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ABSTRACT 

Algae are well-recognised for their fouling impact on immersed surfaces. During this thesis, 

the relationships between surface and bulk properties of coatings and the adhesion 

preferences of a new test species, Ectocarpus crouaniorum, a filamentous brown alga and a 

significant member of fouling communities, were explored. A novel laboratory-based 

adhesion bioassay for E. crouaniorum using small filamentous fragments as inocula was 

developed. The bioassay was used to screen sets of experimental coatings at an appropriate 

scale in well-replicated and controlled experiments 

Sets of coatings with varying wettability, surface charge or modulus were produced, 

characterised and assayed. The attachment and adhesion preferences of E. crouaniorum 

were influenced by the surface and bulk properties. These preferences were compared with 

those of U. linza. No linear correlation was observed between the adhesion strength of E. 

crouaniorum and wettability in contrast to the linear relationship observed testing U. linza; 

increase of modulus decreased or increased the adhesion strength of E. crouaniorum and U. 

linza, respectively. However, both species had lower adhesion on uncharged xerogel 

coatings. The performance of test coatings was also assessed in field assays and the results 

showed that these data were not always similar to the laboratory assay. 
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LIST OF DEFINITIONS 

Adhesion strength: For soft-fouling organisms such as algae, it is the ease of removal (i.e. 

% removal) after exposure to a shear stress, while for hard-fouling organisms such as 

barnacles, it is measured by the application of a mechanical shear force parallel to the base 

of the organisms to measure the critical removal stress. 

Amphiphilic: A term describing molecules or surfaces that simultaneously possess both 

hydrophobic and hydrophilic properties. 

Antifouling coatings: Coatings that prevent the colonisation of biofouling on immersed 

surfaces. 

Axenic: It describes a culture of an organism that is free of all other „contaminating‟ 

organisms. 

Biocide: A chemical substance capable of killing living organisms. 

Biofilm: An aggregate of microorganisms adhering to each other and to a surface and 

embedded in a matrix of extracellular polymeric substances (EPS). In the context of marine 

fouling, a biofilm is a complex community of unicellular organisms including bacteria, diatoms 

and fungi. 

Biofouling: Growth of living organisms upon artificial substrates such as ships‟ hulls and 

buoys. 

Borosilicate glass: It is a type of glass, which has silica and boron oxide as the main 

components. Nexterion® glass is a borosilicate glass produced by Schott. 

Boundary layer (around the ship): It represents the layer of fluid in the immediate proximity 

of a bounding surface where the effects of viscosity are significant. 

Byssus: A collection of strong filaments by which certain molluscs attach themselves to hard 

surfaces.  

Coefficient of friction: A dimensionless scalar value, which describes the ratio of the force 

of friction between two surfaces and the force pressing them together. 



 
 

Contact angle: It is the angle at which a liquid interface meets the solid surface, allowing the 

category of interactions between the liquid and the surface to be determined. It measures the 

wettability of the surface. 

Copolymer: A polymer derived from two or more monomeric species. 

Corrosion: Breakdown of substrate materials due to chemical reactions between water and 

oxygen. 

Cross-linker: A compound that induces the formation of cross-links. 

Drag: The force, which resists motion of an object through a fluid. 

Dynamic contact angle:  It is measured alternative method to measure the wettability of a 

surface to the static contact angle method. Dynamic contact angle method measures the 

advancing contact angle and the receding contact angle of surfaces. Advancing contact 

angle is measured when the water is added to a stable drop of water and the contact angle 

was relatively stable. The receding angle on the other hand was measured when the water 

was removed and the contact angle was relatively stable. The difference between these two 

angles is the contact angle hysteresis that is thought to be a measure of roughness and 

surface heterogeneity. 

Elastomer: It is a polymer with the property of viscoelasticity, generally having low modulus 

and high elastic strength compared with other materials.  

Epoxy: It is a term used for the basic components and the cured-end products of epoxy 

resins. It is used to produce coatings and adhesives. 

Extracellular polymer substances (EPS): They are glue-like compounds secreted by 

microorganisms, mainly composed of polysaccharides and proteins, which are important for 

the formation of the biofilm and cells attachment to surfaces.  

Fouling-release coatings: Coatings that do not prevent colonisation, but the adhering 

organisms are so weakly attached that they are „released‟ at relatively low hydrodynamic 

shear stress, such as those created when a vessel moves through the water. 

Glass transition region (observed in the DMA results): It is the region where the sample 

becomes less hard as storage modulus decreases and tan delta peaks.  



 
 

Glass transition (Tg; observed in the DMA results): It refers to the range of temperature 

where a material softens.  

Hard fouling: One of the categories of the biofouling organisms. Hard fouling organisms are 

represented by their hard bodies, such as mussels and barnacles. 

Hydrophilic: It refers to the physical property of molecules or surfaces that can bond with 

water molecules through hydrogen bonding. This means that the surface is very wettable, 

that is, a droplet of water readily spread on such a surface.  

Hydrophobic: It refers to a physical property of molecules or surfaces that cannot readily 

bond with water or other polar molecules. “Superhydrophobic” surfaces are extremely difficult 

to wet, that is, water droplets roll off when the surface is titled by as little as 10°. 

Lipophobicity: It is the chemical property of chemical compounds. It means “fat rejection”; it 

should decrease the adhesion strength of fouling organisms. 

Macrofouling: It represents the category of fouling organisms that are individually visible by 

eyes including algae (weeds) and animals. 

Microfouling: In opposite to macrofouling, it is attributable to the accumulation of unicellular 

algae (diatoms) and bacteria although other microscopic organisms e.g. protozoa and fungi 

are often also present (also referred to as “slime”). It is difficult to control on non-biocidal 

surfaces, having a low surface profile and can remain adherent on ships‟ hulls at speeds in 

excess of 30 knots. 

Modulus: It is the tendency of the substance such as a coating to be deformed elastically 

(but not permanently) when a force is applied to it. Two types of modulus were measured: 

the storage modulus and the elastic modulus, allowing determination of the stiffness of the 

coating. 

PEO: It refers to poly(ethylene oxide), which is a polymer of ethylene oxide; poly(ethylene 

glycol) PEG is also a polymer of ethylene oxide. The only difference between PEG and PEO 

is their molecular weight. In general, PEG has a molecular weight below 20000 g mol-1, while 

PEO has a molecular weight above 20000 g mol-1. 

PDMSe: Poly(dimethylsiloxane) elastomer, a rubbery polymer that forms the binder system 

of many commercial fouling-release coatings. 



 
 

Precursor (or sol): A compound that participates in the chemical reaction that produces 

another compound. The most common precursor to produce silica xerogel is 

tetraethylorthosilicate (TEOS). 

Pristine surface: A surface that has its original purity or that has not been soiled. 

Pseudobarnacle: A cylindrical metal stud that is glued to the surface using an epoxy 

adhesive, which is used to simulate the adhesion of a barnacle. 

Self-polishing copolymer (SPC): The paint polymer or binder system is made soluble in 

seawater by hydrolysis. This is a controlled chemical reaction and only occurs at the surface 

of the coating. SPC technology combines controlled polishing rate and optimum biocide 

release with inherent self-smoothing for hull roughness control and maximum fuel efficiency. 

Settlement: It is the process of the motile spores or larvae to settle on a surface. 

Soft fouling: It is one of the categories of the biofouling. Soft fouling represents those 

organisms, which do not have hard bodies. In the literature, soft fouling are soft-bodied 

animals, algae and slime. However, for assessments in the field, soft fouling excludes algae 

and slime. 

Surface energy: It is defined as the excess energy at the surface of material compared to 

the bulk and is a measure of the capacity of a surface to interact spontaneously, using the 

excess energy, with other materials. 

Tangent delta or Tan delta (measured with the DMA): It is the tangent of the phase angle, 

referring to the ratio of loss to elasticity, which indicates the viscoelasticity of a sample. 

Turbulent flow (water channel): It is a flow regime characterised by chaotic and stochastic 

property changes. 

Weed fouling: The most common weed (algae) fouling on ships is the green algae Ulva spp. 

and the brown algae Ectocarpus spp. Weed fouling usually occurs where there is available 

sunlight, i.e. around the water line and a few meters below. It is not usually found on the flat 

bottom of vessels.  

Wettability: It is the ability of maintaining contact with a solid surface and is known by 

measuring the contact angle. 

Xerogel: organosilica-based sol-gels; dried gels produced by evaporation of the solvents. 

http://en.wikipedia.org/wiki/Chemical_compound
http://en.wikipedia.org/wiki/Chemical_reaction


 
 

LIST OF ABBREVIATIONS AND SYMBOLS 

AF: Antifouling 

AFM: Atomic force microscopy 

ANOVA: Analysis of variance 

ASW: Artificial seawater 

CA: Contact angle 

CCAP: Culture Collection of Algae and Protozoa 

Chl a: Chlorophyll a 

DAPI: 4',6-diamidino-2-phenylindole 

DMA: Dynamic mechanical analyser 

DMSO: Dimethyl sulfoxide 

E: Elastic modulus  

E‟: Storage modulus 

E‟‟: Loss modulus 

EPS: Extracellular polymers  

FR: Fouling-release 

GEEs: Generalized estimating equations 

GeO2: Germanium dioxide 

GZLM: Generalized linear models 

IS700: Intersleek 700 

IS900: Intersleek 900 

OWRK equation: Owens, Wendt, Rabel and Kaelble equation 

PDMS: Poly(dimethylsiloxane) 



 
 

PDMSe: Poly(dimethylsiloxane) elastomer 

PEG: Poly(ethylene glycol) 

PFPE: Perfluoropolyether 

R2: Coefficient of determination of a linear regression 

RFU: Relative fluorescence unit 

RM ANOVA: Repeated measure ANOVA 

SE: Standard error (when used with 2 ± SE) 

SE: Surface energy 

T2: Silastic® T2 

Tan D: Tan Delta  

TEOS: Tetraethylorthosilicate 

Tg: Glass transition temperature 

XPS:  X-ray photoelectron spectrometry  

In literature and in this thesis, the symbol θ was used to represent the contact angle. Several 

subscripts were used in this thesis in order to explain which contact angle was measured, the 

method or the liquid used.  

θm: Measured contact angle, which is the contact angle that was measured using the contact 

angle method.  

θc: Calculated contact angle, which is used for the underwater contact angle method. The 

internal contact angle was measured (θm) but only the values of the external contact angle 

were used (θc) which was equal to 180°- θm. 

The term θ was also followed by few other subscripts to refer to the different liquids and 

methods used to measure the contact angle. The subscripts referring to the liquids letters 

were: „W‟ water and „D‟ diiodomethane and to the different methods used: „S‟ static, „adv‟ 

advancing, „rec‟ receding, „und‟ underwater. These terms will be explained in more detail in 

Chapter 2.9.1. 



 
 

In literature and so in this thesis, the symbolreferred the surface tension of a liquid L (L 

meaning liquid) and the surface energy of the solid S (S meaning solid). They both can be 

split into two polar and dispersive components, which will be represented by superscript P 

and D. These terms will be explained in more detail in Chapter 2.9.1.  
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1. GENERAL INTRODUCTION 

For decades, numerous studies have been performed in order to understand and to find 

solutions to control marine biofouling. Marine biofouling is an undesirable accumulation of 

marine organisms such as bacteria, algae and invertebrates on structures submerged in the 

sea, leading to damage to surfaces. Biofouling is ubiquitous, regardless of location and 

season. The deleterious effects of fouling impact a range of industries, including shipping, 

the leisure craft market, the power industry, oceanographic monitoring and aquaculture. In 

addition, surfaces of living marine organisms can also be fouled (i.e. epibiosis) leading to 

economic and production issues in aquaculture of seaweeds and shellfish (Fitridge et al. 

2012).  

Fouling has been an economic problem for shipping for centuries as it increases drag and 

thus more fuel is required to maintain speed (Pritchard 1988; Schultz 2007; Schultz et al. 

2011). Modern antifouling (AF) paints that contain biocides control fouling efficiently, but 

environmental regulations have led to research into „environmentally benign‟ technologies 

that prevent fouling organisms adhering -i.e. do not kill the cells and larvae that initially 

attach- and are not harmful for the marine environment. These newer technologies include 

non-biocidal, „fouling-release‟ (FR) paints. Numerous studies have shown that these coatings 

do not prevent colonisation of surfaces per se; rather they decrease the adhesion strength of 

the attached organisms, especially hard fouling organisms such as barnacles, as well as 

algal species such as Ulva linza (Anderson et al. 2003; Callow and Callow 2011 for reviews). 

However, some organisms, notably diatoms, adhere strongly to these coatings (Holland et al. 

2004; Thompson et al. 2008). In addition, ectocarpoid algae are reported to be able to 

colonise and adhere to non-biocidal, FR coatings on test panels and ships‟ hulls 

(International Paint, D. Williams, personal communication). Ectocarpoid algae have been well 
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studied for their ecology and genetics, but only a few studies have been reported on their 

fouling behaviour. 

1.1. Problems due to biofouling 

The high interest in biofouling is due to associated economic and environmental 

consequences for shipping and other industries. Settlement and subsequent growth of 

fouling organisms on ships‟ hulls increase roughness and therefore increase fuel 

consumption in order to maintain speed to counteract the extra hydrodynamic drag that is 

imposed. It has been estimated that biofouling may account for a powering penalty of up to 

86 % for a heavily fouled hull and even if the hull is only fouled by a light layer of slime, the 

powering penalty can reach 10-16 % (Schultz 2007). In the same way, biofouling increases 

the roughness and therefore the diameter of offshore-submerged structures, which amplifies 

the effects of waves, current loadings and drag forces (Edyvean et al. 1985; Edyvean 2010 

for review). 

Biofouling also increases the cost of hull maintenance due to inspection, dry-docking, 

cleaning, paint removal and repainting. Then if the hull is damaged, for example by corrosion 

of steel surfaces, more time will be needed in order to repair the hull. A recent analysis of the 

economic impact of a range of marine biofouling (from biofilm to weeds and small calcareous 

fouling) for the US Navy estimated a cost of $56 million per annum for an Arleigh Burke 

DDG-51 destroyer, which represents 30 % of the US Navy fleet (Schultz et al. 2011). If the 

analysis is extrapolated to the entire fleet, the approximate annual cost for maintenance 

associated with hull fouling would be between $180 and 260 million per annum (Schultz et al. 

2011). Maréchal and Hellio (2009 for review) estimated a cost of $150 billion per year for the 

world cost of fouling (including transport delays, hull repairs, cleaning of desalination units 

and biocorrosion). 
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The emission of greenhouse and acid rain gases is increased by biofouling via the increase 

of fuel consumption needed to maintain ship power. An indirect consequence of biofouling is 

the release of biocides into the environment from biocidal AF coatings. The presence of 

biocides influences biotic and abiotic processes such as bioconcentration, food web 

mechanisms, temperature, salinity, pH and interaction with organic matter. In addition, 

biocides such as copper that has been the main AF compound used since Roman times, are 

accumulated in sediments of marinas, shipyards and harbours (Harino et al. 2007; 

Srinivasan and Swain 2007). These accumulations raise some environmental concerns on 

the negative effects on non-target organisms living in surrounding environments. 

Furthermore, fouled hulls along with ballast water are important vectors for the introduction of 

non-indigenous marine species to non-native environments (e.g. Hewitt 2002; Hewitt et al. 

2004; Floerl 2005; Schaffelke et al. 2006; Barry et al. 2008). The ecological impacts of 

invasive species include competition with the native organisms, possibility of habitat change 

and effect on trophic levels. Economic consequences include environmental management 

costs for eradication or control. A notable example of invasive species is the introduction of 

zebra mussels (Dreissena polymorpha) into the Great Lakes from Europe through ballast 

water in the mid-1980s. Hewitt et al. (2004) estimated the number of introduced and 

cryptogenic species in Port Phillip Bay, Victoria, Australia to be over one hundred because 

the majority of them were concentrated around the shipping ports.  

1.2. Solutions to biofouling 

In order to solve the biofouling problem, scientists have researched solutions such as the 

development of coatings to protect ships. Two types of coatings are mostly used 

commercially: biocidal AF coatings and non-biocidal FR coatings. Biocidal AF coatings 

prevent the colonisation by marine organisms on immersed structures by killing the 

organisms that settle on the surfaces. FR coatings do not primarily prevent colonisation but 
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organisms that attach to surfaces have a weak adhesion and are released at low 

hydrodynamic shear forces (Swain et al. 2000). 

In addition to coatings, other technologies to contend with biofouling have been developed, 

especially mechanical techniques, which when combined with non-biocidal paints provide 

better ship husbandry. The developed technologies are mostly focussed on underwater 

scrubbing (or grooming), which allows removal of fouling underwater without having to dry 

dock the ship (Tribou and Swain 2010). During the last decades, the number of commercial 

scrubbing systems has increased. However, the use of these instruments needs to be 

monitored carefully to reduce the risk of dispersion of non-indigenous marine species in new 

environments (Lewis and Coutts 2010 for review). Mechanical technologies should then be 

used before the vessels leave marinas or harbours where the fouling has originated.  

Other non-coating solutions have been tested over the last 50 years, such as the use of 

electricity, magnetism, heat or even radiation (Finnie and Williams 2010 for review). The use 

of electricity, which is the release of current or charge along the hull surface, was the most 

effective but unfortunately, it is too complex to be able to use this technique on a large scale. 

At the present time, both biocidal and non-biocidal AF paints are available for use on 

vessels. The present, non-tin-based biocidal AF paints contain a range of alternative biocidal 

compounds including copper (or cuprous oxide, a derived compound) and zinc pyrithione 

that prevent the settlement and growth of fouling organisms. Non-biocidal solutions are 

mainly represented by FR coatings that have specific surface and bulk properties in order to 

minimise the adhesion strength of organisms and make removal by water flow easier (Swain 

et al. 2000; Finnie and Williams 2010). Technologies that will cost less, be more durable and 

allow the removal of fouling at lower speeds are also being researched (Callow and Callow 

2011 for review). 
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According to the different components of the coating, surface properties vary. These 

parameters can affect the settlement and adhesion of spores and larvae as well as the 

adhesion of adult plants and animals. By examining the adhesion of fouling organisms to 

surfaces presenting different properties, new knowledge into the mechanism of adhesion can 

be gained. In AF research, for example using U. linza and diatoms as test organisms, many 

surface parameters have been studied including surface chemistry and charge (Ederth et al. 

2008; Cao et al. 2009), wettability (Callow et al. 2005; Krishnan et al. 2006b; Akesso et al. 

2009a; Akesso et al. 2009b), friction (Howell and Behrends 2006; Bowen et al. 2007), 

electrostatic interactions (Rosenhahn et al. 2009) and topography (Callow et al. 2002; 

Genzer and Efimenko 2006; Cooper et al. 2011). The response of cells, spores and larvae to 

wettability varies according the species. For example, cells of the diatom Navicula incerta 

typically adhere more strongly to hydrophobic surfaces while settled spores and sporelings of 

U. linza typically adhere less strongly to hydrophobic surfaces (Krishnan et al. 2006b; Schilp 

et al. 2007; Bennett et al. 2010; Finlay et al. 2010). However, these are generalisations and 

exceptions to these observations do occur, for example, amphiphilic coatings, which contain 

both hydrophobic and hydrophilic functionalities, are particularly effective in FR laboratory 

assays (Grozea et al. 2009; Callow and Callow 2011 for reviews) and form the basis of some 

current leading commercial technologies such as Intersleek® 900 (IS900). Over-

generalisation on the influence of surface properties on coating performance should 

therefore be avoided. 

1.2.1. Biocidal coatings  

Biocidal AF coatings such as self-polishing copolymer AF paints prevent the colonisation of 

marine organisms by releasing biocides at a more or less controlled rate from the coating 

surface. During this process, some AF paints lose thickness due to the release of the biocide 

into the surrounding environment (i.e. its decrease in the paint film) (Finnie and Williams 

2010; Dafforn et al. 2011). Biocidal paints contain one or more biocides; the most used and 
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effective is copper, usually in the form of cuprous oxide that is known to be active against 

many invertebrate fouling organisms but it is usually less effective against algae. It is 

generally used in combination with other biocides in order to provide activity against a wide 

range of organisms. Tributyltin self-polishing copolymer biocidal AF paint was highly 

effective, but is now banned due to its environmental effects on non-target marine 

organisms. Progressively stringent legislation has regulated the choice and use of biocides, 

in order to protect human health and the marine environment (Chambers et al. 2006; Pereira 

and Ankjaergaard 2009 for reviews). 

1.2.2. Non-biocidal coatings 

1.2.2.1. Fouling-release coatings 

For a number of years, researchers have been investigating non-biocidal, non-fouling 

strategies including FR coatings. Two types of materials are mostly used to create FR 

coatings: silicones and fluoropolymers. FR coatings do not primarily prevent the colonisation 

of organisms on immersed surfaces, but the surface properties of these coatings minimise 

the adhesion and facilitate the removal of fouling organisms at low hydrodynamic shear 

forces, such as the movement of the ship through the water (Finnie and Williams 2010). 

These polymers and coatings incorporating them are typically characterised by their low 

surface energies. FR coatings are more effective for high-speed craft (>15 knots) that do not 

spend much time in port (Finnie and Williams 2010). Current research aims for a new 

generation of coatings, which will be suitable for low speed vessels that spend time in the 

port, such as fluoropolymer-based coatings (Finnie and Williams 2010). 

Wettability and surface energy are the most studied FR coating properties. Wettability is the 

ability of a liquid to maintain contact with a solid surface and is determined by measuring the 

contact angle. Surface energy is defined as the excess of energy at the surface of a material 

compared to the bulk (Brady and Singer 2000) and is calculated from the contact angle 
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measurements of at least two liquids using the Owens, Wendt, Rabel and Kaelble equation 

(see Chapter 2.9.1.3). In principle, the lower the surface energy is, the less interaction will be 

possible between the surface and other molecules such as cells and proteins. Baier and 

DePalma (1971; Dexter et al. 1975) studied polymer surface properties and suggested that 

adhesion would be minimal in a range of surface tensions (which is related to the surface 

energy) between 20 and 30 mN m-1. The “Baier curve”, indicated that there was a 

relationship between the critical surface tension of a coating and the relative amount of 

adhesion by attaching cells/organisms (Dexter et al. 1975; Dexter 1976; Dexter 1979). Other 

studies have demonstrated that not only is surface tension (or surface energy) linked to 

adhesion, but also other materials properties such as elastic modulus also influence the 

adhesion of marine organisms (Berglin et al. 2003).  

Previous laboratory studies showed that surface energy and wettability are important 

parameters to predict attachment and/or adhesion strength of marine fouling organisms on 

surfaces (Brady and Singer 2000 for review). Fouling organisms do not have similar 

behaviour. Cypris larvae („cyprids‟) of Balanus improvisus prefer to settle on surfaces with 

low surface energy (Dahlström et al. 2004), while cyprids of Balanus amphitrite prefer high 

surface energy (Rittschof and Costlow 1989; Finlay et al. 2010). However, a recent study 

showed that the settlement of cyprids seemed to be influenced by the surface charge, and 

not only by the wettability per se (Petrone et al. 2011a). Zoospores of U. linza prefer to settle 

on surfaces with low surface energy (Callow et al. 2000; Schilp et al. 2007; Bennett et al. 

2010). In contrast, surfaces with high surface energy had higher adhesion strength of 

sporelings of U. linza (Akesso et al. 2009a; Akesso et al. 2009b; Bennett et al. 2010).  

Commercial FR coatings are mostly based on poly(dimethylsiloxane) elastomers (PDMSe or 

silicone) (Finnie and Williams 2010, Lejars et al. 2012). Generally, these coatings, which are 

non-polar and hydrophobic and so have low surface energy (~22 mN m-1), are expected to 

show low adhesion of polar molecules such as adhesive proteins because there are less 
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opportunities for hydrogen bonding and polar interactions (Callow and Callow 2011 for 

review). In general, they also have low elastic moduli and the release of hard-fouling is 

proportional to (γE)½, where γ is the surface energy and E is the modulus (Brady and Singer 

2000).  

Fluoropolymers have a low surface energy and general chemical stability, which have 

generally been thought to be essential properties for FR coatings (Finnie and Williams 2010). 

Finnie and Williams (2010) have listed the most studied fluoropolymer-based coatings 

developed and tested since 1976. The first coating of this kind that has been tested was a 

fluorinated poly(urethane) coating (Field 1976). Fluoropolymers are known for their high 

hydrophobicity and non-stick properties. Only a few studies have been done on these 

polymers compared to the silicones (Krishnan et al. 2006b; Martinelli et al. 2008; Wang et al. 

2011). For example, Yarbrough et al. (2006) showed that spores of U. linza had lower 

adhesion (as in Hu et al. 2009) and higher removal on fluorinated coatings than standard 

surfaces (glass and PDMSe surfaces).  

Amphiphilic coatings are FR technology, which contain a hydrophobic and a hydrophilic 

component. One way these coatings can be made is the blending of immiscible polymers or 

contrasting chemistries of block copolymers, which are generally a hydrophobic and a 

hydrophilic component. The hydrophobic component, which is often fluorinated, has non-

polar, low surface energy properties; these properties reduce polar and H-bonding 

interactions with the bioadhesives produced by the fouling organisms. The hydrophilic 

component, which is often poly(ethylene glycol) PEG, brings protein-repellency properties 

(Du et al. 1997). IS900, which is a commercialised coating produced by International Paint is 

amphiphilic. Amphiphilic coatings have a dynamic surface that differs locally in surface 

chemistry, topography and mechanical properties due for example to the separation phase of 

mutually incompatible copolymers (review in Callow and Callow 2011). Gudipati et al. (2005) 

showed that cross-linked hyperbanched fluoropolymer and PEG amphiphilic networks were 



9 
 

effective against settlement of spores of U. linza and decreased the adhesion strength of 

sporelings of U. linza. Other researchers have used amphiphilic coatings in which a thin 

amphiphilic surface-active block copolymer is deposited over a thick, elastomeric base layer 

(Krishnan et al. 2006a; Martinelli et al. 2008). These coatings also showed weaker adhesion 

of U. linza sporelings and Navicula sp.  

Another approach to control fouling is the use of zwitterionic materials, which seem to deter 

the adsorption of proteins and cells (Krishnan et al. 2008). These effects might be due a 

superhydrophobic surface produced by a hydration layer that is electrostatically induced. A 

zwitterion is a neutral molecule that has a positive and a negative electrical charge at 

different locations within the molecule. Two zwitterionic molecules are the most studied, 

poly(sulfobetaine) and poly(carboxybetaine). These materials are relatively cheap and 

chemically stable (Jiang and Cao 2010). Aldred et al. (2010) showed that poly(sulfobetaine 

methacrylate) polySBMA and poly(carboxybetaine methacrylate) polyCBMA inhibited 

settlement of cyprids. In addition, these materials are resistant to the adsorption of proteins 

and animal cells (Zhang et al. 2006). The settlement of spores of U. linza and the attachment 

of diatom cells were almost fully inhibited by polySBMA (Zhang et al. 2009). 

1.2.2.2. Other non-biocidal technologies  

Organosilica-based sol-gels („xerogels‟) are a well-known, robust coating technology but 

have not been extensively used to control marine biofouling (Selvaggio et al. 2009; Gunari et 

al. 2011). They are „environmentally friendly‟ (i.e. do not contain biocides), which is an 

important aspect in the development of new biofouling solutions. Recent studies have shown 

that they have both AF and FR properties in laboratory assays against several fouling 

organisms such as B. amphitrite, U. linza and Navicula perminuta (Tang et al. 2005; 

McMaster et al. 2009; Bennett et al. 2010; Finlay et al. 2010). The efficacy of this technology 

has been demonstrated in the field using Aquafast®, an organically-modified hybrid xerogel. 

This has been applied to approximately 100 boats and on metal materials supporting an 
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underwater camera at a marine archaeological site (Selvaggio et al. 2009; Gunari et al. 

2011).  

In the natural environment, many marine organisms are free of fouling organisms, which is 

attributed to physical defence mechanisms such as nano- or micro-topographical ridges on 

their skin surface. For example, the pilot whale Globicephala melas has nanoridge enclosed 

pores on the surface of its skin, which reduce surface available for the adhesion and 

attachment of fouling organisms (Baum et al. 2002). In addition, shark‟s skin has been the 

most studied model recently because it has been observed that all shark species are 

protected against biofouling apparently due to the presence of microtopographical ridges on 

their skins, which have different patterns according to the species (Reif et al. 1985 cited in 

Bechert et al. 2000). Non-toxic biomimetic technologies, which copy, or are inspired by these 

natural physical defence mechanisms, have been recently developed (Magin et al. 2010; 

Salta et al. 2010; Scardino and de Nys 2011). Micro-textured surfaces inhibit the settlement 

of several fouling organisms but the response of fouling organisms to topographic surfaces 

varies. Settlement of the barnacle B. improvisus is lower on micro-textured surfaces than 

smooth surfaces (Berntsson et al. 2000). For U. linza, Callow et al. (2002) showed the 

attachment of spores increased in valleys and around pillars of 5 µm depth and width; 

dimensions similar to the size of the spores. These studies led to the Sharklet AF topography 

surfaces, which is a surface of 2 µm wide rectangular-like periodic features (4, 8, 13 and 16 

µm in length) of 4 µm height spaced 2 µm apart. Sharklet AF reduced spore settlement of U. 

linza by 85 % compared to smooth PDMS surfaces (Carman et al. 2006). However, the size 

of different categories of fouling organisms varies enormously –i.e. the length scale for 

bacteria is, for example, approximately 1 µm, whereas the spore of U. linza is around 5 µm 

and barnacle larvae may be several hundreds of micrometers in size. It is therefore difficult to 

envisage that coatings with only one size of topographic feature will have universal AF 

properties.   
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For over 20 years, researchers have investigated the use of enzymes in AF/FR coatings 

(Banerjee et al. 2011). Many fouling organisms attach to the surface using adhesives at least 

partly composed of proteins, so enzymes such as proteases should be capable of degrading 

these adhesives. The effects of the enzymes could occur at two different stages; during 

settlement, the enzymes could have a repellent effect by being released into the surrounding 

seawater and then after settlement, the enzymes could degrade the adhesives (Olsen et al. 

2007 for review). Previous studies showed that several commercial enzymes had an effect 

on the settlement and adhesion strength of several fouling organisms (Pettitt et al. 2004; 

Huijs et al. 2006). In addition, Dobretsov et al. (2007) demonstrated that some proteases 

inhibited the settlement of bryozoan larvae. 

Hydrogels are also being investigated as the basis of novel AF technologies. Hydrogels are 

cross-linked networks of hydrophilic polymer chains.  They are highly water absorbent, which 

causes them to swell, depending on the degree of cross-linking. Typical hydrophilic polymers 

being investigated include polyHEMA (hydroxyethyl methacrylate) and PEG. Inhibition of 

settlement of cyprids of B. amphitrite was observed on PEG-based hydrogels (Ekblad et al. 

2008) and also on PVA-SbQ hydrogels (polyvinyl alcohol substituted with light-sensitive 

stilbazolium groups) (Rasmussen et al. 2002). In addition, PEG-based hydrogels showed 

inhibition of the settlement of U. linza spores, cells of N. incerta and some species of bacteria 

(Ekblad et al. 2008). Magin et al. (2011) also showed decrease of the adhesion of cells of 

Navicula incerta and Cobetia marina, a bacterium, on hydrogels based on 

poly(ethyleneglycol) dimethacrylate „PEGMA‟.  

1.2.3. Assessment of coatings: laboratory and field assays 

Laboratory and field assays are used to screen numerous coatings in order to down-select 

them before testing them on ships‟ hulls and eventual commercialisation. Laboratory assays 

do not and are not intended to reflect the complexity of “real world”. Their main purpose is to 

evaluate the intrinsic AF/FR properties of experimental coatings that are often available in 
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only small quantities. The assays are performed under controlled conditions (species, 

temperature and medium) with a defined challenge, typically by single organism. They are 

generally easy to perform and thus for a relatively low cost (facilities and amount of 

materials) provide a rapid assessment of the relationship between the structure and 

properties of a coating and its biological performance. This enables down-selection of 

coatings for further development and testing. In addition, laboratory assays may reveal any 

coating toxicity issues associated with catalysts or unpolymerised monomers. Laboratory 

assays also lend themselves well to hypothesis-driven experiments on fundamental aspects 

of settlement and adhesion.    

Compared to laboratory assays, field tests are expensive. Facilities have to be available for 

application of the test coatings to panels. Static immersion is typically performed on moored 

rafts or from piers and requires frequent inspections and an associated infrastructure. Rafts 

require maintenance. Test patches may also be applied to hulls and are therefore 

constrained by dry docking schedules. Subsequent inspections may require divers. Field 

tests are also less controlled: in the natural environment, organisms interact with each other 

and seasonal factors (variation in fouling pressure, environmental factors) influence the 

development of fouling. The results of field assays may therefore vary between repeat 

exposures because the organisms and the environmental factors are uncontrolled (Sanchez 

and Yebra 2009 for a review). However, field assays are representive of the real world 

allowing the observation of colonisation of fouling organisms in real time and in consequence 

to assess the „real‟ performance of the test coatings.  

1.3. Fouling organisms 

There are two broad classes of biofoulers, microfoulers and macrofoulers. Microfoulers are 

primarily bacteria and diatoms, which form a biofilm and macrofoulers are macroalgae and 

invertebrates such as barnacles and tubeworms. Biofouling starts within seconds/minutes 

after a pristine surface is immersed through the formation of a molecular “conditioning” layer 
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caused by the adsorption of dissolved organic materials. The surface conditioning layer will 

change the surface properties such as surface charge and wettability (Thome et al. 2012) 

and this could influence the next steps in the biofouling process. Many reviews refer to the 

temporal „succession‟ of fouling organisms (Fig. 1.1 and (Bailey-Brock 1989; Wahl 1989; 

Benedetti-Cecchi 2000; Callow and Callow 2002; Anderson et al. 2003; Callow and Callow 

2011)). Thus, it is often observed that the first colonisers are unicellular organisms –i.e. 

bacteria and diatoms that produce a biofilm or slime layer within hours. „Secondary‟ and 

„tertiary‟ colonisers are considered to include macrofoulers such as seaweeds and 

invertebrates respectively, the fouling by these organisms being macroscopically visible after 

1-several weeks. However, as Callow and Callow (2011) have pointed out, it is important to 

realise that the temporal succession, as depicted in Fig. 1.1, is an over-simplification and 

must be viewed with caution. In particular, the apparently later stages of colonisation by 

macrofoulers may merely reflect the rate of development of the different types of 

macrofoulers towards the formation of macroscopically visible fouling (Clare et al. 1992). 

Therefore, for example, whilst it may take weeks before fouling by seaweeds and 

invertebrates becomes visible to the naked eye, in reality, the settlement stages of these 

organisms (e.g. spores of algae, larvae of barnacles) are able to colonise a freshly immersed 

surface within minutes (Roberts et al. 1991; Holm et al. 1997).  

A second problem arising from the simplistic view presented in Fig. 1.1 is that it is often 

suggested (Abarzua and Jakubowski 1995; Yebra et al. 2004) that the succession of different 

fouling organisms is causally related, e.g. that macrofoulers need the presence of a biofilm to 

settle (Kirschner and Brennan 2012). Whilst it is true that some macrofouling invertebrates, 

such as the tubeworm Hydroides elegans, do require a biofilm for larval settlement (Lau et al. 

2002; Huggett et al. 2009; Ganesan et al. 2010), equally, larvae of other invertebrates such 

as barnacles (Berntsson et al. 2000; Aldred et al. 2006) and spores of seaweeds such as U. 

linza can settle on a pristine, freshly immersed surface without a biofilm. In addition, where 
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the influence of single-species biofilms has been studied, both positive and negative effects 

on settlement have been reported, e.g. for spores of U. linza and cells of N. incerta 

(Wieczorek and Todd 1998; Patel et al. 2003; Mieszkin et al. 2012). 

 

Figure 1.1: Simplified hypothetical temporal structure of biofouling settlement (Abarzua and 

Jakubowski 1995). 

 

1.3.1. Test organisms and their systems of adhesion 

In order to produce good fouling resistant paints, a diversity of fouling organisms has to be 

studied, especially their adhesion mechanisms (including adhesives). However, the 

processes of adhesion of marine fouling organisms are not well known. It is known that the 

capacity of fouling organisms to attach and grow on a submerged surface depends on the 

interactions between the adhesive and the surface (Callow and Callow 2011).  

The diversity of fouling organisms differs due to numerous factors (environmental, material, 

chemical). It was observed that the important fouling organisms belong to algal and 

invertebrate groups: Algae, Mollusca, Crustacea, Bryozoa, Annelida, Tunicata, Cnidaria and 

Porifera. Estimations of the fouling diversity were previously compiled, in 1952 the number of 
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fouling species was estimated to 2000 species (WHOI 1952) while Anderson and Hunter 

(2000) estimated the community at over 4000 species.  

Marine biofilms are composed of different species of bacteria, Archaea and unicellular 

organisms such as diatoms (Callow and Callow 2006). They are dynamic and complex 

systems, due to the diversity of species and their density (Qian et al. 2007; Dobretsov 2010). 

Moreover, biofilms are influenced by physical, chemical and biological factors (i.e. surface 

properties, nutrient availability, competition and predation).  

The adhesion of marine bacteria and diatoms to inanimate substrates involves secretion of a 

glue-like compound of extracellular polymers (EPS), which is mainly polysaccharides and 

proteins in nature (Christensen 1989; Molino and Wetherbee 2008 for reviews). Biofilms 

produce chemical signals, which influence the settlement of cells, spores and larvae of other 

fouling organisms such as U. linza (Gram et al. 2002; Patel et al. 2003; Tait et al. 2005; 

Mieszkin et al. 2012).  

The community of invertebrates is diverse and many are known to foul ships‟ hulls including 

barnacles, tunicates, hydroids and mussels. It was shown that these fouling invertebrates 

adhere to surfaces using different adhesives (Flammang et al. 2009; Kamino 2010; Stewart 

et al. 2011). The most studied hard-fouling animals are barnacles, well-known for their ability 

to settle on submerged structures. Due to their relatively large size, their hard calcareous 

shell plates and their high adhesion strength, they increase the drag of ships and can 

damage protective paints. The colonisation of submerged surfaces is through cyprids, which 

use a pair of sensory antennules to determine whether the surface is suitable for settlement 

(Clare and Aldred 2009 for review). The adhesion of barnacles occurs in three phases. The 

cyprids temporarily attach to the surface while they are exploring it using their antennules, 

and leave footprints that contain a settlement pheromone, which facilitates gregarious 

settlement. After the exploration phase when they find an adequate location, they secrete 
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cyprid cement to settle and then around 40 days later, the adult barnacles secrete adult 

cement; these cements allow the barnacles to be permanently fixed to the surface (Walker 

1973).  

Tubeworms produce a permanent proteinaceous cement that allows the organism to „glue‟ 

fragments of shell and sand grains together to produce the wall of a protective tube within 

which the worm remains fully mobile. Hamer and Walker (2001) showed that the settlement 

of Spirorbis spirorbis can be induced by the presence of a biofilm and algae.  

A quite different adhesion mechanism is shown by mussels, which attach to surfaces using 

elastic byssus threads. Even though the byssus threads are used for permanent attachment, 

the mussels can cleave them in order to change their locations and they will produce new 

threads at the new site (review in Wiegemann 2005). The proteins that make up the mussel 

byssus have been extensively characterised biochemically and the mussel adhesives 

inspired the production of new coatings and adhesives (Silverman and Roberto 2007 for 

review; Lee et al. 2011; Yu et al. 2011). 

Algae are ubiquitous and colonise a wide range of structures such as buoys, ships, 

aquaculture nets. In order to find a solution against algal fouling, the different strategies of 

colonisation have to be known. Many macroalgal species contribute to marine fouling but two 

genera are more cited than others: Ulva and Ectocarpus (Pyefinch 1950; Terry and Picken 

1986).  For a number of years, the Birmingham Biofouling Group has worked with U. linza 

(syn. Enteromorpha linza), which is an important fouling green alga that colonises a variety of 

man-made structures including ships‟ hulls (Callow 1996). Ulva is a common genus found 

throughout the world in the upper intertidal zone. Its dispersal is achieved mainly through the 

release of a large number of motile, quadriflagellete zoospores (5-7 µm diameter). Callow et 

al. (1997) showed that colonisation of surfaces involves the transition from a free-swimming 

spore to an adhered non-motile spore, and the secretion of an adhesive. Spore germination 
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occurs within few hours; cell division and growth produce sporelings- young plants that are 

also firmly attached to the substratum by adhesive secreted by the rhizoids. Previous studies 

showed that the settlement of spores of U. linza is higher on hydrophobic surfaces (Callow et 

al. 2000), whilst adhesion strength of settled spores is strongest on a hydrophilic surface 

(Finlay et al. 2002). 

Recent field observations by International Paint showed that some filamentous brown algae, 

determined as members of the Ectocarpales, are able to colonise specific types of non-

biocidal, FR coatings (Fig. 1.2).   

 

Figure 1.2: Ship‟s hull protected with FR/AF coating and colonised by filamentous brown algae, 

identify as ectocarpoid species (Photo: Callow J.A.). 

 

1.3.2. Ectocarpales 

The order Ectocarpales is in the class Phaeophyceae (brown algae), which belongs to the 

phylum Heterokontophyta (also named Stramenopiles) that is phylogenetically distant from 

the other algae (green and red algae) and the terrestrial plants that belong to the 

Archaeplastida (Table 1.1, (Baldauf 2003; Baldauf 2008; Silberfeld et al. 2010)).  
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The main studied genera are Ectocarpus, Hincksia and Pilayella. They are distributed in 

temperate regions worldwide, and rarely present in tropical regions. Ectocarpus, which is the 

most studied genus, is present on the seashore from high intertidal pools to the sublittoral 

zone and has a high range of salinity tolerance from low-salinity habitats, even a freshwater 

site in Australia (West and Kraft 1996), to a salt-polluted river in Germany (Geissler 1983). 

Table 1.1: Phylogeny of ectocarpoid algae. 

Phylum Heterokontophyta 

Class Phaeophyceae 

Order Ectocarpales (Setchell et Gardner) 

Family Ectocarpaceae (C. Agardh) Acinetosporaceae (G. Gamel ex J. Feldmann) 

Genus Ectocarpus 
Hincksia 
Pylaiella 

 

Within the Phaeophyceae, the range of form and diversity of morphology are high such as 

the size and the shape of the thallus. However, within the order Ectocarpales, the 

morphological diversity is lower. For years, this order of brown algae was considered as 

archaic because of the simple morphology represented by uniseriate filaments, but recent 

molecular phylogenetic research shows that the family Ectocarpaceae was created by a 

recent divergence inside the class Phaeophyceae (Charrier et al. 2008; Phillips et al. 2008; 

Silberfeld et al. 2010), meaning that the Ectocarpales is closer to the family Laminariaceae 

that has a more complex morphology and life cycle compared to all the other families of the 

Phaeophyceae (such as Dictyotales, Fucales). 

Members of the Ectocarpales are known to be ship-fouling algae (Pyefinch 1950; Fletcher 

1980; Mineur et al. 2007) and are some of the dominant fouling algae present on fish cages 

for aquaculture (de Nys and Guenther 2009 for review). The genera of Ectocarpales found 

on ships and raft panels seem to be predominately Ectocarpus and Hincksia (Greer and 

Amsler 2002; Mineur et al. 2007).  
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There has been extensive discussion for many years on the taxonomic status of Ectocarpus 

species (Cardinal 1964; Müller and Eichenberger 1994). For example, 487 taxa of 

Ectocarpus are listed in www.algaebase.org with 75 that are currently accepted 

taxonomically (at 16-10-2012). Numerous strains are available at CCAP in Oban, Scotland 

(Gachon et al. 2007), but only 4 species are recognised by Cardinal (1964), with seven 

varieties of Ectocarpus siliculosus and three varieties of Ectocarpus fasciculatus. In addition, 

two species are listed by Coppejans and Kling (1995) with three varieties for Ectocarpus 

confervoides and one for E. fasciculatus. E. siliculosus, E. fasciculatus and Ectocarpus 

crouaniorum are recognised as the three common species present in Europe (Peters et al. 

2010). One of the problems for identification is the high plasticity of the common features that 

are observed in order to identify species (habit, branching pattern and size of sporangia).  

For experimental purposes, the Ectocarpales provide good models. They have a small size 

and are relatively easy to cultivate, and do not need constant care (subculturing). The life 

cycle for Ectocarpus spp. typically takes 3 months in the laboratory (Müller 1977; Charrier et 

al. 2008). 

For this project, two genera within the Ectocarpales are most important, Ectocarpus and 

Hincksia. They are both uniseriate branched filamentous macroalgae and are widely 

distributed as fouling algae (Cardinal 1964; Fletcher 1980). Both genera have prostrate and 

erect filaments, but they are differentiated by a number of ramifications associated with 

intercalary growth and the number of pyrenoids in the chloroplast (Russell 1973 for review). 

The largest distinctions between the two genera are based on the chloroplast form and the 

position of the sporangia. Their life cycles are complex, and they produce unilocular and 

plurilocular sporangia and gametangia (Fig. 1.3).  

 

http://www.algae.base.org/
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Figure 1.3: Life cycle of E. siliculosus. Unilocular sporangia (UL) produced by diploid sporophytes 

contain meiospores, which grow into male and female gametophytes. Gametophytes produce 

gametes in plurilocular gametangia (PL). A zygote produced by the fusion of gametes grows into a 

diploid sporophyte. Parthenosporophytes may grow from unfused gametes and are identical from the 

sporophyte. By the production of mitospores contained in plurilocular sporangia, parthenosporophytes 

and sporophytes can reproduce themselves asexually (Charrier et al. 2008). 

 

Ectocarpus has a filamentous and branched thallus (Fig. 1.4a); the diploid sporophyte and 

haploid gametophyte are isomorphic plants. Ectocarpus cells contain one or several 

elongated plastids with different forms and several pyrenoids. Sporangia are unilocular or 

plurilocular; the latter being elongated and of various sizes according the species (Fig. 1.4b). 

The Ectocarpus life cycle is complex because in addition to the sporophyte and gametophyte 

generations, the alga can reproduce by parthenogenesis from non-fecundate gametes that 

produce haploid parthenosporophytes (Müller 1967). The zooids are biflagellate; zoospores 

measure around 6-µm length, swim from a few minutes to 24h until they settle with the 

secretion of adhesive materials (Baker and Evans 1973).  
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Figure 1.4: Ectocarpus sp. (a and b) and Hincksia sp. (c and d) isolates from Hartlepool Marina 

and Newton Ferrers. Individuals of Ectocarpus sp. from Hartlepool Marina (a) and a plurilocular 

sporangium attached to an erect filament (b). Individual of Hincksia sp. from Newton Ferrers (c) and a 

line of plurilocular sporangia attached to an erect filament. 

 

Hincksia has a filamentous, haplostic and branched thallus in common with Ectocarpus (Fig. 

1.4c); its cells contain several discoidal plastids with pyrenoids. In contrast to Ectocarpus, the 

plurilocular sporangia are globular (Fig. 1.4d). 

In numerous papers, researchers explained that Ectocarpus sporophyte has three different 

structures: rhizoids, prostrate and erect filaments in contrast to the gametophyte, which has 

only two structures: rhizoids and upright filaments (Peters et al. 2008; Le Bail 2009). 

Prostrate filaments are attached to the surface, with numerous ramifications. These filaments 

are the basal structures of the organism; their cells contain several chloroplasts and can 



22 
 

have reproductive structures (Peters et al. 2004). The prostrate filaments have round cells 

around the spore and cells on the periphery are more cylindrical, elongated shape (Fig. 1.5; 

Peters personal observations). 

  

Figure 1.5: Different structures of Ectocarpus sp. Prostrate filaments (a), sporangium (b) and erect 

filaments (c). 

 

Rhizoids are root-like filaments consisting of narrow cells (3-5 µm), which have a wavy-

appearance and are produced only by upright filaments (Peters et al. 2008). They do not 

have reproductive structures. E. crouaniorum may not have any rhizoids as it has not been 

recorded in papers and was not observed (Peters personal comments). Erect filaments that 

are created from prostrate filaments have low levels of ramification and have reproductive 

structures (Le Bail 2009). Cell diameters are from 10 to 40 µm (Peters et al. 2008). 

Ectocarpoid species are also interesting as fouling organisms because studies have shown 

that Ectocarpus is tolerant to copper, which is a major component in many AF paints (Russell 

and Morris 1970; Hall et al. 1979; Hall 1980; Hall and Baker 1985; Hall and Baker 1986).  

Some studies have shown that spore and individual behaviour among members of 

Ectocarpales varies according to surface properties. Settlement of spores of Hincksia 

irregularis is promoted by a hydrophobic surface and a dark environment (Greer and Amsler 
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2002). However, Greer and Amsler (2004) showed that the settlement of spores of H. 

irregularis could vary according to the ecological fitness of the individuals and their habitat 

within the marine environment. Anecdotal observations suggest that the sporophyte of E. 

siliculosus adheres more strongly to both glass (hydrophilic) and polystyrene (hydrophobic) 

than the gametophyte (Peters et al. 2008). The spores are strongly resistant to AF paint 

toxins such as copper (Hall and Baker 1985 and 1986) and the preference of surfaces for 

spores to settle varies according the species. It was shown that zoospores of Ectocarpus 

spp. (certainly E. siliculosus) have no preference for settlement on surfaces of different 

textures (Baker 1971 cited in Fletcher and Callow 1992) whilst Linskens (1966 cited in 

Fletcher and Callow 1992) showed that E. siliculosus prefers a rough surface to adhere and 

E. fasciculatus prefers smooth surfaces. However, most of these earlier reports on adhesion 

preferences must be treated with caution since they do not represent systematic, well-

controlled studies. 

1.4. Aims and objectives of the project 

1.4.1. Aims 

Much effort has been expended by the Birmingham group to explore the relationship 

between coating parameters such as wettability and roughness and the settlement of spores 

of U. linza and the adhesion strength of the attached spores and sporelings. Whilst U. linza 

has provided a very good model system for such studies, recent field observations by 

International Paint showed that ectocarpoid species are becoming increasingly important as 

colonisers of the more recent generation of commercial non-biocidal coatings and therefore 

there is merit in studying the surface preferences of this species. The overall aim of this 

project, therefore, was to develop laboratory scale fouling bioassays for ectocarpoid algae, 

and then to apply these to understand more about the adhesion characteristics of these 

algae in relation to the physico-chemical parameters of coatings.  
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1.4.2. Objective 1: Acquire isolates of a range of ectocarpoid algae and 

culture these on a large scale 

For this project, specific strains of Ectocarpus and Hincksia species were therefore cultured, 

axenically or non-axenically in the laboratory; these cultures were from field collections and 

from the culture collection of SAMS (Scottish Association for Marine Science, Oban, 

Scotland). From these cultures, quantification of biomass (filaments) was used to test the AF/ 

FR properties of various model and practical coating types. Three cultures of Ectocarpus 

were obtained from Dr. C. Gachon (SAMS): E. siliculosus CCAP 1310/4 from Peru, E. 

siliculosus CCAP 1310/56 from New Zealand, E. crouaniorum CCAP 1310/300 from Oban 

(Scotland). The taxonomic status of E. crouaniorum CCAP 1310/300 has only recently been 

defined (Gachon et al. 2009; Peters et al. 2010). These three species were selected because 

they grow quickly, are easy to cultivate, they produce numerous sporangia and they 

appeared to stick to surfaces -i.e. the culture flasks in which they grow (Gachon, pers. 

comm.). Isolates of species of Ectocarpus and Hincksia were also cultured from FR coatings 

on raft panels at the International Paint laboratory in Newton Ferrers and on boats moored in 

Hartlepool Marina. 

1.4.3. Objective 2: Development of a reproducible laboratory bioassay for 

the attachment and adhesion of ectocarpoid algae to test surfaces 

In the case of laboratory bioassays to assess the performance of novel coatings with U. 

linza, the standard approach is based on the settlement of zoospores released from plants 

collected from the wild. The experimental design for such evaluations typically requires a 

high density of synchronously-released spores (typically 1x106 ml-1) in large volumes (up to 1 

l). The settled spores are then counted as a measure of initial surface colonisation. The 

spores are then allowed to develop into sporelings for 6-7 days before assessing their 

adhesion strength using either a water channel or a water jet. At the start of this project, it 

was realised that this approach was not feasible for Ectocarpus spp. Therefore, a different 

approach was adopted using cultured alga as a source of inoculum, the intention being to 
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„seed‟ test coatings on glass microscope slides with fragments of cultured filaments obtained 

by blending. The expectation was that adhered fragments would grow and divide, colonising 

the surfaces. The adhesion strength of the attached alga could then be assessed by either of 

the hydrodynamic methods mentioned above. 

1.4.4. Objective 3: Prepare or acquire test coatings and apply the novel 

bioassay to these test coatings 

To clarify the kind of surfaces that ectocarpoid species prefer to settle on and which surfaces 

promote adhesion, experiments employing coatings, which have been characterised in terms 

of those surface and bulk properties known to influence fouling organisms, are required. A 

significant proportion of the project has therefore involved the preparation and 

characterisation of test coatings at International Paint (Gateshead). Within the different series 

of coatings tested, a series of silicone coatings with a range of wettabilities was also used to 

explore the influence of immersion on the surface wettability of coatings under laboratory and 

field conditions.  

1.4.5. Objective 4: Compare the results obtained using the novel bioassay 

with the results from field assays and the adhesion strength of U. 

linza 

While laboratory bioassays under precisely controlled conditions provide valuable information 

on the preferences of fouling organisms, and the intrinsic performance of test coatings, such 

assays may not predict performance in the field. A series of field experiments was therefore 

carried out using test panels placed under static immersion at Hartlepool Marina and at the 

International Paint laboratory in Newton Ferrers, Devon. In 2010, a set of coatings based on 

PDMS with varying moduli (and wettabilities) and on fluoropolymers with varying moduli (and 

wettabilities) were immersed for 4 months. In 2011, a series of silicone-based coatings with 

varying wettability/surface energy were immersed for 5 months. In 2012, a set of coatings 

based on different molecular weight of silicone, which gave a small range of moduli was 
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immersed for almost three months. In addition, the adhesion strength of U. linza was 

compared with the adhesion strength of ectocarpoid algae on the different test coatings.   
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2. GENERAL MATERIALS AND METHODS 

2.1. Unialgal cultures from the field 

Ectocarpoid algae were collected from boats moored in Hartlepool Marina (54°69‟N; 1°20‟E, 

Fig. 2.1 and 1.2) and from panels on rafts moored in the Yealm estuary at Newton Ferrers 

(50°31‟N; 4°05‟W, Fig. 2.1) in order to identify the genera of fouling organisms and to obtain 

wild cultures. Isolates were placed in Petri dishes with ½-strength enriched Provasoli medium 

(hereafter referred to as “Provasoli medium”, Appendix 1) in order to keep them in good 

condition until selection. The selection of algae was made in the laboratory within a few days 

after the collection; only the uniseriate, filamentous ectocarpoid algae were kept.  

 

Figure 2.1: Map of the two locations (represented by the yellow stars), Hartlepool Marina and 

Newton Ferrers where ectocarpoid algae were collected (from Google map).  

 

To obtain uni-algal cultures, small tufts of filaments were transferred to Petri dishes with 

artificial seawater (ASW, 33.3ppt, pH=8.2, Tropic Marin®). Using surgical scissors, filaments 
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were cut into 5-10 cell fragments under a binocular microscope (magnification x10). 

Filaments that appeared to be uncontaminated with epiphytes and with a characteristic 

morphology and colour were transferred to 24-well plates with Provasoli medium. In the 

natural environment, algae, diatoms and bacteria co-inhabit, but in culture, diatoms can be 

invasive. In order to eliminate them, all the cultures were treated with germanium dioxide 

(GeO2), following the method in Shea and Chopin (2007). The cultures were inoculated with 

a GeO2 solution (0.05% in ASW) for 10 days before changing the medium. After treatment 

with GeO2, the culture medium was changed every 2 weeks for 2 months, then every 2-3 

months in order to obtain a larger quantity of algae. An initial culture bank of 100 ectocarpoid 

isolates was maintained in this way. All isolates with typical morphology and colour were 

observed microscopically (transmitted light and fluorescence) in order to identify the genus 

(and species, if possible), using the criteria outlined in Table 2.1. Initially two genera of 

Ectocarpales were identified as being present: Hincksia (30 cultures) and Ectocarpus (70 

cultures); no Pilayella was collected. After 18 months, this initial bank was reduced to 8 

isolates (5 of Hincksia and 3 of Ectocarpus) by removing obvious duplicates, keeping only 

those cultures that looked healthy. Some isolates also died due to overgrowth by bacteria 

and green algae.        

Table 2.1: Different features of the three most represented genera of ectocarpoid algae: 

Hincksia, Ectocarpus and Pilayella (Coppejans and Kling 1995). 

Genus Chloroplast Zoïdocyst 

Hincksia sp. Round Lateral/terminal 

Ectocarpus sp. Elongated Lateral/terminal 

Pilayella sp. Round Intercalary 
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2.2. The selection of cultures from CCAP 

Cultures of three different Ectocarpus spp. were obtained from the Culture Collection for 

Algae and Protozoa (CCAP, Dunstaffnage, Oban, Scotland): Ectocarpus crouaniorum CCAP 

1310/300; Ectocarpus siliculosus CCAP 1310/4 and E. siliculosus CCAP 1310/56. Both 

axenic and non-axenic cultures were provided. 

Preliminary observations showed that both isolates of E. siliculosus adhered less well to 

standard surfaces (glass, Silastic® T2, Intersleek® 700 (IS700) and Intersleek® 900 (IS900)) 

than E. crouaniorum. Therefore, it was decided to use E. crouaniorum CCAP 1310/300 for 

the studies reported in this thesis.  

E. crouaniorum CCAP 1310/300 is a diploid sporophyte that was isolated and transferred into 

culture in 2006. The individual plants measure less than 3 cm in nature and up to 2 cm in the 

laboratory (Fig. 2.2). 

 

 

Figure 2.2: E. crouaniorum CCAP 1310/300. a) Individual with filaments of 7 mm length with erect 

filaments (e) and sporangia (s); b) Plurilocular sporangium (s) with peduncle (p); c) Erect filaments (e) 

with ribbon-shaped chloroplasts and d) Autofluorescent chloroplasts in cells of erect filaments (e) and 

plurilocular sporangium (s) observed by UV fluorescence microscopy (300-390 nmex-420 nmem). 
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2.3. Culture methods 

Wild isolates and E. crouaniorum were maintained in unialgal cultures in 650 ml flasks 

(Cellstar filter cap suspension culture flask, Greiner Bio-One) containing 200 ml of Provasoli 

medium (Starr and Zeikus 1987) prepared using autoclaved ASW. Cultures were grown 

statically, without aeration at 15°C with a 12:12 h light:dark cycle (light intensity 20 µE m-2 s-1) 

and subcultured every 2-3 months. 

