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Abstract 

This study investigated the effects of heat stress on the survival, mobility, acclimation ability, 

development, reproduction and feeding behaviour of the brown planthopper Nilaparvata lugens. 

The critical information derived from the heat tolerance studies indicate that some first instar 

nymphs become immobilized by heat stress at around 30°C and among the more heat tolerant 

adult stage, no insects were capable of coordinated movement at 38°C. There was no recovery 

after entry into heat coma, at temperatures around 38°C for nymphs and 42-43°C for adults. At 

41.8° and 42.5oC respectively, approximately 50% of nymphs and adults are killed. In a 

comparison of the acclimation responses between nymphs and adults reared at 23°C and 

acclimated at either 15 or 30°C, the data indicate that increases in cold tolerance were greater 

than heat tolerance, and that acclimation over a generation compared with a single life stage 

increases tolerance across the thermal spectrum. 

The temperatures that kill around 50% of nymphs and adults also exert negative effects on 

development and longevity. The same exposures also lower fecundity and extend egg 

development time through a combination of mating groups, in which the greatest effects occur 

when both males and females have experienced sub-lethal heat stress. Likewise, exposure to their 

ULT50 reduced feeding activity in both life stages of N. lugens. The amount of honeydew 

excreted by females and males in the treated nymph and adult groups were 3-4x and 2-3x lower 

than in the equivalent control groups. Overall, sub-lethal heat stress extended egg development 

time, inhibited nymphal development, lowered fecundity and reduced feeding activity.  
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CHAPTER 1  

General Introduction 

Climate change related to regional warming is a critical issue that has been widely discussed and 

debated over recent decades (Rosenzweig et al., 2008). The global average warming near the 

Earth’s surface is predicted to lie in the range of 1.5o to 4.5oC over the next century (Houghton et 

al., 1990). However, this warming effect is not consistent across the globe, and both increases 

and decreases in temperature will occur in different regions. Furthermore, the wider effects of 

climate variability will be observed in terms of changes in patterns of rainfall, melting of glaciers 

and polar ice, and accompanying rises in sea level (Heong et al., 1995). Thus, climate change has 

the potential to be a major threat to species survival and ecosystem structure and function 

(Hulme, 2005), since different plant and animal species have different climatic requirements for 

growth, survival and reproduction that in turn, limit their geographic distribution, abundance and 

interactions with other species (Gutierrez et al., 2008).  

Walther et al. (2002) show that the distribution of various organisms has already been altered as a 

result of changing environmental conditions. For example, some butterfly species, including non–

native species from adjacent areas, appear able to track the trend of warming quickly and become 

part of the biota in new areas. The broad scale interactions between atmospheric composition, 

climate change and human, plant and animal health are thus of major importance and require 

urgent study to identify undesirable changes and achievable mitigations and solutions. Carrington 

(2011) reports that the estimated number of described species in the world are around 8.7x106 of 

which about 75% are thought to be insects. Thus, there is no doubt that one the most important 
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components of the world’s biodiversity are the Insecta. In addition, insects are not only the 

largest group with the greatest biological diversity, they also carry out several important 

functional roles in the biosphere, such as herbivory, decomposition, predation, parasitism and 

pollination (Herrera et al., 2002; Krimmel, 2012). In general, the species richness of insects in 

tropical areas is greater than in temperate areas (Larsen et al., 2011a). Similarly, diversity and 

ecosystem complexity of insects decrease with latitude, but increases in temperature are likely to 

modify these relationships (Wilf and Labandeira, 1999). The general prediction is that an increase 

in temperature would move distributions northwards and to higher elevations; also, temperature is 

likely to have significant and rapid impacts on distributions and abundance because of the 

ecophysiological features of insects: short life cycles, high mobility, reproductive potential, and 

physiological sensitivity to temperature.  

This study will investigate the impact of climate change, principally higher temperatures, on a 

tropical insect of major agricultural importance. Among the abiotic factors that are changing 

through this phenomenon of ‘climate warming’ (temperature, CO2, UVB, precipitation), 

temperature is likely to have the most direct affect on insects through the processes of 

development, reproduction and survival (Bale et al., 2002). Moreover, whilst many studies on the 

effects of climate warming have focused on polar and temperate species, there has been much 

less attention given to tropical insects, perhaps because it has been assumed that organisms that 

already experience high temperatures may be able to cope with even higher temperatures in the 

future. In fact, the reverse may actually be true, hence the need for ecophysiological studies on 

tropical species. 
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1.1 Climate change 

Climate change is a natural process that has occurred since the beginning of the Earth’s 

evolution, about 4-5 billion years ago (Jansen et al., 2007). The climate system is based around 

interactions between physical, biological and chemical processes in the atmosphere, hydrosphere, 

biosphere and geosphere, and driven by energy from the sun in the form of solar radiation 

(Ingersoll, 1990). A proportion of the solar radiation reaching Earth’s surface is scattered or 

reflected by clouds, aerosols, dust and other particles, while a portion is absorbed and trapped as 

heat in the atmosphere, comprising water vapour, CO2, CH4, N2O and O3. This phenomenon is 

known as the natural greenhouse effect (Figure 1.1).  

There are two important consequences of this natural greenhouse effect. Firstly, the planet’s 

surface temperature warms from around -18oC to about 15oC and without this warming effect 

there could be no life on Earth. Secondly, without this, night-time temperatures would be much 

lower than they are (King, 2005). At present time, however, many climatologists predict a 

significant increase in temperature above that associated with long term natural process, 

attributable to the increasing concentration of atmospheric ‘greenhouse gases’. The 

Intergovernmental Panel on Climate Change (IPCC) reported that natural ecosystems are being 

affected by global warming with regard to a gradual but accelerating increase of atmospheric 

greenhouse gases (Lobell et al., 2008; Knutson et al., 2010). The global increases in CO2 

concentration are due primarily to fossil fuel use and land-use change, while those of CH4 and 

N2O are mainly due to agriculture. Consequently, the mean Earth surface temperature has 

increased by about 0.3-0.6ºC since the late 19th century (Alley et al., 2007).  
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Temperature is not only the abiotic factor that will change as a result of ‘global warming’. There 

will be changes in precipitation, UVB penetration, creating some ‘extreme situations’, such as 

flooding, storminess and drought (Lal et al., 2001; Albritton et al., 2002), and there is evidence 

for some of these effects in different parts of the world over the most recent 10 years. It is clearly 

a very challenging problem for the world and its people to live with, or overcome the 

consequences of global climate change. There are international recommendations to reduce 

greenhouse gas emissions to the 1990 level; but this is difficult to achieve because of the 

reluctance of rapidly developing economies to constrain their industrial production. It is also a 

high priority to carry out research on the impact of climate change on the vulnerability of 

ecosystems because of the threat posed to the survival of many species (King, 2005).  

 

Figure 1.1 Components and interactions of the global climate system (from Ahlonsou et al., 

2001). 
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Many climatologists use models to predict the impacts of climate change, focusing attention on a 

number of key factors and processes in both aquatic and terrestrial ecosystems. It has been 

concluded that, climate change and climate ‘extremes’ will affect all levels of life, from 

individuals, through populations to ecosystems and the eco-region level. Xiangdong et al. (2007) 

report that changes in the global climate have become more interconnected, having both direct 

and indirect effects on ecosystem responses. The severity of impacts of climate change on 

ecosystems will vary both spatially and temporally. 

A distinction can be made between changes in climate as represented by meteorological data and 

the observable environmental consequences. Thus climate data and statistics can identify 

abnormal extremes such as very low or very high daily temperature, or very heavy daily or 

monthly rainfall in relation to ‘normal patterns’. The environmental consequences are more 

complex because they are part of a natural cyclical of events in which accelerated changes in the 

rate may be indicative of a link to recent climate warming (Easterling et al., 2000). For example, 

Member and Barrie (2008) conclude that extreme weather events such as heat waves, droughts, 

floods and hurricanes are now occurring more frequently and with greater intensity, as would be 

predicted through the effects of global warming. For instance, hurricanes at category 4 and 5 have 

increased 75% since 1970. Mountain glaciers are thinning, while snow cover is retreating earlier 

in the spring. In addition, permafrost is melting and sea ice in the Arctic is shrinking faster than 

expected and has thinned by up to 40% in recent decades (King, 2004). Tandong et al. (2004) 

estimate that the high Asia glaciers in China are retreating rapidly under global warming and will 

have disappeared by the end of this century. Scholze et al. (2006) have carried out a risk analysis 

for the impacts of climate change on various world ecosystems using 16 climate models, 
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concluding that forest loss in Eurasia, eastern China, Canada, Central America and Amazonia are 

a high risk, but with forest expansion into the Arctic and savannas. Further, it also reported that 

extreme temperatures -high and low- are likely to increase in this region (Alley et al., 2007). 

At the population level, Miles (1994) reported that climate change can affect populations in one 

of three ways: changes in abundance and distribution, rapid adaptation to changing environmental 

conditions, or extinction, at least locally. Recently, it was predicted that 15 – 37% of current 

species may be extinct by 2050 (Lewis, 2006). There is, however, a counter view that terrestrial 

animals may not be affected by temperature elevation and concomitant changes in vegetation 

based on studies of fossil insects - Coope (1986) suggests that animals were able to respond to 

previous climate fluctuations - thus, individual species adjust to changing conditions of their 

geographic environment rather than by evolutionary change in morphology. Miles (1994), 

however, points out that the expected pattern of change is unique both in terms of the accelerated 

rate of predicted global temperatures and the fragmented nature of natural habitats.  

Global climate change is also a major concern in many areas of the world because of likely 

effects on the socio-economy, farming and politics (Lepetz et al., 2009). Jung et al. (2009) 

reported that South-East Asia is one of the most ‘at risk’ regions of the world, which could 

critically obstruct the region’s sustainable development and poverty alleviation policies if the 

problem was not effectively tackled. Between 1951 and 2000 the mean temperature increased by 

0.1-0.3oC, there was a downward trend in precipitation, whilst sea levels rose by 1 - 3 mm per 

year (UNFCCC, 2007). The area is geographically vulnerable as the tropical climate may suffer 

from a more severe impact of rising sea level with approximately 563 million people living along 

coastlines with fast growing populations. Simultaneously, most Asian livelihoods rely heavily on 
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agriculture and food security, both of which are vulnerable to natural habitat change and an 

increasing intensity and frequency of climate-related disasters such as droughts, heat waves, 

floods, landslides, fires and storms. It is not only the heavy reliance on the agricultural sector, but 

also, the deep dependence on natural resources, especially forestry, which have been over-

exploited in recent years. At present, ago-ecosystems are facing challenges from global warming 

and this issue has become a key concern since global food production resources are already under 

pressure from a rapidly increasing population (Tao et al., 2008).  

Food security is defined by the Food and Agriculture Organization (FAO) as the situation in 

which all people have physical, social, and economic access to sufficient, safe, and nutritious 

food without interruption (Schmidhuber and Tubiello, 2007). The global agricultural sector plays 

an essential role in providing food, thus aiding human survival and societal development, so that 

people can sustain their own livelihood. Crosson and Anderson (1994) reported that the increased 

demand for food linked to population growth will double from the late 1980s to 2030 on a global 

scale. Rice is the dominant crop in Asia and over 90% of the global total rice production is grown 

in the area (Wu, 2010). Granamanickam (2009) indicated that rice is a crop of world-wide 

importance for both export and ‘home consumption’ for many countries which collectively 

represent over 50% of the world’s population. The paddy rice field ecosystem is therefore one of 

the largest managed ecosystems on Earth. However, such agro-ecosystems are sensitive to both 

short-term and long-term changes in climate. Climate change may affect agriculture in three main 

ways (Parry, 1990). Firstly, increased atmospheric CO2 concentrations can have direct effects on 

the growth rates of crop plants and weeds. Secondly, the levels of temperature, precipitation, and 

sunshine may be altered by changes in CO2 concentration. Thirdly, rises in sea level may lead to 
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the loss of farmland by inundation and to increasing salinity of ground water in coastal areas. 

This is a critical problem of great importance, especially in tropical regions, where there are high 

ambient temperatures throughout the year (Matthews et al., 1995). Long term changes in climate 

and weather patterns can have a major influence on agro-ecosystems, especially on the 

occurrence and prevalence of insect pests and diseases (Chakraborty et al., 2000). Under different 

climatic situations insect pests cause a significant loss to world food production. Temperature 

patterns, rainfall or humidity influence insect development and distribution, and many studies 

have shown that the rate of insect development increases with temperature up to an optimum, 

though this optimum varies between species (Khan et al., 2009). The eco-physiology of tropical 

insects living in agricultural environments has however, not been well studied, and this is 

particularly true in terms of the impact of a changing climate. 

In summary, to be sufficiently prepared for the effects of global warming, it is important to 

predict the impact of global warming on both natural and agricultural ecosystems. There is 

increasing scientific evidence to show that climate change influences both flora and fauna of all 

types of ecosystems from the tropics to the poles, and from the species to the community level 

(Walther et al., 2002). Recent climate warming has also modified species distributions through 

temperature-related range shifts (Parmesan et al., 1999; Thomas et al., 2001). Thus, management 

policies are urgently required to maintain the stability and health of ecosystems, and more 

specifically with regard to the focus of this project, to understand the likely effects of higher 

temperatures on insect herbivores in tropical climates. 
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1.2 Impacts of climate change on insects  

Insects will respond to climate change in various ways, but two responses have already been 

detected over recent decades. Firstly, changes in phenology i.e. the timing of annually recurring 

events (emergence from overwintering, timing of oviposition), and secondly, changes in 

geographical distribution, such as northerly or altitudinal range expansion (Parmesan, 2007). 

There have been many studies on phenological events in insects. Different species inhabit a 

diverse range of locations with varying temperatures, both predominantly high (tropics) or low 

(polar areas), and this has a major effect on phenology. 

Phenological events such as the timing of bud burst, egg hatch and migrations are sensitive to 

climate and have been used as bioindicators of responses to climate warming (Bale et al., 2002; 

Boudon-Padieu and Maixner, 2007). In addition, Hodkinson (1997) reported that the availability, 

phenology, and quality of host plants will be influenced by a changing climate. The effects of 

climate change will therefore impact on insect herbivores directly (development, reproduction 

and survival), but also indirectly through changes in food quality with the potential to alter both 

the nature and strength of many plant-herbivore interactions. Indeed, some effects of global 

warming on insect populations are already apparent. According to one survey, about 940 species 

from a total of 1,600 are showing some effects of climate change (Musolin, 2007). Karban and 

Strauss (2004) report that the range of the meadow spittlebug, Philaenus spumarius, has moved 

progressively northwards along the California coast since 1988, with temperature and humidity 

the chief factors affecting survival and reproduction. 



10 
 

 Insect distributions will also be affected by climate change; their adaptability and genetic 

variability will in some cases enable them to exploit new environments (Goudriaan and Zadoks, 

1995). It is important to be able to predict potential distributions, especially of pest species (both 

non-indigenous and indigenous), to determine the likely impacts of global climate change on 

natural and agro-ecosystems (Baker et al., 2000). In general, insect diversity and ecosystem 

complexity decrease with latitude, but increases in temperature may modify these relationships. 

The key prediction is that an increase in temperature would move distributions both northwards 

in latitude and upwards in elevation (Parmesan, 1996).  

Temperature can have a significant and rapid impact on distributions and abundance because the 

main eco-physiological trait of insects (e.g. life cycle duration, mobility, reproduction), are all 

sensitive to the thermal environment. Insect distributions can be altered by climate change in 

several ways, both direct and indirect. Direct effects could involve impacts on insect development 

and survival, changes in host defence physiologies, while indirect effects would include changes 

in natural enemy and competitor abundance (Ayres and Lombardero, 2000). For example, 

Gutierrez et al. (2008) studied the effect of climate change on poikilotherm tritrophic interactions 

and found that the cold intolerant pink bollworm (a pest of cotton) expanded its range and 

migrated to formerly inhospitable areas in the San Joaquin Valley, California where heavy frosts 

had previously prevented survival. Research on the effects of temperature and climate change on 

insects has however, focused primarily on changes in summer temperatures of 1-2oC on 

processes such development, reproduction, abundance and distributions (Strathdee and Bale, 

1993), and mainly in polar and temperate climates (Parmesan et al., 1999; Bale et al., 2000; 

2001). There has been less focus on the impacts of higher winter temperatures on survival, and 
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even less attention on the possible effects of high temperatures on insects, especially those living 

in tropical areas.  

Climate change is a global phenomenon, but the extent of warming will vary between different 

climatic zones. For example, it is envisaged that increases in temperature will be greater in polar 

areas and the temperate zone than in the tropics – this may explain why many field studies have 

been carried out in these areas. Also, there may have been an assumption in the research 

community that because the extent of climate change in the tropics may be less than elsewhere, 

and tropical insects can tolerate high temperatures, they would not be as much affected by 

increases in temperature as other species. There is now increasing recognition that some tropical 

insects may be living close to their upper thermal limits, and even relatively small increases in 

temperature may become lethal or sub-lethal for such species (Talekar and Shelton, 1993; Krebs 

and Loeschcke, 1996; Krebs and Feder, 1998; Klok et al., 2004; Nice and Fordyce, 2006; 

Lapointe et al., 2007).  

 

1.3 Thermal biology and insect physiology 

Environmental factors such as temperature, humidity and oxygen availability have considerable 

influence on ectothermic animals (Huang and Tu, 2008). Nespolo et al. (2003) indicate that 

among these abiotic factors, temperature has the most profound effect because physiological 

functions and behavioural performance are influenced by the animal’s body temperature. The 

thermal biology of insects can be described by two main hypotheses. 
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 Firstly, temperature is one of the most important factors affecting biological processes in insects. 

Secondly, the direction and rate of biochemical processes that underlie insect performance can be 

described by the laws of thermodynamics (Angilletta Jr. et al., 2006). All levels of biological 

organization involve adaptive responses to thermal heterogeneity, from the expression of genes to 

the behaviour of organisms but these responses happen on different scales.  

Insects are the only invertebrates with wings and have lived on the earth for 350 million years; 

they have evolved their life histories in response to changing environmental conditions 

(Triplehorn and Johnson, 2005). Insects have a limited ability to regulate their body temperature; 

for this reason, selection of suitable thermal microhabitats is an important factor in the 

maintenance of optimal body temperature. At high temperature, insects are highly vulnerable to 

injury because body temperature in such small poikilotherms can increase rapidly to lethal levels 

from solar radiation or artificial heat. Maintenance of appropriate water balance is also a 

challenge at high temperature (Turnock, 1999). 

1.3.1 Background 

Insects are poikilotherms or cold-blood animals; this means that their body temperature (Tb) is 

essentially the same as the environmental temperature and that key processes and behaviours 

such as development, reproduction and activity are all dependent on temperature (Speight et al., 

1999). Different species can live in markedly different environments, from the tropics to the 

poles, but for many species, information on their favourable range and optimal temperatures for 

various processes is lacking. 
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The generalised relationship between body temperature and performance is shown in Figure 1.2. 

The graph is representative of most quantitative traits such as egg production, developmental rate 

or other metabolic processes that have critical thermal limits. These limits are at the low and high 

extremes and are termed the critical thermal minimum (CTmin) and the critical thermal maximum 

(CTmax), respectively, whilst, the range within which the insect can live and express its 

physiological or behavioural performance is called the tolerance zone (Huey and Bennett, 1990). 

Physiological performance increases progressively with body temperature up to a maximal value 

at the optimum body temperature (To), and then decreases rapidly above this temperature 

(Turnock, 1999). The ability of insects to cope with thermal stress is achieved in one of two main 

ways - thermoregulation of body temperature through behavioural adaptation and physiological 

and biochemical mechanism - and changes in thermal sensitivity, including both short-term 

processes, such as acclimatization and long-term processes, such as evolutionary adaptation 

(Huey and Stevenson, 1979).  

 

Figure 1.2 Hypothetical performance curve of an insect as a function of body temperature, 

showing the 80% performance breadth (B80), CTmin and CTmax (from Chown and Nicolson 2004).  
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1.3.2 Thermoregulation in insects  

Angilletta Jr. et al. (2006) define the process of thermoregulation as the maintenance of the mean 

or variance of body temperature (Tb) maintenance in relation to the mean or variance of the 

environmental temperature (Te) by behavioural, physiological or morphological strategies. Thus, 

regulation and homeostasis are the principle paradigms of comparative and ecological physiology 

(Hertz et al., 1993). An insect’s Tb rises and falls with the Te but this response can be altered 

when the range of Te is greater than the range within which the organism is generally active. 

However, insects need mechanisms by which to survive under conditions of thermal stress 

because of their limited ability to regulate Tb (Bale and Hayward, 2010) and this is achieved by 

processes collectively known as capacity adaptation (Chown and Nicolson, 2004). Potential 

injury is avoided or minimized by a combination of behavioural, physiological and biochemical 

responses that enable some insects to sustain a stable temperature while exposed to a broader 

range of Te (Triplehorn and Johnson, 2005). 

Insects use behavioural adaptation as a first response to high temperature stress such as habitat 

selection, basking intensity, restriction of activity periods and selective exploitation of 

environmental thermal fluxes (Yang et al., 2008). Many insects effectively regulate Tb by using 

behavioural adjustment that maximize temperature-dependent growth rates which therefore, often 

affect their fitness (Nice and Fordyce, 2006). For example, a fly can avoid a ‘hot area’ under 

extreme sunshine by flying to a shaded location. Likewise, the simple movement of a caterpillar 

from the upper to lower surface of a leaf can decrease the body temperature by several degrees 

celsius in just a few minutes (Turnock, 1999). Conversely, in winter, honey bees survive in their 

hive with some activity while most other insects go into a more dormant state. Triplehorn and 



15 
 

Johnson (2005) show that the bees form a cluster in the hive and activity of their thoracic muscles 

raises the hive temperature to a much higher level (34o to 36oC) than the Te (14oC). Forsman 

(2000) also reports that sex, reproductive condition, feeding status, disease, and time of season 

are all factors that may cause individuals to select different Tb.  

The second approach to the prevention of injury caused by thermal stress involves physiological 

and biochemical mechanisms. To raise their Tb, insects can bask in sunshine or use an active 

process such as shivering. For example, the Tb of butterflies and grasshoppers in flight may be 5o 

or 10oC above the Te. Also, moths and bumble bees which have hair and scales as insulation can 

have flight muscle temperatures 20o or 30oC above the Te because of increasing metabolic rate 

during flight. Heath et al. (1971) describe the shivering mechanism in which the muscles that are 

normally antagonists in flight contract simultaneously. Each antagonist provides the loading of 

the isometric contraction of its opponent. When the thorax warms, each muscle is fired more 

frequently and each contract is more vigorous. Consequently, the Tb rises linearly and the insect’s 

metabolism also increases as indicated by O2 consumption. In contrast, some insects use 

evaporative cooling or sweating to lower their Tb. The cooling of a small insect is moderately fast 

since its Tb in flight is very close to Te (Triplehorn and Johnson, 2005). For biochemical 

adaptation or at the cellular level, insects improve their chances of survival by the synthesis of 

stress proteins and other key metabolites (Turnock, 1999).  

Figure 1.3 summarises the mechanisms used by insects to regulate their body temperature or 

control the exchange of heat with their environment. These mechanisms are largely dependent on 

the absorption heat from the environment, hence environmental conditions determine whether 

heat is gained or lost. Briefly, solar radiation, either direct or via the heating of rocks or soil, is 
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the most important source of heat, whilst heat loss is mainly through the processes of conduction, 

convection or radiation from its body (Wharton, 2002). Conduction is the direct transfer of heat 

when objects of different temperatures come into contact, whilst heat is lost by convection when 

the air temperature is below the insect Tb.  Insects exchange radiation with each other and with 

the sky, whereby warmer objects lose heat to cooler objects (Purves et al., 2001). 

 

Figure 1.3 Mechanisms of heat gain and loss in insects (adapted from Wharton, 2002).  
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In general, these processes can be described using the principles of thermal equilibrium or the 

zeroth law of thermodynamics. This law is important as an aid to understanding the concept of 

body temperature regulation in insects. Bakken (1992) provides a summary that insects can 

adjust their Tb to approach the same Te by heat transfer and the zeroth law of thermodynamics is 

used to explain this thermal equilibrium process.  

The zeroth law states that if there are two thermodynamic systems, X and Y, which are in thermal 

equilibrium with another body Z, then the bodies X and Y will also be in thermal equilibrium 

with each other. The zeroth law can explain the principles of thermoregulation in insects as 

shown in Figure 1.4. When an insect (body Y) is placed in a container (body X), the temperature 

of two systems (bodies Y and X) can be compared by a thermometer (analogous to body Z). The 

thermometer is allowed to come into thermal equilibrium with body X at the beginning of the 

measurements. After that the thermometer is allowed to come into thermal equilibrium with body 

Y by placing it in contact with X and Y in turn. The thermometer will show the comparative 

temperatures of the two bodies X and Y. The energy exchange between Y and Z or between X 

and Z is insignificant because the thermometer or body Z is small compared with Y and X. 

Further, during temperature measurement there is no change in the individual energies of body X 

and Y. Thus, two objects, bodies Y and X, when in thermal equilibrium, will have the same 

temperature. 
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Figure 1.4 The zeroth law of thermodynamics; two objects (Y and X) that are independently in 

thermal equilibrium with a third object (Z), are also in themal equilibrium with each other. 

 

In conclusion, insects are viable under a wide range of Tb, and their physiological processes and 

behavioural activities are usually maximized at moderate to relatively high Tb (Yang et al., 2008). 

However, the extent of thermoregulation varies among species and in different environments. 

Some species have a broad range of Tb (termed thermoconformers), while others are more precise 

‘thermoregulators’ that are active under a narrower range of Tb (Row and Blouin-Demers, 2006). 

Bowler and Terblanche (2008) report however, that there is still a lack of knowledge on the 

thermal biology in insects in areas such as temperature tolerance and thermoregulation strategies, 

processes that are increasingly important in an era of climate change. 
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1.3.3 Temperature tolerance 

There are several ways to measure the physiological responses of insects to temperature extremes 

(Bowler, 2005). The most commonly reported variation in thermal tolerance is that associated 

with different life stages (Krebs and Loeschcke, 1996). This study will focus on three indices of 

high temperature tolerance - the critical thermal maximum (CTmax), heat coma temperature 

(HCT) and the upper lethal temperatures (ULT) and three indices of low temperature tolerance - 

the critical thermal minimum (CTmin), chill coma temperature (CCT) and the lower lethal 

temperatures (LLT) in two life cycle stages – a juvenile stage (nymph or larva depending on the 

species) and the adult. In general, insect responses are highest in the intermediate Tb range and 

they reduce responses at higher or lower body temperature. To characterize thermal sensitivity in 

insects, the lethal temperature is one of three descriptive measurements. The descriptive 

measurements are composed of the optimal temperature range, the thermal performance breadth, 

and the tolerance range which include the ULT and LLT (Huey and Stevenson, 1979).  

1.3.3.1 Critical temperature (CT) and coma temperature (CT) 

Changes in temperature have profound effects on biological processes (Wharton, 2002). In 

general, insect responses are highest in the intermediate Tb range and are reduced at higher or 

lower body temperature, as summarised in Figure 1.5. As temperature increases or decreases 

from the optimum and becomes more extreme at the both end of the scale, the continuation of 

such change results first in the disruption of movement, as locomotor activity becomes 

disorganised and the insect loses the ability to move in a coordinated way; in ecological terms, 
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this would prevent it from escaping from the conditions that will promptly lead to its death 

(Hanna and Cobb, 2007).  

