Secure Information Flow: Analysis
and Enforcement

Adedayo Oyelakin Adetoye

A thesis submitted to

The University of Birmingham
for the degree of

DOCTOR OF PHILOSOPHY

School of Computer Science
The University of Birmingham
United Kingdom

April 2009

UNIVERSITYOF
BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

When a computer program requires legitimate access to confidential data, the
question arises whether such a program may reveal sensitive information to an
unauthorised observer. There is therefore a need to ensure that a program, which
processes confidential data, is free of unwanted information flow. This thesis
presents a formal framework for the analysis and enforcement of secure informa-
tion flow in computational systems such as computer programs.

An important aspect of the problem of secure information flow is the develop-
ment of policies by which we can express intended information release. For this
reasoninformation latticesand maps on these lattices are presented as models,
which capture intuitive notions aboutformationandinformation flow A defi-
nition of security is given, based on the lattice formalisatiomnédrmationand
information flow that exploits the partial order of the information lattice. The lat-
tice formalisation gives us a uniform way to enforce information security policies
under various gualitative and quantitative representations of information.

An input-output relational modelwhich describes how a system transforms
its input to publicly observable outputs with respect to a given attacker model, is
presented as a primitive for the study of secure information flow. By using the re-
lational model, various representations of information, which are shown to fit into
the lattice model of information, are derived for the analysis of information flow
under deterministic and nondeterministic system models. A systematic technique
to derive the relational model of a system, under a given attacker model, from the
operational semantics in a language-based setting, is also presented. This allows
the development of information flow analyses parametrised by chosen attacker
models.

A flow-sensitive and termination-sensitive static analysis calculus is presented
for the analysis of information flow in programs written in a determinigticile
language with outputs. The analysis is shown to be correct with respect to an
attacker model that is able to observe all program outputs and which can deter-
mine the termination or nontermination of program execution. The static analysis
also detects certain disjunctive information release. A termination-sensitive de-
pendency analysis is developed which demonstrates how, by employing abstract
interpretation techniques, other less precise but possibly more efficient informa-
tion flow analysis may be obtained. The thesis concludes with further examples to
highlight various aspects of the information flow analysis and enforcement frame-
work developed.

Contents

1 Introduction 1
1.1 Modelling InformationFlow 2
1.2 Deriving InformationFlow 4
1.3 Enforcing Secure InformationFlow 5
1.4 OverviewofThesis 5
1.5 Mathematical Preliminaries 8
2 Language-based Security 13
2.1 Language-based Approachto Security. 13
2.2 Multilevelsecurity 15
2.3 Type-based Certification. 17
2.4 Dependency Analysis 21
2.5 Equational Characterisation 24
2.6 PER Model of InformationFlow 26
2.7 Abstract Noninterference 28
2.8 Language-based declassification 32
2.9 Information-theoretic Characterisation 35
3 Lattice Model of Information and Information Flow 39
3.1 Modelling Information and Information Flow 40
3.1.1 A Lattice Model of Information 40
3.1.2 InformationFlow 41
3.2 Information Flow Policies 43
3.2.1 Information Flow Policy Patterns 43
3.3 Secure InformationFlow a7
3.4 System Models and Information Representation 48
3.5 Information Flow in Deterministic Systems 49
3.5.1 An Equivalence Relation Representation of Information . . 50
3.5.2 Lattice of Equivalence Relations 51
3.5.3 A PER Representation of Information 54

3.5.4 Latticeof PERS 56

3.6 Information Flow in Nondeterministic Systems 62
3.7 AQualitative Representation 63
3.7.1 Possibilistic Information Representation 63
3.7.2 Lattice of Possibilistic Information 65
3.8 A Quantitative Representation 69
3.8.1 Probability Measures and Entropy 69
3.8.2 Lattice of Probabilistic Information. 75
3.8.3 Deriving Probabilistic InformationFlow 77
Information Flow in Computational Systems 82
4.1 Operational Semantics and Observational Power 83
4.1.1 Labelled Transition Systems and Interaction 84
41.2 AttackerModels. L. 85
4.1.3 Deriving the Relational Model 87
4.2 TheWhileLanguage 88
4.2.1 WhileExpressions and Program States 89
422 WhileCommands 90
4.2.3 The Operational Semanticswhile 90
4.3 Semantic Information Flow Property 94
4.3.1 The Semantic AttackerModel 95
4.3.2 Defining the Information Flow Property 98
4.3.3 Termination Properties 99
4.3.4 Noninterference 101
4.4 Other Semantic Definitions of InformationFlow 103
441 ThePER SecurityModel 103
442 GradualRelease 107
4.4.3 Abstract Noninterference Attacker Model 109
4.5 Information Flow in Nondeterministic Systems 113
45.1 Possibilistic Nondeterminism 114
4.5.2 Probabilistic Nondeterminism 119
Information Flow Analysis of While Programs 127
5.1 MotivatingExamples 127
5.2 Information Flow AnalysiswithPERs 135
5.2.1 The AttackerModel 137
5.3 Inducing PERs by Expression Evaluation 137
5.3.1 Conditional InformationFlow 139
5.4 Static Analysis of Information Flow withPERs 140
5.4.1 Information Configurations 141

3.5.5 PERs and Disjunctive Information 58

542 Context-basedPERs 141

5.5 The InformationFlowRules 149

55.1 Analysis ofwrite Statements 150
5.5.2 Analysisoff statements 153
5.5.3 Analysis of Assignment Statements 155
5.5.4 Analysis ofvhile Statements L. 160
5.6 Static Information Flow Property 165
5.7 Correctness of StaticAnalysis 166
571 FlowSensitivity 192
5.7.2 Termination Properties 192
573 DeadCodeAnalysis 195
5.7.4 Implicit Flow Approximation 196
5.8 RelationalCorrectness 197
5.8.1 Judgements 199
5.8.2 RelationalHoarelLogic. 202
5.8.3 StaticAnalysis o 204
5.8.4 Improving the Precision of Information Flow Analysis . . 205
Abstract Information Flow Analysis 207
6.1 AbstractInterpretation. 208
6.1.1 Design Space for Approximate Analyses 209
6.2 Dependency Analysis 210
6.2.1 Dependency Abstractions 210
6.2.2 Semantics-Based Dependency Analysis 216
6.2.3 Disjunctive Dependency, Nontermination, Dead Code . . . 218
6.2.4 ADependency TypeSystem 220
6.2.5 SampleAnalyses 222
6.2.6 Correctness of Dependency Analysis 226
6.3 Flow-Sensitive Type Systems 230
6.3.1 Comparing the Type Systems 231
6.4 Improving the Precision of Expression Types 233
Analysis and Discussion 238
7.1 Policies for Authentication 238
7.1.1 Authentication Attack 242
7.1.2 Information-theoretic Characterisation 243
7.2 PoliciesFor Encryption 248
7.2.1 Nondeterministic Encryption 251
7.2.2 Disjunctive Key-CiphertextRelease 252
7.2.3 PerfectSecrecy 255
7.3 Policies for Statistical Analysis 256

7.4 ElectronicWallet 258

7.5 Conclusions 260

75.1 Main Contributions and Achievements 260
7.5.2 FutureWork 263
Appendix 266
A Proofs from Chapter 5 266

List

21
2.2
2.3
2.4
2.5

3.1

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5

5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

of Figures

The Volpano-Smith-Irvine Typingrules 20
The Volpano-Smith-Irvine Subtypingrules 21
Amtoft-Banerjee Independency Logic 24
Language-based Declassification 33
Robustness TypingRules 34
Information flow under two nondeterministic systems 68
TheWhileLanguage with OQutput 89
Operational semantics@fhile. 92
Reasoning about programsecrets. 93
ExtendingVhilewith Possibilistic Nondeterminism 114
The Operational Semantics\ahilePND 120
Explicit InformationFlow 128
Implicit Flow and a binary-valued Explicit Flow 129
Implicit Flows could be as dangerous as Explicit Copying 129
Assignments on all program paths must be considered 130
Program Output, or the lack of it, on all control-flow paths must
beconsidered 131
Accuracy: Semantic Analysis against Static Typing 133
Dead Code and InformationFlow 133
Information Flow in the Presence of Nontermination 134
Disjunctive InformationFlow 135
A program revealing the parity ofitsinput. 138
Conditional Information Flow 139
Calculus of InformationFlow 151
PER joins capture information flow via equation solving 152
lllustratingassignmentconditional andwrite analysis. 158
Linear search usingwéhileloop 162
Analysis of thevhileloop 162
Nontermination and unreachablecode 193

5.18 Adeadcode scenario. e 195

519 Core DDCC System [Ben04].. 200
5.20 Core Relational Hoare Logic[Ben04].. 201
6.1 Dependency Analysis and Flow Sensitivity 218
6.2 Disjunctive Dependency 219
6.3 Nonterminationand Dependency 220
6.4 An Algorithmic Dependency Type System 223
6.5 Assignments and Disjunctive Dependency 224
6.6 Outputs and Disjunctive Dependency 224
6.7 Nonterminationand Dependency 224
6.8 Flow-Sensitivity of Dependency Analysis 226
6.9 Hunt-Sands Flow-Sensitive Type Rules (Algorithmic Version) . . . 231
7.1 A Model of Authentication 239
7.2 Arogue authentication program 242
7.3 Secure versus Insecure DataBackup L. 250
7.4 TheOcclusionProblem 251
7.5 Disjunctive Key-CiphertextRelease 253
7.6 Non-Disjunctive Key-CiphertextRelease 254
7.7 Separate Key-CiphertextRelease 254
7.8 Average Salary Calculation 258
7.9 Insecure Average Salary Calculation 258
7.10 ElectronicWalletCheck 259
7.11 Electronic Wallet Attacks 260

Vi

List of Tables

5.1 Analysis of awhile statement

vii

Acknowledgements

I must first thank my supervisor, Eike Ritter, who masterfully introduced me to
formal research. Thank you for your constant support and for always throwing in
the right questions that have helped me immensely to clarify and discipline my
thoughts.

| thank Mark Ryan and Volker Sorge, members of my Thesis Group, for all
your very helpful suggestions and friendly words of advice.

| am fortunate to have a loving and supporting wife, Nike, who endured with
me throughout my academic studies. Thank you darling. Damilola, my beautiful
daughter, has been a constant source of pleasant distractions from academic work.

Many friends and colleagues at the school have made my study here a pleasant
one. Thank you all.

Finally, | thank my Father and Mother, who made many sacrifices that got me
to where | am today.

viii

Chapter 1

Introduction

Today, society is highly-dependent on information and computer networks. The
convenience of connecting computers and other personal devices, and the ease
with which this can be done, has made it ever more difficult to protect sensitive
information from being released in unwanted ways. The security of information
release has thus become a very important problem.

Secure information release secure information flovis not a new problem,
but the current standard security techniques do not provide a satisfactory solu-
tion to it. For example, techniques such as cryptography and operating system
access control lists, which can be used to limit access to sensitive information in
computer systems, are of little use once information has been decrypted and re-
leased to a program which requirdegitimate acces#o such information. Such
a program can release sensitive information maliciously, or inadvertently due to
programming flaws in it. There is a need for mechanisms through which we can
specify what information we want to release, and whereby we can check whether a

program that has access to such information conforms to the required information

flow specification.

This thesis develops a formal framework whereby we can model information
and information flow, which allows us to specify security policies to capture in-
tended information release. The analysis techniques developed allow us to check
whether a system that processes sensitive data conforms to the information release
specifications in a given policy. By these, we are able to enforce secure informa-
tion flow requirements, which is achieved by preventing programs from process-
ing data for which they have not been certified as having secure information flow

with respect to the release policy of that data.

1.1 Modelling Information Flow

The traditional approach to modelling information flow, or rather, the lack of in-
formation flow for the enforcement of security, is through tiominterferencee-
qguirement [GM82]. Noninterference preveiatisy confidential information from
propagating to unauthorised observers and is useful in multilevel security sys-
tems, where information must not flow frongh levels of security classifications
to low levels of security classifications. However, in practice (for example, during
authentication, encryption, and when performing statistical analyses), we often
have to, or want to release some information in a controlled manner. Noninterfer-
ence is not suitable under such circumstances. Noninterference as a policy model
is of limited use in practice [RMMGO01, Vol99a]. There is thus a need for a general
model for the specification of what information we intend to release.

In [SS05], a taxonomy of declassification mechanisms is introduced based on

what, where when and bywhominformation is released. This thesis focuses

on thewhatdimension, where we are interested in regulatiiatinformation an
observer can gain from a system that is processing sensitive data. For this purpose,
a lattice-theoretic model of information and information flow is introduced based
on the observation that securing what information an observer can gain alludes
to a notion of theevel of information that is considered safe to be released to
the observer. Furthermore, information is intuitivelgdered whereby we say
that one piece of information igreater or more informativethan another one.
This suggests an ordering of information, which we exploit in the lattice model of
information to define a notion of secure information flow.

The associated partial order of the information lattice captures the intuition
of information levels or the information order. This allows us to model the flow
of information as maps on the lattice of information, which describe how an ob-
server’s knowledge changes when observing a system that is causing information
flow. By using only the lattice structure in the definition of information flow and
security, we open up the possibility to use the same enforcement technique or
mechanism, regardless of the particular representation of information. Although
lattice-based techniques are often used in language-based security [SM03a], the
lattices are usually of security classes or security types in a multilevel system,
rather than lattices of information. The use of lattices as a general model of in-
formation has the advantage that it unifies various representations of information
under the same model for the enforcemenvbait declassification policies. This
makes it possible to use the same enforcement mechanism under different lattice-

based information representations.

1.2 Deriving Information Flow

Once a choice ofnformation representatiohas been made, we need to be able
to derive the information that a system may release in order to check whether the
system is secure with respect to an information flow policy. In this thie@ma-
tion representationbased orEquivalence Relationsr, more generallyPartial
Equivalence Relationsas well asFamilies of Setsre considered agualitative
representations of information. Undguantitativerepresentations, information-
theoretic measures are considered as representations of information. These repre-
sentations are all shown to fit into the lattice model of information.

An extensional input-outputlational modelis presented in the thesis as a
primitive for the analysis of information flow, which derives the information that
a system releases and links the system’s input-output semantics to its information
flow properties under a given representation of information. The simple idea is
that information released by a system is ultimately linked to how the system trans-
forms its secret inputs to publicly observable outputs. The relational model itself
may be defined parametric to a specified attacker model by relating inputs to the
outputs which that particular attacker can observe. Using the relational model,
analyses of information flow under deterministic and nondeterministic system
models are presented. Furthermore, the thesis demonstrates, in a language-based
setting, that the relational model-based analysis copes very well with information

flows due to nontermination.

1.3 Enforcing Secure Information Flow

Our objective is to enforce secure information flow by ensuring that only programs
with secure information flow have access to sensitive data. Thus, given an infor-
mation flow policy, which specifies our intentions about what information we al-
low to be released, an enforcement framework is needed that can decide whether a
system is safe with respect to that policy. A semantics-based approach to the anal-
ysis of information flow, which uses the system’s input-output relational model, is
proposed in this thesis. We demonstrate how to derive the relational model from
the operational semantics in a language-based setting. We also present a static
information flow analysis and a dependency analysis for a deterministic impera-
tive Whilelanguage with outputs. The analyses are used to check whether a given
program has secure information flow with respect to given policies. By this, we
can enforce the security of information flow by granting access only to programs

which have secure information flow.

1.4 Overview of Thesis

The objective of this thesis is to study the problem of secure information flow
and to develop techniques to model, analyse, and enforce secure information flow
in computer systems. The current chapter concludes by introducing some of the
mathematical definitions and notations used in the thesis. In Chapter 2, important
language-based techniques for the analysis and enforcement of secure information
flow are reviewed.

The goal of Chapter 3 is to model the notions of information and information

flow suitable for the definition of information flow policies. &lattice-based def-
inition agrees with the intuitive notions of information ordering and provides the
basis for the enforcement of secure information flow, where information release
is considered insecure with respect to a policy when it is greater than the levels
permitted in the policy. The notion of information levels is captured by the lattice
order. This approach has the advantage that the enforcement relies only on the
lattice properties, which can be applied independently of the particular represen-
tation of information that is used. Representations of information based on patrtial
equivalence relations, families of sets, and information-theoretic characterisations
are all shown to fit into the lattice model. Furthermore, Chapter 3 presents an
extensional, semantics-based, relational model approach to the analysis of infor-
mation released by a system, where the relational model describes how the system
transforms its inputs to publicly observed outputs. The relational model links the
input-output semantics of the system being analysed to the lattice-based represen-
tation of information that the system releases.

Chapter 4 shows how to derive the input-output relational model of a system
from the operational semantics in a language-based setting. It starts by consider-
ing interactive systems formalised as labelled transition systems, where the labels
capture what the attacker can observe during each state transition of the system.
This provides a formalism for studying attackers with different observational pow-
ers. As a concrete example, tidhile language is introduced as a programming
language for deterministic systems with interactive outputs and buffered input. A
specificsemantic attackemodel, which is able to observe program outputs as
prescribed by the standard operational semantid&/lmle and can additionally

determine whether the program terminates or not, is introduced in Chapter 4 to

illustrate the definition of an attacker model, and the de@nitf termination-
sensitive analyses. Extensions to the céfieile language are also presented to
demonstrate analyses of information flow in possibilistic and probabilistic nonde-
terministic systems.

In Chapter 5, a static analysis of the imperaWailelanguage is presented.

The analysis, which uses PERs on the set of program states as the representation
of information, is flow-sensitive and termination-sensitive, and is also capable
of detecting certain disjunctive information flows. The static analysis is shown

to be sound with respect to the semantic definition of information flow that the
semantics attacker gains as defined in Chapter 4.

Since the static analysis using PERs may be computationally prohibitive when
the set of states considered is very large, or we may otherwise not want the level
of detail of information that may be represented by PERs over program states,
Chapter 6 demonstrates how the machinery of abstract interpretation may be used
to reduce or simplify the domain over which static analysis is performed, while
maintaining correctness. A flow-sensitive and termination-sensitive dependency
analysis is presented, which is shown to be an abstract interpretation of the con-
crete PER-based analysis of Chapter 5. The dependency analysis also identifies
some disjunctive dependencies.

Chapter 7 concludes the thesis with examples, which highlight various lessons
learnt in the thesis. The chapter reviews the main contributions of the thesis and

suggests areas of future work.

1.5 Mathematical Preliminaries

The mathematical developments in this thesis rely on the basic theory of sets and
relations [End77, AGM92], as well as principles from ordered sets and maps be-
tween them [DP03, GHKO3]. This section briefly reviews the important defini-

tions and results, and introduces some of the notations that we shall use.

Sets, Binary Relations, and Functions

AsetX = {xg,x1,...,x,} is a collection of objects, x1, ..., z,,, which are called
its elements, and no other elements. The membership relatguch as;, € X,
asserts which element belongs to a set. The opposite rekati@serts that an
object does not belong to a set. The Cartesian product of twosatslY” is the
set of pairsX xY = {(x,y) |z € X,y € Y'}. SometimesX x X is written asX?.

If X andY are setsX c Y asserts thak is a subset of", which means that
x € X impliesz € Y. The empty set, which has no element, is denoted byhe
powerset of a seX is P(X) = {Y |Y ¢ X}, which is the set of all subsets of
X. A family of sets overX is a subset of the powersg{ X'). The family of sets
{Y; € X |1 € I'} is sometimes denoted By.; or simplyY;, where! is an index
set. The union and intersection of the family of sets denotet;hyis given by
Uier X; andN;e; X; respectively.

The set-theoretic difference between the setandY is the set of elements
in X, but notinY’, and is denoted bX'\Y = {z ¢ X |z ¢ Y'}. The set of natural
numbers is denoted kY = {0,1,2,3,...}, and the set of integers is denoted by
Z={..,-2,-1,01,2,.. .}

We write R ¢ X x Y to denote ainary relationwhich associates elements of

the setX with elements of the sét. Whenz € X is related toy € Y by R, we
write z Ry or (x,y) € R. The assertiofz,y) ¢ R means that is not related to
y by R. Thegraphof the binary relation? ¢ X x Y is the set of pairs, which is
defined agraph(R) = {(z,y) e X xY |z Ry}.

A binary relationf ¢ X xY is afunctionor mapif for any y, ' ¢ Y andz € X,
x fyandz fy implies thaty = y’. The usual notation for functions is to write
f(x) = ywhenever: fy holds. Itis also customary to write: X — Y to say that
f is atotal function from the set to the sett”. The set of all total functions from

the setX to the sefy” is denoted by X — Y'].

Partially Ordered Sets

A set X is apartially ordered se{posej} if it is equipped with a binary relatiog,

such that for allz, i, z € X the relation< has the following properties:
o x < x, (reflexivity)
* x <y andy <z impliesx = y, (antisymmetry)
o x <yandy < zimpliesz < z. (transitivity)

If the relation< on X is not necessarily antisymmetric, th&nis apre-orderwith
respect ta<. When we wish to lay emphasis on the order relation of a poset we

write (X, <) to say that the elements &f are partially ordered by.

Duality Principle

The duality principle says that there is a correspondingj statementg.) to each

statement §.) about an ordered s¢iX, <), which can be obtained by replacing

each occurrence aof in Sc by > and vice versa. If5 is true in all ordered sets

then so also is..

Upper and Lower Bounds

Let (X, <) be a poset and It ¢ X. An elementz € X is anupper boundf S if
forall s € S, s < z. A lower boundis dually defined. The set of upper bounds of
Sin X is S* = {x € X |z is an upper bound of }. The set of lower bounds* of
S'in X is dually defined.

An elementr € S, if it exists, is said to be thieast upper boundr supremum
of the setS if for all y € S*, z <y. Thegreatest lower boundr infimumof the set
S, if it exists, is defined dually on the s€t of lower bounds. Theown-set}S of

the setS is defined agS = {x € X |se S,z < s}.

Joins and Meets

Let (X, <) be a poset. Thin of two elements:,y € X, if it exists, is the least
upper bound of the sdtz,y}* in X. This is usually written as v y. Similarly,
the meetof these elements is written asa y and is the greatest lower bound of
the set{x,y}* in X. More generally, for any subsgtc X, the join is denoted as
V S, and the meet a4 S, both of which are assumed to be elements of theset
whenever they exist. If the elements®E {s; | i € I} are indexed, an alternative

notation isV; s; andA; s; for the join and meet of respectively.

Top and Bottom

A poset(X, <) is said to have @op or greatestelement, written ag if for all

x € X,z < 7. Dually, thebottomor leastelementL € X, when it exists, has the

10

property that for allz € X, 1 < x.

Pointwise Function Ordering

Let X be a set and letY, <) be an ordered set. The order relatioron Y in-
duces an order on the set of all mgps — Y] from X to Y, which is called

the pointwise order which for anyf, f’ € [X — Y] we havef < f’ iff for all
re X, f(z) < f'(x).
Operators on Partially Ordered Sets

An operator on a posdtX, <) is a functionf : X - X, which may have any of

the following properties

extensivityif Vo e X. z< f(x)

reductivity if Ve e X. f(z) <z
* idempotencyif Vx e X. f(f(x)) = f(x)

» monotonicity if Vz, 2’ € X. x <z’ = f(x) < f(z')

Closure operators

An operator on a poset is aipper closure operatoif it extensivemonotoneand
idempotentA lower closure operatois an operator which iseductive monotone

andidempotent

11

Fixpoints and Chain Conditions

Let (X, <) be an ordered set and It X — X be a map. We say thate X is
afixpointof f if f(x) = x. The set of fixpoints off is denoted byfix(f). The
ordered selX is said to satisfy th@scending chain conditio(ACC) if for any
given sequence; < x5 < --- < x,, < --- Of elements ofX, there existg: € N such

thatzy, = x4 = ---. The dual notion to the ACC is thaescending chain condition

Lattices and Complete Lattices

A non-empty ordered sétX, <) is alattice if for all z,2’ € X, the joinz v 2’
and the meet A z’ exist. If, furthermore, for allS ¢ X, V.S andA S exist, X
is acomplete lattice In order to show that a posék, <) is a complete lattice,
it is sufficient to show that/ .S exists for arbitrary subset$ of X, because the

existence of arbitrary joins guarantees the existence of arbitrary meets{@@3HK

12

Chapter 2

Language-based Security

This chapter reviews language-based approaches to the problem of secure infor-
mation flow. Language-based approaches to security seek to determine or ensure
program security by analysing the programming language constructs or by using

the language constructs to enforce security.

2.1 Language-based Approach to Security

The term security in this thesis generally refers to the security of information flow
in systems. Although language-based approaches have been used for the protec-
tion of security other than the confidentiality of information, this thesis focuses on
the application of language-based techniques to the problem of secure information
flow.

A traditional approach to the protection of resources in computer systems is
through the use odccess control Access control mechanisms prevent a princi-

pal, such as a user program, from having unauthorised access to resources. How-

13

ever, when a user program requiretegitimate access to a resource, such as a
database or file, which contains confidential data, how can we ensure that such
a program does not reveal sensitive information illegally? A language-based ap-
proach to security, which seeks to determine the security of a program by the
analysis of the language-based constructs used in the program, is attractive in
this regard. The semantics of the language constructs provides us with primi-
tives through which we can understanding what a program does with informa-
tion. This makes language-based techniques very powerful. Other techniques
such as those which introduce new security constructs, for example explicit de-
classification constructs [MZ208, ZM01, Zda04b, MSZ06, AS07, BNRO08], into

the programming language, to ensure safe release of information also fall under
language-based approach to information flow security.

Language-based techniques to security have been used in other areas which are
not necessarily related to information-flow security. Examples include language
and compiler mechanisms to prevent buffer overflow, which may lead to privilege
escalation [NCHO05, CPM 98] vulnerabilities in C programs; aru/tecode ver-
ification, stack inspectionandsandboxingechniques to protect local resources
from networked applications and applets [LY99, Ler03, FG03, Gon99, MF97].
Another language-based approach to security igpthef-carrying codgNL97,
CLNOO] mechanism, which uses the premise that checking that a proof (of soft-
ware security) is correct is easier to do than directly verifying the security of a
software. Under the proof-carrying code approach, the program author generates
a proof that his or her software has certain security properties, which the program
consumer can easily verify.

For secure information flow, language-based approaches include static typing

14

systems and dependency analyses [VSI96, VS97, AB04, HSO6pwedl-typed
programs are guaranteed to satisfy a noninterference property, semantics-based
analysis of secure information flow [JLOO, SS01, GMO04], information-theoretic
measures of information flows [Den82, CHM02, PHWO02], and specialised lan-
guages with explicit declassification constructs [MB2, ZM01, Zda04b, MSZ06,
ASO07, BNRO8]. Other language-based approaches to information security include
complexity-theoretic analyses [VS00, Lau01, Lau03, BLO6] that characterise the
security of information based on the complexity of extracting such information
from a protected system, and runtime monitor-based approaches where monitors
are attached to a program to prevent insecure executions [BD03, GBJS06, SST07,

ccos.

2.2 Multilevel security

One of the first approaches, which uses static analysis for the enforcement of non-
interference in programs, is due to Denning and Denning [Den76, DD77]. In their
work [DD77], a security policy is a paifS, —), whereS is a finite set of security
classes arranged on a lattice, and S x S is a flow relation, which specifies per-
mitted information flow between pairs of security classifications. Objeeaisdy
in a system are assigned security clagsasdy respectively, and information is
permitted to flow fromz to y if and only if (z,y) e~ (written asz —). The flow
relation — is reflexive (so that information may flow within the same class) and
transitive.

The lattice properties of the sgtare exploited to make program certification

more efficient. Théeast upper boundperation {¢) and thegreatest lower bound

15

operation {) on S are defined so that for any index sesuch that for alli €
I,2; » ythen(V, ;) — y. Similarly, ifforall j e J,z - Y thenz — (/\jeJ&).
The classV,; z; is viewed as a common class via which information flows from
the various classes; to the clasa;l, and similarly the clasz,\jeJ& iS a common
class through which information flows fromto the various classeﬁ. Under this
framework, information is said to flow from objectto another objecy (written
asz = y), when the information stored inis transferred to, or is used to derive
the information that is transferred to the objgctinformation flow is said to be
explicitif the value assigned to objegis computed directly from the value of the
objectx such as during the function assignment f(---, z,---), orimplicit when
the subprogram that assigns a valug te executed conditionally on such as in
the program f (z=0)theny:=0el sey:=1.

A programP is said to be secure when the information flows y is specified
by P only if z - y. A certification mechanismresented in [DD77] checks this
security condition The certification mechanism uses the observation that check-
ing whether a progran® specifies the flow: = y can be efficiently done through
a staticcertification conditionwhich checks when informatiomight flow from
x to y. For example, the programf (z > 10& z=9)t heny:=0el seskip
suggests that information might flow fromto y becausey may be assigned in a
control-flow context that is predicated on the value oHowever, no information
actually flows fromz to y because there is no execution of this program under
which the assignment tg is reached. The certification conditions are purely
syntactic, and they are computed from the security classes of the objects used
in each construct. For example, the certification condition for the assignment

y := x requires that the classification ofmust be strictly below or at most equal

16

to the classification of, that is,z < y. For implicit flows such as in the pro-
gramif(z < y)thenz = 0el se z, := 1, the certification condition is that

T Vy <z Az -thatis, the least upper bound of the classifications ahdy

is at most equal to the greatest lower bound of the classifications of the assigned
variablesz; andz,. The purely syntactic nature of the certification conditiong a

the use of lattice operation on the security classes of the objects involved makes
it possible to certify programs quickly. However, a stronger, but generally unde-
cidable variant of the security condition above is also proposed in [DD77], which
says thafP is secure if and only if no execution éfresults in a flonr = y unless

z -y

2.3 Type-based Certification

An established language-based approach for the certification of programs for se-
cure information flow is by the use of a security type system [VSI96, HR98, VSO0,
Aga00, HS06], where well-typed programs are guaranteed to have a security prop-
erty. For example, the type system of Volpano, Smith, and Irvine [VSI96] proves
the soundness of the lattice-based multilevel-security analysis of [Den76, DD77]
as a statement of the noninterference property of the program. By proving the
soundness with respect to standard program semantics, well-typed programs are
shown in [VSI96] to have the required noninterference property.

Under the type system of [VSI96], program phrases are assigned security
types which are drawn from a partially ordered &€t<). The primitive types
T € S are the so-calleddata type% which are similar to the security classes of

Denning [Den76, DD77].Program phraseswhich are expression phrases and

17

command phrases, are assigned phrase typEspression phrases may be ordi-
nary program identifiers or memolgcations The language does not have input-
output primitives, however input is achieved by dereferencing an explicit location
and output is achieved by assignment to an explicit location. The syntax of the

block-structured language is the following.

(phrases P == e|c

(expressions e x|ll|n|ete |e—¢|e=¢€|e<e

(commandys ¢ r=e | ¢cd | if(e)thencel sec |
while(e)doc | letvar z:=ein ¢

Variables are ranged over hy and!/ ranges over locations. All expressions
are integers, where is an integer literal, and, 0 and 1 are used as conditional

guards. The phrase types are defined as follows.

(datatypg 7

S

(phrasetypg p == 7 | Tvar | Temd

The metavariable ranges over of security classesdnand the type var is the
type of variables and locations, whereas the type:d is the type of commands.

Under the proposed type system, typing judgements have the form

AT+ P:p. (2.2)

The finite mapsA and I, which are respectively calleldcation and identifier

typing, assign types to locations and identifiers. These maps may be updated as

18

usual, where

p if x=2a

[z p](a’) =

['(z’) otherwise.

The judgement of (2.1) means that the phr&deas typep under the assump-
tion thatA andI’ respectively prescribe types for the locations and the free iden-
tifiers in P. If the phrase is an expressienwith the typing judgement, the
intuition is thate contains expressions at levebr lower. However, if the phrase
Is a command the typer cmd means that only assigns to variables at level
or higher. These properties, called sgimple securityand theconfinemenprop-
erties are enforced by the typing rules. The full typing rules and the subtyping
conditions are given in Figure 2.1 and Figure 2.2 respectively. Using both the
simple security and the confinement properties of the typing system, well-typed
programs can be shown to satisfy a noninterference property.

In order to ensure that explicit information flows are secure, the typing rule
for the assignment statement requires that the variablassigned to, and the as-
signed expressiore), must agree on their security levetg.(An upward flow is
still allowed during assignment since the typecafan be coerced up by the sub-
typing rule. Conditional commands are made secure with respect to implicit infor-
mation flow by requiring that the type of the conditional guard and the branch(es)
must agree. As the subtyping judgements of Figure 2.2 shows, the subtyping rule
for commands isintimonotonesince ifr ¢ 7/, and if a command phrase is judged
to have a type’ ecmd, then that command phrase only assigns to variables which

are judged to have type or higher.Thus, an even stronger statement is that the

19

(INT)
(VAR)

(VARLOC)

(ARITH-op)

(R-VAL)

(ASSIGN)

(COMPOSE)

(IF)

(WHILE)

(LETVAR)

ANTrEn:T

AT +x:7var ifT(x)=71var
AT +l:Tvar if A(z) =7var
ANTre:T,

ANTre 7 ope {+,—,=,<)
AT +—eope =7 P T

AT re:Toar
ANTre:T

AT -2 Toar,
ANTre:T

AT'-xz:=e:7emd

AT +c:7emd,
AT+ :memd

AT =c;c 7 emd

ANTre:,
AT -c:7emd,
AT =c 7 emd

ATrHif(e)thencel sec :7emd

ANTre:T,
AT +c:7emd

A;T=while(e)doc:Temd

ANTre:,
ATz :Tvar]-c: 7" emd
AT'~letvar z:=ein c:7"cmd

Figure 2.1: The Volpano-Smith-Irvine Typing rules

command assigns to variables7abr higher, and hence’ emd ¢ 7 emd. This

fact is exploited for upward flows from the guard to the branches, which allows

branches typed at a higher level to be predicated on a lower guard, by either coerc-

20

(BASE)

(REFLEX) +pCp

Fpcp, Fp Cp”

(TRANS)
FpcCp’
FTCcT!
CMD~
() F7'emdCTemd
AT+ P,
FpCp
SUBTYPE _
() AT =Py

Figure 2.2: The Volpano-Smith-Irvine Subtyping rules

ing the type of the branches downwards using the antimonotonicity of commands,
or by using the usual (upward) coercion subtyping rule for the conditional guard.
Various extensions to the programming language and the type system have been

proposed [SV98, VS00, Smi01, Smi03, Smi0e].

2.4 Dependency Analysis

Another static approach to checking whether a program satisfies noninterference
is via a dependency analysis of variables in the program [ABHR99, AB04, HS06].
This is based on the premise that in a setting where the attacker can only observe
the final values of public variables on program termination, the static indepen-
dency of the final value of a public variable on the initial secret values stored
in other variables of a program is a static approximation of the noninterference
property of that program.

Amtoft and Banerjee [AB04] presented a framework for the static enforcement

21

of noninterference policies via a variable-independencyyaisga The analysis is
based on an abstract interpretation of program traces that makes explicit the inde-
pendencies between program variables. Being a data-flow analysis, the inference
logic deems more program secure than security type systems such as [VSI96].
For example, under the [VSI96], if we hav&h) = H andI'(/) = L for some
variablesh andl/, and wherel. < H the program, the prograi= h;[= 0 is not
typable because the first statement directly assigns a higher security-typed expres-
sion to a variable that has a lower security type. Although the program contains
an insecure subprogram, however the program as a whole is secure because the
high content of is overwritten by the constaftduring the second assignment
before the attacker can observe the contet(oh termination). This property is
calledflow-sensitivitywhere the order of commands matters. Such a secure com-
position of insecure programs is detectable in type systems of [AB04, HS06], for
example, but the type system of [VSI96] cannot detect this. This is because the
type system of [VSI96] does not take into account the order of program execution,
and is therefore flow-insensitive.

The inference rules of [ABO4] are presented in a Hoare-like logic, which de-
rives independencies between program variables on termination of a program frag-
ment, given the independencies before the execution of that fragment. In the pre-
vious example] becomes dependent arafter the first assignment, but becomes
independent after the second assignment (writtgii#as], which means that the
value of variabl€ is independentf the initial value of variableh). The anal-
ysis of [ABO4] conservatively extends the type system of [VSI96], where well-
typed programs in the system of [VSI96] satisfy the invar{a#th | in the system

of [ABO4], which asserts that, on program termination, the value aof-&yped!

22

variable is independent of the initial value of &typed variabléh.

Judgements in the system of [ABO4] are of the form

G+ {T#}y P{T}}. (2.2)

Given the seVar of variables, the sets/”, T} € Independ = P(Var x Var) are

sets of variable independencies, arid Var is animplicit-flow contexdescrib-

ing the set of variables, values of which the program control flow might depend on.
The set7 is used to eliminate implicit information flows. The meaning of (2.2) is
now that if the independencies]?l# holdbeforethe programpP is executed under

the control contextr, then, provided thaP terminates, the independencieélﬁ

hold after the execution of?. The intended meaning of afly#x] € 77 is that
thefinal value ofz after executing® is independent of thmitial value ofz from

the computation preceding.

The independency inference logic of [AB0O4] is shown in Figure 2.3. In the
rulesF'V (e) ¢ Var is the set of free variables of the expressicand the partial
order relatiorx on sets of independencies is defined as the reverse subset inclusion
order on independencie®? < 77 iff T} c T7.

An equivalent derivation to [AB04] was presented by Hunt and Sands [HS06],
which is based on standard semantics. As opposed to the approach of [AB04],
which computesndependenciesf variables, the inference rules of [HS06] com-
putes variablelependenciedirectly when the lattice of dependency is chosen to
be the powerset latticB(Var) of variables. The dependency result of [HS06]
is the De-Morgan’s dual of the independency computation of [ABO4], and both

type systems enforce a partial correctness noninterference property for well-typed

23

[AssignG - {T7} z:= e {T#} if V[y#w] e T#.
rry = [y#Fw] e T,
r=y = w¢GAVze FV(e).[z#w] e TJ

Gr{T§}e{T7) Gr{T7} (T}

[Sed G (T} e (TF)

Gor {TH) c{T#} Gor {1} e {T#) TG EGoand

f G Vze FV(e). T#
[I]G"{Tf}if(e)thencelsec'{T#} w¢Go == VzeFV(e)[eqtw] e 5

Go - {T#} c{T#} if G cGyand
Gr{T# whiTe(e)doc(ra UFCG = VzeFV(e)[zfu]eT?

[While]

Gi-{T7} e {15}
Gor {15} e {17}

[Suf if Goc Gy and T < T andTy < T

Figure 2.3: Antoft-Banerjee Independency Logic

programs. The algorithmic version of the dependency type system of [HS06] is
presented in Chapter 6, where it is compared with a dependency analysis proposed

in this thesis.

2.5 Equational Characterisation

Joshi and Leino [JLOO] proposed a semantics-based equational characterisation
of the noninterference property of a system, via a special program con&ftkict

(also known asHavoc onh”, which stands for the “destruction” of th@gh por-

tion of memory). Under this approach, in the simplest case, it is assumed that
program memory is partitioned to two, namely, thgh-securityportion (which

is a tuple over the domains of high-security variables) anddesecuritypor-

24

tion [(which is a tuple over the domains of low-security variables). Furthermore,
it is also assumed that the attacker has the program sources and can observe the
[-portion of the memory before and after program execution, but cannot directly
observe the:-portion. The intention is that, in a secure program, information
should not flow from thé-portion of the memory to théportion, although the
reverse flow is permitted.

A relational semantics is used to describe the properties of programs such that
for any programP, o (P) o’ signifies that there is an execution Bffrom the
initial stateo to the final state’. A special “looping state®o is also considered,
which has the property that for all program?s « (P) o« holds, preventing any
program from exiting the looping state. For any variabléhe evaluation of:
at the looping stateo is co(z) = 1., which is taken to be a special value outside
the domain ofr. The semantics of/H is defined such that for all stateso’, we
haveo (HH) o' iff o (1) = o'(1).

Using the progrant/H, the security property of a programis formalised as
a total correctness program equivalence as follows.

A programP is secure iff

HH: P; HH =, P; HH. (2.3)

The relations; in this definition may be viewed as comparing only thgortions
of the memory. The intuition behind definition (2.3) is that regardless of the initial
values in theh-portion of the memory in the two programs, as long as the initial
[-portion is the same, then the finaportions of memory agree. The trailidgH

on both sides of; means that we do not care about the final values inkithe

25

portions of memory, since it cannot be observed by the attatkprograms are
replaced by their relational semantics in (2.3) asthnds for the relation compo-
sition operator, then the relatienis simply the equality of relations. This simple
semantic definition captures the noninterference property of the profrae
cause the initiah-portion of the memory is noninterfering with the final result of
the [-portion of memory whenever is secure. This definition has motivated the

work of [BGMO7], and is related to the PER-based semantic definition of [SSO01].

2.6 PER Model of Information Flow

It is a well-known fact in language-based information security that the notion of
noninterference in security is closely related to the notion of (in)dependencies.
Motivated by the work of Hunt, which used PERs to construct the abstract in-
terpretation of strictness properties in higher-order functional programs [Hun91a,
Hun91b], and, in particular, to model dependencidsmaing time analysg$1S91],
Sabelfeld and Sands proposed a PER model for the analysis of secure informa-
tion flow [SS01, Sab01]. The PER model, which is semantics-based, was shown
in [SS01] to generalise the semantic characterisation of security of [JLOQ].

The idea behind the PER-based characterisation is the observation that the
variation (or lack of it) in the publicly observable output of a program relative
to thevariationin the private input to the program can be modelled by PERs on
the output and input domains of the program respectively. By fixing all other
inputs in a deterministic program, if no variation is observable in a given public
output under all variations of a confidential input, then there is no information

flow from that input to that output via the program. This intuition is captured by

26

PER-transformer relation;» (defined below), between PERs over the program’s
input and output domains.

For simplicity, it is assumed that program inputs and outputs are partitioned to
two parts, namely, &igh-securitypart (whose domain is the séf, say), which
is not publicly observable. The second part ifow-securitypart (whose do-
main is the setf.) that is observable publicly only before and after, but not dur-
ing, program execution. ProgramB)(whose denotations are maps of the form
[P]: HxL - Hx L are considered. Now I®ER(S) be the set of all PERs over
the setS, and for any two PER®; € PERS;) and R, € PER(S;), define the PER
R, e Ry such that for any(sy, s2), (s}, s5) € S1 x Sa, (51,52) Ry ® Ry (s, s5) iff
s1 Ry s andsy Ry s, The security property of the prografis described in terms
of its denotational semantics, such thatjifQ’ ¢ PER H) and R, R’ € PER(L),
then(P) : (Q e R) — (Q' e R') holds iff for all (h,1), (h',I") e H x L

(h,1) Qe R (W, I") = [P[(h,]) Q" e B'[P](H',I"). (2.4)

The intuition behind (2.4) is that under the PER® R and(’ e R’ defined
respectively over the input and output domainsiyfany pair of inputs that is
indistinguishableby @) ¢ R (that is, pairs of inputs that are are related by this
PER), lead to outputs d? that are also indistinguishable by the PERe R’. The
definition is compositional so that for two prograffisand P’ we have

(P):A—-B, (P):B—C
(P;P):A—C

Let idg,alls € PER(S) be PERs ovelS defined such that for al, s’ € S,

27

sidg s’ iff s = s’ ands allg s’. Using (2.4) the noninterference security condition
for the programP is now the following.

The programP is secure iff

(]PD : (a”H (] |dL) —> (a"H ° |dL) (25)

This means that if an attacker can observe the value of the public input only (the
idy, part of the PER over the input domain), then for each possible value of the
public output (thed;, part of the PER over the output domain), all the values of
the secret input are possible (@&, part of the PER over the input domain). That

is, if the public input is fixed, any variation in the secret input is not observable
by the attacker in a secure program. This is a statement of the noninterference
requirement of [GM82]. The security definition of (2.5) is termination-sensitive
by requiring that the termination properties of a secure program must not be in-
fluenced by the values of secret inputs. By defining the PERs over appropriate
powerdomains, the definition of (2.5) is shown to also describe the security prop-

erties of nondeterministic systems.

2.7 Abstract Noninterference

Giacobazzi and Mastroeni introduced in [GM04, GMO05] a notion of abstract non-

interference as a semantic description of the information released by a program
based on standard techniques from abstract interpretation [CC77, CC79]. The
core idea is that instead of observing the concrete values of the public input and

output data in a program, the attacker is modelled aaletract interpretation

28

that can observe only the properties of these data, that isalibiEact seman-

tics of the program. By weakening the observational capability of the attacker
so that the attacker is only able to obsepvepertiesof data, the noninterference
requirement can be weakened since an otherwise offending program under non-
interference may become safe in the presence of an attacker that cannot observe
public input and output precisely.

The concrete domaifi' is taken to be the powerset lattice of concrete program
values with the subset order relation. As usual, the concrete domain is partitioned
to two setsH and L, which are the domains of confidential and public values
respectively. Letico(P(C)) be the set of alupper closure operatorsn the or-
dered se{P(C),c), the abstract domains are based on upper closure operators
n,p € uco(P(L)) and¢ € uco(P(H)), which are defined over the concrete do-
main of program values. Under this framework, the attacker is modelled as a pair
of abstractiongn, p), wheren and p model respectively the attacker’s observa-
tional power over the public input and output values. The concrete semantics of
the programP is formalised using@ngelic denotational semantics, which asso-
ciates an input-output functiofiP] : H x L - H x L, with P and ignores nonter-
mination. Furthermore, the observation of (public) values occur at the beginning
of program execution and on program termination. To slightly simplify the no-
tations, we shall denote the concrete semanticB e a magP]: H x L - L,
throwing away thed projection of state on termination, which is not used. Addi-
tionally, for singleton sets we shall writg(!) instead ofy({/}) for the image of

{l} undern. A programP is said to satisfy th@arrow abstract noninterference

29

(NANI), written as[n]P(p), when for allh, b’ € H andl,l’ € L

n() =n(l") = o([PI(h,1)) = o(IPI(A',1)). (2.6)

The intuition behind definition (2.6) is that if the attacker can only observe the
propertiesn and p respectively of the public input and public output, then no
information about the secret input flows \ilawhenevefn|P(p) holds.

A problem with this definition is the so-called notiondxceptive flowavhere
a program that fails to satisfy the NANI property may still not reveal any in-
formation about secrets. To see why, let the se¢wen odd positive(includ-
ing 0), and negativeintegers be respectively defined Bsen = {2i|i ¢ Z},
Odd = {2i+1|ieZ},Pos= {ieZ]|i >0}, Neg= {i e Z|i < 0}. Now
supposer € H = Z andl € L = 7Z and consider the program:= [x h? under
the parity andsign abstraction paifn, p) = (Par, Sgn), which are given by their
set of fixpoints$ fix(Par) = {Z,Even,Odd, @} andfix(Sgn) = {Z, Pos,Neg, &}.
If an attacker can only observe the parityldfefore executing this program and
its sign afterwards, then that attacker cannot gain any information &bsinte
the sign ofh has been destroyed in the final valuel dfy taking the square of
h. However, the propertyPar]l := [x h?(Sgn) does not hold. This is due to
Par-indistinguishablé-input values that ar&gn-distinguishable causing the “de-
ceptive flow”. To eliminate this flow, a check is performed instead ors#teof

outputs with a fixedn-property on the input. This is denoted@g P(p), which

Closure operators are completely determined by their set of fixpoints.

30

holds if forallh,h' € H andl € L

p(UAIPI(R,1)}) = o (UATPI(, 1)}). 2.7)

Uen(1) Uen(l)

The definition of NANI, can further be weakened to allow information flow
about secret inputs. This information flow about secret is specified by the upper
closure operatoth € uco(P(H)) on secrets. The resulting notion is callalo-
stract noninterferenc€ANI), written as[n]P(¢$ ~ [p), which holds if for all
h,h' e Handl e L

p(U {[PI(h1,1}) = o U {[PI(ha2,1)}). (2.8)

hied(h) haed(h")
ren(l) U'en(1)

The meaning of the ANI definition of (2.8) is that under the fixed attacker model
(n, p), the attacker cannot gain the information characterised by the upper closure
operatord. The idea is that by fixing to the property; (to eliminate “deceptive
flows”) and evaluatingP under all variations of. that are constrained by the
propertyd, the attacker observing thgeproperty of the public output cannot see
any difference. This is referred to adeclassified ANI via blockirign [Mas05],

since the propertyp cannot be observed. A related notion, calleclassified

ANI via allowing, allows the property¢ to be observed. This is denoted as

(m)P(¢ = p) and is defined agh,h’ € H andVl e L

b(h) = d(n') = p(UAIPI(h,1)}) = o(ULTPI(H,1)}). (2.9)

Iren(l) U'en(1)

Under this notion, we only check that the attacker cannot observe a difference

31

under pairs ofi-values with the samé property. Since the attacker may be able

to observe a difference imwhend (k) # ¢(h’) information aboutp mayflow.

2.8 Language-based declassification

Another language-based technique for the enforcement of secure information flow
uses explicitdeclassificatiorconstructs that are added to the programming lan-
guage, so that intentional release of information may only be performed by us-
ing a declassification construct. This approach has been well studied{0&ZZ
ZMO01, SM03b, CM04, Zda04b, MSZ06, AS07, BNRO8S].

Zdancewic, Myers, and Sabelfeld introduced a notiorobiist declassifica-
tion [ZMO1, Zda04b, MSZ06], which features a language-based declassification
construct for the controlled release of information. However, the provision of an
information downgrading construct raises the question of whether the declassifi-
cation mechanism can be exploited by attackers to launder information. A notion
of robustnes&nsures the safety of the declassification mechanism so that neither
attacker-injected values nor attacker-inserted code can be used to edrtol-
formation is released, awhetherinformation is released. This means that, due
to robustness, aactive attacker, which can both modify and observe a system
cannot gain more information tharpassiveattacker that can merely observe the
system.

The security model is based on a lattite L x £; derived from the product
of a confidentialitypolicy lattice L~ and anintegrity policy lattice £;, which are
used to reason about both the confidentiality and integrity of data as well as the

integrity of code in the system. The notion of integrity is a dual notion of con-

32

fidentiality. High-integrity data (and code) are trusted arelassumed not to be
under the control of attackers, whereas low-integrity ones are not trusted and are
assumed to be under the control of the attacker. The laftisgpartially ordered

by c, and attackers are assigned security levels such that an atthckbarac-
terised by its level, € £, may only view information at confidentiality level
m1(£4) and below on the confidentiality lattigk.. Furthermore, this attacker can
only modify data at integrity levet,(¢4) and above on the integrity latticg,.

Under this framework, a typing environmeit; Var — £, assigns security types

to variables. Expression types are derived by taking the least upper bound of the
types of the free variables of that expression. With the exception of the declas-
sification expression, the programming language is largely standard as shown in

Figure 2.4.

n | x| e opey | declassify(e, ()

@
Il

skip|z=e]|cie |
if(e)ythencielsec, |while(e)doc

O
Il

Figure 2.4: Language-based Declassification

The operatiomp stands for the usual arithmetic and boolean operations on ex-
pressions ande L is a security level. The declassification expressiaassify(e, ¢)
has the same operational semantics as the expresditoweverdeclassify(e, /)
allows the security level o to be declassified to the levéle £. Thus, the
declassification mechanism is used to control the security level of information,

which is checked statically, and is intended to have no semantic effect on pro-

2The notationr; (-) is thei” projection, and the confidentiality lattice is arranged from top to
bottom with the highest confidentiality at the top, whereas the integrity lattice is arranged with the
lowest integrity at the top.

33

gram execution. Since information may flow from variableo another variable
yonlyif I'(x) c T'(y), the choice of lattice& and the typing environmeiit spec-

ifies asecurity policy The security framework is formalised as a type system so
that well-typed programs satisfy the robustness property. The full type system is

shown in Figure 2.5.

