
Mobile impurities in one-dimensional
quantum liquids

by

Andrew Stewart Campbell

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

Theoretical Physics Research Group
School of Physics and Astronomy
College of Engineering and Physical Sciences
The University of Birmingham

April 2013



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



CONTENTS

1 Introduction 1

2 The bag of tricks 8

2.1 Bethe ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 One component and Lieb-Liniger . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Two components and Yang-Gaudin . . . . . . . . . . . . . . . . . . . 22

2.2 Bosonisation and conformal field theory . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Luttinger liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Correlation functions of a Gaussian model . . . . . . . . . . . . . . . 31

2.2.3 Conformal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Mobile impurities and the depleton 39

3.1 N and J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Interaction with phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Frictional force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Correlation functions near the edge 46

4.1 The X-ray edge approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 The depleton approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



5 Exact results 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Finite size corrections in the Bose gas . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Some exact results for the 1D Bose gas . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Inverting partial derivatives . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Derivatives of the Lieb-Liniger dispersion . . . . . . . . . . . . . . . . 64

5.3.3 Derivatives of the Yang-Gaudin dispersion . . . . . . . . . . . . . . . 69

5.3.4 Calculation of Γ± . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusions 77

Appendix A Finite size corrections I

A.1 Finite size expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

A.1.1 Particle/hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI

A.1.2 Spinon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII

A.2 Calculating δ± . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIV

A.2.1 Particle/hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIV

List of References XVII



LIST OF FIGURES

1.1 A sketch of the field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The reflection diagonal representation of 2 component scattering . . . . . . . 23

2.2 The transmission diagonal representation of 2 component scattering . . . . . 24

3.1 Impurity propagating in local environment [34] . . . . . . . . . . . . . . . . . 40



Abstract

For a long time the Luttinger liquid has served as the standard low energy description of

gapless one-dimensional quantum systems. More recently, using an effective mobile impurity

model has allowed progress to be made beyond the linearity of the spectrum. In this thesis

we show that the depleton model of mobile impurities can be extended to become equivalent

to the effective impurity model and calculate the dynamic response functions. We also use

exact Bethe ansatz solutions to confirm predictions of the effective model to demonstrate the

reliability of both the depleton model and the response functions.



CHAPTER 1

INTRODUCTION

Systems that are restricted to a single spatial dimension can have very different physics

to those of higher dimensions. The one-dimensionality of the system can be both a help and

a hindrance. Some of the established methods from higher dimensions fail to work in one-

dimension, but there are other methods that, it seems, are only applicable in one-dimension.

The main theme of this thesis is to use one of the helpful properties, exact solubility of certain

models, to test whether some more widely applicable methods do give a good description of

the physics we aim to understand. Along the way we shall see that the exactly soluble models

are interesting in their own right.

Understanding the behaviour of interacting quantum many-body systems is a significant

challenge, we will begin with a brief discussion of what can be done in higher dimensions. The

low energy properties of electrons in a normal metal are described by Fermi liquid theory[31],

to which the concept of a quasi-particle is central. Quasi-particles are long lived excitations

used to describe the low energy behaviour. In normal metals the quasi-particles are similar

to free electrons, they can be labelled by their momenta and their energy is then given by the

dispersion relation. The amplitude of an electron tunneling into the system with momentum

and energy ε(q, ω) is proportional to the spectral function A(q, ω). The spectral function

for a non-interacting system is A(q, ω) ∝ δ(q − ω(q)), when interactions are added back in
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perturbatively this delta function peak widens to become a Lorentzian. The majority of the

spectral weight remains in a small region around the non-interacting peak indicating the

similarity of the free particles and quasi-particles. Turning our attention to bosonic particles

we can also see examples of the perturbative addition of interactions leading to long lived

quasi-particle excitations. The most famous example of this is the solution of the weakly

interacting Bose gas [4]. In this case the quasi-particles describe the excitations above the

condensate ground function. Here the quasi-particles differ substantially from the a free

particle, but the method of perturbatively adding interaction is the same.

Attempts to apply the same scheme in one-dimension failed because the perturbation

theory leads to divergences. Tomonaga [38] was first to find a way to avoid these problems

by taking the non-linear dispersion and linearising around the Fermi points. This linearisation

simplifies the problem and Tomonaga was able to map it onto that of free bosons, the bosonic

excitations being density fluctuations of the underlying fermionic system. A great deal of

progress has been made in calculating the properties of the linearised system and the names

Luttinger[26], Mattis and Lieb[28], Dzyaloshinskii and Larkin[9] feature heavily. Another

major breakthrough was achieved by Haldane [14] who showed that the non-linearity of the

dispersion often did not affect the correlation functions over long distances. This allowed

many more models to be treated in the same way including bosonic systems and spin chains,

leading to the concept of a Luttinger liquid, with many different one-dimensional systems

showing the same universal behaviour.

In contrast to Fermi liquids, when attempting to add the non-linear terms back in per-

turbatively instead of broadening the delta function into a Lorentzian the degeneracy caused

by linearising the spectrum plagues the perturbation theory. Adding the non-linearity was

achieved by realising a connection with another problem, the Fermi edge singularity[27][31][35].

The models consist of an impurity coupled to a Luttinger liquid and allows calculation of

edge singularities for the non-linear Luttinger liquid [17][5][7]. This is the link between mo-
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bile impurities and correlation functions in one-dimension. The exponents describing the

edge singularities have been linked with the dispersion of the impurity [17] and the finite size

spectra through results from conformal field theory. In some exactly soluble models the finite

size corrections can be calculated exactly and using this method the exact exponents of the

singularities have been found [7] [10] [32]. The use of exact solutions to test the reliability of

the phenomenology is the main theme of this thesis.

Mobile impurities play an important part in the understanding of the low energy behaviour

of one-dimensional systems beyond the linear approximation, they have also be studied in

their own right. Impurity physics has been around for a long time, in condensed matter

there are famous problems such as the Kondo effect [20]and mobile impurities in Helium.

More recently developments in ultra-cold atoms have brought experimental systems in low

dimensional regimes [30]. Mobile impurities can be studied in ultra-cold atoms by mixing

atomic species, ’flipping’ some atoms into a different hyperfine state or adding ions to the

system. In each case it is even possible to apply an external force exclusively to the impurities.

The dynamics of an impurity in one-dimension can show unusual behaviour; for example the

dispersion is periodic. This happens because in a system with density n, the background

superfluid can absorb an extra 2πn momentum with no energy cost in the thermodynamic

limit. This periodicity in the dispersion has consequences, using the so called depleton theory

to study the dynamics of an impurity it has been shown that Bloch oscillations are possible

in the absence of a lattice [34].

In this thesis we will show that the depleton theory can be extended to calculate the edge

singularities, the depleton method will make it easy to see connections between calculations

which are less apparent in other methods. Following that we use exact calculations to test

both the application of the depleton model to describe the interaction with phonons by

calculating the backscattering amplitude and the edge singularity theory by checking that

the suggested relationships between the dispersion and the Fermi surface shifts are exact
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Figure 1.1: A sketch of the field

identities.

Before explaining the structure of the thesis we will give a brief overview of the field.

The results of the thesis will connect different areas of research. The areas can be grouped

into three broad blocks. These three blocks are shown in Fig. 1, they are the Bethe ansatz

techniques, the depleton approach and the mobile impurity coupled to a Luttinger liquid.

Under each group title are the most important, for our purposes, aspects of the research.

For the Bethe ansatz we have the exact excitation spectra which we will calculate, the

shift functions which will be central to our calculations and the finite size corrections to the

spectra. We will find new exact relations between the derivatives of the excitation spectra

and the shift functions. These confirm that the shift functions are closely related to the

delta parameters in the way that had been previously predicted by comparing the finite size

corrections. These exact identities are a new addition to the field.
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The N and J parameters in the depleton approach and the delta parameters are clearly

closely related. This can be seen by comparing their definitions. This observation leads

us to a dramatically simpler understanding of the connection between the different correla-

tion functions that we will see how to calculate. Using our new method calculation of one

correlation function can be easily extended to a family of related correlation functions.

Finally we will calculate the frictional force, which is defined in terms of derivatives of the

energy spectra, for the exactly soluble models. We find that it vanishes exactly in all three

cases, this is understandable due to the integrability of the models. These three results are

the most important parts of the work. We will now explain the structure of the thesis where

we explain these results and how they fit into previous work.

We will start by introducing the required background theory, chapter two covers the

topics of Bethe ansatz, bosonisation and conformal symmetry. The single component contact

interacting Bose gas or Lieb-Liniger [25] model will be treated in detail. We derive the Bethe

ansatz equations and then show how to find the ground state and classify the zero temperature

excitations. These excitations come in two types, particle like and hole like as in free fermionic

systems. As well as the zero temperature excitations we will meet the shift function and see

some of it’s unexpected properties. These unexpected properties of the shift function will be

crucial to our exact calculations later on. We will also describe the two component version

called the Yang-Gaudin model [39][11] after the original derivation. The multi-component

case can be treated using the the algebraic Bethe ansatz, but we omit this as despite being a

very elegant approach we do not use it for our results. We choose instead to quote the Bethe

equations. From the Bethe equations we again find the zero temperature excitations, a new

excitation called the spinon appears. The ground state is the same as the one component

case, the spinon is an excitation consisting of changing the ’colour’ of one of the particles.

The spinon is important because it is much more like an impurity, it is distinguishable from

the other particles and has quadratic dispersion at small momenta.
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Also contained in chapter two is an introduction to bosonisation. A phenomenological

derivation of the standard Luttinger liquid Hamiltonian is given and it’s justification is dis-

cussed. We will need to calculate some correlation functions of the Luttinger liquid and we

choose to use the conformal symmetry approach [13], this allows us to efficiently calculate

the results we want for correlation functions of exponents of the fields. These are exactly the

form of correlation functions which will arise later on. The conformal symmetry approach

is convenient because we can show the relationship between the finite size energy spectrum

and correlation functions.

Chapter three discusses the depleton theory [34], which we have already mentioned. We

will see the separation of scales allows the impurity to be thought of as a delta function in

it’s interaction with phonons. These phase shifts N and J will turn out to be very natural

variables especially in the Bethe ansatz language. Important results quoted in this section

include the relation of the shifts in Luttinger liquid fields to the dispersion of the impurity,

which follows from Galilean invariance and the universal coupling of the impurity to the

background. By the end of the chapter we will have the full Lagrangian for an impurity

interacting with a background Luttinger liquid describing the phononic degrees of freedom

of the problem. In the next chapter we will extend the depleton theory to allow calculation

of the edge singularities.

As we have just stated, in chapter four we will extend the depleton theory to cover the

calculation of edge singularities. First, however, we will see how they have been calculated

using a unitary operator to remove the interaction term. This procedure is very similar to

the method used in the Fermi edge calculations and was motivated by this. Once we have

seen what has been done we show how it relates to the depleton model. This is the first

of our own results and we will see how to calculate the edge singularities from the depleton

model. We will show that the results are the same as those previously derived, a benefit

of our approach is that connections between different correlation functions are much more
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easily apparent in the N and J notation.

Chapter five is where we start to use the exact solutions of the Lieb-Liniger and Yang-

Gaudin models to test the depleton theory of mobile impurities in one-dimension. We have

already seen that the exponents describing the edge singularities are related to the finite size

spectra, it is possible to calculate these finite size spectra for the Bethe ansatz soluble models.

The calculation required is to find the corrections to the energy for a large but finite system

in the presence of an excitation. We will show the results and compare with the known finite

size spectra for a shifted Luttinger liquid. The calculations themselves are long and difficult

and are included in the appendix A, we will find that the finite size corrections are given in

terms of the shifts in the Fermi surface position. We now have the exponents expressed in two

different ways; first we have the N and J defined in terms of the dispersion of the impurity

and secondly we have them in terms of the Fermi surface shifts from the finite size analysis.

A natural question to ask is, “are these two approaches consistent?” The answer to this

question is the first of our main exact results. We will show that the suggested relationships

between the derivatives of the dispersion and the Fermi surface shifts are exact identities in

the Lieb-Liniger and Yang-Gaudin systems. Having shown that the depleton theory passes

it’s first test we move on to the next one and calculate the backscattering amplitude exactly

for the particle, hole and spinon. Here we see again that the N and J variables are very

natural, the backscattering amplitude becomes much simpler in this language. We expect

that the backscattering amplitude should vanish for the integrable cases and indeed the

amplitude is exactly zero for the particle, hole and spinon.
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CHAPTER 2

THE BAG OF TRICKS

In this chapter we shall meet some of the techniques available to a physicist working on

1D systems. Specifically, they are the Bethe ansatz methods, bosonisation and conformal

field theory. This list is far from complete and we will make no attempt to provide a full

description of even this incomplete list. We will instead pick and choose just the ideas that

we will use later on. This will result in us scratching the surface of the Bethe ansatz methods

and seeing even less of bosonisation and conformal field theory.

These methods are very different in their approach and in what we can learn by us-

ing them. We shall see that when they are applied in combination their effectiveness can

be greater than the sum of their parts. The Bethe ansatz refers to a group of ideas and

techniques all based on an exact microscopic approach. This means that we start with a mi-

croscopic Hamiltonian and can analytically determine some properties exactly, for example

the ground state wave function, spectrum of excitations and thermodynamics. A downside

is that the method is complicated and it is usually very difficult, if not impossible, to cal-

culate even the simplest correlation functions. A bigger problem is that only a very special

set of Hamiltonians can be solved at all. Fortunately, ultra cold atoms experiments provide

examples where some of these models can be created and studied.

In contrast to Bethe ansatz, bosonisation can be applied widely to one-dimensional gases,
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lattice systems, spin chains and others. It does not depend on the microscopic properties

of the model, but the universal properties instead. This is a huge advantage, however there

are downsides too. The main issue is whether we can be confident that effective model

has captured the physics we are interested in. Clearly experimental verification is the most

important measure, but we can do some checks more easily. If we can find examples where

we can apply both the effective theory and the exact theory then we can check the reliability

of the effective theory. This is where the combination of approaches benefits us. We can use

the Bethe ansatz to give us confidence in more widely applicable, but less rigorously justified

theory.

Some may be concerned that since the Bethe ansatz models are somehow special, equiv-

alence with more generic theory may not be important or may even be misleading. The

important points here are; that the more widely applicable theories are not capable of de-

scribing the exact solubility and that the exactly soluble models are often limits or particular

parameter space points of natural physical models. Therefore we should expect that the

widely applicable models fit with the exact at the special soluble points. We should not,

however, extrapolate properties of the exact systems into the non soluble regions of param-

eter space without great caution.

2.1 Bethe ansatz

Bethe ansatz methods are a collection of techniques for solving some 1D quantum Hamiltoni-

ans exactly. They originate from Bethe’s solution of the Heisenberg magnet over eighty years

ago[3]. Since then further problems have been solved; some of the more notable being the

contact interacting Bose gas[25] and the Hubbard model[24]. Also the techniques themselves

have been extended to calculate more properties of the models. Usually it is possible to find

the ground state wave function, spectrum of elementary excitations and many thermody-
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namic quantities with relative ease[40]. The calculation of correlation functions, however, is

often extremely difficult. Another severe limitation of Bethe ansatz methods is that only a

small number of models can be solved this way and usually any perturbation or sometimes

even adjustment of the parameters prevents solution.

2.1.1 One component and Lieb-Liniger

We will start with the simplest case of identical particles, either bosons or spinless fermions

interacting via a pair potential. Choosing units such that ~ = 1 and m = 1/2 the Hamiltonian

is,

H =
∑
i

∂2
xi

+
∑
i<j

V (xi − xj). (2.1)

Due to conservation of momentum and energy in 1D when two particles with the same mass

scatter, the outgoing momenta are simply a rearrangement of the ingoing momenta and the

asymptotic wave function changes by a phase shift only. Another peculiarity of 1D is that

if we know the wave function in the region R : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ≤ L then we can

reconstruct the whole wave function by using the statistics. With this in mind we make

Bethe’s ansatz that the wave function in R is of the form:

ΨR(x) =
∑
P

a(P ) exp(i
∑
j

λPjxj). (2.2)

Here P = (P1, P2, ..., PN) is a permutation of (1, 2, ..., N), a(P ) is a coeffiecient depending

on this permutation. The λ variables play the role of momentum in the region R. They

are not the momenta of the particles and are called the quasimomenta instead. The a(P )

depend only on the permutation and not how the scattering occurs, for this to be consistent

all scattering events must be equivalent to a sequence of two body scattering events and all

sequences leading to the same permutation must be equivalent. Fortunately there exist some
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pair potentials where this is true. It may seem unlikely that this approach will be exact

for long range pair potentials as we will only be in the asymptotic region at low density.

