empty b-band resulting in stronger 

binding to small molecules. This is because more of the electron density from the 

adsorbate can be donated to the metal surface. The d-band centre can be calculated 

using equation 6-1 (135). 

   
     

    
 6-1 

In this formula,   is the electron density and E is the energy. The d band 

center can be used to see how the electron density affects the ligand interaction 

energy. The traditional method of describing binding of CO (or any ligand) to a metal 

surface is through sigma-donation pi-backdonation. The electron orbitals of the C-O 

sigma bond donates some electron density into the metal d orbitals, while the d 

orbitals donate some electron density into the anti-bonding pi* orbital of the C-O 
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bond. This results in a carbon-metal bond and a weaker C-O bond. The strength of 

this bond has been shown to depend on how much electron density is in the d 

orbitals, also known as the d-band for more extended systems(135). Of course, 

nanoparticles exist in the intermediate regime between a true extended d-band and 

discrete orbitals over a few atoms. Where the d-band is full with fewer unoccupied d 

states, the d-band center shifts towards the fermi energy and results in weaker M-C 

binding, as the electrons donated from the carbon must occupy higher energy states. 

The opposite is also true; namely a less occupied d-band shifts the d-band center 

downwards, with more d-band unoccupied so there is a stronger metal-carbon bond. 

Charges on each atom can also give further information to explain the 

chemical reactivity of a metal surface. However, dividing up the charge between 

different atoms is not a trivial exercise, and various methods exist to divide up the 

charge between different atoms including Löwdin(164), Mulliken(165) or Bader 

analysis(166). Löwdin and Mulliken methods are based on the contribution 

coefficients of the atomic orbitals to the molecular orbitals, but tend to be sensitive to 

the basis set used in the calculation(167). Bader analysis was discovered more 

recently, and is based on the charge density itself and not on the orbital coefficients. 

It works by assigning regions of electron density around charge maxima up to points 

of zero charge gradient (for example, in the minima between two atoms). As the 

charge tends to be a maximum around nuclei, this gives the charge on each atom. 

This method is independent of basis set, although the Bader calculations are often 

completed on a grid(167) which must be fine enough to give reasonable results.  
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6.1.1 Electron Shell Closure in Gold 

It has been shown earlier that gold has interesting chemical and physical properties, 

but at the nanoscale it also exhibits interesting electronic properties. Au has a [Kr] 

4f14 5d10 6s1 electron shell structure. At the nanoscale, the 6s electrons can bond into 

jellium orbitals, whereby the electrons are distributed in the cluster which can be 

treated as a uniformly distributed positive charge. This results in electron shells with 

different ‘magic shells’ within a ‘superatom’ compared with atomic orbitals(168). In the 

same way that unusual stability occurs in atoms where the number electrons equals 

2, 10, 18, 36 etc, for a superatom the stability occurs where the number of electrons 

equals 2, 8, 18, 34 and 58, with 20 and 40 electrons also stable under some 

conditions(21, 169). This has been found to alter the structure of gold clusters, with 

thiol ligands able to remove gold atoms from the cluster and create S-Au-S 

bridges(168, 170). These have been found both experimentally(171) and 

theoretically(172).  

6.2 Methodology 

Most of the results were performed using the quantum espresso package. An energy 

cutoff for the basis set was 30.0Ry (one Rydburg equals 13.606eV), and the charge 

cutoff was 150Ry. These calculations are performed using plane waves, which 

require tessellation of the unit cell. To avoid sampling the Brillouin zones of each unit 

cell, the calculations were performed using the gamma point. In addition, a unit cell 

size of 40 bohr radii. Two different basis sets were used: the PBE ultrasoft pseudo-

potentials and the PW91 Vanderbilt ultrasoft pseudo-potentials. All structures were 

fully relaxed at the DFT level. 
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Charges were calculated using the Löwdin method implemented within 

Quantum Espresso. Mulliken charges were briefly investigated; however they 

overestimated the amount of electron density in the core of the cluster, with atomic 

charges of greater than minus two per atom in the core. This is clearly incorrect, so 

these results were not taken further.  

Similar geometries to those used in Chapter 4-  were used, with compositions 

of Au6Pt32, its inverse Pt6Au32 and Au34Pt4. Au34 has been found to be a chiral 

nanoparticle, and has a magic number of electrons exhibiting a closed electron shell. 