2.4. Growth rate and morphology of axenic and non-axenic cultures 

A pilot experiment was conducted to observe the variation of biomass and morphology 

between axenic and non-axenic cultures of E. crouaniorum in order to decide which type of 

culture would be used for subsequent assays. 

All the preparations for the experiment were performed in a sterile culture cabinet. 

Approximately 1 g wet biomass was transferred into 300 ml of Provasoli medium prepared 

using autoclaved ASW and was kept on a stirrer prior to transferring aliquots (5 ml) into 70 ml 

sterile flasks to which 10 ml of Provasoli medium were added. Twenty-five replicates for each 

treatment were made, including five for initial measurement of biomass. In order to quantify 

the algal biomass used to inoculate the test samples, chlorophyll a (chl a) was measured 

(Chapter 2.5). Every three weeks for 12 weeks, the algal biomass of five replicates of each 

treatment was measured by chl a extraction. At the same time, the medium was changed for 

all the other flasks using a nylon cell strainer filter (mesh size 100 µm, BD Falcon) to retain 

all the filaments. Every three days throughout the experiment, the flasks were randomly 

placed in the incubator so all flasks received the same degree of illumination. 

No difference in growth rate was observed as represented by the slopes of the lines in Fig. 

2.3, until the final harvest when there was a substantial increase biomass in the non-axenic 

cultures. Observations of morphology showed that in the axenic cultures, the organisms grew 

as tufts of small filaments (around 2 mm of length) whereas in the non-axenic cultures the 
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organisms grew as larger tufts with filaments measuring at least 7 mm in length (Fig. 2.4). 

The morphology of plants in the non-axenic cultures was more representative of Ectocarpus 

spp. in the natural environment. 

 

Figure 2.3: Biomass of E. crouaniorum measured as chl a for 83 days of culture. Axenic and 

non-axenic cultures are respectively represented by the blue and the red lines. Means of 5 replicates 

± 2 x SE. 

 

  

Figure 2.4: Variation of morphology between non-axenic (a) and axenic (b) cultures of E. 

crouaniorum. The different sizes of the plants under the two conditions necessitated the use of 

different magnifications. 

In conclusion, variations of the growth and the morphology between axenic and non-axenic 

cultures were observed. Previous studies showed that the typical growth form of Ulva linza is 
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dependent on bacteria and some bacteria stimulate the settlement of spores (Provasoli and 

Pintner 1980; Dobretsov and Qian 2002; Marshall et al. 2006). Amin et al. (2009) showed 

there are beneficial interactions between marine bacteria and phytoplankton. The study 

indicated that subsequent experiments should be performed with non-axenic cultures 

because the morphology was more typical of field organisms. Therefore, in the experiments 

described in the rest of this thesis, only non-axenic cultures were used.  

 

2.5. Biomass determination by extraction of chlorophyll a  

The biomass of filaments in the filtrate used as the inoculum was quantified as chl a content. 

Three 15 ml replicate samples of filaments were harvested onto 3 µm cellulose nitrate filters, 

then chl a was extracted with 2 ml of DMSO (Shoaf and Lium 1976). The filaments were left 

in DMSO for 10 min in the dark after which absorbance at 664 nm and 630 nm was 

measured, using DMSO as reference. The chl a concentration in the filtrate was calculated 

using the formula for diatoms (Jeffrey and Humphrey 1975), where SV is the volume of 

DMSO and MV is the volume of ASW containing the filaments.  

Chl a (µg ml-1 of starting inoculum) = (11.47(A664) – 0.4(A630)) * (SV/MV) 

The concentration of filaments in the inoculum (as chl a) was then adjusted to 0.04 to 0.12 µg 

ml-1 of chl a, depending on the species (Chapter 3.2.1). 

For the determination of biomass of unattached filaments in the developed adhesion assay 

(Chapter 3.2.3), chl a was determined by the same method using the following formula: 

Chl a (µg) = (11.47(A664) – 0.4(A630)) * (SV) 

2.6. Testing of adhesion strength using a calibrated water channel 

Since fouling-release (FR) coatings do not prevent settlement, a water channel apparatus is 

one of the methods used to quantify the adhesion strength of fouling organisms such as 
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algae (Schultz et al. 2000). The apparatus provides a rapid, repeatable test for determining 

the shear stress necessary to remove the test organisms from a range of test surfaces (Fig. 

2.5). The water channel was designed to provide fully turbulent flow and is thus a good 

indicator of the conditions necessary for detachment of these organisms from the ship‟s hull 

because boundary layers around ships are turbulent (Schultz et al. 2003). The fully-

developed channel flow allows determination of accurate wall shear stress from a simple 

pressure gradient measurement. Turbulent flow is created in a 60 cm long low aspect ratio 

test section of channel preceding the slides. The shear stress in the test section can vary 

from 8 Pa to 50 Pa generated by a flow of ASW up to 4.9 m s-1. Six individual microscope 

slides can be tested for each run. The explanation of how the apparatus was used to 

generate adhesion strength data is outlined in Chapters 2.7 and 3.2.4. 

Using the formulae from Schultz et al. (2003), the shear stress of 50 Pa represents a  ship 

velocity of 9.1 m s-1 (17.7 knots or 20.5 mph) at downstream distance of 50 m while the shear 

stress of 8 Pa represents a ship velocity of 3.6 m s-1 (7 knots or 8 mph) at the same 

downstream distance. 

The term „adhesion strength‟ of soft-fouling organisms such as algae refers to the ease of 

removal (i.e. % removal) after exposure to a shear stress, while for hard-fouling organisms 

such as barnacles and tubeworms, the adhesion strength is measured by the application of a 

mechanical shear force parallel to the base of the organisms to measure the critical removal 

stress (Swain and Schultz 1996; Kavanagh et al. 2001). 
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Figure 2.5: Representative layout of the water channel system (from Schultz et al. (2000)). The 

pumped flow of ASW from the 265-liter tank enters the settling chamber, which creates the turbulent 

flow. The turbulent flow enters „tripping plates‟ (0.5 mm in height) at the start of the test section, which 

ensures that the flow is fully developed and turbulent. The mounting apparatus for the test slides is 

downstream of the tripping plates. The slide holders can accommodate six slides (three at the top and 

three at the bottom), which are arranged with their long axes parallel to the direction of the flow. Each 

mounting position has a mechanism to enable correct alignment of each slide flush with the channel 

walls and for differences in coating thickness to be accommodated.  The test slides are held in place 

by a vacuum applied to the reverse (non-test) side of each slide, which is lightly greased with silicone 

grease.    

 

2.7. Measurement of biomass using a fluorescent plate reader  

Before using the water channel, the attached biomass on each test slide was quantified, non-

destructively, by measuring the fluorescence of chlorophyll in a fluorescence plate reader 

(excitation = 430 nm, emission = 670 nm, TECAN GeniosPlus) (Finlay et al. 2008). 

Fluorescence was measured as relative fluorescence units (RFU). The RFU value for each 

slide was the mean of 168-point fluorescence readings, taken within an area 6 x 1.9 cm 

along the central longitudinal axis of the slide. Uninoculated test surfaces that had been 

hydrated in ASW were used to blank the plate reader. There was a linear correlation 



35 
 

(R2=0.85) between the attached biomass measured using by chlorophyll fluorescence in the 

plate reader and biomass determined by chl a extraction (Fig. 2.6).  

 

Figure 2.6: Relationship between chl a measured by chlorophyll extraction and in situ 

fluorescence in the TECAN fluorescent plate reader. The attached biomass (13-replicate slides) 

was measured using the plate reader and then the filaments were removed from each slide using a 

cell scraper and were placed in 10 millilitres of ASW before measuring chl a content using the method 

in Chapter 2.5. 

 

2.8. Adhesion assays with sporelings of the green alga Ulva linza 

In order to put results for ectocarpoid algae into a broader fouling context, adhesion assays 

on test surfaces were also performed with the green alga U. linza (syn. Enteromorpha linza), 

which is used extensively by the Birmingham group as a model macrofouling test organism. 

Fronds of U. linza were collected from Llantwit Major, Wales (51°40‟N; 3°48‟W) and a 

suspension of zoospores (1.0 x 106 spores ml-1) was prepared by the following method 

(Cooper et al. 2011). The collected fronds were brought back to the laboratory and kept 

overnight at 5°C. The following day, the reproductive tips were cut and transferred to a 

beaker with sufficient ASW to cover the plants for 5-10 min. As soon as spores were 
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released, the medium was filtered into a clean beaker using three layers of nylon mesh of 

decreasing pore size (100 µm (top), 50 µm and 20 µm (bottom)). The meshes removed any 

debris such as sand grains and diatoms. The beaker containing the spore suspension was 

then placed in crushed ice to concentrate the spores, which swam towards the bottom of the 

beaker, while gametes and dead spores stayed at the ASW surface. The concentrated spore 

suspension was pipetted into another beaker placed in crushed ice in order to concentrate 

the spores again before transferring the suspension to a final beaker. The final concentrated 

spore suspension was diluted with ASW to obtain an absorbance of 0.15 at 660 nm, which is 

equivalent to 1.0 x 106 spores ml-1 (Callow ME personal communication).  Spores were kept 

in the dark by wrapping the vessel with aluminium foil and placed on a magnetic stirrer to 

prevent settlement.  

For bioassay of test surfaces, six replicate slides of each treatment were placed in 

Quadriperm dishes (Greiner Bio-One) and 10 ml of zoospore suspension were added to 

each compartment. After 45 min in darkness, the Quadriperm dishes that contained the 

slides were gently rinsed in ASW to remove unsettled (swimming) spores. The spores that 

attached to the surfaces were cultured as sporelings in supplemented ASW medium in an 

illuminated incubator at 18°C with a 16h:8h light:dark cycle, for six to seven days. The culture 

medium (Appendix 2) (Starr and Zeikus 1987) was changed every two days. Sporeling 

biomass was measured in situ by measuring the fluorescence of chlorophyll a in a 

fluorescence plate reader, as described in Chapter 2.7. 

2.9. Characterisation of bulk and surface properties of test coatings 

2.9.1. Wettability and surface energy  

Measurement of contact angle θ, especially the static water contact angle formed by a 

droplet of water, in air, is the most widely used method to describe the wetting properties of a 

surface. Low values of θ indicate a strong interaction between liquid and solid, in which the 
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liquid spreads over (i.e. „wets‟) the solid surface, while high values of θ indicate a weak 

interaction and low wetting. Contact angle measurements using a minimum of two liquids 

with different, known surface tensions are used to calculate surface energy and its polar and 

dispersive components. 

 
 

Figure 2.7: Representative layout of the method to measure wettability in air (a) and in water 

(b) on a test surface. For both methods, in this thesis the internal angle θm was measured. For some 

purposes for the underwater method, the external angle θc is then calculated (180 - θm). DII: 

diiodomethane. 

 

2.9.1.1. Wettability in air 

The contact angle is the angle at which a liquid interface meets the solid surface, allowing 

interaction between the liquid and the surface to be determined (Fig. 2.7a). Static contact 

angles of the test surfaces for water and diiodomethane (five drops on each of three-replicate 

slides) were measured in the laboratories of International Paint using a Dataphysics 

instrument and Sca20 software. Diiodomethane (syn. methylene iodide) was chosen 

because it is non-polar due to its molecular symmetry, compared to water, which is well 

known as a polar solvent. It is important to use polar and non-polar liquids in order to 

calculate surface energy and its components (Chapter 2.9.1.3). The drop size was 3.5 µl for 

the water and 1.8 µl for the diiodomethane. After a drop of test liquid is placed on a surface, 

there is a strong relaxation of the drop shape before it becomes stable. The best moment to 

measure the contact angle is therefore after the relaxation of the drop. In order to determine 

this, relaxation curves for the two test liquids were compared on different surfaces (IS700, 
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IS900 and the first series of silicone elastomer coatings). As a result, relaxation 

measurement times of 140 s for water and 60 s for diiodomethane were chosen since by 

these times the drops on each surface were stable.  

While the measurement of static contact angles in air is the most common method to 

characterise surface wettability, additional information can be obtained by „dynamic contact 

angle analysis‟ and this was applied to the silicone „hybrid‟ coatings (see Chapter 4.2). The 

same instrument and software was used as the static contact angle method. A 3.5 µl water 

drop was provided by a micro-syringe on the slide. The dynamic contact angle was then 

continuously recorded after a relaxation time of 140 s. Further water was added continuously 

(15 µl at 0.25 µl s-1), and after 60 s of delay time the same amount of water (15 µl) was 

removed from the drop at the same rate (Fig. 2.8a). The video acquisition rate was 10 frames 

per second. A graph was produced for each drop showing the contact angle as a function of 

diameter of the drop (Fig. 2.8b). The advancing angle θWadv was measured when the water 

was added and the contact angle was relatively stable. The receding angle θWrec on the other 

hand was measured when the water was removed and the contact angle was relatively 

stable. The difference between these two angles is the contact angle hysteresis that is 

thought to be a measure of roughness and surface heterogeneity (Good and Koo 1979; 

Schwartz and Garoff 1985). 
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Figure 2.8: Dynamic technique (advancing and receding contact angles). a) Advancing and 

receding angle layouts; b) Tracking of the dynamic water contact angle as a function of the drop 

diameter. The means of all the contact angles within the arrows 1 and 2 represent respectively the 

advancing and receding contact angle.  

 

2.9.1.2. Underwater wettability  

While measurement of either static or dynamic contact angles in air is the most commonly 

used method to characterise the surface wettability of test coatings, further information can 

be obtained by measuring the contact angle of an air bubble, underwater, i.e. when coatings 

are hydrated by immersion in MilliQ water or ASW (Figs. 2.9a/b). It is argued that this 

provides a better measure of the wettability properties of a coating as perceived by a fouling 
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organism. Underwater contact angles were measured using a Dataphysics instrument and 

Sca20 software. Surfaces were immersed in a Dataphysics GC20 glass cell filled with MilliQ 

water and then the air bubble was created using a Dataphysics SNC 052/026 dosing needle 

(stainless steel) as shown on Figure 2.9. For each slide, static underwater contact angle, 

which was the internal angle („air-side‟; Fig. 2.7b), was measured for three bubbles of 2 µl of 

air. The measurements were taken after 10 s, to allow for relaxation of the air bubble. 

However, the values reported in this thesis are for the external angle („water-side‟; i.e. 180°- 

θm) in order to provide consistency of terminology. In this way, a hydrophobic coating, for 

example is always associated with a high contact angle, irrespective of whether the contact 

angle is determined in air, or underwater. 

 

 

 

Figure 2.9: Underwater system. a) Syringe system with the needle that deposed the air bubble into 

the surface; b) End of the syringe where the bubble exited and an air bubble attached to the surface. 

 

2.9.1.3. Surface energy 

A surface parameter that is often linked to surface wettability is the „surface energy‟.  Surface 

energy is defined as the excess energy at the surface of material compared to the bulk and is 

a measure of the capacity of a surface to interact spontaneously, using the excess energy, 



41 
 

with other materials. In this thesis, total surface energy and the proportions of polar and 

dispersive components were determined from measuring static contact angles with two 

liquids (water and diiodomethane as explained above) and the Owens, Wendt, Rabel and 

Kaelble (OWRK) equation. This is an equation commonly used in the literature for 

experimental FR coatings and is the standard method employed within International Paint. 

When a surface has a high polar component, then the coating allows interactions with water, 

whereas when the coating has a high dispersive, non-polar fraction, the coating has less 

interaction with water (Owens and Wendt 1969). 

OWRK equation is:   (1+ cos())*L = 2 (S
D*L

D) + 2(S
P*L

P)     

Where  is the angle measured (with water or diiodomethane); L is the surface tension of the 

liquid (water or diiodomethane), which is split up into a polar L
P and a dispersive fraction L

D 

and S is the surface energy of the solid (i.e. test surface), which is also split up into a polar 

S
P and a dispersive component S

D.  

Two liquids are needed due to the two unknown values on the equation (the polar and 

dispersive component for the surface). By choosing a second liquid, which has no polar 

component (i.e. diiodomethane), the equation used for the second liquid (diiodomethane 

used as DII in the following formulae) is simplified, giving:  

(1+ cos())*L = 2 (S
D*L

D) 

because diiodomethane has no polar component. 

 

2.9.2. Modulus 

The modulus is the tendency of a material such as a coating to be deformed elastically (but 

not permanently) when a force is applied to it. Two types of modulus were measured: the 

storage modulus using the dynamic mechanical analyser (DMA) and the elastic modulus 
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using an elongation measurement method. The first method was used at the start of the 

project but after further discussion, it was realised that the elongation measurement method 

would be more meaningful for this project, as in FR studies, the elastic modulus is more 

studied than the storage modulus. 

2.9.2.1. Dynamic mechanical analyser DMA 

DMA (Perkin Elmer Pyris Diamond Dynamic Mechanical Analyser) is a thermoanalytical 

technique whereby a small deformation is applied to a sample in a cyclic manner and allows 

the materials to respond to stress, temperature, frequency and other tested factors. It 

characterises the viscoelastic behaviour of a coating, allowing the measurement of storage 

modulus (E‟) and Tan Delta (Fig. 2.10). E‟ is a measure of the stiffness of the coating. If the 

coating has a high storage modulus, it is a stiff material. Tan Delta is an indicator of the 

viscoelasticity of a sample but is also used to assign the glass transition temperature (Tg), 

which is represented by the peak in Tan Delta. Tg is the temperature at which an amorphous 

material transitions from a hard, brittle glass state to a rubbery state (Fig. 2.10). The smaller 

the Tan Delta, the more viscous the material is. On the other hand, the higher the Tan Delta 

value, the more elastic the material is (Perkin Elmer 2008).  

DMA method was used on the condensation-cured silicone elastomer coatings with PDMS or 

PDMS/PEO (S1, S2 and S3, see Chapters 4 and 5) and the fluoropolymer coatings (Chapter 

6). For each coating, the measurements were done using a thick layer of coating (2 

replicates) cut in a rectangular shape (approximately 20 mm by 8 mm and 3 mm thick), which 

was placed in the instrument. The DMA instrument applied a sinusoidal deformation at a 

range of temperatures (from -130°C to 55°C) with a heating rate of 2-3°C min-1. 
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Figure 2.10: Results from a DMA analysis of S3 coating. The peak of blue Tan Delta curve 

represents Tg, the glass transition temperature. The green curve represents the storage modulus E‟, 

which is the stiffness of the coating. The value used is the data obtained at room temperature (red 

circle). 

2.9.2.2. Elastic modulus 

The modulus was measured using an elongation measurement method: laser extensometer, 

which is used to measure changes in the length of the coating (using Zwick Tensile Test 

Machine and Free Film Tensile v3-vi Front Panel software). It also allows the measurement 

of different parameters associated with the modulus. The instrument performed stress/strain 

measurements of thin layer of coating around 0.6 mm thick (3 replicates), the data were then 

transmitted to Free Film Tensile v3-vi Front Panel software. The thin layers of coating were 

cut in rectangular shapes (approximately 80 mm by 12 mm) and marked. The distance 

between these markers was tracked in the data file on the computer while the thin layer was 

stretched. The loading speed was 50 mm min-1; the width and the thickness were measured 

for each replicate before the experiment.  

Figure 2.11a explains that the results of stress applied on the layer of coating can be 

separated in two different stresses: the elastic and plastic strains. The elastic strain is also 

named linear deformation. It is from that part of the graph from which the modulus is 

calculated using the equation: E=σ/ε. E is the Young‟s modulus, σ is the stress exerted and ε 
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is the strain. In that first phase, the thin layer of coating can return to its original size. The 

plastic strain is also named plastic deformation. From that point, the thin layer cannot return 

to its original size.  

The elastic modulus can also be linked to the storage modulus obtained by DMA (see above) 

as shown in Fig. 2.11b using the equation IEI2= (E‟)2 + (E‟‟)2, where E‟ is the storage 

modulus, which is the stored energy (representing the elastic portion of the coating), E‟‟ is the 

loss or dissipated energy (representing the viscous portion of the coating). 

  

Figure 2.11: Result of stress applied on a thin layer of coating. a) General graph result. The 

higher the stress (force exert), the higher the strain is. The strain can be separated in two parts: 1: the 

elastic strain (represented by the green line) and 2: the plastic strain. When the stress is too high, the 

thin layer breaks (rupture). b) Relationship between the absolute value of elastic modulus (lEl), 

storage modulus E‟ and loss modulus E‟‟. 

 

Different results are obtained from this method: maximum force, elastic modulus, tensile 

strength and strain to failure, but only the elastic modulus was used for this thesis. The 

elastic modulus (MPa), here represented by the Young‟s modulus is a measure of the 

stiffness of the material, which describes the tendency of the coating to deform along an axis 

when opposing forces applied along that axis. It is calculated as the gradient of the 

stress/strain plot in the elastic regime (Fig. 2.11a and b).  
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This method was used for the silicone wettability series (Chapters 4 and 6) and for the 

silicone “modulus” series (Chapters 4 and 8).  

2.9.3. Surface roughness by profilometry  

The Nanofocus ScanR profilometer is an instrument, which measures a surface‟s profile 

along a 5 cm line on each test slide (3 replicates), in order to quantify its roughness and its 

flatness, using µScan version 6.1 software. Surface roughness can have an important role in 

the settlement and adhesion strength of algae (Granhag et al. 2004; Schumacher et al. 

2007). The most interesting parameter obtained from the profilometer is Ra (Fig. 2.12). Ra 

represents the arithmetic average of roughness-height; it is the average of the magnitudes of 

all peaks and valleys of the measured surface (µm). 

 

Figure 2.12: Ra on a coated surface explaining its calculation. The peaks show that the surface is 

not perfectly smooth. In the formula, a represents the amplitude of the peaks a1, a2 etc. 
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2.10. Statistical methods 

 Laboratory experiments 

Single metric analyses of coating performance (GZLM – SPSS) 

Generalized linear modelling (GZLM, SPSS) with pairwise comparisons was used to assess 

coating performance as measured by each individual biomass metric (8 days unattached 

biomass, 14 days attached biomass, percentage biomass removal). Generalized linear 

modelling gives flexibility over a classical ANOVA to account for a non-normal distribution of 

the response variable (biomass metric). Different statistical models of the relationship 

between the predictor (coating) and response variables were modelled by changing the link 

function, and the best model for the data was determined by maximum likelihood estimation 

(i.e. the model with the lowest Akaike‟s information criterion (AIC value, Quinn and Keough 

2002). Pairwise comparisons between coatings were performed using the resulting models. 

GZLM was also used to analyse the data for U. linza.  

Multiple metric analyses of coating performance (RM ANOVA – SPSS) 

Repeated-measures analysis of variance (RM ANOVA, SPSS) was used to assess coating 

combined performance by looking at two metrics: accumulated biomass after 14 days and 

the biomass remaining after exposure to shear. RM ANOVA is an experimental design based 

on an unreplicated two-factor crossed ANOVA design where experimental units are recorded 

repeatedly through time (Quinn and Keough 2002). Biomass data before and after shear 

were tested for equality of variance (Levene‟s test, Minitab). In cases where variance was not 

equal, the data were transformed using log-transformation. The coatings were compared 

using post hoc REGWQ (Ryan-Einot-Gabriel-Welsch, SPSS), which is one of the most 

powerful comparison procedures (Quinn and Keough 2002). The Post Hoc REGWQ 

separated coatings into groups, giving a significance value for each group.   
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 Field statistics  

Single metric analyses of coating performance (GZLM – SPSS) for field assay in 2010 

Generalized linear modelling (GZLM, SPSS) with pairwise comparisons was used to assess 

coating performance and the difference observed for each data collection using separately 

the data from microfouling, weeds, soft- and hard-bodied animals. The method used to 

compare the data was similar to that used in laboratory experiments (explained above). 

Generalized estimating equations for field assay in 2011-12 

Generalized estimating equations (GEEs, SPSS) with pairwise comparisons (with Sequential 

Bonferroni correction) were used to assess the performance of the test coatings. GEEs are 

an extension of GZLM to model correlated data (Quinn and Keough 2002). This method 

allows for a fixed response variable (the percentage of microfouling, weeds, soft and hard-

bodied animals or total % fouling) to determine the effect of the coatings whilst taking into 

account the effect of panel, row, column and inspection date. As for the GZLM method, 

different statistical models of the relationship between the response variable and the 

predictors (panel, row, column, inspection date) were modelled by changing the link function. 

In addition, as for GZLM, the maximum likelihood estimation, i.e. the lowest Akaike‟s 

information criterion (AIC), was used to determine the best model for the data set. 

Results of laboratory and field experiments were shown with either plus or minus standard 

deviation (SD) when the number of replicates was equal to or smaller than 5 and for the 

other cases 2x standard error (SE) was used.  
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3. DEVELOPMENT AND CHARACTERISTICS OF AN ADHESION 

BIOASSAY FOR ECTOCARPOID ALGAE 

3.1. Introduction 

Macroalgae (seaweeds) are known to foul panels, buoys‟ fishnets and ships‟ hulls. The 

common fouling green alga Ulva linza has been used extensively as a model fouling species 

for fundamental studies on the influence of properties as explained in Chapter 1.2. U. linza 

has also been used for over a decade in laboratory-based evaluations of experimental 

coatings that are candidates for practical application (see Callow and Callow 2011 for 

review). However, there are few comparable studies on other species of macrofouling algae.  

Ectocarpoid algae are known to colonise ships‟ hulls and other submerged surfaces as 

explained in Chapter 1. Two genera of ectocarpoid algae are typically found on ships and raft 

panels -Ectocarpus and Hincksia (Greer and Amsler 2002; Mineur et al. 2007). In recent 

years, ectocarpoid algae have also been found growing on non-biocidal, „fouling-release‟ 

(FR) coatings, both on raft panels and boat hulls (International Paint, unpublished data). 

This, and the growing interest in exploring non-biocidal, FR (i.e. „low adhesion‟) technologies 

for fouling control (Callow and Callow 2011 for review) suggests that more extensive 

research on ectocarpoid algae is warranted and the first requirement is a robust, laboratory-

based adhesion bioassay comparable to the U. linza assay. The bioassay has to able to 

down-select test coatings by providing a rapid assessment of the adhesion behaviour of the 

test organisms (Chapter 1.2.3). The main purpose of the present Chapter is to report on the 

development and characteristics of such an assay. 

The starting point for bioassays using U. linza is the colonisation of surfaces by motile spores 

synchronously released from fertile fronds of the alga collected from the seashore. For a 

typical assay of multiple coatings, a litre of synchronously-released spores at a concentration 

of 1 x 106 per ml can readily be obtained, which is sufficient to assay 9 replicates of 8-10 
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coatings in microscope slide format using a standard protocol (e.g. Bennett et al. 2010). 

Although spores can be released from Ectocarpus spp., it is not remotely possible to obtain 

the quantities outlined for U. linza. However, in addition to settlement of spores, colonisation 

of substrata by ectocarpoid algae occurs through the production of creeping (i.e. prostrate) 

filaments: this forms the basis of the assay described in this paper. Ectocarpus crouaniorum 

was chosen as the test organism based on observations that it had a fast rate of growth and 

stronger adhesion to surfaces of culture vessels compared to other strains or species of 

Ectocarpus (Gachon pers. observations). Other ectocarpoid algae obtained from the field 

were also tested in order to validate the method and to observe any differences in adhesion 

between cultivated species and species from the field. The adhesion of ectocarpoid algae on 

a set of standard surfaces was evaluated in order to test the potential of the method to 

discriminate between surfaces with different properties.  

 

3.2. Bioassay methods 

3.2.1. Cultivation of ectocarpoid algae 

The main test species used in this study was Ectocarpus crouaniorum CCAP 1310/300, 

which was grown as non-axenic, unialgal cultures as described in Chapter 2.3. The assay 

was then applied to unialgal cultures of two ectocarpoid algae collected from the field 

(Newton Ferrers, Devon, UK, Nov. 2009); an isolate of Ectocarpus (referred to here as 

„Ectocarpus sp.‟ since the precise species was not identifiable) and Hincksia secunda 

(Coppejans and Kling 1995), as explained in Chapter 2.1. Culturing conditions for these 

isolates were the same as for E. crouaniorum. 

The assay was also applied to a mixed population of „wild‟ ectocarpoid algae (genera 

Ectocarpus, Hincksia and Pilayella) collected from non-biocidal test panels exposed in 

Hartlepool Marina, UK in May 2011. The algal material was tested directly after 
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transportation to the laboratory, without any prior culturing. The algae were washed in 

artificial seawater (ASW) and cleaned using a paintbrush to remove most of the surface 

epiphytes such as diatoms.  

 

3.2.2. Preparation of algal inoculum 

To prepare the algal inoculum for the bioassay, approximately 2 g (wet wt.) of cultured or wild 

alga were blended with a hand-held kitchen homogeniser (setting 4 on a 650 W Russell 

Hobbs blender model 14333) for 1 min in 100 ml of ½-strength Provasoli medium. The 

blended alga was filtered through a nylon cell strainer (mesh size 100 µm, BD Falcon); large 

fragments were retained on the filter, which was discarded. The filtrate, consisting of small 

filaments, was used as the inoculum. 

For the mixture of uncultivated ectocarpoid algae, this process was modified to reduce 

diatom contamination. The filtrate after blending was discarded since it contained many 

diatoms. The large filaments retained on the filter were then re-blended and filtered through a 

new nylon cell strainer. The filtrate from this second homogenisation was used as the 

inoculum.  

The biomass of filaments in the filtrate used as the inoculum was quantified as the 

concentration of chlorophyll a (chl a) as described in Chapter 2.5.  

The filtrate was diluted with ½-strength Provasoli medium to a chl a concentration of 

approximately 0.04 µg ml-1 for E. crouaniorum, 0.07 µg ml-1 for Hincksia secunda, 0.09 µg  

ml-1 for Ectocarpus sp. and 0.12 µg ml-1 for the mixture of „wild‟ ectocarpoid algae. The 

concentrations used for the cultivated „wild‟ species (Ectocarpus sp. and Hincksia secunda) 

were higher because a proportion of filaments was pale in colour and for the non-cultivated, 

wild preparation, the mixture contained other organisms, notably diatoms. 
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3.2.3. Preparation of the test surfaces 

The test surfaces were three FR elastomeric coatings: Intersleek® 700 (IS700, International 

Paint) and Silastic® T2 (Dow-Corning Corporation), which are poly(dimethylsiloxane) 

(PDMS)-based (i.e. silicone) and the fluoropolymer technology Intersleek® 900 (IS900, 

International Paint) and Nexterion® glass B slides (Schott). Nexterion® glass is a hydrophilic 

borosilicate glass that is smooth and ultrasonically cleaned.  

IS700 (grey) and IS900 (grey) are both 3-pack commercial FR coatings, which were 

prepared as explained in Chapter 4.2.4.  

Glass microscope slides coated with Silastic® T2 (T2) were provided by Dr. P. Willemsen 

(TNO, Den Helder). T2 is a PDMS elastomer (Dow-Corning Corporation) and was prepared 

as described in D‟Souza et al. (2010). The T2 mixture (60% in xylene) was sprayed onto 

primed glass microscope slides and cured at 50°C for 5 h. The characterisation of all test 

surfaces is explained in Chapter 4.5. 

All the slides of Intersleek were leached in a 30-liter tank of deionised water, recirculated 

through a carbon filter (flow rate 72 ml s-1) containing a polypropylene sediment cartridge 

(Cale Parmer, 1 µm pore) and filled with activated charcoal (Sigma-Aldrich, Daroc®, 12-20 

mesh), for a minimum of 4 weeks in order to remove residual curing agents. The slides were 

placed in racks allowing the water to pass across the surfaces. Immediately prior to the start 

of the bioassay, the IS slides were rinsed with MilliQ water and gently wiped with a sponge in 

order to remove any bacteria that had adhered to the surface. Slides of T2 were put into 

MilliQ water for 24 hours to hydrate them. All test samples were incubated for 2 hours in 

ASW prior to the start of the bioassay.  
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3.2.4. Adhesion bioassay for ectocarpoid algae 

The developed test protocol enables two measurements of adhesion performance on 

different surfaces: a) a measure of initial attachment, assessed after 14 days of incubation 

with the test inoculum; and b) a measure of adhesion strength of the attached filaments after 

exposure to shear stress, assessed by measuring the proportion of attached filaments 

removed after exposure to a shear stress in a water channel.   

Test surfaces (9 replicates) each contained in individual compartments of Quadriperm 

polystyrene culture dishes (Greiner Bio-One), were inoculated with 15 ml aliquots of blended 

filaments prepared as described in 3.2.2, and incubated under the same conditions as those 

used for algal cultivation. After 8 days, non-adhered filaments were removed by gently 

rinsing each slide in ASW (5 gentle movements per slide). The rinsed slides were put back 

into the Quadriperm dishes in ½-strength Provasoli medium and incubated for a further 6 

days. The unattached biomass in each test compartment after 8 days was retained and the 

biomass of unattached filaments was estimated through determination of chl a content as 

described in Chapter 2 (3 replicates).  

After a total incubation period of 14 days, test slides were gently rinsed in seawater to 

remove any remaining unattached filaments, then attached biomass on each test slide was 

quantified, non-destructively, by measuring the fluorescence of chlorophyll in a fluorescence 

plate reader (excitation = 430 nm, emission = 670 nm, TECAN GeniosPlus) as explained in 

Chapter 2.7. Fluorescence was measured as relative fluorescence units (RFU). 

To measure the adhesion strength of attached filaments, the 9 replicates of each test surface 

were exposed to a wall shear stress of 8 Pa for 5 min in a water channel producing fully-

developed turbulent flow (see Chapter 2.6.; Schultz et al. 2000; Schultz et al. 2003). The 

biomass that remained after exposure in the water channel was quantified as RFU as 

described above. Percentage removal was determined by comparison of the biomass (RFU) 
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before and after exposure to shear stress. Slides were observed under a microscope to 

observe the filament morphology using transmitted light for the transparent surfaces and UV 

light (300-390 nmex, 420 nmem) for the two opaque Intersleek coatings. In order to facilitate 

the microscopic observations on the two Intersleek coatings, the cell wall of E. crouaniorum 

was stained using the fluorescent brightener Calcofluor White (Sigma-Aldrich, 0.01% in 

seawater) for 10 min and then was rinsed with seawater. Calcofluor White binds to β-linked 

polysaccharides like cellulose and hence is used to stain cell walls of algae and higher plants 

(Herth and Schnepf 1980). All assays were performed at least twice to demonstrate 

consistency: results from one representative assay are illustrated below.  

 

3.2.5. Comparative assays with sporelings of the green alga Ulva linza 

Comparative assays using sporelings of U. linza were performed following the method in 

Chapter 2.8. To assess the adhesion strength of the sporelings, the slides were exposed to a 

wall shear stress of 50 Pa for 5 min in a water channel (a higher shear stress was used for U. 

linza because this alga adhered more strongly to the test coatings compared with Ectocarpus 

spp.). Percentage removal was determined from RFU values before and after exposure to 

shear, as described for ectocarpoid algae (see above; Chapters 2.6 and 2.7). Statistical 

analysis of the adhesion data is explained in Chapter 2.10, and statistical tables for the whole 

Chapter are presented in Appendix 3. 

 

3.3. Results 

3.3.1. Algal morphology of E. crouaniorum 

After blending and filtration, the starting inoculum for adhesion assays consisted of small 

filaments averaging 6.3 ± 1 cells (mean of 50 observations ± 2 x SE, Fig. 3.1a). After 6 days‟ 
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incubation with test surfaces, filaments that had adhered grew by cell division (Fig. 3.1b). 

After 14 days, test surfaces were typically colonised by an extensive growth of prostrate and 

erect filaments, the latter bearing some sporangia (Fig. 3.1c). There was no evidence of 

toxicity associated with any of test surfaces. 

 

Figure 3.1: Different stages of growth of filaments of E. crouaniorum. a) Starting inoculum of 

fragmented filaments of E. crouaniorum, stained with the fluorescent brightener Calcofluor White 

(0.01%, Sigma-Aldrich), visualised by UV fluorescence microscopy (300-390 nmex, 420 nmem). The red 

fluorescence is autofluorescence of chlorophyll.  b) Filaments after 6 days‟ growth under UV 

fluorescence. The starting inoculum was pre-stained with Calcofluor White (0.01%, Sigma-Aldrich): 

new growth is shown as Calcofluor White-negative cells. c) Bright field image of inoculated test 

surface after 14 days‟ growth showing prostrate and erect filaments, some bearing plurilocular 

sporangia.  

 

3.3.2. Adhesion strength in relation to applied shear stress using E. 

crouaniorum 

To examine the relationship between the adhesion strength of attached filaments and the 

applied shear stress, the water channel was used to impose a range of shear stresses to 

filaments attached to IS700. Results showed a linear relationship between adhesion strength 

(as % removal) and the applied shear stress (Fig. 3.2). Maximum removal from this test 

surface (IS700) was ca. 60 % at the highest pressure available (50 Pa). 
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Figure 3.2: Percentage removal of E. crouaniorum from IS700
 
as a function of wall shear stress. 

Biomass measured as relative fluorescence units. Mean of 3 replicates ± SD.  

 

3.3.3. Comparative assay of adhesion strength of several algae on a range 

of standard coatings  

To examine the characteristics of the assay, comparative bioassays were performed on a 

range of test surfaces. After 8 days‟ incubation with the starting inoculum, non-attached 

filaments were removed and quantified through chl a determination. For each alga, there 

were marked differences between surfaces in the amount of unattached filaments recovered 

from the culture dishes (Table 3.1). This may be the result of differences in the initial 

adhesion of inoculum, but could also be due to differences in the growth of unattached 

inoculum during the 8 days of incubation. Hence, the measure of unattached filaments must 

be used with caution and cannot strictly be regarded as indicating differences in initial 

adhesion per se. Unfortunately, it was not possible to obtain an accurate direct measure of 

attached biomass after 8 days because for some coatings, insufficient biomass had attached 

to give reliable readings in the plate reader. For all the starting inocula, except Hincksia, the 

amount of unattached filaments in dishes containing Nexterion slides was significantly 

greater than for all the other coatings (p≤0.05; GZLM, Pairwise comparison) suggesting 
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weaker adhesion to this surface. In the case of Hincksia, there was significantly more 

unattached biomass on IS900 (p≤0.05; GZLM, Pairwise comparison). 

Table 3.1: Unattached biomass after 8 days‟ incubation of test surfaces with filaments, as 

measured by chl a. Mean of 3 replicates ± SD.  

 Total unattached biomass (µg chl a) 

 Cultivated algae 
Uncultivated 

ectocarpoid algae  
E. crouaniorum 

 
Unidentified 

Ectocarpus sp. 
Hincksia secunda 

IS700 0.23 ± 0.1 1.4 ± 0.87 0.16 ± 0.04 0.4 ± 0.02 

IS900 0.26 ± 0.07 1.2 ± 0.6 0.64 ± 0.15 0.45 ± 0.26 

T2 0.28 ± 0.08 0.8 ± 0.5 0.14 ± 0.11 0.42 ± 0.11 

Nexterion 0.95 ± 0.28 8.8 ± 3.5 0.11 ± 0.06 1.04 ± 0.19 

 

After removing the unattached filaments, the test surfaces were incubated in fresh culture 

medium for a further 6 days (i.e. 14 days in total) before exposure to a shear stress of 8 Pa. 

Different amounts of biomass were attached and different proportions of the attached 

biomass were removed from the test surfaces by exposure to shear (Figs. 3.3b, 3.5b, 3.6b). 

E. crouaniorum.  

Significant differences in the biomass of attached filaments were observed after a total of 14 

days of growth (Fig. 3.3a). Biomass on Nexterion was lowest, T2 was intermediate while 

IS700 and IS900 together had the highest attached biomass (p≤0.05, GZLM, Pairwise 

comparison).  

The amount of biomass remaining on the coatings after exposure to 8 Pa shear stress is 

shown in Figure 3.3a. Comparison of biomass before and after exposure to the shear stress 

(expressed as % removal) is a measure of adhesion strength. The results (Fig. 3.3b) show 

that E. crouaniorum adhered weakly to IS900 and Nexterion, both surfaces showing high 

percentage removal, up to 90 %. Adhesion to IS700 and T2 was stronger with 38 % and 18 
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% removal, respectively. The adhesion strength of filaments was higher on T2 than on IS700, 

although more filaments were attached initially on IS700 compared to T2. The statistical 

analyses showed that removal from IS700 was significantly higher than from T2 and lower 

than from IS900 and Nexterion (p≤0.05, GZLM, Pairwise comparison).  

  

Figure 3.3: Adhesion assays with E. crouaniorum. a) Biomass of attached alga before and after 

exposure to a wall shear stress of 8 Pa, on 4 different surfaces, after 14 days of incubation at 15°C. 

Biomass was measured as relative fluorescence units. b) Percentage removal after exposure to 8 Pa 

shear stress, calculated from data presented in a). Means from 9 replicates ± 2 x SE. Values that are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above the bars. 

 

Statistical analysis of the combined performance of the surfaces (i.e. analysing together the 

amount of biomass before and after exposure to shear stress) revealed three groups. IS700 

and T2 formed one group; both had relatively high biomass before and after exposure to 

shear showing that E. crouaniorum attached most strongly to these surfaces in terms of both 

initial attachment and adhesion strength. IS900 and Nexterion formed two separate groups; 

although both had low biomass after exposure to shear stress, there was a difference in 

biomass before exposure to shear (p≤0.05, RM ANOVA, Post Hoc REGWQ). 

The differences between surfaces reported here were reproducible: in 3 separate 

experiments IS900 consistently gave a higher percentage removal of filaments under shear 
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than IS700, (69-80 % and 25-39 %, respectively). The release of filaments was consistently 

higher from Nexterion than T2 (% removal 53-90 % and 11-24 %, respectively).  

 

Figure 3.4: Two different morphotypes of E. crouaniorum on surfaces. a) organism with equal 

prostrate (p) and erect filaments (e). b) „star‟ morphotype: organism with more erect than prostrate 

filaments (below the plane of focus). 

 

After 14 days‟ growth, two different morphotypes were observed on all the surfaces (Fig. 

3.4). However, after exposure to shear stress, morphotype A with both erect and prostrate 

filaments was predominant, i.e. there was preferential loss of morphotype B, although on 

Nexterion and IS900, adhered filaments were rarely seen. 

Ectocarpus sp. 

Assays with this species were performed twice; the pattern of results presented below was 

observed in both experiments. Significant differences in the biomass of attached filaments 

were observed after a total of 14 days of growth (Fig. 3.5a). Nexterion had the lowest 

biomass, T2 had an intermediate amount of biomass and IS700 and IS900 both had the 

highest biomass (p≤0.05, GZLM, Pairwise comparison). These results are similar to those 

observed for E. crouaniorum. The assessment of adhesion strength on the 3 silicone-based 

coatings gave similar results to E. crouaniorum, adhesion to IS900 being the weakest (97 % 
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removal) followed by IS700 and T2 (Fig. 3.5b, p≤0.05, GZLM, Pairwise comparison). 

Adhesion strength on Nexterion was greater than that obtained for E. crouaniorum. However, 

the value for percentage removal from Nexterion has to be treated with care, because it was 

based on a very low starting value for biomass and therefore there is some uncertainty 

attached to the percentage removal data. 

  

Figure 3.5: Adhesion assays with Ectocarpus sp. a) Biomass of attached alga before and after 

exposure to a wall shear stress of 8 Pa, on 4 different surfaces, after 14 days of incubation at 15°C. 

Biomass was measured as relative fluorescence units. b) Percentage removal after exposure to 8 Pa 

shear stress, calculated from data presented in a). Means from 9 replicates ± 2 x SE. Values that are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above the bars. 

 

Statistical analysis of the combined performance of the surfaces (i.e. analysing together the 

amount of attached biomass, and that remaining after exposure to shear stress) showed that 

all of the surfaces were different from each other for this particular Ectocarpus sp. (p≤0.05, 

RM ANOVA, Post Hoc REGWQ).  

Taken together these results were broadly similar to those for E. crouaniorum and as for E. 

crouaniorum, the „star‟ morphotype (Fig. 3.4b) was rarely observed on the test surfaces after 

exposure to shear stress. On Nexterion and IS900, adhered filaments were rarely seen after 

exposure to shear. The morphologies of the filaments were identical to those of E. 
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crouaniorum, whereby only those with both erect and prostrate filaments attached strongly to 

the surfaces. 

Hincksia secunda 

Significant differences in the biomass of attached filaments were observed after a total of 14 

days of growth (Fig. 3.6a). Adhesion was weak on both Intersleek surfaces (Fig. 3.6b). 

Adhesion to Nexterion was strong with only 15 % of filaments being removed under shear. 

The experiment was performed twice, and the results showed that this pattern was 

reproducible. 

  

Figure 3.6: Adhesion assays with Hincksia secunda. a) Biomass of attached alga before and after 

exposure to a wall shear stress of 8 Pa, on 4 different surfaces, after 14 days of incubation at 15°C. 

Biomass was measured as relative fluorescence units. b) Percentage removal after exposure to 8 Pa 

shear stress, calculated from data presented in a). Means from 9 replicates ± 2 x SE. Values that are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above the bars. 

 

 

Statistical analysis of the combined performance of the surfaces (i.e. analysing together the 

amount of attached biomass, and that remaining after exposure to shear stress) revealed 

three performance groups in the order IS900=T2>IS700>Nexterion (p≤0.05, RM ANOVA, 

Post Hoc REGWQ).  
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Mixture of uncultivated „wild‟ ectocarpoid algae   

The biomass after 14 days‟ growth (Fig. 3.7a) was higher on IS700 and IS900 compared with 

T2 and Nexterion (p≤0.05, GZLM, Pairwise comparison). Adhesion strength, measured as 

percentage removal under shear (Fig. 3.7b) showed high removal values, up to 78% for 

IS900. The variation between surfaces was not statistically significant except between IS900 

and T2 (p≤0.05, GZLM, Pairwise comparison). Statistical analysis of the combined 

performance of the surfaces (i.e. analysing together the amount of attached biomass, and 

that remaining after exposure to shear stress) revealed three performance groups 

IS900/T2>T2/Nexterion>IS700 (p≤0.05, RM ANOVA, Post Hoc REGWQ). Comparable 

results were obtained in a repeat experiment conducted on a separate collection of wild 

material. 

  

Figure 3.7: Adhesion assays with „wild‟ ectocarpoid algae. a) Biomass of attached alga before and 

after exposure to a wall shear stress of 8 Pa, on 4 different surfaces, after 14 days of incubation at 

15°C. Biomass was measured as relative fluorescence units. b) Percentage removal after exposure to 

8 Pa shear stress, calculated from data presented in a). Means from 9 replicates ± 2 x SE. Values that 

are significantly different at p≤0.05 in GZLM test are indicated by different letters above the bars. 
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Microscopic observation showed that there were many erect and prostrate filaments on all 

the slides both before and after exposure to shear stress. Many diatoms were also observed 

on all test surfaces, particularly on Nexterion. On T2 and IS900, before exposure to shear 

stress, Ectocarpus was the main colonising genus although Hincksia and Pilayella were also 

present. After exposure to shear stress, only Ectocarpus and Hincksia were observed 

suggesting that Pilayella has weaker adhesion compared to the other two genera. 

Differences between genera were also observed for T2 and Nexterion. Both of these 

surfaces were colonized by Ectocarpus and Hincksia (with a few filaments of Pilayella) but 

after exposure to shear, there was proportionally more Hincksia than Ectocarpus remaining 

on Nexterion and vice versa for T2. 

Ulva linza  

The biomass that developed on the test surfaces was a consequence of germination and 

growth of spores that adhered during the settlement assay. Significant differences in the 

biomass of sporelings were observed after 6 days of growth (Fig. 3.8a), which probably 

reflects the density of spores that settled on the test surfaces. Higher biomass was observed 

on IS700 and IS900 compared to Nexterion and T2. 
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Figure 3.8: Adhesion assays with Ulva linza. a) Biomass of attached sporelings before and after 

exposure to a wall shear stress of 50 Pa, on 4 different surfaces, after 6 days of incubation at 18°C. 

Biomass was measured as relative fluorescence units. b) Percentage removal after exposure to 50 Pa 

shear stress, calculated from data presented in a). Means from 6 replicates ± 2 x SE. Values that are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above the bars. 

 

Biomass after exposure to 50 Pa shear stress showed further differences between the 

surfaces. Adhesion of sporelings was weak on IS900 (Fig. 3.8b) compared to Nexterion from 

which only 21 % of sporelings were removed. Sporelings had higher adhesion strength on T2 

than on IS700 (p≤0.05, GZLM, Pairwise comparison). 

 

3.4. Discussion  

The challenge of finding effective, environmentally friendly coatings has led researchers to 

improve their laboratory tools and to set up new bioassays (Briand 2009). These new tools 

and assays allow testing with more fouling organisms and a larger quantity or variety of test 

surfaces. The main purpose is to assess the intrinsic antifouling (AF) or FR properties of 

experimental coatings, enabling down-selection for further experiments or field assays. 

Laboratory-scale assays do not, and are not intended to reflect the complexities of the “real 
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world”. In the natural marine environment, organisms interact with each other and there are 

seasonal influences (variations in fouling pressure, environment) leading to an essentially 

uncontrolled situation. In contrast, laboratory-scale assays are relatively easy to perform; 

they provide for a low cost (facilities and amount of materials), a rapid assessment of the test 

coatings, in reproducible conditions (temperature, medium and species). They also allow the 

elucidation of underlying settlement and adhesion mechanisms leading to a more informed 

understanding of how coatings work, or do not work.  

A requirement for a good laboratory-based bioassay for non-biocidal AF/FR coatings is that 

the test organism should be capable of providing sufficient levels of starting inoculum 

(spores, cells, filaments, larvae) to permit the simultaneous testing of several coatings (e.g. if 

a compositional „ladder‟ is to be studied), with sufficient replicates for good statistics, and 

within the same experiment to facilitate direct comparability. The test organism should be 

collectable from the wild without undue seasonal dependence, or capable of being cultured, 

at relatively low cost. The assay results should be also consistent and reproducible from 

experiment to experiment. While biological and seasonal variability, especially of material 

collected from the wild, may mean that absolute levels of e.g. spore settlement, or adhesion 

strength will vary from one bioassay to another, it would be anticipated that relative 

performance should be consistent. For example, a reliable assay should place the 

performance of a standard set of coatings in the same rank order and be capable of 

discriminating sensitively between coatings with different properties. 

The study has reported the development of a protocol to investigate the growth and adhesion 

strength of ectocarpoid algae that meets the above requirements. The assay is based on the 

inoculation of test surfaces with small filaments of non-axenic E. crouaniorum (although it is 

possible to culture Ectocarpus spp. axenically, the plants that develop do not have a 

morphology typical of those collected from the wild, which may influence adhesion 

characteristics, see Chapter 2.4). Cultured ectocarpoid algae, especially Ectocarpus spp. are 
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good models for such assays due to their small size, facile culturability and rapid growth (life 

cycle completed in 3 months in the laboratory), allowing sufficient algal material to be 

collected in a short culture period. The protocol of the bioassay established above is easy to 

perform and to repeat under the same environmental conditions (temperature, culture 

medium, light). Each of the experiments was repeated at least once and results showed that 

the protocol was reproducible, allowing the replicated testing of different coatings and 

different ectocarpoid species.  

This study showed that an inoculum of short filaments of ectocarpoid algae obtained by 

blending, produced all the morphological structures of a normal organism observed in the 

wild (prostrate and erect filaments, and sporangia) after less than 2 weeks. The production of 

attached prostrate filaments was essential for this study since there are structures that 

attached to surfaces. After a few days, it was possible to observe the first prostrate filaments 

and the production of ramifications, which allowed the organisms to adhere more strongly. 

After 14 days, sporangia were observed on erect and prostrate filaments, which may allow 

further colonisation of the surface through the release of motile spores. The morphology of 

the filaments seemed to follow the same development as sporelings (Le Bail et al. 2008; 

Peters et al. 2008). After a few days, the cut filaments that attached to the surface, produced 

new cells of prostrate filaments in one or both directions, then after a few more days, erect 

filaments were produced. 

Two different morphotypes were observed for all the cultivated ectocarpoid species growing 

on the test surfaces. Morphotype A („normal‟) had both prostrate and erect filaments in equal 

quantity, whilst morphotype B consisted of more erect filaments in the form of a radiating 

star. The star morphotype was mostly present before exposure to shear stress, while the 

normal morphotype was more typical after shear stress. These observations indicate that the 

star morphotype had lower adhesion strength than the normal morphotype and confirm the 

importance of the prostrate filaments for adhesion. 
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The experiments with E. crouaniorum showed that the bioassay was reproducible across 

replicated assays and the results obtained from E. crouaniorum and Ectocarpus sp. collected 

from the field, were similar. The data demonstrated that two different isolates from two 

different locations and cultivated for different lengths of time (4 years versus 1.5 years) 

behaved in a similar way.  

Regarding the ability of the test protocol to enable adhesion preferences on different types of 

coating to be discriminated, a range of coatings/surfaces was used with different properties. 

These properties are fully described in Chapter 4, but in brief, the results of the surface 

energy measurements (Table 4.10) confirm the expectation that both PDMS-based coatings 

(T2 and IS700) are hydrophobic, low surface energy coatings with water contact angles 

>100° and a very low proportion of polar surface energy. By contrast, the amphiphilic IS900 

gave a much lower water contact angle, and while its total surface energy was similar to 

IS700, as anticipated the polar contribution to total surface energy was substantial (52.9%). 

Nexterion glass had a high surface energy, with a high proportion of the polar component, as 

anticipated for a hydrophilic surface. All three commercial test coatings had a low elastic 

modulus (1.17–1.42 MPa) and Ra roughness was in the submicron range (0.2–0.32 mm). 

The results of the assays on these coatings described in this Chapter showed that the assay 

protocol did discriminate between coatings with these different properties. E. crouaniorum 

attached weakly to the amphiphilic IS900 and more strongly to the more hydrophobic, 

silicone coatings (T2 and IS700). Similar results were obtained for the cultured Ectocarpus 

sp. collected from the wild and in this respect, the results for both cultivated Ectocarpus 

strains are rather similar to the results obtained for the sporelings of the green alga U. linza, 

which have been shown to adhere less strongly to amphiphilic than hydrophobic elastomeric 

coatings (e.g. Martinelli et al. 2008; Sundaram et al. 2011). However, there are differences 

between Ectocarpus spp. and U. linza in their relative adhesion to hydrophilic (Nexterion) 

glass surfaces. U. linza adhered strongly to Nexterion glass whereas E. crouaniorum and 
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Ectocarpus sp. showed weak adhesion to glass, both in terms of the initial attachment of 

inoculum, and subsequent adhesion strength of attached filaments. In this respect, 

Ectocarpus spp. appears to be more similar in adhesion characteristics to the three raphid 

diatoms studied by Holland et al. (2004), which attached more strongly to T2 than to glass.  

Comparing now the adhesion characteristics between different ectocarpoid genera, the 

experiments with H. secunda indicated that members of the same order (Ectocarpales) do 

not necessarily have the same preferences for adhesion since H. secunda attached more 

strongly to hydrophilic Nexterion glass than to T2. These data are different from previous 

observations made by Greer and Amsler (2002 and 2004) showing that spores of Hincksia 

irregularis preferred to settle more on hydrophobic surfaces compared to hydrophilic 

negatively charged surfaces. However, the preference of spores for settlement cannot be 

taken as an indicator of adhesion strength of young plants as shown for U. linza (e.g. Bennett 

et al. 2010). 

The experiment with the mixed, non-cultured ectocarpoid algae collected from the wild was 

performed in order to assess whether culturing influenced adhesion preferences. The 

collected algae were cleaned, but it was technically impossible to separate individual genera 

in sufficient quantity to perform replicated bioassays from the tufted, intermingled samples 

collected. A mix of genera was therefore observed, which may more accurately reflect the 

fouling potential of ectocarpoid algae in the wild. The results showed that the adhesion 

characteristics of the mixed wild inoculum broadly reflected those of the cultured Ectocarpus, 

although less distinctly. Visual observation showed that Ectocarpus was the dominant genus 

in the wild population with small proportions of Hincksia and Pilayella. These results suggest 

that the adhesion preferences obtained from the bioassay based on cultured Ectocarpus are 

broadly representative of the population of wild ectocarpoid algae if Ectocarpus is the 

dominant genus.  
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In conclusion, this Chapter reports the development of a routine protocol to perform 

laboratory-based adhesion assays on test surfaces, using the readily cultivated species E. 

crouaniorum. The results of the E. crouaniorum model were consistent with those obtained 

for Ectocarpus sp. that was more recently put into cultivation, and a mixture of non-cultivated 

wild species. The assay is rapid (2 weeks) and has been shown to be reproducible; the 

species is easy to cultivate and at a relatively low cost (provided suitable hydrodynamic 

apparatus is available). The results showed that the assay discriminates between surfaces 

with different properties, reproducibly, allowing reliable down-selection of test surfaces for 

further testing or field assay.  

The work described in this Chapter has contributed to a paper (Evariste E, Gachon CMM, 

Callow ME, Callow JA. 2012. Development and characteristics of an adhesion bioassay for 

ectocarpoid algae. Biofouling 28: 15-27.) (Appendix 14). 
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4. THE PREPARATION AND CHARACTERISATION OF TEST 

COATINGS 

4.1. Introduction 

One of the aims of the project was to understand the interactions between ectocarpoid algae 

and the surface and bulk properties of coatings that are most relevant to fouling-release (FR) 

performance -viz. wettability, surface energy and modulus. In Chapter 3, the discriminatory 

power of the developed adhesion bioassay was tested using a range of standard commercial 

coatings. Whilst the properties of these coatings differ, a proper analysis of the influence of 

properties on performance is best conducted via hypothesis-driven experiments with 

purpose-made test coatings in which properties (ideally only one) are systematically 

changed. In practice, the production of a series of coatings, which has similar chemistry and 

has only one property changed is difficult because there are links between most of the 

properties. In this Chapter, the preparation and characterisation of several sets of test 

coatings is described (Table 4.1). The coatings were prepared in the laboratory of 

International Paint in Gateshead and were used in laboratory and field assays, the results of 

which are described in subsequent Chapters.  

As explained in Chapter 1, two types of hydrophobic (and in the case of fluoropolymers, 

lipophobic) polymers are used to produce commercial FR coatings, silicone elastomers and 

fluoropolymers. For this project, they were used to produce four sets of experimental-scale 

FR coatings, which had different properties.  
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Table 4.1: Coatings and date of production. 