Surprisingly the result is often exact in the thermodynamic limit. More importantly for the

examples we will be interested in, a zero range potential is always in the asymptotic region.

It is these contact interactions that will will deal with. The simplest non trivial example is

the repulsive contact interacting Bose gas called the Lieb-Liniger model. Spinless fermions

with contact interactions are equivalent to non interacting fermions. The Lieb-Liniger model

of identical bosons with repulsive contact interactions in 1D is one of the most important

Bethe ansatz soluble models, the ground state and elementary excitations at zero temperature

were found by Lieb and Liniger in 1967 [25], the thermodynamics of the model were first

investigated by Yang and Yang [40]. Since then many more results have been found including

some correlation functions . We will only be interested in the zero temperature solutions.

The Hamiltonian is

HLL = −
N∑
i=1

∂2
xi

+ 2c
∑
i>j

δ(xi − xj). (2.3)

If we consider the region R̃ : 0 ≤ x1 < x2 < · · · < xN ≤ L i.e. exclude the parts of R where

the particles interact then the Hamiltonian becomes the free Hamiltonian

HR̃
LL = −

N∑
i=1

∂2
xi
, (2.4)

with the boundary conditions

∂xiψ − ∂xjψ = cψ xi = xj. (2.5)

This is completely equivalent to solving (2.3) in RN .

Let’s see how we go about constructing the wave function in practice, we will use the

method Lieb and Liniger presented [25]. The are other ways of doing this that are more
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powerful, such as the Fermi-Bose mapping [22], but they do not demonstrate the structure

we have described as clearly. We begin by considering the first terms in the sum over

permutations and keeping in mind that the asymptotic wave functions will differ by a phase

we write:

Ψ ∝ exp i(λ1x1 + λ2x2 + . . . )− exp(−iθ(λ1, λ2)) exp i(λ2x1 + λ1x2 + . . . )

+
∑
P ′

a(P ′) exp(i
∑
j

λPjxj). (2.6)

Where P ′ are the other permutations excluding the one we have written explicitly. The

next step is to enforce the boundary conditions (2.5), or more carefully the one boundary

condition at x1 = x2 = y. After canceling like terms this leads to:

i(λ1 − λ2)(1 + exp(−iθ)) = c(1− exp(−iθ)), (2.7)

solving this for θ gives:

θ(λ1, λ2) = 2 arctan

(
λ1 − λ2

c

)
. (2.8)

Having solved for this single permutation we can use the consistency relation to find the full

answer, because any sequence of pair permutations leading to the same overall permutation

must give the same answer we can use any. Lieb and Liniger suggest writing out the numbers

one to n and underneath writing the permutation and drawing a line from each number in

the top row to where it appears in the lower. From this diagram we now multiply by the

factor exp(−iθ(λi, λj)) for each crossing of i and j, once we have got all of the factors this

generates the overall factor a(P ).

Now if we add the normalisation and extend the wave function by symmetry to RN then

12



we get,

Ψ =

{
N !
∏
j>k

((λj − λk)2 + c2)

}− 1
2

(2.9)

×
∑
P

(−1)P
∏

1≤j<k≤N

[λPj − λPk − sgn(xj − xk)ic] exp (i
∑
k

λPkxk). (2.10)

We should note that the wave function is symmetric in x variables but antisymmetric in the

λ variables. A simple limit of the system is the c → ∞ where (2.5) become the same as

fermionic statistics and the wave function is equal to that of non interacting fermions in the

region R. The energy eigenstates are also simultaneously eigenstates of the total momentum

and number operators. The eigenvalues are given by,

E =
∑
j

λ2
j , (2.11)

P =
∑
j

λ1
j , (2.12)

N =
∑
j

λ0
j . (2.13)

If we consider the system with periodic boundary conditions then,

Ψ(x1, x2, . . . , xj, . . . , xN) = Ψ(x1, x2, . . . , xj + L, . . . , xN). (2.14)

This requirement constrains the allowed values of the λ variables to be solutions of,

exp(iλjL) = −
N∏
k=1

λj − λk + ic

λj − λk − ic
j = 1, . . . , N. (2.15)

These are the Bethe equations for the Lieb-Liniger model. Solving these equations allows us

to write down the wave function for a system with periodic boundary conditions, however the
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explicit form of the wave function is rather unwieldy and usually not useful for calculating

other quantities. We will see how we can calculate many properties of the system without

going via the wave function.

The properties of a given state are determined by the solution of (2.15), taking the

logarithm we get,

Lλj +
∑
k

θ(λj − λk) = 2πnj j = 1, . . . , N. (2.16)

θ(x) = 2 arctan
(x
c

)
(2.17)

Where the nj are integers which specify the eigenstate, i.e. a choice of the nj uniquely fixes

the λj. As θ is a monotonically increasing function we can see that if nj > nk then λj > λk.

We should think of the nj as living on an integer valued lattice where double occupancy is

not allowed. The spacing between the λ variables will increase when the spacing between the

corresponding n variables does but it also depends on the position of the other λ as well as

the interaction strength c.

The integer lattice provides us with an easy way to find the ground state of the system,

the energy is E =
∑

j λ
2
j so if we choose the nj symmetrically about zero and as densely as

possible we will get the lowest energy. The ground state is therefore the Fermi sea in the

n lattice, this lattice will be very useful when considering elementary excitations too. The

ground state λ can now be calculated by solving (2.17) with the ground state n. We note

that because (2.15) couples all λ together any excitation above the ground state will affect

all λ.

Will will now consider the system in the thermodynamic limit,

N 7→ ∞, L 7→ ∞, N

L
7→ n. (2.18)
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When we do this we go from having a set of λj to a density ρ(λ) which is defined as,

ρ(λj) = lim
1

L(λj+1 − λj)
. (2.19)

In the thermodynamic limit the ground state Bethe equations become,

ρ(λ)−
∫ q

−q
dµ
K(λ, µ)

2π
ρ(µ) =

1

2π
. (2.20)

Where K(x, y) = 2c/(c2 + (x − y)2) and q is the highest filled quasimomentum state. The

density of the system is given by,

n(q) =

∫ q

−q
ρ(ν)dν. (2.21)

Many of the functions we deal with will be described by integrals of the same form as (2.20).

It will sometimes be advantageous to write the convolution with a kernel in a more compact

operator style.

[K̂f ](x) =

∫ q

−q
dµK(x, µ)f(µ). (2.22)

We will in some cases suppress the dependences even further and write K̂f , it should be

noted that if the function being operated on is a function of more than one variable then the

convolution is always over the first variable. In this compact operator form the ground state

equation (2.20) becomes,

ρ(λ)− 1

2π
[K̂ρ](λ) =

1

2π
(2.23)

or in the most concise notation, (
1− K̂

2π

)
ρ =

1

2π
. (2.24)

Now that we have taken the thermodynamic limit we will choose to work in the grand
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canonical ensemble. We introduce the chemical potential, h, and the ground state energy is,

EGS = L

∫ q

−q
dµρ(µ)(µ2 − h). (2.25)

Now we can consider the elementary excitations above the ground state. They come in two

varieties, particle like and hole like. The particle excitations consist of an extra particle with

quasimomentum |λp| > q being added, hole excitations consist of the removal of a particle

with quasi-momentum |λh| < q. The momentum and energy of these excitations can be

thought of as made up of two parts. The first part is the bare momentum and energy of the

excitation, for the particle they are λp and λ2
p−h respectively. The second part is the dressed

momentum and energy which comes from shifting the quasi-momentum of the other particles.

This occurs because all of the quasi-momenta are coupled through (2.20). To calculate these

shifts we start with (2.15), in the ground state we have,

Lλj +
∑
k

θ(λj − λk) = 2π

(
j − N + 1

2

)
(2.26)

If we add an extra particle with quasi-momentum λp to the system then the new quasi-

momenta λ̃ are defined by,

Lλ̃j +
∑
k

θ(λ̃j − λ̃k) + θ(λ̃j − λp) = 2π

(
j − N + 1

2

)
− π. (2.27)

Subtracting (2.27) from (2.26) and discarding terms of order O(1/L) we get,

L(λj − λ̃j)− θ(λj − λp) + (λj − λ̃j)
∑
k

K(λj, λk)−
∑
k

K(λj, λk)(λk − λ̃k) = π. (2.28)
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We will now introduce the shift function FB, defined as,

FB ≡
λj − λ̃j
λj+1 − λj

. (2.29)

We are using a different definition to the standard one, usually there is a minus sign in case

of the hole. In our definition the shift function is always interpreted in the same way but

each type of excitation has it’s own shift function. As we are about to see the hole shift

function has an extra minus sign. Taking the thermodynamic limit of (2.28) we get,

FB(λ|λp)−
∫ q

−q
dµ
K(λ, µ)

2π
FB(µ|λp) =

π + θ(λ− λp)
2π

. (2.30)

For the hole excitation we remove a particle and the shift function is,

FB(λ|λh)−
∫ q

−q
dµ
K(λ, µ)

2π
FB(µ|λh) = −π + θ(λ− λh)

2π
. (2.31)

We note here that the definitions of the shift function differ from those of Korepin et. al.

[22] which is defined as

F (λ|ν)−
∫ q

−q
dµ
K(λ, µ)

2π
F (µ|ν) =

θ(λ− ν)

2π
. (2.32)

This shift function does not satisfy the correct boundary conditions. However, it will be

useful for doing calculations because it’s symmetries are simpler and it is straight forwardly

related to the FB functions by,

FB(λ|ν) = ±{F (λ|ν) + πρ(λ)} . (2.33)

Where the ± is for particles and holes respectively. Useful properties of the shift function

are F (x, y) = −F (−x,−y) and a rather surprising identity found by Slavnov[21][36], which
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will be essential for many of the calculations we will do, it is:

F (x, y) + F (y, x) = F (x, q)F (y, q)− F (x,−q)F (y,−q). (2.34)

To find a non-linear symmetry relation for a function defined by a linear integral operator

seems very unusual indeed.

We now take a small aside to introduce a new function that will be used in many of our

calculations from now on. R is defined by,

R(λ, ν)−
∫ q

−q
dµ
K(λ, µ)

2π
R(µ, ν) =

K(λ, ν)

2π
. (2.35)

Which can be written in operator form in two different ways,

R =

(
1− K̂

2π

)−1
K

2π
, (2.36)

R =
(

1 + R̂
) K

2π
. (2.37)

From which we can see that,

(
1− K̂

2π

)−1

=
(

1 + R̂
)
. (2.38)

Other properties of R(x, y) that we will need are R(x, y) = R(−x,−y) which is fairly clear

from (A.23) and R(x, y) = R(y, x) which is less clear and is proved in [36].

Now that we have defined the shift function we can write the expressions for the momen-
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tum ∆P and energy ∆E of the elementary excitations, they are,

∆P =λ−
∫ q

−q
dµFB(µ|λ) (2.39)

∆E =λ2 − h− 2

∫ q

−q
dµFB(µ|λ)µ, (2.40)

=λ2 − h− 2

∫ q

−q
dµF (µ|λ)µ. (2.41)

We will now show that ∆P (λp) = k(λp) where,

k(λp) = λp − πn+

∫ q

−q
dµθ(λp − µ)ρ(µ). (2.42)

First we need the result,

2πρ(λ) =

(
1− K̂

2π

)−1

1, (2.43)

=(1 + R̂)1, (2.44)

2πρ(λ)− 1 =

∫ q

−q
dµR(µ, λ) =

∫ q

−q
dµK(µ, λ)ρ(µ). (2.45)

We will also write (2.32) as,

F (ν|λ) =

(
1− K̂

2π

)−1
θ(ν − λ)

2π
, (2.46)

=

(
1− K̂

2π

)−1

−
∫ λ

dy
K(ν, y)

2π
, (2.47)

=−
∫ λ

dyR(ν, y). (2.48)
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We can now evaluate the integral in (2.39):

∫ q

−q
dµFB(µ|λ) =nπ −

∫ q

−q
dµ

∫ λ

dyR(µ, y), (2.49)

=nπ −
∫ λ

dy

∫ q

−q
dµK(µ, y)ρ(mu), (2.50)

=nπ −
∫ q

−q
dµθ(λ− µ)ρ(µ). (2.51)

Substituting this into (2.39) gives (2.42). For hole like excitations the momentum is −k(λ).

We will now show that ∆E(λ) = ε(λ) where,

ε(λ)−
∫ q

−q
dµ
K(λ− µ)

2π
ε(µ) = λ2 − h, (2.52)

where ε(q) = ε(−q) = 0. This can be written as,

ε(λ) = (1 + R̂)(λ2 − h) = λ2 − h+

∫ q

−q
dµR(λ, µ)(µ2 − h). (2.53)

Comparison with (2.40) shows that the statement ∆E(λ) = ε(λ) is equivalent to,

∫ q

−q
dµR(λ, µ)(µ2 − h) = −2

∫ q

−q
dµF (µ|λ)µ. (2.54)

The first integral on the right hand side is,

∫ q

−q
dµR(λ, µ)µ2 = −

∫ q

−q
dµ∂µF (λ, µ)µ2. (2.55)
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Integrating by parts and using Slavnov’s identity (5.14) we get,

∫ q

−q
dµR(λ, µ)µ2 =2

∫ q

−q
dµF (λ|µ)µ− q2(F (λ|q)− F (λ| − q)), (2.56)

=− 2

∫ q

−q
dµF (µ|λ)µ− q2(F (λ|q)− F (λ| − q))

+ 2(F (λ|q)− F (λ| − q))
∫ q

−q
dµF (µ|q)µ. (2.57)

The second integral is,

−h
∫ q

−q
dµR(λ, µ) = h

∫ q

−q
dµ∂µF (λ, µ) = h(F (λ|q)− F (λ| − q)). (2.58)

The extra terms violating the identity are,

−(F (λ|q)− F (λ| − q))
(
q2 − h− 2

∫ q

−q
dµF (µ|q)µ

)
. (2.59)

This is proportional to ∆E(q) and h is chosen such that ∆E(q) = 0 and our identity is

proved. Again for a hole the energy of the excitation is −ε(λ), it is still positive however.

We should also note that the spinon excitation is quadratic at small quasi-momentum and is

the softest mode in the system.

In this section we have solved the Lieb-Liniger model finding the ground state and el-

ementary excitations at zero temperature. The equations for the energy and momentum

of the excitations as well as the shift functions will be needed for later calculations. The

symmetry of the shift function described by Slavnov’s identity will also be needed. Next we

will consider a two component boson system with contact interactions, we will need more

sophistication techniques to deal with it and will have a new type of excitation, the spinon.
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2.1.2 Two components and Yang-Gaudin

We have just seen that the consistency for single component Bethe ansatz are met by the

contact interacting gas. What happens if we have two species of boson? This problem was

first solved by Yang[39] and Gaudin [11], the technique is called nested Bethe ansatz. The

consistency relationship will clearly be more complicated. Before discussing these consistency

relations we need to deal with a technical point.

We should also mention that the related topic of two species contact interacting fermions

was studied earlier by McGuire [29]. This problem is simpler because the particles only

interact with the other species, this is not the case with bosons.

When identical particles scatter from one another we do not need to be concerned with

distinguishing which particle is which after the collision, as they are identical. If we have

more than one component however, say red particles and blue particles, then if two unlike

particles scatter there can be transmission or reflection. If the red particle begins on the left

and transmission occurs then it ends on the right, if it reflects it stay on the left. It turns

out to be helpful to think of the colour of the particles as a quantum number that can be

exchanged, or not, during scattering. Now that the colour of the particles is not fixed we

have a choice when labeling them. If before the scattering, particle one is on the left and

two is on the right, then after the scattering we have two choices as to how we label the

particles. Either the particle on the left or right is particle one. The choice of the particle

on the right being number one is called the transmission diagonal representation Fig.[2.2]

and in this representation reflection corresponds to an exchange of colour quantum numbers

and transmission does not. Alternatively we can choose particle one to always be on the

left, this is called the reflection diagonal representation Fig.[2.1]. In the reflection diagonal

representation transmission corresponds to the exchange of colour quantum numbers.