We looked at Au34Pt4 to see if the bimetallic nanoparticle shows the same electronic 

behaviour. The centroid, core and hex homotops, as used in chapter 3 were used, 

with the Au34Pt4 homotops shown in figure 6-1. Au34 have been found to have 

electron shell closure and exhibit a band gap around the fermi energy. Adding a small 

number of Pt atoms may destroy this gap. 

Au34Pt4 Cent Au34Pt4 Core Au34Pt4 Hex 

Figure 6-1 The homotops studied for the Au34Pt4 clusters. Platinum atoms are shown in dark red, gold in yellow. 

These clusters are similar to those studied in Chapter 4- . 
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6.3 Results 

6.3.1 Bare Clusters 

6.3.1.1 Energies 

 
 

Figure 6-2 Excess energies (in eV) of the bare AuPt clusters for different compositions and homotops. Left- PBE 

functional, Right- PW91 functional. 

The energies of the bare clusters are shown in figure 6-2. The results for the 

excess energies between the PBE and PW91 exchange correlation function are very 

similar, with identical trends and with energy changes of no larger than Pt has the 

higher surface energy compared with gold, so the core shell structure is preferred for 

both Au34Pt4 and Au32Pt6. However, unlike previous results the lowest energy 

structure for Au6Pt32 is not the hex structure but the centroid structure. Gold is larger 

than Pt (lattice constant for gold is 4.079 Å, compared with 3.924 Å for platinum). As 

a consequence; Au atoms pop out of the surface of the cluster, reducing the energy 

of the centroid structure so that the centroid sites are more ‘vertex like’. In addition, 

Gold-Platinum forms well known stable alloys, stabilising the centroid structure which 

has the largest number of hetro-nuclear bonds for these systems studied (173). 
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DFT calculations of Au34Pt4 were completed to see if a small number of Pt 

atoms allowed the cluster too keep the band gap which is present in Au34. All the 

homotops retained the band gap character, and these values are shown in Table 6-1. 

Structure PBE band 
gap (eV) 

PW91 band 
gap (eV) 

Cent 0.78 0.82 
Core 0.83 0.81 
Hex 0.60 0.64 

Table 6-1 The band gaps around the fermi level for the Pt4Au34 clusters. These values are calculated from the 

energies of the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital 

(LUMO).  

  The PBE and PW91 exchange correlation functional show strong agreement 

with each other to within 0.04eV. The hex structure has the smallest band gap which 

is due to the Pt atoms changing the shape of the jellium orbitals from an approximate 

sphere to an ellipsoid, thereby reducing the energy gap.  

6.3.1.2 Charges- 38 Atom Clusters 

The charges for each atom for the Au6Pt32 clusters are shown in figure 6-3. Atoms at 

the red end of the spectrum have a positive charge and have lost electron density 

relative to their gas phase atoms and the bluer atoms have gained electron density. 

Green atoms denote no gain or loss in electron density. The PBE and PW91 results 

disagreed with each other, with the PBE functional finding gold became negatively 

charged, whereas the PW91 functional found that the gold lost its electrons. Both 

PBE and PW91 functionals agree that the hex structure exhibits less charge transfer 

between the gold and the platinum compared to the centroid or the core-shell 

homotop. This could be because the hex structure has the few number of 

inhomogeneous Au-Pt bonds, results in fewer neighbours to move the charge to. In 

addition, the PBE functional shows stronger electron transfer. 
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Figure 6-3 Löwdin charges on each atom relative to the gas phase atom. the orientation of each cluster is given in 

the bottom left of each picture, with dark red atoms for platinum and yellow for gold atoms. For the top row the 

PBE functional was used, and the bottom row shows the charges found using the PW91 XC functional. 

This issue was investigated further, to confirm which of these conflicting 

results was correct. Using the Pt6Au32 core-shell structure as a test case, DFT 

calculations were competed on NWChem, using both the PBE and PW91 functional. 

Two different basis sets were investigated(174, 175), the def2-TZVP (def2) basis 

set(62), and additionally the CRENBS basis set(176). The def2 basis simulated 19 

electrons for the gold and 18 for platinum, whereas the CRENBS basis set simulated 

11 electrons explicitly for gold and 10 electron for platinum. In both cases the rest of 

the electrons were treated using an effective core potential. The results for the 

Löwdin charges are shown in Table 6-2 and Mulliken charges are shown in Table 6-3. 