[(z)="¢
'en:/ D-xz:/4
're:l Tre:d el (v
'~ecope': ¥l Fe:t

F're:l fupceTl(x)
I',pcrskip I,pcx:=e
Cre:l! Cupcel(x) ma(l)=m(l)
pe, 0 e {l"e L]my(la) ¢t ma(l")} I,pccp T,pcr ey
[, pc + z := declassify(e, ¢) [,pcH cq;co

'ce:l Tlupccy T lupcr co 'e:l T'lupcrc
[.pcrif(e)thenc el sec [,pc-while(e)doc

I''pc+c pc cEpc

I'pc'+c

Figure 2.5: Rdbustness Typing Rules

The typing system is fairly straightforward and is parametric to the environ-
mentl" and the attacker levé,, against which the typable program is robust. The
pc € L level is used to rule out implicit flow of information and also to ensure that
the attacker cannot control whether declassification can take place or not. The
important rule is the typing judgement for the assignment declassify(e, ¢),
where the expressianwith type ¢’ is to be declassified to the levél For this to

be successful, the security level of the assigned variabheist be at leastu pc,

34

ensuring that no implicit information flows te and that it cannot be corrupted

by a lower integrity data. Furthermore, it is required that declassification should
not change the integrity of the declassified informatisf({) = 7 (¢’)), and that

the “attacker”, which has control over whether the declassification expression is
executed (thepc part) and which might have tainted the dataeiifthe ¢/ part)

must have an integrity level that is strictly greater than the integrity level of the

declassified expressiarso thatpe, 0" € {0 € L | ma(l4) & mo (L") }.

2.9 Information-theoretic Characterisation

Quialitative definitions of information flow describe what information is released
only in a possibilistic sense. That is, they specify whetherpboissibleor not that
certain information may be released by a system, but they do not usually capture
the notion of howlikely it is for that information flow to occur. While it may be
possible that certain information may be released by a system, it may be extremely
unlikely that such information flow may occur. Quantitative measures of informa-
tion flow, in particular, information-theoretic characterisation can capture a sense
of how likely it is for information to flow in the amount of information released.

In cases where the semantics of a system is characterised by probability dis-
tributions, information-theoretic measures of information flow can be particularly
useful. Even in cases where the semantics of a system is deterministic, but where
the choice of inputs to the system is governed by probability distributions, it is
still possible to apply information-theoretic techniques to characterise the infor-
mation release. The basic model of security under quantitative characterisations

is similar to the qualitative definitions such as the traditional noninterference def-

35

inition. However, instead of checking whether informationynflaw as is done
under noninterference, quantitative approaches seek to assign a quantity to the
amount of information that flows. A system that has no probabilistic information
flow, for example, will also satisfy the standard noninterference requirement.

One of the earliest application of information theory to information flow in a
language-based setting is by Denning [Den82]. Since then, the use of quantitative
techniques, especially information theory, for information flow has been an active
area of research [CHM02, PHW02, Low02, ABG04, CHMO05, CMSO05, Bac05,
OCCO06, Mal07, Smi07, CHMO7, APQ8].

In [CHMO5] an analysis technique is presented, which computes an upper
bound of the amount of information released in programs written in a deterministic
imperative language with a looping construct. The analysis of [CHMO5] has two
parts. Firstly, a Use-Definition Graph (UDG) [Muc97, NNH99] of the program is
extracted from the program source, which will be used to guide the quantitative
analysis. Secondly, a quantitative analysis which assigns upper bounds to the
amount of information flow along paths of the UDG is then performed.

Since the probability distribution of the low program input may be in the con-
trol of the attacker, it is assumed that the attacker chooses input values to max-
imise the leakage of information. Each program point, corresponding to a node on
the UDG, is assigned a random variable(which may be a tuple of variables),
where P(X™ = x) is the probability thatX takes on the value at the node:
of the UDG. Two distinguished nodes are identified, namely, the prograny
andexitnodes, denoted respectively@ndw. So, X* and X« correspond to the
random variableX at program entry and exit respectively. The main idea is that

in a deterministic program, once the variation in the low input has been accounted

36

for, any variation that is observed in the public output musdie to variations in
the secret input. Hence, the leakage of information about secret input to a variable

X at the exit node, denoted s (X), is defined as

L2(X) = p(w) H(X?| L") (2.10)

The measuré{ (X~ | L*) is theconditional entropyof the random variable~

given another random variable, andp(w) is the probability of reaching the exit
node. The variablé, as usual, stands for the low part of the memory. THus,

is the random variable representing the low input at the program entry point. For
programs which always terminate we haxe)) = 1. The analysis of information

flow itself is parametric to the program point, and in (2.10)nay be replaced

by any arbitrary node to compute the information flow int& at that point. A

more recent work [CHMO7], by the authors of [CHMO05], uses a syntax-directed
approach to the analysis, which quantifies the amount of information released, as
opposed UDGs.

Information-theoretic approaches, in general, rely on having probability mea-
sures in order to perform the analysis, and conservative assumptions usually have
to be made. Like most language-based approaches to the analysis of information
flow, where the attacker is assumed to supply inputs at the beginning of program
execution and can only observe the final results at the end of program execution,
the model of the analysis in [CHMO05] suffered However, many practical pro-
grams arenteractive which may accept inputs and produce outputs at any point
during the program execution. Program interaction introduces additional infor-

mation flow problems. Quantitative analyses that consider program interactions

37

include [ABG04, OCCO06, Bac05, AP08]. In addition to interan8, nontermi-
nation issues are also important when modelling the information released by a
program.Termination-insensitivanalyses ignore information release due to non-
termination and may admit insecure programs, which release information during
diverging traces. When program interactions are involved, arbitrary amount of
information may be leaked through nontermination channels. The problem of

information leakage in termination-insensitive analyses is studied in [AHSO08].

38

Chapter 3

Lattice Model of Information and

Information Flow

The phrase secure information floialludes to an understanding of the notions
of informationandinformation flow In this chapter, we present a lattice-theoretic
model of information and information flow and define a notion of security us-
ing the lattice model of information for the enforcemenwdfat declassification
policies.

In order to check whether a system, or its model, conforms to an information
flow policy, we need to analyse its information flow properties. For this purpose
an extensional input-outpuélational modelis presented as a primitive for the
semantic analysis of information flow in both deterministic and nondeterministic
systems. By using the relational model, various representations of information,
suitable for the characterisation of the information flow, are derived. The derived
information representations are all shown to fit into the lattice model of infor-

mation. Later on, in Chapter 4, we show how to derive the relational model of a

39

system from the operational semantics under a given attackeelm a language-

based setting.

3.1 Modelling Information and Information Flow

A fundamental property of information is the intuitive notioninformation lev-

els where we say that one piece of informatiorgigater or more informative

than another. For example, information about an integer secret which reveals that
it is a positive even integer is more informative than another one which only re-
veals that the secret is a positive integer. This suggests an ordering of information,
which we shall exploit in our information model and security definition. For this
reason we shall model information kagtices where the associatqmartial order
captures the notion of information levels. This lattice-based definition of security
falls under thavhatdimension of declassification as proposed by [SS05], because

it regulates théevelof information orwhatinformation that we want to release.

3.1.1 A Lattice Model of Information

We consider information as elements of a complete lafficeuch that a piece

of information inZ describes what may be learnt about secrets and such that the
lattice partial order andjoin operationrespectively model the notions ofdering
andcombinationof information. The ordering of captures when one informa-
tion is greater than or equal to another, and it is closely related to the notion of
information combination where the combination of a lesser information with a

greater one yields the greater information.

40

Definition 3.1.1 (Information Lattice) Any complete latticéZ, =, u) is a lattice

of information

In the lattice(Z, =, u) of information, the partial order models the relative
degree of informativeness of the elementgpand the join operation models
the combination of information if. The idempotency, commutativity, and asso-
ciativity properties of the join operation agree with natural intuitions about infor-
mation because idempotency says that the combination of a piece of information
with itself should yield the same information [Koh03]. Similarly, the commutativ-
ity and associativity properties respectively agree with the intuitions that the order
and grouping of information combination should not matter to the end result. Fur-
thermore, for any, s’ € Z, the lattice propertys c s’ iff su s’ = s/, agrees with
the idea that the combination of a lesser information with a greater one yields the
greater information, where c s’ means that the informationis less than or at

most equal ta’.

3.1.2 Information Flow

We shall definenformation flowto model how the knowledge of an observer
changes due to information release. Under this model, information flow is defined
as a function which transforms knowledge on a given latficef information.
Hence, iff : Z — 7 is aninformation flow functionthen for any initial knowledge

s € T that the observer might have before observing the system which causes
the information flowf, f(s) describes the final information that this observer
might gain after observing the system. To describe the observer’s knowledge after

receiving new information released by a system, the information flow function

41

must have certain properties identified in the following défni.

Definition 3.1.2 (Information flow) Let (Z,c) be a lattice of information. An
information flow functionf : Z — Z on the latticeZ is an extensive and monotone
function. DefineFlows = {f :Z — I | f is extensive and monotoh# be the set

of all information flows or¥.

Similarly to the properties of the lattice of information, the properties of in-
formation flow functionsf € Flows are intuitive. Firstly, the extensivity property,
which means that for alk € Z,s c f(s) shows that the observer's knowledge
may onlyincreaseby observing the system causing information flow. Secondly,
the monotonicity requirement means that the greater the initial knowledge of the
observer before observing the system that is releasing information, the greater the
final knowledge afterwards.

The setFlows of all information flows on the lattic& of information itselfis a
complete lattice under the pointwise ordering of functions becausa complete
lattice. The least element of the resulting latti€ws is the identity mapidz, on
Z. This is easily shown because if there exists Flows such thatf c idz, then
by the pointwise order we have that for alk Z, f(s) cidz(s) = s. This means
that f(s) c s, and sincef is extensive, we have th#{s) = s by the antisymmetry
of c. Hence,f = idz. The least elementl; € Flows of the set of information
flows is the lattice model equivalent of the notion of noninterference (that is, lack

of information flow) since the attackeannot changés knowledge viad;.

42

3.2 Information Flow Policies

An information flow policyor simply aflow policyor policy, is a statement of the
(information flow) security requirements for a system. We define policies, which

can be used to regulate what information is allowed to flow through a system.

Definition 3.2.1 (What Policies) Let (Z,c) be a lattice of information and let
Flows be the set of information flows over this lattice. An information flow policy
with respect to the lattic& is asubset?’ of Flows.

An information flowf € Flows is said to bepermittedor allowedby a policy
& ¢ Flows iff there exists a flow functioff € &2 such thatf c f’. Consequently,

a policy & is fully non-trivial if all elements of%? are maximal inZ.

The orderingf c f’ between information flow functions in this definition is the
usual pointwise ordering of functions induced by the partial oeden the lat-

tice Z. This partial ordering of information flow functions is used to control, or
regulate, the level of information that we allow a system to release because the el-
ements ofZ set lattice upper bounds on the information flow that the attacker is
allowed to receive when the information release is permitted by the p&ficyhe

policy model of Definition 3.2.1 falls under thehatdimension of declassification

according to the taxonomy of [SS05, SS07].

3.2.1 Information Flow Policy Patterns

This section highlights some information flow patterns under the proposed policy

model.

43

Noninterference Policy

By far the most studied type of information flow policy is the noninterference

policy, originally introduced by [GM82], which says that
“one group of users, using a certain set of commandspignterfer-

ing with another group of users if what the first group does with those

commands has no effect on what the second group of users ¢an see
This requirement abstractly describes a system property, which implies the lack

of information flow, via the system in question, from secret inputs issued by one
(high security) group to public outputs observed by the other (low security) group.
Thus, the noninterference requirement is an information flow policy for a system
(or more precisely, its model), that preveatsy flow of information from secret
inputs to public outputs. Under our lattice-based policy model, noninterference
corresponds to the polic§idz}, which is the identity map over the lattide of
information about secrets. This abstractly describes the fact that the attacker can-
not benefit by observing a system whigdtisfies this policy since any flow that
is permitted by this policy cannot be greater thdn The intuition is that for all
informations € 7 in the lattice of information about secrets, representing the at-
tacker’s initial knowledge, we have that the attacker’s final knowleidigés) = s,
after observing the system remains the same. Furthermore,idintethe least
element of the latticé lows of information flows, the baseline status of the non-
interference policyidz} is clear.

Although the noninterference model is very simple, it is however too strong
to be useful in practice [RMMGO01, Vol99a]. Policies that allow deliberate (but

controlled) release of information are necessary.

The formal definition of what it means, when a system satisfies a given policy, is given in
section 3.3.

44

Unconditional Release Policy

We may wish to have partial (but unconditional) release of informaticnZ but
not more in a system. The pattern for this under the lattice model is captured
by the policy{f | Vs € Z, f(s) = s’ u s}, which permits an attacker to learn at
mosts’ (s in the definition being the attacker’s initial knowledge). Since any flow
f" € Flows which is permitted by this policy has the property thfatc f, this
means that any information that the attacker gains from the system that is strictly
greater than’ is what the attacker could already derive by the combination of the
initial knowledge of the attacker and the declassified informatfonHowever,
if the attacker’s initial knowledge is less thahthe greatest information that the
attacker is allowed to gain by this policyds

A scenario where such a policy is necessary is during password authentica-
tion, where we wish to release unconditionally the information about the equal-
ity or not of the stored password and the user-supplied password. If the attacker
knows the user supplied password (for example, by supplying a guess) then the at-
tacker (by combining its initial knowledge with the outcome of the authentication
attempt) either learns the stored password (in the case of a successful authentica-
tion) or learns what it is not (if the authentication attempt fails). However, if the
attacker only observes the result of the authentication without knowing the sup-
plied password (issued, for example, by another user), the most that the attacker
can learn, depending on the outcome of the authentication attempt, is whether
the user-supplied and the stored passwords match or not - which is exactly the

information that we have declassified.

45

Conditional Release Policy

Another scheme is theonditional releasgattern, where informations() is re-
leased based on having some initial knowledg®.(This is modelled by the pol-

icy {f} whereVseZ, f(s)=s"usif s”cs,andf(s) = s otherwise. Under this
scheme, the attacker gains some information on the condition that the attacker has
at least a given initial informatios’. A scenario where such a policy is needed is
during decryption in a symmetric key system, where the plaintext may be learnt

(the knowledge’) only when the decryption key is known (the knowledgg

Disjunctive Release Policy

Another pattern, calledisjunctive flow policy after the disjunctive flow pattern

of [SS05], is the policy specified by fully non-trivial policie®, where| 2| > 2.

Take, for example, the disjunctive flow polidy, f/ | f ¢ f', f" ¢ f} € Flows.

This policy permits at most one gfor f’ to be released but nbbthat the same

time. It is clear that the notion of disjunctive information flow is only meaning-
ful for incomparable information and information flows, because whenever two
information are comparable then the greater already contains the lesser informa-
tion. An information flow f” € Flows is permitted by the disjunctive policy
{f,f\feEf, [¢ f}, whenf”is smaller than or equal to at most onefadnd f'

- sincef and f’ are incomparable. Also, a floy’ = fu f/, which contains botlf

and f’ is not permitted since there is no sughe {f, /| f ¢ f’, f' ¢ f} for which
fll C fl'

46

3.3 Secure Information Flow

Let us now define a notion of security, which uses the lattice of information to

formalise when the information released by a system is secure.

Definition 3.3.1 (Security Condition) Let P be a program modelling a system,
and let(Z,c) be a lattice of information, and leflows be the set of all infor-
mation flows with respect to the lattid@e Furthermore, let?? c Flows be an
information flow policy; and lefP]* ¢ Flows be a subset aFlows, called the
information flow propertyf the system modelled B The system modelled &y
satisfiesand is said to beecurewith respect to the policy? iff for all f € [P]*

there existsf’ ¢ & such thatf c f.

Intuitively, this definition says that the prograf, or the system it models, is
secure (with respect to the policy) iff every flow f € [P]? that is caused by

Is permitted by the policydf’ € & such thatf c f’). The partial ordee regulates

the level of information that we wish to release. This extensional view of policy
enforcement abstractly describes, in terms of the information lattice order, what
information flows are permitted in the system.

In the remainder of this chapter we shall show how to derive the information
released by a system from an input-output relational model of the system, provid-
ing us with a way to check whether the system has secure information flow. Later
on, in Chapter 4, we shall show how to derive this input-output relational model
from the operational semantics in a language-based setting, and show, for a given
programP, how to define[P]* under various representations of the latticef

information.

a7

3.4 System Models and Information Representation

In the following sections we shall formalise the information released by a system
by using an input-outputlational modelwhich describes how the system trans-
forms its inputs to publicly observable outputs. The relational model captures
the input-output semantics of the system througalation which associates the
public outputs that the attacker may observe with the inputs which generate them.
We shall derive, from the relational model, various representation of information,
which are shown to fit into the lattice model of information. The relational model
technique is applicable to the analysis of information flow urdigtlerministic

system models as well as the more genecaildeterministicystem models.

Definition 3.4.1(Relational System Model)lhe input-outputelational modebf

a system is defined as a relati6hc X x), over the se® of the system’s inputs
and the seV of observable outputs of the system according to an attacker model,
where for all inputs € 3 and possible output € V, o S v holds iff the system
can produce the output when supplied with the input. The system model is
said to bedeterministiaf S is a function fromX to), otherwise it is said to be

nondeterministic

Using the relational model primitive defined above, we shall develop infor-
mation representation suitable for the analysis of information release in deter-
ministic and, or nondeterministic systems. We assume that the nsodethe
system is both input-total and output-total, that3s,= {0 |v € V,0 S v} and
V={v|loeX oSuv}.

48

3.5 Information Flow in Deterministic Systems

Under the relational modetjeterministicsystems are modelled by (totdnc-

tions of the form f : ¥ — V from aninput spaceX (representing the set of all
possible inputs to the system) to antput spacé’ (representing the set of all
publicly observable outputs that the system can generate), such that for any input
o € X supplied to the system in questiofi,o) € V is what the attacker publicly
observes. The system is deterministic, with respect to the attacker’s view, because
f is a function and thus the output observed by the attackeniguefor every

input supplied to the system.

SupposeX is the set of all secret values that can be supplied to a system
modelled byf: ¥ -V, then the system is said to be noninterfering if for all
o,0' € X, f(0) = f(o'). That is, the public output of this system that the attacker
sees is fixed regardless of the chosen secret input to the system, as required by the
noninterference definition of [GM82]. It is thus clear when we say that another
system modelled by the functian: 3 — V'’ releases more information than the
one modelled by if there exists at least an input pairo’ € 3 such thaty(o) #

g(c”). In other words, there are some runs of the system modellgdiich can

be distinguished by observing the output, whereas no run of the system modelled
by f can be distinguished based on the observed output. How do we then represent
more generally that a deterministic system release® informatiorthan another

one?

49

3.5.1 An Equivalence Relation Representation of Information

In the example above, the reason whyeleases more information thghcan

be explained by the relative granularity of the equivalence classes of the kernels
of the two functions. Theernelof any functionf : ¥ — V), is anequivalence
relation (k) over X which relates a pair of elements B iff they have same
image underf. Since any pair of input values ¢’ ¢ X that are related by the
kernelx; produce the same output undgrthen we say that the inputsando’
areindistinguishablainder the system modelled fybecause the attacker cannot

tell which of the two was supplied to the system based on observed output. Using
this idea, we can describe the information released by a deterministic system that

is modelled by the functiorfi : ¥ — V via its kernel:

Vo,0' e X okro’ <= f(o)=f(d). (3.1)

The finer the partition ok unders, the more the information that is revealed by
the system thaf models. In the following, we will sometimes simply refer to the
deterministic system modelled by a functipms “systemy”.

We say that a system: 3 —)V’ releases more information than another sys-
temf:3 - Viff k, € ks, Wwherex, andx; are respectively the kernels gandf.
Using the definition of function kernels, this property can be equivalently stated
as follows.

A deterministic system: 3 —)’ releases more information than another deter-

ministic systenf : ¥ —» Viffforall o,0’ € X

9(a) =g(d") = [f(o) = f(o). (3.2)

50

This definition simply says that if cannot distinguish a pair of inputs, neither can

f. Notice the fact that this definition does not rely on the $&nd)’ because
intuitively we care only about the ability of a system to distinguish its inputs, that
is, how it partitions its domain. It is easy to see that if the syst¢raad g both
release the same amount of information, then they are equal up to an isomorphism
of their output representations. Thus, the systems modellefi:ly —)V and

g : X — V' release the same information if there exists a set isomorphfsom

the range off to that ofg such that o f = g. The information released jointly by

two systemg andg processing independently the same inputs can be modelled by
another systerif,g) : X - V x V' given by(f,¢)(o) = (f(0),g(c)) and whose

kernel is the equivalence relatian n x, [LR93].

3.5.2 Lattice of Equivalence Relations

The authors of [LR93] first proposed an equivalence relation model as a way to
describe the security properties of systems. Under the equivalence relation repre-
sentation of information, two elements in the domain of an equivalence relation
R are said to bendistinguishabléf they are related byz. Alternatively, we say

that a pair of elements in the domain Bfaredistinguishablavhen they arenot
relatedby R. This leads to a lattice of information, represented by equivalence

relations, based on the ability to distinguish elements of a set.

Definition 3.5.1(Lattice of Equivalence Relations [LR93])et X be a set, and let
ER(X) be the set of all equivalence relations ov&r Define an information order
relation overR, R’ ¢ ER(X) such thatR c R’ iff for all 0,0’ € 3,0 R' 0/ —>

o Ro'.

51

Thecombinationof the information modelled by the equivalence relatiéhs
and R’ is given by the joinlR L R’ of the two relations, which is defined such that
forall 0,0’ € ¥,0 (RuR') ¢’ iff c Ro’ ando R’ o’. The join operation naturally
extends to subse® c ER(X) such that for allo, o’ € X,0 | |R o iff for all
ReR,0 R0

It should be noted that the order relatomn equivalence relations is theverse
subset inclusiorg2) order on relations, and is thus the dual of the traditional or-
dering of relations that is based on subset inclusion of their graphs. Consequently,
the join operationu on equivalence relations corresponds to set interseations

As demonstrated above, the lattice of equivalence relation models informa-
tion release in deterministic systems. Furthermore, the ordering of equivalence

relations by their information content forms a complete lattice of information.
Proposition 3.5.2. The partially ordered seER(X), ¢, u) is a complete lattice.
Proof. Standard. O

Under the equivalence relation representation, the greafesmation is the
identity relation {d € ER(X)) on the set® since by definition it distinguishes
any pair of elements il that are not the same, relating an element to itself only.
The identity equivalence relation represents complete knowledge. An example
of a system which releases this kind of information is one that simply reveals its
input, such as the systegnr ¥ — 3 defined asvo € ¥, g(0) = 0. At the other
extreme, the least element of the lattice of equivalence relation isfohneafl”
relationall € ER(X), defined as/o, o’ € 3,0 all ¢’. This relation represents no

information since it relates all elements of the set and thus cannot distinguish any

52

of them. An example of a system with such an information flow prop that
is, which releases no information is the constant function whose kerak! M/e
shall be referring to the equivalence relatiodsand all defined over some set
(which will hopefully be clear from the context) throughout the thesis.

We can extend this basic idea to partial equivalence relations (PERS) on the
set of system inputs. PERs are particularly useful in the analysis of composite
systems, providing us with the additional ability to specify the knowledge that a
secret does not belong to a given set. This cannot be stated naturally with equiv-
alence relations since they are, by definition, reflexive. The simple generalisation
to PERs gives us some expressive powers, which we briefly illustrate.

Supposef : ¥ —» V andg : ¥ - V' are functions modelling two deterministic
systems, wher® and)’ are disjoint and> c 3. Let us define another system
model which makes a choice betwegrand g (depending on whether the input
belongs to the set or not), which is given by\s(f,g) : ¥ -V u V'’ and defined

such that for any € 33,

(o) foeX
T T S

f(o) otherwise.

It is easy to see that the information releaseg\byf, ¢) is in general not, L -

the join of the kernels of andf. This is because the choice restricts the domains
of the two subsystems modelled lfyandg. This example in fact demonstrates a
kind of conditionalinformation release, whergreleases information only about
inputs inY and f releases information about inputsIh ¥ (a property which we

shall use in the analysis of information flow in conditional statements in Chap-

53

ter 5). By dropping the reflexivity requirement, we can prdgiskescribe the
information flow of this system by two PER®nN x, andR n k¢, whereR and R

are respectively the PERgs, 0’ € X,0 Ro' iff 0,0’ € ¥ andVo,0’ € ¥,0 Ro’

iff 0,0’ € X\X. The PERR requires that any pair of inputs must belong to the
sety, andR requires that the inputs must belong to the complemehit ddence

the PERR n x, models the information that can distinguish all inputs thaan
distinguish subject to the constraint that the input belongs {that is, an out-
put from g tells us that the input igot in 3\X). The PERR n x; has similar
information interpretation. Note that the overall information flow of the system
As(f,g) is an equivalence relation given by the union of the two disjoint PERs
(Rnk,)u(Rnks). It should be noted that iP and V' are not disjoint, such
that for somer € ¥ ando’ € ¥\X we haveg(o) = f(o’), then the equivalence

relation(Rn k,) u (R n k) will be greater than the information actually released

3.5.3 A PER Representation of Information

Partial equivalence relations generalise equivalence relations by dropping the re-
flexivity requirement. This leads to a more general representation of information
based on partial equivalence relations on a set,whereby we can also express when

a secret does not belong to a set - the set of elements not in the domain of the PER.

Definition 3.5.3(Set of PERs) Let X be a set. DefineER X)) to be the set of all
partial equivalence relations over the 8t The domain of definition of a PER

onX isgiven by dorfR) 2 {oc € X |0 Ro}.

A PER R is reflexive on its domain of definition since for anys’ € ¥ such

54

thato R o’ holds, thens’ R o holds by symmetry and, thus R o holds by
transitivity. Similarly to equivalence relations, we say that a FE®verX models
information (or more precisely, ignorance) ingistinguishabilityof elements in

3. Thus, if R € PER(X) describes the information or the knowledge of an attacker,
then that attacker cannot distinguish two elements € X if o R ¢’ holds (this
may be read asg; is indistinguishable from’ via informationR?). The information
modelled byR describes what elements of the detn R) are indistinguishable
by an attacker. All elements in the SBidom(R) are considered not possible in

the world described by the informatigi

Using PERs to describe information

Let us further illustrate the use of PERSs for information representation. Consider
three PERs on the sét of integers, representing different levels of information
about an integer secret as follows. The first one is the equivalence reRaion
defined asiVn,m € Z,nParm <= n mod 2 =m mod 2. This describes

the knowledge of parity because it can only distinguish two integer values when
they have different parities. The second one is the equivalence reiadtishich

is defined over integers and relates an integer to itself only. This models the
ability to distinguish between any two different integers and therefore contains
more information tharPar. The third one is the PERI" which is defined as
Vm,n € Z,m id"n < n =m,n e N. This PER models the fact that the inte-
ger values must be natural numbers (the knowledge that the integer secret cannot
have a negative value), in addition to the ability to distinguish between any two
such integers. Thusgd" contains more information thad because it limits the

set of possibilities to natural numbers. It is clear, in a computational sense, that

55

an attacker which knows beforehand that a certain subset aloimain of secret
values is not possible needs to do less work in searching for that secret than one

that does not know beforehand.

3.5.4 Lattice of PERSs

The interpretation of PERs as a representation of information content suggests an
information order of PERs. The intuition is that the information content of a PER
R’ is greater than that of another PERf R’ distinguishes at least all that can

distinguish and the domain @t’ is contained in the domain df.

Definition 3.5.4(Lattice of PERS) Let X be a set. Define the order relati@anon

partial equivalence relations ovet such that for anyR, R’ € PERX), R c R’

iff for all 0,0’ € ¥, 0 R' o/ = o R ¢’. The associated join operatianon

PER(Y) is defined ag (Ru R') o' iff o R o’ ando R’ o’. More generally, for
any subsefR ¢ PER(X) define the join ofR as the PER R, such that for all
o,00eX, o URo’"Iff VReR, o Ro'.

Since PERs are reflexive on their domaiftsz R’ impliesdom(R’) ¢ dom(R).

Note that, similarly to equivalence relations, the partial oen PERs is the
reverse subset inclusion order on relations anduh@irresponds to set intersec-
tions on the graph of relations. The ordering of PERs by their information content

forms a complete lattice of information.
Proposition 3.5.5. The partially ordered sefPER(X), ¢, u) is a complete lattice.

Proof. The proofis similar to the proof of the completeness of the lattice of equiv-

alence relations. O

56

Partitions of a PER
We refer to thepartition of the setdom(R) by the PERR ¢ PER(X), which
describes the information about the elementXats modelled by?. This parti-

tioning is defined as the family of sets, which we denote by

[S]r={{c' €X|0c Ro'}| o edom(R)}. (3.3)

If Ris an equivalence relation, th¢R |y is the set okquivalence classexf
R. Similarly to the standard notation for equivalence classes, we Ywrite for
the equivalence classf the PERR thato € dom(R) belongs to. This is defined

as

[clr2{c'eX|o Ro'}. (3.4)

Furthermore, like the membership property of equivalence classes in an equiva-
lence relation, if two elements &f are related by a PER then they belong to

the same equivalence classif

Proposition 3.5.6.Let R be aPER over aséi, thenforany, o’ € ¥, 0 Ro’ —

Proof. Straightforward. O

In terms of information described by PERSs, this means that #iaqf values are
indistinguishable via the knowledge described by a PER, then those values belong

to the same equivalence class of the PER.

57

3.5.5 PERs and Disjunctive Information

We shall show in this section that we can represent certain disjunctive information
with PERs, contrary to a conjecture in [SS05] that disjunctive properties may
not be expressed by PERs. Disjunctive information modelling can be useful in
applications, where we want to express the fact that at most one of two pieces of
information is released in a system during a run of the system. For example, we
might want to express the fact that a symmetric encryption module which accepts
a parameter to release either the key or ciphertext releases only the key or the
ciphertext to the recipient (depending on the choice of the release parameter), but
not both at the same time. Firstly, we define the property of a PER when it reveals

at most one of two pieces of information.

Definition 3.5.7(Disjunctive Information) LetV be asetand lek;, R, € PER (V)
be PERs ovel’ representing some information, and IBt= R, u R, be a PER,
which represents a combination of the information modelledRbyand R,. We
say that the PERR € PER(V) contains thalisjunctive informationR?; and R iff
any pair of elements iy’ that is not related by, is related byR,, and any pair

of elements irV that is not related byR; is related byR; .

This definition requires that wheneviy has knowledge about a pair of values
(that is, can distinguish the pair because it is not related?bythen R, does
not have the knowledge, and vice versa. Thids; R; u R, has the knowledge
about a pair of values if that knowledge comes from at most ong,abr R;.
More formally, this means that for anfy,v’) € V2 such that(v,v’) ¢ R, then
either (v,v’) ¢ Ry and(v,v’) € Ry, or (v,v’) € Ry and(v,v") ¢ R,. Since the

information in R; and R, are mutually exclusive theR contains the disjunctive

58

informationR; and R, - revealing information that comes from at most one of the
two PERs about any pair of valuesln This is illustrated as follows.

For any PERR ¢ PER(V') over V, let theignorance seof R be given by
its graphgraph(R) = {(v,v") € V2|v Rv'}. On one hand, the sgraph(R) is
called the “ignorance set” ak because it is the set of pairs W that R cannot
distinguish. On the other hand, lgtaph(R) = V2\graph(R) be theknowledge
setof R - representing the set of pairs W that R can distinguish. Clearly, for
any PER, the knowledge and the ignorance sets are disjoint. It is also easy to see
that for anyR, Ry, R, € PER(V') such that? = R, u Ry, we have thagraph(R) =
graph(R;) n graph(R,), and thatgraph(R) = graph(R;) u graph(R,). Now
let A = graph(R;) and B = graph(R,), and assume that containsdisjunctive

information R, and R, according to Definition 3.5.7, thagraph(R) = (An B) u
(A\B)u(B\A) = (A\B)u(B\A). This is because by the disjunctive information
requirement(v,v’) € A = v Ry v/, and by the partitioning property of the
knowledge and ignorance sets of a PERR, v/ =— (v,v’) ¢ B. Similarly,
for B, (v,v") e B = vRyv = (v,v') ¢ A. Thus,A and B are disjoint
sets. Therefore, whenevér can distinguish a pair of values (that (8,v") «
graph(R) = (A\B) u (B\A)), that pair is distinguishable by at most oneRfor
Rs.

To show an example, supposeandY and Z are sets, which are mutually
disjoint, and such thal = X uY u Z. Now define PERR;, Ry, R € PER(V)
such that for allv,v’ € V, v Ry v' < (v,v') ¢ (XuY)?u (X uZ)? and
v Ryv <— (v,0') e (YuZ)? andR = Ry u R,. Itis easy to see thak;
can distinguish elements af from those ofZ, since it relates no such pairs.

However, R, can distinguish any pair of elementsi and elements ok from

59

those ofZ, and also elements of from those oft”. Therefore,R, which relates
a pair of elements i’ if and only if the pair belongs t&2 or Z?2 can distinguish
elements oft” from elements o7 (information that comes fronk; precisely);
and, disjunctively, can also distinguish any pair or elemenss,iand elements of
X from those of7Z, and elements ok from those ofY” (information that comes
precisely fromRs).

The idea of disjunctive information can be extended to PERs on maps (or
tuples), where we want to express the idea that a PER reveals information about
at most one of two elements in the domain of the function (or at most about one of
two indices, when we consider tuples). Assume Wiait is a set of variables, and
for each variable: € Var, letV, be the set of all the possible valuesiofNow let
3 = [Var - U,cvar Vi] be the set of all functions from variables to values, such
that for anyo € ¥ andx € Var,o(z) € V, is thex-image of the functionr. We

shall refer tos € X as astate

Definition 3.5.8. Let Z ¢ Var be a set of variables and &1, ¢ X. Define the

operationhavocwith the signature havocP(Var) x P(X) - P(X) as

havoZ (%) = {0’ € X |0 € Xy, Vy e Var\Z,0(y) = o'(y)}.

Supposer € Var and letX = {z}, we say that the sét c ¥ is densewith respect
to the values of: if havocX () = X. That is, for any state € 3, all the possible
values ofr are already present in the $eésincehavocX ({c}) ¢ X.. We can now
define when a PER oveéZ contains disjunctive information about two variables

in Var.
Definition 3.5.9.Let R ¢ PER(X) be a PER oveE and letz, y € Var be variables

60

such thatX = {z} and Y = {y}. The PERR contains disjunctive information

aboutx andy iff for all o € dom(R)

havocX ([o]Rr) # [c]r = havo& ([c]r) = [c]r
and

havod’([c]Rr) # [c]r = havocX([c]Rr) = [7]r.

This definition requires that any equivalence clas&dahat is not dense with
respect to the values of the variahlgthat is, R has some information about
in that equivalence class) must be dense with respact 8milarly, if an equiv-
alence class oRR contains any information with respect goit must not contain
any information about. This definition is a specialisation of Definition 3.5.7
by considering each equivalence classbés a join two PERs on values, each
of which may contain information about the valueswodr y, but not both at the
same time.

To illustrate this, suppos¥€ar = {1y, hs,} such that; andh, are two integer
secrets andis a boolean public variable. Lét ¢ PER(X) be a PER ovekE such
that R reveals the parity ok; whenevetr is chosen to bet but reveals the value
of hy wheneverl is chosen to bdf. This is defined a¥o,0’ € X,0 R o' iff
o(hy) mod2 = ¢’(hy) mod2,0(l) = o’(l) =tt ora(hy) = o'(h2),0(l) = o'(l) =
ff. The PERR reveals disjunctive information abolu (its parity) orh; (its value)
for any pair of states, o’ € 3. Take, for example, the equivalence class of
dom(R) whereo (1) = ff, any variation in the value df, alone is distinguishable
by R, whereas, variations in the value bf alone are indistinguishable b¥

in that equivalence class. Similarly, for anye dom(R) whereo(l) = tt, hy

61

either has odd or even parity in the equivalence cJasg, and varying only the
parity of h, is distinguishable by? in this equivalence class, whereasdoes not
distinguish any variation in the value bf alone.

It is worth noting that for PERs over statEsthat are not necessarily disjoint,
but which contain disjunctive information according to Definition 3.5.9, we can
create another PER which preserves the disjunctive information by taking disjoint
unions. To illustrate, assume that the PERSR, € PER X)) both contain disjunc-
tive information about variables, y € Var. Then we can define another PER
preserving the disjunctive information as follows. ket Var be a variable which
has two possible values (it does not matter what the values are), for example, let
V. ={0,1}, and letX, = [(Var u {z}) = Usevaruiz} Vz] b€ a domain extension
(of maps inX by z). Define the PERR € PER(X,) overX, asVo,0’ € ¥,,0 Ro’
iff c Ryo’,0(z) =0'(z) =00ro Ryo',0(z) =0'(z) = 1. The PERR contains

disjunctive information about andy.

3.6 Information Flow in Nondeterministic Systems

In the following sections we shall consider representations of information for non-

deterministic system models. The nondeterministic system model generalises the
deterministic one because the public output that is observed is not necessarily
unique for each input to the system. Firstly, we propose a qualitative representa-
tion of information for nondeterministic system models, which is based on fami-

lies of sets that generalises the PER representation of information presented ear-
lier. Secondly, we then present a quantitative representation, which uses proba-

bility measures and information theory to describe the attacker's knowledge (or

62

more precisely, uncertainty) about the inputs.

3.7 A Qualitative Representation

We propose a qualitative representation of information, based on families of sets,
to modelpossibilisticinformation flow to the attacker. We say the model is pos-
sibilistic because, given the output observation of the attacker, it reveals whether
certain inputs arpossible as opposed to how likely it is for the inputs to generate
the public observation. However, the quantitative information representation pre-
sented in section 3.8 additionally accounts for the likelihood, using probabilities,

of an input to generate a given output.

3.7.1 Possibilistic Information Representation

Let us start by motivating the use of families of sets as a representation of informa-
tion under a nondeterministic system model. Consider a system, whose relational
model is given byS ¢ ¥ x V. We can describe the information that the attacker
gains on observing the output V of the system by the inverse imagewfinder

S. The inverse imagé-!(v) = {0 € ¥ | o S v} of v represents the set of gbs-
sibleinputs that can produce the outpuin the system modelled by, and thus
describes the attacker’s uncertainty about the inputs given the observatioh of

is thus easy to see that the family of sets! (v) | v € V} models the uncertainties

of the attacker under the observation of individual outputs of the system modelled
by S. In the special case thatmodels a deterministic system, in which c&ses

a function, it is clear thafS—1(v) | v € V} corresponds to the set of equivalence

classes of the kernel of the functiéh which uniquely identifies the equivalence

63

relation overX: used to describe the information released in the previous sections.
In this sense, the family of sets representation generalises the PER representation.
However, unlike the deterministic model, where for any’ € V, v # v’ im-
pliesS-t(v)nS-1(v') = @, the inverse images are not necessarily disjoint under a
nondeterministic model since the outputs resulting from any given input may not
necessarily be unique. This leads to another avenue of information release in non-
deterministic systems. The property that the nondeterministic system modelled
by S does not necessarily partition its domain introduces the possibility that an
attacker might gain further information by repeated execution of the system under
a fixed input. To illustrate this, supposec 3 x ¥V models a nondeterministic
system, wher& = {0y, 09,03} andV = {v;,v,} and where the graph of the rela-
tion S'is given bygraph(S) = {(o1,v1), (02,v1), (02,v2), (03,v2) }. The model is
nondeterministic since the inpuaif can produce outputs or v,. By observing an
outputv; the attacker learns that the input must be one,;ando,, as suggested
by S=1(v;) = {01,02}. Similarly, on observing the output, the attacker learns
that the input is in the set~!(vy) = {02,03}. However, if under a fixed input
the attacker observes outputsandw, in different runs of the system, then the
attacker confirms that the input to the system mustbederived by taking the
intersectionS—*(v;) n S~1(v,). This avenue of information leakage is not avail-
able under the deterministic system model since for a fixed input, the output of
the system always remains the same. This leads us to a definition of information

based on families of sets.

64

3.7.2 Lattice of Possibilistic Information

In order to account for the possible refinement of knowledge by repeatedly run-
ning a nondeterministic system under fixed input, the families of sets, which rep-
resent the information that the attacker derives by observing the outputs, must be

closed under set intersection.

Definition 3.7.1(Lattice of possibilistic information)LetX; = {¥; c X |j € J}
be a family of subsets & indexed by some sét Define the operatioK{(-)) on
families of subsets of as ((X,)) = Uxc;{N Xk}, which closes the family un-
der intersections. Define the possibilistic information set &Neas FAMX) =
{{{(X,))|2, is a family of subsets At} to represent information contained in fam-
ilies of subsets oE. For anyX;, ¥, ¢ FAM(X) define the join operation as
YyuXk 2 (X, u X)) and define the partial order to be the subset ordering of

families in FAMY).

The intuition behind the partial ordering; c X, for someX;, ¥, € FAM(X),
is that every information tokeX € YJ; is also present irt. Thus, from the
relational modelS ¢ 3 x V, we can derive the information that an attacker gains
from the induced family of sets,, = {S~!(v) | v € V}, describing the attacker’s
uncertainty under various observations of the outputs of the system modelled by
S. The information that the attacker can gain is then described by the family
(X)), whose minimal elements identify minimal subsets of the inpufs that
can produce any given output under repeated execution of the system with fixed
inputs.

We note that for any” c V, the sef\ Xy, can be empty if there is no common

input for which all outputs inl” can be produced. Note also that by definition

65

Yy ¢ ((Xy)) due to the singleton subsets Bf since for anyv € V, S~1(v) =
NS~1(v) € ((Xy)). Furthermore, under the powerset lattice3ofwith the usual
subset ordering, which is a complete lattice, the interseg¢tjéhof any family
F of subsets o exists uniquely. In particular, for the empty family, we have
Nz = ¥ and hence{(@)) = {¥}. This has intuitive meaning becauXk which
is the set ofall inputs rules out no possibility and therefore represents lack of
information. Thus{(@)), which represents the information released by a system
which produces no output agrees with the intuition that it cannot cause information
flow.

The ordering of possibilistic information over input§AM(X), c, u), forms

a complete lattice.

Theorem 3.7.2.The ordered family of set$AM(X), c,u) overX, representing

the set of possibilistic information, is a complete lattice.

Proof. Since the relatior over FAM(X) is the subset inclusion order on sets, it
is clear tha{ FAM(X), c) is a partially ordered set. In order to show tRAM(X2)
is a complete lattice, it is sufficient to show that arbitrary joins exist [GOH.

We first show that: is the relevant join operation ovEAM(X) with respect to
the partial ordeke. Specifically, we want to show that for ady;, > x € FAM(X),
Y EXKIf Y0k =Yk,

e Suppose’; t X, thatis,X; ¢ Y. HenceX ; u Yk = Yk, and since g €

FAM(X) is already closed under intersectiols, L X = (X)) = Xk-

* Now assume thatl; u X = Y. By the definition of the join operation

on FAM(X), we haveXyx = (X, uXk)) = (X, uXk)) u{(Xs)). Since

66

Y, € FAM(X) thenX; = ((X,)). HenceX; u Xy = X implies Xy =
«EJUEK»UEJ = Y;CYg. Thatis,X;c Y.

This shows the necessary relationship between the join operation and the partial
order overFAM(X). It now remains to be shown that arbitrary joins exist in
FAM(X). Let F = {X,|J € J} ¢ FAM(X) be an arbitrary subset 6AM(X),

where for any/ € 7, 3, is a family of subsets aE. It is clear from the definition

that IF = (| X)) e FAM(X), since] 2, is a family of subsets oE. O
JeJ JeJ

To illustrate how the latticéAM(32) describes the relative information re-
leased by two systems, consider two nondeterministic systems modelled by the
relationsS ¢ ¥ x V andS’ ¢ ¥ x V', whereX = {0y, 09,03} andV = {v;,v2} and
V' = {vy,v5}. Suppose the graphs of the relatighandS’ are respectively given
by graph(S) = {(o1,v1),(02,01), (01,v2), (02,v2), (03,v2) } and graph(S’) =
{(a1,v7), (02,0), (02,05), (03,v5)}. The set of inverse images undgrand 5"
are respectively given by, = {{o1,02},X} and Xy, = {{o1,02},{02,03}}.

The situation is illustrated in Figure 3.1, where each squiggle contains the set
of inputs which produce a given output and represents the inverse image of that
output. Intuitively, the sek,, (of the inverse images undeéh) has more uncer-
tainty (and thus less information) than the Sgt (of the inverse images undsf)

since for each output € V of the system modelled by there is a correspond-

ing outputv’ € V' of the other system for which’-!(v") ¢ S-*(v). The greater
information released by the system modelled9ys confirmed by the fact that
(Zy) = {{o1,02}, 2} € (Zv) = {{o1,02},{02,03},{02}, 2}, which means

that by fixing the input to the systeft the attacker can learn (in addition to what

may be learnt unde¥) when the input to the system modelled $ybelongs only

67

to the set{oy, 03} or {o2}. The knowledg€ oy, 03} is gained by observing, in

S’ - which eliminates the possibility af; as the input, as opposed to the knowl-
edgeX on observing, in S, which eliminates no possibility. Furthermore, by
fixing the input it is possible to isolate the inputin the input space a$’, which

is the only input that can produce bothandv). These additional information

cannot be derived undér.

< VG
>e vy o)
Model of systemS Model of systems’

Figure 3.1: Information flow under two nondeterministic systems

The qualitative representations of information (equivalence relations, PERs,
and families of sets) presented above for the general nondeterministic system an-
swer the question of whether a given input is possible when an output is observed.
This however does not address the question of how likely, in particular, what the
probability is for such an input to have been chosen. For systems which exhibit
probabilistic nondeterminism, it may be possible to derive the probability that a
certain input has been selected based on the observation of a given output. Thus,
by observing the pattern of the outputs, an attacker may reduce his or her un-
certainty about the inputs by deriving the probabilities for selecting inputs to the

system based on the pattern of outputs. This view of information flow result-

68

ing from a change in the attacker’s uncertainty about inputs $gstem (which
is modelled by probability distributions over the input space) lends itself to an

information-theoretic analysis presented next.

3.8 A Quantitative Representation

Under the qualitative representations of information flow presented earlier, given
the relational modeb c X x V of a system, an attacker on observing an output

v € V thinks itpossiblethat the inputr € 3 may have been supplied to the system
whenever(o,v) € S - although it might be extremely unlikely that the input
generates the output We consideprobabilistic systemsvhich have probability
distributions associated with the occurrence of their inputs and outputs and derive
a quantitative measure, based on Shannon’s information theory, which describes
the level of uncertainty of the attacker induced by the system’s probabilistic input-
output dependency. For the quantitative probabilistic analysis that we consider in

this thesis, we assume that both theXSeind) arefinite.

3.8.1 Probability Measures and Entropy

We start by presenting standard definitions from probability and information the-

ory, and introduce some notations that we shall use in the analysis.

Definition 3.8.1 (v-Algebra [Hal03]) The setF of subsets ob is analgebra
overX: if it containsX and is closed under set union and complementing, so that
if ¥, ¢ F thenso areX uY', ¥ = ¥\X € F. A o-algebrais closed under

complementing and countable union, so thatif>,, ... € F theny; X, € F.

69

A probability spacever X is a triple (X, F, 1), whereF is an algebra over
3, andpu: F - [0,1] called aprobability measurés a map to the closed real

interval [0, 1] such that

© u(x) =1

o u(XuX)=p(X)+p(X) for any disjointy, 37 € F.

Any algebra is also closed under intersection since by De Morgan’s duality we

have that® n ¥/ = ¥ u Y for any pairy, ¥’ € F. AsetY e F is called arevent
Since the sek that we shall consider for the probabilistic information analysis is
assumed to be finite, we have tifais always ar-algebra. Furthermore, we shall

always takeF to be the powerse®(X).

Definition 3.8.2 (Probability Measures)For any finite se® considered, define
F £ P(X) to be an algebra oveE. Furthermore, define the set of all probability

measures ovek to be.Z (%) = {u| (3, F, 1) is a probability space ovet}.

For any familyX; ¢ F whose elements are pairwise disjoint it can be induc-

tively shown that

p(U) =) u(%)).

jed jed
This property is referred to danite additivity. In the following, since the algebra
F =P(X) is the powerset of the finite s&t, it is sufficient to defing: for single-
ton subsets ok because we can derive the probability (using the finite additivity

property) for any other eveit € F as

nw(x) =3 n({o}).

oex

70

We shall often omit the braces for singleton events and simpitew (o), for

brevity, instead of:({c}).

Conditional Probability

We shall use the notion afonditional probabilityto describe how an attacker’s
observation of a system’s outputs affects the attacker’s initial uncertainty about the
inputs to the system. This is because information flow occurs when the attacker is
able to reduce his or her uncertainty about inputs based on the observation of the
system output.

SupposeX andV are respectively the sets of inputs and outputs of a system
whose relational model iS ¢ ¥ x V. We assume that bofi and)’ are finite. Let
we . # (X xV) be a probability measure describing the probability of eveatF
(whereF = P(X x V)) occurring. For any singleton evefifo,v)} € F, we write
p(o,v) = u({(o,v)}) for the joint probability of input o and output occurring
under the system in question.

For anyo € 3, defineE, = {(o,v) |v € V}. Then themarginal probability
of the input valuer occurring is given byu(E,) = > u(o,v). We shall simply
denote this probability ag(c) = u(E,). Similarlyi,)ell}or anyv € V, definek, =
{(o,v) |0 € X}, the marginal probability of is given byu(v) £ u(E,).

Now supposer, E’ € F are events, then theonditional probabilitythat £

occurs given thaE’ has occurred is written ag E | E'), this is given by [Ros06]

p(ENE)

M(E|E')EW

if u(E")>0. (3.5)
For a givenE’ € F, u(-| E") is also a probability measure [Ros06]. For any input

71

o € X and outputv € V, we shall write the conditional probability thatwas

selected given that was observed as

u(o0) 2 u(Es | B = 12 it) >0 (3.6)
p(v)

This definition follows directly from (3.5). Whenever(v) = 0, the conditional
probability (o | v) is undefined. The conditional probability(v | o), that the

outputwv is produced given that inputwas selected is similarly defined.

Random Variables

Assume that, € .# (X x V) is a probability measure ov& x) as define above,
we shall designate two random variablés over3 and Xy, overV respectively

to represent occurrence of inputsdhand outputs iV. For anyo € 3, Xx, =0
means that the random variab\g; takes on the value af, and the probability of
this happening (writtep(Xs = 0)) is u(E,) = p(o), which as shown above is
the marginal probability of selecting. Similarly, for anyv € V), the probability

of Xy, = v occurring isu(v). When we consider probability measuyes .7 (%)
over a seb alone, we shall useg interchangeably for both the probability measure

and the random variable ov&induced by this measure.

Entropy

The notion ofentropydescribes, quantitatively, the degree of uncertainty encoded
in a random variable. Suppoges a probability measure ovél, this induces a

random variable that we also denote fywhich takes on a value € X with a

72

probability of u(o). The entropy of is defined as

ZIEDY u(a)log(i). 37)

ceX u(a)

The logarithm in definition (3.7) is traditionally to the base 2 and the measurement

unit isbit. Furthermore, whenevei(o) = 0 thenyu (o) log is conventionally

1
p(o)
taken to b&), which is reasonable sin(g:cléi%q+ xlogx =0.

The value ofH(u) measures the degree of uncertainty over the spaes
described by:. We shall use this measure to describe the information that an at-
tacker gains by computing the difference in the attacker’s uncertainty at two points
in time: before and after the observation of outputs. For example, if by the ob-
servation of outputs the attacker whose uncertainty is encoded by the probability
measureg, becomes less uncertain - represented by another probability measure
p', then the information gained can be characterised by the quafttity— (u').

We note two properties of the entropy measure [Mac03, Sha48]. Suppsse

a probability measure over the nonempty finite Setvhich hasn elements, we

have

e H(u) >0, andH(u) = 0 when there exists a € X for which (o) = 1

(uncertainty is minimised when an event becomes certain).