To discuss the consistency relations we will use the reflection diagonal representation, we
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Figure 2.1: The reflection diagonal representation of 2 component scattering

introduce the scattering matrix:

S(λ) =



Θ 0 0 0

0 R T 0

0 T R 0

0 0 0 Θ


, (2.60)

where we use the same notation as Sutherland [37]. These scattering matrices describe the

scattering of adjacent particles, so S1 scatters the first and second particles, S2 scatters

the second and third and so on. In a Galilean invariant system they can only depend on

the difference of the quasi-momenta, so the scattering matrix for the first pair of particles

having quasi-momenta λ1 and λ2 is written S1(λ1−λ2). We find the consistency relations by

demanding that the scattering matrices obey the same relations that the generators of the
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Figure 2.2: The transmission diagonal representation of 2 component scattering

permutation group. The generators of the permutation group, αj satisfy [37]:

(αjαk)
n(j,k) = I, (2.61)

where,

n(j, k) =


1, |j − k| = 0

3, |j − k| = 1

2, |j − k| > 1.

(2.62)

Let’s see what this implies for our scattering matrices, the first case gives S1(λ1, λ2)S1(λ2, λ1) =

I which tells us that the matrices are unitary which we expect. The third case tells us that the

scattering matrices commute for separated particles, this again we would expect. The second

case is the interesting one, it can be written S1S2S1 = S2S1S2 or including the dependencies
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explicitly:

S1(λ2, λ3)S2(λ1, λ3)S1(λ1, λ2) = S2(λ1, λ2)S1(λ1, λ3)S2(λ2, λ3) (2.63)

These are the famous Yang-Baxter equations and are the consistency relations we have been

looking for.

To find the Bethe equations in the two component case we impose periodic boundary

conditions, to do this we move to the transmission diagonal representation and the equation

is:

eiλjLSj,j−1 . . . Sj,1Sj,N . . . Sj,j+1Ψ = Ψ (2.64)

The solution to this can be found using the algebraic Bethe ansatz technique which is very

clearly explained in [37] and very thoroughly explained in [22]. We will not go into any detail

here, but we will need the Bethe equations for the case of the Yang-Gaudin model with a

single particle of the “blue” kind in a sea of ”red” particles[41]:

Lλj +
N∑
k=1

θ(λj − λk) = 2πnj + θ(2λj − 2ξ) + π. (2.65)

The nj are the integer lattice that we described in the single component case, we now extend

this picture to include the “blue” particle. We put the particles down on the integer lattice

as before and then select one of these particles to be the “blue” one. The quasimomenta of

this particle is ξ, note that we have not added a particle to the system just made one of them

distinguishable from the rest, this will be important.

The ground state of the two component system is the same as the single component case,

so changing the colour of one of the particles in the ground state is an excitation. This

type of excitation we will call a spinon, it is sometimes called a magnon. The shift function,
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momentum and energy of this excitation are found by the same process we used for the

particle and hole excitations. The results are [41]:

F̄ (λ|ξ)−
∫ q

−q
dµ
K(λ, µ)

2π
F̄ (µ|ξ) = −π + θ(2λ− 2ξ)

2π
(2.66)

k(ξ) =

∫ q

−q
dµρ(µ)(π + θ(2µ− 2ξ)), (2.67)

ω(ξ) = − 1

π

∫ q

−q
dµε(µ)K(2µ− 2ξ). (2.68)

Here ε and ρ are the energy and quasimomenta density defined in the single component case.

These are the equations that describe the ”spinon excitation”, they are similar in form to the

equations for the particle and hole excitations with a couple of notable exceptions. Firstly

there are no bare terms in the momentum or the energy, this is because we have not added

a new particle. All we have done is modify the way one of the particles affects the others.

Additionally we see some extra factors of two appearing in the arguments of some functions.

These will not cause us too much trouble but will force us to do our calculations separately

for the spinon, where for the particle and hole it is easier to do one calculation and then use

symmetries to get the result for the other excitation.

This brings the Bethe ansatz introduction to an end, we have seen how the Lieb-Liniger

model is solved and now have the equations we want for this model and the Yang-Gaudin

single spinon excitation case. Later we will use these equations to do much more complicated

calculations, the techniques of resolvent operators, integration by parts and the Slavnov

identity will continue to be our main tools though. In the following section and next two

chapters we will review and then extend the theory of mobile impurities in one-dimension.

These sections will not be very rigorous, but the will be much more widely applicable. We

would like to check that the theory is reliable and we will return to the Bethe ansatz to do

this later.
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2.2 Bosonisation and conformal field theory

We now move away from exact results in favour of some phenomenology, we will see how we

can use bosonisation to find a low energy effective theory for the phononic degrees of freedom

in the one-dimension Bose gas. The effective theory is equivalent to a massless bosonic field

and has a special symmetry which we will exploit, the conformal symmetry. This will allow

us to calculate the types of correlation function we require in our later calculations. We

will also see the restrictions that this symmetry imposes on the correlation functions. The

universal description of gapless one-dimensional systems with linear dispersion is called the

Luttinger liquid. We start with an introduction.

2.2.1 Luttinger liquids

Many one-dimensional models with a linear gapless spectrum belong to the same universality

class, members of this class are known as Luttinger liquids. When we say two models are

in the same universality class, we mean that much of their low energy behaviour can be

described by the same effective theory, even though the models differ in their microscopic

detail and even their statistics. Bosonisation is a method that allows us to find a suitable

low energy effective theory. The name bosonisation is an artifact of the study of fermionic

one dimensional systems where the collective excitations are described by bosonic fields. It

is a little misleading as it gives the impression that it is not suitable for bosonic systems.

This is not the case, in fact a strength of bosonisation is that fermions and bosons can be

treated on the same footing. The differences in the statistics will show up in the correlation

functions. In this section we will see how to derive the low energy effective theory, see how

we can use the Bethe ansatz results to fix the parameters for exact models and motivate the

following section on conformal field theories.

We begin with an introduction to bosonisation using the notation and results in the
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excellent review by Cazalilla[6]. A one dimensional bosonic system can be described using

second quantised field operators obeying the bosonic commutation relations [Ψ(x),Ψ†(x′)] =

δ(x− x′). If we write the operators in polar form,

Ψ†(x) =
√
ρ(x)eiφ(x). (2.69)

Then the commutation relations of the original field operators imply that,

eiφ(x′)ρ(x)e−iφ(x′) − ρ(x) = δ(x− x′). (2.70)

Keeping in mind that we are looking for a low energy effective theory we split the fields into

fast and slow parts,

ρ(x) = ρ<(x) + ρ>(x), (2.71)

φ(x) = φ<(x) + φ>(x). (2.72)

The slow fields are the part of the fields that have fourier components below a cut off in

energy and frequency. The cut-offs cannot generally be determined exactly and only the

order is known. At low energies the density fluctuates around the mean value ρ0 and it is

useful to define a new operator by ρ<(x) = ρ0 + Π(x). Introducing another new field Ξ(x)

related to the density by 1
π
∂xΞ(x) = ρ0 + Π(x) we can think of Ξ(x) as a field that takes the

value nπ at the position of the nth particle. Using this we rewrite the density,

ρ(x) =
∑
i

δ(x− xi) = ∂xΞ(x)
∞∑

n=−∞

δ(Ξ(x)− nπ). (2.73)
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Where xi is the position operator of the ith particle. Using the Poisson summation formula,

∞∑
j=−∞

f(j) =
∞∑

k=−∞

∫ ∞
−∞

dzf(z)e2kπiz, (2.74)

we can write the density in the desired form,

ρ(x) =
1

π
∂xΞ(x)

∞∑
n=−∞

e2niΞ(x). (2.75)

The n = 0 term is just the slowly varying field we have described. The n = ±1 terms

correspond to excitations with momentum k ≈ ±2πρ0, these excitations involve a particle

being excited from one Fermi surface to the other. This is a low energy excitation despite it

not having low momentum.

In our new representation the field operators are:

Ψ†(x) ∼ (ρ0 + Π(x))
1
2

∞∑
n=−∞

e2niΞ(x)e−iφ(x). (2.76)

We can construct the fermionic field operator ΨF by Jordon-Wigner transformation,

ΨF (x) = Ψ(x)eiΞ(x). (2.77)

In order to find an effective low energy theory we take the general Hamiltonian for a

system of particles in a one-dimensional box length L interacting via pair potential and

substitute the leading order terms in our expansions. The general Hamiltonian is,

H =
~2

2m

∫ L

0

dx∂xΨ
†(x)∂xΨ(x) +

1

2

∫ L

0

dxdyV (x− y)ρ(x)ρ(y). (2.78)
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Substituting in (2.75) and (2.76) the Hamiltonian takes the form,

HLL =
~
2π

∫ L

0

dx
(
νJ(∂xφ(x))2 + νN(∂xΞ(x)− πρ0)2

)
. (2.79)

The parameters νN and νJ are the phase and density stiffness respectively. In bosonisation

there are almost as many conventions for choice of fields and parameters as there are articles.

We will choose to use θ(x) = Ξ(x) − xπρ0 and parameters c =
√
νNνJ and K =

√
νJ/νN .

c is the speed of sound and K is the Luttinger parameter which describes the strength of

quantum fluctuations. In terms of these fields and parameters the Hamiltonian is,

HLL =
~c
2π

∫ L

0

dx

(
K(∂xφ(x))2 +

1

K
(∂xθ(x))2

)
. (2.80)

The parameters in the model can be fixed either experimentally, numerically or in some cases

by comparison with exact solutions.

Next we will ask what happens if we apply periodic boundary conditions to the system.

In terms of the original fields the boundary conditions are Ψ†(x) = Ψ†(x+ L), applying this

to (2.76) we find,

Ξ(x+ L) = Ξ(x) + Ñπ (2.81)

φ(x+ L) = φ(x) + J̃π. (2.82)

Where Ñ is the number operator and J̃ is an operator with even integer eigenvalues. Both

of these operators commute with the Hamiltonian and therefore they are conserved. These

eigenvalues label the distinct topological states the system can be in and the tilde is used

to distinguish them from the N and J variables we will meet in the depleton theory. The

similarity in the notation is deliberate.

We will now switch to the Lagrangian representation to discuss the correlation functions

30



of the model. Making the usual Legendre transformation to the Lagrangian and integrating

over time we get the action:

S =
1

2π

∫
dxdt

[
−∂xθ∂tφ−

c

K
(∂xθ(x))2 − cK(∂xφ(x))2

]
. (2.83)

We have set ~ = 1 for convenience and will now Wick transform to imaginary time τ = it,

the action is:

S =
1

2π

∫
dxdτ

[
−i∂xθ∂τφ−

c

K
(∂xθ(x))2 − cK(∂xφ(x))2

]
. (2.84)

Having got to the low energy theory we want, we could use standard techniques to calculate

the correlation functions [12], but we choose to use another method. The method of choice

is to use the conformal symmetry to find the correlation functions and also connect the

exponents in the singularities tot the finite size correction to the energy. This will allow us

the match quantities from the Bethe ansatz with the parameters in our effective impurity

model.

2.2.2 Correlation functions of a Gaussian model

We want to understand how to calculate correlation functions of the low energy model, we

will start by calculating the correlation functions of a massless bosonic field Θ. The reason

we do this is that it leads to the simplest calculation of correlation functions and can be

related to (2.83) very easily. It will also allow us to see how the properties of the correlation

functions of the massless bosonic field correspond to the properties of our low energy model.

To begin with we will follow the development in Gogolin, Nersesyan and Tsvelik [13]; the
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action is:

S =
1

2

∫
R

dxdτ
[
c−1(∂τΘ)2 + c(∂xΘ)2

]
. (2.85)

R can be an arbitrary region of the (x, τ) plane, but to begin with this is just the usual

R : 0 < x < L, 0 < τ < β with β the inverse temperature which is infinite in all cases

we consider. To calculate correlation functions we continue in the usual way and define the

generating functional:

Z[η] =

∫
R

DΘeiS+η(x)Θ(x). (2.86)

This integral can be done by Fourier transforming the field and η and shifting the field to

remove the linear term leaving a Gaussian integral. The result is:

Z[η]/Z[0] = exp

[
1

2
η(ξ)G(ξ, ξ′)η(ξ′)

]
. (2.87)

Here the Green’s function is defined as,

−(c−1∂2
τ + c∂2

x)G(x, τ ;x′, τ ′) = δ(x− x′)δ(τ − τ ′). (2.88)

The result is easily generalised to arbitrary R by simply substituting the corresponding

Green’s function. It is very useful to introduce the complex co-ordinates z = τ + ix/c and

z̄ = τ + ix/c at this point. When we are considering a large system of size L we find the

Green’s function is:

G(z, z̄) =
1

4π
ln

(
L

zz̄ + a2

)
, (2.89)
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a is a short distance cut-off which is required to stop ultra-violet divergences appearing, as

we will see in a moment. The correlation functions we will be interested in later on are those

of exponents of bosonic fields. These are particularly easy to construct from our generating

functional, if we choose:

η(ξ) = i
N∑
j=1

βjδ(ξ − ξj), (2.90)

then using (2.87) we get:

< exp(iβ1Θ(ξ1)) . . . exp(iβNΘ(ξN)) >= exp

[
−
∑
j<k

βjβkG(ξj, ξk)

]
exp

[
−1

2

∑
j

β2
jG(ξj, ξj)

]
.

(2.91)

It should be clarified that the βj are not related to the inverse temperature. Substituting

(2.88) we find that:

< exp(iβ1Θ(ξ1)) . . . exp(iβNΘ(ξN)) >=
∏
j<k

(zjkz̄jk
a2

)(βjβk/4π)
(
L

a

)−(
P
j βj)/4π

. (2.92)

In all of the cases we deal with
∑

j βj = 0 so the L/a term is one, we also notice that the

correlation function can be factorised leading to:

< exp(iβ1Θ(ξ1)) . . . exp(iβNΘ(ξN)) >=
∏
j<k

(zjk
a

)(βjβk/4π)∏
j<k

( z̄jk
a

)(βjβk/4π)

. (2.93)

This factorisation may seem innocuous, but combined with the knowledge that the bosonic

exponents form a basis it tells us that when we compute correlation functions we can treat the

analytic and anti-analytic parts of the fields completely independently. Or order to make this

explicit we split the Θ field into it’s analytic and anti-analytic parts Θ(z, z̄) = χ+(z)+χ−(z̄).
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We define the field dual to Θ by:

Φ(z, z̄) = χ+(z)− χ−(z̄), (2.94)

Now we are ready to explain the connection with (2.83), the fields Θ and Φ are scaled versions

of θ and φ:

θ

π
=

√
K

2π
Θ, (2.95)

φ =

√
π

2K
Φ. (2.96)

The actions are identical to each other once this identification is made.

We want to calculate exponents of fields using the factorisation and therefore define the

analytic and anti-analytic bosonic exponents:

A(β, z) ≡ exp

[
i

2
β(Φ(z, z̄) + Θ(z, z̄))

]
= exp(iβχ+(z)), (2.97)

Ā(β̄, z̄) ≡ exp

[
i

2
β̄(Φ(z, z̄)−Θ(z, z̄))

]
= exp(iβ̄χ−(z̄)). (2.98)

Which make calculation of the pair correlation function easy, it is:

< A(β, z1)Ā(β̄, z̄1)A(−β, z2)Ā(−β̄, z̄2) >

= (z12)−β
2/4π(z̄12)−β̄

2/4π =
1

|z12|2d

(
z12

z̄12

)S
. (2.99)

We have introduced some new notation here d and S are called the scaling dimension and
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the conformal spin respectively, they can be written as:

d =
1

8π
(β2 + β̄2) = ∆ + ∆̄, (2.100)

S =
1

8π
(β2 − β̄2) = ∆− ∆̄. (2.101)

∆ and ∆̄ are called the conformal dimensions. More interesting than the new notation is

noticing that the branch cut singularities in (2.99) will only cancel out to give a uniquely

defined correlation function if:

β2/4π − β̄2/4π = 2S = integer. (2.102)

This means that the only uniquely defined, and therefore physical, fields have either integer

or half integer conformal spin. This requirement can also be written in terms of coefficients

of the θ/π and φ fields. If we start with the exponent:

exp i

(
J
θ

π
+Nφ

)
, (2.103)

we can calculate 2S using the rescaling (2.96) . We find that the requirement for a uniquely

defined function is:

NJ

2π
= integer. (2.104)

We are currently unsure how to interpret this, or even whether it is significant. We would like

to better understand the implications of the analytic structure of the correlation function.