In all cases, the NWChem Löwdin results agreed with the results given by the PW91 

functional using Quantum Espresso.  
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Program Basis set XC Core Cent Hex 

NWChem CRENBS PBE -0.25 0.00 0.06 

NWChem CRENBS PW91 -0.25 0.00 0.06 

NWChem def2 PBE -0.17 0.01 0.04 

NWChem def2 PW91 -0.17 0.01 0.04 

NWChem def2-cf PBE -0.37 0.01 0.09 

NWChem def2-cf PW91 -0.37 0.02 0.09 

QE rrkjus PBE 0.54 -0.21 -0.03 

QE van PW91 -0.23 -0.01 0.08 

Table 6-2 Löwdin charges for the three different sites on the Pt6Au32 core-shell cluster, using different programs, 

basis sets and exchange correlation functionals. 

Program Basis set XC Core Cent Hex 

NWChem CRENBS PBE 0.28 0.10 -0.10 

NWChem CRENBS PW91 0.29 0.10 -0.11 

NWChem def2 PBE -1.43 0.16 0.30 

NWChem def2 PW91 -1.42 0.17 0.30 

NWChem def2-cf PBE -2.69 -0.06 0.69 

NWChem def2-cf PW91 -2.76 -0.08 0.72 

Table 6-3 Mulliken charges for the three different sites on the Pt6Au32 core-shell cluster, using different 

programs, basis sets and exchange correlation functionals. 

With the def2 basis set, the Mulliken charges are clearly incorrect with a strong 

negative charge on the Pt atoms in the core. The Crenbs basis set agrees with the 

results from the PBE functional in NWChem. 

 To confirm which results are correct,  these results were compared with work 

by Bus and van Bokhoven(177). They compared X-ray Adsorption Spectroscopy with 

theoretical calculations using the FEFF8 code(178) which can simulate the fine 

structure of X-ray absorption. They find a decreasing peak in the Pt L3 edge from X-

ray Absorption Near Edge Structure (XANES) spectra compared with pure Pt. This 

indicates Pt had lost electrons to the gold. This was confirmed with their results from 

FEFF8 calculations on 55 atom clusters. Therefore, the Quantum Espresso PBE 

results are incorrect, along with the CRENBS Mulliken charges. To quantify these 
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errors, the orbital occupations from quantum espresso were compared to orbital 

occupations by Bus and van Bokhoven (177). 

6.3.1.3 Charges- 55 Atom Clusters 

Calculations were performed using Quantum Espresso with both the PW91 and PBE 

functions. The clusters used were Au55, Pt55, Au54Pt and Pt54Au. The orbital 

occupations were than compared to Bus and van Bokhoven’s work (177). The results 

are shown in figure 6-4. 

  

  

Figure 6-4 Graphs showing the bond distance R and the orbital occupations for Au55, Pt55, AuPt54 and PtAu54. 

The FEFF8 data was taken from reference (177).  

The two different FEFF8 results come from different electronic states with 

short (s) and long (l) bond distances; however all the bond lengths are very similar, 

varying only by 0.25Å, with the exception of the PBE results which overestimates the 

bond length contraction for the PtAu54 cluster. More importantly, the PBE basis set 

does not model the 6p orbital for Pt, so can’t accept electron density into that orbital. 
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The PW91 basis set does include the 6p orbital, allowing more electron density to 

flow to the Pd atom and hence store the negative charge. This explains the results for 

NWChem, as all the LCAO basis sets tested included functions for the 6p orbital. The 

FEFF8 data also shows some electron density in the 5f orbital. This explains why the 

PW91 basis still has more electron density in the d orbitals, but the amount in the 5f 

orbitals is small (between 0.13 and 0.17 on each atom), so can safely be neglected 

for these calculations.  

6.4 Conclusions and Future Work 

The energies of bare AuPt clusters were investigated. Investigations on AuPd, RhPd 

and PdPt shows that normally the element with the lower binding energy prefers to 

occupy the vertex sites of the 38 atom TO nanoparticle. Despite this, Au centroid 

sites in AuPt, due to the size of the gold atoms coming out of the surface and 

stabilising the centroid sites. 

 Great care must be taken in calculating charges on AuPt systems, particularly 

using plane wave codes. It was found that it was necessary to include the 6p orbit to 

achieve the correct charge transfer of electron density from the gold to the platinum. 