« H(p) <log(n), andH (u) = log(n) whenyu(o) = + for all o € = (uncer-

tainty is maximised when all events are equally likely).

73

Conditional Entropy and Mutual Information

Now consider a probability measures .# (X x V) overX x V, and the induced
random variableXs, (Vo € 2, (Xs = 0) = p(o)) andXy, (Vo e V, u(Xy =v) =
u(v)) respectively defined ovet and). The entropy of the random variahlés
Is given as

oexl

W) = 3 o) tos)

ard similarly the entropy of the random variablg; is

HOG) = T oo ().

vey ,LL(U)

The conditional entropyof the random variabl&s;, given the observation of the

eventXy, = v for somev € V is defined as

H(Xs | Xy=v)= Z,u(a|v)log(

oexl

)
p(olv))

We shall write’H(Xx | Xy = v) simply asH(Xx | v), and it represents the un-
certainty which remains abouts;, when Xy, = v is observed. For any € X,
H(Xy | o) is similarly defined.

The average, aexpected conditional entromf X given Xy, is defined as

H(Xs | Xy) 2> po)H(Xs]|v).

vey

Themutual informatiorbetween the random variabl&s; and Xy, describes how

much of information abouiXs; is encoded inX,, and vice versa. The mutual

74

information betweerXs, and X, is defined as

I(Xs; Xy) 2 H(Xs) -H(Xs | Xy). (3.8)

Intuitively, 7(Xs; X)) measures the remaining uncertainty abdyt after X,

is known. This measure is always positive becal$&'s) > H(Xs | Xy,), and
equality occurs wheX's; and X, areindependenfSha48]. The mutual informa-

tion measure is used in our analysis to determine the information that flows from
the inputs to the outputs of a system. The use of this measure to characterise infor-
mation flow is not new [CHMO7]. We now show that the information contained

in random variables can be arranged on a lattice by using the entropy measure to

describe the relative amount of information that they contain.

3.8.2 Lattice of Probabilistic Information

In this section we show that the set'(X) of probability measures oveét can

be arranged on a lattice based on Shannon’s entropy measure of their relative
quantitative information contents. The entropy measure, by design [Sha48], is
not sensitive to permutations of the probabilities assigned to events under a given
probability measure. For example, since it is immaterial which particular event
becomes certain when we have the least entropy of zero, it is clear that there is
no uniqueprobability measure which maximises information release. This fact
suggests that an order on probability measures based on Shannon’s entropy will
only be a preorder. However, this does not pose a serious technical difficulty as
we can move to a partial order over equivalence classes of probability measures

with the same entropy.

75

Definition 3.8.3 (Lattice of probability measureshet u, i/ € . (X) be proba-
bility measures over a finite s&. Define a preordek on.Z(X) asu < ' iff
H(p') < H(w).

Now define the equivalence relatiérover .#Z (X) as p 0 p/ iff p < p' and
p' < u, and definezy(X) = {[u]o | 1 € A4 (X)} to be the set of equivalence
classes of the relatiof over.# (X). Define a partial ordee on.#,(3), which
for any u, ' € (%) is given by[u]s € [p']e iff © < /. The join operation on
My(X) is defined as usual such thiat]e L [/]g = [']e iff [1t]e S [14]6-

The partially ordered s€t#,(X),c,u), which we call thdattice of Shannon’s
information measuress a complete lattice as will be shown shortly. From an
information-theoretic point of view, if: < ¢/ < u holds, the amount of infor-
mation that two attackers whose uncertainties are described by the probability
measureg andy’ have is the same. However, since the relatiasnot antisym-
metric this does not necessarily mean thand ' are the same. The reason is
that the computation of entropy does not distinguish between mere permutations
of probabilities of events over which a probability measure is defined [Sha48].
For example, i = {0, 0’} such thafu(c) = 1 andu(o’) = 0, whereag/'(o) =0
andp/(o") = 1, we haveH () = H(p') = 0. In fact, for any pair of probability
measures on this set wheg(o) = uo(o’) anduy (o) = pa(o) it is easy to see
thatH (u) = H(u'). As entropy merely quantifies the degree of uncertainty in ele-
ments of. # (X), we achieve partial ordering by moving to a set whose canonical
elements are the equivalence classes of the reldtionn > which relates proba-
bility measures with equal entropy. This technique is standard, and it allows us to
obtain a partially ordered s¢t#,(X),c). The quantitative information content

of the lattice of Shannon’s information measure#,(3),c, u), overX forms a

76

complete lattice.

Theorem 3.8.4.LetX be a finite set. The ordered ge#,(X), c,u) is a complete

lattice.

Proof. Itis clear that is a partial order. Now take any pdit]y, [1']g € #5(X)

for somepu, i’ € .#(%). The join, and the meet operation, which is dually de-
fined, exist uniquely and are well defined. Hengg(X) is a lattice. From the
properties of entropy and the fact tiatis finite we know that there is a greatest
element of #,(32) corresponding to the entropy 6fand there also exists a least
element corresponding to the entropf,:,), wherey, is the probability mea-
sure which assigns equal probabilities toalé 3. In particular, since entropy
is continuous over probability measures [Sha48%,(3X),c) is lattice isomor-
phic to the closed real interval= ([0, log(|%])],>) (which is bounded above and
below respectively by the entropy measubeendlog(|X|)) via the isomorphism

t([1]e) = H(p). Hence(#5(X),c) is a complete lattice.]

3.8.3 Deriving Probabilistic Information Flow

We shall now apply the information-theoretic definitions above to the analysis of
information flow using the relational model of systems. Here, in addition to the
relational modelS ¢ ¥ x V, we also make use of a joint probability measure

we (3 x V) over system’s input-output domain characterising how the system

transfers probabilistic information from its inputs to its outputs.

Definition 3.8.5. Let Sp ¢ X x V be the relational model of a systefhover its
setX of inputs and seV of its outputs, both of which are finite. In addition, let

[€ .# (3 x V) be a probability measure ovét x V such that for allo € ¥ and

77

v eV, i(o,v) is the joint probability of supplying input to P and producing the
outputw.

Letu € .# () to be a probability measure ov@ describing an attacker’s
initial uncertainty over the input space such that for any 32, p(o) = ¥ ey f1(0,v).
Similarly, lety’ € .#(V), such that for anyw € V, p/(v) = ¥, ji(o,v) is the
marginal probability of observing outputin P. Furthermore, let the conditional
probability measure., € .# (%) be the attacker’s uncertainty about the inputs
after observing output € V which for anyo € X is given by, (o) £ (o | v).

The quantitative information flow vi®& to an attacker whose initial uncer-

tainty about the input is described lpyis given by

Lipyy = H(p) = 3 1/ (0) Hp).

vey

The information/p,y = I(Xx; Xy) released byP is themutual informatior(see
(3.8)) between the random variahly; induced by the probability measurgs
over the input spac® and random variabl&, induced by the probability mea-
surey’ over the output space. Let us illustrate Definition 3.8.5 with examples.
Suppose the secréte {0,1,2,3} is a parameter to the prografm and that
P reveals the parity oh by producing an output mod2. Now suppose that
h is chosen with uniform probability over its set of possible values. Then the
relational model ofP is given bySp ¢ 3 x {0, 1}, where the 2-bit stat® is rep-
resented by the s& = {0q, 01,09,03} where for alli,o; = [h - i] and we have
graph(Sp) = {(00,0), (01,1), (02,0), (03, 1)}. Since all inputs are equally likely,
we havevi, ;u(o;) = 1. Furthermore, becaugeis deterministic, for al(o, v) € Sp

the joint probabilitys andv is fi(o,v) = 1. Hence we can compute the marginal

78

probabilitiesy’ (v) of the outputs € {0, 1}, which arep’(0) = 3,5 fi(0,0) = 1,
ard /(1) = 5. The conditional probabilities, (o) = fi(c | v) are as follows:
/1(007 0) 1

to(o0) = 0) =57 po(og) and po(o1) = po(o3) = 0.

Similarly,

(o) = pa(0s) = 5 @ s (o) = pa(02) = 0.

The information released &p,,) = H(p) = (3H(po) + 3H (1) = 1. The 1-bit
information that is derived corresponds to the knowledge gained by the attacker,
which now knows whether the parity éfis even or not. Under the same setup,
whereh is chosen with uniform probability, if we consider the progr&which
revealsh directly, we now have the information released tolpg ,, = 2 bits.
This is clear, since the attacker completely learns the sécrétowever, if we
consider under the same setting, a progidywhich produces a constant output
regardless of the choice 6f the information flow is/;p, ,,y = 0 bits. This is also
intuitive because the output @% is independent oh. Definition 3.8.5 applies
also to nondeterministic system models, which we illustrate next.

In this example, we introduce a constriigtfor probabilistic nondetermin-
ism. Informally, the semantics of the probabilistic construcfl, ¢ is to exe-
cute the subprogramy, with a probability ofp and to execute program with
a probability of1 — p, where0 < p < 1. The formal semantics of a program-
ming language featuring this construct is presented in Chapter 4. Now, con-
sider the nondeterministic prograf, = P [|s P; which accepts a parameter
h € {0,1,2,3} and which is made up of two deterministic subprogranms:

introduced above, which reveals the parityhoiand P; which produces output

79

whenh = 0 and produces output otherwise - hencé’; reveals whetheh = 0
or not. Now suppose, as in the previous example, thest chosen with equal
probability as the input t@;. The set of possible outputs 8f isV, = {0,1,2,3}
and thus its relational model is given &, ¢ ¥ x V,, wheregraph(Sp,) =
{(09,0), (00,2), (01,1), (01,3), (02,0), (02,3), (03,1), (03,3)}. Using the fact
that for alli = 0,1, 2, 3, the probability of choosing the input is 1.(o;) = 7, then
the input-output joint probabilities is computed frafp as (oo, 0) = pu(oq,1) =
11(02,0) = u(03,1) = 5 and (00, 2) = p(01,3) = 11(02,3) = u(03,3) = 55. From
these we obtain the marginal probabilities of the outputs, wh&r¢ is the prob-
ability of producing output as: 1/(0) = /(1) = 2 and p/(2) = 55 and 1/(3) = 3.
Additionally, by applying the definitions, the conditional probabilitigs(¢;))
thato; was chosen as the input given the observation of the outar the fol-
lowing: pio(00) = po(02) = pa(o1) = pa(o3) = 5 amd (o) = 1 andpz(o1) =
p3(02) = ps(os) = 5, and for every othef and;, we havey;(o;) = 0. The quanti-
tative information released by, is given byl(p, .y = H(1) = ¥ ey, p(v)H(110)
0.9623. Although the resuld.9623 bit is not very intuitive, there is some logic be-
hind the value. Considered independently, the progPaneveals aboui.8113 bit
of information about,, and we have already shown earlier tfratevealsl bit of
information abouf.. However, inP;, P is executed®0% of the time andP; is ex-
ecuted in the remaining0%. Thus, the information released abaun P agrees
with the semantics and comes from the fact thak I;p ,) +0.2x [p, .,y ~ 0.9623.
This captures a sense of the frequency or the weighted rate of information release

by the two subprograms.

80

Summary We have developed a lattice-based policy modelvidwiat declassi-
fication policies in this chapter. Useful policy patterns were identified under the
lattice-based policy model. The lattice model of information is shown to cap-
ture natural intuitions about information and information flow. An input-output
relational model was presented as a theoretical primitive for the analysis of infor-
mation flow. Using the relational model, various representations of information
suitable for the analysis of information flow in deterministic and nondeterministic
systems were developed and shown to fit into the lattice model of information.

In Chapter 4 we shall show how to derive the relational model, in language-
based settings, from the operational semantics of programming languages. The
analyses, which are performed parametric to an attacker model, allow us to study
information gained by the chosen attacker. The attackers are assumed to have a
specification (such as the algorithm or protocol that the system implements, or the
program source code) of the system being attacked so that, given any input, the
attacker can work out the possible output(s) that the system can produce. These
assumptions describe, for example, the malicious code scenario where the attacker

is possibly the author of the program that processes sensitive data.

81

Chapter 4

Information Flow in Computational

Systems

The goal of this chapter is to demonstrate how to develop the relational model
introduced in the previous chapter from the operational semantics in a language-
based setting, and to show how to derive a system’s information flow property
from this relational model, which is defined parametric to a given attacker’s ob-
servational power.

To provide a concrete language-based setting, a silbliée language with
outputis introduced as an imperative core language for studying systems with
outputinteractions The operational semantics of this core language is presented.
An illustrative semantic attackemodel is presented to demonstrate the defini-
tion of attacker models for information flow analyses. The resulting analyses of
information flow with respect to the semantic attacker model demonstrate how

termination-sensitive analyses may be developed under the relational model.

82

4.1 Operational Semantics and Observational Power

We considercomputational systemsvhich process confidential data supplied as
part of their inputs and which may produce publicly observable outputs. In or-
der to model what an attacker may learn by observing such a system, we need
to be able to specify what the attacker can observe about the system’s operation.
This is referred to as thattacker modehnd is defined by the attackexdbser-
vational power which describes what the attacker can see about the execution of
the system. We shall formalise the attacker’s observational power with respect to
the operational semantics of the system being analysed to enable us to derive the
system’s information flow property, relative to this attacker model.

A standard way to model the operational semantics of a computational system
is by using dransition systems/\e shall use &belled transition systemo model
the operational semantics, where the labels in the transition relation of the tran-
sition system describe what the attacker sees during a transition of the system in
guestion. Labelled transition systems are powerful tools for describing, at differ-
ent levels of abstractions, the aspects of a system’s operation that are relevant to an
analysis. Well known examples of operational description of systems include the
structural operational semantics (SOS) that is also called the “small-step” seman-
tics [Plo81], and evaluation relations (also called “big-step SOS” or the “natural
semantics” [Kah87]), which are used to formalise the semantics of programs. Itis
also common to describe interactions of a system with (@fiectgNNH99] on)

its environment by using labels in the transition system [Mil99, AFV01, PAKO02].

83

4.1.1 Labelled Transition Systems and Interaction

A transition system is a pa{f¢’, -), where% is a set of systeraonfigurations
or states, and the binary relatierc % x ¥ defines valid transitions between
configurations. The reflexive, transitive closure-ef written as—*, is defined
assy, »* s, Iff there is a sequence of transitiogg - s; - --- - s, for some
S0,81,+, S, € €. The transition syster(t¢’, -) is said to bedeterministiowhen
the resulting configuration of every transition is uniquely determined by the initial
configuration, that is, for al, s’, s € ¢, s » s’ ands - s” means that’ = s”,
otherwise the transition system is said torfmadeterministic

We shall consider systems which have outipi¢ractions which may occur
at any point during the run of the system, and which may be observable by an
attacker. Interactive systempMil99] are traditionally modelled as asbelled
transition systemgor automatonfHU79]), where labels capture the interactions
between the system and its environment. A labelled transition system is a triple
(¢,—, <), which may be viewed as a transition system that is augmented with
a seter of labels(also referred to aactiong to capture the system’s interactions.
The transition relation in a labelled transition system is a ternary relation
€ x o/ x €. If for some actior: € </ and configurations, s’ € ¥ we have that
(s,a,s") e—, then the system is said to make a transition from configuration
to s’ with the effecta. This is often written as — s’. A labelled transition
system(¢, —, <7 is deterministic if for alls, s', s € € anda € <7, s — s’ and

s — s means that' = s”, otherwise it is nondeterministic [Mil99].

84

4.1.2 Attacker Models

In this section we shall formalise attacker models via a notioabsfervational
power that describes what an attacker sees during a run of a labelled transi-
tion system. Supposg = (¢,—, <) is a labelled transition system which
formalises the semantics of a given computational system. In order to model
what the attacker can see about this system’s operation, we can define a function
0 :6 x o x€ — ap on the transition relation, called the observational power,
which models what the attacker sees during each transition of the systdime
set.«Z;, may be chosen arbitrarily, elements of which represent what the attacker
actually sees. Thus, the observational powercan be defined such that for

all (s,a,s") e—, wheres, s’ € ¢ anda € o there exista’ € ./, such that
O(s,a,s") = a’. The intention is that, while the actionin (s, a,s’) captures

the interaction off in the original sensey’ rewrites this as)’ to describe what

the attackeactually seesIn the simplest case? is just an identity function on
actions, which results in an attacker model that is interacting with the system as
originally prescribed by the operational semantics. However, we may want to
model more powerful attacker’'s which can obseinternal system actions, such

as an attacker running a program in a debugger, where internal actions can be
observed; or a less powerful attacker which is interacting only with a part of the
system where otherwise externally visible actions in some system parts are invisi-
ble under the attacker model, for example, in a client-server application where the
attacker in question can only observe the system’s interactions that are visible on
the attacker’s client.

The observational powef’ allows us to specify precisely (by transforming

85

system interactions) how an attacker interacts with the sysféhis gives us a
general tool to model different kinds of attackers which can interact with a system
in non-standard ways. The introduction@finduces a view, = (¢,— ¢, %)

of the systen’ = (¥¢,—, /), whereT, is a labelled transition system, which
describes]” as the attacker with the observational powesees it. Thus, if the
transition relation—,c ¢ x <7, x € of the transition systerfi, is defined as
(s,a',s") e—> 4 iff (s,a,s") e— andO(s,a,s’) = a’, then the induced transition
system7, is capable of describing every possible transition in the semantics of
T because/ is totally defined over al(s,a,s’) related by—. Observational
powers? , and 0z defined over a system’s transition relations can be compared
according to their relative powers, where the attacker modelledbys said to

be at least as powerful as the attacker modelle@hyif there exists a function

f suchthatv, = f o OUp, that is, the observational power functiery has less
variety thano'.

We may also describe an attacker’'s observational power over a system at the
trace levekather than only at the level of the individual transitions in the transition
system as shown above. A trace of the labelled transition sygter(ts’, —, <7)
is a sequence of transitions, written @s— s; —> s, — --- where for alln,
(Sn,an, Sn+1) €E—, @ndsg € %; is a configuration chosen from a distinguished set
of starting configuration®’; of the system modelled b)y. Such an observational
power, oby-), is thus a map from the set of tracesfto the set of observed
sequences. Observational powebs, (-) andobss(-) over a system’s traces may
also be arranged according to their relative degrees of power, vofssé-) is
said to be at least as powerful abs,(-) if there exists a functiorf such that

obs,(+) = f o obss(+).

86

In the next section we shall show how to derive the relationatiehof a
system, given the relevant transition system and a model of the attacker’s obser-

vational power over the transition system.

4.1.3 Deriving the Relational Model

In Chapter 3 we showed how to derive the information released by a system from
its relational model which associates the system’s input with the output(s) that
the attacker observes. We now show how such a relational model can be de-
rived for the system described by the labelled transition sy$#®€m—, <7') under

the observational powe? of a given attacker model. This leads to a configura-
tion 7S = (¢,—, </, '), which refers to the original labelled transition system
(¢,—, o) augmented with the attacker model describedbyhe induced’S
essentially defines a new transition system that is similar to the definitigp of
from 7 in the previous section. It is also clear that the original labelled transi-
tion system(¢’, —, /) is a special case S, which is obtained whew is an

identity on.<7.

Definition 4.1.1 (Deriving the Relational Model)Let7S = (¢,—, <, 0) be a
labelled transition system under the observational posieand leté; c € be the
set of all the initial configurations of S. Define the set of all finite and infinite

traces of7S as seen by to be

T’TS = {SO = Sli) "'|SO € ngvn 2 07 (Snaa;zasn-%—l) €—, ﬁ(snaa;m Sn+1) = a’n}-

Furthermore, for any, € €; lett,, ¢ Trs be the set of all traces starting at the

initial configurations,. Now define the set of observations, given the starting con-

87

figurations, asobg(t,,) £ {aga;--- | sp — s1— --- € t,, }, modelling the possible
interactions of7S with the attacker whose observational powerisvhen7sS is
started at the configuratior,. The set of all observations of the system is given
by V = Use, 0bgts) and therelational modebf this system induced hy is now

the relationS ¢ %; x V whose graph is

graph(S) = {(s,a) | s € €;,a € obqt,)}.

This definition provides us with a general tool for describing information flow in
deterministic and nondeterministic systems. The elementiya,--- € obgts,)
is the sequential juxtaposition of the individual observati@na, --- of the trace
S0 —> 51— - € t,,. Since the system may be nondeterministic it is clear that
obgt;) may not be a singleton set and, therefdfanay not be a function from
configurations to sequences of actions. The relaticabstractly describes the
interactiona of the attacker with the system (modelled B¥), given the initial
configurations of the system, wheneveris related ta: by S.

To illustrate the definitions above in a more concrete setting, the next section

presents th&Vhilelanguage as a language-based instantiation for the analysis of

information flow in deterministic systems.

4.2 TheWhile Language

We now present the imperatiVEhilelanguage, shown in Figure 4.1, upon which
our analysis of information flow in the next chapter shall be based. The operational

semantics of this language is fairly standard [NNH99, Win93], and it has been

88

used as the core imperative language in many language-basaityssettings.

An addition to this language is therite construct for program output, which is
used to model output interaction of a system with its environment. The semantics
of the write statement is the same as that of théputstatement of [GBJSO06].
Information flow in interactive programs is recently gaining more attention in
language-based security [Bac05, OCCO06, GBJS06, AS07, AHSS08]. Since in-
teractive programs are common in practice, the study of the effect of interaction
on information flow is important to give us a more realistic account of information

flow in real systems.

cuz= skip|z:=e|lwitee|cc|
if(b)thencel sec|while(b)doc.

Figure 4.1: The While Language with Output

4.2.1 While Expressions and Program States

We consider onlybooleanand integer expressions inVhile programs, but the
analysis techniques developed can be extended to other data types in a fairly
straightforward manner. Boolean-valued expressions (ranged obgabg integer-
valued expressions respectively evaluate to values in tHg s€ttt, ff} andZ =
{-,-2,-1,0,1,2,---}. Accordingly, we have standard data types {bool int}

whose denotations are sets, and are givefidopl] £ B and[int] £ Z. The set

Exp (ranged over by andb) of all expressions considered are constructed in the
standard way by using arithmetic and boolean operators. Furthermore, program

variables are taken from the Séar, which is ranged over by, y, z, h andl, using

89

subscripts when necessary. We also refer to the fundiion Exp — P(Var),
which denotes the set @iee variablesn a given expression.

Program states € X are finite maps from variables to values. Twaluation
of expressior € Exp at a stater € 3 is summarised as(e), and for any expres-
sione and stater considered it is assumed thal’ (e) c dom(o), wheredom(o)
is the domain of definition of. Furthermore, the evaluation of an expression is

assumed to have reide effecon the program state.

4.2.2 While Commands

The set ofWhile commands is denoted B¥om. As Figure 4.1 shows, sim-

ple commands include the standatdp statement andssignmenstatement, as

well as thewrite statement (used for program output). Other program command
constructors include the conditionélstatement construct - for choice, the con-
ditional while statement construct - for iteration or looping, and the composition
constructor (;) for sequential composition of programs. The operational semantics

of Whileis presented next.

4.2.3 The Operational Semantics oWhile

In this section we present the operational semantics of\thée language. The
analysis that will be performed is based on an attacker model which can observe
output interactions. Thus, in order to formalise this interaction, we introduce two
basic types of actiong; out(-) € <7, wheres stands fointernal actionthat is not
ordinarily observable from the environment aowlt(v) stands for theoutput of

the valuev to the system’s environment wherean be observed by the attacker.

90

The operational semantics d¥hle is specified by transition relations be-
tweencommandand expression configurationsA command configuration is a
pair (c,c) e Comu {-} x X, which represents a commantb be executed at the
stateoc. When there are no more commands to execute, a sgeominal com-
mand configuration(-, o), indicates the termination of the program in the state
o € 3. Similarly, an expression configuration is a p&iro) € Exp x X, which
evaluates the expressiemat the stater. Since the evaluation of an expression
does not have side effect on program states and the evaluation operation itself is
taken to be an internal action, the evaluation relation for the expressabthe
stateo is summarised ag, o) — (o(e), o), whereo(e) is the value ot ato.

Assignments modify program states, and in anticipation of this, we use the
standard definition of state update for some program sta¢eX and z;, z; €
dom(o) which updates the variablg in states with a valuev that is taken from

the data type ot as follows

v if 21 =29

o[z = v](z9) = (4.1)
o(zy) otherwise.

The full operational semantics Wfhileis presented in Figure 4.2. This seman-
tics is fairly standard, with the exception of the transition ruleddte statements.
This rule says thawrite does not modify program state, but that the observer can
see the value of the evaluated expression when the statement is executed. The la-
bela € <7 represents a program action which an attacker may be able to observe.
Let us illustrate how this can be used to describe how an attacker might reason

about the possible starting state of a deterministic program. Consider the pro-

91

£

(skip,o) = (.0) (z:=e,0) = (o[z~ 0a(e)])

writee o) (o)
<01,O'> _‘1) (C,170,> <Clvg> _‘1) <'70J>
(c1;c0,0) == (chica,07) (c1;¢0,0) == (9, 07)

(b,0) = (tt,o) (c1,0) N (cy,0")

(if (b)thenc el secy,o) - (ct,0")

(b,0'> o <ﬂ70> <0270> — (Cl270,>

(if (b)thenc el secy, o) —(c) o)

(b,0) = (tt,o) (c,0) N (c',o")

(whi | e (b)do ¢,0) —= (¢;whi | e (b) do ¢, o)

(b,0) — (ff,0)
(whil e (b)doc, o) — (-,0)

Figure 4.2: Operational semantics oWhile

92

gram in Figure 4.3, where the attacker can see the programtsuwiauthewrite

statements, but does not know the value of the secret integerinput

if (x<10)then
write 1;
else
write 2;

if (x=15)then
write 1;
else
write 2;

Figure 4.3: Reasoning about program secrets

We denote the sequence of output values of this program as tuples. For ex-

out(1) out(2)
—_—

ample, the observation for the tratg o) (P',0) — (-,0) is denoted by
(1,2). Thus, for any chosen starting state, this program produces an output in the
setV = {(1,2),(2,1),(2,2)}, which the attacker can use to reason about possible

starting states as follows.

» The output sequenadg, 2), correspond to two individual outputs from the
write statements in théhen branch of the firsif statement and thelse
branch of the second statement. Using the operational semantics, the
attacker can derive the fact that bathx 10 andz # 15 hold. The output
(1,2) is produced by all traces through the indicated conditional branches
and these traces have a starting state in theélset= {0 ¢ X | o(z) <
10} n{oeX|o(x) #15} = {o € X |o(z) < 10}, where the attacker learns

that the starting value af is less thar 0.
« Similarly, the output sequenge, 1) corresponds to the set of traces starting

93

at the states ity = {oc € X |o(z) > 10} n{o e X|o(x) =15} = {0 €

3 |o(z) = 15}. Here, the attacker learns that the value @ 15.

« Finally, the output sequengg, 2) corresponds to the set of traces starting
at the states iy = {0 € X |o(z) 210} n{o e X|o(x) # 15} = {0 €
Y |o(z) #15,0(x) > 10}. Here, the attacker learns thats greater than or

equal tol0 but is not15.

This program can be described by the functional mgdel - ¥V mapping
the program’s starting state to the produced output. The graghi®@fjiven by
graph(f) = {(o12,(1,2)), (021,(2,1)), (022,(2,2)) | 012 € L12,091 € X1, 09 €
Yoo} € ¥ x V. Using definition (3.1), we obtain the information flow released by

this program as the kerngl of f, which is given by

Vo,0' e ¥ 0 ko' iff o(x),0'(x) <10,
oro(z) =o'(x) =15,
oro(x),o'(z) e{neZ|15+mn andn > 10}.
The equivalence relation; over X describes the information that the attacker
gains by observing the outputs of the program in Figure 4.3. This leads us to
the definition of information flow properties of programs based on the operational

semantics.

4.3 Semantic Information Flow Property

In this section, the information released by\ile programP is defined based

on the observational power of a semantic attacker. This information, which is an

94

equivalence relation over the program states is used to degr@ogram’s infor-
mation flow property in section 4.3.2. The termination properties of the definition

are discussed in section 4.3.3.

4.3.1 The Semantic Attacker Model

We now define an attacker model that will be used throughout this thesis. We re-
fer to this attacker model as tlsemantic attackebecause its definition is based

on the standard operational semantics\diile, with the exception of its ability

to determine nontermination. The ability of the semantic attacker to determine
nontermination appears to be strong and deserves some explanation. Nontermi-
nation is usually not modelled in language-based security because nontermination
is not observable. However, modelling information flow due to nontermination
Is important because in practice, for example, in a hostile code scenario, where
the attacker is probably the author of the program, or otherwise has knowledge
of the program code, the attacker may be able to determine when the program
will not terminate without actually observing it. It has been recently shown that
modelling the ability to “observe” nontermination is important, especially for in-
teractive programs, because it is possible to leak arbitrary amount of information
via nontermination channels [AHSSO08].

The observational power of the semantic attacker is given by the function
obg-) from traces to observations, which is defined below. The semantic attacker
cannot observe internal actionproduced by a program, but can observe all other
actions including whether the program terminates or not. For exarskifeand

assignmenstatements, which only generate the internal acti@annot be ob-

95

served by the semantic attacker.

Let X be the set of all states of tWhile programP. A trace of P starting at
the statery € X is said to bderminatingor finite if there exists a natural number
n such tha{ P, o) —>(P;, 1) —> --- 2= (-, 5,,), otherwise the trace is said to be
infinite and P divergesat oy. The notation(P, o) |} o’ denotes the termination of
the programP in the stater’ € 3 when it is executed from the starting state 3.
The notation{ P, o) f} denotes the divergence &f when it is executed from the

starting stater € 3. What the semantic attacker sees during a run of the program

P is defined based on the standard operational semantitéibé as follows.

Definition 4.3.1(Semantic Attacker Model)_et P be aWhile program and let:

be the set of all states @f. Furthermore, let-=> " be the reflexive, transitive clo-
sure of=>. Definet p,yy £ (P,0) = (Py,00) ~>(P},a4) = (Py,01) > ---to

be a canonical representation &fs trace starting from the state € 3 such that

for all i we have:s = a; € /. What the semantic attacker sees during the trace

t(po) IS given by the observational power function 0fs,)) on traces defined as

(ap,aq,--+,1) if P diverges atr

obs(t(pq)) = (4-2)

(ap,a,--+,}) otherwise.

Define the set of all traces @t as

Tp 2 {tipoy |0 € 2. (4.3)

Finally, define the equivalence relation on program states induced by the se-

96

mantic attacker’s observation as

Vo,0' e X,0|Tp| o’ < obgt(p,)) = 0bLt(py))- (4.4)

The definition ofobg-) formalises the idea that the semantic attacker can-
not observe— transitions. For nonterminating traces, the tokes introduced
which, in addition to the sequence of outputs observed on the trace, signals the
divergence of the program. Similarly, the tokesignals the termination of the
program. By accommodating possible knowledge of nontermination, the defini-
tion of obg-) allows us to properly account for information flow in the presence
of program divergence as demonstrated in section 4.3.3. \Whéiverges, the
sequencey, a,--- of observed output may or may not be finite. However, when
P terminates, this sequence is always finite.

Distinguishability of traces and therefore input states is based on the inequal-
ity of sequences of observable actions. Two sequeages, ... anday,a’, ...
are equal iff for all: we havea, = af. Since the attacker distinguishes be-
tween input states by observing differences in program traces, any pair of traces
of P starting at states, ¢’ € X is indistinguishable to the semantic attacker if
obgt(p)) = 0bgt(p,y). This definition induces the equivalence relatidrp |
on the set of states that on one hand relates any pair of states that the attacker can-
not distinguish, and thus describes the information releasefl. b®n the other
hand, any pair of states o’ € X that is not related by7» | has the property that
obg(t(p,)) # Obgt(p,y), and hence can be distinguished by the attacker. Thus,
| Tp| is the smallest equivalence relation, based on the standard operational se-

mantics, for which any pair of state that it relates cannot be distinguished by the

97

semantic attacker.

4.3.2 Defining the Information Flow Property

We shall define theemantic information flow propertf a programp from | 75 |.
Firstly, we highlight the link between the definition d&fy | and the kernel-based
equivalence relation definition of information release presented in Section 3.5.1.
LetV = {obgt(p,)) |0 € X} and letfp : X -V be the functional model (since

P is deterministic) ofP such that for any € X, fp(0) = obgt(p,)). It is easy

to see that the equivalence relatidh- | is the kernel of the functiorir and thus
describes the information released By Now, letZ be the latticePER(X), then

the information flow property of the prografcan be defined as the singleton set

[P = {f|YR € PERS), f(R) = Ru|Tp|}. (4.5)

This definition describes how the semantic attacker’s knowledge changes by ob-
serving the progran®. Furthermore, iff' ¢ Flows is an information flow policy
defined over the lattice of PERSs, the prograhsatisfies the policy’ if there ex-

ists f’ € F' which allows the flowf € [P]* caused byP: that is, f = f’. However,

the definition of information flow property does not have to be a singleton set as

we shall show next.

Non-singleton Information Flow Properties

We may want to separate the traces of the system described by the pr&gram
based on some considerations. For example, we might want to ensure that in-

formation is not released in certain parts of a program - say in the subprogram

98

executed when authentication fails. We can thus partitiorsétef traces of the
program to those in which the authentication fails and those in which it succeeds,
and compute the information flow properties separately over these traces. More
generally, let us assume thais an index set of the traces 6fsuch that for any
jed, Tﬁ, c Tp isthe set of traces d? identified undey, and wherd'p = U, T};.

We can define the information flow restricted to the traces indexeckhyas
Vo,0' e X, o lT]j_-,J o — Lpoy, tpory € T]j_-, andobs(t(p,(,)) = ObS(t<P7U/>). (4.6)

The PER[T;;J describes the information released by the parts of the system in-
dexed byj. Itis easy to see théfF{;J is not necessarily an equivalence relation,
but a PER ove since it is only defined for traces identified y Under this

view we can define the information flow property Bfas the set of flows
[PT*={f;|je JVRePERY), f;(R) = Ru|T%|}. 4.7)

For any; € J, the relationship betwed? | and|7] is the fact tha{ 7% | only
talks about an aspect of the informatipfi- | - the information released by the
whole system. Specifically, for anye J, we have thavo,o’ € X, 0 |Tp] o’ iff

o |Th| o’ or obs(t(p,)) = 0bt(p.01).

4.3.3 Termination Properties

Let us demonstrate the termination properties of the definitioffef - the in-
formation released by the prografmas defined in (4.4). Firstly, let us define a

programloop = whi | e (tt) do ski p, which is an infinite loop. For diverging

99

programs, such asop, (4.2) ensures that they are distinguished from terminat-
ing ones by the insertion of &or | symbol. Consider the following program
Py=1f(h=0)thenski pel seloop, which either terminates or enters an in-
finite loop. The equivalence relati¢fi’z, | on states relates a pair of states only if
they agree on the value afto be0 or if & + 0 in both states. That is, the program
reveals the fact that = 0 or not. This result is consistent with the information
gained by the attacker which knows the source code of this program and can ob-
serve program termination. To see how we arrivgla, |, first consider the trace
through thethenbranch which produces no observation. Hence, for aryX:
such thatr(h) = 0, we have thabbgtp,) is the sequencél). On the other
hand, P, diverges on input states whelier 0 and hence for al € 3 such that
o(h) # 0, 0bgtp, »)) = (1) is the single element sequence. By this we arrive at
the information flow ofP, as for allo, o’ € X,0 |Tp, | o' iff o(h) =o’(h) =0 or
o(h) #0%0d'(h).

Consider another prograiiz = P;loop, whereP is an arbitrarywhile pro-
gram which always terminates. Thi’s always diverges because of the trailing
loop program, which always diverges. SinPaalways terminates, the termination
properties ofPg is independent of the choice of secret input and intuitiviely
should release no more information th&n It is easy to see that the information
flow of P is preserved irfTp, | since all the traces oP are preserved and the
observation of the attacker is only changed by appentlitagthe end of the ob-
servations made ifr. Thatis for allo € 33, 0bgt(p, »)) = (0bt(p),(1)). Thus,
because of the isomorphism between what is observétiand Pz when started
from any given state, we have that for allo’ € X, 0bgt(p,) = obt(pq) iff

obgt(p,,+)) = ObLt(p, o). Hence|Tp| = [Tp, .

100

Again, consider the prograrf = loop, P where P is aWhile program. Al-
though,P¢ has a trailing progran® which might ordinarily reveal some informa-
tion, the leadindgoop program prevent® from being executed and intuitivel
should thus not reveal any information. The semantic analysis shows this because
for all o ¢ X the trace ofP. is (Po,0) — - — (Pp,0) — ---. Hence, for
all o € X, 0bgt(p,) = (1) and thereforéTx, | = all is the equivalence relation
which relates all states i, demonstrating that the attacker gains no information
by executingPc.

The following lemma shows that for any givéwdhile programP, |Tp| dis-
tinguishes states under whi¢hterminates from those under whi¢hdiverges.

By this partitioning we know that whenever a pair of states is related by, P

either terminates under both states or diverges under both states.

Lemma 4.3.2.LetX be the set of all states of thghile programP and let the set
of starting states under which terminates b&; = {0 e X |0’ € X, (P,0) | o'}
and let the set of starting states under whietiverges be:; = ¥\X,. Then, for

all 0,0’ € ¥,0 |Tp| o’ implieso, o’ € ¥ or 0,0’ € Xj.

Proof. The proof follows easily from the definition ¢’ |. O

4.3.4 Noninterference

We can state the noninterference property of a progfésnsecret input in terms
of | Tr]. Let P be aWhileprogram and leVar andX be its set of variables and

states respectively. Furthermore, Ietc Var be the set of variables containing

101

secret inputs td@. Then P is noninterfering with respect t variables iff

Vo e E,haVOCH([O']lTPJ) = [U][TPJ' (4.8)

This definition requires every equivalence clas$tf| to be dense with respect
to H-values (see definition 3.5.8). That is, in any equivalence clasgdfevery
variation of H values is present for any given state, and thuginealue can be
distinguished from another.

It is useful to see how (4.8) compares with the standard definition of nonin-
terference. Lefl = Var\H be the set of public variables, and for any X let
0,1, be the projection of to L. The noninterference property of the prograhms

defined as (see [SM03a])):

Vo, o' € E-UiL = O'iL e Obqt(]{g)) = Obqt(pﬁl)). (49)

That is, the attacker’s observation (low-view) is invariant whenevel thguts
are fixed (the requirement for fixddinputs is to factor out output variations due

to the low inputs). This property is captured in (4.8) becalse’ € X

havodi([c]\1,)) = [0]j1p) <= oL=0], = o' €[]y
(by the definition ofhavodi(+))
<= oy =0, = 0btp,))=0bgtpo)

(by definition ofo | Tp| o”)

Thus, (4.8) is a statement of noninterferencéfeinputs toP, with respect to the

semantic attacker model.

102

4.4 Other Semantic Definitions of Information Flow

In this section we shall compare our definition of information flow in the deter-
ministic case with the definition of [SS01] that uses PERs to describe information
flow, and theevent-basedlefinition of [AS07] that has a similar definition to our
trace-based observational semantics. We also compare our attacker model with

the abstract interpretation-based model of the attacker in [GMO04].

4.4.1 The PER Security Model

In [SS01, Sab01] the security property of a program is presented as a transforma-
tion of PERs by a function, which represents the (Scott-style) denotation of that
program. The approach does not have an explicit notion of interaction, but pro-
gram output is achieved by assignment to spdoialparts of the memory, which
may be observed on program termination. The same effect can be achieved under
our framework by insertingrrite statements at the end of the program to print out
the values in théow portions of the memory, modelling the fact that thew(
attacker can observe these values on program termination. Alternatively, we can
obtain the attacker model by defining an observational power function, which can
observe théow part of memory at the end of program execution. We shall take
the first approach.

Let the functionf : A — B be the denotation of the programwhere A and
B are sets. Furthermore, lét ¢ PER(A) and) ¢ PER B) be PERs oveA

and B respectively. The security property of this program is described as a PER

103

transformer, written agf) : R — @, which holds iff

Va,a' e A,a Rd' = f(a) @ f(ad). (4.10)

Intuitively, this definition says that subject to the constrdirn the input space,
the output of the program is indistinguishable un@eNow letA = A; x...x A,
be a set product, so that for alk [1,n] we havea;,a} € A; andR; € PER(A;).
The definition easily extends to tuples of relatiq®#). ,,;, which we write as

the relationR; e ... ¢ ,, and defined as

(ai,...,a,) Rie...0¢ R, (a},...,a,) < Vi a; R;a. (4.11)

Noninterference Security Condition

Now suppose that the program states is partitioned into a high-securityFalf (
and a low-security halflf) so that the set of states is the prodbct H x L and
all e PER(H) andid € PER(L). A program whose denotation fs: ¥ — ¥ is said

to be secure iff

(f) : (alleid) — (all eid) (4.12)

The statement of (4.12) requires that information does not leak from the high part

of program state to the low part since from (4.10) this means that

Vh,h'e H,le L. f(h,1) all oid f(1',1).

104

Thus, if the low part of the input state is fixed, regardless efitiitial value of the
high part of state the low part of the output state remains fixed, making the value
of the low output invariant under any pair of high inputs. This definition also
extends to nonterminating programs, but with the additional requirement that the
termination property of the program is not influencedbynputs. Thus (4.12) is
a statement of the noninterference for the progranvhose denotation ig. By
fixing the L inputs of P, we effectively say that the attacker can observe the initial
low values, thereby factoring out variations in the fitad values that might be
caused by a variation df inputs.

We can achieve this effect under our setting by insemyrite statements. Let
the set oflow variables of the progran® be {/,,...,l,,} and define a program
Prswritel;--;witel, which leaks thel-projection of states. Then we
derive another program®’ = Py ; P; P;,, which reveals the value of thie-portion
of the memory to the attacker before the executioff @hd on termination. Using

(4.4) the information released is given 3§ | defined as

VU, O', € E, ag lTP’J O" <~ Obqt(P’,(ﬂ) = Obqtu:",O"))

Thus, any pair of states that is related |/ | has the property that they agree
on their L-projections, and”’ must either terminate in both states to the same
L-values orP’ (that is, P) must diverge unddrothstates.

By its definition,| 7 | computeshe information flow of the prograr? about
H since it is the least equivalence relation over secrets for which the observation
of the attacker is invariant whenever the input states are related by it. In par-

ticular, if f is the denotation of the prograi, then for any PERR e id such

105

that (f) : Reid — all eid holds, we have also théf»/| = R eid. Hence,| T |

captures the security property Bf

Partial Information Release

For some PER®,) ¢ PER'X) over the stateX of the programP whose de-
notation isf, the specificatior{f) : R —) may be considered as a statement of
the security property of the prograf that is, a policy, whichP satisfies. Thus,
we say thatP satisfies the policy) : R — @, whenever(f) : R — (). For any
R, R ¢ PERX) such thatR c R’, it follows by definition that(f) : R - Q@ —
(f) : R — @ sinceR c R' means thato,0’ € ¥,0 R' 0/ = o Ro’. In other
words, if P satisfies a stronger policyf : R — Q) then it also satisfies a weaker
one(): R" — Q. Given the set of states = H x L, the general policy schema
of [SS01] is() : R eid — all e id, which declassifies informatioR about the se-
cret spacd{. Theid part on both sides of> means that the attacker can observe
the L portion of states (before and after program execution), andithen the
right-hand-side meangldn't care since the attacker cannot view tté part of
state on termination.

Any deterministic progran® trivially satisfies the policy}) : id e id — all e id,
the proof of which relies only on the fact that the denotatiorPag a function.
Thus, policy refinementnvolves findingmore coarseRis, that is, thos&? c id,
such that the conditiofyf]) : Reid — all e id is satisfied. Policy refinement is an
important problem in language-based security [SM03a, Zda04a, SS07]. By find-
ing the information released abo#it = P;; P; P;, as defined above, which corre-
sponds to the observational capability of the attacker model in the noninterference

definition of [SS01], our semantic definitidfi’> | derives the most refined policy

106

that P satisfies. Thus|Tr | is the smallest equivalence relation over the set of
states, which relates every pair of initial statesroivith the samel-input, such

that wheneveP is executed under this pair, the sam@utput is produced on ter-
mination. That is{f) : | Tp/| — all eid holds for all starting states under which

P terminates. Furthermore, for any PHRe id such thatR e id = |7 |, P does

not satisfy() : Reid — all eid. This is easy to see becauBe id = | T | means

that there exists a pair of statess’ ¢ 3 which is related byR e id but that is

not related by T |. Since the states ando’ are not related byT |, this either
means thalP terminates in both states to different values of thprojection of
state, or thatP diverges in exactly one of the states. Under these two scenarios

the attacker observes a difference and can thus distinguisim o”.

4.4.2 Gradual Release

In [ASO7] the notion ofgradual releasas introduced as a policy framework for
declassification, encryption and key release. The language setting is the standard
core imperativéVhilelanguage with an explicit declassification construct for ex-
pressing declassification policies for secrets. The language is interactive because
assignment téow variables can be observed as well as the assignment of declas-
sified expressions. As a result, the operational semantics is event-based and is
similar to our labelled-transition system approach. Gradual release is enforced by
a standard type system similar to [VSI96] with the additional requirement that de-
classification may not be performed within conditional statements or loops with a
high guard. We highlight how the knowledge representation and the computation

of knowledge compares with our approach.

107

The attacker’'s knowledge (or rather, uncertainty) is reprieskas aset of
states, which represents the possible values of the initial program memory. This
is similar to our representation of information with PERs over the initial program
states. However, since PERs generalise sets [Hun91a], the information under the
gradual release approach can be modelled as a PER. Specifically, for any set
¥ ¢ 3, which represents the attacker’s knowledge, there is a RER PER(Y),
which models this knowledge, defined such that foraa’ € 3,0 Rx o’ iff
0,0’ € X. This makes it possible to encode each instantiation of gradual-release
knowledge as a PER. Furthermore, the monotonicity of knowledge and the grad-
ual nature of information release agrees with the notion of information flow being
monotone and extensive. In particular, gradual release requires that the attacker’s
knowledge may only be refined with time by shrinking the set of states, which
represents the knowledge - this is an extensivity property on the PER lattice.

The memory is assumed to be partitioned into twbigh (H) part and a low
(L) part forming a security latticé = H. The operational semantics identifies
two types of eventsy € {¢, ¢}, wheree is an empty label, which the attacker
cannot observe, andis alow event that the attacker can observe. Whenever it is
generated, the eveits either thelL-projection of state or a special termination
event| signalling program termination. Vectoré) (fepresent sequences of low
events and P, o) N *(P',0') means tha{P’, o’) is reachable via the execution
of P at states, generating the sequenéef low events. Similarly{ P, o) N
*(-,0’) means that the execution &f at states terminates in the state’ and
generates the sequente

Let L(P,0},) = {l|o,0" ¢ ¥, 00, =0 (Po) —Z>*<~,O">} and letL(P, o)

be the prefix closure of.(P, o—fL). Thetermination-sensitivéknowledge gained

108

by an attacker of the progra under the observation dfe E(P, O’?L) when the

low projection of the starting statesd$ is defined as

k(P,0%,0) 2 {0|0,0" € 5,0 = 0,1, (P,0) —*(P",0") v (P,0) —>*(-,0")}.

(4.13)

We can therefore compute the gradual release knowledﬁﬁy&,?) under our
approach by defining an observational power function over traces which maps
each partial trace to the sequentegenerated under the definition of [AS07],

so that a resulting PER is defined which relates any pair of statese X iff

o,0" € k(P, U?L,E). However, since the termination-sensitive knowledge can only
be computed for a terminating trace, or its prefix, (that is, far ﬁ(P, O'?L))

one cannot represent the knowledge gained under nonterminating traces. This ex-
cludes a large class of programs, for exampteloop, where P is an arbitrary
program. As the analyses in the preceding sections show, program divergence

does not pose additional difficulty to our information release definition.

4.4.3 Abstract Noninterference Attacker Model

The abstract noninterference definition of [GMO04] introduces attacker models as
abstract interpretations, which can observe only properties of data in the concrete
domain. The idea is that by weakening the observational power of the attacker
on the values of public inputs and outputs of a program, so that the attacker can
observe only theiproperties less restrictive policies, which accept programs that

might otherwise be rejected by the standard noninterference definitions can be

specified. The concrete domain is partitioned into two $&&nd L, which rep-

109

resent the domain of secret and public values respectivalystate is modelled

as tuples i = H x L. The attacker is modelled as a pair of abstractiong),
wheren, p € uco(P(L)) are upper closure operators on the powerset lattice of
public values ordered by subset inclusion. The closure operatansl p model

what the attacker can observe about the program’s public inputs and outputs re-
spectively. The concrete semantics of the progfams formalised usingngelic
denotational semanti¢csvhich associates an input-output functi¢®] : ¥ — X,

with P and ignores nontermination. Furthermore, the observation of (public) val-
ues occur at the beginning of program execution and on program termination. To
slightly simplify the notations, we shall denote the concrete semanti€sas a
map[P] : H x L — L, throwing away thel -projection of state on termination,
since it is not used.

Our observational model is more general since we place no restriction on
the nature of the observational power function, as opposed to the requirement
in [GMO04], where they must be closure operators. Furthermore, our observational
model is not restricted to the observation of values at the beginning and end of
program execution. The attackr, p) can be obtained under our model by defin-
ing an observational power function on traces, such that forcaaye X, and

!

tracetp,) = (P,0) — - — (-,6)

0bsy 0 (tpey) = (N({oyL}), p({0,2})) (4.14)

This definition says that the attacker only observesthbeoperty of thel.-projection
of the initial state and the-property of theL-projection of the terminating state

of P. Consequently, the information released under this observational model is

110

the PER[pr)J over X defined such that for any, o’ ¢ &

g [Tpm,p)J o' <= 0bsy) (Lpo)) = ODSy 0) (Lpor))- (4.15)

It is thus clear that for any, o’ € &, such thatp,y = (P,0) — -~ R (-,0) and

tipory = (P,0’) RN (-,0’) we have

o|Tr, |00 = n({on}) =nl{o}})Ap({6,1}) = p({6],})

= n({ow}) =n{o]}) = e({o.L}) = p({5].})-

By this we immediately obtain the narrow abstract noninterference (NANI) defi-

nition:
M]P[p] < Vo,0' e n({o,1}) =n({o).}) = o([P](c)) = p([P](c")).

Thus,[Tp(wJ is the least PER over states for which any pair of states that it relates
satisfies NANI inP.

The NANI definition causes what is referred to as “deceptive flows”, whereby
n-undistinguished public input values cause a variation, which makesviolate
NANI. In order to deal with this problem, abstractionsiofalues are passed as
program parameters and another abstragpieruco(P(H)) is introduced on the

input secret values. This results in the abstract noninterference (ANI) property,

111

n]P($ ~ [|p), of [GMO4], which is defined to hold iff for alb, o’ € X,

n{ow) =n({ol,}) = o U AIPIE)H = U A[PI(")}).

o'ex, o'ex,
q)(o'i/H):q)(oiH)7 (I)(o’i/H):q)(o'iH)v
n(oyz)=n(oyL) n(eyL)=n(o|L)

(4.16)

Let o ¢ X be a state, and define the &}* of L-projections of the terminating
states ofP due to the execution @? from any starting state, which agrees with
on then-property of theL-projection and on theb-property of theH -projection

to be

0" € SUP,0") -5 o 5 (1 5).

Xt eioy
{ n({ol}) =n{ow}), ¢({o]yy}) = d({ouu}).