The low and high temperatures at which these responses occur are termed the critical thermal 

minimum (CTmin) and the critical thermal maximum (CTmax). Then, close to the limit of the 

tolerable range of temperatures, the insects will enter a cold or heat coma state at which the last 

‘twitch’ of an appendage (leg or antenna) occurs (Hazell et al., 2010a). These temperatures are 

described as the chill coma temperature (CCT) and heat coma temperature (HCT). Once the 

temperature limits are exceeded, the insects will die (Wharton, 2002; Chown and Nicolson, 

2004). The distinction between the respective critical thermal temperatures and the coma 

temperatures can usually only be distinguished in systems that video record the movements of the 

insects.  

1.3.3.2 Lethal temperature (LLT and ULT) 

At temperatures below and above the the optimum, metabolism slows and eventually ceases due 

to the damaging and lethal effects of low and high temperature. Thus all species will have a lower 

(LLT) and upper (ULT) lethal temperature. The ULT will normally be higher than the CTmax and 

heat coma temperature. However, the difference between the heat coma and ULT is sometimes 

small e.g. around or less than 1oC, and insects experiencing heat coma may be unable to recover, 

so the heat coma is effectively the ULT (Hazell et al., 2010a). There are a range of methods used 

to measure the ULT including ‘direct plunge’ where insects are transferred directly to a 

potentially high temperature, and ‘dynamic methods’ where the temperature is increased 

gradually and mortality is assessed at a sequence of increasingly higher temperatures. The crucial 
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factor is that the ULT is expressed as a temperature in which mortality occurs after a very brief 

exposure (seconds or a few minutes), though death may occur post-exposure, hence estimates of 

mortality are usually made some days after experiencing the thermal stress (Hazell et al., 2008). 

Briefly, for determining the ULT, insects are heated at a set rate (e.g. 0.5oC min-1) from the 

rearing temperature (e.g. 20oC) to a series of pre-determined temperatures. When the temperature 

in the alcohol bath increases up to the target temperature, all samples are held at that temperature 

for a short period of time sufficient to ensure that all individuals in the sample experience the set 

temperature, after which the sample is returned to the rearing temperature at the same rate as used 

for warming (Huey et al., 1992). Most studies expose insects directly to the assay temperature 

with equilibration taking place in less than a minute (Chown and Nicolson, 2004), but the time 

required for equilibration is likely to vary depending on the size of the specimen (and therefore 

the sample) and the rate at which the insects are warmed, and these factors need to be considered 

in the experimental design.  

To conclude this section, there is no doubt that the biodiversity of insects in tropical areas is 

greater than other regions, but there have been relatively few studies on the temperature tolerance 

of such species, hence there is little information on which to develop an understanding of how 

they will respond to, or be affected by, climate warming. Bale et al. (2002) indicate that many 

studies on the effects of climate change impacts on insects have focused on a limited range of 

taxa e.g. butterflies, with few reports  on species that are important as agricultural pests (Boudon-

Padieu and Maixner, 2007). For these reasons, this project focuses on a tropical insect, the brown 

planthopper Nilaparvata lugen (Stål), which is a pest of one of the world’s major crops, rice. 
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Figure 1.5 Responses to temperature in a hypothetical organism (adapted from Wharton, 2002; 

Chown and Nicolson, 2004). 

   

1.4 Ecology and biology of the brown planthopper, Nilaparvata lugens 

Nilaparvata lugens (Stål) (Homiptera, Delphacidae) is commonly known as the brown 

planthopper and is one of the most devastating pests of rice throughout Asia and causes serious 

yield losses in many countries (Cuong et al., 1997; Senthil-Nathan et al., 2009). Before the green 

revolution in Asia, N. lugens was regarded as only a minor pest; however, since the 1940s there 

have been massive outbreaks caused by a combination of insecticide resistance and an expansion 

in rice cultivation (Nagata et al., 2002). The control of N. lugens is based around the use of 

chemical insecticides and rice cultivars with resistance to brown planthopper. These methods are 

however, not effective as the pest has developed new biotypes (Suzuki et al., 2006). The 
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International Rice Research Institute (IRRI) (1976) categorize N. lugens into to three biotypes 

based on their ability to feed on rice with different resistance genes. Biotype 1 are populations of 

N. lugens that cannot infest any rice variety with the resistance genes Bph 1 and Bph 2. Strains of 

the pest that can feed on rice varieties with the resistance genes Bph 1 and Bph 2 are defined as 

biotype 2 and biotype 3 respectively. There is also an evidence that N. lugens can shift from a 

simple to more complicated biotype. For example, although commercial rice varieties have 

carried the resistance genes since the 1970s, biotypes of N. lugens have evolved that are able to 

feed on these ‘resistant’ varieties of rice (Tanaka, 1999). 

1.4.1 Development and life cycle 

The mechanism of chromosomal sex determination in N. lugens is of the XO type (Saitoh et al., 

1970). The female has 16 chromosomes and carries identical sex chromosomes (XX). Thus, the 

female produces only one type of ovum. The male has 15 chromosomes since it has only one sex 

chromosome and is represented as XO. If the X-carrying ovum is fertilised by an X-carrying 

sperm, the resulting zygote XX will develop into a female. On the other hand, if there is no sex 

chromosome carried on the sperm that combines with an X-carrying ovum, the zygote XO will 

develop into a male offspring. Ichikawa and Ishii (1974) reported that males cannot copulate 

within the first 24 h after emergence, but then copulation ability increases over the next 4-5 days 

after emergence and then decreases. Adult males on rice plants are attracted by the abdominal 

vibration of females over a distance of up to 80 cm. Takeda (1974) reported that a single male 

could copulate with up to nine females over a 24 h period, whilst a female could mate two or 

more times during her life time. After mating, females lay eggs by penetrating plant tissue with 
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the ovipositor where eggs are laid in groups (Hattori and Sogawa, 2002), mainly in leaf sheaths, 

but also in the leaf blade. 

The life cycle of N. lugens is an example of incomplete metamorphosis or hemimetabolism i.e. 

egg, nymphs and adult. The nymphal stages take between 7 to 15 days to complete development 

under tropical climatic conditions (Mochida and Okada, 1979). Nymphs have a similar 

appearance to adults but are smaller, have different coloration, and no functional wings. Wing 

buds appear during development, and are clearly visible in the fifth instar. Nymphs and adults 

have a rostrum for ‘sucking’ sap, and all stages can ‘hop’ if disturbed. The nymphal instars can 

be individually discriminated by the appearance of the mesonotum and metanotum of the thorax, 

and by colour and body size.  

Adults of N. lugens have two wing-forms with long (macropterous) or short (brachypterous)  

wings (Ge et al., 2011). The macropterous forms are potential migrants and colonize new areas, 

sometimes long distances from the site of origin (Yu et al., 2001). After settling on the rice 

plants, the insects lay eggs; the next generation of adults are mostly brachypterous. The short 

winged adult morph lays more eggs than macropterous adults (Dyck et al., 1979). As the crop 

matures, there is a switch to macropterous adults as the  dominant adult morph, which disperse  to 

other areas. 

1.4.2 Feeding behaviour 

Nilaparvata lugens is a phloem-feeding insect on rice plants. They have elongate mouthparts for 

piercing and sucking fluids in the phloem and xylem tissue (Dupo and Barrion, 2009; Seo et al., 

2009a). When N. lugens feeds on rice, it pierces the phloem and ‘sucks out’ the nutritive liquids 
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that form its diet. This feeding activity results in the deposition of salivary sheaths at the feeding 

site (Zhang et al., 2004; Senthil-Nathan et al., 2009). Tjallingii (1978) developed an electrical 

penetration graph (EPG) technique to monitor and record homopteran feeding behaviour 

quantitatively. This method has been used to investigate the correlation between EPG waveforms 

and feeding behaviour in N. lugens by recording EPG and simultaneously observing honeydew 

excretion. El and Goodman (1993) reported that there are three distinct patterns of feeding 

behaviour of N. lugens in rice as represented by different EPG waveforms. Two of these patterns 

relate to feeding activity in the phloem and xylem tissue, whilst the third represents a complex of 

feeding activities such as salivation and stylet penetration into non-vascular tissues of rice plants. 

Seo et al. (2009b) studied the relationship between the feeding behaviour of N. lugens on 

different rice varieties and survivorship. It was found that N. lugens could survive well on 

resistant cultivars carrying the bph 1 and bph 2 genes, even though they could not easily ingest 

phloem sap from such varieties. This observation indicated that limited phloem feeding ability on 

resistant rice varieties is not by itself an explanation for the observed mortality in N. lugens when 

feeding on certain cultivars, and that other factors, such as the ecological and physiological costs 

of overcoming resistance mechanisms in the plant may have a negative impact on survival. 

1.4.3 Migratory behaviour and distribution 

Nilaparvata lugens is a significant pest of rice that is widely distributed in Asia across tropical, 

subtropical and temperate regions. The main ecological features of N. lugens that contribute to 

this pest status are the high migratory ability and high fecundity (Kisimoto, 1979). The 

distribution of N. lugens in Asia where occasional outbreaks cause serious damage to cultivated 
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rice is shown in Figure 1.6. The dotted line in Figure 1.6 shows the area from which resistant 

germplasm originates (India and Sri Lanka). Khush (1979) reported that in East Asia, South-east 

Asia, and the Pacific Islands there was only biotype 1 of N. lugens before the resistant varieties of 

rice were introduced after which different biotypes evolved that were able to feed on rice 

varieties with Bph 1 and Bph2 resistant genes. The two types of winged adults of N. lugens 

appear to have different roles in the colonisation of new locations (Kisimoto, 1979). Long 

distance migrations are carried out by the long-winged form, while the short-winged form builds 

up the population in newly colonised areas. In addition, Kuno (1979) indicates that the initial 

distribution in newly colonised fields is random, but then becomes more patchy or aggregated 

over time as the short-winged adults have limited ability to travel.  

 

Figure 1.6 Distribution of N. lugens in Asia (Khush, 1979).  
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Nilaparvata lugens is known to make wind-assisted migratory flights each year to colonize the 

summer rice growing areas of China, Japan and South Korea (Rosenberg and Magor, 1983). It 

has been assumed that during the rice growing season in Korea, N. lugens migrate annually, 

mainly around mid-June to late July from the south-east part of China, carried by the south-

westerly airflow and on the route of the depressions in the rainy season (Seo et al., 2009b). In the 

tropics, the migration of long–winged adults also occurs from mature crops to younger plants 

during harvest. An important factor that limits the distribution of N. lugens is a lack of 

overwintering ability (Dyck and Thomas, 1979). Thus, although N. lugens is widely distributed in 

Asia, its ecology differs between tropical and temperate areas. The main difference is that 

whereas populations in tropical areas can remain in paddy fields throughout the year, in 

temperate regions, there is an annual replacement by immigrants from southern regions because 

of the inability to survive through winter (Kuno, 1979). 

Win et al. (2011) investigated the population fluctuations of N. lugens in Myanmar (a tropical 

sub-region) between the rainy and summer season to determine the influence of ecological factors 

such as relative humidity, temperature and rainfall on population abundance. The study of Win et 

al. (2011) found that N. lugens populations were highest between 64 and 74 days after 

transplanting (by mid September) associated with heavy rainfall, high temperature and high 

humidity, and were lowest in mid October, suggesting that low rainfall and low humidity were at 

least partially responsible for the decrease in population size. There may however, not be a direct 

effect between rainfall and population fluctuations of N. lugens, but via changes to the 

physiology and water relations of rice plants. Fluctuations in planthopper numbers were 

correlated with rainfall patterns during the first cropping season, but more with temperature and 
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relative humidity in the second cropping season. Thus temperature, rainfall and relative humidity 

can all influence planthopper populations, but these effects may differ during the two rice 

growing seasons.  

1.4.4 Outbreaks and economic impacts 

Nilaparvata lugens is an economically important pest that feeds directly on rice plants and also 

acts as a vector of viruses of rice, resulting in significant damage and yield losses (Dupo and 

Barrion, 2009). There were numerous N. lugens outbreaks in South-east Asia in the 1980s with 

densities as high as 1,000–2,000 per ‘hill’ (Kiritani, 1979). In rice cultivation a hill comprises 3-4 

rice seedlings planted very closely together. It is believed that excessive use of urea as a 

nitrogenous fertilizer is one of the main causes of outbreaks as it increases the fecundity of N. 

lugens. The injuries caused by N. lugens to rice plants include a decrease in leaf area, 

photosynthetic rate, plant height, leaf and stem nitrogen concentration, chlorophyll content and 

dry weight. Heavy injury usually results in wilting, stunting, and finally death of the plant. This 

type of damage is called ‘hopper burn’. Nilaparvata lugens may also transmit the grassy stunt 

disease which can further reduce yield. The series of slits produced by females when depositing 

their eggs may also contribute to plant dieback (Zhang et al., 2004). Dyck and Thomas (1979) 

reported that annual yield losses caused by N. lugens and the grassy stunt disease in most of the 

countries where N. lugens are found has a value of more than 300 million US$. According to 

available data, the most extensive losses from N. lugens have occurred in Japan, Indonesia, 

Taiwan, Philippines, and India with estimates of annual yield losses amounting to 100, 100 , 50 , 

26 and 20 million US$ respectively. It is evident that a greater knowledge of the ecophysiology 

http://dictionary.sensagent.com/Southeast_Asia/en-en/
http://dictionary.sensagent.com/Urea/en-en/
http://dictionary.sensagent.com/Nitrogen/en-en/
http://dictionary.sensagent.com/Fertilizer/en-en/
http://dictionary.sensagent.com/Fecundity/en-en/
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of N. lugens in an era of climate change will provide valuable information on future population 

trends of this serious pest of rice. 

 

1.5 Aims 

Against this background, the main aims of this project are to investigate the effects of higher 

temperatures as might be experienced through climate warming on the survival, mobility, feeding 

behaviour and acclimation ability of the brown planthopper Nilaparvata lugens. 
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CHAPTER 2  

Temperature Calibration of System Used to Measure                                  

Insect Activity Thresholds 

2.1 Abstract 

Insect activity thresholds such as the CTmin and max are important in understanding 

ecophysiological responses, including interactions between species, such as predator-prey 

relationships. The video-capture recording of insect behaviour within a cooled or heated 

aluminium block is a commonly used method for such investigations, but as with all similar 

techniques, has the problem that it is not possible to measure directly the temperature of the 

observed specimen without influencing mobility. In the aluminium block system, cooled or 

heated fluid circulates from a programmable alcohol bath within channels in the block. 

Calibration experiments were carried out to compare the reference temperature within the 

aluminium block with the surface and air temperatures in ‘arenas’ of different dimensions milled 

within the blocks, comprising the areas over which the insects moved during the video 

recordings. Arenas of three sizes were created with diameters and depth of 1.6 and 0.4, 2.5 and 

0.8, and 4 and 0.8 cm respectively, in correspondingly larger blocks, to accommodate species of 

different sizes. With each block the surface and air (ambient) temperatures within the ‘observed 

arena’ differed from the reference temperature measured within the body of the block, 

attributable to a gain (low set temperature) or loss (high set temperature) of heat to and from the 

arena and the surrounding environment. When the small, medium and large arenas were cooled 

or heated to 10, 15, 20, 30, 40, and 50oC, the difference in arena surface and air temperatures 
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from the reference temperature was 2.4-3.5, 1.3-2.2, 0.6-1.1, 1.5-2.0, 2.7-6.6 and 4.4-7.7oC 

respectively. The lowest level of variation was observed when the set reference temperature was 

similar to room temperature (20ºC). The data were used to generate calibration equations that 

were then used in experiments to determine activity thresholds such as the heat coma 

temperature. The importance of carrying out calibration experiments in studies of insect thermal 

biology is discussed.  

 

2.2 Introduction 

The study of insect ecophysiology aids the understanding of the role of the environment in 

shaping the diversity of physiological, morphological and behavioural features of insects (Feder, 

1987; Bennett and Huey, 1990; Crill et al., 1996; Parmesan et al., 2000; Robertson, 2004; 

Kingsolver et al., 2007; O’Neill and Rolston, 2007; Klose et al., 2008; Overgaard et al., 2008; 

Huey et al., 2009; Hazell et al., 2010a). Many of the processes that occur in living organisms 

depend on, or are strongly influenced by temperature, hence, the accurate determination of 

temperature is an important physiological measurement (Bursell, 1964; Bakken, 1992; Addo-

Bediako et al., 2000; Berrigan, 2000; Bale et al., 2002; Both et al., 2005; Angilletta Jr. et al., 

2010).  

Experiments on the thermal biology of insects take two main forms: those in which the insects 

are constrained or immobile such that the temperature of an individual or sample can be 

measured by direct body contact (e.g. lethal temperatures), and those in which the specimens 

need to be able to move freely for observations to be made (e.g. determination of activity 
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thresholds). The latter type of experiment presents a number of challenges and is also subject to 

error. For example, the environment in which an insect is exposed must be cooled or heated e.g. 

via fluid from a circulating alcohol bath, but the temperature of the source may differ from that 

achieved in the ‘exposure environment’. Also, insects may take a period of time to reach the 

required exposure temperature. This chapter describes a series of preliminary experiments to 

determine the ‘exposure parameters’ to be used in the studies with N. lugens.   

The system used to assess the activity thresholds of N. lugens involves the circulation of a cooled 

or heated fluid within an aluminium block with the video-recording of insect activity within an 

‘arena’ milled out the block. A temperature sensor placed within the block provides a 

simultaneous temperature reading that can be ‘cross-related’ to the observed behaviour of the 

insects (Cokendolpher and Phillips, 1990; Huey et al., 1992; Bauwens et al., 1995; Crill et al., 

1996; Klok et al., 2004; Renault et al., 2005; Hazell et al., 2008; Hughes et al., 2010; Romero et 

al., 2010). In such systems it is vital that all temperature sensors (thermometers, thermocouples) 

are calibrated against a reference standard before use in experiments. This is important because 

the subsequent calibration of temperature within the exposure environment may require 

measurements from multiple sensors to assess the extent of heat transfer between the aluminium 

block and different locations within observed environment (Persoons et al., 2011). 

This chapter describes the methods used to characterize the temperatures experienced by N. 

lugens during experiments designed to measure thermal activity thresholds. 
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2.3 Material and methods 

The experimental system was based around the design described  by Hazell et al. (2008), in 

which an ‘arena’ is milled out of an aluminium block with the temperature ‘controlled’ by fluid 

circulating through the block from a programmable alcohol bath (Haake Phoenix 11 P2; Thermo 

Electron Corp., Germany) as shown in Figure 2.1 (Hazell et al., 2008). 

 

Figure 2.1 Aluminium block system for measuring insect activity thresholds; A, route for 

thermocouple to arena; B, observation arena; C, circulation channels for fluid from the alcohol 

bath (from Hazell et al., 2008).  

Experiments were carried out in arenas of three sizes that differed in diameter, depth and surface 

area as follows: small arena (1.6 cm, 0.4 cm, 4.02 cm2), medium arena (2.5 cm, 0.8 cm, 11.19 

cm2) and a large arena (4.0 cm, 0.8 cm, 22.62 cm2). In theory, when a cooled or heated fluid is 

pumped from an alcohol bath around the aluminium block, the temperature of the block should 
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be equivalent to the temperature of the circulating fluid, although it may require a period of time 

for this equilibrium to be reached. Preliminary studies, however, indicated that whilst the 

temperature within the block was the same as cooled or heated fluid (and as set on the alcohol 

bath), the temperature measured in the middle of the arena was different to the block temperature. 

To investigate the pattern of temperature distribution across the experimental arenas, 

temperatures were recorded simultaneously at five locations as illustrated in Figure 2.2. 

 

Figure 2.2 Dimensions of arenas used to measure activity thresholds; 1-5 in Figure 2.2C indicate 

the positions of the five thermocouples in each arena.   

For all experiments, the temperatures within the aluminium block and in the arena were measured 

using type-K thermocouples (Tecpel CL – 326 DTM - 315) calibrated by the supplier against a 

digital thermometer with an accuracy of ±0.1oC (Heatmiser UK Ltd; Calibration report number: 

HM853-08/07/10DW). The calibration experiments were carried out in a controlled environment 

room at 23oC. To minimize the heat loss or gain to the room environment, the aluminium blocks 

were placed on a 25 mm deep polystyrene foam plate and enclosed within an insulating wrapping 
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(Thermal Wrap, YBS Insulation). The top of the arena was covered by a thin sheet of Perspex 

within which five holes were drilled to allow access of the thermocouples into the arena (see 

Figure 2.2C).  

In the first set of calibration experiments the five thermocouples were in contact with the base of 

the arena, referred to as the ‘surface temperature’; a second set of independent measurements 

were made in which the thermocouples were raised by 0.2 mm (for the small arena) and 0.4 mm 

(for the medium and large arena) off the base of the arena, and these values are described as the 

arena ‘ambient temperature’. The use of ‘fixed-point’ entry holes for the thermocouples through 

the Perspex arena cover ensured that the arena base and ambient temperatures were recorded at 

comparable positions both within and between experiments with different arenas. Both sets of 

arena temperatures were compared with the temperature measured within the body of the 

aluminium block, hereafter referred to as the reference temperature. Each experiment was 

initiated by either cooling or heating the aluminium blocks to one of six constant temperatures: 

10, 15, 20, 30, 40, 50oC. The surface and ambient temperatures within the arena were measured 

after reaching a ‘steady state’ i.e. when there was no fluctuation in temperature over time, which 

was typically around 30 min after first reaching the set reference temperature. The experiments 

were repeated with three for each set temperature with each arena (n = 3).  

The data were analysed by two-way ANOVA to determine differences between the arena surface 

and ambient temperatures and the reference temperature in arenas of different sizes. All data were 

also analysed by a simple linear regression to generate calibration equations for each arena size. 
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2.4 Results 

In all arenas tested there was a significant difference between the surface temperatures and the 

reference temperature (F10,72 = 1952.83, p < 0.001, Figure 2.3), but this relationship was not 

affected by the size of the arena (F10,72 = 2.94, p = 0.059).  

 

Figure 2.3 Relationship between arena surface temperatures in relation to the reference 

temperature in arenas of three sizes. A = small, B = medium and C= large.  Measurement 

locations 1-5 in each arena are as coded in the figure. 



37 
 

There was also a significant difference between the ambient temperature in the arenas and the 

reference temperature (F10,72 = 1128.17, p < 0.001, Figure 2.4) and this relationship was 

significantly affected by arena size (F10,72 = 3.28, p = 0.043).  

 

Figure 2.4 Relationship between arena ambient temperatures in relation to the reference 

temperature in arenas of three sizes. A = small, B = medium and C= large.  Measurement 

locations 1-5 in each arena are as coded in the figure. 
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The mean (± SE) of the arena surface and ambient temperatures in relation to the reference 

temperature in arenas of different sizes are shown in Table 2.1.  

Table 2.1 Mean (± SE) of arena surface and ambient temperatures in relation to the reference 

temperature at six constant temperatures in arena of different sizes. 

Reference 

temperature  

Mean arena surface temperature  

(oC ± SE) 

Mean arena ambient temperature  

(oC ± SE) 

(oC)  
small 

arena 

medium 

arena 

large 

arena 

small 

arena 

medium 

arena 

large 

arena 

10 12.4±0.268 12.4±0.521 12.5±0.227 13.5±0.189 13.3± 0.594 12.3±0.392 

15 16.3±0172 16.4±0.316 16.6±0.143 16.6±0.190 17.2±0.334 16.3±0.230 

20 20.6±0.060 20.7±0.081 21.0±0.252 20.7±0.198 21.1±0.207 20.7±0.125 

30 28.5±0.176 28.5±0.301 28.6±0.244 28.5±0.198 28.2±0.311 28.0±0.304 

40 37.3±0.450 36.7±0.547 33.4±0.395 36.9±0.153 35.8±0.725 35.3±0.580 

50 45.6±0.557 44.7±0.864 44.7±1.301 43.8±1.003 43.4±1.593 42.3±1.011 

The data in Figures 2.3 and 2.4 and Table 2.1 were used to produce linear regression calibration 

graphs for arena surface (Figure 2.5) and ambient temperatures (Figure 2.6) in relation to the 

reference temperature for arenas of different sizes. The linear regression equations (all with very 

high R2 values) can be used to predict the arena ambient and surface temperatures from the 

reference temperature that is displayed during the recording of insect movement at different 

temperatures (see Chapter 4 and 5). 
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Figure 2.5 Calibration graphs and equations for arena surface temperature and reference 

temperature in arenas of three sizes.  For the small arena (A), Y = 0.8322X + 3.8975 (R2 = 

0.997), medium arena (B), Y= 0.8072X + 4.3698 (R2 = 0.992) and large arena (C), Y = 0.7672X 

+ 5.0365 (R2 = 0.978). 
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Figure 2.6 Calibration graphs and equations for arena ambient temperature and reference 

temperature in arenas of three sizes. For the small arena (A), Y = 0.7739X + 5.3846 (R2 = 0.992), 

medium arena (B), Y= 0.7482X + 5.9242 (R2 = 0.978) and large arena (C), Y = 0.7484X + 

5.2351 (R2 = 0.989). 
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2.5 Discussion and conclusions 

 The system described in this chapter to assess critical thermal thresholds of insects is potentially 

subject to two main sources of error. Firstly, errors in temperature measurements due to the 

accuracy of the temperature sensors (Edney, 1951). This problem can be largely overcome by 

ensuring that all sensors, such as the thermocouples used in these experiments,  are calibrated 

against a digital thermometer with a high level of accuracy (±0.1oC) (Heatmiser UK Ltd; 

Calibration report number: HM853-08/07/10DW).  

The second source of error concerns the transfer of thermal energy between different substrates, 

in this case the aluminium block in which the temperature is determined by the temperature of the 

circulating fluid, and arena within the block which is subject to the influence of the wider 

environmental (room) temperature. In most thermal interactions between two substrates with 

different temperatures, the higher temperature of one decreases and the lower temperature of the 

other increases (McDermott et al., 1996; Marin, 2010), until the two interacting objects arrive at 

the same intermediate temperature, termed the thermal equilibrium (Bergethon and Simons, 

1990). The aluminium block system, however, differs from this relationship because the arena 

temperatures are affected by an additional interaction, the air of the room within which the 

experiments are conducted (Keltner, 1998). This transfer of heat will continue as long as there is 

a difference in temperature between the arena and surrounding environment, resulting from 

differences in temperature between the arena and the fluid circulating around the aluminium 

block.  Heat can move from one location to another (e.g. from the arena to wider controlled 

environment room by conduction, convection and radiation (Hilyard and Biggin, 1977; 

Recktenwald, 2006; Antar and Baig, 2009; Venkanna, 2010). In the aluminium block system heat 
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is transferred from the alcohol bath via the block to the arena and at thermodynamic equilibrium, 

heat transfer between these two substrates will be zero. However, the temperature differences 

between the arena and wider environment lead to the observed temperature differences between 

the arena and the aluminium block.  

The data acquired from these experiments were used to calibrate the arena temperature in studies 

on chill and heat coma, as illustrated in Figure 2.7. For example, in the heat coma experiments, 

the aluminium block temperature was increased from 23oC to 50oC (Figure 2.7A). Insect 

movement was monitored throughout this increase in temperature using a digital video camera 

(Infinity 1-1; Lumenera Scientific, Canada) with a macro lens (Computar MLH-10X, CBC Corp., 

New York, NY) positioned over the arena and linked to a desktop computer. Data on insect 

movement and the temperature within the aluminium block (reference temperature) were 

recorded simultaneously by video recording software (Studio Capture DT; Studio 86 Designs, 

UK) as the temperature of the block was increased to 50oC. As the arena temperatures were 

however, progressively higher than room temperature as a result of the loss of heat energy to the 

surrounding environment, arena temperatures were lower than the ‘set’ reference temperature, 

and this difference increased as the temperature of the aluminium block increased above room 

temperature.  