In this section we have seen how to calculate correlation functions of a Gaussian model

when the region R is the entire plane. The pair correlation function will be very important
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later on.

< A(β, z1)Ā(β̄, z̄1)A(−β, z2)Ā(−β̄, z̄2) > (2.105)

= (z12)−2∆(z̄12)−2∆̄ (2.106)

The exponents are:

∆ = β2/8π, (2.107)

∆̄ = β̄2/8π. (2.108)

In the next section we will see how to use the conformal symmetry to write the conformal

dimensions in terms of finite size contributions to the energy. Later we will use the Bethe

ansatz to calculate these conformal dimensions for the integrable models we have discussed.

2.2.3 Conformal symmetry

At the beginning of the last section we wrote the action for the Gaussian model defined on

an arbitrary region R of the (x, τ) plane. We then continued assuming that we meant a

large rectangle. However, (2.91) is valid for any R provided we substitute the correct Green’s

function, there is a trick for doing this. If we know the mapping z(ξ) that takes the region

R to the entire plane then it can be shown that [13]:

G(ξ1, ξ2) = − 1

2π
ln |z(ξ1)− z(ξ2)| − 1

4π
ln(|∂ξ1z(ξ1)∂ξ2z(ξ2)|). (2.109)
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Substituting this into (2.91) we can write the analytic part of the pair correlation function,

to get the full correlation function we just multiply by the anti-analytic part:

D(ξ1, ξ2) =
1

(z(ξ1)− z(ξ2))2∆
(∂ξ1z(ξ1)∂ξ2z(ξ2))∆. (2.110)

We want to relate the correlation functions in an infinite system R : −∞ < x <∞;−∞ <

τ < ∞ to those in a finite system R : 0 < x < L;−∞ < τ < ∞ where both are at T = 0.

The relevant mapping that takes us from the infinite plane to the infinite strip is:

z(ξ) = exp(2πξ/L), (2.111)

z̄(ξ̄) = exp(2πξ̄/L). (2.112)

Using this we can write the full pair correlation function on the infinite strip:

D(ξ1, ξ2)D̄(ξ1, ξ2) =

(
π/L

sinh[π(ξ1 − ξ2)/L]

)2∆(
π/L

sinh[π(ξ̄1 − ξ̄2)/L]

)2∆̄

. (2.113)

If we take the limit that the separation is large then (2.113) becomes:

D(ξ1, ξ2)D̄(ξ1, ξ2) =
(π
L

)∆+∆̄

exp

[
−2π

L
(ξ1 − ξ2)∆

]
exp

[
−2π

L
(ξ̄1 − ξ̄2)∆̄

]
. (2.114)

Using ξ1 = τ1 + ix1 and ξ1 = τ2 + ix2 we can find the dependence on

D(ξ1, ξ2)D̄(ξ1, ξ2) =
(π
L

)∆+∆̄

exp

[
−2π

L
τ12(∆ + ∆̄)

]
exp

[
−2π

L
ix12(∆− ∆̄)

]
. (2.115)

To connect the conformal dimensions to the finite size energy corrections we write the
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correlation function in the Lehmann representation:

D(τ12, x12)D̄(τ12, x12) =
∑
n

| < 0| exp
[
exp(iβχ(0) + iβ̄χ̄(0))

]
|n > |2 exp[−Enτ12 − iPnx12],

(2.116)

where En and Pn are the energy and momentum of the state |n >. The main point here

isn’t the precise relationship between the exponents, but that the finite size corrections are

functions of the conformal dimensions of the operators. In practice we will compare the finite

size corrections of different models and match parameters between the two. This is how we

will first connect the Bethe ansatz equations with the parameters of the effective theory.

We now know how to calculate certain correlation functions of the Luttinger liquid, we

have also seen that the finite size contributions to the energy can be related to these via

the conformal transformation. In the next chapters we will see why it is these correlation

functions that are needed to calculate the spectral function and dynamic structure factor

near the edges.
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CHAPTER 3

MOBILE IMPURITIES AND THE DEPLETON

In the previous chapter we saw how bosonisation and conformal field theory can be used

to describe the low energy dynamics of one-dimensional systems. In this chapter we will

be concerned with a mobile impurity moving through the system. The depleton model of

Schecter et. al. [34] describes how the treat the interaction between the impurity and

phonons in the system, this chapter is essentially a review of the part of this work we will

use. The depleton is a quasiparticle made up of the impurity and the non-linear distortion of

the background fluid that accompanies it. Key to understanding the interaction between the

depleton and the phononic excitations is the separation of length scales. The relevant length

scale over which the non-linear distortion falls to zero is the healing length of the background

liquid ξ = 1/mc which is much less than the wavelength of the phonons ∼ 1/ρ0. This large

separation of scales means that we can treat the depleton as point like in it’s interactions with

the phonons. The interaction of a general point like scatterer with the phonons is dependent

on only two phase shifts in the phononic fields which can be parameterised by N and J the

number of particles removed from the background and the phase drop across the scatterer.

We begin with the hydrodynamic description of the system [33], the Lagrangian is:

L0(µ, n) =

∫
dx(µn− e0(n)), (3.1)
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V -V

Figure 3.1: Impurity propagating in local environment [34]

where µ is the chemical potential, n is the density and e0 is the energy density. At equilibrium

the density is fixed by the chemical potential and we can write the grand canonical potential,

Ω(µ) = −L0(µ, n(µ)). (3.2)

Introducing an impurity moving with V = Ẋ into the system and transforming to the co-

moving frame we see that the impurity will experience a modified chemical potential and

superfluid velocity. Using the Galilean invariance we find these to be:

j′ = −nV µ′ = µ+mV 2/2. (3.3)

The grand canonical potential is affected by the impurity, in the co-moving frame the extra
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contribution due to the impurity is:

Ω′d(j
′, µ′) = E ′d − µ′Nd, (3.4)

where the energy E ′d in the co-moving frame can be related to the lab frame by E ′d =

Ed − PdV +mNdV
2/2. This leads to the expression for the Lagrangian of the depleton:

Ld(V, n) = PdV − Ed + µNd = −E ′d + µ′Nd = −Ω′d(j
′, µ′). (3.5)

3.1 N and J

We now introduce the N and J variables as the linear response to variations of µ′ and j′,

dΩ′d(j
′, µ′) = Jdj′ +Ndµ′, J = ∂j′Ω

′, N = ∂µ′Ω
′. (3.6)

In equilibrium the N and J are fixed by µ′ and j′, but in the depleton model they become

independent variables. This, we will see shortly, will be how we describe the interaction with

phonons. To use this idea we Legendre transform to:

Hd(J,N) = Ω′d − j′J − µ′N, (3.7)

and then write the Lagrangian for the impurity as:

L =
1

2
MV 2 − j′J − µ′N −Hd(J,N). (3.8)
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If we now express j′ and µ′ in terms of V and n then we get the Lagrangian in the form we

want:

L =
1

2
(M −mN)V 2 + nV J − µN −Hd(J,N). (3.9)

The momentum can be defined by the standard formula:

P = ∂VL = (M −mN)V + nJ, (3.10)

which we rearrange for the velocity,

V (P, J,N) =
P − nJ
M −mN

. (3.11)

Combining (3.9),(3.10) and (3.11) we get to the Hamiltonian expressed in the variables we

want:

H(P, J,N) =
1

2

(P − nJ)2

M −mN
+ µN +Hd(J,N) (3.12)

As we have already stated, in the equilibrium case the N and J are fixed, we want to find

these values for a given momentum and density of the system so that we can relate the

equilibrium Hamiltonian to the dispersion of the impurity,

H(P, J0(P, n), N0(P, n)) =
1

2

(P − nJ0)2

M −mN0

+ µN0 +Hd(J0, N0) = E(P, n). (3.13)
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The velocity can be written in terms of the dispersion as V0 = ∂PE(P, n) which gives us the

first of the equation we need to fix the equilibrium values N0 and J0:

V0(P, n) =
P − nJ0

M −mN0

. (3.14)

The other equation comes from differentiating (3.12) with respect to n, this gives us:

∂nE(P, n) = ∂nµN0 − V0(P, n)J0. (3.15)

These equations define the equilibrium values N0 and J0 in terms of the derivatives of the

dispersion of the impurity, explicitly these relationships are:

N0 =
1

m(c2 − V 2)
(V (P −MV ) + n∂nE) (3.16)

J0 =
1

m(c2 − V 2)

(
mc2

n
(P −MV ) +mV ∂nE

)
. (3.17)

Where we have written V we mean ∂PE and we have used ∂nµ = mc2/n. As we will use

these equilibrium N and J we will drop the subscripts from now on.

3.2 Interaction with phonons

We also want to understand how the impurity will interact with the phononic degrees of

freedom. We will use the approach of Popov [33] and describe the dynamics by slowly

varying density ρ = ∂xφ/m and velocity u = ∂xθ/π fields, along with a modification of the

chemical potential given by:

µ→ µ− ∂tφ−
mu2

2
. (3.18)
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Moving to the co-moving frame the j′ and mu′ that the impurity experiences are:

µ′ = µ− ∂tφ−
mu2

2
+
m(V − u)2

2
= µ+

MV 2

2
− (∂tφ+ V ∂xφ), (3.19)

j′ = −(n+ ρ)(V − u) = −nV − 1

π
(∂tθ + V ∂xθ). (3.20)

We have used the continuity equation ∂tθ = −π(n + ρ)u to rewrite the j′ term. The extra

parts of the local chemical potential and local super current can both be written as full time

derivatives of the θ and φ fields at the position of the impurity as,

µ′ = µ+
MV 2

2
− d

dt
φ(X, t), (3.21)

j′ = −nV − 1

π

d

dt
θ(X, t). (3.22)

Substituting these into (3.9) we can see that the interaction part of the Lagrangian that we

generate is,

Lint = N
d

dt
φ(X, t) +

J

π

d

dt
θ(X, t). (3.23)

We will use this expression to two different ways, sometimes we will use it to tell us the source

terms that should appear in the phononic action due to a fixed trajectory of an impurity.

Later we will see that this will allow efficient calculation of some dynamic correlation functions

in one-dimensional systems. Alternatively we can think of N and J as dynamic variables

conjugate to the phononic fields at the position of the impurity. This is the approach used

by Schecter et al. [34] to study the dynamics and Bloch oscillation of impurities. Combining

(3.23) and (3.12) we can write the full Lagrangian describing the mobile impurity interacting

with the phonons:

Ltotal = PẊ −H(P, J,N) + Lint + Lphonons. (3.24)
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This is the expression we will use to calculate the correlation functions in the next chapter.

3.3 Frictional force

At finite temperature the fluctuations of the background can cause a viscous friction force,

the form of this frictional force has been calculated [34]. It is given by:

Ṗ = Ffriction = −16π3

15
|Γ±|2

T 4

c2

(
c2 + V 2

c2 − V 2

)
V. (3.25)

The amplitude Γ± contains the information about the impurity dispersion it is defined as:

Γ±(P, n) = −1

c

[
M

m
∂PJ + J∂PN −N∂PJ + ∂nN

]
. (3.26)

We expect that the integrable excitations should not decay via phonons and because of this

we expect that for the integrable cases Γ± = 0. This was shown for the grey soliton, which

is an excitation of the the classical integrable Gross-Pitaevskii equation. We will show that

Γ± exactly vanishes for both particle and hole excitations of the Lieb-Liniger model and the

spinon in the Yang-Gaudin case.

The depleton model has been used to describe the dynamics of mobile impurities in one-

dimension. In the next chapter we show how to use the depleton model to calculate dynamic

correlation functions. The back scattering amplitude Γ will reappear later too. We will use

the Bethe ansatz equations to exactly calculate Γ as defined (3.26) starting from the exact

equations for the dispersion.
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CHAPTER 4

CORRELATION FUNCTIONS NEAR THE EDGE

So far when we have considered mobile impurities in one-dimensional systems we have had

in mind that the relevant experiments would involve individual excitations traveling through

the system. There is at least one other reason for studying mobile impurities and that is

they can be used to construct effective theories to calculate dynamic response functions.

This area of application is related to the so called X-ray edge problem and has borrowed

many ideas from this work. The approach used by many people is to write down an effective

mobile impurity Hamiltonian coupled to a Luttinger liquid[16] and using the method of

Schotte and Schotte [35] remove the interaction term with a unitary transformation. The

parameters of the model can be related to the dispersion of the impurity in Galilean invariant

systems[16][2] and to the finite size scaling of the spectrum using conformal field theory[41].

Using the conformal field theory results the singularities at the edge of support have been

calculated for the Lieb-Liniger [15] and Yang-Gaudin[41] systems. In this chapter we will

extend the depleton theory to calculate these dynamic response functions and find the same

results as have been found before. We will see that the connection between the different

correlation functions can be understood naturally in the language of the depleton.

The dynamic response functions we are interested in are the dynamic structure factor
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(DSF) and the spectral function. The DSF, defined as:

S(q, ω) =

∫
dxdxe−iqxeiωt < ρ(x, t), ρ(0, 0) >, (4.1)

and is the linear response due to an external field that couples to the density. The spectral

function A(q, ω) = − 1
π
=G(q, ω) with,

G(q, ω) = −i
∫
dxdte−iqxeiωt < T (ψ(x, t)ψ†(0, 0)) >, (4.2)

is proportional to the probability of a particle with energy ω and momentum q tunneling into

the system. The aim is to calculate the singularities in the dynamic response functions they

will be of the form:

S(q, ω), A(q, ω) ∼ const+

∣∣∣∣ 1

ω ± ε1(2)(q)

∣∣∣∣µ (4.3)

With different values of µ for different correlation functions and for each type of excitation.

We will use µ1 for the particle edge in the DSF and µ+ for the particle edge in the spectral

functions as examples.

4.1 The X-ray edge approach

The X-ray edge approach to the problem is to start with an effective model for the system[17],

this is a high energy particle interacting with a phononic background. Already we can see
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similarities with the depleton theory. The Hamiltonian is H = H0 +Hd +Hint where,

H0 =
c

2π

∫
dx

[
K(∇θ)2 +

1

K
(∇φ)2

]
, (4.4)

Hd =

∫
dxd†(x)

[
ε(k)− ivd

∂

∂x

]
d(x), (4.5)

Hint =

∫
dx

(
VR∇

θ − φ
2π

− VL∇
θ + φ

2π

)
d(x)d†(x). (4.6)

Where d†(x) creates a particle with momentum k and velocity vd. In direct analogy with the

Fermi edge case the interaction term can be removed by unitary transformation. The Hint

term is removed by the unitary transformation U †HU , with

U † = e
−i
R
dx
“
δ+(k)

2π
[θ̃(x)−φ̃(x)]− δ−(k)

2π
[θ̃(x)+φ̃(x)]

”
d(x)d†(x)

.

Here φ = φ̃
√
K and θ = θ̃/

√
K and the δ± are related to VL,R by

(VL − VR)/
√
K =− δ−(vd + v) + δ+(vd − v),

(VL + VR)
√
K =− δ−(vd + v)− δ+(vd − v). (4.7)

By considering a uniform density variation and then separately a uniform current variation

Imambekov and Glazman [16] were able to find a model independent relation between the

δ± and derivatives of the dispersion, it is

δ±(k)

2π
=

1√
K

(
k
m
− ∂ε(k)

∂k

)
±
√
K
(

1
π
∂ε(k)
∂n

+ v
K

)
2
(
±∂ε(k)

∂k
− v
) . (4.8)
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Equation (4.8) can be split into two parts, one of which does not depend on the details of

the impurity.

δ±(k)

2π
=

1√
K

(
k
m

)
±
√
K
(

1
π
∂ε(k)
∂n

)
2
(
±∂ε(k)

∂k
− v
) ∓ 1

2
√
K
, (4.9)

Kamenev and Glazman [19] have derived similar equations for the spinor Bose liquid.

Once the interaction term has been removed using (4.7) the singularities can be calculated

using standard techniques [12], the examples we give are:

µ1 = 1− 1

2

(
1√
K

+
δ+ − δ−

2π

)2

− 1

2

(
δ+ + δ−

2π

)2

, (4.10)

µ+ = 1− 1

2

(
δ+ − δ−

2π

)2

− 1

2

(
δ+ + δ−

2π

)2

. (4.11)

They are similar in form but differ by 1/
√
K, the depleton variables make it very easy to see

the reasons for the extra terms that appear .