} (4.17)

Hence, from (4.16)jn]P(d ~ [|p) holds iff for all o, 0’ € %
n({oi}) =n({o}L}) = p(Z2%) = p(Z3*). (4.18)

We can obtain this observational model under our framework by defining an ob-
servational power function on traces, such that for any 32, and terminating

tracet(pm

0bSy.4.0) (tpoy) = (N({0y}), P(Z0)) (4.19)

This definition requires that no public output can be distinguishegfoy any ini-
tial state, which id.-indistinguishable from te- underm and H -indistinguishable

from o under¢. Thus, as usual, the information released under our relational

112

model is the PEFETP(H,@ | over X defined such that for any, o’ € &

p)
0| Thpy g0y 0 == 0bS0.0.0)(L(p0)) = ODS0.0) (L(por))- (4.20)
Hence, for allb, o’ € 32, we have that

0| Tryonlo’ = n{owd) =n({o]}) A p(E5?) = p(=3°)
— n({ou}) =n({o].}) = o(Z3") = p(Z}").

By this we obtain ANI propertyn]P(¢d ~ [p) and [Tp(n’(p’p)J is the least PER

over X, for which any pair of states that it relates satisfies ANPIn

4.5 Information Flow in Nondeterministic Systems

In the remainder of this chapter, we shall turn our attention to the application
of the operational-semantics based relational model definition of section 4.1 in a
nondeterministic language setting. The objective is to demonstrate that, similarly
to its use in a deterministic language setting, we can also apply the technique to
the analysis of information flow in a nondeterministic language. For this reason
we shall add, separately, two simple extensions toMmde language, which are
constructs fopossibilistic nondeterminisiio obtainWhile-ND) andprobabilis-

tic nondeterminisnfto obtainWhileePND). The resulting two languages provide

us with concrete language-based settings to demonstrate the use of the relational
model for the definition of information flow property of a nondeterministic sys-
tem. We shall use the same semantic attacker’s observational model that was

introduced earlier for the deterministhile language. Later on, in Chapter 5

113

and Chapter 6, static analyses for iW&le language will be presented, however,
the full static analyses of th&hileeND andWhile-PND are beyond the scope of

this thesis.

4.5.1 Possibilistic Nondeterminism

We start by introducing the langua@éhile-ND (for Whilewith NonDeterminism)

as a language for (possibilistic) nondeterministic systemisile ND extends the
Whilelanguage presented in section 4.2 by adding a nondeterministic construct,
¢1 || e2, which makes an invisible but arbitrary choice in the execution of either
the command; or the command,. Consequently, the operational semantics of

While-ND extends that o¥Whileas shown in Figure 4.4.

(01U0270'>i><0170'> (01ﬂ02,0')—€>(02,0')

Figure 4.4: ExtendingWhile with Possibilistic Nondeterminism

As the semantics shows, nondeterministic choice is an internal action, which
is not externally observable to the semantic attacker. In other to address nondeter-
minism, we extend the definition (4.2) obg-) to obs'(-), which now produces
the setof all observations that can result from the execution Wlale-ND pro-
gram from a given starting state. LBtbe aWhileeND program and lek be the
set of all states of’. Furthermore, let(p, = {(P, o) =5, (P, ct) L liel,}
be the set of all finite and infinite traces Bfresulting from the execution d? at
the stater € X, wherel,, is an index set which identifies all the possible traces of

P starting fromo. For anyi € I, let tz‘PJ € t(p,) be thei™ possible trace of

)
114

starting fromo sothattp,) = {tfpﬂ |i€1,}. Now defineobs'(-), which extends

obg-) (see (4.2)) to set of traces as:
0bS (t(p,0)) 2 {00 tip,) i € I} (4.21)

The set of all possible observations arising from the executidhisfgiven by
Vp 2 {a €0bsS (tp,))|0 € X} and the relational modelp ¢ X x Vp of P is given
by Vo € ¥,0 Spa <= a € 0obs(tp,). We can now define the possibilistic
information released by the prografhas follows.

Let Sp ¢ X x Vp be the relational model of the nondeterministic WANIBD
program P such thatX,,, = {S;'(a) | a € Vp}. The information released by

under the possibilistic model is given by

LP]= (5v)- (4.22)

This definition is based on the possibilistic information flow definition of sec-
tion 3.7. It is straightforward to see that definition (4.22) is a natural extension of
the deterministic definition (4.4). In particular, i is a deterministiaVhile pro-
gram then| P| is a partitioning of states, such that for ang %, [o]|r,.| € [P].
Similarly to the definition (4.5) of semantic information flow in the deterministic
setting, but now taking the lattice to be FAM(X), we can define the semantic

information flow property of &Vhile-ND programP as

[PT = {f [¥{(2)) € FAM(D), fF((Es) = (Zo) u L P} (4.23)

This definition describes how the attacker’s knowledge on the |ZAM(X) is

115

transformed by the program®. Let us further illustrate hoy P | captures the
information released by the nondeterministitileND programpP.

Suppose the integer (secrét)s a parameter to the nondeterministic program
P=if(h=0)thenskip[loopel seski p. This program may either termi-
nate or loop indefinitely when the secret values chosen to be zero. Thus, itis
easy to see that the attacker may learn the valuetofbe zero when the program
fails to terminate. The set of possible observatio®a$ given byVe = {{|), (1)}
where(]) corresponds to the observation during the terminating tracegfand
corresponds to the observation of the diverging trace. If we represent the set of
program states 85 = {(n)|n € Z}, then the relational model @, is Sp € X xVp
whose graph is given b{((0), (1)), ((n),{})) |n € Z}. Thus, we have the follow-
ing inverse imagess;'({1)) = {(0)} andS7({1)) = 2, and| P| = {{(0)}, 5}
reflecting the fact that the attacker can learn when the secret value is zero.

Consider another prograiy = i f (h = 0) t hen ski p [| loopel se loop.

In this case the observation tdrminationreveals to the attacker that the value
of the integer secréi is zero. The analysis is similar to that 6f but now we
havegraph(Se,) = {((0). (1)), ((n),{1)) | n € Z} and Sz (1)) = {(0)} and
Sph(1) = . Thus,| P4] = {{(0)}, X}, and itis intuitive thatP, should release
the same information aB.

Consider the program®s =i f (h =0) t henski p || loopel se ski p [loop
which may or may not terminate regardless of the chosen valte loituitively,
this program should not reveal any information to the attacker as its behaviour
is independent of the choice éf This is confirmed as followsgraph(Sp,,) =
{((n), (1)), ((n), (1)) [n € Z}. Thus,S3! ((1)) = SpL ((1)) = 2. This means that
| Pz | = {X}, confirming the fact that the attacker learns nothing by observing the

116

execution ofPg.
Now suppose thaf’- is a WhileND program that always terminates. Sim-
ilarly to the analysis under deterministic programs, the information flowof
is preserved in the progra’ = P.;loop. This is easy to see because there is
an isomorphism betwee¥,, andVp:, which appends to all a € Vp_, such that
VoeX, 0 Sp. (a) <= oSpr{a,1), whereSp, € ¥ xVp, andSp ¢ X x Vpr are
respectively the relational models Bf andP’. Hence, we havgéP. | = | P’|.
Finally, let P, be awhileeND program such tha®’ = loop; P. Like the deter-
ministic analysis, this program reveals no information since far al®, 0 Sp/ (1)

holds and hencgP’| = {X}.

Possibilistic Noninterference

We can also state a noninterference property under the possibilistic setting to cap-
ture when an attacker cannot learn anything about secret inputs by observing the
public output. The basic idea is that the choice of secret values should not affect
the information that can be deduced by the attacker.

Let H ¢ Var be the set of secret-containing variables, a nondeterministic

While-ND programP has no possibilistic information flow iff

VS e | P], havodd (%) = 3. (4.24)

The link between the nondeterministic definition (4.24) and the deterministic one
(4.8) is clear since if” is a deterministic program eaghe | P| corresponds to an
equivalence class dff'»|. The intuition of (4.24) is also straightforward: if =

Var\H is the set of public variables, then for any ¥ € | P| the observations

117

that led to the knowledge that the secret lies within theXsebuld have been
produced by any”’ € X such thatr,, = o|;, sincehavodi(¥) = 3. In other
words, that observation is independent of the choicH efalues. Let us illustrate
this definition with two more examples.

Consider the progran® = witeh-h[witel, whereh and!l are re-
spectively the secret and public inputsFo Intuitively, the attacker cannot learn
anything about since the output of this program is never dependent on the value
of h regardless of how the nondeterminism is resolved. This is demonstrated by
the analysis of its possibilistic information flow. Suppdsé ¢ {0,1} are bi-
nary numbers. Now let; € ¥ be the state where,(h) = 0,0,(]) = 1 and let
o3 € X be the state wheres(h) = 1,03(l) = 1. The graph of the relational
model of P is given bygraph(Sp) = {(7,(0,1)), (o1,(1,1)), (03,(1,})) | 0 € 2}
where as usudlo, (n,|)) € Sp means that the output sequeriee}) can be ob-
served wherP is executed at state € 3. The inverse images induced by these
outputs areS;z'((0,1)) = ¥ and Sp'((1,1)) = {01,035} = X. Thus, we have
| P] = {X,X}. This program is noninterfering with respect/teinputs since if
we definedH = {h}, havodi(X) = X andhavodi (%) = ..

Now consider the programf?’ =writeh-h[witelXORh which can
nondeterministically compute thexclusive ORof [and h, or print0 = A — h.

It is easy to see that thie input interferes with the output of this program. In
particular, if the attacker observes an output gthen the attacker can derive the
value ofh from the value of since in that casé # [. The fact that information
flows to the attacker is revealed by the analysis bec&uses not satisfy (4.24).
Now let o; € ¥ be the state where;(h) = 0,0,(l) = 1 and leto, € ¥ be the

state wherery(h) = 1,05(1) = 0. We have the graph of the relational model

118

of P’ to begraph(Sp) = {(0,(0,1)), (01,(1,1)),(02,(1,4)) | 0 € ¥}. Thus,
SH((0,1)) = X andSEH((1,1)) = {01,020} = X" and| P’]| = {£,X'}. However,

havodi (¥') = ¥ # ¥’ shows that information is revealed abdut

4.5.2 Probabilistic Nondeterminism

We now introduce the langua@®hileePND (for While with Probabilistic Non-
Determinism) as a language-based instantiation of probabilistic nondeterminis-
tic systems.While-PND extends th&Vhile language presented in section 4.2 by
adding a probabilistic construet, |, ¢o, which executes,; with a probability ofp
andc, with a probability ofl - p. In the constructof,, we assume that< p < 1.
In order to model how probabilistic choices affect the execution of programs,
we extend command configurations with probabilities such ¢pat o) means
that the command configuratidn, o) is to be executed with a probability pf
We shall call(p, ¢, o) aprobabilistic command configuration. Similarly to termi-
nal command configuration§, -, o) represent &erminal probabilistic command
configurationwhere there are no more commands to execute. The operational
semantics ofWhilePND is shown in Figure 4.5. It shows that the probabilis-
tic choice itself is not observable, although we assume that the attacker knows
the program code and therefore knows the probability of making any of the two
choices.

Let P be aWhile-PND program and lek be the set of states df. Further-
more, for anyo € X we denote by, an index set identifying the set of all finite
and infinite traces oP starting at state. SinceP will be executed for any given

starting state, we take the starting probabilityrofo bel. The set of all traces of

119

(p,Ski p,g) o (p,-,g) (p,z = 670> o <p,-,0'[2 = U(G)D

(p,V\lf ite 670> OU@S)) <p7'70>

(pv Clag> i) (plvc,170,> <p70170> i) <p,7'7OJ>

<p7 01;027(7) i) (plvcll;027gl> (pa 01;0270> i) <p,7027gl>

(b,0) = (tt.0) (p,c1,0) = (', c],0")

<p7| f (b) t hen &1 e' Se0270> i) <p,,C,17O',>

(b,0) — (ff,0) (p,ca,0) = (p/,ch,0')

(p,if (b)thenc el secy, o) (p',c),0")

(b,0) = (tt,o) (p,c,0) = (', o)
(p,whi | e (b)do ¢,0) - (p',¢;whi | e (b) do ¢, o)

(b, o) N (ff, o)
(p,whi | e (b)do c,o) = (p,-,0)

O0<p' <1 O0<p' <1

(pucl I]p' 02,0'> — (p XP'70170> (pucl I]p' 02,0'> — (px (1 —p')7C270'>

Figure 4.5: The Operational Semantics a¥hile-PND

120

P starting atr is given by

t(P,cr) 2 {<17P70> —> <p117P1Z70-i> — | i€]J}' (425)
Similarly to theWhile-ND case, the index sé} identifies the probabilistic choices
that are made during the execution of iMhileePND programP when executed

from the stater. We shall writet:

(Poy € t(Po) tO represent thé&” possible trace of

P starting at the state for somei € I,. The set of all traces of thé/hilePND

programp is given by

Tr = | tpo) (4.26)

oeXx

In the probabilistic case, we require that the input spa@nd the output spade
both be finite. Furthermore, we shall consider only programs where thé st
all traces ofP is finite. We do not consider in this thesis the full generality of an
infinite set of probabilistic traces. This, for example, rules out programs, which
are infinitely branching ofj,,.

As usual, using the semantic attacker’s observational model (see (4.2)), and
similarly to the definition in th&VhileND case (see 4.21), the extensiorobf-)
to set of probabilistic traces oS (t(p,y) = {0bgt) |t € t(p,)}. DefineVp =
{obgq(t) |t € Tp} to be the set of all observations that the attacker can make about
the While-PND programP. The relational mode$r ¢ X x Vp of P is, as usual,
thus defined a8 € X,0 Spv <= v e0obs (tp,)).

Furthermore, for any € X and;: € 1, define the limiting probabilitw(t%RU)) =
p: of the trace’! o) of P, to be the smallest probability, due to some probabilistic

(P7

121

7

command configuratio{pz,Pg,a;)in tipgy = (1, P.0) 5, | B (pi,Pi,o)i

(p],P]Z, ;’) — ..., such that for all probabilistic command configuration
(p}, Pl,o%) in tz Wherej > k, if it exists, we havep; = p;. The limiting
probabllltyw(tl) is the probability of executmgl € t(p) Whenever is
chosen. From the operational semantics, the Ilmltlng probability exists uniquely

in the closed real intervdD, 1], ordered by, and is the smallest probability

w(ty(;PJ)) = mln{p; | <pJ’PJZ’]> € tz)} (427)

In (4.27), the notatiokp’, P

' P]) € t’ denotes the existence of the probabilistic

in the tracefz o)

In order to compute the quantitative information release to an attacker of a

command configuratioy’, P;, o})
While-PND programP we need a probability measugies .# (3), which assigns
probabilities to the selection of input statese > of P. We assume that the
attacker knows the measyreso that it represents the attacker’s uncertainty about
the choice of inputs. From we can compute the joint probability,e .Z (X x
Vp), which represents the probability of joint occurrence of input-output pairs in
the relational model of. As usual, following the standard convention, for any
oe X andv e Vp, (o |v) andji(v]| o) are conditional probabilities, and we shall
denote the marginal probability for the occurrence by 1/(v). These measures
are computed using the operational semanticB ahd the given probabilities
over the input space as follows.

Let Tt = {t € t(p,) | Obgt) = v} be the set of traces d? starting fromo,

which produce the output observationThe conditional probability of producing

122

the outputv when the input state is chosen is given by

fpolo)= Y w(t). (4.28)

teT(o:v)

The probabilityji(v | o) is the sum of the probabilities of traces that produce the
outputv when P is executed at state. Thus, the marginal probability of pro-
ducing the output by P is p/(v) = ¥, p(0) x (v | o). Using these, we can
compute the attacker’s uncertainty about the input stat@: given the observa-

tion of outputv € Vp as the conditional probability

fi(v]o) x p(o)
p'(v)

fi(o |v) =

Using Definition 3.8.5 we can now compute the quantitative information released

by P. Let us illustrate with some example analyses.

Sample Analyses

Consider the prograr? =i f (h =7) t henski p || 5 loopel se ski p and sup-
poseh is an integer secret chosen uniformly from the{get, ..., 15} of integers.
Hence we can model the set of state$as {(n) |0 < n < 15}, where for any
input statesr € ¥ of P, p(o) = ;. Leto, € X be the state of whereh = n. We
have two possible traces éffor o, both of which are chosen by the probabilistic
constructor] 5 with equal probability of).5. One of these traces terminates, but
the other does not. Let us label the trace$}9’§7) for the terminating trace and

t2

(r.on) fOr the nonterminating trace. Thenwe haye , = (1, P, o7) = (.5, 07)

andt?, = (1,P,0r) — (.5,5Ki p,or) — (.5,skip,a7) — - Hence,

123

obs(t<1P7U7>) =({), wherea&bs(tfp’m)) = (1) - being an infinite trace with no out-
put. Furthermoregu(t(le)) =.5 andw(tfpm)) = .5. However, for anyn # 7
there is only one possible trace fef, which is,t(lpvm =(1,P,0,) — (1,-,0,)

and we haveobg(t;,, ,) = (1) andw(t;,, ,) = 1. Henceu({l) |o7) = 3 (the
probability of observing(}) given thato; was chosen as the input #®) and
ii((1) | o7) = 3, whereas for any othet # 7 we have thafi({l) | s,) = 1 and
a((1)]on) = 0. We can thus compute the marginal probabilities of the outputs as
p'((1)) =35 x35+15x = x1=3Land u/((1)) = & x 3 = 55. Thus, foro7, we have

the conditional probabilities

- _ (W) Jor) x p(o7) _ 1 (o _
il | () = LRS- o (1) = 1
Similarly, for anyo,, € ¥\{o7} we havei(o, | (1)) = & ard fi(o,, | (1)) = 0.

Using Definition 3.8.5, the information released Bys given by

Lipyy = H(pw) = Y, p/(v)H ()

veVp

where for anys € ¥, u,(0) = i(o | v) is the probability that was selected as
the input toP given the observation af, and?(x) andH (u,) are respectively

the entropies of the random variables induced by the probability megsaned

1, over X, which respectively describe the attacker’s uncertainty about the input
state before and after observiR({s execution. Therefore, the information @its)

abouth released byP is

Lpw = log(16) - (25 (35 log(31) + 15 x Z1log (3)) + 2 x 0)
~ 0.1381

124

This measure is the average uncertainty lost about the in@aesphat is, the
information gained by the attacker. The meastig:) = log(16) is the initial
uncertainty that the attacker has about the input space, but after observing di-
vergence in one out df2 runs, whereby the attacker can identify the input on
that run, the average uncertainty that remains about the input space is the measure
Yvevp W (V)H (1), and its difference frort (1.) models the information released
to the attacker about the inputs o

Now consider the programy =i f (h =7)t henski p [5 loopel se loop,
which is similar toP but now swapski p andloop. The similarity is that, instead
of revealing the input on divergence, termination now signals that the input
P4 is 7. Intuitively, we should get the same result By that we got forP,
becauseP, is simply a swapping of probabilities (which the entropy measure is
not sensitive to) so that, terminates once every 32 times, as opposed, twhich
symmetrically diverges once every 32 times. Making the same assumptions and
using the similar notations as in the last example, the analysi3 a$ similar
to the analysis ofP. We now have the following probabilitiesi({}) | o7) =
f((1) | o7) = 1 and for all o € X\{o7},a((1) | o) = Landa((l) | o) = 0. Also,
(1)) = 3 and w((4)) = &, and for anyo € B, (o | (1)) = 1 if o = o7 and
fi(o | (})) = 0 otherwise. Finally, for any ¢ X, fi(o | (1)) = 3; if 0 = o7 and
fi(o | (1)) = & otherwise. Thus, by applying Definition 3.8.5, the information
released by°, is given byl p, .y = I;p,). The identical result is not surprising
because the analysis 61, is merely a permutation of probabilities due to the
observation oft) and(|) in the analysis of.

The quantitative information flow obtained whieopis appended or prepended

to WhilePND programs is similar in nature to the information flow obtained un-

125

der the deterministi®Vhle and the possibilistic nondeterministi¢hileeND un-
der the relational model. Specifically, for aghile PND programP that always
terminates, the quantitative information flow 6fis preserved in the program
Pp = P;loop sincePg only appendg to the observations aP without changing
the probabilities. Similarly, for anWhilePND programP, it is easy to see that
the probabilistic information flow of’> = loop; P is 0 bits, since theP subpro-
gram is never executed and the output observatipof P¢ is independensf the

choice of the input values tB..

Summary In this chapter we have studied semantic definitions of information
flow in various language-based settings. These definitions demonstrate the use of
the input-output relational model and information representations introduced in
Chapter 3. The definitions of information flow were given relative to an attacker’s
observational model, the semantic attacker, to illustrate the definition of attacker
models, and to demonstrate the development of information flow analyses that are
parametrised by a chosen attacker’'s observational power. The semantic analyses
developed demonstrate that the relational model copes well with issues of nonter-
mination. In the next chapter, we shall develop a static information flow analysis
technique for thaVhile language, which is based on the observational model of

the semantic attacker.

126

Chapter 5

Information Flow Analysis of While

Programs

In this chapter we present a static analysis of information flowM#hile pro-
grams, using PERs on the set of program states to represent information. The
semantics-based static analysis, which is flow-sensitive and termination-sensitive,
is shown to be correct with respect to themantic attackemodel introduced in

the previous chapter. This attacker is not only able to observe program outputs as
prescribed by the operational semantics, but can also determine whether the pro-
gram terminates or not. We shall start by presenting examples to motivate some

aspects of information flow analysis captured by the static analysis.

5.1 Motivating Examples

In the following examples the variable (for high) is named to suggest that it

might contain sensitive input, and variabll¢for low) is named to suggest that

127

it initially contains public input. The variable is generally used for temporary
storage of intermediate computation, and is not a parameter to the program. We
shall sometimes present two or more programs within the same figure (usually to
compare the programs), separated by a vertical line. When there are two programs,
we refer to the leftmost program as the left-hand-side (LHS) program and the other

as the right-hand-side (RHS) program.

Example 5.1.1(Explicit Information Flow The two programs shown in Fig-

ure 5.1.1 below both reveal exactly the same information, namely, the value of
the secret inpuk. The RHS program first assigns the secret valuk tf another
intermediate variable before printing it to the output. Although the two program
implementations are different, the information flow analysis of these programs
should produce the same result since they both reveal the same information. In
the security literature, information flow fromto z through the assignment state-
ment is callecexplicitinformation flow [Den76].

‘ z:=h;

write h; .)
write z;

Figure 5.1: Explicit Information Flow

Example 5.1.2(Implicit Information Flow This example demonstrates the idea

of implicit or indirect information flow [Den76]. Assume that bothandz in

the programs of Figure 5.2 are boolean-typed variables. The LHS program is a
classic example of how information can be propagated implicitly. Althdugh

not directly assigned to, the value of. can be learnt indirectly via because the

value assigned tois determined by the value &f This information flow fromh

128

to z due to branching is callecbntrol dependencpMuc97] in compiler analysis.

The RHS program has exactly the same information flow, but it is propagated ex-
plicitly by the assignment. However, the distinction between implicit and explicit
information flow is immaterial in these programs because the binary value of the

secreth is revealed in both cases.

if (h)then

Ziztt; . h,
else write z;
z:=1T; '
write z;

Figure 5.2: Implicit Flow and a binary-valued Explicit Flow

Example 5.1.3(Implicit Flow Capacity Although implicit information flow chan-
nels are usually low-capacity transmission channels, but when well-used, implicit
information flow can be as potent as the explicit copying of data. Assuming that
h is a natural number, the program of Figure 5.3 (inefficiently, through a linear
search) copies the secret inputtpurely by implicit means.

z:=0;

while (h # z) do

zi=z+1;
write z;

Figure 5.3: Implicit Flows could be as dangerous as Explicit Copying

Example 5.1.4(Implicit Flow - due to assignment or lack of) iThis example

demonstrates why not all implicit flows can be detected by only considering one

129

program trace (or control-flow path) at a time. In Figure 5.4hlgwrograms re-
lease the same information about the sekré¥lore specifically, an output @fin

both programs indicates that the valuehat 1, whereas an output dfindicates

that the value oh is not 1. Itis clear that the particular output value is not impor-
tant, what matters is the fact that the attacker can determine which branch of the

conditional statement has been executed by observing the output values.

2:=0;
if (h=1) then if (h=1)then
z:=0; ski p;
else else
z:=1; z:=1;
write z; write z;

Figure 5.4: Assignments on all program paths must be considered

Now suppose that we haverace-based monitowhich determineat runtime
whether information may flow implicitly to a variable by checking whether or not
that variable is assigned within the branch of a conditional statement whose guard
is predicated on an expression involving secret values. In the LHS program, this
monitor will be able to detect the implicit information flow tofrom the secret
variableh because is assigned within both branches of fifiestatement. In the
RHS program however, this monitor will fail to detect that information flows from
h to z onthe tracethrough thehenbranch, because as far as the runtime monitor
can tell on this trace; is not assigned within a conditional statement. Information,
however, flows ta: because it is assigned in at least one branch of the conditional
statement. This is a well known problem concerning the use of runtime moni-

tors for the enforcement of information flow security [Vol99b, McL94, SM03a].

130

The runtime monitor fails to detect the flow because securernrdtion flow is

a property ofall control-flow paths. A runtime-based enforcement monitor for
information flow introduced in [GBJS06] uses the result of a static analysis in
the enforcement monitor in order to deal with this problem. This highlights the

importance of static analysis as a useful technique for information flow protection.

Example 5.1.5Information Flow - due to program interaction or lack of Many

useful programs anateractivein nature, receiving inputs from the user and gen-
erating output as they execute. TWiilelanguage studied in this thesis produces
outputs through therrite construct, which raises the possibility of implicit infor-
mation flow when output takes place in conditional statements, and also explicit
information flow when the attacker observes the result of the evaluation of an ex-
pression whose value depends on secrets. The example of Figure 5.5 demonstrates

implicit information flow via output interactions.

if (h=1)then if (h=1)then
write 1; write 1;
else else
write 2; ski p;

Figure 5.5: Program Output, or the lack of it, on all control-flow paths must be considered

In the LHS program of Figure 5.5, an output bfndicates that the value of
h is 1, whereas an output ¢f reveals that: is not1. The RHS program only
produces output when thteenbranch is executed, however this single output or
the lack of it is sufficient to reveal the same information as in the LHS program to
the attacker: an output afin the RHS program revealsto bel, andno output

reveals that: is not1. This implicit information flow due to lack of output is

131

similar to the problem of lack of assignment in the RHS progréiFigure 5.4.

Example 5.1.6(Flow-Sensitivity and Semantjc3his example, adapted from
[JLOO], demonstrates flow-sensitivity and semantics-related aspects of informa-
tion flow analyses. Flow-sensitive and semantics-based analyses are usually more
precise than flow-insensitive static approximations of information flow, which
are commonly used in security type-systems for noninterference such as [VSI96,
VS97]. In flow-insensitive security type systems, which are common in language-
based security, a variable must be typed as secret whenever it is assigned a value
that may be dependent on a secret at any point within the program. While this
is the case in the three programs of Figure 5.6, the attacker cannot learn any-
thing about (the secref) by observing the program output. Flow-sensitive and
semantics-based analyses detect this. In the first program, the secret value in
is over-written before it can be used in the output: flow-sensitivity. Similarly, in
the second program, the secret valué is lost before it is assigned to- which

in turn is written to the output. In the third program, although the value isf
computed as a function df, it is however clear that the final value ofbefore

it is released is the constant 0, which means that the value of the program output
Is independent of the secrkt Modern type-based analyses such as [HS06], and
dependency analyses such as [AB04], whichflane-sensitivewill detect the se-

curity of the first two programs. The analysis that we shall present in this chapter
is flow-sensitive and, being semantics-based, will detect that all the three program
are safe. In particular, the analysis of the third program demonstrates the semantic

properties of our analysis.

Example 5.1.7(Dead CodgThis example highlights another aspect of semantics-

132

z:=h; h = 6; z:=h;
z = 0; z:=h; z:=2-h;
write z; write z; write z;

Figure 5.6: Accuracy: Semantic Analysis against Static Typing

based analyses, which makes them more accurate than the traditional static-typing
systems for information flow. In the LHS program of Figure 5.7, the sécist
assigned ta in the thenbranch, which suggests that the output value might be
dependent on the secret input. However, since this branch will never be executed,
the output of this program is the constanand hence no information is revealed
abouth. In the RHS program, the preceding nonterminating loop prevents the ex-
ecution of thawrite statement, which makes the program safe because the danger-
ous part will never be executed. The correct information flow in these examples,

and similardead codesituations, are detected by our analysis.

if (ff) then

z:=h; while (tt) do
else ski p;

2 :=0; write h;
write z;

Figure 5.7: Dead Code and Information Flow

Example 5.1.8(Termination-SensitivilyThe modelling of information flow due
to nontermination (termination channels) or in the presence of nontermination
is important because nontermination, especially when combined with program
outputs, can be used to reveal arbitrary information about secrets [AHSSO08].

On one hand, although the LHS program of Figure 5.8 does not produce any

133

if (h=10)then
while (tt) do write h;
ski p; while (tt) do
else ski p;
ski p;

Figure 5.8: Information Flow in the Presence of Nontermination

output by awrite statement, it however has a termination channel via which infor-
mation about the secrétis transmitted. The termination of this program reveals
thath # 10, whereas nontermination reveals thas 10. The RHS program, on

the other hand, reveals the sedrétefore diverging. Termination-insensitive anal-
yses, which support program outputs like [GBJS06, AS07], do not model infor-
mation flow under diverging programs such as the one on the RHS of Figure 5.8.

Our analysis can deal with these and similar cases.

Example 5.1.9(Disjunctive Information Flow AnalysisSince a program trace
traverses a given control-flow path at a time during the program’s execution, it
is reasonable to analyse information flow in a way that models this property of
program execution. This observation leads to a more accurate analysis of certain
disjunctive information flowFor example, we might require that at most one of
two secretsh; or h, may be learnt, that is, nevéeoth at the same time, during
the program run. This pattern is akin to the disjunctive information flow property
mentioned in [SS05]. We have shown how one may represent disjunctive infor-
mation with PERSs in section 3.5.5. This example demonstrates the usefulness of
such a notion.

Consider the programs of Figure 5.9, and assumeltisat public boolean

value (possibly chosen by an attacker). Itis clear that the first program on the LHS

134

if (1) then if (tt) then

write hy; write hy; write hq;
write hsy; else else
write hs; write ho;

Figure 5.9: Disjunctive Information Flow

violates the required disjunctive policy about the releasg @indh,, whereas the
other two programs do not. In the second program in the middle, the attacker can
learn at most one of eithér, or h, during a run regardless of haws chosen in

this program. One may think éfas the release key to choose between the release
of eitherh; or hy. The third, rightmost, program satisfies the desired policy by
definition because it never reveals Our analysis, by the definition of disjunctive
information in PERSs, detects the disjunctive properties of information flow about

hi andhs in these three programs.

5.2 Information Flow Analysis with PERs

We have presented, in Chapter 3, the lattice of PERS over a set as a representation
of information and we have shown, in Chapter 4, how the semantic information
flow property of awhile program may be defined by using PERs over its set of
states. In the remainder of this chapter, we shall develop a static analysis calculus
for deriving the program information flow, which uses the lattice of PERs over
program states as the representation of information.

In the following, the set& and Var are taken to be the set of all states and
the set of all variables respectively ofgaven programP, which will hopefully

be clear from the context. We also assume that th&aetof the program vari-

135

ables is partitioned into two; namely, the $&far of variables used for program
inputs that is, the program’s formal parameters, and thélSéar = Var\IVar

of variables, which are not formal parameters but are usetefaporaryinter-
mediate storage during the program’s computations. The semantic status of the
I'Var-TVar partitioning of variables is established by requiring a property, which
preserves the determinism Wfhile with respect to the program inputs, namely,

that the behaviour of @hileprogram must be invariant under fix€¥ar-values.

Definition 5.2.1. Let P be aWhile program. We say thaP is properly-initialised
iff
1. for anyo,0’ € ¥ such thato|rvar = 0)jy,, Where(P,o) = (P,o) —>

(Pr,00) 25 - and (P,0") = (P,o") —> (P!,0!) — - then for alli,

a; = a,and
2. there is no assignment I&¥/ar variables inP.

We shall consider only properly-initialised programs in the static analysis de-
veloped in this chapter. The Definition 5.2.1 of a properly-initialised progFam
requires that the observable operational behaviour of this program must be fixed
from one run to another under fixed inpdiMar) values. A way to ensure this
property is to initialise properly all' Var variables before use. A variable is
said to beproperly-initialisedif it is defined as a function of the initial values of
I'Var variables. This is not an unusual requirement because the initialisation of
a variable before use is standard programming practice. The property is required
during the static analysis of programs because determinism of the program with
respect to its formal parameters is assumed. At the beginning of program execu-

tion, theI Var variables are properly-initialised by definition. But we also require,

136

to simplify the analysis, thdtVar variables are not used on the left-hand-side of
assignment statements. This is not a serious restriction because assignments to
I'Var variables can be handled by a systematic variable-renaming scheme. The
no-assignment-t@Var requirement has the additional benefit that we can simply

name a secret input after th®ar variable in which it was initially stored.

5.2.1 The Attacker Model

In the static analysis of this chapter, we have assumesktiimantic attackemodel
of Chapter 4, which can only observe program outputs threwugk statements as
prescribed by the standard operational semantics, and can additionally determine

whether the program terminates or not.

5.3 Inducing PERs by Expression Evaluation

Consider the program in Figure 5.10, which reveals the parity of the secret input
h. This information is derived by the equivalence relation over states induced by
the possible evaluations of the expresstamod2. This equivalence relation is
the “parity of »” relation Par,,, such thatvo, ¢’ € 3,0 Par;, o’ iff o(h) mod2 =
o’(h) mod2. Thus, on account of the information revealed by this program alone,
any pair of input states, which agree on the parityt,ofdannot be distinguished by
observing the program’s output. Alternatively, we can say that the observer can
distinguish two input states of this program, by observing the output, only if those
states majh to values with different parities.

Let us now introduce a notation to construct PERs over program states by

considering expression evaluations.

137

write (h mod 2);

Figure 5.10: A program revealing the parity of its input.

Definition 5.3.1(Inducing PERs by evaluations)et 7 € {int,bool} be the pro-
gram data type of an expressierand let¢ € PER[7]) be a PER over values.
Define the PER: ¢ ¢ PER(X) over states that is induced by the observation of

under the constrainp as

Vo,0' eX. o (e:p) o’ < oa(e) ¢ a'(e).

Furthermore, define the PERB,F ¢ PERB) over booleans such that for any
Vo,o' e B,v Tv < v=v=ttandvF v < v =2"=1ff. Inthe special
case whemp = id is the identity relation over values, we have for any expression

e,Vo,0' e X, o (e:id) o’ — o(e) =0d'(e).

The PER¢ in e : ¢ specifies what values of the expressioan attacker can and
cannot distinguish, where ¢ v means that the attacker cannot distinguish the
pair of valuesy andv’. More generally, for any € dom(¢), the attacker cannot
distinguish any pair of values i],. Thus, the attacker cannot distinguish a pair

of statess ando’ by observing theie-values ifo(e),o'(e) € [v],. Additionally,

the PERy allows us to specify that certain values are not possible whenever those
values are not in the domain of definition of This partiality property is used

to specify the knowledge of which conditional branch has been taken during the
analysis of conditional statements. For example, on enterirthé&mdranch of the
conditional statementf (b)t henc; el se ¢y, we know statically thak evaluates

to the valuett and hence we can identify the information released abag

138

the PERD : T over states. Sinc# ¢ dom(T), the PERT specifies that the
boolean guard could not have evaluated to the veiloa entering théhenbranch.
Consequently, the domain of definition of the PERT identifies exactly only
the set of states under which ttieenbranch of this conditional statement can be

executed and it sets the context of implicit information flow for the analysis.of

5.3.1 Conditional Information Flow

Information flow in a program may be conditional. For example, when a com-
mand lies within a conditional statement, the information released by this com-
mand becomes conditional on how the boolean guard of the conditional statement
evaluates. As a concrete example, consider the program listings of Figure 5.11.
It is clear that the information flow caused by the commandt e & in the LHS
program is different from that in the program on the RHS. In the LHS program,
all possible values of the secret input may be learnt, whereas in the RHS program,
wri t e h only reveals the value df whenever that value i8) (in fact, the RHS
program as a whole only reveals whether the valuk 3f10 or not). These two

write statements cause different information flows because of the program context
where they occur. In particular, the executionmofi t e A in the RHS program is
predicated on the condition that= 10 holds.

write h; if (h=10)then write h;
else skip;

Figure 5.11: Conditional Information Flow

Considered independently of the execution context, the PER on states induced by

commandari t e his h:id, which distinguishes any pair of states with different

139

values ofh.

Now, in the RHS program, therite statement is executed only if the boolean
conditional guard evaluates to the valtte This predicate on state is captured
by the PER(h = 10) : T which requires that the value &f must bel0. Thus,
the domain of the PERA = 10) : T encodes the set of states under which the
execution of thehenbranch of the RHS program takes place, capturing the con-
ditionality of execution of thevrite statement. Thus, the PER thateBectively
induced by thew i t e h statement in this conditional context may be computed
as((h =10): T)u(h:id) = (h = 10) : T, which means that is revealed (by
thewrite statement) only if its value i§). This is as opposed to the LHS program
that always reveals the value fthat is,A : id).

For theelsebranch of the RHS program, the information released is modelled
by the PER(% = 10) : F, which relates all states wheke: 10 and therefore repre-
sents the knowledge thatis not equal ta 0. Note that this information is gained
by the observer of the RHS program if the program prodmoasutput when ex-
ecuted. We can thus represent the information released by the RHS program by
the PER obtained by taking the disjoint uni@fa= 10) : T u (h = 10) : F. This

information reveals whethér= 10 or not.

5.4 Static Analysis of Information Flow with PERSs

In this section we present some PER operations that will be used in the information
flow analysis. The analysis itself is based on triples that we referitd@snation
configurationswhich provide dynamic semantic contexts for the analysis of pro-

grams. Information configurations encode information flows at different points

140

along a program’s control-flow path.

54.1 Information Configurations

We are interested in keeping track of three aspects of information flow during
analysis. These information are encoded in triples referred tofasmation
configurationsof the form (£, 1,0), where £/ (for Explicit) represents explicit
information flows toI' Var variables during assignments, ah¢for Implicit) rep-
resents implicit information flows due to program branching @nér Outputor
Observedlrepresents the information released due to program outputs and obser-

vation.

Definition 5.4.1 (Information configurations)Let Z= PERX) be the lattice of
PERs over the set of states of a progran® and letVar be the set of variables
of P. Define the set of all information configurations with respect to this program

as® = E xIx O, whereE = [Var > Z]andI=0 =7.

We shall use(E,1,0),p,v € ® for information configurations, and symbols
®, ¥ c ® for sets of information configurations - adding superscripts and/or sub-
scripts when necessary. We shall refer to the first, second, and third projection of

an information configuration triple as ifs-, /-, andO-component respectively.

5.4.2 Context-based PERs

In order to track the flow of information through a program we shall be construct-
ing PERSs, which encode the information released. We shall however be tracking

the information released about the formal parameters (elements of th€=gt

141

of a program only, throwing away (dorgetting) information about other vari-
ables (elements of the s&tVar). Let us define some operations on PERs and

information configurations that we shall use in the static analysis.

Definition 5.4.2 (Forgetting information about variabled)et R ¢ PER'X) be a
PER overX, and letZ c Var be a set of variables. DefinrgR such that for
anyo,o’ € 3, 0 1,R o' iff there exist states,...,0, € X ando?,...,0/ | €
dom(R) ando = 01,0’ = 0, such that for alli, 1 <i < n -1 implieso;, 0,1 €

havo ([d!']r).

Intuitively, 1, R “forgets” the information thaf? has about the variables insince
each equivalence class ffR is dense with respect to the values of variables in
Z. Thatis, for allo e dom(,R) we have[o],z = havoZ([o]1,z). Let us show

that1,R is a PER.

Lemma 5.4.3.Let Z c Var be a set of variables in the domain of state&iand

let R e PER'X) be a PER ovel. The relation, R is a PER oveiX.

Proof. The symmetry oft,R is clear. For transitivity, suppose 1,R ¢’ and
o’ 1,R ¢" hold. Then there exist two sequences of states..,o,, € X and
oy,...,00, € ¥suchthatforalb =1,...,n-1andj =1,...,m - 1 there exist

rm

oft,oP e dom(R) such that;, ;,, € havocZ([0/']r) anda’, o, € havocZ ([0 7]r)
ando = oy ando’ = 0, = o] ando” = o/,. Thus, transitivity oft,R is clear by

concatenating the two sequences of states. O

Definition 5.4.4 (Domain-preserving joins)Let R, R’ ¢ PER'X) be PERs over
3. Define the PERs;(R), which extends the domain &f up toX ¢ 3 while

142

preserving the equivalence classedés

Vo,0' €3, o0Cx(R)o" iff o Ro'oro,o’ e X\dom(R).

Furthermore, let = dom(R) u dom(R’), define a join operation on PERgand

R’, which preserves their domains as

R R £Cx(R)uCs(R).

The extension of to set of PER® < PER(X), whereX = Ug.r dom(R), is given
by
[HR = || Cs(R).
ReR
The join operations has an associated partial ordex, defined as

ReR <— RwR =R.

Let(E,1,0),(E",I',0") € ® be information configurationg is extended to

information configurations as

(E,[,O)w(E", I''O" 2 (EnwE Tul' Ow0")

where, as usually = E’ is the pointwise join of functions. The extensjigof

to sets of information configurations is done in the usual way. Finally, define an

143

order relation on information configurations as
(E,1,O0)e(E',I',0") < VxeVar.E(z)eE' (x),[e]' O=0'.
The operation: preserves domains of PERs. It also preserves the partitioning,
that is, the information content of PERs.
Proposition 5.4.5.Let R, R’, R” ¢ PER(X) be PERs, then
1. dom@®) c domR = R'),
2. forallo,0’ edomR), 0 (RuR') o’ = o R0/,

3. for anyo € dom(R) and ¢’ € ¥ such thate’ ¢ dom(R), we have that

(0,0") ¢ (Ru R,
4. dom®R) c dom(R’) and R’'=R" implies thatR u R’ c Ru R".
Proof.

1. Itis clear from the definition thatom(R v R’) = dom(R) u dom(R’) and

hence thatlom(R) c dom R R').

2. Let¥ = dom(R)udom(R’) and definek? andR’ such that/ o, 0’ € 3, 0 Ro’
0,0’ e ¥\dom(R) ando R’ 0/ <= 0,0’ € ¥\dom(R’). Then we have
RuR =(RUR)u(RUR)=(RuR)u(RuR)u (R uR), since
RuU R = @. Furthermore, since by definitiano’ e domR) — 0,0’ ¢
dom(R), then for anyo, ¢’ € dom(R),c Ru R' 0/ = o (RuR’') o’ or

c(RuR)o' = o R0’

144

3. From the definitionr; (R& R') 09 —> 01 Cx(R) 0y =—> o1 Roy 0r
01,09 € X\dom(R), whereX = dom(R) u dom(R’). Since neither R o'
noro, o’ € ¥\dom(R) holds, theno,o’) ¢ R R'.

4. SinceR'=R" thenR"” = R’ & R"” and henceX” = dom(R") = dom(R") u
dom(R’). DefineR’ suchthat'o, o’ € &,0 R'0’ <= 0,0’ € ¥"\dom(R’).
SinceX” = dom(R") thenCs/(R") = R". Thus,R" = R'&1 R" = Csv(R') U
R" = (R'uR")u(R"uR’). Hence,R"UR = RUR'UR" becaus&?’uR = &
sincedom(R) c domR’), and,R’ and R’ are disjoint by definition. Since
R'uUR=RuRUR’ thenRuR c RuR".

O

It is clear that is a partial order on PERs becausées idempotent, commuta-
tive, and associative. The resulting lattice is also complete. The induced order on

® in turn makes the set of information configurations a complete lattice.

Theorem 5.4.6.The setPER(X) of PERs oveX is partially ordered byz, and

(PER(X), &, 1) forms a complete lattice

Proof. The partial order proof is straightforward. We shall now show that for
anyR c PER(X) and R’ € PER(X) such that for allR € R, ReR’, we have that

[+ ReR'. LetX = dom R'), then we know by (1) of proposition 5.4.5 that for
all R ¢ R,dom(R) c ¥, sinceReR’, and hence thadom(|+| R) ¢ X. Now, by
definition,Vo,0’ e ¥, o (HRu R)0’ <= o(Uvrer Cs(R)UR')0’ <= o R o’
since for allR € R,0 R' o/ = o Cx(R) ¢’ by the fact thatR=R’, which
means thafx,(R) u R’ = R'. Thereford+ R v R’ = R’, which shows the desired

property.]

145

Theorem 5.4.7.The partially ordered se{®, =, w) of information configurations

is a complete lattice.

Proof. For this proof it is sufficient to show that for any arbitrabyc ® the
join [+]® exists in® [GHK*03]. As usual|+|® = (E£’,I’,0') is the information
configuration defined agx € Var, E'(x) = H{E(z) | (E,1,0) € &} and]’ =
H{I|(E,1,0) e ®}andO’ = 1{O|(E,1,0) € ®}. The proof is immediate since

from Theorem 5.4.6PER(X), &,) is a complete lattice. O

146

Lemma 5.4.8.Let X be the set of all states, which are maps frdanr to values.
Supposé:, ¥’ ¢ ¥ and thatZ ¢ Var and letR, R’ ¢ PER(X). Then we have the

following properties:
1. LetX,Y < Var such thatX uY = Z, then havog (X) u havocZ (X') =
havoZ (X u ¥'), and havo& (havod” (X)) = havoZ (%) .

2. The operator hava€(-) is an upper closure operator on the powerset lattice

(P(X), <) with respect to the subset inclusion order.

3. The following identities hold
(a) havoZ (%) u havoZ (¥') = havoZ (havoZ (%) u havoZ (Y)).
(b) havoZ (%) nhavoZ (Y') = havoZ (havoZ (3) nhavoZ(X')).
(c) havo& (X)\havoZ(X') = havoZ (havocZ (X)) \havocZ (¥)).
4. For all 0 e dom(1,R) we havgo]z = havoZ ([0]1.z) -

5. ForanyX,Y c Var we havel 1y R = 1R = 1xuv R.
6. TZR u TZR’ = TZ(TZR u TZR,)'
1. TZR ul TZR, = TZ(TZR ul TZR,)-

8. Re R — 1,RE1,R.

Proof. See Appendix A. O
We shall now define some operations on information configuratio

Definition 5.4.9(Semantic Sets and PERd)et (F,1,0) € ® be an information

configuration, define theemantic sebf (£, 1,0), which represents the set of

147

program states modelled by the configuratidn 7, O) to be

dom((E,1,0))= () dom(E(z)) ndom(I) ndomO).

zeVar

Define the PERER((E, I,0)), which encodes this set such that
Vo,0' e ¥, oPER(FE,I,0))0" < 0,0’ edom((E,1,0)).

Information configurations provide contexts under which the information re-
leased by program commands and expression evaluations may be constructed.
The information released by a subprogram of a given program is constrained by
the possible set of states, as prescribed by the semantic set of an information
configuration, that reaches that subprogram. The information released by the ob-
servation of the evaluation of an expression in a given program context is defined

as follows.

Definition 5.4.10(Information released in a context)etX be the set of all states,
which are maps fronVar to values, and leIVar ¢ Var such thatTVar =
Var\I'Var. Furthermore, le{ £, I, O) € ® be an information configuration, and
let e be an expression of typesuch thatF'V'(e) ¢ Var, and lety € PER([7]) be
a PER overr.

Define the PER floge : ¢, (E,1,0)) overX to be
flow(e : ¢, (E,1,0)) = trvar(e:o U Rpu)

whereRp; is defined such thato, o’ € £, 0 Rg o iff 0,0" € dom(LLepy () E(2)).

148

WhenIVar is the set of input variables tovahile programpP, this definition con-
structs a PERlow(e : ¢, (E,1,0)), which represents the information released
about the formal parameters 6fby the observation of the evaluatiersubject

to the constraint over its evaluation. The PERB; and provide a context,
specifying what states are possible as prescribed by the information configuration
(E,I1,0) (see Definition 5.4.9), for the evaluation ef The PERRg places a
constraint on the possible values of the free variables ahd the PER is a con-
straint on the possible values of the program parameters that cause the control-
flow to reach the evaluation af due to program branching. The definition of
flow(-,-) only computes the information released about the program’s formal pa-
rameters by throwing away (via the operatifiq..(-)) the information encoded
about variables the variables @fVar, which are not formal parameters 6%

With these definitions in hand, we can now present the static analysis rules for the

analysis of information flow iWhile programs.

5.5 The Information Flow Rules

The algorithmic information flow rules for the static analysis of information flow
in a givenWhile program is presented in Figure 5.12. The analysis rules are de-
fined parametric to a given prografy where the set¥ar,IVar, TVar, X, and

® are defined with respect to this program. For sqmel,0) € ® and sub-
programc of P, the analysis ot is specified as a transformation of information
configurations:(E, 1,0) ¢ (E',I',0"). The information configuratioQ~, I, O)

is referred to as there-configurationor preconditionfor the analysis of: and

(E'", I',0') is referred to as thpost-configuratioror postconditiorof the analy-

149

sis. The pre-configuratiof®, I, O) provides a semantic and information context
for the analysis, where the semanticdein(F, I, O)) represents the starting set
of states for the analysis of andO is the attacker’s knowledge before the exe-
cution ofc. Similarly,dom((£’,1’,0")) contains the set of states under which
terminates and)’ represents the attacker’s knowledge after observing the execu-
tion of c. In particular,E and £’ respectively keep track of the values of program
variables and their dependencies on input parameters before and after the execu-
tion of c. Program branching information, specifically, the values of the program
input parameters under which a given program point is reached are encoded in
the I-part of the information configuration, setting the context for the analysis of
subprograms of conditional statements.

We shall explain each of the analysis rules in the remainder of this section. The
first two rules are straightforward. Their) rule shows that theki p command
does not modify information configurations and therefore causes no information
flow, and the sequential composition ruigbnc) shows that the analysis is com-

positional. Let us now look at the definition of the remaining rules.

5.5.1 Analysis ofwrite Statements

The write statements in a program cause information to flow directly to the pro-
gram observer. The semantic attacker model shows that the attacker can observe
the output value of avrite statement as prescribed by the operational semantics,
and hence the information released to the attacker is modelled by the identity ob-
servational constraink(: id) on the program output. The information flow to

the attacker is however subject to the semantic constraints placed on the possi-

150

Lety = (E,1,0) € ®.

1A 1A 144
—_— [SEQNC] ray v oy
pskipy YCHON

[SKIP]

O' =0 wuflow(e :id,) E'=E[z+~ aflomz:=¢,p)]
. [ASSGN]
powitee(E, 1,0 pz=e(E1,0)

[WRITE]

I'=flow(b: T,p) I"=flow(b:F,p)
(E,I',O)c1 ¢ (E,I",0) ca 9"
pif (b)thenci el secyy w, "

[IF]

wo=¢ (En1,,0,)=v, p,if(bthencelseskipg, 1 I =flomb:F, p,)
Vrz e Var. X = TVar\{z}.0 E'(z) 0’ <> JieN, o 1x(Ei(z)ul/ub:F)o’
(E", I",0") = Hisops I' =flow(b: F,(E", 1",0)) O = |#|;s0 flow(d : id, ;) 11 O”

it owhile (b)doc (B, 1,07

Figure 5.12: Calculus of Information Flow

151

ble values of the free variables of the expression (based smopreassignments)

and the possible values of the program parameters that cause the control-flow to
reach thewrite statement. These semantic constraints are specified by the pre-
configuration(E, I, 0). Thus, the attacker’s knowledge after observing the result
of the statementr i t e e in the context provided byFE, I, O) is captured by tak-

ing a join of the prior knowledg® of the attacker with the released information
flow(e :id, (E,I,0)) in that context.

To illustrate how thewriTe] rule captures the information flow to an attacker,
consider the example shown in Figure 5.13. Here the attacker wishes to gain
access to the values of two secret input paraméteasid/, by solving equations
involving these inputs.

write hi+ ho!
write hi = ho!