In chill coma experiments, the reverse situation occurs in which heat is gained from the wider 

environment such that the temperature in the arena will be higher than that of the aluminium 

block, and this difference will be greatest at the lowest set temperature (Figure 2.7B).  
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Figure 2.7 Illustration of heat transfer effects in experiments to assess high (A) and low (B) 

activity thresholds in insects. ΔT is temperature difference between the arena and surrounding 

environment. 
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The calibration data indicated that there was a difference between the set reference temperature 

and the surface and ambient temperatures within the observed arena at all temperatures from 10 

to 50oC, and that this difference was greatest at the extremes of this range, reflecting the greater 

difference between the block and arena temperatures and the wider environmental temperature. 

There were also differences in these heat transfer relationships in arenas of different sizes, related 

to differences in surface areas (Muncaster, 1993). Thus, when the desired exposure temperature is 

higher (30 to 50oC) or lower (10 to 20ºC) than the environmental (room) temperature, the larger 

arena will lose heat to the surrounding environment more rapidly than the medium and small 

arenas, and in general, will have a lower temperature that the other arenas, though this difference 

is relatively small (Table 2.1). These data provide a sound basis for selecting the most appropriate 

experimental set up for different species (Tong, 2001). For example, the small arena could be 

used for experiments with first instar nymphs of N. lugens and the medium or larger arena for 

adults, with each arena having its own calibration data.  

In conclusion, these experiments have shown that measurement of temperature within the 

aluminium blocks used to investigate insect thermal thresholds are not representative of the 

surface or air temperatures experienced by organisms contained within the milled arenas of such 

systems; and the difference between the displayed and experienced temperatures is greatest at the 

extremes i.e. within the temperature ranges where the CTmin and max are likely to fall. The 

experiments have shown that it is possible to determine the exposure temperature by calibration 

against a reference temperature, thus enabling accurate measurement of thermal thresholds. 
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CHAPTER 3  

Relationship between Body Size and Dynamics of                                    

Thermal Equilibrium in Insects   

3.1 Abstract 

The ability of ectothermic organisms such as insects to maintain their body temperature (Tb) is an 

important contributory factor to their overall fitness. In experiments that measure critical thermal 

thresholds such as mobility and lethality it is vital that the exposure temperature and that of the 

sample or individual under observation are the same, so that the data acquired can be interpreted 

in a wider physiological and ecological context. The aim of this study was to examine the effect 

of insect body size on the time required to reach thermal equilibrium at different rates of 

temperature change and in different exposure environments. The species investigated (Liriomyza 

bryoniae, Nilaparvata lugens, and winged and wingless Calliphora vicina) had increasing body 

size. Individuals were warmed from 20 to 35oC in a programmable alcohol bath at three ramping 

rates (0.1, 0.5 and 1.0oC min-1) in two types of container type commonly used in experiments on 

insect thermal biology. Mean lag time required to reach thermal equilibrium increased with body 

size and was also significantly affected by ramping rates and the containers used in the 

experiments (both p < 0.001). Mean lag time at 0.1oC min-1 was significantly less than when the 

insects were warmed at 0.5 and 1.0oC min-1, and when the experiments were carried out in glass 

tubes compared with plastic tubes within glass tubes. These results are discussed in relation to the 

methods used to measure insect thermal thresholds, and the use of such data in understanding the 

relationships between insects and temperature in natural environments. 
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3.2 Introduction 

Living organisms are complex arrangements of different types of material (Patton, 1963; Hilyard 

and Biggin, 1977; Bergethon and Simon, 1990). The properties of these materials are specific to 

their function in the organism (Hilyard and Biggin, 1977; Campbell et al., 1999), but differences 

in these properties can lead to differences in key processes, such as the capacity to adjust to new 

environments, and this is particularly the case for ectothermic species that have limited ability to 

regulate their body temperature (Hilyard and Biggin, 1977). Insects are poikilotherms or cold-

blooded animals in which the body temperature (Tb) is essentially the same as the environmental 

temperature (Te). Many processes and behaviours in insects (development and reproduction 

activity) are strongly influenced by temperature (Heinrich, 1974; Knapp and Casey, 1986; 

Bakken, 1989; Heinrich, 1995; Speight et al., 1999; Chown et al., 2002; Angilletta Jr. et al., 

2004), mainly because physiological functions are determined by the animal’s Tb (Cokendolpher 

and Phillips, 1990; Nespolo et al., 2003; Chown and Terblanche, 2006; Bowler and Terblanche, 

2008). 

Thermoregulation is defined as the maintenance of the mean or variance of Tb in relation to the 

mean or variance of the Te by behavioural, physiological or morphological strategies (Heinrich, 

1974; May, 1977; May, 1979; Willot, 1997; Angilletta Jr. et al., 2006; Nice and Fordyce, 2006; 

Heinrich, 2007; Gullan and Cranston, 2010). Insects need these mechanisms to survive under 

conditions of thermal stress because of their limited ability to regulate Tb (Bauwens et al., 1995; 

Bale and Hayward, 2010) and this is achieved by processes collectively known as capacity 

adaptation (Huey and Stevenson, 1979; Bennett and Huey, 1990; Huey and Berrigan, 2001; 

Kingsolver and Gomulkiewicz, 2003; Chown and Nicolson, 2004). Thermoregulation is one 
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aspect of homeostasis or a dynamic state of stability (May, 1977; May, 1979; Hertz et al., 1993; 

Maeda, 2005). Thermoregulatory mechanisms involve either change in metabolic heat production 

or in heat exchange with the environment (May, 1979; Casey, 1992; Walsberg, 1992; Purves et 

al., 2001; May, 2005). A number of studies have investigated heat exchange, the modes of heat 

transfer, and their application to animals (Clench, 1966; Thorkelson and Maxwell, 1974; Cena 

and Monteith, 1975; Bakken, 1976a Baken, 1976b; May, 1979; Dzialowski and Ơ Conner, 2001; 

Voss and Reed, 2001). Heat exchange can be described by the laws of thermodynamics (May, 

1979; Bergethon and Simons, 1990, Cummings et al., 2004; Angilletta Jr. et al., 2006) and 

involves conduction, convection, radiation and evaporation (May, 1979). According to the zeroth 

law of thermodynamics if there is no change in temperature when a sensor (e.g. thermometer) is 

placed in thermal contact with a ‘system’ (e.g. an organism), they are in a state of thermal 

equilibrium (Adkins, 1997). When an insect is placed in a new environment (e.g. controlled 

environment room or an alcohol bath) the Tb is likely to be higher or lower than the new Te  and 

will then decrease or increase over a period of time to be in thermal equilibrium with Te 

(Cummings et al., 2004).  

This relationship has been observed in various experiments in which the cooling or heating 

source reaches the desired ‘set’ temperature before the insects within the exposure environment, 

although the cooling or heating source and the insect sample have the same initial temperature 

and are cooled or heated at the same rate to a new Te. This difference in response time (‘lag 

time’) required to attain a new equilibrium state depends on the thermal properties of the 

materials (McNabb and Wake, 1991). A number of factors can influence an insect’s Tb and its lag 

response time in changing thermal environments, including body size (Digby, 1955; Forsman, 
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2000; Davidowitz et al., 2003; Tanaka, 2005), the rate of temperature change, thermal properties 

of exposure containers, wing activity, and the ability of species to thermoregulate.  

Knowledge of these interrelationships is important in the design of laboratory experiments 

(Chown and Sinclair, 2010). Measurements of insect Tb under various environmental conditions 

have been made by several researchers (e.g. Edney, 1951; Waterhouse, 1951; Bakken, 1976b; 

Janusz, 1984; Turner and Lombard, 1990; Chown and Scholtz, 1993; Bauwens et al., 1995; May, 

2005), including the effect of ramping rate on insect mortality (e.g. Evans, 1987; Neven, 1998; 

Ikediala et al., 2000; Dzialowski and O’Conner, 2001; Wang et al., 2002). In many studies, 

however, there is no reference to the time required for organisms to reach thermal equilibrium in 

different experimental systems and how this lag time is affected by the size of the specimen and 

the cooling or heating rates, which is an important consideration, as in most experiments of this 

type insects have to be held for a period of time before or after heating or cooling to allow 

equilibration of Tb with Te (Terblanche et al., 2007). Whilst the main purpose of this investigation 

was to determine the lag time parameters for exposure of Nilaparvata lugens, the study included 

species that were smaller (Liriomyza bryoniae; Diptera: Agromyzidae) and larger (Calliphora 

vicina; Diptera: Calliphoridae) than the brown planthopper, and exposed samples in different 

containers and at different rates of warming.  
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3.3 Material and methods 

3.3.1 Insect materials 

The three species used in this study had been maintained in culture at the University for different 

periods of time prior to the experiments. Liriomyza bryoniae were reared on broad bean plants 

(Vicia faba var. Sutton Dwarf) in BugDorm-2120 ‘insect tents’ (Megaview Science Co. Ltd., 

Taiwan) and N. lugens on rice seedlings (Oryza sativa L. cv. TN 1) in clear plastic cages covered 

by a mesh lid (21 cm high and 6 cm diameter with 1.22 mm ventilation mesh). These two 

cultures were maintained in an insect quarantine room at 23±0.5oC, 16:8 L:D cycle The blow fly, 

C. vicina was reared at 20°C, 18:6 L:D cycle in gauze-covered cages and received sugar and 

water ad libitum. All experiments were carried out on adult stages. To measure insect weights, 50 

adults of each species were lightly anesthetized with carbon dioxide and weighed individually on 

a top loading electronic balance (Mettler AC 100, Mettler-Toledo Ltd., Beaumont Leys, 

Leicester, UK) to an accuracy of ± 0.0001 g. Liriomyza bryoniae were weighed in the same way 

in 10 replicates of 5 individuals to determine a mean individual weight.  

Table 3.1 Mean (± SE) weight and sources of insect materials. 

Species Mean body mass (g) Source of culture 

L. bryoniae 0.0005 ± 0.0001 Koppert Biological Systems  B.V., The Netherlands  

N. lugens 0.0013 ± 0.0001 Pulau Pinang, Malaysia (5o 23’N) 

C. vicina 0.0272 ± 0.0014** Birmingham, UK (52oN) 
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3.3.2 Measurement of surface-to-volume ratio 

The accurate measurement of insect surface areas is difficult (Lockey, 1960) and usually cannot 

be achieved by direct observation of the living animal (Simanton, 1933). This problem is usually 

overcome by assuming that small organisms e.g. insects have a cube shape to make the 

calculation easier (Roberts and Ingram, 2001; Leggett, 2011). Using this approach, 50 adults of 

each species were lightly anesthetized with carbon dioxide and then photographed using a digital 

video camera (Infinity 1-1; Lumenera Scientific, Canada) with a macro lens (Computar MLH-

10X, CBC Corp., New York, NY) positioned over the arena in the aluminium block system used 

to determine thermal thresholds (see Chapter 4 for details).  

The digital images were processed using Image J (version 1.43u; http://rsb.info.nih.gov/ij) with 

measurements of length (L), width (W) and height (H) in millimetres. The equation for the 

surface area of a cube is (2xLxW) + (2xLxH) + (2xWxH) and for body volume is LxWxH, where 

L, W and H are the length, width and height of the specimen respectively. The surface area is 

then divided by the volume to obtain the surface-to-volume ratio. Differences in surface-to-

volume ratios between species were tested by an analysis of variance (ANOVA). Where 

significant differences were found, the data were further analysed by Tukey's honest significant 

difference post-hoc test.  

3.3.3 Measurement of Tb and time required to reach thermal equilibrium 

The times required for adults of each species to reach thermal equilibrium were assessed when 

individuals were warmed from 20 to 35oC at 0.1o, 0.5o, and 1.0oC min-1
. Preliminary experiments 

indicated that C. vicina adjusted its Tb to reach thermal equilibrium at 35oC more rapidly than 
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other two species, and that the flies showed considerable ‘wing vibration’, raising the possibility 

that the insect body temperature was increased by a combination of the higher environmental 

temperature and thoracic muscle activity associated with flight. For this reason a comparison was 

made between the thermal equilibrium lag times of winged and wingless C. vicina. To obtain a 

sample of wingless flies, C. vicina were captured and lightly anesthetized with carbon dioxide 

and then the wings removed with a pair of scissors, close to the thorax. 

The Tb of individual insects was measured by attaching a 0.1 mm diameter copper-constant K 

type thermocouple (Tecpel CL–326 DTM-315) on to the ventral surface of the thorax with 

petroleum gel. Because of their larger body size, C. vicina were captured and lightly anesthetized 

with carbon dioxide to facilitate handling before attaching the thermocouple. The insects attached 

to the thermocouples were placed in either an Eppendorf tube (1.5 ml, SARSTEDT, 

Aktiengeselischaft & Co. for for L. bryoniae and N. lugens) or a polystyrene tube (30 ml for 

winged and wingless C. vicina), both within a glass tube, or directly into a glass tube (100 ml, 

Pyrex), such that the specimens were individually ‘suspended’ within the ‘air environment’ of the 

tubes but without contact with any surface (Figure 3.1). In the Results section, the Eppendorf and 

polystyrene tubes are described collectively as ‘plastic tubes’. The tubes containing the insects 

were placed in a programmable alcohol bath (Haake Phoenix 11 P2; Thermo Electron Corp., 

Karlsruhe, Germany) and held at 20oC for 30 min. The samples were heated to 35oC at 0.1o, 0.5o, 

and 1.0oC min-1 with the insect Tb measured at one minute intervals; 35oC was selected as the 

new Te as it was known that all species could survive at this temperature, hence the Tb and 

thermal lag times obtained would be for live insects. Simultaneous temperature measurements 

were made at one minute intervals in blank plastic tubes within glass tubes (Figure 3.1A) and in 
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blank glass tubes (Figure 3.1B) and of the fluid in the alcohol bath. Insect Tb was recorded until it 

reached the Te (35oC). Lag times were calculated as the time required for the insect Tb to reach 

thermal equilibrium with the temperature of the fluid in the alcohol bath for a sample of 30 

individuals of L. bryoniae, N. lugens and winged and wingless C. vicina in plastic tubes within 

glass tubes and directly within glass tubes.  

Mean lag times of the different species within each heating rate were analysed by one-way 

ANOVA and significant differences identified by Tukey's honest significance difference post-hoc 

test. The relationships between lag times, ramping rates and exposure containers were analysed 

by a two-way ANOVA.  

 

Figure 3.1 Experimental design for measuring body temperatures of insects when exposed in A, 

plastic tubes within glass tubes, and B, direct exposure within glass tubes.  



53 
 

3.4 Results 

3.4.1 Surface-to-volume ratios  

The mean surface-to-volume ratios (± SE) for L. bryoniae, N. lugens and C. vicina were 

8.31±0.16, 4.31±0.11 and 1.59±0.05 mm-1 respectively (Figure 3.2) and all differences between 

species were significant (p < 0.001, F2, 147 = 898.47).  

 

Figure 3.2 Mean surface-to-volume ratio (± SE) in L. bryoniae, N. lugens and C. vicina. Mean 

values with the same letter are not significantly different (p ≤ 0.05); n = 50 for each species.  



54 
 

3.4.2 Effect of body size on lag times 

Mean (± SE) lag times varied among species and between winged and wingless C. vicina (Figure 

3.3). When exposed as individuals in a plastic tube within a glass tube (Figure 3.3A) or in glass 

tube (Figure 3.3B) a similar pattern was observed at all ramping rates in which the smallest 

species heated up faster than the larger insects with mean lag times in the order of L. bryoniae < 

N. lugens < winged C. vicina < wingless C. vicina respectively. The mean lag times required for 

L. bryoniae, N. lugens, winged C. vicina and wingless C. vicina to reach the target temperature 

(35oC) when exposed in plastic tubes within glass tubes were 4.41±0.47, 5.28±0.41, 10.80±1.11 

and 24.45±1.09 min at 0.1oC min-1, 8.19±0.49, 8.96±0.96, 9.71±1.28 and 30.55±1.75 min at 

0.5oC min-1, and 14.55±1.11, 21.79±1.01, 16.23±1.36 and 53.63±4.40 min for testing at 1.0oC 

min-1 (Figure 3.3A). The equivalent mean lag times for L. bryoniae, N. lugens, winged C. vicina 

and wingless C. vicina exposed in glass tubes were 2.97±0.30, 4.53±0.83, 5.81±1.09 and 

16.63±1.33 min at 0.1oC min-1, 6.96±0.48, 8.53±0.54, 8.61±1.05 and 21.84±1.01 min at 0.5oC 

min-1, and 8.24±0.35, 15.31±1.05, 11.26±1.50 and 37.85±2.34 min at 1.0oC min-1 (Figure 3.3B). 

When warmed at 0.1oC min-1 the mean lag times to reach thermal equilibrium at 35ºC were 

significantly longer in wingless C. vicina than L. bryoniae, N. lugens, and winged C. vicina, both 

in plastic tubes within glass tubes (F3, 36 = 121.47, p < 0.001) and in glass tubes (F3, 36 = 42.87, p 

< 0.001). Also, wingless C. vicina took significantly longer to adjust its Tb than L. bryoniae, N. 

lugens, and winged C. vicina in plastic tubes within glass tubes (F3, 36 = 80.11, p < 0.001) and in 

glass tubes (F3, 36 = 73.25, p < 0.001) at a ramping rate of 0.5oC min-1. However, there were no 

differences among L. bryoniae, N. lugens, and winged C. vicina at 0.1 and 0.5oC min-1 in either 

type of exposure container. 
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At the fastest rate of warming (1.0oC min-1) the lag times of wingless C. vicina and N. lugens 

were significantly longer than L. bryoniae and winged C. vicina  in the plastic tubes within glass 

tubes  ( F3, 36 = 57.26, p < 0.001) and in glass tubes (F3, 36 = 80.56, p < 0.001). 

 

Figure 3.3 Effect of insect body size on mean lag times (± SE) when exposed in plastic tubes 

within glass tubes (A) and in glass tubes (B). White bars represent L. bryoniae, black bars N. 

lugens, cross-hatch bars winged C. vicina and dotted bars wingless C. vicina. At 0.1oC min-1 

mean values with the same lower-case letter are not significantly different (p ≤ 0.05); at 0.5oC 

min-1 mean values with the same lower-case letter followed by the same number are not 

significantly different (p ≤ 0.05) and at 1.0oC min-1 mean values with the same capital letter are 

not significantly different (p ≤ 0.05). N = 30 at each ramping rate.  
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3.4.3 Effect of ramping rates on lag time 

The mean lag times to reach thermal equilibrium were significantly longer when the temperature 

of the alcohol bath was increased at 1.0oC min-1 compared with 0.5 and 0.1o min-1 (F2, 117 = 

16.109, p < 0.001) with a similar result with plastic tubes within glass tubes  (Figure 3.4A) and in 

glass tubes (Figure 3.4B). At heating rates of 0.1 and 0.5oC min-1 lag times were similar between 

N. lugens and winged wingless C. vicina (experiments carried out in plastic tubes within glass 

tubes, Figure 3.4A), and winged and wingless C. vicina when exposed in glass tubes (Figure 

3.4B). Likewise, there was no difference in lag time between L. bryoniae and wingless C. vicina 

when heated at 0.5 and 1.0oC min-1 (see Figure 3.4B).  
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Figure 3.4 Effect of ramping rates on the mean lag time (± SE) when exposed in plastic tubes 

within glass tubes tubes (A) and in glass tubes (B). White bars represent a ramping rate of 0.1oC 

min-1, black bars 0.5oC min-1 and cross-hatch bars 1.0oC min-1. At 0.1oC min-1 mean values with 

the same lower-case letter are not significantly different (p ≤ 0.05); at 0.5oC min-1 mean values 

with the same lower-case letter followed by the same number are not significantly different (p ≤ 

0.05) and at 1.0oC min-1 mean values with the same capital letter are not significantly different (p 

≤ 0.05). N = 30 at each ramping rate.  

 



58 
 

3.4.4 Effect of exposure containers on lag time 

All species took longer to reach thermal equilibrium when exposed in plastic tubes within glass 

tubes than directly in glass tubes (Figure 3.5). For L. bryoniae mean lag times differed 

significantly at 0.1 (F1, 18 = 6.68, p = 0.019) and 1.0oC min-1 (F1, 18 = 29.53, p < 0.001) 

respectively, but not at 0.5oC min-1. 

Mean lag times of N. lugens in plastic tubes within glass tubes and in glass tubes were only 

significantly different at 1.0oC min-1 (F1, 18 = 19.86, p < 0.001). 

 The results for winged C. vicina followed a similar pattern to that of L. bryoniae with 

significantly different lag times between plastic tubes within glass tubes compared with glass 

tubes at 0.1 (F1, 18 = 10.84, p = 0.004) and 1.0oC min-1 (F1, 18 = 6.01, p = 0.025) respectively, but 

not at 0.5oC min-1.  

The mean lag times of wingless C. vicina exposed in plastic tubes within glass tubes and in glass 

tubes were significantly different at all the ramping rates: 0.1 (F1, 18 = 20.65, p < 0.001), 0.5 (F1, 18 

= 18.69, p < 0.001) and 1.0oC min-1 (F1, 18 = 10.02, p = 0.005) respectively. 

From the two way ANOVA analysis, mean lag times were significantly affected by ramping rates 

(F2, 212 = 22.77, p < 0.001) and exposure containers (F2, 212 = 11.42, p < 0.001). The interaction 

between ramping rate and container type also significantly affected mean lag times (F2, 212 = 8.91, 

p < 0.001). 
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Figure 3.5 Effect of type of exposure container on mean lag times (± SE) at ramping rates of 0.1 

(A), 0.5 (B) and 1.0oC min-1 (C). White bars represent experiments carried out in plastic tubes 

within glass tubes and grey bars in glass tubes. Mean values with the same lower case letter (L. 

bryoniae), lowercase letter followed by the same number  (N. lugens), capital letter (winged C. 

vicina) and capital letter followed by the same number (wingless C. vicina) are not significantly 

different (p ≤ 0.05). N = 30 for each species in each type of container.  
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3.5 Discussion and conclusions 

Biological systems are complex because of the interdependency and interaction between 

chemical and physical forces (Bergethon and Simons, 1990). The properties of animals that 

influence the exchange of energy and heat flux include the rates of metabolism and evaporative 

loss (Casey, 1992; Voss and Reed, 2001) and these in turn affect animal thermoregulation 

capacity (Porter and Gates, 1969; Walters and Hassall, 2006). These interrelationships are 

important in studies of the thermoregulatory behaviour and responses of ectothermic organisms 

such as insects; and without knowledge of the interactions between factors such as surface-to-

volume ratios, rates of temperature change and properties of the exposure environment, the 

design of experiments may be flawed and the values obtained inaccurate, and in both cases, the 

data will be of limited value in understanding the ecophysiology of species in natural 

environments. The studies reported in this chapter investigated the effect of differences in insect 

body size, warming rate and exposure container on the time taken for organisms to reach thermal 

equilibrium with a temperature-controlled and confined experimental situation (alcohol bath) 

commonly used in the study of insect thermal biology.  

The first main conclusion to draw from these studies is that body size has a significant influence 

on the time required to achieve thermal equilibrium and that smaller species reach this state most 

quickly (Figure 3.2). These differences in lag times are attributable to differences in the surface-

to-volume ratios (Planinšič and Vollmer, 2008). Thus insect Tb is determined not only by Te, but 

also by factors such as metabolic heat production, insolation and heat loss by means of 

convection, conduction, radiation and evaporation (Waterhouse, 1951; Digby, 1955; Porter and 

Gates, 1969; May, 1979; Casey, 1992; Pereboom and Biesmeijer, 2003). All of these factors are 
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influenced by body size because thermal energy in living organisms is proportional to body 

volume since the heat is generated internally and heat loss is proportional to the surface area 

(Porter and Gates, 1969; Stevenson, 1985; Casey, 1992). 

The surface-to-volume ratio is an important concept in biology (Simanton, 1933; Davidowitz et 

al., 2003; Radtke and Williamson, 2005). Although L. bryoniae, N. lugens and C. vicina have 

different sizes, they are all composed of cells of approximately the same size, 10-30 µm in 

diameter (Machalek, 2005), but larger organisms will contain more cells (Silverstein et al., 2002). 

The simplest conceptual model of the cell is of a physio-chemical system that interacts with its 

environment to exchange mass and energy at a rate related to its metabolism (Barford, 1995), and 

the rate of metabolism is related directly to the volume of the cell (Robertson, 2009; Starr et al., 

2010). The relationship between metabolism and body weight is however, not linear because 

body heat can be either lost or gained from the external environment (Robertson, 2009; Mills, 

2010). As the size of an organism increases, its volume increases more than its surface area. 

Thus, the surface-to-volume ratio decreases as organisms increase in size (Vaughan et al., 2011). 

The greater surface-to-volume ratio of L. bryoniae compared with N. lugens and C. vicina (Figure 

3.2) thus explains why L. bryoniae has the shortest lag time as their proportionally higher surface 

area enables them to gain heat more quickly (Robertson, 2009; Starr et al., 2010).  

Mean lag time also differed significantly between winged and wingless C. vicina and was shorter 

when the wings were in place and functional. The more rapid acquisition of thermal equilibrium 

is therefore most likely a combination of the higher external temperature and body heat produced 

by wing beating. In insects with strong flight capacity such as butterflies, bumblebees, beetles, 

flies, dragonflies, the thoracic flight muscles are relatively large and oscillate at high frequencies 
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in preparation for flight (Heinrich, 2007, Matthews and Matthews, 2010), thus increasing the 

body temperature (Newport, 1837; Heinrich, 1974; Chapman, 1998; Heinrich, 2007). Janusz 

(1984) reported that at least 80% of the energy produced by contraction of the flight muscles 

appears as heat and this leads to endogenous heat generation. However, the effect of flight muscle 

activity on the Tb of small insects, such as L. bryoniae and N. lugens, is usually insignificant 

because of the small size of the muscles and the high rate of the heat loss from the organisms 

(Chapman, 1998). A second contributory factor to this internal heat generation may be related to 

blood circulation around the wings of C. vicina. Clench (1966) reported that wings are the 

principal structures used in insect thermoregulation. Thus when the wings are exposed to the sun 

or a source of higher temperature, the blood gains heat from solar radiation or external 

environment which is then carried into the body i.e. the wings function as ‘heat exchangers’.   