Neglecting this resulted in the gold gaining electron density in disagreement with 

experimental results. This may explain some of the issues regarding the Pt(111) 

puzzle. If a small charge from a CO molecule can be donated into the 5f and 6p 

electrons in platinum, this could change the preferred bonding site for CO. The 

complexity of this puzzle has been found irrespective of the exchange correlation 

functional used. We have shown this is still the case for the bimetallic AuPt system.  
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 In addition, it was shown that the bimetallic Au34Pt4 nanoparticles still form 

‘superatoms’, with electron shell closure. This effect occurs irrespective of the 

homotop the cluster adopts, although the size of the band gap is affected by the 

position of the platinum atoms. 

 The electron shell closure work can be expanded in several ways. The Pt6Au32 

clusters do not show electron shell closure, with no band gap between the HOMO 

and the LUMO. However, they are only two gold atoms away from achieving shell 

closure. Charging the cluster with two electrons should result in shell closure, and 

therefore enhanced stability. platinum has not been shown to exhibit the same 

behaviour as gold, so adding additional platinum to an Au34 ‘subcluster’, there may 

come a point where electron shell closure no longer occurs. 

 An obvious extension to this work is to see how or if the shell closure effects 

the binding energy of CO and other ligands to the bimetallic AuPt clusters. I predict 

that it would only affect the binding energy to the Pt slightly, but CO would exhibit a 

stronger binding energy to gold in Au32Pt6 than to Au34Pt4.  

 Finally, solving the Pt (111) puzzle would be very useful for future 

computational chemists. This could be achieved by altering the size of the core ECP 

by including or excluding the 4f and 5p orbitals in the core, and altering which 

valence orbitals are included (6p and 5f) in the calculation.  
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Chapter 7-  Future Work 

It has been shown in this thesis that calculations can help explain experimental 

results. In chapter three we found out how different levels of theory can complement 

one another, helping to validate results within a reasonable time frame. The BCGA or 

basin hopping alone was not sufficient to search the energy landscape thoroughly 

enough to find many of the low energy isomers by themselves, but using both with 

symmetry searches was useful to find more local minima. Further work could be done 

to speed up the GA, through parallelisation, to study and optimise systems closer to 

the sizes of nanoparticles studied experimentally. Some surprising results include the 

chiral Rh4Pd30 cluster, and the LT structure found to be the lowest energy structure 

for pure Rh98.  

Chapter 4-  used a simple model to attempt to explain nanoparticle and bulk 

surface rearrangement, showing smaller calculations can shed light onto larger 

systems without spending unnecessary computer resources. It was found that 

energetic inversion occurred when multiple ligands were bound to the surface, and in 

most cases the difference in binding strength between the two metals in a bimetalic 

cluster was the cause. The exception was the CuPt system, where additional effects 

resulted in Cu coming to the surface where it would be expected to be an 

unfavourable site. 

To expand the work on the small dimers, trimers and tetramers would be to 

improve validation with a higher level of theory. This could include coupled cluster 
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methods, or relativistic calculations with spin-orbit coupling included. In addition, 

mapping the energy surface, like what was achieved by Negreiros et al. (112), could 

be done for these clusters at a higher level of theory. Although CCSD would probably 

be too computationally heavy, calculating the energy surface with spin-orbit coupling 

is achievable with current computer hardware.  

This thesis has focused on chemisorption, but the long term goal has been to 

model a true catalytic system(179). Ideally this would include the nanoparticle itself, 

interactions with the adsorbates and the surface the nanoparticle is attached to. 

Clearly this work is a long jump away from being able to achieve that goal, but it is a 

step in the correct direction. We have looked at charges on AuPt systems, finding 

that it is important for adequate basis sets to be used for results to have a meaningful 

result.   

The next stage for this work is to extend toward co-adsorption of different 

species. If a molecule prefers binding in some form, that will prevent certain species 

from being formed.  

Another extension would be to complete Nudged Elastic Band (NEB) 

calculations on nanoparticles.  This can initially be achieved by finding the barriers for 

an adsorbate to move from one hollow site to another, before being expanded to 

chemical reactions.  

This work has not looked at the effect of the surface upon the nanoparticle, or 

on how a surface affects the interaction energy between the adsorbate and the 

nanoparticle. It has been shown by Haruta's pioneering work the surface upon which 

the nanoparticle is bound to can affect the reactivity(8), so such an effect cannot be 

ignored indefinitely by computational chemists.  
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Computers are still getting more powerful, and cheaper, which will continue to 

allow chemists and physicist to model the world around us in more detail.
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