Figure 5.13: PER joins capture information flow via equation solving

This example illustrates how PER joins capture reasoning with equations as fol-
lows. The PERs induced by the expressiéns h, andh, — h, respectively are

the equivalence relations;, = (hy + hs) :id and Ry = (hy — hs) : id, where
* Vo,0'€eX,0 R0’ < o(hy+hy)=0'(h; +hsy),and
* Vo,0' €X,0 Ryo' < o(hy—hy) =0"(hy - hs).

In the flow rules, the fact that the attacker learns the precise values of both
secrets after observing the output of the twiote statements is captured by the

join R = Ry v Ry = Ry U Ry (since bothR; and R, are equivalence relations)

152

which is given by:

Vo,0' e ¥ 0 Ro' <= o(hy+hy)=0'(hi+hy)ando(hy —hy) =0'(hy — hs)
— O'(hl) = O',(hl) andO'(hz) = O',(hz).

This means that two states are indistinguishable to the attacker (via the knowledge
modelled by the PERR) if and only if they both agree on the values of bath

andh,. In other words, the attacker learns the values,cdindh..

5.5.2 Analysis ofif statements

We know statically what the conditional guard evaluates to when the control flow
is passed to one of the branches ofifagtatement. This information is captured
in the pA rule by constructing a PER representing the set of states that evalu-
ate the boolean guard to the appropriate value on entering that branch. The in-
formation thus released (also knowniaglicit information flow constitute the
implicit information contexts under which the branches of thastatement are
analysed. These implicit contexts are computed from the boolean expréssion
flow(b : T, ¢) andflow(d : F, ¢) for thethenandelsebranches respectively, which
identify the states in which the boolean guard evaluates emdff respectively.

As demonstrated by Example 5.1.4 and Example 5.1.5, in computing the im-
plicit information flows in the branches of a conditiomfastatement, simply look-
ing for assignmenor write statements in each branch of ihestatement indepen-
dently of the other branch can cause certain implicit flows to go undetected. This
information flow is due to a well-known problem that information flow is not a

property of individual execution paths [Vol99b, McL94, SM03a, Sch00]. Such

153

flows can occur when an attacker observes that certain actidmottake place,

such as outputs or assignments on a given execution path. Thus, runtime execu-
tion monitors [Sch00] cannot detect such flows when execution passes through
the control-flow path where the relevant action is missing. However, this is not a
problem for static analysis since information about all program paths are available
to the analyser - making static analysis more suitable for the analysis of secure in-
formation flow. An execution monitor [GBJS06], which is able to deal with this
problem uses the result of a static analysis to prevent this problem in the execution
monitor. The operatiow in theif rule, which is given in the following definition,

identifies this information flow.

Definition 5.5.1. Let (E,1,0) ¢ ® be an information configuration and lét
be a boolean expression an let and ¢, be While commands, such thdt =
flow(b: T, (E,1,0))andl” =flowm(b: F,(E,1,0))and(E,I’,0)c1(Er, I,04)
and(E,I",0) ¢y (Es, I5,03).

Let £, E} and I; be defined as:

Vz € Var, Ei(z)ul" if Ey(z) + E(2)
Ei(z) =
Ei(2) otherwise
and,
Vz € Var, Exy(z)ul" if BEi(2) # E(2)
Ey(2) =
Ey(2) otherwise
and,

Vo,0' e ¥ 0 I30" < 0,0’ edom(l;) udom(ls)

The post-configuration of the conditional statemieht(b) t hen ¢; el se ¢,

154

with respect to the pre-configuratidit’, 7, O), is given by
(B, 11,01) wig 0y (B2, 1o, 0:) 2 (B, I3, 00) v (B3, 13,04).

The implicit context in the post-configuration of the conditioriastatement
is a PER representing the union of the domains of the post-configurations of the
branches. This makes the information in the implicit context local to the relevant
branches, otherwise this can result in the so-cdfibdl creedSM03a] - a condi-
tion where the security type of the “program counter” monotonically increases due
to conditional statements. The implicit context also keeps track of the dependency
of reaching a particular program point on the value of inputs, and, as will be seen
in the analysis ofvhile statements, input states leading to program divergence are

removed from the implicit context of thehile statement post-configuration.

5.5.3 Analysis of Assignment Statements

When an assignment takes place in a program context, information is encoded
directly in the assigned variable (by virtue of the assigned expression) and/or in-
directly (by virtue of the implicit context under which the assignment takes place).
However, since assignment also changes program state, we detmsposition
operation on PERs over states that models the semantic effect of assignments on

states.

Definition 5.5.2(PER transposition and assignmerit¢t ? be a PER ovek and
z € TVar. Define the transposition a8 by the assignment := e as the binary

relation R such that for any, o’ €3, 0 R o iff there exist states;,...,0, € X

155

andoy,...o! , edomR) ando = 01,0’ = 0, such thatforalli, 1 <i <n-1

-On-1
implieso;, ;41 € {6[2 = d(e)] |6 €[0)]r}.

Now let(E, I,0) € ® be an information configuration and letoe an expres-
sion and letz € TVar. Furthermore, letR = e:idu Rg u I, whereRg is the
PER defined such thato, 0’ € X, 0 Rp o' iff 0,0" € dom(|] E(y)) and let
Z = TVar\{z}. Define the information released toby i/;]P(;Vz;es)signmerﬁ =e
under the pre-configuratio(¥, I, O) to be

zi=e

aflom(z :=e,(E,1,0)) =1; R.

The intention behind PER transpositig_rl Is to transfer the relational structure (in-
formation content) ofz to another PERR , Which updates state in lockstep with
the semantic effect of the assignment e. The information flow to: due to the
assignment := e is then computed as the information released by the evaluation
of e inthe contex{ F, I, O), and the state change is reflected by the PER transpo-
sition. In the definition offlow(z := e, (F, I,0)), only the value ot is retained

out of all theTVgEevariables and the values of oth&WVar variables are “for-
gotten” (that is}}; R , WwhereZ = TVar\{z}). Thus, in the resulting information
configuration of the assignment rule, whéte= E[z — aflom(z := ¢, (£, I,0))],

E'(z) keeps track only of the value efand its dependency on the program’s for-

mal parameterEVar. Let us show that the transposition of a PER is also a PER.

Lemma 5.5.3.Let R ¢ PER'X) be a PER, then the transpositioﬁ of R is also
a PER.

z:=e zi=€e zi=e

Proof. The symmetry ofRR is clear. For transitivity, suppo&e§ o' ando’ R o”

156

hold, then there exist two sequences of states.., o, € ¥ ando},...,0/, € X

rym

suchthatforali=1,...,n-1andj=1,...,m -1 there exist#, 0 ¢ dom(R)

177

ando;, 05,1 € {0"[2 = 0" (e)]| 0" € [0{]r} ando’, 07, € {0"[z = 0" (e)] |0 €
zi=e

[¢P]r} ando = 0y ando’ = 0,, = of ando” = o;,. Thus, transitivity of 2 is clear

by concatenating the two sequences of states. O

A Notation. To aid presentation, we shall often represent a PER
by its set of equivalence classes. For examples [X]z means that
[X]r is the set of equivalence classesrof Recall from section 3.5.3
that this partitioning is defined asX|g = {[c]r | 0 € dom(R)}

for any R ¢ PER(X). This notation is reasonable because a PER
is completely determined by its set of equivalence classes. For
example, suppose, *# o1 # o3 # 09, the PERR defined as
Vo,0' € X0 Ro' < o =0’ =01 0r0,0' € {09,03} IS written as

R = {{o1},{02,03}}. The states themselves will be represented by

tuples of values.

Sample Analysis

To illustrate the information flow rules presented so far, consider the analysis of
the program shown in Figure 5.14. Supp®@3&r = {h;,hy} andTVar = {i},

such thatf]r,,] = [m,] = {0,1} and[r;] = {0,1,2} (wherer, is the data type of
variabler). For brevity, the states are represented by tuples frani x [7,, [x [71]

so that(1,0, 1) represents the statee 3 whereco(h;) = o(l) = 1 ando(hsy) = 0.

157

Assume that, and h, contain secret values and thas public, but we want to
find out what information is gained about the secret inputs.
We choose a starting configuration, which contains no prior information, and
which makes no assumption about the starting state (&bé, O), such that/z €
{hi,ho, 1}, E(zx)=1=0=all ={{(4,7,k)|i,j € {0,1},k €{0,1,2}}}. Thus, the
attacker Q) has no initial knowledge about the inputs andh, sinceO relates
all states. Applying the assignment rule at line 1, we arrive at the configuration
(E1,1,0),whereE; = E[l » Ry]andR; = {{(0,0,0)},{(0,1,1),(1,0,1)},{(1,1,2)}}.
The partitioning ofR; reflects the fact that, after this assignment, observing the
value ofl as0 reveals thah, = hy, = 0, a value 1 reveals that either = 0,h, = 1
orh; =1, hy =0, and a value reveals that; = hy = 1.
1= hl + hg,
2 if (I=1)then
3 =1+ hl,
s Write [;
s else

s Skip;

Figure 5.14: Illustrating assignmentconditiona) andwrite analysis.

In the thenbranch of thaf statement, the implicit context is given dy =
flow((I = 1)T, (Ey,1,0)) = 1, R = {{(0,1,k),(1,0,k) | k € [n]}}. The PER
Ry = ((l=1):T)uluR)={{(0,1,1),(1,0,1)}}, whereo R, o' iff 0,0’ €
dom(£, (1)), relates only the set of states whére 1. Consequently, the pre-
configuration for thehenbranch is(E,, I;,0). Applying the assignment rule
again on line 3 under the information configurat{dn, 71, O), we obtain(£, I, O),
where the PER encoded agaihistnow given byF, (1) = {{(0,1,1)},{(1,0,2)}}.

This means that by observing the valué atthis point we can determine the value

158

of bothh; andh,, wherel=1 = h; =0,ho=1andl =2 = h; =1,hy =0.
This information is released by the followingite statement because by starting
with the pre-configuratioE,, I;,O) and applying thavrite rule on line 4 we ob-
tain the post-configuratiof¥s, I, 01), whereO; = O wflow(l : id, (E», I1,0)) =
{0, LRk € [m]}, {(1,0, k) [k € [m]}, {(0,0, k), (1,1, k)| € [n]}}. The equiv-
alence classeq0, 1,k)|k € [n]} and{(1,0,k)|k € [r] } of O, retain the informa-
tion encoded iri abouth; andh,, namely that states with different input values of
hy andh,, can be distinguished. The equivalence clg$s0, k), (1,1,k)|k € [n]}
of O, comes fromD due to the domain-preserving property-cénd it reflects the
information released about secrets (that h,) in the elsebranch of the condi-
tionalif statement if no output is produced in that branch (which is the case in this
example).

Since theelsebranchis aki p statement, the post-configuration of this branch
remains unchanged, but the assignment ito the thenbranch means that the
[part of the E-component of the postcondition of tleésebranch must be up-
dated (due to the fact thdi, (1) + E»(1)). ThisyieldsE; = Ei[l » E;(l) u I5],
wherel, = flow((I=1):F,(Ey,1,0)) = {{(0,0,k),(1,1,k) | k € [r]}} and
henceFs(1) = {{(0,0,0)},{(1,1,2)}}. Thus, the post-configuration of the con-
ditional if statement i FE,,1,0,) v (E5,1,0) = (Ey4,1,01), where Ey(l) =
{{(0,0,0)},{(0,1,1)},{(1,0,2)},{(1,1,2)} } represents the various possible val-
ues thatl might take based on the choice of the inpltsand h,, and hence its
dependency on the inputs.

Note that, on one hand, the semantic set of the pre-configuréfion, O)
of the analysis of this program defines the set of possible starting states of the

programdom((F, I,0)) = X, which is the set of all states. On the other hand,

159

the semantic set of the post-configuration is the set of tetinmatates of the
program, namelydom((£,,1,0,)) = {(0,0,0),(0,1,1),(1,0,2),(1,1,2)}. We

shall prove a semantic correctness property of the analysis in Theorem 5.7.10,
which states that the semantic set of the post-configuration contains the set of
states under which the program terminates when the program is executed from a
starting state chosen from the semantic set of the pre-configuration. Formally, this
means that for a given programand the relevant information configuratiops

andy’ used inits analysisy, P o' = {0’|o edom(y),(P,0)l o'} c dom(p’).

5.5.4 Analysis ofwhile Statements

The while rule computes the limit of the monotonically increasing chdjn, @;
over the lattice(®, &, =), induced by the iterative application of the command
i f(b)thencel seskip. This computes the information released during each
iteration of thewhile statementhi | e (b) do ¢, which begins from the pre-
configurationy = ¢, of the while statement. Being a monotonically increasing
chain on a complete lattice, the fixpolsf,., ; exists [Tar55].

The definition of the post-configuratiqi®’, I, O") of the while analysis en-
sures that only the set of states under whichwhée loop terminates can be used
in the analysis of the subsequent statements after the loop. Fhasd I’ are
defined to select only the states where the boolean guard evaludfesSmce
the attacker model can determine whether the program terminates or not, the def-
inition of O’ partitions states, through: id, to those in which thevhile loop
terminates or diverges.

To illustrate thewvhileanalysis rule, consider the program listing in Figure 5.15,

160

where the attacker performs a linear search on the value oetlreté. In this
exampleIVar = {h} andTVar = {l}. Let us assume thatand! are of integer
type, andr; respectively, whergrn,] = [n] =V ={ie€Z| -n<i<n} isthe set
of integers betweenn (inclusive) and: (exclusive), and where € N is a natural
number. Ifh is chosen to be a natural numberiinthewhile loop will terminate
with the value of equal to the secret value bfland will be printed to the output).
However, nontermination reveals thais a negative integer i. Let us see how
this is derived by the analysis.

The Figure 5.16 annotates the program of Figure 5.15 with information config-
urations at selected milestones to illustrate the analysis. The pre-configurations of
the analysis is assumed to @&, I, 0), whereE(h) = E(1) = I = O = all, andall
is the PER which relates all program states. The stat& is represented in Ta-
ble 5.1 asapaifo(h),o(l)) € [m] x[n]. InthetableV* £ {ie Z|0<i<n}cV
is the natural subset df, andV- = V\V~ is the set of negative values that the
secret can take. The information configuratiaty, 1o, Oy) = (E[l » R],I1,0)
after the assignmeint= 0 is the starting configuration for the analysis of tilale
statement and = {{(4,0) | j € V}}. The:" iteration of thewhile analysis starts
at the pre-configuratiop; = (E;,I;,0;), and ;.1 = (Ei1,Lii1,0;:41) IS com-
puted asp; (i f (h+0)theni:=(l+1)modnel seskip)p;. Since there is
no write statement in thevhile body, we have), = O for all i. Similarly, since
thewhile body (:= (I + 1) mod n) itself terminates, we havg = [for all i. The
post-configuration of thevhile statement isy’, and it is the pre-configuration of
thewrite statement.

As Table 5.1 shows, at the" iteration (and afterwards), the set of initial

values for which the program terminates is identified. This set is modelled by

161

[:=0;

while(h # 1) do
[:=(l+1) modn;

write [;

Figure 5.15: Linear search using ahile loop

[:=0;
w0 = (Eo, In, Oo)
PYi = (Ei7[i70i)
while(h # 1) do
[:=(l+1) mod n;

Pi+1
gpl
write [
Figure 5.16: Analysis of thewhile loop
Analysis
iteration ¢) Ei(1)
0 {{(4,0)[j e V}}
1 {00}, {(4:1)]jeV\{0}}}
2 kR {0:2) 17 € V{0, 13} [k € {0, 1}
7%1 ({(k, })}, {(j,m)\jeV\{o,1,..:.,m_1}}|ke{0,1,...,m_1}}
n {(k k), {G.0) |7 €V} [k eV
nel {kR)), (G D)5 eV) [k eV

Table 5.1: Analysis of awhile statement

the {{(k,k)} | k € V*} equivalence classes &f, (/). Further iterations after this

point is benign because no new state can be produced that has not been previously
encountered during the iterative analysis. Thlesn(E,,(!)) = dom(E,,..,, (1)) for

anym e N.

The post-configuration of thevhile analysis is given by’ = (E”, 1",0"),

162

where E”(1) = {{(k,k)} |k e V*} andE"(h) = {{(k,m)|m € V} |k € V*}
and” = {{(k,m) |k e V*,m e V}} andO” = {{(k,m) |m e V} {(j,m) | j €
V-,m e V}|keV*}. The meaning of” is that it encodes the set of starting states
for which thewhile statement terminates and it sets the context for the analysis
of the subsequent commands. Thé can distinguish between terminating and
nonterminating starting states of the program, and can additionally distinguish
different terminating traces due to the computatiofi@f((% +) : id, ;) at each
stage. Notice also thdbm(y’) = {(k, k) |k € V*}, which is the set of terminating
states of thavhile loop.

Finally, by applying thewrite rule to thewr i t e [statement, using the pre-
configurationy’, we obtain the post-configuratiq”, [, O") whereO’ = O"
flow(l:id,¢") = {{(k,m) |m e V} {(j,m) |j e V-,m e V} |k € V*}. Thus,O’
reveals the knowledge afwhenever it is positive and also distinguishes states un-
der which the program terminates from those under which it diverges. However,
the attacker cannot distinguish between two states that leads to program diver-
gence. More precisely)’ is the PERVo,0’' € ¥,0 O’ o' iff o(h) = 0/(h) € V*
oro(h),o’(h) € V-. This agrees with the intuition about the information released
by this program.

Note that after thavhile statement, the attacker has already gained the in-
formation O’ due to the computation dfow((k + 1) : id, »;) at each stage. An

alternative definition of thaevhile rule, which does not suffer from this overap-

163

proximation, but which only works when the set of stassf&iteis given by

wo=¢ (En,1,,0,)=p, e.if(b)thencel seskipp,
F(po) 2001 Fpns1) = Flon) Bona Fler) =Ifp(F) I'=flow(b: F, o)
VreVar, B, = B[z~ Ep(x)ul’] I =I,ul" O =0;uflow(b:id,)
ewhil e (b)doc(E,,1],0;)

This definition requires the existence of a N, after which further iteration of the
while statement cannot produce any new state. This pointis reached at the fixpoint
Ifp(F) = ;50 vi = F(vr). The post-configuration of thehile statement is then
computed at this point, where the set of states is partitioneld :hig at thek™

step only. When applied to the example above, this produces a better result for the
while analysis, wher®” = {{(k,m) |k e V*,m e V} {(k,m) |k e V-,m e V}}.

This means that after thvéhile loop, the attacker can only distinguish initial states
that lead to termination from those under which the loop diverges, but cannot
distinguish one state which leads to termination from another one under which
the loop also terminates. Using this definition, the attacker’s knowledge after the
write statement is the same @s derived above.

It should be noted that whemhile statements are used in a program, whose
set of states is infinite, the static analysis of Figure 5.12 is not computable in the
general case. While the definition of information flow analysis of Figure 5.12
sheds insight into how the analysis of tiwdile rule might be performed in this
case, abstract interpretation technigues are necessary. The application of abstract
interpretation to make information flow analysis more tractable is presented in

Chapter 6.

164

5.6 Static Information Flow Property

We introduced the notion of theemantic information flow properyf a While
program in section 4.3 of Chapter 4 as a semantic definition, which describes how
an attacker’s knowledge is transformed by observing program executions. We now
relate this semantic definition to the static analysis of information flow presented
in this chapter, showing that the static analysis is sound.

The semantic information flow property oWghileprogramp is derived from
the equivalence relatiof'» |, which relates only pairs of input states under which
the semantic attacker makes exactly the same observation ivhgmexecuted.
This information flow property on the lattice= PER(X) of PERs over the states
of Pisgivenby[P]? ={f|VR e PERY), f(R)u|Tr|}, wheref describes how
the attacker’'s knowledge is transformed by observing the prodgrariVe now
show that the static analysis of information flow presented in this chapter derives
at least the informatioh7»|. Specifically, when the information configuration
(E.,1,,0,) (see Definition 5.6.1) is chosen as the pre-configuratio® 0énd
(E.,I,,0,)P(FE,I,0) holds, then we have also th&t | = O. The definition of
thestatic information flow propertyf P]Z_.., of P as derived by the static analysis

static

is the following.

Definition 5.6.1 (Static Information Flow Property)Let P be aWhile program
and letX and Var be the set of all states and the set of all variablesofe-
spectively. Define the information configurati@i, , 7, , O,) € ® such that for all
x e Var, F, (z) =1, = O, = all e PER(X). Thestatic information flow property
of P is defined a§ Pz . 2 {f | (E.,1,,0,) P (E,1,0),VR ¢ PERX), f(R) =

RuO}.

165

The information configuratio(F, I,,0,) enjoys a special status because it
makes no assumption about the starting state eincedom((E,,1,,0,)) = X.
Furthermore, the attacker has no prior knowledge about any inge{(, = all)
and the initial implicit contexf, = all places no constraint on input. Similarly, no
constraint is placed on the initial value of variabl&s: € Var, F, (x) = all.

The O-component of the post-configuration of the static analysis specifies the
information that the attacker might gain from the executionPof The correct-
ness requirement is therefore thdt| = O, which means that the information
derived by the analysis is at least as much as that gained by the semantic attacker

introduced in Chapter 4. The correctness of the static analysis is shown next.

5.7 Correctness of Static Analysis

This section shows the correctness of the static analysis. For the information flow,
it shows that the static information flow property derived by the analysis is at
least as much information as the semantic information flow property gained by
the semantic attacker. Furthermore, with respect to the program semantics, it also
shows that the analysis models the transformation of states by the program. We
define first, a set ahitial configurations®;,; ¢ ®, elements of which may serve

as the pre-configuration of any subprogram during analysis.

Definition 5.7.1. Define the setb,; ¢ ® to be the set of all starting config-
urations, where®;,; = {(E,I,0) ¢ ® |Vz € TVar,Z = TVar\{z}.Vy ¢
IVar.E(z) = 1,E(2), E(y) = trvarE(¥), I = rvarl, O = Trvar O}

It is clear from this definition thatF,,1,,0,) € ®i,. A consequence of

Definition 5.2.1, where all variables are properly-initialised before use, is that

166

it confers a property on the PERs constructed during the asaysh that the
partitioning of inputs by the PERs, and thus their information content about inputs,
is preserved by the operatidy(-), whereZ c TVar (see (2) of lemma5.7.3). We
identify the properties of such PERR;;;) in Definition 5.7.2 and lemma 5.7.3

highlights some of the consequences.

Definition 5.7.2. DefineRin; = { R e PERX) | X ¢ TVar.Y = TVar\X,Vo,0' €

dom(R),havod’ ([0]r) = [0]r, Oy1var = Ojpyay = O1x =0/ x }

Lemma5.7.3.LetZ c T'Var, and lete be an expression such th&l/ (e) ¢ Var,
and letR, R’ € Rinit € PER(X).

1. Forall o e dom(R), havo([c]r) = [0]1,r-

2. Forallo,o0’ edom(R),o0 t,Ro’ —> o Ro'.

3. Ru R € Rinit.

4. LetX ¢ TVar andY = TVar\X such thatVo,o’ € dom R), o 1var =
Olrvar = 0yx = 0|x and havot’([c]r) = [o]r. Furthermore, suppose
FV(e)nTVar c X. Then for any PER over the values of, we have that
e:pu R e Rini.

Proof. See Appendix A. O

Lemma 5.7.4.Let (E,1,0) € ®;y, and suppose the prograwhi | e (b) do ¢

does not assign tbVar variables, where all variables are properly-initialised be-

fore use. Then there exists a uniqu¢, I’,0’), sothat(F, I,O) whi | e (b) do c (E’, I',0")
holds and(E’, I’, O") € ®j,;.

167

Proof. The derivations in the flow rules are syntax-directed. However, it is not
immediately clear that we have the desired property fonthiée rule. In particu-

lar, we first note that the limit};,, ; exists, sincé®. =) is a complete lattice.

It now remains to show that thB-component of th&vhile post-configuration is a
map from variables to PERs, which have the desired properties.

Firstly, suppos¢E;,1,;,0;)i f (b) t hencel se ski p(E;.1,1j:+1,0;41) holds,
for some(E;,1;,0;) = ¢; € ®inx during the iterative analysis of the statement
whi | e (b) do c. Now take anyr ¢ Var. We want to show that the property
(Ejn(z)uliub:F)c (Ej(r)uliub:F) holds, where! = flow(b: F,¢;)
andl},, = flow(b: F, (Ej.1, Ij:1,0j41)). Furthermore, lef? = flow(b: T, ;) so
that the analysis of is given by(E;, I3, 0;) ¢ (E},,, I;,,, 0},) according to the
if rule. The post-configuration of ttesebranch is thereforeL;, I}, O;), being
askipstatement.

We first observe, from Definition 5.5.1, thaf 1, o iff 01,09 € dom(IJ’.’) u
dom(;,), and hence we have that,, = I’. Now, since variables are properly-
initialised before use, and tH&/ar projection of states are not modified th&n
and 77 are disjoint PERs. To see why, [Et= F'V(b) and definel?g; such that
o Rg, o' iff 0,0" € dom(U,.y E;(y)). Since variables are properly-initialised
before use, and thEVar projection of states is not modified, we have that for
anyy € Y andi, and for allo, 0’ € dom(Ei(y)), oy1var = Ojpyr = 0o(y) =
o’(y) (this is shown in Lemma 5.7.5). Hence, for alb’ € dom(Rg;), 0j1var =

= oy =0], = o(b) =0'(b). Hence, by the contrapositive(b) #

!
O\ 1var)

o'(b) = oyvar # Ol var- This means that the PERB, = b: Tu I; u R,
andRp =b:Ful;u Rp, are disjoint sinceR 4 restricts the domain oREj to

those wheré is true, whereasiip restricts the domain oft; to those where

168

b is false HenceIJ’. = Trvarlta @and]]’.’ = TvacRRp are disjoint PERSs, since the
operationt;y..(-) does not modify th&Var projection of states. Now according
to Definition 5.5.1, for the merging of the post-configuration of the conditidnal
statement, we have that for anye Var, E;,;(z) = E;(z) w E;(2) = E;(2) if
Ej(2) = B}, (2), 0r Ej(2) = (Bj(2)u) w B (2) if Ej(2) # E],,(2). Inthe
latter case, we further note that singg , () has been modified within the branch
¢, which is predicated on the implicit contekt, thendom(&7,,(z)) < dom(l;)
and hencg E;(z) u) andE}, (z) are disjoint PERs, sincE u [} = @. Hence,
in this case ;. (z) is simply the disjoint union of PERs: namely that,,(z) =
(Ej(z)uli)u £, (z) by the definition of. Thus, in both cases, we have that
Eia(2) e Ej(2)ulf,

Now for the proof of(Ej., (z) U}, ub: F) € (E;j(x)ulfub:F), there are
two cases to consider according to Definition 5.5.1, which depends on whether

E;, (x) is different fromE} () or not.

« Case 1: Supposé&j(z) = Ej,,(z). In this case we have, according to
Definition 5.5.1 thatt’;.; (x) = E;(x)wE;(x) = E;(x). ltthus remains only
to show that/y,, = 7’ in the case. Now defin&y, , such that Rg,,, o
iff o,0" e domMUyerv(p) Ej1(y)) and letRe =b: Ful; 0 Rg,,,. Hence,
]J’.’ = trvaeltc. Since for allz € Var, Ej.1(2) € E;(2) u IJ’.’, then it follows
thatRp,,, € Rg, uly. Now, since[]’.’ = Mrvar 2B, thenI]’.’ c Rp by definition,
which means also thd},, = Rp sincel;,; £ I]’.’. Therefore,REj+1 ub:Fc
Rp, uIJ’.’l_Ib:FEREj URpub:F=Rpg, and henceREj+1 uljgqub:F=
Rc € Rp. SinceR¢ € Rp, then by applying (8) of lemma 5.4.8, we have

+1

Mvar R € Trvae R, that is,]]’.’ c IJ’.’. This shows the first case.

169

« Case 2: Suppos&j(z) # Ej,,(x). Then, as shown abovéy;, () is

the disjoint unionkj, (z) = (E;(x) u) v Ef, (x), henceEj. (r) &

+1

Ej(x)uli. Therefore,Fj., ulf, ub:Fe (Ej(z)ull)ulf ub:F =

Ej(z)uI7ub:F,sincelf,, = I. This shows the desired property.

Now defineX = TVar\{z}. Since we have thdtF;.,(z) u I/, ub: F)c
(Ej(z)ulyub: F), then by applying (8) of lemma 5.4.8 we obtain the fact that
te(Eja(z)ul ub:F) c tx(Ej(x)u] ub: F). Hence, for thewhile rule,
we have that for any,k € N such thatj < k, thent¢(Ep(z)ul/ub:F) c
tx(Ej(z) v Iy ub: F) by the transitivity ofc. Thus, for anyz € Var, such that
o E'(x) o' ando’ E'(x) o hold, we know that there exigtk € N, such that
o tx(Ej(r)uliub:F) o ando’ 1x(Ep(z) u [y ub: F) o”. If j <k, then we
know from above thattx(Ej(z) u [ub: F)o' = otx(Ep(z) Ul ub: F)o’,
and thereforer 1<(E,(z) ul;’ ub:F) o” holds also. That isy E’(x) ¢” holds.
Sincetx(Ex(x) ulub:F)is a PER, then so also i8'(x). Furthermore, since

X =IVar\{z}, itis easy to see that the post-configurati@h, /', O’) € ®jp;. O

Because of the property that all variables in a progfaase properly-initialised
before use inP, and the fact that thEVar projection of states are not modified
by P, on termination, the value of a variable that is properly-initialised during the

execution ofP is determined only by the value of the inputsito

Lemma 5.7.5. Supposd E1, [1,01) € Piy is an information configuration of
the While program P, which does not usEVar variables on the left-hand-side
of assignment and where all variables are properly-initialised before use. If

(Ey,1,,01) P (Ey, I5,04) holds, then for any variable: € Var, which has

170

been properly-initialised inP we have thatF,(x) € Rint, and for all 0,0’ ¢

dom(Ey(z)), 0i1var = Ojpyey = 0(x) = 0'(2).

Proof. The proof proceeds by induction on the derivation tre@Qf 1, O1) P(E», I, 0-)
according to the information flow rules. Ti&component of information config-
urations are modified only during assignments, and in the analysis of conditional
if andwhile statements.

We shall first show that the desired property holds after assignment statements.
Let (E,1,0)x:=e(FE’, I',0") be the analysis of the assignment e in P. Fur-
thermore, letX = {2} and letX = TYEE\X' ThenE' = B[z~ aflowm(z := ¢, (E,I,0))],
whereaflow(z := e, (F,1,0)) = T}E’%, andR =e:iduluRg, andVo,o’ €
¥, 0Rpo’ <= 0,0’ edomU.cpy () E(2)). NowletZ = F'V(e)nTVar. Since
T'Var variables are properly-initialised before use, then we have by the induction
hypothesis that for any € Z, E(z) € Rinit and for allo, 0’ €e dom(E(z)), oj1var =
Olrvar = 0(2) = 0'(2). Thus, for allo, 0’ € dOM(RE), 0)1var = Ojpyay =
0,7 = 0|4, and therefore for any, o’ € domM(R), oj1var = 0|y, = 01z =0),
sincedom(R) c dom(Rg). .

Now by ggzinitiondorr(R) ={o[x~ o(e)]| o e dom(R)}, therefore for all
o,0" € dom(R), 0Var = Oy, — 0(x) = o'(x) because all states in the
domain of R, which agree on th&Var projection also agree on t%prgj_iction,
and hence on the evaluationof sinceF'V (e) c IVaru Z. Now let R’ = R.We
know by (4) of lemma 5.4.8, for alr € don(txR’), havocX ([o])

xTi=e x:

Sincez ¢ X andIVarn X = g, thenhavocX (dom(R)) = dom(s R) does

=e

Lo

not modify theI' Var or x projections of states idom(f%), it is thus clear that

xTri=e Tri=e

% R ¢ Rinit- Hence B’ (x) = 1% R ¢ Rinit and for allo, o’ e dom(E’ (), 0)1var =

171

Ovar = 0(x) =0'(z).

During the analysis dff (b)t hen ¢; el se ¢y, starting from the pre-configuration
(E,1,0), the post-configuration aof; is derived ag E,I’,0) ¢, (E.,, I.,,O.,),
wherel’” = flom(b: T, (E,I1,0)). Similarly, the post-configuration of, is ob-
tained ag £, 1",0) ¢3 (E.,, I.,,0.,), wherel” = flow(b: F, (E, 1,0)). For any
variablez, both £, (z) and E,, () have the desired property by applying the in-
duction hypothesis to, andc, respectively. LetE’, I',0") = (E,, 1., O.,)¥ (k1.0
(Eey, 1.y, 0,,) be the post-configuration of the statement. Now suppose that
is assigned iy, thendom(£,, (x)) < dom(l’) sincez is assigned im;, which is
in the scope of an implicit context, whose domain is smaller than the domain of
I'. Similarly, if z is assigned withim,, thendomE.,(z)) ¢ dom(I”). Now since
variables are properly-initialised before use, then foy&lF'V (b), E(y) € Rinit,
and for allo, 0’ € dom(E(y)), oj1var = 0jpyve, == 0(y) = 0'(y) sincelVar
variables are not assigned to and the value of variabl@Viar n F'V (b), being
properly-initialised, are functions diVar projection of states. If we now define
Rp such thav Rp o’ iff 0,0" e domUyepyv) £(y)), whereY = FV(b) n TVar,
then for allo, o’ e dOM(Rg), 0j1var = 0|1y = 0y =0y, = a(b) =0'(b),
which by the contrapositive means thath) + o'(b) — ojrvar # O\ 1Var-
Hence, I’ = flow(b: T, (E,1,0)) andI"” = flom(b: F,(E,I,0)) are disjoint
PERs, sincer € domp : Tulu Rg) ando’ € dom : Fu Il u Rg) im-
plieso(b) # o’(b), which in turn means thatjrvar # 0|y, Sincedom(l’) =
havodVar(domb: TuIu Rg))anddom(I”) = havodVar(dom(p: Fulu Rg)),
both of which do not modif Var variables,/’ u I = @. Hence,E,, (x) and
E.,(x) are disjoint PERs, and therefolé(x) = E., () v E,.,(x) has the desired

property.

172

Now suppose that is assigned in only one branch, say(the other case for
¢y is symmetrical). Then, agailom(Z,, (z)) ¢ dom(’). There are two cases
to consider according to Definition 5.5.1. EithBr, () = E(x), in which case
E'(x) = E(x) = E.,(z), and thereforel’(x) has the desired property by the
induction hypothesis on;. In the second caséy.,(z) # E(x), in which case
E'(x) = E.,(z)w (E(z)u ") and sincer must be properly-initialised, it must
be initialised before control is passed to #ieebranch, and hencE(z) has the
desired property, which means thiat(x) has the desired property sinég, ()
andE(x) u I” are disjoint PERS.

In the iterative analysis of the commawti | e (b) do ¢, the E-component of
the post-configuration is computed from a sequgice 1, O)), (E], 11, 0}), -,
where for alli > 0, (E/,I/,0]) i f(b)then cel se skip (E.,,1,,0},),
and hence by induction onf (b) t hen c el se ski p, E/(x) has the desired
property for alli. The E-component of the post-configuration of tivhile state-
ment is computed such that = TVar\{z},Vo,0’' € ¥,0 E'(z) 0/ < 3j ¢
N, ot (Ej(z) ulub: F)o’, where forany: e N, I} = flow(b : ¥, (E}, I}, O})).
However, for any € N, E/(x) € Rinr andVo, o’ € dom(E/()), 0 j1var = 0y =
o(x) = o'(x) by the induction hypothesis, it is thus clear that this property is
preserved intx(Ej(z) u [ub: F) sincety(-) does not modify thdVar u {z}
projection of states. FurthermoreX(EJ’.(:c) uI]’.’ub:F) € Rinit by definition.
We have already shown in lemma 5.7.4 that forjall € N, such thatj < k, then
(B () ulf ub:F) e tx(Ei(z) ulfub: F). Thus, forany, o’ e dom(®’'(z)),
there existj, k € N, such that > j ando e dom(tx(E}(z) u [ub: F)) ando’ €
te(EL(z) u I ub: F). Sincedom(te(E)(z) u [/ ub:F)) € tx(E(z)u [/ ub: F)

andtc(E, (z)u I’ ub: F)) has the desired property, then we are done. [J

173

We now show that composing the analysis of sequential progcamesctly

approximates the information released by the sequenced program.

Proposition 5.7.6.Let P = Py; P, be aWhile program. Define the PERIp,.p, |
to beVO',O" € 2,0’ lTpl.PQJ o iff o lTPIJU' and if <P1,0'>U o1 and <P1,0">U O'i

theno, | Tk, |o;. Then we havél s | € | Tp,.p, |-

Proof. Take anyo, o’ € ¥ such thato |Ts,.p, |0’ holds. Theng |Tp, |o’ holds,

which by lemma 4.3.2 means that eithigrterminates under both statesando’

or that it diverges under both states, and that the attacker makes the same obser-
vation on the traces of the two states, thadlss(¢,p, ,)) = 0b(t(p, o))

In the first case, suppose th@at diverges under both ando’, then we have
0bs(t(p, »)) = Obt(p, »y) = OBLt(p) = ObYt(p) SiNCe the trailing subpro-
gram P, of P cannot be executed due to the divergencgofind hence | Tp |0’
holds.

Now supposé”; terminates under bothando’, theno | Tp,.p, |0’ implies that
o | Tk, |0’ holds, and there exist;, o} € X such tha{ P, o) | oy and(Py,0") || o}
ando, | Tp, |0 holds. Thuspbg(t(p,) = 0bt(p, o)) @NAOLY(p, +,)) = OB t(p, o)),
and thereforepbgt(p,)) = obqt(p), Which means that |7 |o’ holds. Thus,

|Tp] = | Tryep, - [

Lemma 5.7.7.Let P = P;; P, be aWhile program, which does not modify the
I'Var-projection of states. Define the PERp, .p, | to beVo, 0’ € X, 0 | Tpep, | 0’

iff o|Tp, |0’ and if (Py,0) | o1 and(Py,0’) || o] theno,| Tk, |o}. Furthermore, let
¥,%; ¢ ¥ such that{o’ |0 € ¥,(P,0) | 0’} ¢ 3,. DefineRs, and Ry, as the
PERSYo,0' € ¥ 0 Ry 0’ <= 0,0’ e X ando Ry, 0/ <= 0,0’ € ¥;. Suppose

01,04 € PER(X) are PERs such that < dom O;) andO,20; and{1y.,02 = Os,

174

andRy U |Tp, | € Ry u Oy and Ry, U |Tp,| € Ry, UO-. Then
1. Ry u|Tpep,] E Rx U Oy,
2. Ry u|Tp|c Ry uOs.

Proof.

1. Define the set of all states under which the subprogPaerminates to be
3y ={oeX|(P,0)] o'} and definef : ¥ - X to model this transfor-
mation of states by such that for allo € 3y, f(0) = o' if (P,0)| o’

- which maps a starting state under whiehterminates to the terminating
state. Now define the equivalence relati®r PER(X) such thatvoy, 0, €
3,01 Roy iff 01,00 € Z\Xy andoy, 00 € By = f(o1) |Tr,] f(02).
Hence, we havglp .p, | = |Tr, | U R.

Hence we wish to show thdty, U | Tp, | R € Ry, 1 Os, that s, for allo, o’ €
¥,0090" = o (|Tr,|]uR)o’. Now suppose, o’ € 3, such that Oy o’
holds. It then follows that | T's, | o’ holds becaus®s. L |Tp, | © Ry, U Oy
and by (4) of proposition 5.4.Ry. L1 O; © Ry 1 Oy, sinceX = dom(Ry) ¢
dom(©,) andO,20,. It now remains to show that R ¢’ also holds. But
o|Tp, |o"implieso,o’ € ¥ oro,o’ € ¥\X; by lemma 4.3.2. We now show

thato R ¢’ holds under these two possibilities.

* Supposer, o’ € ¥\X, theno R o’ holds by definition.

* Now suppose, ¢’ € X. SinceP does not modify th&Var-projection
of states, then for any ¢ X, f(6) € havod'Var({s}). Hence,
sincetrva.O2 = Oo, then by (4) of lemma 5.4.8; € dom(©O;) —

175

havoc'Var([d]o,) = [0]o,. Thereforeg Oy0’ = f(0) O f(0”).
Nowo, o’ € ¥nX impliesf (o), f(¢') € X1 and hencg (o) Ry, f(0’).
Furthermore, sincé(c)O2f (¢') holds then we know that(o)| s, | f (o)

holds becaus®&y, U |71k, | € Rs, U O,. Thereforeg R ¢’ holds.

This shows the required propertis, U | Tp,op, | € Rs U Os.

2. The proof is immediate since by proposition 5.16| = | Tp,.p, |, hence

we have thaRZ [lTPJ t Ry U lTP1°P2J E Rs uOs.
]

Lemma 5.7.8.Let W = whi | e (b) do ¢ be awhile statement, and le€’ =
i f(b)thencel se ski p. Define the set of starting states under which only
the outerwhile loop diverges (excluding those under whictliverges) asi»:g" =
{o0 e X |Vie N (C,0:)| 0i41,0441(b) = tt}.

Now define the PERV ¢ PER(X) such that for alloy, o, € 3,00 W o iff
(00,00 € E\Eg" or 0, 0} € ZﬂW) andog|T¢ |of andvi, (C,0;) | 0441,(C,0l)| o,, =

o1 |Te| 0!, ,. Then we haveTy, | c W.

i+1"

Proof. The proof shows thal” contains at least as much information as released
by thewhile statemeni’’. The PERW requires that an indistinguishable pair of
states must be stepwise indistinguishable for each possible iteration si&€p of
and that the pair must both either belong to theE‘@]ﬂW or EﬂW - distinguishing
states in which the outevhile loop terminates from those in which it diverges.
The proof is similar to that of proposition 5.7.6 by considering the sequence of
the programC' as an unwinding oV into its iteration steps. In the following;

(resp.o?) is derived byi-step application of’ to oy, € 3 (resp.oy, €).

176

From lemma 4.3.2 we know that for amyo’ € X, such thatr | T¢-| o’ holds
then C' diverges under both of ando’, or terminates under both states. Now
take anyoy, o, € E\EK" such thatr, Wo}, holds. Then by lemma 4.3.2, there are
two cases to consider, namely, whdhterminates under both states and when it
diverges in both. Suppose thiaf terminates undes, andoy, then for alli > 0,
(C,04)| 0111 @and(C, 0!} | ol,, ando; | T¢| o} ando;,y | T of,, hold. Thus, the
attacker’'s observation under the traces/ofstarting ato, andoj is the same,
that is, ob(t(w,s,)) = Obt(w,01)). Now suppose thatl” diverges under both
oo andg(, then by definition ofi and by lemma 4.3.2 the pair of traces must
diverge on the same iteration &F and the traces must be indistinguishable at
each iteration step. That is, there exist ¢ N such that for ali < j, 0; |T¢| o7,
butc diverges under both; andc’. Thus,0bs(t(w..,)) = 0bt(w,.)). Hence, for
allo,0' e X\ZW o W o' = o|Tw]|o’.

Now take anyr, o/, € EﬂW such that, W ¢’ holds. Then, for all ¢ N, we have
thato; | Tc | o/ by the definition ofii/, and sincdV diverges under both traces we
haveobs(t(w.q,)) = Obt(w,q;))- Thus, forallo, o’ e ¥ 0 W o' = o|Tw|o".

Therefore, foralb, o’ e £,0 W ¢/ = o |Tyw| o/, and hencéTyy, | c V.

O

Lemma 5.7.9.Let (E,1,0) € Py such that(E,1,0) P (E’,1',0"). Then
dom(l’) c dom([).

Proof. We note that for any £, I,0) € &,y and any expression and PER¢p
over values ok, we havedom(flow(e : ¢, (E,1,0))) < dom(/). This is because
flow(e : ¢, (E,1,0)) = trvar(€: ¢ U T U RE) (See the details in Definition 5.4.10).
Hencedom(low(e : ¢, (E,1,0))) = havocl'Var(dom: ¢ u Rgul)). Thatis,

177

dom(low(e: ¢, (F,1,0))) < havocI'Var(dom(: ¢ U Rg))nhavod Var(dom(/)) =
havocI'Var(dom : ¢ u Rg)) ndom(7) sincel = 14v..I. Hence, we have that
dom(low(e : ¢, (E,1,0))) cdom([).

The proof proceeds by induction on the derivation tree of each command in
the information flow rules. The rules fakip assignmenandwrite statements
do not change thé-component of their pre-configurations, thus it only remains
to show that this property holds fdfr andwhile statements. This follows imme-
diately because for any subprogram commarad P the pre-configuration and
post-configuration are both elements®f;; (see Theorem 5.7.10). In the infor-
mation flow rules, the resulting post configuratioi, 1, I,,.1, O,.1) is computed
from (E,, 1,,0,) asajoinofl,,; =flow(e : ¢, (E,, I,,0,)) (conditional branch-
ing of if statements and termination analysisadfile statements) - which means
dom(l,,1) € dom(l,), or by constructing a PER which represents the union of
the domains of thd-component of the post-configuration of the branches of a
conditionalif statement, which by induction on the branches are both subsets of

the domain of thd-component of their respective pre-configuration. O

We now prove properties of the static analysis which estaliBshformation
flow and semantic soundness. It is assumed that all variabl&saoé properly-

initialised before use.

Theorem 5.7.10(Semantic and Information Flow Correctneskgt 3 and Var
respectively be the set of states and variables \0flale program P, which does
not modify thd Var projection of states. Furthermore, IeE, I,0) € ®;,; be an
information configuration and let, I, O) P (E’, I’, O") be the static analysis of
P. Then

178

(A) PER((E,I,0))u|Tp| e PER(FE,1,0))u O’ and
(B) {¢o'| o edom((F,I,0)),(P,o)| o'} cdom((E’,I',0")) and
(C) (E',I',O') € CI)init-

Proof. The proof proceeds by structural induction on the derivation tré&of, O)P(E’,I’,O’).
SupposeP = Fj; P{;...; P/, such that for all, P/ is askip assignmentwrite,
or a conditional if or while statement. Furthermore, for amy < m, define
P, = Pj;...; P! such that for alln, (£,1,0) P, (E,,1,,0,). We will show

that if the induction hypothesis holds féy, then it holds also fof,,, = P,; P! ,,.

» The proof whenP! , is askipstatement is straightforward.

. LetP’, bez:=e. Thenwe havéE,. 1, I, Ont) = (Enlz = 1x R], 1, On)

n+1

whereR = e :idul,uRg and¥o,0’ € X,0 R o' iff 0,0’ e doMUyepv(e) En (7))

andX = TVar\{z}.

(A) Since|Tp, | = |Tk,,,] andO,,.1 = O,, then by the induction hypothesis
we have also tha&teR((E,1,0))u|Tp,., | € O,1 UPER((E, I,0)).

(B) Now letX = {¢'|oc e dom((F,I,0)),(P,,0)l} o'} andlet¥ = {¢'|0 €
dom((E,1,0)),(Pns1,0)| o'}, theny’ = {c[z — o(e)]|o € £}. By thein-
duction hypothesi& c dom((&,, I,,,0,,)), thusX c dzpr;r(R) sincee : id is
an equivalence relation ov&r. From the definition of R , we know that for

z:=e z=€e

anyo e dom(R), o[z — o(e)] e dom(R). Hence X’ ¢ dom(R) and since

dom(é) c dom(Txé) thenY’ c dom(1y R). Now let Z = {2}, since
¥ cdom((E,, I,,,0,)), then¥’ c havoZ (dom((E,, I,,,0,))) becausé&’

179

is obtained fron®: by modifying the value of the variablealone. Further-
more,dom((Ey+1, In+1, Ons1)) = havoZ (dom((E,,, 1,,0,,)))ndom(ty R)
since(E,, I,,,0,,) € @i by the induction hypothesis. Hencg,c dom((E,.+1, [n+1,Ons1)),

sinceX'’ is a subset of bothavocZ (dom((¥, I,,,0,))) anddom(ty R).

(C) By the induction hypothesi§E,,, I,,,0,,) € P®in, it is thus clear that
(Ens1, Ine1, One1) € Pini.

Let P’

n+1

= (En, I,,Opeiflow(e - id, (E,, 1,,0,))). Letyg = (Ey, 1,,0,).

bewr i t e e. Then we have the post-configuratiQi,, ., 7,41, Oni1)

(A) Now |Tp, ., |is derived from Tp, | as follows: for allo, o’ € X, 0| Tp, , |0’
iff o|Tp, o’ andif(P,,o) | o, and(P,, o’} | o/, theno,(e) = o}, (e).
But by the induction hypotheskeR((E, I,0))u| Tk, | E PER(E, 1,0))u
O, and alsd¢’|c e dom((E,1,0)),(P,,0)| ¢’} cdom(p,). Hence,
by applying lemma 5.7.7 and sin¢g,z0,,, 4, it only remains to show
thatPER(ipo) U | Tp; | = PER(go) Le : id £ PER(ip) U O, in Order to
show thatER((E, 1,0)) u|Tk,,,| EPER(E,1,0)) U Opy;.
Let flow(e :id, o) = trvacR, WhereR = e : id u [, u Rg and where
Vo,0' € ¥,0 Rp o' iff 0,0’ € domU,epv(e) En(z)). Furthermore,
let ¥’ = dom(©,,) u dom(lyv..) Such thatvo,o’ € £,0 Ro' <=
o,0' € Y\domtrve.R) @ando O, 0/ <= 0,0’ € ¥'\dom(O,,).
Hence, we hav®,,; = O, 8 fryvuR = (0, U O,) U (frvaR U R).
Thus, O,.1 U PER(¢y) = O, U trvaR U PER(p) Sincedom(yg) ¢
domO,,) anddom(yg) € domtpv..R) and henc@®ER) is disjoint
with O,, andR, andO,, u R = @ by definition. Therefore, to show that

PER(ipo) Ue : id € PER(¢g) UO,,,1 We need to show that for amy o’ €

180

dom(¢g),0 (On UtvaR) 0/ = o(e) = o'(e). Sincetrvacln = I,
thenr, € Rint by observing that for atk e dom(7,,), havod'Var([o];,) =
[c];,. Furthermore, sinc@ Var variables are properly-initialised be-
fore use, then thé'V'(e) n T'Var projection of state is a function

of theI'Var projection, which means that by applying (3) and (4) of
lemma 5.7.3Rg € Rint and hencear € Rini. Hence, sincelom(pg) <

dom R), then by (2) oflemma5.7.3, foratl o’ € dom(g), oty R0/ —>

ocRo" = o(e)=0'(e). Thus,PER(¢y) Le:id € PER(¢g) U Opyg.

(B) Itis clear that: = {0’ |0 e dom((E,I,0)),(P,,0)| o'} = {0’ |0 €
dom((E,1,0)),(P.:1,0)l o'} is the set of terminating states Bf.,
starting fromdom((£, I, 0)). By the induction hypothesis c dom((E.,, I,,,0,,)).
Furthermore, by the domain-preserving property=ofdom(@©,,) <

dom(O,,1). HenceX. c dom((E,, I,,,0,)) c dom((E,+1, Ini1, Onsit))-

(C) Since by the induction hypothesig’,, I,,, O,,) € ®in, it is thus clear
by applying (7) of Lemma 5.4.8 th&¥,,, 1, 1,11, Oni1) € Pinit.

e Let P/, beif (b)thenc, el sec,. Letyy = (E,,1,,0,) so thatl! =
flow(b: T, o) andl) = flom(b : F,¢o) and(E,, I}, On)e1 (Bl 4, 1,1, O

+17 n+1> n+1)

and(E,, I, 0,) co (E!, 1! ,,0V

n+1’ “n+1> Y n+l

). By applying the induction hypoth-
esis toP,, ¢y € ®int and hencd E,,, I, O,), (E,,I",0,) € &,y because
I = tvall, @nd I/ = 11y 1) by definition. By further applying the in-
duction hypothesis te; we obtainPER((E,,I},0,)) u|T.,| € O, u
PER((E,,I!,0,)), and also thafo’|o e dom((E,,, I/,,0,)),{c1,0) |} o'} €

dom((£’

n+1’ “n+1>

O!.,)), and also tha(£/ ,,,I’,,,0!