Name Coating series Year Prepared 
Results 

Chapter No. 

Condensation cured 
perfluoropolyether 

coatings 

mD10 / mD10-H / mE10-H 
(A small set of coatings for 
initial investigations of the 

effects of modulus) 

March 2010 

 
 

5,9 

Condensation cured 
silicone elastomer 

coatings 

S1, S2 and S31 
(A small set of coatings for 
initial investigations of the 

effects of modulus) 

March 2010 

 
 

5,9 

Silicone „hybrid‟ wettability 
series 

(A series of coatings for 
systematic studies on the 

effect of surface energy and 
hydrophobic/hydrophilic 

balance) 

January 2011 

 
 
 

6,10 

Silicone „modulus‟ series 
(A series of coatings for 
systematic studies of the 

effects of modulus/molecular 
weight) 

March 2012 

 
 

8,11 

Intersleek 
IS700 / IS900 
(Standards) 

March 2010 ; 
January 2011 

 

 

Fluoropolymer coatings. In 2010, a set of three coatings was produced for initial studies on 

the effect of modulus. These were based on modified hydroxyl-functionalised proprietary 

perfluoropolyethers Fluorolink D10, Fluorolink D10-H and Fluorolink E10-H. The coatings 

mD10, mD10-H and mE10-H were designed to have different modulus but similar surface 

energies. They all had different modulus as planned, but mE10-H was more hydrophilic than 

the other coatings on account of its content of poly(ethylene oxide) PEO. 

Silicone-based FR coatings.  In 2010, a small set of three silicone elastomer coatings were 

prepared for initial investigations of the effects of modulus. They were designed to have 

different moduli but similar wettabilities/surface energies. S1 coating was based on a medium 

molecular weight poly(dimethylsiloxane) PDMS (viscosity 4000 mPa s-1) while S2 coating 

was based on a low molecular weight PDMS (viscosity 750 mPa s-1). Both should have a low 

                                                
1
 Previously named LSE, MMO and HSE, respectively 
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surface energy being based on PDMS but since modulus is inversely proportional to polymer 

molecular weight (Brazel and Rosen 2012 referred to the rubber theory) it was anticipated 

that there would be distinct differences in modulus. In addition, a third coating S3 was 

designed to have different modulus than the two other coatings, but it also had a higher 

surface energy since it incorporated a proprietary trimethoxysilyl-terminated 

poly(dimethylsiloxane)-poly(ethylene oxide) PDMS-PEO block copolymer. 

Based on the results from the three coatings made in 2010, two more sets of coatings were 

prepared in 2011 and 2012 to test specific hypotheses regarding the influence of surface 

energy and modulus respectively. An extended range of six silicone „hybrid‟ coatings, which 

is referred to as the „wettability series‟, was made in 2011 with different surface energies and 

hydrophilic/hydrophobic balance. This was achieved by blending PDMS and a proprietary 

PDMS-PEO block copolymer in different ratios.  

In 2012, a range of low surface energy silicone coatings was made using different molecular 

weights (and viscosities) of PDMS to vary the modulus, while keeping surface energies 

similar.  

Commercial standards. The two commercial standard coating Intersleek® 700 (IS700) and 

900 (IS900) were produced in the laboratories of International Paint while Silastic® T2 (T2, 

Dow-Corning Corporation) and Nexterion® glass B slides were provided respectively by Dr. 

P. Willemsen (TNO, Den Helder) and Schott. T2 and Nexterion® glass were used in Chapter 

3 for the development of the ectocarpoid algae bioassay while both Intersleek coatings were 

used as standards for most of the assays during the project.  

 

4.2. Materials and methods 

All the coatings described in this Chapter were characterised using the methods explained in 

Chapter 2.9. The wettability/surface energy was measured using the contact angle methods; 
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the modulus was either measured using dynamic mechanical analyser or the elongation 

measurement method and the roughness was also measured using profilometer.  

4.2.1. Preparation of condensation cured perfluoropolyether coatings 

(fluoropolymer coatings) 

Components 

Chemically modified perfluoropolyethers were selected as condensation cure systems in 

which the glass transition temperature and surface energy can be modified in a controlled 

manner. These proprietary systems are based on Solvay‟s hydroxyl functional 

perfluoropolyethers know as Fluorolink D10, D10-H and E10-H. These have the general 

formula (CH3O)3Si-X-CF2-O-(CF2-CF2-O)p-(CF2O)q-CF2-X- Si(OCH3)3). The ratio of p and q 

values is between 1.9:1 and 1:1 dependent on the manufacturing route. As supplied these 

are non-reactive materials; they were converted to reactive species by International Paint, 

and for clarity the modified polymers were re-named mD10, mD10-H and mE10-H. The 

functional groups for the modifications were as follows: X = -CH2O- (i.e. formaldehyde) for 

mD10 and mD10-H: and X = -CH2(OCH2CH2)nO- (i.e. poly(ethylene oxide)) for mE10-H.  

The surface energy of the resulting polymer is dependent on the X functionality “D” or “E” 

and the modulus of the resultant coating is dependent on the molecular weight of the 

polymer (H = High). The molecular weight was 700 kg mol-1 for mD10-H, 500 kg mol-1 for 

mD10 and 750 kg mol-1 for mE10-H. From these, it was assumed that the coatings mD10-H 

and mE10-H would have slightly different modulus but possibly mE10-H would be more 

hydrophilic due to the presence of PEO and the coating mD10 should have similar surface 

energy to mD10-H (i.e. due to similar X functionality) but higher modulus than mD10-H and 

mE10-H as the molecular weight of mD10 was the lowest. 

The fluoropolymer formulations were a mix of 150 g polymer and 1.5 g of catalyst (bis (2-

ethylhexyl) hydrogen phosphate (EHHP).  
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4.2.2. Preparation of condensation cured silicone elastomer coatings  

S1, S2 and S3 coatings prepared in 2010  (Table 4.2):  

Three test coatings were produced based on PDMS (two viscosities) or PDMS-PEO in order 

to have different moduli. 

Polymers:   Hydroxyl-terminated PDMS 

- Low mol. wt. (Rhodorsil 48V750, viscosity 750 mPa s-1) 

- Medium mol. wt. (DC 3-0213, viscosity 4000 mPa s-1) 

HO-(Si(CH3)2O)n-H 

Trimethoxysilyl-terminated PDMS-PEO copolymer (IP Polymer 

XX/00843) 

(CH3O)3Si-X-(Si(CH3)2O)n(C2H4O)m-X-Si(OCH3)3 

Crosslinker:    Prehydrolysed tetraethylorthosilicate (TEOS) 

C2H5-(OSi(OC2H5)2O)n-C2H5 

Catalyst:  Bis (2-ethylhexyl) Hydrogen Phosphate (EHHP) 

[CH3(CH2)3CH(C2H5)CH2O]2PO2H 

Solvent:  Xylene 

C6H4(CH3)2 
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Table 4.2: Composition of the S1, S2 and S3 coatings. 

 Function Name Quantity (g) 

 
S1 

Polymer PDMS (DC 3-0213) 103.09 

Crosslinker TEOS 4.64 

Catalyst EHHP 0.83 

Solvent Xylene 34.02 

S2 
 

Polymer PDMS (Rhodorsil 48V750) 445.09 

Crosslinker TEOS 20.03 

Catalyst EHHP 2.22 

Solvent Xylene 19.46 

S3 

Polymer PDMS-PEO (Polymer XX/00843) 38.29 

Catalyst EHHP 0.33 

Solvent Xylene 8.89 

 

Condensation cured silicone „hybrid‟ coatings of different wettability/surface energy 

prepared in 2011 

In order to modify systematically the surface energy of silicone-based coatings, PDMS was 

blended with different proportions of a proprietary, trimethoxysilyl-terminated PDMS-PEO 

block copolymer (Table 4.3). 

Polymers:    Hydroxyl-terminated PDMS (viscosity 4000 mPa s-1) 

HO-(Si(CH3)2O)n-H 

 Trimethoxysilyl-terminated PDMS-PEO copolymer (IP XX/00843) 

(CH3O)3Si-X-(Si(CH3)2O)n(C2H4O)m-X-Si(OCH3)3 

Crosslinker:    Prehydrolysed tetraethylorthosilicate (TEOS) 

C2H5-(OSi(OC2H5)2O)n-C2H5 
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Catalyst:  Dioctyltin dilaurate (DOTDL) + 2,4-Pentanedione (catalyst stabiliser) 

((CH2)7CH3)2Sn(OCO(CH2)10CH3)2  CH3COCH2COCH3 

Solvent:  Xylene 

C6H4(CH3)2 
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Table 4.3: Composition of the silicone „hybrid‟ (PDMS-PEO) coatings of different wettability.  

 Function Name Quantity (g) 

H 

Polymer PDMS  103.09 

Crosslinker TEOS 4.64 

Catalyst DOTDL + stabiliser 8.42 

Solvent Xylene 34.02 

H1 
 

Polymers 
PDMS 113.36 

PDMS-PEO 11.40 

Crosslinker TEOS 3.65 

Catalyst DOTDL + stabiliser 6.60 

Solvent Xylene 15.00 

H2 

Polymers 
PDMS 100.00 

PDMS-PEO 25.00 

Crosslinker TEOS 3.65 

Catalyst DOTDL + stabiliser 6.60 

Solvent Xylene 15.00 

H3 

Polymers 
PDMS  88.00 

PDMS-PEO 36.75 

Crosslinker TEOS 3.65 

Catalyst DOTDL + stabiliser 6.6 

Solvent Xylene 15.00 

H7 

Polymers 
PDMS  36.75 

PDMS-PEO 88.00 

Crosslinker TEOS 3.65 

Catalyst DOTDL + stabiliser 6.6 

Solvent Xylene 15.00 

H10 

Polymer PDMS-PEO 124.75 

Catalyst DOTDL + stabiliser 6.6 

Solvent Xylene 18.65 
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Condensation cured silicones of different modulus prepared in 2012  

To vary the modulus of silicone coatings systematically, while keeping surface energies 

similar, PDMS with different viscosities (molecular weights), were used (Table 4.4). The 

expectation was that the modulus would be inversely proportional to the molecular 

weight/viscosity (i.e. the lower the viscosity, the harder the coating and the higher the 

modulus). 

Polymers:    Hydroxyl-terminated PDMS at different molecular weight/viscosity.  

Viscosity of different PDMS: 72 mPa s-1; 4000 mPa s-1; 6000 mPa s-1; 14000 mPa s-1 and 

50000 mPa s-1 (Dow Corning, data provided by the supplier). 

HO-(Si(CH3)2O)n-H 

Crosslinker:    Prehydrolysed tetraethylorthosilicate (TEOS) 

C2H5-(OSi(OC2H5)2O)n-C2H5 

Catalyst:  Dioctyltin dilaurate (DOTDL) + 2,4-Pentanedione (catalyst stabiliser) 

((CH2)7CH3)2Sn(OCO(CH2)10CH3)2  CH3COCH2COCH3  

Solvent:  Xylene 

C6H4(CH3)2 
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Table 4.4: Composition of the silicone „modulus‟ coatings. 

 Function Name Quantity (g) 

M1 

Polymer PDMS (72 mPa s
-1

) 288 

Crosslinker
2
 TEOS 78 

Catalyst
2
 DOTDL + stabiliser 46 

M2 
 

Polymer PDMS (4000 mPa s
-1

) 288 

Crosslinker TEOS 39 

Catalyst DOTDL + stabiliser 23 

M3 

Polymer PDMS (6000 mPa s
-1

) 288 

Crosslinker TEOS 39 

Catalyst DOTDL + stabiliser 23 

M4 

Polymer PDMS (14000 mPa s
-1

) 288 

Crosslinker TEOS 39 

Catalyst DOTDL + stabiliser 23 

Solvent
3
 Xylene 10 

M5 

Polymer PDMS (50000 mPa s
-1

) 288 

Crosslinker TEOS 39 

Catalyst DOTDL + stabiliser 23 

Solvent
3 

Xylene 40 

 

                                                
2 A higher ratio of catalyst and cross-linker was needed to properly cure the coating M1.   

 

3 PDMS polymers with a viscosity of 14000 and 50000 mPa s
-1

 were more viscous than the other 

PDMS polymers with lower viscosity. In order to produce coatings with similar dry film thickness, a 

solvent was therefore used for the production of M4 and M5 to lower the viscosity of the blends. 
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4.2.3. Preparation of standard coatings  

Three standard, silicone-based commercial coatings were used: T2, IS700, IS900, plus 

Nexterion® glass. The preparation of the coatings was explained in Chapter 3.2.3.  

IS700 (grey) and IS900 (grey) are both 3-pack commercial FR coatings (Table 4.5). IS700 is 

a hydrophobic silicone providing a smooth, non-stick surface (http://www.international-

marine.com/Product%20Datasheets/147+M+eng+A4.pdf). IS900 is a PDMS-based 

fluoropolymer that produces an amphiphilic coating, i.e. a surface that simultaneously 

possesses both hydrophobic and hydrophilic functionalities (http://www.international-

pc.com/MPYAPCPCProductDatasheets/3852+P+eng+A4.pdf). Both Intersleek coatings were 

applied over a tie coat according to manufacturer‟s instructions. The same tie coat, 

Intersleek® 731 (IS731), was applied for both Intersleek® coatings, to glass microscope slides 

that had been cleaned with xylene, using a roller, and then dried overnight. IS731 was 

composed of a base (Part A, pink, 58.92 g) mixed with a curing agent (Part B, clear, 41.01 

g). The top coats (i.e. finish coat) were applied by brush and allowed to cure overnight at 

room temperature before characterizing the surface properties. 

Table 4.5: Composition of Intersleek
®
 coatings. 

 Function Name Quantity (g) 

Intersleek® 700 

Grey 

Polymer, 
pigment and 

fluid 
IS700 Part A grey 76.7 

Curing agent IS700 Part B 18.5 

Catalyst IS700 Part C 4.8 

Intersleek® 900 

Grey 

Polymer, 
pigment and 

fluid 
IS900 Part A grey 77.2 

Curing agent IS900 Part B 12.9 

Catalyst IS900 Part C 9.9 

 

http://www.international-pc.com/MPYAPCPCProductDatasheets/3852+P+eng+A4.pdf
http://www.international-pc.com/MPYAPCPCProductDatasheets/3852+P+eng+A4.pdf
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4.2.4. Application of the test coatings 

To coat all the glass slides together and quickly, they were attached to panels, cleaned using 

xylene and then coated using a roller with an unpigmented Veridian tie coat (International 

Paint) with 5-10 ml of xylene as solvent; another tie coat IS731 was used for the two 

Intersleek coatings as explained above. Unpigmented Veridian tie coat, which is a clear 

acrylic polymer, dries after 4 hours at room temperature. A tie coat was used because the 

top coats do not adhere well to glass. The top coats were applied using a brush to have a 

good thickness of coating (>100 µm for a dry film) and cured at room temperature (~20°) and 

40% relative humidity (RH). 

 

4.3. Coating Characterisation: Results and Discussion 

All the experimental test coatings were transparent, facilitating microscope observations. The 

two Intersleek coatings were opaque.  

 

4.3.1. Condensation cured fluoropolymer coatings (2010) 

The coatings mD10 and mD10-H were hydrophobic, with water contact angle ca. 92.5° and 

had low surface energy with a low polar component (Table 4.6). As expected, they had 

different moduli; mD10 had the highest modulus with 20 MPa, followed by mD10-H with 7.75 

MPa. In comparison, the storage modulus of mE10-H was only 1.95 MPa compared with 

7.75 and 20 MPa for mD10-H and mD10, respectively. However, mE10-H containing 

poly(ethylene oxide) groups, was hydrophilic, with a mean water contact angle of 56.3° and a 

high total surface energy (44.2 mN m-1). This is reflected in a substantially higher polar 

component of surface energy for mE10-H (Table 4.6). All the three coatings were „smooth‟ in 

the micrometer range with Ra roughness lower than 0.3 µm. 
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Table 4.6: Properties of the fluoropolymer coatings. The number of replicates was 3 for contact 

angle, 2 for the storage modulus and 5 for the roughness. Values shown are mean ± SD. The modulus 

was measured using the DMA (Chapter 2.9.2.1).  

Coatings mE10-H mD10-H mD10 

Molecular weight (kg mol
-1

) 750 700 500 

Modulus (using DMA) Storage Modulus E‟ at 20°C (MPa) 1.95 ± 1.4 7.75 ± 2.3 20 ± 12.5  

Contact angle 

Static Water Contact Angle (θ°Ws) 56.3 ± 0.9 92.8 ± 1.3 92.3 ± 1.6 

Static Diiodomethane Contact Angle (θ°Ds) 68.2 ± 1.1 95.6 ± 1.5 83.1 ± 6.7 

Total Surface Energy γS (mN m
-1

) 44.2 ± 0.4 16.9 ± 0.9 19.8 ± 2.4 

Dispersive Surface Energy γD (mN m
-1

) 16.8 ± 0.7 7.7 ± 0.5 13.2 ± 3 

Polar Surface Energy γP (mN m
-1

) 27.4 ± 1.1 9.2 ± 0.4 6.6 ± 0.6 

% Polar surface energy 62 54.6 33.3 

Roughness Ra (µm) 0.25 ± 0.02 0.19 ± 0.04 0.16 ± 0.01 

 

4.3.2. Condensation cured silicone elastomer coatings (2010 series) 

As expected, all three coatings had different moduli. For S1 and S2, the molecular weights of 

the starting PDMS were different and this was reflected in differences in moduli (0.34 cf. 0.6 

MPa). In addition, the modulus of S3 was almost 3x higher than that for S1 modulus, 

although still below 1 MPa showing they were both relatively „soft‟ with moduli below those of 

the two Intersleek formulations (Table 4.11). However, the surface properties of these three 

coatings were different. S1 and S2 coatings, being solely PDMS-based, were hydrophobic, 

with water contact angles of ca. 90o and similarly low total surface energies (24-25 mN m-1) 

(Table 4.7). Both coatings had low polarity. The S3 coating had a higher surface energy than 

S1 and S2 by virtue of containing a polar PDMS-PEO copolymer. This is reflected in a higher 

total surface energy and a much higher proportion of the polar surface energy component 
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(Table 4.7). All three coatings were „smooth‟ in the micrometer range with Ra roughness 

lower than 0.3 µm. 

Table 4.7: Properties of the coatings based on PDMS or PDMS-PEO block copolymer. Ra: 

arithmetic average of roughness-height. The number of replicates was 3 for contact angle, 2 for the 

storage modulus and 5 for the roughness. Values shown are mean ± SD. The modulus was measured 

using the DMA (Chapter 2.9.2.1.). 

Coatings S1 S2 S3 

Viscosity (mPa s
-1

) 4000 750 unknown 

Modulus (using DMA) 
Storage Modulus E‟ 

at 20°C (MPa) 
0.34 ± 0.01 0.6 ± 0.02 0.96 ± 0.05 

Contact angle/ 
Surface energy 

Static Water Contact 
Angle (θ°Ws) 

91.7 ± 1.1 89.7 ± 1 56.3 ± 1.5 

Static 
Diiodomethane 

Contact Angle (θ°Ds) 
71.4 ± 0.6 69.7 ± 2.5 68.2 ± 2.4 

Total Surface Energy 
γS  

(mN m
-1

) 
24 ± 0.2 25.3 ± 0.9 44.1 ± 0.8 

Dispersive Surface 
Energy γD (mN m

-1
) 

19.5 ± 0.5 20.3 ± 1.5 16.8 ± 1.4 

Polar Surface 
Energy γP (mN m

-1
) 

4.7 ± 1.1 5 ± 0.5 27.4 ± 1.7 

% Polar surface 
energy 

19.6 19.8 62.0 

Roughness Ra (µm) 0.15 ± 0.01 0.05 ± 0.01  0.23 ± 0.06 
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4.3.3. Condensation cured silicone hybrids (2011 series) 

Table 4.8: Wettability and surface energy of the silicone „hybrid‟ wettability series. The number 

of replicates was 3 for all measurements. Values shown are mean ± SD. The different methods used 

to measure contact angle are shown using different cell colours. For the measurement of the static 

contact angle after one month of leaching, the slides were cleaned with a sponge and dried in air for 

three days before measurements. 

Coatings H H1 H2 H3 H7 H10 

Static 
Contact 
Angle 

(before 
leaching) 

Static Water 
Contact Angle 

(θ°Ws) 
101.1 ± 0.4 97.7 ± 0.1 83.3 ± 0.9 76.4 ± 0.4 70.4 ± 0.3 64 ± 0.4 

Static 
Diiodomethane 
Contact Angle 

(θ°Ds) 

69.6 ± 1.6 67.1 ± 0.8 64.7 ± 0.4 64.7 ± 0.8 63.8 ± 1.1 59.8 ± 0.1 

Total Surface 
Energy γS  

(mN m-1) 
23.3 ± 0.8 24.8 ± 0.4 29.4 ± 0.5 32.3 ± 0.4 35.7 ± 0.4 40.6 ± 0.2 

Dispersive 
Surface Energy 

γD (mN m-1) 
22 ± 1 23 ± 0.5 22.3 ± 0.2 21.3 ± 0.4 21 ± 0.5 22.4 ± 0.1 

Polar Surface 
Energy γP  
(mN m-1) 

1.3 ± 0.2 1.9 ± 0.1 7.1 ± 0.5 11 ± 0.2 14.7 ± 0.2 18.1 ± 0.3 

% Polar Surface 
Energy 

5.6 7.5 24.1 34.0 41.1 44.7 

Static 
Contact 
Angle 

(after 1 
month of 
leaching) 

Static Water 
Contact Angle 

(θ°Ws) 
106.2 ± 0.2 97.9 ± 0.4 82.1 ± 1.2 75.6 ± 0.4 71.2 ± 1.1 65.2 ± 0.7 

Static 
Diiodomethane 
Contact Angle 

(θ°Ds) 

70.6 ± 0.2 67.4 ± 1 66.4 ± 0.2 65.2 ± 0.3 65.2 ± 0.3 61 ± 0.2 

Total Surface 
Energy γS  

(mN m-1) 
22.3 ± 0.1 24.1 ± 0.5 28.2 ± 0.5 31.7 ± 0.7 34.1 ± 0.7 38.8 ± 0.4 

Dispersive 
Surface Energy 

γD (mN m-1) 
21.8 ± 0.1 22 ± 0.6 19.1 ± 0.3 18.6 ± 0.2 17.7 ± 0.2 18.9 ± 0.3 

Polar Surface 
Energy γP  
(mN m-1) 

0.5 ± 0.3 2.1 ± 0.5 9.1 ± 0.7 13.1 ± 0.7 16.5 ± 0.8 19.8 ± 0.6 

% Polar Surface 
Energy 

2.4  8.5  32.3  41.4  48.2  51.2  

Dynamic 
Contact 
Angle 

(no 
leaching) 

Advancing 
Water Contact 
angle (θ°Wadv) 

108.7 ± 0.5 102.9 ± 2.6 97.1 ± 1.6 97.3 ± 2.4 92.9 ± 1.6 94.2 ± 0.8 

Receding Water 
Contact angle 

(θ°Wrec) 
64.1 ± 1.9 43.8 ± 4.8 33.6 ± 0.4 32.4 ± 2.7 29.8 ± 1.2 25.4 ± 0.5 

Contact Angle 
Hysteresis 

(θ°Wadv - θ°Wrec) 
44.7 59.2 63.5 64.9 63.1 68.8 

Air 
Underwa

ter 
Contact 
Angle 
(θ°Wund) 

Contact Angle 
before leaching  

89.2 ± 3.3 87.1 ± 0.9 85.3 ± 0.4 84.8 ± 0.6 82.2 ± 1.2 65.5 ± 1 

Contact Angle 
after 1 month of 

leaching 
91.6 ± 2.2 76 ± 1.2 68.3 ± 1.7 68.6 ± 1 70.5 ± 1.5 60.8 ± 1.5 
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The silicone „hybrid‟ coatings produced with different blended ratios of PDMS polymer and 

PDMS-PEO copolymer had a graduated range of wettabilities/surface energies. Static water 

contact angles (measured on dry coatings in air) showed a range of wettability from 64° to 

101.1° (Table 4.8 before leaching). This was reflected in a similarly wide range of total 

surface energies (23.3 to 40.6 mN m-1) and in the ratio of polar to dispersive surface energy 

components (Table 4.8; Fig. 4.1a (before leaching)). Measurements of static contact angle 

and surface energy were also obtained after a month of leaching (in deionised water), 

followed by drying in air, in order to explore the stability of the coatings after immersion. The 

results showed that the coatings after immersion had very similar wettabilities (from 65.2° to 

106.2°) and surface energies (from 21.8 to 38.8 mN m-1) compared with coatings before 

immersion, demonstrating that the surface properties of the coatings did not change 

substantially after immersion and re-drying (Fig. 4.1a and Table 4.8). Thus, the original 

design criterion to produce a set of stable coatings with different hydrophobic/hydrophilic 

balances was obtained. 

However, it could be argued that any change in properties as a consequence of immersion 

could have been reversed by drying the coatings in air before remeasuring their static 

contact angles. Therefore further information on wettability and stability of hydrated coatings 

was obtained by the „captive bubble‟ method in which the contact angle of air bubbles was 

measured underwater before (i.e. the measurements were obtained after 30 s to 1 min of 

immersion in MilliQ water) and after one month of leaching (Table 4.8 and Fig. 4.1b). The 

data of the underwater contact angles before one month‟s leaching came from an experiment 

described in Chapter 10, but for the purpose of observing the effect of immersion on the 

wettability it was necessary to introduce the results in this Chapter. These measurements 

showed that a range of wettabilities was also observed on immersed coatings before 

leaching and as expected, the greater the proportion of polar PEO in the blend, the lower the 

contact angle/the greater the wettability. However, the range of wettabilities was somewhat 
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narrower than that obtained from static contact angle measurements on dry coatings. Two 

effects were observed: a) the wettabilities of coatings between the two extremes tended to 

become more uniform; b) coatings containing the highest proportion of PDMS (H, H1) 

appeared to become less hydrophobic after immersion. The latter effect can be anticipated 

since it has been demonstrated that in air, the non-polar methyl groups (i.e. –CH3) of the 

PDMS backbone orient themselves towards the air interface in order to reduce the surface 

energy of the system (Chen et al. 2004). However, underwater, in a more hydrophilic 

environment, it would be anticipated that the methyl groups would bury themselves in the 

bulk, and this would be reflected in reduced water contact angles- as observed.  

Leaching the coatings for 1 month tended to further reduce the captive bubble contact 

angles, i.e. make the coatings more hydrophilic, except for H, the most hydrophobic coating 

containing no PEO (Table 4.8, Fig 4.1b). The tendency of amphiphilic coatings containing 

PEG to become more hydrophilic following immersion, albeit for shorter periods of time than 

those used here, was recently demonstrated by Cho et al. (2012) using the captive bubble 

method. They attributed this to progressive exposure of the polar PEG groups. 

Finally, the dry coatings (no immersion) were examined by dynamic contact angle analysis. 

This provides values for the advancing and receding contact angles of a water droplet and as 

discussed in Chapter 2, the resulting values, in particular the difference between advancing 

and receding angles, known as „contact angle hysteresis‟ is often taken to indicate the 

degree of surface reconstruction following immersion (Schmidt et al. 2004). All coatings 

showed substantial contact angle hysteresis with progressively increasing values as the 

proportion of PEO in the coatings increased. Similar effects were noted for amphiphilic 

coatings containing PEG (Cho et al. 2012). Taken together with the captive bubble 

measurements, these results suggest significant surface restructuring of the coatings 

following immersion, i.e. reorganisation of PEO and PDMS domains bringing more PEO to 

the surface. 
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Figure 4.1: Comparison of surface properties of silicone „hybrid‟ coatings before and after a 

month of leaching. a) Static water contact angle before leaching (blue bars) and after one month 

leaching in deionised water followed by drying in air (orange bars). b) Underwater contact angle before 

leaching (blue bars) and after one month leaching in deionised water (orange bars). Values shown are 

mean of three replicates ± SD. The values are also presented in Table 4.7. 

 

Silicone „hybrid‟ coatings had similar mechanical properties in terms of elastic modulus (Fig. 

4.9). All these coatings were „smooth‟ in the micrometer range with Ra roughness lower than 

0.3 µm (Fig. 4.9).  

In conclusion, this series of coatings had similar mechanical properties and a range of 

wettability, they thus provide a good test of the effect of wettability/surface energy/polarity on 

the attachment and adhesion strength of ectocarpoid algae. 

Table 4.9: Properties of the silicone „hybrid‟ series. Ra: arithmetic average of roughness-height. 

The number of replicates was 3 for all the property measurements. The modulus was measured using 

the elongation measurement method (Chapter 2.9.2.2.). Values shown are mean ± SD. 

Coatings H H1 H2 H3 H7 H10 

Elastic Modulus (MPa) 1.02 ± 0.09 0.92 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.98 ± 0.07 1.07 ± 0.06 

Roughness Ra (µm) 0.23 ± 0.05 0.07 ± 0.00 0.09 ± 0.07 0.24 ± 0.16 0.21 ± 0.04 0.25 ± 0.29 

Dry Film Thickness (µm) 284 ± 45 291 ± 7 483 ± 154 314 ± 31 231 ± 14 155 ± 10 
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4.3.4. Condensation cured silicone elastomer coatings with different 

modulus (2012 series). 

The five silicone elastomer coatings produced with PDMS polymers with different 

viscosities/molecular weights, were designed to show a range of elastic moduli. As 

anticipated, being PDMS-based, all coatings were hydrophobic, with similar water contact 

angles, ca. 100° and similar surface energies (~23 mN m-1) (Table 4.10). All the coatings 

were „smooth‟ in the micrometer range as Ra roughness was 0.21 µm or less. The thickness 

of this series of coatings was similar between the coatings and was higher than 100 µm, so 

the thickness should not affect the adhesion strength of fouling organisms as Chaudhury et 

al. (2005) showed that thickness of coatings has an effect on the adhesion strength of spores 

and sporelings of U. linza, if it is lower than 100 µm.  Results showed that all the elastic 

modulus values of the coatings were significantly different (Table 4.10; p≤0.05, GZLM, 

Pairwise comparison). However, whilst it was anticipated that the use of PDMS with such 

wide differences in viscosity/molecular weight would give moduli differing by at least by an 

order of magnitude, the determined values only ranged between 0.7 to 1.5 MPa. 



88 
 

Table 4.10: Properties of the silicone “modulus” series. Ra: arithmetic average of roughness-

height. The number of replicates was 3 for all the property measurements. The modulus was 

measured using the elongation measurement method (Chapter 2.9.2.2). Values shown are mean ± 

SD. 

Coatings M1 M2 M3 M4 M5 

PDMS viscosity 
(mPa s-1) 

72 4000 6000 14000 50000 

Elastic Modulus (MPa) 1.5 ± 0.02 1.04 ± 0.02 0.91 ± 0.03 0.85 ± 0.04 0.73 ± 0.03 

Contact 
angle 

Static Water 
Contact Angle 

(θ°Ws) 
102.6 ± 0.7 

100.8 ± 1. 
1 

99.4 ± 1 99.5 ± 0.5 99.1 ± 1.8 

Static 
Diiodomethane 
Contact Angle 

(θ°Ds) 

70.4 ± 0.6 69.7 ± 0.6 69.1 ± 0.8 69 ± 0.3 69 ± 2.5 

Total Surface 
Energy γS  

(mN m-1) 
22.3 ± 0.3 22.7 ± 0.3 23.2 ± 0.6 23.2 ± 0.1 23.2 ± 1.4 

Dispersive 
Surface 

Energy γD  
(mN m-1) 

21.2 ± 0.4 21.2 ± 0.4 21.3 ± 0.3 21.4 ± 0.3 21.3 ± 1.2 

Polar Surface 
Energy γP  
(mN m-1) 

1.2 ± 0.2 1.5 ± 0.3 1.8 ± 0.3 1.8 ± 0.2 1.9 ± 0.2 

% Polar 
Surface 
Energy 

5.2  6.5  7.8  7.6  8.1 

Rough-
ness 

Ra (µm) 0.05 ± 0.02 0.04 ± 0.02 0.04 ± 0.01 0.07 ± 0.02 0.21 ± 0.13 

Dry Film Thickness (µm) 200 ± 56 278 ± 22 268 ± 33 314 ± 78 252 ± 27 

 

4.3.5. Characterisation of standard coatings 

Three standard, silicone-based commercial coatings were used during this project: T2, 

IS700, IS900, plus Nexterion® glass. The surface properties of these standard surfaces are 

shown in Table 4.11. IS700, being a PDMS-based coating, was hydrophobic, with a water 

contact angle ca. 102°, a surface energy of 32 mN m-1 and almost no polar component. 

However, IS900 was amphiphilic, with a water contact angle ca. 75.9°, similar surface energy 

than IS700 and a equal ratio of polar and dispersive components, reflecting its amphiphilic 

design. They both had similar elastic moduli (1.3 MPa) and they were „smooth‟ surfaces in 

the micrometer range with Ra roughness lower or equal to 0.3 µm. 
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T2, being a PDMS-based coating, was a hydrophobic surface with a water contact angle ca. 

100.9° and it had no polar component in contrast to Nexterion® glass, which was hydrophilic 

with water contact angle ca. 12.1° and a high polar component. T2 had an elastic modulus 

similar to the two Intersleek materials, while Nexterion®, being a hard glassy surface, had a 

much higher elastic modulus. Both surfaces were „smooth‟ in the micrometer range with Ra 

roughness lower than 0.3 µm. 

Table 4.11: Properties of standard surfaces. Ra: arithmetic average of roughness-height. The 

number of replicates was 3 for all the property measurements. The modulus was measured using the 

elongation measurement method (Elastic modulus; Chapter 2.9.2.2) and also using DMA (storage 

modulus; Chapter 2.9.2.1) for both Intersleek coatings. The elastic modulus value for T2 was taken 

from Feinberg et al. (2003). Values shown are mean of 3 replicates ± SD. Elastic modulus and Ra 

values for Nexterion
®
 glass were that provided by the manufacturer 

(http://www.schott.com/nexterion/english/application/faq/general.html?so=uk&lang=english. 

 Coatings IS700 grey IS900 grey T2 
Nexterion 

glass 

Contact angle 

Static Water Contact Angle 
(θ°Ws) 

102  0.5 75.9  0.53 100.9 ± 0.8 12.1 ± 1.2 

Static Diiodomethane Contact 
Angle (θ°Ds) 

54.4  1.1 74.2  1 69.9 ± 0.9 37.5 ± 1.8 

Surface Energy γS (mN m
-1

) 32  0.7 29.1  0.7 23.3 ± 0.4 70.8 ± 0.3 

Dispersive Surface Energy γD 

(mN m
-1

) 
31.7  0.8 13.7  1.1 23.2 ± 0.4 24.1 ± 0.8 

Polar Surface Energy γP  

(mN m
-1

) 
0.3  0.1 15.4  0.6 0.06 ± 0.0 46.7 ± 0.3 

% Polar surface energy 0.8 52.9 0.3 66 

Elastic modulus (MPa) 1.4  0.0 1.2  0.1 1.4 6.4 x 10
4
 

Storage modulus (MPa) 1.1 1   

Roughness Ra (µm) 0.2  0.0 0.3  0.1 0.2 ± 0.05 0.003 

Dry film Thickness (µm) 212 ± 34 311 ± 61 91 ± 21 0 

 

 

http://www.schott.com/nexterion/english/application/faq/general.html?so=uk&lang=english
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5. INITIAL LABORATORY ASSAYS TO INVESTIGATE THE 

INFLUENCE OF COATING MODULUS ON THE ADHESION OF    

E. CROUANIORUM AND U. LINZA 

5.1. Introduction 

Biofouling research has been looking at the effect of surface and bulk properties of coatings 

on the adhesion of marine fouling organisms, especially on the effect of wettability/surface 

energy. It has been demonstrated that these surface properties influence the attachment 

and/or the adhesion strength of marine organisms such as the green alga Ulva linza, 

barnacles and bacteria (Chapters 3; e.g. Schilp et al. 2007; Finlay et al. 2010). However, 

other properties such as modulus and thickness are of importance and are known to have an 

effect on the attachment and/or the adhesion strength of hard fouling organisms such as 

barnacles and pseudobarnacles (Berglin et al. 2003; Stein et al. 2003; Kim et al. 2007 and 

2008; Kaffashi et al. 2012). In particular, for coatings of equivalent surface energy and 

thickness, fracture mechanics suggests that the adhesion strength of hard-fouling organisms 

on elastomeric surfaces should be proportional to (γE)½ where γ is the surface energy and E 

is the elastic modulus, i.e. the harder the coating, the stronger the adhesion (Brady and 

Singer 2000). However, the situation for compliant soft-fouling organisms is somewhat 

different and in the study of the influence of modulus of PDMS coatings on the adhesion of a 

marine alga, Chaudhury et al. (2005) showed that the adhesion strength of sporelings of U. 

linza on model PDMS network coatings was strongly influenced by elastic moduli as it was 

weaker on the coatings having low moduli (0.2 and 0.8 MPa) compared to coatings with 

higher moduli (2.7 and 9.4 MPa). In addition, Weinman et al. (2009) confirmed that the 

sporelings of U. linza had higher adhesion on a high modulus surface (i.e. 18 MPa) than on a 

low modulus surface (i.e. 1.2 MPa). 

Since the only study of the effect of modulus on adhesion of marine algae was performed 

with the green alga U. linza, at an early stage in the development of this project it was 
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decided to make some initial studies on the effects of modulus on ectocarpoid algae, using 

two sets of coatings available within International Paint, viz. a small set of silicone-based 

coatings with moduli <1 MPa, and a small set of fluoropolymer-based coatings with moduli 

anticipated to be in the range 2-20 MPa. Although it was realised that these two sets differed 

significantly in their chemistry it was considered that this initial study would provide a guide to 

subsequent coating designs based on a single coating chemistry.  

Although fluoropolymers are normally associated with attempts to make coatings more 

hydrophobic, because of the low surface energy donated by fluorine groups, the particular 

set of fluoropolymers available within International Paint also enabled some coatings to be 

prepared which differ in modulus. The preparation of these perfluoropolyether (PFPE) or 

fluoropolymer coatings was described in Chapters 4.2.2. and 4.3.4. They were produced 

from in-house modifications to Fluorolink D or Fluorolink E, which are polymer modifiers 

developed by Solvay Solexis to improve the performance of polymeric materials by 

„combining‟ the typical properties of fluorinated compounds with untypical physical properties 

such as low glass transition temperature and low viscosity. By using modified Fluorolink D 

materials with different molecular weight, it was possible to produce two coatings with 

different moduli (20.0 and 7.75 MPa for mD10 and mD10-H respectively), but similar, low 

surface energies (16.9-19.8 mN m-1, Table 4.6). The initial plan to produce a third coating 

using Fluorolink E was only partly successful. As shown in Chapter 4.3.4., the modulus of 

coating mE10-H (1.95 MPa) was significantly different to that of the other two coatings but 

the total surface energy and the polarity of this coating, was substantially higher compared 

with the other two coatings on account of the fact that the modified Fluorolink E10-H contains 

poly(ethylene oxide) PEO groups. This poses certain limitations to the analysis of the results 

of the adhesion experiments.   

The second set of coatings based on silicone was the three PDMS coatings presented in 

Chapters 4.2.2 and 4.3.2: viz. S1, S2 and S3 (Tables 4.2 and 4.7). The two hydrophobic 
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coatings S1 and S2 were produced from PDMS polymers with different molecular weight, 

giving moduli of 0.34 to 0.6 MPa. The third coating S3, produced from PDMS-PEO had a 

higher modulus of 0.96 MPa, but due to the presence of PEO compound, the coating also 

had a higher surface energy than S1 and S2. As for the fluoropolymer coatings, the fact that 

two properties change for one of the coatings poses certain limitations to the analysis of the 

results of the adhesion experiments. 

The aim of this Chapter was to observe how the modulus of coatings could influence the 

initial attachment and adhesion strength of ectocarpoid algae and to compare the obtained 

results with the adhesion strength of U. linza. The starting hypothesis based on the results of 

Chaudhury et al. (2005) for sporelings of U. linza, was that the increase of moduli of the 

silicone-based coatings would increase the release of E. crouaniorum. However, it was also 

considered that the increase of moduli presented by the fluoropolymer coatings would have 

relatively little effect on the increase of adhesion of E. crouaniorum, as the range of modulus 

of the fluoropolymer coatings was higher than the modulus that had an influence on the 

adhesion of U. linza sporelings (Chaudhury et al. 2005). 

 

5.2. Materials and methods 

The fluorinated coatings and the PDMS block copolymer coatings were leached for 1 week in 

a 30-liter tank of deionised water recirculated through a carbon filter before the experiment, 

while IS700 and IS900 were leached in a similar tank for at least a month, in order to remove 

residual curing agents (as explained in Chapter 3.2.2). Two algal species were tested: E. 

crouaniorum CCAP 1310/300 and U. linza, following the methods explained in Chapters 2.8 

and 3.2. Experiments with both sets of coatings were conducted at the same time and with 

the same set of internal standards (IS900/IS700). However, for clarity the results are 

presented separately. 
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After blending and filtration, the starting inoculum (i.e. the filtrate) for adhesion assays with E. 

crouaniorum consisted of small filaments averaging 5 ± 1 cells (mean of 50 observations ± 2 

x SE). The experiment was performed twice, the results from both experiments were similar. 

The results of one experiment are presented. Statistical analysis of the adhesion data is 

explained in Chapter 2.10, and statistical tables for the whole Chapter are presented in 

Appendix 4. 

 

5.3. Results 

 

5.3.1. Results with the fluoropolymer coatings 

E. crouaniorum  

The amount of unattached filaments was quantified after 8 days of growth (Table 5.1) 

through chlorophyll a (chl a) determination (Chapter 2.5). Despite all surfaces being 

inoculated with the same concentration of filaments, there were marked differences between 

the coatings. The dishes containing the coating mE10-H and the two Intersleek coatings had 

the lowest amount of unattached biomass (Table 5.1; p≤0.05, GZLM, Pairwise comparison). 

Unattached biomass in dishes containing the two low surface energy coatings, mD10 and 

mD10-H was significantly different. 

Table 5.1: Unattached biomass after 8 days of growth of tested surfaces, as measured by chl a. 

Means of 3 replicates ± SD. Values that are significantly different at p≤0.05 in GZLM test are indicated 

by different letters after the unattached biomass values. The three experimental coatings are arranged 

in order of increasing modulus (mE10-H= 1.95 MPa, mD10-H= 7.75 MPa, mD10=20 MPa). 

Coatings IS700 IS900 mE10-H mD10-H mD10 

Total unattached 
biomass (µg chl a) 

0.2 ± 0.2
a
 0.1 ± 0.1

a
 0.3 ± 0.3

a
 1.1 ± 0.2

b 
2.1 ± 0.1

c
 

 



94 
 

Before exposing the attached filaments to a shear stress, they were incubated for a further 6 

days of growth (i.e. 14 days in total). The amount of biomass of attached filaments on the 

different coatings was measured and was different before and after a shear stress exposure 

of 8 Pa (Figs. 5.1a and b). The relative performance of the standard coatings IS700 and 

IS900 was consistent with the results reported in Chapter 3, i.e. high initial attached biomass 

and greater ease of removal under shear from IS900 compared with IS700 (p≤0.05, RM 

ANOVA). 

All three experimental coatings had a lower initially attached biomass compared with the 

Intersleek standards. There were also significant differences in initially attached biomass 

between the three experimental coatings, the biomass of the attached filaments on the 

coating mD10-H being significantly higher than on the coating mD10 (p≤0.05, GZLM, 

Pairwise comparison); while mE10-H had the lowest attached biomass (Fig. 5.1a). 

Removal of E. crouaniorum from the three experimental coatings under shear was lower than 

from IS900 and was either greater or similar to IS700 (Fig. 5.1b). Between the three 

experimental coatings, the attached filaments on mD10-H had significantly higher adhesion 

than on mD10 and mE10-H, both of which had intermediate levels of removal (p≤0.05, 

GZLM, Pairwise comparison). Comparing the two coatings mD10 and mD10-H with similar 

surface energies, mD10, which had the higher modulus, had lower initial attached filaments 

and higher percentage removal of these filaments compared to mD10-H. It is therefore 

possible to conclude that these two coatings showed that the increase of modulus (in the 

range of 7.75 to 20 MPa) decreases the attachment and adhesion strength of E. 

crouaniorum. However, no conclusion can be drawn from the differences observed on the 

coating mE10-H as this coating had a different modulus to the other two, but also a very 

different, and more polar surface energy. It can just be concluded that filaments of E. 

crouaniorum attached to a hydrophilic coating with low modulus seemed to have lower 

adhesion strength than on harder and more hydrophobic coatings. 



95 
 

As for the experiments using E. crouaniorum described in Chapter 3, the two morphologies 

were present before shear stress exposure i.e. „star morphology‟ and „normal morphology‟ (in 

Chapter 3, Fig. 3.5) on all the surfaces. However, after the shear stress exposure, the normal 

morphology was the most represented. 

  

Figure 5.1: Adhesion assays with E. crouaniorum. a) Biomass of attached alga before and after 

exposure to a wall shear stress of 8 Pa, on 5 different surfaces, after 14 days of incubation at 15°C. 

Biomass was measured as relative fluorescence units. b) Percentage removal after exposure to 8 Pa 

shear stress, calculated from data presented in a). Means from 9 replicates ± 2 x SE. Values that are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above the bars. The 

three experimental coatings are arranged in order of increasing modulus (mE10-H= 1.95 MPa, mD10-

H= 7.75 MPa, mD10=20 MPa). 

 

U. linza  

After 6 days of growth, sporelings of U. linza, covered all surfaces. Growth on all three 

experimental coatings was not significantly different (Fig. 5.2a; p≤0.05, GZLM, Pairwise 

comparison). There were similar, high levels of biomass on the standard coatings IS700 and 

IS900 (Fig. 5.2a), and adhesion strength under shear was substantially weaker on IS900 

compared with IS700 (Fig. 5.2b, p≤0.05, GZLM, Pairwise comparison).  
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Biomass after exposure to 50 Pa shear stress showed distinct differences between coatings 

and there was no, or very little removal of sporelings under shear from either mD10 or mD10-

H whilst removal from mE10-H was almost total (Fig. 5.2b).  

Since the percentage removal from mD10 and mD10-H was close to zero, no effect was 

observed due to the modulus. However, the adhesion strength of the sporelings was 

significantly different between the two hydrophobic coatings (mD10 and mD10-H) and mE10-

H, the sporelings attached weakly to the amphiphilic fluoropolymer coating (with lower 

modulus) compared to the hydrophobic coating (with high or medium modulus). However, 

comparisons between these coatings are difficult to make since there were differences in 

both modulus and surface energy:  if two properties are different, it is impossible to conclude 

if it is one or the combination of both that influences the adhesion strength.  

 

  

Figure 5.2: Adhesion assays with U. linza. a) Biomass of attached sporelings before and after 

exposure to a wall shear stress of 50 Pa, on 5 different surfaces, after 6 days of incubation at 18°C. 

Biomass was measured as relative fluorescence units. b) Percentage removal after exposure to 50 Pa 

shear stress, calculated from data presented in a). Means of 6 replicates ± 2 x SE. Values that are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above the bars. The 

three experimental coatings are arranged in order of increasing modulus (mE10-H= 1.95 MPa, mD10-

H= 7.75 MPa, mD10=20 MPa). 
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5.3.2. Results of the silicone coatings 

E. crouaniorum  

After 8 days of growth, the amount of unattached filaments was quantified (Table 5.2) 

through chlorophyll a (chl a) determination (Chapter 2.5). Although all the surfaces had been 

inoculated with the same concentration of filaments, there were marked differences between 

the coatings. The biomass of unattached filaments in dishes containing the coating S3 was 

significantly greater than for all the other coatings (Table 5.2; p≤0.05; GZLM, Pairwise 

comparison). 

Table 5.2: Unattached biomass after 8 days of growth of silicone elastomer coatings, as 

measured by chl a. Means of 3 replicates ± SD. Values that are significantly different at p≤0.05 in 

GZLM test are indicated by different letters after the unattached biomass values. The three 

experimental coatings are arranged in order of increasing modulus (S1=0.34 MPa; S2=0.6 MPa and 

S3=0.96 MPa). 

Coatings IS700 IS900 S1 S2 S3 

Total unattached 
biomass (µg chl a) 

0.1 ± 0.1
a 

0.2 ± 0.2
a 

0.7 ± 0.3
a 

0.6 ± 0.2
a 

1.4 ± 0.4
b 

 

Before the exposure of the attached filaments to 8 Pa shear stress, the coatings were 

incubated for 6 further days (i.e. 14 days in total). The biomass of attached filaments on the 

different surfaces was measured and showed differences between the coatings before and 

after the shear stress exposure (Figs. 5.3a/b).  

The differences in initial attached biomass were not as expected from the unattached 

filament results (Table 5.2 and Fig. 5.3a). The two Intersleek coatings had higher initial 

biomass attached to their surfaces compared to the test coatings. The statistical analysis 

showed that the biomass on coating S1 was significantly similar to S3, which had the lowest 

biomass, but also to S2, which had an intermediate initial biomass (Fig. 5.3a; p≤0.05, GZLM, 

Pairwise comparison).  
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Figure 5.3b shows that the adhesion strength of attached filaments on the coatings IS900 

and S3 was the lowest with a % removal up to 79 %. The adhesion strength of E. 

crouaniorum on the other coatings was higher with % removal of 22 % for S2, 28 % for IS700 

and 56 % for S1. The three test coatings were all significantly different; the filaments 

attached to their surface had different adhesion strength (Fig. 5.3b; p≤0.05, GZLM, Pairwise 

comparison).  

Comparing the two hydrophobic coatings S1 and S2 with moduli of 0.34 and 0.6 MPa 

respectively, the attached filaments adhered less strongly to S2. It is therefore possible to 

conclude that these two coatings showed the anticipated effect of modulus in a range of 0.34 

to 0.6 MPa, i.e. lower adhesion on the lower modulus coating. However, the results of S3 

were not as anticipated; despite S3 having the highest modulus, the attached filaments had 

the lowest adhesion strength on this coating. It could maybe be explained by the fact that S3 

had a higher surface energy and was more polar than S1 and S2, and as shown in Chapter 

3, adhesion of E. crouaniorum tends to be weak on more hydrophilic or amphiphilic surfaces. 
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Figure 5.3: Adhesion assays with E. crouaniorum. a) Biomass of attached alga before and after 

exposure to a wall shear stress of 8 Pa, on 5 different surfaces, after 14 days of incubation at 15°C. 

Biomass was measured as relative fluorescence units. b) Percentage removal after exposure to 8 Pa 

shear stress, calculated from data presented in a). Means from 9 replicates ± 2 x SE. Values that are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above the bars. The 

three experimental coatings are arranged in order of increasing modulus (S1=0.34 MPa; S2=0.6 MPa 

and S3=0.96 MPa). 

 

  

Figure 5.4: Filaments of E. crouaniorum on surfaces after exposure to shear stress. Prostrate 

filaments (p) were paler in colour than the erect filaments (e) due to their lower concentration of 

chloroplasts inside the cells, and presence of a sporangium (s). 

 

As for the experiments using E. crouaniorum described in Chapter 3, before the shear stress 

exposure, two morphologies were observed: „star morphology‟ and „normal morphology‟ (in 
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Chapter 3, Fig. 3.4) on all the surfaces. However, after the shear stress exposure, the normal 

morphology was the most represented (Fig. 5.4). 

 

 

U. linza 

After 6 days of growth, the biomass of sporelings on the coatings was different, which 

probably largely reflects differences in the density of spores that settled on the surface. The 

two Intersleek coatings had the highest initial biomass compared to the other coatings, which 

had relatively similar initial biomass. The coatings S1 and S2, which had the low biomass 

were grouped together (Fig. 5.5a; p≤0.05, GZLM, Pairwise comparison). However, they were 

significantly different from S3, which had intermediate amount of attached biomass.  

After exposure to 50 Pa shear stress, the remaining biomass was different between the 

coatings. With 87 % removal, sporelings adhered weakly to IS900 compared to all other 

coatings (Fig. 5.5b). The sporelings on the coating IS700 had high adhesion strength with 

only 17 % removal, but this was higher than from the test coatings. The adhesion strength of 

the three test coatings was not significantly different, with a percentage removal up to 9 % 

and was higher than the two Intersleek coatings (p≤0.05, GZLM, Pairwise comparison). As 

the percentage removal was low (<10 %), it was not possible to draw any conclusion from 

the data. It is possible that the exposure to a higher shear stress values would have shown 

differences between the coatings. 
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Figure 5.5: Adhesion assays with U. linza. a) Biomass of attached sporelings before and after 

exposure to a wall shear stress of 50 Pa, on 5 different surfaces, after 6 days of incubation at 18°C. 

Biomass was measured as relative fluorescence units. b) Percentage removal after exposure to 50 Pa 

shear stress, calculated from data presented in a). Means of 6 replicates ± 2 x SE. Values that are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above the bars. The 

three experimental coatings are arranged in order of increasing modulus (S1=0.34 MPa; S2=0.6 MPa 

and S3=0.96 MPa). 

 

 

5.4. Discussion 

The results on the attachment and adhesion strength of E. crouaniorum with the commercial 

„standard‟ coatings IS700 and IS900 were similar to those reported in Chapter 3 -i.e. 

adhesion strength on the amphiphilic IS900 was significantly weaker than on IS700- 

demonstrating the consistency of the bioassay between different experiments.  

The general starting hypothesis behind these experiments was that the adhesion strength of 

E. crouaniorum would be positively correlated to coating modulus with low adhesion strength 

on coatings with low modulus (i.e. lower than 3 MPa; the silicone-based coatings) and higher 

adhesion strength on coatings with higher modulus (the fluoropolymer coatings). To test this 

hypothesis, a set of three fluoropolymer coatings were used with the following moduli 1.95 
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MPa (mE10-H), 7.75 MPa (mD10-H) and 20.0 MPa (mD10). The results show that this 

simple hypothesis was not supported since there was no direct correlation between ease of 

removal of biomass under shear and modulus, adhesion strength being greatest on mD10-H, 

the coating of intermediate modulus. However, it must be recalled that whilst coatings mD10 

and mD10-H differed in modulus, and had very similar surface energies, coating mE10-H 

was a very polar coating with a correspondingly high surface energy. This makes it difficult to 

compare the results for this coating with the other two since two properties were changing 

simultaneously. When the two coatings with similar surface energies were compared directly, 

then it appeared that there was an effect of modulus but unexpectedly, attachment and 

adhesion strength of E. crouaniorum was apparently negatively correlated with modulus as 

the higher the modulus was, the lower the initial attachment and adhesion strength was. This 

result is impossible to reconcile with any current model of the influence of modulus on 

release of soft-fouling organisms under shear (e.g. Chaudhury et al. 2005) suggesting that 

some other parameter may be influencing adhesion of E. crouaniorum on these coatings.  

However, for the silicone-based coatings, the obtained results were different. The two 

hydrophobic coatings S1 and S2 performed differently, showing that the determined moduli 

of these two coatings respectively 0.32 and 0.6 MPa influenced the adhesion strength of E. 

crouaniorum. The results obtained from these two hydrophobic coatings S1 and S2, made 

from two different molecular weights of PDMS, support the hypothesis since the attached 

filaments on the coating S1 adhered weakly to the surface compared to S2. However, the 

results obtained with coating S3 do not support the conclusion. This could be explained as 

the coating S3 was hydrophilic and E. crouaniorum does seem to attach weakly to 

hydrophilic and amphiphilic surfaces, whatever the modulus is (Chapter 3 and results 

obtained with the fluoropolymer coatings in this Chapter). 

To summarise these results, these two sets of coatings showed different effects on the 

adhesion strength of E. crouaniorum. Both, positive and negative relationships were 
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observed between the adhesion strength and the modulus of the test coatings. However, the 

range of moduli was different, the fluoropolymers had a range between 1.95 and 20 MPa 

while the silicone-based coatings were all below 1 MPa. Moreover, both sets of coatings 

showed that whatever the modulus was, if the coating was hydrophilic, the adhesion strength 

of E. crouaniorum was relatively weak. In the light of this confusing result, a different, more 

extensive set of hydrophobic coatings with varying modulus, based on different molecular 

weight of PDMS, was constructed in 2012 (see Chapter 8) to investigate systematically how 

cross-link density and modulus influence the adhesion strength of E. crouaniorum. 

For both sets of coatings, levels of surface colonisation of U. linza sporelings were highest on 

the Intersleek coatings compared to the test coatings (both sets). These differences might 

reflect differences in the level of initial spore settlement and typically spore settlement in U. 

linza is favoured by low surface energy (Callow and Callow 2005; Bennett et al. 2010). 

However, spore settlement in the reported experiment was not determined since the main 

interest was in fouling-release performance. Therefore, it is not possible to comment on the 

reasons for the observed differences. 

With regard to the results with U. linza, for the two standard Intersleek coatings the weaker 

adhesion strength on IS900 compared with IS700 was similar to that shown in Chapter 3 and 

was similar to the adhesion strength of spores observed in previous studies (Thompson et al. 

2010), and in this respect E. crouaniorum and U. linza were similar. However, it should be 

noted that removal of U. linza from these coatings was achieved at 50 Pa shear stress 

compared to the 8 Pa used for E. crouaniorum – indicating that the adhesion strength of U. 

linza was substantially greater.  
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6. LABORATORY ASSAYS OF ADHESION TO SILICONE „HYBRID‟ 

COATINGS WITH SYSTEMATIC VARIATIONS IN SURFACE 

ENERGY AND WETTABILITY 

6.1. Introduction 

One of the most studied theories to account for the adhesion properties of cells and 

organisms in relation to substratum properties, is the so-called „Baier curve‟. Baier and 

DePalma (1971) postulated a complex relationship between adhesion strength of organisms 

and substratum surface energy (or surface tension) (Fig. 6.1) in which there is a zone of 

minimal adhesion (the „Baier minimum‟) on surfaces with surface energy between 20 and 30 

mN m-1. Since then a number of researchers have demonstrated a similar relationship for 

bacteria on different test surfaces. For example, Dexter et al. (1975; Dexter 1976 and 1979) 

showed that the number of attached bacteria after immersion in natural seawater followed 

the „Baier curve‟ with lower adhesion around 25 mN m-1. Zhao et al. (2005 and 2007) also 

showed a minimal adhesion for Escherichia coli on Ni-Cu-P-PTFE coatings, which have a 

surface energy of 25-30 mN m-1. However, all of the previous cited studies have used diverse 

surfaces (glass, Teflon, steel, fluoropolymer coatings, poly(ethylene)), with widely different 

physico-chemical properties (polarity, roughness, modulus), not just surface energy.  