A number of previous studies have highlighted the effect of body size on thermoregulation. For 

example, in stingless bees, smaller bees reach lower temperatures and warm up and lose heat 

more rapidly than larger bees (Pereboom and Biesmeijer, 2003). Other studies have suggested 

that differences in size may affect the ability to thermoregulate and play a role in thermal niche 

partitioning and geographical distribution patterns (Verdú et al., 2006). Verdú et al. (2006) 

reported that prior to flight, larger dung beetles (>1.9 g) elevate and maintain their Tb at levels 

well above Te whereas in smaller beetles (<1.9 g), the Tb tends to conform with Te. With the 

knowledge that body size can affect rates of heat exchange, this may be a consideration when 

there is difference in size between the sexes. For example, Forsman (2000) found that the 

preferred Tb in males and females of pygmy grasshoppers (Tetrix subulada) were significantly 

different and this may be related to the thermal properties of different body sizes. 
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In this study the times required to reach thermal equilibrium were also significantly affected by 

the  rates of temperature change between 20 and 35ºC (F2, 212 = 22.779, p < 0.001); slower 

ramping rates reduced the lag time before the Tb was the same as the Te. In winged C. vicina, lag 

times are however, not so clearly related to ramping rates, which may reflect the contribution of 

wing vibration to Tb in this species. The fact that thermal equilibrium is reached more quickly at 

slower ramping rates is probably a consequence of effects on metabolism (Evans, 1987; Stephens 

et al., 1994; Neven, 1998; Wang et al., 2002). Whilst there have been no previous studies on the 

thermal lag times of these three species, the results obtained can be compared with similar data 

for other species. For example, several authors have measured the effect of temperature ramping 

rates on insect mortality (Alderson et al., 1998; Neven, 1998; Ikediala et al., 2000) and found that 

at slower heating rates, longer exposure times were required to achieve the same level of 

mortality (Feder et al., 1997; Chown and Nicolson, 2004). Terblanche et al. (2007) also reported 

that rates of temperature change affect the measurement of insect critical thermal maximum and 

minimum temperatures. The feature that is different about the current study is the focus on the 

effect of ramping rates on the lag time of different species to achieve equilibrium at a new Te. 

Whilst most studies expose insects directly to the assay temperature with equilibration assumed 

to occur in less than a minute (Hoffmann et al., 1997; Chown and Nicolson, 2004), the data 

reported here indicate that lag times are often longer and are affected by both the size of the 

species and the rate at which the organisms are heated or cooled.  

In addition, the type and number of containers within which insects are confined is apparently 

rarely considered in thermal biology experiments. When a sample of insects is exposed in plastic 

tubes within a glass tube and directly within a glass tube and then immersed into fluid with a 



64 
 

higher temperature, there will be a transfer of thermal energy (Mattos and Gasper, 2002). In this 

study, insects in which the Tb was measured in a plastic tube within a glass tube took longer to 

reach thermal equilibrium than individuals in glass tubes alone. This can be explained by the fact 

that heat energy would be transferred from the alcohol through the wall of either one or two 

substrates before reaching the insect. Thus the number of containers and their thermal properties 

affect the time taken before the Tb equates to the Te.   

In summary, the experiments described in this chapter have highlighted a number of factors that 

can influence the speed with which insects achieve thermal equilibrium when experiencing a 

change in temperature, whether gradual (and at different rates) or more abruptly. The key 

message to emerge is that unless these factors are considered in the design of experiments, the 

data obtained may be inaccurate and unreliable. 
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CHAPTER 4  

Upper Thermal Thresholds of the Brown Planthopper Nilaparvata lugens 

 

4.1 Abstract 

The brown planthopper Nilaparvata lugens is the most serious pest of rice across the world, 

especially in tropical climates. Nilaparvata lugens nymphs and adults were exposed to high 

temperatures to determine their critical thermal maximum (CTmax), heat coma temperature (HCT) 

and upper lethal temperature (ULT). Thermal tolerance values differed between developmental 

stages: nymphs were consistently less heat tolerant than adults. The mean (± SE) CTmax of 

nymphs and adult females and males were 34.9 ± 0.3, 37.0 ± 0.2 and 37.4 ± 0.2oC respectively, 

and for the HCT were 37.7 ± 0.3, 43.5 ± 0.4 and 42.0 ± 0.4oC. The ULT50 values (± SE) for 

nymphs and adults were 41.8 ± 0.1 and 42.5 ± 0.1oC respectively. The results indicate that 

nymphs of N. lugens are currently living at temperatures close to their upper thermal limits. 

Climate warming in tropical regions and occasional extreme high temperature events are likely to 

become important limiting factors affecting the survival and distribution of N. lugens. 
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4.2 Introduction 

Temperature has a direct influence on many life history parameters of insects (Angilletta Jr. et al., 

2002; Walther et al., 2002; Root, 2003; Hanna and Cobb, 2007; Tewksbury et al., 2008). A large 

number of studies have been conducted over the past 20-30 years to investigate the effects of 

predicted scenarios of climate warming on insects (Hill et al., 2002; Wilson et al., 2005; Deutsch 

et al., 2008). Much of this research has focused on the effects of increases in summer 

temperatures of 1-2oC on rate-based processes of experimental populations, and mainly in polar 

and temperate climates (Tewksbury et al., 2008; Parmesan et al., 1999; Bale et al., 2000; 2001; 

Karban and Strauss, 2004; Musolin, 2007), or by the monitoring of shifts in distributions that 

have been correlated with natural climate warming (Gutierrez et al., 2008). Also, whilst cold 

tolerance has been an area of research interest since the pioneering studies of Salt (Block et al., 

1990; Chown and Nicolson, 2004), there has been less focus on the high temperature tolerance of 

insects, especially those living in tropical areas, or on the proximity of their upper thermal limits 

to current and future temperature regimes. This may be explained by the assumption that insects 

already living in high temperature environments may be less affected by increases in temperature 

than species inhabiting cooler climates, or that they have the ability to cope with such changes 

(Bale and Hayward, 2010). This assumption cannot however, be tested without accurate 

information on the thermal limits of tropical insects which can then be compared with data on 

current and predicted maximum temperatures. It is known that relatively small increases in 

temperature may become lethal or sub-lethal for such species (Talekar and Shelton, 1993; Klok et 

al., 2004; Lapointe et al., 2007).  
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When an insect is progressively warmed to high temperature, a sequence of distinct observable or 

measureable events occurs (Bowler, 2005; Folk et al., 2007; Hazell et al., 2010a). Firstly, the 

specimen moves in an increasingly uncoordinated way and becomes immobile; this is the critical 

thermal temperature (CTmax). As the temperature is further increased, all small-scale movement 

of appendages (legs, antennae) ceases as the organism enters a state of ‘heat coma’ (HCT), after 

which, at a higher temperature, the insect dies at its upper lethal temperature (ULT) (see Hazell et 

al., 2010a for a description of these physiological states).  

The interrelationships between these three indices are of interest because they provide a 

physiological insight to events of ecological importance. For example, on a local scale, at the 

CTmax insects are unable to move and hence to locate new food resources or escape from 

predators (Hanna and Cobb, 2007), and on a wider scale, such responses will affect distributions 

and potential range expansion (Bale et al., 2002; Gullan and Cranston, 2010; Romero et al., 

2010); and these indices vary between different life cycle stages within a species (Krebs and 

Loeschcke, 1996). Also, although the CTmax and heat coma occur at lower temperatures than the 

ULT, it is known that for some species heat coma is irreversible and therefore the insect is 

effectively dead at this temperature (Huey and Stevenson, 1979; Fischer et al., 2010).  

Previous studies on the high temperature tolerance of tropical insects have investigated CTmax and 

heat coma temperature (Heath et al., 1971; Gaston and Chown, 1999; Renault et al., 2005; 

Terblanche et al., 2008), ULT (Addo-Bediako et al., 2000; Chown, 2001; Chidawanyika and 

Terblanche, 2011) and heat shock proteins (Feder and Krebs, 1998; Krebs and Feder, 1998; 

Robertson, 2004; Klose et al., 2008). These studies have investigated species of African, South 

American or European origin with less known about species from Asia.  
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In this study, the focus is on the brown planthopper Nilaparvata lugens (Stål). Nilaparvata lugens 

is a major pest of rice throughout Asia causing serious yield losses in many countries (Cuong et 

al., 1997). Nilaparvata lugens has a high migratory ability by wind-assisted flight and high 

reproductive capacity (Kisimoto, 1979). Seo et al. (2009b) report that during the rice growing 

season N. lugens migrates every year on south-westerly airflows from the south-east of China to 

South Korea. Fluctuation of N. lugens population abundance in rice fields is highly correlated 

with temperature (Win et al., 2011). However, as with many tropical species, there is a lack of 

information about the high temperature tolerance of N. lugens and therefore the likely effects of 

climate warming on this important species. Thus, the aim of this study was to characterize the 

high temperature tolerance of nymphs and adults of N. lugens via CTmax, HCT and ULT, and then 

compare these data with information on maximum environmental temperatures across the 

distribution of N. lugens in current and future predicted climates.  

 

4.3 Material and methods 

4.3.1 Insect cultures 

Adults of N. lugens were provided by MARDI (Malaysian Agricultural Research and 

Development Institute) Station at Pulau Pinang, Malaysia and maintained in a quarantine room at 

23 ± 0.5oC, 16:8 L:D cycle on rice seedlings (Oryza sativa L. cv. TN 1) within individually 

sealed containers (transparent plastic cylinder, 21 cm high and 6 cm diameter with 1.22 mm 

ventilation mesh). This rice cultivar does not contain any major resistance genes to brown 

planthopper and is often used as a susceptible control in studies on plant resistance (Cuong et al., 
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1997). The seedlings were used at the maximum tillering stage and replaced every 4-5 days or 

when there were any signs of deterioration. All experiments were carried out with first instar 

nymphs (24-48 h old) and unmated adults (30–35 days old). In experiments carried out on adults, 

newly hatched first-instar nymphs were reared together until the late fifth instar after which males 

and females were selected and reared separately to obtain unmated adults. 

4.3.2 Determination of CTmax and HCT  

The CTmax and HTC were determined using a method modified from Hazell et al. (2008). Insects 

were monitored within an arena in an aluminium block attached to an alcohol bath. The initial 

temperature within the arena was set at 20oC. A sample of 10 first instar nymphs, adult females or 

males was allowed to settle for 15 min after which the temperature was increased at 0.5oC min-1 

up to 35oC. Thereafter, the temperature within the arena was increased from 35 to 55oC at 0.1oC 

min-1 so as to minimise the chance of any ‘heat hardening’ response during warming (Hazell et 

al., 2010a).  

Movement behaviour of N. lugens was viewed using a digital video camera (Infinity 1-1; 

Lumenera Scientific, Canada) with a macro lens (Computar MLH-10X, CBC Corp., New York, 

NY) positioned over the arena and linked to a desktop computer. Data on insect movement and 

temperature within the arena were recorded simultaneously by video recording software (Studio 

Capture DT; Studio 86 Designs, UK). The CTmax was defined as the temperature at which the 

insect ceased coordinated movement and became immobile; the HTC was the temperature at 

which the last movement of an appendage (antenna, leg) occurred. Each experiment was repeated 

with a further sample of 10 individuals of each life cycle stage (n = 20). 
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4.3.3 Determination of ULT  

The upper lethal temperature is usually determined by exposing insects to increasingly higher 

temperatures and recording the mortality at each temperature. The crucial factor is that the ULT 

is expressed as the temperature at which mortality occurs after a brief exposure (seconds or a few 

minutes), though death may occur post-exposure, hence estimates of mortality are usually made 

some days later (Hazell et al., 2010a). Other experimental formats examine the effect of the 

duration of exposure on the ULT or the ability to rapidly heat harden (Chown and Nicolson, 

2004; Terblanche et al., 2007).  

A key requirement in ULT experiments is that the insects should actually experience the desired 

exposure temperatures allowing for the time lag in heat transfer from the exposure environment 

to the sample, which will be longer in larger species (see chapter 3). A failure to take into account 

the time required for insects to reach thermal equilibrium with their exposure environment can 

lead to errors in the assessment of the ULT (Walsberg and Wolf, 1996). 

 For all ULT experiments, 10 first instar nymphs, adult males or females were placed in a 0.9 ml 

Eppendorf tube (with five replicates at each exposure temperature), and then placed at the bottom 

of a glass test tube suspended in a programmable alcohol bath (Haake Phoenix 11 P2; Thermo 

Electron Corp., Germany with temperature accuracy of ± 0.5oC). The samples were held at 20oC 

for 30 min to reduce stress associated with handling and then heated to a range of temperatures at 

0.5oC min-1. When the temperature in the alcohol bath reached the target temperature, the insects 

were held at this temperature for a period of time to ensure that all of the sample experienced the 

required temperature; preliminary experiments indicated this was 2 and 6 min for nymphs and 
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adults respectively. Thereafter, all samples were ‘cooled’ to the rearing temperature at 0.5oCmin-1 

and then transferred to recovery trays (transparent plastic boxes, 16 x 8.5 x 28 cm3 with 1.22 mm 

ventilation mesh) containing rice plants and kept at 23oC, 16:8 L:D. Mortality was assessed 72 h 

after exposure. The data were analyzed by Probit in Minitab 15 (Minitab Inc., 2007) to estimate 

the temperature at which 50% of the sample was killed, the ULT50. The controls revealed 99% 

survival.  

An analysis of variance (ANOVA) was used to compare mean data between life cycle stages with 

95% confidence limits. Where significant differences occurred, the data were further analysed by 

Tukey's honest significance difference post-hoc test to separate statistically heterogenous groups.  

 

4.4 Results 

4.4.1 CTmax and HCT 

The mean CTmax (± SE) were 34.9 ± 0.3, 37.0 ± 0.2 and 37.4 ± 0.2°C for nymphs and adult 

females and males respectively (Figure 4.1A) with temperature ranges of 30-36o, 34-38o, and 35-

38o C for the three life cycle stages (Figure 4.2A). The CTmax was significantly lower in first 

instar nymphs than adults (F2, 27 = 33.55, p < 0.001), but not between the sexes. 
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Figure 4.1 Thermal activity thresholds of different life cycle stages and sexes of N. lugens. Mean 

(± SE) CTmax (A) and HCT (B). Mean values with the same letter are not significantly different (p 

≤ 0.05); n = 20 for first instar nymphs, adult females and males.  

The mean HCT (± SE) of nymphs, females and males were 37.7 ± 0.3, 43.5 ± 0.4 and 42.0 ± 

0.4oC respectively (Figure 4.1B), with temperature ranges of 35-39o, 39-46o, and 39-44oC (Figure 

4.2B). The HCT of nymphs was significantly lower than the adult morphs (F2, 27 = 68.21, p < 

0.001), and also between the sexes (p = 0.013), with females having the higher HCT. Insects that 

entered heat coma were unresponsive to stimuli and found to be dead when cooled to a lower 

temperature. 
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Figure 4.2 Temperature range of thermal activity thresholds of different life cycle stages and 

sexes of N. lugens.  Changes in the CTmax (A) and HCT (B) for first instar nymphs (white bars), 

adult females (cross-hatch bars), and adult males (black bars); n = 20 for each life cycle stage. 

 

4.4.2 ULT  

The mean (± SE) ULT50 of the first instar nymphs (41.8 ± 0.1°C) was significantly lower than for 

adults (42.5 ± 0.1oC), (F1, 8 = 17.52, p = 0.003, Figure 4.3). The ULT was higher than the HCT of 

nymphs (37.7°C) but similar for adults (HCT of 43.5° and 42°C for females and males 

respectively).   
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Figure 4.3 Mean (± SE) ULT50 of first instar nymphs and adults of N. lugens. Mean values with 

the same letter are not significantly different (p ≤ 0.05); n = 50 at each exposure temperature.  

 

4.5 Discussion and conclusions 

Climate, particularly temperature, is known to exert a strong influence on the distribution and 

abundance of species, often through effects on mortality (Parmesan, 1996; Davis et al., 1998; 

Hodkinson, 1999; Walther, 2002; Thomas et al., 2004; Wilson et al., 2005; Kerr et al., 2007; 

Terblanche et al., 2008). It is also known that the sequence of thermal events from immobility to 

death occurs over a narrower range at high than at low temperatures (Hazell et al., 2008; Hazell et 

al., 2010a). Whilst some studies have shown that insects can recover from exposure at their heat 
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coma temperature, for other species the heat coma state is irreversible and usually leads to death 

(Hazell et al., 2010a). This was the case with N. lugens as in this study where there was no 

recovery from heat coma after transfer to a lower temperature. Furthermore, heat tolerance is 

usually increased by much less than cold tolerance when insects are reared in an acclimation 

regime (Hazell et al., 2010b). Measurements of the CTmax, heat coma and ULT of tropical insects 

therefore provide a basis for assessing the likelihood of thermal stress under current climate 

conditions and the risk posed by higher temperatures under different scenarios of climate 

warming.  

The results from this study suggest that differences in body size and volume affect heat tolerance; 

thus  the CTmax, heat coma temperature and ULT50  of nymphs was consistently and significantly 

lower than that of adults, and for one of these indices (heat coma), adult males were less heat 

tolerant than females. Such differences between juvenile and adult insects has been previously 

reported (Chapman, 1998). The ratio of surface area-to-volume is greater for nymphs than adults 

(Casey, 1992) and as the gain and loss of heat from and to the external environment by processes 

including mixed convection and radiation (Hilyard and Biggin, 1977; Casey, 1992; Recktenwald, 

2006) are proportional to surface area (Stevenson, 1985), heat transfer occurs more rapidly in 

nymphs with resultant lower thermal indices. Whilst these data indicate that adults are generally 

more heat tolerant than nymphs, in terms of population viability over successive generations, 

success will be largely dependent on the limits imposed by the least thermally tolerant life cycle 

stage i.e. the higher heat tolerance of adults is ecologically irrelevant if the nymphal stages are 

dead or destined to die.  
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The critical information derived from this study indicates that some first instar nymphs become 

immobilized by heat stress at around 30°C and among the more heat tolerant adult stage, no 

insects were capable of coordinated movement at 38°C. There was no recovery after entry into 

heat coma, at temperatures around 38°C for nymphs and 42-43°C for adults. In similar studies the 

cicada Magicicada cassini was unable to maintain coordinated movement above 43oC but could 

recover from exposure at this temperature (Heath et al., 1971). This recovery ability contrasts 

with N. lugens and other species (Hazell et al., 2010a), but may be related to the inability in 

earlier studies to distinguish accurately between the CTmax and heat coma temperatures. Renault 

et al. (2005) reported differences in the CTmax of first instar larvae of three species of Coleoptera 

ranging from 45.6o in Osmoderma eremite to 48.5o in Gnorimus nobilis and 51.4oC in 

Cetonischema aeruginosa, all of which are higher than that of N. lugens. CTmax values are 

ecologically important because they represent the effective limit to coordinated movement 

behaviour within the thermal tolerance range of a species and life cycle stage (Bursell, 1964). 

Within this range, an insect’s physiological responses increase with temperature to an optimum 

and then rapidly decrease through the effects of heat stress (Huey and Bennett, 1990; Terblanche 

et al., 2007).  

Insects use various behavioural mechanisms to avoid the extremes of heat stress (Purves et al., 

2001; Wharton, 2002) including movement to more shaded locations such as the underside of 

leaves (Turnock, 1999), burrowing into the soil, which is common in desert species (Gullan and 

Cranston, 2010), or restricting activity to cooler periods within the diurnal cycle (Yang et al., 

2008). All of these responses, however, need to be anticipatory, because progression past the 

optimum temperature to the CTmax and HCT will limit the ability of insects to move to more 
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favourable thermal sites, and as a result, to locate resources such as food, mates and oviposition 

sites, and escape from natural enemies (Hanna and Cobb, 2007; Romero et al., 2010). 

At 41.8° and 42.5oC respectively, approximately 50% of nymphs and adults of N. lugens are 

killed in exposures of only 2 and 6 min. The ULT50 of the tsetse fly, Glossina pallidipes was 

37.9°, 36.2° and 35.6oC respectively in exposures of 1, 2 and 3 h (Terblanche et al., 2008) and 

Chidawanyika and Terblanche (2011) found that ULT50 of adult codling moth Cydia pomonella 

was 44oC in a 2 h exposure. These data indicate a broad similarity in ULT50 values between 

species (more so than in low temperature tolerance), but also highlight the fact that relatively 

small increases in exposure time can impact on mortality. 

Information from this study on the heat tolerance of N. lugens provides a basis for comparison 

with temperatures likely to be encountered across different areas of its distribution, but an 

important question that arises is the extent to which laboratory-derived indices of thermal 

tolerance can accurately predict survival or mortality under field conditions. The average ‘hot 

season’ temperatures in tropical lowlands where outbreaks of N. lugens occur range from: 20-31° 

in India, 25-35° in Thailand, 26-36° in Burma, 25-27° in Indonesia, 22-32° in Bangladesh, 32-35° 

in the Philippines, 20-33° in Vietnam,  22-27° in China, 21-24° in South Korea and 29.9-34.7oC 

in Malaysia (Mazur, 2011). Whilst these temperatures are generally lower than the CTmax, HCT 

and ULT of N. lugens, a number of factors will affect survival at high temperature in these 

climatic areas. Firstly, there will be occasional ‘peak’ temperatures that will pose a greater threat 

to such tropical insects e.g. 47.2oC in Burma (a record ‘high’ for South-east Asia as a whole) and 

49oC in Pakistan (Giese, 2011). Secondly, the CTmax, HCT and ULT values were estimated from 

very brief exposures of a few minutes, whereas in nature, high temperatures would be 
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experienced for much longer periods of time, almost certainly lowering critical tolerance limits 

below the laboratory-measured values. Also, through climate warming, tropical insects are likely 

to experience higher temperatures in the future. For example, the mean annual temperature is 

increasing by 0.23o–1oC per decade in East Asia (China, Japan and South Korea), 0.025o–0.68oC 

in South-east Asia (Albritton et al., 2002) and 0.26°C in tropical rain forests (Malhi and Wright, 

2004). Collectively these data suggest that N. lugens is already living close to its upper thermal 

limit across parts of its distribution.  

Apart from lethal effects, the impact of high temperature on mobility, which would affect annual 

migratory behaviour, is a further limiting factor; and all of these effects are likely to become 

more detrimental to N. lugens and other tropical insects in a warmer climate. There are though 

further considerations, including intraspecific variation in thermal tolerance related to geographic 

origin and acclimation ability. The sample population of N. lugens used in this study was 

collected at Pulau Pinang in Malaysia where the annual mean temperature is approximately 

27.5oC and minimum and maximum temperatures in the area varied from 23.3 – 24.5o and 31.3 -

32.8oC respectively over a 15 year period (data from Butterworth Station, Department of 

Meteorology, Malaysia for 1995 to 2009). Whilst the culture of N. lugens was maintained at 23 ± 

0.5oC, 16:8 L:D, close to the annual mean temperature for the collection site (see Methods for 

further details) it is known that acclimation can modify thermal tolerance and critical limits (Fry, 

1958; Buffington, 1969; Huey and Bennett, 1990; Sinclair and Roberts, 2005; Terblanche and 

Chown, 2006; Overgaard et al., 2008; Bale and Hayward, 2010); rearing N. lugens at higher 

temperatures may therefore raise the CTmax, HCT and ULT values reported here.   
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In summary, with knowledge of the current mean and occasional peak high temperatures in 

different parts of the distribution on N. lugens and the thermal limits of different life cycle stages, 

these data in combination provide a basis by which to identify regions within the Asian rice 

growing area where the insect is likely to become more or less important through future changes 

in climate; though temperatures may become locally too stressful in some areas, affecting 

development, reproduction and survival, higher temperatures in other parts of the distribution 

may allow year-round residency where this is currently impossible. Overall, the pest status of N. 

lugens may not be reduced, but its impact on regional rice production may change over time. 

The data presented in this chapter have been published on: 

Piyaphongkul J., Pritchard J. and Bale J.S. (2012) Can tropical insects stand the heat? A case 

study with the brown planthopper Nilaparvata lugens (Stål). PLoS ONE, 7 (1): e29409 

 

 

 

 

 

 

 



80 
 

CHAPTER 5 

Effects of Acclimation on the Thermal Tolerance of                                          

the Brown Planthopper Nilaparvata lugens 

5.1 Abstract 

The influence of acclimation on the cold and heat tolerance of Nilaparvata lugens was 

determined by measurements of the critical thermal minimum and maximum (CTmin and CTmax), 

chill and heat coma temperature (CCT and HCT) and lower and upper lethal temperature (LLT50 

and ULT50). First instar nymphs were acclimated for 5 days at 15°C and for 2 days at 30°C and 

compared with a population maintained at 23°C; for the adult comparisons, first instar nymphs 

were reared at 15, 23 and 30°C until adult emergence, requiring development periods of 50-55, 

30-35 and 18-20 days respectively.  

The thermal tolerance limits of both age groups changed significantly with acclimation and were 

correlated with rearing temperature. The CTmin of nymphs reared or acclimated at 15, 23 and 

30°C were 12.5 ± 0.3, 15.3 ± 0.3 and 17.6 ± 0.7°C respectively; the equivalent values for adult 

females were 8.1 ± 0.2, 13.1 ± 0.4 and 16.4 ± 0.9 and 8.8 ± 0.2, 12.9 ± 0.4 and 16.4 ± 0.9 for 

males. The CTmax values at the three temperatures were 34.2 ± 0.2, 34.9 ± 1.3 and 37.2 ± 0.1 

(first instar nymphs), 36.0 ± 0.1, 37.0 ± 1.0 and 37.3 ± 0.1 (adult female) and 36.6 ± 0.1, 37.4 ± 

0.7 and 37.7 ± 0.1°C (adult male). The LLT50 for the 15, 23 and 30°C populations were 0.5 ± 0.4, 

2.3 ± 0.4 and 3.6 ± 0.8 for nymphs and -2.7 ± 0.4, 0.9 ± 0.5 and 2.1 ± 0.3°C for adults; the 
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equivalent ULT50 values were 40.8 ± 0.4, 41.8 ± 0.1 and 42.9 ± 0.1 for nymphs, and 42.1 ± 0.3, 

42.5 ± 0.1 and 43.6 ± 0.1°C for adults.  

Across the 48 separate measurements of thermal tolerance (CTmin, CCT, CTmax, HCT, LLT50 and 

ULT50 of nymphs and adult males and females), the temperature difference in comparison with 

the 23°C reared population was greater in 12 indices in the samples acclimated at 15°C and in 4 

when acclimated at 30°C. In a comparison of the acclimation responses between nymphs and 

adults reared at 23°C and acclimated at either 15 or 30°C, the temperature differential was greater 

for adults in 14 of the 20 indices.  These data indicate that under the acclimation regimes applied 

to N. lugens increases in cold tolerance were greater than heat tolerance, and that acclimation 

over a generation compared with a single life stage increases tolerance across the thermal 

spectrum. 

 

5.2 Introduction 

Insects are susceptible to changes in temperature and water availability because they have 

relatively large surface area-to-volume ratio (Wharton, 2002; Chown and Nicolson, 2004). Many 

insects, however, live in habitats that buffer exposure to environmental changes (Schowalter, 

2006). Most insects are subject to environmental variability including periods of potentially lethal 

or stressful abiotic conditions (Nyamukondiwa and Terblanche, 2010). For this reason, 

maintaining optimal body temperature (Tb), water content, and chemical processes is a challenge 

in variable environments (Angilletta Jr. et al., 2004). Bullock (1955) reported that many 

poikilothermic animals exhibit, in their metabolism or activity, some degree of independence 
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from the ambient temperature. Indeed, insects possess a variety of physiological and behavioural 

mechanisms that aid survival in variable environments (Bakken, 1976b; Armitage and Stinson, 

1980). Adaptive physiological responses can mitigate against exposure to sub-optimal conditions, 

for example, by acclimatizing to different thermal conditions, and this in turn can impact on 

performance (Bale et al., 2002; Berger et al., 2011). Nevertheless, insects are often killed by 

sudden or unexpected changes in the temperature, moisture, or chemical conditions of their 

habitat (Schowalter, 2006). The influence of temperature on the survival of organisms has 

received considerable attention (Newell et al., 1971; Addo-Bediako et al., 2000; Berrigan, 2000; 

Cerdá, 2001; Castañeda et al., 2004; Bickford et al., 2010; Berger et al., 2011). The ability of 

insects to cope with thermal stress is achieved in one of two ways - thermoregulation of body 

temperature through behavioural adaptation, and physiological and biochemical mechanisms 

(Casey, 1992; Feder et al., 1997; Feder and Hoffmann, 1999; Carrascal et al., 2001; Addo-

Bediako et al., 2002; Chown and Nicolson, 2004; Cadena and Tattersall, 2009; Angilletta Jr. et 

al., 2010).  