4.2 The depleton approach

Now we will extend the depleton theory to calculate the results found using the unitary

transformation to remove the interaction term. If ω and q are much larger than other energy

and momentum scales in the problem then we can look for a saddle point that will give us

the leading contribution to the DSF and spectral function. Here we will follow the work of

Iordanskii and Pitaevskii closely[18]. In the functional integral representation we can write

the DSF as:

S(q, ω) =

∫
dXdTD(ρ)D(φ)e−iqXeiωTρ(X,T )ρ(0, 0)eiS, (4.12)
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where S in the exponential is general action for a Bose field,

S =

∫
dxdtρ∂tφ−

∫
dtH(ρ, φ). (4.13)

φ is canonically conjugate to ρ. We split the integration over ρ(x, t′) and φ(x, t′) into three

parts,

I. −∞ < t < 0 (4.14)

II. 0 < t < T (4.15)

III. T < t <∞. (4.16)

The fields ρ, φ are zero at infinity and because of this the Hamiltonian is zero on the I and

III sections of the action. We now look for the saddle point by varying the exponential in

the integral, first we vary with respect to T which gives,

iω + i∂TSII + i∂TSIII = 0. (4.17)

Using ∂tSIII = HIII = 0 we find −∂tSII = HII = ω we find that the energy is equal to ω on

part II of the trajectory, an expected result. Next a variation of ρ(0, 0) and ρ(x, t) a carried

out,

ρ(x, t)→ ρ0(x+ a, t), ρ(x, 0)→ ρ0(x+ b, 0). (4.18)

Where a and b are small constants, it was shown[18] that this variation will tell us that the

momentum is equal to q on part II of the contour. The main contribution to the DSF is

given by a trajectory with energy and momentum ω and q.

We have seen that the DSF and spectral function are dominated by configurations with
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fixed energy and momentum. There is a special case when ω and q are such that they lie

very close to the particle or hole excitation spectra; then the configuration must consist

of the particle or hole excitation plus some low energy excitations. We can use this idea

to calculate the DSF and spectral function near the excitation spectra by choosing a high

energy trajectory satisfying the energy and momentum conditions and using the depleton

model to couple it to the low energy states. The trajectory we want is that of a high energy

excitation that has momentum q and appears at (0, 0) and is removed at (X,T ). Using this

trajectory and the depleton Langrangian we arrive at the action:

S = qX − E(q)T +
J(q)

π
θ̇(X,T ) +Nφ̇(X,T ) +

∫
dtLph. (4.19)

In fixing the trajectory of the high energy excitation we have also fixed the Φ(q)and N(q)

coupling parameters and the relationship X = V T with V = ∂kE(k) the velocity of the

excitation. The full time derivative of the φ(X,T ) and θ(X,T ) can be broken into chiral

components:

θ(X,T )

π
=

√
K

π
(χ+(X,T ) + χ−(X,T )), (4.20)

φ(X,T ) =

√
π

K
(χ+(X,T )− χ−(X,T )). (4.21)

The interaction term then becomes:

Φ(q)

π
θ̇(X,T ) +Nφ̇(X,T ) =

Φ(q)

π

√
K

π
(χ̇+(X,T ) + χ̇−(X,T ))

+Nφ̇(X,T )

√
π

K
(χ̇+(X,T )− χ̇−(X,T )). (4.22)

We can now use the property of the chiral fields χ±(x, t) = χ±(x∓ ct) and calculate the full

time derivative for the field evaluated at X = V T , we get χ̇±(X,T ) = (V ∓ c)∂xχ±(X,T ).
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Substituting this in we get the same form of interaction as the Fermi edge case. We can

identify the parameters in each case by comparing coefficients or by comparing the definitions

from the dispersion, either way we get:

N = −
√
K
δ+ − δ−

2π
(4.23)

J

π
= −

√
1

K

δ+ + δ−
2π

. (4.24)

The exponent µ can be written in terms of the N and J variables:

µ = 1− 1

2K
N2 − K

2

(
J

π

)2

. (4.25)

We have calculated the singularity in the DSF and the spectral function, but we have a

problem; the divergence is apparently the same for both cases. We need to understand what

has gone wrong. The difference we are looking for appears because the operators appearing

in the DSF does not change the number of particles in the system but the field operator in the

Green’s function does. We can now see that when we introduce the source terms we should

consider whether the operator moves us to a different topological sector of the low energy

model or not. We could also choose ω and q such that q is not in the region 0 < q < 2πn

then the excitation is moving the system into a different topological sector corresponding to

some amount of flux through the system.

Let’s go through some examples to illustrate the idea. The exponent µ+ for the particle

edge in the spectral function is correct because the particle excitation changes the number

of particles by one and so does the operator in the correlation function. However µ1 for the

same edge in the DSF does need correcting because the density operator does not change
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particle number. In this case the exponent is:

µ1 = 1− 1

2K
(N − 1)2 − K

2

(
J

π

)2

, (4.26)

where we reduce N by one to correct for the discrepancy. The advantage of this method is

that the original formula is always the same we just need to find the right correction terms.

If we want the exponent for the DSF at the hole edge then we should add one to N. The

general method is this; the edge that you are interested in defines the type of excitation the

N and J are calculated from. You then have to compare the number of particles added by

that type of excitation with the number of particles added by the operator in the correlation

function and correct for any difference by changing N.

The spectrum is periodic in momentum, if we are outside the region 0 < q < 2πn then

the exponent will change. This effect has been dealt with in the Fermi edge approach [17],

in this case the depleton language explains the connection between the different topological

sectors. All you have to do is calculate how many multiples of 2πn have been added and

add the same number of multiples of 2π onto J . For example, if we want the particle edge

exponent in the region 2πn < q < 4πn then it is:

µ1 = 1− 1

2K
(N − 1)2 − K

2

(
J

π
+ 2

)2

, (4.27)

where we have the same correction to N as previously and have added 2π to J . These extra

terms are precisely the terms that appear in the X-ray edge approach that we mentioned

earlier. Using the depleton variables makes it easy to see how the exponents are connected

and why.
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4.3 Concluding remarks

This chapter explains the relationship between the depleton theory and the mobile impurity

model. We have seen that the mobile impurity model can be derived from the depleton model.

More importantly we have seen that the language of the depleton model makes connections

between different correlation functions transparent. The simplicity of the connections be-

tween the different exponents is due to the underlying symmetry and gauge invariance of the

problem. Because of the gauge invariance of the model the shifts due to the impurity and

changes in the topological sector can be treated equivalently. This leads to a simple recipe for

finding the correlation functions near an excitation spectrum. We should use the dispersion

associated with that impurity to calculate the N and J variables and then correct for any

disparity between the number of particles and flux added to the system by the impurity and

the operator in the correlation function.
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CHAPTER 5

EXACT RESULTS

5.1 Introduction

In this chapter we will see how we can use the Bethe ansatz to give us confidence in the

depleton theory of mobile impurities and dynamic correlation functions. We do this by

taking equalities from the effective and in general non-integrable theory and showing they

hold exactly for the integrable cases. The first case we deal with are the N and J variables

that appear in the exponents of the divergence near the single particle excitations. We have

defined N and J in terms of derivatives of the dispersion, we also saw how they should

be connected with the finite size spectra from the conformal symmetry. We will calculate

the finite size spectra of the integrable models and by matching the results see that the N

and J can be written in terms of the Bethe ansatz shift functions evaluated at the Fermi

surface. This method was pioneered by Periera et al. [32] and complements and argument

given by Cheianov and Pustilnik[7] and Imambekov and Glazman[16]. This means we have

two different definitions of the same quantities and suggests that there should be a way of

expressing the derivatives of the energy in terms of the Fermi surface shifts. We will take the

expressions for the dispersion from the Bethe ansatz and show that the proposed relationship

with the Fermi surface shifts is an exact identity. This should give us great confidence in the
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effective theory, even when the model we apply it to is non-integrable.

Another quantity that is derived in the depleton model is the amplitude for phonon

interaction Γ±. Similarly to the case of the grey soliton we would expect that Γ± = 0 for

excitations of the integrable models. Γ± is defined in terms of derivatives of the N and

J functions, again in the integrable cases we can calculate these exactly. We will see that

they, rather non-trivially, vanish as expected. This gives us confidence that the interaction

between the depleton and phonons can be trusted.

We would like to jump straight to the calculation of the derivatives of the energy, because

these are the quantities that turn up in our description of the coupling to phonons. It turns

out that to do these calculations requires a lot of knowledge about the shift functions and

the derivatives of the shift functions we begin by listing the partial derivatives with respect

to all natural variables of F (ν, µ) and ρ(λ) for reference. We list just the derivatives of the

F rather than FB functions because they are simpler and we can reconstruct those for FB

easily. In most cases it is better to use the F functions throughout the calculation and swap

back to the correct shift function at the end.

∂νF (ν, λ) = R(ν, λ)− F (q, λ)R(ν, q) + F (−q, λ)R(ν,−q), (5.1)

∂λF (ν, λ) = −R(ν, λ), (5.2)

∂qF (ν, λ) = F (q, λ)R(ν, q) + F (−q, λ)R(ν,−q), (5.3)

∂λρ(λ) = −ρ(q)(R(λ, q)−R(λ,−q)), (5.4)

∂qρ(λ) = ρ(q)(R(λ, q) +R(λ,−q)). (5.5)

We will now derive these results. First up is the derivative of F with respect to it’s first

argument ∂νF (ν, λ). We first use the symmetry of the kernel, ∂νK(µ, ν) = −∂µK(µ, ν) and
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then integrate by parts. We will use these steps on many occasions.

∂νF (ν, λ)−
∫ q

−q
dµ∂νK(µ, ν)F (µ, λ) =

K(ν, λ)

2π

∂νF (ν, λ) +

∫ q

−q
dµ∂µK(µ, ν)F (µ, λ) =

K(ν, λ)

2π

∂νF (ν, λ)−
∫ q

−q
dµK(µ, ν)∂µF (µ, λ) =

K(ν, λ)

2π

− K(ν, q)

2π
F (q, λ)

+
K(ν,−q)

2π
F (−q, λ). (5.6)

We then use the linearity and compare with the definitions of R and F to get,

∂νF (ν, λ) = R(ν, λ)− F (q, λ)R(ν, q) + F (−q, λ)R(ν,−q). (5.7)

The derivative with respect to the second variable is more straight forward:

∂λF (ν, λ)−
∫ q

−q
dµK(µ, ν)∂λF (µ, λ) = −K(ν, λ)

2π

∂λF (ν, λ) = −R(ν, λ). (5.8)

To calculate ∂qF (ν, λ) we use ∂q
∫ q
−q dxf(x) = f(q) + f(−q) to expand,

∂qF (ν, λ)−
∫ q

−q
dµK(µ, ν)∂qF (µ, λ) =

K(ν, q)

2π
F (q, λ) +

K(ν,−q)
2π

F (−q, λ)

∂λF (ν, λ) = R(ν, q)F (q, λ) +R(ν,−q)F (−q, λ). (5.9)
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The derivatives of ρ can be calculated in a similar fashion.

∂λρ(λ)−
∫ q

−q
dµ∂λK(µ, λ)ρ(µ) =0

∂λρ(λ) +

∫ q

−q
dµ∂µK(µ, λ)ρ(µ) =0

∂λρ(λ)−
∫ q

−q
dµK(µ, λ)∂µρ(µ) =− K(q, λ)

2π
ρ(q)

+
K(−q, λ)

2π
ρ(−q). (5.10)

∂λρ(λ) = −ρ(q) (R(λ, q)−R(λ.− q)) . (5.11)

∂qρ(λ)−
∫ q

−q
dµK(µ, λ)∂qρ(µ) =

K(q, λ)

2π
ρ(q)

+
K(−q, λ)

2π
ρ(−q). (5.12)

∂qρ(λ) = ρ(q) (R(λ, q) +R(λ,−q)) . (5.13)

In addition to these results we will also need the results due to Korepin and Slavnov [21]

[36] that give properties of the F function. We will list them again here for convenience:

F (ν, λ) = −F (λ, ν) + F (ν, q)F (λ, q)− F (ν,−q)F (λ,−q). (5.14)

We will also use

2πρ(λ) = 1 + F (λ,−q)− F (λ, q), (5.15)
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and

1

2πρ(q)
= 1− F (q,−q)− F (q, q). (5.16)

These results can be combined to give,

F (λ, q)− F (λ,−q) = −2πρ(q)[F (q, λ)− F (−q, λ)], (5.17)

and

F (λ, q) + F (λ,−q) = − 1

2πρ(q)
[F (q, λ) + F (−q, λ)]. (5.18)

These last two relationships suggest there is something special about the sum and difference

of the Fermi surface shifts, this is indeed the case and we shall see that they are linked to

the N and J variables.

5.2 Finite size corrections in the Bose gas

We have seen already that the correlation functions of systems which have conformal sym-

metry are related to the finite size correction to the energy. Now we will use this to find the

correspondence between the N and J variables that have been defined in terms of derivatives

of the dispersion and some quantities that are known from the Bethe ansatz, specifically

the shifts of the Fermi surfaces due to the excitation. The idea is to calculate the finite

size corrections exactly in the presence of the integrable excitations and match these with

finite size corrections to a shifted Luttinger liquid. This will give the correspondence between

the two approaches and allow us to find the exponents for the divergence in the dynamic

correlation functions in terms of the Fermi surface shifts. We are cheating slightly when we
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do this because previously we found the exponents expressed as the finite size corrections to

energy and momentum. However the approach we will use is equivalent and easier to do.

This matching leads us to ask whether this correspondence between the N and J and the

Bethe ansatz quantities is exact. This is precisely what we will tackle in the next section.

We begin with the finite size corrections in the case of a shifted Luttinger liquid these

were given [32], the correction to the energy is:

∆E =
2πc

L

[
1

4K
(∆N − nimp)2 +K(D − dimp)2

]
. (5.19)

Here we have used the same notaion as Korepin, ∆N is the change in particle number due

to an excitation we will see that it can be identifies with the σ we introduced as the ratio

of masses in the impurity model. D is the number of particles scattered round the back of

the ring, this is related to the calculation of the correlation functions in different topological

sectors by adding 2π to the J variable. In [32] the nimp and dimp are given in terms of the

shifts of chiral fields:

nimp = −
√
K
δ+ − δ−

2π
, (5.20)

2dimp = − 1√
K

δ+ + δ−
2π

. (5.21)

We have already seen how these variables are related to the depleton N and J , so we can

identify that:

N = nimp, (5.22)

J

π
= 2dimp, (5.23)
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substituting these into (5.19) we get:

∆E =
2πc

L

[
1

4K
(∆N −N)2 +K

(
D − J

2π

)2
]
. (5.24)

Here we see the seperation into the parts due to changing topological sector ∆N and D and

the parts due to scattering of the particles at the Fermi surface. This seperation is what

we exploited in the last chapter to see the connection between correlation functions for the

particle and holes and those for q → q + 2πn.

To find the terms from the Bethe ansatz solutions that correspond to the N and J

variables we must calculate the spectrum of a large but finite system that contains one

of the integrable excitations. This will give us the desired correspondence between shifted

Luttinger liquids and integrable models. The technique[8] [10] is to write the energy in the

finite system by using the Euler-Maclaurin formula for approximating sums ny integrals. The

Euler-Maclaurin formula is:

1

L

n2∑
n=n1

f
(n
L

)
=

∫ n+
L

n−
L

dxf(x) +
1

24L2

(
f ′
(n−
L

)
− f ′

(n+

L

))
+ . . . . (5.25)

You then have to carefully expand all of the quantities in the expression for the energy keeping

track of the order in 1/L at each stage. The calculation is tricky and long, the particle and

hole case was done by [32] and the results for the spinon case are in [41] but without the

derivation. My version of the calculation for all three types of excitation that we have been

dealing with are given in detail in A.

5.3 Some exact results for the 1D Bose gas

This section contains the results we have been working towards. By matching our definitions

of N and J from derivatives of the dispersion and finite size analysis we can predict a
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relationship between the shift of the Fermi surfaces and the derivatives of the dispersion.

Here we show that these are indeed exact identities in the Bethe ansatz soluble models we

have discussed. We also have the definition of the back scattering amplitude in the depleton

model which we calculate for each of the integrable excitations.