On the other hand, while systematic studies of the effect of wettability/surface energy of other 

types of fouling organism have generally shown a relationship between surface wettability 

and adhesion, such relationships have not been as complex as that postulated by Baier.  

Furthermore, the nature of the relationship is species-dependent; while Finlay et al. (2002) 

showed a clear relationship between static contact angle of a range of alkanethiol SAMs and 

the adhesion of spores of Ulva linza, with highest adhesion strength on the most hydrophilic 

surfaces, the adhesion of the diatom Amphora coffeaeformis on the same surfaces showed 

an inverse relationship. In neither case was there any evidence of a zone of minimal 
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adhesion analogous to the „Baier minimum‟. Other studies with xerogel surfaces varying 

systematically in their wettability have demonstrated that adhesion strength of sporelings of 

U. linza was linearly correlated with surface wettability of uncharged 

fluorocarbon/hydrocarbon-modified xerogels, adhesion being greatest on the more 

hydrophilic/polar surfaces (Bennett et al. 2010) while adhesion of the diatom Navicula 

perminuta again showed the inverse of this relationship (Finlay et al. 2010). Finlay et al. 

(2010) also showed that cypris larvae of Balanus amphitrite preferred to settle on high 

energy/hydrophilic surfaces but the adhesion strength of the attached juveniles or the adult 

barnacles that subsequently developed was not examined and in general it seems that there 

are no systematic studies of the effect of surface wettability on the adhesion strength of 

marine invertebrates comparable with those performed on algae, and on surfaces that are 

designed to vary in just one parameter. However, tests on a wide range of different surfaces 

(Teflon, silicone coatings and epoxy) suggest that the adhesion strength of adult barnacles is 

lower on low energy surfaces (Swain and Schultz 1996; Swain et al. 1998). 

In Chapter 3, it was shown that Ectocarpus crouaniorum adhered less strongly to the 

amphiphilic IS900 compared to the hydrophobic IS700. Chapter 5 demonstrated that there 

was similarly weak adhesion to S3 that was a hydrophilic coating containing both PEO and 

PDMS. In view of these results and the literature as reviewed above, it was decided to 

prepare and test a range of coatings that present systematic changes in surface energy by 

varying the ratios of PDMS and a PDMS-PEO copolymer, while keeping other properties, 

specifically modulus, relatively constant (see Chapter 4, Fig. 4.8). At the ends of the range of 

the silicone „hybrid‟ coatings were a hydrophobic, low surface energy, low polarity coating 

and a high surface energy, high polarity coating. This range of wettability was lower than the 

range of wettability tested by Baier, but contained the „Baier minimal‟ zone where lower 

adhesion strength was observed. Depending on the exact proportion of PDMS-PEO; varying 

degrees of surface amphiphilicity were anticipated. The hypothesis behind the experiments 



106 
 

reported in this Chapter was that there would be an optimal surface energy/wettability at 

which adhesion strength of E. crouaniorum would be at a minimum.   

 

Figure 6.1: „Baier curve‟. It proposes that relative adhesion to test surfaces  changes as a complex 

function of surface tension (or surface energy) (Baier and DePalma 1971). Dyne cm
-1 

is the equivalent 

of mN m
-1

 used for the surface energy in this thesis. 

 

An implicit assumption behind studies on the relationship between wettability/surface energy, 

such as that demonstrated by the „Baier curve‟, is that the measurement of this surface 

property, as obtained through measurements of the contact angles of macroscopically visible 

droplets of test fluids, accurately reflects the interaction between the surface and the 

adhesives used by fouling organisms, an interaction which occurs at the molecular scale.  

While this assumption may be true for extremely homogeneous surfaces such as SAMs, it is 

clearly less likely to be the case for surfaces with chemical and topographic heterogeneity. 

This is a particularly significant issue for amphiphilic coatings, which, as explained in Chapter 

1, are coatings made from the blending of immiscible polymers or contrasting chemistries of 
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block copolymers, which are generally a hydrophobic and a hydrophilic components. Due to 

these two components, the surfaces of these coatings are chemically and topographically 

heterogeneous at a micro/nano-scale and for many coatings, these properties can be 

dynamic. Some coatings, for example, change on immersion, as the hydrophilic blocks are 

driven to the wetted surface (Cho et al. 2011 and 2012; Sundaram et al. 2011). In such 

situations, simple measurements of static contact angle using water droplets are unlikely to 

capture the properties of a surface, as perceived by the fouling organism. Therefore, in the 

literature, more investigations are using additional methods to try to relate surface properties 

to the adhesion of organisms. These methods include measurements of dynamic contact 

angles (advancing/receding) and the associated contact angle hysteresis and underwater 

(captive bubble) measurements. More complex surface characterisations of surface 

heterogeneity include atomic force microscopy (AFM) in dry and wet states, X-ray 

photoelectron spectrometry (XPS) to determine the chemical composition of the surface 

(before and after immersion).  

The silicone „hybrid‟ coatings tested in this chapter were anticipated to show varying degrees 

of surface amphiphilicity due to their composition. As such, dynamic contact angles 

(advancing/receding) and the associated contact angle hysteresis and underwater (captive 

bubble) measurements were made to complement standard static contact angle measures of 

surface energy. 

 

6.2. Materials and methods 

Composition and characterisation of the wettability series 

The tested surfaces were the 6 silicone „hybrid‟ coatings presented in Chapters 4.2.2 and 

4.3.2: H, H1, H2, H3, H7 and H10 and the commercialised standard IS700 (presented in 

Chapters 4.2.3 and 4.3.5) (Tables 4.8, 4.9 and 4.11). These coatings were leached in a 30-
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liter tank of deionised water, recirculated through a carbon filter for at least 2 months, in order 

to remove residual curing agents. Prior to the start of the experiment, the slides were rinsed 

with MilliQ water and gently wiped with a sterile sponge in order to remove any bacteria that 

had adhered to the surfaces. All the slides were equilibrated for 2h in ASW prior to the start 

of the experiment.  

The coating used as a standard in these experiments was IS700. While the intention was 

also to include IS900, as in previous experiments, the batches of IS900 made for this 

purpose at International Paint did not show the performance anticipated from experiments 

reported in Chapters 3 and 5, for reasons that are not clear, as the release of filaments of E. 

crouaniorum and sporelings of U. linza was lower than previously observed.   

Two algal species were tested: E. crouaniorum CCAP 1310/300 and U. linza, following the 

methods explained in Chapters 2 and 3.2, using 8 Pa for E. crouaniorum and 20 Pa for U. 

linza. All assays were performed at least twice to demonstrate consistency; results from one 

representative assay are illustrated below. Statistical analysis of the adhesion data is 

explained in Chapter 2.10, and statistical tables for the whole Chapter are presented in 

Appendix 5. 

6.3. Results 

6.3.1. E. crouaniorum  

After blending and filtration, the starting inoculum (i.e. the filtrate) for adhesion assays with E. 

crouaniorum consisted of small filaments averaging 7.3 ± 1.3 cells (mean of 50 observations 

± 2 x SE).  

After 8 days of growth, the amount of unattached filaments was quantified through chl a 

determination (Chapter 2.5) and differences were observed between the coatings, despite 

being inoculated with the same concentration of filaments. The biomass of unattached 

filaments was significantly higher for the dishes containing the coatings IS700, H, H7 and 
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H10 (Table 6.1; p≤0.05, GZLM, Pairwise comparison). However, the dishes containing the 

coatings H7 and IS700 were also grouped with the other coatings, which had lower amounts 

of unattached filaments. These results show that the surface wettability did not significantly 

influence the unattached biomass except for the two extreme coatings (H and H10), which 

contained only PDMS or PDMS-PEO, respectively. 

Table 6.1: Unattached biomass, after 8 days‟ incubation of test coatings, as measured by chl a. 

Mean of 3 replicates ± SD. Values, which are significantly different at p≤0.05 in GZLM test, are 

indicated by different letters after the unattached biomass values. 

Coatings IS700 H H1 H2 H3 H7 H10 

Total unattached 

biomass (µg chl a) 

0.43 ± 

0.02
a,b 

0.67 ± 

0.36
a 

0.28 ±  

0.07
b 

0.22 ± 

0.05
b 

0.3 ± 

0.04
b 

0.37 ± 

0.11
a,b 

0.68 ± 

0.21
a 

 

After measurement of the unattached filaments, the coatings were incubated for a 6 further 

days (i.e. 14 days in total) before their exposure to 8 Pa shear stress. The amount of 

biomass attached to the coatings was measured and differences were observed between the 

coatings before and after the shear stress exposure (Figs. 6.2a/b).  

There were differences in initial attached biomass between the coatings after 14 days of 

growth, but not as expected from the unattached filament results (Table 6.1 and Fig. 6.2a). 

Figure 6.2a showed that the initial biomass before the exposure to the shear stress of the 

test coatings was different between the coatings, the lowest attached biomass was observed 

on the most hydrophobic coatings H, H1 and H2 while the highest biomass was observed on 

the most hydrophilic coatings H3, H7 and H10. Statistical analysis of the results from the 

silicone 'hybrid' coatings revealed three significant groups: the initial biomass on H was the 

lowest, followed by the coatings H1 and H2 grouped together while the coatings H3, H7 and 

H10 had the highest initial attached biomass on their surface (Fig. 6.2a; p≤0.05, GZLM, 

Pairwise comparison).  

Figures 6.2b,c show that the adhesion strength of E. crouaniorum (as % removal under 

shear) varied with wettability and total surface energy. Adhesion was weakest on the two 
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most hydrophilic coatings H7 and H10, with a percentage removal around 80 %. The four 

other test coatings had attached filaments with higher adhesion strength, with % removal 

between 39 % and 68 %. The biomass on coating IS700 had high adhesion strength, as the 

percentage removal was only 26 % showing that the test coatings were more effective than 

IS700. Statistical analyses showed that the attached filaments on the coating H2 had the 

highest adhesion strength, followed by the coatings H1 and H3 that were grouped together 

(Figs. 6.2b,c; p≤0.05, GZLM, Pairwise comparison). Adhesion strength of E. crouaniorum 

filaments on the coating H was intermediate with 68 % removal while the adhesion on the 

coatings H7 and H10 was weak. The results show that surface wettability/energy clearly 

influenced adhesion, but there was not a direct or simple correlation, in fact that shape of the 

removal curve resembled an „inverse Baier curve‟, i.e. there was a total surface energy of 

approx. 30 mN m-1, at which adhesion was maximal.    

The relationship between % removal and % polar surface energy (Fig. 6d) was similar to that 

shown for total surface energy. Possible relationships between adhesion and contact angle 

hysteresis and underwater contact angles (generally taken to reflect dynamic surface 

reorganisation events and the influence of immersion) are explored by plots shown in Figures 

6.2e-f. In neither case, was there an apparent relationship between either of these surface 

measurements and ease of removal suggesting that other surface properties were 

determining adhesion strength.  
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Figure 6.2: Adhesion assays with E. crouaniorum. a) Biomass of attached alga before and after 

exposure to a wall shear stress of 8 Pa, on 7 different surfaces, after incubation for 14 days at 15°C. 

Biomass was measured as relative fluorescence units. Percentage removal of the wettability series 

after exposure to shear stress of 8 Pa, calculated from data presented in (a) represented as a function 

of the wettability (b), total surface energy (c), % polar surface energy (d), contact angle hysteresis (e) 

and underwater contact angle (θWund refers to the external angle of the air bubble (i.e. the „water-side‟ 

calculated angle; see Chapter 2.9.1)) after a month of leaching (f). Means of nine replicates ± 2 x SE. 

Values that are significantly different at p≤0.05 in GZLM test are indicated by different letters above 

bars. IS700 was not included in the statistical analysis since the purpose was to test the significance 

of the results in relation to the hypothesis based on the silicone hybrid series. Measurements of static 

and underwater contact angles were performed before and after one-month leaching. Analysing the 

two methods separately, contact angles before and after leaching were slightly different, but had 

similar relationship to the % removal, so it was decided to plot only one set of data (before immersion 

for the static contact angle and after immersion for the underwater contact angle). 

 

6.3.2. U. linza 

The biomass that developed on the coatings was a consequence of the germination and 

growth of spores of U. linza that adhered during the settlement assay. The coating IS700 had 

higher biomass of sporelings attached to the surface than the test coatings. Significant 

differences were observed in the initial biomass of sporelings after 7 days of growth (Fig. 

6.3a; p≤0.05, GZLM, Pairwise comparison). Lower sporeling biomass was observed on the 

coating H compared to the other test coatings (Fig. 6.3a). These differences probably reflect 

differences in the density of spores that settled on the surfaces. 
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Figure 6.3: Adhesion assays with U. linza. a) Biomass of sporelings before and after exposure to a 

wall shear stress of 20 Pa, on 7 different surfaces, after incubation for 7 days at 18°C. Biomass was 

measured as relative fluorescence units. Percentage removal of the wettability series after exposure to 

shear stress of 20 Pa, calculated from data presented in (a) represented as a function of the wettability 

(b), total surface energy (c), % polar surface energy (d), contact angle hysteresis (e) and underwater 

contact angle after a month of leaching (f). Means of six replicates ± 2 x SE. Values that are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above bars. IS700 was 

not included in the statistical analysis since the purpose was to test the significance of the results in 

relation to the hypothesis based on the silicone hybrid series. Measurements of static and underwater 

contact angles were performed before and after one-month leaching. Analysing the two methods 

separatly, contact angles before and after leaching were slightly different, but had similar relationship 

to the % removal, so it was decided to plot only one set of data (before immersion for the static contact 

angle and after immersion for the underwater contact angle). 

 

Remaining biomass after the exposure to 20 Pa shear stress showed further differences 

between the surfaces. IS700 had the lowest removal (5 %) compared to the experimental 

silicone hybrids. For coatings H-H7, sporeling adhesion strength was strongly related to 

surface wettability (Fig. 6.3b), total surface energy (Fig. 6.3c), and relative polarity (Fig. 

6.3d), and, adhesion was weaker as hydrophilicity increased. However, one coating, H10, 

the most polar and hydrophilic, did not follow this trend. These results could also be 

observed as complex relationship between the adhesion strength of sporelings of U. linza 

and the wettability/surface energy where adhesion to H7 would be minimal due to 

unmeasured properties. These results were in marked contrast to those with E. crouaniorum. 

There was no clear relationship between adhesion strength and either contact angle 

hysteresis, or captive bubble contact angle underwater (Figs. 6.3e,f). 

 

6.4. Discussion 

Amphiphilic coatings containing PEG as the hydrophilic component and generally fluorinated 

groups as the hydrophobic component showed good FR properties (Gudipati et al. 2005; 

Wang et al. 2011), but PDMS has recently been used as hydrophobic components 
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(Sundaram et al. 2011) and also showed good performance against sporelings of U. linza 

and the diatom Navicula. 

A new design of coatings developed by International Paint, using different ratios of the 

blending of PDMS with PDMS-PEO to produce a series of coatings with a graduated range 

of wettability, was presented in Chapter 4.2.2 and 4.3.3 and they were tested in this Chapter 

against filaments of E. crouaniorum and sporelings of U. linza. This series of coatings was 

well-characterised and provided a good test to observe the influence of wettability since 

modulus was relatively constant across the range (i.e. 1 MPa) and all surfaces had Ra 

roughness values in the sub-micron range (<0.3 µm; Table 4.9). The starting hypothesis 

behind the experiments reported in this Chapter was that there would be an optimal surface 

energy, at which adhesion strength of the two species tested would be at a minimum.   

Considering E. crouaniorum first, the results presented in this Chapter partially support this 

hypothesis since lowest adhesion was obtained on the coatings with a total surface energy 

between 35.7 and 40.6 mN m-1. However, the data were also confusing since overall there 

was no obvious relationship between total surface energy or surface polarity, in fact H, the 

least polar coating, also showed good release performance and the relationship between the 

total surface energy and the adhesion strength of E. crouaniorum can be seen as an inverse 

„Baier curve‟, with the highest adhesion strength around 30 mN  m-1, close to the region 

where Baier and DePalma (1971) postulated lowest adhesion.   

In trying to account for these rather surprising results, the amphiphilic nature of these 

coatings should be considered. One of the characteristics of amphiphilic coatings is that they 

are chemically heterogeneous at the micro-nano scale. One possible explanation of the 

pattern of the results reported in this Chapter is that some other parameter that is not 

captured by measurements of total surface energy and wettability is also varying across the 

series. Martinelli et al. (2008), who assessed the performance of amphiphilic fluorinated 
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block copolymer coatings, showed that the ratios of surface atomic composition, measured 

using XPS, were different before and after immersion, showing that these amphiphilic 

surfaces are subjected to surface reorganisation. In addition, immersion of the surface 

changed the roughness and morphology of the surface and it was suggested that it could 

then affect the preference and performance of the two tested algae (Martinelli et al. 2008; 

Sundaram et al. 2011). It was observed for amphiphilic coatings containing PDMS and PEG 

that PDMS chains migrate away from the surface while PEG chains move to the surface 

(Sundaram et al. 2011), which would happen during the reorganisation.  

For this experiment, it was hoped that measurements of contact angle hysteresis and 

underwater contact angle might have shed some light onto the influence of surface changes, 

but the results did not give any clear relationships (Figs. 6.2e and 6.3e). However, the 

different measurements of contact angles showed that the test coatings were subjected to 

some surface changes occurring during the one-month leaching as the contact angles before 

and after (underwater contact angles) were different (i.e. between 2.4° (for H) and 17° (for 

H3) of difference ; Chapter 4, Table 4.8, Fig. 4.1). In addition, the surface changes seemed 

to be different between the coatings as the hysteresis was higher with the increase of PDMS-

PEO copolymer, varying from 45° for H to 69° for H10. Further studies on the surface 

properties of these coatings using AFM and XPS for example, are clearly necessary to 

explore the possibility that the surface changes were due to surface reorganisation and to 

link these changes to the adhesion strength of both test algae, but such studies were outside 

the scope of this thesis.  

The results obtained with U. linza are more easily interpreted. Previous studies showed that 

sporelings of U. linza adhere more strongly to hydrophilic than hydrophobic coatings (Akesso 

et al. 2009a and 2009b; Bennett et al. 2010). The results presented in this Chapter for U. 

linza broadly support this, with adhesion to H7 being minimal and there was no evidence of a 

„Baier minimum‟ in the region of 20-30 mN m-1 total surface energy. The one coating that did 
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not follow this trend was H10.  The reasons for this anomalous performance are not known, 

again presumably some surface property, not captured by measurements of contact angle, 

surface energy, Ra roughness and modulus, was sufficiently different from the other coatings 

that the otherwise clear trend in performance was disrupted. Inspection of Table 4.9 reveals 

that H10 was deposited at a much lower thickness (155 µm) compared with the other 

coatings, but previous studies have shown that the thickness of elastomer coatings in this 

range has no effect on the release of sporelings of U. linza (Chaudhury et al. 2005). One 

explanation of the anomalous results with H10 could be that the segregation of hydrophilic 

and hydrophobic phases was at a scale that generated a sub-optimal patterning of surface 

domains, resulting in poor release properties.   

Taking the two species together, and considering potential applied aspects of this series of 

coatings, the results appear to indicate that a coating composition of 70 % PDMS-PEO–30 % 

PDMS, with a surface energy of 36 mN m-1 (H7), brings optimal properties that decrease the 

adhesion strength of two different algae that in general have completely different adhesion 

characteristics. It would be interesting to test a coating series created from different materials 

and with graduated wettability ranges but invariant additional surface properties against the 

two algal species to further investigate the influence of surface energy on adhesion and if 

that relationship is linked to coating chemistry and/or materials. Further follow up studies 

could include testing the hybrid series of coatings, plus the additional wettability series of 

different materials, against diatoms and of course, macrofouling organisms other than 

seaweeds. These investigations could further clarify the role of surface wettability as a 

determinant of coating performance. The field performance of the silicone „hybrid‟ series of 

coatings is reported in Chapter 10.  
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7. LABORATORY ASSAYS OF ADHESION TO XEROGEL FILMS 

VARYING IN SURFACE ENERGY AND CHARGE 

7.1. Introduction 

In previous chapters (Chapters 3, 5, 6), it has been demonstrated that the surface energy of 

coatings influences the adhesion strength of Ectocarpus crouaniorum. Studies on fouling-

release (FR) coatings have mainly focussed on silicone polymers, which have low-modulus, 

low surface energy and low micro-roughness (see Chapter 1.5). However, silicone polymers 

are expensive, and easily damaged (Swain 1999). By comparison, organosilica-based sol-

gels („xerogels‟) are inexpensive and their higher modulus makes them more robust. They 

are environmentally friendly (i.e. do not contain biocides), which are important attributes in 

the development of new biofouling solutions. They have been shown to have both fouling-

resistant and FR features in laboratory assays against several fouling organisms such as 

Balanus amphitrite, Ulva linza and Navicula perminuta (Tang et al. 2005; McMaster et al. 

2009; Bennett et al. 2010; Finlay et al. 2010). The efficacy of these coatings has been 

demonstrated using Aquafast®, an organically-modified, hybrid xerogel, by field-testing on 

approximately 100 boats and on metal materials supporting an underwater camera in a 

marine archaeological site (Selvaggio et al. 2009; Gunari et al. 2011). In view of these 

previous studies, it was of interest to test similar xerogel materials against ectocarpoid algae. 

Xerogel coatings, which are porous sol-gel materials, refer to dried gels produced by 

evaporation of the solvents. By mixing tetraethylorthosilicate (TEOS), which is the most 

common precursor (or sol), with different silanes containing fluorocarbon, aminopropyl and 

hydrocarbon groups, a gel is obtained. Subsequent drying of the gel at room temperature to 

remove the solvent (which is generally an alcoholic solution and located within the pores of 

the material) leads to a dried gel called „xerogel‟. Sol-gel-derived xerogel films can be applied 

to surfaces by a variety of means including spraying, brushing, dip coating and spin coating. 
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For this study, the coatings were spin cast onto glass microscope slides to provide thin 

xerogel films of reproducible thickness and uniformity (Jordan et al. 1998). 

Xerogel surfaces have uniform surface roughness and can be tuned to provide surfaces with 

a wide range of wettability, total surface energy and charge (Tang et al. 2005; Bennett et al. 

2010; Finlay et al. 2010). A particular feature of these coatings is that they vary not only in 

total surface energy, but also in the relative proportion of polar and dispersive components, 

allowing a more detailed analysis of the role of surface energy in bioadhesion. The resulting 

xerogel coatings are typically hard, i.e. modulus values are in the GPa range.  

Wettability and surface energy are the most studied coating properties to predict the 

attachment and adhesion strength of fouling organisms as explained in previous Chapters 

(Chapters 1, 3 and 6). Zoospores of U. linza prefer to settle on xerogel surfaces with low 

surface energy (Bennett et al. 2010). However, high settlement of cyprids of B. amphitrite 

was observed on the same xerogel coatings with high surface energy/high wettability (Finlay 

et al. 2010). In addition, higher adhesion strength of sporelings of U. linza was observed on 

high surface energy xerogel (Bennett et al. 2010). It has also been shown in Chapter 6 that 

E. crouaniorum has lower adhesion strength on silicone-based coatings with high surface 

energy and a high percentage polar component.  

In the present study, the initial attachment and adhesion strength of E. crouaniorum were 

tested on two series of xerogel coatings. The first set of coatings (SET 1) had a wide range 

of surface wettabilities and had been previously tested against U. linza (Bennett et al. 2010) 

and diatoms (Finlay et al. 2010). In addition to the information provided in these papers, new 

data on the surface properties of these coatings after immersion in seawater are presented 

since this is more likely to reflect the condition of coatings as perceived by the fouling 

organisms compared to characterisations of dry, pristine coatings presented in the previous 

papers. The results with E. crouaniorum indicated that surface charge might be an important 
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factor in controlling adhesion rather than wettability. However, a complicating factor in the 

interpretation of the results was that for some of the SET 1 coatings, surface wettability was 

changed by incorporating charged, polar aminopropyl silanes. Thus, two factors –i.e. 

wettability and charge- were being changed at the same time. Consequently, a second series 

of coatings (SET 2) was evaluated with a smaller range of surface wettabilities after 

immersion, but different surface charge properties. This second set of coatings was tested 

with both E. crouaniorum and U. linza.  

7.2. Materials and methods 

7.2.1. Composition of xerogel coatings provided by SUNY, Buffalo  

Two sets of xerogel coatings were provided by Prof. M. Detty (Department of Chemistry, 

University of Buffalo, The State University of New York (SUNY)). The preparation of the 

coatings provided is fully described in published papers (Bennett et al. 2010). For the 

purposes of this thesis, only brief compositional details are provided, plus a summary of 

surface and bulk properties. The coatings were prepared at SUNY by mixing two cross-

linkers tetraethylorthosilicate (TEOS) and alkyltrialkoxysilane with different modified silanes: 

3-aminopropyltrimethoxysilane (AP), 3-methylaminopropyltrimethoxysilane (MAP), 3-di 

methylaminopropyltrimethoxysilane (DMAP), 3,3,3-trifluoropropyltrimethoxysilane (TFP), 

phenyltriethoxysilane (PH), n-octadecyltrimethoxysilane (C18), n-octyltrimethoxysilane (C8), 

tridecafluorooctyltriethoxysilane (TDF). The final sol/xerogel composition is designed in terms 

of the molar ratio of Si-containing precursors. Thus, a 1:1 PH/TEOS composition contains 50 

mole-% PH and 50 mole-% TEOS. Two solvents and a catalyst were used to produce these 

coatings ethanol, water and hydrochloric acid (HCl), respectively. 

Xerogel films were formed as described by Bennett et al. (2010) by spin casting 400 µl of the 

sol precursor onto pre-cleaned 25 mm x 75 mm glass microscope slides. Slides were 

cleaned by soaking in „piranha solution‟ for 24 h, rinsed with copious quantities of deionised 
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water, soaked in isopropanol for 10 min, air dried and stored at ambient temperature until 

used. A model P6700 spin coater was used at 100 rpm for 10 s to deliver the sol and at 3000 

rpm for 30 s to coat. All coated surfaces were dried at ambient temperature for at least one-

day prior to analysis of the surface properties. They were then shipped to Birmingham. 

7.2.2. Characteristics of xerogel coatings determined by SUNY  

Contact angles and surface energies of all coatings provided to Birmingham, were 

determined at SUNY using the methods described by Bennett et al. (2010).  Measurements 

were made on dry coatings and after immersion in artificial seawater ASW for 24 h followed 

by 1 h in deionised water to remove salts. Immersed coatings were dried in air under ambient 

conditions for 3 h, before contact angles were measured. Contact angles measured after the 

immersion in seawater are more likely to reflect the condition of coatings as perceived by the 

fouling organisms compared to characterisations of dry, pristine coatings presented in the 

previous papers (Bennett et al. 2010, Finlay et al. 2010). 

The test methods used in this study are explained in Chapter 3.2. The test species used 

were E. crouaniorum CCAP 1310/300 and U. linza. Statistical analysis of the adhesion data 

is explained in Chapter 2.10, and statistical tables for the whole Chapter are presented in 

Appendix 6.  

7.3. Results 

7.3.1. Characteristics of xerogel coatings determined by SUNY 

Table 7.1 shows the properties of the first set of xerogel coatings (SET 1) determined at 

SUNY (data provided by Prof. M. Detty).  

Prior to immersion of SET 1 coatings in ASW, the contact angles and the surface energies 

were respectively from 49° to 107.9° and 12.4 mN m-1 to 53.5 mN m-1. After immersion, 

values of °Ws decreased by 15° to 25° for each coating to give a smaller range of 31° to 91°, 

and so the surface energy increased and varied from 27 mN m-1 to 64 mN m-1. In addition, 



122 
 

the % polar component of the total surface energy varied from 27.6 % to 53.4 %; the two 

most polar coatings (DMAP/TEOS and MAP/TEOS) reflected the aminoalkyl functionalities of 

the silanes used.  

Table 7.1: Properties of xerogel coatings (SET 1). Values are the average of 3-5 replicate runs.  

Error limits are ± SD. * indicates values of Rrms and Young‟s modulus from Bennett et al. (2010). 

Composition/ name 
1:9 

DMAP/TEOS 

1:9 

MAP/TEOS 

1:1 

PH/TEOS 

1:1 

TFP/TEOS 

1:1 

C8/TEOS 

5:45:50 

C18/C8/TEOS 

1:1 

TDF/TEOS 

Stored in air 

Static Water Contact 

Angle (θ°Ws) 
50 ± 3 49 ± 1 80.4 ± 0.6 82.6 ± 1.4 96 ± 6 107.9 ± 0.7 105 ± 3 

Total Surface Energy γS 

(mN m
-1
) 

53 ± 2 53.5 ± 0.8 38.2 ± 0.3 25.7 ± 0.7 25 ± 1 22.0 ± 0.4 12.4 ± 0.8 

Immersed 24h in ASW 

Static Water Contact 

Angle (θ°Ws) 
31 ± 3 32.6 ± 0.8 54 ± 2 64.2 ± 0.2 80 ± 5 91 ± 3    83 ± 2 

Total Surface Energy γS 

(mN m
-1
) 

64 ± 2 63.6 ± 0.3 53 ± 1 39.3 ± 0.3 35 ± 2 27 ± 1 27 ± 2 

Dispersive Surface 

Energy γD (mN m
-1
) 

29.7 ± 0.1 30.5 ± 0.1 30.5 ± 0.1 19.5 ±0.1 24.1 ± 0.0 19.5 ±0.1 16.1 ±0.5 

Polar Surface Energy 

γP (mN m
-1
) 

34.1 ± 0.2 33.1 ± 0.1 22.0 ± 0.2 19.8 ± 0.1 11.1 ± 0.5 7.5 ± 0.2 10.9 ± 0.4 

% Polar surface energy 53.4 ± 0.2 52 ± 1 41.8 ± 0.2 50.5 ± 0.1 32 ± 1 27.6 ± 0.2 40.5 ± 0.4 

Surface Roughness 

Rrms (nm) 
0.6 ± 0.1* 0.5 ± 0.1 0.39 ± 0.0* 0.55 ± 0.1* 0.81 ± 0.1* 0.20 ± 0.1 0.70 ± 0.1 

Modulus (GPa) 17.2 ± 2.2* 8.5 ± 0.2 0.07 ± 0.0* 1.17 ± 0.2* 0.06 ± 0.0* 0.2 ± 0.1 1.2 ± 0.2 

 

 

Profilometric studies conducted at SUNY showed that the xerogel films were 1.0 ± 0.1 µm 

thick. The surface roughness was low (~ 1 nm or less) for all the coatings. The elastic 

modulus values ranged from 0.06 to 17.2 GPa. In comparison with silicones, these are 

relatively hard coatings and since the softest (0.06 GPa) is well above the range (by an order 

of magnitude) where modulus affects release of sporelings of Ulva (Chaudhury et al. 2005). It 
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is unlikely that these differences in xerogel modulus would influence FR properties against E. 

crouaniorum (the influence of modulus is more extensively discussed in Chapter 8). 

Table 7.2: Properties of SET 2 xerogel coatings with charged/uncharged surfaces (i.e. amine-

/non-amine-containing surfaces): data provided by Prof. M. Detty. Modulus and roughness data 

for AP/TEOS and DMAP/TEOS xerogels are from Bennett et al. (2010). Means of 3-5-replicate runs ± 

SD. 

Composition 
/name 

1:9 
AP/TEOS 

1:9 
MAP/TEOS 

1:9 
DMAPTEOS 

1:4 
TFP/TEOS 

1:4 
PH/TEOS 

Stored in air 

Static Water Contact 

Angle (θ°Ws) 
56 ± 1 47 ± 2 48 ± 3 83 ± 1 81 ± 1 

Total Surface Energy 

γS 

(mN m-1) 

52 ± 1 54 ± 1 53 ± 2 25.9 ± 0.9 36.8 ± 0.2 

Immersed 24 h in ASW Water 

Static Water Contact 

Angle (θ°Ws) 
39 ± 2 33 ± 3 24 ± 6 44 ± 9 59 ± 2 

Total Surface Energy 

γS 

(mN m
-1
) 

62.2 ± 0.4 66 ± 2 69 ± 3 55 ± 6 50 ± 1 

Dispersive Surface 

Energy γD (mN m
-1
) 

35.5 ± 0.1 35.6  ± 0.2 33.1 ± 0.1 23.9 ± 0.1 34.8 ± 0.1 

Polar Surface Energy 

γP 

(mN m
-1
) 

26.6 ± 0.1 29.9 ± 0.1 36.1 ± 0.2 31.1 ± 0.6 15.1 ± 0.1 

% Polar surface 

energy 
46.4 ± 0.1 47.8 ± 0.1 51.1 ± 0.2 53 ± 1 40 ± 1 

Surface Roughness 

Rrms (nm) 
1.60 ± 0.05 0.5 ± 0.1 0.60 ± 0.03 0.20 ± 0.09 0.23 ± 0.09 

Modulus (GPa) 23.1 ± 3.2 8.5 ± 0.2 17.2 ± 2.2 6.2 ± 0.4 1.5 ± 0.5 

 

The second set of coatings (SET 2) had similar chemistries to SET 1, but their composition 

was adjusted so their wettability, surface energy and relative polarity had a smaller range of 

values, following immersion in ASW. Before immersion in ASW, total surface energies 

ranged from 25.9-54 mN m-1 (Table 7.2), but after immersion, the range of surface properties 
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was reduced to 50-69 mN m-1. However, three of the coatings incorporated the aminoalkyl 

silanes, AP, MAP and DMAP; at the pH of seawater (i.e. 8.2), the amino groups were 

protonated providing a net positive surface charge (M. Detty pers. comm). The other two 

coatings incorporating TFP and PH were uncharged.  

The surface roughness of the SET 2 coatings after immersion was similar to those of SET 1 

(0.2-1.6 nm) and the elastic modulus values were also in the GigaPascal range (1.5 to 23.1 

GPa). For the same reasons as SET 1, it is unlikely that the differences of modulus would 

influence FR properties against E. crouaniorum. 

 

7.3.2. Adhesion strength of E. crouaniorum on SET 1 coatings 

After blending and filtration, the starting inoculum (i.e. the filtrate) for adhesion assays with E. 

crouaniorum consisted of small filaments averaging 8.4 ± 1.1 cells (mean of 50 observations 

± 2 x SE).  

After 8 days of growth, non-attached filaments were removed and quantified through 

chlorophyll a (chl a) determination (Chapter 2.5). All test surfaces were inoculated with a 

similar concentration of filaments and after 8 days, there were marked differences in the 

amount of unattached filaments removed from the culture dishes that contained the different 

coatings (Table 7.3). This could be due to differences in the initial attachment of inoculum 

and in the growth of unattached filaments. It is therefore important to use these 

measurements with caution knowing they might not indicate differences in adhesion per se. 

After 8 days, the amount of attached biomass was insufficient to be measured using the plate 

reader. The biomass of unattached filaments in dishes containing TFP/TEOS slides was 

significantly greater than for all the other coatings (Table 7.3; p≤0.05; GZLM, Pairwise 

comparison). However, no significant difference was observed for most of the other coatings. 
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Table 7.3: Unattached biomass after 8 days‟ incubation of SET 1 xerogel coatings with 

filaments, as measured by chl a. Means of 3 replicates ± SD. Values, which are significantly 

different at p≤0.05 in GZLM test are indicated by different superscript letters after the amount of 

unattached biomass. 

 

Composition 

Unattached biomass  

as chl a (µg) 

1:9 DMAP/TEOS 0.21 ± 0.06
a 

1:9 MAP/TEOS 0.2 ± 0
a 

1:1 PH/TEOS 0.34 ± 0.02
b 

1:1 TFP/TEOS 0.52 ± 0.08
c 

1:1 TDF/TEOS 0.28 ± 0.09
a,b 

5:45:50 C18/C8/TEOS 0.23 ± 0.09
a,b

 

1:1 C8/TEOS 0.22 ± 0.07
a,b

 

 

Before exposure to shear stress, attached filaments were incubated for six further days (i.e. 

14 days in total). The amount of biomass of attached filaments on the different surfaces was 

measured using the plate reader and significant differences were found before and after 

exposure to 8 Pa shear stress (Figs. 7.1a/b; p≤0.05, GZLM, Pairwise comparison).  

After 14 days of growth, significant differences in the biomass of attached filaments were 

found; three groups were observed (Fig. 7.1a). DMAP/TEOS was grouped to MAP/TEOS, 

which had the highest attached biomass but was also grouped to C18/C8/TEOS and 

C8/TEOS, which had lower biomass (p≤0.05, GZLM, Pairwise comparison). However, there 

was no significant difference between the other coatings. 

The adhesion strength of E. crouaniorum (i.e. % removal) is shown in Figure 7.1b. 

DMAP/TEOS and MAP/TEOS had low percentage removal (15-20 %) showing that the 

filaments were attached strongly to these two coatings compared to all the others, which had 

high percentage removal (80-95 %). Statistical analyses separated the coatings into three 

significant groups. DMAP/TEOS and MAP/TEOS formed a group due to their lowest 

percentage removal. C18/C8/TEOS was grouped to TDF/TEOS, which had lower % removal 
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but also to the other three coatings, which had the highest percentage removal (p≤0.05, 

GZLM, Pairwise comparison). 

Statistical analysis of the combined performance of the surfaces (i.e. analysing together the 

amount of attached biomass and that remaining after exposure to shear stress) showed that 

two significant groups could be observed. DMAP/TEOS and MAP/TEOS formed the first 

group and all the other coatings the second (p≤0.05, RM ANOVA, post hoc REGWQ).  

Figures 7.1c, d and e show the correlation between the surface properties and the 

percentage removal. These graphs show that the adhesion strength of E. crouaniorum was 

the highest on the two most hydrophilic coatings (DMAP/TEOS and MAP/TEOS). However, 

no simple relationship was observed between the surface properties and the percentage 

removal. 
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Figure 7.1: Adhesion assays on SET 1 coatings with E. crouaniorum. a) Biomass of attached 

alga before and after exposure to a wall shear stress of 8 Pa on 7 different surfaces, after incubation 

for 14 days at 15°C. Biomass was measured as relative fluorescence units. b) Percentage removal 

after exposure to shear stress of 8 Pa, calculated from data presented in (a). Values that are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above the bars. For Figs. 

8.1a and b, the coatings are shown in order of wettability. (c), (d) and (e) show the relationship 

between percentage removal and surface properties after immersion in ASW: static water contact 

angle (c), total surface energy (d) and % polar surface energy (e). Means of nine replicates ± 2 x SE. 

In Figs 7.1c, d and e, the letters associated with data points refer to coating codes: A=DMAP/TEOS; 

B=MAP/TEOS; C=PH/TEOS; D=TFP/TEOS; E=TDF/TEOS; F=C18/C8/TEOS and G=C8/TEOS. 

 

7.3.3. Adhesion strength of E. crouaniorum on SET 2 coatings  

After blending and filtration, the starting inoculum (i.e. the filtrate) for adhesion assays with E. 

crouaniorum consisted of small filaments averaging 7.3 ± 1.3 cells (mean of 50 observations 

± 2 x SE).  

Table 7.4: Unattached biomass after 8 days of growth of charged/uncharged xerogel surfaces, 

as measured by chl a. Means of 3 replicates ± SD. Values, which are significantly different at p≤0.05 

in GZLM test are indicated by different superscript letters after the amount of unattached biomass. 

Coatings AP/TEOS DMAP/TEOS MAP/TEOS 1:4 TFP/TEOS 1:4 PH/TEOS 

Unattached biomass as 

chlorophyll a (µg) 
0.03 ± 0.02

a
 0.04 ± 0.01

a
 0.02 ± 0.01

a
 0.41 ± 0.05

b
 0.23 ± 0.07

b
 

 

As for the previous experiment (above), the amount of unattached filaments was quantified 

after 8 days of growth (Table 7.4) through chl a determination (Chapter 2.5). All the surfaces 

were inoculated with the same concentration of filaments (i.e. inoculum), but there were 

marked differences between the coatings for the amount of unattached filaments. The dishes 

containing the surfaces prepared with aminoalkyl silanes (AP/TEOS, DMAP/TEOS, and 

MAP/TEOS) had significantly less unattached biomass than the other coatings, which were 

grouped together (by a factor of 10-20 fold) (Table 7.4; p≤0.05, GZLM, Pairwise comparison). 
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Figure 7.2: Adhesion assays on SET 2 coatings with E. crouaniorum. a) Biomass of 

attached alga before and after exposure to a wall shear stress of 8 Pa, on 5 different surfaces, 

after 14 days of incubation at 15°C. Biomass was measured as relative fluorescence units. b) 

Percentage removal after exposure to 8 Pa shear stress, calculated from data presented in a). 

Means from 9 replicates ± 2 x SE. Values that are significantly different at p≤0.05 in GZLM test 

are indicated by different letters above the bars. The green and the purple colours in the graphs 

represented respectively the positively charged and the uncharged surfaces. 

 

The uncharged coatings (1:4 TFP/TEOS and 1:4 PH/TEOS) prepared using uncharged side-

chains had lower attached biomass than the charged coatings (AP/TEOS, DMAP/TEOS and 

MAP/TEOS; Fig. 7.2a) prepared with positively charged organic side-chains. Significant 
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differences were observed in the biomass of attached filaments after 14 days of growth. The 

positively charged coatings MAP/TEOS and DMAP/TEOS had significantly the highest 

biomass, followed closely by the coating AP/TEOS (p≤0.05, GZLM, Pairwise comparison). 

The coating 1:4 PH/TEOS had an intermediate amount of biomass attached to the slides 

while the coating 1:4 TFP/TEOS had the lowest biomass (p≤0.05, GZLM, Pairwise 

comparison).  

The adhesion strength data (i.e. percentage removal, Figs. 7.2b and 7.3) show that E. 

crouaniorum adhered weakly to the coatings 1:4 TFP/TEOS and 1:4 PH/TEOS, which were 

the uncharged coatings, compared to the three aminoalkyl-containing coatings that were 

positively charged (p≤0.05, GZLM, Pairwise comparison).  

 

Figure 7.3: Photograph showing E. crouaniorum retained on the surfaces after exposure to 8 

Pa shear stress.  

Statistical analysis of the combined performance of the surface (i.e. analysing together the 

amount of attached biomass initially attached, and that remaining after exposure to shear 

stress) revealed four performance groups. The coatings with positively charged surfaces 

were separated in two groups: MAP/TEOS, which had the highest biomass before and after 

exposure to shear stress and AP/TEOS and DMAP/TEOS, which had high-intermediate 

biomass before and after exposure to shear stress (p≤0.05; RM ANOVA, Post Hoc REGWQ). 
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The two uncharged coatings had the lowest biomass before and after exposure to shear 

stress and were significantly different to each other. 

7.3.4. Adhesion strength of sporelings of U. linza on SET 2 coatings 

 

 

 

Figure 7.4: Adhesion assays on SET 2 coatings with U. linza. a) Biomass of attached 

sporelings before and after exposure to a wall shear stress of 33 Pa, on 5 different surfaces, 

after 6 days of incubation at 18°C. Biomass was measured as relative fluorescence units. b) 

Percentage removal after exposure to 33 Pa shear stress, calculated from data presented in a). 

Means of 6 replicates ± 2 x SE. Values that are significantly different at p≤0.05 in GZLM test are 

indicated by different letters above the bars. The green and the purple colours in the graphs 

represented respectively the positively charged and the uncharged surfaces. 
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After 6 days of cultivation, the biomass of sporelings (young plants) on the coatings was not 

significantly different for all the coatings except for DMAP/TEOS and MAP/TEOS (Fig. 7.4a; 

p≤0.05, GZLM, Pairwise comparison). The biomass after exposure to 33 Pa shear stress 

was significantly different between the surfaces. The adhesion strength on the xerogels was 

generally relatively high (maximum percentage removal was 41% for 1:4 TFP/TEOS). 

However, significant differences in percentage removal of sporelings were observed between 

the xerogel surfaces with positively charged aminopropyl side-chains and uncharged organic 

side-chains; sporelings on the uncharged surfaces (1:4 TFP/TEOS and 1:4 PH/TEOS) had 

lower adhesion strength compared to the other surfaces. There was also a significant 

difference in performance between AP/TEOS and DMAP/TEOS (Fig. 7.4b; p≤0.05, GZLM, 

Pairwise comparison). 

7.4. Discussion 

Previous studies using similar xerogel coatings to those in SET 1, with a wide range of 

surface energy values, showed various responses regarding the attachment and adhesion 

strength of different marine fouling organisms, U. linza, N. perminuta and B. amphitrite. 

Settlement of zoospores of U. linza was higher on low surface energy surfaces while the 

adhesion strength of sporelings was higher on coatings with high surface energy and 

polarity, except for those containing aminopropyl groups (Bennett et al. 2010). The adhesion 

strength of N. perminuta was also influenced by the surface energy; the higher the surface 

energy was, the lower the adhesion strength was including on those coatings containing 

aminoalkyl groups (Finlay et al. 2010). It should be noted that in these publications, surface 

analyses were performed on pristine coatings. The studies performed at SUNY, described in 

this Chapter, showed that wettability and surface energy properties of dry surfaces changed 

following 24h immersion in ASW, the former decreasing and the latter increasing, and we 

assume that the properties of these coatings after a period of immersion are more likely to be 

representative of conditions in the bioassays than they would be for dry, pristine coatings. In 
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fact, if the values for surface energy determined on coatings after immersion are considered 

against the adhesion data for both algae as reported in Bennett et al. (2010) and Finlay et al. 

(2010), the general conclusions and trends outlined above do not change (Evariste et al. 

Submitted to Biofouling). Since U. linza and N. perminuta clearly respond differently, this set 

of coatings was therefore of interest to evaluate the effect of wettability/surface energy on 

attachment and adhesion strength of other fouling organisms such as ectocarpoid algae. 

As a result of the earlier studies (Chapters 3 and 6) the starting hypothesis was that the 

wettability/surface energy would influence the adhesion strength of E. crouaniorum. The 

results presented in this Chapter on SET 1 coatings showed that there was high removal of 

attached filaments of E. crouaniorum from 5 of the 7 coatings tested (PH/TEOS, TFP/TEOS, 

C18/C8/TEOS, TDF/TEOS and C8/TEOS), which included low surface energy 

(C18/C8/TEOS, TDF/TEOS), intermediate surface energy (TFP/TEOS, C8/TEOS) and high 

surface energy (PH/TEOS) surfaces. An influence of the surface energy could be observed, 

but there was no correlation with adhesion strength. However, adhesion strength was high 

on the two most hydrophilic coatings. These two coatings, MAP/TEOS and DMAP/TEOS, 

incorporated two polar aminoalkyl silanes. At the pH of seawater (c. 8.2), the amino groups 

would be protonated (Detty pers. comm.) and therefore, it was hypothesised that the strong 

adhesion shown to these two coatings was a consequence of charge rather than surface 

energy/polarity per se.  

To test this hypothesis, Prof. M. Detty therefore constructed the SET 2 coatings in which the 

proportions of the silanes were tuned to provide materials with similar surface 

topographies/roughnesses and surface energies following immersion in ASW, but with 

xerogel side chains that either were neutral or were amine-containing, which could be 

protonated in ASW to provide a positive charge. The results shown in Figure 7.2 support the 

revised hypothesis, with stronger adhesion to all three positively charged coatings compared 

to those that were uncharged. The results obtained were comparable to those previously 
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obtained for U. linza with similar xerogels, where strong adhesion of sporelings to 

aminopropylated AP/TEOS xerogels was found (Bennett et al. 2010). This was confirmed by 

the results of tests with U. linza on the SET 2 coatings, which showed significantly stronger 

adhesion of sporelings to the charged surfaces.  

The effect of surface charge on settlement/adhesion strength of fouling organisms has not 

been extensively studied. Previous studies have suggested that surface charge rather than 

surface energy per se, may determine the surface selection and the settlement of cyprids of 

two different barnacle species (Aldred et al. 2011; Petrone et al. 2011a). Petrone et al. 

(2011a) showed that the settlement of cyprids was lower on positively charged surfaces. 

Finlay et al. (2010) assessed the performance of a series of xerogel coatings (similar to SET 

1) on the settlement of cyprids. This set of coatings was originally designed to have a range 

of wettability but in this Chapter, it was demonstrated that these coatings were either 

positively charged or uncharged. The assay testing the settlement of cyprids on these 

coatings did not show similar results to those in Petrone et al. (2011a). Moreover, it has been 

shown that the settlement of zoospores of U. linza was higher on surfaces with positively 

charged functionality (arginine-rich peptide SAMS) (Ederth et al. 2008; Ederth et al. 2009) 

and quaternised copolymers (Park et al. 2010), while the adhesion of sporelings was also 

high on the latter surface. 

The physicochemical basis of the stronger adhesion of filaments of E. crouaniorum and 

sporelings of U. linza to positively charged surfaces may lie in electrostatic interactions 

between the positively charged amine-containing surfaces and the biological polymers on the 

surface that may play a role in adhesion. Previous research on adhesives used by brown 

macroalgae has mainly focussed on the extracellular matrix of zygotes of fucoids where 

anionic sulphated fucans and alginates appear to play an important role in adhesion to the 

substratum (Potin and Leblanc 2006 for review). More generally, the cell wall or extracellular 

matrix of brown algae consists of a relatively small proportion of crystalline cellulosic 
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microfibrils embedded in an amorphous matrix of anionic polysaccharides, chiefly alginates 

and fucans (Kloareg and Quatrano 1988). Recently, it has been shown that adhesive 

secreted by the spores of another brown alga, Undaria pinnatifida was composed of anionic 

polysaccharides (Petrone et al. 2011b). While there has been only a few biochemical studies 

on the cell wall composition of ectocarpoid algae, the recently released genome sequence 

for Ectocarpus siliculosus supports the existence of the appropriate genes and enzymes for 

synthesis and modification of sulphated fucans and alginates (Michel et al. 2010). It is known 

that the cell wall of U. linza is mainly composed of ulvan, which is a sulphated 

glucuronorhamnoxyloglycan, i.e. negatively charged (Ray and Lahaye 1995). While it has not 

been established that such molecules have adhesive functionality in U. linza, their location in 

the cell wall could provide the basis for non-specific, electrostatic adhesion. 

In conclusion, the results obtained in this Chapter demonstrating strong adhesion of U. linza 

and E. crouaniorum to positively charged surfaces are potentially explainable through the 

presence of anionic polysaccharides in the cell walls of these algae. While the primary 

function of these polysaccharides may not be in specific adhesion processes, their location at 

the cell surface would contribute to strong, non-specific, electrostatic adhesion to positively 

charged surfaces. Whilst it has been suggested that xerogel coatings may have some 

potential value as practical AF/FR coatings (Selvaggio et al. 2009; Bennett et al. 2010) the 

results of this Chapter suggest that only uncharged compositions should be considered.  

The work described in this Chapter has contributed to a paper (Evariste, E., Gatley, C.M., 

Detty, M.R., Callow, M.E., Callow, J.A. 2013 The performance of 

aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel coatings against the marine alga 

Ectocarpus crouaniorum: relative roles of surface energy and charge. Biofouling 29 (2): 171-

184) (Appendix 15). The paper contains additional information on the surface composition of 

these coatings determined at SUNY using XPS and AFM. 
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8. LABORATORY ASSAYS OF ADHESION TO SILICONE 

MODULUS SERIES 

8.1. Introduction 

In Chapter 5, initial experiments to test the effect of coating modulus on the adhesion 

strength of Ectocarpus crouaniorum were described. The results were confusing, partly 

because two series of coatings were tested, with different chemistries, and within each set of 

three coatings, there was an anomalous coating, which changed in wettability, not just 

modulus. In both cases, there was low adhesion of the test organisms to the hydrophilic 

member of each series, whatever the modulus.  Furthermore, the results from the two sets of 

coatings tested gave contradictory results, one showing positive and the other, negative 

relationships between adhesion strength and modulus. It was therefore decided to explore 

the effect of modulus more systematically (in both laboratory and field experiments), using a 

well-characterised set of hydrophobic coatings based on the same chemistry, PDMS, and 

with varying modulus obtained by using different molecular weights (viscosities) of the 

polymer (see Table 4.4). The expectation was that the coatings would vary by at least one 

order of magnitude. However, the range of moduli obtained was only 0.73 to 1.5 MPa.  

 

8.2. Materials and Methods 

The silicone test coatings (M1, M2, M3, M4 and M5) and the standard IS700 (Chapters 4.2.2, 

4.2.3, 4.3.4 and 4.3.5) were leached for at least 2 months in a 30-liter tank of deionised water 

recirculated through a carbon filter before the experiment in order to remove residual curing 

agents (as explained in Chapter 3.2.2). Two algal species were tested: E. crouaniorum 

CCAP 1310/300 and U. linza, following the methods explained in Chapters 2 and 3.2. IS900 

was not used as standard due to the reasons explained in Chapter 6. Statistical analysis of 
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the adhesion data is explained in Chapter 2.10, and statistical tables for the whole Chapter 

are presented in Appendix 7.  

 

8.3. Results 

8.3.1. E. crouaniorum  

After blending and filtration, the starting inoculum (i.e. the filtrate) for adhesion assays with E. 

crouaniorum consisted of small filaments averaging 8.6 ± 1.2 cells (mean of 50 observations 

± 2 x SE).  

After 8 days of growth, the amount of unattached filaments was quantified through 

chlorophyll a (chl a) determination (Chapter 2.5) and differences were observed between the 

coatings, despite being inoculated with the same concentration of filaments. There was a 

trend of increasing amount of unattached filaments in dishes with increasing modulus, with 

significantly more unattached filaments in coatings M1 and M2 compared with the other test 

coatings (Table 8.1; p≤0.05, GZLM, Pairwise comparison). The lowest amount of unattached 

filaments was obtained with IS700.  

Table 8.1: Unattached biomass, after 8 days‟ incubation of test coatings, as measured by chl a. 

Mean of 3 replicates ± SD. Values, which are significantly different at p≤0.05 in GZLM test, are 

indicated by different letters after the unattached biomass values. The experimental coatings are 

arranged in order of decreasing modulus (M1=1.5 MPa; M2=1.04 MPa; M3=0.91 MPa; M4=0.85 MPa; 

M5=0.73 MPa). 

Coatings IS700 M1 M2 M3 M4 M5 

Total unattached biomass 

(µg chl a) 
0.93 ± 0.87

a 
9 ± 4

b 
6.53 ± 1.68

b,c 
5.2 ± 0.88

c 
5.1 ± 0.6

c 
5 ± 2.31

c 

 

After measurements of the unattached filaments, the coatings were incubated for six further 

days (i.e. 14 days in total) before exposure to 8 Pa shear stress. The amount of biomass 
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attached to the coatings was measured and differences were observed between the coatings 

before and after the shear stress exposure (Figs. 8.1a/b).  

There were differences in initial attached biomass between the coatings after 14 days of 

growth, and as expected from the unattached filament results (Table 8.1 and Fig. 8.1a). 

Figure 8.1a showed that the initial biomass on IS700 was two-three times higher than all the 

test coatings as observed in previous experiments. In addition, differences of initial biomass 

were observed between the coatings. A trend was observed for the initial attached biomass 

as it increased with the decrease of modulus. Statistical analyses showed that three 

significant groups were formed: the coating M1 had the lowest initial biomass (Fig. 8.1a; 

p≤0.05, GZLM, Pairwise comparison). The coatings M3 and M4 were grouped with the 

coating M2 by having intermediate initial attached biomass but they were also grouped with 

M5, which had the highest initial biomass.  

Table 8.2: Values of elastic modulus, viscosity and estimated molecular weight of the silicone 

modulus series. The molecular weight was calculated using the equation developed by Barry (1946), 

Log η = 1 + 0.0123*Mn
½
; with η: viscosity (data provided by the supplier) and Mn: molecular weight. 

The experimental coatings are arranged in order of decreasing modulus. 

Coatings M1 M2 M3 M4 M5 

Modulus (MPa)  1.5 1.04 0.91 0.85 0.73 

Viscosity (mPa s
-1

) 72 4000 6000 14000 50000 

Estimated molecular weight 

(kg mol
-1

) 
4.858 44.753 51.015 65.425 90.438 

The adhesion strength data (Fig. 8.1b) showed that E. crouaniorum filaments adhered 

weakly (i.e. with a minimum of 67 % removal) to all the test coatings compared to IS700, 

which had only 19 % removal. Statistical analyses showed differences among the adhesion 

strength of the test coatings. The coatings M1, M2 and M3 had the weakest adhesion to the 

surfaces, while the coatings M4 and M5, which were also grouped with M2 had the highest 

adhesion to the surfaces (Fig. 8.1b; p≤0.05, GZLM, Pairwise comparison). Percentage 

removal of E. crouaniorum showed a weak positive correlation with elastic modulus (or 

conversely a weak negative correlation between modulus and adhesion strength), with an 
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R2=0.5. A stronger positive correlation was also observed between the adhesion strength of 

E. crouaniorum filaments and the estimated molecular weight of the PDMS in each coating 

(calculated from viscosity; Table 8.2), with an R2=0.61 (Fig. 8.1c). 

  

 

Figure 8.1: Adhesion assays with E. crouaniorum. a) Biomass of attached alga before and after 

exposure to a wall shear stress of 8 Pa, on 6 different surfaces, after incubation for 14 days at 15°C. 

Biomass was measured as relative fluorescence units. Percentage removal of the test coatings after 

exposure to shear stress of 8 Pa, calculated from data presented in (a) represented as a function of 

the elastic modulus (b) and estimated molecular weight (c). Means of nine replicates ± 2 x SE. Values 

that are significantly different at p≤0.05 in GZLM test are indicated by different letters above bars. 

IS700 was not included in the statistical analysis since the purpose was to test the significance of the 

results in relation to the hypothesis based on the silicone modulus series. 
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Statistical analysis of the combined performance of the surfaces (i.e. analysing together the 

amount of biomass before and after exposure to shear stress) revealed four groups. M1, the 

coating with the highest modulus, had the lowest initial biomass and the lowest adhesion 

strength of the alga (p≤0.05, RM ANOVA, Post Hoc REGWQ). M3 was grouped with M2 but 

was also grouped with M4, due to their similar intermediate-high biomass and adhesion 

strength. The coating M5 was also grouped to M4 due to the high biomass and the lower 

adhesion strength. These results confirmed the effects of modulus on the attachment and 

adhesion strength of E. crouaniorum; the higher the modulus of coatings was, lower the initial 

biomass was and lower the adhesion strength was.  