Insects can modify their thermal sensitivity through short-term processes such as acclimatization 

and long-term processes such as evolutionary adaptation (Huey and Stevenson, 1979; Huey et al., 

1999). Thermal acclimation (in the laboratory) or acclimatization (in nature where many 

environmental factors change) forms part of the range of insect responses to their environment 

known as phenotypic plasticity that can occur only within limits imposed by the genotype 

(Prosser and Nelson, 1981; Gibbs et al., 1998). These acclimation responses may involve changes 

in physiological rate-based processes and performance, thermal niche limits and behaviour, to 

cope with environmental temperature variation (Bennett and Lenski, 1997; Addo-Bediako et al., 
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2002). Behaviourally-based changes represent a more flexible response to environmental 

variation than physiological processes because animals can respond actively to sensory 

information to avoid or mitigate lethal conditions (Schowalter, 2006); this is particularly true for 

highly mobile insects, though limited mobility is not necessarily detrimental in environments 

with gradients. Additionally, mobile insects may be more able to escape locally stressful 

conditions and also detect and colonize suitable patches within variable environments. 

Animals can acclimatize to seasonal changes of temperature over extended periods of time. For 

example, many ectotherms become cold-hardened as winter approaches and heat-resistant during 

the summer. Al-Marzouk (1991) indicated that many poikilothermic species show complete or 

partial compensation in metabolic rate and movement following acclimation to different 

temperatures. Whilst the effects of acclimation on insect thermal performance are poorly 

understood, such information is important for understanding responses to future climate changes 

and the evolution of these reaction norms (Lachenicht et al., 2010). A number of studies have 

investigated responses to temperature acclimation in a range of poikilotherms (Aleksiuk, 1971; 

Newell et al., 1971; Bradley., 1978; Armitage and Stinson, 1980; Al-Marzouk, 1991; Chen et al., 

2001; Yalcin et al., 2008). Within the insects a similar relationship between environmental 

temperature and thermal tolerance has been found across many species whereby the thermal 

threshold (e.g. lethality) depends on the temperature and the duration of exposure e.g. Culex 

pipiens pipiens (Buffington, 1969), Periplaneta americana  (Piccione and Baust, 1977), 

Sitophilus granaries L. and Oryzaephilus surinamensis L. (Mignon et al., 1996), Sitobion avenae 

(Powell and Bale, 2005), Locusta migratoria L.(Wang et al., 2006), Drosophila melanogaster 

(Frazier et al., 2008; Overgaard et al., 2008), Acheta domesticus L. (Lachenicht et al., 2010), 
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Ceratitis capitata and C. rosa (Nyamukondiwa and Terblanche, 2010), Cydia pomonella 

(Chidawanyika and Terblanche, 2011) and Myzus persicae (Alford et al., 2011).  

The brown planthopper, N. lugens, is one of the most important rice pests because of its sap-

feeding habit and ability to transmit plant-pathogenic viruses (Nakashima et al., 1996). The 

species is widely distributed in south and east Asia, northern Australia and western Oceania 

(Claridge et al., 1985; Kawanguchi et al., 2001; Liu and Han, 2006) and makes wind-assisted 

migratory flights each year to colonize the summer rice growing areas of China, Japan and South 

Korea (Rosenberg and Magor, 1983). Recent studies on N. lugens showed that the upper lethal 

temperatures of nymphs and adults overlapped with summer high temperatures across parts of its 

Asian distribution and that insects could be immobilized by heat stress at lower temperatures that 

would be commonly experienced in some countries every year (Piyaphongkul et al., 2012a; see 

chapter 4). In a scenario of climate warming it was hypothesized that whereas in some parts of 

the current distribution higher temperatures might become physiologically limiting, there were 

other countries where a more favourable future climate would allow year-round survival that is 

currently prevented by low winter temperatures.  As such, the status of N. lugens as the most 

serious pest of rice throughout India and south-east Asia would not necessarily change, but its 

relative importance might vary over time across its distribution. A subsequent study 

(Piyaphongkul et al., 2012b; see chapter 6) found that after exposure of nymphs and adults of N. 

lugens at their respective ULT50 (high temperatures that kill 50% of the population), development 

through the nymphal instars was impeded and fecundity reduced; heat stress affected 

reproductive fitness in both male and female insects as indicated by reciprocal mating with the 

untreated gender. These experiments with N. lugens were conducted with insects cultured at 



85 
 

23°C, a representative mean temperature for its current distribution. It seems likely, however, that 

the thermal thresholds determined at this ‘standard’ temperature would differ if populations were 

maintained at higher or lower temperatures, and detection of any such acclimatory ability will 

inform predictions on the future status and distribution of this major economic pest (Baker et al., 

2000). 

The experiments described in this chapter measured three thermal indices (critical thermal 

minimum and maximum, coma and lethal temperatures) in first instar nymphs and adults of N. 

lugens at both acclimated low and high temperatures in populations of 15° and 30°C and 

compared these values with data for a ‘control’ population maintained in continuous culture at 

23°C. The acclimation treatments applied in this study were not intended to produce ‘fully 

acclimatized’ insects as would occur under natural environmental conditions. Rather, the aim was 

to determine whether there was any acclimatory ability in N. lugens, to compare responses in 

insects acclimated in one life cycle stage (first instar nymph) and through a full generation, and to 

assess the relative changes in the thermal thresholds in response to acclimation at temperatures 

above and below a standard regime. 

 

5.3 Material and methods 

5.3.1 Insect materials 

The population of N. lugens was provided by the MARDI Research Station at Pulau Pinang, 

Malaysia from insects collected from the field in 2010. The generation time of N. lugens at 23°C 
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is 7 weeks, thus the experimental population had completed 11-12 generations prior to the 

experiments reported in this study. Rearing conditions have been described previously by 

Piyaphongkul et al. (2012a; see chapter 4). Briefly, N. lugens were reared on Oryza sativa L. cv. 

TN 1 at the maximum tillering stage in individually sealed containers in a quarantine room at 23 

± 0.5oC, 16:8 L:D cycle. For acclimation studies, specimens were cooled or heated from 23oC at 

0.1oC min-1 to 15 and 30oC after which they were transferred to temperature-controlled 

incubators under a 16:8 L:D cycle and maintained at 15 and 30oC. A preliminary study was 

carried out in which 20 virgin adult females and males were reared as individual pairs on rice 

plants in perspex boxes at 23oC, 16:8 L:D for 1, 2 and 4 days and then transferred to 15, 23 and 

30°C. Each container was checked daily to record the date of egg hatch as indicated by the 

emergence of first instar nymphs. The aim of this experiment was to determine the time required 

for mating to occur and to check that eggs could develop and nymphs emerge at the two 

acclimation temperatures. At 15oC there was no nymph emergence after 25 days and few nymphs 

had emerged after 35 days. To overcome this problem, nymphs were allowed to emerge from 

eggs that had developed at 23oC and were then transferred to 15°C. For the 30°C treatment, males 

and females were kept at 23°C for 4 days (mating period) and then transferred to the higher 

temperature. The nymphs were held at 15oC for 5 days and at 23 and 30oC for 2 days prior to 

exposure in the experiments. These acclimation periods reflected the times taken (to the nearest 

day) at which it could be ensured that individuals were still in the first instar when used in 

experiments. At 15, 23 and 30°C the insects moulted to adult after 50-55, 35-40 and 18-20 days 

post-egg hatch respectively. The adults were therefore in the same, directly comparable stage of 

development in all experiments (Piersma and Drent, 2003; Frazier et al., 2008). During rearing 

and acclimation through the nymphal instars at the three temperatures N. lugens were kept in 
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plastic containers on rice seedlings. Males and females could be identified at the late fifth instar 

stage and were separated at this time to prevent mating.  

5.3.2 Critical thermal minimum, maximum and coma temperatures 

 Insect locomotor activity is controlled by the nervous system and consists of coordinated activity 

that allows selection of environments with favourable conditions, including temperature (Prosser 

and Nelson, 1981). Thus, measurement of activity thresholds provides an insight into the thermal 

limits of N. lugens. The critical thermal minimum (CTmin), maximum (CTmax), chill coma 

temperature (CCT) and heat coma temperature (HCT) were measured using the system developed 

by Hazell et al. (2008), comprising an arena within an aluminium block attached to a circulating 

alcohol bath.  

The initial temperature within the arena was set at the rearing or acclimation temperature (15, 23 

and 30oC). A sample of 10 first-instar nymphs, adult females or males was placed in the arena 

and allowed to settle for 15 min after which the temperature was decreased to 10oC or increased 

to 35oC at 0.5oC min-1. Thereafter, the temperature within the arena was decreased from 10 to      

-10oC or increased from 35 to 55oC at 0.1oC min-1
; these cooling and heating rates were selected 

to minimise any ‘cold or heat hardening’ response during the change in temperature (Hazell et al., 

2010a). The movement of N. lugens was recorded using a digital video camera (Infinity 1-1; 

Lumenera Scientific, Canada) with a macro lens (Computar MLH-10X, CBC Corp., New York, 

NY) positioned over the arena and linked to a desktop computer. Data on insect movement and 

temperature were recorded simultaneously by video capture software (Studio Capture DT; Studio 

86 Designs, UK). The CTmin and max were the temperatures at which the insect ceased coordinated 
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movement and became immobile; the CCT and HCT were the temperatures at which the last 

movement of an appendage (antenna, leg) occurred. Each experiment was repeat with a further 

sample of 10 individuals of each life cycle stage (n = 20).  

5.3.3 Lethal temperatures  

For the lower lethal (LLT) and upper lethal temperature (ULT) experiments, 10 first-instar 

nymphs or adults were placed in a 0.9 ml Eppendorf tube (with five replicates of 10 specimens at 

each exposure temperature), and then placed at the bottom of a glass test tube suspended in a 

programmable alcohol bath (Haake Phoenix 11 P2; Thermo Electron Corp., Germany with 

temperature accuracy of ± 0.5oC). The samples were held at their respective rearing or 

acclimation temperatures (15, 20 or 30oC) for 30 min to reduce the stress associated with 

handling and then cooled or heated to a range of temperatures at 0.5oC min-1. When the 

temperature in the alcohol bath reached the target temperature, the insects were held at this 

temperature for the required period of time to ensure that the entire sample experienced the 

exposure temperature; preliminary experiments indicated that 2 and 6 min respectively were 

required for nymphs and adults to reach thermal equilibrium with the set temperature. Thereafter, 

all samples were heated or cooled back to their rearing temperature at 0.5oC min-1 and then 

transferred to recovery trays (transparent plastic boxes, 16 x 8.5 x 28 cm3 with 1.22 mm 

ventilation mesh) containing rice plants at 23oC, 16:8 L:D. Mortality was assessed 72 h after 

exposure. The data were analyzed by Probit in Minitab 15 (Minitab Inc., 2007) to estimate the 

temperature at which 50% of the sample of was killed (the LLT50 and ULT50). Handling controls 

revealed no bias between treatments with 99% survival.  
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An analysis of variance (ANOVA) was used to test for differences in CTmin, CTmax, HCT, CCT, 

ULT50 and LLT50 between life cycle stages within the same rearing temperature. Where 

significant differences occurred, the data were further analysed by Tukey's honest significance 

difference post-hoc test to separate statistically heterogenous groups. A split plot method was 

used to analyse the interaction between temperature and life cycle stage. All analyses were 

conducted using SPSS statistical software.  

 

5.4 Results 

5.4.1 Critical thermal minimum, maximum and coma temperatures  

The effect of acclimation on the critical minimum and chill coma temperatures of N. lugens is 

shown in Table 5.1. Within each acclimation temperature, the results indicated that the adult 

stages had significantly lower CTmin than nymphs at 15 (F2, 57 = 135.97, p < 0.001) and 23oC (F2, 

57 = 13.99, p < 0.001), but there was no difference at 30oC. Additionally, CTmin did not differ 

between the sexes at 23oC. Likewise, the CCTs of adults were significantly lower than for 

nymphs at 15 (F2, 57 = 323.85, p < 0.001), 23 (F2, 57 = 147.39, p < 0.001) and 30oC (F2, 57 = 

180.50, p < 0.001). The CCT also differed significantly between the sexes at 15 and 30oC, but not 

at 23oC. The changes in mean CTmin of first instar nymphs, adult females and adult males across 

the three temperatures were significant (F2, 114 = 125.39, p < 0.01). There was however, no 

difference in mean CTmin among nymphs, adult females and adult males (F2, 114 =0.12, p=0.727), 

nor between the interaction of temperature treatment and life cycle stage. By comparison, there 

was a significant effect of rearing temperature on CCT (F2, 114 = 200.91, p < 0.01), with a 



90 
 

difference between life cycle stages (F2, 114 = 16.17, p < 0.01) but not in the interaction between 

treatment and life cycle stage (F2, 114 = 0.79, p = 0.456).  

Table 5.1 Mean CTmin and chill coma temperature (CCT) ± SE of N. lugens acclimated to 15, 23 

and 30oC (n= 20 for each life stage and sex).  

Index Rearing 

temperature 

(oC) 

Mean temperature (oC) F value, p (Two way ANOVA) 

Nymphs Adult 

female 

Adult 

male T*L Treatment 
Life 

stages 

CTmin 15 

23 

30 

12.5±0.3 

15.3±0.3 

17.6±0.7 

8.1±0.2 

13.1±0.4 

16.4±0.9 

8.8±0.2 

12.9±0.4 

16.4±0.6 

F=0.49 

p=0.609 

F=125.39 

p<0.001 

F=0.12 

p=0.727 

CCT 15 

23 

30 

6.2±0.2 

6.7±0.2 

6.8±0.1 

-1.2±0.3 

2.1±0.2 

2.9±0.2 

-0.3±0.2 

2.6±0.2 

3.5±0.2 

F=0.79 

p=0.456 

F=200.09 

p<0.001 

F=16.17 

p<0.001 

 

Acclimation at 15°C reduced both the CTmin and CCT in N. lugens (Figures 5.1 and 5.2). There 

was a significant difference in CTmin between acclimation temperatures for nymphs (F2, 57 = 

28.69, p < 0.001), adult females (F2, 57 = 54.77, p < 0.001) and adult males (F2, 57 = 77.01, p < 

0.001) (Figure 5.1). Similarly, populations acclimated to 15oC had a lower CCT than those reared 

at 23 or acclimated at 30oC (Figure 5.2). The CCT differed significantly between acclimation 
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temperatures for nymphs (F2, 57 = 3.37, p = 0.041), adult females (F2, 57 = 101.44, p < 0.001) and 

adult males (F2, 57 = 99.23, p < 0.001). However, the CCT of first instar nymphs acclimated at 

15oC was similar to those maintained at 23oC. 

 

Figure 5.1 CTmin of N. lugens acclimated at 15oC (white bars), 23oC (black bars) and 30oC 

(cross-hatch bars. Mean CTmin of A) first instar nymph B) adult females and C) adult males. 

Mean values with the same letter within each graph frame are not significantly different (p ≤ 

0.05); n = 20 for each life cycle stage. 
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Figure 5.2 Chill coma temperature (CCT) of N. lugens acclimated at 15 (white bars), 23 (black 

bars) and 30oC (cross-hatch bars). Mean CCT of A) first instar nymph B) adult females and C) 

adult males. Mean values with the same letter are not significantly different (p ≤ 0.05); n = 20 for 

each life cycle stage. 
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The effect of acclimation on the critical maximum and heat coma temperatures of N. lugens is 

summarised in Table 5.2. The CTmax was significantly lower in first instar nymphs than adults at 

15 (F2, 57 = 59.77, p < 0.001), 23 (F2, 57 = 33.55, p < 0.001) and 30oC (F2, 57 = 7.84, p < 0.001). 

There was no difference between the sexes at 23oC nor between nymphs and adult females at 

30oC. In the same way, the adult stage had a significantly higher HCT than nymphs at 15 (F2, 57 = 

89.47, p < 0.001), 23 (F2, 57 = 68.21, p < 0.001) and 30oC (F2, 57 = 33.96, p < 0.001). HCT also 

differed significantly between the sexes and was higher in females at all acclimation 

temperatures. No individuals survived exposure at the HCT.  

Across the three temperatures there was a significant effect of rearing temperature (F2, 114 = 

39.11, p < 0.001), with a difference between life cycle stages (F2, 114 = 20.35, p < 0.001), but not 

in the interaction between rearing temperature and life cycle stage (F2, 114 = 0.51, p 

0.601).Similarly, changes in rearing temperatures had a significant effect on mean HCT (F2, 114 = 

43.02, p < 0.01), with difference between life cycle stages (F2, 114 = 29.09, p < 0.01), but not in 

the interaction between rearing temperature and life cycle stage (F2, 114 = 0.96, p = 0.386). 
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Table 5.2 Mean CTmax and heat coma temperature (HCT) ± SE of N. lugens acclimated to 15, 23 

and 30oC (n= 20 for each life stage and sex).  

Index Rearing 

temperature 

(oC) 

Mean temperature (oC) F value, p 

Nymph Adult 

female 

Adult 

male T*L Treatment Life stages 

CTmax 15 

23 

30 

34.2±0.2 

34.9±1.3 

37.2±0.1 

36.0±0.1 

37.0±1.0 

37.3±0.1 

36.6±0.1 

37.4±0.7 

37.7±0.1 

F=0.51 

p=0.601 

F=39.11 

p<0.001 

F=20.35 

p<0.001 

HCT 15 

23 

30 

37.6±0.1 

37.7±1.3 

41.0±0.3 

41.6±0.3 

43.4±1.7 

45.0±0.1 

40.6±0.2 

42.0±1.8 

43.2±0.5 

F=0.96 

p=0.386 

F=43.023 

p<0.001 

F=29.09 

p<0.001 

 

The CTmax and HCT of all life stages examined were highest in populations acclimated at 30 and 

lowest in those acclimated at 15°C (Figures 5.3 and 5.4). There were significant differences in 

CTmax between acclimation temperatures for nymphs (F2, 57 = 47.88, p < 0.001), adult females (F2, 

57 = 18.91, p < 0.001) and adult males (F2, 57 = 21.38, p < 0.001) (Figure 5.3). Similarly, N. lugens 

acclimated to 30oC had a higher HCT than those reared at 23°C or acclimated at 15oC (Figure 

5.4). HCT differed significantly between temperatures for nymphs (F2, 57 = 89.47, p < 0.001), 

adult females (F2, 57 = 68.21, p < 0.001) and adult males (F2, 57 = 33.96, p < 0.001). 
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Figure 5.3 CTmax of N. lugens acclimated at 15 (white bars), 23 (black bars) and 30oC (cross-

hatch bars). Mean CTmax of A) first instar nymph B) adult females and C) adult males. Mean 

values with the same letter are not significantly different (p ≤ 0.05); n = 20 for each life cycle 

stage. 
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Figure 5.4 Heat coma temperature (HCT) of N. lugens acclimated at 15 (white bars), 23 (black 

bars) and 30oC (cross-hatch bars. Mean HCT of A) first instar nymph B) adult females and C) 

adult males. Mean values with the same letter are not significantly different (p ≤ 0.05); n = 20 for 

each life cycle stage. 
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5.4.2 Lethal temperatures 

The LLT50 and ULT50 of N. lugens acclimated to 15, 23 and 30°C are summarized in Table 5.3. 

Within each acclimation temperature adults had significantly lower LLT50 than first instar 

nymphs at 15°, F1, 8 = 47.21, p < 0.001, 23°, F1, 8 = 6.92, p = 0.030 and at 30oC, F1, 8 = 11.73, p = 

0.009. Also, within the three acclimation temperatures, the mean (± SE) ULT50 of adults was 

significantly higher than for first instar nymphs at 15°, F1, 8 = 7.49, p = 0.026, 23°, F1, 8 = 17.52, p 

= 0.003 and at 30oC, F1, 8 = 45.58, p < 0.000.  

Across the three temperatures, the LLT50 was lower in both nymphs and adults at 15°, 23° and 

30°C respectively and the ULT50 correspondingly higher when acclimated at the higher 

temperatures. From two way ANOVA analyses, there was a significant effect of rearing 

temperature on mean LLT50 (F2, 24 = 37.45, p < 0.001), with a difference between life cycle stages 

(F2, 24 = 49.81, p < 0.001), but no difference in the interaction between the treatment and life 

cycle stage (F2, 24 = 2.57, p = 0.098). By comparison, the changes in mean ULT50 across the three 

temperatures was significant (F2, 24 = 35.76, p < 0.001), with a difference between the life stages 

(F2, 24 = 11.39, p = 0.003) and in the interaction between the temperature treatment and life stage 

(F2, 24 = 6.54, p = 0.005). 

The LLT50 of N. lugens decreased with an increasing rearing temperature (Figure 5.5). The LLT50 

differed significantly between the three acclimating temperatures in both nymphs (F2, 12 = 10.41, 

p = 0.002) and adults (F2, 12 = 37.78, p < 0.001) (Figure 5.5A and 5.5B).  However, within the 

same life cycle stage, the LLT50 of nymphs acclimated to 15°C and the 23oC population were 

similar, as were adults acclimated to 30oC and those reared at 23oC.  
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An increase in acclimation temperature increased the ULT50 of N. lugens in both life cycle stages 

and sexes. The ULT50 was significantly different between acclimation temperatures in both 

nymphs (F2, 12 = 22.82, p < 0.001) and adults (F2, 12 = 18.45, p < 0.001) (Figure 5.6A and 5.6B). 

However, no differences were found in the ULT50 of first instar nymphs reared at 23 and 30oC, 

nor between adults reared at 15 and 23oC. 

Table 5.3 LLT50 and ULT50 of nymphs and adults of N. lugens at 15°, 23° and 30°C. 

Index Rearing 

temperature (oC) 

Mean temperature (oC) F value, p 

Nymphs Adults T*L Treatment Life stages 

LLT50 15 

23 

30 

0.5 ±0.4 

2.3±0.4 

3.6±0.8 

-2.7±0.4 

0.9±0.5 

2.1±0.3 

F=2.57 

p=0.098 

F=37.45 

p<0.001 

F=49.81 

p<0.001 

ULT50 15 

23 

30 

40.8±0.4 

41.8±0.1 

42.9±0.1 

42.1±0.3 

42.5±0.1 

43.6±0.1 

F=6.54 

p=0.005 

F=35.76 

p<0.001 

F=11.39 

p=0.003 
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Figure 5.5 Lower lethal temperature (LLT50) of first instar nymphs and adults of N. lugens 

acclimated to 15o (white bars), 23o (black bars) and 30o (cross-hatch bars). Mean LLT50 of A) 

first instar nymph and B) Adults. Mean values with the same letter are not significantly different 

(p ≤ 0.05); n = 50 at each exposure temperature. 
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Figure 5.6 Upper lethal temperature (ULT50) of first instar nymphs and adults of N. lugens 

acclimated to 15o (white bars), 23o (black bars) and 30oC (cross-hatch bars). Mean ULT50 of A) 

first instar nymph and B) Adults. Mean values with the same letter are not significantly different 

(p ≤ 0.05); n = 50 at each exposure temperature. 
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5.4.3 Low and high temperature changes in thermal thresholds 

A total of 48 independent measurements of the thermal thresholds of N. lugens were made across 

the three temperatures (Tables 5.1, 5.2 and 5.3). In comparison with the population in culture at 

23°C, acclimation at 15°C consistently lowered the measured values, and acclimation at 30°C 

resulted in corresponding increases (Table 5.4).  

The temperature difference in comparison with the 23°C reared population was greater in 12 

indices in samples acclimated at 15°C and in 4 when acclimated at 30°C. In a comparison of the 

acclimation responses between nymphs and adults reared at 23°C and acclimated at either 15 or 

30°C, the temperature differential was greater for adults in 14 of the 20 indices.  These data 

indicate that under the acclimation regimes applied to N. lugens most increases in cold tolerance 

were greater than heat tolerance, and that acclimation over a generation compared with a single 

life stage was more likely to increase tolerance across the thermal spectrum. 
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Table 5.4 Temperature differential (°C) in thermal thresholds of N. lugens after acclimation at 

15o and 30oC in comparison with a population maintained at 23oC. 

 

Thermal indicator 15oC 30oC 

Nymphs CTmin 2.8 2.3 

 

Chill coma 0.5 0.1 

 

CTmax 0.7 2.3 

 

HCT 0.1 3.3 

Adult females CTmin 5.0 3.3 

 

Chill coma 3.3 0.8 

 

CTmax 1.0 0.3 

 

HCT 1.8 1.6 

Adult males CTmin 4.1 3.5 

 

Chill coma 2.9 0.9 

 

CTmax 0.8 0.3 

 

HCT 1.4 1.2 

Nymphs LLT50 1.8 1.3 

 

ULT50 1.0 1.1 

Adults LLT50 3.6 1.2 

 

ULT50 0.4 1.1 
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5.5 Discussion and conclusion 

Temperature can have a marked effect on physiological processes (Terblanche et al., 2008). 

Many ecthotherms live in environments which experience daily or seasonally fluctuating 

temperatures (Armitage and Stinson, 1980), and in some regions of the world, these short term 

variations occur within an era of longer term global climate change. The ability to cope or 

respond to changes in temperature can have a major impact on survival (Bradley, 1978; Rinehart 

et al., 2007). The general conclusion to emerge from this study is that N. lugens, a species with a 

wide distribution in tropical and sub-tropical areas, is able to acclimate to temperatures that are 

both lower and higher than its rearing temperature, with corresponding decreases and increases in 

thermal thresholds, including its lethal temperatures. It has been suggested that many 

poikilothermic species show complete or partial compensation in metabolic rate and movement 

following acclimation in either low or high temperature regimes because of changes in the 

enzyme activity in muscle cells (Al-Marzouk, 1991, Chen et al., 2001).  

At extremes of cold and heat, many insects respond by a loss of motor coordination and 

equilibrium that are reversible, and occur with smaller changes in temperature than are required 

to inactivate enzymes. Development at high temperatures and associated acclimatory responses 

may allow N. lugens to live in a range of ‘high thermal environments’ and to survive the highest 

summer temperatures in such areas because their critical temperatures may change adaptively. 

Moreover, by modifying their temperature tolerance range, N. lugens can mitigate the effects of 

both short term environmental fluctuations and longer term seasonal changes.  
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When first instar and adult N. lugens were acclimated at 15°C, all lower thermal thresholds 

(CTmin, CCT and LLT50) decreased relative to the population maintained at the culture 

temperature of 23°C, and in turn, these indices were lower at 23° than at 30°C. In a similar 

pattern, all the higher thresholds (CTmax, HCT and ULT50) increased relative to the 23°C culture 

when acclimated at 30°C, and these upper thermal values were higher at 23° than at 15°C (Tables 

5.1-5.3). The processes by which insects can increase their cold tolerance and maintain activity at 

lower temperatures include the synthesis of cryoprotectants (Wang et al., 2006) and heat shock 

proteins (Feder and Hofmann, 1999; Sørensen et al., 2003; Rinehart et al., 2007), decrease in 

body water content, (Gates, 1980), and changes in metabolic rate in colder environments or 

seasons (Piccione and Baust, 1977). Heat shock proteins function as molecular chaperones during 

periods of stress, binding to other proteins to minimize the detrimental effects of misfolding and 

then promoting the return of these proteins to their normal conformations when favorable 

conditions again prevail (Rinehart et al., 2007).  