5.3.1 Inverting partial derivatives

We would like to relate the derivatives of energy with respect to momentum P and density

n to the scattering phases at the fermi surface. However, all of the equations we have for the

energy are in terms of the Bethe ansatz variables λ and q. In this section we will write ∂P

and ∂n in terms of ∂λ and ∂q.

 ∂q

∂λ

 =

 ∂qn ∂qP

0 ∂λP


 ∂n

∂P

 (5.26)

We will begin by calculating ∂qn. We get,

∂qn(q) = ρ(q) + ρ(−q) +

∫ q

−q
dν∂qρ(ν) (5.27)

= 2ρ(q) +

∫ q

−q
dν∂qρ(ν). (5.28)

Using (5.5) we get,

∂qn(q) = 2ρ(q) + ρ(q)

∫ q

−q
dµ[R(µ, q) +R(µ,−q)] (5.29)

= 2ρ(q)[1 +

∫ q

−q
dµR(µ, q)] (5.30)

= 2ρ(q)[1 + F (q, λ)− F (−q, λ)] (5.31)

= 4πρ2(q). (5.32)
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Next up is ∂qP , we begin by differentiating the momentum,

∂qP = −
∫ q

−q
dµ∂qFB(µ, λ)− [FB(q, λ) + FB(−q, λ)]. (5.33)

Using (5.3) the first integral is,

∫ q

−q
dµ∂qFB(µ, λ) =

∫ q

−q
dµ[R(µ, q)FB(q, λ) +R(µ,−q)FB(−q, λ)] (5.34)

= [FB(q, λ) + FB(−q, λ)]

∫ q

−q
dµR(µ, q) (5.35)

= [FB(q, λ) + FB(−q, λ)](F (q,−q)− F (q, q)) (5.36)

= [FB(q, λ) + FB(−q, λ)](2πρ(q)− 1). (5.37)

Substituting back gives,

∂qP (λ) = −2πρ(q) (FB(q, λ) + FB(−q, λ)) . (5.38)

Lastly we need ∂λP , differentiating we get,

±∂λP (λ) = 1 +

∫ q

−q
dµ∂λθ(λ− µ)ρ(µ) (5.39)

= 1 +

∫ q

−q
dµK(λ, µ)ρ(µ) (5.40)

= 2πρ(λ). (5.41)

Putting this all together leads to:

 ∂q

∂λ

 =

 4πρ(q)2 −2πρ(q)[FB(q, λ) + FB(−q, λ)]

0 2πρ(λ)


 ∂n

∂P

 , (5.42)
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which can be inverted to give,

 ∂n

∂P

 =

 1
4πρ(q)2

FB(q,λ)+FB(−q,λ)
2πρ(λ)

0 1
2πρ(λ)


 ∂q

∂λ

 . (5.43)

We can now go back and forth between (P, n) and (λ, q), which will allow us to take our

expressions from the depleton model and relate them to the definitions of energy, momentum

etc. from the Bethe ansatz.

5.3.2 Derivatives of the Lieb-Liniger dispersion

In this section we will calculate the derivatives of the dispersion from the Bethe ansatz

equations and then convert them to derivatives with respect to momentum and density

and express them in terms of the scattering phases. We begin by treating the particle like

excitation. To calculate ∂qε(λ, q) we differentiate (2.52) and get,

∂qε(λ, q)−
∫ q

−q
dµ
K(λ− µ)

2π
∂qε(µ, q) = −∂qh. (5.44)

Where the boundary terms are zero because ε(q, q) = ε(−q, q) = 0. Comparing with (2.20)

gives,

∂qε(λ, q) = −2πρ(λ)∂qh. (5.45)

Rewriting this in terms of F and introducing the sound velocity v = ∂qh and the Luttinger

parameter K = 4π2ρ2(q) we have

∂qε(λ, q) = −v
(

1 +
√
K[FB(q, λ)− FB(−q, λ)]

)
. (5.46)
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Next we calculate ∂λε(λ, q). We begin by differentiating (2.52) to get,

∂λε(λ, q)−
∫ q

−q
dµ
∂λK(λ− µ)

2π
ε(µ, q) = 2λ. (5.47)

Using ∂λK(λ− µ) = −∂µK(λ− µ) and integrating by parts we get,

∂λε(λ, q)−
∫ q

−q
dµ
K(λ− µ)

2π
∂µε(µ, q) = 2λ. (5.48)

Which we can write as,

(
1− K̂

2π

)
∂λε(λ, q) = 2λ, (5.49)

or equivalently:

∂λε(λ, q) = (1 + R̂)2λ. (5.50)

Explicitly the integral is:

∂λε(λ, q)− 2λ = R̂[2λ] = 2

∫ q

−q
dµR(µ, λ)µ (5.51)

To evaluate this we first rewrite (2.32) as,

(
1− K̂

2π

)
F (ν, λ) = −

∫ λ

dµ
K(ν − µ)

2π
. (5.52)

Which leads to,

F (ν, λ) = −
∫ λ

dµ

(
1− K̂

2π

)−1
K(ν − µ)

2π
= −

∫ λ

dµR(ν, µ). (5.53)
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Now integrating by parts in (A.37) gives,

∂λε(λ, q)− 2λ = −2q(F (λ, q) + F (λ,−q)) + 2

∫ q

−q
dµF (λ, µ). (5.54)

We now use the Slavnov identity (5.14),

∫ q

−q
dµF (λ, µ) =−

∫ q

−q
dµF (µ, λ) (5.55)

+ F (λ, q)

∫ q

−q
dµF (µ, q) (5.56)

− F (λ,−q)
∫ q

−q
dµF (µ,−q).

Substituting the momentum we get,

∫ q

−q
dµF (λ, µ) =− (λ− πn− P (λ)) (5.57)

+ F (λ, q) (q − πn− P (q)) (5.58)

− F (λ,−q) (−q − πn− P (−q)) .

We now have,

∂λε(λ, q) =− 2P (λ) + 2πn (1− F (λ, q) + F (λ,−q)) (5.59)

− 2F (λ, q)P (q) + 2F (λ,−q)P (−q)

Using P (q) = 0 and P (−q) = −2πn this gives,

∂λε(λ, q) = + 2P (λ) + 2πn (1− F (λ, q)− F (λ,−q)) . (5.60)
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Using the Slavnov identities and changing F to FB we get

∂λε(λ, q) =2P (λ) + v
√
K (FB(q, λ) + FB(−q, λ)) . (5.61)

We can relate the derivatives with respect to λ and q to those w.r.t P and n. Rewriting

(5.42) in terms of the Luttinger liquid parameter K and the sound velocity v we get, for the

particle,

 ∂q

∂λ

 =

 K
π
−
√
K[FB(q, λ) + FB(−q, λ)]

0 1 +
√
K[FB(q, λ)− FB(−q, λ)]


 ∂n

∂P

 . (5.62)

This gives us

∂qε = −v
(

1 +
√
K[FB(q, λ)− FB(−q, λ)]

)
(5.63)

=
K

π
∂nε−

√
K[FB(q, λ) + FB(−q, λ)]∂P ε, (5.64)

and

∂λε = 2P (λ) + c
√
K (FB(q, λ) + F (−q, λ)) (5.65)

=
(

1 +
√
K[FB(q, λ)− FB(−q, λ)]

)
∂P ε. (5.66)

If we compare this to the definitions of N and J remembering that for the particle σ = 1:

∂PE(P, n)(σ −N) = 2P − cKJ

π
,

∂nE(P, n) =
cπ

K
N − J∂PE(P, n), (5.67)
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then we can identify N and J as:

N = −
√
K (FB(q|λ)− FB(−q|λ)) ,

J

π
= − 1√

K
(FB(q|λ) + FB(−q|λ)) . (5.68)

This is precisely the relationship that has been suggested using the results from other ap-

proaches. We have found it by the most direct and only rigorous method. Using some of the

identities for F we can also write N as:

N = F (λ|q)− F (λ| − q) = ±(1− 2πρ(λ)) (5.69)

Using V = ∂P ε and rearranging we find,

 V − v V + v

−V + v V + v


 FB(q, λ)

FB(−q, λ)

 =

 √K (∂nεπ + c
K

)
− 1√

K
(2P − V )

 . (5.70)

Inverting this to find the FB functions we get,

FB(q, λ) =
1

2

1

V − c

{√
K

(
∂nε

π
+

c

K

)
+

1√
K

(2P − V )

}
, (5.71)

FB(−q, λ) =
1

2

1

V + c

{√
K

(
∂nε

π
+

c

K

)
− 1√

K
(2P − V )

}
. (5.72)

Which match exactly the definitions of δ± in the work of Glazman and Imambekov [17]

These results are for the particle excitation, we can get the results for the hole easily by
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using the mapping:

FB → −FB,

ε→ −ε,

P → −P. (5.73)

Which transforms the equations for the particle to those for the hole. Applying this to (5.72)

gives the equations for the Fermi shifts in the hole case.

FB(q, λ) =
1

2

1

V − v

{√
K

(
∂nε

π
− v

K

)
+

1√
K

(2P + V )

}
, (5.74)

FB(−q, λ) =
1

2

1

V + v

{√
K

(
∂nε

π
− v

K

)
− 1√

K
(2P + V )

}
. (5.75)

5.3.3 Derivatives of the Yang-Gaudin dispersion

We now want to do the same calculation for the spinon excitation in the Yang-Gaudin

model. We will proceed using similar techniques but will find that the calculation is much

more complicated. We begin in the same way by finding the transformation from derivatives

in k, n to those in ξ, q. Differentiating the spinon momentum we find:

∂ξk(ξ) =

∫ q

−q
dλρ(λ)∂ξθ(2λ− 2ξ),

= −
∫ q

−q
dλρ(λ)∂λθ(2λ− 2ξ),

=

∫ q

−q
dλ∂λρ(λ)θ(2λ− 2ξ)− ρ(q)[θ(2q − 2ξ) + θ(2q + 2ξ)],

= −ρ(q)

∫ q

−q
dλ(R(λ, q)−R(λ,−q))θ(2λ− 2ξ)− ρ(q)[θ(2q − 2ξ)− θ(−2q − 2ξ)].

(5.76)
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Careful inspection suggests that we should write this as:

∂ξk(ξ) = 2πρ(q)(1 + R̂)

(
−θ(2q − 2ξ)

2π
+
θ(−2q − 2ξ)

2π

)
,

= 2πρ(q)
(
F̄ (q, ξ)− F̄ (−q, ξ)

)
. (5.77)

Next we compute ∂qk(ξ):

∂qk(ξ) = π∂qn+

∫ q

−q
dλ∂qρ(λ)θ(2λ− 2ξ) + ρ(q)[θ(2q − 2ξ) + θ(−2q − 2ξ)]. (5.78)

Expanding the ∂qρ(λ) = ρ(q)(R(λ, q) +R(λ,−q)) this time we have:

∂qk(ξ) = π∂qn+ 2πρ(q)(1 + R̂)

(
θ(2q − 2ξ)

2π
+
θ(−2q − 2ξ)

2π

)
,

= 4π2ρ(q)2 + 2πρ(q)(1 + R̂)

(
θ(2q − 2ξ)

2π
+
θ(−2q − 2ξ)

2π
− 2πρ(q)

)
,

= −2πρ(q)
(
F̄ (q, ξ) + F̄ (−q, ξ)

)
. (5.79)

We are now in position to write the transformation:

 ∂q

∂ξ

 =

 4πρ(q)2 −2πρ(q)[F̄ (q, ξ) + F̄ (−q, ξ)]

0 2πρ(q)
(
F̄ (q, ξ)− F̄ (−q, ξ)

)

 ∂n

∂k

 , (5.80)

The next step is to calculate the derivatives of the spinon dispersion. The dispersion is:

ω(ξ) = − 1

π

∫ q

−q
dλε(λ)K(2λ, 2ξ). (5.81)
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First we take the derivative with the respect to ξ:

∂ξω(ξ) = − 1

π

∫ q

−q
dλε(λ)∂ξK(2λ, 2ξ),

= − 1

π

∫ q

−q
dλ∂λε(λ)K(2λ, 2ξ),

= − 1

2π

∫ q

−q
dλ (2P (λ) + 2πn[1− F (λ, q)− F (λ,−q)]) ∂λθ(2λ− 2ξ). (5.82)

Here we have integrated by parts remembering that the boundary terms vanish because

ε(±q) = 0 and substituted ∂λε(λ) (5.60). The first part of this integral is of the form:

∫ q

−q
dλP (λ)∂λθ(2λ− 2ξ),

= −
∫ q

−q
dλ∂λP (λ)θ(2λ− 2ξ) + P (q)θ(2q − 2ξ) + P (−q)θ(2q + 2ξ),

= −
∫ q

−q
dλ2πρ(λ)θ(2λ− 2ξ)− 2πnθ(2q + 2ξ),

= −2π[k(ξ)− πn]− 2πnθ(2q + 2ξ). (5.83)

The other part of the integral is:

∫ q

−q
dλ[1− F (λ, q)− F (λ,−q)]∂λθ(2λ− 2ξ). (5.84)

Integrating by parts gives:

∫ q

−q
dλ[1− F (λ, q)− F (λ,−q)]∂λθ(2λ− 2ξ)

=

∫ q

−q
dλ[∂λF (λ, q) + ∂λF (λ,−q)]θ(2λ− 2ξ)

+ [1− F (q, q)− F (q,−q)]θ(2q − 2ξ)

− [1 + F (q, q) + F (q,−q)]θ(−2q − 2ξ). (5.85)
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We know how to expand the derivatives of F and get:

∫ q

−q
dλ {R(λ, q)− F (q, q)R(λ,−q)− F (q,−q)R(λ,−q)} θ(2λ− 2ξ)

+

∫ q

−q
dλ {R(λ,−q)− F (q,−q)R(λ, q)− F (q, q)R(λ,−q)} θ(2λ− 2ξ)

+[1− F (q, q)− F (q,−q)]θ(2q − 2ξ)

−[1 + F (q, q) + F (q,−q)]θ(−2q − 2ξ). (5.86)

Changing the sign on the dummy variable in both terms containing R(λ,−q) and using the

symmetry R(x, y) = R(−x,−y):

∫ q

−q
dλ {R(λ, q)− F (q, q)R(λ,−q)− F (q,−q)R(λ, q)} θ(2λ− 2ξ)

+

∫ q

−q
dλ {R(λ,−q)− F (q,−q)R(λ,−q)− F (q, q)R(λ,−q)} θ(2λ− 2ξ)

+[1− F (q, q)− F (q,−q)]θ(2q − 2ξ)

+[1− F (q, q)− F (q,−q)]θ(−2q − 2ξ) + 2θ(2q + 2ξ). (5.87)

We can now take out a factor of 1 − F (q, q) − F (q,−q) = 1/2πρ(q) and use the operator

notation:

1

2πρ(q)

{
(1 + R̂)[θ(2q − 2ξ) + θ(−2q − 2ξ)]

}
+ 2θ(2q + 2ξ)

= 2θ(2q + 2ξ)− 1

ρ(q)
[F̄ (q|ξ) + F̄ (−q|ξ)] + 2π. (5.88)

Combining (5.83) and (5.88) and canceling terms we find that the derivative is:

∂ξω(ξ) = 2k(ξ) +
n

ρ(q)
[F̄ (q|ξ) + F̄ (−q|ξ)]. (5.89)
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The last derivative we require is ∂qω(ξ), happily this is less work than the last one. We

begin in the same way by substituting and integrating by parts:

∂qω(ξ) = − 1

π

∫ q

−q
dλ∂qε(λ)K(2λ, 2ξ),

= − 1

2π

∫ q

−q
dλ (−2πρ(λ)derqh) ∂λθ(2λ− 2ξ)

= ∂qh

(
−
∫ q

−q
dλ∂λρ(λ)θ(2λ− 2ξ) + ρ(q)(θ(2q − 2ξ)− θ(−2q − 2ξ))

)
. (5.90)

Now substituting ∂λρ(λ) from (5.4):

∂qω(ξ) = ∂qhρ(q)

(
θ(2q − 2ξ)− θ(−2q − 2ξ) +

∫ q

−q
dλ(R(λ, q)−R(λ,−q))θ(2λ− 2ξ)

)
,

= ∂qhρ(q)
(

(1 + R̂)[θ(2q − 2ξ)− θ(−2q − 2ξ)]
)
,

= −∂qh2πρ(q)[F̄ (q|ξ)− F̄ (−q|ξ)]. (5.91)

We can now use K = 4π2ρ(q)2 = 2πn/c to remove factors of ρ(q) and n, the partial

derivatives become: ∂q

∂ξ

 =

 K/π −
√
K[F̄ (q, ξ) + F̄ (−q, ξ)]

0
√
K[F̄ (q, ξ)− F̄ (−q, ξ)]


 ∂n

∂k

 . (5.92)

Using this transformation we find:

∂qω = −c
√
K[F̄ (q, ξ)− F̄ (−q, ξ)] = K

∂nω

π
−
√
K[F̄ (q, ξ) + F̄ (−q, ξ)]V,

∂ξω = 2k + c
√
K[F̄ (q, ξ) + F̄ (−q, ξ)] =

√
K[F̄ (q, ξ)− F̄ (−q, ξ)]V (5.93)

Again this allows us to match with the depleton variables, this time σ = 0 because we are

dealing with the spinon which does not change the particle number. As expected we find our
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result to be:

N = −
√
K
(
F̄ (q, ξ)− F̄ (−q, ξ)

)
(5.94)

J

π
= − 1√

K

(
F̄ (q, ξ) + F̄ (−q, ξ)

)
. (5.95)

We note here that the formulae for N and J are virtually the same in each case, this is

because the changes in particle number have already been taken into account in the different

shift functions. When we use these exact values of N and J to calculate correlation functions

we must correct for disparities in exactly the same way as previously.