8.3.2. U. linza 

The biomass that developed on the coatings was a consequence of the germination and 

growth of spores of U. linza that adhered during the settlement assay. The coating IS700 had 

higher biomass of sporelings attached to the surface compared with all the other coatings. 

Significant differences were observed in the initial biomass of sporelings after 7 days of 

growth (Fig. 8.2a). The coating M3 was grouped with the coating M1 due to the lower 

sporeling biomass but was also grouped with the other coatings, which had higher sporeling 

biomass (Fig. 8.2a; p≤0.05, GZLM, Pairwise comparison). These differences probably reflect 

variations in the density of spores that settled on the surfaces. 
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Figure 8.2: Adhesion assays with U. linza. a) Biomass of sporelings before and after exposure to a 

wall shear stress of 50 Pa, on 6 different surfaces, after incubation for 6 days at 18°C. Biomass was 

measured as relative fluorescence units. Percentage removal of the test coatings after exposure to 

shear stress of 50 Pa, calculated from data presented in (a) represented as a function of the elastic 

modulus (b) and estimated molecular weight (c). Means of six replicates ± 2 x SE. Values that are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above bars. IS700 was 

not included in the statistical analysis since the purpose was to test the significance of the results in 

relation to the hypothesis based on the silicone modulus series. 
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not possible to use higher shear stress in order to have higher removal as 50 Pa is the 

highest shear stress of the water channel. Adhesion strength of sporelings was significantly 

different between the test coatings and two groups were formed. The coatings M1, M2 and 

M3 were grouped together as they had the highest adhesion strength, while M4 and M5 were 

grouped together with the lowest adhesion strength (i.e. the highest % removal; Fig. 8.2b; 

p≤0.05, GZLM, Pairwise comparison). These results show that increased coating modulus 

positively influenced the adhesion strength of sporelings (Fig. 8.2b, R2=0.68), i.e. the higher 

the modulus, the higher the adhesion strength. A stronger negative correlation was observed 

between the adhesion strength of sporelings and the estimated molecular weight (calculated 

from the PDMS viscosity; Table 8.2), with an R2=0.83 (Fig. 8.2c). 

 

8.4. Discussion 

The attached filaments of E. crouaniorum and sporelings of U. linza had higher adhesion 

strength (lower % removal) on IS700 compared to the other coatings (except on M1 for the 

adhesion strength of U. linza sporelings). It is therefore possible to conclude that IS700 was 

less effective as a fouling-release coating than the modulus series test coatings for both algal 

species. IS700 is a commercial PDMS-based coating, with similar wettability (102°) as the 

silicone modulus coatings and similar elastic modulus (1.4 MPa) to M1. The differences 

between the test coatings and IS700 could be due to the presence of different ingredients 

added in IS700 such as the pigment and other additives, which could make it less effective 

than PDMS alone.  
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Figure 8.3: Relationship between the elastic modulus and the estimated molecular weight of 

the silicone modulus coatings. 

 

One of the unusual features of this experiment is that compared to previous experiments 

(Chapters 3, 5-7),  the levels of unattached biomass were extremely high being an order of 

magnitude greater on the experimental series compared with the PDMS coatings described 

in Chapter 6.  In the case of IS700, the amount of unattached filaments was approximately 

double that shown in Chapter 6. As all the experiments with E. crouaniorum were done using 

a consistent, cultured source of inoculum, and under identical controlled environments, no 

clear reason can be advanced to explain why in this experiment there were much higher 

levels of unattached biomass compared with other experiments. The results with this series 

of coatings may suggest that the alga cannot attach effectively to these surfaces.  Against 

this, the results for attached biomass after 14 days of growth (see next paragraph) show that 

the alga did attach well to surfaces to form a substantial biomass. 

The test coatings, which were produced from different molecular weights of PDMS to obtain 

a wide range of moduli, were well-characterised, measuring the wettability/surface energy, 

roughness and modulus. As expected the modulus was inversely proportional to polymer 

molecular weight (Fig. 8.3; Brazel and Rosen 2012 referred to the rubber theory). The chain 

length of the PDMS polymer influences the degree of cross-linking, resulting in differences in 
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the modulus of the coatings without any changes of wettability/surface energy. It was 

expected that the range of moduli of these test coatings would have been different by at least 

one order of magnitude, but as explained previously a lower range of moduli was observed 

for these coatings, from 0.73 to 1.5 MPa.  

Brady and Singer (2000) demonstrated that the „Kendall‟ model of fracture mechanics 

suggests that the adhesion strength of a pseudobarnacle, simulating the influence on hard-

fouling organisms on elastomeric surfaces is generally proportional to (γE)½ where γ is the 

surface energy and E is the elastic modulus, i.e. the harder the coating, the stronger the 

adhesion. Chaudhury et al. (2005) observed that this relationship was slightly different for 

soft-fouling organisms showing that the adhesion strength of sporelings of U. linza on model 

PDMS networks was strongly influenced by elastic moduli below approximately 1 MPa being 

weaker on coatings with moduli of 0.2 and 0.8 MPa compared to coatings with moduli of 2.7 

and 9.4 MPa. In this thesis, the starting hypothesis for the experiments on sporelings of U. 

linza was that similar results to those observed by Chaudhury et al. (2005) would be 

obtained. The results with U. linza support this initial hypothesis as the adhesion strength 

was positively influenced by the modulus in the range 0.73-1.5 MPa; the higher the modulus 

was, the higher the adhesion strength was. This is entirely consistent with models of fracture 

mechanics as applied to soft-fouling organisms (Chaudhury et al. 2005). 

The initial hypothesis for E. crouaniorum was similar to that for sporelings of U. linza, as the 

initial trial experiments using two hydrophobic silicone-based coatings S1 and S2 (Chapter 

5), with modulus values of 0.34 and 0.6 MPa showed the anticipated effect of low coating 

modulus on soft-fouling organisms, i.e. stronger adhesion on the higher modulus coating.  

Unfortunately, the moduli of the silicone modulus series of coatings tested in the present 

chapter (0.73-1.5 MPa) did not overlap with those of the S1/S2 coatings used in Chapter 5. 

Therefore, a direct comparison of effects is impossible, especially as the type of modulus 

measured was different (storage modulus versus elastic modulus).  
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The results presented in this Chapter appear to indicate an unexpected effect of modulus on 

adhesion strength of E. crouaniorum - i.e. across the range there was a negative effect of 

coating modulus on adhesion strength, with greater removal (weaker adhesion) on the higher 

modulus coatings, although the effect was small, with only approximately a 13 % difference 

in percentage removal across the series. There is no known theory of fracture mechanics 

that can account for such a negative effect of modulus and it may be suggested that in 

addition to modulus, there may be other, uncharacterised differences in the surface and bulk 

properties of these coatings that affect the adhesion of E. crouaniorum. One obvious 

possibility is surface topography. All the coatings were characterised by profilometry in 

Chapter 4 as „smooth‟ in the micrometer range with Ra roughness of 0.21 µm or less, but it is 

possible that more sensitive surface analytical techniques such as AFM could reveal 

variations in a more complex topography to account for these unexpected differences. 

Another possibility is that changing the molecular weight of the PDMS polymer results in 

differences in coating mesh size, which would be inversely proportional to molecular weight 

i.e. the smaller the molecular weight, the higher the modulus, but the lower the mesh size.  

Mesh size could have an influence on the degree of penetration into the coating of adhesive 

polymers secreted by the alga, so the higher penetration into the high molecular weight, 

lower modulus coatings, might be the basis of the slightly stronger adhesion to coatings of 

low modulus. This is clearly speculative and it would be interesting to examine the protein 

adsorption properties of these coatings. 
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9. FIELD ASSAYS OF FOULING PERFORMANCE OF A RANGE OF 

SILICONE AND FLUOROPOLYMER COATINGS DURING 2010 

SEASON 

9.1. Introduction  

The challenge of finding effective, environmentally friendly antifouling and fouling-release 

(AF/FR) coatings has led researchers to test their coatings not only in the laboratory but also 

in the field to assess their effectiveness in the real world. The two situations are different. 

Whereas laboratory assays present the challenge of a single species, under controlled and 

defined conditions, coatings in the field are exposed to a whole community of organisms that 

compete for colonisation of the surfaces. Field assays reveal long-term performance of the 

test surfaces in the real-world where the surfaces are surrounded by a diverse and dynamic 

community that is in constant change due to fluctuating environmental factors (physical, 

biological and chemical) (Benedetti-Cecchi 2000; Thomason et al. 2002).  

  

Figure 9.1: Immersion site in Hartlepool Marina. a) General view of Hartlepool Marina. b) Location 

of the panels (orange line), immersed between the pontoon and the wall. The length of the pontoon 

was approximately 70 m (from Google Maps). 

 

The main aim of the 2010 field assays reported in this Chapter was to conduct pilot tests that 

would guide subsequent more detailed field experiments in 2011. For the field assays 
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reported in this Chapter; two sites were chosen to place several panels with test surfaces in 

static immersion. Hartlepool Marina (Fig. 9.1) was used as the main site in view of its 

proximity to the main International Paint laboratories at Gateshead, and Prendergast (2007) 

observed the presence of ectocarpoid algae on panels over a number of years. Newton 

Ferrers (Fig. 9.2) was chosen as secondary site due to the presence of test rafts belonging to 

International Paint in the Yealm estuary.  

Three different experiments were performed, two in Hartlepool Marina and one in Newton 

Ferrers during the spring-summer season of 2010, to assess the performance in the field of 

the two sets of coatings tested in Chapter 5 (i.e. the three fluoropolymers and the three 

silicone-based coatings). To assess the performance of the test surfaces on the appearance 

of organisms, batches of test slides were immersed in Hartlepool Marina on 4th of May 2010 

for 4 successive periods of one month (Experiment 1). The purpose of this experiment was to 

obtain a „snapshot‟ of the fouling community (particularly ectocarpoid algae) in relation to any 

variations in fouling pressure during the spring/summer period. The second experiment also 

involved immersion of surfaces on May 4th, but the slides were all immersed at the same 

time, then removed at monthly intervals over four months, allowing the succession of 

species, and in particular the presence of ectocarpoid algae to be examined in relation to the 

properties of the surfaces (Experiment 2).  

The third experiment, performed on the external side of a raft at Newton Ferrers from the 10th 

of June 2010 (Fig. 9.3), was smaller as the number of slides of each treatment was limited 

(Experiment 3). The observation of the diversity, with a particular interest in ectocarpoid 

algae, was done in two collections (after 43 and 86 days‟ immersion). Initially, it was decided 

that there would only be one collection of data for this experiment. However, after 43 days, 

when the panels were observed, there was an abundance of ectocarpoid algae, so it was 

decided that only three replicate slides for each treatment would be removed, leaving the 
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remaining three for further observation approximately 1.5 months later, the 22nd of 

September (i.e. in total 86 days‟ immersion).  

  

Figure 9.2: Immersion site in Newton Ferrers. a) General view of Newton Ferrers area. b) Location 

of the panels (represented by the red star), immersed on a raft in the entrance of the estuary (from 

Google Maps).  

 

 

9.2. Materials and Methods 

9.2.1. Test coatings 

Two sets of coatings were tested during these field experiments, the three silicone-based 

coatings S1, S2 and S3 and the three fluoropolymer coatings mD10, mD10-H and mE10-H 

(tested in laboratory experiments in Chapter 5). In addition, the two Intersleek coatings IS700 

and IS900 were tested as commercial standards and glass slides as negative controls. 

These surfaces were produced and characterised as described in Chapter 4.  

9.2.2. Preparation of the field experiments 

To test the performance of the different surfaces, 6-replicate panels measuring 35 cm length 

by 15 cm width were made in International Paint (Fig. 9.3). Each panel, immersed at 1 m 

depth and oriented at 45° from a vertical position, contained one slide of each surface (i.e. a 

total of 9 slides), arranged randomly on the panels (using random calculation from Excel). 
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The panels immersed in Hartlepool Marina were placed between the pontoon and the wall to 

avoid boat traffic that could disturb the panels (Fig. 9.1). 

The three experiments were performed using „destructive‟ techniques as the slides were 

collected and not placed back in the seawater after observation due to manipulation and 

observation under the microscope. 

 

 

 

Figure 9.3: Experimental panels, with 9 different surfaces (a), attached with blue ropes on to 

the pontoon (b).  There were light blue cable ties at 1 meter from the panel, which were aligned with 

the water surface to ensure that all the panels were immersed at 1 meter. The whole panel was 

oriented at about 45 degrees from a vertical position. The weight allowed the panel to stay in the same 

position. Figures not to scale. 

 

Percentage cover of all the fouling categories was obtained following the “Phoenix” in-house 

Experimental Fouling Assessment Record Sheet (standard assessment used by International 

Paint). It recorded the percentage cover of microfouling (slime, biofilm), weeds (algae), soft-

bodied animals (tunicates, hydroids) and hard-bodied animals (worms, barnacles). The 

percentage cover of ectocarpoid algae was also recorded separately. Statistical analysis of 

the adhesion data is explained in Chapter 2.10, and statistical tables for the whole Chapter 

are presented in Appendix 8. 
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9.3. Results 

9.3.1. Experiment 1: Trial experiment on variations in initial surface 

colonisation at Hartlepool Marina with surfaces of different modulus. 

Although four data collections were made, no results are reported for the second data 

collection as the slides were sent by post and damaged during transport. In that case, for 

experiments 1 and 2, the results of only three collections are discussed, using the terms: 

first, second and third data collections. Figure 9.4a shows that for all three collections, the 

main type of fouling organisms observed on all the surfaces within each successive 1-month 

period was microfouling, with low amounts of weed and animal fouling (Fig. 9.4a). On most 

surfaces, the total fouling coverage approached 100% coverage.  

During the last data collection (i.e. after 36 days‟ immersion), the total coverage was 

significantly lower than the two previous ones (p≤0.05, GZLM, Pairwise comparison). It was 

also observed that at the last data collection, IS700 had lower total coverage than all the 

other surfaces (p≤0.05, GZLM, Pairwise comparison). 

The percentage cover of microfouling decreased with the time of immersion, showing that the 

accumulation/appearance of microfouling was lower for the „summer period‟ (end of July and 

early September) than for early June (Fig. 9.4b). Only during the last data collection, were 

differences observed between the surfaces; IS700 had less microfouling (60 %) than mD10, 

S2, S3 and glass (p≤0.05, GZLM, Pairwise comparison). No further differences were 

observed. 
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Figure 9.4: Percentage cover observed on 9 different surfaces in Hartlepool Marina after one 

month‟s immersion during spring/summer 2010. a) Percentage cover for the 4 fouling categories: 

microfouling (blue), weeds (red), soft-bodied animals (green) and hard-bodied animals (grey). Figures 

b, c, d and e represent the percentage cover of one of the fouling categories: microfouling, weeds, 

soft- and hard-bodied animals, respectively. For each data collection, n=6 for each treatment. Note: 

the scale is different for each graph. The panels were immersed on the 4
th
 of May, 7

th
 of July and 28

th
 

of July and inspected on 3
rd

 of June (collection 1), 28
th
 of July (collection 2) and 2

nd
 of September 

(collection 3).  

 

The percentage of weeds represented in Figure 9.4c varied slightly between 0 and 5 % for 

the three collections. However, no significant difference was observed between the surfaces 

at each collection (p≤0.05, GZLM, Pairwise comparison). 

Figure 9.4d shows the coverage of soft-bodied animals. For the first and third data 

collections, the coverage was lower than 4 % while for the second one, it was higher with 

percentage up to 10 % (mostly represented by polyps). However, no significant differences 

between the surfaces were observed due to high variation between the replicates, except for 

IS900 that was different from S2 and mD10-H for the second data collection (i.e. after 21 

days‟ immersion) (p≤0.05, GZLM, Pairwise comparison). 

For the coverage of hard-bodied animals, significant differences were observed (Fig. 9.4e). 

For the second data collection, the coverage on both coatings mE10-H and glass slides was 

not significantly different but was higher than on the other surfaces (p≤0.05, GZLM, Pairwise 

comparison). However, the percentage cover on all the surfaces was lower than 4 % (mostly 

represented by barnacles) so although statistically significant these differences are relatively 

minor.  
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Figure 9.5: Panels immersed in Hartlepool Marina after a month of immersion (a and b) and 

slides after 3 months‟ immersion (c). As it is difficult to distinguish the test surfaces, red stars were 

placed above each slide in Figure a.  

 

For all the data collections, a detailed microscopic observation of the presence of 

ectocarpoid algae was made and two genera were generally observed, Hincksia and 

Ectocarpus. However, only a few filaments were found on the surfaces, due to the high 

quantity of microfouling and silt making the observations difficult. Because the percentage 

cover of ectocarpoid algae was lower than 2%, it was not of interest to do further analysis. 
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9.3.2. Experiment 2: Trial experiment on the „succession‟ of organisms at 

Hartlepool Marina with surfaces of different modulus. 

Figure 9.6a shows that, as for Experiment 1, microfouling predominated at all the collections 

and on all the surfaces, except maybe for the glass surface, which showed reduced 

microfouling at the last collection (Fig. 9.6b). Figures 9.6c, d and e showed low variation for 

the different fouling categories (except microfouling), except on the glass slides.  

For all the data collections, a particular observation for the presence of ectocarpoid algae 

was made. Microscopy revealed only a few filaments of Hincksia and Ectocarpus on the 

slides (<1 % cover), due to the high quantity of microfouling and silt making observations 

difficult.  

Differences in microfouling coverage were observed between both the data collections and 

the surfaces (Fig. 9.6b). After 28 days‟ immersion, the coverage of microfouling on all the 

surfaces was similar, while differences were observed between the surfaces after 89 days‟ 

immersion. Statistical analysis showed that the coverage of microfouling decreased 

significantly with the length of immersion (p≤0.05, GZLM, Pairwise comparison). For the 

whole experiment, the glass surface had a lower coverage than mE10-H, IS700, IS900 and 

S1 (p≤0.05, GZLM, Pairwise comparison). When the collections were analysed separately, it 

was possible to observe further differences. After 89 days‟ immersion, the coverage on the 

coatings mD10-H and mD10 was significantly lower than on IS900. In addition, after 119 

days, the coverage on glass slides was significantly lower than on all the other surfaces 

except mD10-H.  
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Figure 9.6: Percentage cover observed on 9 different surfaces in Hartlepool Marina after 28, 89 

and 119 days‟ immersion during spring/summer 2010. a) Percentage cover for the 4 fouling 

categories: microfouling (blue), weeds (red), soft-bodied animals (green) and hard-bodied animals 

(grey). Figures b, c, d and e represent the percentage cover of one of the fouling categories: 

microfouling, weeds, soft- and hard-bodied animals, respectively. For each data collection, n=6 for 

each treatment. Note: the scale is different for each graph. The panels were all immersed on the 4
th
 of 

May and data collected on the 3
rd

 of June, the 28
th
 of July and the 2

nd
 of September. 

 

The coverage of weeds represented in Figure 9.6c varied between 0 and 10 % for all the 

surfaces except for the last collection (i.e. 119 days‟ immersion) and on glass slides, which 

was around 30 %. No significant difference was observed between the surfaces for the two 

first data collections. However, data after 119 days‟ immersion showed that the glass slides 

had a significantly higher percentage cover than all the other surfaces (p≤0.05, GZLM, 

Pairwise comparison). 

After 28 days‟ immersion, almost no soft-bodied animals were observed on the surfaces. 

Then from 89 days‟ immersion, soft-bodied animals were present on the surfaces with a 

percentage between 0 and 22 % (Fig. 9.6d; mostly represented by polyps), and the coating 

mD10-H had significantly a higher coverage than IS900 and IS700. In addition, after 119 

days‟ immersion, glass and mD10-H had significantly a higher percentage cover than IS700 

and mE10-H (p≤0.05, GZLM, Pairwise comparison). 

As for soft-bodied animals, after 28 days‟ immersion, almost no hard-bodied animals were 

present on the surfaces. Then from 119 days‟ immersion, some of the surfaces had a low 

coverage of hard-bodied animals, up to 11 % (mostly represented by barnacles). However, 

no significant differences were observed between the surfaces for any of the collections 

(p≤0.05, GZLM, Pairwise comparison). 

In conclusion, small variations were observed between both the collections and the surfaces. 

The negative control surface (i.e. glass) had more weeds and soft-bodied animals after 119 
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days‟ immersion. The percentage of animal (soft and hard) fouling was greater from 89 days 

compared to the start, but microfouling was still the dominant fouling category. However, no 

other important variation was noticed, as for example only few filaments of ectocarpoid algae 

were observed during the experiment showing no difference between the surfaces.  

9.3.3. Experiment 3: Succession of organisms at Newton Ferrers 

Figure 9.7 shows that at the Newton Ferrers site, after 43 and 86 days‟ immersion the 

percentage cover differed between both the surfaces and the collections. After 43 days‟ 

immersion (i.e. 21st of July), most of the surfaces were dominated by microfouling and 

weeds, while after 86 days (i.e. 22nd of September), soft- and hard-bodied animals were also 

present at a large coverage.  

 

Figure 9.7: Percentage cover observed on 9 different surfaces attached to Newton Ferrers raft 

after 43 and 86 days‟ immersion during summer 2010. Percentage cover for the 4 fouling 

categories: microfouling (blue), weeds (red), soft-bodied animals (green) and hard-bodied animals 

(grey). The panels were all immersed on the 10
th
 of June and data were collected on the 23

rd
 of July 

(i.e. 43 days) and the 22
nd

 of September (i.e. 86 days). 

 

For the microfouling coverage, differences between both data collections were observed as 

the amount of microfouling on the surfaces decreased for the second collection (Fig. 9.8b; 
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p≤0.05, GZLM, Pairwise comparison). For the whole field experiment, the coverage of 

microfouling on IS700 was significantly lower than on mD10-H and glass surfaces (p≤0.05, 

GZLM, Pairwise comparison). In addition, after 43 days‟ immersion, IS700 had higher 

coverage than glass, the three fluoropolymers and S2. Glass had a lower coverage of 

microfouling than IS700, IS900 and S2, as it had high cover of weeds (p≤0.05, GZLM, 

Pairwise comparison). However, there was no significant difference after 86 days. It is 

possible to conclude that the coverage of microfouling was not influenced by the coating 

modulus. 

 

Figure 9.8: Percentage cover of microfouling as a function of days and surfaces. Each bar 

represents the mean of collected data (n=3; 3 panels x 1 replicate) ± SD. 

 

Differences in percentage cover of weeds were observed between both the data collections 

and the surfaces. After 43 days‟ immersion, several surfaces (mD10, mD10-H, mE10-H, S3 

and glass) had high coverage of weeds (>26 %) compared to the other surfaces (Fig. 9.9). 

However, all the surfaces had low coverage after 86 days‟ immersion except glass, which 

had 23 % cover. The coverage after 43 days‟ immersion was not significantly different for the 

three fluoropolymers due to high variation between the replicates, showing there was no 
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effect of modulus for this set of coatings (p≤0.05, GZLM, Pairwise comparison). The 

fluoropolymers were less effective than both Intersleek coatings, while S1 and S2 were 

similar to them (p≤0.05, GZLM, Pairwise comparison). For the set of silicone-based coatings, 

S3 had a higher amount of weeds attached to its surface compared to S1 and S2, showing a 

possible effect of modulus and wettability; the amount of weeds is higher on high modulus 

and high wettability coatings. However, it is not possible to conclude if the differences of 

weeds reflect the effect of modulus or wettability or even the combination of both.  

 

 

Figure 9.9: Percentage cover of weeds as a function of days and surfaces. Each bar represents 

the mean of collected data (n=3; 3 panels x 1 replicate) ± SD. 
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Figure 9.10: Percentage cover of ectocarpoid algae on the 9 different surfaces after 43 days‟ 

immersion in Newton Ferrers. Mean of 3 replicates (3 panels x 1 replicate) ± SD. Values, which are 

significantly different at p≤0.05 in GZLM test are indicated by different letters above the bars. 

 

 

Figure 9.10 shows the percentage of ectocarpoid algae on nine different surfaces only after 

43 days‟ immersion, as there were no ectocarpoid algae after 86 days. Microscopy revealed 

both Hincksia and Ectocarpus on the surfaces, but no differences in surface preferences 

between the two genera were observed compared to the results obtained for the laboratory 

experiments (Chapter 5). Figure 9.10 shows that glass slides, mD10 and mD10-H had a 

higher coverage than the other surfaces. The coating mE10-H had a medium percentage 

cover followed by S2 and S3, while IS900, IS700 and S1 had almost no ectocarpoid algae. 

The statistical analysis confirmed that the coverage of ectocarpoid algae was grouped into 

these four groups (p≤0.05, GZLM, Pairwise comparison). Differences were observed 

between the two sets of coatings; mE10-H had lower coverage than mD10 and mD10-H, and 

S1 had lower coverage of ectocarpoid algae than S2 and S3 (p≤0.05, GZLM, Pairwise 

comparison). For both sets of coatings, the lower coverage of ectocarpoid algae was 

observed on the coatings with the lowest modulus mE10-H and S1. However, for each set of 
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coatings, comparison between the coatings was more complicated since there were 

differences in both modulus and surface energy; coating mE10-H was hydrophilic compared 

to the two hydrophobic coatings mD10 and mD10-H but S1 and S2 were hydrophobic while 

S3 was hydrophilic. It is possible to conclude that the modulus positively correlated to the 

colonisation of ectocarpoid algae for the set of silicone coatings, but it was not possible to 

draw any conclusions for the fluoropolymer coatings, as it could be one or the combination of 

both properties that influenced the colonisation of ectocarpoid algae. 

The coverage of ectocarpoid algae plotted as a function of modulus (Fig. 9.11) shows a 

possible positive correlation between these two parameters. However, the correlation was 

weak (R2=0.6) and since more than one property changed between these surfaces, the 

validity of this comparison is questionable.   

 

Figure 9.11: Correlation between the percentage of ectocarpoid algae and the storage modulus 

E‟ after 43 days‟ immersion.  
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according the surfaces (Fig. 9.12; mostly represented by polyps and tunicates). After 86 

days, differences were observed between the surfaces (p≤0.05, GZLM, Pairwise 

comparison). The coatings mD10 and mE10-H, which had a high coverage, were higher than 

IS900 and the coverage on mD10 was also higher than on IS700 and S2.  

 

Figure 9.12: Percentage cover of soft-bodied animals as a function of days and surfaces. Each 

bar represents the mean of collected data (n=3; 3 panels x 1 replicate) ± SD. 

 

After 43 days‟ immersion, the percentage cover of hard-bodied animals was low and similar 

between all the surfaces, while after 86 days, the surfaces had a greater percentage cover, 

except IS700 (Fig. 9.13; mostly represented by barnacles and worms). No significant 

difference was observed for both collections, as variations between the replicates were high 

(p≤0.05, GZLM, Pairwise comparison). 
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Figure 9.13: Percentage cover of hard-bodied animals as a function of days and surfaces. 

Each bar represents the mean of collected data (n=3; 3 panels x 1 replicate) ± SD. 

 

9.4. Discussion 

One of the aims of the pilot field experiments described in this Chapter was to compare the 

results obtained with those in laboratory assays. The laboratory assay assessed the FR 

performance of the test surfaces on the attachment and adhesion strength of Ectocarpus 

crouaniorum. On the contrary, static field assays basically measure how well surfaces are 

colonised and there may be little relationship between these two measures of performance. 

Although as explained by Martinelli et al. (2012b), depending on location, immersed panels 

might be subjected to water currents and other disturbances (such as grazers and boat 

traffic), which could expose the surfaces to a low shear stress, thus introducing an element of 

FR for organisms that do not adhere strongly. Hartlepool Marina being fully enclosed by a 

sea wall has limited tidal exchange and almost no water current, while the panel raft in 

Newton Ferrers was placed in the estuary where there are water currents and other 

disturbances such as boat traffic and tidal flow. Swain et al. (1998) also showed that 

disturbances such as grazing decrease the colonisation of fouling organisms on surfaces. 
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Slight differences between both the surfaces and the collections were observed during the 

experiments performed in Hartlepool Marina. For the first experiment, microfouling was 

always dominant, with a low percentage of weeds, soft- and hard-bodied animals. No 

variation in the appearance of organisms was observed at each monthly immersion, except 

for a slightly higher amount of soft-bodied animals at the second collection (Fig. 9.5). It 

seems that during this period of time, the same category of fouling organisms attached to the 

surface without differences between the surfaces, so there was no effect of surface and bulk 

properties. This was expected since each surface was only immersed for one month, thus 

allowing little time for the development of macrofoulers. The appearance of fouling categories 

was not significantly different during the data collections, except for the appearance of 

microfouling that decreased slightly from the end of spring (start of June) to the “summer 

period” (end of July and early September). For the second experiment, a higher proportion of 

weeds, soft- and hard-bodied animals was observed after 89 and 119 days‟ immersion. 

However, there was still a high percentage of microfouling (with silt). In retrospect, the 

location of the panels was not ideal. The panels from the 28 days‟ immersion were covered 

by silt and debris, which obscured the biofouling. It appears that much of the general detritus 

from the marina finished up in that area, which may have impacted the fouling community 

that developed on the surfaces.  

However, the experiment performed in Newton Ferrers was more informative. Only two data 

collections were done but they showed variations in colonisation between 43 and 86 days‟ 

immersion -the first data collection showed that the surfaces were fouled by microfouling and 

weeds while after 86 days, a larger amount of soft- and hard-bodied animals was present on 

the surfaces. These results were consistent with previous studies on succession of 

organisms, which showed that colonisation starts mostly by microfouling and weeds and later 

soft- and hard-bodied animals colonise the surfaces and grow over the microfouling and the 

weeds.  
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The comparison of the coverage for both data collections at Newton Ferrers showed that 

most of the surfaces did not have the same dominant fouling category. IS700 and IS900 

were different, because IS900 had a high percentage cover of hard-bodied animals after 86 

days‟ immersion while IS700 was dominated by microfouling. The three fluoropolymers were 

also different, as for Hartlepool Marina, the coatings with high modulus and low wettability 

mD10 and mD10-H, had a high percentage of weeds compared to the coating mE10-H that 

had low modulus and high wettability after 43 days‟ immersion. After 86 days, the hardest 

coating mD10 was colonised by microfouling and soft-bodied animals while mD10-H the 

coating with intermediate modulus was covered by microfouling and hard-bodied animals. In 

addition, the three silicone-based coatings were different; for the first collection, the coatings 

with high wettability and low modulus S1 and S2 were dominated by microfouling while the 

coating with low wettability and high modulus S3 had a high percentage cover of weeds. 

However, after 86 days, the two hydrophobic coatings S1 and S2 were different; S1 had a 

high coverage of hard-bodied animals while S2 had a mixture of microfouling and hard-

bodied animals.  

The presence of ectocarpoid algae after 43 days‟ immersion showed that they were present 

in Newton Ferrers during the period of immersion (i.e. 10th of June to 23rd of July). 

Differences between the surfaces were observed; both IS700 and IS900 had low percentage 

cover, the latter being consistent with the laboratory assays (Chapters 3 and 5), which 

showed that filaments on IS900 had a low adhesion strength. However, in the laboratory 

assays, ectocarpoid algae attached more strongly to IS700 than to IS900 (Chapters 3 and 5). 

The differences could be explained by the fact that in the field, ectocarpoid algae are 

interacting with other organisms; the environmental factors are also important for the 

adhesion of organisms and could have affected the presence of ectocarpoid algae. In 

addition, one of the differences between the laboratory and field experiments was that the 

stage of development that attached to the surfaces was different; while filaments were used 
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for the laboratory assay, spores most likely attached to the surfaces in the field assays and 

so their adhesion preferences might be different.   

The comparison of the percentage cover of ectocarpoid algae for the three fluoropolymer 

coatings showed that the data obtained were similar to those from the laboratory assays. In 

the field, the percentage cover was low for mE10-H, which is similar to the low biomass 

before and after shear for the laboratory experiment (Chapter 5). The coating mD10-H for 

laboratory assays and field experiment had high percentage cover, high adhesion strength 

(Chapter 5). The coatings mD10 and mD10-H had similar and high biomass before the shear 

stress exposure for the laboratory assays but the percentage removal of mD10 was higher 

(30 % removal) than mD10-H (8 % removal); the field experiment showed that mD10 had 

similar percentage cover as mD10-H. As for IS700, these differences could be explained by 

the environmental factors, the competition with other organisms or the lower shear stress in 

the field compared to the laboratory.  

Environmental disturbances could also explain that the results for percentage cover of 

ectocarpoid algae for the silicone-based coatings were not consistent with the results 

obtained in the laboratory (Chapter 5). In the field, S2 and S3 had similar percentage cover 

(ca. 10%), while S1 had a low percentage cover (ca. 1%) indicating a reduced ability of 

ectocarpoid algae to colonise the low surface energy S1 surface. However, in the laboratory 

assays, the lowest initial attachment and lowest adhesion strength of E. crouaniorum were 

shown on the high surface energy/high modulus S3 coating (Chapter 5).  

Correlations between properties (wettability, surface energy and modulus) and percentage 

cover by ectocarpoid algae in the field were observed at Newton Ferrers and a positive but 

weak correlation (R2=0.6) was found between the storage modulus and percentage cover of 

ectocarpoid algae (Fig. 9.11). However, any interpretation of these data must be treated with 

caution since, as explained above, the range of surfaces tested was heterogeneous with 
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different chemistries, surface and bulk properties. For this reason, the field experiments in 

2011 and 2012 were performed more systematically, with sets of coatings varying in either 

modulus (Chapter 11) or surface wettability (Chapter 10) but with a common chemistry in 

each case.  

As explained earlier, the field experiments in 2010 were pilot trials intended to inform the 

more systematic trials in 2011 and 2012. Only one field site was possible for the 2011/12 

tests for financial and logistic reasons. Even though abundant ectocarpoid algae were 

observed at Newton Ferrers, it was decided to immerse the panels in Hartlepool Marina for 

the 2011/12 field assays. During the same period that the field assay described in this 

Chapter was performed, International Paint immersed some panels at a different location in 

Hartlepool Marina and the presence of ectocarpoid algae was observed on their test surfaces 

in relatively large quantity, showing that they were present in Hartlepool Marina so it was 

probably just the location used for the experiment described in this Chapter that was not 

optimal. Another reason for choosing Hartlepool over Newton Ferrers is that it was later 

decided to measure changes in the wettability of surfaces immersed in the field, in parallel 

with the fouling observations. Since the instrument used to measure the contact angle was 

located at International Paint laboratory in Gateshead, the decision was made to focus all 

further field immersion trials on Hartlepool Marina.  

It was also decided to change the design of the panels. The design used for this experiment 

was useful as it was possible to observe the slides under the microscope, but only three-

quarters of the slides were subjected to fouling colonisation making the surface area 

exposed to organisms relatively small, especially if the edge effects were considered. It 

would have also been more interesting to have more replicates within the same panels, as 

even if the panels were placed close to each other, differences of fouling were observed and 

so by having more replicates within the same panels, the variance of the results may 
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decrease. All these observations were then taken into account in order to improve the field 

assay in 2011. 
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10. FIELD ASSAYS DURING 2011 OF ANTIFOULING 

PERFORMANCE OF SILICONE „HYBRID‟ COATINGS WITH 

SYSTEMATIC VARIATIONS IN SURFACE ENERGY AND 

WETTABILITY 

10.1. Introduction 

Studies have demonstrated the influence of surface energy on the attachment and the 

adhesion of marine organisms mostly in laboratory bioassays (Chapter 6; e.g. Finlay et al. 

2002; Bennett et al. 2010). However, the effect of surface energy observed in laboratory 

assays might not be borne out in field assays; it is then of importance to perform field assays 

to compare the results in the field with those in laboratory assays. Unfortunately, only a few 

studies have compared field and laboratory results. For example, Martinelli et al. (2012b) 

working with blends of PDMS with a copolymer containing PDMS, PEG and fluoropolymer, 

showed that the two most effective amphiphilic coatings against adhesion of sporelings of 

Ulva linza and adults of Balanus amphitrite in laboratory assays, were also effective against 

colonisation by hard-bodied animals and weeds in the field.  

Previous field experiments studying the effects of wettability and surface energy on the 

development of fouling organisms showed that wettability might influence the fouling 

organisms, especially at the start of the immersion. Huggett et al. (2009) showed an 

influence of the wettability of silane-based coatings on the settlement and recruitment of 

larvae of Hydroides elegans, but only for the 10 first days after immersion. In addition, the 

silane-based coatings showed no quantitative influence of wettability on the biofilm 

community (Huggett et al. 2009). Several other field studies with the same set of silyl-based 

coatings with varying wettability showed that at an early stage of immersion (i.e. around three 

days), the initial wettability was positively and negatively correlated with the settlement of 
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barnacles and bryozoans, respectively (Rittschof and Costlow 1989; Roberts et al. 1991). 

However, after a month of immersion, differences were observed in the coverage of these 

organisms (and other hard fouling organisms) but no clear correlation was observed with the 

initial wettability of the silyl-based coatings (Holm et al. 1997). Dexter et al. (1975) studied 

surfaces with varying surface energy (and varying chemistry) (i.e. glass, polystyrene, 

polypropylene, nickel and polyvinyl-fluoride) and showed that higher biofilm coverage was 

observed on high surface energy surfaces (i.e. nickel, which would also contain biocides) 

compared to lower surface energy surfaces (i.e. polyvinyl-fluoride) after 7 and 14 days‟ 

immersion. Lakshmi et al. (2012) showed there was a positive correlation between the 

density and the attachment of bacteria and surface energy of test surfaces (i.e. PDMS, 

silicone rubber, polypropylene) after one day‟s immersion, but not after few days‟ immersion. 

However, both Dexter et al. (1975) and Lakshmi et al. (2012) used test surfaces that were 

heterogeneous with different chemistries (and probably different moduli and topography), so 

any interpretation of the data obtained in these studies has to be treated with caution.   

Changes of surface wettability following immersion have been observed in several studies 

(e.g. Martinelli et al. 2012a) using the captive bubble method (Chapter 2) and could affect the 

attachment and adhesion of fouling organisms. These changes could be due to several 

mechanisms such as surface reconstruction (Hu and Tsai 1996; Krishnan et al. 2006a; 

Magin et al. 2011; Sundaram et al. 2011), formation of a conditioning film (Thome et al. 

2012) and hydration of the surface (Rosenhahn et al. 2010 for review). These seven 

previously cited studies immersed the surfaces in sterile artificial seawater (ASW) or in MilliQ 

water. However, only few studies have observed the changes in wettability under field 

conditions (Rittschof and Costlow 1989). Accumulation of conditioning macromolecules, 

bacteria, diatoms and other marine organisms can also change surface wettability. The 

formation of a conditioning layer occurs within seconds of immersion (Jain and Bhosle 2009) 
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whereas colonisation by bacteria and other unicells starts within minutes to hours of 

immersion (Callow and Callow 2006).  

In an attempt to differentiate between changes in wettability caused by physical/chemical 

changes to the surface (such as reconstruction and hydration), from those caused by surface 

conditioning and fouling, in parallel with the studies on the development of marine fouling, 

underwater contact angles (using the captive bubble technique (Chapter 2)) were measured 

for the same coatings after different periods of immersion in either sterile ASW, or in natural 

seawater under field conditions. The comparison between ASW and field immersion appears 

to be a unique feature of the present study and provides an extra dimension to the study of 

the effects of coating properties in the field. Unfortunately, the measurement of changes in 

wettability after immersion could only be carried out over a 10-day period since after that time 

the level of fouling prevented accurate measurement of the contact angles. 

The silicone „hybrid‟ coatings tested for this field assay were previously assessed in 

laboratory assays in Chapter 6.  A negative correlation was observed between the adhesion 

strength of sporelings of U. linza and the wettability/surface energy (except for the most 

hydrophilic coating H10). However, no clear correlation was observed for E. crouaniorum, as 

the lowest adhesion strength was obtained with both the highest surface energy coatings (H7 

and H10) and the lowest surface energy coating (H), while the highest adhesion strength of 

E. crouaniorum was observed with H2 (with a surface energy of 29.4 mN m-1). In order to 

compare the performance of the test coatings in the laboratory with those in the field, panels 

were immersed under static conditions in Hartlepool Marina on the 28th of March 2011. At the 

same time, changes of wettability were observed after immersion in sterile ASW and in 

Hartlepool Marina using the captive bubble method. 

Despite the high coverage of microfouling and silting on the test surfaces during the field 

experiments in 2010, Hartlepool Marina was still chosen to be the field site as the equipment 
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to measure the wettability changes was close to the site and for other reasons explained in 

Chapter 9. However, the location of the panels was changed; they were placed close to the 

location where International Paint immersed their panels and where ectocarpoid algae had 

previously been observed (Fig. 10.1). The aims of the experiment were (a) to observe the 

appearance and the succession of the different fouling categories, especially ectocarpoid 

algae, in order to see if there were differences between both the surfaces and the fouling 

organisms, (b) to correlate any differences in colonisation with the surface properties of the 

coatings, using an assessment method, which was non-destructive.  

  

Figure 10.1: Immersion sites in Hartlepool Marina for the field experiments in 2010 (a) and 2011 

(a and b). 

10.2. Materials and Methods 

10.2.1. Test surfaces 

The test coatings were the six silicone „hybrid‟ coatings with varying wettabilities (64° to 

101°), tested in laboratory assays in Chapter 6. IS900 and IS700 were used as commercial 

standard coatings and a commercial tie coat as a negative control surface (i.e. the tie coat 

had no antifouling properties and was therefore expected to foul heavily). The composition 
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and characterisation of these surfaces was described in Chapter 4, except for the tie coat, 

which has not been characterised.  

10.2.2. Changes in surface wettability for immersed surfaces 

Three-replicate slides of each surface were immersed on the 28th of March 2011 in either 

sterile ASW or in Hartlepool Marina. For the sterile ASW treatment, the slides put in slide 

boxes (without the lid) were placed in a small container that was filled with sterile autoclaved 

ASW, located in the biological laboratory of International Paint (i.e. 18°C). For the slides 

immersed in Hartlepool Marina, they were placed into “open-slide boxes” (Fig. 10.2) to allow 

seawater to flow through the boxes and to make the slide collections easier. Slides were 

collected on days 1, 3, 7 and 10 (until the 7th of April); and for each collection, an “open-slide 

box” immersed in Hartlepool Marina was recovered and placed into a coolbox containing 

natural seawater to facilitate the transport to International Paint laboratory. The following day, 

the wettability of each surface in both treatments was measured using the underwater 

contact angle method (Chapter 2). 

Slides were also observed by transmitted light microscopy to observe the diatoms and other 

fouling organisms, but to facilitate the microscopic observations on the two Intersleek 

coatings and to be able to observe bacteria, the surfaces were stained using DAPI (4′, 6-

diamidino-2-phenylindole), a fluorescent DNA stain (0.1 µg ml-1 (in MilliQ water), 5 min in 

darkness) before observation under the UV microscope. 
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Figure 10.2: “Open-slide box”. The slides were placed in the slide box (b) attached to a brick to 

maintain it in place (a). The boxes were immersed at 50 cm depth. 

 

 

10.2.3. Static field immersion experiment  

The coatings were applied as explained in Chapter 4 but to larger glass slides (75 x 50 mm, 

Corning) to provide a larger surface area for fouling colonisation with reduced edge effects. 

Coated surfaces were glued to wooden panels, measuring 60 x 60 cm using Epiglass 

adhesive. 

Before gluing the test surfaces, the three-replicate panels were protected with two layers of 

anti-corrosive paint (applied by a technician at International Paint) and a grey Veridian tie 

coat (acrylic; International Paint) was applied. A top coat of IS900 (red; same composition as 

grey IS900 (Chapter 4) except that Part A was red) was applied by brush between the test 

surfaces glued on the panels. 

On each panel, eight surfaces were placed: six experimental coatings (H, H1, H2, H3, H7 

and H10), IS900 (grey) as commercial standard and the tie coat used for the test coatings 
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(unpigmented Veridian (Chapter 4)) as negative control (Fig. 10.3). The coating IS700 was 

not used, as the design of the panels could not accommodate another treatment. The panel 

design was of 7 rows x 8 columns. The surfaces were randomly distributed (using Excel 

program) on the first row of the panels (with different distribution for each panel). For each 

subsequent row, the corresponding slide position was moved one place to the right. The 

experimental design thus allowed an analysis of the influence of surface depth on the 

incidence of fouling. 

The three-replicate panels were immersed on the 28th of March 2011 and the data were 

collected after 23, 37, 43, 61, 80, 98 and 157 days. The panels were maintained vertically 

and in the same position by a weight attached to the bottom of each panel and by two ropes 

attached to the pontoon. Percentage cover of all the fouling categories was obtained 

following the „Phoenix‟ in-house Experimental Fouling Assessment Record Sheet 

(International Paint assessment sheet), which recorded the percentage cover of microfouling, 

weeds, soft- and hard-bodied animals. The percentage cover of ectocarpoid algae was also 

recorded separately and samples were taken using forceps for subsequent microscopic 

examination to determine which genera were present. 

 

Figure 10.3: Panel before immersion. Each panel was labelled in order to recognize them during the 

inspection. The panels were attached to a weight in order to be in vertical position. Two ropes were 

attached to the pontoons to keep the panel in the same position during the field experiment. 
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10.2.4. Statistical analysis of field data: Generalized estimating equations  

Statistics were performed as described in Chapter 2.10 and statistical tables for the whole 

Chapter are presented in Appendix 9. 

10.3. Results  

10.3.1. Changes in surface wettability for surfaces immersed in sterile 

ASW and in Hartlepool Marina 

The wettability of surfaces immersed for 10 days in sterile ASW and natural seawater 

(Hartlepool Marina) was measured at five different periods: days 0 (i.e. pristine surfaces 

freshly immersed in MilliQ water), 1, 3, 7 and 10 using the underwater contact angle method 

(Fig. 10.4). The surfaces were immersed in MilliQ water and the underwater contact angle 

measurements were done within minutes after immersion. The experiment was ended after 

10 days, as the accumulation of microfouling on the surfaces immersed in Hartlepool Marina 

made the reliable measurements of contact angles difficult.  

The data obtained at day 0, which were measured within a few minutes after immersion in 

MilliQ water, were already described and explained in Chapter 4. A narrower range of 

wettabilities was observed using the underwater method compared to the static water contact 

angle measurements on dry coatings in air and as expected, the increase of PEO content in 

the blend increased the wettability. While the more hydrophobic coatings H and H1 were less 

hydrophobic when measured by captive bubble, the other coatings became more 

hydrophobic, decreasing the range of wettability overall. 
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Figure 10.4: Underwater contact angles of 9 different surfaces after immersion in seawater: H 

(a), H1 (b), H2 (c), H3 (d), H7 (e), H10 (f), Tie coat (g), IS700 (h) and IS900 (i). The angle that was 

measured was the water-side angle of the captive air bubble, i.e. θ
o
wund, as described in Chapter 2. 

The blue and red lines represent the data obtained after immersion in seawater in Hartlepool Marina 

and in sterile ASW, respectively. The green triangles represent the water contact angles in air of a dry 

coating, following the static contact angle method in air (Chapter 2.9.1.1), except for the tie coat as it 

was not measured. Mean of three replicates ± SD. 

 

The changes of wettability following immersion were different between the two treatments 

(i.e. sterile ASW and natural seawater). After one day‟s immersion in sterile ASW, all the 
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the surfaces. For example, H the most hydrophobic coating had the highest decrease of 

contact angles dropping from 89° to 31° (a decrease of 65%) after one day‟s immersion in 

sterile ASW (Fig. 10.4a) while H10 had the lowest decrease of contact angles dropping from 

66° to 42° (a decrease of 36%; Fig. 10.4f). Meanwhile, IS900 and IS700 had only a low 

decrease of contact angles (lower than 8%; Figs. 10.4h/i). Following the high decrease of 

contact angles after one day‟s immersion in sterile ASW, the contact angles of the test 

surfaces were relatively stable with slight decrease or increase between day 1 and day 10, 

except for day 3, the coating H was more hydrophobic (from 31° to 58°) but returned to 29° at 

day 7.  

As for the surfaces immersed in sterile ASW, the underwater contact angles of surfaces 

immersed in Hartlepool Marina decreased after one day‟s immersion. Coating H had the 

highest decrease of contact angles (from 89° to 38° (a decrease of 57%); Fig. 10.4a) while 

H2 had the lowest (from 85° to 62.6° (a decrease of 26%); Fig. 10.4f). No clear pattern to the 

changes observed between 1 and 10 days‟ immersion was found, it could be due to 

differences in the adhesion of microfouling (or biofilm) and other organisms on the surfaces. 

However, the changes were smaller in magnitude than those obtained after one day‟s 

immersion. The wettability of the tie coat and H2 was relatively stable during the experiment 

with less than 10° differences. The contact angles of IS700 and IS900 decreased in general 

with the length of immersion; the difference was lower than 15° for IS900 (between 1 and 10 

days) but higher than 30° for IS700. Coatings H3, H7 and H10 became in general more 

hydrophobic with the length of immersion while H and H1 were variable (i.e. both increasing 

and decreasing during the experiment). However, it was observed that the coatings H, H1, 

H2, H10, IS900 and the tie coat after 10 days‟ immersion had relatively similar contact angles 

to those in sterile ASW.  
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Figure 10.5: Views of surfaces during the underwater contact angle measurements, showing the 

increase of fouling on the surfaces submerged in Hartlepool Marina: day 1 (a), day 3 (b), day 7 (c) 

and day 10 (d). The images were taken while the underwater contact angles were measured on the tie 

coat (a) and H10 (b-d) and Figures a, b and c show the bubbles. The figures show that with the length of 

immersion the surfaces had more detritus and fouling organisms attached to the surfaces. The contact 

angles (water-side) were at day 0, 26.5° for the tie coat and 59.4° and 52.1° for H10 respectively at day 3, 

7. 

 

Microscope observations were performed after 3, 7 and 10 days. After 3 days, it was 

possible to observe some detritus on the surfaces immersed in Hartlepool Marina and also 

some small agglomerations of bacteria under UV microscope. After 7 and 10 days‟ 

immersion, a biofilm consisting of diatoms, small animals and detritus was observed on all 

coatings under transmitted light microscope (Figs. 10.5 and 10.6) and some bacteria were 

observed under UV microscope. The biofilm appeared to be more extensive on the tie coat. 

No bacteria were observed on the surfaces immersed in sterile ASW.  
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Figure 10.6: Visual appearance of slides on test surfaces in the open slide boxes, after 7 days 

(a and b) and representative microscope images of the surface biofilm on H2 after 7 days (c) 

and H1 after 10 days (d) showing presence of diatoms and agglomerations of detritus. No images of 

bacteria observed under UV microscope have been shown, as the staining was too weak.  
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10.3.2. Comparisons between different determinations of surface 

wettability 

  

Figure 10.7: Correlations between three surface properties. a) Correlations between the initial 

surface wettability as determined by static water contact angle in air and underwater contact angles 

determined at T=0 (blue points) and after 1 day‟s immersion in Hartlepool Marina (red points). b) 

Correlation between underwater contact angles at T=0 and after immersion for 1 day in Hartlepool 

Marina.  

 

Figure 10.7 showed that the water contact angles determined for dry coatings and for 

coatings freshly immersed in MilliQ water were not strongly correlated (blue data points, 

R2=0.6). The range of values for the underwater contact angle method was reduced 

compared with contact angle determinations in air. In theory, the wettability values of an 

inert, non-reconstructing surface using the two methods should be similar. The fact that they 

are not demonstrates either that the two methods are not exactly measuring the same 

physico-chemical properties, or that even a short immersion (a few minutes until the 

measurements could be taken) is sufficient to cause some surface changes. Nevertheless, 

the underwater contact angle method still demonstrates that there was a gradient of 

wettability. However, the comparison between water contact angles determined for dry 

coatings and for coatings after 1 day‟s immersion in Hartlepool Marina demonstrated a weak 

correlation (Fig. 10.7a, red data points, R2=0.1). This presumably reflects the effect of the 
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longer immersion time on surface changes and/or surface conditioning. The former is more 

likely since the changes after immersion in ASW for 1 day were similar (for most coatings) to 

those observed in Hartlepool Marina.  

Figure 10.7b compares wettabilities at T=0 (i.e. freshly immersed in MilliQ water) and T=1 

day, using the same, underwater contact angle, method. There was a weak correlation 

between the two determinations (R2=0.1). 

One of the objectives of the studies described in this Chapter was to try to determine the 

effect of coating wettability on coating performance in the field. As the comparisons 

described above showed, it is difficult to select which measure of wettability should be used 

to determine these effects. It may be argued that the most meaningful comparison should be 

based upon the properties of coatings as perceived by the fouling organisms, i.e. after 

immersion in Hartlepool Marina. For the silicone „hybrid‟ coatings, the change in wettability 

after immersion is greatest after the first day‟s immersion in Hartlepool Marina (Fig. 10.4). 

After that, for some coatings, the underwater contact angle was fairly stable; for others, there 

were some fluctuations. It clearly is impossible to select a single time point between 1 and 10 

days that totally captures these variations for all the experimental coatings. It could also be 

argued that at the later time points, the measurement of wettability is more likely to be 

influenced by the presence of the developing biofilm and associated fouling, rather than the 

inherent coating properties. For all these reasons, as a practical compromise, it was decided 

to use the underwater contact angle values after 1 day‟s immersion in Hartlepool Marina, as 

the main basis of comparison with the degree of fouling. In addition, for comparability with 

the literature, it was decided to make correlations with initial surface wettability of non-

immersed, pristine coatings, and with contact angle hysteresis determined from the dynamic 

contact angle measurements described in Chapter 4, which were also made on non-

immersed, pristine coatings. 
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10.3.3. General observations of the percentage fouling 

Seven data inspections were done between the 23rd and the 157th days‟ immersion –i.e. 

between the 20th April and 5th September 2011. After 98 days‟ immersion, filamentous brown 

algae –i.e. ectocarpoid algae- were no longer present on the test surfaces. Since the focus of 

the experiment was the observation of colonisation by ectocarpoid algae, a decision was 

made to perform one last inspection two months later.  

Figure 10.8 shows the percentage cover of the four categories of fouling organisms 

(microfouling, weeds, soft- and hard-bodied animals) for each coating on one panel (7 

replicates; data shown for the other 2 panels in Appendix 10). The effects of the coatings, 

replication, time of immersion and depth (row) were determined for all the fouling categories 

using generalized estimated equations GEEs as statistical analysis (Chapter 2; data were 

significantly different when p<0.05).  

Variations were observed in total fouling –i.e. differences in percentage cover in all four 

fouling categories (Fig. 10.8; Appendix 10 for the other panel results). A high total fouling 

coverage was observed from 43 days‟ immersion (>60-70 %) on most of the test surfaces 

(Fig. 10.8; Appendix 11 for pictures of the boards). Differences in fouling coverage were also 

observed between the surfaces and inspections. 

After 43 days‟ immersion, microfouling coverage was high –i.e. between 60 and 80 % cover- 

on all the coatings except on the tie coat, which had high coverage at 23 days. As other 

fouling categories appeared, the percentage cover of microfouling decreased (Fig. 10.8). 
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Figure 10.8: Percentage cover observed on 8 different test surfaces attached to Panel 1, 

immersed in Hartlepool Marina during 157 days of immersion. Percentage cover for the 4 fouling 

categories: microfouling (blue), weeds (red), soft-bodied animals (green) and hard-bodied animals 

(grey). For each graph, the axis x represents the length of immersion (i.e. day of immersion) for each 

coating. Mean of 7 replicates. 

 

Weeds were present on the tie coat (a standard surface, which is known to be fouled readily) 

after 37 days‟ immersion and on the other surfaces after 43 days (Fig. 10.8). Between 43 and 

98 days, the coverage of weeds was around 10-20% and was relatively constant on all the 
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surfaces. At the last inspection at 157 days, only a small coverage of weeds was observed. 

The weed category was composed of brown filamentous algae –i.e. ectocarpoid algae- until 

98 days when other types of brown algae (such as Chorda filum), red algae (such as 

Gracilaria sp.) and small tufts of green algae were present.  

Soft- and hard-bodied animals appeared after 37-43 days‟ immersion, and had a rapid 

growth from 80 days‟ immersion. After 157 days‟ immersion, their coverage was still 

increasing and they were growing over the weeds. 

10.3.3.1. Analysis of the total percentage cover 

Figure 10.9a shows total percentage cover for all surfaces; at the two first inspections, the 

total coverage was relatively low (around 20-30 %), then increased reaching a plateau close 

to 100 % from 43 days to 98 days before decreasing to approximately 70 % at 157 days.  

  

Figure 10.9: Total percentage cover as a function of immersion days of the panels (a) and as a 

function of each surface (b). a) Each data point represents at each inspection day the mean of all 

collected data regrouping the replicates, surface and panels together (n=168; 7 replicates x 8 surfaces x 

3 panels) ± 2 x SE. b) Each bar represents the mean of all the collected data for a surface averaged 

over the whole experiment (n= 147; 7 replicates x 7 inspections x 3 panels) ± 2 x SE. Tie C= Tie coat. 

Values that are significantly different at p≤0.05 in GEEs are indicated by different letters above the bars 

in Figure b.  
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Significant differences for the total fouling coverage were observed between the surfaces 

(Fig. 10.9b). Coating H7 had significantly the lowest total coverage throughout whole 

experiment, followed by H3 and H10 (Fig. 10.9b). The highest total coverage was observed 

on the tie coat with 92 % cover. The coverage on all the other surfaces was around 60-80 % 

and the surfaces were separated in two groups as shown in Figure 10.9b; H and IS900 were 

grouped together followed by H1, H2 and H10 grouped together with slightly lower coverage.  

10.3.3.2. Analysis of the percentage cover of microfouling 

As shown in Figure 10.10a, the percentage cover of microfouling increased rapidly until it 

reached a maximum between 43 and 80 days, then it decreased from 98 days‟ immersion. 

This pattern was observed for all the surfaces except for the tie coat, which had a high 

coverage after 23 days‟ immersion, then a low percentage cover for the rest of the 

experiment. The decrease of percentage cover of microfouling was linked to the appearance 

of weeds, soft- and hard-bodied animal fouling. 