Increases in cold tolerance after ‘cold acclimation’ have been observed in a number of species. 

For example, Overgaard et al. (2008) found that in an exposure of Drosophila melanogaster for 

60 h at 0oC, more than 80% of flies acclimated at 15oC survived but there was 100% mortality of 

flies that had been maintained at 25oC; the LLT50 decreased by 1.5oC in the 15oC acclimated flies 

in comparison with those reared at 25oC. Likewise, the cold tolerance of the fruit flies Ceratitis 

capitata and C. rosa cultured at 25oC was increased after acclimation at 20oC for 7 days 

(Nyamukondiwa and Terblanche, 2010). Also, the rapid cold hardening response first reported in 

the flesh fly Sarcophaga crassipalpis (Lee and Baust, 1985) has since been found to be common 

in insects across a range of species from different trophic guilds, climatic origin and voltinism. 
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Powell and Bale (2005) found that rapid cold hardening occurred in nymphs and adults of the 

grain aphid Sitobion avenae that had been cultured at 20°C, and that a further rapid increase in 

cold hardiness could be induced in populations that had been acclimated at 10°C.  

This study also showed that acclimation at 30°C could increase heat tolerance in terms of 

changes in the ULT50, CTmax and HCT. Under conditions of heat stress insects up-regulate heat 

shock proteins to minimize stress-induced protein aggregation and facilitate removal of damaged 

protein (Krebs and Feder, 1998; Feder and Hofmann, 1999; Edgerly et al., 2005). The importance 

of the heat shock protein response for insects has been well reported (Feder and Krebs, 1998; 

Feder and Hofmann, 1999; Salvucci et al., 2000; Kim et al., 2008). In general, however, the scale 

of responses at high temperatures is less than after acclimation at a lower temperature as was 

found in this study. Overgaard et al. (2008) also found that heat tolerance of D. melanogaster was 

not influenced by acclimation at 15, 20 and 25oC, while Lachenicht et al. (2010) reported that 

heat knockdown resistance of Acheta domesticus was more responsive than chill coma recovery 

time to acclimation at 25, 29 and 33oC. In nature, upper and lower thermal limits both decline 

with latitude, but the decrease is more pronounced for lower thermal limits (Huey, 2010). 

There are a number of reasons that may explain why changes in heat tolerance in response to 

acclimation occur over a narrower temperature range than changes in cold tolerance. First, there 

is a difference in physiological problems posed by high and low temperatures in terms of effects 

on the structural integrity of biomolecules (Edgerly et al., 2005; Gullan and Cranston, 2010). The 

damage and death caused by high temperature is attributed to protein denaturation, membrane 

and enzyme structure alteration, and water loss or dehydration (Hazel, 1995; Somero, 1995; 

Koffler et al., 1957; Kumar et al., 2000; Hance et al., 2007; Dillion et al., 2010). Inherently, the 
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stability of non-covalent bonds that govern the complex structure of proteins also determines the 

upper thermal limits and below this threshold there are many different but interrelated 

temperature-dependent biochemical reactions (Gullan and Cranston, 2010). The potential 

deleterious effects of low temperature differ from heat stress in a number of ways. In general, 

extreme low temperature exposure mainly involves a change in the state of water within the 

organism from liquid to solid (Wharton, 2002). To minimise this problem the insects may possess 

one or several mechanisms e.g. synthesis of cryoprotectants (and heat shock proteins) that allow 

survival at such cold extremes (Feder and Hofmann, 1999; Sørensen et al., 2003; Rinehart et al., 

2007). Also, the physiological and biochemical problems caused by low temperature seem to be 

more frequently reversible than with heat stress (Hazell et al., 2008, Hazell et al., 2010a). 

Second, insects are vulnerable to fluctuations in environmental temperature because of effects on 

metabolic rate (Prosser and Nelson, 1981; Hazel, 1995; Krebs and Holbrook, 2001). As 

temperature decreases, metabolism slows as the kinetic energy imparted to chemical reactions 

also decreases. Moreover, at thermal extremes, nervous systems are often impaired before other 

functions and hence behavioural responses may be negatively impacted before protein 

denaturation occurs (Prosser and Nelson, 1981). Thus, as temperature decreases, insect 

movement will stop at species-specific values (Hazell et al., 2010a). The temperature at which 

insects cease movement at low temperature (CTmin) is however, normally above their lower lethal 

threshold and does not change protein structure; hence this effect is potentially reversible. By 

contrast, an increase in temperature within the ‘favourable range’ for development will increase 

the metabolic rate of the insect (Gullan and Cranston, 2010). As a result, when environmental 

temperatures increase above the optimum temperature to the CTmax and HCT, the effect on 
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mobility is usually irreversible as these temperatures are at or close to the upper lethal 

temperature (Piyaphongkul et al., 2012a). In addition, with increases in metabolic rate, the higher 

consumption of energy or nutrients may compromise other cellular functions (Krebs and 

Holbrook, 2001). 

Last, acclimation to temperature perturbation may be deleterious with respect to fitness and 

impose costs on the organism (Bennette and Lenski, 1997,) such as changes in cell metabolism 

that follow a physiological response (Krebs and Holbrook, 2001). For example, high expression 

of heat shock proteins may alter the specific activity of important enzymes because the defence 

proteins interfere with enzymatic processes within the cell (Krebs and Loeschcke, 1996; Edgerly 

et al., 2005). Thus with N. lugens, although they are able to synthesise heat shock proteins (Kim 

et al., 2008), there may be a trade-off in this response with negative impacts on growth and 

development (Krebs and Feder, 1997) explaining, at least in part, why acclimation to high 

temperature occurs over a relatively narrow range.  

Information acquired from this study on the critical thermal thresholds and acclimatory ability of 

N. lugens can be related to the possible effects of climate warming on the distribution of this 

species in temperate sub-regions in Asia. Many studies have reported a progressive warming 

trend for most regions in Asia, which is most pronounced over northern and north-eastern areas 

e.g. China, Japan, South Korea, Vietnam and India (Wigley et al., 1980; Ramanathan et al., 2007; 

Kim, 2010). There is the suggestion that long-term summer and winter climate variations in 

China may be connected to the warming trend in the sea surface temperature of the Indian Ocean 

and increases in greenhouse gas emissions (Hu et al., 2003). Climate models indicate that 

increases of 2-3oC are likely over the next century (Wigley et al., 1980) and extreme high 
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temperature events may occur in temperate regions such as the high temperatures and severe 

droughts that occurred in many areas in 1994, including northern China, South Korea and Japan 

(Yoo et al., 2004). Comparisons of the acclimation ability of N. lugens at 15, 23 and 30oC 

demonstrated some ability to survive at low temperature; for example, approximately 50% of 

15oC-acclimated nymphs and adults survived at 3.6 and 2.1oC respectively. These levels of cold 

tolerance, at least in short term exposures, suggest that there would be some winter survival in 

China, Japan and South Korea. Also, in some areas in the Asian temperate sub-region where year 

round survival is currently not possible, the combined effects of a warmer climate and cold 

acclimation may further aid the survival of N. lugens in such areas. Changes in distribution linked 

to climate change may have impacts on the agricultural importance of N. lugens across its current 

distribution. There are however, two important caveats to this conclusion. Firstly, natural winter 

exposure will be for longer periods of time than in laboratory experiments used to determine 

lethal limits, and secondly, the relatively high threshold temperature at which eggs hatch (15°C) 

would limit the development of such populations (Kuno, 1979; Dyck and Thomas, 1979; 

Piyaphongkul et al., 2012b). This is the main explanation as to why populations of N. lugens in 

tropical areas can remain in paddy fields throughout the year, whereas in temperate regions such 

as Japan and South Korea, the population is replaced in the summer of each year by immigrants 

from more southerly regions (Khush, 1979; Kuno, 1979; Rosenberg and Magor, 1983; Seo et al., 

2009b; Seo et al., 2010).  

A further area of interest arising from this study is whether the limited acclimation ability of N. 

lugens to high temperature will be sufficient protection against extreme heat stress events that 

will occur as part of climate warming. Many studies have now provided evidence that south-east 
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Asia (the area including Burma, Cambodia, Thailand, Laos, peninsular Malaysia, Vietnam, the 

Philippines, and Indonesia), has warmed by at least 0.3oC over recent decades (Heaney, 1991) 

and temperatures are projected to increase by 1.1 to 4.5oC by the year 2070 (Peh, 2007). Malhi 

and Wright (2004) reported that all tropical rainforest regions have experienced warming at the 

mean rate of 0.26±0.05oC per decade since 1960. Moreover, increasingly frequent extreme 

weather events have occurred across the Asia-Pacific region over the same time periods (Gong et 

al., 2004; Griffiths et al., 2005; Francisco, 2008; Choi et al., 2009). Correlations between mean 

temperature and the frequency of extreme temperatures are strongest in the tropical Pacific Ocean 

from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern 

Japan (Griffiths et al., 2005). On the basis of analyses of temperature data from 91 stations in 15 

countries in the South pacific from 1961 to 1998, Manton et al., (2001) reported that the annual 

number of hot days and warm nights had significantly increased over the time period, with a 

corresponding significant decrease in the annual number of cool days and cold nights. In general,  

there is less seasonal change in surface air temperatures in the tropics than in other regions, hence 

tropical insects are adapted to a relatively uniform and narrow temperature range with the result 

that at the extremes of the acclimation range, the preferred temperature may not change (Deutsch 

et al., 2008; Larsen et al., 2011b). This may render tropical species more sensitive and vulnerable 

to climate change. The data from this study supports this view; thus, although N. lugens 

acclimated at 30oC are more able to survive at extreme high temperatures than populations reared 

at 15 and 23oC, where natural populations are already living close to their upper thermal limits, 

the limited acclimation response to high temperature may not be sufficient to protect against 

irregular extreme events. More generally, increasing temperature and associated heat stress in 

south-east Asia have the potential to modify the abundance and distribution of N. lugens as 
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ectothermic organisms perform increasingly sub-optimally at the high end of their thermal 

tolerance (Bickford et al., 2010, Piyaphongkul et al., 2012a). Climate warming and extreme 

events are also likely to exert negative effects on other tropical species (Corlett and Lafrankie, 

1998; Dudgeon, 2000). 

In summary, there have been few previous studies that have combined investigation of the 

physiological, behavioural and ecological responses of insects to temperature, especially with 

regard to tropical species, related in part to difficulties of characterising the thermal environments 

occupied by species of interest (Bryant et al., 2002; Edgerly et al., 2005). Information gained 

from this study on the scale of acclimation responses and impacts on critical thermal thresholds 

provide a basis for translating such ecophysiological data to natural environments, allowing some 

integrated modeling of climate, regional population dynamics and pest status. 
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CHAPTER 6  

Effects of Heat Stress on the Development and Fecundity of                       

the Brown Planthopper Nilaparvata lugens  

6.1 Abstract 

This study investigated the effects of sub-lethal high temperatures on the development and 

reproduction of the brown planthopper Nilaparvata lugens. When first instar nymphs were 

exposed at their ULT50 (41.8oC) mean development time to adult was increased in both males and 

females, from 15.2 ± 0.3 and 18.2 ± 0.3 days respectively in the control to 18.7 ± 0.2 and 19 ± 0.2 

days in the treated insects. These differences in development arising from heat stress experienced 

in the first instar nymph did not persist into the adult stage (adult longevity of 23.5 ± 1.1 and 24.4 

± 1.1 days for treated males and females compared with 25.7 ± 1.0 and 20.6 ± 1.1 days in the 

control groups), although untreated males lived longer than untreated females. Total mean 

longevity was increased from 38.8 ± 0.1 to 43.4 ± 1.0 days in treated females, but male longevity 

was not affected (40.9 ± 0.9 and 42.2 ± 1.1 days respectively). 

When male and female first instar nymphs were exposed at their ULT50 of 41.8oC and allowed to 

mate on reaching adult, mean fecundity was reduced from 403.8 ± 13.7 to 128.0 ± 16.6 eggs per 

female in the treated insects. Following exposure of adult insects at their equivalent ULT50 

(42.5oC), the three mating combinations of treated male x treated female,  treated male x 

untreated female, and untreated male x treated female produced 169.3 ± 14.7, 249.6 ± 21.3 and 

233.4 ± 17.2 eggs per female respectively, all significantly lower than the control (403.8 ± 13.7). 
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Exposure of nymphs and adults at their respective ULT50 temperatures also significantly 

extended the time required for their progeny to complete egg development for all mating 

combinations compared with the control. Overall, sub-lethal heat stress inhibited nymphal 

development, lowered fecundity and extended egg development time. 

 

6.2 Introduction 

The effects of climate change on organisms and ecological communities are a highly topical 

issue. Insects are a taxon with limited ability to regulate their body temperature and are thus 

directly impacted by both prevailing weather and longer term climate change. Research on insect-

climate interactions has focused on the measurement of thermal thresholds and lethal limits (Klok 

et al., 2004; Renault et al., 2005; Klose et al., 2008; Hanna and Cobb, 2007), responses to 

manipulated conditions representing different scenarios of climate warming (Estay et al., 2009; 

Hegland et al., 2009; Bale and Hayward, 2010; Hofmann and Todgham, 2010) and shifts in 

distributions or changes in phenology detected through analyses of long term datasets (Kersting 

et al., 1999; Parmesan et al., 1999; Karban and Strauss, 2004; Terblanche and Chown, 2006; 

Musolin, 2007; Liefting et al., 2010, Nethrer and Schopf, 2010). In general, more is known about 

the low temperature ecophysiology of insects (Block et al., 1990; Bale et al., 2000; Shreve et al., 

2004; Powell and Bale, 2005; Sinclair and Roberts, 2005; Lapointe et al., 2007; Elnitsky et al., 

2008; Macmillan and Sinclair, 2011) than the effects of high temperatures, though upper thermal 

limits have been measured for a number of species (Fischer et al., 2010; Hazell et al., 2010a; 

Chidawanyika and Terblanche, 2011; Zerebecki and Sorte, 2011; Piyaphongkul et al., 2012a). 
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Also, whilst many studies have measured critical thermal thresholds at both low (Harrington and 

Cheng, 1984; Shreve et al., 2004; Iranipour et al., 2010; Hazell and Bale, 2011; Macmillan and 

Sinclair, 2011) and high temperatures (Woodrow and Grace, 1998; Hallman et al., 2005; Renault 

et al., 2005; O’Neill and Rolston, 2007; Terblanche et al., 2008; Lalouette et al., 2011), less is 

known about the impacts of sub-lethal thermal stress on surviving individuals, though  effects on 

development and reproduction have been reported (Okasha, 1968; Okasha, 1970; McDonald et 

al., 1997; Morgan, 2000; Hance et al., 2007). Climate change can affect terrestrial ectothermic 

species by modifying the structure of their physical environment, and by the associated changes 

in the thermal regime or temperature profile of the habitat (Heath et al., 1971; Miles, 1994; 

Warren et al., 2001). The mechanistic link between the biophysical environment and individual 

performance will directly affect demographic (e.g. survivorship, growth and reproduction) and 

population level phenomena (e.g. density and age structure) (Dunham et al., 1989). Thus, a 

central issue in insect ecophysiology is how environmental factors such as temperature affect 

physiological performance (Angilletta Jr. et al., 2002; Klok et al., 2004; Kingsolver et al., 2007; 

Lailvaux and Irschick, 2007; Overgaard et al., 2008). Temperature has a direct effect on the 

growth and development of insects (Knapp and Casey, 1986; Blanckenhorn, 1997; Mehrparvar 

and Hatami, 2007; Bowler and Terblanche, 2008; Sanuy et al., 2008; Angilletta Jr. et al., 2010). 

The temperature-development relationship is approximately linear, increasing progressively to a 

maximum level beyond which the rate decreases and the response curve becomes markedly 

asymmetrical through the effects of heat stress and approaching lethality (Huey and Bennett, 

1990; Kingsolver and Woods, 1997; Huey and Berrigan, 2001; Folk et al., 2007; Lapointe et al., 

2007; Rezink et al., 2009). In addition, both longevity and fecundity of insects reach a maximum 

at species-specific optimum temperatures and more or less symmetrically decrease at both the 
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lower and upper limits of tolerance (Irwin and Lee, 2000; Zani et al., 2005). Understanding the 

behavioural and physiological responses of insects to thermal stress will inform predictions about 

how climate warming could affect distributions, changes in pest status, and the likelihood of 

species extinctions (Amarasekare and Savage, 2012). A number of studies have investigated the 

effects of temperature on development and fecundity e.g. Nilaparvata lugens (Hou and Lee, 

1984; Chu and Yang, 1985; Lee and Hou, 1987; Noda et al., 1995; Cohen et al., 1997; Krishnaiah 

et al., 2005; Chen et al., 2011), small brown planthopper Laodelphax striatellus (Okasha, 1970; 

Zhang et al., 2008; Liu and Zhang, 2012), the butterfly Pararge aegeria (Berger et al., 2008) and 

the pea leafminer Liriomyza huidobrensis (Huang et al., 2007). 

The brown planthopper Nilaparvata lugens is the most serious rice pest in Asia, affecting a wide 

range of economically important rice crops that arose from the green revolution (Sōgawa, 1982; 

Saxena and Barrion, 1983; Visarto et al., 2006; Chen, 2009; Dupo and Barrion, 2009). 

Nilaparvata lugens is a ‘sucking pest’ which removes sap from the xylem and phloem tissues of 

the rice stem (Liu et al., 2010a). Severely damaged rice plants desiccate through the effects of 

feeding and ovipositor damage, a condition known as ‘hopper burn’ (Du et al., 2009). Nilparvata 

lugens is also a vector of rice virus diseases, such as ‘grassy stunt’ (Khush and Ling, 1974; Dyck 

and Thomas, 1979; Sōgawa, 1982; Li et al., 2011). Nilaparvata lugens populations fluctuate in 

response to changing environmental conditions, both physical (abiotic) and biotic, and can lead to 

pest outbreaks (Win et al., 2011). In general, N. lugens is endemic to the Asian sub-tropical 

region, though its range can expand temporarily every summer as far north as Japan and South 

Korea through long-distance migrations from the tropics (Sōgawa, 1982; Gurr et al., 2011). As 

tropical species experience less seasonal variation in temperature they generally have narrower 
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thermal tolerances compared with temperate species (Ghalambor et al., 2006; Deutsch et al., 

2008; Bonebrake and Deutsch, 2012).  

Much of the previous research on N. lugens has focused on the effect of rearing at different 

constant or variable temperatures on development and fecundity (Mochida and Okada, 1979; 

Krishnaiah et al., 2005) and on the impact of variation in the dietary composition of resistant 

cultivars on reproductive output (Sōgawa, 1982; Cheng, 1985; Cohen et al., 1997). By 

comparison, the effects of sub-lethal heat stress on development and reproduction have received 

little attention but are likely to become more important in a scenario of climate warming. The 

mean summer day time high temperature in China varies from 37 to 41oC (Chen and Zhao, 1999) 

and can rise to 50oC in some sub-tropical countries (Giese, 2011).  Temperatures in this range are 

of interest because a recent study on N. lugens (Piyaphongkul et al., 2012a) found that nymphs 

were less heat tolerant than adults and concluded that in some parts of its distribution and under 

current climatic regimes, juvenile stages of N. lugens could become immobilised through heat 

stress and might be killed by high temperature exposure. Even though insects may survive 

thermal stress, there may however, be sub-lethal effects on key processes that would impact 

negatively on population abundance, and hence the pest status of species such as the brown plant 

hopper. This raises the interesting question of whether insects living in tropical areas are 

sufficiently heat tolerant to survive under current conditions and if they can also adapt to the 

more stressful climatic regimes that may be experienced in the future.   

 Using knowledge gained on the upper lethal temperatures of nymphal and adult N. lugens (see 

chapter 4), this study investigated the effects of sub-lethal high temperatures applied at different 

life cycle stages on the subsequent development, reproduction and longevity. 
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6.3 Material and methods 

6.3.1 Insect materials 

Adults of N. lugens were originally collected from the MARDI Research Station at Pulau Pinang 

in Malaysia. All insects in the stock culture and before and after experiments were reared on 

Oryza sativa L. cv. TN 1 at the maximum tillering stage, in cages or perspex boxes covered with 

1.22 mm ventilation mesh at 16:8 L:D and 23 ± 0.5oC. Newly-hatched first-instar nymphs (within 

48 h of hatching) and unmated adults (30-35 days old) were used in the experiments. All high 

temperature exposures were carried out in a programmable alcohol bath (Haake Phoenix 11 P2; 

Thermo Electron Corp., Germany) to an accuracy of ± 0.5oC. 

To investigate the effects of sub-lethal high temperature on development and fecundity of N. 

lugens, insects were exposed at their upper lethal temperature (ULT50). The ULT is determined 

by exposing insects at progessively higher temperatures and recording the mortality at each 

temperature. The ULT50 is the estimated temperature at which 50% of the population is killed 

(Hazell et al., 2010a). 

6.3.2 Effect of sub-lethal high temperatures on development and longevity 

A sample of 150 newly-hatched first instar nymphs were warmed from 20oC at 0.5oC min-1 to 

their ULT50 (41.8oC), held for 2 min and then cooled at the same rate back to 20oC; preliminary 

experiments had indicated the time required for nymphs to be held at the ULT50 to experience the 

desired exposure temperature. When insects are heated or cooled, for example, in an alcohol bath, 

there is a time delay between the bath reaching the set temperature and the insects achieving 
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thermal equilibrium at this temperature. This lag time is dependent on the thermal properties of 

the exposure system (McNabb and Wake, 1991) and in general, larger insects will take longer to 

reach thermal equilibrium with the surrounding environment (Digby, 1955; Forsman, 2000; 

Davidowitz et al., 2003; Tanaka, 2005). 

From the surviving population a sample of 50 nymphs was placed individually on rice seedlings 

in Perspex boxes in the standard rearing conditions. A control group of 50 first instar nymphs 

were held individually in the same conditions. Daily observations were made to record the time 

taken to moult to adult and total longevity in the treatment and control groups. As the gender of 

the treated and untreated insects could not be determined at the first instar stage, the male and 

female sample sizes were not equal. A split-plot method was used to determine the main effects 

of treatment on the development and longevity of N. lugens using temperature treatment and sex 

as fixed factors in SPSS 17.0 software. In the split plot design, sex was a split plot factor within 

the temperature treatment. 

6.3.3 Effects of sub-lethal high temperatures on fecundity  

6.3.3.1 Nymphs 

A sample 200 of newly-hatched first instar nymphs were heated from 20oC at 0.5oC min-1 to their 

ULT50 (41.8oC), held for 2 min, and then cooled back to 20oC at the same rate. Each surviving 

nymph was maintained individually in a Perspex rearing box containing a rice seedling. After 

moulting to adult, 20 treated females and males were randomly selected and transferred as pairs 

into separate rearing boxes with a rice seedling and maintained in the standard rearing conditions. 
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Fecundity was measured by counting the number of emerging first instar nymphs at daily 

intervals until there was no further emergence.  

6.3.3.2 Adults 

A sample of 600 newly-hatched first-instar nymphs were reared together in a number of Perspex 

boxes containing rice seedlings until the late fifth instar, after which males and females were 

reared separately on rice seedlings to obtain unmated adults. For each mating combination, 100 

adult virgin males and females were heated from 20oC at 0.5oC min-1 to their ULT50 (42.5oC), 

held for 6 min and then cooled back to 20oC at the same rate. From the surviving populations and 

a control population of the same age, 20 randomly selected pairs were established for each of 

three mating combinations: treated male x treated female, treated male x untreated female, and 

untreated male x treated female. 

The control group was created by allowing nymphs to develop from first to fifth instar after 

which the sexes were separated; 20 male and female pairs were taken from this stock and then 

allowed to mate and oviposit under the same conditions. Fecundity was measured in the same 

way as in the experiment with first instar nymphs.  

All data were analysed by one-way analyses of variance (ANOVA) to test for the effect of 

treatment on the number of emerged nymphs between treated nymphs and treated adults, and 

among adult mating combinations.  Where significant differences occurred, the data were further 

analysed using Tukey's honest significance difference post-hoc test. 
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6.4 Results 

6.4.1 Effect of sub-lethal high temperatures on development and longevity  

When first instar nymphs were exposed at their ULT50 of 41.8oC mean times required to 

complete nymphal development increased from 15.2 ± 0.3 (n = 31) and 18.2 ± 0.2 (n = 19) days 

for male and female nymphs to 18.7 ± 0.2 (n = 21) and 19.0 ± 0.2 (n = 29) days respectively in 

the treated insects. Exposure at the first instar increased the longevity of adult females (from 20.6 

± 1.1 to 24.4 ± 1.0 days), but adult males were unaffected (longevity of 25.7 ± 1.0 and 23.5 ± 1.1 

days for control and treated insects); however, mean development time of treated males was 

shorter than that for the control males. Mean total longevity was also increased in female insects 

(from 38.8 ± 1.0 to 43.4 ± 1.0 days), but the lifespan of male insects was similar between the 

control and treated males (40.9 ± 0.9 and 42.2 ± 1.1 days). 

The increase in mean development time from nymph to adult after exposure at the ULT50 was 

significant (F1, 96 = 64.64, p < 0.001), with a difference between the sexes (F1, 96 = 35.68, p < 

0.001) and in the interaction between the temperature treatment and sex (F1, 96 = 25.40, p < 

0.001). By comparison, there was no difference in adult longevity between the control and treated 

groups (F1, 96 = 0.53, p = 0.470), nor between the sexes (F1, 96 = 3.62, p = 0.060), but the 

interaction between the temperature treatment and sex was significant (F1, 96 = 7.34, p = 0.008). 

There was a significant effect of temperature on total longevity (F1, 96 = 8.76, p = 0.004), but no 

difference between the sexes (F1, 96 = 0.24, p = 0.628), nor in the interaction between the 

treatment and sex (F1, 96 = 2.65, p = 0.107).  
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The range of times required for nymphs to complete development to adult is shown in Figure 

6.1A and 6.1B. Whilst the overall range of treated males (17-20 days) and treated females (16-21 

days) was similar to that of the control groups (13-19 days for males and 17-20 days for females), 

within these ranges, the treated insects generally took longer to complete nymphal development 

in both males (F1, 50 = 66.25, p < 0.001) and females (F1, 46 = 6.96, p = 0.011). 

 

Figure 6.1 Range of development times for the nymphal stages of N. lugens after exposure at the 

ULT50. N = 50 for control (31 male and 19 female) and treatment (21 male and 29 female) 

groups. 
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The impact of exposure of first instar nymphs at the ULT50 temperature on development persisted 

into the adult stage; whilst the range of adult lifespans were again similar for treated females (8-

31 days) and controls (13-30 days), the treated insects lived longer (F1, 46 = 5.95, p = 0.019, 

Figure 6.2B). Treated males, however, did not live as long as the control group (10-30 days and 

14-35 days respectively, F1, 50 = 1.97, p = 0.167, Figure 6.2A). 

 

Figure 6.2 Range of development times for adults of N. lugens after exposure as first instar 

nymphs at the ULT50. N = 50 for control and treated groups (gender ratio as in Figure 6.1). 
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6.4.2 Effect of sub-lethal high temperatures on fecundity 

6.4.2.1 Treated nymphs vs treated adults 

After exposure at the ULT50 of 41.8 and 42.5°C at the first instar and adult stage respectively, 

mean egg production per female decreased from 403.8 ± 13.7 in the untreated control to 128.0 ± 

16.6 (treated nymph male x treated nymph female) and 169.3 ± 14.7 (treated male x treated 

female) (F2, 57 = 62.12, p < 0.001, Figure 6.3), with a range of 267-627 eggs per female in the 

control, 34–317 in the treated nymph group and 84-326 in the treated adult group. Overall, mean 

egg production was most reduced when insects were exposed as first instar nymphs (31.7% of 

control group), than when both sexes were exposed as adults (reduction to 41.9% of control). 