5.3.4 Calculation of Γ±

As we have described already the depleton model can be used to describe the interaction

of an impurity with phonons in one-dimension and the backscattering amplitude is the part

of the friction force which depends on the details of the impurity. The amplitude can be

calculated in terms of the derivatives of the N and J variables. We will now see that this

amplitude is simplified significantly when written in terms of the Bethe ansatz variables λ

and q. The amplitude Γ± in the (P, n) representation is:

−cΓ± = (σ −N)∂PJ + J∂PN + ∂nN. (5.96)

We can combine the results for the Jacobian matrix of each type of interaction into:

 ∂q

∂λ

 =

 K
π

K
π
J

0 σ −N


 ∂n

∂k

 , (5.97)
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and immediately we see that writing Γ in terms of λ and q derivatives will simplify it con-

siderably. We get,

−cΓ±
π

=
∂λJ

π
+
∂qN

K
. (5.98)

The simplicity of the expression in these variables is striking. It seems that the Bethe

ansatz variables λ and q are in some sense the natural variables to use when describing the

interaction between the depleton N and J variables with the phononic background. This is

quite unexpected.

The next step, of course, is to calculate this quantity beginning with the particle/hole

case. The first term can be calculated using (5.6) and (5.8):

∂λJ

π
= − 1√

K
[∂λF (q|λ) + ∂λF (−q|λ)]

= ± 1√
K

[R(q, λ) +R(−q, λ)]. (5.99)

The best way to calculate the other term is to use N(λ) = ±(1− 2πρ(λ)),

∂qN = ∓2π∂qρ(λ) = ∓2πρ(q)[R(q, λ) +R(−q, λ)]. (5.100)

Substituting these into (5.98) we find that Γ± = 0. This is what we hoped to find, it may

seem that this is a trivial result as the particle and hole excitations are energy eigenstates of

the Hamiltonian, however we should remember that the depleton model doesn’t ’know’ this.

The only input is the dispersion, so encoded in the form of the integrable dispersion is the

cancelation of the impurity-phonon interactions. It has been shown [23] that in the weakly

interacting limit the hole dispersion is the same as that of the grey soliton in the Gross-

Pitaevskii equation. So we can see that this result is equivalent to the vanishing amplitude

for the grey soliton in the weakly interacting limit.
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Finally we need to calculate this amplitude for the spinon. The fastest way to do this is

to notice that the only difference will be factors of two multiplying all terms, this is because

of the definitions of the shift functions. It can of course also be done by directly calculation

the derivatives of the spinon shift function. In either case we find that Γ± = 0 for the spinon

too.

5.4 Conclusions

This chapter contains the main results of this thesis. We set out to use the Bethe ansatz

to test the depleton theory of mobile impurities and the calculation of dynamic response

functions using an effective impurity model. We began the chapter by presenting the finite

size corrections to the Lieb-Liniger and Yang-Gaudin models. Using results from conformal

field theory we know that the finite size corrections to the energy are the conformal dimensions

of the operators, this gives us the N and J variables in terms of the shift functions from the

integrable models. These N and J are also defined in terms of derivatives of the dispersion in

the depleton model. Combining these two definitions suggests that the shift functions can be

written in terms of derivatives of the dispersion. Beginning with the Bethe ansatz form of the

dispersion we calculate the derivatives with respect to the momentum and density exactly,

we find that the relationship is precisely what was expected confirming that our model is

reliable.

Another quantity that we have come across in the depleton model is the back scattering

amplitude. For the integrable excitations we expect there to be no viscous friction force and

therefore the back scattering amplitude should be zero. Again we take the definitions of the

dispersion from the Bethe ansatz and calculate this quantity. it is found to be exactly zero

for the three Bethe ansatz excitations we consider.

76



CHAPTER 6

CONCLUSIONS

Haldane [14] showed that the long range correlation functions of many one-dimensional

models are not strongly affected by linearising the dispersion. Since then the Luttinger

liquid has been used as a universal effective theory for gapless one-dimensional systems. The

challenge of how to include marginal terms that lift the degeneracy associated with the linear

spectrum was not straight forward to overcome. Progress was made once the connection with

the Fermi edge problem was discovered [1], this non-linear Luttinger liquid has connected

the study of mobile impurities to the calculation of correlation functions in these systems.

The main theme of this thesis has been to use exact results from Bethe ansatz solutions

to test the phenomenological theory of the depleton model and non-linear Luttinger liquid.

These theories are much more widely applicable than the exact results, but as they are

developed completely independently of the Bethe ansatz the results gives us confidence in

the theory as a whole. This allows us to use the Bethe ansatz in a way that gets around

the usual problem of it’s narrow range of application. Having said this, the structure of

the Bethe ansatz equations for the Lieb-Liniger and Yang-Gaudin is very similar. We would

expect that other Bethe ansatz soluble models with a shift function would have analogous

relationships between the Fermi surface shifts and derivatives of the dispersion.

We began by setting the scene of one-dimensional quantum systems by introducing boson-
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isation and conformal field theory along with the Bethe ansatz. The Bethe ansatz techniques

allowed us to calculate the ground state and zero temperature excitations of the contact

interacting repulsive Bose gas. There are other models that can be solved using the same

techniques and have similar structure in terms of the equations. We calculated the energy

and momentum of the elementary excitations of the Lieb-Liniger and Yang-Gaudin models.

We also introduced the shift functions which describe the effect of the impurity on the rest of

the system. These shift functions are important, especially the shifts of the Fermi surfaces,

when considering the correlation functions of the system.

Complimentary to the exact Bethe ansatz approach is the idea of a low energy effective

theory. As we have mentioned already, the Luttinger liquid has been considered the go

to effective theory for gapless models in one-dimension. One of the disadvantages of the

exact solutions is the extreme difficulty when trying to calculate correlation functions. The

effective theory is useful because the correlation functions can be calculated easily, you must

be very wary of whether the results are applicable though. We saw how using the conformal

invariance of the model some of the correlation functions can be found.

Progress beyond the linear spectrum approximation has been made using the mobile

impurity model [17]. In this model an impurity is coupled to the Luttinger liquid in a very

general way allowing the main feature of certain dynamic response functions to be calculated.

A major part of this thesis is to show the very close connections between this model and the

depleton model [34] used to study mobile impurities in their own right. We include a review

of the depleton model which describes how to derive the coupling between the impurity and

phononic degrees of freedom. In the process of doing this we introduce variables N and

J which are the number of particles expelled from the background and the phase dropped

across the impurity. These variables turn out to be very natural and simplify the connections

between different correlation functions considerably. In addition to the interaction between

the impurity and the phonons the depleton model can also be used to calculate the friction
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force on the impurity. The corresponding amplitude for the frictional process can be written

in terms of the derivatives of the N and J variables, later in the thesis we calculate these

exactly.

The conformal invariance of the effective model allows us to match the N and J variables

with the finite size spectra of the models. This is particularly useful for the integrable models

because we can calculate these spectra exactly, although with some difficulty. This leads us

to identify the N and J variables with the difference and sum of the the shift functions at the

Fermi points. If the effective model is good than this relationship should be true. We test

this in the most direct way we can: staring from the definitions in terms of the dispersion

relation we calculate the N and J variables exactly in terms of the Fermi point shifts. We

find exact identities suggesting that the model is indeed reliable. In addition to this the

identities are new and interesting from the point of view of exact solutions.

Integral to this calculation is finding expressions for the derivatives of the dispersion, we

then turn our attention to the amplitude for friction which contains exactly these terms.

On closer inspection the amplitude takes a very elegant form when written in terms of

the derivatives of the depleton N and J variables with respect to the Bethe ansatz quasi-

momentum and Fermi momentum. We have also calculated these amplitudes exactly, they

vanish as would be expected for the integrable models. This shows that the lack of interaction

with phonons is encoded in the dispersion relation of the integrable excitations.

The extension of the depleton model to calculate dynamic response functions, the exact

relationships between the dispersion and the and shift functions and the vanishing of the

friction amplitude are the main results of the thesis. However there are many other questions

that remain unanswered. The most obvious extension is probably to look for similar exact

identities in other integrable models. As the structure of the integral equations is similar

across several models we expect that similar identities may be found. Another question that

we mentioned in this thesis is to do with the analytic structure of the correlation functions.
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The requirement that the correlation functions are uniquely defined appears to be broken.

We think this may have connections to the Friedel sum rule, but this is at a very early stage

of investigation.
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APPENDIX A

FINITE SIZE CORRECTIONS

In these notes we will follow Woynarovich[8] as well as Essler[10] and Pereira et al[32] and

calculate the finite size corrections to the spectrum of the 1D Bose gas in the presence of an

extra excitation above the standard low energy current and density excitations. These results

will allow us to find the relationship between the phenomenological shifts in the Luttinger

liquid Hamiltonian and the Bethe ansatz shift functions.

A.1 Finite size expansion

In the ground state the counting function for the Lieb-Liniger gas is

z(λ) = λ+
1

L

∑
j

θ(λ− λj), (A.1)

the Bethe equations are

z(λj) =
2πIj
L

, (A.2)
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and the root densites are given by,

2πρ(λ) = ∂λz(λ). (A.3)

We are interested in calculating the finite size corrections in the presence of an excitation.

In this scenario the counting function becomes

z(λ) = λ+
1

L

∑
j

θ(λ− λj) +
1

L
Φ(λ, ξ), (A.4)

where Φ(λ, ξ) = ±θ(λ − ξ) for particle/hole excitations and Φ(λ, ξ) = −θ(2λ − 2ξ) for the

spinon. The Bethe equations also change,

z(λj) =
2πIj ± π

L
(A.5)

depending on the type of excitation.

We begin with the part of the calculation that is independent of Φ, we now use the Euler

Maclaurin formula,

1

L

n2∑
n=n1

f
(n
L

)
=

∫ n+
L

n−
L

dxf(x) +
1

24L2

(
f ′
(n−
L

)
− f ′

(n+

L

))
+ . . . , (A.6)

where

n+ = n2 +
1

2
, n− = n1 −

1

2
, (A.7)
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to expand the root density and get

ρ(λ) =
1

2π
+

∫ Q+

Q−

dµ
K(λ− µ)

2π
ρ(µ) +

Φ′(λ, ξ)

2πL

+
1

24L2

(
K ′(λ−Q+)

2πρ(Q+)
− K ′(λ−Q−)

2πρ(Q−)

)
+ . . . , (A.8)

where ξ is the particle excitation quasimomentum. We now expand ρ(λ) up to order 1/L2 in

the form

ρ(λ) = ρ0(λ) +
1

L
ρ1(λ) +

1

24L2

(
ρ+(λ)

ρ(Q+)
− ρ−(λ)

ρ(Q−)

)
. (A.9)

The integral equations that the expansion terms satisfy are,

ρ0(λ)−
∫ Q+

Q−

dµ
K(λ, µ)

2π
ρ0(µ) =

1

2π
(A.10)

ρ1(λ)−
∫ Q+

Q−

dµ
K(λ, µ)

2π
ρ1(µ) =

Φ′(λ, ξ)

2π
(A.11)

ρ±(λ)−
∫ Q+

Q−

dµ
K(λ, µ)

2π
ρ±(µ) =

K ′(λ−Q±)

2π
. (A.12)

We note that these terms all contain terms of order 1/L due to the integration limits,

Q+ = q + δ+ (A.13)

Q− = −q + δ−. (A.14)

The energy of the system is

E =
∑
j

ε0(λj) + ε0(ξ), (A.15)
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which can be expanded using the Euler Maclaurin formula to get,

E = L

∫ Q+

Q−

dµε0(µ)ρ(µ) + ε0(ξ)− 1

24L

(
ε′0((Q+)

ρ(Q+)
− ε′0(Q−)

ρ(Q−)

)
. (A.16)

Substituting in our expansion for ρ gives,

E =L

∫ Q+

Q−

dµε0(µ)ρ0(µ) +

∫ Q+

Q−

dµε0(µ)ρ1(µ)

+
1

24L

(∫ Q+

Q−

dµε0(µ)
ρ+(µ)

ρ(Q+)
−
∫ Q+

Q−

dµε0(µ)
ρ−(µ)

ρ(Q−)

)
+ ε0(ξ)− 1

24L

(
ε′0((Q+)

ρ(Q+)
− ε′0(Q−)

ρ(Q−)

)
. (A.17)

We begin by dealing with the parts of the energy that are explicitly of order 1/L, they

are

1

24L

(∫ Q+

Q−

dµε0(µ)
ρ+(µ)

ρ(Q+)
−
∫ Q+

Q−

dµε0(µ)
ρ−(µ)

ρ(Q−)

)
− 1

24L

(
ε′0((Q+)

ρ(Q+)
− ε′0(Q−)

ρ(Q−)

)
. (A.18)

As we are not interested in terms of higher order we can substitute the zeroth order expression

for Q± and ρ giving,

1

24L

(∫ q

−q
ε0(µ)

ρ+(µ)

ρ(q)
−
∫ q

−q
ε0(µ)

ρ−(µ)

ρ(q)

)
− 1

24L

(
ε′0((q)

ρ(q)
− ε′0(−q)

ρ(q)

)
(A.19)
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and the zeroth order equations for ρ and ρ± are,

ρ(λ)−
∫ q

−q

K(λ, µ)

2π
ρ(µ) =

1

2π
(A.20)

ρ±(λ)−
∫ q

−q

K(λ, µ)

2π
ρ±(µ) =

K ′(λ∓ q)
2π

. (A.21)

We need to evaluate the integral,

∫ q

−q
dµρ±(µ)µ2, (A.22)

to do this we introduce the function R(λ, ν) defined by,

R(λ, ν)−
∫ q

−q

K(λ, µ)

2π
R(µ, ν) =

K(λ− ν)

2π
(A.23)

and take the derivative,

∂λR(λ, ν)−
∫ q

−q
∂λ
K(λ, µ)

2π
R(µ, ν) =

K ′(λ− ν)

2π
(A.24)

∂λR(λ, ν) +

∫ q

−q
∂µ
K(λ, µ)

2π
R(µ, ν) =

K ′(λ− ν)

2π
(A.25)

integrating by parts we get,

∂λR(λ, ν)−
∫ q

−q

K(λ, µ)

2π
∂µR(µ, ν) =

K ′(λ− ν)

2π

− K(λ− q)
2π

R(q, ν)

+
K(λ+ q)

2π
R(−q, ν). (A.26)
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Now comparing (A.21), (A.23) and (A.26) we find,

ρ±(λ) = ∂λR(λ,±q) +R(λ, q)R(q,±q)−R(λ,−q)R(−q,±q). (A.27)

Going back to (A.22),

∫ q

−q
dµρ±µ

2 =

∫ q

−q
dµ∂µR(µ,±q)µ2

+R(q,±q)
∫ q

−q
dµR(µ, q)µ2

−R(−q,±q)
∫ q

−q
dµR(µ,−q)µ2 (A.28)

=

∫ q

−q
dµ∂µR(µ,±q)µ2

+ (R(q,±q)−R(q,∓q))
∫ q

−q
dµR(µ, q)µ2. (A.29)

The first integral can be calculated by integrating by parts and using R(q, q) − R(q,−q) =

−ρ′(q)/ρ(q).