+17 n+1> Y n+l

) € Djit. Simi-
larly, for theelsebranch we have th&eR((E,,, I//,0,)) u|T., | c O/, u

y n?

181

PER((E,,I",0,)) and that{c’ | o0 € dom((E,,I",0,)),{cs,0)| o'} ¢
dom((174 [// O//

n+1’ “*n+l’ ' n+l

)), and that(E”, 1", 0"

n+l’ "n+1’ ~n+l

) € ®inir. Now define
I,.+1 such thatvo, o’ € 3,0 [,,,10' < 0,0’ e domI,,) udom(I”,,)
and for allz € TVar, let £/ (z) = B’ (z)u I if E” (x) # E,(r) and
E!, (r) = E'_,(x) otherwise. Similarly, for alk: € TVar, let E”_ (z) =

EII

n+1

(r)ulIlif B (z) # E,(z) andE”, (v) = E"

n+1

(z) otherwise. Then

the post-configuration a?’ | isdefined a$£,,.1, 1,41, Ons1) = (Eml, Ii1,0!)

(n+17 n+17 On+1)

(A) Let ¥ = dom(O!,,) udom(©”,,) so thatVo,o’ € 8,0 0!, 0’ <=

n+1
0,0" € $\dom(O,,) ando O, o'« o,0" € \don(O",,).

Since0,.; = O!,, w0, andO! , uO” = @ by definition, then

n+1?

Oni1= (0,10,) u((0;,,u0;.,))u((0;,,u0,.,)). Further-

more, by the domain-preserving propertyofve know thatlom(O,,) ¢
dom(O! ,,) anddom(O,,) c dom(O/,), and also by definitiodom() <
dom(0,,). Hence, by definitio®ER ¢,)u O’ , | = PER(¢)uO” |

n+l ~

Therefore PER(pg) U O,41 = PER(po) L O! ., u O/, ,. We now show

thatPER(0o) U | Tpr | £ PER(0) U Opyr.

n+1*

We consider three cases based on how the boolean gesaluates.
Firstly, we note thaf/ and// partition the domain of,, such that the
set of states imlom((£,, 1/, 0,,)) anddom((E,, I, 0,,)) evaluateb

to tt andff respectively. This is clear since (see Definition 5.4.10) we
have thatl! = 11v..(b: Tu L, u Rg) andl” = trya(b:Fu L, U RE).
Hence, sincd,, u Ry € Rinty and becausdom(p,) ¢ dom(/, u Rg)

by definition, then by (4) and (2) of lemma 5.7.3 we have that for all

182

o,0" e dompy),0 I, o' = o(b) = o'(b) = tt ando I/ 0/ —
o(b) =0o'(b) =ft.

Now take anyr, o’ € ¥ such that (PER(p)uO,,,1)0’, SINCEPER g)L
On+1 = PER(po) L 0! ., 10!, | then we know that, o’ € dom(y,) and

o 0;,, 0" ando O/, , ' hold.

(@) Suppose(b) = o'(b) = tt, theno, o’ € dom((E,, I/,0,)). But
by the induction hypothes®eR((E,,, I},0,)) u |T., | € O/, u
PER((En, I/,0,)), hences 0! ,, 0’ = o|T.,|0’. Sinceo(b) =
o'(b) = tt ando |7, | o' holds, therr | Tp | o’ holds.

(b) The proof in the case that(b) = o/(b) = ff is similar to that of
the case when(b) = o/(b) = tt.

(c) Now suppose(b) = tt ando’(b) = ff. Thus, we have that ¢
dom((&,,1,0,)) ando’ e dom((E,, [/, O,)). Sinces O/ ,, U
O!., o' holds, then there does not existaite or while com-
mand along the execution paths @for ¢’ within P’,,. Sup-

pose that there exist\arite or while statement along the execu-

tion path ofo, then there exists in the information flow analy-

sis an expressionand a configuratiofE,, I., O.) such thatr €

dom(low(e :id, (£, I.,O.))) andO. ., = O/, wflow(e : id, (E,, I, O.)).

By lemma 5.7.9 we have thatom(flow(e : id, (£, I.,0.))) <

dom(/.) c dom(I}) ando € dom(l}). Furthermore, since’(b) =

ff theno’ ¢ dom({/) and hence we have that¢ dom(flow(e : id, (E., I, O,))).

Therefore, by (3) of proposition 5.4(%,¢') ¢ O,,,1 sinceO! ,, =

0! uflow(e :id, (E,, I., O.)), which contradicts our assumption

183

(B)

thato O} ,, 0’ holds. Similarly, there does not existaite or while

statement along the execution pathotfin P’ ,. Thus, because

n+1
P’ | neither produces an output (msite statement), nor diverges
(nowhile statement) along the execution paths of the staimsd

o’ in P, theno |Tp, | o’ holds.

Thus,Vo,0’ € 3,0 (PER(pg) UOpy1) 0! —> o lTP!mJ o', that is,

PER(po) U | Tpr

n+1

| = PER(¢0) L O

Now define|Tp,.pr | asVo,o’ € 2,0 |Tp,epr |0 iff o |Tp, |0’ and
if (P,,0)l 0, and(P,,0")| o, then alsoo,, |Tp: |07, By proposi-
tion 5.7.6 we know thaltTs,, | € | Tr,.r_, |, and hence thaflp,,, | u
PER((E,1,0)) € |Tp,p: |UPER((E,1,0)). Since by the induction
hypothesis we hav ', |LPER((E,1,0)) = O,,uPER((E,1,0)) and
also{o’|oc edom((E,1,0)),(P,,0)| ¢’} <dom(p,), andPER (g) L

| Tp

n+1

PER((E,1,0)) € 0,1 UPER((E,1,0)).

| = PER(¢) U 0,41, hence by lemma 5.7.7 we hayép,,, | u

By the induction hypothesis we already know that forttenbranch

we have{o’|o e dom((E,,,I,0,)),{c1,0)| o'} c dom((E! 0!.,))c¢c

n+1> n+17

dom((E!,,, I..1,0.,,)) since by lemma 5.7.9 we haden(/’) c

dom(Z}) and also by definitiodom(1/) ¢ dom(Z,.,). Similarly, for
theelsebranch{c’|oc € dom((E,,, 1/, 0,)),{(cs,0) |l o'} cdom((E”., |, I,:1,0"..)).
Sincedom((E,,,1},,0,)) = {oc e dom((E,, I,,,0,)) | o(b) = tt} and
dom((E,,1",0,)) = {oc e dom((E,, I,,0,)) | o(b) = ff}, therefore

the set of terminating states Bf , ; starting from a state idom((&,,, 1,,,O,,))

satisfies the propertyo’ | o € dom((E,,I,,,0,)),(P!,,,0)l| o'} ¢

184

(Epns1, Ini1, Ony1) since by the domain-preserving property:gfwe
have thadom((E’ ,, ! 13 dni1,00,1)) € (Enst, Ini1, Onyr) @nd also that
dom((;{+1, n+1, 001 1)) € (Enst, Ins1, Ons1). Hence, by the induc-
tion hypothesis{o’|c e dom((E,I,0)),(P,,0)| o'} cdom((E,, I,,,0,))
implies{c’|c e dom((E, 1,0)),(Pns1,0) | o'} cdom((Eys1, Ins1,Ons1))-

(C) We have already shown by the induction hypothesis at the beginning of
theif proof that(£!,,.I'.,,0!.,), (E" ., 1., 0!

n+1l’ "n+l’ ¥ n+l

) € ®ini. In the
updated post-configuratiqiz’ , |, I,,.1, 0!, ,,) of thethenbranch, and
for a given variabler € TVar, £/, (z) may beFE! , (z)u I/ or E!
according to thé& rule. Hence, by applying (5) and (6) of lemma 5.4.8
we know thatE! (2) = trvane (B, (7) U I)) becauser’, (z) =
Prvanay B 1 () @nd ! = Yrvan L), Sincel!, = 1rva.). Furthermore,

sincetrval),, = 1., andtpya,t),, = 1

n+l = “n+l

by the induction hypothe-
sis, then by (4) of lemma 5.4t@&vocI' Var(dom(l’ ,,) udom(I”,,)) =
dom(I’.,) udom(l.,), which implies thatirv..[,.+1 = I,.+1. Hence,

(En+17 I1,0!,,) € ®inie. Similarly, for the post-configuration of the

n+1

elsebranch, we havéE;L’H, I,.1,0”

n+1

) € ®inie. Finally, by applying
(7) oflemma5.4.8 we have th@k, .1, [,,11,0,41) = (L 1o I, O)

(n+1> n+170n+1) € <I)lnlt

* Let P/, bewhil e (b)doc, andletCy =i f (b)thencel seski p and
for all i > 0 defineC;,, = C;; Cy. Furthermore, lep, = (£, I,,, O,,) and for
alli>0let (E!, I],0!) = ¢, such thatpy C; ¢;,1, and defineP: = P,: C;.

177

We know that{o’ | 0 € dom((E,I,0)),(P,,0)l o’} € dom(p,) and that

forall i > 0, {¢'| o € dom(pg),(C;,o) |l 0’} € dom(p;,1) by applying

185

the induction hypothesis. Now I€=" " O") = |*;50 p;- Furthermore,
define theE-component of thewhile post-configuration so that for any
x € Var,X = TVar\{z} and for allo,0’ € &, 0 By (2) 0/ < Ji ¢
N,otx(El(x)ul]’ub:F)o’, wherel!” = flow(b: F, ;). Now define the -
component and th@-component of thevhile statement post-configuration
to belyy = flow(b: F, (Ew,I"”,0")) and Oy = [*;5o flow(b : id, ¢;) w O”,
sothat(E,.1, Ini1,Ons1) = (Ew, I, Ow).

Define the set of states that may occur before or after an iteration of the

while statemen®’

n+1?

starting from the sedom(yy), as

¥ = dom(eo) U {o' |0 e dom(io).j € N, (Cyoo) b o'} (5.1)

Now let the subset of. under which thevhile statement terminates be given

by
Yy={oeX[(P,0) 0} (5.2)

Thus, the subset af under which thavhile statement diverges is given by

5y = D\S.

We also identify the subset df under which theouter while statement

diverges, excluding those under which the subprogralinerges

Z%/V={UEZ|Vj€N.<Cj,O’>U0'],-/\0';»(())=tt}. (5.3)

Finally, the set of states id under which the subprograndiverges is given

186

AED IS (5.4)

(A) We start by showing thad,,,; contains termination information. More

specifically, thaiO,,,, distinguishes any state ij; from any state in
¥4. This is shown in two steps, firstly thak,,; distinguishes states in
¥, from all other states imgV, and secondly, by induction an that

Oy distinguishes all states i from those inbs.

We now observe that for evesye 3 uEﬂW there existg € N such that
(C;,0)| o’ ando’ € dom(y;.1) by the induction hypothesis. There-
fore, since the program does not modify INéar-projection of states,
it is clear thatr € havocI'Var({s'}), hence we have that; u EK" c
Ujs0 havocI'Var(dom(p;)). Now, sinceb : id is an equivalence rela-
tion, then for anyj € N dom(¢;) ¢ dom(flow(b : id, ¢;)) by definition.
FurthermorehavocI' Var(dom@low(b : id, ¢;))) = domflow(b : id, ¢;))
and henceZy u E‘ﬂ"’ ¢ Ujsodom(flow(b : id, ¢;)) by the monotonicity
and idempotency diavod'Var(-). Hence, we have that; u EﬂW c
don(|4];5, flow(b : id, ¢;)) by the domain-preserving property of
Now supposer,o’ € ¥y u ZK", such thato O,,,; ¢’ holds. Since
o,0" e dom(+);5o flow(b : id, ;) andO,,.1 = [+;50 flow(b : id, ;) 1 O”
theno [+, flow(b : id, ;) o’ holds by (2) of proposition 5.4.5. Now let
¥ = dom(+;5o flow(b : id, ;)), thenfor allj € N, oCsw (flow(b : id, ¢;))o”.
That is, for allj € N, we have that, o’ ¢ dom(flow(b :id, ¢;)) and
o flow(b:id, ;) o’ or o,0’ € E"\domflow(b:id,y;)). Now since

0,0 € ¥y U E‘ﬂ"’ then there exists € N ando4, 05 € X such that

187

(Cr,0)|) o4 and (Cy,0") | o ando 4,05 € dom(p,) by the induc-
tion hypothesis. Now sinces, o € dom(¢y,) theno 4,05 € dom(R),
whereR = b : idu I] u Rg and wherevo,,09 € X,01 Rg 0y <=
01,0 € domUyerv) £ (y)) sinced : id is an equivalence relation.
But we know that the program does not modify INéar projection of
states and hence, € havocI'Var({c}) andoz € havodI'Var({o'}).
We now observe thdlow(b : id, o) = 1rvar R, Which means that, o’ €
dom(flow(b : id, 1)) and hence that flow(b : id, ¢) o’ holds. Since

0 Mrvar R 0’ hOlds andr 4, 05 € havod'Var ([0 |11), then by (4) of
lemma 5.4.80 4 trva.RR 0 holds. Now we know thaR € Ri,; by
applying (3) and (4) of lemma 5.7.3, since all variables are properly-
assigned before use and hence foryal F'V (), E; (y) € Rint and

I} € Rinit- Thus,04 trv..R op means thav 4 R o holds by (2) of
lemma 5.7.3, since 4,05 € domR), which implies thato4(b) =
og(b) by the definition ofR. Thus, there are only two cases to con-
sider. Case 154(b) = op(b) = ff, which means that thevhile state-
ment terminates, and hence that’ ¢ ¥, by the definition ofX.
This leaves only the case 2, where for gl N, (C;,0) | 0; and
(Cj,0") | o ando;(b) = o(b) = tt, which means that,o’ € X1V
Hence,\Yo,0' € ¥ U EK", 0 Oy o' implieso, o’ € ¥y oro, 0’ € ZK",
which shows that),,,; distinguishes the terminating states from the

nonterminating ones il u X}

We now show the second part th@t,,; distinguishes terminating
states irty, from those irt¢, under whiche diverges. This is achieved

by induction on, in particular, because we know by definition(@f, ;

188

that for alli > 0, O/20,,,,, and by the induction hypothesis we know
that{c’ | o € dom(p;, (Co,0)| 0’)} € dom(p;,1) and thatPER(y;) U

|Tc, | = PER(p;) u OL,,, and hence)!,, distinguishes terminating
states irdom(;) from those that makeé, diverge, becaudd, | does
also, as lemma 4.3.2 shows. When we combine this with the fact that
for all ¢, dom(¢;) ¢ dom(©}) andO!z0,,.,, then by applying (2) of
proposition 5.4.5 we know that for all ¢’ e dom(y;),0 O,11 0" =

o O} ¢’, and hence by the contrapositive, ., distinguishes the states
thatO; does. Thus, sincEf ¢ ¥ and¥ ¢ U;yo dom(y;) theno, o’

YU ETCT’ 0 Op.1 0’ implieso, o’ e ¥y oro, o’ ¢ Z%.

From the above we have that for allo’ € 3,0 O,,.1 o’ implieso, o’ €

Yy oroo e EK" u ETCT. Thus, O,,,; distinguishes the set of states,
starting fromdom(¢,), in which thewhile statement terminates, from
those in which the statement diverges. Furthermore, we observe from
the property of T¢, | which, for all j, distinguishes the states under
whichC; terminates from those under which it diverges (see lemma 4.3.2),
that for any pair of states o’ € EﬂWUE‘ﬂ:, 0Ops10"implieso, o’ € ZﬂW
oro,0’ € X¢. This is because by definition for all starting states in
EﬂW, C; terminates for alt, whereas for all starting statesm, there
exists aj whereC; diverges. Hence, by applying the induction hy-
pothesis and the definition 6f,.,, for anyoy, of, € ZﬂW U E‘ﬂf such that

00 Ons1 0} holds,oq | T, | o holds and for alf > 0, (Co, 0;) | 0441 and
(Co,0i) | ol,, implieso;.y | T, | of,,. But, by lemma 4.3.2, for any

o; | T¢, | o} implies thatCy, terminates under bot® ands; or diverges

189

under both states. But sineg terminates and; diverges whert is
executed| T, | does not relate them. Thus, for allo’ € " uX¢, we
have thatr O,,,; ¢’ implieso, o’ € E‘ﬂ"’ oro,o’ € E‘ﬁ. Combining this
with the earlier results, we have that foralb’ € 32, 0 O,,,1 ¢’ implies
o,0'€Xyoro,o e ZﬂW oro,o’ e 3.

Finally, we now show that the proper8er((E,1,0)) u |Tp,,,]| €
PER((E,I,0))u0,,; holds. By the induction hypothest€R((E, I,0))u
|Tp, | = PER(E,I,0))u 0, and{c’|c e dom((F,I,0)),(P,,0)l} o'} ¢
dom(yy), and we know from the flow rules thét,z0,,,;. By apply-
ing proposition 5.7.6, it thus remains to show thBR(() U [TP;MJ C
PER (o) U O, Let ZﬂW ={og e X|VieN,(Co,0:)| 0i11,0i,1(b) =

tt} be the set ofll states under which the outehile loop diverges
and definelV such that for allog, 0} € =, oo W o} iff (00,0} €
B\ or g, 0 € B}) and oy [T, | o and Vi > 0, (Co,03)) 0741,
(Co,o) 0!, = 0i:1|Tc,| 0., We know from lemma 5.7.8 that

/
i+1 i+1"

| T | = W. We shall show tha#ER(o) U = PER(¢0)UO;,.1. SUp-
poseo, o, € dom(yy) and thaioy O,,.1 of, then from the partitioning
of states by0,,,; shown above, we know that, o/, € ZﬂW ndom(yy)

or oy, 0}, € don(goo)\EﬂW. By the induction hypothesis, for alk 0 we
have that{o’ | o € dom(iy), (C;,0) |} o’} € dom(p;,1) andPER(p;) U
|Tc, | € PER(p;) u O, ;. Hence, by applying (2) of proposition 5.4.5,
since for alli > 0 we have thatom(y;) < dom(©!) andO; v O,,,; =
On+1, andO;e0;, ,, thena, O,,.1 o implies that for allj > 0, o9 O; o5.
Thus,oy O,,41 0, impliesoy O7 o)) = 0 | T, | o} by the induction

hypothesis, and furthermore we have that forial0, (Cy, 0;) |} 0.1,

190

(B)

(Co,o)l 0,y = 001 O}y 00,y = 0ia|Tg,] 0, by the in-
duction hypothesis and because of (4) of lemma 5.4.8 gilcenly
modifies TVar variables and hence;,; ¢ havod'Var({o,}) and
ol,, € havod'Var({s}}), and we already know that, O.,, o/, holds.
Thus, oy W o}, holds, and henceeR(p) U W c PER(pp) U O,11.

Since by lemma5.7.87 | = W, it follows thatPER(po)u| T | £
PER(0) U Opy1-

We know by the induction hypothesis that for alle N, ando ¢
dom(yy), (C;,0) || 0o = o’ e dom(p;,1). But for anyo € dom(y)
such that P!.,,0) | o’, theno’(b) = ff since thewhile statement ter-
minates and hence there existg a N such that{(C;,)| ¢, which
means that’ € dom(p,,1). Furthermore, since’(b) = ff, it cannot
be modified by further execution d@f,, and hence for alk > j + 1,
we have also that’ e dom(;). Since there exists e N such that
o’ e dom(y,) ando’(b) = ff, then it is easy to see that for alk Var,
o' e dom(E,.1(x)) by definition. Furthermore, sincg ¢ dom(yy),
theno’ € dom({”) defined asl” = |50 I!. Hence,o’ € dom(/,.1),
which is defined ag,,.; = flow(b: F, (E,.1,1”,0")). Finally, since
o’ e dom(py), by the domain preserving property of we know that
o' € Op.1, Which is computed by taking the joia of O and some
other PERs. Hence’ € dom((E,,1, [,:1,0,41)). Thatis,{c’|c €
dom(pp), (P!, o)l o'} € dom((Eps1, Ins1, Ons1)). By combining
this with the induction hypothesis df,, where we have thdto’ | o €
dom((E,1,0)),(P,, o)l o'} cdom(gy), it then follows thaf{ o’ | o €
don((E,1,0)),(Puc1,0) | 0"} € dOM((Enet, Lusr, Onn))-

191

(C) Sinceyy € Pinir. We know from lemma 5.7.4 th&i,, .1, [,,11,0n41) €
Dinit.

O

A corollary to (A) of Theorem 5.7.10 shows the soundness ptppdrthe
static analysis that links the information flow derived by the static analysis to the

semantic information flow.

Corollary 5.7.11. Let (E,,1,,0,) P (E',I',0") be the static analysis of the
While programP. Then|Tp| = O'.

Proof. The proof follows easily from the (A) part of Theorem 5.7.10. Since

PER((E.,1,,0,)) = all, we have thatTp| = O'. O

5.7.1 Flow Sensitivity

The information flow analysis iflow-sensitivgNNH99], which means that the
order of program execution matters to the analysis. For example, while the pro-

gram/ :

0;1 :== h;write [;is insecure, it is easy to show that the program

[:=h;l:=0;writel;is secure because it does not leak the sécréissuming
that 2 contains a secret value anhds public, conventional type-based analyses,
which are usually flow-insensitive, reject the latter program because of the initial

assignment of. to /.

5.7.2 Termination Properties

Under the semantic attacker model, the attacker may be able to gain informa-

tion when it determines that the program does not terminate. This information is

192

captured by the static analysis by taking a join of theomponent in the post-
configuration ofwhile statements with a PER which partitions states into those un-
der which thewhile statement terminates and those under which it does not termi-
nate. Furthermore, since subsequent statements after a diverdgiegtatement
cannot cause further information flow, the definition of fiieand /-components

of the post-configuration of while statement ensures that subsequent analysis is
restricted to only those states under which the precedimite statement termi-
nates. This is illustrated in the following program of Figure 5.17.

1 if (h <10)then
2 while (tt) do

3 ski p
4 lizh;

s else

6 l1=h;

7 write [;

Figure 5.17: Nontermination and unreachable code

It is clear that this program will reveal the value/ofvhenh > 10, but when
h < 10 the program diverges preventing the assignment statement on line 4 and
subsequent statements from being executed. Thus, the attacker only learns that
h < 10 when the program diverges. Assume that the pre-configuration of the
analysis is(F,,1,,0,), and thatT'Var = {l} andIVar = {h}. The static anal-
ysis derives the information release as follows. The implicit context on entering
the thenbranch is the PER; = {{c € ¥ |o(h) < 10}}. Sincett : F = @
is the empty PER, the post-configuration of thbile statement i Es, I, O5)
whereVz € Var, Ey(z) = I, = @, and the attacker’s knowledge is given by

Oy = {{o € X|o(h) < 10},{c € ¥ |o(h) > 10}}. The meaning off; and

193

I, is that the program points after thénile statement are unreachable since the
PER & relates no state, and, means that the attacker can distinguish between
the terminating and non-terminating trace of the program. Applyin@dsign-
mentrule on line 4 does not change the pre-configuratiéh, I, 0,). In fact,
for any statement whose pre-configuratiori i%, I, O;), the post-configuration
is the same since for any expressioand PER¢ on values and variablewe
have thatflow(e : ¢, (Es, I5,02)) = aflow(l := e, (Fy,1,,02)) = @ such that
flow(e : ¢, (E2, I5,05)) 1O = O, (since for any PERR, R = @ = R).

Now for theelsebranch of the program, the implicit context is given By=
{{o € ¥]0o(h) > 10}} and after the assignment we have the post-configuration
(Ey, 15, 1), whereE) = E\ [l — aflowl := h, (E|, I,,all))] and whereaflow(! :=
h,(E., I}all)) = {{o" e £|o'(l) = o'(h) =o(h)} |0 € X,0(h) > 10}. Thus,
EL(1) is the PER which requires that the valuehoind! be the same (due to the
assignment) and that > 10 (due to branching). Applying thé statement rule,
the post-configuration is thusts, I>, O2) wg, 1,0,y (B4, 15, all) = (Es,15,0,)
whereVz, e Var, E5(x) = Ej(x) u). This is the expected result, sinég and
I} both restrict the set of states to those whierel0 (the terminating traces) and
whereh = [(due to the assignment on line 6).

Finally, thewrite statements reveals the valuefoivhenever it is greater than

10. This is clear from the resultEs, I},0s) wri t e [(Es, 15,03) whereOs
Oy w flow(l :id, (F3,1},04)) = {{0' € X |0'(h) = a(h)},{c" € X |o"(h)

IN

10} |0 € X,0(h) > 10}. Thus, the final result demonstrates that the attacker either
learns the value of whenever, > 10 or learns that < 10 sinceVo, o’ € X, 0030
iff o(h) =0’(h) 210 oro(h),o’(h) < 10, which agrees with the intuition about

the information flow of the program.

194

5.7.3 Dead Code Analysis

In program analysisjead coddalso known as unreachable code) refers to a por-
tion of program code that can never be executed [NNH99, Muc97]. Intuitively,
from an information flow perspective dead code should never cause information
flow. We encountered a dead code scenario in the previous analysis example be-
cause the code after thmhile statement is unreachable. Dead code may also arise
due to program branching, where the conditional guard always evaludtdseo
An example is shown in Figure 5.18. In this example, the implicit context in the
then branch is the empty PER, and therefore all the commands in that branch
are harmless because they cannot be executed. This is revealed by the analysis
of the program, where for any pre-configuratigrof theif statement, the post-
configuration of the analysis is als@a This makes sense (from an information
flow perspective, and also from a semantic point of view) because this program
behaves exactly like ski p statement - revealing no information at all.

if (ff) then

write h;

else
skip;

Figure 5.18: A dead code scenario.

195

5.7.4 Implicit Flow Approximation

Under certain circumstances implicit information flows are approximated by our

analysis. For example, the analysis of the program

(if(h=10)theni:=1elsel:=1);witel

says that the attacker either learns that 10 or thath # 10. However, since the
attacker cannot determine which program path is taken by observing the output
the result is only an approximation of the actual information flow.

Additionally, because the attacker’s knowledge may only increase in the anal-
ysis it is possible that the analysis may be less precise under certain program
compositions which, which does not increase the semantic attacker’'s knowledge
about secrets, but where the individual programs themselves would reveal the in-

formation. For example, consider the programs

Pizif(h=10)thenwitelel seskip

and

Pz2if(h+10)thenwitelel seskip.

In both cases the analysis precisely determines that the attacker learns whether
h =10 or not. However, if these programs are composef, ag, then the attacker
cannot gain any information aboit By combining the information released

in both subprograms, the analysis overapproximates the information flow, and
determines that the attacker learns whether 10 or not. This is related to the

previous implicit flow problem since the prograffp; P, is observationally similar

196

tothe program f (h=10)t henwritelel sewitel, which does notreveal
branching information. More generally, this problem is related to the proof of
observational and semantic equivalence of program branches in a given context,

for which techniques from [Ben04], presented in the next section, are useful.

5.8 Relational Correctness

Benton [Ben04] introduced proof techniques whereby the correctness of static
analyses and the program transformations that they enable may be shown by us-
ing relations, rather than predicates, to express program properties. The key ob-
servation is that one may view the semantics of types as a special kind of relation,

rather than as predicates. Thus, a typing judgement of the form:

'-M=M:A

which asserts that under the assumpiipthe terms\/ and)/’ are equal at typd
induces a relation over terms. In particular, types may now be interpreted as partial
equivalence relations over some untyped universe. The idea now is that types
extensionally specify properties that are preserved by program transformations,
and typing judgements identify terms that can be rewritten while preserving the
observable semantics specified by those extensional properties.

The language setting of [Ben04] is similar\i¢hile, with the exception of the
write construct and the fact that all variables are of integer data type. However,
boolean expressions are constructed from integer expressions and constants in the

usual way. Expression types are thus taken ffamt, bool} > 7, whose denota-

197

tions are sets, and whefet] = Z and [bool] = B. The program semantics is
presented in the standard denotational style [Win93].

Some non-standard expression types were introduced in [BenO#4Eiquressions:

¢r :=F-[{v}, | A, | T,

Intuitively, IF.. is the empty expression typéy}. is the type of constant expres-
sions whose value is€ [7], A, is the type of an expression that we do not know
its value, andl', is the type of an expression that we do not care about its value.
The metavariable, ranges over-expressions. The denotation@f is a relation

on [r] as follows:

[F-] =2, [{v}]={(v,0)}, [A]={(v,0)[velr]}, [T-]=[r]xI[r].

Itis clear thaf]¢.] is a PER orfr], we shall thus use our existing notations (drop-
ping the r-subscripts when it is clear from the context) for these non-standard
types:

F.=2.,, {v},=id), A.=id., T,=all,.

These are the PERs, where relates nor-values,id; only relatesy to itself, id
only relates any ¢ [7] to itself, andall . relates all pairs of-values.
[Ben04] also introduced state types, which are finite maps fioth\ariables

to int-expression types, and whose denotations are PERs on the set oBstates

198

State types are written as lists
O ==, : din.

The interpretation of state types is a PER®where[-] = XxX andO, x : ¢jy; =
[©] n{(o,0") | (¢(z),0'(x)) € [¢in]}. The full inference system for program
analysis and transformation which tradkspendencyDead CodeandConstancy
informationDDCC is shown in Figure 5.19.

Expression and state types are ordered by a subtyping relatsnfollows:

s 6r<PL O < .
@, < ¢, idl<id;, o,<all., o, <o, for expression

Or < !
types, and for state types we ha@e< —, O,z : Gy < © __6<0"
yp 1 yp ~ 5 5 . int 9 @S@,’I‘Za”T’
C'_') < @, <Z>int < (b, t “ . .
™__ Note that the ordering is the dual of our ordering on
0,2 : ¢int <O, : Piyy 9 s

relations.
In Figure 5.190p stands for any applicable binary operation orexpres-
sions andop is an abstract interpretation ofp over the domain of expression

types. As usualpp is a sound abstraction ap if V(z,z") € [¢.],(y,y’) €

[#:].(x opy, 2" opy’) € [¢- Op@L].

5.8.1 Judgements

There are two basic typing judgementddBCC.

Fe,~el :0= ¢,

The state type, = : ¢iny means that the variabledoes not appear i®, and that: has the
expression typeéin;.

199

Subtyping and Structural
Fen~dcd 10,1 Oing = Fe,~e 1O =all, Fer~el 0, Bing = ¢

Fe,~el:0= ¢, Fe,~el:O=¢, O'<O ¢, <P. Fen~c 10 =0

el ~e 10 =0, Fe,~el 0 = ¢l ' ~c: O =0
Fe,~vel:O=>¢, re~el:0=0¢, Fec~vcd 1O =0, 01<0; 0,<0)
Fer~el:0= ¢, Fc~c 0] = 0)

Fe~cd:O=>0" Hd~d:0 =0
Fe~c:0 =0

Expressions
Fz~2:0,27: Qe = Gint Fn~n:0 = idj Fb~b:O = id)
Fe~ fri @, FelnfliO= gL
-e;opel ~ fr0p f1: O = (¢, Op¢))
Commands

Fep~ncdi:O0=2>0" Fep~ch:0 =>0"

kKip~skip:
=S Ip S Ip ©=6 I—(Cl;Cg)N(Cl;Cé)Z@D@”

r—€~€'l@,2’:¢int:>¢i,nt |—b"’bli@z>idbool Fe~c O =0
Fzime~rzi=e10,2: gim= 0,21 ¢, Fwhile(b)doc~while(¥)docd:0 =0

int

FOo~b O =ildpoe HC1~C:O=0" Feynch:0=0
Fif (b)thenc el sec~if(b)thenc elsecd,:0 =0’

Figure 5.19: Core DDCC System [Ben04].

which intuitively expresses that under the constr&imin states, the-expressions
e, ande’ are interchangeable as they both produce indistinguishable “observa-
tions” underg.; similarly, for commands,

Fe~cd: O =0

200

Fep~cjiO=0" Fcp~ch:0=>0"

Fercg~ ey © =07

Hskip~skip:©=0

ameny=oOe(1)/z(1),¢(2)/y(2)] = ©

Fep~c:OABL)A(2)=0" +ey~ch:O©Aanot(b(l)v(2)) = 0O
Fif (b)thencelsecy~if(b)thenc elsecd,:0A(b(1)=00(2)) =0

e~ :OA (1) Ab(2) = O A (B(1) =b/(2))
Fwhile(b)doc~while (b)doc:0Oa(b(1)=V(2)) =06 anot(b(1) v V'(2))

c~vd:01 =20y EOQ|<O; EOy;<0) c~d:O=0" EPRO=0)
c~c 0] = 0] d~c:0=>0

c~vd:O@=20" ~":0=0" EPER(O=0)
c~ "0 =0

Figure 5.20: Core Relational Hoare Logic [Ben04].

intuitively means that under the conteéltas the precondition of execution state
and the postconditional requireméton states; andc’ are can be interchanged.

We have the following semantic definitions:
[© = -] ={(e;e) [V(0,0") € [O].(a(e),0"(e")) € [o-]}
and
[©=07T={(c.)|V(s0) e[O].(Ic](a), [¢'I(c")) € [€],}-

201

5.8.2 Relational Hoare Logic

Onre of the properties that cannot be expressed undeDDEC type system is

the knowledge of how the boolean guard evaluates when control is passed to a
particular branch of a conditional statement. This is addressed by the system
calledRelational Hoare Logi¢RHL) where one may specify such properties, and

is intended to be a basis for developing various specific program analyses and
transformations. This system is presented in Figure 5.20.

RHL defines generalised expressions and relational assertions as follows:

gexp> GE:==n|z(1) |z(2) | GE iop GE
relexps::= b| GE bop GE not© | © lop ©.
The semantics of generalised expressions and relational assertions are given

by:

202

[GE]
[n] = n
[z(1)] (o1, 02)
[2(2)](01,02)
[eiopef(or,02) = ([el(o1,02))iop ([e'[(01,02))

xX¥Y -7

m

o1(x)

oa(x)

9] c YxX

= {(0.0") [xe(0,0") = tt}
Xt (0,0") = tt
xee (o, 0") = ff
Xobopt'(0,07) = [b](0,0") bop[v](a,0")
Xelwper(0.0') = xe(o,0) lop xe(0,0")
Xnow (0, 0”) = -(xe(0,0"))

The basic RHL judgement is of the form- ¢/ : © = ©’, and the meaning of this

judgement is given by

Fcrd:©@=0"=V(0,0") € [O].([c](0),[](c")) e [O],.

The lift of [©'] is denoted by the bottom reflecting relatifgy], = [©'TJu{(L, 1)}
and[c] € ¥ — X, is the denotational semantics@fvhich is given in the category

of predomains and continuous functions. Furthermore, we have the following

203

auxiliary judgements and their meanings:

FO<0e =[0] c[O]
= PER(O) = ([0] < [©]) and([©] " < [©]).

5.8.3 Static Analysis

The DDCC and theRHL system may be used to provide proofs of correctness of
program transformation as well as static analysis. For static analysis, emphasis
is laid on the semantics of (expression and command) types as a description of
program properties. Thus,e, ~ e, : © = ¢, or simply+ e, : © = ¢, describes
a property of the evaluation ef under the constrairt® on states: that is, given
the contextO, the evaluation ok, is indistinguishable via the PER,. This
interpretation is the same as the definitiony (dropping ther subscripts) in the
information flow analysis, which is the greatest PER on states (using thegrder
for which the evaluation of is indistinguishable undes. In other words, for all
O <e: ¢ we have- e : © = ¢. As an interpretation of information released,
the attacker that cannot distinguish evaluations dfat are related by, gains
at most the information modelled by the PER ¢ on program states. Thus,
for the semantic attacker in our analysis- id, being able to observe precisely
the evaluation of expressions as prescribed by the operational semantics. In the
following, we shall omit ther subscripts.

For program commands, the static analysis o specified under thBDCC
andRHL system as- ¢ ~ ¢ : © = ©’, or simply as- ¢ : © = ©’, which may
be interpreted to mean that under the context prescribed by the pre-réatioa

execution ofc satisfies the properties described by the post-rel&ioon states.

204

UnderDDCC, the relation® and©’ are PERs over program states, although they
may not necessarily be under tRelL system. We restrict our discussions to PERs

only.

5.8.4 Improving the Precision of Information Flow Analysis

The proofs from th&®DCC andRHL may be used to improve the precision of our
information flow analysis. For example, the approximation of information flow
that may result due to equivalent branches in a conditional statement can be made
more precise. Suppose the subprogramandc, of a conditionalif statement
contain nowrite statements and thatc;, ~ ¢, : © = ©’, then by this equivalent
branches property, the analysid df(b) t henc; el sec, under the configuration

¢ such thadom(y) < dom([©]) may be replaced with

dom(p) cdom(O]) +Feci~e:0=0" pc ¢
pif(b)thenc, el secy,y’)

(5.5)

This takes advantage of the fact that the subprograms are semantically equiva-
lent under the context provided I6y. By applying this, the analysis of the earlier
program,i f (h=10)thenl:=1el sel:=1;witel, becomes precise under
any starting pre-configuration. However, (5.5) does not help with the program
if(h=10)then!l:=helsel:=10;witel, becausé:=h andl:=10 are
not equivalent under all contexts. In this case however, the program releases no
information about, because the value ofafter the conditional is independent of
the execution path. We can improve the precision in such a case by taking ad-
vantage of the knowledge of how the boolean guard evaluates when conditional

subprograms are executed. This can be specified und&Hheystem by using

205

thecommon branciiBen04] rule and the following:

dom(p) cdom([O]) +c1:OAb(1)=0" +c:0AN0th(l)=0" pci¢
pif(b)thenc el secyy’ '

(5.6)
Although the language d®HL does not have an explicit output construct, we
can deal withwrite statements under tiRHL system by extending state with fresh

(“output”) variables, which record the value of program output, by adding the rule

Fe~z:0=id
FwWitee~witexr:0=0,z:id

(5.7)

This rule extends state with the new varialblevhich is observationally indistin-
guishable from the expressierunder the contex®. With this extension we can
specify when branches are observationally equivalent. For example, by combin-
ing (5.7) and (5.6) we are able to derive a more precise analysis for the program

if(h=10)thenwitelel sewitel.

Summary In this chapter we have presented a static information flow analysis
technique foMWhile programs using lattices of PERs over the program state. This
analysis is developed relative to the semantic attacker model, which can observe
the execution of programs in the usual way, with the additional ability to determine
whether the program terminates or not. We proved the correctness of the analysis.
In the next chapter, we shall show how abstract interpretation techniques can be
employed to adapt the analysis to less precise lattices, which may be tailored

towards a particular policy to make the static analysis more tractable.

206

Chapter 6

Abstract Information Flow Analysis

In the previous chapter we presented a static analysis technique based on PERs
for the analysis of information flow ikVhile programs. In practice, on one hand,

we may not need the level of expressiveness, for example, “the attacker learns the
secreth when the inpuf = 10" that may be expressed by using the PER lattice.
Instead, for example, we may just be interested in knowing whether the &ecret
may ever be released. Thus, depending on the policy to be enforced, it may be
possible to choose a less expressive lattice of information, which may lead to the
simplification of the analysis. On the other hand, a large or complex lattice of
information may be computationally prohibitive, necessitating the choice of a less
computationally expensive lattice to make the analysis of information flow more
tractable. This chapter demonstrates how abstract interpretation techniques may
be used to address this problem by allowing us to perform correct analyses over

simpler (but possibly less-precise) information lattices.

207

6.1 Abstract Interpretation

Abstract interpretation is a standard formal framework in which a provednly
rectstatic analysis may be performed over a non-stanalastractdomain [CC77,
CC79, CC92, NNH99]. The abstract domain is defined relative to a standard
cretedomain, where elements of the abstract domain encode properties of ele-
ments in the concrete domain. The most important requirement for abstract inter-
pretation is that oforrectnessso that program properties which are derived under
the non-standard abstract interpretation are satisfied by the stacatanetein-
terpretation. The notion of the “abstract domain”, however, is relative to a chosen
“concrete domain”, which may itself be abstract relative to another domain.

The process of selecting an abstract domain often involves approximations,
which may make the analysis less precise. For example, we might be interested
in studying the properties of a program, which computes with integer values, and
how it transforms these values over an abstract domasigofandparity. Thus,
when the program output &, an abstract analysis which judges the output of
the program as a positive even integer is correct, although less precise than the
concrete analysi8. We may choose an even more abstract domain relative to
the parity-sign domain, which contains only sign information and which judges
the output even less precisely as a positive integer. While some precision may
be sacrificed, the choice of the space over which analysis is performed can some-
times determine whether an analysis will be tractable or not. Traditionally, the
space over which an analysis is performed is often arranged as a complete lattice
such that the lattice order relation specifies the relative degree of precision of the

judgements of analysis [NNH99].

208

6.1.1 Design Space for Approximate Analyses

The more precise an analysis is, usually the larger and more complex its prop-
erty space will be because fine-grained properties can be represented. In abstract
interpretation, the passage from more complex concrete domains to simpler, but
possibly less precise, abstract domains is usually formalisedzadads connec-

tion [CC79]. A Galois connection between two complete latti¢ds, =;) and
(As,52) is defined via a pair of adjoint functior(s,y), where theabstraction
functiona : A; — A, maps elements id; to their abstraction iM, and thecon-
cretisation functiony : A, - A; expresses the meaning of elementsigfusing

the elements ofl;. The quadruplé A;, «, v, As) is said to be a Galois connection

iff o and~ are total and alk; € A; anda, € A, satisfy the property

a(ar) E2 a2 <= a1 51 y(az). (6.1)

The meaning of this definition is thatdf, safely approximates the abstraction of
ap (thatis,a(ay) =2 as), then the concretisation af, must safely approximaig
(that is,a; c; v(a2)) [NNH99]. Supposed, is the identity function on set, an
alternative, but equivalent, formulation of (6.1) is thiat;, o, v, A) is a Galois

connection iffe and~ are monotone and also satisfy the property

id4, 1 yoaanda oy Sy idy,. (6.2)

It is sufficient to specify just one of the adjunction v in a Galois connection

because one is uniquely determined by the other: fot.ad A; anday, € A,

a(ar) =M{a} | a1 51 y(a})} andy(as) = L{a} | a(al) 2 az} [NNH99].

209

6.2 Dependency Analysis

By applying abstract interpretation techniques we shall show in this section how
to transfer the information flow analysis of Chapter 5 to a suitable abstract lattice.
The main steps are standard and fairly mechanical, which involves the choice of
abstraction function from PERSs to the chosen abstract lattice, and the definition of
sound abstractions for the operations on PERs. This is illustrated by the develop-

ment of a termination-sensitive dependency analysi¥bile programs.

6.2.1 Dependency Abstractions

PERs over the set of program states represent information about program vari-
ables. This information can be interpreted as variable dependencies, where the
dependency that a PER encodes is the set of variables that the PER contains infor-
mation about. We shall start by defining information abstractions mapping PERs
to lattices of variable dependencies, by which we can extract dependency infor-

mation from PERs.

Definition 6.2.1 (Dependency Abstraction).et Var be the set of variables of a
program whose set of states3s The setVar is assumed to be finite. Define
L = (P(Var),c) and L, = (P(P(Var)),c) to be lattices ordered by the subset
inclusion order. Hence, the natural join operation on the lattideand £, is the
set union operatiow.

Define the dependency operatitin P(X) - P(Var) such thatforany. ¢ ¥

A(X) ={x e Var| X = {z}, havocX (X) = X}.

210

Define the dependency abstractiens: PER(X) - £ anda,, : PERX) - L5 on
PERs such that for anit e PER'YX)

ac(R)= U A(lo]r)

cedom(R)

and

ag,(R) = {A([o]r) |0 e dom(R)}.

Define acompositionajjoin operationu on the latticel, such that for any
XY ely, XuY={ZuZ'|ZeX, ZeY}andXu@ =2uX = X. The
natural extension afi to subsets of,, forany X' = {X; |j € J} ¢ L,, is given by
UX ={Ujes Z; | Z; € X;}.

An elemeniX e £, is said to represerdisjunctive dependen@bout variables
x,yeVariffforall Ze X2 e 7 — yé¢Zandye 7/ — z ¢ Z.

A non-disjunctive interpretation of elements@fon the latticel is given by

the functiona,, : £, - £ which is defined for any € £, as the uniony,(X) =

Uzex Z.

The lattice£ models variable dependency information. For example, in the
programl := hy +hy+h3, the sef hy, hy, hs} models the dependencyiobn i, and
hy andhs after the assignment. The motivation behind the latfi¢es to differen-
tiate this dependency from, for example, the dependéfay, ho}, {h1,hs}} on
the latticel,, due to the programf (;) t hen !l := hy el se [:= h3, where the
dependency{hi,hs},{h1,h3}} Of [is interpreted to mean thaimay be depen-
dent onh; andh,, or onh; andhs; but never orh, andhs at the same time. This

is a disjunctive dependency as defined above. Let us now show some properties

211

of the definitions.

Lemma 6.2.2.LetY;, ¥ ¢ 3 be subsets aE. Then we have thak (X, n¥,) ¢
A(El) @] A(Ez) and A(El U 22) c A(El) U A(Ez) and A(El\zg) c A(El) @]
A(Xy).

Proof. Define the complement oA as A, which for anyY’ ¢ 3 is given by
A(X) = {z e Var | X = {z}, havocX (X') = ¥'}. Itis thus clear thai\(X’) =
Var\A(>). ButforanyX = {z} ¢ Var, we have thahavocX (3;)nhavocX (%) =
havocX (havocX (X;) nhavocX (X,)) by (3b) lemma 5.4.8, and hencédivocX (X;) =
¥, andhavocX (32;) = 3, thenX; n ¥y = havocX (3 nXy). Therefore,z
A(2,) andz € A(X,) implies thatr € A(3;n%,) (sinceX; N3, = havocX (£, N 3,)),
that is,A(X1) n A(Z;) € A(Z; nXy). Hence A(Z nXy) € A(X) U A(S,).

Similarly, sincehavocX (X)uhavocX (2,) = havocX (havocX () u havocX (%))
by (3a) of lemma5.4.8, it follows thaf (¥,)nA(2;) € A(X,u¥,), which means
that A(X; uX,) € A(X) uA(X,).

Finally, by (3c) of lemma 5.4.8 we know thhtivocX (3;)\havocX (X;) =
havocX (havocX (33;)\havocX (X,)). By similar argumentation as above, we ob-
serve thatr e A(X,) nA(X,), impliesz € A(2;\3,) and thusA(Z,) nA(X,) ¢
A(1\2), which shows that\ (3,\%5) € A(X;) u A(S,). O

Proposition 6.2.3.For any PERR € PER X)), A(dom(R)) € as(R).

Proof. The proof follows from Lemma 6.2.2 since the domain of a PER is the
union of its equivalence classes, and the fact that by the definitian @R), for

every equivalence cla$s | of R, we haveA([c]r) € ars(R). O
The operatioru onthe latticeC soundly abstracts andu onPER(Y).

212

Lemma 6.2.4.For any R, R’ € PERX), as(RuUR') ¢ as(R) u ay(R'") and
Oég(R] R') c Oég(R) U CY[;(R').

Proof. Let R” = Ru R'. By definition, for anys € dom(R") the equivalence class
of o in R" is given by[o g+ = [0]r N [c]r. Hence by lemma 6.2.2 we have that
A([o]rr) € A([o]r) UA([o]r)- Hencea,(R") € as(R) U ag(R').

For the second part of the proof, now et = RuR’ and let™ = dom(R)\dom(R’)
and let> = dom(R’)\dom(R). Then, by definition, we have that for amye
dom(R"), [o]rr = [o]rn [o]r if 0 e dom R) ndom(R’), and[c | = [o]r N3
if 0 € dom(R) ando ¢ dom(R’), and[o]rs = [o]r N X if 0 € dom(R’) and
o ¢ dom(R’). Now take anyz ¢ Var such thatX = {z} and suppose: ¢
ar(R) uag(R). Then we know that for alb € dom R), havocX ([o]r) =
[c]r and for alloc € dom(R’), havocX ([c]r) = [o]r. Thus, by applying
(3a) of lemma 5.4.8havocX (dom(R)) = dom(R) and havocX (dom(R’)) =
dom(R’). Therefore, by applying (3c) of lemma 5.4.8, this means that
dom(R)\dom(R’) = havocX (X) and similarly,’ = havocX(>’). Thus, we
have thafo]z N = havocX ([o]r nX) and[c]gr n X' = havocX ([o]r N X')
and [o]g n [o]r = havocX([c]rn[o]r) by applying (3b) of lemma 5.4.8,
and hence that for any ¢ dom(R"), [o]gr = havocX ([o]r). Thus,z ¢
ac(R)uag(R') = =z ¢ ag(Rw R'), which by the contrapositive means

thatOé[;(RlilR’) ECYE(R)UCYE(R’).]

Lemma 6.2.5. For any expressior and PER¢p over the values of, a,(e: ¢) €
FV(e).
Proof. Take any variable € Var such that ¢ 'V (e), itis clear that the value of

e at any stater € X is independent of the value ofin that state. That is, for any

213

o' e havocX ({0}),0'(e) = o(e), whereX = {x}. Since a PER is reflexive on its
domain, we have that for any possible valueg’ of e such that ¢ v’ holds, then

v ¢ v holds and thus if(e) = v, then for allo’ € havocX ({c}),c’(e) = v. Hence,
for anyo e dom : ¢), [0]..¢ = havocX ([o]..4), Which means that ¢ a,(e: ¢).
Thus,z ¢ FV(e) = x ¢ as(e: ¢). Therefore, by the contrapositive, we have

ac(e:) c FV(e). O

Proposition 6.2.6.For any Z ¢ Var, andx € Var, and R € PER(X), we have

thata, (1,R) € ap(R)\Z, andas(R) € as(R) U {z}.

Proof. We know from the definition that for any € dom(1,R), there exist: ¢
dom(R) such that{o]z = U,ex havoZ([o’]r). Furthermore, we know that,
by definition, for anys’ € X, A(havocZ([0']r)) € A([0’]r)\Z and hence by
applying lemma 6.2.2\([0]1,z) € Uyes A([0']r)\Z and, thereforeq(1,R)
ac(R)\Z.

Now let X = {z} and letR’ = R. By definition, for anysc ¢ dom(R’),
there existS ¢ dom(R) such thatio g = Ugyes{c”[z = " (e)]| 0" € [0']r}.
Since{c”[x — c"(e)]|c" € [0']r} is obtained fronjc’] z by modifyingz alone,
we have that\({c"[z — ¢"(e)] | 0" € [0']|r}) € A([0']r) U {z}. Her;c_:_ee, by
applying lemma 6.2.2A([0]r/) € Usress A([0']r) U {z}. Thereforeo,(R) S
ars(R)u{z}. O

Lemma 6.2.7.For any (E,I,0) € ®, we have thatv, (flow(e : ¢, (E,1,0)))

(Userviey ac(E(x)) U FV(e) uag(l))\T Var.

N

Proof. The definition offlow(e: ¢, (E,1,0)) is the PER%;y..R, Wwhere R
e:¢uluRg andVo,0’ € ¥, 0Rpo’ <= 0,0’ e dom(|,cpv(e) E(x)). By apply-
ing proposition 6.2.3 and lemma 6.2.4, we know thatRz) = A(dom(Rg)) <

214

Uzerv(e) ac(E(x)). Furthermore, by lemma 6.2.6,(e : ¢) ¢ F'V(e). Hence,
by lemma 6.2.4 and proposition 6.2.6, we havg1rv..R) ¢ a-(R)\TVar c
(Userv(ey ac(E(x)) U FV(e) uag(l))\TVar. N

Lemma 6.2.8.Let z € TVar and letX = TVar\{z}. Forany(£,1,0) ¢ ®,

ac(aflow(z := e, (E,1,0))) € (Usepv(ey ac(E(2)) U FV(e) Uas(I) u {z})\X.