There was however, no difference in mean egg production between treated nymph male x treated 

nymph female and treated male x treated female (p = 0.278). 
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Figure 6.3 Mean number of eggs per female after exposure of first instar nymphs and adults of  

N. lugens at their ULT50. N = 20 pairs for each mating combination. Mean values with the same 

letter are not significantly different at p < 0.05 level. 

 

6.4.2.2 Treated adult mating combinations 

For the three mating combinations after exposure of adults at the ULT50 of 42.5°C the mean 

number of eggs produced per female were: 169.3 ± 14.7 (treated male x treated female, range 84-

326), 249.6 ± 21.3 (treated male x untreated female, range 75-436) and 233.4 ± 17.2 (untreated 

male x treated female, range 94-412); F3, 76 = 25.47, with all adult mating combinations 

producing significantly fewer viable eggs than the control, (p < 0.001, Figure 6.4). Overall mean 
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egg production was most reduced when both sexes had been exposed as adults (reduction to 

41.9% of control), with less effect when only one sex was exposed as an adult (61.8% for treated 

male and 57.8% for treated female compared with the control group). 

 

 Figure 6.4 Mean number of eggs per female after exposure of adults of N. lugens at their ULT50. 

N = 20 pairs for each mating combination. Mean values with the same letter are not significantly 

different at p < 0.05 level. 

 

Nilaparvata lugens produced viable eggs in all mating groups that included insects exposed at 

their respective ULT50 temperatures (Figure 6.5). For all the treatment groups there was however, 

some delay until the first egg hatched and the range of egg development times was also extended 
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in all the treated groups: 11-16 days for treated nymphs, 10-21 days for treated adult male and 

female, 11-16 days for treated male x untreated female, 10-16 days for untreated male x treated 

female, compared with 9-14 days in the control; all treated groups were significantly different to 

the control (F4, 95 = 10.62, p < 0.001), but there was no difference between any of the treated 

groups. 

 

Figure 6.5 Range of egg development times after exposure of first instar nymphs and adults of  

N. lugens at their ULT50. N = 20 pairs for each mating combination. 
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6.5 Discussion and conclusions 

Climate change operates on a global scale with wide-ranging and interrelated impacts across the 

social-economic-environmental interface (Leary and Kulkarni, 2007). A greater understanding of 

the effects of climate warming on agricultural and natural ecosystems will inform policies aimed 

at mitigating risks, particularly with regard to ectothermic organisms for which temperature is an 

important determinant of development, survival and distribution (Casey, 1992; Fox and Morin, 

2001; Frazier et al., 2006; Sanuy et al., 2008; Angilletta Jr. et al., 2010). Insects have evolved a 

range of behavioural, physiological and biochemical adaptations to survive both seasonal and 

more acute fluctuations in temperature (Overgaard et al., 2008), but there are limits above and 

below which species cannot survive. A recent study with the brown planthopper Nilaparvata 

lugens found that around 50% of first instar nymphs were killed by a brief exposure at 41.8°C 

(ULT50) and a similar proportion of adults at 42.5°C; both life cycle stages were immobilized by 

heat stress at lower temperatures (Piyaphongkul et al., 2012a; see chapter 4). Whilst lethal 

temperatures provide estimates of the limits to survival, it cannot be assumed that individuals that 

survive at temperatures close to these limits are unaffected by the exposure (Bale, 1996)  This 

study focused on the effects of sub-lethal high temperature exposure on the development and 

reproduction of N. lugens, a major pest of rice in tropical Asia.  

After exposure of first instar nymphs at the ULT50 of 41.8oC development time to adult was 

significantly increased in both male and female N. lugens. The combination of nymphal 

development time and adult longevity resulted in an overall extension of the total life span of 

females but not males. A number of studies that have shown that males and females of several 

insect species differ in absolute performance capacities (e.g. consumption of resources, 
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locomotor ability, duration of stress tolerance) when living under favourable (i.e. non-stressful) 

conditions (Milkman, 1963; Lailvaux et al., 2003; 2004; Lailvaux and Irschick, 2007). As 

temperature is known to have a major influence on various ‘rate-based’ processes in ectotherms 

(Lailvaux and Irschick, 2007), the data suggest that there may be inherent differences in the 

thermal biology of males and females, or that they are differentially affected by exposure to high 

temperature. The results from this study also support the view that sub-lethal high temperatures 

can have a negative impact on insect development, especially at temperatures close to the upper 

thermal limit (Howe, 1967; Bale and Hayward, 2010; Muller and Obermaier, 2012). The 

physiological explanation for impeded development following high temperature stress may be 

related to deleterious effects on respiratory metabolism (Davidson, 1944; Frazier et al., 2001; 

Nespolo et al., 2003; Woods and Hill, 2004; Harrison et al., 2010; Contreras and Bradley, 2011) 

or interference with the synthesis of hormones involved in the moulting process (Okasha, 1968; 

Lekovic et al., 2001).   

As the eggs of N. lugens are laid in plant tissue, it is not possible to determine accurately the 

number of viable eggs laid, as some eggs would be destroyed when dissected out of the rice 

stems. Emergence of first instar nymphs was therefore used as an indicator of reproductive 

output. High temperature stress exerted a number of sub-lethal effects on reproduction in N. 

lugens: fewer nymphs emerged from eggs, the period of egg development was extended, and 

some nymphs were unable to moult to the second instar. An important factor that may contribute 

to the negative effects of high temperature stress on both development and reproduction in N. 

lugens concerns the role of the intracellular yeast-like symbiotes (YLS). In N. lugens and 

Laodelphax striatellus the YLS are contained in the fat body and transmitted transovarially 
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between generations (Noda et al., 1995). The YLS are reported to play an important role in the 

abdominal segmentation and differentiation of planthopper embryos (Lee and Hou, 1987) and 

synthesise essential amino acids (that are vital for normal development) to compensate for 

variable amino acid availability in different plant hosts (Chen et al., 2011). Exposure of newly 

hatched nymphs of L. striatellus for 3 days at 35oC reduced the number of YLS by approximately 

90% (Zhang et al., 2008). The same treatment applied to nymphs of N. lugens for 3 days 

destroyed the YLS which in turn impeded development and ecdysis (Chen et al., 1981). 

Similarly, exposure at 32oC of 3 day-old adult females of N. lugens containing fully developed 

ovaries reduced the number of YLS and lowered fecundity (Hou and Lee, 1984; Lee and Hou, 

1987). 

In a study on the pine false webworm Acantholyda erythrocephala, eggs failed to hatch at around 

30oC (Lyons, 1988). It is possible that the secretion of hormones from neurosecretory cells 

associated with egg production is inhibited by a direct heat exposure (Okasha, 1970), but after 

transfer to favourable conditions, the reproductive activities are resumed in both males and 

females, but with a net reduction in overall fecundity. High temperature exposure may also 

reduce mating success, sperm viability and oviposition, all of which would impact negatively on 

generation-to-generation population abundance (Reynoldson et al., 1965; Harcourt, 1969). Also, 

whilst the effects of sub-lethal heat stress on N. lugens reported here arose from very brief 

exposures, in nature, the time periods involved would be much longer, unless the insects showed 

some form of avoidance behaviour. For example, large leaves of the host plants of Manduca 

sexta L. became hotter during the day than smaller leaves such that by selecting smaller leaves 

for oviposition, the thermal buffering of extreme temperatures would increase egg survival and 
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successful hatching (Potter et al., 2009). A further consideration is that populations reared under 

laboratory conditions over long periods of time and multiple generations (with periodic 

refreshment with wild stock) may become increasingly different from natural populations through 

genetic bottlenecks (Gullan and Cranston, 2010). However, as population of N. lugens had been 

in culture for less than two years (and completed 11-12 generations), such effects are unlikely 

with the studied colony. It is also recognised that the effects of extreme exposures associated with 

climate change will most likely be revealed over longer term timescales and be subject to 

important interactions with other physical and biological factors (Parmesan et al., 2000; Thibault 

and Brown, 2008).  

With these provisos in mind, the results from this study can be placed in a wider ecological 

context. Based on climatic data from various countries across the distribution of N. lugens, 

Piyaphongkul et al. (2012a) concluded that although mean temperatures were generally below the 

estimated ULT50 values of nymphs (41.8°) and adults (42.5°C) there were occasional extreme 

events that would overlap with these lethal temperatures, and that through heat-induced 

immobility at lower temperatures (at the CTmax), insects may not be able to move away from 

potentially lethal exposure, or as has been identified in this study, deleterious effects of 

reproduction may occur. When insects are heated (or cooled) at rates that are faster than those 

experienced in nature, the observed mortality (or other deleterious effects) may be caused by the 

range of temperatures experienced, the rate of change, the most extreme temperature experienced 

or a combination of all factors. When adult N. lugens were heated at 0.5oC min-1 to determine the 

ULT50 (42.5°C), no insects were killed until exposure at 42°C (Piyaphongkul et al., 2012a; see 

chapter 4). As the same rate of warming was used in these experiments it seems reasonable to 
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conclude that neither the change in temperature (approximately 20°) nor the rate of increase in 

temperature are detrimental to survival per se – rather, it is the highest temperature experienced 

that impedes development and lowers fecundity.  

Across the distribution of N. lugens in tropical Asia there is considerable variation in winter 

minimum temperatures and also the number of heat waves and more prolonged ‘hot spells’ in 

summer (UNFCCC, 2007). Extreme temperatures of over 45oC occur over the north-west part of 

the region during May-June, and several countries in this area have reported increasing surface 

temperature trends in recent decades. For example, the annual mean surface air temperature in 

Vietnam, Sri Lanka and India has increased by 0.30-0.57oC per 100 years (Lal et al., 2001). 

Moreover, regional climate change simulations for the 21st century by Atmosphere-Ocean 

General Circulation Models (AOGCMs) relative to the baseline period of 1961-1990 suggest that 

the area-average annual mean surface air temperature over land areas of Asia will be higher by 

1.6 ± 0.2oC in the 2020s, 3.1 ± 0.3oC in the 2050s and 4.6 ± 0.4oC in the 2080s as a result of 

increases in the atmospheric concentration of greenhouse gas emissions (Giorgi and Francisco, 

2000; Lal et al., 2001).  

Importantly, the influence of temperature on insect development is related not only to the daily or 

monthly mean values, but also to the rate of temperature change that will sometimes include 

extreme exposures (Thibault and Brown, 2008; Muller and Obermaier, 2012). Whilst the 

experiments reported here and the previous study on the lethal and behavioural thermal 

thresholds (Piyaphongkul et al., 2012a) suggest that N. lugens may be adversely affected across 

parts of its current distribution by high temperature stress and progressive climate warming, for 

some insects a warmer climate may be beneficial, as has been observed with the range expansion 
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of the coffee berry borer (Hypothenemus hampei) (Jaramillo et al., 2011). As such, the 

opportunity to benefit from a warmer climate (or not to suffer deleterious effects) lies in part in 

the difference in temperature between the upper lethal limit (and the range over which sub-lethal 

effects occur) and prevailing and future climatic regimes, and the ability to exploit new areas 

where necessary resources are available, but temperature has previously been a barrier to 

establishment and residency. Indeed, whilst Piyaphongkul et al. (2012a) highlighted areas where 

N. lugens might experience thermal stress under current climates, and would be more likely to do 

so in warmer climate (unless acclimation occurred), there were also parts of the distribution 

where winter low temperatures currently prevent year-round survival, but which might become 

more favourable through climate change. 

In summary, the results reported here indicate that the temperatures that kill around 50% of 

nymphs and adults of N. lugens also exert negative effects on development and longevity. The 

same exposures also lower fecundity through a combination of effects that operate through both 

of the sexes, in which the greatest effects occur when both males and females have experienced 

sub-lethal heat stress.  

The data presented in this chapter have been published on: 

Piyaphongkul J., Pritchard J. and Bale J.S (2012) Heat stress impedes development and lowers 

fecundity of the brown planthopper Nilaparvata lugens. PLoS ONE, 7 (10): e47413 
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CHAPTER 7 

Influence of Short Exposure to High Temperatures on Feeding Activity of    

the Brown Planthopper Nilaparvata lugens 

7.1 Abstract 

The effects of temperature stress on feeding behaviour were investigated in nymphs and adults of 

the brown planthopper Nilaparvata lugens on rice plants using the honeydew clock method. First 

instar nymphs and newly moulted adults were exposed at their respective LT50
 temperatures of 

41.8 and 42.5ºC and honeydew production observed in surviving insects over the following 15 

(nymphs) and 21 (adults) days.  Analysis of honeydew excreted by N. lugens over a period of 12 

hours per day indicated a logistic regression relationship between honeydew excretion (mm2) and 

time (days). The level of feeding activity as indicated by honeydew excretion increased in the 

order of treated male nymphs (♂tn) < treated female nymphs (♀tn) < control male nymphs (♂cn) 

< control female nymphs (♀cn) < treated adult males (♂ta) < treated adult females (♀ta) < 

control adult males (♂ca) < control adult females (♀ca).  Short exposure to sub-lethal high 

temperature impacted negatively on the feeding activities of N. lugens, with significantly less 

honeydew produced by treated insects. There were however, no differences between treated 

males and females in either the nymphal or adult stages. Honeydew production measured during 

the late fifth nymphal instar for ♂cn, ♂tn, ♀cn and ♀tn were 2.9046, 1.0171, 4.0043 and 1.3646 

mm2/12 hr/day respectively, whilst the excretory rates for ♂ca, ♂ta, ♀ca and ♀ta were 43.6215, 

14.9183, 93.7713 and 18.6637 mm2/12 hr/day. These results are discussed in relation to the 
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effects of climate warming and extreme events on the population biology and distribution of N. 

lugens.  

 

7.2 Introduction 

An assessment of pest distribution and damage caused by insects and disease is needed to 

implement near real-time and future strategies of pest management and crop protection (Pedigo, 

1995). The possible impacts of higher temperatures through climate warming on the feeding 

behaviour of crop pests is also an important issue in predicting future patterns of crop loss and 

yield. Despite a long history of research on insect pests across many species groups, information 

on the factors that limit feeding is sparse (Zvereva et al., 2010). Sap-sucking insects that feed on 

plant phloem are common worldwide, and can have greater negative effects on plant growth than 

leaf-chewing species (Buckley, 1987; James and Kelly, 2011). The relationship between sap-

feeding insects and their host plants drives important ecosystem processes in various habitats 

(Dungan et al., 2007). The sugar-rich honeydew excreted by the insects is a vital energy source 

for other insects and fungi (Sasaki et al., 1996; Blüthgen et al., 2004; Ivon Paris and Espadaler, 

2009). Typically, honeydew has lower levels of glucose and fructose and higher levels of 

complex sugars due to the enzymatic actions in the digestive system of sap-feeding species 

(Hendrix et al., 1992). Honeydew does not normally crystallize due to the reduced level of 

glucose. The mineral content of honeydew can be measured and this method is used to 

differentiate between honeydew produced by different species (Molyneux et al., 1990).  
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There have been a number of studies on honeydew production in different species including the 

pea aphid Acyrthosiphon pisum (Randolph et al., 1975), tea aphid Toxoptera aurantii (Baoyu and 

Chengsong, 2007), soybean aphid Aphis glycines (Wyckhuys et al., 2008), scale insect 

Ultracoelostoma sp. (Beggs et al., 2005; Dungan et al., 2007; James and Kelly, 2011), 

Coelostomidia wairoensis (Gardner-Gee and Beggs, 2007), Coccus hesperidum L. (Bogo and 

Mantle, 2000) and Nilparvata lugens (Begum and Wilkins, 1998; Chen, 2009; Ghaffar et al., 

2011; Qiu et al., 2011). Most studies on honeydew produced by sap-feeing insects has however, 

focused on its nutritional value for their parasitoids and other natural enemies (Fuchsberg et al., 

2007; Faria et al., 2008; Wäckers et al., 2008; Wyckhuys et al., 2008) 

The brown planthopper Nilaparvata lugens is widely regarded as the most serious rice pest in 

Asia, affecting a wide range of economically grown rice crops that arose from the green 

revolution (Sōgawa, 1982; Saxena and Barrion, 1983; Visarto et al., 2006; Chen, 2009; Dupo and 

Barrion, 2009). Brown planthoppers cause damage to rice directly by inserting their stylet 

mouthparts into the phloem of the rice stem and imbibing the nutritive sap which is rich in sugars 

and amino acids (Yao et al., 2012; Zhang et al., 2004; Liu et al., 2010b). The phloem sap and 

nutrients are transported into the gut of N. lugens and absorbed into the body via midgut cells, 

whist the excess sap after digestion is excreted as honeydew (Sōgawa, 1982; Begum and 

Wilkins., 1998; Kikuta et al., 2010). Feeding by a large number of N. lugens may result in drying 

of the leaves, wilting of the tillers, or death of the plant. The combined effects of feeding and 

ovipositor insertions lead to discolouration of plants, a condition known as "hopper burn" (Zhang 

et al., 2004; Du et al., 2009). Nilparvata lugens are also vectors of serious rice virus diseases such 

as grassy stunt and rice ragged stunt (Khush and Ling, 1974; Dyck and Thomas, 1979; Sōgawa, 
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1982; Gurr et al., 2011; Li et al., 2011). In general, N. lugens is endemic to the Asian tropical 

sub-region e.g. Thailand, Vietnam, Laos; however, they migrate northwards from the Indo-China 

peninsular every year to southern China in early summer (Otuka, 2008; 2009) and from southern 

China to central China, Japan and South Korea (Sōgawa, 1982; Catindig et al., 2009; Cheng, 

2009; Watanabe et al., 2009; Gurr et al., 2011). 

Outbreaks of N. lugens have threatened rice production and food security in Asia (Dyck and 

Thomas, 1979; Heinrichs and Barrion, 2004; Cheng, 2009; Watanabe et al., 2009; Chen et al., 

2011; Bottrell and Schoenly, 2012). Many studies have examined the physiological and 

behavioural responses of N. lugens in relation to their insecticide resistance (Chelliah and 

Heinrichs, 1984; Bao et al., 2012), and also the use of rice varieties that are resistant to the pest 

(Khush, 1979; Alam and Cohen, 1998; Alagar et al., 2007; Chen et al., 2011). It has however, 

now been demonstrated that N. lugens is highly adaptable and under selection pressure can 

improve their performance on resistant rice varieties e.g. increases in survival, body weight, 

honeydew production and reproduction (Chen, 2009; Horgan, 2009; Gurr et al., 2011). 

Honeydew excretion can be used as a measurement of feeding activity and consequently, as an 

index for assessing the susceptibility or resistance to N. lugens of new rice varieties (Begum and 

Wilkins, 1998; Chen, 2009; Ghaffar et al., 2011; Qiu et al., 2011). Ghaffar et al. (2011) reported 

that N. lugens produced lower numbers of honeydew droplets when feeding on resistant varieties 

of rice, which correlates with previously published data about the feeding behaviour on resistant 

and susceptible cultivars. There is some evidence that N. lugens feed less and excrete less 

honeydew when feeding on rice plants deficient in nitrogen (Sōgawa, 1982). Chen (2009) also 

suggested that lower levels of free amino acid, lower concentrations of reducing sugar and higher 



136 
 

concentrations of flavonoid glycosides in resistant rice varieties could be related to the observed 

reduced feeding performance in N. lugens. Furthermore, Seo et al. (2010) showed by electrical 

penetration graphs (EPG) that N. lugens have difficulty accessing the phloem of resistant rice 

varieties. Little is known however, about the effect of climate change on the feeding behaviour of 

N. lugens particularly, the effects of exposure to extreme heat stress events that are associated 

with climate warming.  

Temperature plays an important role in insect population dynamics (Muhamad and Fee, 1993; 

Way and Heong, 1994; Chapin III et al., 2000; Chown et al., 2010; Win et al., 2011), though 

insects possess a range of systems that restrict damage or depress metabolism under extreme 

temperatures (Huey and Kingsolver, 1993; Feder and Hofmann, 1999; Sørensen et al., 2003; 

Martin and Huey, 2008; Chown et al., 2010; Rezende et al., 2011). The surface air temperature 

warming effect across seasons is predicted to be lower in the tropics than at high latitudes (Heong 

et al., 1995; Lawrimore et al., 2001; Jansen et al., 2007) because the tropics are characterized by 

high year-round temperatures (Rosenzweig and Liverman, 1992). It has also been hypothesized 

from recent work that tropical species are already living close to their upper thermal limits 

(Deutsch et al., 2008; Tewksbury et al., 2008; Rezende et al., 2011; Piyaphongkul et al., 2012a), 

such that even a small change in temperature may have a negative impact on survival.  

Meteorological records suggest that global warming affects both mean climatic parameters and 

the frequency of extreme meteorological events (Bell et al., 2000; Rosenzweig et al., 2001; Yan 

et al., 2002). For example, surface air temperatures in tropical sub-regions can increase to around 

50°C in summer (Giese, 2011) and heat waves have become more frequent over the last century 

(Gornall et al., 2010). Population abundance of N. lugens fluctuates in response to the dynamic 
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abiotic and biotic conditions of their environment, leading to pest outbreaks (Win et al., 2011). 

However, it still remains unclear as to how abiotic stresses will affect N. lugens and its natural 

enemies, though some insight has been gained from recent studies (Bottrell and Schoenly, 2012). 

Bae et al. (1987) reported that the optimal temperature for egg hatch was 25oC and decreased 

below or above this temperature, and that development was impeded at 30oC or higher. In 

addition, higher temperatures affected N. lugens populations differently in different 

developmental stages (Heong et al., 1995), possibly due to the differential mortality of 

intracellular symbiotes (Bottrell and Schoenly, 2012). Exposure of nymphs and adults of N. 

lugens for brief periods of time at their ULT50 (temperature that kills 50% of population) exerted 

negative effects on both development and reproduction (Piyaphongkul et al., 2012b). There are a 

number of possible explanations for such deleterious effects of heat stress on parameters of 

fitness including direct damage to somatic tissues or a reduced ability to feed or assimilate 

essential resources from the phloem diet. Against this background the main aim of this study was 

to examine the effects of sub-lethal high temperature exposure on the feeding behaviour of N. 

lugens by measuring honeydew production in different life cycle stages.  

 

7.3 Material and methods 

7.3.1 Plant 

All experiments were carried out with Oryza sativa L. cv. TN 1 at maximum tillering stage 

because at this stage the increase of the tertiary tillers continues up to a certain point designated 

(De Datta, 1981). O. sativa cv. TN1 is also highly susceptible to all N. lugens biotypes and 
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carries no resistance genes against brown planthopper (Qiu et al., 2011). Plants were grown in a 

mix of three parts of ‘Levington’ M3 high nutrient compost (pH: 5.3-5.7, N280:P160:K350, 

Everris Limited, Epsilon House, West Road, Ipswich Suffolk, UK) and one part of ‘Silvaperl’ 

perlite (particle size 1.0-5.0 mm, William Sinclair Holdings PLC, Firth Road, Lincoln, UK). The 

rice seedlings were individually grown in plant pots (diameter, 3.5 and 5.5 cm, bottom and top, 

respectively; 5 cm in height, one seedling per pot) in a plant growth room under conditions of 

16:8 L:D cycle, 30oC, and 70% RH. 

7.3.2 Insects 

Stock populations of N. lugens were provided by the MARDI Research Station at Pulau Pinang, 

Malaysia in 2010. Rearing conditions have been described previously by Piyaphongkul et al. 

(2012a; see chapter 4). The N. lugens colony had been in culture on Oryza sativa L. cv. TN 1 at 

maximum tillering stage for 22 months prior to the experiment. As each generation takes 

approximately 7 weeks at 23ºC, there would have been approximately 14 generations before the 

experiments were conducted. All rearing containers were kept in a quarantine room at 23 ± 0.5oC, 

16:8 L:D cycle. Experiments were carried out with 2 day old first instar nymphs and 18-20 day 

old unmated adult females and males. 

7.3.3 Honeydew collection and analysis 

Honeydew was collected using the method described by Ghaffar et al. (2011) and Kemp (2011) 

by using a filter paper technique and modified honeydew clocks. The base of a 14 cm diameter 

Petri dish was placed on the hour-hand spigot of a clock that rotated through 360o over a 12 hour 

period. A 125 mm diameter Whatman filter paper disk was pre-treated with 0.1% water soluble 
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bromophenol blue (Merck KGaA, Germany) and 0.01 M HCl (Sigma-Aldrich Company Ltd., 

UK), and placed onto the bottom of the Petri dish. A rice plant was suspended horizontally over 

the Petri dish containing the filter paper. The plant and honeydew clock system were contained 

within a ‘Bug dorm’ insect rearing cage (Bug dorm model 42260; 22 cm length x 22 cm width x 

60 cm height – MegaView Science Co. Ltd., Fuya Road, Taichung, Taiwan). All experiments 

were carried in a quarantine room at 23 ± 0.5oC and 16:8 L:D cycle.   

 

Figure 7.1 Apparatus used for quantifying honeydew produced by N. lugens on rice plants over 

time.  

To study the effects of heat stress on the feeding behaviour of N. lugens 200 newly emerged 

nymphs (24-48 h old) and unmated adult females and males (15-20 days old) were collected from 

rice host plants. The nymphs and adults were then warmed from 20oC at 0.5oC min-1 to their 

respective ULT50 (41.8 and 42.5oC) and held at these temperatures for 2 min (nymphs) and 6 min 

(adults) based on the times required for the sample to equilibriate with the required temperature 
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(Piyaphongkul et al., 2012a). Insects used in experiments (n = 10 for both age groups) were 

selected at random from populations that survived exposure at the ULT50. Control groups were 

starved on moist filter paper for 4 h before the experiment. Honeydew was collected over a 12 h 

period (08.00 to 18.00) for 15 (nymphs) and 21 (adults) days. Each filter paper was photographed 

after daily removal from the Petri dishes. The honeydew droplets appeared as blue spots on the 

filter paper. The area of each droplet was measured using a digital scanner and “Image J” 

software according to the following formula ∑¶r2, where r = radius of each honeydew spot (mm). 

Data presented below represent the mean honeydew production per 12 h (± SE) expressed as the 

areas produced over the daily 12 hour observational periods.  A standard linear regression method 

was used to predict the amounts of honeydew excretion/12 h over the duration of the experiment. 

A split-plot method was used to determine the main effects of temperature treatment on 

honeydew production by N. lugens using temperature and sex as fixed factors in SPSS 20.0 

software. In the split plot design, sex was a split plot factor within the temperature treatment.  

 

7.4 Results 

7.4.1 Effects of sub-lethal high temperature exposure on feeding activity in nymphs 

When first instar nymphs were exposed at their ULT50 of 41.8oC, mean honeydew production/ 

12h was lower in the treated groups compared with the control (Figure 7.2). Control nymphs 

showed low feeding activity during the first four days after emergence, whilst in treated nymphs 

there was no measurable output of honeydew until day 7. Honeydew production increased in both 
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treated and control nymphs over the duration of the experiment. Linear regression analyses 

showed that there was a significant relationship between honeydew area, mm2 (Y) and the day 

(X), where Y = 0.067X -0.278 (R2 = 0.764, F1,148 = 478.89, p < 0.001) and Y = 0.089X -0.364 (R2 

= 0.745, F1,148 = 431.68, p < 0.001) for treated male and female nymphs, and Y = 0.212X – 0.556 

(R2 = 0.905, F1,148 = 1413.74, p < 0.001) and Y = 0.285X – 0.814 (R2 = 0.890, F1, 148 = 1195.39, p 

< 0.001) for control male and female nymphs respectively. Thus in all sample groups there was a 

strong relationship between honeydew excretion and time, with a significant increase in 

production over the duration of the experiment.  