Statistical analysis showed that tie coat had significantly the lowest percentage cover while 

IS900 had significantly the highest (Fig. 10.10b). There were no significant differences in 

coverage between any of the silicone „hybrid‟ coatings, except the coverage on H that was 

significantly lower than on H1 and H10.  
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Figure 10.10: Percentage cover of microfouling as a function of immersion days and surfaces 

(a) and as a function of each surface averaged over the whole experiment (b). Each bar 

represents the mean of collected data (for a: n= 21: 7 replicates x 1 inspection x 3 panels; for b: n= 

147: 7 replicates x 7 inspections x 3 panels) ± 2 x SE. Tie C = Tie coat. Values that are significantly 

different at p≤0.05 in GEEs are indicated by different letters above the bars in Figure b. 
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10.3.3.3. Analysis of percentage cover of weeds with particular reference to 

ectocarpoid algae 

 

 

 

Figure 10.11: Percentage cover of weeds as a function of days and surfaces (a) and as a 

function of each surface averaged over the whole experiment (b). Each bar represents the mean 

of collected data (for a: n= 21: 7 replicates x 1 inspection x 3 panels; for b: n= 147: 7 replicates x 7 

inspections x 3 panels) ± 2 x SE. Tie C= tie coat. Values that are significantly different at p≤0.05 in 

GEEs are indicated by different letters above the bars in Figure b. 

 

Throughout the experiment, two peaks of weed coverage were observed, particularly visible 
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second at 98 days, composed of other brown algae such as Chorda filum, some red algae 

and some filaments of green algae such as Ulva. These variations might be due to the 

competition with other fouling organisms such as barnacles and to grazing animals. During 

the last survey (i.e. after 157 days‟ immersion), only a few algae were observed. 

Statistical analysis showed that the tie coat had significantly higher weed coverage at all the 

inspections. However, there were significant differences between the coatings; H had 

significantly the highest weed coverage while coating H7 had the lowest (Fig. 10.11b). With a 

percentage cover around 10 %, the other coatings were not significantly different to each 

other.  

 

Ectocarpoid algae 

The two genera, Ectocarpus and Hincksia, were observed on most of the surfaces during the 

field assay, while Pilayella was observed only on few occasions. Ectocarpoid algae 

increased quickly at the start of the field trial and reached a maximum at 43 days‟ immersion 

before decreasing and disappearing after 98 days‟ immersion (Fig. 10.12a). Statistical 

analysis showed that the tie coat had significantly the highest coverage with 57 % while 

IS900 had similar coverage to the silicone „hybrid‟ coatings except H and H7 (Fig. 10.12b). 

Coating H7 had significantly the lowest coverage, while H had the highest of the silicone 

„hybrid‟ coatings with 15 %. All the percentage covers of the other coatings were not 

significantly different.  
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Figure 10.12: Percentage cover of ectocarpoid algae as a function of immersion days and 

silicone „hybrid‟ coatings (a) and as a function of each surface averaged over the whole 

experiment (b). Each bar/dot represents the mean for one coating for one inspection (for a: n= 21: 7 

replicates x 1 inspection x 3 panels; for b: n= 147: 7 replicates x 7 inspections x 3 panels) ± 2 x SE. 

Tie C= tie coat. Values that are significantly different at p≤0.05 in GEEs are indicated by different 

letters above the bars in Figure b. 
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10.3.3.4. Analysis of the percentage cover of soft-bodied animals 

 

 

Figure 10.13: Percentage cover of soft-bodied animals as a function of immersion days and 

surfaces (a) and as a function of each surface averaged over the whole experiment (b). Each 

bar represents the mean of collected data (for a: n= 21: 7 replicates x 1 inspection x 3 panels; for b: n= 

147: 7 replicates x 7 inspections x 3 panels) ± 2 x SE. Tie C=tie coat. Values that are significantly 

different at p≤0.05 in GEEs are indicated by different letters above the bars in Figure b. 

 

The first visible colonisation of soft-bodied animals was observed after 43 days (mostly 

represented by tunicates and polyps). However, until 80 days, the coverage was relatively 

10 

20 

30 

40 

50 

60 

23 37 43 61 80 98 157 

%
 c

o
ve

r 
o

f 
so

ft
-b

o
d

ie
d

 a
n

im
al

s 

Days 

H 

H1 

H2 

H3 

H7 

H10 

IS900 

Tie C 

a 

a 

b,e 

b 

c 

d 

a,b,e b,e 
e 

2 

4 

6 

8 

10 

12 

H H1 H2 H3 H7 H10 IS900 Tie C 

%
 c

o
ve

r 
o

f 
so

ft
-b

o
d

ie
d

 a
n

im
al

s 

b 



192 
 

low, and then it increased quickly, up to 30 % after 157 days‟ immersion (Fig. 10.13a). If the 

panels were left immersed longer, soft-bodied animal fouling might have increased even 

more.  

The coverage of soft-bodied animals was different between the surfaces (Fig. 10.13b). 

Coating H7 had significantly the lowest coverage, followed by H3. The other surfaces were 

similar except for the coverage on H, which was higher than on H1, H2 and IS900; and the 

coverage on H2, which was lower than on the tie coat (Fig. 10.13b). 

 

10.3.3.5. Analysis of the percentage cover of hard-bodied animals 

The first observation of hard-bodied animals was at 37 days‟ immersion (mostly represented 

by barnacles). However, as for the soft-bodied animals, coverage was relatively low until 80 

days, and then it increased quickly, up to 20 % after 157 days‟ immersion (Fig. 10.14a). As 

for soft-bodied animals, if the panels had been immersed longer the amount of hard-bodied 

animal fouling might have further increased. Differences in the percentage cover of hard-

bodied animals were observed between the surfaces (Fig. 10.14b). Coating H7 had 

significantly the lowest coverage, followed by H3, while H had the highest. The other 

surfaces were grouped together except for the coverage on H1, which was higher than on 

H10.  
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Figure 10.14: Percentage cover of hard-bodied animals as a function of immersion days and 

surfaces (a) and as a function of each surface averaged over the whole experiment (b). Each 

bar represents the mean of collected data (for a: n= 21: 7 replicates x 1 inspection x 3 panels; for b: n= 

147: 7 replicates x 7 inspections x 3 panels) ± 2 x SE. Tie C=tie coat. Values that are significantly 

different at p≤0.05 in GEEs are indicated by different letters above the bars in Figure b. 
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influence of panel-replicates and depth to be observed by studying the results between 

panels and rows, respectively.  

Differences were observed between the panels for the different fouling categories but they 

were minimal (<7% difference). It still showed that even though the panels were in adjacent 

positions on the pontoon and at the same depth, the results show that external factors 

slightly influenced the fouling appearance. 

An effect of depth was observed for all the fouling categories except the total % cover, but 

the differences were minor (<3%) for the animal fouling. However, slightly higher differences 

were observed for the other categories of fouling. It was observed that the deeper the 

surfaces were immersed, higher coverage of microfouling was present (rows 6-7: 48-49%, 

other rows: 42-44 %). For the weeds and ectocarpoid algae, row 4 had a higher coverage 

than other rows (row 4: 21% and rows 1 and 7:15% for the weeds; row 4: 17% and the other 

rows:11-14% for the ectocarpoid algae).  

 

10.3.3.7. Relationship between fouling cover and surface wettability for the 

silicone hybrid coatings 

As explained earlier, the % cover of the different fouling categories was correlated to three 

measures of surface wettability for the six silicone „hybrid‟ coatings, viz. initial static contact 

angle in air, contact angle hysteresis and underwater contact angle after 1 day‟s immersion 

in Hartlepool Marina.  

The total % cover did not show any strong correlation to any these three measures of surface 

wettability (Fig. 10.15). However, for the static contact angle in air, it was observed that H10 

was not following the same trend as the other coatings and by excluding this coating, it was 

possible to observe a strong correlation between the coverage of total fouling and static 

water contact angle in air (R2=0.89; Fig. 10.15a). By linking the % covers of the different 
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coatings together (Fig. 10.15a), a similar relationship was observed to the one between the 

% removal of U. linza and the static contact angle observed in Chapter 6 (Fig. 6.3b), as the 

colonisation would be inversely linked to the % removal. 

  

 

 

Figure 10.15: Correlations between total % cover averaged over the whole experiment and 

surface properties of the silicone „hybrid‟ coatings: the initial static contact angle in air (a), the 

contact angle hysteresis (b) and the underwater contact angle after 1 day‟s immersion in 

Hartlepool Marina (c). Each point represents the mean of all the collected data for a surface (n= 147; 

7 replicates x 7 inspections x 3 panels) ± 2 x SE. Linear trend lines and R
2
 correlations are shown for 

all data points (black) and for all points excluding H10 (red). 
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negative correlations were observed between the % cover and either the contact angle 

hysteresis and underwater contact angle after one day‟s immersion in Hartlepool Marina, 

respectively (R2=0.66-0.67; Figs. 10.16b/c).  

  

 

 

Figure 10.16: Correlations between the % cover of microfouling averaged over the whole 

experiment and surface properties of the silicone „hybrid‟ coatings: the initial static contact 

angle in air (a), the contact angle hysteresis (b) and the underwater contact angle after 1 day‟s 

immersion in Hartlepool Marina (c). Each point represents the mean of all the collected data for a 

surface (n= 147; 7 replicates x 7 inspections x 3 panels) ± 2 x SE. Linear trend lines and R
2
 

correlations are shown for all data points. 
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While no strong correlation was observed between the % cover of weeds and either static 

contact angle in air and underwater contact angle after 1 day‟s immersion in Hartlepool 

Marina (R2<0.4; Figs. 10.16b/c), a weak negative correlation was observed between the % 

cover of weeds and the contact angle hysteresis (R2=0.59; Fig. 10.17b).   

  

 

 

Figure 10.17: Correlations between the % cover of weeds averaged over the whole experiment 

and surface properties of the silicone „hybrid‟ coatings: the initial static contact angle in air (a), 

the contact angle hysteresis (b) and the underwater contact angle after 1 day‟s immersion in 

Hartlepool Marina (c). Each point represents the mean of all the collected data for a surface (n= 147; 

7 replicates x 7 inspections x 3 panels) ± 2 x SE. Linear trend lines and R
2
 correlations are shown for 

all data points. 
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Figure 10.18: Correlations between the % cover of ectocarpoid algae averaged over the whole 

experiment and surface properties of the coatings: the initial static contact angle in air (a), the 

contact angle hysteresis (b) and the underwater contact angle after 1 day‟s immersion in 

Hartlepool Marina (c). Each point represents the mean of all the collected data for a surface (n= 147; 

7 replicates x 7 inspections x 3 panels) ± 2 x SE. Linear trend lines and R
2
 correlations are shown for 

all data points. 
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Hartlepool Marina (R2<0.4; Figs. 10.18a/c). However, a stronger negative correlation was 

observed between the % cover of ectocarpoid algae and the contact angle hysteresis 

(R2=0.63; Fig. 10.18b).  
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The % cover of soft-bodied animals was not correlated to the three surface properties 

represented in Figures 10.19 (R2<0.3). However, if the coating H10 was excluded from the 

correlation as it was not following the same trend as the other coatings, a positive correlation 

was observed between the static contact angle in air and the % cover of soft-bodied animals 

(R2=0.91; Fig. 10.19a). As for the total % cover, by linking the % cover of the different 

coatings together, a similar relationship to the one observed in Chapter 6 (Fig. 6.3b) between 

the % removal of U. linza and static contact angle was observed, as the colonisation would 

be inversely linked to the % removal. 
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Figure 10.19: Correlations between the % cover of soft-bodied animals averaged over the 

whole experiment and surface properties of the silicone „hybrid‟ coatings: the initial static 

contact angle in air (a), the contact angle hysteresis (b) and the underwater contact angle after 

1 day‟s immersion in Hartlepool Marina (c). Each point represents the mean of all the collected data 

for a surface (n= 147; 7 replicates x 7 inspections x 3 panels) ± 2 x SE. Linear trend lines and R
2
 

correlations are shown for all data points (black) and for all points excluding H10 (red). 
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% removal of U. linza and static contact angle was observed, as the colonisation would be 

inversely linked to the % removal. 

 

  

 

 

Figure 10.20: Correlations between the % cover of hard-bodied animals averaged over the 

whole experiment and surface properties of the silicone „hybrid‟ coatings: the initial static 

contact angle in air (a), the contact angle hysteresis (b) and the underwater contact angle after 

1 day‟s immersion in Hartlepool Marina (c). Each point represents the mean of all the collected data 

for a surface (n= 147; 7 replicates x 7 inspections x 3 panels) ± 2 x SE. Linear trend lines and R
2
 

correlations are shown for all data points. 
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10.4. Discussion 

This Chapter presents the results of field experiments performed during the spring-summer 

season of 2011, testing the performance of well-characterised coatings made from the 

blending of PDMS and PDMS-PEO copolymers. By mixing different ratios of these two 

copolymers, a series of coatings having a graduated range of initial wettability/surface energy 

was produced (as shown in Chapter 4). It has been demonstrated in Chapter 4 that the 

wettability and related properties (surface energy and its components) were the measured 

parameters that varied among these coatings as they have similar modulus and roughness. 

These coatings formed then a good series to investigate the effects of wettability on the 

colonisation of fouling organisms. 

It has been shown in previous studies that surfaces change quickly after immersion due to 

for example surface reorganisation and formation of a conditioning film and so the wettability 

would vary and influence the results of the field assay (Sundaram et al. 2011; Thome et al. 

2012). In order to observe the changes of wettability of immersed surfaces (in sterile ASW 

and in natural seawater), the underwater contact angles were measured during a period of 

10 days. 

The wettability values of dry and freshly immersed (in MilliQ water) surfaces were different, 

as it has been demonstrated previously for other surfaces (Zhang et al. 1989; Maldonado-

Codina and Morgan 2007). It is highly possible that these differences were due to a rapid 

surface reorganisation since the coatings, except H, were amphiphilic in nature containing 

hydrophilic PEO blocks and hydrophobic PDMS blocks. Previous experiments testing 

amphiphilic coatings also showed that coatings became more hydrophilic after immersion 

(Krishnan et al. 2006a; Sundaram et al. 2011; Martinelli et al. 2012a). However, H the most 

hydrophobic coating, which contained only PDMS, had the highest decrease of contact angle 

after one day‟s immersion, while IS700, which also contained only PDMS as polymer, had 

barely any changes of wettability (<10°) after 1 day, showing that IS700 was more stable 
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than H. It is possible that other properties or other mechanisms changed the wettability such 

as the conditioning film produced by the absorption of macromolecules (Thome et al. 2012), 

or even the presence of the curing agent on the surface of the test coatings. It is likely that 

the changes in wettability on immersion are due to contributions from more than one of these 

effects.  

After the first day of immersion, the wettability values showed that there was no clear pattern 

to explain the wettability changes, some coatings had a relatively stable wettability while 

others were subjected to fluctuations. The microscope observations showed that a biofilm 

(i.e. bacteria and diatoms) and associated fouling were developed on the surfaces immersed 

in Hartlepool Marina, especially from 7 days. The fact that no qualitative differences of the 

fouling organisms attached to the coatings were observed between the experimental 

coatings suggests that during the 10 first days‟ immersion, the fouling community was not 

influenced by the surface wettability. However, it was possible that the species of bacteria 

were different between the surfaces. In addition, it is likely possible that the wettability values 

from 7 days in Hartlepool Marina were due to the presence of fouling organisms rather than 

the properties of the surfaces. As the surfaces immersed at Hartlepool Marina were less 

hydrophilic than the surfaces in sterile ASW, it is possible to suggest that it was due to the 

presence of the biofilm formed in natural seawater (Hartlepool Marina). 

The results obtained during the static field experiment showed that the different factors (i.e. 

coatings (or surface properties), days of immersion, panels and rows) that were analysed 

influenced the colonisation of the different fouling organisms (i.e. % cover). Each category of 

fouling organisms appeared at different periods and their cover evolved differently. As shown 

for a number of previous field experiments (Bailey-Brock 1989; Benedetti-Cecchi 2000; 

Prendergast 2007), microfouling was the first category that was visible by eye, followed by 

weeds. Then later – around 43 days‟ immersion for this experiment- soft- and hard-bodied 

animals were visible. However, these data have to be taken with caution, it does not mean 
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that algal spores and animal larvae were not present from the first days of immersion, but 

that their growth took longer than the microfouling to be visible. 

As expected, the silicone „hybrid‟ coatings were in general more effective as antifouling 

coatings than the tie coat (i.e. for the total fouling, coverage of weeds and ectocarpoid 

algae). The performance of the commercial amphiphilic coating IS900 was relatively similar 

to the performance of most of the silicone „hybrid‟ coatings, except for the microfouling 

colonisation; coating H had higher coverage than IS900 for the coverage of weeds, 

ectocarpoid algae and animal fouling. In addition, IS900 was less effective than H7 for the 

coverage of weeds and ectocarpoid algae and also more effective than both H3 and H7 for 

the coverage of animal fouling. The comparison of the test coatings showed that coating H7 

was the most effective due to the lowest percentage cover for all fouling categories except 

microfouling, while coating H was the least effective coating of the silicone „hybrid‟ coatings.  

One of the aims of the underwater contact angle measurements during 10 days‟ immersion 

in seawater was to evaluate the influence of wettability on the coating performance in the 

field, viz. colonisation of fouling organisms. It was then decided to compare the % cover of 

fouling organisms to three surface properties: initial surface wettability and contact angle 

hysteresis of dry coatings and wettability of coatings after one day‟s immersion in Hartlepool 

Marina. 

Differences of fouling coverage between the coatings showed that the structure of the 

biofouling communities (i.e. the % covers of the fouling categories) was partly influenced by 

the measured surface properties. An influence of the initial static contact angle in air was 

only observed on the % cover of the hard-bodied animals (R2=0.65). Coating H10 did not 

follow the same trend as the other coatings for the correlations between the static contact 

angle in air and total fouling and % cover of soft-bodied animals and so by excluding H10 

from the correlations, more positive correlations were observed between static contact angle 
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in air and the % cover of total fouling and soft-bodied animals (R2=0.89-0.91). It was already 

observed that H10 had an anomalous performance for the adhesion strength of U. linza 

(Chapter 6; Fig. 6.3). This could be due to other, unmeasured surface properties such as a 

sub-optimal patterning of surface domains produced by the segregation of hydrophilic and 

hydrophobic chains, as proposed in Chapter 6. 

Further correlations were observed; negative correlations were observed between the 

contact angle hysteresis and the coverage of weeds, ectocarpoid algae and hard-bodied 

animals (R2>0.5), while % cover of microfouling was positively and negatively correlated with 

the contact angle hysteresis (R2=0.66) and the underwater contact angle after one day‟s 

immersion (R2=0.67), respectively. These correlations showed that wettability from pristine 

and immersed surfaces influenced the colonisation of fouling organisms. However, as the 

correlations were not perfectly linear or did not include all the coatings, it is possible to 

conclude that the colonisation of surfaces is more complex and does not depend only on the 

measured surface properties. 

Significant but minor differences between the panels were observed for all fouling categories 

except for hard-bodied animals, showing that external factors slightly influenced the 

colonisation of the test surfaces. Seawater and environmental parameters such as salinity, 

pH, light and temperature are known to affect colonisation by fouling organisms. However, 

the panels were close to each other, so no such variations of these parameters could have 

affected the community. It is possible the biological interactions such as competition, 

predation and physical disturbances could have influenced the fouling community, as 

demonstrated by Swain et al. (1998). In addition, populations of marine organisms are often 

characterised by variable recruitment patterns that seem unpredictable in time and space 

(e.g. Jernakoff 1983; Roughgarden et al. 1988; Vadas et al. 1992), which could explain the 

variations between the panels.  
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In addition, an effect of depth was observed for all four fouling categories, but the differences 

for the animal fouling were relatively minimal. However, the analyses showed that coverage 

of microfouling was higher with the increase of depth and that the coverage of weeds was 

higher in the middle of the panels (i.e. row 4) compared to the rows on the edges, showing 

that at this depth, the light might have been optimum for the settlement of spores, which are 

known to be phototactic (Fletcher and Callow 1992 for review; Greer and Amsler 2002 and 

2004). 

The laboratory assays described in Chapter 6 assessed the fouling-release performance of 

the silicone „hybrid‟ coatings on the adhesion of ectocarpoid algae and showed no clear 

correlation between the adhesion strength of E. crouaniorum and the measured surface 

properties. The field assay described in this Chapter essentially assessed the performance of 

the same coatings on the colonisation of fouling organisms. However, it was possible to 

observe that the laboratory results partly predicted the results obtained in the field assay; the 

coating H7 was for both types of experiments the most effective coating. However, the 

fouling coverage gave different results on the performance of the other coatings compared to 

the laboratory experiments.  

Summary of the results: 

 The wettability values obtained for the dry and freshly immersed (in MilliQ water) 

surfaces showed either that the two methods measure slightly different aspects of 

surface wettability, or that in few minutes of immersion needed to measure the 

underwater contact angle, a surface reorganisation happened. 

 The surfaces became more hydrophilic after 24 h immersion in sterile ASW showing 

a surface reorganisation and possibly the effect of conditioning film due to the 

absorption of macromolecules present in the ASW. 
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 The surfaces in Hartlepool Marina were in general more hydrophobic than those 

immersed in sterile ASW, suggesting that the biofilm formed in natural seawater 

made the surfaces more hydrophobic. 

 Each category of fouling organism appeared at different periods and their cover 

evolved differently. 

 The silicone „hybrid‟ coatings were in general more effective than the commercial 

standard amphiphilic coating IS900. 

 H7 was the most effective antifouling coating while H was the least effective of the 

silicone „hybrid‟ coatings.  

 Positive correlations were observed between the initial contact angle and the total 

fouling and animal fouling. 

 A negative correlation was observed between the contact angle hysteresis and the 

coverage of weeds, ectocarpoid algae and hard-bodied animals, while a positive 

correlation was observed for the microfouling coverage.  

 A negative correlation was observed between the microfouling coverage and the 

contact angle after one day‟s immersion in Hartlepool Marina. 

 Laboratory assays partly predicted the results obtained with the field assay; H7 was 

the most effective coating in both situations.  
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11. FIELD ASSAYS OF ANTIFOULING PERFORMANCE OF 

SILICONE COATINGS WITH A RANGE OF MODULUS DURING 

2012 SEASON 

11.1. Introduction 

As explained in the two previous Chapters, field experiments evaluate the performance of 

test coatings in a natural environment allowing comparison with the results obtained in 

laboratory assays. In Chapter 8, a systematic series of hydrophobic coatings with varying 

modulus produced from different molecular weights of PDMS (viscosity from 72 to 50000 

mPa s-1) was tested to observe the effect of modulus on the adhesion strength of two algae, 

Ectocarpus crouaniorum and Ulva linza. The results obtained in Chapter 8 showed that the 

modulus influenced slightly the adhesion strength of these two algae, with different 

relationship to the modulus depending on the alga. The adhesion strength of U. linza was 

positively correlated with the elastic modulus (and to the molecular weight of PDMS), as 

observed previously by Chaudhury et al. (2005). However, the attachment and adhesion 

strength of E. crouaniorum filaments was negatively correlated with modulus. The aims of 

this field experiment were (a) to observe the appearance and the succession of the different 

fouling organisms, especially ectocarpoid algae, in order to see if there were differences 

between the surfaces and also between the fouling organisms on the different surfaces, (b) 

to correlate any difference in colonisation with the bulk properties of the coatings. It is the first 

study to assess colonisation in the field with a systematic series of coating with a range of 

modulus. This experiment was performed in Hartlepool Marina, following the same protocol 

as Chapter 10. 
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11.2. Materials and Methods 

11.2.1. Coatings 

The test coatings were five silicone-based coatings (M1, M2, M3, M4 and M5) with varying 

moduli, from 0.73 to 1.5 MPa. IS900 was used as commercial standard coating and a 

commercial tie coat as a negative control surface (i.e. the tie coat had no antifouling 

properties and was therefore expected to foul heavily). The composition and characterisation 

of these surfaces was described in Chapter 4.  

11.2.2. Static field immersion experiment  

 

Figure 11.1: Panel before immersion. The panels were attached to a weight in order to be in vertical 

position. Two ropes were attached to the pontoons to keep the panel in the same position during the 

field experiment. 

 

The experiment was done following the method designed in Chapter 10. The panel design 

was of 7 rows x 7 columns (Fig. 11.1). The three-replicate panels were immersed on the 13th 

March 2012, and the data were collected after 20, 39, 47, 60 and 83 days. Percentage 

covers of all the fouling categories were obtained following the „Phoenix‟ in-house 

Experimental Fouling Assessment Record Sheet. The percentage of ectocarpoid algae was 
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also recorded separately and samples were taken using forceps for subsequent microscopic 

examination to determine which genera were present. 

 

11.2.3. Statistical analysis of the field data: Generalized estimating 

equations 

It was explained in Chapter 2.10 and statistical tables for the whole Chapter are presented in 

Appendix 12. 

11.3. Results  

11.3.1. General observation of the percentage fouling 

Five data inspections were done between the 20th and the 83rd days‟ immersion –i.e. 

between the 13rd of March and 5th of July 2012. Only a few algae were visible during the 

whole experiment and as the animal fouling started to have a relatively high coverage, it was 

assumed that no more algae would grow on the surfaces during the summer season, and it 

was then decided to stop the experiment and to analyse the results obtained. 

Figure 11.2 shows the percentage cover of the four categories of fouling organisms 

(microfouling, weeds, soft- and hard-bodied animals) for each coating on one panel (7 

replicates, data shown for the other 2 panels in Appendix 13). The effects of the coatings, 

replication, time of immersion and depth (row) were determined for all the fouling categories 

using generalized estimated equations GEEs as statistical analysis (Chapter 2; data were 

significantly different when p<0.05). 

Variations between the surfaces and the inspections were observed in total fouling –i.e. 

differences in percentage cover in all four fouling categories- and also in percentage cover of 

different fouling categories (Fig. 11.2; Appendix 13). It was observed that from 60 days‟ 

immersion the total fouling reached 100 % cover for almost all of the test coatings.  
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Figure 11.2: Percentage cover observed on 7 different test surfaces attached to Panel 2, 

immersed in Hartlepool Marina during 83 days‟ immersion. Percentage cover for the 4 fouling 

categories: microfouling (blue), weeds (red), soft-bodied animals (green) and hard-bodied animals 

(grey). For each graph, the axis x represents the length of immersion for each coating. Mean of 7 

replicates.  

 

The coverage of microfouling was also different between the panels; it was relatively low 

during the three first inspections on panels 1 and 2, while on panel 3, microfouling was 
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already covering the majority of the surfaces at the second inspection. The presence of the 

other fouling categories (weeds, soft- and hard-bodied animals) appeared after 47-60 days‟ 

immersion.  

 

11.3.2. Analysis of the total percentage cover 

Figure 11.3a shows total percentage cover for all surfaces. At the first inspection the total 

coverage was relatively low (around 20%), then increased linearly until 60 days‟ immersion, 

and for the two last inspections, the coverage reached a plateau close to 100 %.  

Significant differences for the total fouling coverage were observed between the surfaces 

(Fig. 11.3b). As expected, the tie coat, which had no antifouling properties, had significantly 

the highest total coverage. All the other surfaces were grouped together, except M1 that had 

significantly a higher coverage. No strong linear correlation was observed between the total 

% cover and the elastic modulus, the viscosity and the estimated molecular weight of PDMS 

(Figs. 10.3c-e). However, as M1 had a higher coverage than the other test coatings, a 

positive effect of the elastic modulus was observed with the total % cover, with an increase in 

fouling when the elastic modulus was >1 MPa.  

In addition, a red curve was drawn in Figure 11.3c showing a possible correlation between 

total % cover and elastic modulus with low coverage for M3 (i.e. 0.91 MPa) and higher 

coverage for M5 and M1 the softest and hardest coatings.  
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Figure 11.3: Total percentage cover as a function of immersion days of the panels (a) and as a 

function of each surface averaged over the whole experiment (b) and correlations between the 

total % cover and properties of the silicone „modulus‟ coatings: elastic modulus (c), viscosity 

(d) and estimated molecular weight (e). a) Each data point represents the mean of all collected data 

(n=147) at each inspection day (7 surfaces x 7 replicates x 3 panels) ± 2 x SE. Figures b-e, each 

bar/points represents the mean of all the collected data for a surface (n= 105; 7 replicates x 5 

inspections x 3 panels) ± 2 x SE. Tie C= tie coat. In Figure b, the experimental coatings are arranged 

in order of decreasing modulus (M1=1.5 MPa; M2=1.04 MPa; M3=0.91 MPa; M4=0.85 MPa; M5=0.73 

MPa). Values that are significantly different at p≤0.05 in GEEs are indicated by different letters above 

the bars in Figure b. Linear trend lines and R
2
 correlations are shown for all data points in Figures c-e 

and the curve in red shows the effect of high modulus on the total % cover in Figure c. 

 

11.3.3. Analysis of the percentage cover of microfouling 

As shown in Figure 11.4a, the percentage cover of microfouling increased until 60 days‟ 

immersion reaching approximately 100 % cover for most of the surfaces and after 83 days‟ 

immersion, the coverage decreased to 70 % as the animal coverage increased. This pattern 

was observed for all the surfaces except for the tie coat, which had a microfouling coverage 

of 36 % after 20 days‟ immersion, then a variable coverage due to an appearance of weeds 

and then of animal fouling. 

Statistical analysis showed that tie coat and M1 had significantly the highest percentage 

cover compared to the other surfaces, which were grouped together (Figs. 11.4a/b). 

Although no strong linear correlations were observed between the microfouling coverage and 

the elastic modulus, the viscosity and the estimated molecular weight of PDMS (Figs. 11.4b-

d), a positive effect of modulus was observed on the microfouling coverage, as when the 

elastic modulus was higher than 1 MPa, the coverage of microfouling was higher.  

In addition, a red curve was drawn in Figure 11.4b showing a possible correlation between 

microfouling coverage and elastic modulus, as for total % cover, with the highest coverage 

on the softest and hardest coatings (M5 and M1). 
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Figure 11.4: Percentage cover of microfouling as a function of immersion days and surfaces (a) 

and correlations between the % cover of microfouling averaged over the whole experiment and 

properties of the silicone „modulus‟ coatings: the elastic modulus (b), viscosity (c) and 

estimated molecular weight (d). Each bar/dot represents the mean of collected data (for a (n= 21): 7 

replicates x 1 inspection x 3 panels; for b-d (n= 105): 7 replicates x 5 inspections x 3 panels) ± 2 x SE. 

Tie C = Tie coat. Values that are significantly different at p≤0.05 in GEEs are indicated by different 

letters above the bars in Figure b. Linear trend lines and R
2
 correlations are shown for all data points 

in Figures b-d and the curve in red shows the effect of high modulus on the % cover of microfouling in 

Figure b. 

 

 

11.3.4. Analysis of percentage cover of weeds with particular reference to 

ectocarpoid algae 

Throughout the experiment, almost no biomass of weeds was observed except on the tie 

coat (Fig. 11.5). Most of the weeds identified were ectocarpoid algae, but some filaments of 

Ulva were also visible. Differences were observed between the inspections of data; at first, 

after 20 days‟ immersion, no weeds were observed, then for the 2nd and 3rd inspections, the 

mean of weed coverage was around 5 % and for the last inspection the coverage was 

around 2-3 %.  

The statistical analysis showed that the tie coat had significantly higher weed coverage at all 

the inspections compared to the other surfaces, which were grouped together. As weed 

coverage was not different between the test coatings, it is possible to conclude that the 

modulus (but also viscosity and estimated molecular weight) did not influence the weed 

coverage. However, the results have to be taken with caution as the mean coverage of the 

test species for whole experiment was lower than 1 %, so it is possible that during a field 

assay with higher coverage of weeds, differences would have been visible (the graphs 

representing the % cover of weeds as a function of modulus, viscosity and estimated 

molecular weight were not shown as the % cover was lower than 1 %). 
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Figure 11.5: Percentage cover of weeds as a function of days and surfaces. Each bar represents 

the mean of collected data (for a (n=21): 7 replicates x 1 inspection x 3 panels) ± 2 x SE. Tie C= tie 

coat. 

 

 

Ectocarpoid algae 

The two genera, Ectocarpus and Hincksia, were observed on the surfaces fouled with 

weeds. No ectocarpoid algae were observed after 20 days‟ immersion, then a low coverage 

was observed for the two following inspections (with 5 % cover) and an even lower coverage 

was observed from 60 days (with less than 2 % cover). No difference was observed between 

the surfaces expect for tie coat, which had the highest coverage of ectocarpoid algae during 

the experiment (Fig. 11.6). The results showed that the modulus (but also viscosity and 

estimated molecular weight) did not influence the presence of ectocarpoid algae (graph not 

represented as percentage cover low), but as for the weeds, differences between the 

coatings might have been visible if there had been a higher coverage on the surfaces. 
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Figure 11.6: Percentage cover of ectocarpoid algae as a function of days of immersion and 

surfaces. Each bars represents the mean for one surface for one inspection (n=21; 7 replicates x 3 

panels) ± 2 x SE. 

 

11.3.5. Analysis of the percentage cover of soft-bodied animals 

The first visible colonisation of soft-bodied animals (mostly represented by polyps) was 

observed after 39 days. However, until 83 days, the coverage was relatively low; only for the 

last inspection a high percentage cover was visible on the surfaces (Fig. 11.7a). If the panels 

were left immersed longer, soft-bodied animal fouling might have increased even more. The 

coverage of soft-bodied animals was significantly lower on IS900 compared to the other 

surfaces, which grouped together. After 83 days‟ immersion, the coverage on surfaces was 

between 20-25%; M2 had lower coverage than M1 and M3, but no further differences were 

observed. The results showed that modulus (but also viscosity and estimated molecular 

weight) did not influence the coverage of soft-bodied animals (Figs. 11.7b-d; R2<0.3).  
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Figure 11.7: Percentage cover of soft-bodied animals as a function of immersion days and 

surfaces (a) and correlation between the % cover of soft-bodied animals averaged over the 

whole experiment and properties of silicone „modulus‟ coatings: the elastic modulus (b), 

viscosity (c) and estimated molecular weight (d). Each bar/dot represents the mean of collected 

data (for a (n=21): 7 replicates x 1 inspection x 3 panels; for b-d (n=105): 7 replicates x 5 inspections x 

3 panels) ± 2 x SE. Tie C=tie coat. Linear trend lines and R
2
 correlations are shown for all data points 

in Figures b-d. 

 

11.3.6. Analysis of the percentage cover of hard-bodied animals 

The first observation of hard-bodied animals (mostly tubeworms and a few barnacles) was 

made after 39 days‟ immersion. However, as for the soft-bodied animals, coverage was 

relatively low until 83 days and if the panels had been immersed longer, the amount of hard-

bodied animal fouling might have increased further (Fig. 11.8a). 

Differences in percentage cover of hard-bodied animals were observed between the surfaces 

(Fig. 11.8a). Coating IS900 had significantly the lowest coverage; M3 was significantly lower 

than M1 and tie coat. No further differences were observed between the surfaces, but the 

differences between minimal and maximal were not higher than 3% cover, so the results 

have to be taken with caution. In addition, after 83 days‟ immersion, M3 had lower coverage 

of hard-bodied animals than M1 and M5 (Fig. 11.8a). These results show that despite small 

differences, no effect of modulus (but also viscosity and estimated molecular weight) was 

observed on the colonisation by hard-bodied animals (Figs. 11.8b-d, R2<0.5). 



221 
 

 

  

 

 

0 

2 

4 

6 

8 

10 

12 

20 39 47 60 83 

%
 c

o
ve

r 
o

f 
h

ar
d

-b
o

d
ie

d
 a

n
im

al
s 

Days 

M1 

M2 

M3 

M4 

M5 

IS900 

Tie C 

a 

M1a 

M2a,b 
M3b 

M4a,b M5a,b 

R² = 0.4466 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

0.6 0.8 1 1.2 1.4 1.6 

%
 c

o
ve

r 
o

f 
h

ar
d

-b
o

d
ie

d
 a

n
im

al
s 

Elastic modulus (MPa) 

b 
M1 

M2 

M3 

M4 M5 

R² = 0.0015 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

0 20000 40000 60000 

%
 c

o
ve

r 
o

f 
h

ar
d

-b
o

d
ie

d
 a

n
im

al
s 

Viscosity (mPa s-1) 

c 

M1 

M2 M3 

M4 M5 

R² = 0.2311 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

0 25000 50000 75000 100000 

%
 c

o
ve

r 
o

f 
h

ar
d

-b
o

d
ie

d
 a

n
im

al
s 

Estimated molecular weight (g mol-1) 

d 



222 
 

Figure 11.8: Percentage cover of hard-bodied animals as a function of immersion days and 

surfaces averaged over the whole experiment (a) and correlation between the % cover and the 

elastic modulus (b), viscosity (c) and estimated molecular weight (d). Each bar/dot represents the 

mean of collected data (for a (n=21): 7 replicates x 1 inspection x 3 panels; for b-d (n=105): 7 

replicates x 5 inspections x 3 panels) ± 2 x SE. Tie C=tie coat. Values that are significantly different at 

p≤0.05 in GEEs are indicated by different letters above the bars in Figure b. Linear trend lines and R
2
 

correlations are shown for all data points in Figures b-d. 

 

11.3.7. Effects of „replicates' and depth observed in the field assay 

Even though the main interest of the field assay was to observe the influence of modulus on 

the appearance of fouling organisms on test surfaces, the results obtained also allowed the 

observation of the influence of panel-replicates and depth by studying the results between 

panels and rows, respectively.  

Differences of total % cover were observed between the three panels, but they were minor 

for all the categories of fouling except for the total % cover and the coverage of microfouling. 

Panel 2 had 10 to 15 % cover higher than the two other panels. However, no major 

differences were observed on the effect of depth for any of the fouling categories.   

11.4. Discussion 

The series of coatings tested in this Chapter was made from different molecular weights of 

PDMS in order to obtain a range of modulus without changing the wettability. These coatings 

were hydrophobic (i.e. 100°) and had a range of moduli from 0.73 to 1.5 MPa; they had 

similar thickness (i.e. >200 µm) and roughness (i.e. <0.2 µm). Even if the range of modulus 

was lower than expected, these coatings represented a good systematic series to test the 

effect of modulus.  

The field assay, which was performed in Hartlepool Marina, was the first study to assess the 

performance of a systematic series of coatings with varying modulus on the colonisation of 
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fouling organisms. At first, the surfaces were colonised by microfouling and then a low 

percentage of weeds (<5%). After 60-83 days‟ immersion, the coverage of animal fouling was 

relatively high (>20% and 10% for soft- and hard-bodied animals, respectively). These results 

were consistent with previous studies on succession of organisms (Bailey-Brock 1989; 

Benedetti-Cecchi 2000).  

Differences between the surfaces were observed; as expected the tie coat, which did not 

contain any antifouling properties, had higher total % cover and weed coverage, showing that 

the tie coat was less effective than the other test surfaces. However, no differences were 

observed between the silicone modulus series except for the total coverage and the 

microfouling coverage, M1 had higher total % cover and microfouling coverage than the 

other test coatings. These results showed that the modulus, and the associated parameters 

of viscosity and estimated molecular weight, influenced the coverage of total fouling and 

microfouling; the coverage was higher when the elastic modulus was higher than 1 MPa. The 

coverage of weeds, ectocarpoid algae and animals was not influenced by the elastic 

modulus and the associated parameters of viscosity and estimated molecular weight. In 

addition, small differences were observed for the animal fouling (soft and hard), IS900 had 

lower coverage of animal fouling than the test coatings after 83 days‟ immersion, showing 

that IS900 was more effective than the experimental silicones for these fouling categories. It 

is possible that with the use of a water jet or some water flow, differences in adhesion 

strength would have been visible.  

The laboratory assays described in Chapter 8 assessed the fouling-release performance of 

the same series of silicone coatings with a range of modulus on the adhesion of ectocarpoid 

algae and showed that the increase of elastic modulus increased the adhesion strength of E. 

crouaniorum. The field assay described in this Chapter essentially assessed the performance 

of the same coatings on the colonisation of fouling organisms. Unfortunately, as almost no 
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ectocarpoid algae colonised the surfaces during the field assay, it was not possible to 

compare both experiments.  
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12. General Discussion 

 

12.1. Aims and objectives of the project 

The origin of this project was that International Paint had observed that ectocarpoid algae, 

known as fouling organisms for many years, had become more common colonisers of 

submerged surfaces protected with non-biocidal coatings. It was considered by the company 

that this problem needed some fundamental research so they funded a PhD project at the 

University of Birmingham, the outcomes of which are represented in this thesis. The main 

aim of the project was defined as the development of a laboratory-scale adhesion bioassay 

for ectocarpoid algae, and the application of the developed methodology to study the 

influence of specific physico-chemical parameters on the attachment and adhesion strength 

of these brown algae. A secondary aim was then to explore whether the results from the 

laboratory studies were reflected in field-based experiments. 

To achieve these aims a number of specific objectives were set: 

 To acquire isolates of a range of ectocarpoid algae and to culture these on a large 

enough scale to provide a readily available source of inoculum for adhesion 

bioassays. 

 To develop a reproducible laboratory bioassay for attachment and adhesion of 

ectocarpoid algae to test surfaces and to demonstrate the ability of the bioassay to 

distinguish between standard test materials with different surface properties. 

 To prepare, or acquire test coatings designed to provide systematic variations in a 

range of surface and bulk properties (wettability, modulus, charge) known to influence 

the adhesion of marine fouling organisms and to characterise these properties 

through appropriate analytical techniques. 
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 To apply the developed laboratory adhesion bioassay to these test coatings to 

determine which surface and bulk properties are relevant to the adhesion of 

ectocarpoid algae. 

 To compare the performance of these test coatings on the adhesion strength of 

ectocarpoid algae with those on the adhesion strength of Ulva linza, the only 

macroalga that has been previously used in laboratory-based adhesion assays. 

 To assess the performance of the same test coatings in field immersion assays and 

to compare the results with the laboratory assays. 

 To explore the influence of immersion on the surface wettability of coatings under 

laboratory and field conditions. 

The next two sections of this discussion describe how these aims and objectives were 

fulfilled through an analysis of the technical achievements and novel outcomes.  

 

12.2. Technical achievements 

A novel bioassay was developed to assess the performance of test 

surfaces with ectocarpoid algae. 

A novel bioassay was developed to assess the performance of non-biocidal FR surfaces on 

the adhesion of ectocarpoid algae (Chapter 3; Appendix 14). Prior to this work were no 

published examples in the literature reporting the use of a quantitative adhesion assay for 

these algae. Hall and Baker (1985) studied the colonisation and growth of Ectocarpus 

siliculosus on copper-nickel plates incubating in cultures of the alga. It was observed that 

colonisation proceeded from spores rather than mature plants. No attempt was made to 

characterise the adhesion strength of attached algae. While at the start of this project the 



227 
 

possibility of developing an adhesion assay using spores as the initial source of inoculum 

was considered, it was soon realised that this was an impractical route because of the 

quantity of spores that would be required. Previous studies on spore behaviour of 

ectocarpoid algae were able to obtain spore concentrations of approx. 6 x 104 per ml (Iken et 

al. 2001; Greer and Amsler 2002; Greer and Amsler 2004). A simple calculation shows that 

this is too low to form the basis of a quantitative adhesion bioassay. For example, the routine 

quantitative bioassay used extensively in Birmingham to assess the adhesion strength of the 

green macroalga U. linza in relation to coating/surface properties, is based on the 

colonisation of coatings deposited on glass microscope slides, by motile spores 

synchronously released from fertile fronds of the alga collected from the field; approximately 

a litre of spores at a concentration of 1 x 106 per ml is required to assess the performance of 

8-10 test surfaces (with 9 replicates). While it may have been theoretically possible to 

develop an alternative assay format for use with smaller volumes and concentrations of 

ectocarpoid spores, such as a multiwell plate format, the deposition of coatings in multiwell 

plates was not considered to be appropriate by International Paint.  In addition, measurement 

of adhesion strength in the calibrated water channel would not have been possible with a 

multiwell plate format. In view of these considerations, the starting point of the new bioassay 

using ectocarpoid algae was based on the colonisation of surfaces by small fragments of 

vegetative filaments, obtained by blending the cultured algae. The multicellular filaments 

attached to the surfaces by producing prostrate filaments and the adhesion strength of the 

biomass attached after 14 days‟ growth was then assessed by applying a hydrodynamic 

shear stress. 

This new bioassay fulfilled all the requirements for a good laboratory bioassay as the cultures 

used provided a sufficient amount of starting inoculum (filaments) to test several surfaces in 

one experiment using nine replicates. It uses cultured ectocarpoid algae, which are good 

models for bioassays as they have a small size and a rapid growth, they are easy to culture 
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and at relatively low cost. Chapter 3 and the following Chapters showed that the results 

obtained with this bioassay were consistent and reproducible. In addition, the protocol is 

easy to perform and to repeat under the same conditions (temperature, medium, species). 

This bioassay was also validated as it was not only possible to measure the adhesion 

strength of cultivated species but also the adhesion strength of wild, uncultivated mixture of 

ectocarpoid algae and the results observed using the wild mixture were similar to those 

obtained with both cultivated Ectocarpus spp. tested (Chapter 3). The development of the 

assay and its use to test standard surfaces is described in the published paper Evariste et al. 

(2012). Apart from the protocol developed for U. linza, it is the only other published protocol 

to assess the performance of FR surfaces against macroalgae.  

Generalized linear modelling (GZLM) with pairwise comparisons was used to assess coating 

performance (i.e. biomass before exposure to shear stress and % removal) as it gives 

flexibility over a classical ANOVA to account for a non-normal distribution of the response 

variable. In addition to the GZLM test, repeated-measures analysis of variance (RM ANOVA) 

was used to assess combined performance of the test surfaces using together the amount of 

attached biomass before and that was remaining after the exposure to shear stress.  

 

Field isolates of ectocarpoid algae were brought into uni-algal culture on 

a large scale 

In addition to the three cultured species of Ectocarpus acquired from SAMS, it was 

considered important to compare the adhesion properties of these cultivated species with 

fresh isolates of ectocarpoid algae made from the field. Therefore, a number of samples of 

ectocarpoid algae were collected from FR coatings on raft panels at International Paint‟s 

laboratory in Newton Ferrers and from boats moored in Hartlepool Marina. The samples 

were brought into uni-algal culture and the various genera and/or species were identified 
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using standard morphological criteria. From this bank of isolates, two isolates, one 

Ectocarpus sp. and one Hincksia sp., were selected for large-scale culture to provide 

sufficient biomass for comparative adhesion assays on standard surfaces and to compare 

two genera of ectocarpoid algae. 

Experimental coatings with systematic differences in surface or bulk 

properties were produced and characterised 

1. The range of surfaces tested in consideration of the effects of surface/bulk 

properties wettability and modulus on fouling settlement and adhesion was 

expanded beyond published studies and standard test materials. 

To test systematically the effects of surface wettability, a series of silicone „hybrid‟ coatings 

was produced, based on formulations proposed by International Paint, with different blended 

ratios of PDMS polymer and PDMS-PEO copolymer (Chapter 4.3.2). The combination of the 

hydrophobic and hydrophilic components creates the property of amphiphilicity, which is a 

feature of both the commercial Intersleek 900, and a number of recent experimental coating 

designs (Finnie and Williams 2010). This well-characterised series of coatings provided a 

good test to determine the influence of wettability on the adhesion of organisms since 

modulus was constant across the range (i.e. approx. 1 MPa) and all surfaces had Ra 

roughness values in the sub-micron range (<0.3 µm; Table 4.9). It was the first series of 

silicone-based amphiphilic coatings with such a range of wettability to be documented and 

tested against fouling organisms. 

To test the effects of modulus, a systematic series of five silicone-based coatings was 

produced from different molecular weights of PDMS, to give a range of elastic modulus from 

0.73 to 1.5 MPa (Chapter 4). However, the range obtained was smaller than that anticipated 

from the wide spread in viscosity/molecular weight of PDMS used. Being silicone-based, all 

the test coatings were hydrophobic, with similar water contact angles, ca. 100° and similar 
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surface energies (~23 mN m-1). This series of coatings was innovative as only a few papers 

relate the production of a systematic series of FR coatings with varying modulus and similar 

wettability and chemistry (Chaudhury et al. 2005; Kaffashi et al. 2012). 

2. Different analytical techniques were used to measure the surface properties to 

obtain information on the surface heterogeneity of these coatings 

In general, to study the surface properties, the wettability/surface energy is measured with 

either static contact angle in air or dynamic contact angle. However, for the silicone „hybrid‟ 

coatings, in addition to these two methods, underwater contact angles were measured before 

and after 1-month leaching in deionised water and after immersion in ASW and natural 

seawater during 10 days. Although previous studies have observed the underwater contact 

angles of coatings after immersion in deionised water or ASW (Hu and Tsai 1996; Magin et 

al. 2011; Sundaram et al. 2011; Martinelli et al. 2012a), the work described in this thesis is 

the first to compare the wettability changes of surfaces immersed in sterile ASW and natural 

seawater for a period of 10 days and to correlate these changes to the colonisation of fouling 

organisms. 

The comparative performance of experimental coatings was tested in 

both laboratory and field assays 

An innovative part of this project was that it brought the opportunity to assess the 

performance of most of the test surfaces in the laboratory and in the field. Only a few 

previous studies have reported both types of assays (e.g. Rittschof and Costlow 1989; 

Huggett et al. 2009; Martinelli et al. 2012b). By investigating both types of assay, further 

information on the performance of the surfaces was obtained as laboratory assays assess 

the performance of test surfaces against a single species under controlled and defined 

conditions, while field assays, by exposing the surfaces to a marine community reveal long-

term performance of these surfaces in the natural environment.  
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12.3. Novel outcomes of the research 

The novel adhesion assay was used to characterise the adhesion 

preferences of ectocarpoid algae  

 

1. Two different morphotypes of ectocarpoid algae with different adhesion 

properties were observed 

During this study, two morphological variants (“morphotypes”) of ectocarpoid algae were 

observed. The first morphotype, termed „normal‟ has both prostrate and erect filaments in 

equal quantity, whilst the second „star‟ morphotype had more erect filaments than prostrate 

filaments. While both morphotypes were observed on test coatings before exposure to shear 

stress, only the normal morphotype (but in lower quantity than before the exposure to a 

shear stress) was generally present on the surfaces after exposure to shear stress. It is 

assumed that due to the lower amount of prostrate filaments, which are the structures of the 

organism that adhere to the surfaces, the star morphotype had lower adhesion strength than 

the normal one. 

2. Not all ectocarpoid algae show the same adhesion preferences 

While both cultivated E. crouaniorum and Ectocarpus sp. showed similar adhesion strength 

preferences on standard surfaces (i.e. low adhesion to Nexterion glass and IS900 and 

high/medium adhesion to IS700 and T2), the adhesion strength of Hincksia secunda on the 

same surfaces was different (i.e. low adhesion to IS700, IS900 and T2 and high adhesion to 

Nexterion glass; Chapter 3). It is thus possible to conclude that the adhesion preferences of 

one species do not represent the preferences of the whole Ectocarpaceae.  
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However, the experiment with the mixed, uncultivated mixture of ectocarpoid algae, which 

may more accurately reflect the fouling potential of ectocarpoid algae in the wild, showed 

similar results to those of the cultured Ectocarpus. These results suggest that the adhesion 

preferences obtained from the bioassay based on cultured Ectocarpus are broadly 

representative of the population of wild ectocarpoid algae if Ectocarpus is the dominant 

genus.  

 

3. Not all macroalgae show the same adhesion preferences 

The adhesion of filaments of E. crouaniorum and sporelings of U. linza was tested on silicone 

„hybrid‟ coatings with a range of wettability (Chapter 6) and on the silicone „modulus‟ series 

with a range of modulus (Chapter 8). For both sets of coatings the trends in adhesion 

strength in relation to coating properties was different. For the silicone „hybrid‟ coatings, the 

results with U. linza were similar to other studies made with other (non-silicone) sets of 

coatings (Akesso et al. 2009a and 2009b; Bennett et al. 2010); the sporelings of U. linza 

adhered more strongly to hydrophilic than hydrophobic coatings, except for the most 

hydrophilic coating H10 composed of only PDMS-PEO copolymer. However, the results 

obtained with E. crouaniorum were different; no linear correlation, but a more complex 

relationship was observed between total surface energy and adhesion strength of E. 

crouaniorum. Low adhesion strength was observed for the filaments attached on the two 

most hydrophilic coatings with a total surface energy between 35.7 and 40.6 mN m-1 (i.e. H7 

(30% PDMS-70% PDMS-PEO) and H10 (100% PDMS-PEO)) and also the most hydrophobic 

coating H with a total surface energy of 23.3 mN m-1.  

For the silicone „modulus‟ series, U. linza followed the models of fracture mechanics as 

applied to soft-fouling organisms (Chaudhury et al. 2005), showing that the adhesion 

strength of sporelings was positively influenced by the modulus in the range 0.73-1.5 MPa, 
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as the higher the modulus was, the higher the adhesion strength was. However, the 

adhesion strength of E. crouaniorum was negatively correlated to the modulus, so weaker 

adhesion on the higher modulus was found, however, the effect was relatively small (13 % 

difference). As no known theory of fracture mechanics can explain these results, alternative 

explanations are required. One possibility is that the PDMS chain length could influence the 

degree of penetration of the adhesive of E. crouaniorum, so higher penetration into the high 

molecular weight, lower modulus coatings might be the basis of the slightly stronger 

adhesion to coatings of low modulus. 

 

4. E. crouaniorum and U. linza adhere strongly to coatings with a net positive 

surface charge 

Chapter 7 described the experiments assessing the performance of two sets of xerogel 

coatings on the adhesion strength of E. crouaniorum. SET 1, which was a similar set to those 

tested in Bennett et al. (2010; Finlay et al. 2010), had a range of wettability from 49° to 

107.9°. Despite having similar surface properties to the silicone „hybrid‟ coatings (Chapter 6), 

the results of the adhesion strength of E. crouaniorum were different, even though they both 

showed an influence of wettability on adhesion strength. The results of SET 1 of the xerogel 

coatings indicated that the adhesion strength might be a consequence of charge rather than 

surface energy/polarity per se for these coatings. The results obtained by testing SET 2, 

which was composed of coatings either positively charged or uncharged confirmed these 

observations showing a stronger adhesion of E. crouaniorum on the positively charged 

coatings. The adhesion strength of sporelings of U. linza was similar to those of E. 

crouaniorum with a stronger adhesion on positively charged xerogel coatings. These 

relationships have not been previously documented. These results could be explained by the 

presence of anionic polysaccharides in the cell walls of the algae, which might contribute to 

strong, non-specific, electrostatic adhesion to positively charged surfaces. The results also 
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showed that to produce effective FR coatings against soft-fouling organisms, only uncharged 

xerogel coatings should be considered.  

 

Colonisation of fouling organisms is influenced by surface and bulk 

properties in the field 

1. Colonisation of fouling organisms is complex and unpredictable 

Field assays were performed every year during this study in order to assess the performance 

of the test coatings in the real world. Compared to the laboratory assays where 

environmental and biological factors are controlled, the field assays exposed the coatings to 

an uncontrolled environment with dynamic fouling community and environmental factors that 

change continually (temperature, salinity, light). Although the field assays described in 

Chapters 10/11 were performed in the same location in Hartlepool Marina and in similar 

period of the year (end of spring-summer), the colonisation of IS900 and the tie coat was 

different in the two years. While in 2011 (Chapter 10) IS900 had from 43 days‟ immersion 

between 5-10 % of weeds on its surfaces, in 2012 (Chapter 11) no algae were observed 

during the whole experiment. For the tie coat, Chapter 10 showed that from 37 days, the 

surfaces were mostly covered by algae (close to 100%), while in 2011 no more than 40-60% 

of weed coverage was observed. In addition, in 2011 the hard-bodied animals were 

essentially composed of barnacles (Chapter 10), while in 2012 tubeworms (from the genus 

Spirorbis) were the dominant type of hard-bodied animals (Chapter 11). It could also be 

observed that variation of colonisation of fouling was observed during the same year, as 

significant differences were observed between the panels (Chapters 10/11). These results 

showed that although the observation of the colonisation of surfaces by fouling organisms in 

the real environment is essential to assess the performance of test surfaces, it is a complex 

experiment, in which most of the parameters cannot be controlled or even measured. 
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2. Colonisation was influenced by the surface properties of the coatings. 

As there were differences in percentage cover between the test coatings in the silicone 

„hybrid‟ series, it is possible to conclude that the colonisation of fouling organisms was 

influenced by the surface properties of these coatings. Relationships were observed between 

% coverage of all fouling categories and the measured surface properties (initial static 

contact angle, contact angle hysteresis and underwater contact angle after 1 day‟s 

immersion in Hartlepool Marina). Negative correlations were observed between the contact 

angle hysteresis and the coverage of weeds, ectocarpoid algae and hard-bodied animals. 

Both positive and negative correlations were observed between the % cover of microfouling 

and the contact angle hysteresis and the underwater contact angle after one day‟s 

immersion, respectively. In addition, positive correlations were observed between initial 

contact angle in air and % cover of hard-bodied animals, total fouling and soft-bodied 

animals. However, for the two last fouling categories, the correlations were only observed by 

excluding H10, the most hydrophilic coating composed of only PDMS-PEO copolymer, as it 

did not follow the trend observed with the other coatings. These different relationships 

between the measured surface properties and the % coverage of the different categories 

showed that the wettability of pristine and immersed surfaces influenced the colonisation of 

fouling organisms, and furthermore, colonisation is more complex than a simple relationship 

with one surface property as the fouling categories do not depend on only one measured 

surface property. 

 

3. The modulus of silicone-based coatings influenced the colonisation of 

microfouling 

No previous studies have documented a field assay testing a systematic series of coatings 

with varying modulus. Chapter 11 showed that no significant differences were observed 

between the test coatings except for M1 the hardest coatings that had higher total and 
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microfouling % cover. These results showed that when the coatings had higher elastic 

modulus (>1 MPa), a higher colonisation of microfouling and total fouling was observed. 

However, no effect of the modulus and the associated parameters (viscosity and estimated 

molecular weight) was observed on the colonisation of the weeds, ectocarpoid algae and 

animal fouling.  

 

An optimal surface energy for reduced adhesion and surface 

colonisation was detected for the silicone „hybrid‟ coatings  

For the silicone „hybrid‟ coatings, analysing the results obtained in the laboratory for the two 

test algae and in the field for all the fouling categories (except microfouling coverage), it is 

possible to conclude that the coating H7 composed of 70 % PDMS-PEO and 30 % PDMS, 

with a surface energy of 35.7 mN m-1, had optimal properties to decrease the adhesion 

strength of both macroalgae and the lowest colonisation of fouling organisms in general. 

Therefore, it is possible to conclude that laboratory assays partly presented in Chapter 10 

predicted the results obtained with the field assay, as H7 was the most effective coating for 

both types of experiments.  

 

Exploration of the surface wettability of the silicone „hybrid‟ series of 

coatings. 