∫ q

−q
dµ∂µR(µ,±q)µ2 =

[
R(µ,±q)µ2

]q
−q − 2

∫ q

−q
dµR(µ,±q)µ (A.30)

= ∓ε0(q)ρ′(q)

ρ(q)
± (ε′0(q)− ε′(q)) . (A.31)

The other integral is,

∫ q

−q
dµR(µ,±q)µ2 = −

∫ q

−q
dµ∂µF (±q, µ)µ2 (A.32)

= −
[
F (±q, µ)µ2

]q
−q + 2

∫ q

−q
dµF (±q, µ)µ (A.33)
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Using the Slavnov identity,

2

∫ q

−q
dµF (±q, µ)µ =− 2

∫ q

−q
dµF (µ,±q)µ

+ 2F (±q, q)
∫ q

−q
dµF (µ, q)µ

− 2F (±q,−q)
∫ q

−q
dµF (µ,−q)µ (A.34)

= 2 (−1 + F (±q, q)− F (±q,−q))
∫ q

−q
dµF (µ, q)µ (A.35)

= 2πρ(q)(ε(q)− ε0(q)), (A.36)

which leads to

∫ q

−q
dµR(µ,±q)µ2 = ε0(q)(2πρ(q)− 1) + 2πρ(q)(ε(q)− ε0(q)) = −ε0(q). (A.37)

Finally we get,

∫ q

−q
dµρ±(µ)µ2 = ± (ε′0(q)− ε′(q)) . (A.38)

Using this we find that the terms in (A.18) become simply −πv/L where v = ε′(q)/2πρ(q).

This allows us to write the expression for the energy as,

E =L

∫ Q+

Q−

dµε0(µ)ρ0(µ) +

∫ Q+

Q−

dµε0(µ)ρ1(µ) + ε0(ξ)− πv

6L
. (A.39)
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We will now calculate the first integral, we begin by expanding in δ±.

∫ Q+

Q−

dµε0(µ)ρ0(µ) =

∫ q

−q
ε0(µ)ρ0(µ)

+ δ+ε0(q)ρ0(q)− δ−ε0(q)ρ0(−q)

+
δ2

+

2
(ε′0(q)ρ0(q) + ε0(q)ρ′0(q))

−
δ2
−

2
(ε′0(−q)ρ0(−q) + ε0(q)ρ′0(−q)) (A.40)

Remembering that there is also 1/L dependence in ρ0 we expand that in δ± to get

ρ0(λ)−
∫ q

−q

K(λ, µ)

2π
ρ0(µ) =

1

2π

+ δ+
K(λ− q)

2π
ρ0(q)− δ−

K(λ+ q)

2π
ρ0(−q)

+
δ2

+

2

(
−K

′(λ− q)
2π

ρ0(q) +
K(λ− q)

2π
ρ′0(q)

)
−
δ2
−

2

(
−K

′(λ+ q)

2π
ρ0(−q) +

K(λ+ q)

2π
ρ′0(−q)

)
. (A.41)

Now expanding ρ0(q),

ρ0(λ) = ρ0,0(λ) +
1

L
ρ0,1(λ) +

1

L2
ρ0,2(λ). (A.42)
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The equations satified by the terms in the expansion are,

ρ0,0(λ)−
∫ q

−q

K(λ, µ)

2π
ρ0,0(µ) =

1

2π
, (A.43)

ρ0,1(λ)−
∫ q

−q

K(λ, µ)

2π
ρ0,1(µ) =Lδ+

K(λ− q)
2π

ρ0,0(q)− Lδ−
K(λ+ q)

2π
ρ0,0(q), (A.44)

ρ0,2(λ)−
∫ q

−q

K(λ, µ)

2π
ρ0,2(µ) =Lδ+

K(λ− q)
2π

ρ0,1(q)− Lδ−
K(λ+ q)

2π
ρ0,1(−q)

+
(Lδ+)2

2

(
−K

′(λ− q)
2π

ρ0,0(q) +
K(λ− q)

2π
ρ′0,0(q)

)
+

(Lδ+)2

2

(
K ′(λ+ q)

2π
ρ0,0(q) +

K(λ+ q)

2π
ρ′0,0(q)

)
. (A.45)

The zeroth order contribution to (A.40) is,

∫ q

−q
ε0(µ)ρ0,0(µ) (A.46)

which is just the energy density of the ground state eGS. The first order contribution is

zero because the dressed energy has roots at the integration boundaries. The second order

contribution is,

∫ q

−q
ε0(µ)ρ0,2(µ) + Lδ+ε0(q)ρ0,1(q)− Lδ−ε0(q)ρ0,1(−q)

+
(Lδ+)2

2

(
ε′0(q)ρ0,0(q) + ε0(q)ρ′0,0(q)

)
+

(Lδ−)2

2

(
ε′0(q)ρ0,0(−q) + ε0(q)ρ′0,0(q)

)
. (A.47)
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ρ0,1 and ρ0,2 can be written as,

ρ0,1 =Lδ+R(λ, q)ρ0,0(q)− Lδ−R(λ,−q)ρ0,0(q), (A.48)

ρ0,2 =Lδ+R(λ, q)ρ0,1(q)− Lδ−R(λ,−q)ρ0,1(−q)

+
(Lδ+)2

2

(
−ρ+(λ)ρ0,0(q) +R(λ, q)ρ′0,0(q)

)
+

(Lδ+)2

2

(
ρ−(λ)ρ0,0(q) +R(λ,−q)ρ′0,0(q)

)
. (A.49)

Using (A.37) and (A.38) we find,

∫ q

−q
ε0(µ)ρ0,2(µ) =− Lδ+ε0(q)ρ0,1(q) + Lδ−ε0(q)ρ0,1(−q)

+
(Lδ+)2

2

(
−(ε′0(q)− ε′(q))ρ0,0(q)− ε0(q)ρ′0,0(q)

)
+

(Lδ+)2

2

(
−(ε′0(q)− ε′(q))ρ0,0(q)− ε0(q)ρ′0,0(q)

)
. (A.50)

The entire second order contribution then reduces to,

1

2
ε′(q)

(
(Lδ+)2 + (Lδ−)2

)
= πvρ2(q)

[
(Lδ+)2 + (Lδ−)2

]
. (A.51)

Which means that the energy can now be written as,

E = LeGS +

∫ Q+

Q−

dµε0(µ)ρ1(µ) + ε0(ξ)− πv

6L
+
πvρ2(q)

L

[
(Lδ+)2 + (Lδ−)2

]
. (A.52)

We note that so far in the calculation we have not used the form of Φ, we now have to.
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A.1.1 Particle/hole

The final integral is

∫ Q+

Q−

dµε0(µ)ρ1(µ) =

∫ q

−q
dµε0(µ)ρ1(µ) + δ+ρ1(q)ε0(q)− δ−ρ1(−q)ε0(q). (A.53)

We expand ρ1 as before,

ρ1(λ)−
∫ q

−q

K(λ, µ)

2π
ρ1(µ) =

K(λ− ξ)
2π

+ δ+ρ1(q)
K(λ− q)

2π
− δ−ρ1(−q)K(λ+ q)

2π
. (A.54)

Expanding ρ1 in 1/L gives,

ρ1(λ) = ρ1,0(λ) +
1

L
ρ1,1(λ) (A.55)

where the terms satisfy,

ρ1,0(λ)−
∫ q

−q
dµ
K(λ, µ)

2π
ρ1,0(µ) =

K(λ− ξ)
2π

(A.56)

ρ1,1(λ)−
∫ q

−q
dµ
K(λ, µ)

2π
ρ1,1(µ) = Lδ+ρ1,0(q)

K(λ− q)
2π

− Lδ−ρ1,0(−q)K(λ+ q)

2π
. (A.57)
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The zeroth order term is,

∫ q

−q
dµR(ξ, µ)µ2 =−

∫ q

−q
dµ∂µF (ξ, µ)µ2

=−
[
F (ξ, µ)µ2

]q
−q + 2

∫ q

−q
dµF (ξ, µ)µ

=− ε0(q)[F (ξ, q)− F (ξ,−q)]− 2

∫ q

−q
dµF (µ, ξ)µ

+ [F (ξ, q)− F (ξ,−q)]2
∫ q

−q
dµF (µ, q)µ

=− ε0(q)[F (ξ, q)− F (ξ,−q)] + ε(ξ)− ε0(ξ)

+ [F (ξ, q)− F (ξ,−q)](ε0(q)− ε(q))

=ε(ξ)− ε0(ξ). (A.58)

The first order terms sum to zero and the energy is,

Eparticle = LeGS + ε(ξ)− πv

6L
+
πvρ2(q)

L

[
(Lδ+)2 + (Lδ−)2

]
. (A.59)

The hole excitation differs only in the sign of K(λ− ξ) and the bare energy. This results

in

Ehole = LeGS − ε(ξ)−
πv

6L
+
πvρ2(q)

L

[
(Lδ+)2 + (Lδ−)2

]
(A.60)

for the energy.

A.1.2 Spinon

The final integral is still

∫ Q+

Q−

dµε0(µ)ρ1(µ) =

∫ q

−q
dµε0(µ)ρ1(µ) + δ+ρ1(q)ε0(q)− δ−ρ1(−q)ε0(q). (A.61)
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ρ1 is now,

ρ1(λ)−
∫ q

−q

K(λ, µ)

2π
ρ1(µ) = −2

K(2λ− 2ξ)

2π
+ δ+ρ1(q)

K(λ− q)
2π

− δ−ρ1(−q)K(λ+ q)

2π
.

(A.62)

Expanding ρ1 as before we now have

ρ1,0(λ, ξ)−
∫ q

−q
dµ
K(λ, µ)

2π
ρ1,0(µ, ξ) = −2

K(2λ− 2ξ)

2π
(A.63)

ρ1,1(λ)−
∫ q

−q
dµ
K(λ, µ)

2π
ρ1,1(µ) = Lδ+ρ1,0(q)

K(λ− q)
2π

− Lδ−ρ1,0(−q)K(λ+ q)

2π
. (A.64)

The first order terms are again zero. The shift function for the spinon excitation is

F̄ (λ, ξ)−
∫ q

−q
dµ
K(λ, µ)

2π
F̄ (µ, ξ) =− π + θ(2λ− 2ξ)

2π
(A.65)

and the derivative is

∂λF̄ (λ, ξ)−
∫ q

−q
dµ
K(λ, µ)

2π
∂µF̄ (µ, ξ) =− 2

K(2λ− 2ξ)

2π

− K(λ− q)
2π

F̄ (q, ξ)

+
K(λ+ q)

2π
F̄ (−q, ξ). (A.66)

Comparing (A.63) with (A.66) we find,

ρ1,0(λ, ξ) = ∂λF̄ (λ, ξ) + F̄ (q, ξ)R(λ, q)− F̄ (−q, ξ)R(λ,−q). (A.67)
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The integral is

∫ q

−q
dµρ1,0(µ, ξ)µ2 =

∫ q

−q
dµ∂µF̄ (µ, ξ)µ2

+
[
F̄ (q, ξ)− F̄ (−q, ξ)

] ∫ q

−q
dµR(q, µ)µ2

=− 2

∫ q

−q
dµF̄ (µ, ξ)µ+

[
F̄ (q, ξ)− F̄ (−q, ξ)

]
q2

−
[
F̄ (q, ξ)− F̄ (−q, ξ)

]
ε0(q)

=− 2

∫ q

−q
dµF̄ (µ, ξ)µ = ωξ, (A.68)

where ωξ is the energy of the spinon above the ground state. The energy is

Espinon = LeGS + ω(ξ)− πv

6L
+
πvρ2(q)

L

[
(Lδ+)2 + (Lδ−)2

]
. (A.69)

A.2 Calculating δ±

Now that we have the finite size correction to the energy in terms of the change of the integral

boundaries we should calculate what the change of boundaries are. We do this by considering

the density of and current through the system. These calculation are specific to the type of

excitation in the system.

A.2.1 Particle/hole

The density of the system is,

N

L
= n+

∆N

L
=
I+ − I−

L
=

∫ Q+

Q−

dµρ(µ). (A.70)
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expanding the integral in δ± and equating terms of order 1/L we find,

∆N

L
=

1

L

∫ q

−q
dµ(ρ0,1(µ) + ρ1,0(µ)) + δ+ρ0,0(q)− δ−ρ0,0(q)

=δ+ρ0,0(q)

∫ q

−q
dµR(q, µ)− δ−ρ0,0(q)

∫ q

−q
dµR(q, µ)

+ δ+ρ0,0(q)− δ−ρ0,0(q) +
1

L

∫ q

−q
dµR(ξ, µ)

=(δ+ρ0,0(q)− δ−ρ0,0(q))[−F (q, q) + F (q,−q) + 1] +
1

L

∫ q

−q
dµR(ξ, µ)

=ρ(q)Z(q)(δ+ − δ−) +
nimp
L

, (A.71)

where

nimp =

∫ q

−q
dµR(ξ, µ) = −[F (ξ, q)− F (ξ,−q)]. (A.72)

If we consider an excitation where D particles are moved from one Fermi point to the other

we have,

2D

L
=
I+ + I−

L
=

∫ −∞
Q−

dµρ(µ)−
∫ Q+

∞
dµρ(µ). (A.73)

Expanding as previously we find,

2D

L
=δ+ρ0,0(q) + δ−ρ0,0(q)

+
1

L

∫ −q
−∞

dµ[ρ0,1(µ) + ρ1,0(µ)]

− 1

L

∫ ∞
q

dµ[ρ0,1(µ) + ρ1,0(µ)]

= [δ+ρ0,0(q) + δ−ρ0,0(q)][1− F (q, q)− F (q,−q)] +
2dimp
L

= [δ+ρ0,0(q) + δ−ρ0,0(q)]Z−1(q) +
2dimp
L

, (A.74)

XV



where

2dimp =

∫ −q
−∞

dµR(ξ, µ)−
∫ ∞
q

dµR(ξ, µ) = −[F (ξ, q) + F (ξ,−q)]. (A.75)

The finite size spectrum is,

E = LeGS + ε(ξ)− πv

6L
+

2πv

L

[
∆N − nimp

2Z

]2

+
2πv

L
Z2 (D − dimp)2 (A.76)
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[30] Henning Moritz, Thilo Stöferle, Michael Köhl, and Tilman Esslinger. Exciting collective
oscillations in a trapped 1d gas. Phys. Rev. Lett., 91:250402, Dec 2003.

[31] Philippe Nozires and David Pines. The theory of quantum liquids. Advanced book
classics. Perseus, Cambridge, MA, 1999.

[32] R. G. Pereira, S. R. White, and I. Affleck. Spectral function of spinless fermions on a
one-dimensional lattice. Physical Review B, 79(16):165113, 2009.

[33] V.N. Popov. Functional integrals and collective excitations. Cambridge Univ Pr, 1991.

XIX



[34] M. Schecter, A. Kamenev, D. Gangardt, and A. Lamacraft. Dynamics of mobile impu-
rities in one-dimensional quantum liquids. Bulletin of the American Physical Society,
57, 2012.

[35] K. D. Schotte and U. Schotte. Tomonaga’s model and the threshold singularity of x-ray
spectra of metals. Physical Review, 182(2):479, 1969.

[36] N. A. Slavnov. A nonlinear identity for the scattering phase of integrable models. The-
oretical and mathematical physics, 116(3):1021–1023, 1998.

[37] B. Sutherland. Beautiful models: 70 years of exactly solved quantum many-body problems.
World Scientific Publishing Company Incorporated, 2004.

[38] S. Tomonaga. Remarks on bloch’s method of sound waves applied to many-fermion
problems. Progress of Theoretical Physics, 5:544–569, July 1950.

[39] C. N. Yang. Some exact results for the many-body problem in one dimension with
repulsive delta-function interaction. Physical Review Letters, 19(23):1312–1315, 1967.

[40] C. N. Yang and C. P. Yang. Thermodynamics of a one-dimensional system of bosons
with repulsive delta-function interaction. Journal of Mathematical Physics, 10:1115,
1969.

[41] M. B. Zvonarev, V. V. Cheianov, and T. Giamarchi. Edge exponent in the dynamic spin
structure factor of the yang-gaudin model. Physical review b, 80(20):201102, 2009.

XX