 

Figure 7.2 Honeydew production/12 h by nymphs of N. lugens feeding on rice plants for 15 

days: A) control nymph males, B) control nymph females, C) treated nymph males and D) treated 

nymph females. N = 10 for each group. 
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Mean honeydew production by male and female treated and control nymphs over the duration of 

the experiment is shown in Table 7.1. Honeydew excretion differed significantly between treated 

and control nymphs on every day of the experiment and between the sexes on most days (both p 

< 0.001, Table 7.1). There was no interaction between temperature and gender over days 6-12 but 

this was significant over the last three days of observations.  

Table 7.1 Mean honeydew production (mm2/12 h) by temperature-treated and control nymphs of 

N. lugens (n =10). 

 

Honeydew production (mm2) F value, p 

T 

(day) 
♂cn ♂tn ♀cn ♀tn Treatment Sex T*S 

D4 0.3874 0 0.5391 0 F = 10.94  F = 0.09  F = 0.09  

 
    

p = 0.002 p = 0.767 p = 0.767 

D5 0.4936 0 0.6275 0 F =498.12  F = 7.10  F = 7.10  

 
    

p < 0.001 p = 0.011 p = 0.011 

D6 0.6450 0 0.8147 0 F =298.54  F = 4.03  F = 4.03  

 
    

p < 0.001 p = 0.052 p = 0.052 

D7 0.8077 0.04479 0.9630 0.1271 F =274.88 F = 2.69  F = 1.76  

 
    

p < 0.001 p = 0.11 p = 0.193 

D8 1.0133 0.1081 1.1996 0.1815 F =197.29  F = 3.59  F = 0.68  

 
    

p < 0.001 p = 0.066 p = 0.416 

D9 1.1192 0.2001 1.4835 0.2747 F =165.08  F = 7.02  F = 3.06  

 
    

p < 0.001 p = 0.012 p = 0.089 



143 
 

Table 7.1 (continued). 

 

Honeydew production (mm2) F value, p 

T 

(day) 
♂cn ♂tn ♀cn ♀tn Treatment Sex T*S 

D10 1.4783 0.2612 1.6994 0.4125 F =218.25  F = 4.83  F = 0.17 

 
    

p < 0.001 p = 0.035  p = 0.683 

D11 1.6957 0.3796 2.1023 0.4559 F =284.98  F = 7.58  F = 3.54  

 
    

p < 0.001 p = 0.009 p = 0.068 

D12 1.9393 0.4680 2.4941 0.7284 F = 241.36  F = 15.31 F = 1.99  

 
    

p < 0.001 p < 0.001 p = 0.166 

D13 2.1981 0.6185 3.0923 0.7215 F =310.99  F = 19.82  F = 12.47  

 
    

p < 0.001 p < 0.001 p = 0.001 

D14 2.5598 0.8032 3.3986 1.0780 F = 269.68  F = 20.12  F = 5.16  

 
    

p < 0.001 p < 0.001 p = 0.029 

D15 2.9046 1.0171 4.0043 1.3646 F =490.88  F = 50.17  F = 13.55  

     

p < 0.001 p < 0.001 p = 0.001 

 

7.4.2 Effects of sub-lethal high temperature exposure on feeding activity in adults 

The impact of exposure of adults at the ULT50 temperature (42.5oC) on feeding behaviour was 

similar to that observed with nymphs (Figure 7.3). The mean daily production of honeydew was 

lower on day 1 than on all subsequent days across all sample groups. The treated insects (male 

and female) produced less honeydew than the equivalent control, with untreated females having 
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the highest output. There was a significant relationship between honeydew excretion (Y) and the 

day (X) for both treated adult males and females, Y = 0.6X -2.086 (R2 = 0.727, F1,208 = 552.696, p 

< 0.001) and Y = 0.785X - 2.656 (R2 = 0.716, F1,208 = 524.489, p < 0.001), and for the control 

groups (Y = 1.561X – 4.726 (R2 = 0.703, F1,208 = 493.464, p < 0.001 for males, and Y = 3.155X – 

9.850 (R2 = 0.496, F1, 208 = 204.621, p < 0.001 for females). As with nymphs, honeydew 

production increased significantly over time in all sample groups.   

 

Figure 7.3 Honeydew production/12 h by adult N. lugens feeding on rice plants for 21 days: A) 

control adult males, B) control adult females, C) treated adult males nymphs and D) treated adult 

females. N = 10 for each group. 
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Mean honeydew production/12 h over the 21 day observation period was significantly reduced in 

treated insects (p < 0.001 on 20 days) and males produced significantly less honeydew on most 

days (Table 7.2).  Significant interactions between temperature treatment and gender (p < 0.05) 

were found in >50% of the daily observations. 

Table 7.2 Mean honeydew production (mm2/12 h) by temperature-treated and control adults of 

N. lugens (n = 10). 

 

Honeydew production (mm2) F value, p 

T 

(day) 
♂ca ♂ta ♀ca ♀ta Treatment Sex T*S 

D1 1.1260 

 

4.1732 

 

F = 67.11  F = 28.62  F =28.62  

     

p <0.001 p< 0.001 p < 0.001 

D2 2.0339 

 

4.2251 

 

F =363.33  F = 44.53  F =44.53  

     

p <0.001 p< 0.001 p < 0.001 

D3 3.4039 0.4547 4.6277 0.8329 F =333.61  F = 12.39  F = 5.55  

     

p <0.001 p = 0.001 p = 0.024 

D4 3.5425 0.8840 4.9328 1.2245 F =192.99  F = 17.48 F = 2.70  

     

p <0.001 p< 0.001 p = 0.109 

D5 4.1566 1.0487 7.2090 1.6469 F = 58.40  F = 10.35  F = 4.68  

     

p <0.001 p = 0.003 p = 0.037 

D6 4.5483 1.5686 7.3455 1.8988 F = 24.48  F = 3.37  F = 2.10  

     

p <0.001 p = 0.075 p = 0.156 
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Table 7.2 (continued) 

 

Honeydew production (mm2) F value, p 

T 

(day) 
♂ca ♂ta ♀ca ♀ta Treatment Sex T*S 

D7 4.6592 1.8605 8.6874 2.2137 F = 31.33  F = 6.99  F = 4.92  

     

p <0.001 p = 0.012 p = 0.033 

D8 5.1414 2.2051 9.9743 2.5553 F = 62.98  F = 15.78  F =11.80  

     

p <0.001 p< 0.001 p = 0.002 

D9 6.2261 2.5740 20.9751 2.7948 F = 44.129  F = 20.75  F =19.54  

     

p <0.001 p< 0.001 p < 0.001 

D10 8.1174 3.1149 13.9733 3.5408 F = 22.36  F = 3.70  F = 2.77 

     

p <0.001 p = 0.062  p = 0.105 

D11 9.8805 3.7836 17.8507 4.2162 F = 30.31  F = 5.50  F = 4.42  

     

p <0.001 p = 0.025 p = 0.043 

D12 10.7946 4.0984 19.4007 5.7090 F = 21.25  F = 5.34  F = 2.50  

     

p <0.001 p = 0.027 p = 0.122 

D13 13.1165 5.0396 26.4060 7.7302 F = 31.29  F = 11.16  F = 4.91  

     

p <0.001 p = 0.002 p = 0.033 

D14 16.6288 5.8153 28.5874 8.2264 F = 24.08  F = 5.12  F = 2.26  

     

p <0.001 p = 0.03 p = 0.142 

D15 14.8102 6.3026 41.4414 10.5508 F = 7.49  F = 4.61  F = 2.42  

     

p = 0.01 p = 0.039 p = 0.129 
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Table 7.2 (continued) 

 

Honeydew production (mm2) F value, p 

T 

(day) 
♂ca ♂ta ♀ca ♀ta Treatment Sex T*S 

D16 17.8203 6.6283 35.1025 10.0704 F = 46.51  F = 15.22  F = 6.79  

     

p <0.001 p< 0.001 p = 0.013 

D17 19.2035 7.7703 30.6142 10.9560 F = 31.31  F = 6.90  F = 2.19  

     

p <0.001 p = 0.013 p = 0.148 

D18 18.4892 9.8777 46.2147 9.0142 F = 64.35  F = 22.13 F =25.06  

     

p <0.001 p< 0.001 p < 0.001 

D19 23.1429 8.6951 38.9417 11.1763 F = 34.94  F = 6.55  F = 3.48  

     

p <0.001 p = 0.015 p = 0.07 

D20 31.2613 8.7795 57.9424 13.0517 F = 44.04  F = 9.29  F = 4.87  

     

p <0.001 p = 0.004 p = 0.034 

D21 43.6215 14.9183 93.7713 18.6637 F =106.31  F = 28.65  F =21.24  

     

p <0.001 p< 0.001 p < 0.001 

 

7.5 Discussion and conclusions 

The feeding process of N. lugens on rice host plants consists of a number of sequential steps 

including orientation to the plant, labial (mouthpart) exploration of the rice stem surface, stylet 

penetration into rice tissue accompanied by salivation, phloem sap acquisition from vascular 

bundles and honeydew excretion (Sōgawa, 1982; Jung and Im, 2005). Feeding and honeydew 
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excretion is substantially reduced on resistant cultivars (Choi and Park, 1999; Chen and Cheng, 

1979; Ghaffar et al., 2011, Li et al., 2011). Whilst insects generally have access to adequate water 

and carbohydrate sources (Wang et al., 2009; Johnson et al., 2011), higher temperatures above 

the optimum, and especially experience of extreme events, may have negative impacts on 

development and reproduction, or become lethal (Wang et al., 2009; Johnson et al., 2011).  

Recent studies on N. lugens found that exposure at ULT50 temperatures exerted such effects on 

both nymphs and adults, leading to the hypothesis that sub-lethal heat stress may interfere with 

feeding behaviour or dietary resource acquisition in surviving individuals. This study provides 

evidence to support this view. Thus high temperature exposure reduced subsequent feeding 

activity and honeydew production in both life stages of N. lugens and these effects persisted over 

15 and 21 days respectively; honeydew excretion also increased over these periods of observation 

and differed between sexes (Tables 7.1 and 7.2). Across all experimental groups honeydew 

production increased in the order treated male nymphs < treated female nymphs < control male 

nymphs < control female nymphs < treated adult males < treated adult females < control adult 

males < control adult females. The amount of honeydew excreted by females in the treated 

nymph and adult groups was 3-4x lower than in the equivalent control groups. Similarly, treated 

nymphal and adult males produced around 2-3x less honeydew than the respective controls.  

A study by Choi and Park (1999) also observed that N. lugens nymphs produce less honeydew 

than adults and that daily output was higher in females (43.6 – 55.2 mm2/female/day) than males 

(16.6-25.3 mm2/female/day). Honeydew production by adult females feeding on the susceptible 

TN1 cultivar was higher in this study than in previous investigations, but this may be related, at 

least in part, to the method used to quantify honeydew output. For example, Cheng (1985) 
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measured honeydew production from newly moulted adult females on susceptible rice cultivar 

TN1 and reported a value of 27.4-37.2 mm2/female/day by using a filter paper technique. 

Similarly, Begum and Wilkins (1998) examined the feeding activity of female N. lugens at the 

same stage of development and on the same rice cultivar and recorded honeydew output of 26.5-

32.4 mg/sachet/day using a parafilm sachet technique. In addition, Mollah et al., (2011) 

investigated the feeding response of four day old adult females on TN1 and found honeydew 

excretion of 49 mg/sachet/day using the same parafilm sachet technique. The differences in 

honeydew production in different studies (including this one) are most likely related to the 

different methods used to quantify honeydew excretion and the age of the insects when the 

observations were made. 

There are a range of possible effects of extreme temperatures that may explain the reduction in 

feeding or production of honeydew observed with the heat stressed N. lugens. Firstly, high 

temperatures denature proteins (Salvucci et al., 2000) and any effect on the mid gut proteins that 

facilitate uptake and transportation of sugars would be deleterious (Price et al., 2007; Kikuta et 

al., 2010) as these sugar transport proteins also appear to play a crucial role in sugar metabolism 

and energy acquisition (Wood and Trayhurn, 2003; Kikuta et al., 2010). Also, many important 

protein enzymes found in insects function as catalysts in cells and regulate metabolism 

(Thompson and Lee, 1994). Heat stress may modify the structure of sugar transporting proteins 

and nucleic acids by disrupting weak interactions such as vander Waals, ionic and hydrogen 

bonds that stabilize conformation (Neven, 2000). Although it has been reported that some 

proteins can return to a functional conformation after denaturation, little is currently known 

regarding such mechanisms in insects (Kanamori et al., 2010; Kikuta, 2010). If there is a decrease 
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in energy release from the sugar-rich phloem diet because of heat stress, this may result in 

delayed development, lower fecundity and suppressed population build-up (Bae et al., 1987; 

Piyaphongkul et al., 2012b). 

A second area of consideration is the close association in N. lugens with yeast-like symbiotes 

(YLS) located in fat body cells (Tang et al., 2010) that are vertically transmitted to the next 

generation via transovarian infection and proliferate by asexual budding (Noda et al., 1995; Lu et 

al., 2004). YLS have been postutated to play a number of important roles in N. lugens such as 

adaptation to resistant rice varieties (Lu et al., 2004; Chen, 2009), supply of nutrients required for 

normal embryonic and postembryonic development (Lu et al., 2004), and involvement in 

abdominal segmentation and differentiation of embryos for reproduction in adults (Hou and Lee, 

1984). Sasaki et al. (1996) suggested that uric acid synthesized by N. lugens after ingesting 

excess amino acids is stored in tissues rather than excreted and then recycled with the aid of its 

endosymbionts. YLS are symbiotically associated with every developmental stage of N. lugens 

and play an important role in nitrogen metabolism (Hongoh and Ishikawa, 1997; Lu et al., 2004). 

The numbers of YLS in N. lugens are however, deleteriously affected and eliminated by high 

temperature stress (Chen et al., 1981; Noda et al., 1995). In nature, surface air temperatures may 

increase above 40oC for short periods in many areas across the distribution of N. lugens e.g. 37-

41oC in China (Chen and Zhao, 1999), 47.8oC in India, 37.4-38.9oC in South Korea, 37.5-40oC in 

Bhutan, 42.5-47.2oC in Burma, 46.7oC in Nepal, 40.2-42.2oC in Philippines, and 40.4-42.7oC in 

Vietnam (MHERRERA, 2012). These high temperatures overlap the known lethal temperatures 

of N. lugens (Piyaphongkul et al., 2012a) and most likely their YLS, thus leading to reduced 

dietary metabolism and honeydew production, with related negative effects on fecundity, egg 
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viability and development (Piyaphongkul et al., 2012b; see chapter 6). Finally, there is the 

possibility that the YLS have a role with pathogen-related proteins to reduce defense reactions in 

plants in response to insect feeding (Zhang et al., 2004). Thus heat stress may destroy the YLS, 

allowing the plant to mount a defense response, and in turn, reduce the feeding activity of N. 

lugens.  

In summary, this study has shown that exposure at high temperatures that induce around 50% 

mortality in nymphs and adults of N. lugens also reduce the feeding activity of survivors as 

measured by the production of honeydew. As insects that survive such exposures are known to 

produce fewer viable eggs and have a much reduced fecundity (Piyaphongkul et al., 2012b), it is 

likely that a combination of a decrease in feeding activity or interference with the dietary 

metabolic functions of proteins and endosymbionts contribute to the observed deleterious effects 

on development and reproduction. These observations are of ecological and agricultural 

importance as temperatures capable of inducing these negative effects occur across many areas of 

the current distribution of this important pest.  As concluded in recent related studies on N. lugens 

(Piyaphongkul et al., 2012a; b), the impact of climate warming and extreme climatic events may 

be to make areas of the current distribution more or less favourable without necessarily changing 

the overall pest status of the brown planthopper world-wide. 
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CHAPTER 8 

General Conclusions 

Rice and its derived products is the main staple food for over half of the world’s population and 

is the most rapidly growing food resource in Asia and Africa in terms of the area under 

cultivation (Diouf, 2003). The intensification of rice production has required the extensive use of 

pesticides leading to water pollution and the destruction of the natural enemies of rice pests (Holt 

et al., 1992; Heong and Samson, 2012). The brown planthopper Nilaparvata lugens became the 

most serious insect ‘sucking pest’ of rice in Asia following the ‘green revolution’ (Catindig et al., 

2009; Bottrell and Schoenly, 2012). Although there have been extensive studies on the biology, 

ecology and pest status of N. lugens, relatively little is known about its thermal tolerance or the 

potential impacts of global climate change on its development, reproduction, feeding activity and 

distribution. This study is the first to investigate the effects of thermal stress on N. lugens. Whilst 

one focus of this research was to determine the effects of such thermal stress on the pest status of 

N. lugens, a further objective was to investigate the extent to which tropical insects are able to 

acclimate to higher temperatures, as might be experienced in various scenarios of climate 

warming. 

The accurate determination of temperature is vital in ecophysiological experiments, particularly 

those that focus on behavioural responses to temperature. The experiments described in chapter 2 

illustrate that thermal gradients can occur even within small exposure environments, hence the 

need to conduct calibration measurements so that activity thresholds such as the critical thermal 

minimum and maximum and coma temperatures can be determined with accuracy.  
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A further source of error in thermal biology experiments concerns the time required for the 

exposure environment and sample organisms to equilibriate at the same temperature, the ‘lag 

time’ (chapter 3). The first main conclusion is that body size has a significant influence on the 

time required for an organism to achieve thermal equilibrium with its environment and that 

smaller species reach this state most quickly. Also, the type and number of containers within 

which insects are confined affects the time required to reach thermal equilibrium, but these 

factors appear to have been rarely considered in thermal biology experiments. When a sample of 

insects was exposed in a plastic tube within a glass tube or directly within a glass tube, different 

periods of time were required to reach thermal equilibrium, related to different rates of transfer of 

thermal energy (Mattos and Gasper, 2002).   

The research described in this thesis on the effects of high temperature exposure and thermal 

stress on N. lugens can be summarized in four main conclusions. Firstly, although N. lugens can 

live at temperatures close to its upper thermal limits, occasional heat stress is detrimental to 

survival and likely to influence the current and future distribution (chapter 4). Secondly, N. 

lugens has less acclimatory ability to increase heat tolerance than cold tolerance (chapter 5). 

Thirdly, sub-lethal heat stress has a negative impact on development of eggs and later 

developmental stages and on fecundity (chapter 6). Lastly, exposure of N. lugens at their ULT50 

reduces the feeding activity of survivors, as measured by the production of honeydew (chapter 7). 

Whilst these conclusions are presented here as separate statements, they are clearly interrelated; 

for example, a reduction in feeding and dietary resource acquisition is likely to be a partial 

explanation for the observed effects on development and fecundity. The following sections 

explore these conclusions in more detail.  
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8.1 Upper thermal limits of N. lugens in natural environment 

The experiments on the upper activity thresholds and thermal limits (chapter 4) obtained data on 

three indices: critical thermal maximum (CTmax), heat coma temperature (HCT) and upper lethal 

temperature (ULT). These results indicated that across all measurements, nymphs were less heat 

tolerant than adults. The accurate measurement of upper thermal limits (and whether individuals 

can recover from exposure at the HCT) is important information as it provides a basis for 

assessing the likelihood of species such as N. lugens experiencing thermal stress under current 

climate conditions and the risk posed by higher temperatures that may occur through progressive 

climate warming.  

Nilaparvata lugens are generally found in tropical sub-regions where variation in surface air 

temperature between seasons is less than in other Asian sub regions and there is a 

characteristically high year-round surface air temperature (Mazur, 2011). Moreover, there has 

been an increasing frequency of extreme ‘high temperature’ events in summer in different parts 

of the distribution of N. lugens (Giese, 2011). Collectively, the upper thermal limit data indicate 

that N. lugens is already living close to its upper thermal threshold across part of its distribution. 

Future higher temperatures are likely to become an important limiting factor as the insects may 

be rendered immobile by heat stress or killed by extreme high temperature. This conclusion is 

further supported by the fact that the data obtained in these experiments relate to very brief 

exposures (typically less than hour), whereas in nature, once an individual is immobilised by heat 

stress, there is no other escape route. There are though other factors that may affect this 

conclusion, including the possibility of intraspecific variation in thermal tolerance in 
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geographically distinct populations and as yet, an unknown level of acclimatory ability (Fangue 

et al., 2006). This latter aspect was therefore investigated and is discussed in the next section. 

 

8.2 Nilaparvata lugens has less ability to increase heat tolerance than cold tolerance 

The studies in chapter 5 investigated the effects of acclimation at 15 and 30oC on the lower 

(CTmin, CCT and LLT50) and upper thermal limits (CTmax, HCT and ULT50) comparing with the 

standard rearing regime of 23oC. The thermal tolerance limits of both nymphs and adults changed 

significantly with acclimation and were correlated with rearing temperature.  

In relation to the focus of this project on heat stress, an important observation to emerge was that 

although acclimation at 30°C increased the CTmax, HCT and ULT50, heat tolerance increased less 

than cold tolerance, when N. lugens were reared at 15ºC. When these comparisons of acclimatory 

ability are interpreted in an ecological context, the data confirm that there is some ability to 

survive at the low temperatures experienced in temperate sub-regions e.g. China, Japan and South 

Korea; and although year round survival is not currently possible in these areas because of winter 

temperatures, a combination of acclimation and higher temperatures through climate warming 

may change this situation. Such changes in distribution linked to climate change will also have an 

impact on the agricultural importance of N. lugens across its current distribution, as a warmer 

climate may make some habitats more favourable, because of increased winter survival, and 

others less so, because of extreme summer heat stress.  
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The outcomes of experiments on upper lethal limits and irreversible heat coma are expressed in 

terms of the ratio of mortality to survivorship i.e. at the ULT50, approximately 50% of an exposed 

population will live or die. However, it cannot be assumed that the survivors are as ‘ecologically 

fit’ as individuals that have not experienced the same stress. For this reason, experiments were 

carried out on the effects of exposure at sub-lethal levels of heat stress. 

 

8.3 Sub-lethal heat stress impedes development and lowers fecundity in N. lugens 

Exposure of nymphs and adults of N. lugens at their respective ULT50 temperatures exerted 

negative effects on development and longevity (chapter 6). Insects that had experienced this heat 

stress took longer to complete their nymphal development and this exposure also extended the 

total life span of females. A further negative consequence of impeded development is that insects 

may be killed by natural enemies before reaching sexual maturity and reproducing. The 

physiological explanation for this disruption to development may be related to deleterious effects 

on respiratory metabolism (Harrison et al., 2010; Contreras and Bradley, 2011) or interference 

with the synthesis of hormones involved in the moulting process (Lekovic et al., 2001).   

The same sub-lethal exposures also lowered fecundity. This effect occurred when N. lugens was 

exposed as nymphs or adults, with the greatest effect observed when both males and females had 

been subject to sub-lethal heat stress. An important factor that may contribute to the negative 

effects of high temperature stress on both development and reproduction in N. lugens concerns 

the role of the intracellular yeast-like symbiotes (YLS) that are contained in the fat body (Noda et 

al., 1995; Tang et al., 2010). The YLS are reported to play an important role in the abdominal 
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segmentation and differentiation of brown planthopper embryos (Lee and Hou, 1987) and also 

contribute to synthesis of essential amino acids that are vital for normal development. A fully 

functioning complement of YLS may therefore compensate for the variable amino acid 

availability in different host plants (Chen et al., 2011). The data suggest that various activities 

such as egg development, oviposition, metamorphosis and mobility are all adversely affected at 

temperatures above 40oC and these effects may be related to the loss of large numbers of YLS 

(Chen et al., 1981; Hou and Lee, 1984; Lee and Hou, 1987; Zhang et al., 2008).  

 

8.4 Exposure of N. lugens at their ULT50 reduces feeding activity  

Sub-lethal heat stress may also impact on feeding behaviour and any reduction in feeding is likely 

to lead to slower development and lower fecundity. In sap-feeding species such as N. lugens, the 

production of honedew as an excretory product is commonly used as a measure of phloem 

acquisition. The experiments described in chapter 7 indicate that following a brief exposure to 

heat stress, there is a marked reduction in phloem intake. 

There are a number of possible explanations for the effects of extreme temperatures on the 

feeding behavior and honeydew production in heat-stressed N. lugens. Firstly, high temperatures 

denature proteins (Neven, 2000; Salvucci et al., 2000) and any effect on the mid gut proteins that 

facilitate uptake and transportation of sugars would be deleterious (Price et al., 2007; Kikuta et 

al., 2010), as these sugar transport proteins also appear to play a crucial role in sugar metabolism 

and energy acquisition (Wood and Trayhurn, 2003; Kikuta et al., 2010).  
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Secondly, heat stress may destroy the YLS which play a number of important roles in N. lugens, 

such as adaptation to resistant rice varieties (Lu et al., 2004; Chen, 2009), supply of nutrients 

required for normal embryonic and postembryonic development (Lu et al., 2004), and 

involvement in abdominal segmentation and differentiation of embryos for reproduction in adults 

(Hou and Lee, 1984). The numbers of YLS in N. lugens are however, deleteriously affected and 

eliminated by high temperature stress (Chen et al., 1981; Noda et al., 1995), thus leading to 

reduced dietary metabolism and honeydew production, with related negative effects on fecundity, 

egg viability and development (Piyaphongkul et al., 2012b).  

In summary, changes in the global climate have become more interconnected, having both direct 

and indirect effects on ecosystem responses. Ectothermic organisms are thought to be particularly 

at risk from global warming since their physiological performance is directly dependent on 

temperature. With knowledge from this study of the thermal limits of different life cycles stages 

of N. lugens, their acclimatory ability, and effects of sub-lethal heat stress on development, 

fecundity and feeding activity, it is reasonable to conclude that this pest species has the potential 

to become even more damaging as a result of climate change, but the areas experiencing severe 

pest damage may change over time. Thus, extreme high temperature events may become more 

common in summer in tropical sub-regions and locally too stressful in some areas, with negative 

effects on development, reproduction and survival. By contrast, higher temperatures in other parts 

of the distribution may in future allow year-round residency in areas where this is currently 

impossible.  
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8.5 Future research 

This study is one of the first investigations on the effects of high temperature stress on a tropical 

insect, using N. lugens as a model species. The extension of this approach to other tropical 

species would enable some general conclusions to be drawn. Even on the basis of the data for N. 

lugens, it is likely, however, that the upper thermal limits of other tropical insects are already 

overlapping current and future high temperatures, and unless the insects are able to evolve 

biochemical molecules that denature at higher temperatures than at present, there are likely to be 

areas where populations will suffer higher levels of mortality than at present, with a redrawing of 

distributions over time. With regard specifically to N. lugens it must be recognized that all of the 

experiments undertaken in this project were carried out under laboratory conditions, so it is 

difficult to extrapolate the data to field situations, not least because of the greater complexity of 

natural environments and the tri-trophic interactions between plants, herbivorous insects and 

natural enemies (Bale et al., 2002). The key challenges for future research in this area are 

therefore to conduct similar investigations on other tropical species, including comparisons 

between geographically distinct populations of widely-distributed species and with natural enemy 

species, and design field experiments to test the hypotheses derived from laboratory studies. 
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