1. The test coatings showed changing wettabilities under different immersion 

treatments 

Silicone 'hybrid' coatings were amphiphilic (except H) and this type of coating is known to 

have heterogeneous surfaces at a micro- or nano-scale. Therefore, to investigate the surface 

heterogeneity of these experimental coatings, several analytical techniques were used: static 
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contact angle in air (before and after 1-month leaching in deionised water), dynamic contact 

angle, underwater contact angle (before and after 1-month leaching in deionised water) and 

underwater contact angle of surfaces immersed in ASW and natural seawater. The results 

obtained with these different methods confirmed that the surfaces were not inert; a possible 

examination is there was a reorganisation of PEO and PDMS chains, bringing more PEO to 

the surface, making the surfaces more hydrophilic. However, the coating H, which contained 

only PDMS polymer, also showed changes in wettability; these changes could be due to 

surface conditioning and/or to the presence of the curing agent on the surface of the test 

coating.  

For example, the contact angle hysteresis (obtained from the dynamic contact angle 

measurements) progressively increased as the proportion of PEO in the coatings increased 

as previously observed by Cho et al. (2012), who studied different amphiphilic coatings made 

of PEG and mixed hydrocarbon. Additional information on the surface properties was 

obtained by following the changes of wettability of surfaces immersed in deionised water and 

in seawater (i.e. sterile ASW and natural seawater). The surfaces were more hydrophilic after 

1-month leaching (except H, the most hydrophobic coating containing no PEO, underwater 

contact angle method) and after one day‟s immersion in seawater, suggesting again a 

surface reorganisation and possibly the effect of a conditioning film.  

2. The underwater contact angle method and static contact angle method in air 

gave different values for wettability 

The wettability values of the silicone „hybrid‟ coatings obtained for the dry and freshly 

immersed (in distilled water) surfaces showed either that the two methods measure slightly 

different aspects of surface wettability, or that in the few minutes of immersion needed to 

measure the underwater contact angle, a surface change happened (such as a surface 

reorganisation), as the range of wettability was narrower with the underwater contact angle 

method.  
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3. Differences were observed between underwater contact angles of surfaces 

immersed in ASW and natural seawater 

Wettability of test surfaces was lower for surfaces immersed in Hartlepool Marina than in 

sterile ASW after 10 days‟ immersion. The differences observed between these treatments 

could be due to various factors. It is possible that the presence of a biofilm (i.e. bacteria and 

diatoms) and associated fouling in the natural seawater would make the surface less 

hydrophilic. Previous papers measured the wettability of a biofilm, and even if the data 

obtained were in contradiction for Cobetia marina, it was observed that each bacterial biofilm 

has a different wettability. Akesso et al. (2009b) showed that Cobetia marina attached to a 

membrane filter were hydrophilic (i.e. <15°) while Marinobacter hydrocarbonoclasticus were 

hydrophobic (i.e. 81.5°), using static contact angle in air on a dry bacterial lawn. However, 

Mitik-Dineva et al. (2009) showed that C. marina had a wettability of 75° on glass surfaces 

(for a dry bacterial lawn). Mitik-Dineva et al. (2009) also showed that other species of 

bacteria could be either hydrophilic or hydrophobic. However, in the field, the biofilm is 

composed of a mixture of bacteria and diatoms. The diversity of the biofilm attached to the 

surfaces had not been identified and so it is not possible to determine its contribution on the 

changes of surface wettability.  

In addition, conditioning films change the wettability of immersed surfaces (Thome et al. 

2012) and as the macromolecules present in natural seawater and ASW should be different, 

it is possible that the conditioning film of the surfaces immersed in sterile ASW and natural 

seawater would also be different. For example, a large amount of hydrocarbon, which was 

observed on the surface of the seawater in Hartlepool Marina, could influence the wettability 

of the surfaces. It is likely that the wettability changes on immersed surfaces are due to 

contributions from more than one of these effects. Such observations have never been 
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reported previously and bring further information for the evolution of wettability of the 

coatings after immersion in seawater. 

 

General conclusions on the colonisation, attachment and adhesion 

strength of ectocarpoid algae 

During this project, the performance of different sets of coatings was assessed against two 

algae and the natural environment. The results showed that ectocarpoid algae have different 

adhesion preferences to U. linza, the „model‟ species used extensively as a reference for 

soft-fouling organisms in laboratory assays. Therefore, it is possible to conclude that several 

species of macroalgae should be used to assess the performance of AF/FR coatings on soft-

fouling organisms to down-select the best coatings that had the low adhesion strength for 

these different species.  

This study showed that the attachment and adhesion strength of E. crouaniorum were 

influenced by different bulk and surface properties such as chemistry, wettability, charge and 

modulus. With the two series of coatings varying in wettability (silicone „hybrid‟ coatings and 

SET 1 xerogels), it was observed that the behaviour of E. crouaniorum was different; it could 

be due to the chemistry, the surface charge or other unmeasured parameters. In addition, 

uncharged xerogel coatings were more effective than positively charged xerogel coatings to 

decrease the adhesion strength of E. crouaniorum and U. linza. Moreover, although the 

adhesion strength of U. linza showed a positive correlation with the elastic modulus, an 

opposite correlation was observed with E. crouaniorum (Chapter 8).  

In addition, all the test coatings (except xerogel coatings) were tested in field and showed 

different results to those in laboratory. However, the field results confirmed that H7 had an 

optimal composition to have lower colonisation of ectocarpoid algae and other fouling 
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organisms, correlations were observed between the % cover of fouling categories and the 

measured surface properties, showing that colonisation was complex.  

12.4. Potential areas for future work 

In Chapter 3, the adhesion of several ectocarpoid algae was tested on standard surfaces 

showing differences between the genera. It would be interesting to observe if it would also be 

the case for the other sets of test coatings.  

Would the relationship between the adhesion of other fouling organisms and the 

experimental surfaces tested during this project be similar to those obtained for 

ectocarpoid algae and U. linza? During this project, the performance of test surfaces was 

assessed in the laboratory against ectocarpoid algae and U. linza showing different 

relationships between the adhesion strength of the organisms and the surface and bulk 

properties. However, the fouling community is not only composed of these organisms; there 

are many others such as diatoms, bacteria and barnacles. Therefore, it is of importance to 

test more fouling organisms. It would specially be interesting to observe if other fouling 

organisms would also have low adhesion strength on H7, one of the most hydrophilic 

coatings from the silicone „hybrid‟ series (Chapter 6), which showed low adhesion strength of 

both E. crouaniorum and U. linza, which generally has different adhesion preferences. The 

results obtained during the field assay would suggest that would be the case as H7 was the 

most effective coating for all fouling categories (except for microfouling, Chapter 10). 

Field experiments were performed during this study, and improvements were done in the 

design and analyses after the first field assay, but further improvements could have been 

done to obtain further information on the performance of the test coatings. Due to logistic 

reasons, only one field site was used from 2011 to assess the performance of the test 

surfaces, but it would have been interesting to assess the performance of the coatings at 

other field sites (in England or in other part of the world); the performance of the coatings 
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might have been different as the biological and environmental factors would be different. In 

addition, the test coatings were produced as FR coatings but the field assay tested only their 

performance against colonisation and not their FR performance, as the coatings were not 

exposed to a shear stress during the field assay. If the coatings were exposed to a shear 

stress using for example a water jet, would the results have been similar to those 

obtained in Chapters 10-11? The performance of the coatings could have been observed in 

longer field assays, such as one or two years and so further information on their performance 

would have been observed. Would ectocarpoid algae reappear during the year? It could 

be possible as during the winter the amount of fouling biomass of the surfaces is in general 

lower.  

It was observed during the experiments that microfouling colonised within a month the test 

surfaces. However, the biofilm formed by the microfouling had different thickness between 

the surfaces, which was not taken into account with the „Phoenix‟ in-house Experimental 

Fouling Assessment Record Sheet. Dobretsov and Thomason (2011) showed that the 

thickness as well as the percentage cover and the diversity of a biofilm present on the 

surfaces provide further information on the performance of the test surfaces. It would be 

interesting to measure the biofilm thickness and try to correlate these data with the surface 

properties.  

The results obtained for the adhesion strength of E. crouaniorum on the silicone „hybrid‟ 

coatings were not fully explained by the surface properties measured (static contact angle, 

underwater contact angle and contact angle hysteresis). As it was suggested in the 

Discussion of Chapter 6, it would be interesting to do further measurements using AFM and 

XPS to obtain more information on the topography, the composition and the reorganisation of 

the surfaces (with measurements before and after immersion in ASW). In addition, for the 

silicone „hybrid‟ coatings, more information would have been obtained on the surface 

properties of immersed coatings if the surface energy could have been measured using 
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underwater contact angle method. However, this would have required the use of a second 

liquid.  Octane, the second liquid previously used in literature (e.g. Hu and Tsai 1996; Magin 

et al. 2011) could not be used as it penetrates and swells silicone-based coatings. Although 

some experiments were done in this project to find a liquid that would replace octane, the 

results were inconclusive; therefore, it would be interesting to continue the search. 

To explore the influence of modulus on the adhesion of marine species, especially 

ectocarpoid algae, a systematic series of coatings with a bigger range of modulus than that 

studied in Chapter 8, such as the systematic series of PDMS coatings, described by Kaffashi 

et al. (2012) with varying elastic modulus from 0.47 to 25.72 MPa, would bring further 

information on these relationships. In addition, to obtain further information on the 

relationship between adhesion of ectocarpoid algae and modulus, it would be interesting to 

assess the performance of a series of hydrophilic coatings with varying modulus, as the 

silicone modulus coatings were all hydrophobic. 

In Chapter 7, it was observed that the filaments of E. crouaniorum and sporelings of U. linza 

had lower adhesion strength on hydrophilic xerogel coatings with neutral side chains than on 

positively charged hydrophilic coatings. What would be the adhesion strength of both 

algae on negatively charged coatings? It could also be interesting to investigate if these 

adhesion preferences would also be visible on hydrophobic coatings and on silicone or 

fluoropolymer coatings. In addition, these coatings have been only tested in the laboratory. 

Would the results be similar if the coatings were tested in the field? 

Is the adhesion strength of ectocarpoid algae influenced by the thickness of the 

coatings? Chaudhury et al. (2005) showed that the thickness of the PDMS coatings 

positively influenced the adhesion strength of sporelings of U. linza when the coating film 

was lower than 100 µm of thickness. However, the adhesion behaviour of ectocarpoid algae 



243 
 

and U. linza was in general completely different; it is therefore possible that the coating 

thickness would not have the same effect on the adhesion of ectocarpoid algae. 
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APPENDIX 1: RECIPE OF ½-STRENGTH PROVASOLI MEDIUM 

Recipe from CCAP (www.ccap.ac.uk) 

Stocks per litre 

(1) PII trace metals  

Na2 EDTA 1.0 g 

H3BO3 1.12 g 

MnSO4.H2O 0.12 g 

ZnSO4.7H2O 0.022 g 

CoSO4.7H2O 0.005 g 

  

(2) IronEDTA  

Fe(NH4)2(SO4)2.6H2O 0.7 g 

Na2 EDTA 0.6 g 

     

Medium Stock per litre medium 

Na2 ßglycero PO4.5H2O 50 g l
-1 

8.0 ml 

NaNO3 35 g l
-1

 110 ml 

IronEDTA (2)  100 ml 

Vitamin B12 0.01 g l
-1

 8.75 ml 

Thiamine 0.5 g l
-1

 8.0 ml 

Biotin 0.005 g l
-1

 8.0 ml 

PII trace metals (1)  200 ml 

     

To prepare final medium, dispense the above into 10 ml aliquots and sterilise by autoclaving. 

Finally, to use add 10 ml per litre to sterile 30 ppt filtered seawater (pH=8.1). 

 

  



245 
 

APPENDIX 2: ULVA CULTURE MEDIUM 

Provasoli‟s ES enriched seawater from Starr and Zeikus (1987) 

 
1. Add 5 g Tris buffer (tris(hydroxymethyl)aminomethane) 

2. Add 3.5 g Sodium nitrate (NaNO3) 

3. Add 500 mg β-glycerolphosphate disodium salt pentahydrate (C3H7Na2O6P.5H2O) 

4. Add 250 ml of PII metals1 

5. Add 250 ml of Fe stock2 

6. Make up to 1 L with distilled water, pH to 7.8 using hydrochloric acid. 

7. Autoclave 

8. Add 1 ml of biotin, thiamine and cyanocobalamin solution3 

9. Make to 2% solution in seawater (20 ml stock per liter of seawater) 

10. If above pH 8.2, add concentrate HCl (1-2 drops at a time), if below add NaOH 

(several drops). 

 

1PII metals 

500 ml distilled water 

500 mg Na2EDTA (ethylenediaminetetraacetic acid disodium salt dehydrate) 

570 mg Boric acid (H3BO3) 

24.5 mg Iron (III) chloride hexahydrate (FeCl3.6H2O) 

82 mg Manganese (II) sulphate monohydrate (MnSO4.H2O) 

11.2 mg Zinc sulphate heptahydrate (ZnSO4.7H2O) 

2.4 mg Cobalt (II) sulphate heptahydrate (CoSO3.7H2O) 

 

2Fe stock 

500 ml distilled water 

351 mg Ammonium iron (II) sulphate hexahydrate (Fe(NH4)2(SO4)2.6H2O) 

300 mg Na2EDTA (ethylenediaminetetraacetic acid disodium salt dehydrate) 

 

3Biotin, Thiamine and Cyanocobalamin solution 

100 ml distilled water 

5 mg Biotin (vitamin B7) 

500 mg Thiamine hydrochloride (vitamin B1) 

10 mg Cyanocobalamin (vitamin B12) 
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APPENDIX 3: STATISTICAL TABLES FOR CHAPTER 3 

 Ectocarpus crouaniorum 

RM ANOVA 

Source SS df MS F p-values 

Intercept 4,23E+08 1 4,23E+08 697,3 2.5E-22 

Coatings 2,07E+08 3 6,91E+07 113,9 1.7E-16 

Error 1,82E+07 32 6,07E+05 
  

Appendix 3.1: RM ANOVA table.  

Pairwise comparisons after GZLM  

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df p-values 

IS700 IS900 468.5 1 0.145 -34.8 1 8.9E-06 

 
Nexterion 2229.2 1 1.7E-17 -13.5 1 0.064 

 
T2 -3114.6 1 6.4E-09 18.5 1 0.035 

IS900 IS700 -468.5 1 0.145 34.8 1 8.9E-06 

 
Nexterion 1760.7 1 6.5E-14 21.3 1 0.01 

 
T2 -3583.0 1 8.9E-12 53.3 1 4.7E-11 

Nexterion IS700 -2229.2 1 1.7E-17 13.5 1 0.064 

 
IS900 -1760.7 1 6.5E-14 -21.3 1 0.01 

 
T2 -5343.8 1 0.0E+00 32 1 1.6E-04 

T2 IS700 3114.6 1 6.4E-09 -18.5 1 0.035 

 
IS900 3583.0 1 8.9E-12 -53.3 1 4.7E-11 

 
Nexterion 5343.8 1 0.0E+00 -32 1 1.6E-04 

Appendix 3.2: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was tweddie 

and normal, respectively and the link function was identity for both. The Grey cells represent the 

significant comparisons.  
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 Ectocarpus sp. 

RM ANOVA 

Source SS df MS F p-values 

Intercept 1.94E+09 1 1.94E+09 726.15 1.4E-23 

Coatings 7.61E+08 3 2.54E+08 95.22 4.9E-16 

Error 8.53E+07 32 2.67E+06 
  

Appendix 3.3: RM ANOVA table.  

 

Pairwise comparisons after GZLM  

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df p-values 

IS700 

IS900 1743.1 1 0.052 -27.1 1 0.006 

Nexterion 13681.3 1 0 8.6 1 0.344 

T2 9183.8 1 0 44.2 1 5.7E-06 

IS900 

IS700 -1743.1 1 0.052 27.1 1 0.006 

Nexterion 11938.2 1 0 35.7 1 3.4E-04 

T2 7440.8 1 0 71.3 1 2.5E-14 

Nexterion 

IS700 -13681.3 1 0 -8.6 1 0.344 

IS900 -11938.2 1 0 -35.7 1 3.5E-04 

T2 -4497.5 1 1.52E-08 35.6 1 3.4E-04 

T2 

IS700 -9183.8 1 0 -44.2 1 5.7E-06 

IS900 -7440.8 1 0 -71.3 1 2.5E-14 

Nexterion 4497.5 1 1.52E-08 -35.6 1 3.4E-04 

Appendix 3.4: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was normal 

and the link function was identity. The Grey cells represent the significant comparisons.  
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 Hincksia secunda 

RM ANOVA 

Source SS df MS F p-values 

Intercept 7.84E+08 1 7.84E+08 539.7 1.3E-21 

Coatings 4.61E+07 3 1.54E+07 10.6 5.5E-05 

Error 4.65E+07 32 1.45E+06 
  

Appendix 3.5: RM ANOVA table.  

 

Pairwise comparisons after GZLM  

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df p-values 

IS700 

IS900 3312.7 1 1.43E-09 -5.7 1 0.679 

Nexterion 3554.6 1 8.48E-11 71.8 1 1.58E-12 

T2 3751.2 1 7.37E-12 24.4 1 0.087 

IS900 

IS700 -3312.7 1 1.43E-09 5.7 1 0.679 

Nexterion 241.9 1 1.000 77.5 1 3.18E-13 

T2 438.5 1 1.000 30.1 1 0.047 

Nexterion 

IS700 -3554.6 1 8.48E-11 -71.8 1 1.58E-12 

IS900 -241.9 1 1.000 -77.5 1 3.18E-13 

T2 196.6 1 1.000 -47.4 1 6.72E-09 

T2 

IS700 -3751.2 1 7.37E-12 -24.4 1 0.087 

IS900 -438.5 1 1.000 -30.1 1 0.047 

Nexterion -196.6 1 1.000 47.4 1 6.72E-09 

Appendix 3.6: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was normal 

and tweedie, respectively and the link function was identity and log, respectively. The Grey cells 

represent the significant comparisons.  
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 Mixture of uncultivated „wild‟ ectocarpoid algae   

RM ANOVA 

Source SS df MS F p-values 

Intercept 1.07E+09 1 1.07E+09 286.1 1.6E-17 

coating 1.77E+08 3 5.89E+07 15.7 1.9E-06 

Error 1.20E+08 32 3.75E+06 
  

Appendix 3.7: RM ANOVA table.  

 

Pairwise comparisons after GZLM  

  
Before exposure to shear stress After exposure to shear stress 

(I) coatings (J) coatings 
Mean Difference  

(I-J) 
df p-values 

Mean Difference  
(I-J) 

df p-values 

IS900 IS700 1734.2 1 0.071 22.79 1 0.157 

 
Nexterion 5630.0 1 5.3E-11 16.06 1 0.321 

 
T2 4857.2 1 2E-08 37.41 1 0.002 

IS700 IS900 -1734.2 1 0.071 -22.79 1 0.157 

 
Nexterion 3895.8 1 9.3E-06 -6.74 1 0.500 

 
T2 3123.1 1 4.6E-04 14.62 1 0.271 

Nexterion IS900 -5630.0 1 5.3E-11 -16.06 1 0.321 

 
IS700 -3895.8 1 9.3E-06 6.74 1 0.500 

 
T2 -772.7 1 0.349 21.35 1 0.096 

T2 IS900 -4857.2 1 2E-08 -37.41 1 0.002 

 
IS700 -3123.1 1 4.6E-04 -14.62 1 0.271 

 
Nexterion 772.7 1 0.349 -21.35 1 0.096 

Appendix 3.8: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was normal 

and tweedie, respectively and the link function was identity and log, respectively. The Grey cells 

represent the significant comparisons.  
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 Ulva linza 

Pairwise comparisons after GZLM  

 

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df p-values 

IS700 

IS900 -348.8 1 0.712 -32.6 1 1.23E-09 

Nexterion 8818.9 1 0 39.0 1 2.83E-13 

T2 7821.4 1 0 21.9 1 5.46E-05 

IS900 

IS700 348.8 1 0.712 32.6 1 1.23E-09 

Nexterion 9167.7 1 0 71.6 1 0 

T2 8170.3 1 0 54.4 1 0 

Nexterion 

IS700 -8818.9 1 0 -39.0 1 2.83E-13 

IS900 -9167.7 1 0 -71.6 1 0 

T2 -997.5 1 0.013 -17.1 1 0.001 

T2 

IS700 -7821.4 1 0 -21.9 1 5.46E-05 

IS900 -8170.3 1 0 -54.4 1 0 

Nexterion 997.5 1 0.013 17.1 1 0.001 

Appendix 3.9: Table for the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was tweedie 

and normal, respectively and the link function was identity, respectively. The Grey cells represent the 

significant comparisons.  
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APPENDIX 4: STATISTICAL TABLES FOR CHAPTER 5 

 Fluropolymer coatings 

 E. crouaniorum 

RM ANOVA 

Source SS df MS F p-values 

Intercept 1.05E+09 1 1.05E+09 618.1 6.1E-26 

Coatings 3.54E+08 4 8.86E+07 52.0 2.6E-15 

Error 6.82E+07 40 1.71E+06 
  

Appendix 4.1: RM ANOVA table.  

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df p-values 

IS700 

IS900 2285.6 1 0.004 -51.3 1 5.9E-12 

mD10-H 3747.0 1 1E-07 -.5 1 0.943 

mD1O 5441.8 1 9.8E-18 -25.3 1 0.002 

mE10-H 6328.7 1 0 -31.4 1 8.4E-05 

IS900 

IS700 -2285.6 1 0.004 51.3 1 5.9E-12 

mD10-H 1461.4 1 0.010 50.8 1 9E-12 

mD1O 3156.2 1 2.2E-09 26.0 1 0.002 

mE10-H 4043.1 1 1.5E-16 19.9 1 0.016 

mD1O 

IS700 -5441.8 1 9.8E-18 25.3 1 0.002 

IS900 -3156.2 1 2.2E-09 -26.0 1 0.002 

mD10-H -1694.8 1 3.2E-04 24.8 1 0.002 

mE10-H 886.9 1 0.006 -6.1 1 0.789 

mD10-H 

IS700 -3747.0 1 1E-07 .5 1 0.943 

IS900 -1461.4 1 0.010 -50.8 1 9E-12 

mD1O 1694.8 1 3.2E-04 -24.8 1 0.002 

mE10-H 2581.7 1 5E-10 -30.9 1 1E-04 

mE10-H 

IS700 -6328.7 1 0 31.4 1 8.4E-05 

IS900 -4043.1 1 1.5E-16 -19.9 1 0.016 

mD10-H -2581.7 1 5E-10 30.9 1 1E-04 

mD1O -886.9 1 0.006 6.1 1 0.789 

Appendix 4.2: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was tweedie 

and normal, respectively and the link function was identity. The Grey cells represent the significant 

comparisons.  
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 U.linza 

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df p-values 

IS700 

IS900 -912.0 1 0.618 -69.5 1 0 

mD1O 7114.5 1 0 16.9 1 2.7E-14 

mD1O-H 6659.0 1 0.000 17.4 1 7E-15 

mE1O-H 6101.3 1 5E-17 -75.6 1 0 

IS900 

IS700 912.0 1 0.618 69.5 1 0 

mD1O 8026.6 1 0 86.4 1 0 

mD1O-H 7571.0 1 0 86.9 1 0 

mE1O-H 7013.3 1 0 -6.1 1 0.010 

mD1O 

IS700 -7114.5 1 0 -16.9 1 2.7E-14 

IS900 -8026.6 1 0 -86.4 1 0 

mD1O-H -455.5 1 0.867 .4 1 0.838 

mE1O-H -1013.2 1 0.618 -92.5 1 0 

mD1O-H 

IS700 -6659.0 1 0 -17.4 1 7E-15 

IS900 -7571.0 1 0 -86.9 1 0 

mD1O 455.5 1 0.867 -.4 1 0.838 

mE1O-H -557.7 1 0.867 -93.0 1 0 

mE1O-H 

IS700 -6101.3 1 5E-17 75.6 1 0 

IS900 -7013.3 1 0 6.1 1 0.010 

mD1O 1013.2 1 0.618 92.5 1 0 

mD1O-H 557.7 1 0.867 93.0 1 0 

Appendix 4.3: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was normal 

and the link function was identity. The Grey cells represent the significant comparisons.  
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 Silicone coatings 

 E. crouaniorum 

RM ANOVA 

Source SS df MS F p-values 

Intercept 1.09E+09 1 1.09E+09 536.8 8.6E-25 

Coatings 3.12E+08 4 7.81E+07 38.4 3.4E-13 

Error 8.14E+07 40 2.03E+06 
  

Appendix 4.4: RM ANOVA table.  

 

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df p-values 

S1 

S3 1107.5 1 0.082 -17.9 1 0.004 

IS700 -4700.3 1 4E-17 27.6 1 3.5E-06 

IS900 -2414.7 1 5.1E-05 -23.7 1 8E-05 

S2 -247.3 1 0.648 33.6 1 8.8E-09 

S2 

S3 1354.8 1 0.037 -51.5 1 0 

IS700 -4453.0 1 1.8E-15 -6.0 1 0.556 

IS900 -2167.4 1 2.6E-04 -57.4 1 0 

S1 247.3 1 0.648 -33.6 1 8.8E-09 

S3 

IS700 -5807.8 1 0 45.5 1 2E-15 

IS900 -3522.2 1 5.8E-10 -5.8 1 0.556 

S1 -1107.5 1 0.082 17.9 1 0.004 

S2 -1354.8 1 0.037 51.5 1 0 

IS700 

HSE 5807.8 1 0 -45.5 1 2E-15 

IS900 2285.6 1 1.3E-04 -51.3 1 4.3E-19 

S1 4700.3 1 4E-17 -27.6 1 3.5E-06 

S2 4453.0 1 1.8E-15 6.0 1 0.556 

IS900 

S3 3522.2 1 5.8E-10 5.8 1 0.556 

IS700 -2285.6 1 1.3E-04 51.3 1 4.3E-19 

S1 2414.7 1 5.1E-05 23.7 1 8E-05 

S2 2167.4 1 2.6E-04 57.4 1 0 

Appendix 4.5: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was normal 

and the link function was identity. The Grey cells represent the significant comparisons.  
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 U. linza 

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference  

(I-J) 
df p-values 

Mean Difference  
(I-J) 

df p-values 

S1 S3 -2277.4 1 7.8E-06 -8.0 1 0.253 

 
IS700 -7407.0 1 0 -77.5 1 1.7E-08 

 
IS900 -8319.1 1 0 5.1 1 0.253 

 
S2 459.2 1 0.509 1.4 1 0.662 

S2 S3 -2736.6 1 3.1E-08 8.0 1 0.253 

 
IS700 -7866.3 1 0 -69.5 1 1.2E-06 

 
IS900 -8778.3 1 0 13.1 1 0.007 

 
S1 -459.2 1 0.509 9.4 1 0.153 

S3 IS700 -5129.7 1 1.0E-13 77.5 1 1.7E-08 

 
IS900 -6041.7 1 0 69.5 1 1.2E-06 

 
S1 2277.4 1 7.8E-06 82.6 1 1.1E-09 

 
S2 2736.6 1 3.1E-08 78.9 1 8.5E-09 

IS700 S3 5129.7 1 1.0E-13 -5.1 1 0.253 

 
IS900 -912.0 1 0.509 -13.1 1 0.007 

 
S1 7407.0 1 0 -82.6 1 1.1E-09 

 
S2 7866.3 1 0 -3.7 1 0.281 

IS900 S3 6041.7 1 0 -1.4 1 0.662 

 
IS700 912.0 1 0.509 -9.4 1 0.153 

 
S1 8319.1 1 0 -78.9 1 8.5E-09 

 
S2 8778.3 1 0 3.7 1 0.281 

Appendix 4.6: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was normal 

and tweedie, respectively and the link function was identity and log, respectively. The Grey cells 

represent the significant comparisons.  
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APPENDIX 5: STATISTICAL TABLES FOR CHAPTER 6 

 E. crouaniorum 

RM ANOVA 

Source SS df MS F p-values 

Intercept 6.60E+08 1 6.60E+08 1625.1 1.1E-38 

Coatings 3.91E+07 5 7.83E+06 19.3 1.8E-10 

Error 1.95E+07 48 4.06E+05 
  

Appendix 5.1: RM ANOVA table.  

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df p-values 

H 

H1 -1289.1 1 3.5E-05 15.0 1 3.2E-03 

H10 -2587.5 1 7.6E-19 -13.8 1 0.03 

H2 -870.8 1 0.01 28.8 1 6.8E-12 

H3 -2427.0 1 1.1E-16 14.8 1 3.2E-03 

H7 -2673.6 1 0 -12.1 1 0.049 

H1 

H 1289.1 1 3.5E-05 -15.0 1 3.2E-03 

H10 -1298.4 1 3.4E-05 -28.8 1 1.3E-08 

H2 418.4 1 0.55 13.8 1 6.2E-04 

H3 -1137.9 1 3.3E-04 -.2 1 1.00 

H7 -1384.5 1 8.4E-06 -27.1 1 7.0E-08 

H2 

H 870.8 1 0.01 -28.8 1 6.8E-12 

H1 -418.4 1 0.55 -13.8 1 6.2E-04 

H10 -1716.7 1 1.3E-08 -42.6 1 0 

H3 -1556.3 1 3.5E-07 -14.0 1 5.7E-04 

H7 -1802.9 1 2.0E-09 -40.9 1 0 

H3 

H 2427.0 1 1.1E-16 -14.8 1 3.2E-03 

H1 1137.9 1 3.3E-04 .2 1 1.00 

H10 -160.5 1 1.000 -28.6 1 1.6E-08 

H2 1556.3 1 3.5E-07 14.0 1 5.7E-04 

H7 -246.6 1 1.000 -26.9 1 8.4E-08 

H7 

H 2673.6 1 0 12.1 1 0.049 

H1 1384.5 1 8.4E-06 27.1 1 7.0E-08 

H10 86.1 1 1.000 -1.7 1 1.00 

H2 1802.9 1 2.0E-09 40.9 1 0 

H3 246.6 1 1.000 26.9 1 8.4E-08 

H10 

H 2587.5 1 7.6E-19 13.8 1 0.03 

H1 1298.4 1 3.4E-05 28.8 1 1.3E-08 

H2 1716.7 1 1.3E-08 42.6 1 0 

H3 160.5 1 1.000 28.6 1 1.6E-08 
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H7 -86.1 1 1.000 1.7 1 1.00 

Appendix 5.2: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was normal 

and tweedie, respectively and the link function was identity. The Grey cells represent the significant 

comparisons.  

 U. Linza 

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference  

(I-J) 
df p-values 

Mean Difference  
(I-J) 

df p-values 

H 

H1 -3288.2 1 0 -4.4 1 0.5 

H10 -3151.4 1 0 -15.6 1 5.4E-04 

H2 -2695.6 1 0 -25.3 1 2.3E-09 

H3 -3099.3 1 0 -21.9 1 3.5E-07 

H7 -2831.6 1 0 -50.0 1 0 

H1 

H 3288.2 1 0 4.4 1 0.540 

H10 136.8 1 1.00 -11.2 1 0.025 

H2 592.6 1 0.365 -20.9 1 1.2E-06 

H3 188.9 1 1.00 -17.5 1 7.8E-05 

H7 456.5 1 0.943 -45.6 1 0 

H2 

H 2695.6 1 0 25.3 1 2.3E-09 

H1 -592.6 1 0.365 20.9 1 1.2E-06 

H10 -455.8 1 0.943 9.7 1 0.059 

H3 -403.7 1 1.00 3.4 1 0.540 

H7 -136.1 1 1.00 -24.7 1 5.6E-09 

H3 

H 3099.3 1 0 21.9 1 3.5E-07 

H1 -188.9 1 1.00 17.5 1 7.8E-05 

H10 -52.1 1 1.00 6.3 1 0.343 

H2 403.7 1 1.00 -3.4 1 0.540 

H7 267.6 1 1.00 -28.1 1 2.0E-11 

H7 

H 2831.6 1 0 50.0 1 0 

H1 -456.5 1 0.943 45.6 1 0 

H10 -319.7 1 1.00 34.4 1 7.5E-17 

H2 136.1 1 1.00 24.7 1 5.6E-09 

H3 -267.6 1 1.00 28.1 1 2.0E-11 

H10 

H 3151.4 1 0 15.6 1 5.4E-04 

H1 -136.8 1 1.00 11.2 1 0.025 

H2 455.8 1 0.943 -9.7 1 0.06 

H3 52.1 1 1.00 -6.3 1 0.343 

H7 319.7 1 1.00 -34.4 1 7.5E-17 

Appendix 5.3: Table for the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was tweedie 
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and normal, respectively and the link function was log and identity, respectively. The Grey cells 

represent the significant comparisons.  
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APPENDIX 6: STATISTICAL TABLES FOR CHAPTER 7 

 SET 1 

 E. crouaniorum 

RM ANOVA 

Source SS df MS F p-values 

Intercept 3.93E+08 1 3.93E+08 1112.4 1.2E-38 

Coatings 7.95E+07 6 1.32E+07 37.5 6.9E-18 

Error 1.98E+07 56 3.53E+05 
  

Appendix 6.1: RM ANOVA table. 

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference  

(I-J) 
df p-values 

Mean Difference  
(I-J) 

df p-values 

A 

B -370.3 1 1.00 4.9 1 0.959 

C 844.9 1 0.011 -75.0 1 0 

D 863.4 1 0.009 -76.6 1 0 

E 927.5 1 3.1E-03 -60.2 1 0 

F 544.8 1 0.450 -68.7 1 0 

G 568.5 1 0.381 -73.1 1 0 

B 

A 370.3 1 1.00 -4.9 1 0.959 

C 1215.2 1 1.3E-04 -79.9 1 0 

D 1233.7 1 9.1E-05 -81.5 1 0 

E 1297.8 1 2.4E-05 -65.1 1 0 

F 915.1 1 0.016 -73.6 1 0 

G 938.7 1 0.012 -78.0 1 0 

C 

A -844.9 1 0.011 75.0 1 0 

B -1215.2 1 1.3E-04 79.9 1 0 

D 18.4 1 1.00 -1.6 1 1.00 

E 82.6 1 1.00 14.8 1 8.4E-04 

F -300.2 1 1.00 6.3 1 0.559 

G -276.5 1 1.00 1.9 1 1.00 

D 

A -863.4 1 0.009 76.6 1 0 

B -1233.7 1 9.1E-05 81.5 1 0 

C -18.4 1 1.00 1.6 1 1.00 

E 64.2 1 1.00 16.4 1 1.4E-04 

F -318.6 1 1.00 7.9 1 0.246 

G -294.9 1 1.00 3.5 1 1.00 

E 

A -927.5 1 3.1E-03 60.2 1 0 

B -1297.8 1 2.4E-05 65.1 1 0 

C -82.6 1 1.00 -14.8 1 8.4E-04 

D -64.2 1 1.00 -16.4 1 1.4E-04 

F -382.8 1 0.876 -8.5 1 0.193 
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G -359.1 1 0.982 -12.9 1 0.005 

F 

A -544.8 1 0.450 68.7 1 0 

B -915.1 1 0.016 73.6 1 0 

C 300.2 1 1.00 -6.3 1 0.559 

D 318.6 1 1.00 -7.9 1 0.246 

E 382.8 1 0.876 8.5 1 0.193 

G 23.7 1 1.00 -4.4 1 0.959 

G 

A -568.5 1 0.381 73.1 1 0 

B -938.7 1 0.012 78.0 1 0 

C 276.5 1 1.00 -1.9 1 1.00 

D 294.9 1 1.00 -3.5 1 1.00 

E 359.1 1 0.982 12.9 1 0.005 

F -23.7 1 1.00 4.4 1 0.959 

Appendix 6.2: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was normal 

and the link function was identity. The Grey cells represent the significant comparisons.  

 SET 2 

 E. crouaniorum 

RM ANOVA 

Source SS df MS F p-values 

Intercept 2.80E+09 1 2.80E+09 1960.8 1.3E-35 

Coatings 8.04E+08 4 2.01E+08 140.9 5.2E-23 

Error 5.70E+07 40 1.43E+06 
  

Appendix 6.3: RM ANOVA table. 

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df p-values 

AP/TEOS 

DMAP/TEOS -1439.2 1 7.9E-04 -20.3 1 7.9E-04 

1:4 TFP/TEOS 6162.2 1 0 -59.5 1 0 

1:4 PH/TEOS 2259.8 1 1.1E-07 -85.8 1 0 

MAP/TEOS -1767.9 1 4E-05 -2.8 1 0.624 

DMAP/TEOS 

AP/TEOS 1439.2 1 7.9E-04 20.3 1 7.9E-04 

1:4 TFP/TEOS 7601.4 1 0 -39.1 1 1.1E-11 

1:4 PH/TEOS 3699.1 1 5.4E-19 -65.5 1 0 

MAP/TEOS -328.6 1 0.419 17.5 1 4.6E-03 

MAP/TEOS 

AP/TEOS 1767.9 1 4E-05 2.8 1 0.624 

DMAP/TEOS 328.6 1 0.419 -17.5 1 4.6E-03 

1:4 TFP/TEOS 7930.0 1 0 -56.6 1 0 

1:4 PH/TEOS 4027.7 1 0 -83.0 1 0 

1:4 TFP/TEOS AP/TEOS -6162.2 1 0 59.5 1 0 
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DMAP/TEOS -7601.4 1 0 39.1 1 1.1E-11 

1:4 PH/TEOS -3902.3 1 0 -26.3 1 9.1E-06 

MAP/TEOS -7930.0 1 0 56.6 1 0 

1:4 PH/TEOS 

AP/TEOS -2259.8 1 1.1E-07 85.8 1 0 

DMAP/TEOS -3699.1 1 5.4E-19 65.5 1 0 

1:4 TFP/TEOS 3902.3 1 0 26.3 1 9.1E-06 

MAP/TEOS -4027.7 1 0 83.0 1 0 

Appendix 6.4: Table for the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was normal 

and the link function was identity. The Grey cells represent the significant comparisons.  

 U. linza 

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference  

(I-J) 
df p-values 

Mean Difference  
(I-J) 

df p-values 

AP/TEOS 

DMAP/TEOS 236.8 1 1.00 -10.7 1 0.035 

1:4 TFP/TEOS -440.3 1 1.00 -32.8 1 3.8E-18 

1:4 PH/TEOS -479.3 1 1.00 -27.6 1 4.2E-13 

MAP/TEOS -1328.2 1 0.095 -9.0 1 0.138 

DMAP/TEOS 

AP/TEOS -236.8 1 1.00 10.7 1 0.035 

1:4 TFP/TEOS -677.1 1 0.813 -22.0 1 6.0E-07 

1:4 PH/TEOS -716.1 1 0.813 -16.9 1 1.9E-04 

MAP/TEOS -1565.0 1 0.021 1.8 1 0.711 

MAP/TEOS 

AP/TEOS 1328.2 1 0.095 9.0 1 0.138 

DMAP/TEOS 1565.0 1 0.021 -1.8 1 0.711 

1:4 TFP/TEOS 887.9 1 0.813 -23.8 1 7.6E-07 

1:4 PH/TEOS 848.9 1 0.813 -18.7 1 1.9E-04 

1:4 TFP/TEOS 

AP/TEOS 440.3 1 1.00 32.8 1 3.8E-18 

DMAP/TEOS 677.1 1 0.813 22.0 1 6.0E-07 

1:4 PH/TEOS -39.0 1 1.00 5.2 1 0.318 

MAP/TEOS -887.9 1 0.813 23.8 1 7.6E-07 

1:4 PH/TEOS 

AP/TEOS 479.3 1 1.00 27.6 1 4.2E-13 

DMAP/TEOS 716.1 1 0.813 16.9 1 1.9E-04 

1:4 TFP/TEOS 39.0 1 1.00 -5.2 1 0.318 

MAP/TEOS -848.9 1 0.813 18.7 1 1.9E-04 

Appendix 6.4: Table for the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was gamma 

and normal, respectively and the link function was log and identity, respectively. The Grey cells 

represent the significant comparisons.  
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APPENDIX 7: STATISTICAL TABLES FOR CHAPTER 8 

 E. crouaniorum 

RM ANOVA 

Source SS df MS F p-values 

Intercept 1.12E+09 1 1.12E+09 779.2 7.6E-28 

Coatings 6.24E+07 4 1.56E+07 10.8 4.8E-06 

Error 5.76E+07 40 1.44E+06 
  

Appendix 7.1: RM ANOVA table. 

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df p-values 

M1 

M2 -1602.1 1 0.016 5.0 1 0.870 

M3 -1945.5 1 1.7E-03 1.0 1 0.978 

M4 -2815.0 1 7.3E-07 15.5 1 1.3E-03 

M5 -3175.7 1 1.4E-08 12.5 1 0.017 

M2 

M1 1602.1 1 0.016 -5.0 1 0.870 

M3 -343.4 1 0.983 -4.0 1 0.978 

M4 -1212.9 1 0.095 10.5 1 0.058 

M5 -1573.6 1 0.016 7.5 1 0.323 

M3 

M1 1945.5 1 1.7E-03 -1.0 1 0.978 

M2 343.4 1 0.983 4.0 1 0.978 

M4 -869.4 1 0.292 14.5 1 3.2E-03 

M5 -1230.1 1 0.095 11.5 1 0.033 

M4 

M1 2815.0 1 7.3E-07 -15.5 1 1.3E-03 

M2 1212.9 1 0.095 -10.5 1 0.058 

M3 869.4 1 0.292 -14.5 1 3.2E-03 

M5 -360.7 1 0.983 -3.0 1 0.978 

M5 

M1 3175.7 1 1.4E-08 -12.5 1 0.017 

M2 1573.6 1 0.016 -7.5 1 0.323 

M3 1230.1 1 0.095 -11.5 1 0.033 

M4 360.7 1 0.983 3.0 1 0.978 

Appendix 7.2: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was normal 

and the link function was identity. The Grey cells represent the significant comparisons.  
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 U. linza 

  
Before exposure to shear stress After exposure to shear stress 

(I) Coatings (J) Coatings 
Mean Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df p-values 

M1 

M2 4920.9 1 0.033 -4.7 1 0.400 

M3 4371.0 1 0.076 -5.2 1 0.400 

M4 6718.9 1 0.001 -17.8 1 0.001 

M5 7795.8 1 5.6E-05 -20.3 1 1.3E-04 

M2 

M1 -4920.9 1 0.033 4.7 1 0.400 

M3 -549.9 1 1.000 -.5 1 1.000 

M4 1798.1 1 0.885 -13.1 1 0.033 

M5 2874.9 1 0.470 -15.6 1 0.013 

M3 

M1 -4371.0 1 0.076 5.2 1 0.400 

M2 549.9 1 1.000 .5 1 1.000 

M4 2348.0 1 0.686 -12.6 1 0.041 

M5 3424.8 1 0.277 -15.1 1 0.017 

M4 

M1 -6718.9 1 0.001 17.8 1 0.001 

M2 -1798.1 1 0.885 13.1 1 0.033 

M3 -2348.0 1 0.686 12.6 1 0.041 

M5 1076.8 1 1.000 -2.5 1 1.000 

M5 

M1 -7795.8 1 5.6E-05 20.3 1 1.3E-04 

M2 -2874.9 1 0.470 15.6 1 0.013 

M3 -3424.8 1 0.277 15.1 1 0.017 

M4 -1076.8 1 1.000 2.5 1 1.000 

Appendix 7.3: Table of the Pairwise comparison data obtained after GZLM analysis, before and 

after exposure to shear stress. Before and after exposure, the probability distribution was normal 

and tweedie, respectively and the link function was identity and log, respectively. The Grey cells 

represent the significant comparisons.  
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APPENDIX 8: STATISTICAL TABLES FOR CHAPTER 9 

 Experiment 1: Trial experiment on variations in initial surface colonisation at 

Hartlepool Marina with surfaces of different modulus. 

 
Source (Intercept) Surfaces Collections 

Surfaces * 
Collections 

Total % cover 

Wald Chi-
Square 

16258.86 31.41 84.79 59.52 

df 1 8 2 16 

p-values 0 1.2E-04 0 6.3E-07 

% cover of 
microfouling 

Wald Chi-
Square 

9653.81 9.05 51.61 48.14 

df 1 8 2 16 

p-values 0 0.34 6.19E-12 4.52E-05 

% cover of weeds 

Wald Chi-
Square 

160.94 19.02 20.89 6.171 

df 1 8 2 16 

p-values 0 0.02 2.90E-5 0.99 

% cover of soft-
bodied animals 

Wald Chi-
Square 

97.61 18.45 91.03 22.05 

df 1 8 2 16 

p-values 0 0.02 0 0.14 

% cover of hard-
bodied animals 

Wald Chi-
Square 

15.58 16.29 7.20 28.79 

df 1 8 2 16 

p-values 7.90E-05 0.04 0.03 0.03 

Appendix 8.1: Table of the test model effect of the GZLM analysis. The Grey cells represent the 

significant comparisons. 

  
Total % cover % cover of soft-bodied animals % cover of hard-bodied animals 

(I) 
Surfaces 

(J) 
Surfaces 

Mean 
Difference 

(I-J) 
df p-values 

Mean 
Difference 

(I-J) 
df p-values 

Mean 
Difference 

(I-J) 
df p-values 

mD10 

mD10-H 4.72 1 1.00 -1.72 1 1.00 1.33 1 0.17 

mE10-H 2.11 1 1.00 1.22 1 1.00 1.33 1 0.17 

Glass -0.83 1 1.00 0.17 1 1.00 1.17 1 0.42 

IS700 11.67 1 0.01 2.67 1 1.00 1.33 1 0.17 

IS900 9.17 1 0.11 3.50 1 1.00 1.50 1 0.06 

S1 3.28 1 1.00 -0.06 1 1.00 1.44 1 0.08 

S2 0.00 1 1.00 -1.94 1 1.00 1.67 1 0.02 

S3 0.11 1 1.00 0.61 1 1.00 1.22 1 0.32 

mD10-H 

mD10 -4.72 1 1.00 1.72 1 1.00 -1.33 1 0.17 

mE10-H -2.61 1 1.00 2.94 1 1.00 0.00 1 1.00 

Glass -5.56 1 1.00 1.89 1 1.00 -0.17 1 1.00 

IS700 6.94 1 0.70 4.39 1 0.29 0.00 1 1.00 
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IS900 4.44 1 1.00 5.22 1 0.06 0.17 1 1.00 

S1 -1.44 1 1.00 1.67 1 1.00 0.11 1 1.00 

S2 -4.72 1 1.00 -0.22 1 1.00 0.33 1 1.00 

S3 -4.61 1 1.00 2.33 1 1.00 -0.11 1 1.00 

mE10-H 

mD10 -2.11 1 1.00 -1.22 1 1.00 -1.33 1 0.17 

mD10-H 2.61 1 1.00 -2.94 1 1.00 0.00 1 1.00 

Glass -2.94 1 1.00 -1.06 1 1.00 -0.17 1 1.00 

IS700 9.56 1 0.08 1.44 1 1.00 0.00 1 1.00 

IS900 7.06 1 0.66 2.28 1 1.00 0.17 1 1.00 

S1 1.17 1 1.00 -1.28 1 1.00 0.11 1 1.00 

S2 -2.11 1 1.00 -3.17 1 1.00 0.33 1 1.00 

S3 -2.00 1 1.00 -0.61 1 1.00 -0.11 1 1.00 

Glass 

mD10 0.83 1 1.00 -0.17 1 1.00 -1.17 1 0.42 

mD10-H 5.56 1 1.00 -1.89 1 1.00 0.17 1 1.00 

mE10-H 2.94 1 1.00 1.06 1 1.00 0.17 1 1.00 

IS700 12.50 1 2.75E-03 2.50 1 1.00 0.17 1 1.00 

IS900 10.00 1 0.05 3.33 1 1.00 0.33 1 1.00 

S1 4.11 1 1.00 -0.22 1 1.00 0.28 1 1.00 

S2 0.83 1 1.00 -2.11 1 1.00 0.50 1 1.00 

S3 0.94 1 1.00 0.44 1 1.00 0.06 1 1.00 

IS700 

mD10 -11.67 1 0.01 -2.67 1 1.00 -1.33 1 0.17 

mD10-H -6.94 1 0.70 -4.39 1 0.29 0.00 1 1.00 

mE10-H -9.56 1 0.08 -1.44 1 1.00 0.00 1 1.00 

Glass -12.50 1 2.75E-03 -2.50 1 1.00 -0.17 1 1.00 

IS900 -2.50 1 1.00 0.83 1 1.00 0.17 1 1.00 

S1 -8.39 1 0.21 -2.72 1 1.00 0.11 1 1.00 

S2 -11.67 1 0.01 -4.61 1 0.20 0.33 1 1.00 

S3 -11.56 1 0.01 -2.06 1 1.00 -0.11 1 1.00 

IS900 

mD10 -9.17 1 0.11 -3.50 1 1.00 -1.50 1 0.06 

mD10-H -4.44 1 1.00 -5.22 1 0.06 -0.17 1 1.00 

mE10-H -7.06 1 0.66 -2.28 1 1.00 -0.17 1 1.00 

Glass -10.00 1 0.05 -3.33 1 1.00 -0.33 1 1.00 

IS700 2.50 1 1.00 -0.83 1 1.00 -0.17 1 1.00 

S1 -5.89 1 1.00 -3.56 1 1.00 -0.06 1 1.00 

S2 -9.17 1 0.11 -5.44 1 0.04 0.17 1 1.00 

S3 -9.06 1 0.12 -2.89 1 1.00 -0.28 1 1.00 

S1 

mD10 -3.28 1 1.00 0.06 1 1.00 -1.44 1 0.08 

mD10-H 1.44 1 1.00 -1.67 1 1.00 -0.11 1 1.00 

mE10-H -1.17 1 1.00 1.28 1 1.00 -0.11 1 1.00 

Glass -4.11 1 1.00 0.22 1 1.00 -0.28 1 1.00 

IS700 8.39 1 0.21 2.72 1 1.00 -0.11 1 1.00 

IS900 5.89 1 1.00 3.56 1 1.00 0.06 1 1.00 

S2 -3.28 1 1.00 -1.89 1 1.00 0.22 1 1.00 
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S3 -3.17 1 1.00 0.67 1 1.00 -0.22 1 1.00 

S2 

mD10 0.00 1 1.00 1.94 1 1.00 -1.67 1 0.02 

mD10-H 4.72 1 1.00 0.22 1 1.00 -0.33 1 1.00 

mE10-H 2.11 1 1.00 3.17 1 1.00 -0.33 1 1.00 

Glass -0.83 1 1.00 2.11 1 1.00 -0.50 1 1.00 

IS700 11.67 1 0.01 4.61 1 0.20 -0.33 1 1.00 

IS900 9.17 1 0.11 5.44 1 0.04 -0.17 1 1.00 

S1 3.28 1 1.00 1.89 1 1.00 -0.22 1 1.00 

S3 0.11 1 1.00 2.56 1 1.00 -0.44 1 1.00 

S3 

mD10 -0.11 1 1.00 -0.61 1 1.00 -1.22 1 0.32 

mD10-H 4.61 1 1.00 -2.33 1 1.00 0.11 1 1.00 

mE10-H 2.00 1 1.00 0.61 1 1.00 0.11 1 1.00 

Glass -0.94 1 1.00 -0.44 1 1.00 -0.06 1 1.00 

IS700 11.56 1 0.01 2.06 1 1.00 0.11 1 1.00 

IS900 9.06 1 0.12 2.89 1 1.00 0.28 1 1.00 

S1 3.17 1 1.00 -0.67 1 1.00 0.22 1 1.00 

S2 -0.11 1 1.00 -2.56 1 1.00 0.44 1 1.00 

Appendix 8.2: Table of the Pairwise comparison data comparing the surfaces between each 

other, obtained after GZLM analysis. The % cover for each surface was the mean of all the data 

collection made in Hartlepool Marina. The probability distribution was normal and the link function was 

identity. The Grey cells represent the significant comparisons. Microfouling and weeds were not 

represented in this table, as the surfaces were not significantly different for these fouling categories as 

shown in Appendix 11.1. 

 
(I) Collections 1 2 3 

 
(J) Collections 2 3 1 3 1 2 

Total % cover 

Mean 
Difference (I-J) 

-0.35 14.37 0.35 14.72 -14.37 -14.72 

df 1 1 1 1 1 1 

p-values 0.85 6.66E-15 0.85 2.00E-15 6.66E-15 2.00E-15 

% cover of 
microfouling 

Mean 
Difference (I-J) 

10.48 15.43 -10.48 4.94 -15.43 -4.94 

df 1 1 1 1 1 1 

p-values 3.51E-06 5.98E-12 3.51E-06 0.02 5.98E-12 0.02 

% cover of weeds 

Mean 
Difference (I-J) 

-1.39 0.96 1.39 2.35 -0.96 -2.35 

df 1 1 1 1 1 1 

p-values 0.01 0.06 0.01 1.63E-05 0.06 1.63E-05 

% cover of soft-
bodied animals 

Mean 
Difference (I-J) 

-8.78 -1.96 8.78 6.81 1.96 -6.81 

df 1 1 1 1 1 1 

p-values 0 0.04 0 3.41E-12 0.04 3.41E-12 

% cover of hard-
bodied animals 

Mean 
Difference (I-J) 

-0.67 -0.06 0.67 0.61 0.06 -0.61 

df 1 1 1 1 1 1 

p-values 0.047 0.840 0.047 0.053 0.840 0.053 
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Appendix 8.3: Table of the Pairwise comparison data comparing the data collection between 

each other, obtained after GZLM analysis. The % cover for each data collection was the mean of all 

the % covers of all the fouling categories made in Hartlepool Marina. The probability distribution was 

normal and the link function was identity.  

 

 

 Experiment 2: Experiment 2: Trial experiment on the „succession‟ of 

organisms at Hartlepool Marina with surfaces of different modulus. 