Proof. By definition aflow(z := ¢, (E,1,0)) = TX;% , WwhereR = e: ¢oulu
Rp andVo,0’ € ¥,0 Rg o' <= o0,0' € domMU,epv(e) E(x)). By applying
proposition 6.2.3 and lemma 6.2.2, we know that Rr) = A(dom(Rg)) <
Uzerv(e) ac(E(x)). Furthermore, by lemma 6.2.6,(e : ¢) ¢ F'V(e). Hence,
by lemma 6.2.4 we hava;(R) € Uyepv(e) ac(E(z)) u FV(e) uag(l). By
proposition 6.2.6 we have, (1 ;%) c ag(zi)\X ¢ ag(R)\X u{z}. How-
ever, sincez ¢ X, then we have thaﬂl;(TXZA%) c (ag(R)u{z})\X. Hence,
ac(aflowz:=e,(E,1,0))) (Uﬁpv(e) ac(E(x))uFV(e)uag(l)u {z}) \X.

L

Corollary 6.2.9. Let (E,1,0) e ® and(E’,I',0") € [Var - L] x L3 x L5 such
that for all x € Var, a(F(x)) € ay(E'(x)) anda,(I) € a,(I"), then for any
expression over variables iWar we have that,(aflomz = e, (E,1,0))) ¢

Userv(e) au(E'(2)) van(I) U FV (e) u{z}.

Proof. The proof follows easily from lemma 6.2.8 since foral Var, a.(E(z)) ¢

au(E'(z)) andas (1) € ay (7). O

215

6.2.2 Semantics-Based Dependency Analysis

Let us now demonstrate how PERSs in the static analysis of Chapter 5 semanti-
cally encode variable dependencies. Suppasé, € {0,1} are input variables

to the progranwr i t e e, wheree = h; XOR h, is theexclusive ORY h; andhs.

The PERe :id = {{(0,0),(1,1)},{(0,1),(1,0)}} representsthe information re-
leased byw i t ee, whose analysisisgivenky ., I,,O,)writee(E,, I, e:id)

(recall from Chapter 5 that for all € Var, £, () = I, = O, = all). Itis thus clear

that the output of this program depends on bbthand i,. This is shown by

the fact that,(e : id) = {hy, ho}, which is the dependency information released
to the output as encoded by thecomponent of post-configuration of the static
analysis.

Now consider another expressio® h, + hy — hy, Whereh; andh, are natural
numbers, where state is a pair of the fo(m, hy). Then, we obtaire:id =
{{(n,m) | m e N} |n e N}, and thusa,(e : id) = {h;}, which shows that’s
value is dependent oly, but independent of,. Thus, by using the dependency
abstractiony, on the PER:: id induced by the evaluation of an expressiomwe
can obtain a more precise (semantics-based) dependency abstraction a6
free variable, namely(e : id) < F'V(e). This is as opposed to the usual static
interpretation/’V' (e), which approximates the dependencyafs the set of free
variables of.

Similarly to the treatment of outputs as demonstrated by the examples above,
we can derive a more precise dependency that is propagated during assignment to

the assigned variable from the PERs in fii@components of information config-

This notation for PER representation, using the set of equivalence classes was introduced in
Chapter 5.

216

urations. Consider the expressioa h, + hs — ho again, and the assignmeht e,
under the pre-configuratiqi¥, , I,, O,), then we have the post-configuratigh, 7., O,),
whereFE = E, [l » R] and (now representing state as triples of the fohm 1, 1))
R={{(n,m,n)|meN}|neN}. Hencea (E(l)) = {l, h1}, which means again
that! depends ork, but not onh,. The meaning of in a (E(l)) can be ex-
plained by the fact thak encodes the equality éf, and/ and sinceR contains
information about, it therefore also contains information abdut

The abstract analysis of implicit information flow duedontrol dependency
is the same by considering the abstraction offft®mponent of information con-
figurations. Consider the programs of Figure 6.1. Again in this example state is
represented by triples of the for(h,, h», 1) and the variables are assumed to be
natural numbers. First, consider the left-hand-side program. Starting the analy-
sis at the pre-configuratiof¥,, I,,0,), we have the implicit context in thiaen
branch as the PER, = ((hy = hy) : T) = {{(n,n,m) |n,m € N}} and hence
ar (1) = {h1, hy} showing the dependency @n andh,. Similarly, for theelse
branch, the implicit context i$; = ((h1 = hy) : F) = {{(n,n’,m) | n,n',m €
N,n’ # n}} and hencex.(lz) = {hy,hy}. This implicit dependency is prop-
agated td due to the assignments in the conditional branch. This is reflected
by the fact that the post-configuration of thestatement i £, 7,,0,), where
E = FE[l~» R]andR = {{(n,n,1) |n € N},{(n,n/,2) |n,n" € N,n' + n}}.
Thus,a,(E(l)) = {h1,h,l}. Itis also clear that the output depends/gnand
hoonline5sincg E,1,,0,)witel(E, 1,,0),whereO = {{(n,n,m)|n,me
N} A{(n,n’;m) |n,n',;meN,n" +#n}} and hencev(O) = {hy, ha}.

The right-hand-side program of Figure 6.1 demonstrates flow sensitivity. In

this program, on line 5, the post-configuratian, 7, , O,) of the conditional state-

217

ment in the previous example now serves as the pre-configaratithe assign-
mentag E,1,,0,)l:=3(E",1,,0,),whereE’ = E[l —» R']andR’ = {{(n,n,3)|n €
N}, {(n,n',3)|n,n" e N,n #n’}}. Hence, the analysis of the following statement
is (E',I,,0)witel (£ 1,0"), whereO' = {{(n,m,m') |n,m,m’ € N}},

which shows that no information is released sing¢O’) = @.

if (hy = hy)then 1 if (2 =ho)then
l:=1; o =1,
else 5 else
l:=2; o 1:=2
write [; 5| [:=3;
o Write [

Figure 6.1: Dependency Analysis and Flow Sensitivity

6.2.3 Disjunctive Dependency, Nontermination, Dead Code

It was shown in Definition 3.5.9 how a PER over program states may describe
disjunctive information. A restatement of this definition in terms of variable de-
pendency is captured by the abstraction, which extracts the corresponding
disjunctive dependency. We say that a PERontains disjunctive dependency
about variables:,y € Var if a,,(R) represents a disjunctive dependency (see
Definition 6.2.1) about these variables. The intended meaning is that aidPER
which contains disjunctive dependency aboaindy does not reveal information
aboutx andy simultaneously. Consider the program listing in Figure 6.2, and
let us assume thdth,, hy € IVar, and thatl has a boolean data type, whereas
hi andh, are integers. The program either reveals the value of sé¢ret the

parity of secret, but never both at the same time - even if the attacker has con-

218

trol over the choice of. Thus, information is released about at most onéof
and h, during any given run. The analysis shows this, and consequently the in-
duced PER demonstrates the disjunctive dependency of the observed output on
hy or hy. Let the program of Figure 6.2 bB, then its analysis is given by
(E.,1,,0,) P(E.,I,,0), whereO = {{(n,m,tt) |m € Z},{(m,n,ff) | m «
Z,nmod2 = 0},{(m,n,ff) |m € Z,nmod2 = 1} | n € Z}. Hence,a,,(O) =
{{hq,1},{hs,1}} showing thatO contains disjunctive dependency abaytand
hs, that is, the output value of the program does not at any time depend on both
h, andhs.

if (I) then

witeh;

else
witeh, mod2;

Figure 6.2: Disjunctive Dependency

The semantic nature of the information flow analysis means that the PER ab-
stractions also capture when the value of a secret input affects termination be-
haviour. Furthermore, non-termination of a subprogram prevents further infor-
mation from being released in the trailing subprogram, because the program that
trails the diverging subprogram cannot be executed. These properties are illus-
trated in the dependency abstraction of the analysis of the program listing of Fig-
ure 6.3 (; is boolean and, is integer), where wheneveér, = tt the program
diverges, but the program terminates otherwise (that is, whergvert). Ap-
plying the flow rules and starting the program analysis with the pre-configuration
(E.,1,,0,), the post-configuration of thehile statementig £, z, O), where ac-

cording to thewhile rule the resulting implicit context is the empty PER, and also

219

E(h1) = E(hy) =gand O = {{(tt,n)|n e Z},{(ff,n)|n € Z}}. Hence, we have
(E,2,0)writehy (E,@,0) sinceO flow(h, :id, (E,2,0)) = Ou @ = O.
Finally, applying thef rule, we obtain the post-configuration of tifiestatement
iS(E’,hy : F,0), whereE’(hy) = E'(hy) = hy : F. Now, the PERD shows that
the attacker only gains information abdut but noth,, sincea,,(O) = {{h:}}.
This is because, semantically, thete statement is dead code.
if (hy) then
while (tt) do
skip;
wWite ho;

else
skip;

Figure 6.3: Nontermination and Dependency

Another dead code exampleii$ (h; # hy)thenwite hy el se skip,

where the dependency analysis shows that the attacker gains no information about

hy or hy. This is becauséh, # hy) : T = @, which means the branch is never exe-
cuted. In fact, suppose this progranfisthen we have thatt', , I,, O,)P(E,,1,,0),)

showing that the attacker gains nothing sing€O,) = @.

6.2.4 A Dependency Type System

We now present a type system that computes program dependency, and which im-

proves on existing flow-sensitive dependency type systems such as [AB04, HS06].

The improvements are in the identification of some disjunctive dependencies, ter-

mination sensitivity, and interactive outputs. This type system is shown to be

a sound abstraction of the information flow analysis of Chapter 5. Later on, in

220

section 6.4, we shall look at a technique that takes advantate aependency
abstraction of PERs to improve the precision of the dependency analysis.

For the analysis we shall usependency configuratioyess we did with infor-
mation configurations, to track dependencies. The analysis is performed over the
lattice £, to identify disjunctive dependencies. Thus, a dependency configuration
is a typing environment which assigns dependencies to variables, the “program
counter”, and outputs; and is written in the fofd, 7, O), whereFE : Var — Lo,
and/, O € L. The interpretation of the dependency of a variabten the initial
values of program input under the configuratidn 7, O) is given bya, (E(z)).
Similarly, the interpretations of the dependency of the implicit context and the
output under this configuration ang (/) anda,(O) respectively.

Typing judgement are of the forf&, I,0) ¢ (E’, I',0'), which represents
how theWhilecommand: transforms dependencies. Under a dependency config-
uration(E, I,0), the dependency typing judgement for an expressisngiven
by

Ere:t < t= || E(2). (6.3)
zeFV(e)

Definition (6.3) is fairly standard in dependency analyses, but more precise anal-
yses can be performed as demonstrated later by the semantic typing judgement of
(6.6), which uses PERSs to compute expression types.

The full algorithmic dependency type system, which computes input depen-
dencies is shown in Figure 6.4. In the typing rules, the operatiomdependency
configurations is defined for any pair of dependency configuratighs!;, O;)
and(FEy, I, 0s) as(Ey, I, O1)u(Esy, I, O5) = (E', I; U 1,01 U O), where for all

x € Var, E'(z) = E1(x) u Ex(z). The dependency configurations are partially or-

221

dered byg, such thai{ F, I, O1)=(Es, I, Os) iff for all = € Var, £ (x) € Ex(x)

andl; ¢ I, andO; ¢ O,. Furthermore, the predicalé’(¢) on a command

holds if ¢ contains a conditionakhile statement. Similarly to the concrete anal-
ysis presented in Chapter 5, the implicit context can encode information about
branching and termination. In particular, aftewhile statement, the execution of
subsequent programs is dependent on the termination or not of the presédang
statement. This information about termination dependency on program variables
is encoded in thé-component of the dependency configuration. The termination
dependency is calculated in the post-condition ofiide statement by taking a

join with the dependency of the boolean guard at the fixpoint. The possibility of
information flow due to a non-terminating branch is also derived in the analysis
of if statements by checking for the presenc&bile statements in the branches
and retaining the dependency of the implicit context as necessary. Let us illustrate

the dependency type system with some examples.

6.2.5 Sample Analyses

We define a starting configuratidiZ®, I*, 0¢) for dependency analyses, such
that for allz € Var, E¢(x) = {{z}} andI® = O¢ = {@}. The interpretation of
(E> 1*,0%) is that the execution of the program starts at a dependency configu-
ration where each variable depends only on its own initial value, but the implicit
context and output have no initial dependency.
Consider the program listing of Figure 6.5. By applying theule at the
starting configuratioE<, I, O%) we obtain the implicit dependendy = {{l}},
sinceE? + 1 : {{l}}. Thus, thehenbranch analysis &=, {{l}}, O%)z := hi(E1, {{l}},O%),

222

Ere:t
(E,I,0)skip(E,1,0) (E,1,0)x:=e(E[x~1ut],],0)

Ere:t
(B, I,O)witee(E,1,0Oulut)

(E,1,O0) ey (E', 1',0") (E",1',0") co (E", I",0")
<E7[70> C1;C2 (E”7[”70”>

Evb:it (ETut,0)c(E,1,0;) i=1,2 - {Ii it W(c)
(E,1,0)i f (b)thenciel secy(E1,I],0,)u(Ey 15,05) * |I otherwise
(Ei, 1;,0;)i f(b)thencel seskip(E! I ,,0.,)
<Ei+1a Ii+17 Oi+1> = (Ez{+17 Ii,+1’ Oz{+1> L (Ei7 Iiv Ol>
¥z e Var, B'(z) = E(z)ul’ O'=0"ul’ (Eo, Lo, Oo) = (E, 1,0)
(E.I,0)while(b)doc(E, 1,0 (£, 1",0") = Hiso (B3, 1;, O)
E'eb:t, I'=1"ut

Figure 6.4: An Algorithmic Dependency Type System

whereE, = E*[z — {{hy,l}}]. Similarly, for theelsebranch we have the analysis
(B2, {{l}},0%)z := ho(Es, {{l}},0%), whereE, = E¢[z — {{hs,l}}]. The post-
condition of theif statement is thu§FE,, 1% O%) v (E,, I*,0%) = (E3, [*,0%),
where we have’s(z) = {{hi,(},{hs,l}}. The meaning of;(z) is that after the

if statement; either depends ohandh, or it depends ohandh,. However,z is
disjunctively dependent oy, andh, since it is never at any one time dependent
on bothh; andh,. By applying thewrite rule, for the next statement we now
obtain(FEs, I*, 0¢)write z (Es, 1%, 03), whereOz = {{hq,l},{hs,l}} - which
means that the attacker gains information at most abauti/2; or [andh, at any
one time.

Now consider the progranP) shown in listing of Figure 6.6, which is similar

223

if (1) then
2= hy,
else
2z := ha;
write z;

Figure 6.5: Assignments and Disjunctive Dependency

to the program of Figure 6.5 by replacing the assignmentswuitte statements.
We now obtainE, I,0) P (E,I,O3). Thus, the program releases the same infor-
mation to the attacker as in the previous example, where the attagReeither
gains information about; and! or h, and! but the attacker cannot learn abayt
andhs in the same run of the program.
if (1) then
write hg;

else
write hs;

Figure 6.6: Outputs and Disjunctive Dependency

The static analysis is termination-sensitive. To demonstrate this, consider the
program of Figure 6.7, where a choice /of may lead to program divergence,
revealing information about; and also about because nontermination reveals
which branch of the conditiondl statement has been executed.

if (I)then
while (hy) do
skip;

else
write hs;

Figure 6.7: Nontermination and Dependency

224

Again, starting with the dependency configuratidst, /¢, 0%), the analysis
of the while statement iE?, I;,O¢) whi | e (hy) do ski p (Ey, I],0,), where
I ={{l}} andI] = {{l,h }}, and for allz € Var, £, (x) = E*(z)u{{l,h,}} and
O, = {{l,h1}}. The interpretation oD, is that the attacker now gains information
abouth; (due to the possibility of nontermination) anddue to the knowledge
of the path taken when the program diverges). The possibility of nontermination
along a path containingwhile statement means that the value that a variable takes
after thewhile statement now depends on whether igle terminates or not,
which in turn depends on how the boolean guard ofwihéde evaluates. Hence,
for anyx € Var, F(z) reflects the possible dependency of the value of the
while guard, that isi;, and onl because of the fact that the execution of tiwen
branch is dependent dn

For theelsebranch we have the analysi&®, I;, O¢)wr i t e hy (E<, I1,05),
whereO, = {{l,hy}}. The meaning of the dependency @©f is clear since an
output from this program reveals the value/gfand also reveals howevalu-
ates. Hence, the post-condition of tifiestatement igE’, I],0') = (E1,I;,01)
(B, 1*,05). SinceO’ = {{l,hy},{l,hy}}, the attacker may gain information
about! andh, or about! andh,. The implicit context/; of theif post-condition
also shows that the execution of commands afterftistatement may depend on
the termination of théhenbranch and hence drandh;.

The next example demonstrates the flow-sensitivity of the type system. Con-
sider the program listing of Figure 6.8, which does not reveal the skec8&tarting
at the configuratiog £¢, I®, O%), the dependency of after the first assignment
is {{h}} (which means that depends ork at that point) and after the second

assignment the dependency:ofs @ which means that’s value is independent

225

of any input value. Finally, we haugZ®(z — @], 1%, 0*)write z (E" 1% 0O%)

showing that the attacker gains no information about the secret input

z:=h;
z:=0;
write z;

Figure 6.8: Flow-Sensitivity of Dependency Analysis

6.2.6 Correctness of Dependency Analysis

We now show the correctness of the dependency analysis by proving that it is a
sound abstraction of the semantics-based information flow analysis of Chapter 5,
whose correctness has been shown. This is a standard technique. Firstly, we
define an abstraction function from information configuratiob} iGtroduced in
Chapter 5 to the dependency configuratidrs= [Var — L] x £ x £ over£, and

show that the dependency computation o®éris a sound approximation of the
semantic analysis oveép. The dependency configurationsdrf are ordered by

c, which is the subset inclusion order applied in the usual way, such that for any
(E,I,0),(E".I',0") € ®%, (E,I1,0) c (E',I',0') iff Vx € Var, E(z) ¢ E'(x)

and/ c I’ andO c O'.

The dependency analysis of Figure 6.4 is carried out over the dependency con-
figurations®~2 = [Var — L,] x L, x L, which is ordered by such that for any
(E,I,0),(E".I',0") ¢ ®¢2, (E,I1,0)=(E', ' O") iff Yx € Var, E(z) ¢ E'(x)
and/ c I’ andO < O'. However, we only want to show that the dependency
computation is a correct abstraction of the concrete analysis of Chapter 5, but we

do not want to model the disjunctive aspect. It appears to be the case that the

226

dependency type system also correctly abstracts the disj@mcformation flow
model of Chapter 5, but we have not proved this. For the dependency analysis
correctness, we will extend,, and «,, respectively to information configura-
tions and dependency configurations. This is defined for(@hy,0) ¢ ® as
arc,((E,1,0)) =(E", I',0"), where for allz € Var, E'(x) = az,(E(z))u{{z}}

and!’ = az, (1) andO’ = a,,(O). The interpretation of the extension®f, to in-
formation configuration means that every variabliepends also on its own value.
Similarly, the extension of,, to ®*2 is defined such that for anyz, I, O) € ®*2,
a,((E,1,0)) =(E", I',0"), where for allz € Var, E'(x) = ay(E(x)) u{z} and

I' = oy (I) andO’ = a,(O). The extension of the abstraction functiepto infor-
mation configurations is now given by the composition of the extended functions:
ar = a0 ag,. Hopefully, it will be clear from the context when we are referring
to the abstraction functions in Definition 6.2.1 or their extensions to information
or dependency configurations.

The statement of correctness is familiar from abstract interpretation.

Theorem 6.2.10.Let P be aWhile program, which does not modify if¥ar pro-
jection of states and which properly-initialises all il¥Var variables before use
as required by the concrete analysis of information flaw, I,,0,) P (E,I,0).
Let (Ey, Io, Og) € ®%2, such thata,,((E,,I1,,0,))g(Ey, ly,0y), then the ab-
stract dependency analysi&, [y, Oo) P (E’,I',0') of P satisfies the property
ac((E,1,0)) s au((E',1',0")).

Proof. The proof proceeds by structural induction on the derivation trees. The in-
ductive step of the proofisthati = Fy;...; P,,; such thatforany. < m, P, is ei-

ther askipstatement, or aassignmentor awrite statement, or a conditiongl or

227

while statement, and such that the inductive property holdgfor. . ; B, 1, thenit

holds also forFy; . .. ; P,. Now supposéFr,,1,,0,) Fy;...; P,1 (E1,11,0,) and

(Ey, I,01) P, (E5, I5,0,) hold as the concrete analyses of these programs and let
o, (Bu, 10, 00)) Poy. s Pact (B, 17, OF) and(B 17, OF%) P (Ey?, 1y, 05°)
be their respective dependency analyses. We know by the induction hypothe-
sis thata,((E1, 11, 01)) € a,((EF2, IF2,0%)) = (EE, I, OF), but we need to
show thatu ((Ea, [, 0)) € (B, If,05) = au((Ey?, 1;%,057)).

» The proof whenP, is theski p statement is clear.

e Let P, be the assignment statement= e, wherez ¢ TVar, then we
have the concrete analysis Bf as(F1,[;,0,) z := e (E», [;,0;), where
Ey = Ey[z » aflowz := e, (Ey,1;,01))]. Hence, it remains to show that
ar(By(2))u{z} € BE(2) = au(ES*(2)) u{z}. Let X = TVar\{z}. We
know thato . (E»(2)) € (UxeF\/(e) ac(Bi(z))uFV(e)uag(h)u{z})\X
from lemma 6.2.8. Sinc® does not assign tbvVar variables, we know that
for all 2 e IVar, {{z}} ¢ E£*(z) since the starting dependency configura-
tion of P has the property tha&>®, 1%, O%) = a,,((E., 1,,0,))E(Ey, Iy, Oy).
Hence, ifE{? - e : tandY = IVarnFV (e), then we know thalt), py ey au (E1?)u
Y < ay(t). By the induction hypothesis we know that forakk Var, a,(E;(z))u
{2} € ay(BEf(z)) u{z} anda, () € ay(IF?), hence since ¢ X, we
know that,as(Fa(2)) € (Userviey ac(Ei(z)) U FV(e) Uar(l) u{z})\X c
(Userv (e ac(BE(2)) UY Uao(IF) U {z\X € au(t) vau(IF2) u{z) =
o (ES*(2))u{z}. By this we obtain the required property that(F»(z))u

{2} € E£(2) = au(Ey?(2)) u{z}.
* Let P, be the statementr i t e ¢, whose concrete information flow anal-

228

ysisis(E1, I1,01) writee (Ey, I,05). By lemma 6.2.7 we know that
ac(flow(e :id, (E1,11,04))) € (Uzervie) ac(Er(z))uFV (e)uas(1))\TVar,
By the induction hypothesis we have that for alle Var,a,(E;(z)) u

{z} € ay(EF(x)) u {z} anda,(I;) € o, (IF?). Furthermore, suppose
EF + e:t. SinceP does not assign t&Var variables, we know that

for all 2 € IVar,{{z}} ¢ E"(x), and hence = IVar n FV(e)

N

Uzerv(e) Oéu(EfQ(x)) € ay(t). Thereforea,(flow(e :id, (E1,11,01)))

N

(Userviey au(BE(2))0Y oy (TE)\TVar € (ay(f) va, (I£2))\TVar <
au(t) U ag(IF?). SinceO, = Oy wflow(e:id, (Ey, I;,0,)), and by the
induction hypothesigi:(0;) < a,(O?), then by applying lemma 6.2.4
we know thata,(Os) € as(0r) uag(flow(e :id, (Ey, I;,0))) € Of =

aU(OfQ) Uay(t)u aU(IfQ).

Let P, bei f (b)t henc, el se c,. Supposesr - b : t, we observe by in-
duction on the preceding program that the pre-configurdiitfii, 7> U t, O%2)
of ¢; andc, have the property that. ((£, flow(b: T, (Ey,11,0,)),01)) €
a,((BF2, IF> ut,0%2)) and thata, ((Ey, flow(b: F, (Fy, I;,0,)),0;)) ©
a,((EF2, IF2 ut,0%2)) since by applying lemma 6.2.7 we know that the
propertya, (flow(b : ¢, (Ey,I1,01))) € o, (t) ua,(I52) holds for any PER

¢ over booleans. Hence, by applying the induction hypothesis &nd

co We know that the post-configuration of thiestatement has the required
property, in particular, since the operatioover dependency configurations

preserves set union on the latti€e

Let P, bewhi | e (b) do c. The proof ofwhilerule is similar to thef rule

by applying the induction hypothesis to the derivation tre@af Further-

229

more, since by the definition efforms an increasing chain on the lattice of
dependency configurations we know that the fixpoint ofwitnde analysis
exists and is reached in a finite number of steps bec®ésés a finite, and

therefore complete, lattice due to the finiteness of th&/aet

The base case of the inductive proof, before any command is processed, holds
vacuously since for anfFy, I, Og) such thatv,,((E,, I,,0,))=(Ey, Iy, O,), and
we have also that((E,,1,,0,)) c a,({Eo, 1y, Op)). O

6.3 Flow-Sensitive Type Systems

A flow-sensitive type system is presented in [HS06], which deems more pro-
grams secure than traditional flow-insensitive noninterference security type sys-
tems, such as [VSI96]. The family of type systems proposed in [HS06] is parametrised
by an arbitrarily chosen finite flow lattice. When the flow lattice is chosen to be the
powerset lattice of program variables, the type system is the De-Morgan dual of
the independency type system of [AB04]. While the type system of [ABO4] com-
putes independencies between variables, the type system of [HS06] more directly
computes variable dependencies under the powerset lattice of program variables.

A command typing judgement in [HS06] has the following form
Prrgs L {c} IV, (6.4)

This describes how the commaatransforms type environments {o I'’) under
a given contexp. The inference system-¢,..) is parametric to a chosen finite

lattice Lys, and the type environmeni§ I7,... are maps from the s&ar of

230

variables to the lattic€ys. The implicit context typey € Lis records the type of
a program point, and is used to eliminate implicit flows. For an expressiver

Var, the type derivation under the environménis given by:

Phpoge:t <= t= || T(x). (6.5)

zeFV(e)

Although we can equally choose any arbitrary finite flow lattice under our depen-
dency approach, we shall choose the powerset lattid@aofto compare our type
system with that of [HS06] such th&ls = £ = P(Var). The (algorithmic) type

system of [HS06] is presented in Figure 6.9.

Ski Assign Lre:d
ppl—l"{Skip}T g})l—F{x::e}F[prut]

pET {1} T prT"{c} T

S
< pT{c;e0} T

F'eb:t putrI{g}ll i=1,2

If
pT{if (b)ythenc el secy}I”

I"=T,uT),

Debiti puti-T0{c}T" 0<i<n o=, Ty =I7uT,

Whil | A
e FTwhiTe (b do) T, ni1 = I

Figure 6.9: Hunt-Sands Flow-Sensitive Type Rules (Algorithmic Version)

6.3.1 Comparing the Type Systems

The typing environment' serves a similar purpose to tli&environment of our

dependency configurations by considering the unigi¥'(x)) as the type of vari-

2The inference system-(,,.) of Figure 6.9 has not been parametrised by the choice of flow
lattice with the hope that the choice is clear from the context.

231

ablez underI’. Furthermore, the “program counter” typeachieves the same
objective as our/-component of dependency configuration to rule out implicit
information flow. With the exception of the&rite construct in our analyses, the
main differences between our type system and that of [HS06] lie in the treatment
of while statements and in the detection of some disjunctive dependencies. We im-
prove on the type system of [HS06] by detecting some disjunctive dependencies
and by accounting for possible information release due to termination-sensitivity.

To illustrate the similarity, it is easy to see that for amlgile program, which
does not have arite statement owhile statement, we have the property that
under any type environmeiit, and flow latticeZ, and contexfp such that for
all x € Var,T'(z) = a(E(z)) andp = ay(I), thenp +, T {P} I holds iff
(E,1,0)P(E',1,0)holds and™(z) = a,(E'(z)).

The treatment ofvhile statement is different because the type system of [HS06]
does not take into account the ways in which values of variables may affect a pro-
gram’s termination behaviour. Specifically, our analysis keeps track of the depen-
dencies of thevhileguard and that of the implicit context in whighile statement
is executed as a potential source of information leakage. This dependency is not
thrown away after the fixpoint of thehilerule, but is retained in the-component
of the post-condition, which intuitively means that the execution of statements af-
terwards is dependent on the termination or not of the preceuhnilg statement.

This dependency is also passed on to fhend O-components since the values

of variables after avhile loop depend on the termination behaviour of tiale
statement, and the observation of termination or nontermination may reveal the ex-
ecution path to the attacker. To illustrate these observations, consider the program

P=(l:=0;(if(h=10)then(whil e (tt)doskip)el seskip);l:=1),which

232

under the environmenrt whereVz € Var,T'(x) = {2} andp = @ has the anal-
ysisp . I' {P} I'[l » @]. However, the observation of the valuelods1 on
termination reveals information abokt namely that its value is nat), which

this analysis does not capture. Under the environngéht’, O), whereVz «

Var, E(z) ={{z}} and] = O = {@}, the analysisoP is (£, [,0) P(E’, I’ O'),
whereE'(l) = I' = O’ = {{h}}. The implicit context/’ shows the dependency

of P’s termination onh, and O’ reflects the fact that the attacker may obtain in-
formation about: by observing whether or not the program terminates, and since
the termination ofP affects what final valué can take £’(1) shows the possible
dependency afon h.

Another area of improvement is in the identification of disjunctive depen-
dencies, where we may want to ensure that an attacker cannot gain informa-
tion about two chosen secrets at any one time. For example, consider the pro-
gram P’ = if(y)thenl := hyelsel = hy. UsingT, p and(E,I,0) as
given above, we obtaip . I' { P’} I'[l —» {y, hi, he}] suggesting the possible
dependency of on y, h; and h, on termination ofP’. However, the analysis
(E,1,0) P'(E[l~ {{y,h1},{y, h2}}],I,0) makes explicit the fact thdtdoes

not depend on both; andh, on termination ofP’.

6.4 Improving the Precision of Expression Types

This section shows how to use the abstraction of PERs to improve the typing
judgement for expressions. The typing judgement of (6.3) uses the dependencies
of the free variables of an expression in a given context to compute the depen-

dency of that expression in the context. This approach is traditionally used in

233

dependency analyses. However, some free variables in anssigrenay be ir-
relevant because their values do not affect the final value of the expression. For
example, although, is a free variable in the expressian+ hy — hs, the value of

the expression is independent/af The idea is to take advantage of the semantic
information, which identifies this kind of independency, in the typing judgement
of expressions, thereby improving the accuracy of analysis.

The equivalence relation construct id in the information flow analysis of
Chapter 5 already provides us with a way to eliminate irrelevant free variables in
the expression. Specifically, the abstractiom. (e : id) € F'V (e), which identi-
fies the set of variables thatmay depend on in any context, can be used in the
typing judgement ok to provide a more precise analysis. This more precise typ-
ing judgement for the expressienunder a dependency configuratigi, 7, O),
is given by

Fre:t <= t= || E(x). (6.6)

wea (esid)
The dependenay, (e : id) induced by the equivalence relatienid in (6.6) is the
smallest subset aof'V'(e), elements of which the evaluation eflepends on un-
der any evaluation context. Using the earlier example, the exprefssioh, — h;

is dependent only on the variable and hencex,((hy + ha — hs) :id) = {hy}.
However, the expressidit, — hy) x (hy + hy) does not depend on any variable, as
shown by the fact that.(((h; — k1) x (hy + h2)) :id) = @. Also, for any two ex-
pressiong ande’ that are semantically equal (that is, foralé 3,0 (e) = o(e’)),

it is easy to show that the boolean expressiens e’ ande + ¢’ are indepen-
dent of any variable and this is confirmed by the fact that(e =¢’) :id) =

ac((e+e’):id) = @. In fact, any constant expressierhas the property that

234

ar(e:id) = @, showing that its value is not dependent on any variable.
Proposition 6.4.1. For any expression, a(e:id) € FV (e).

Proof. Sincee : id is an equivalence relation, for any = {z} < Var, such that
x € ag(e :id), then by definition there exists € 3 wherehavocX ([0]c.iq) #
[0]eia- SincehavocX (-) is extensive, hence there exists e havocX ([0]c:iq)
such thav’ ¢ [o]..q and therefore’(e) + o(e). Since there exists a variation in
the value ofr which causes a variation in the valagthene is dependent on

and therefore: € F'V (e). O

The equivalence relation: id used to compute the dependencyeah (6.6)
enjoys a special status because it is the most informative PER with respect to the
dependency of in any evaluation context. Formally, this means that for any PER
¢ on the set of values af, as(e : ¢) € ar(e:id). Furthermore, the abstraction
ac(e :id) is the smallest set of variables under which the value cémains
invariant when values of variables in this set are fixed. In other words, if a variable
z ¢ ac(e @ id), then a variation in the value af cannot cause a variation in the

value ofe.

Proposition 6.4.2.For any expression and PERy over the set of possible values
of e we havear(e : ¢) € ar(e : id). Furthermore, ifX = {z} ¢ Var and

x ¢ ag(e : id), then for all 0,0’ € X such thato’ € havocX ({c}) we have

o(e) =ao'(e).

Proof. Take anyv € dom(p), sinceid is an equivalence relation € don(id).
Now let ¥, = {0 € ¥ |o(e) = v} be the equivalence class of: id wheree

evaluates ta. Since PERSs are reflexive on their domains then we hayg; =

235

Uvelo(e)], 2w aNd henceA([o]cy) € Uvelo(e)), A(X,) by applying lemma 6.2.2.
Since the dependency of any equivalence class:af is smaller than the union
of the dependency of some equivalence classes af we have thatv (e : ¢) ¢
ac(e:id).

For the second part of the proof, now take any equivalence pigsg of the
equivalence relation : id, for someo ¢ X, then by definition for alb; € [0]..q,
o1(e) = o(e). Sincex ¢ ar(e : id), thenhavocX ([o]eid) = [o]eia @nd since
0 € [0]eia thenhavocX ({¢}) c havocX ([o].:q) by the extensivity ohavocX (+),
it thus follows that for any’ € havocX ({c}),0’ € [0]eid, and hencer’(e) =

o(e).]

By replacing the definition of in the dependency type system of Figure 6.4
with the one given in (6.6) we can thus obtain a more precise analysis by elimi-

nating irrelevant free variables of expressions in typing judgements.

Summary In this chapter we have studied how abstract interpretation techniques
may be used to make the analysis of information flow more tractable by simplify-
ing the analysis space. A dependency analysis, developed in this chapter, which
is an abstract interpretation of the information flow analysis of Chapter 5, demon-
strates the application of the theory of abstract interpretation to information flow
analysis. The dependency analysis, which is termination-sensitive, can also detect
some disjunctive dependencies. To the best of our knowledge, the dependency
analysis is the first to account for information release due to nontermination. A
technigue presented in this chapter shows how one can improve the precision of
expression dependency analysis by using PER abstractions induced by expres-

sion evaluations. The next chapter concludes the thesis with further examples and

236

lessons learnt, and identifies areas of future work.

237

Chapter 7

Analysis and Discussion

This chapter presents further examples, which illustrate the use of the modelling
and analysis techniques presented in this thesis. Examples such as models of au-
thentication, encryption, and statistical analysis are considered to highlight both
the theoretical and practical aspects of policy development, and the security anal-
yses of programs against such policies. The Chapter concludes with a review of
the main contributions and achievements of the thesis and identifies possible areas

of future work.

7.1 Policies for Authentication

Authentication is a fundamental security operation in many systems as the basis
of access control. However, by definition, authentication reveals some informa-

tion about secrets because, for example, a failed password authentication attempt
reveals what the password is not. Due to the necessity to release some informa-

tion about secrets, noninterference cannot be used as a policy for authentication.

238

We shall therefore study information release policies fohentication, which en-
sures that only the intended information release is possible in the implementation
of the authentication program.

We start by considering an archetypal password authentication program, which
demonstrates the release of information about the stored secret. Clearly a real im-
plementation will be different and may perform additional steps, but the core step
which is of concern to us is the part where tieer-supplied passwoid) is com-
pared with a passworg), which has been previously stofed the system and
is supposed to be known only to the legitimate user. These secrets (or their im-
ages) are then compared for equality: if there is a match, the user is authenticated,
otherwise the authentication fails. A program modelling the authentication step
is shown in Figure 7.1, if the passwords match an output ©f produced and

otherwise an output df signals authentication failure.

1 if (u=p)then

2 write 1; // authenticated
;3 else
4 write 2; /I not authenticated

Figure 7.1: A Model of Authentication

Intuitively, the authentication program is only allowed to reveal whether the
user-supplied password matches the stored password or not. The actual informa-
tion gained by the attacker during the authentication process however depends
on what the attacker knows. On one hand, if the attacker does not know the user-

supplied password (say by observing someone being authenticated, but cannot see

YIn many modern operating systems a password is not directly stored, but its image, which is
usually a secure hash of the password itself. The authentication process involves checking the hash
of the user-supplied password against the hash of the stored password. In Unix-based systems,
salts are also used in order to make dictionary attacks less successful [MT79, Kle90, PS02].

239

the value that is being entered), the attacker should not Eeathing about the
password, regardless of the outcome of the authentication. On the other hand, if
the attacker knows the supplied password (say, by looking over the shoulder of
the user or by entering a guess himself or herself), the attacker can learn at most
that the password is equal to the (known) value or not. We can represent this
information flow with PERSs.

The information released by the password test can be represented by the equiv-
alence relatiorip =) : id, which relates only the states where the valuesanid
u both agree or both disagree. Thus, the desired information flow policy for au-
thentication isZaumn = { fautn | R € PER(X), faun(R) = Ru ((p =w) :id)}, which
allows the attacker to observe only whether the passwords match or not. Now let
the program of Figure 7.1 b, then the analysis,F,,I,,0,) P(E, I,0), of this
program shows that it satisfies the authentication policy, sihed (p =) : id).

To see that the policy?,.m captures the intuition about the authentication in-
formation release, consider an attacker which knows the user-supplied password.
This knowledge can be represented by the equivalence relatjornvhich can

distinguish different user supplied passwords:

Vo,0' eX¥ 0id, 0" < o(u) =0o'(u).

Thus, the information that the attacker gains on observing the result of authenti-

240

cation is represented by the PER(id,,), where for any, o’ € X

0 faun(id,) o’ o((p=u):iduid,) o’
(o(p=u)=0'(p=u))A(o(u)=0'(u))

(o(p) =a(u)no'(p) =o' (u)) v (o(p) # o(u) Ad'(p) # o' (u))
A (o(u) =o' (u))

= (a(p)=0o(u)=0'(p) =0'(w)) v (a(p) # o(u) = o' (u) # o'(p)).

[

After observing the result of the execution of the authentication program, a pair of
states cannot be distinguished by the attacker that knows the supplied pagsword
if it is related by the PERGun(id,,). Sinceo faun(id,) o’ means that either has
the same value as the known valueuofinder both states ando’ (the case for
successful authentication), or (for the failed authentication attemmpi)st have
a value that is different from the known value ©fin both states, the attacker
therefore learns the value pfwhen the authentication is successful, otherwise
the attacker learns that the valuejois not the chosen value af (since in this
casefaun(id,) relates all states except those in which the valug afrees with
u). This agrees with the intuition.

Now consider the attacker which does not have any prior knowledgeoof
u before the authentication, for example, the attacker that is observing another
user’s attempt to log in but the attacker cannot see the user-supplied password.
This attacker’s knowledge is the equivalence relasitbnwhich cannot distinguish
any pair of states. Thus the final knowledge of this attacker after observing the
authentication output ig,m(all) = (p = u) : id. Since(p = u) : id relates a pair of

states only if they both agree or both disagree on the valugsantiu, the final

241

knowledge of this attacker is consistent with the intuitioattthe attacker only
learns the fact that the supplied password and the stored password match in the
case of a successful login, or that they do not match in the case of a failed attempt.
This information has already been declassified by the palgyn, and hence the

information release is safe.

7.1.1 Authentication Attack

Let us now consider a rogue implementation of the authentication program, shown
in Figure 7.2, which contains a trailing attack that reveals the user-supplied pass-
word. It is clear that this program contains an attack since the attacker needs not
know the user-supplied passwaadoriori in order to learn the stored password

when there is a successful authentication, or, what the stored password is not oth-

erwise.
if (u=p)then
write 1; /[authenticated
else
write 2; /I not authenticated
write u; /I attack

Figure 7.2: A rogue authentication program

Let us call the program of Figure 7.Proque the information flow analysis
(E.,1,,0,) Progue(E, I1,0) shows thatPreg,e does not satisfy the policyaun
sinceO = ((u = p) :id)uid, ¢ (u = p) : id. Other variations of this program,
for example, where the statememti t e « is moved to different places in the
program such as within the conditional statement, or before it, also fail to satisfy

the authentication policy.

242

7.1.2 Information-theoretic Characterisation

Now let us consider an information-theoretic policy for the authentication pro-
gram above. The use of information theory to model information release in this
scenario is reasonable because, for example, the security of password authentica-
tion systems is often based on the difficulty of obtaining the password by guess-
work, which has a sound information-theoretic justification. In the ideal setting,
the stored password should be selected with a uniform probability distribution
over a large space of possibilities (although this is usually not the case in prac-
tice because of human limitations with respect to remembering long or cryptic
passwords). A uniform distribution of the choice maximises the entropy of the
password space, and since the maximum entropy over a space of possible choices
increases with the size of the space, a large selection space further increases en-
tropy [Sha48].

Now since password authentication does not satisfy noninterference with re-
spect to the secret inputs, we expect some quantitative information to be released
by the authentication system. Our objective is to characterise the quantity that
may be legally released by the authentication system as a statement of its infor-
mation flow policy. This can be achieved by using Definition 3.8.5 to derive the
information flow of the genuine password authentication program, which gives us
a policy characterising the maximum information that may be released legally by
any implementation of the authentication program.

The input-output functional modebf the authentication program is given by

2]t does not matter that we did not model the observation of termination, so that the model
is g : 32— {(1,1),(2,1)}, because there exists an isomorphism between the range of the two
functions so thag’ = . o g, so that the kernels gfandg’ coincide.

243

the functiong : £ — {(1),(2)} (for genuing defined for any € 3 as

(1) fo(p)=o(u)

(2) otherwise.

g(o) =

We shall consider two attacker$,andB. AttackerA is trying to obtain the stored
password by guesswork. AttackBron the other hand is observing the result of
A’s authentication session, but cannot see the supplied password.

The view of B is defined by the functiog becauseB can only observe the
outcome of the authentication - which is public. However, unfiked is able to
observe also supplied password sircis the one making the guess. Sts view

can be modelled by the function(for rogué defined for any € 3 as

(1,3) if o(p)=0o(u)=1

(2,7) if o(p) #o(u)=1.

r(o) =

Thus, in addition to the ability to observe the outcome of the authentication pro-
cess, attacker also knows the supplied input= o(u). Thus, the analysis of
information flow to the attacked is the same as the analysis of ttogue au-
thentication program of Figure 7.2, which prints the user-supplied password in
addition to revealing the authentication status.

The remainder of the analysis is based on Definition 3.8.5. Let us assume,
for simplicity, that the password is chosen from the{$etl, 2, 3} of possibilities,
which is publicly known. Furthermore, we assume that the choice is uniformly
distributed so that any of the four possibilities can be chosen with a probability

of 1. Since A does not know the stored password, we can assumeithakes

244

uniformly distributed random guesses on the remaining sphpessibilities of
the stored password values. &ds initially chosen byA from the set0, 1,2, 3}
with a probability of, and if the authentication fails4 makes the next choice on
the remaining set of possibilities with a probability%;fand so on.

For the attackeB, the initial probability measurg? € .# (X) describingB’s
uncertainty about the passwordii8 (o) = % for anyo € X2, obtained as the joint
probability of choosing any andu. Thus by the definition of, the (marginal)
probability of observing outpufl) for successful authenticationig’((1)) = i
ard the probability of outpu{2) for failed authentication ig”((2)) = . T

conditional probabilitieg.; (o) that inputo € 3 was chosen, given the observed

outputi € {1,2} are given by

L if o(p) = o(u)
VoeX ,u y(0) = !
0 otherwise,
and
0 ifo(p)=0(u)
VoeX ,u y(0) =

> Otherwise.

Furthermoreyz”((1)) = 1 and z”((2)) = 2 are the marginal probabilities of pro-
ducing the outputs under®. Thus, the information released by the authentication

programP (modelled by the functiog) under the assumption® of B’s initial

245

uncertainty is the mutual information (see Definition 3.8.5)

H(u") - > I (0)Hw)

ve{1,2}
4 (11 (4)+ 21 (12))
= 4-(-1lo =lo
g OBV T8

0.8113 (7.1)

Iipu5)

R

This value gives a measure of the information released by the genuine password
program under the assumptig# about the attacker’s initial uncertainty and it
provides us with a statement of policy against which we can measure an imple-
mentation of the authentication program. The calculation of the measure of ap-
proximately0.8113 bits of information in (7.1) quantifies the loss in uncertainty
about the passwords by revealing their equality (which océur§the time) or
not (which occursj: of the time). Thus, the policy allows abot8113 bits of
information to be released by the implementation of the authentication program
to an attacker whose initial uncertainty is modelled#yover the input space.

To see how this policy rejects the implementatiBigg,e now consider the
information flow under the view of the attackdr The view of A corresponds
to the implementatioPrqg.e that reveals also the user-supplied password in ad-
dition to the result of authentication. The initial measure of uncertaintyl of
is u4 € 4 (%), where for anyo € X,,4(0) = 15. Thus,u4 = 5, because
A is just making a purely random guess - having no initial knowledge which
makes it prefer the selection of a particular password over another from the set

of possible choices. Therefore, given the observation of the outpyts, 2} and

u' € {0,1,2,3} of the possible outcome of the authentication and selected pass-

246

word respectivelyA can compute the conditional probability; .-y that a given

input state was selected as follows:

1 ifo(p)=0c(u)=u
VoeX. /“Lé,u’>(a) =

0 otherwise,
and

1 oifo(p)#o(u)=u
3
VoeX. ,uéu,)(a) =

0 otherwise.

Furthermore, the marginal probability of observing the output sequéneé

underu is 7 ((i,v’)), which for anyu’ € {0,1,2,3} is given by

o L oifi=1
i ({i,u')) =
3 jfi=2.

Thus, the information released by the implementafiagy.cis given by

3
Lippoguont) = 4= 7108(3) 2.8113. (7.2)

Thus, Progue IS rejected because it releases more than the allowed information
(that is, the0.8113 bits specified by the genuine authentication magehbout
the secret inputs. The result of (7.2) demonstrates the fact that the attacker gains
complete knowledge af (2 bits) in addition to the knowledge (abou113 bits
on average) about the equality or notpadindw.

Under the information-theoretic analysis, we have represented the security

policy as the number of bits of information allow to be released. One argument

247

against information-theoretic characterisation of secofermation flow is the

fact that probability measures have to be assigned to each event in order to be able
to perform the analysis, and that such probability measures may not be available.
However, we note that although the approach requires the assignment of proba-
bility measures, the key idea is in the fact that we campare programsunder

the same measures to determine their relative security. The information policy
actually specifies what information flow property the ideal (with respect to secure
information flow) program should have, and measuring a given program against
this policy is tantamount to comparing it to this ideal. This technique is what the
analyses above suggest, where the rogue implementation is rejected based on the
information-theoretic policy written for the genuine implementation (more pre-
cisely, its modelg). In particular, in our view, the emphasis should not be on
the probability measures themselves, or how a specific program fares under dif-
ferent assumptions about the attacker’s uncertainty and the distribution of input
data. These assumptions may be wrong, and the results, which are dependent on
the choice of distributions may thus give us a false sense of (in)security. How-
ever, an insecure implementation of a particular system model cannot be made
more secure by the choice of the distribution with which analysis is performed.
When the precise probability distributions are known however, the argument for

information-theoretic analysis is strong.

7.2 Policies For Encryption

Encryption is an important security primitive that is used widely as a security

foundation in many systems. However, in order to protect the secrecy of sensitive

248

data we require policies that permit encryption to be usedysadeninterference
policies cannot be used for encryption since the resulting (public) cyphertext in
an encryption scheme will depend on the supplied plaintext and key which are
considered secret. Thus there remains the problem of the specification of policies
that allow safe use of encryption in programs. In this section we shall study the
development of information policies that allow the safe use of encryption and the
security analysis of programs which use the encryption functions.

We start by considering an encryption functién: K x M — C, which ac-
cepts a key chosen from the gétof keys and message or plaintext chosen from
the setlM, and produces a cyphertext in the 6etNow suppose that; is consid-
ered secure and that its implementation, which we shall denote by the expression
enc(k,m), is correct, so that under any statéenc(k,m)) = & (o(k),o(m)).
Hence, we allow the attacker to observe the cyphedests, m) for any choice
of key k ¢ K and plaintextn € M values. Hence we can define an equivalence
relation| &, | which captures the intended information release, whérgrelates
every pair of states ando’, where€&, (a(k),o(m)) = £ (o' (k),0'(m)). Thus,
the required information flow policy?, = {f | R ¢ PERX), f(R) = Ru &]}
allows the attacker to observe the ciphertext generated by a correct implementa-
tion of the encryption function. Firstly, since the implementatnno is secure,
it is easy to see that the information released by this implementation satisfies the
policy ¢, , becausgé,; | = enc(k,m) :id.

Now consider a secure (as well as an insecure) data backup scenario (adapted
from [AHSO08]) as shown in the program listings of Figure 7.3. The LHS pro-
gram securely releases the encrypted dette)(to a public output channel after

encrypting the datad@ta) with the keyk. However, the RHS implementation

249

Is insecure because the programmer releases the plaintexndtgad of the ci-
phertext. The analysis detects that the RHS program violates the policy because
data: id # enc(k,data) : id - unless the encryption function by definition reveals
the encrypted data, which violates our assumption ¢hatis secure Thus, the
analysis detects this flaw. This would be useful, for example, to the programmer
who can avoid such programming error by checking his or her implementation
against the desired policy.

ctxt: =enc(k, datg); |ctxt: = enc(k, data);
write ctxt write datg

Figure 7.3: Secure versus Insecure Data Backup

The reason why the noninterference policy cannot be used for encryption lies
in the fact that noninterference prohibits any sort of variation in the observed out-
put from being induced by a variation in the secret input to the encryption func-
tion. However, one of the reasons why encryption is widely used as a security
primitive is the fact that the security lies in the ability to protect secret data even
when the encryption algorithm is known. Thus, a good encryption algorithm is
already designed so that it is not easily invertible into its constituent arguments,
although a variation in its input would cause a variation in its output for the algo-
rithm to be useful. The safe input-to-output variation caused byldfiaitionof
the encryption function is captured by taec(k,m) : id construct in the example
above, which allows only the output variations due to the definition of the encryp-
tion algorithm to be observed by the attacker. This is safe since the encryption

algorithm is already assumed public.

250

7.2.1 Nondeterministic Encryption

In nondeterministic encryption, such apher-block chainingencryption mode,
an initialisation vector (iv) is used along with the key and plaintext such that
if a differentiv is used, a different ciphertext is generated under the same key
and plaintext pair. The term “nondeterministic” refers to the fact that the im-
plementation of such encryption algorithms generally have the property that en-
crypting the same plaintext several times using the same key would yield differ-
ent ciphertexts. Let the functiafy : IV x K x M — C represent such an encryp-
tion scheme, wheréV’ is the set of initialisation vectors, and let the expression
enc. (iv, k,m) be a correct implementation 6f. As with the encryption policy
in the previous example above, the required PER modelling the safe release of the
ciphertext isenc, (iv, k,m) : id, which declassifies the ciphertext.