 
Source (Intercept) Surfaces Collections 

Surfaces * 
Collections 

Total % cover 

Wald Chi-
Square 

62344.85 20.96 1.68 10.88 

df 1 8 2 16 

p-values 0 0.01 0.43 0.82 

% cover of microfouling 

Wald Chi-
Square 

10521.82 45.07 63.67 68.75 

df 1 8 2 16 

p-values 0 3.57E-07 1.49E-14 1.65E-08 

% cover of weeds 

Wald Chi-
Square 

34.92 20.85 8.47 27.04 

df 1 8 2 16 

p-values 3.44E-09 0.01 0.01 0.04 

% cover of soft-bodied 
animals 

Wald Chi-
Square 

80.02 23.28 43.24 30.72 

df 1 8 2 16 

p-values 0 3.03E-03 4.07E-10 0.01 

% cover of hard-bodied 
animals 

Wald Chi-
Square 

20.68 24.55 13.94 35.42 

df 1 8 2 16 

p-values 5.44E-06 1.85E-03 9.41E-04 3.48E-03 

Appendix 8.4: Table of the test model effect of the GZLM analysis. The Grey cells represent the 

significant comparisons. 
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Total % cover % cover of microfouling % cover of weeds % cover of soft-bodied animals % cover of hard-bodied animals 

(I) 
Surfaces 

(J) 
Surfaces 

Mean 
Difference  

(I-J) 
df 

p-
values 

Mean 
Difference  

(I-J) 
df p-values 

Mean 
Difference  

(I-J) 
df 

p-
values 

Mean Difference 
(I-J) 

df 
p-

values 
Mean Difference 

(I-J) 
df 

p-
values 

Glass 

IS700 4.17 1 0.40 -17.41 1 6.63E-05 9.95 1 0.049 7.47 1 0.04 4.15 1 0.01 

IS900 4.66 1 0.20 -15.28 1 9.32E-04 10.79 1 0.02 4.89 1 0.87 4.25 1 0.01 

mD10 0.00 1 1.00 -15.96 1 4.20E-04 7.15 1 0.66 4.55 1 1.00 4.26 1 0.01 

mD10-H 0.00 1 1.00 -9.06 1 0.35 7.46 1 0.52 -0.68 1 1.00 2.28 1 1.00 

mE10-H 0.00 1 1.00 -18.36 1 1.83E-05 9.31 1 0.09 5.61 1 0.44 3.44 1 0.10 

S1 0.50 1 1.00 -18.49 1 1.56E-05 9.85 1 0.05 6.61 1 0.13 2.53 1 0.90 

S2 0.00 1 1.00 -18.92 1 8.59E-06 10.39 1 0.03 4.17 1 1.00 4.36 1 0.01 

S3 0.00 1 1.00 -12.82 1 0.01 4.13 1 1.00 4.73 1 0.96 3.96 1 0.02 

IS700 

Glass -4.17 1 0.40 17.41 1 6.63E-05 -9.95 1 0.049 -7.47 1 0.04 -4.15 1 0.01 

IS900 0.49 1 1.00 2.12 1 1.00 0.84 1 1.00 -2.58 1 1.00 0.10 1 1.00 

mD10 -4.17 1 0.40 1.44 1 1.00 -2.80 1 1.00 -2.92 1 1.00 0.11 1 1.00 

mD10-H -4.17 1 0.40 8.35 1 0.57 -2.49 1 1.00 -8.16 1 0.01 -1.87 1 1.00 

mE10-H -4.17 1 0.40 -0.95 1 1.00 -0.64 1 1.00 -1.86 1 1.00 -0.71 1 1.00 

S1 -3.67 1 0.67 -1.08 1 1.00 -0.10 1 1.00 -0.86 1 1.00 -1.62 1 1.00 

S2 -4.17 1 0.40 -1.52 1 1.00 0.44 1 1.00 -3.31 1 1.00 0.21 1 1.00 

S3 -4.17 1 0.40 4.58 1 1.00 -5.82 1 1.00 -2.74 1 1.00 -0.19 1 1.00 

IS900 

Glass -4.66 1 0.20 15.28 1 9.32E-04 -10.79 1 0.02 -4.89 1 0.87 -4.25 1 0.01 

IS700 -0.49 1 1.00 -2.12 1 1.00 -0.84 1 1.00 2.58 1 1.00 -0.10 1 1.00 

mD10 -4.66 1 0.20 -0.68 1 1.00 -3.64 1 1.00 -0.34 1 1.00 0.01 1 1.00 

mD10-H -4.66 1 0.20 6.23 1 1.00 -3.33 1 1.00 -5.58 1 0.44 -1.97 1 1.00 

mE10-H -4.66 1 0.20 -3.07 1 1.00 -1.49 1 1.00 0.72 1 1.00 -0.81 1 1.00 

S1 -4.16 1 0.40 -3.21 1 1.00 -0.94 1 1.00 1.72 1 1.00 -1.72 1 1.00 

S2 -4.66 1 0.20 -3.64 1 1.00 -0.40 1 1.00 -0.73 1 1.00 0.11 1 1.00 

S3 -4.66 1 0.20 2.46 1 1.00 -6.66 1 0.95 -0.16 1 1.00 -0.29 1 1.00 

mD10 Glass 0.00 1 1.00 15.96 1 4.20E-04 -7.15 1 0.66 -4.55 1 1.00 -4.26 1 0.01 
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IS700 4.17 1 0.40 -1.44 1 1.00 2.80 1 1.00 2.92 1 1.00 -0.11 1 1.00 

IS900 4.66 1 0.20 0.68 1 1.00 3.64 1 1.00 0.34 1 1.00 -0.01 1 1.00 

mD10-H 0.00 1 1.00 6.91 1 1.00 0.31 1 1.00 -5.23 1 0.62 -1.98 1 1.00 

mE10-H 0.00 1 1.00 -2.39 1 1.00 2.16 1 1.00 1.06 1 1.00 -0.82 1 1.00 

S1 0.50 1 1.00 -2.53 1 1.00 2.70 1 1.00 2.06 1 1.00 -1.73 1 1.00 

S2 0.00 1 1.00 -2.96 1 1.00 3.24 1 1.00 -0.38 1 1.00 0.10 1 1.00 

S3 0.00 1 1.00 3.14 1 1.00 -3.02 1 1.00 0.18 1 1.00 -0.31 1 1.00 

mD10-H 

Glass 0.00 1 1.00 9.06 1 0.35 -7.46 1 0.52 0.68 1 1.00 -2.28 1 1.00 

IS700 4.17 1 0.40 -8.35 1 0.57 2.49 1 1.00 8.16 1 0.01 1.87 1 1.00 

IS900 4.66 1 0.20 -6.23 1 1.00 3.33 1 1.00 5.58 1 0.44 1.97 1 1.00 

mD10 0.00 1 1.00 -6.91 1 1.00 -0.31 1 1.00 5.23 1 0.62 1.98 1 1.00 

mE10-H 0.00 1 1.00 -9.30 1 0.30 1.84 1 1.00 6.29 1 0.19 1.16 1 1.00 

S1 0.50 1 1.00 -9.43 1 0.28 2.39 1 1.00 7.29 1 0.048 0.25 1 1.00 

S2 0.00 1 1.00 -9.87 1 0.20 2.93 1 1.00 4.85 1 0.88 2.08 1 1.00 

S3 0.00 1 1.00 -3.77 1 1.00 -3.33 1 1.00 5.42 1 0.52 1.68 1 1.00 

mE10-H 

Glass 0.00 1 1.00 18.36 1 1.83E-05 -9.31 1 0.09 -5.61 1 0.44 -3.44 1 0.10 

IS700 4.17 1 0.40 0.95 1 1.00 0.64 1 1.00 1.86 1 1.00 0.71 1 1.00 

IS900 4.66 1 0.20 3.07 1 1.00 1.49 1 1.00 -0.72 1 1.00 0.81 1 1.00 

mD10 0.00 1 1.00 2.39 1 1.00 -2.16 1 1.00 -1.06 1 1.00 0.82 1 1.00 

mD10-H 0.00 1 1.00 9.30 1 0.30 -1.84 1 1.00 -6.29 1 0.19 -1.16 1 1.00 

S1 0.50 1 1.00 -0.13 1 1.00 0.54 1 1.00 1.00 1 1.00 -0.91 1 1.00 

S2 0.00 1 1.00 -0.57 1 1.00 1.09 1 1.00 -1.44 1 1.00 0.92 1 1.00 

S3 0.00 1 1.00 5.53 1 1.00 -5.17 1 1.00 -0.88 1 1.00 0.52 1 1.00 

S1 

Glass -0.50 1 1.00 18.49 1 1.56E-05 -9.85 1 0.05 -6.61 1 0.13 -2.53 1 0.90 

IS700 3.67 1 0.67 1.08 1 1.00 0.10 1 1.00 0.86 1 1.00 1.62 1 1.00 

IS900 4.16 1 0.40 3.21 1 1.00 0.94 1 1.00 -1.72 1 1.00 1.72 1 1.00 

mD10 -0.50 1 1.00 2.53 1 1.00 -2.70 1 1.00 -2.06 1 1.00 1.73 1 1.00 

mD10-H -0.50 1 1.00 9.43 1 0.28 -2.39 1 1.00 -7.29 1 0.048 -0.25 1 1.00 

mE10-H -0.50 1 1.00 0.13 1 1.00 -0.54 1 1.00 -1.00 1 1.00 0.91 1 1.00 
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S2 -0.50 1 1.00 -0.43 1 1.00 0.54 1 1.00 -2.44 1 1.00 1.83 1 1.00 

S3 -0.50 1 1.00 5.67 1 1.00 -5.72 1 1.00 -1.88 1 1.00 1.43 1 1.00 

S2 

Glass 0.00 1 1.00 18.92 1 8.59E-06 -10.39 1 0.03 -4.17 1 1.00 -4.36 1 0.01 

IS700 4.17 1 0.40 1.52 1 1.00 -0.44 1 1.00 3.31 1 1.00 -0.21 1 1.00 

IS900 4.66 1 0.20 3.64 1 1.00 0.40 1 1.00 0.73 1 1.00 -0.11 1 1.00 

mD10 0.00 1 1.00 2.96 1 1.00 -3.24 1 1.00 0.38 1 1.00 -0.10 1 1.00 

mD10-H 0.00 1 1.00 9.87 1 0.20 -2.93 1 1.00 -4.85 1 0.88 -2.08 1 1.00 

mE10-H 0.00 1 1.00 0.57 1 1.00 -1.09 1 1.00 1.44 1 1.00 -0.92 1 1.00 

S1 0.50 1 1.00 0.43 1 1.00 -0.54 1 1.00 2.44 1 1.00 -1.83 1 1.00 

S3 0.00 1 1.00 6.10 1 1.00 -6.26 1 1.00 0.57 1 1.00 -0.41 1 1.00 

S3 

Glass 0.00 1 1.00 12.82 1 0.01 -4.13 1 1.00 -4.73 1 0.96 -3.96 1 0.02 

IS700 4.17 1 0.40 -4.58 1 1.00 5.82 1 1.00 2.74 1 1.00 0.19 1 1.00 

IS900 4.66 1 0.20 -2.46 1 1.00 6.66 1 0.95 0.16 1 1.00 0.29 1 1.00 

mD10 0.00 1 1.00 -3.14 1 1.00 3.02 1 1.00 -0.18 1 1.00 0.31 1 1.00 

mD10-H 0.00 1 1.00 3.77 1 1.00 3.33 1 1.00 -5.42 1 0.52 -1.68 1 1.00 

mE10-H 0.00 1 1.00 -5.53 1 1.00 5.17 1 1.00 0.88 1 1.00 -0.52 1 1.00 

S1 0.50 1 1.00 -5.67 1 1.00 5.72 1 1.00 1.88 1 1.00 -1.43 1 1.00 

S2 0.00 1 1.00 -6.10 1 1.00 6.26 1 1.00 -0.57 1 1.00 0.41 1 1.00 

Appendix 8.5: Table of the Pairwise comparison data comparing the surfaces between each other, obtained after GZLM analysis. The % cover for 

each surface was the mean of all the data collection made in Hartlepool Marina. The probability distribution was normal and the link function was identity. The 

Grey cells represent the significant comparisons.  
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(I) Collections 1 2 3 

 
(J) Collections 2 3 1 3 1 2 

% cover of 
microfouling 

Mean 
Difference (I-J) 

7.15 16.98 -7.15 9.83 -16.98 -9.83 

df 1 1 1 1 1 1 

p-values 3.44E-04 4.33E-15 3.44E-04 1.76E-05 4.33E-15 1.76E-05 

% cover of 
weeds 

Mean 
Difference (I-J) 

-0.46 -4.96 0.46 -4.50 4.96 4.50 

df 1 1 1 1 1 1 

p-values 0.79 0.02 0.79 0.03 0.02 0.03 

% cover of 
soft-bodied 

animals 

Mean 
Difference (I-J) 

-4.97 -8.55 4.97 -3.57 8.55 3.57 

df 1 1 1 1 1 1 

p-values 1.33E-04 3.84E-10 1.33E-04 0.01 3.84E-10 0.01 

% cover of 
hard-bodied 

animals 

Mean 
Difference (I-J) 

-0.64 -2.49 0.64 -1.85 2.49 1.85 

df 1 1 1 1 1 1 

p-values 0.31 6.96E-04 0.31 0.02 6.96E-04 0.02 

Appendix 8.6: Table of the Pairwise comparison data comparing the data collection between 

each other, obtained after GZLM analysis. The % cover for each data collection was the mean of 

all the % covers of all the fouling categories made in Hartlepool Marina. The probability distribution 

was normal and the link function was identity. Total % cover was not represented in this table, as the 

surfaces were not significantly different for these fouling categories as shown in Appendix 11.4. 
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 Experiment 3: Succession of organisms at Newton Ferrers 

 
Source (Intercept) Surfaces Collections 

Surfaces * 
Collections 

Total % cover 

Wald Chi-Square 7249.51 18.26 8.16 18.29 

df 1 8 1 8 

p-values 0 0.02 4.29E-03 0.02 

% cover of 
microfouling 

Wald Chi-Square 231.25 56.11 35.94 7.98 

df 1 8 1 8 

p-values 0 2.69E-09 2.04E-09 0.44 

% cover of weeds 

Wald Chi-Square 143.23 131.54 72.29 56.61 

df 1 8 1 8 

p-values 0 0 0 2.14E-09 

% cover of soft-
bodied animals 

Wald Chi-Square 47.24 21.16 29.76 21.06 

df 1 8 1 8 

p-values 6.27E-12 0.01 4.88E-08 0.01 

% cover of hard-
bodied animals 

Wald Chi-Square 51.91 7.15 47.19 6.94 

df 1 8 1 8 

p-values 5.81E-13 0.52 6.43E-12 0.54 

Appendix 8.7: Table of the test model effect of the GZLM analysis. The Grey cells represent the 

significant comparisons. 

 

 

 

 

  



272 
 

  
Total % cover % cover of microfouling % cover of weeds % cover of soft-bodied animals 

(I) 
Surfaces 

(J) 
Surfaces 

Mean 
Difference 

(I-J) 
df p-values 

Mean 
Difference 

(I-J) 
df p-values 

Mean 
Difference 

(I-J) 
df p-values 

Mean Difference 
(I-J) 

df 
p-

values 

Glass 

IS700 5.83 1 1.00 -77.00 1 4.87E-09 50.00 1 0 14.83 1 1.00 

IS900 12.33 1 0.33 -47.83 1 2.06E-03 50.50 1 0 16.67 1 0.88 

mD10 0.00 1 1.00 -21.17 1 1.00 25.33 1 4.01E-04 -8.83 1 1.00 

mD10-H 0.67 1 1.00 -16.67 1 1.00 22.83 1 2.08E-03 9.00 1 1.00 

mE10-H 0.00 1 1.00 -27.83 1 0.47 36.67 1 1.17E-08 -4.17 1 1.00 

S1 7.50 1 1.00 -44.17 1 0.01 48.67 1 3.77E-15 1.67 1 1.00 

S2 11.67 1 0.45 -46.83 1 2.82E-03 46.00 1 1.21E-13 12.33 1 1.00 

S3 7.33 1 1.00 -25.83 1 0.62 32.00 1 1.39E-06 7.50 1 1.00 

IS700 

Glass -5.83 1 1.00 77.00 1 4.87E-09 -50.00 1 0 -14.83 1 1.00 

IS900 6.50 1 1.00 29.17 1 0.36 0.50 1 1.00 1.83 1 1.00 

mD10 -5.83 1 1.00 55.83 1 1.10E-04 -24.67 1 6.19E-04 -23.67 1 0.07 

mD10-H -5.17 1 1.00 60.33 1 1.71E-05 -27.17 1 9.89E-05 -5.83 1 1.00 

mE10-H -5.83 1 1.00 49.17 1 1.32E-03 -13.33 1 0.32 -19.00 1 0.42 

S1 1.67 1 1.00 32.83 1 0.17 -1.33 1 1.00 -13.17 1 1.00 

S2 5.83 1 1.00 30.17 1 0.31 -4.00 1 1.00 -2.50 1 1.00 

S3 1.50 1 1.00 51.17 1 6.54E-04 -18.00 1 0.04 -7.33 1 1.00 

IS900 

Glass -12.33 1 0.33 47.83 1 2.06E-03 -50.50 1 0 -16.67 1 0.88 

IS700 -6.50 1 1.00 -29.17 1 0.36 -0.50 1 1.00 -1.83 1 1.00 

mD10 -12.33 1 0.33 26.67 1 0.55 -25.17 1 4.39E-04 -25.50 1 0.03 

mD10-H -11.67 1 0.45 31.17 1 0.25 -27.67 1 6.74E-05 -7.67 1 1.00 

mE10-H -12.33 1 0.33 20.00 1 1.00 -13.83 1 0.29 -20.83 1 0.21 

S1 -4.83 1 1.00 3.67 1 1.00 -1.83 1 1.00 -15.00 1 1.00 

S2 -0.67 1 1.00 1.00 1 1.00 -4.50 1 1.00 -4.33 1 1.00 

S3 -5.00 1 1.00 22.00 1 1.00 -18.50 1 0.03 -9.17 1 1.00 

mD10 Glass 0.00 1 1.00 21.17 1 1.00 -25.33 1 4.01E-04 8.83 1 1.00 
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IS700 5.83 1 1.00 -55.83 1 1.10E-04 24.67 1 6.19E-04 23.67 1 0.07 

IS900 12.33 1 0.33 -26.67 1 0.55 25.17 1 4.39E-04 25.50 1 0.03 

mD10-H 0.67 1 1.00 4.50 1 1.00 -2.50 1 1.00 17.83 1 0.61 

mE10-H 0.00 1 1.00 -6.67 1 1.00 11.33 1 0.63 4.67 1 1.00 

S1 7.50 1 1.00 -23.00 1 0.99 23.33 1 1.59E-03 10.50 1 1.00 

S2 11.67 1 0.45 -25.67 1 0.62 20.67 1 0.01 21.17 1 0.19 

S3 7.33 1 1.00 -4.67 1 1.00 6.67 1 1.00 16.33 1 0.92 

mD10-H 

Glass -0.67 1 1.00 16.67 1 1.00 -22.83 1 2.08E-03 -9.00 1 1.00 

IS700 5.17 1 1.00 -60.33 1 1.71E-05 27.17 1 9.89E-05 5.83 1 1.00 

IS900 11.67 1 0.45 -31.17 1 0.25 27.67 1 6.74E-05 7.67 1 1.00 

mD10 -0.67 1 1.00 -4.50 1 1.00 2.50 1 1.00 -17.83 1 0.61 

mE10-H -0.67 1 1.00 -11.17 1 1.00 13.83 1 0.29 -13.17 1 1.00 

S1 6.83 1 1.00 -27.50 1 0.48 25.83 1 2.81E-04 -7.33 1 1.00 

S2 11.00 1 0.58 -30.17 1 0.31 23.17 1 1.72E-03 3.33 1 1.00 

S3 6.67 1 1.00 -9.17 1 1.00 9.17 1 1.00 -1.50 1 1.00 

mE10-H 

Glass 0.00 1 1.00 27.83 1 0.47 -36.67 1 1.17E-08 4.17 1 1.00 

IS700 5.83 1 1.00 -49.17 1 1.32E-03 13.33 1 0.32 19.00 1 0.42 

IS900 12.33 1 0.33 -20.00 1 1.00 13.83 1 0.29 20.83 1 0.21 

mD10 0.00 1 1.00 6.67 1 1.00 -11.33 1 0.63 -4.67 1 1.00 

mD10-H 0.67 1 1.00 11.17 1 1.00 -13.83 1 0.29 13.17 1 1.00 

S1 7.50 1 1.00 -16.33 1 1.00 12.00 1 0.52 5.83 1 1.00 

S2 11.67 1 0.45 -19.00 1 1.00 9.33 1 1.00 16.50 1 0.90 

S3 7.33 1 1.00 2.00 1 1.00 -4.67 1 1.00 11.67 1 1.00 

S1 

Glass -7.50 1 1.00 44.17 1 0.01 -48.67 1 3.77E-15 -1.67 1 1.00 

IS700 -1.67 1 1.00 -32.83 1 0.17 1.33 1 1.00 13.17 1 1.00 

IS900 4.83 1 1.00 -3.67 1 1.00 1.83 1 1.00 15.00 1 1.00 

mD10 -7.50 1 1.00 23.00 1 0.99 -23.33 1 1.59E-03 -10.50 1 1.00 

mD10-H -6.83 1 1.00 27.50 1 0.48 -25.83 1 2.81E-04 7.33 1 1.00 

mE10-H -7.50 1 1.00 16.33 1 1.00 -12.00 1 0.52 -5.83 1 1.00 
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S2 4.17 1 1.00 -2.67 1 1.00 -2.67 1 1.00 10.67 1 1.00 

S3 -0.17 1 1.00 18.33 1 1.00 -16.67 1 0.08 5.83 1 1.00 

S2 

Glass -11.67 1 0.45 46.83 1 2.82E-03 -46.00 1 1.21E-13 -12.33 1 1.00 

IS700 -5.83 1 1.00 -30.17 1 0.31 4.00 1 1.00 2.50 1 1.00 

IS900 0.67 1 1.00 -1.00 1 1.00 4.50 1 1.00 4.33 1 1.00 

mD10 -11.67 1 0.45 25.67 1 0.62 -20.67 1 0.01 -21.17 1 0.19 

mD10-H -11.00 1 0.58 30.17 1 0.31 -23.17 1 1.72E-03 -3.33 1 1.00 

mE10-H -11.67 1 0.45 19.00 1 1.00 -9.33 1 1.00 -16.50 1 0.90 

S1 -4.17 1 1.00 2.67 1 1.00 2.67 1 1.00 -10.67 1 1.00 

S3 -4.33 1 1.00 21.00 1 1.00 -14.00 1 0.28 -4.83 1 1.00 

S3 

Glass -7.33 1 1.00 25.83 1 0.62 -32.00 1 1.39E-06 -7.50 1 1.00 

IS700 -1.50 1 1.00 -51.17 1 6.54E-04 18.00 1 0.04 7.33 1 1.00 

IS900 5.00 1 1.00 -22.00 1 1.00 18.50 1 0.03 9.17 1 1.00 

mD10 -7.33 1 1.00 4.67 1 1.00 -6.67 1 1.00 -16.33 1 0.92 

mD10-H -6.67 1 1.00 9.17 1 1.00 -9.17 1 1.00 1.50 1 1.00 

mE10-H -7.33 1 1.00 -2.00 1 1.00 4.67 1 1.00 -11.67 1 1.00 

S1 0.17 1 1.00 -18.33 1 1.00 16.67 1 0.08 -5.83 1 1.00 

S2 4.33 1 1.00 -21.00 1 1.00 14.00 1 0.28 4.83 1 1.00 

Appendix 8.8: Table of the Pairwise comparison data comparing the surfaces between each other, obtained after GZLM analysis. The % cover for 

each surface was the mean of all the data collection made in Newton Ferrers. The probability distribution was normal and the link function was identity. The 

Grey cells represent the significant comparisons. Percentage cover of hard-bodied animals was not represented in this table, as the surfaces were not 

significantly different for these fouling categories as shown in Appendix 11.7. 
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(I) Collections 1 

 
(J) Collections 2 

Total % cover 

Mean Difference (I-J) -6.37 

df 1.000 

p-values 4.29E-03 

% cover of microfouling 

Mean Difference (I-J) 33.89 

df 1 

p-values 2.04E-09 

% cover of weeds 

Mean Difference (I-J) 23.44 

df 1 

p-values 0 

% cover of soft-bodied animals 

Mean Difference (I-J) -19.67 

df 1 

p-values 4.88E-08 

% cover of hard-bodied animals 

Mean Difference (I-J) -44.04 

df 1 

p-values 6.43E-12 

Appendix 8.9: Table of the Pairwise comparison data comparing the data collection between 

each other, obtained after GZLM analysis. The % cover for each data collection was the mean of 

all the % covers of all the fouling categories made in Newton Ferrers. The probability distribution was 

normal and the link function was identity.  
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APPENDIX 9: STATISTICAL TABLES FOR CHAPTER 10 

 
Source (Intercept) Panel Row Surfaces Day 

Panel * 
Row 

Panel * 
Surfaces 

Panel * 
Day 

Surfaces * 
Day 

Panel * 
Surfaces * 

Day 

Panel * Row 
* Day 

total % 
cover 

Wald Chi-
Square 

13002.80 7.77 22.72 343.99 5337.91 7.56 83.79 182.26 3080.05 671.59 225.06 

df 1 2 6 7 6 12 14 12 42 84 72 

p-values 0 0.02 8.94E-04 0 0 0.82 5.57E-12 0 0 0 1.17E-17 

% cover of 
microfouling 

Wald Chi-
Square 

14496.32 19.99 62.10 1322.44 5053.11 54.84 74.25 157.90 9519.08 994.69 484.83 

df 1 2 6 7 6 12 14 36 42 84 72 

p-values 0 4.57E-05 1.68E-11 0 0 1.94E-07 3.25E-10 3.32E-17 0 0 0 

% cover of 
weeds 

Wald Chi-
Square 

4139.46 109.90 62.20 3711.96 4234.34 217.14 85.67 4852.33 116.30 783.38 277.26 

df 1 2 6 7 6 12 42 42 14 84 84 

p-values 0 0 1.61E-11 0 0 0 8.05E-05 0 0 0 0 

% cover of 
ectocarpoid 

algae 

Wald Chi-
Square 

3185.65 130.52 46.97 2950.66 3289.80 39.61 118.58 234.57 4188.52 217.35 179.91 

df 1 2 6 7 6 12 14 10 35 60 70 

p-values 0 0 1.90E-08 0 0 8.35E-05 1.19E-18 0 0 1.08E-19 1.26E-11 

% cover of 
soft-bodied 

animals 

Wald Chi-
Square 

2019.60 32.07 23.92 458.29 2508.15 10.06 51.43 76.16 1351.27 177.02 131.09 

df 1 2 6 7 5 12 14 10 35 60 70 

p-values 0 1.09E-07 5.40E-04 0 0 0.61 3.50E-06 2.82E-12 0 1.76E-13 1.35E-05 

% cover of 
hard-bodied 

animals 

Wald Chi-
Square 

2049.22 16.16 54.03 347.55 2170.83 54.64 31.68 367.57 840.37 800.94 387.98 

df 1 2 6 7 6 12 14 12 42 84 72 

p-values 0 3.10E-04 7.28E-10 0 0 2.10E-07 4.45E-03 0 0 0 0 

Appendix 9.1: Table of the test model effect of the GEEs analysis. The Grey cells represent the significant comparisons. 
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Total % cover % cover of microfouling % cover of weeds % cover of ectocarpoid algae 

% cover of soft-bodied 
animals 

% cover of hard-bodied 
animals 

(I) 
Surface 

(J) 
Surface 

Mean 
Difference  

(I-J) 
df 

p-
values 

Mean 
Difference 

(I-J) 
df 

p-
values 

Mean 
Difference 

(I-J) 
df 

p-
values 

Mean 
Difference 

(I-J) 
df 

p-
values 

Mean 
Difference 

(I-J) 
df 

p-
values 

Mean 
Difference 

(I-J) 
df p-values 

H 

H1 9.29 1 
2.08E-

07 
-1.96 1 1.00 10.00 1 0 9.13 1 0 2.18 1 0.01 2.03 1 

5.43E-
04 

H2 12.68 1 
8.41E-

11 
0.08 1 1.00 10.13 1 0 9.10 1 0 2.98 1 

9.63E-
05 

2.60 1 
3.01E-

06 

H3 17.64 1 0 1.02 1 1.00 9.00 1 
1.37E-

13 
8.74 1 

3.09E-
16 

5.97 1 0 5.03 1 0 

H7 26.10 1 0 -2.35 1 1.00 15.57 1 0 12.91 1 0 7.74 1 0 6.35 1 0 

H10 10.70 1 
2.57E-

03 
-3.35 1 1.00 9.12 1 

4.26E-
15 

7.79 1 
2.90E-

12 
1.40 1 0.33 3.63 1 

2.87E-
10 

IS900 3.23 1 0.21 -24.87 1 0 11.19 1 0 9.79 1 0 2.50 1 
2.31E-

03 
2.86 1 

3.96E-
09 

Tie 
coat 

-13.23 1 
9.17E-

04 
7.94 1 

1.69E-
03 

-47.91 1 0 -41.71 1 0 1.20 1 0.33 2.71 1 
4.44E-

07 

H1 

H -9.29 1 
2.08E-

07 
1.96 1 1.00 -10.00 1 0 -9.13 1 0 -2.18 1 0.01 -2.03 1 

5.43E-
04 

H2 3.38 1 0.21 2.04 1 1.00 0.13 1 1.00 -0.03 1 1.00 0.80 1 0.90 0.57 1 1.00 

H3 8.34 1 
4.27E-

06 
2.98 1 1.00 -1.00 1 1.00 -0.39 1 1.00 3.80 1 

5.13E-
15 

3.00 1 
1.09E-

11 

H7 16.80 1 0 -0.39 1 1.00 5.57 1 
2.17E-

08 
3.77 1 

1.54E-
05 

5.57 1 0 4.32 1 0 

H10 1.40 1 1.00 -1.39 1 1.00 -0.88 1 1.00 -1.35 1 1.00 -0.78 1 0.90 1.60 1 0.03 

IS900 -6.06 1 
2.67E-

03 
-22.92 1 0 1.20 1 1.00 0.66 1 1.00 0.32 1 1.00 0.83 1 0.59 

Tie 
coat 

-22.52 1 
2.22E-

10 
9.89 1 

2.58E-
07 

-57.91 1 0 -50.84 1 0 -0.98 1 0.32 0.68 1 0.86 

H2 

H -12.68 1 
8.41E-

11 
-0.08 1 1.00 -10.13 1 0 -9.10 1 0 -2.98 1 

9.63E-
05 

-2.60 1 
3.01E-

06 

H1 -3.38 1 0.21 -2.04 1 1.00 -0.13 1 1.00 0.03 1 1.00 -0.80 1 0.90 -0.57 1 1.00 

H3 4.96 1 0.04 0.94 1 1.00 -1.13 1 1.00 -0.36 1 1.00 3.00 1 
4.51E-

07 
2.43 1 

4.13E-
08 

H7 13.42 1 
6.72E-

12 
-2.43 1 1.00 5.44 1 

7.46E-
09 

3.80 1 
2.83E-

06 
4.77 1 

2.73E-
17 

3.76 1 
3.74E-

18 

H10 -1.98 1 1.00 -3.43 1 1.00 -1.01 1 1.00 -1.32 1 1.00 -1.58 1 0.15 1.03 1 0.42 

IS900 -9.44 1 
5.14E-

06 
-24.96 1 0 1.06 1 1.00 0.69 1 1.00 -0.48 1 1.00 0.27 1 1.00 

Tie 
coat 

-25.90 1 
8.05E-

13 
7.85 1 

1.53E-
04 

-58.04 1 0 -50.81 1 0 -1.78 1 0.01 0.12 1 1.00 

H3 

H -17.64 1 0 -1.02 1 1.00 -9.00 1 
1.37E-

13 
-8.74 1 

3.09E-
16 

-5.97 1 0 -5.03 1 0 

H1 -8.34 1 
4.27E-

06 
-2.98 1 1.00 1.00 1 1.00 0.39 1 1.00 -3.80 1 

5.13E-
15 

-3.00 1 
1.09E-

11 
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H2 -4.96 1 0.04 -0.94 1 1.00 1.13 1 1.00 0.36 1 1.00 -3.00 1 
4.51E-

07 
-2.43 1 

4.13E-
08 

H7 8.46 1 
4.63E-

06 
-3.37 1 1.00 6.57 1 

1.28E-
10 

4.17 1 
8.72E-

07 
1.77 1 

1.39E-
04 

1.33 1 
6.49E-

05 

H10 -6.94 1 0.07 -4.37 1 0.88 0.12 1 1.00 -0.95 1 1.00 -4.58 1 
8.34E-

16 
-1.40 1 0.02 

IS900 -14.40 1 
7.38E-

15 
-25.90 1 0 2.20 1 0.31 1.05 1 1.00 -3.48 1 

1.06E-
10 

-2.16 1 
7.15E-

08 

Tie 
coat 

-30.86 1 
1.25E-

18 
6.91 1 

4.32E-
03 

-56.91 1 0 -50.45 1 0 -4.78 1 0 -2.31 1 0 

H7 

H -26.10 1 0 2.35 1 1.00 -15.57 1 0 -12.91 1 0 -7.74 1 0 -6.35 1 0 

H1 -16.80 1 0 0.39 1 1.00 -5.57 1 
2.17E-

08 
-3.77 1 

1.54E-
05 

-5.57 1 0 -4.32 1 0 

H2 -13.42 1 
6.72E-

12 
2.43 1 1.00 -5.44 1 

7.46E-
09 

-3.80 1 
2.83E-

06 
-4.77 1 

2.73E-
17 

-3.76 1 
2.03E-

08 

H3 -8.46 1 
4.63E-

06 
3.37 1 1.00 -6.57 1 

1.28E-
10 

-4.17 1 
8.72E-

07 
-1.77 1 

1.39E-
04 

-1.33 1 
6.49E-

05 

H10 -15.40 1 
3.05E-

06 
-1.00 1 1.00 -6.45 1 

1.51E-
10 

-5.12 1 
7.22E-

08 
-6.35 1 0 -2.72 1 0 

IS900 -22.86 1 0 -22.53 1 0 -4.38 1 
2.15E-

06 
-3.11 1 

1.46E-
04 

-5.25 1 0 -3.49 1 
3.74E-

18 

Tie 
coat 

-39.32 1 0 10.28 1 
1.39E-

09 
-63.48 1 0 -54.61 1 0 -6.55 1 0 -3.64 1 

1.30E-
18 

H10 

H -10.70 1 
2.57E-

03 
3.35 1 1.00 -9.12 1 

4.26E-
15 

-7.79 1 
2.90E-

12 
-1.40 1 0.33 -3.63 1 

2.87E-
10 

H1 -1.40 1 1.00 1.39 1 1.00 0.88 1 1.00 1.35 1 1.00 0.78 1 0.90 -1.60 1 0.03 

H2 1.98 1 1.00 3.43 1 1.00 1.01 1 1.00 1.32 1 1.00 1.58 1 0.15 -1.03 1 0.42 

H3 6.94 1 0.07 4.37 1 0.88 -0.12 1 1.00 0.95 1 1.00 4.58 1 
8.34E-

16 
1.40 1 0.02 

H7 15.40 1 
3.05E-

06 
1.00 1 1.00 6.45 1 

1.51E-
10 

5.12 1 
7.22E-

08 
6.35 1 0 2.72 1 

2.03E-
08 

IS900 -7.46 1 0.07 -21.52 1 0 2.07 1 0.31 2.01 1 0.25 1.10 1 0.49 -0.77 1 0.63 

Tie 
coat 

-23.92 1 
1.35E-

07 
11.29 1 

1.08E-
07 

-57.03 1 0 -49.49 1 0 -0.20 1 1.00 -0.92 1 0.59 

IS900 

H -3.23 1 0.21 24.87 1 0 -11.19 1 0 -9.79 1 0 -2.50 1 
2.31E-

03 
-2.86 1 

3.96E-
09 

H1 6.06 1 
2.67E-

03 
22.92 1 0 -1.20 1 1.00 -0.66 1 1.00 -0.32 1 1.00 -0.83 1 0.59 

H2 9.44 1 
5.14E-

06 
24.96 1 0 -1.06 1 1.00 -0.69 1 1.00 0.48 1 1.00 -0.27 1 0.63 

H3 14.40 1 
7.38E-

15 
25.90 1 0 -2.20 1 0.31 -1.05 1 1.00 3.48 1 

1.06E-
10 

2.16 1 
9.65E-

09 

H7 22.86 1 0 22.53 1 0 4.38 1 
2.15E-

06 
3.11 1 

1.46E-
04 

5.25 1 0 3.49 1 0 

H10 7.46 1 0.07 21.52 1 0 -2.07 1 0.31 -2.01 1 0.25 -1.10 1 0.49 0.77 1 1.00 

Tie 
coat 

-16.46 1 
1.25E-

06 
32.81 1 0 -59.11 1 0 -51.50 1 0 -1.30 1 0.12 -0.15 1 1.00 

Tie 
coat 

H 13.23 1 
9.17E-

04 
-7.94 1 

1.69E-
03 

47.91 1 0 41.71 1 0 -1.20 1 0.33 -2.71 1 
4.44E-

07 

H1 22.52 1 
2.22E-

10 
-9.89 1 

2.58E-
07 

57.91 1 0 50.84 1 0 0.98 1 0.32 -0.68 1 0.86 
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H2 25.90 1 
8.05E-

13 
-7.85 1 

1.53E-
04 

58.04 1 0 50.81 1 0 1.78 1 0.01 -0.12 1 0.59 

H3 30.86 1 
1.25E-

18 
-6.91 1 

4.32E-
03 

56.91 1 0 50.45 1 0 4.78 1 0 2.31 1 
7.15E-

08 

H7 39.32 1 0 -10.28 1 
1.39E-

09 
63.48 1 0 54.61 1 0 6.55 1 0 3.64 1 

1.30E-
18 

H10 23.92 1 
1.35E-

07 
-11.29 1 

1.08E-
07 

57.03 1 0 49.49 1 0 0.20 1 1.00 0.92 1 1.00 

IS900 16.46 1 
1.25E-

06 
-32.81 1 0 59.11 1 0 51.50 1 0 1.30 1 0.12 0.15 1 1.00 

Appendix 9.8: Table of the Pairwise comparison data comparing the surfaces between each other, obtained after GEEs analysis. The % cover for 

each surface was the mean of all the data collection made in Hartlepool Marina. The probability distribution was normal and the link function was identity. The 

Grey cells represent the significant comparisons.  
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Total % cover % cover of microfouling % cover of weeds % cover of ectocarpoid algae % cover of soft-bodied animals 

% cover of hard-bodied 
animals 

(I
) 

d
a
y
s
 o

f 
im

m
e
rs

io
n

 

(J
) 

d
a
y
s
 o

f 

im
m

e
rs

io
n

 
Mean 

Difference 
(I-J) 

df 
p-

values 

Mean 
Difference 

(I-J) 
df 

p-
values 

Mean 
Difference 

(I-J) 
df 

p-
values 

Mean 
Difference 

(I-J) 
df 

p-
values 

Mean 
Difference 

(I-J) 
df 

p-
values 

Mean 
Difference 

(I-J) 
df 

p-
values 

23 

37 6.40 1 
1.56E-

10 
21.02 1 0 -14.33 1 0 -14.39 1 0 0.00 1 . -0.06 1 0.02 

43 -68.00 1 0 -38.88 1 0 -28.86 1 0 -28.86 1 0 -0.10 1 0.13 -0.06 1 
1.94E-

03 

61 -67.11 1 0 -41.38 1 0 -24.47 1 0 -24.47 1 0 -0.45 1 0.06 -0.66 1 
2.63E-

10 

80 -65.60 1 0 -33.08 1 0 -20.77 1 0 -20.77 1 0 -3.18 1 0 -8.34 1 0 

98 -67.38 1 0 -22.60 1 0 -26.97 1 0 -3.80 1 
6.84E-

15 
-9.79 1 0 -7.80 1 0 

157 -39.16 1 0 11.70 1 0 -1.46 1 
4.43E-

11 
0.00 1 1.00 -30.14 1 0 -18.90 1 0 

37 

23 -6.40 1 
1.56E-

10 
-21.02 1 0 14.33 1 0 14.39 1 0 0.00 1 . 0.06 1 0.02 

43 -74.40 1 0 -59.89 1 0 -14.53 1 0 -14.47 1 0 -0.10 1 0.13 0.00 1 0.83 

61 -73.52 1 0 -62.39 1 0 -10.14 1 0 -10.08 1 0 -0.45 1 0.06 -0.59 1 
1.55E-

08 

80 -72.01 1 0 -54.09 1 0 -6.44 1 0 -6.38 1 0 -3.18 1 0 -8.28 1 0 

98 -73.79 1 0 -43.62 1 0 -12.63 1 0 10.59 1 0 -9.79 1 0 -7.73 1 0 

157 -45.56 1 0 -9.32 1 
5.85E-

18 
12.87 1 0 14.39 1 0 -30.14 1 0 -18.84 1 0 

43 

23 68.00 1 0 38.88 1 0 28.86 1 0 28.86 1 0 0.10 1 0.13 0.06 1 
1.94E-

03 

37 74.40 1 0 59.89 1 0 14.53 1 0 14.47 1 0 0.10 1 0.13 0.00 1 0.83 

61 0.89 1 1.00 -2.50 1 0.06 4.39 1 
2.69E-

05 
4.39 1 

1.80E-
05 

-0.35 1 0.13 -0.60 1 
1.58E-

08 

80 2.40 1 0.07 5.80 1 
1.27E-

05 
8.09 1 0 8.09 1 0 -3.07 1 0 -8.28 1 0 

98 0.62 1 1.00 16.28 1 0 1.89 1 0.13 25.06 1 0 -9.68 1 0 -7.74 1 0 

157 28.85 1 0 50.58 1 0 27.40 1 0 28.86 1 0 -30.04 1 0 -18.84 1 0 

61 

23 67.11 1 0 41.38 1 0 24.47 1 0 24.47 1 0 0.45 1 0.06 0.66 1 
2.63E-

10 

37 73.52 1 0 62.39 1 0 10.14 1 0 10.08 1 0 0.45 1 0.06 0.59 1 
1.55E-

08 

43 -0.89 1 1.00 2.50 1 0.06 -4.39 1 
2.69E-

05 
-4.39 1 

1.80E-
05 

0.35 1 0.13 0.60 1 
1.58E-

08 

80 1.51 1 0.04 8.30 1 
5.69E-

18 
3.70 1 

1.04E-
08 

3.70 1 
7.77E-

09 
-2.73 1 

3.53E-
12 

-7.68 1 0 

98 -0.27 1 1.00 18.77 1 0 -2.50 1 0.03 20.67 1 0 -9.34 1 0 -7.14 1 0 

157 27.96 1 0 53.07 1 0 23.01 1 0 24.47 1 0 -29.69 1 0 -18.24 1 0 

80 23 65.60 1 0 33.08 1 0 20.77 1 0 20.77 1 0 3.18 1 0 8.34 1 0 
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37 72.01 1 0 54.09 1 0 6.44 1 0 6.38 1 0 3.18 1 0 8.28 1 0 

43 -2.40 1 0.07 -5.80 1 
1.27E-

05 
-8.09 1 0 -8.09 1 0 3.07 1 0 8.28 1 0 

61 -1.51 1 0.04 -8.30 1 
5.69E-

18 
-3.70 1 

1.04E-
08 

-3.70 1 
7.77E-

09 
2.73 1 

3.53E-
12 

7.68 1 0 

98 -1.78 1 
4.35E-

03 
10.47 1 

9.90E-
17 

-6.20 1 
7.69E-

10 
16.97 1 0 -6.61 1 0 0.55 1 0.60 

157 26.45 1 0 44.77 1 0 19.31 1 0 20.77 1 0 -26.96 1 0 -10.56 1 0 

98 

23 67.38 1 0 22.60 1 0 26.97 1 0 3.80 1 
6.84E-

15 
9.79 1 0 7.80 1 0 

37 73.79 1 0 43.62 1 0 12.63 1 0 -10.59 1 0 9.79 1 0 7.73 1 0 

43 -0.62 1 1.00 -16.28 1 0 -1.89 1 0.13 -25.06 1 0 9.68 1 0 7.74 1 0 

61 0.27 1 1.00 -18.77 1 0 2.50 1 0.03 -20.67 1 0 9.34 1 0 7.14 1 0 

80 1.78 1 
4.35E-

03 
-10.47 1 

9.90E-
17 

6.20 1 
7.69E-

10 
-16.97 1 0 6.61 1 0 -0.55 1 0.60 

157 28.23 1 0 34.30 1 0 25.51 1 0 3.80 1 
6.84E-

15 
-20.35 1 0 -11.11 1 0 

157 

23 39.16 1 0 -11.70 1 0 1.46 1 
4.43E-

11 
0.00 1 1.00 30.14 1 0 18.90 1 0 

37 45.56 1 0 9.32 1 
5.85E-

18 
-12.87 1 0 -14.39 1 0 30.14 1 0 18.84 1 0 

43 -28.85 1 0 -50.58 1 0 -27.40 1 0 -28.86 1 0 30.04 1 0 18.84 1 0 

61 -27.96 1 0 -53.07 1 0 -23.01 1 0 -24.47 1 0 29.69 1 0 18.24 1 0 

80 -26.45 1 0 -44.77 1 0 -19.31 1 0 -20.77 1 0 26.96 1 0 10.56 1 0 

98 -28.23 1 0 -34.30 1 0 -25.51 1 0 -3.80 1 
6.84E-

15 
20.35 1 0 11.11 1 0 

Appendix 9.3: Table of the Pairwise comparison data comparing the days of immersion between each other, obtained after GEEs analysis. The % 

cover for each day of immersion was the mean of all the % covers of all the fouling categories made in Hartlepool Marina. The probability distribution was 

normal and the link function was identity.  
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APPENDIX 10: PERCENTAGE COVERS ON PANELS 2 AND 3 FOR 

CHAPTER 10 

   

   

  

 

Appendix 10.1: Percentage cover observed on 8 different test surfaces attached to Panel 2, 

immersed in Hartlepool Marina during 157 days of immersion. Percentage cover for the 4 fouling 

categories: microfouling (blue), weeds (red), soft-bodied animals (green) and hard-bodied animals 

(grey). For each graph, the axis x represents the length of immersion for each coating. Mean of 7 

replicates. 
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Appendix 10.2: Percentage cover observed on 8 different test surfaces attached to Panel 3, 

immersed in Hartlepool Marina during 157 days of immersion. Percentage cover for the 4 fouling 

categories: microfouling (blue), weeds (red), soft-bodied animals (green) and hard-bodied animals 

(grey). For each graph, the axis x represents the length of immersion for each coating. Mean of 7 

replicates. 
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APPENDIX 11: IMAGES ON PANELS 
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Appendix 11.1: Images of the panels containing silicone „hybrid‟ coatings, IS900 and 

tie coat after 43 days‟ immersion.  
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APPENDIX 12: STATISTICAL TABLES FOR CHAPTER 11 

 
Source (Intercept) Panel Row Surfaces Day 

Panel * 
Row 

Panel * 
Surfaces 

Panel * 
Day 

Surfaces * 
Day 

Panel * 
Row * 
Day 

Panel * 
Surfaces 

* Day 

total % cover 

Wald Chi-
Square 

. 122.00 0.00 844.78 0.00 54.18 89.61 227.64 1147.82 155.06 232.61 

df . 2 2 6 2 12 12 7 24 42 43 

p-values . 0 1.00 0 1.00 2.54E-07 5.88E-14 0 0 7.23E-15 0 

% cover of 
microfouling 

Wald Chi-
Square 

7792.41 57.91 21.46 129.04 5412.01 42.84 86.90 229.87 1047.06 196.23 226.57 

df 1 2 6 6 4 12 12 8 24 48 48 

p-values 0 2.66E-13 1.52E-03 0 0 2.40E-05 1.96E-13 0 0 5.42E-20 0 

% cover of weeds 

Wald Chi-
Square 

156.28 27.73 11.47 184.84 322.87 17.06 32.78 81.24 443.90 40.69 115.37 

df 1 2 6 6 4 12 12 8 24 48 48 

p-values 0 9.50E-07 0.07 0 0 0.15 1.05E-03 2.75E-14 0 0.76 1.79E-07 

% cover of 
ectocarpoid algae 

Wald Chi-
Square 

122.38 20.41 10.71 144.76 163.59 15.17 23.97 127.49 209.72 51.27 162.56 

df 1 2 6 6 4 12 12 8 24 48 48 

p-values 0 3.71E-05 0.10 0 0 0.23 0.02 0 0 0.35 2.28E-14 

% cover of soft-
bodied animals 

Wald Chi-
Square 

1334.96 9.93 32.15 89.69 1553.24 22.05 31.11 37.69 125.55 81.64 92.12 

df 1 2 6 6 4 12 12 8 24 48 48 

p-values 0 0.01 1.53E-05 3.52E-17 0 0.04 1.90E-03 8.59E-06 9.84E-16 1.76E-03 1.33E-04 

% cover of hard-
bodied animals 

Wald Chi-
Square 

2464.89 17.02 66.29 178.45 2546.61 20.25 30.65 84.32 281.81 62.24 103.32 

df 1 2 6 6 4 12 12 7 24 42 42 

p-values 0 2.01E-04 2.35E-12 0 0 0.06 2.22E-03 1.80E-15 0 0.02 4.42E-07 

Appendix 12.1: Table of the test model effect of the GEEs analysis. The Grey cells represent the significant comparisons.  
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Total % cover % cover of microfouling % cover of weeds 

% cover of ectocarpoid 

algae 

% cover of soft-bodied 

animals 

% cover of hard-bodied 

animals 
(I

) 
S

u
rf

a
c
e
s
 

(J
) 

S
u
rf

a
c
e
s
 

Mean 

Difference 

(I-J) 

df 
p-

values 

Mean 

Difference 

(I-J) 

df 
p-

values 

Mean 

Difference 

(I-J) 

df 
p-

values 

Mean 

Difference 

(I-J) 

df 
p-

values 

Mean 

Difference 

(I-J) 

df 
p-

values 

Mean 

Difference 

(I-J) 

df 
p-

values 

M1 

M2 14.49 1 
2.92E-

06 
12.78 1 

1.64E-

04 
0.38 1 1.00 0.23 1 1.00 0.96 1 0.22 0.36 1 0.28 

M3 19.99 1 
2.14E-

12 
19.33 1 

8.71E-

12 
0.10 1 1.00 -0.08 1 1.00 0.00 1 1.00 0.56 1 

1.00E-

04 

M4 17.09 1 
2.85E-

08 
16.00 1 

1.06E-

07 
0.19 1 1.00 0.06 1 1.00 0.62 1 1.00 0.28 1 0.45 

M5 11.81 1 
2.84E-

04 
10.91 1 

8.66E-

04 
-0.02 1 1.00 -0.20 1 1.00 0.64 1 1.00 0.28 1 0.39 

IS900 24.56 1 
2.09E-

15 
19.57 1 

2.43E-

10 
0.39 1 1.00 0.25 1 1.00 3.17 1 

6.54E-

14 
1.43 1 0 

Tie 

coat 
-21.23 1 

1.03E-

13 
-1.10 1 1.00 -20.08 1 0 -17.43 1 0 0.03 1 1.00 -0.09 1 1.00 

M2 

M1 -14.49 1 
2.92E-

06 
-12.78 1 

1.64E-

04 
-0.38 1 1.00 -0.23 1 1.00 -0.96 1 0.22 -0.36 1 0.28 

M3 5.50 1 0.02 6.55 1 0.02 -0.29 1 1.00 -0.30 1 1.00 -0.96 1 0.34 0.20 1 1.00 

M4 2.60 1 0.38 3.22 1 0.62 -0.19 1 1.00 -0.17 1 1.00 -0.34 1 1.00 -0.09 1 1.00 

M5 -2.68 1 0.38 -1.87 1 1.00 -0.40 1 1.00 -0.43 1 1.00 -0.32 1 1.00 -0.09 1 1.00 

IS900 10.08 1 
4.85E-

05 
6.79 1 0.04 0.01 1 1.00 0.02 1 1.00 2.21 1 

1.84E-

07 
1.07 1 

6.24E-

10 

Tie 

coat 
-35.71 1 0 -13.88 1 

1.69E-

06 
-20.46 1 0 -17.66 1 0 -0.93 1 0.85 -0.45 1 0.15 

M3 M1 -19.99 1 
2.14E-

12 
-19.33 1 

8.71E-

12 
-0.10 1 1.00 0.08 1 1.00 0.00 1 1.00 -0.56 1 

1.00E-

04 
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M2 -5.50 1 0.02 -6.55 1 0.02 0.29 1 1.00 0.30 1 1.00 0.96 1 0.34 -0.20 1 1.00 

M4 -2.90 1 0.38 -3.33 1 0.50 0.10 1 1.00 0.13 1 1.00 0.62 1 1.00 -0.29 1 0.45 

M5 -8.18 1 
1.49E-

04 
-8.42 1 

1.64E-

04 
-0.11 1 1.00 -0.12 1 1.00 0.64 1 1.00 -0.29 1 0.37 

IS900 4.57 1 0.11 0.24 1 1.00 0.30 1 1.00 0.32 1 1.00 3.17 1 
5.93E-

12 
0.87 1 

6.26E-

11 

Tie 

coat 
-41.22 1 0 -20.43 1 

3.42E-

17 
-20.17 1 0 -17.35 1 0 0.03 1 1.00 -0.65 1 

9.76E-

05 

M4 

M1 -17.09 1 
2.85E-

08 
-16.00 1 

1.06E-

07 
-0.19 1 1.00 -0.06 1 1.00 -0.62 1 1.00 -0.28 1 0.45 

M2 -2.60 1 0.38 -3.22 1 0.62 0.19 1 1.00 0.17 1 1.00 0.34 1 1.00 0.09 1 1.00 

M3 2.90 1 0.38 3.33 1 0.50 -0.10 1 1.00 -0.13 1 1.00 -0.62 1 1.00 0.29 1 0.45 

M5 -5.28 1 0.06 -5.09 1 0.09 -0.21 1 1.00 -0.26 1 1.00 0.02 1 1.00 0.00 1 1.00 

IS900 7.48 1 0.01 3.57 1 0.54 0.20 1 1.00 0.19 1 1.00 2.55 1 
6.42E-

12 
1.15 1 

1.54E-

12 

Tie 

coat 
-38.31 1 0 -17.10 1 

3.36E-

11 
-20.27 1 0 -17.49 1 0 -0.59 1 1.00 -0.36 1 0.33 

M5 

M1 -11.81 1 
2.84E-

04 
-10.91 1 

8.66E-

04 
0.02 1 1.00 0.20 1 1.00 -0.64 1 1.00 -0.28 1 0.39 

M2 2.68 1 0.38 1.87 1 1.00 0.40 1 1.00 0.43 1 1.00 0.32 1 1.00 0.09 1 1.00 

M3 8.18 1 
1.49E-

04 
8.42 1 

1.64E-

04 
0.11 1 1.00 0.12 1 1.00 -0.64 1 1.00 0.29 1 0.37 

M4 5.28 1 0.06 5.09 1 0.09 0.21 1 1.00 0.26 1 1.00 -0.02 1 1.00 0.00 1 1.00 

IS900 12.75 1 
1.92E-

07 
8.66 1 

1.06E-

03 
0.41 1 1.00 0.45 1 1.00 2.53 1 

1.63E-

08 
1.15 1 

2.61E-

15 

Tie 

coat 
-33.04 1 0 -12.01 1 

1.12E-

05 
-20.06 1 0 -17.23 1 0 -0.61 1 1.00 -0.36 1 0.25 
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IS
9
0
0
 

M1 -24.56 1 
2.09E-

15 
-19.57 1 

2.43E-

10 
-0.39 1 1.00 -0.25 1 1.00 -3.17 1 

6.54E-

14 
-1.43 1 0 

M2 -10.08 1 
4.85E-

05 
-6.79 1 0.04 -0.01 1 1.00 -0.02 1 1.00 -2.21 1 

1.84E-

07 
-1.07 1 

6.24E-

10 

M3 -4.57 1 0.11 -0.24 1 1.00 -0.30 1 1.00 -0.32 1 1.00 -3.17 1 
5.93E-

12 
-0.87 1 

6.26E-

11 

M4 -7.48 1 0.01 -3.57 1 0.54 -0.20 1 1.00 -0.19 1 1.00 -2.55 1 
6.42E-

12 
-1.15 1 

1.54E-

12 

M5 -12.75 1 
1.92E-

07 
-8.66 1 

1.06E-

03 
-0.41 1 1.00 -0.45 1 1.00 -2.53 1 

1.63E-

08 
-1.15 1 

2.61E-

15 

Tie 

coat 
-45.79 1 0 -20.67 1 

2.49E-

14 
-20.47 1 0 -17.68 1 0 -3.14 1 

1.52E-

08 
-1.51 1 0 

Tie 

coat 

M1 21.23 1 
1.03E-

13 
1.10 1 1.00 20.08 1 0 17.43 1 0 -0.03 1 1.00 0.09 1 1.00 

M2 35.71 1 0 13.88 1 
1.69E-

06 
20.46 1 0 17.66 1 0 0.93 1 0.85 0.45 1 0.15 

M3 41.22 1 0 20.43 1 
3.42E-

17 
20.17 1 0 17.35 1 0 -0.03 1 1.00 0.65 1 

9.76E-

05 

M4 38.31 1 0 17.10 1 
3.36E-

11 
20.27 1 0 17.49 1 0 0.59 1 1.00 0.36 1 0.33 

M5 33.04 1 0 12.01 1 
1.12E-

05 
20.06 1 0 17.23 1 0 0.61 1 1.00 0.36 1 0.25 

IS900 45.79 1 0 20.67 1 
2.49E-

14 
20.47 1 0 17.68 1 0 3.14 1 

1.52E-

08 
1.51 1 0 

Appendix 12.2: Table of the Pairwise comparison data comparing the surfaces between each other, obtained after GEEs analysis. The % cover for 

each surface was the mean of all the data collection made in Hartlepool Marina. The probability distribution was normal and the link function was identity. The 

Grey cells represent the significant comparisons.  
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% cover of microfouling % cover of weeds 

% cover of ectocarpoid 
algae 

% cover of soft-bodied animals 
% cover of hard-bodied 

animals 

(I
) 

d
a
y
 o

f 
im

m
e

rs
io

n
 

(J
) 

d
a
y
 o

f 

im
m

e
rs

io
n
 

Mean 
Difference 

(I-J) 
df 

p-
values 

Mean 
Difference 

(I-J) 
df p-values 

Mean 
Differen
ce (I-J) 

df p-values 
Mean 

Difference 
(I-J) 

df p-values 

Mean 
Differe
nce (I-

J) 

df p-values 

20 

39 -26.58 1 0 -5.35 1 0 -4.87 1 0 -0.15 1 0.05 -0.01 1 0.06 

47 -29.94 1 0 -5.54 1 0 -5.24 1 0 -0.46 1 2.54E-04 -0.05 1 0.01 

60 -71.30 1 0 -2.27 1 6.99E-09 -1.74 1 1.23E-04 -0.46 1 1.07E-03 -1.94 1 0 

83 -45.74 1 0 -2.67 1 1.18E-09 -1.79 1 2.84E-07 -20.26 1 0 -8.18 1 0 

39 

20 26.58 1 0 5.35 1 0 4.87 1 0 0.15 1 0.05 0.01 1 0.06 

47 -3.36 1 0.02 -0.20 1 0.68 -0.37 1 0.73 -0.31 1 0.04 -0.03 1 0.06 

60 -44.72 1 0 3.07 1 4.73E-14 3.13 1 1.76E-10 -0.31 1 0.07 -1.93 1 0 

83 -19.16 1 0 2.67 1 1.46E-07 3.08 1 4.49E-08 -20.11 1 0 -8.16 1 0 

47 

20 29.94 1 0 5.54 1 0 5.24 1 0 0.46 1 2.54E-04 0.05 1 0.01 

39 3.36 1 0.02 0.20 1 0.68 0.37 1 0.73 0.31 1 0.04 0.03 1 0.06 

60 -41.36 1 0 3.27 1 2.09E-16 3.50 1 2.74E-15 0.00 1 1.00 -1.89 1 0 

83 -15.80 1 0 2.87 1 8.95E-09 3.46 1 1.60E-13 -19.80 1 0 -8.13 1 0 

60 

20 71.30 1 0 2.27 1 6.99E-09 1.74 1 1.23E-04 0.46 1 1.07E-03 1.94 1 0 

39 44.72 1 0 -3.07 1 4.73E-14 -3.13 1 1.76E-10 0.31 1 0.07 1.93 1 0 

47 41.36 1 0 -3.27 1 2.09E-16 -3.50 1 2.74E-15 0.00 1 1.00 1.89 1 0 

83 25.56 1 0 -0.40 1 0.39 -0.05 1 0.93 -19.80 1 0 -6.24 1 0 

83 

20 45.74 1 0 2.67 1 1.18E-09 1.79 1 2.84E-07 20.26 1 0 8.18 1 0 

39 19.16 1 0 -2.67 1 1.46E-07 -3.08 1 4.49E-08 20.11 1 0 8.16 1 0 

47 15.80 1 0 -2.87 1 8.95E-09 -3.46 1 1.60E-13 19.80 1 0 8.13 1 0 

60 -25.56 1 0 0.40 1 0.39 0.05 1 0.93 19.80 1 0 6.24 1 0 

Appendix 12.3: Table of the Pairwise comparison data comparing the days of immersion between each other, obtained after GEEs analysis. The % 

cover for each day of immersion was the mean of all the % covers of all the fouling categories made in Hartlepool Marina. The probability distribution was 
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normal and the link function was identity. Total % cover was not represented in this table, as the surfaces were not significantly different for these fouling 

categories as shown in Appendix 11.7. 

 



292 
 

APPENDIX 13: PERCENTAGE COVERS ON PANELS 1 AND 3 FOR 

CHAPTER 11 

   

   

 

  

Appendix 13.1: Percentage cover observed on 7 different test surfaces attached to Panel 1, 

immersed in Hartlepool Marina during 83 days of immersion. Percentage cover for the 4 fouling 

categories: microfouling (blue), weeds (red), soft-bodied animals (green) and hard-bodied animals 

(grey). For each graph, the axis x represents the length of immersion for each coating. Mean of 7 

replicates. 
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Appendix 13.2: Percentage cover observed on 7 different test surfaces attached to Panel 3, 

immersed in Hartlepool Marina during 83 days of immersion. Percentage cover for the 4 fouling 

categories: microfouling (blue), weeds (red), soft-bodied animals (green) and hard-bodied animals 

(grey). For each graph, the axis x represents the length of immersion for each coating. Mean of 7 

replicates. 
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APPENDIX 14: METHOD PAPER  

Evariste E, Gachon CMM, Callow ME, Callow JA. 2012. Development and 

characteristics of an adhesion bioassay for ectocarpoid algae. Biofouling 28: 15-27. 
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APPENDIX 15: XEROGEL PAPER  

Evariste E, Gatley CM, Detty MR, Callow ME, Callow JA. 2013. The performance of 

aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel coatings against the marine 

alga Ectocarpus crouaniorum: Relative roles of surface energy and charge. 

Biofouling 29(2): 171-184. 
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