Now a known problem with declassification schemes is thatolusionfSS05],
where a legitimately declassified information masks the release of other secrets.
Being awhat policy model, our policy enforcement mechanism prevents such a

flow by permitting only the information release that is explicitly allowed by the
policy.

[:=enc, (v, k,m);
if (h)then
Iy := enc, (iv, k,m);
else
ly:=1y;
write [;;
write s

Figure 7.4: The Occlusion Problem

To illustrate the occlusion problem, consider the program listing of Figure 7.4,

251

which is adapted from [AHS08]. Suppose that we have declag$ifeeencryption
result by the policy?, = {f | R € PERX), f(R) = Ru|&]}, where, similarly

to the previous example, for all € X, 0 |&] o iff E(o(iv),o(k),0(m)) =

& (o' (iv), o' (k),o'(m)) and| & | = enc,(iv, k,m) : id. Thus, revealing the con-
tent of/; andi, is permitted, however the value of the boolean sefcretil be re-
leased additionally by this program because the inequality afd/, will reveal

the fact that thehenbranch was executed. Now let this programfhdts analy-
sis,(E.,1,,0,) P (E,1,0) shows that it does not satisfy the required policy be-
cause the equivalence relatiohhas the property that for amy o’ € 3, such that
o(enc,(ivy, k,m)) # o'(enc,(ive, k,m)) theno O o/ =—> o(h) = o'(h) = tt,
which reveals the value of the secketHence the analysis shows thahas inse-
cure information flow, becauge ¢ | &, |. Specifically,| &, | requires, for example,
that for any choice of ¢ X, o[h ~ ff] must be indistinguishable from, but

O distinguishes any pair of states which disagree on the produced ciphertext and
which also disagree ol, which means that the attacker gains illegal information

abouth throughP which the policy does not allow. Thus, is rejected.

7.2.2 Disjunctive Key-Ciphertext Release

This example demonstrates policies for the disjunctive release of information. For
this we shall consider a symmetric-key encryption system, where on one hand we
intend to distribute the key on a secure channel, but we do not want this channel to
receive messages encrypted by the key to protect the message from being accessed
on this channel. On the other hand, we want to distribute the ciphertext on another

channel which may not have access to the key. Now suppose that the encryption

252

module is implemented as a single program which can be useddethcrypt
data and to distribute the key. However, we wish to separate what can be observed
on the output channel so that, depending on the usage scenario (indicated by a
parameter to the program), the program serves exclusively the purpose of key
distribution or exclusively the purpose of encryption. A key release paramiter
used to specify the intention, so that when the valueisfset tatrue only the key
is allowed to be released, but when ifagseonly the ciphertext may be released.
Such a program is shown in Figure 7.5.

if (r)then

write k;

else
write enc(k,m);

Figure 7.5: Disjunctive Key-Ciphertext Release

The required disjunctive release policy is captured by the equivalence relation

D ¢ PER(X), which is defined as the disjoint union of two PERS:

D=(k:idur:T)u(enc(k,m):idur:F)

The PERL : idur : T in the definition ofD allows the key to be released when

r has a valuet only, while the PERenc(k,m) : id ur : F allows the ciphertext

to be released only whenhas the valudf. This leads to an information flow
policy Zp = {f | R e PERX), f(R) = Ru D}, which is satisfied by the program

of Figure 7.5. The programs of Figure 7.6, which can release both the key and
ciphertext at the same time are however rejected by this policy.

Alternatively, we may want to force separate implementations of the key dis-

253

write enc(k,m);
write k- |f(r)then
. ' write k;
write enc(k,m);
else
ski p;

Figure 7.6: Non-Disjunctive Key-Ciphertext Release

tribution and the encryption sub-modules via another disjunctive policy which
is not predicated on the key release parameterSuch a policy is given by
Pp, ={f,f"| R € PERX), f(R) = Ruk:id, f/(R) = Ruenc(k,m) : id},
which allows either the release of the key or the ciphertext but not both. This
is possible because : id andenc(k,m) : id are incomparable for a secure en-
cryption functionenc - which means thaenc(k,m) does not release the key

(k - id ¢ enc(k,m) : id), and variations will occur in the ciphertext due to a
variation ofm even under a fixed keyec(k,m) :id ¢ k : id). The programs of
Figure 7.7 which implement key release module separately from the encryption
module both satisfy the policy’,, whereas all the programs of Figure 7.5 and
Figure 7.6 do not satisfy this disjunctive key-ciphertext release policy. The pro-
gram of Figure 7.5 fails because it also releases information abiouaddition,

while the programs in Figure 7.6 fail because they have non-disjunctive flows.

write k; | write enc(k,m);

Figure 7.7: Separate Key-Ciphertext Release

254

7.2.3 Perfect Secrecy

Shannon [Sha48], defined a notion pérfect secrecyvhich describes informa-

tion flow during encryption where the attacker can observe encrypted messages
directly but cannot gain any information about the plaintext or the key. A neces-
sary and sufficient condition for an encryption scheme to satisfy perfect secrecy
is that the probability of generating a particular ciphertegiven that a message

m was encrypted (under some key) is the same as the probability of generating
given that some other messagéwas encrypted (under a different key) [Den82].

Theone-time pads an encryption system with such a property, where the en-
cryption key is completely random and is at least as long as the message. Let the
relationencyy, € M x C represent such an encryption scheme, where the plaintext
messages i/ are of a fixed length, and are encrypted with a completely ran-
dom key of the same length to generate the ciphertext. In the follownug,, is
defined for any message € M as(m, c) € encyy, iff there exists a key: € K such
thatm XORk = c.

In this encryption scheme, the required information flow policy on the message
is that it reveald) bits of information when observing the ciphertext. Now let
1.(m) be the conditional probability that was encrypted given the observation
of ciphertextc and let.(m) be the (marginal) probability of selecting the message
m. Then, the perfect secrecy requirement is jhétn) = p(m) since the attacker
does not gain any additional information about the message given any ciphertext.
Thus, u. = p. Furthermore, let the probability of generating the ciphertext

be given by7i(c). By applying Definition 3.8.5 t@ncey,, for any given initial

255

probability measurg over M we obtain

I<encolpuu> = ,H(M) - Zﬂ(C)H(Mc)

ceC

H(p) = H(p) 3 7ile)

ceC

=0

Thus our quantitative information analysis of the encryption funotioz, shows
that it does indeed have the required information flow property and satisfies flow
policy which requires no information release.

We may also describe the information flowesic,, in possibilistic terms only
using the latticd=AM (M) of possibilistic information flow over the sét/. Since
the length of the key is the same as the message length, then by definition for any
ciphertextc all messages are possible. Thus the inverse imagaagf, for any
c € C'is M and therefore, by using Definition 3.7.1, the information released by
eNCorp IS { M}, which is the least element of the lattiEAM(1/) containing no
information about the secret message. Thus, as expected, the nondeterministic
model ofencey, of the one-time pad encryption function releases no information

about the message under the possibilistic definition of information flow.

7.3 Policies for Statistical Analysis

Issues of secure information release also arise in statistical analyses where we
want to permit the safe use of statistical operation on confidential data. Again,
noninterference policies cannot be used because the results of statistical compu-

tation on sensitive inputs, which we intend to make public, will depend on those

256

inputs. In this section we shall demonstrate the use of oucy&lamework for
the enforcement of secure information flow in statistical analysis.

Suppose an organisation intends to publish the average salary (its arithmetic
mean) of its employees in different sections. This information magensitivef
it discloses too much information about particular individuals’ salaries in a given
section. Thus, suppose the organisation wishes to specify a policy which allows
the average salary of a section to be published only if the section has at least
n employees. Now let,; be the salary of thé™ employee in a given section
of m employees, the intention is to release the average salary % i hy
only if m > n. Thus, if we define the flow functiorf,, such that for anyR «
PERX), fm(R) = Rue,, : id, which allows the release of the average salary of
m employees, the intended information flow policy#&yg., £ { fn|m > n}. The
policy Zag- requires at least employees to be considered in the computation
of the average salary.

Now suppose = 10, so that the intended policy i¥a,q10. The analysis of the
program listing of Figure 7.8 is accepted as safe by this policy, because it considers
the salary of at least (actually, exactli) different employees (we assume that
h; corresponds to the salary of a unique emplojeeHowever, both programs
of Figure 7.9 are rejected. The LHS program of Figure 7.9 is rejected because
it revealshs and the RHS program is rejected because there are inputs to this
program (whenmn < 10), which violate the policy. Although, the RHS program
of Figure 7.9 may be executed safely when> 10, the policy however rejects
it because it statistically contains insecure executions. An interesting approach
would be a combination with a runtime enforcer, which checks the parameter

and allows the program to run if it will result in a safe execution (that is, whenever

257

m > 10). Such a technique is used in the runtime monitor of [GBJS06], which

can admit secure execution of programs which may statistically contain insecure

traces.
sum=0;
1:=0;
while (i < 10) do
sum=sumth;;
1:=0+1;
write sum/i;
Figure 7.8: Average Salary Calculation
sum=0; sum=0;
1:=0; 1:=0;
while (i < 10) do while (i <m) do
sum=sumths; sum=sumn;;
2:=0+1; 2=+ 1;
write sum/; write sum/;

Figure 7.9: Insecure Average Salary Calculation

7.4 Electronic Wallet

This example demonstrates the prevention of information laundering by using the
pattern of the declassified expression (wlle loop). Assume that the setting is

that of a privacy-conscious customer engaging in an electronic transaction. In or-
der to process the electronic purchase the vendor needs to verify that the customer
has sufficient funds in customer’s electronic wallet to proceed with the transac-
tion. The customer is however not willing to divulge more than the fact that he or

she has sufficient funds in the electronic wallet. So, the relevant policy is based on

258

the PER(balance< cost) : id which declassifies the boolean tésalance< cosi)
to check whether the customer has sufficient furidance for the amount of
the transactiongos).

The program listings of Figure 7.10 are both accepted by the policy. The RHS
program of Figure 7.10 in particular uses program divergence to signal the result
of the electronic wallet check. This is detected by the analysis, but the information
flow due to the divergence is safe and is accepted by the policy. However, the two
programs of Figure 7.11 are both rejected. On one hand, the LHS program of
Figure 7.11 is rejected because it releases the wallet balance in one branch after
performing the legitimate check. On the other hand, by modifying the vanaiole
(originally containing thecos) in the RHS program of Figure 7.11, the attacker
is able to essentially perform a binary search on the secret in the intearad
N without explicitly copying the secret. However, the analysis shows that the

attacker indeed gains more than the policy allows and thus rejects the program.

if (balance< cos) then

write 1; while (balance< cosi) do
else ski p;
write 2;

Figure 7.10: Electronic Wallet Check

259

bot=0;

top:=N;
mid:=cost
while (bot< top) do
if (balance< cosi then if (balance< mid) then
write balance i f (balance= mid) then
else result=mid;
write 2; elsetop:=mid-1;

elsebot=mid+1;
mid:=(bot+top)/2;

write result

Figure 7.11: Electronic Wallet Attacks
7.5 Conclusions

In conclusion, we shall summarise the main achievements of this thesis and sug-

gest possible directions for future work.

7.5.1 Main Contributions and Achievements

We have presented a new semantic framework for the analysis and enforcement
of secure information flow based on lattices of information. The lattice-theoretic
model of information and information flow has the advantage that the approach to
the enforcement of secure information flow can be applied independently of the
particular representation of information chosen. Representations of information
based on PERs, families of sets, and information-theoretic characterisations have
been shown to fit into the lattice model of information, and various examples show
that the security enforcement technique is the same - relying only on information

levels as encoded by a given representation of the information lattice. The lattice-

260

based approach is simple to understand because it fits welbagit intuitions
about information ordering. The view of the lattice structure of information as

a general approach to the enforcement of secure information flow has not been
systematically studied before. Although lattice-based techniques are commonly
used in language-based information flow security, the lattices are usually of secu-
rity classes in a multilevel system rather than lattices of information. An area of
future work is to study how the lattice of information approach presented in this
thesis can be integrated with a multilevel security system.

The development of the input-output relational model of systems in Chapter 3
as a foundation for the semantic analysis of information flow is a contribution to
the theory of information flow analysis. The relational model was shown, by var-
ious definitions and examples, to be a quite general model for information flow
analysis in both deterministic and nondeterministic systems. Various represen-
tations of information based on PERs, families of sets, and information-theoretic
characterisations were developed by using the input-output relational model as the
basic primitive. The relational model also shows how the semantics of a system,
captured by how it transforms its inputs to outputs as observed by an attacker, can
be linked directly to lattices of information under either a qualitative or a quanti-
tative representation of information. Various examples in Chapter 4 demonstrated
that reasoning about information flow in nonterminating systems does not pose
additional difficulty to the relational model primitive. In particular, a semantic at-
tacker model, defined in Chapter 4, provided a basis for studying information flow
under nontermination. As shown by the results, the definitions of information flow
under the relational model, induced by the semantic attacker model, account very

well for information flow in diverging programs.

261

Chapter 4 introduced a notion of an attacker’s observatiomakp as a func-
tion of what the attacker can see during the traces of a program. The definition
provided a framework for the study of information flow under various attacker
models in relation to the operational semantics of the underlying system. The
relationship of this definition to the input-output relational model was shown by
relating each input state to what the attacker may observe in the ensuing pro-
gram execution. The semantic attacker model of Chapter 4 shows how to define
a concrete attacker model in a language-based setting, and demonstrates how to
derive the relational model from the operational semantics of the language. The
approach, applied to the deterministihile language, and the nondeterministic
WhileeND andWhile-PND, which feature possibilistic nondeterminism and prob-
abilistic nondeterminism respectively, illustrated the application of the relational
model definition from a language-based perspective. We demonstrated that our
attacker observational model is more general than the attacker models of [GM04],
showing how to obtain the Narrow Abstract Noninterference and the Abstract
Noninterference definitions under our information flow definition by choosing
suitable observational power functions.

Chapter 5 contributed a PER-based static information flow analys& file
programs with output. The analysis, which is flow-sensitive and termination-
sensitive can also detect disjunctive information release as defined in Chapter 3.
Although PERs were conjectured to be incapable of modelling disjunctive infor-
mation release [SS05], we showed in Chapter 3 how PERs can represent disjunc-
tive information. Various examples throughout the thesis were used to demon-
strate the application of disjunctive information flow, where we want the assur-

ance that a recipient can receive at most one of two secrets during the run of a

262

program. More specifically, the example of section 7.2.2 slidweev disjunctive
policies based on PERs can be used to model the disjunctive release of the secret
key and ciphertext in a symmetric encryption module.

In Chapter 6 a dependency analysis/dtfile programs with outputs was pre-
sented to demonstrate the application of abstract interpretation techniques to se-
cure information flow. This dependency analysis was shown to be an abstract
interpretation of the concrete analysis with PERs presented in Chapter 5. The de-
pendency analysis is flow-sensitive, termination-sensitive, supports intermediate
program outputs, and can detect some disjunctive dependencies. To the best of our
knowledge, this is the first dependency type system applied to secure information

flow that is termination-sensitive.

7.5.2 Future Work

A lattice-based approach to information and policy modelling has been presented
in this thesis for the enforcement what declassification policies. A useful ex-
tension to the policy model would be to incorporate it with other lattices, such as
the lattice of security clearances in a multilevel security environment. This, for
example, would provide a platform to express policies based/twat and who
properties [SS05], which is a useful combination of declassification dimensions.
By incorporating thevhodimension, we can express policies such as who is able
to gainwhatinformation via a system awhoseinformation a system is permitted

to release, as well ashois capable of releasingghat information in a system.

This will involve, at the static analysis level, mechanism for annotating program

inputs with the (security clearance of the) owner of the input data, and program

263

outputs with the associated (security clearance of the) vbser

The coreWhile language used in this thesis and its extension#/kale-ND
and While-PND only have support for buffered input, where all the inputs are
supplied at the beginning of program execution. An extension with construct for
intermediate input will be a useful step towards the analysis of fully interactive
systems. Other language extensions to model, for example, exceptions and object-
orientation will also be appropriate steps towards the analysis of real programs.

A basic implementation of the static analysis of Chapter 5 is being developed.
A potential application is to embed this analysis into a compiler, which can be
used by application writers to certify their applications against policies, for ex-
ample, under a proof-carrying code [NL97] framework. The full analysis of large
programming language sources such as Java, C#, or C++ is still a very distant
objective, because of the very rich set of constructs such as exceptions, object-
orientation, threading, and so on, that our very basic language models did not
study. However, intermediate languages such as the Java bytecode, or the .NET
Framework Common Intermediate Language, or machine assembly language are
possible initial targets because of the fewer number of language constructs under
these intermediate representations. By targeting lower-level representations, there
is also the potential to apply the analysis techniques to disassembled programs to
check the conformance of a program to policies at the code consumer site, espe-
cially when the source of the program, which has access to sensitive information,
Is not available.

The dependency analysis of Chapter 6 is useful because it is less costly com-
putationally than the PER analysis of Chapter 5, and can be used when one is

interested in quickly making noninterference-style checks, or as a front-end to a

264

richer analysis, since if the dependency abstraction detestihat a program has
secure flow, then a more expensive analysis of information flow can be avoided.
The abstraction functions for the analysis of Chapter 6 were defined with non-
interference checks in mind. It will however be useful to study frameworks that
can systematically derive efficient abstractions and information flow type systems,
which are based on a given policy to be enforced. To give an example, a policy
which checks whether at most the parity of a given secret may be released can
model all information levels strictly greater than the parity of this secret with one
abstraction, leading to far fewer elements in the abstract domain. Thus, a poten-
tial area of future work is the study of patterns for generating smaller abstractions,
based on the policy to be enforced, which permit partial information flow. Such
smaller information lattice abstractions, and the resulting security type systems,

may be more suitable for the analysis of larger programs.

265

266

Appendix A

Proofs from Chapter 5

Lemma 5.4.8.Let X be the set of all states, which are maps fr¥fr to values.
Suppose’, ¥’ ¢ ¥ and thatZ ¢ Var and letR, R’ e PER(X). Then we have the

following properties:

1. LetX,Y < Var such thatX uY = Z, then havoZ(X) u havocZ(X¥') =
havoZ (X u ¥'), and havo& (havod’ (X)) = havoZ(Y) .

2. The operator hava€(-) is an upper closure operator on the powerset lattice
(P(%), <) with respect to the subset inclusion order.
3. The following identities hold

(a) havo (%) uhavoZ (Y') = havoZ (havoZ (X) u havoZ (Y)).
(b) havoZ (%) nhavoZ (Y') = havoZ (havoZ (3) nhavocZ (Y)).
(c) havo& (X)\havoZ(X') = havoZ (havoZ (X)) \havocZ (¥)).

4. For all 0 e dom(1,R) we havg o]z = havoZ ([0]1.z) -
5. ForanyX,Y c Var we havel 1y R = 1R = 1xuyv R.

6. ,Rut R =1,(1,Rut.R).

7. L, Ret, R = 1,1, Rut,R).

8. Rce R — 1,Rc=1,R.

267

Proof.

1.

2.

3.

The proof is straightforward from the definition.

We show thahavodZ(-) is extensive, monotone and idempotent on the
powerset latticé?(X2). Extensivity,> ¢ havocZ(Y), is clear from the def-
inition. Now suppose’ ¢ ¥ ¢ ¥ and let>’ = X u X”. Applying (1),

we havehavocZ (¥') = havoZ(X) u havoZ(X"). Thus,havoZ(X) ¢
havocZ (%) showing monotonicity. For idempotency, we first observe that
extensivity shows thatavocZ (X)) ¢ havoZ (havocZ(X)). Now, suppose

o € havoZ(havocZ (X)), then there exists’ € havocZ(X) such that for

all y e Var\Z,o(y) = 0'(y). Hence, there exists” ¢ ¥ such that for all

y € Var\Z,o'(y) = ¢"(y). SinceVy € Var\Z,o(y) = o'(y) = o"(y),
then it is clear that € havocZ (X), which implieshavocZ (havocZ (X)) ¢

havoZ (Y), showing the idempotency bfavocZ(-).

(&) This property follows directly from the idempotency ledvocZ(-)
since by (1havoZ (X) u havoZ (Y') = havocZ (X u 3).

(b) LetX” = havoZ(X) nhavocZ (X). Itis clear that>” c havocZ (%)
by the extensivity ofhavocZ(-). It now remains to be shown that
havoZ (3") c Y. Take anyo € havoZ (%), then there exists’ €
¥ such that for ally € Var\Z,o(y) = o'(y). Furthermore, there exist
o1 € Y andoy € X' such that for ally € Var\Z, o/(y) = o1(y) = 02(y)
by the fact that’ ¢ havocZ(X) n havoZ(X’). Hence for ally €
Var\Z, o(y) = o'(y) = 01(y) = 02(y) and thereforer € havoZ(X)
ando € havoZ (X), that is,o € X.”. Hence havocZ (%) c 7.

268

(c) LetX” = havocZ(X)\havocZ (X'). We haveX” ¢ havocZ (X") by the
extensivity ofhavocZ(-). Thus, it now remains to show thaavocZ (X)) ¢
Y. Take any € havocZ (3""), then there exists’ € > such that for
all y e Var\Z,o(y) = o’(y). Furthermore, by definition dfavocZ(-)
and set difference, there existse X, but there does not exist, € >/,
such that for ally € Var\Z, o'(y) = 01(y) = 02(y). Hence, we have
thato € havoZ (%), bute ¢ havoZ (%) by definition, and therefore,
o € havoZ (X)\havoZ (X'). Thus,havocZ (X") c 7',

4. Sincehavoc/(-) is extensive, it is clear that |,z < havocZ([o]i,z). Now
take anyo’ € havoZ ([0]+,z), then there exists” € [o]+, such that for all
y e Var\Z,o'(y) =o"(y). Sinces” € [,z thenos 1,R ¢’ holds. It is thus
clear from the definition of ,RR thate” 1,R ¢’ holds sinces’ is be obtained
from ¢” possibly by modifying values of variables ih Transitivity oft,R

means that 1,R ¢’ also holds and henc€ ¢ [o];,z, Which means that

havoZ([o]1.r) € [0]14-

5. We shall start by showing thatt, R = ¢,y R. Let Z = X uY. Then from
the definition oft(-) we have that for any, o’ € 3, o 1,1, R o’ iff there ex-
ist sequences,,...,o, € X andry, ..., 7,1 € dom(@,R), such that = o,
ando’ = 0, and for alli, 1 <i <n - 1implieso;, 0,41 € havocX ([7;]4,z) =
havocZ([7;]1,r) since by (4)[7i]r = havod’([7;]+r). Hence, for all;,
1 <i<n-1there exisv],o!,, € [7:]4r Such thav; € havoZ ({c}}) and
0,1 € havoZ ({c],,}) and sinces] ando/, | are related by, R then by def-

inition there exist sequences, ..., o’

mg

e Xand7i,...,7i | € domR)

) Pmy—1

such thav] = of ando;,, = o}, andVvj,1 < j<m; -1 = 0},0},, €

269

havod’([7/]r). Sinceo; € havod’([7{]r) ando; € havocZ({o;}) hence

o; € havocZ([7{]r). Similarly, o;,; € havoZ ([}, _,]r). Hence for any

i, 1 <i < n-1we obtain the sequences,o},...,0,, ,0:1 € X and
T4,.... Ty 1 € dom(R) such that;, o} € havodZ([7{]r) andoi,1,0), _; €
havocZ ([7}, _,]r) andforallj, 1 < j <m; -1 = o},0%,, €ehavod([7/]r) <

havoZ ([7/]r). Sinces = o, ando’ = o, hence by definitiony 1,1 o’

The reverse implication is straightforward because by definidpR o’
holds iff 304,...,0, € X andmny,..., 7,1 € dom(R) ando = 01,0’ = 0,
such that for alli,i < i <n-1 = o0y,041 € havoZ([7;]r). Now,
since for anyr € dom(R),[7]r < [7];& anddom(R) < dom(, R) then
m,...,To-1 € dom(1yR) and hence by replacing; |z above with[7;],r
for all ¢, we obtaino;, 0;,; € havocX (havod” ([7;]4,z)) = havocX ([7; &)

by applying (4). Hencer 11y R ¢’ holds.

Sincet Iy R = 1oy R, then the fact that set union is commutative means that

TXTYR = TXU}’R = TYUXR = TYTXR-

270

6. From the definition we have thét, o’ € ¥, 0 1,(1,Rut,R") o’

— doy,...0,€%,307,...,0/ edom@l,Rut,R).0 =01,0" =0y,
V'L., 1<i1<n-1 = 0;,0;41 € haVOCZ([U;,]TzRUTzR’)

— dJoy,...0p,€X,307,...,0/ edom@,RU1,R").0 =01,0" =0p.

Vi,1<i<n-1 = 0,041 € haVOCZ([O'Z(,]TZR N [O'Z(,]TZRI)

— doy,...0,€%,307,...,0/ edom(,R) ndom(,R').c = 01,0’ = 0,,.

Vi, 1<1<n-1 — 0;,0;41 € haVOCZ([O'Z(,]TZR) N haVOCZ([O'Z(,]TZR/)

(by (3b) since by (4) havd([o]'|1,z) = [0}]1,r and havo& ([0}’]1,z') = [0}]1,7')
~— o, ,Ro ando 1,1,R o'

<~ o1,Ro"ando t,R' ¢’. (by applying(5))

7. LetY = dom(},R) udom(1,R’). Now define the PER$,R and?,R’ such
thatVo,0’ € £,0 1,R0’ <= 0,0’ ¢ ¥\dom1,R) ando 1,R ¢/ <
0,0’ € Y\dom(,R'). The PERY,R and?,R’ both have only one partition,
which respectively are the sefs = X\dom(1,R) andX, = X\dom({,R’).
Therefore, by (3c) we have theavocZ (%) = ¥; andhavodZ(X,) = X
since by (4) we know thatom(1,R) = havocZ (dom(t,R)) anddom(1,R’) =
havocZ (dom(},R’)) and hence by (1) that = havocZ (X)), sincehavocZ(-)
is idempotent. That ist,(1,R) = 1,R and1,(1,R’) = 1,R’. By defini-
tion Cx(1,R) = 1,R u 1,R, and hence by applying (4), we know that for

271

anyo € dom(Cs(1,R)), [0)es (1) = havodZ([o]e, 1)), becauséo],q =
havoZ ([0]i,z) and[o]z = havocZ([c]z 5). Therefore, for any, o’ € 3,
o1.Ls(1,R) o' iff Joq,...,0, €2, 01,...,0/,_, edom(G(1,R)), such that
o=01,0' =0, andVvi, i <i<n-1 = 0,01 € havoZ([0]]cy(1,m)) =
[0!]es(1,m)- HENCE, we have thag(Cx.(1,R)) = Cx(1,R). Similarly, we ob-
tain1,(Cs(1,R")) = Cs(1,R’). Since by definitiont,R = 1,R’ = Cs(1,R) U

Cs(1,R"), hence we obtait,(1,R = 1,R’) = 1,R = 1,R’ by applying (6).

. It follows by definition thato 1,R’ ¢’ holds iff there existoy,...,0, €
Y andol,...,0/ ; € dom(’) such that for alli, 1 <i <n-1 =
0i, 041 € havoZ([o!]r) ando = 01,0’ = 0,,. SinceR c R’, we know that
dom(R’) c dom(R) and for allo! € dom(R’), we have thafo!]x € [0/]x
Hence,o 1,R’ o’ implies by the monotonicity ohavocZ(-) that there ex-
istoy,...,0, € ¥ andoy,... o, € dom(R) such that for all, 1 < <

n-1 = 0,01 € havo([o]]r) ando = 01,0’ = 0, Which implies

thato 1,R o’ holds. This shows the required property that = 1, R’.

272

Lemma5.7.3.Let Z c T'Var, and lete be an expression such th&l/ (e) ¢ Var,

and letR, R’ € Rinit € PER(X).

1. Forallo e dom R), havoZ([c]r) = []1,z-

2. Forallo,0’ edom(R),o0 t,Ro’ = o Ro’.

3. RuR € Rinit.

4. LetX ¢ TVar andY = TVar\X such thatVo,o’ € dom R), o 1var =
Oltvar = Oix = 0,y and havot’([o]r) = [o]r. Furthermore, suppose
FV(e)nTVar ¢ X. Then for any PER over the values of, we have that

€I(bI_IR€'R,init.
Proof.
1. SinceR € Rini, then there exisK ¢ TVar andY = TVar\ X such that for

all o,0" e dom(R), o)1var = Olivar = 01X =0y andhavod’([o]r) =
[0]r. Now take anyr, 0, € dom(R) and suppose thdt,0,) ¢ R, then,
[01]r N [02]r = @. Hence havod'Var ([0]r) nhavod ' Var([o2]r) = @.
This is straightforward to show, since if there exist [o1]z ando’ € [o2]r
such thahavod ' Var({c}) nhavo'Var({o'}) # @, theno rvar = 0| yar
and thereforer, x = o|,. However,o’ € havod’([o]r) = [0]r = [01]r

violates our initial assumption thf#, |z and[o,] r are disjoint.

Now sinceZ ¢ TVar, we have that for alt|, 05 € dom(R) then(oy,05) ¢
R implieshavoZ([o1]r) nhavoZ([o2]r) = @ and hence, by definition,
o1,Ro' iff there existss” e dom(R) such that, o’ € havocZ ([0]r). That

is, for anyo e dom(R), [o |1z = havocZ ([0]Rr).

2. We have shown from (1) that for amy,os € dom(R) (oy,02) ¢ R im-

plies havodI'Var([o; |g) n havod'Var([o2]r) = @. Furthermore, since

273

Z ¢ TVar, we know thathavoc ([0 |r) = [01]1,#2 andhavocZ ([o2]r) =
[02]1,z- Therefore[oy |1,z N [o2]1,k = @. Thatis, for any,, o, € dom(R),
(01,02) ¢ R = (01,02) ¢ 1,R. The contrapositive of this shows that for

all 0,0’ edom(R),0c 1,R0’ = o Ro’.

. SinceR, R’ € Rinit, then there exisk, X’ ¢ TVar andY = TVar\X and
Y’ = TVar\ X' such that for any, ¢’ € dom(R),havod ([c]r) = [0]r
and ojrvar = Olfvar — 01X = 0|y, and such that for any, o’ ¢
dom(R'),havod”'([o]r/) = [o]r aNd0j1var = 0|y, = O1x = 0
Let X = X u X’ and letY = Y nY7, then it is clear that for alb, o’ €
dom(R) ndom(R’) = dom(R U R'), oy1var = Ojyyer = 0, =0, ¢ FuIr-
thermore, we also know that for anyo’ € dom(Ru R’), havod” ([¢]g) =
[0]r andhavod ([0']#) = [¢']x, hence by (3b) of lemma 5.4.8, we have
thathavod” (havod ([¢]z) nhavod ([0'])) = havod ([o]g N [0']r/) =
havod” ([o]r) nhavod ([0']s) = [¢]r N [¢']&. This means that for any
o e dom(R u R'),havod ([0]rur) = [0]rur. SinceX ¢ TVar and
Y = TVar\X, thenR U R’ € Rinj.

. Firstly, becauselom(e : ¢ u R) ¢ domR), then it is clear that'o, o’ €
dome : ¢ U R),01var = Olivar = Oix = 0,x. Now let FV(e)n
TVar = X’ and letY’ = TVar\X'. Then, by definition, for any «
dome : ¢), havo@’([0]e:¢) = [0]es SiNCee has no free variable iy’
and thus its evaluation is not affected by ttieprojection of states. Since
X’ ¢ X and henc&” c Y”, by applying (3b) of lemma 5.4.8 then for any
o edomle: ¢puR), havod ([o]egur) = havod ([o]es N [o]r) = [0]ep N

[O’]R = [U]e:¢uR- ThUS,e : gb URe Rinit-]

274

Bibliography

[ABO4]

[ABG04]

[ABHR99]

[AFVO1]

[Aga00]

T. Amtoft and A. Banerjee. Information flow analysis in logical
form. In Roberto Giacobazzi, editdrlth Static Analysis Symposium
(SAS), Verona, Italyvolume 3148 ofLecture Notes in Computer

Sciencepages 100-115. Springer-Verlag, 2004.

A. Aldini, M. Bravetti, and R. Gorrieri. A process-algebraic ap-
proach for the analysis of probabilistic noninterferengeurnal of

Computer Securifyl2(2):191-245, 2004.

M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus
of dependency. Ii€onference Record of POPL’99: The 26th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guagespages 147-160, San Antonio, Texas, January 20-22, 1999.

L. Aceto, W. Fokkink, and C. Verhoef. Structural operational seman-
tics. In Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors,
Handbook of Process Algehrahapter 3, pages 197-291. Elsevier
Science, 2001.

J. Agat. Transforming out timing leaks. {@onference Record

of POPL'00: The 27th ACM SIGPLAN-SIGACT Symposium on

275

[AGM92]

[AHS08]

[AHSS08]

[APOS]

[AS07]

[Bac05]

Principles of Programming Languaggsages 40-53, Boston, Mas-
sachusetts, January 19-21, 2000.

S. Abramsky, D. Gabbay, and T. S. E. Maibaum, editétandbook

of Logic in Computer Science, Val Oxford University Press, 1992.

A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked
flows. Theoretical Computer Scienc#02(2-3):82—-101, 2008.

A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
insensitive noninterference leaks more than just a bit. Ptoc.

13th European Symposium on Research in Computer Security (ES-
ORICS’08) volume 5283 ofLecture Notes in Computer Science

Malaga, Spain, October 2008. Springer-Verlag.

A. Aldini and A. Di Pierro. Estimating the maximum information
leakage. International Journal of Information Security’(3):219—

242, 2008.

A. Askarov and A. Sabelfeld. Gradual release: Unifying declassi-
fication, encryption and key release policies. IFEE Symposium
on Security and Privagypages 207-221. IEEE Computer Society,
2007.

M. Backes. Quantifying probabilistic information flow in computa-
tional reactive systems. FProceedings of 10th European Symposium
on Research in Computer Security (ESOR|@8lume 3679 of.ec-
ture Notes in Computer Sciengeges 336—354. Springer, Septem-
ber 2005.

276

[BDO3]

[Ben04]

[BGMO7]

[BLOG]

[BNROS]

[CCT77]

Y. Beres and C. |. Dalton. Dynamic label binding at rime. InPro-
ceedings of the 2003 workshop on New security paradigages
39-46. ACM Press, 2003.

N. Benton. Simple relational correctness proofs for static analyses
and program transformations. ROPL '04: Proceedings of the 31st
ACM SIGPLAN-SIGACT symposium on Principles of programming
languagespages 14-25, New York, NY, USA, 2004. ACM Press.

A. Banerjee, R. Giacobazzi, and |. Mastroeni. What you lose is
what you leak: Information leakage in declassification policies. In
Mathematical Foundations of Programming Semantics (MFP$'07)
volume 173, pages 47—66. Electronic Notes in Theoretical Computer

Science, 2007.

M. Backes and P. Laud. Computationally sound secrecy proofs by
mechanized flow analysis. I8CS '06: Proceedings of the 13th
ACM conference on Computer and communications secyndyes

370-379, New York, NY, USA, 2006. ACM Press.

Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Ex-
pressive declassification policies and modular static enforcement. In
IEEE Symposium on Security and Privapages 339-353. IEEE
Computer Society, 2008.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-

tion of fixpoints. InConference Record of the Fourth ACM Sympo-

277

sium on Principles of Programming Languagpages 238—-252, Los

Angeles, California, January 1977.

[CCT79] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. InConference Record of the Sixth Annual ACM Sym-
posium on Principles of Programming Languagpages 269-282,

San Antonio, Texas, January 1979.

[CC92] P. Cousot and R. Cousot. Abstract interpretation framewds:-
nal of Logic and Computation, 2(4):511-547, August 1992.

[CCO08] S. Cavadini and D. Cheda. Run-time information flow monitoring
based on dynamic dependence graph&RE&S '08: Proceedings of
the 2008 Third International Conference on Availability, Reliability
and Security pages 586-591, Washington, DC, USA, 2008. IEEE

Computer Society.

[CHMO02] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the
leakage of confidential data. In Alessandra Di Pierro and Herbert
Wiklicky, editors, Electronic Notes in Theoretical Computer Sci-

ence volume 59. Elsevier, 2002.

[CHMO5] D. Clark, S. Hunt, and P. Malacaria. Quantified interference for a
while language Electronic Notes in Theoretical Computer Scignce
112:149-166, January 2005. Proceedings of the Second Workshop

on Quantitative Aspects of Programming Languages (QAPL 2004).

278

[CHMO7] D. Clark, S. Hunt, and P. Malacaria. A static analysis duanti-
fying information flow in a simple imperative languagéurnal of

Computer Securityl5(3):321-371, 2007.

[CLNOO] C. Colby, P. Lee, and G. Necula. A Proof-Carrying Code Architec-
ture for Java. InTool section of the Proc. of the 12th International

Conference on Computer Aided Verification (CAV@D)00.

[CMO04] S. Chong and A. C. Myers. Security policies for downgrading. In
Proceedings of the 11th ACM conference on Computer and com-
munications securitypages 198-209, New York, NY, USA, 2004.
ACM Press.

[CMS05] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in infor-
mation flow. INCSFW '05: Proceedings of the 18th IEEE workshop
on Computer Security Foundations, pages 31-45, Washington, DC,
USA, 2005. IEEE Computer Society.

[CPM*98] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stackguard: auto-
matic adaptive detection and prevention of buffer-overflow attacks.
In SSYM'98: Proceedings of the 7th conference on USENIX Se-
curity Symposium, 199%ages 63-78, Berkeley, CA, USA, 1998.
USENIX Association.

[DD77] D. E. Denning and P. J. Denning. Certification of programs for se-
cure information flowCommunications of the ACM, 20(7):504-513,

1977.

279

[Den76]

[Den82]

[DP03]

[End77]

[FGO3]

[GBJS06]

[GHK+03]

[GM82]

D. E. Denning. A lattice model of secure informatiomfl€€ommu-

nications of the ACM, 19(5):236—-243, May 1976.

D. E. Denning Cryptography and Data SecurityAddison Wesley,
1982.

B.A. Davey and H. A. Priestleyntroduction to Lattices and Order

Cambridge University Press, 2 edition, 2003.
H. B. EndertonElements of Set ThearnAcademic Press, 1977.

C. Fournet and A. D. Gordon. Stack inspection: Theory and vari-
ants. ACM Transactions on Programming Languages and Systems

25(3):360-399, May 2003.

G. Le Guernic, A. Banerjee, T. P. Jensen, and D. A. Schmidt.
Automata-based confidentiality monitoring. In Mitsu Okada and
Ichiro Satoh, editorsin Proceedings of 11th Annual Asian Com-
puting Science Conference (ASIAN 2Q0&)lume 4435 of_ecture

Notes in Computer Sciengeages 75—-89. Springer, 2006.

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove,
and D. S. Scott. Continuous Lattices and DomainsCambridge

University Press, Cambridge, 2003.

J. A. Goguen and J. Meseguer. Security policies and security models.
In Proceedings of the IEEE Symposium on Research in Security and
Privacy, pages 11-20, Oakland, CA, April 1982. IEEE Computer

Society Press.

280

[GMO4]

[GMO5]

[Gon99]

[Hal03]

[HROS]

[HS91]

[HS06]

R. Giacobazzi and I. Mastroeni. Abstract non-intezfere: param-
eterizing non-interference by abstract interpretatiorProceedings
of the 31st ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languagepages 186-197. ACM Press, 2004.

R. Giacobazzi and I. Mastroeni. Adjoining declassification and at-
tack models by abstract interpretation. Haropean Symposium on
Programming (ESOP’05) volume 3444 of_ecture Notes in Com-
puter Sciencgpages 295-310. Springer-Verlag, 2005.

L. Gong. Inside Java 2 platform security: architecture, API de-
sign, and implementation. Addison-Wesley Longman Publishing

Co., Inc., 1999.

J. Y. Halpern.Reasoning about Uncertaintyrhe MIT Press, Cam-

bridge, Massachusetts, 2003.

N. Heintze and J. G. Riecke. The SLam calculus: programming
with secrecy and integrity. In ACM, editohCM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL) , San

Diego, Californig pages 365—-377, 1998.

S. Hunt and D. Sands. Binding time analysis: A New PERspective.
ACM SIGPLAN Notice26(9):154-165, September 1991.

S. Hunt and D. Sands. On flow-sensitive security typesPrér.
Principles of Programming Languages, 33rd Annual ACM SIG-
PLAN - SIGACT Symposium (POPL'Q8}harleston, South Car-
olina, USA, January 2006. ACM Press.

281

[HU79]

[Hun91a]

[Hun91b]

[JLOO]

[Kah87]

[Kle90]

[Koh03]

J. E. Hopcroft and J. D. UllmanlIntroduction to Automata The-
ory, Languages, and ComputatioAddison-Wesley, Reading, MA,
1979.

L. S. Hunt.Abstract Interpretation of Functional Languages: From
Theory to Practice Ph.D. thesis, Department of Computing, Impe-

rial College, London, UK, 1991.

S. Hunt. Pers generalise projections for strictness analysis (extended
abstract). IrProc. 1990 Glasgow Workshop on Functional Program-

ming, Workshops in Computing, Ullapool, 1991. Springer-Verlag.

R. Joshi and K. R. M. Leino. A semantic approach to secure infor-
mation flow. Science of Computer Programming, 37(1-3):113-138,
2000.

G. Kahn. Natural semantics. #th Annual Symposium on Theo-
retical Aspects of Computer Sciences on STACS 87, pages 22-39,
London, UK, 1987. Springer-Verlag.

D. Klein. Foiling the cracker: A survey of, and improvements to,
password security. In USENIX, editddNIX Security 1l: USENIX
workshop proceedings, August 27-28, 1990, Portland, Oregon
pages 5-14, pub-USENIX:adr, 1990. USENIX.

J. Kohlas.Information Algebras: Generic Structures for Inference

Springer-Verlag, 2003.

282

[Lau01]

[Lau03]

[Ler03]

[Low02]

[LR93]

[LY99]

[Mac03]

P. Laud. Semantics and program analysis of compuiatiosecure
information flow. In David Sands, editdprogramming Languages
and Systems, 10th European Symposium on Programming, Genova,
Italy, April 2-6, 2001, Proceedingvolume 2028 ofLecture Notes

in Computer Scienggages 77-91. Springer, 2001.

P. Laud. Handling encryption in an analysis for secure information
flow. In Pierpaolo Degano, editoBrogramming Languages and
Systems, 12th European Symposium on Programming, ESOP 2003,
Warsaw, Poland, April 7-11, 2003, Proceeding®lume 2618 of

Lecture Notes in Computer Scienpages 159-173. Springer, 2003.

X. Leroy. Java bytecode verification: Algorithms and formaliza-

tions. Journal of Automated Reasoning, 30(3/4):235-269, 2003.

G. Lowe. Quantifying information flow. I®Proceedings of the 15th
IEEE Computer Security Foundations Workshop (CSFW’payes
18-31. IEEE Computer Society, 2002.

J. Landauer and T. Redmond. A lattice of information. Fro-
ceedings of the Computer Security Foundations Workshop VI (CSFW
'93), pages 65—-70, Washington - Brussels - Tokyo, June 1993. IEEE.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification

Addison-Wesley, 2 edition, 1999.

D. MacKay. Information Theory, Inference, and Learning Algo-

rithms Cambridge University Press, September 2003.

283

[Malo7]

[Mas05]

[McL94]

[MF97]

[Mil99]

[MSZ06]

[MT79]

[Muc97]

P. Malacaria. Assessing security threats of loopiagstructs. In
M. Hofmann and M. Felleisen, editor&OPL, pages 225-235.
ACM, 2007.

I. Mastroeni. On the Role of abstract non-interference in language-
based security. In Kwangkeun Yi, editétrogramming Languages
and Systems, Third Asian Symposium, APLAS 2005, Tsukuba,
Japan, November 2-5, 2005, Proceedingdume 3780 ol ecture

Notes in Computer Sciengeages 418-433. Springer, 2005.

J. McLean. A general theory of composition for trace sets closed
under selective interleaving functions. Pnoc. IEEE Symposium on

Research in Security and Privaqyages 79-93, 1994.
G. McGraw and E. Feltenlava SecurityWiley, 1997.

R. Milner. Communicating and Mobile Systems: Th&alculus

Cambridge University Press, Cambridge, England, 1999.

A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust de-
classification and qualified robustneskurnal of Computer Secu-

rity, 14(2):157—196, 2006.

R. Morris and K. Thompson. Password security: a case history.

Communications of the ACM, 22(11):594-597, 1979.

S. S. Muchnick. Advanced compiler design and implementation
Morgan Kaufmann Publishers, 2929 Campus Drive, Suite 260, San
Mateo, CA 94403, USA, 1997.

284

[MZZ+08]

[NCH*05]

[NL97]

[NNH99]

[OCCO08]

[PAKO2]

[PHWO2]

A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom. Jif: Java information flow. Software release. Located at

http://www.cs.cornell.eduljif, July 2001-2008.

G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
CCured: type-safe retrofitting of legacy softwar&CM Transac-
tions on Programming Languages and Systems, 27(3):477-526, May
2005.

G. Necula and P. Lee. Research on proof-carrying code for
untrusted-code security. IRroceedings of the 1997 Conference
on Security and Privacy (S&P-97pages 204-204, Los Alamitos,
May 4-7 1997. IEEE Press.

F. Nielson, H. R. Nielson, and C. HankirPrinciples of Program

Analysis Springer-Verlag, 1999.

K. R. O'Neill, M. R. Clarkson, and S. Chong. Information-flow
security for interactive programs. IG@SFW '06: Proceedings of
the 19th IEEE workshop on Computer Security Foundatipages
190-201, Washington, DC, USA, 2006. IEEE Computer Society.

S. Prasad and S. Arun-Kumar. Introduction to operational seman-
tics. INnThe Compiler Design Handbopbages 841-890. CRC Press,
2002.

A. D. Pierro, C. Hankin, and H. Wiklicky. Approximate non-

interference. Inl5th IEEE Computer Security Foundations Work-

285

[Plo81]

[PS02]

[RMMGO1]

[Ros06]

[Sab01]

[Sch00]

[Sha48]

shop (CSFW-15 2002), 24-26 June 2002, Cape Breton, Nova Scotia

Canada pages 3—-17. IEEE Computer Society, 2002.

G. D. Plotkin. A structural approach to operational semantics. Re-

port DAIMI FN-19, Aarhus University, September 1981.

B. Pinkas and T. Sander. Securing passwords against dictionary at-
tacks. INCCS '02: Proceedings of the 9th ACM conference on Com-
puter and communications securipages 161-170, New York, NY,

USA, 2002. ACM Press.

P. Ryan, J. McLean, J. Millen, and V. Gligor. Non-interference, who
needs it? Inl4th IEEE Computer Security Foundations Workshop
(CSFW '01) pages 237-240, Washington - Brussels - Tokyo, June
2001. IEEE.

S. RossA first course in probability Prentice Hall, New Jersey, 7

edition, 2006.

A. Sabelfeld.Semantic Models for the Security of Sequential and
Concurrent ProgramsPhD thesis, Chalmers University of Technol-

ogy and Goteborg University, Goteborg, Sweden, May 2001.

F. B. Schneider. Enforceable security polick€M Transaction of

Information and System Securi(1):30-50, 2000.

C. E. Shannon. A mathematical theory of communicafibtie. Bell

System Technical Journal, 27(3):379-423, 1948.

286

[SMO03a]

[SMO3b]

[Smi01]

[SMi03]

[Smi06]

[SMi07]

[SS01]

A. Sabelfeld and A. C. Myers. Language-based infoionatow
security. IEEE Journal on Selected Areas in Communications,

21(1):5-19, January 2003.

A. Sabelfeld and A. C. Myers. A model for delimited information re-
lease. In Kokichi Futatsugi, Fumio Mizoguchi, and Naoki Yonezaki,
editors,ISSS volume 3233 ol_ecture Notes in Computer Science

pages 174-191. Springer, 2003.

G. Smith. A new type system for secure information flow.14th
IEEE Computer Security Foundations Workshop (CSFW, '0dges
115-125, Washington - Brussels - Tokyo, June 2001. IEEE.

G. Smith. Probabilistic noninterference through weak probabilistic

bisimulation. INCSFW, pages 3-13. IEEE Computer Society, 2003.

G. Smith. Improved typings for probabilistic noninterference in a
multi-threaded languagdournal of Computer Security4(6):591—
623, 2006.

G. Smith. Adversaries and Information Leaks (Tutorial). In Gilles
Barthe and Cédric Fournet, editomsustworthy Global Computing,
Third Symposium, TGC 2007, Sophia-Antipolis, France, November
5-6, 2007, Revised Selected Papers, volume 4912 cfure Notes

in Computer Scien¢gages 383-400. Springer, 2007.

A. Sabelfeld and D. Sands. A per model of secure information flow
in sequential programsHigher-Order and Symbolic Computation

14(1):59-91, March 2001.

287

[SS05]

[SS07]

[SSTO7]

[SV98]

[Tar55]

[Vol99a]

A. Sabelfeld and D. Sands. Dimensions and principledeofas-
sification. INCSFW '05: Proceedings of the 18th IEEE Computer
Security Foundations Workshop (CSFW'0OBages 255-269, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

A. Sabelfeld and D. Sands. Declassification: Dimensions and prin-

ciples.Journal of Computer Securit2007.

P. Shroff, S. F. Smith, and M. Thober. Dynamic dependency moni-
toring to secure information flow. 180th IEEE Computer Security
Foundations Symposium, CSF 2007, 6-8 July 2007, Venice, ltaly
pages 203-217, 2007.

G. Smith and D. Wolpano. Secure information flow in a multi-
threaded imperative language. @onference Record of POPL '98:
The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languagepages 355-364, San Diego, California, 19-21
January 1998.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications.

Pacific Journal of Mathematics, 5(2):285-309, June 1955.

D. Wolpano. Formalization and proof of secrecy propertierim
ceedings of the 12th IEEE Computer Security Foundations Work-
shop (CSFW '99)pages 92-97, Washington - Brussels - Tokyo, June
1999. IEEE.

288

[Vol99b]

[VS97]

[VSO00]

[VSI96]

[Win93]

[ZdaO4a]

[Zda04b]

D. M. Volpano. Safety versus secrecy. 3#S '99: Proceedings of
the 6th International Symposium on Static Analysis, pages 303-311,
London, UK, 1999. Springer-Verlag.

D. M. Volpano and G. Smith. A type-based approach to program
security. INTAPSOFT '97: Proceedings of the 7th International
Joint Conference CAAP/FASE on Theory and Practice of Software

Developmentpages 607—-621, London, UK, 1997. Springer-Verlag.

D. Wlpano and G. Smith. Verifying secrets and relative secrecy. In
POPL '00: Proceedings of the 27th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languagesages 268-276,

New York, NY, USA, 2000. ACM Press.

D. Wolpano, G. Smith, and C. Irvine. A sound type system for secure
flow analysis.Journal of Computer Security$(3):167-187, Decem-

ber 1996.

G. Winskel.The Formal Semantics of Programming Languages. The

MIT Press, Cambridge, Massachusetts, 1993.

S. Zdancewic. Challenges for information-flow security.Pia-
ceedings of Programming Language Interference and Dependence

(PLID), August 2004.

S. Zdancewic. A type system for robust declassification. In Stephen
Brookes and Prakash Panangaden, editeles;tronic Notes in The-

oretical Computer Scien¢cgolume 83. Elsevier, 2004.

289

[ZMO1] S. Zdancewic and A. C. Myers. Robust declassification.14th
IEEE Computer Security Foundations Workshopgges 15-23. IEEE

Computer Society Press, June 2001.

290

